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Preface

After the exceptional 47th volume of the Séminaire de Probabilités dedicated to
Marc Yor, we continue in this 48th volume with the usual formula: some of the
contributions are related to talks given during the Journées de Probabilités held
in Luminy (CIRM) in 2014 and in Toulouse in 2015, and the other ones come
from spontaneous submissions. Apart from the traditional topics such as stochastic
calculus, filtrations and random matrices, this volume continues to explore the
subject of peacocks, recently introduced in previous volumes. Other particularly
interesting papers involve harmonic measures, random fields and loop soups.

We hope that these contributions offer a good sample of the mainstreams of
current research on probability and stochastic processes, in particular those active
in France.

We would like to remind the reader that the website of the Séminaire is
http://portail.mathdoc.fr/SemProba/

and that all the articles of the Séminaire from Volume I in 1967 to Volume XXXVI
in 2002 are freely accessible from the web site

http://www.numdam.org/numdam-bin/feuilleter?j=SPS.
We thank the Cellule MathDoc for hosting all these articles within the NUM-

DAM project.

Versailles, France Catherine Donati-Martin
Vandoeuvre-lès-Nancy, France Antoine Lejay
Versailles, France Alain Rouault
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Abstract We revisit Kellerer’s Theorem, that is, we show that for a family of real
probability distributions .�t/t2Œ0;1� which increases in convex order there exists a
Markov martingale .St/t2Œ0;1� s.t. St � �t.

To establish the result, we observe that the set of martingale measures with
given marginals carries a natural compact Polish topology. Based on a particular
property of the martingale coupling associated to Root’s embedding this allows for
a relatively concise proof of Kellerer’s theorem.

We emphasize that many of our arguments are borrowed from Kellerer (Math
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1 Introduction

1.1 Problem and Basic Concepts

We consider couplings between probabilities .�t/t2T on the real line, where t ranges
over different choices of time sets T. Throughout we assume that all �t have a first
moment. We represent these couplings as probabilities (usually denoted by � or P)
on the canonical space ˝ corresponding to the set of times under consideration.
More precisely ˝ may be R

T or the space D of càdlàg functions if T D Œ0; 1�.
In each case we will write .St/ for the canonical process and F D .Ft/ for the
natural filtration. ˘..�t// denotes the set of probabilities P for which St �P �t.
M..�t// will denote the subset of probabilities (“martingale measures”) for which
S is a martingale wrt F resp. the right-continuous filtration FC D .FC

t /t2Œ0;1� in
the case ˝ D D . To have M..�t// ¤ ; it is necessary that .�t/ increases in convex
order, i.e. �s.'/ � �t.'/ for all convex functions ' and s � t. This is an immediate
consequence of Jensen’s inequality. We denote the convex order by � :

Our interest lies in the fact that this condition is also sufficient, and we shall from
now on assume that .�t/t2T increases in convex order, i.e. that .�t/t2T is a peacock in
the terminology of [5, 6]. The proof that M..�t/t2T/ ¤ ; gets increasingly difficult
as we increase the cardinality of the set of times under consideration.

If T D f1; 2g, this follows from Strassen’s Theorem [18] and we take this result
for granted. The case T D f1; : : : ; ng immediately follows by composition of one-
period martingale measures �k 2 M.�k; �kC1/.

If T is not finite, the fact that M..�t/t2T/ ¤ ; is less immediate and to establish
that M..�t/t2T/ contains a Markov martingale is harder still; these results were first
proved by Kellerer in [11, 12] and now go under the name of Kellerer’s theorem.
We recover these classical results in a framework akin to that of martingale optimal
transport.

1.2 Comparison with Kellerer’s Approach

Kellerer [11, 12] works with peacocks indexed by a general totally ordered index
set T and the corresponding natural filtration F . He establishes compactness
of martingale measures on R

T which correspond to the peacock .�t/t2T . Then
Strassen’s theorem allows him to show the existence of a martingale with given
marginals .�t/t2T for general T.

To show that M..�t/t2T/ also contains a Markov martingale is more involved. On
a technical level, an obstacle is that the property of being a Markovian martingale
measure is not suitably closed. Kellerer circumvents this difficulty based on a
stronger notion of Markov kernel, the concept of Lipschitz or Lipschitz-Markov
kernels on which all known proofs of Kellerer’s Theorem rely. The key step to
showing that M..�t/t2T/ contains a Markov martingale is to establish the existence
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of a two marginal Lipschitz kernel. Kellerer achieves this by showing that there
are Lipschitz-Markov martingale kernels transporting a given distribution � to the
extremal points of the set � � � and subsequently obtaining an appealing Choquet-
type representation for this set.

Our aim is to give a compact, self contained presentation of Kellerer’s result in a
framework that can be useful for questions arising in martingale optimal transport1

for a continuum of marginals. While Kellerer is not interested in continuity
properties of the paths of the corresponding martingales, it is favourable to work
in the more traditional setup of martingales with càdlàg paths to make sense of
typical path-functionals (based on e.g. running maximum, quadratic variation, etc.).

In Theorem 1 we make it a point to show that the space of càdlàg martingales
corresponding to .�t/t2Œ0;1� carries a compact Polish topology. We then note that the
Root solution of the Skorokhod problem yields an explicit Lipschitz-Markov kernel,
establishing the existence of a Markovian martingale with prescribed marginals.

1.3 Further Literature

Lowther [14, 15] is particularly interested in martingales which have a property
even stronger than being Lipschitz Markov: He shows that there exists a unique
almost continuous diffusion martingale whose marginals fit the given peacock.
Under additional conditions on the peacock he is able to show that this martingale
has (a.s.) continuous paths.

Hirsch-Roynette-Profeta-Yor [5, 6] avoid constructing Lipschitz-Markov-kernels
explicitly. Rather they establish the link to the works of Gyöngy [3] and Dupire [2]
on mimicking process/local volatility models, showing that Lipschitz-Markov mar-
tingales exist for sufficiently regular peacocks. This is extended to general peacocks
through approximation arguments. On a technical level, their arguments differ from
Kellerer’s approach in that ultrafilters rather than compactness arguments are used
to pass to accumulation points. We also recommend [6] for a more detailed review
of existing results.

2 The Compact Set of Martingales Associated to a Peacock

It is well known and in fact a simple consequence of Prohorov’s Theorem that
˘.�1; �2/ is compact wrt the weak topology induced by the bounded continuous
functions (see e.g. [19, Sect. 4] for details). It is also straightforward that the
continuous functions f W R2 ! R which are bounded in the sense that j f .x; y/j �

1An early article to study this continuum time version of the martingale optimal transport problem
is the recent article [10] of Kallblad et al.
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'.x/ C  .y/ for some ' 2 L1.�1/;  2 L1.�2/ induce the same topology on
˘.�1; �2/.

A transport plan � 2 ˘.�1; �2/ is a martingale measure iff for all continuous,
compact support functions h,

R
h.x/.y � x/ d� D 0. Hence, M.�1; �2/ is a closed

subset of ˘.�1; �2/ and thus compact. Likewise, M.�1; : : : ; �n/ is compact.

2.1 The Countable Case

We fix a countable set Q 3 1 which is dense in Œ0; 1� and write MQ for the set of all
martingale measures on R

Q. For D � Q we set:

MQ..�t/t2D/ WD fP 2 MQ W St �P �t for t 2 Dg:

We equip R
Q with the product topology and consider MQ with the topology of weak

convergence with respect to continuous bounded functions. Note that this topology
is in fact induced by the functions ! 7! f .St1 .!/; : : : ; Stn.!//, where ti 2 Q and f is
continuous and bounded.

Lemma 1 For every finite D � Q;D 3 1 the set MQ..�t/t2D/ is non-empty and
compact. As a consequence, M..�t/t2Q/ D MQ..�t/t2Q/ is non-empty and compact.

Proof We first show that MQ.�1/ is compact. To this end, we note that for every
" > 0 there exists n such that

R
.jxj � n/C d�1 < ". We then also have

�.R n Œ�.nC 1/; .nC 1/�/ � R .jxj � n/C d� � R .jxj � n/C d�1 < "

for every � � �1.
For every r W Q ! RC the set Kr WD fg W Q ! R; jgj � rg is compact by

Tychonoff’s theorem. Also, for given " > 0 there exists r such that for all P on
R

Q with LawP.St/ � �1 for all t 2 Q we have P.Kr/ > 1 � ". Hence Prohoroff’s
Theorem implies that MQ.�1/ is compact.

Next observe that for any finite set D � Q; 1 2 D the set MQ..�t/t2D/ is
non empty by Strassen’s theorem. Clearly MQ..�t/t2D/ is also closed and hence
compact. The family of all such sets MQ..�t/t2D/ has the finite intersection property,
hence by compactness

MQ..�t/t2Q/ DTD�Q;12D;jDj<1 MQ..�t/t2D/ ¤ ;:

2.2 The Right-Continuous Case

We will now extend this construction to right-continuous families of marginals on
the whole interval Œ0; 1�.
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We first note that it is not necessary to distinguish between the terms right-
continuous and càdlàg in this context: fix a (not necessarily countable) set Q �
Œ0; 1�;Q 3 1, a peacock .�t/t2Q and a strictly convex function ' which grows at
most linearly, e.g. '.x/ D p1C x2. Then the following is straightforward: the
mapping �� W Q ! P.R/; q 7! �q is càdlàg wrt the weak topology on P.R/ iff
the increasing function q 7! R

' d�q is right-continuous. In this case we say that
.�t/t2Q is a right-continuous peacock.

As we have to deal with right limits we will recall the following:

Lemma 2 Let .Xn/n2�N[f�1g be a martingale wrt .Gn/n2�N[f�1g and write �n D
Law.Xn/. If limn!�1 �n D ��1, then X�1 D lim Xn a.s. and in L1.

Proof Set Y WD limn!�1 Xn which exists (see for instance [16, Theorem II.2. 3]),
has the same law as X�1 and satisfies EŒYjX�1� D X�1 . This clearly implies that
X�1 D Y.

As above, we fix a countable and dense set Q � Œ0; 1� with 1 2 Q and consider

D D fg W Œ0; 1�! R W g is càdlàg g;
DQ D f f W Q! R W 9g 2 D s.t. gjQ D f g:

Note that DQ is a Borel subset of RQ. Indeed a useful explicit description of DQ

can be given in terms of upcrossings. For f W Q! R we write UP. f ; Œa; b�/ for the
number of upcrossings of f through the interval Œa; b�. Then f 2 DQ iff f is càdlàg
and bounded on Q and satisfies UP. f ; Œa; b�/ < 1 for arbitrary a < b (clearly it is
enough to take a; b 2 Q). We also set

NFs WD Tt2Q;t>s Ft (1)

for s 2 Œ0; 1/ and let NF1 D F1.

Proposition 1 Assume that .�t/t2Q is a right-continuous peacock and let P 2
M..�t/t2Q/. Then P.DQ/ D 1. For q 2 Q, NSq WD Sq D limt#q;t2Q;t>q St holds P-a.s.
For s 2 Œ0; 1� n Q, limt#s;t2Q;t>s St exists and we define it to be NSs. The thus defined
process .NSt/t2Œ0;1� is a càdlàg martingale wrt . NFt/t2Œ0;1�.

Proof By Lemma 2, Sq D limt#q;t>q;t2Q St for all q 2 Q. Using standard martingale
folklore (cf. [16, Theorem 2.8]), this implies that .St/t2Q is a martingale under � wrt
. NFt/t2Q as well and the paths of .St/t2Q are almost surely càdlàg. Moreover these are
almost surely bounded by Doob’s maximal inequality and have only finitely many
upcrossings by Doob’s upcrossing inequality. This proves P.DQ/ D 1. As the paths
of .St/t2Q are càdlàg the definition NSs WD limt#s;t2Q;t>s St is well for s 2 Œ0; 1� n Q
and .NSt/t2Œ0;1� is a càdlàg martingale under P wrt . NFt/t2Œ0;1�.

Identifying elements of D and DQ, the right-continuous filtration FC on D
equals the restriction of NF [cf. (1)] to DQ. Since any martingale measure P
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concentrated on DQ corresponds to a martingale measure eP on D Proposition 1
yields:

Proposition 2 Let .�t/t2Œ0;1� be a right-continuous peacock and Q 3 1;Q � Œ0; 1�
a countable dense set. Then the above correspondence

P 7!eP (2)

constitutes a bijection between M..�t/t2Q/ and M..�t/t2Œ0;1�/.

Through the identification P 7! eP, the set M..�t/t2Œ0;1�/ carries a compact
topology TQ. Superficially, this topology seems to depend on the particular choice
of the set Q but this is not the case. To see this, consider another countable dense
set Q0 � Œ0; 1�. The set Q[Q0 gives rise to a topology TQ[Q0 which is a priori finer
than TQ and TQ0 resp. Recall that whenever two compact Hausdorff topologies on
a fixed space are comparable, they are equal. Since TQ;TQ0 ;TQ[Q0 are compact
Hausdorff topologies, we conclude that TQ D TQ[Q0 D TQ0 . Hence we obtain:

Theorem 1 Let .�t/t2Œ0;1� be a right-continuous peacock and consider the canoni-
cal process .St/t2Œ0;1� on the Skorokhod space D . The set M..�t/t2Œ0;1�/ of martingale
measures with marginals .�t/ is non empty and compact wrt the topology induced
by the functions

! 7! f .St1 .!/; : : : ; Stn.!//;

where t1; : : : ; tn 2 Œ0; 1� and f is continuous and bounded.

2.3 General Peacocks

Kellerer [11] considers the more general case of a peacock .�t/t2T where .T; </
is an abstract total order and s < t implies �s � �t, moreover no continuity
assumptions on t 7! �t are imposed. Notably the existence of a martingale
associated to such a general peacock already follows from the case treated in the
previous section since every peacock can be embedded in a (right-) continuous
peacock indexed by real numbers:

Lemma 3 Let .T; </ be a total order and .�t/t2T a peacock. Then there exist
a peacock .�s/s2RC which is continuous (in the sense that s 7! �s is weakly
continuous) and an increasing function f W T ! RC such that

�t D �f .t/:

If T has a maximal element we may assume that f W T ! Œ0; 1�.
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Proof Assume first that T contains a maximal element t�. Consider again '.x/ Dp
1C x2 and set f .t/ WD R

' d�t for t 2 T. On the image S of f we define .�s/

through �f .t/ WD �t. Then s 7! �s is continuous on I and s� WD f .t�/ is a maximal
element of S.

Using tightness of .�s/s2S we obtain that �s WD limr2S;r!s exists for s 2 S. It
remains to extend .�s/s2S to Œ0; s�. The set Œ0; s� n S is the union of countably many
intervals and on each of these we can define �s by linear interpolation. Finally it is
of course possible to replace Œ0; s� by Œ0; 1� through rescaling.

If T does not have a maximal element, we first pick an increasing sequence
.tn/n�1 in T such that supn

R
' d�tn D supt2T

R
' d�t, then we apply the previous

argument to the initial segments fs 2 T W s � tng.
Above we have seen that M..�t/t2Œ0;1�/ ¤ ; for .�t/t2Œ0;1� right-continuous and

pasting countably many martingales together this extends to the case of a right-
continuous peacock .�s/s2RC

. By Lemma 3 this already implies M..�t/t2T/ ¤ ; for
a peacock wrt to a general total order T.

3 Root to Markov

So far we have constructed martingales which are not necessarily Markov. To obtain
the existence of a Markov-martingale with desired marginals, one might try to adapt
the previous argument by restricting the sets MQ..�t/t2D/ to the set of Markov-
martingales. As noted above, this strategy does not work in a completely straight
forward way as being Markovian is not a closed property wrt weak convergence.

Example 1 The sequence �n D 1
2
.ı.1; 1n ;1/

C ı.�1;� 1
n ;�1// of Markov-measures

weakly converge to the non-Markovian measure � D 1
2
.ı.1;0;1/ C ı.�1;0;�1//.

3.1 Lipschitz-Markov Kernels

A solution � to the two marginal Skorokhod problem B0 � �;B� � � gives rise
to the particular martingale transport plan .B0;B� /. Sometimes these martingale
couplings induced by solutions to the Skorokhod embedding problem exhibit certain
desirable properties. In particular we shall be interested in the Root solution to the
Skorokhod problem.

Theorem 2 (Root [17]) Let � � � be two probability measures on R. There exists
a closed set (“barrier”) R � RC �R (i.e. .s; x/ 2 R; s < t implies that .t; x/ 2 R)
such that for Brownian motion .Bt/t�0 started in B0 � � the hitting time �R of R
embeds � in the sense that B�R � � and .Bt^�R/t is uniformly integrable.
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Before we formally introduce the Lipschitz-Markov property we recall that the
L1- Wasserstein distance between two probabilities ˛; ˇ on R is given by

W.˛; ˇ/ D inf
n R jx � yj d� W � 2 ˘.˛; ˇ/

o
D sup

n R
f d� � R f d� W f 2 Lip1

o
;

where ˘.˛; ˇ/ denotes the set of all couplings between ˛ and ˇ and Lip1 denotes
the set of all 1-Lipschitz functions R ! R: The equality of the two terms is a
consequence of the Monge-Kantorovich duality in optimal transport, see e.g. [19,
Sect. 5].

A martingale coupling � 2 M.�; �/ is Lipschitz-Markov iff for some (and then
any) disintegration .�x/x of � wrt � and some set X � R, �.X/ D 1 we have for
x; x0 2 X

W.�x; �x0/ D jx � x0j: (3)

We note that the inequality W.�x; �x0/ � jx � x0j is satisfied for arbitrary � 2
M.�; �/: for typical x; x0; x < x0, the mean of �x equals x and the mean of �x0 equals
x0. We thus find for arbitrary � 2 ˘.�x; �x0/

R jy � y0j d�.y; y0/ � ˇˇ R y d�.y; y0/� R y0 d�.y; y0/
ˇ
ˇ (4)

D ˇˇ R y d�x.y/�
R

y0 d�x0.y0/
ˇ
ˇ D jx � x0j;

hence W.�x; �x0/ � jx � x0j.
Note also that W.�x; �x0/ D jx�x0j holds iff the inequality in (4) is an equality for

the minimizing coupling ��. This holds true iff there is a transport plan � which is
isotone in the sense that it transports �x-almost all points y to some y0 � y. This is of
course equivalent to saying that �x precedes �x0 in first order stochastic dominance.

Lemma 4 The Root coupling �R D Law.B0;B�R/ is Lipschitz-Markov.

Proof Write .Bt/t for the canonical process on ˝ D CŒ0;1/, W for Wiener
measure started in � and �R for the Root stopping time s.t. .B0;B�R/ �W �R 2
M.�; �/.

It follows from the geometric properties of the barrier R that for all x < x0 and
! 2 ˝ such that !.0/ D 0

B�R.xC!/.xC !/ � B�R.x0C!/.x0 C !/:

Write �x for the distribution of B�R given B0 D x and W0 for Wiener measure with
start in 0. Then .�x/x defines a disintegration (wrt the first coordinate) of �R and for
x < x0 an isotone coupling � 2 ˘.�x; �x0/ can be explicitly defined by

�.A � B/ WD R 1A�B.B�R.xC!/.xC !/;B�R.x0C!/.x0 C !//W0.d!/:
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Remark 1 We thank David Hobson for pointing out that Lemma 4 remains true if
we replace �R by Hobson’s solution to the Skorokhod problem [7].2

We also note that this property is not common among martingale couplings. It
is not present e.g. in the coupling corresponding to the Rost-embedding nor the
various extremal martingale couplings recently introduced by Hobson–Neuberger
[9], Hobson–Klimmek [8], Juillet (and one of the present authors) [1], and Henry-
Labordere–Touzi [4].

3.2 Compactness of Lipschitz-Markov Martingales

To generalize the Lipschitz-Markov property to multiple time steps we first provide
an equivalent formulation in the two step case. Using the Lipschitz-function
characterization of the Wasserstein distance we find that (3) is tantamount to the
following: for every f 2 Lip1.R/ the mapping

x 7! R
f d�x D EŒ f .S2/jS1 D x� (5)

is 1-Lipschitz (on a set of full �-measure).
Let Q � Œ0; 1� be a set which is at most countable. In accordance with (5) we

call a measure/coupling P on R
Q Lipschitz-Markov if for any s; t 2 Q; s < t and

f 2 Lip1.R/ there exists g 2 Lip1.R/ such that

EPŒ f .St/jFs� D g.Ss/: (6)

2Hobson’s solution [7] can be seen as an extension of the Azema-Yor embedding to the case of a
general starting distribution.
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The Lipschitz-Markov property is closed in the desired sense:

Lemma 5 A martingale measure P on R
Q is Lipschitz-Markov iff

EPŒXf .St/�EPŒY� � EPŒX�EPŒYf .St/� �
R

X.!/Y. N!/j!s � N!sj d.P˝ P/ (7)

for all f 2 Lip1.R/, s < t 2 Q and X;Y non-negative, bounded, andFs-measurable.

Proof If P is Lipschitz-Markov, then for a given 1-Lipschitz function f we can
find by definition of a Lipschitz-Markov measure/coupling a 1-Lipschitz function
g satisfying (6). Moreover, as g 2 Lip1 we have for non-negative, bounded X;Y

.g.!s/� g. N!s//X.!/Y. N!/ � j!s � N!sjX.!/Y. N!/:

Integration with respect to P˝ P and an application of (6) yields (7).
For the reverse implication, by basic properties of conditional expectation there

is a �..Sq/q2Q\Œ0;s�/-measurable function  such that P-a.s.

 .!/ D EPŒ f .St/jFs�.!/:

Now from (7) we almost surely have  .!/ �  . N!/ � j!s � N!sj which shows that
 only depends on the s coordinate and is in fact 1-Lipschitz.

For D � Q we set

LQ..�t/t2D/ WD fP 2 MQ W P is Lipschitz-Markov, St �P �t for t 2 Dg:

Theorem 3 Let Q � Œ0; 1�;Q 3 1 be countable. For every finite 1 2 D � Q the set
LQ..�t/t2D/ is non-empty and compact. In particular, L..�t/t2Q/ WD LQ..�t/t2Q/ is
non-empty and compact.

Proof For finite D � Q it is plain that LQ..�t/t2D/ is non-empty: this
follows by composing of Lipschitz-Markov-kernels. Hence, LQ..�t/t2Q/ DT

D�Q;jDj<1 LQ..�t/t2D/ ¤ ; by compactness.

A martingale on D is Lipschitz-Markov if (6) holds for s < t 2 Œ0; 1� wrt FC.

Theorem 4 Assume that .�t/t2Œ0;1� is a right-continuous peacock and let Q 3 1 be
countable and dense in Œ0; 1�. If P 2 L..�t/t2Q/, then the corresponding [cf. (2)]
martingale measureeP 2 M..�t/t2Œ0;1�/ is Lipschitz-Markov.

In particular, the set of all Lipschitz-Markov martingales with marginals
.�t/t2Œ0;1� is compact and non-empty.

Proof The arguments in the proof of Lemma 5 work in exactly the same way
to show that QP being Lipschitz-Markov is equivalent to conditions similar to (7)
where X;Y are chosen to be measurable wrt FC

s (or NFs, see the remark before
Proposition 2).
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For arbitrary s; t 2 Œ0; 1�; s < t choose sequences sn # s; tn # t in Q. Note that
X;Y are in fact measurable wrt Fsn and we thus have

EPŒXf .Stn/�EPŒY� � EPŒX�EPŒYf .Stn/� �
R

X.!/Y. N!/j!sn � N!sn j d.P˝ P/.!; N!/

by Lemma 5. Letting n!1 concludes the proof.

3.3 Further Comments

It is plain that a Lipschitz-Markov kernel also has the Feller-property and in
particular a Lipschitz-Markov martingales are strong Markov processes wrt FC
(see [13, Remark 1.70]). As in the previous section, the right-continuity of .�t/t2Œ0;1�
is not necessary to establish the existence of a Lipschitz-Markov martingale, this
follows from Lemma 3. We also remark that the arguments of Sect. 2 directly extend
to the case of multidimensional peacocks, where the marginal distributions �t are
probabilities on R

d. However it remains open whether Theorem 4 extends to this
multidimensional setup.
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Peacocks Parametrised by a Partially Ordered
Set

Nicolas Juillet

Abstract We indicate some counterexamples to the peacock problem for families
of (a) real measures indexed by a partially ordered set or (b) vectorial measures
indexed by a totally ordered set. This is a contribution to an open problem of the
book (Peacocks and Associated Martingales, with Explicit Constructions, Bocconi
& Springer Series, Springer, Milan, 2011) by Hirsch et al. and Yor (Problem 7a–7b:
“Find other versions of Kellerer’s Theorem”).

Case (b) has been answered positively by Hirsch and Roynette (ESAIM Probab
Stat 17:444–454, 2013) but the question whether a “Markovian” Kellerer Theorem
hold remains open. We provide a negative answer for a stronger version: A
“Lipschitz–Markovian” Kellerer Theorem will not exist.

In case (a) a partial conclusion is that no Kellerer Theorem in the sense of the
original paper (Kellerer, Math Ann 198:99–122, 1972) can be obtained with the
mere assumption on the convex order. Nevertheless we provide a sufficient condition
for having a Markovian associate martingale. The resulting process is inspired by
the quantile process obtained by using the inverse cumulative distribution function
of measures .�t/t2T non-decreasing in the stochastic order.

We conclude the paper with open problems.

1 Introduction

The rich topic investigated by Strassen [16] in his fundamental paper of 1965 was
to determine whether two probability measures � and � can be the marginals of a
joint law satisfying some constraints. The most popular constraint on Law.X;Y/
is probably P.X � Y/ D 1. In this case if � is the usual order on R, a
necessary and sufficient condition on � and � to be the marginals of .X;Y/ is
F� � F� , where F	 denotes the cumulative distribution function of 	. Actually
if we note G	 the quantile function of 	, the random variable .G�;G�/ answers the
question. Recall that the quantile function G	 is the generalised inverse of F	, that
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is the unique nondecreasing functions on �0; 1Œ that is left-continuous and satisfies
.G	/#
jŒ0;1� D 	. In the case of a general family .�t/t2T , the family consisting
of the quantile functions G�t on .�0; 1Œ; 
j�0;1Œ/ is also a process. It proves that
measures are in stochastic order if and only if there exists a process .Xt/t2T with
P.t 7! Xt is non-decreasing/ D 1 and Law.Xt/ D �t for every t 2 T. This result
is part of the mathematical folklore on couplings. We name it quantile process or
Kamae–Krengel process after the authors of Kamae and Krengel [12] because in
this paper a generalisation for random variables valued in a partially ordered set E
is proven. See also [15] where it appears.

Another type of constraint on Law.X;Y/ that is considered in Strassen article are
the martingale and submartingale constraints, E.Yj�.X// D X and E.Yj�.X// � X
respectively. Strassen proved that measures .�t/t2N are the marginals of a martingale
.Xt/t2N if and only if the measures �t are in the so-called convex order (see
Definition 2). Kellerer extended this result to processes indexed by R and proved
that the (sub)martingales can be assumed to be Markovian. Strangely enough, but
for good reasons this famous result only concerns R-valued processes indexed by
R or another totally ordered set, which is essentially the same in this problem.
Nevertheless, Strassen-type results have from the start been investigated with
partially ordered set, both for the values of the processes or for the set of indices
(see [5, 12, 13]). Hence the attempt of generalising Kellerer’s theorem by replacing
R by R

2 for one of the two sets is a natural open problem that has been recorded as
Problem 7 by Hirsch et al. in their book devoted to peacocks [9].

In Sects. 2 and 3 we define the different necessary concepts, state Kellerer
Theorem and exam the possible generalised statement suggested in [9, Problem 7].
About Problem 7b we explain in Sect. 3.2 why Kellerer could not directly apply his
techniques to the case of R2-valued martingales. Problem 7a is the topic of the last
two parts. In Sect. 4 we exhibit counterexamples showing with several degrees of
precision that one can not obtain a Kellerer theorem on the marginals of martingales
indexed by R

2, even if the martingales are not assumed to be Markovian. However,
in Sect. 5 we provide a sufficient condition on .�t/t2T that is inspired by the quantile
process. We conclude the paper with open problems.

2 Definitions

Let .T;�/ be a partially ordered set. In this note, the most important example may
be R

2 with the partial order: .s; t/ � .s0; t0/ if and only if s � s0 and t � t0. We
consider probability measures with finite first moment and we simply denote this
set by P.Rd/.

We introduce the concepts that are necessary for our paper. Martingales indexed
by a partially ordered set were introduced in the 1970. Two major contributions were
[3, 17]. The theory was known under the name “two indices”.
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Definition 1 (Martingale Indexed by a Partially Ordered Set) Let .Xt/t2T be the
canonical process associated to some P on .Rd/T . For every s 2 T we introduce
Fs D �.Xrj r � s/.

A probability measure P on .Rd/T is a martingale if and only if for every .s; t/ 2
T2 satisfying s � t it holds E.Xt j Fs/ D Xs. In other words it is a martingale
if and only if for every s � t, n 2 N and sk � s for k 2 f0; 1; : : : ; ng we have
EP.Xt j Xs;Xs1 ; : : : ;Xsn/ D Xs.

The convex order that we introduce now is also known under the names second
stochastic order or Choquet order.

Definition 2 (Convex Order) The measures�; � 2P.Rd/ are said to be in convex
order if for every convex function ' W Rd ! R,

R
' d� � R ' d�: This partial order

is obviously transitive and we denote it by � �C �.

Note that in Definition 2, ' may not be integrable but the negative part is integrable
because ' is convex.

The next concept of peacock is more recent. To our best knowledge it appeared
the first time in [8] as the acronym PCOC, that is Processus Croissant pour l’Ordre
Convexe. Both the writing peacock and the problem have been popularised in
the book by Hirsch et al.: Peacocks and Associated Martingales, with Explicit
Constructions [9].

Definition 3 (Peacock) The family .�t/t2T is said to be a peacock if for every s � t
we have �s �C �t.

Because of the conditional Jensen inequality, if .Xt/t2T is a martingale, the family
�t D Law.Xt/ of marginals is a peacock. More generally if for some peacock
.�t/t2T a martingale .Yt/t2T satisfies for every t, Law.Yt/ D �t, the martingale
is said to be associated to the peacock .�t/t2T .

Definition 4 (Kantorovich Distance) The Kantorovich distance between � and
� 0 2P.Rd/ is

W.�; � 0/ D sup
f

�
�
�
�

Z
f d� �

Z
f d� 0

�
�
�
�
Rd

where f describes the set of 1-Lipschitz functions from R
d to R.

Definition 5 (Lipschitz Kernel) A kernel k W x 7! �x transporting � to � D �k
is called Lipschitz if there exist a set A � R

d satisfying �.A/ D 1 such that kjA is
Lipschitz of constant 1 from .A; k:kRd / to .P.Rd/;W/.

As .P.Rd/;W/ is a complete geodesic metric space a simple extension procedure
that we describe now permits us to extend k to a 1-Lipschitz function on R. First
the kernel k seen as a map is uniformly continuous so that one can extend it in a
unique way on NA. The connected components of R n NA are open intervals �a; bŒ and
the linear interpolation t 7! .b � a/�1..t � a/k.b/C .b � t/k.a// is also a geodesic
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curve for the Kantorovich distance. Therefore it gives a solution for extending k and
making it a 1-Lipschitzian curve on R.

To our best knowledge, the next concept is the key of all known proofs of Kellerer
Theorem. Unlike Markov martingales, converging sequences of Lipschitz–Markov
martingale have Markovian limits (in fact Lipschitz–Markov). In his original proof
Kellerer uses a similar concept where the Kantorovich distance is replaced by the
Kantorovich distance build on d.x; y/ D min.1; jy � xj/.
Definition 6 (Lipschitz–Markov Martingale) A process .Xt/t2T is a Lipschitz–
Markov martingale if it is a Markovian martingale and the Markovian transitions
are Lipschitz kernels.

For surveys with examples of Lipschitz kernels and Lipschitz–Markov martingales,
one can refer to [10] or [2].

3 The Kellerer Theorem and Trying to Generalise It

3.1 Problem 7a

Theorem 1 is a reformulation of Theorem 3 by Kellerer [14] in terms of the peacock
terminology.

Theorem 1 ([14]) Let .�t/t2T be a family of integrable probability measure on
P.R/ indexed by the totally ordered set T (for simplicity thing of T D Œ0;C1Œ).
The following statements are equivalent

1. �t is a peacock,
2. �t is associated to a martingale process .Xt/t2T ,
3. �t is associated to a Markovian martingale process .Xt/t2T ,
4. �t is associated to a Lipschitz–Markovian martingale process .Xt/t2T .

Note that the implications 4 ) 3 ) 2 ) 1 are obvious. Theorem 2
that we prove in Sect. 4 contradicts the converse implications if T is merely a
partially ordered set. This is a negative answer to Problem 7a that we quote: “Let
.Xt;
I t; 
 � 0/ be a two-parameter peacock. Does there exist an associated two-
parameter martingale .Mt;
I t; 
 � 0/?”. Note that with our definition of peacock,
one should read Law.Xt;
/ in place of Xt;
.

Theorem 2 Let .T;�/ be f0; 1g2, R2C or R2 with the partial order. For every choice
of T, we have the following:

• There exists a peacock indexed by T that is not associated to a martingale,
• there exists a peacock indexed by T that is associated to a martingale process but

not to a Markovian martingale process,
• there exists a peacock indexed by T that is associated to a Markovian martingale

process but not to a Lipschitz-Markovian martingale process.
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3.2 Problem 7b

For completeness we explain what is known on Problem 7b: “Is a Rn-valued peacock
a R

n-valued 1-martingale?”, which with our notations means nothing but: Can any
peacock on R

d be associated to an R
d-valued martingale? Hirsch and Roynette

provided a positive answer in [7].

Theorem 3 Let .�t/t2T be a family of integrable probability measures on P.Rd/

indexed by the totally ordered set T. The following statements are equivalent

1. �t is a peacock,
2. �t is associated to a martingale process .Xt/t2E.

Nevertheless it is to our knowledge still an open problem whether the full Kellerer
theorem may hold in the vectorial case: Can every peacock be associated to a
Markovian martingale? (equivalence of (1) and (3) in Theorem 1). We prove in
Proposition 1 that (1) and (4) are not equivalent. Actually, the existence of a
Lipschitz kernel for � �C � is an essential step of each known proof of Kellerer
Theorem, but for dimension d > 1 it does not exist for any pairs. This fact was
very likely known by Kellerer (see the last paragraph of the introduction of Kellerer
[14]1). We provide a short proof of it.

Proposition 1 There exists a peacock .�t/t2T indexed by T D f0; 1g and with �t 2
P.R2/ that is not associated to any Lipschitz-Markov martingale.

As a trivial corollary, the same also holds for T D Œ0;C1Œ defining �t D �0 on
Œ0; 1Œ and �t D �1 for t 2 Œ1;C1Œ.
Proof Let �0 D 
jŒ0;1� � ı0 2 P.R2/ and k the dilation .x; 0/ 7! 1

2
.ı.x;f .x// C

ı.x;�f .x///. Let �1 be�0k. If �1 D �0k0 for another dilation k0, the projection of k0 on
the Ox-axis must be identity so that k0 D k. We choose a non continuous function f
as for instance f D �Œ1=2;1�, and the proof is complete because k is not a Lipschitz
kernel.

4 Proof of Theorem 2

In the three examples, we define a peacock on T D f0; 1; 10; 2g 	 f0; 1g2 where
the indices 1, 10 stand for the intermediate elements, 0 	 .0; 0/ is the minimal
and 2 	 .1; 1/ the maximal element. One will easily check that .�i/i2T is really
a peacock from the fact that we indicate during the proof martingale transitions
between �0 and �1, �10 as well as between �1, �10 and �2.

To complete the statement of Theorem 2 we need to explain what are the
peacocks for T D R

2C or T D R
2. In fact for .s; t/ 2 f0; 1g2, the measures �s;t are

1Kellerer: “[. . . ], während die Übertragung der im zweiten Teil enthaltenen Ergebnisse etwa auf
den mehrdimensionalen Fall ein offenes Problem darstellt”.



18 N. Juillet

defined exactly as in the three following constructions, and the peacock is extended
in the following way

�s;t D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�1;1 if .s; t/ � .1; 1/
�1;0 if s � 1 and t < 1

�0;1 if t � 1 and s < 1

�0;0 otherwise: max.s; t/ < 1:

With this bijection it is a direct check that the results for f0; 1; 10; 2g will be
transposed to the other sets of indices. Note that if a martingale .Xs;t/ is defined
for .s; t/ 2 f0; 1g2 it is extended in the same way as the peacock. For instance
Xs;t D X1;1 if .s; t/ � .1; 1/.

The three constructions are illustrated by figures where the amount of transported
mass from x to y is the label of the arrow from x at time i to y at time j where i � j
(and .i; j/ is not .0; 2/). In order to write an integer we prefer to label with a multiple
of the mass (factor 6 in Figs. 1 and 2, and 12 in Fig. 3).

Fig. 1 The martingale
associated to .�t/t2f0;1;2g in
Sect. 4.1 3
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Fig. 2 The transition kernels
of .Xt/t2f0;1;2g in Sect. 4.2
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Fig. 3 The peacocks
.�t/t2f0;1;2g and .�t/t2f0;01;2g
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4.1 A Peacock Not Associated to a Martingale

We introduce the following peacock .�t/t2T :

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

6�0 D 3ı�1 C 3ı1
6�1 D 2ı�2 C 4ı1
6�2 D 2ı0 C 2ı�2 C 2ı2
6�10 D 4ı�1 C 2ı2:

Note that the measures �0 and �2 are symmetric and �1 and �10 are obtained
from the other by symmetry. On Fig. 1 we represent the (sub)peacock .�t/t2f0;1;2g. It
is easily seen that every martingale transition is uniquely determined. There exists
an associated martingale that is forced to have the law

.1=3/ı�1;�2;�2 C 1=12.ı�1;1;0 C ı�1;1;2/C 1=4.ı1;1;0 C ı1;1;2/:

Hence, the law of the coupling between �0 and �2 is

� D .1=3/ı�1�2 C 1=12.ı�1;0C ı�1;2/C 1=4.ı1;0 C ı1;2/:

Observe that the coefficient of ı1;�2 is zero. In other words, no mass is transported
from 1 at time 0 (point A on Fig. 1) to �2 at time 2 (point Z). For the peacock
.�t/t2f0;10;2g the coupling between �0 and �2 is obtained by symmetry from � . Thus
some mass is transported from A to Z. Hence, there does not exist a martingale
associated to both (sub)peacocks. Therefore, one can not associate a martingale to
.�t/t2T .

4.2 A Martingale Not Associated to a Markovian Martingale

For the second item of Theorem 2 we introduce a slight modification of the
previous peacock where �0 does not change but the final peacock is concentrated
on f�5; 0; 5g instead of f�2; 0; 2g.

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

6�0 D 3ı�1 C 3ı1
6�1 D ı�5 C 5ı1
6�2 D 2ı0 C 2ı�5 C 2ı5
6�10 D 5ı�1 C ı5:
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As in Sect. 4.1 the peacocks .�t/t2f0;1;2g and .�t/t2f0;10;2g are symmetric and the
proof is similar. But the two symmetric martingales associated to the peacocks
indexed by f0; 1; 2g and f0; 10; 2g are now unique only because one asks them to
be Markovian. Let us see what is the first one that we call .Xt/t2f0;1;2g. It is obtained
as the Markov composition of Law.X0;X1/ and Law.X1;X2/ that are uniquely
determined as follows:

Law.X0;X1/ D .1=2/ı1;1 C .1=6/.ı�1;�5 C 2ı�1;1/

and

Law.X1;X2/ D .1=6/ı�5;�5 C .1=6/.ı1;�5 C 2ı1;0 C 2ı1;5/:

This can be read on Fig. 2 where for the law of the Markovian martingale it
remains to explain that at time 1 the mass is distributed independently from the
past. For instance the coefficient of ı�1;1;5 is computed in the following way

P.X0 D �1/PX0D�1.X1 D 1/PX1D1.X2 D 5/ D
1

2

2

3

2

5
D 2

15
:

Finally,

Law.X0;X1;X2/ D.1=6/ı�1;�5;�5 C .1=15/ı�1;1;�5 C .2=15/ı�1;1;0
C .2=15/ı�1;1;5 C .1=10/ı1;1;�5 C .1=5/ı1;1;0 C .1=5/ı1;1;5:

Observe that in Law.X0;X2/ the coefficient of ı1;�5 and ı�1;5 are 1=10 and 2=15
respectively. Hence the measure is not symmetric, which completes the first part of
the proof.

For the second part of the proof, it is enough to twist the composition of
Law.X0;X1/ and Law.X1;X2/ at time 1 in a way that Law.X0;X2/ becomes
symmetric. This occurs exactly if

P..X0;X2/ D .1; 0// D P..X0;X2/ D .�1; 0// D 1=6 (1)

because the space of martingales associated to �0; �2 depends only on one real
parameter. The whole martingale .Xt/t2f0;1;2g can be parametrised by the conditional
law Law.X0;X1/D.1;1/.X2/. We set Law.X0;X1/D.1;1/.X2/ D ˛� defined as �˛1 C .1 �
�/˛0, where ˛0 D .3=5/ı5C .2=5/ı�5 and ˛1 D .1=5/ı5C .4=5/ı0 are the extreme
admissible points. Notice that the Markovian composition would corresponds to the
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choice � D 1=2 because LawX1D1.X2/ D ˛1=2. We have

P..X0;X2/ D .1; 0// D P..X0;X1;X2/ D .1; 1; 0//

D 1

2
P.X0;X1/D.1;1/.X2 D 0/

D 1

2
.
4

5
�/:

Thus we choose � D 5=12, which permits us to complete the proof.

4.3 A Markovian Martingale Not Associated
to a Lipschitz–Markov Martingale

For the last item of Theorem 2 the peacocks .�t/t2f0;1;2g and .�t/t2f0;01;2g are not
symmetric in any way. That is why we represent both peacocks in Fig. 3.

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

12�0 D 6ı1 C 6ı2
12�1 D 2ı0 C 6ı1 C 4ı3
12�2 D 5ı0 C 6ı2 C ı6
12�10 D 10ı1 C ı2 C ı6

Let see that there is a Markovian martingale associated to this peacock. Let us
define the following joint laws:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Law.X0;X1/ D .12/�1.6ı1;1 C 2ı2;0 C 4ı2;3/
Law.X0;X10/ D .12/�1.6ı1;1 C 4ı2;1 C ı2;2 C ı2;6/
Law.X1;X2/ D .12/�1.2ı0;0 C 3ı1;0 C 3ı1;2 C 3ı3;2 C ı3;6/
Law.X10 ;X2/ D .12/�1.5ı1;0 C 5ı1;2 C ı2;2 C ı6;6/:

(2)

Assuming that the composition at times 1 and 10 are Markovian, we obtain the
same joint law Law.X0;X2/. For this, as in Sect. 4.2 it suffices to compute one
parameter of it in two manners. Let us do it for P..X0;X2/ D .2; 2//:

8
ˆ̂
<

ˆ̂
:

P..X0;X2/ D .2; 2// D P..X0;X1;X2/ D .2; 3; 2// D 1

2

2

3

3

4

P..X0;X2/ D .2; 2// D P..X0;X10 ;X2/ D .2; 2; 2// D 1

2

1

6
1C 1

2

2

3

1

2
:
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Finally, we have proved that X1 and X10 can be defined on the same probability space
together with X0 and X2.

Note that the previous martingale is not Lipschitz–Markov because the Kan-
torovich distance between LawX0D1.X1/ D ı1 and LawX0D2.X1/ D 1=3ı0 C 2=3ı2
is 5=3, which is strictly greater that j1� 0j D 1. In (2), the marginal and martingale
constraints uniquely determine all of the law apart from Law.X0;X1/. It can be
parametrised by

Law.X0;X1/ D ��1 C .1 � �/�0

where �1 D .12/�1.6ı1;1 C 2ı2;0 C 4ı2;3/ corresponds to the joint law in (2) and

�0 D .12/�1.2ı1;0 C 3ı1;1 C 1ı1;3 C 0ı2;0 C 3ı2;1 C 3ı2;3/:

The kernel is Lipschitz if and only if � 2 Œ0; 1=2�. However we will not need to
prove it because if � ¤ 1, some mass is transported from 1 to 3 and part of this
mass finishes in 6 at time t D 2. This leads to a joint law Law.X0;X2/ that can not
be associated to the peacock .�t/t2f0;01;2g on the right part of Fig. 3. For the unique
martingale law associated to this peacock, no mass is transported from 1 at time
t D 0 to 6 at time t D 2.

5 A Positive Result

The aim of this section is to furnish sufficient conditions for Problem 7a. Under
the hypothesis of Theorem 4, any peacock is associated to a martingale. Under the
hypothesis of Theorem 5, this martingale is Markovian. Other examples are given
by Hirsch et al. in Exercise 2.3 [9].

5.1 Disintegration of a Measure in f� 2 P W E.�/ D 0g

As in Choquet theorem, even if f� 2 P W E.�/ D 0g is a noncompact set, any
element can be decomposed as a mean of the extreme points. According to Douglas
theorem [4] the extreme points are exactly the positive measures � such that the
affine functions are dense in L1.�/. Hence, the extreme points are the diatomic
measures �a;b with a � 0 � b and �a;b D b

b�a ıa C �a
b�aıb. The decomposition is not

unique as illustrated by 1=6.4��1;1 C 2��2;2/ D 1=6.3��1;2 C 3��2;1/.
However one can give a canonical decomposition of �. It relies on the order of

its quantiles. It seems classical but we could not cite it from the literature. Hence we
present some intuitive facts as consequences of the theory developed in [1] about
the minimal shadow of positive measures into other measures. For every q 2 Œ0; 1�,
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the set

F.�; q/ D f	j 	 � � and 	.R/ D q and
Z

x d	.x/ D 0g

has a minimal element for the convex order. We call it S�.q/. It is the shadow of
qı0 in � as defined in Lemma 4.6 of Beiglböck and Juillet [1]. This measure can be
described as in Example 4.7 of Beiglböck and Juillet [1]: It is the unique measure
	 � � of mass q and expectation 0 that can be written

	 D �j�f .q/;g.q/Œ C aı f .q/ C bıg.q/: (3)

In other words it is the restriction of � on a quantile interval

S�.q/ D .G�/#
jŒq0;q1�
where we recall that G� is the quantile function defined before Sect. 2. In particular
q1 � q0 D q.

Let f� and g� denote the functions

f� W q 7! max.spt.S�.q/// and g� W q 7! min.spt.S�.q///:

We have the following properties

• If q � q0 it holds S�.q/ � S�.q0/,
• The function g� is left-continuous and nondecreasing,
• The function f� is left-continuous and nonincreasing.

Note that Œg�.q/; f�.q/� is the smallest closed interval Œ f .q/; g.q/� of full mass for
S�.q/ and it is the unique choice if one demands that q 7! g.q/ � f .q/ is left-
continuous in (3). We will call it the interval of quantile q or the q-interval.

Let us now introduce a measure � on R
2 such that for every q 2 Œ0; 1� the

first marginal of �j��1;q��R is 
jŒ0;q� and the second marginal is S�.q/. Such a
measure exists because the family .S�.q//q2Œ0;1� is increasing and the mass of S�.q/
is q. It is easy to check that .� f�.q/;g�.q//q2Œ0;1� is an admissible disintegration of �
with respect to 
jŒ0;1� and it is the only disintegration .�q/q2Œ0;1� such that q 7! �q

is left-continuous for the weak topology. Finally we have obtained a canonical
representation of �. It writes

� D
Z 1

0

� f�.q/;g�.q/ dq; (4)

where �f� and g� are the unique nondecreasing and left-continuous functions with
S�.q/.Œ f�.q/; g�.q/�/ D q. Note that as usual for a Choquet decomposition, Eq. (4)
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has to be understood in the weak sense. For instance

�.A/ D
Z 1

0

� f�.q/;g�.q/.A/ dq

for every measurable A.

Remark 1 In this article we will sometime simply write Ft, Gt and Œ f t.q/; gt.q/� in
place of F�t , G�t and Œ f�t .q/; g�t.q/� respectively.

5.1.1 Diatomic Convex Order

Let � and � be probability measures on R with expectation zero. We introduce the
order �DC with � �DC � if and only if

8q 2 Œ0; 1�; Œ f�.q/; g�.q/� � Œ f �.q/; g�.q/�:

and call it the diatomic convex order. There exists a unique martingale law �q

between � f�.q/;g�.q/ and � f � .q/;g�.q/. Its formula is made explicit later in (6). In
Sect. 5.3 we will consider the joint law

� D
Z 1

0

�q dq (5)

with marginals � and �. It is a martingale so that � �DC � implies � �C �.
In the special case of symmetric measure, the order can be defined similarly as

the stochastic order using the positive cone of even functions that are non-decreasing
on RC in place of the cone of convex functions. However, I could not find an
appropriate cone for defining �DC in the general case.

5.2 Peacocks Consisting of Extreme Elements

In this subsection we consider Problem 7a for peacocks .�t/t2T where every �t

is an extreme element �a;b. Observe that in this case, �a;b �C �a0;b0 is equivalent to
Œa; b� � Œa0; b0�, and as these two intervals are the q-intervals for every q, the relation
�a;b �C �a0;b0 is equivalent to �a;b �DC �a0;b0 . The set ˘M.�a;b; �a0;b0/ of martingales
associated to a peacock of cardinal two is restricted to one element:

(
ı0 � �a0 ;b0 if a D b;

b
b�a .

b0�a
b0�a0

ıa;a0 C a�a0

b0�a0
ıa;b0/C �a

b�a .
b0�b
b0�a0

ıb;a0 C b�a0

b0�a0
ıb;b0/ otherwise.

(6)

We consider the totally ordered case before the general case.
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5.2.1 Totally Ordered .T; �/

For s � t, the two-marginals joint law �st between �s and �t is unique and has
formula (6). Hence, for s � t � u, the Markovian and in fact any composition of
�st and �tu is a martingale law with marginals �s and �u. Thus, it is �su and the
two-marginals joint laws .�st/.s�t/ constitute a coherent family for the Markovian
composition. Thus, there exists a Markovian martingale .Xt/t2T with the wanted
marginals and its law is the unique one among the associated martingales.

5.2.2 Partially Ordered .T; �/

It is less direct to associate a martingale when T is not totally ordered. It is no
longer enough to check that the two-marginals laws constitute a coherent family.
All finite families of marginals would have to be considered, also with elements
noncomparable for �C and their joint law can not uniquely be determined by the
constraints of the problem.

Let us first reduce the problem to .R2C;�/. We can map t 2 T to the element
˚.t/ D .a; b/ 2 R

2C defined by �t D ��a;b. If we associate a Markovian martingale
.Mx;y/.x;y/2R2

C

to .�x;y/.x;y/2R2
C

with �x;y D ��x;y, it is easy to check that .M˚.t//t2T

is a Markovian martingale associated to .�t/t2T .
A martingale associated to .�x;y/.x;y/2R2

C

is the following: Consider the Wiener

measure on C .RC/ and let Mx;y be the random variable

Mx;y D y:1f�y<��xg � x:1f��x<�yg;

where �z is the hitting time of z 2 R. It is easy to check that .Mx;y/.x;y/2R2
C

is

a Markovian martingale associated to .�x;y/.x;y/2R2
C

. For every restriction of the
peacock to indices in a totally ordered set, the restriction of this martingale have
the law described in Sect. 5.2.1.

Remark 2 The referee of this paper suggested to look at a peacock constructed from
a reference measure  of barycenter 0 and defined by !�a;b D .j��1;�a�[Œb;C1Œ/C
�a;b where � is the measure concentrated on fa; bgwith the same mass and barycenter
as j�a;bŒ. Note that in the case  D ı0 it holds !�a;b D ��a;b.

The construction of this section generalises as follows. Let Bt be a Brownian
motion with Law.B0/ D  and for every .a; b/ 2 R

2C let �a;b be the hitting time
of � � 1;�a� [ Œb;C1Œ. As Law.B�a;b/ D !�a;b, we can simply associate the
martingale .B�a;b/.a;b/2R2

C

to the peacock .!�a;b/.a;b/2R2
C

.

Notice finally that the measures .!�a;b/.a;b/2R2
C

are not non decreasing for �DC,

as can be easily seen if  is uniform on Œ�1; 1�. Hence Theorem 4 does not apply.
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5.3 A Positive Result for Peacocks Indexed by a Partially
Ordered Set

In Sect. 5.3.2, for families of measures in the diatomic convex order we introduce
the process similar to the quantile process in the martingale setting. We call it the
quantile martingale. Recall that the quantile process relies on the quantile coupling,
that is actually the model of (5) in the nonmartingale setting. In place of measures
�a;b the extreme elements are Dirac masses that are parametrised by a quantile q 2
�0; 1Œ for the two marginals. The quantile coupling couples them using the same
parameter q in both disintegrations, as (5) does in the martingale case.

Theorem 5 states under which condition the quantile coupling has the Markov
property. For completeness we start in Sect. 5.3.1 with the same question for the
quantile process.

5.3.1 Characterisation of Markovian Kamae–Krengel Processes

We state the result on the quantile process and its relation to the stochastic order
explained in the introduction of the present paper.

Proposition 2 Let .�t/t2T be a family of real probability measures indexed by a
partially order set .T;�/. The following statements are equivalent.

• The map t 7! �t is nondecreasing in stochastic order,
• the associated quantile process t 7! Xt is almost surely nondecreasing.

The following proposition characterises the Markovian quantile processes.

Proposition 3 The quantile process is Markovian if and only if the following
criterion is satisfied: for every s � t � u and q < q0 2�0; 1Œ, the conjunction of
conditions

(
G�s.q/ < G�s.q

0/

G�t .q/ D G�t.q
0/

implies G�u.q/ D G�u.q
0/. In other words G�t .q/ D G�t .q

0/ implies fG�s.q/ D
G�s.q

0/ or G�u.q/ D G�u.q
0/g.

Proof Assume that the property on the quantile function holds. Recall that Ft is
the �-algebra generated by all Xs where s � t. The Markov property holds if
E. f .Xu/jFt/ D E. f .Xu/j �.Xt// for every bounded measurable function f and
t � u elements of T. Let now t and u be fixed. It is enough to prove that for any
k 2 N and s1; : : : ; sk � t the random vectors .Xs1 ; : : : ;Xsk/ and Xu are conditionally
independent given Xt. For a family of conditional probabilities .PXtDy/y2R it is
sufficient to prove that given real numbers .x1; : : : ; xk/ and z the events

A D fXs1 � x1; : : : ;Xsk � xkg and B D fXu � zg



Peacocks Parametrised by a Partially Ordered Set 27

are independent under PXtDy for all y. We will define such a family. Recall that P

is defined as
R 1
0
Pqdq where the law of .Xs1 ; : : : ;Xsk ;Xt;Xu/ under Pq is simply the

Dirac mass in .Gs1 .q/; : : : ;Gsk.q/;Gt.q/;Gu.q//.
The events fXt D yg is of type fq 2�0; 1Œ; Gt.q/ D yg, that is �q�; qC� or �q�; 1Œ

where qC D Ft.y/ and q� D lim"!0C Ft.y� "/. Recall that �.y/ D qC � q�. Thus
.PXtDy/y2R defined by

PXtDy D
(
Pq� if �t.y/ D 0;
1
�.y/

R qC

q� Pq dq otherwise

is a disintegration of P according to Xt.
For �.y/ D 0 the measure of both A and B for PXtDy is zero or one so that A

and B are independent. In the other case, let us prove that at least one of the two
events has measure zero or one. In fact, the quantiles of �q�; qC� are mapped on
y by Gt. Hence, according to the criterion for every i � k one of the two maps
Gsi or Gu is constant on �q�; qC�. Thus Gu is constant or .Gs1 ; : : : ;Gsk/ is constant.
ThereforePq.A/ or Pq.B/ is constantly zero or one on �q�; qC�. We have proved that
A and B are independent with respect to PXtDy. This completes the proof of the first
implication.

For the second implication suppose that the criterion is not satisfied so that there
exist s � t � u and q < q0 2�0; 1Œ with Gt.q0/ D Gt.q/ WD y, Gs.q0/ > Gs.q0/ WD x
and Gu.q0/ > Gu.q/ WD z. In this case P.Xt D y/ > 0. Let qs D Fs.x/ and qu D
Fu.z/. Let also qC D Ft.y/ and q� D lim"!0C Ft.y � "/ so that

q� < min.qs; qu/ � max.qs; qu/ < q0 � qC:

We have on the one hand

PXtDy.Xs � x; Xu � z/ D min.qs; qu/� q�

qC � q�

and on the other hand

PXtDy.Xs � x; Xu � z/ D qs � q�

qC � q� and PXtDy.Xs � x; Xu � z/ D qu � q�

qC � q� :

Hence fXs � xg and fXu � zg are not conditionally independent given fXt D yg.
This finishes the proof of the second implication.

5.3.2 Quantile Martingales and Characterisation of the Markov Property

Theorems 4 and 5 are the counterparts in the martingale setting of Propositions 2
and 3.
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Theorem 4 Let .�t/t2T be a peacock indexed by a partially ordered set
.T;�/. Assume moreover that the measures have expectation zero and t 7! �t is
nondecreasing for the diatomic convex order. Then there exists .Xt/t2T a martingale
associated to .�t/t2T .

Proof According to Sect. 5.1.1, the elements of the canonical decomposition of
the measures are in convex order. Hence we can replace the peacock by a one-
dimensional family of peacocks .�q

�f t.q/;gt.q//t2T . Each of them can be associated
with a martingale .Xq

t / defined on the Wiener space as in Sect. 5.2.2. We consider the
process on the probability space Œ0; 1��C.Œ0;C1Œ/ obtained using the conditioning
in q 2 Œ0; 1�. It is a martingale with the correct marginal for every t 2 T. We used
the fact that convex combinations of martingale laws are martingale laws.

We call quantile martingale the martingale introduced during the proof of
Theorem 4. In what follows we write It.q/ for the interval Œf t.q/; gt.q/�.

Theorem 5 With the notation of Theorem 4 the quantile martingale is Markovian
if and only if the following criterion is satisfied for every s � t � u and q < q0 2
Œ0; 1�.

1. If It.q/ D It.q0/ it holds Is.q/ D Is.q0/ or Iu.q/ D Iu.q0/,
2. if f f t.q/ D f t.q0/ and gt.q/ ¤ gt.q0/g it holds Is.q0/ D Œ0; 0� or f f s.q/ D

f s.q0/ and gs.q/ D gt.q/ and gs.q0/ D gt.q0/g or f t.q0/ D f u.q0/ or Iu.q/ D
Iu.q0/,

3. if f f t.q/ ¤ f t.q0/ and gt.q/ D gt.q0/g it holds Is.q0/ D Œ0; 0� or fgs.q/ D
gs.q0/ and f s.q/ D f t.q/ and f s.q0/ D f t.q0/g or gt.q0/ D gu.q0/ or Iu.q/ D
Iu.q0/.

4. Nothing has to be satisfied in the case f f t.q/ ¤ f t.q0/ and gt.q/ ¤ gt.q0/g.
Example 1 (Sufficient Conditions) The criterion for the Markov property in Theo-
rem 5 applies for instance in the following situations.

• The measures are continuous (without atom). This is settled in (4).
• The measures �t are continuous or ı0. If �t D ı0 we check that the criterion is

satisfied in (1) with Is.q/ D Is.q0/ D Œ0; 0�. The other case is (4).
• The measures are diatomic like in Sect. 5.2.2. For every q < q0 and t 2 T it holds

It.q/ D It.q0/ so that the criterion is satisfied in (1).
• The measures are �t D 1=2.��1;1Ct C ��1;2Ct/ for T D Œ0; 1�. The peacock

satisfies the criterion in (2) where f t.q0/ D f u.q0/ D �1.
• The measures are �t D 1=2.��1�t;1 C ��1�t;2/ for T D Œ0; 1�. For q � 1=2 <

q0 the criterion is satisfied in (2) because it holds f f s.q/ D f s.q0/ D �1 �
s and gs.q/ D gt.q/ D 1 and gs.q0/ D gt.q0/ D 2g.

Proof (Proof of Theorem 5) The proof is similar to the one of Proposition 3 even
if more technical. In particular even if �t is continuous, the value of Xt does not
uniquely determine a trajectory. Nevertheless the law of the random trajectory is
uniquely determined because it only depends on q and Xt. In fact, the quantile q is
a function of Xt so that as described in Sect. 5.2.2 the law of the future is contained
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in the present position Xt. In the general case when �t has atoms the process that is
Markovian when conditioned on q can loose the Markov property because Xt does
not uniquely determine q.

Suppose that .Xt/t2T described above is not Markovian. We will show that the
criterion is not satisfied. Let us consider a time t 2 T and y 2 R so that fXt D yg
denies the Markov property: the future is not independent from the past. Observe
that the previous remarks on continuous measures show that y must be an atom of
�t. Moreover y D 0 is not possible because it would mean Xs D 0 for s � t. Hence
the past would be determined by the present so that no information on the past can
change the law of the future.

Without loss of generality, we assume Xt D y < 0. Let Q D fq 2 Œ0; 1�; f t.q/ D
yg be the interval of quantiles mapped in y. On Q the density of probability for the
value of q conditioned on Xt D y is proportional to gt

gt�f t . As we supposed that the
Markov property does not hold there exists an integer k and indices s1; : : : ; sk � t
such that .Xs1 ; : : : ;Xsk/ and Xu are not conditionally independent given fq 2 Qg \
fXt D yg D fXt D yg. As these random variables are independent with respect to
the conditional probabilities Pfqg\fXtDyg for any q 2 Q, there exist two quantiles
for which both the laws of the past and of the future are different respectively.2 Let
q1; q2 2 Q with q1 < q2 be such quantiles.

Concerning the future first, the law ˇi of Xu is the one of a Brownian motion
starting in y D f t.qi/ < 0 and stopped when hitting f u.qi/ � y or gu.qi/ > 0.
Different future laws ˇi are obtained for i 2 f1; 2g. Therefore f u.q2/ < y and
Œf u.q1/; gu.q1/� ¤ Œ f u.q2/; gu.q2/�.

We consider now the past. For some s 2 fs1; : : : ; skg we write ˛i the law of Xs

given fqig \ fXt D yg. It is the law of a Brownian motion stopped when it hits
f f s.qi/; gs.qi/g conditioned on the fact that it hits y D f t.qi/ before gt.qi/. Recall
also f t.qi/ � f s.qi/ � 0 � gs.qi/ � gs.qi/. The support of ˛i has cardinal one or
two. It is one if and only if Is.qi/ D Œ0; 0� or gs.qi/ D gt.qi/ and then ˛i is the
Dirac mass in 0 or f s.qi/ respectively. If the support of ˛i has two elements these
are f f s.qi/; gs.qi/g and ˛1 D ˛2 if and only if gt.q1/ D gt.q2/ and Is.q1/ D Is.q2/.
If gt.q1/ ¤ gt.q2/ the only possibility for ˛1 D ˛2 is that the supports are reduced
to one point. Note now that if ˛1 D ˛2 the support of those measures uniquely
determine Is.q1/ and Is.q2/ in both cases gt.q1/ D gt.q2/ or gt.q1/ ¤ gt.q2/.
But for i 2 f1; 2g the law of .Xs1 ; : : : ;Xsk/ given fqig \ fXt D yg is uniquely
determined by fIs.qi/gs2fs1;:::;skg. As we supposed that these laws are different for
i D 1 or i D 2, there exists s 2 fs1; : : : ; skg such that Is.q2/ ¤ Œ0; 0� and
fgs.q1/ ¤ gt.q1/ or gs.q2/ ¤ gt.q2/ or f s.q1/ ¤ f t.q1/g in the case gt.q1/ ¤ gt.q2/
and It.q1/ ¤ It.q2/ in the case gt.q1/ D gt.q2/.

In summary, let y < 0 be an atom of Law.Xt/ such that the condition fXt D yg
denies the Markov property of the quantile martingale. Concerning the future
we have proved f u.q2/ < y and Œ f u.q1/; gu.q1/� ¤ Œ f u.q2/; gu.q2/�. Concerning

2It is a general fact that if p and f, a past and a future map defined on Q are both nonconstant, there
exist q1; q2 2 Q such that p.q1/ ¤ p.q2/ and f.q1/ ¤ f.q2/.
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the past, we have proved Is.q2/ ¤ Œ0; 0� and fgs.q1/ ¤ gt.q1/ or gs.q2/ ¤
gt.q2/ or f s.q1/ ¤ f t.q1/g in the case gt.q1/ ¤ gt.q2/ and It.q1/ ¤ It.q2/ in the
case gt.q1/ D gt.q2/. Symmetric conclusions happen in the symmetric situation
y > 0. Hence one can carefully check that at least (1), (2) or (3) is not correct for
the choice .q; q0/ D .q1; q2/. In fact if gt.q1/ D gt.q2/ the criterion is not satisfied
in (1). If gt.q1/ D gt.q2/, it is not satisfied in (2). Finally we have proved that if the
peacock satisfies the criterion the quantile martingale is Markovian.

Conversely, we assume that the criterion is not satisfied and will prove that the
process is not Markovian. It is enough to assume that the criterion is not satisfied
in (1) or (2). For s � t � u and q 2 Q D . f t/�1fyg we denote as before ˛.q/ the
law of Xs given fqg \ fXt D yg and ˇ.q/ the law of Xu given the same condition.
Let q; q0 2 Q such that the criterion is not satisfied. If the criterion is not satisfied
in (1) we have Iu.q/ ¤ Iu.q0/ and we can assume f u.q0/ < f u.q/ � y (if not
gu.q0/ > gu.q/ � gt.q/ D y0 and we can consider y0 in place of y). Therefore
ˇ.q/ ¤ ˇ.q0/ and ˛.q/ ¤ ˛.q0/ in the two cases. The joint law of .Xs;Xu/ given
fXt D yg is

� WD Z�1
Z

Q
˛.q/ � ˇ.q/ gt.q/

gt.q/� f t.q/
dq

where Z D RQ
gt.q/

gt.q/�f t.q/dq. We will prove that it is not the product of two probability
measures, which will be enough for the implication. Recall that the support of ˛.q/
and ˇ.q/ are included in f f s.q/; gs.q/g and f f u.q/; gu.q/g respectively. The func-
tions f are nonincreasing and left-continuous. The functions g are nondecreasing
and left-continuous. In case (1) the measures ˛.q/ ¤ ˛.q0/ and ˇ.q/ ¤ ˇ.q0/
are not only different but their supports are also different. Hence one is easily
convinced with a picture in R

2 that � has not the support of a product measure.
This argument does not work if (2) is denied because ˛.q/ and ˛.q0/ may have
the same support and be different. In fact they are different if and only if the
support is made of the two points f s.q/ D f s.q0/ and gs.q/ D gs.q0/. With a
simple Bayes formula the mass of f s.q/ with respect to ˛.q/ can be computed to be
.gs.q/=gs.q/� f s.q//.gt.q/� f t.q/=gt.q// and the same formula with primed letters
holds for ˛.q0/. Note that the four quantities are the same except gt.q0/ > gt.q/.
As ˇ.q/ ¤ ˇ.q0/ and recalling the left continuity of f u and gu it follows that the
conditional law of Xu with respect to fXt D y and Xs D f s.q/g is different to the
conditional law of Xu with respect to fXt D y and Xs D gs.q/g. Finally � is not a
product measure and the martingale in not Markovian.

5.4 Questions

Even though Problem 7b is solved in [7], it is still an open question whether the
full Kellerer theorem for measures on R

d hold, where “full” means with the Markov
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property. The following questions are rather related to our approach of Problem 7a in
Sect. 5.3. To solve them may however bring some useful new ideas to Problem 7b.

• Let t 7! �t be nondecreasing for the stochastic order. Does it exist an associated
process .Xt/t2T that is Markovian? Recall that Proposition 3 is an exact account
on the question whether the quantile process associated to .�t/t is Markovian.

• Let .�t/t2Œ0;1� be a family of real measures. For any sequence of partitions of Œ0; 1�
we describe a procedure. We associate to the partition 0 D t0 � 
 
 
 � tN D 1

the Markovian process .Xt/t2Œ0;1� constant on any Œtk; tkC1Œ such that Law.Xt/ D
Law.Xtk/, and Law.Xtk ;XtkC1

/ is a quantile coupling. Under ad hoc general
conditions on the peacock and the type of convergence, does it exist a sequence
of partitions such that the sequence of processes converge to a Markovian limit
process with marginal �t at any t 2 Œ0; 1�? Is the Markovian limit unique? Is for
instance the continuity of the peacock sufficient for these properties? This makes
precise a question at the end of Juillet [11]. See this paper and also [6] for the
same approach in the case of martingales.

• If t 7! �t is nondecreasing for the diatomic convex order �DC, does it exist
an associated Markovian martingale? We proved in Theorem 5 that such a
martingale can not systematically be the quantile martingale.

Of course the first and the third question have likely the same answer, yes or no. In
the case T D Œ0; 1� the second question suggests an approach for the first question.
Recall that it is wrong that limit of Markovian processes are Markovian.
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Convex Order for Path-Dependent Derivatives:
A Dynamic Programming Approach

Gilles Pagès

Abstract We explore the functional convex order for various classes of martin-
gales: Brownian or Lévy driven diffusions with respect to their diffusion coefficient,
stochastic integrals with respect to their integrand. Each result is bordered by coun-
terexamples. Our approach combines the propagation of convexity results through
(simulable) discrete time recursive dynamics relying on a backward dynamic
programming principle and powerful functional limit theorems to transfer the results
to continuous time models. In a second part, we extend this approach to optimal
stopping theory, namely to the réduites of adapted functionals of (jump) martingale
diffusions. Applications to various types of bounds for the pricing of pathwise
dependent European and American options in local volatility models are detailed.
Doing so, earlier results are retrieved in a unified way and new ones are proved. This
systematic paradigm provides tractable numerical methods preserving functional
convex order which may be crucial for applications, especially in Finance.

1 Introduction and Motivation

The aim of this paper is to propose and develop a systematic and unified approach
to establish functional convex order results for discrete and continuous time
martingales based on the propagation of convexity through some backward dynamic
programming principles in discrete time and, on the other hand, on weak functional
limit theorems to make a transfer to continuous time setting. The term “functional”
refers to the “parameter” we deal with: thus, for possibly jump diffusions processes,
this parameter is the diffusion coefficient or, for stochastic integrals, their integrand.
Doing so, we establish various results on functional convex order; some of them
cover and extend existing results, others are new. As a second step, we will tackle the
same question for Optimal Stopping problems, namely for the Snell envelopes and
their means (réduites). Our main motivation is to propose approximation schemes
by simulable discrete time models which preserve this functional convex order.

G. Pagès (�)
Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, UPMC, Case 188, 4 pl. Jussieu,
F-75252 Paris Cedex 5, France
e-mail: gilles.pages@upmc.fr

© Springer International Publishing Switzerland 2016
C. Donati-Martin et al. (eds.), Séminaire de Probabilités XLVIII, Lecture Notes
in Mathematics 2168, DOI 10.1007/978-3-319-44465-9_3

33

mailto:gilles.pages@upmc.fr


34 G. Pagès

Let us first briefly recall that if X and Y are two integrable real-valued random
variables, X is dominated by Y for the convex order—denoted X �c Y—if, for every
convex function f W R! R such that f .X/; f .Y/2 L1.P/,

E f .X/ � E f .Y/:

Thus, if .M
/
>0 denotes a martingale indexed by a parameter 
, then 
 7!
M
 is non-decreasing for the convex order as a straightforward consequence of
Jensen’s Inequality. The converse is clearly not true but, as first established by
Kellerer in [21], whenever 
 7! X
 is non-decreasing for the convex order, there
exists a martingale .eX
/
�0 such that .eX
/
�0 and .X
/
�0 coincide in 1-marginal

distributions (X

dD eX
 for every 
�0).

The connection with Quantitative Finance—or, to be more precise with the
pricing and hedging of derivative products—is straightforward : let .X.�/t /t2Œ0;T� be a
family of non-negative P-martingales on a probability space .˝;A ;P/ indexed by
� . Such a family can be seen as possible parametrized models for the dynamics of
the discounted price of a risky asset under its/a risk-neutral probability depending
on � . Temporarily assume � is a real parameter, e.g. representative of the volatility.
If � 7! X.�/

T
is non-decreasing for the convex order, then for every convex vanilla

payoff function f W RC ! RC, the function � 7! E f .X.�/
T
/ is non-decreasing

or equivalently, its “�-greek” @
@�
Ef .X.�/

T
/ is non-negative, if it exists. Thus, in a

discounted Black-Scholes model (coming back to the notation � for the volatility),

X�;xt D xe�Wt� �2

2 t; x; � > 0 (where W is a standard Brownian motion);

the function � 7�! Ef
�
x e�WT � �2T

2

�
is non-decreasing since

8 � > 0; e�WT � �2T
2

L�
h
eWu� u

2

i

juD�2T

and u 7! eWu� u
2 is a martingale (as well as its composition with � 7! �2T). So

.X�;x
T
/��0 coincides in 1-marginal distributions with a martingale. The same result

holds true for the premium of convex Asian payoff functions of the form

E f

�
1

T

Z T

0

xe�Wt� �2 t
2 dt

�

:

By contrast, its proof is significantly more involved (see [6] or, more recently, the
proof in [13] where an explicit marginals based on the Brownian sheet coinciding
in 1-dimensional marginals is exhibited). Both results turn out to be examples of
a general result dealing with convex pathwise dependent functionals (see e.g. [13]
or [28] where a functional co-monotony argument is used).
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A natural question at this stage is to try establishing a functional version of these
results i.e. when � is no longer a real number or an R

q-valued vector but lives in
a functional space or a space of stochastic processes. A first example of interest
is to consider diffusion processes X.�/, weak solution to a Stochastic Differential
Equation .SDE/

dX.�/t D �.t;X.�/t� /dZt; X.�/0 D x; t2 Œ0;T�;

where Z D .Zt/t2Œ0;T� is a martingale Lévy process. Then the parameter � is a
continuous function. We will see it can also be a (predictable) stochastic process
when considering

X.�/t D
Z t

0

�sdZs; t2 Œ0;T�:

As for optimal stopping problems, we deal with the réduite of a target process
Yt D F.t;X.�/;t/, t 2 Œ0;T�, where X.�/;ts D X.�/s^t denotes the stopped process X.�/

at t and all the functionals F.t; :/ are continuous convex functionals defined on the
path space of the process X. In financial modeling, the functional convex order as
defined above amounts to determine the sign of the sensitivity with respect to the
parameter � of a path-dependent American option with payoff F.t; :/ at time t 2
Œ0;T�, “written” on X.�/: if the holder of the American option contract exercises the
option at time t, she receives the monetary flow F.t;X.�/;t/.

More generally, various notions of convex order in Finance are closely related to
risk modeling and come out in many other frameworks than the pricing and hedging
of derivatives.

Many of these questions have already been investigated for a long time: thus, the
first result known to us goes back to Hajek in [10] where convex order is established
for Brownian martingale diffusions X.�/ “parametrized” by their convex diffusion
coefficient � . He could extend the result to drifted diffusions with non-decreasing
convex drifts, but only for non-decreasing convex functions f of XT . The first
application to the sensitivity of (vanilla) options of both European and American
style, is due to [9]. It is shown that premium of an option with convex payoff in a
local volatility model with volatility �.:/ 2 Œ�min; �max�, can be lower- and upper-
bounded by the premium of the payoffs in a Black-Scholes model with volatilities
�min and �max respectively. Similar results can be obtained as a consequence of the
maximal principle for parabolic PDEs and variational inequalities. See also [14] for
a result on lookback options.

More recently, in a series of papers (see [1–3]) Bergenthum and Rüschendorf
extensively investigated the above mentioned problems (for both fixed maturity
and for optimal stopping problems) for various classes of continuous and jump
processes, including general semi-martingales in [2]. The comparison is carried out
in terms of their triplets of predictable local characteristics, once proved that one
propagates convexity. In several of these papers, the convexity is often—but not
always (see [1] for the use of an Euler scheme)—propagated directly in continuous
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time. This is clearly an elegant way to proceed but it also more heavily relies on
specific features of the investigated class of processes (see [13]). In this paper,
we propose as an alternative a generic and systematic twofold paradigm, which
turns out to be efficient for various classes of stochastic dynamics and processes.
It is based on a transfer from discrete times to continuous time using functional
weak limit theorems “à la Jacod-Shiryaev” (see [17]). To be more precise, it can be
described as follows:

– As first step, we establish the propagation of convexity “through” a discrete
time dynamics—typically an “abstract” Euler scheme—in a very elementary way
for path-dependent convex functionals relying on repeated elementary backward
inductions and conditional Jensen’s inequality. These inductions take advantage
of the linear backward dynamical programming principle obtained by writing
the step-by-step discrete time martingale property.

– As a second step, we consider time discretization schemes of the “target”
continuous time dynamics (typically a standard Euler schemes for diffusion
processes) to transfer to this target process the propagation of convexity property
(in a functional form) by calling upon functional weak limit theorems (typically
borrowed from [18] and/or [23]). A similar approach applies for stochastic
integrals and Snell envelope in optimal stopping theory.

One important motivation for developing in a systematic manner this approach
is related to Numerical Probability: the discrete time model in the first step often
is a simulable discretization scheme of the continuous time dynamics of interest. It
is important for applications, especially in Finance, to have at hand discretization
schemes which both preserve convex order and can be simulated at a reasonable
cost. So is the case of the Euler scheme of Lévy driven diffusions (provided the
underling Lévy measure is itself simulable). But, for example, it is not true for the
Milstein scheme for Brownian diffusions, in spite of its better performances in term
of strong convergence rate.

Let us give a typical result that we obtain, here for jump diffusions (a more
general statement is established in Theorems 1 and 2 in Sect. 2). Let Z D .Zt/t2Œ0;T�
be a square integrable martingale Lévy process with Lévy measure �. Let �i W R!
RC, i D 1; 2, be continuous functions with linear growth and let � W R ! RC be a
convex function such that 0 � �1 � � � �2. Then the existing weak solutions X.�i/,
i D 1; 2, to the SDEs

X.�i/
t D xC

Z

.0;t�
�i.X

.�i/
s� /dZs

satisfy X.�1/ � fc X.�2/ for the functional convex order defined on the Skorokhod
space D.Œ0;T�;R/ of right continuous left limited functions defined on Œ0;T�.
Namely, for every convex functional F W D.Œ0;T�;R/ ! R, PX.�i/ -continuous,
i D 1; 2, for the Skorokhod topology and with polynomial growth for the sup-norm,

EF.X.�1// � EF.X.�2//:
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Another way to formulate the result can be: if we assume this time that both �i,
i D 1; 2, are convex, but possibly not �, then X.�1/ � fc X.�/ � fc X.�2/.

Note that when Z D W is a Brownian motion, on can consider functional F on
the space C .Œ0;T�;R/ of continuous functions and the continuity of the functional
F is a consequence of its convexity under the polynomial growth assumption (see
the remark in Sect. 2.2).

Results in the same spirit are obtained for stochastic integrals, Doléans expo-
nentials (which unfortunately requires one of the two integrands H1 and H2 to be
deterministic). Counter-examples to put the main results in perspective are exhibited
to prove the consistency of these assumptions in both settings (see also [12]) for
more counterexamples).

When we deal with optimal stopping problems, we use the same approach,
taking advantage in discrete time of the classical Backward Dynamic Programming
Principle (see also [11] in stochastic control) and using various convergence results
for the Snell envelope (see [25]).

The paper is organized as follows. Section 2 is devoted to functional convex order
for path-dependent functionals of Brownian and Lévy driven martingale diffusion
processes. Section 3 is devoted to comparison results for Itô processes based on
comparison of their integrands. Section 4 deals with réduites, Snell envelopes of
path-dependent obstacle processes (American options) in both Brownian and Lévy
driven martingale diffusions. In the twofold appendix, we provide short proofs of
functional weak convergence of the Euler scheme toward a weak solution of SDEs
in both Brownian and Lévy frameworks under natural continuity and linear growth
assumptions on the diffusion coefficient.

Notations

• For every T > 0 and every integer n � 1, one denotes the uniform mesh of Œ0;T�
by tn

k D kT
n , k D 0; : : : ; n. Then for every t 2 Œ kT

n ;
.kC1/T

n /, we set tn D kT
n and

tn D .kC1/T
n with the convention Tn D T. We also set tn� D lims!t sn D kT

n if

t2 � kT
n ;

.kC1/T
n

�
.

• For every u D .u1; : : : ; ud/, v D .v1; : : : ; vd/ 2 R
d, .ujv/ D Pd

iD1 uivi, juj Dp
.uju/.

• xmWn D .xm; : : : ; xn/ (where m � n, m, n2 N n f0g).
• F .Œ0;T�;R/ denotes the R-vector space of R-valued functions f W Œ0;T� ! R

and C .Œ0;T�;R/ denotes the subspace of R-valued continuous functions defined
over Œ0;T�.

• For every ˛ 2 F .Œ0;T�;R/, we define Cont.˛/ D ˚
t 2 Œ0;T� W

˛ is continuous at t
�

with the usual left- and right-continuity conventions at
0 and T respectively. We also define the uniform continuity modulus of ˛ by
w.˛; ı/ D sup

˚j˛.u/� ˛.v/j; u; v 2 Œ0;T�; ju � vj � ı� (ı2 Œ0;T�).
• Lp

T
D Lp.Œ0;T�; dt/, 1 � p � C1, j f jLp

T
D � R T

0
j f .t/jpdt

� 1
p � C1, 1 � p <

C1 and j f jL1

T
D dt-ess supj f j where dt stands for the Lebesgue measure on

Œ0;T� equipped with its Borel �-field.
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• For a function f W Œ0;T�! R, we denote k fksup D supt2Œ0;T� j f .t/j.
• Let .˝;A ;P/ be a probability space and let p 2 .0;C1/. For every random

vector X W .˝;A / ! R
d we set kXkp D

�
EjXjp� 1p . Lp

Rd .˝;A ;P/ denotes the
vector space of (classes) of Rd-valued random vectors X such that kXkp < C1.
k : kp is a norm on Lp

Rd .˝;A ;P/ for p2 Œ1;C1/ (the mention of ˝ , A and the
subscript Rd will be dropped when there is no ambiguity).

• If F D .Ft/t2Œ0;T� denotes a filtration on .˝;A ;P/, let T F
Œ0;T� D f� W ˝ !

Œ0;T�;F -stopping timeg.
• F Y D .F Y

t /t2Œ0;T� denotes the smallest right continuous filtration .Gt/t2Œ0;T� that
makes the process Y D .Yt/t2Œ0;T� a .Gt/t2Œ0;T�-adapted process.

• D.Œ0;T�;Rd/ denotes the set of Rd-valued right continuous left limited (or càdlàg
following the French acronym) functions defined on the interval Œ0;T�, T > 0. It
is usually endowed with the Skorokhod topology denoted Sk (see [16, Chap. VI]
or [4, Chap. 3], for an introduction to Skorokhod topology).

• If two random vectors U and V have the same distribution, we write U
d� V .

• The weak convergence (or convergence in distribution or in law) of a sequence
.Yn/n�1 of random variables having values in a Polish .S; d/ equipped with
its Borel �-field Bor.S/ toward an .S; d/-valued random variable Y1 will be

denoted by Yn
L .S;dS/�! Y1 or, if no ambiguity, Yn

L .dS/�! Y1.

We will make extensive use of the following classical result:
Let .Yn/n�1 be a sequence of tight random variables taking values in a Polish

space .S; dS/ (see [4, Chap. 1]). If Yn weakly converges toward Y1 and .˚.Yn//n�1
is uniformly integrable where ˚ W S ! R is a Borel function, then, for every PY1

-
a:s: continuous Borel functional F W S ! RC such that jF.u/j � C.1C ˚.u// for
every u2 S, one has EF.Yn/! EF.Y1/.

2 Functional Convex Order

2.1 Propagation of Convexity in Discrete Time Recursive
Model

In this section, we give simple conditions to propagate convexity “through” a
discrete time recursive “abstract” Euler scheme, simulable if Z is. The results are
presented in the proposition below. It is the key result to be transferred to continuous
time models, using weak approximation methods.

When the scheme (1) below is simulable, one may implement Monte Carlo
simulations preserving convex order. This can be crucial when dealing with option
pricing (see Sect. 2.3).

Proposition 1 Let .Zk/1�k�n be a sequence of independent, centered, R-valued
random vectors lying in Lr.˝;A ;P/, r � 1, and let .F Z

k /kD0;:::;n denote its natural
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filtration. Let .Xk/kD0;:::;n and .Yk/kD0;:::;n be two sequences of random vectors
recursively defined by

XkC1 D Xk C �k.Xk/ZkC1; YkC1 D Yk C �k.Yk/ZkC1; 0 � k � n � 1; X0 D Y0 D x
(1)

where �k, �k W R! R, k D 0; : : : ; n � 1, are Borel functions with linear growth i.e.
j�k.x/j C j�k.x/j � C.1C jxj/, x2 R, for a real constant C � 0.

.a/ Assume that, either �k is convex for every k D 0; : : : ; n � 1, or �k is convex for
every k D 0; : : : ; n � 1, and that

8 k2 f0; : : : ; n � 1g; 0 � �k � �k:

Then, for every convex function ˚ W RnC1 ! R with r-polynomial growth,
r � 1, i.e. satisfying j˚.x/j � C.1C jxjr/, x2 R, for a real constant C � 0,

E˚.X0Wn/ � E˚.Y0Wn/:

.b/ If the random variable Zk have symmetric distributions, if the functions �k are
all convex and if

8 k2 f0; : : : ; n � 1g; j�kj � �k;

then the conclusion of claim .a/ remains valid.

The proof relies on two ingredients: the first one is a simple revisited version of
the celebrated Jensen Inequality, the second one is a “linear” Backward Dynamic
Programming formula to the step-by-step dynamics of discrete time martingale
(close in spirit of a binomial tree).

Lemma 1 (Revisited Jensen’s Lemma) Let Z W .˝;A ;P/ ! R be an integrable
centered R-valued random vector.

.a/ Assume that Z2 Lr.P/ for an r � 1. For every Borel function ' W R! R such
that j'.x/j � C.1C jxjr/, x2 R, we define a function Q' by:

8 u2 R; Q'.u/ D E'
�
uZ
�
: (2)

If ' is convex, then, Q' is convex and u 7! Q'.u/ is non-decreasing on RC,
non-increasing on R�.

.b/ If Z has exponential moments in the sense that E.euZ/ < C1 for every u2 R,
or equivalently

8 a � 0; E.eajZj/ < C1;
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then claim .a/ holds true for any convex function ' W R ! R satisfying an
exponential growth condition of the form j'.x/j � CeCjxj, x 2 R, for a real
constant C � 0.

.c/ If Z has a symmetric distribution (i.e. Z
d� �Z) and ' W R! R is convex, then

Q' is an even function, hence satisfying the following maximum principle:

8 a2 RC; sup
juj�a

Q'.u/ D Q'.a/:

Proof .a/–.b/ Existence and convexity of Q' are obvious. The function Q' is
clearly finite on R and convex. Furthermore, Jensen’s Inequality implies that

Q'.u/ D E'.u Z/ � '.E u Z/ D '.0/ D Q'.0/

since Z is centered. Hence Q ' is convex and minimum at u D 0 which implies that
it is non-increasing on R� and non-decreasing on RC.
.c/ is obvious given the proof of .a/–.b/.

We will establish in this first step the result for two ARCH.1/ models living on
the same probability space.

Proof (Proof of Proposition 1.)

.a/ First we show by an easy induction that the random variables Xk and Yk all lie in
Lr. Let Qk, k D 1; : : : ; n, denote the operator attached to Zk by (2) in Lemma 1.

Then, one defines the following martingales

Mk D E
�
˚.X0Wn/ jF Z

k

�
and Nk D E

�
˚.Y0Wn/ jF Z

k

�
; 0 � k � n:

Their existence follows from the growth assumptions on ˚ , �k and �k, k D
1; : : : ; n. Now we define recursively in a backward way two sequences of
functions ˚k and �k W RkC1! R, k D 0; : : : ; n, by

˚n D ˚ and ˚k.x0Wk/ D �
QkC1˚kC1.x0Wk; xkC:/

�
.�k.xk//; x0Wk 2 R

kC1; k D 0; : : : ; n�1;

on the one hand and, on the other hand,

�n D ˚ and �k.x0Wk/ D �
QkC1�kC1.x0Wk; xkC:/

�
.�k.xk//; x0Wk 2 R

kC1; k D 0; : : : ; n�1:

This appears as a linear Backward Dynamical Programming Principle. It is
clear by a (first) backward induction and the definition of the operators Qk that,
for every k2 f0; : : : ; ng,

Mk D ˚k.X0Wk/ and Nk D �.Y0Wk/:
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Let k 2 f0; : : : ; n � 1g. One derives from the properties of the operator QkC1
(and the representation below as an expectation) that, for any convex function
G W RkC2 ! R with r-polynomial growth, r � 0, the function

eG W .x0Wk; u/ 7�!
�
QkC1G.x0Wk; xk C : /

�
.u/ D EG.x0Wk; xk C uZkC1/ (3)

is convex. Moreover, owing to Lemma 1.a/, for fixed x0Wk, eG is non-increasing
on .�1; 0/, non-decreasing on .0;C1/ as a function of u. In turn, this implies
that, if � W R ! RC is convex (and non-negative), then � 7! eG ı �.�/ D
QkC1G.x0Wk; xk C :/

�
�.�/

�
is convex in �.

B Assume all the functions �k, kD0; : : : ; n� 1, are non-negative and convex.
One shows by a (second) backward induction that the functions ˚k are all
convex.

Finally, we prove by a (third) backward induction on k that ˚k � �k for
every k D 0; : : : ; n � 1. First note that ˚n D �n D ˚ . Now assume that
˚kC1 � �kC1. Then

˚k.x0Wk/ D
�
QkC1˚kC1.x0Wk; xk C :/

�
.�k.xk//

� �QkC1˚kC1.x0Wk; xk C :/
�
.�k.xk//

� �QkC1�kC1.x0Wk; xk C :/
�
.�k.xk//

D �k.x0Wk/

which completes the induction. In particular, when k D 0, we get
˚0.x/ � �0.x/ or, equivalently, taking advantage of the martingale
property, E˚.X0Wn/ � E˚.Y0Wn/.

B If all the functions �k, k D 0; : : : ; n�1 are convex, then all the functions�k,
k D 0; : : : ; n, are convex and one shows likewise by induction that˚k � �k

for every k D 0; : : : ; n � 1.

.b/ The proof follows the same lines as .a/ calling upon Claim .c/ of
Lemma 1. In particular, the functions u 7! eG.x0Wk; u/ is also even so that
supu2Œ�a;a�

eG.x0Wk; u/ D eG.x0Wk; a/ for any a � 0.

2.2 Brownian Martingale Diffusion

The main result of this section is the theorem below which show that martingale
Brownian diffusions satisfy a functional convex order principle.

Theorem 1 Let � , � W Œ0;T� � R ! R be two continuous functions with linear
growth in x uniformly in t 2 Œ0;T�. Let X.�/ and X.�/ be two Brownian martingale
diffusions, supposed to be the unique weak solutions starting from x at time 0, to the
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stochastic differential equations with zero drift

dX.�/t D �.t;X.�/t /dW.�/
t ; X.�/0 D x and dX.�/t D �.t;X.�/t /dW.�/

t ; X.�/0 D x;
(4)

t 2 Œ0;T�, respectively, where W.�/ and W.�/ are standard one dimensional
Brownian motions (possibly defined on different probability spaces).

.a/ Convex Partitioning assumption: Let � W Œ0;T� � R ! RC be a continuous
function with (at most) linear growth in x uniformly in t2 Œ0;T�, satisfying

�.t; :/ is convex for every t2 Œ0;T� and 0 � � � � � �:

Then, for every convex functional F W C .Œ0;T�;R/ ! R with .r; k : ksup/-
polynomial growth, r � 1, in the following sense

8˛2 C .Œ0;T�;R/; jF.˛/j � C.1C k˛kr
sup/;

one has

EF.X.�// � EF.X.�//:

From now on, the function � will be called a convex partitioning function.
.a0/ Claim .a/ can be reformulated equivalently as follows: if either �.t; :/ is convex

for every t2 Œ0;T� or �.t; :/ is convex for every t2 Œ0;T� and 0 � � � � , then
the conclusion of .a/ still holds true.

.b/ Convex Domination assumption: If j� j � � and �.t; :/ is convex for every
t2 Œ0;T�, then

EF.X.�// � EF.X.�//:

Remark 1

• The linear growth assumption made on the convex functional F implies its
everywhere local boundedness on the Banach space

�
C .Œ0;T�;R/; k : ksup

�
, hence

its k : ksup-continuity (see e.g. Lemma 2.1.1 in [26, p. 22]).
• The introduction of two standard Brownian motions W.�/ and W.�/ in claim .a/

is just a way to recall that the two diffusions processes can be defined on different
probability spaces, though it may be considered as an abuse of notation. By
“unique weak solutions”, we mean classically that any such two solutions, pos-
sibly defined on different probability spaces with respect to different Brownian
motions, share the same distribution on the Wiener space.

• When strong uniqueness holds, typically because � and � are also Lipschitz
continuous in x, uniformly in t 2 Œ0;T� (see e.g. Theorem A.3.3, p. 273, in [5]),
then weak uniqueness holds as well.



Convex Order for Path-Dependent Derivatives: A Dynamic Programming Approach 43

• The extension of this purely one-dimensional result to a diffusion where � , � and
the Brownian motion(s) are q-dimensional and the regular product is replaced by
the canonical inner product in R

q is straightforward: the assumptions on � and �
should simply be understood component-wise.

The proof of this theorem can be decomposed in two main steps: the first one
consists in applying Proposition 1 to the Euler schemes of both diffusions, the
second one relies on the functional weak convergence of the Euler schemes toward
the diffusions in order to transport the functional convex order property. To this end,
we introduce the notion of piecewise affine interpolator and recall an elementary
weak convergence lemma. This remark applies throughout the paper.

Definition 1

.a/ For every integer n � 1, let in W RnC1 ! C .Œ0;T�;R/ denote the piecewise
affine interpolator defined by

8 x0Wn 2 R
nC1;8 kD0; : : : ; n�1;8t2 Œtn

k ; t
n
kC1�; in.x0Wn/.t/D n

T

�
.tn

kC1�t/xkC.t�tn
k /xkC1

�
:

.b/ For every n � 1, let In W F .Œ0;T�;R/ ! C .Œ0;T�;R/ denote the functional
interpolator defined by

8˛2 F .Œ0;T�;R/; In.˛/ D in
�
˛.tn

0/; : : : ; ˛.t
n
n/
�
:

For uniform integrability purpose, we will use extensively the following obvious
fact

sup
t2Œ0;T�

jIn.˛/tj � sup
t2Œ0;T�

j˛.t/j:

Lemma 2 Let Xn, n � 1, be a sequence of continuous processes weakly converging
towards X for the k : ksup-norm. Then the sequence of interpolating processeseXn D
In.Xn/, n � 1, is weakly converging toward X for the k : ksup-norm topology.

Proof For every integer n � 1 and every ˛ 2 F .Œ0;T�;Rd/, the interpolation
operators In.˛/ reads

In.˛/ D n

T

�
.tn

kC1 � t/˛.tn
k /C .t � tn

k/˛.t
n
kC1/

�
; t2 Œtn

k ; t
n
kC1�; k D 0; : : : ; n � 1:

Note that In maps C .Œ0;T�;Rd/ into itself. One easily checks that kIn.˛/ � ˛ksup �
w.˛;T=n/, where w denotes the uniform continuity modulus of ˛, and kIn.˛/ �
In.ˇ/ksup � k˛ � ˇksup. We use the standard distance dwk for weak convergence on
Polish metric spaces defined by

dwk
�
L .X/;L .Y/

� D sup
˚jEF.X/� EF.Y/j; ŒF�Lip � 1; kFksup � 1

�
:
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Then, X having continuous paths,

dwk
�
L .In.X

n//;L .X/
� � dwk

�
L .In.X

n//;L .In.X//
�C dwk

�
L .In.X//;L .X/

�

� dwk
�
L .Xn/;L .X/

�C E
�
w.X;T=n/^ 2�! 0

as n! C1
Proof (Proof of Theorem 1)

.a0/ We consider the continuous, or genuine, Euler schemes NX.�/ and NX.�/ with step
T
n , starting at x associated to the diffusion coefficients � and � and a given
standard Brownian motion W defined on an appropriate probability space.
Thus, the Euler scheme related to X.�/ reads:

NX.�/;ntnkC1
D NX.�/;ntnk

C �.tn
k ;
NX.�/;ntnk

/
�
WtnkC1

�Wtnk

�
; k D 0; : : : ; n � 1; NX.�/;n0 D x

NX.�/;nt D NX.�/;ntnk
C �.tn

k ;
NX.�/;ntnk

/
�
Wt �Wtnk

�
; t2 Œtn

k ; t
n
kC1/:

It is clear that both sequences . NX.�/;ntnk
/kD0Wn and . NX.�/;ntnk

/kD0Wn are of the form (1)
with Zk D Wtnk � Wtnk�1

, k D 1; : : : ; n. Furthermore, owing to the linear
growth assumption made on � and � , the sup-norm of these Euler schemes
of Brownian diffusions lie in Lp.P/ for any p2 .0;C1/, uniformly in n, (see
e.g. Lemma B.1.2, p. 275 in [5] or Proposition 10 in Appendix 1)

sup
n�1

�
�
� sup

t2Œ0;T�
j NX.�/;nt j

�
�
�

p
C sup

n�1

�
�
� sup

t2Œ0;T�
j NX.�/;nt j

�
�
�

p
< C1:

Furthermore, In. NX.�/;n/ D in
�
. NX.�/;ntnk

/kD0Wn
�

is but the piecewise affine interpo-

lated Euler scheme (which coincides with NX.�/;n at times tn
k ). Note that the sup-norm

of In. NX.�/;n/ also has finite polynomial moments uniformly in n like the genuine
Euler scheme.

Let F W C .Œ0;T�;R/ ! R be a convex functional with .r; k : ksup/-polynomial
growth. For every integer n � 1, we define on R

nC1 the function Fn by

Fn.x0Wn/ D F
�
in.x0Wn/

�
; x0Wn2 R

nC1: (5)

It is clear that the convexity of F on C .Œ0;T�;R/ is transferred to the functions Fn,
n � 1 as well as the polynomial growth property. Moreover, F is k : ksup-continuous
since it is convex with k : ksup-polynomial growth (see Lemma 2.1.1 in [26]). It
follows from Proposition 1 applied with ˚ D Fn, .Zk/kD1Wn D .Wtnk � Wtnk�1

/kD1Wn,
�k D �.tn

k ; :/ and �k D �.tn
k ; :/, k D 0; : : : ; n�1which obviously satisfy the required

linear growth and integrability assumptions, that, for every n � 1,

EF
�
In. NX.�/;n/

� D EFn
�
. NX.�/;ntnk

/kD0Wn
� � EFn

�
. NX.�/;ntnk

/kD0Wn
� D EF

�
In. NX.�/;n/

�
:

(6)



Convex Order for Path-Dependent Derivatives: A Dynamic Programming Approach 45

On the other hand, it is classical background that the genuine (continuous) Euler
schemes NX.�/;n weakly converges for the k : ksup-norm topology toward X.�/ as n!
C1, unique weak solution to the SDE 	 dXt D �.Xt/dWt, X0 D x. For a proof we
refer e.g. to [30] (Exercise 23, p. 359) when � is homogeneous in t, see also [18, 23];
a self-contained proof is provided in Proposition 10 in Appendix 1. All proofs rely
on the weak convergence theorem for stochastic integrals first established in [18].

One derives from Lemma 2 and the Lp.P/-boundedness of the sup-norm of the
sequence .In. NX.�/;n//n�1 for p > r that

EF.X.�// D lim
n

EF
�
In. NX.�/;n/

� D lim
n

EFn
�
. NX.�/;ntnk

/kD0Wn
�
:

The same holds true for the diffusion X.�/ and its Euler scheme. The conclusion
follows.

.a/ Applying what precedes to both couples .�; �/ and .�; �/ until Eq. (6), we
derive that

EF
�
In. NX.�/;n/

� � EF
�
In. NX.�/;n/

� � EF
�
In. NX.�/;n/

�
:

One concludes likewise by letting n go to infinity in the resulting inequality

EF
�
In. NX.�/;n/

� � EF
�
In. NX.�/;n/

�
:

.b/ The proof follows the same lines by calling upon item .c/ of the above
Lemma 1, having in mind that the distribution of a standard Brownian
increment is symmetric with polynomial moments at any order as a Gaussian
random vector.

Remark 2

• Note that the SDE related to � do not appear in this theorem.
• The Euler scheme has already been successfully used to establish convex order

in [1].

The following corollaries hold when considering the SDE associated to �, with
an obvious proof.

Corollary 1 Under the assumption of Claim .a/ in Theorem 1 and if, furthermore,
the SDE

dX.�/t D �.t;X.�/t /dWt; X.�/0 D x; t2 Œ0;T�;

has a unique weak solution, then, for every convex functional F W C .Œ0;T�;R/! R

with .r; k : ksup/-polynomial growth,

EF.X.�// � EF.X.�// � EF.X.�//:
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Corollary 2 If �; � W Œ0;T� � I ! R, where I is a nontrivial interval of R, are
continuous with polynomial growth and if the related Brownian SDEs satisfy a weak
uniqueness assumption for every I-valued weak solution starting from x2 I, at time
tD0, the above theorem and results remain true.

This approach based on the combination of a (linear) dynamic programming
principle and a functional weak approximation argument also allows us to retrieve
Hajek’s result for drifted diffusions.

Proposition 2 (Extension to Drifted Diffusions, See [10], Theorem 4.1) Let �
and � be two functions on Œ0;T��R satisfying the convex partitioning or dominating
assumptions .a/ or .b/ from Theorem 1 respectively. Let b W Œ0;T� � R ! R be a
continuous function with linear growth in x uniformly in t and such that b.t; :/ is
convex for every t2 Œ0;T�. Let Y.�/ and Y.�/ be the weak solutions, supposed to be
unique, starting from x at time 0 to the SDEs dY.�/t D b.t;Y.�/t /dtC �.t;Y.�/t /dW.�/

t

and dY.�/t D b.t;Y.�/t /dt C �.t;Y.�/t /dW.�/
t . Then, for every non-decreasing convex

function f W R! R with polynomial growth,

E f .X.�/
T
/ � E f .X.�/

T
/:

Proof We have to introduce the operators Qb;�;t, � > 0, t2 Œ0;T�, defined for every
Borel function f W R! R, satisfying the appropriate polynomial growth assumption
in accordance with the existing moments of Z, by

Qb;�;t. f /.x; u/ D E f
�
xC �b.t; x/C uZ

�
:

One shows like in Lemma 1 that, if the function f is convex and non-decreasing,
Qb;�;tf is convex in .x; u/, non-decreasing in u on RC, non-increasing in u 2 R�.
The extension of the functional weak convergence of the Euler scheme established
in Proposition 10 of Appendix 1 under the above assumptions made on the drift b
provides the “transfer”. Details are left to the reader.

2.3 Applications to (Brownian) Functional Peacocks
and Option Pricing

We consider a so-called local volatility model on the dynamics of a discounted risky
asset given by

dS.�/t D S.�/t �
�
t; S.�/t

�
dW.�/

t ; S.�/0 D s0 > 0; (7)

where � W Œ0;T� � R ! R is a bounded continuous function. The above equation
has at least a weak solution .S.�/t /t2Œ0;T� defined on a probability space .˝;A ;P/ on

which lives a Brownian motion .W.�/
t /2Œ0;T� (see Proposition 10 in Appendix 1, see
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also [31]). Then, .S.�/t /t2Œ0;T� is a true .FW.�/

t /t2Œ0;T�-martingale satisfying

S.�/t D s0 exp
	 Z t

0

�.s; S.�/s /dW.�/
s �

1

2

Z t

0

�2.s; S.�/s /ds



so that S.�/t > 0 for every t 2 Œ0;T�. One introduces likewise the local volatility
model .S.�/t /t2Œ0;T� related to the bounded volatility function � W Œ0;T� � RC !
R, still starting from s0 > 0. Then, the following proposition holds which
appears as a functional non-parametric extension of the peacock property shared

by
	 R T

0 e�Bt� �2 t
2 dt




��0 (see e.g. [6, 13]).

Proposition 3 (Functional Peacocks) Let � and � be two real valued bounded
continuous functions defined on Œ0;T� � R. Assume that S.�/ is the unique weak
solution to (7) as well as S.�/ for its counterpart involving � . If one of the following
additional conditions holds:

.i/ Convex Partitioning function: there exists a function � W Œ0;T� � RC ! RC
such that, for every t2 Œ0;T�,

x 7! x �.t; x/ is convex on RC and 0 � �.t; :/ � �.t; :/ � �.t; :/ on RC,

or
.ii/ Convex Domination property: for every t 2 Œ0;T� the function x 7! x �.t; x/ is

convex on RC and

j�.t; :/j � �.t; :/;

then, for every convex (hence continuous) function f W R! R with polynomial
growth

E f

�Z T

0

S.�/s �.ds/

�

� E f

�Z T

0

S.�/s �.ds/

�

where � is a signed (finite) measure on .Œ0;T�;Bor.Œ0;T�//. More generally,
for every convex functional F W C .Œ0;T�;RC/! R with .r; k : ksup/-polynomial
growth,

EF
�
S.�/

� � EF
�
S.�/

�
: (8)

Proof We focus on the setting .i/. The second one can be treated likewise. First
note that � is bounded since � is. As a consequence, the function x 7! x �.t; x/ is
zero at x D 0 and can be extended into a convex function on the whole real line
by setting x �.t; x/ D 0 if x � 0. One extends x �.t; x/ and x �.t; x/ by zero on R�
likewise. Then, this claim appears as a straightforward consequence of Theorem 1



48 G. Pagès

applied to the diffusion whose coefficients are given by the extension of x �.t; x/ and
x �.t; x/ on the whole real line. As above, the sup-norm continuity follows from the
convexity and polynomial growth. In the end, we take advantage of the a posteriori
positivity of S.�/ and S.�/ when starting from s0 > 0 to conclude.

Applications to Volatility Comparison Results The corollary below shows that
comparison results for vanilla European options established in [9] appear as
consequences of Proposition 3.

Corollary 3 Assume � 2 C .Œ0;T� �R;RC/, �min; �max2 C .Œ0;T�;R/ satisfy

0 � �min.t/ � �.t; :/ � �max.t/; t2 Œ0;T�;

then, for every convex functional F W C .Œ0;T�;RC/ ! R with .r; k : ksup/-
polynomial growth (r � 1),

EF
�
S.�min/

s

� � EF
�
S.�/s

� � EF
�
S.�max/

s

�
: (9)

Proof We successively apply the former Proposition 3 to the couple .�min; �/ and
the partitioning function �.t; x/ D �min.t/ to get the left inequality and to the couple
.�; �max/ with � D �max to get the right inequality.

Note that the left and right hand side of the above inequality are usually
considered as quasi-closed forms since they correspond to a Hull-White model (or
even to the regular Black-Scholes model if �min, �max are constant). Moreover, let
us emphasize that no convexity assumption on � is requested.

2.4 Counter-Example (Discrete Time Setting)

The above comparison results for the convex order may fail when the assumptions
of Theorem 1 are not satisfied by the diffusion coefficient. In fact, for simplicity, the
counter-example below is developed in a discrete time framework corresponding to
Proposition 1. We consider the 2-period dynamics X D X�;x D .X�;x0W2/ satisfying

X1 D xC �Z1 and X2 D X1 C
p
2v.X1/Z2

where Z1W2
L� N .0I I2/, � � 0, and v W R ! RC is a bounded C 2-function such

that v has a strict local maximum at x0 satisfying v0.x0/D0 and v00.x0/ < �1. So is
the case if v.x/Dv.x0/��.x�x0/2Co..x�x0/2/, 0 < � < 1

2
, in the neighbourhood

of x0. Of course, this implies that
p
v cannot be convex.

Let f .x/ D ex. It is clear that

'.x; �/ WD Ef .X2/ D ex
E
�
e�Z1Cv.xC�Z1/

�
:
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Elementary computations show that

' 0
� .x; �/ D ex

E

	
e�Z1Cv.xC�Z1/

�
1C v0.xC �Z1/

�
Z1



' 00
�2
.x; �/ D ex

h
E

	
e�Z1Cv.xC�Z1/

�
1C v0.xC �Z1/

�2
Z21



CE
	

e�Z1Cv.xC�Z1/v00.xC �Z1/Z
2
1


i
:

In particular

'0

� .x; 0/ D exCv.x/.1Cv0.x//E Z1 D 0 and '00

�2
.x; 0/ D exCv.x/

	
.1Cv0.x//2Cv00.x/




so that ' 00
�2
.x0; 0/ < 0 which implies that there exists a small enough �0 > 0 such

that ' 0
� .x0; �/ < 0 on .0; �0� so that

� 7�! '.x0; �/ is decreasing on .0; �0�:

This clearly exhibits a counter-example to Proposition 1 when the convexity
assumption is fulfilled neither by the functions .�k/kD0Wn nor the functions .�k/kD0Wn
(here with n D 1).

2.5 Lévy Driven Diffusions

Let Z D .Zt/t2Œ0;T� be a Lévy process with Lévy measure � satisfyingZ

jzj�1
jzjp�.dz/ < C1, p 2 Œ1;C1/. Then Zt 2 L1.P/ for every t 2 Œ0;T�.

Assume furthermore that EZ1 D 0 so that .Zt/t2Œ0;T� is an F Z-martingale.

Theorem 2 Let Z D .Zt/t2Œ0;T� be a martingale Lévy process with Lévy measure �
satisfying �.jzjp/ < C1 for a p2 .1;C1/ if Z has no Brownian component and
�.z2/ < C1 if Z has a Brownian component. Let �i W Œ0;T� � R ! R, iD 1; 2, be
continuous functions with linear growth in x uniformly in t2 Œ0;T�. For i D 1; 2, let
X.�i/D.X.�i/

t /t2Œ0;T� be the weak solution, assumed to be unique, to

dX.�i/
t D �i.t;X

.�i/
t� /dZ.�i/

t ; X.�i/
0 D x2 R; (10)

where Z.�i/, i D 1; 2 have the same distribution as Z. Let F W D.Œ0;T�;R/ ! R

be a Borel convex functional, PX.�i/ -a:s: Sk-continuous, i D 1; 2, with .r; k:ksup/-
polynomial growth for some r2 Œ1; p/ i.e.

8˛2 D.Œ0;T�;R/; jF.˛/j � C.1C k˛kr
sup/:
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.a/ Convex Partitioning function: If there exists a function � W Œ0;T� � R ! RC
such that �.t; :/ is convex for every t2 Œ0;T� and 0 � �1 � � � �2, then

EF.X.�1// � EF.X.�2//:

.a0/ An equivalent form for claim .a/ is: if 0 � �1 � �2 and, either �1.t; :/ is convex
for every t2 Œ0;T�, or �2.t; :/ is convex for every t2 Œ0;T�, then the conclusion
of .a/ still holds true.

.b/ Convex Domination property: If Z has a symmetric distribution, j�1j � �2 and
�2 is convex, then

EF.X.�1// � EF.X.�2//:

Remark 3

• The PX.�i/-a:s: Sk-continuity of the functional F, i D 1; 2, is now requested:
Sk-continuity no longer follows from the convexity since

�
D.Œ0;T�;R/; Sk

�
is a

Polish space but not a topological vector space. Thus, the convex function ˛ 7!
j˛.t0/j for a fixed t02 .0;T/ is continuous at a given ˇ2 D.Œ0;T�;R/ if and only
if ˇ is continuous at t0 (see [4, Chap. 3]).

• The result remains true under the less stringent moment assumption on the Lévy
measure �: �.jzjp1fjzj�1g/ < C1 but would require much more technicalities
since one has to carry out the reasoning of the proof below between two large
jumps of Z and “paste” these inter-jump results.

The following lemma is the key that solves the approximation part of the proof
in this càdlàg setting.

Lemma 3 Let ˛2 D.Œ0;T�;R/. The sequence of stepwise constant approximations
defined by

˛n.t/ D ˛.tn/; t2 Œ0;T�;

converges toward ˛ for the Skorokhod topology.

Proof See [17, Proposition VI.6.37, p. 387] (second edition).

Proof (Proof of Theorem 2)

Step 1. Let . NXn
t /t2Œ0;T� be the genuine Euler scheme defined by

NXn
t D xC

Z

.0;t�
�.sn;

NXn
sn�

/dZs

where � D �1 or �2. Owing to the linear growth of �, we derive (see
e.g. Proposition 12 in Appendix 2) that

�
�
� sup

t2Œ0;T�
jXtj

�
�
�

p
C sup

n�1

�
�
� sup

t2Œ0;T�
j NXn

t j
�
�
�

p
< C1:
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We know, e.g. from Proposition 11 in Appendix 2, that . NXn/n�1 functionally
weakly converges for the Skorokhod topology toward the unique weak solution X
of the SDE dXk D �.t;Xt�/dZt, X0 D x. In turn, Lemma 3 implies that . NXn

tn
/t2Œ0;T�

Sk-weakly converges toward X.
Step 2. Let F W D.Œ0;T�;R/ ! R be a PX -Sk-continuous convex functional. For

every integer n � 1, we still define the sequence of convex functionals Fn W
R

nC1 ! R by Fn.x0Wn/ D F
	 n�1X

kD0
xk1Œtnk ;tnkC1

/ C xn1fTg



so that Fn
�
. NXn

tnk
/0Wn
� D

F
�
. NXn

tn
/t2Œ0;T�

�
.

Now, for every n � 1, the discrete time Euler schemes NX.�i/;n, iD1; 2, related to
the jump diffusions with diffusion coefficients �1 and �2 are of the form (1) and
jFn.x0Wn/j � C.1C kx0Wnkr/, r2 Œ1; p/.
.a/ Assume 0 � �1 � �2. Then, taking advantage of the partitioning function �,

it follows from Proposition 1.a/ that, for every n � 1, EFn
�
. NX.�1/;ntnk

/0Wn
� �

EFn
�
. NX.�2/;ntnk

/0Wn
�

i.e. EF
�
. NX.�1/;ntn

/t2Œ0;T�
� � EF

�
. NX.�2/;ntn

/t2Œ0;T�
�
. Letting

n ! C1 completes the proof like for Theorem 1 since F is PX -a:s: Sk-
continuous.

.b/ is an easy consequence of Proposition 1.b/.

3 Convex Order for Non-Markovian Itô and Doléans
Martingales

The results of this section illustrate another aspects of our paradigm in order to
establish functional convex order for various classes of continuous time stochastic
processes. Here we deal with (couples of) Itô integrals with the restriction that one
of the two integrands needs to be deterministic.

3.1 Itô Martingales

Proposition 4 Let .Wt/t2Œ0;T� be a standard Brownian motion on a filtered prob-
ability space .˝;A ; .Ft/t2Œ0;T�;P/ where .Ft/t2Œ0;T� satisfies the usual conditions
and let .Ht/t2Œ0;T� be an .Ft/-progressively measurable process defined on the same
probability space. Let h D .ht/t2Œ0;T� 2 L2

T
. Let F W C .Œ0;T�;R/ ! R be a convex

functional with .r; k:ksup/-polynomial growth, r�1.

.a/ If jHtj � ht P-a:s: for every t 2 Œ0;T�, then

EF

�Z :

0

HsdWs

�

� EF

�Z :

0

hsdWs

�

:



52 G. Pagès

.b/ If Ht � ht � 0 P-a:s: for every t 2 Œ0;T� and jHjL2
T
2 Lr.P/, then

EF

�Z :

0

HsdWs

�

� EF

�Z :

0

hsdWs

�

:

Remark 4

• In the “marginal” case where F is of the form F.˛/ D f .˛.T//, it has been shown
in [12] that the above assumptions on H and h in .a/ and .b/ are too stringent and
can be relaxed into

Z T

0

EH2
t dt �

Z T

0

h2t dt and
Z T

0

EH2
t dt �

Z T

0

h2t dt

respectively. The main ingredient of the proof is the Dambis-Dubins-Schwartz
representation theorem for one-dimensional Brownian martingales (see e.g. The-
orem 1.6 in [31, p. 181]).

• The first step of the proof below is a variant of Proposition 1 in a non-Markov
framework. It can be considered as an autonomous proposition devoted to
discrete time dynamics.

Proof Step 1 (Discrete Time). Let .Zk/1�k�n be an n-tuple of independent sym-
metric (hence centered) R-valued random variables satisfying Zk2 Lr.˝;A ;P/,
r � 1, and let F Z

0 D f;;˝g, F Z
k D �

�
Z1; : : : ;Zk

�
, k D 1; : : : ; n be its

natural filtration. Let .Hk/kD0;:::;n be an .F Z
k /kD0;:::;n-adapted sequence such that

Hk2 Lr.P/, k D 1; : : : ; n.
Let X D .Xk/kD0Wn and Y D .Yk/kD0Wn be two sequences of random variables
recursively defined by

XkC1 D XkCHkZkC1; YkC1 D YkChkZkC1; 0 � k � n�1; X0 D Y0 D x0:

These are the discrete time stochastic integrals of .Hk/ and .hk/ with respect to
the sequence of increments .Zk/kD1Wn. It is clear by induction that Xk, Yk 2 Lr.P/

for every k D 0; : : : ; n since Hk is F Z
k -measurable and ZkC1 is independent of

F Z
k .

Let ˚ W RnC1 ! R be a convex function with r-polynomial growth. Let us focus
on the first inequality, discrete time counterpart of claim .a/. We proceed like in
the proof Proposition 1 to prove by three backward inductions that if jHkj � hk,
for every k D 0; : : : ; n, then

E˚.X/ � E˚.Y/:

To be more precise, let us introduce by analogy with this proposition the sequence
.�k/kD0;:::;n of functions recursively defined by

�n D ˚; �k.x0Wk/ D .QkC1�kC1.x0Wk; xk C ://.hk/; x0Wk2 R
kC1; k D 0; : : : ; n�1:
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First note that the functions�k satisfy the following linear dynamic programming
principle:

�k.Y0Wk/ D E
�
�kC1.Y0WkC1/ jF Z

k

�
; k D 0; : : : ; n � 1;

so that, by the chaining rule for conditional expectations, we have

˚k.Y0Wk/ D E
�
˚.Y0Wn/ jF Z

k

�
; k D 0; : : : ; n:

Furthermore, owing to the properties of the operator QkC1, we already proved
that for any convex function G W RkC2 ! R with r-polynomial growth, the
function

.x0Wk; u/ 7! .QkC1G.x0Wk; xk C ://.u/ D EG.x0Wk; xk C uZkC1/

is convex and even as a function of u for every fixed x0Wk. As a consequence, it
also satisfies the maximum principle established in Lemma 1.c/ since the random
variable Zk have symmetric distributions.
Now, let us introduce the martingale induced by ˚.X0Wn/, namely

Mk D E
�
˚.X0Wn/ jF Z

k

�
; k D 0; : : : ; n:

We show now by a backward induction that Mk � �k.X0Wk/ for every k D
0; : : : ; n. If k D n, this is trivial. Assume now that MkC1 � �kC1.X0WkC1/ for
a k2 f0; : : : ; n � 1g. Then we get the following string of inequalities

Mk D E.MkC1 jF Z
k / � E.�kC1.X0WkC1/ jF Z

k /

D E.�kC1.X0Wk;Xk C HkZkC1/ jF Z
k /

D
	
E.�kC1.x0Wk; xk C uZkC1/ jF Z

k




jx0IkDX0Wk;uDHk

D
	

QkC1�kC1.x0Wk; xk C :/.Hk/



jx0IkDX0Wk

�
	

QkC1�kC1.x0Wk; xk C :/.hk/



jx0IkDX0Wk
D �k.X0Wk/

(11)

where we used in the fourth line that ZkC1 is independent of F Z
k and, in the

penultimate line, the assumption jHkj � hk and the maximum principle. Finally,
at k D 0, we get E˚.X0Wn/ D M0 � ˚0.x0/ D E˚.Y0Wn/ which is the announced
conclusion.

Step 2 (Approximation-Regularization). We temporarily assume that the function
h has a modification which is bounded by a real constant so that P.d!/-a:s:
kH.!/ksup _ khksup � K. We first need a technical lemma adapted from
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Lemma 2.4 in [20, p. 132] about approximation of progressively measurable
processes by simple processes, with in mind the preservation of the domination
property requested in our framework. The details of the proof of this lemma are
left to the reader.

Lemma 4

.a/ For every "2 .0;T/ and every g2 L2.Œ0;T�; dt/ we define

�"g.t/ 	 t 7�! 1

"

Z t

.t�"/C
g.s/ds2 C .Œ0;T�;R/:

The operator�" W L2T ! C .Œ0;T�;R/ is non-negative. In particular, if g; � 2 L2
T

with jgj � � 
1-a:e:, then j�"gj � �"� and k�"gksup � jgjL1

T
.

.b/ If g2 C .Œ0;T�;R/, define for every integer m � 1, the stepwise constant càglàd
(for left continuous right limited) approximation Qgm of g by

Qgm.t/ D g.0/1f0g.t/C
mX

kD1
g
�
tm
k�1
�
1.tmk�1;t

m
k �
:

Then Qgm
k : ksup�! g as m! C1. Furthermore, if g; � 2 C .Œ0;T�;R/ and jgj � � ,

then jQgmj � Q�m for every m � 1.

By the Lebesgue fundamental Theorem of Calculus we know that

ˇ
ˇ�1

n
H �H

ˇ
ˇ
L2

T
�! 0 P-a:s:

Since j�1
n
H � HjL2

T
� 2K, the Lebesgue dominated convergence Theorem implies

that

E

Z T

0

j�1
n
Ht � Htj2dt �! 0 as n! C1: (12)

By construction, �1
n
H is an .Ft/-adapted pathwise continuous process satisfying

the domination property j�1
n
Hj � �1

n
h so that, in turn, using this time claim .b/ of

the above lemma, for every n; m � 1,

jA�1
n
Ht

mj �A�1
n
ht

m:

On the other hand, for every n � 1, the a:s: uniform continuity of �1
n
H over Œ0;T�

implies

Z T

0

ˇ
ˇA�1

n
Ht

m ��1
n
Ht

ˇ
ˇ2dt � T sup

t2Œ0;T�

ˇ
ˇA�1

n
Ht

m ��1
n
Ht

ˇ
ˇ2 ! 0 as m!C1 P-a:s:
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One concludes again by the Lebesgue dominated convergence Theorem that, for
every n � 1,

E

Z T

0

ˇ
ˇ
ˇA�1

n
Ht

m ��1
n
Ht

ˇ
ˇ
ˇ
2

dt �! 0 as m!C1:

One shows likewise for the function h itself that

ˇ
ˇ�1

n
h � h

ˇ
ˇ
L2

T
! 0 as n!C1

and, for every n � 1,

ˇ
ˇe�1

n
hm ��1

n
h
ˇ
ˇ
L2

T
! 0 as m! C1:

Consequently, there exists an increasing subsequence m.n/ " C1 such that

E

Z T

0

ˇ
ˇ
ˇA�1

n
Ht

m.n/ ��1
n
Ht

ˇ
ˇ
ˇ
2

dtC
Z T

0

ˇ
ˇ
ˇA�1

n
ht

m.n/ ��1
n
ht

ˇ
ˇ
ˇ
2

dt �! 0 as n! C1

which in turn implies, combined with (12) and its deterministic counterpart for h,

E

Z T

0

ˇ
ˇ
ˇA�1

n
Ht

m.n/ � Ht

ˇ
ˇ
ˇ
2

dtC
Z T

0

ˇ
ˇ
ˇA�1

n
ht

m.n/ � ht

ˇ
ˇ
ˇ
2

dt �! 0 as n! C1:

At this stage, we set for every integer n � 1,

H.n/
t DA�1

n
Ht

m.n/ and h.n/t DA�1
n
ht

m.n/ (13)

which satisfy

EjH � H.n/j2L2
T
C jh� h.n/jL2

T
�! 0 as n! C1: (14)

It should be noted that these processes H.n/, H and these functions h.n/, h are all
bounded by 2K.

We consider now the continuous modifications of the four (square integrable)
Brownian martingales associated to the integrands H.n/, H, h.n/ and h, the last two
being of Wiener type. It is clear by Doob’s Inequality that

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

H.n/
s dWs�

Z t

0

HsdWs

ˇ
ˇ
ˇC sup

t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

h.n/s dWs�
Z t

0

hsdWs

ˇ
ˇ
ˇ

L2.P/�! 0 as n!C1:

In particular
	 Z t

0

H.n/
s dWs




t2Œ0;T� functionally weakly converges to
	 Z t

0

HsdWs




t2Œ0;T�
for the k : ksup-norm topology. We also have, owing to the B.D.G. Inequality, that
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for every p2 .0;C1/,

E sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

H.n/
s dWs

ˇ
ˇ
ˇ
p � cp

p EjH.n/jp
L2

T
� cp

pKp (15)

where cp is the universal constant involved in the B.D.G. Inequality. The same holds
true for the three other integrals related to h.n/, H, and h.

Let n � 1. Set Hn
k D H.n/

t
m.n/
k

; hn
k D h.n/

t
m.n/
k

; k D 0; : : : ;m.n/ � 1 and Zn
k D W

t
m.n/
k
�

W
t
m.n/
k�1

, k D 1; : : : ;m.n/. One easily checks that
Z t

m.n/
k

0

H.n/
s dWs D

kX

`D1
Hn
`�1Z

n
` , k D

0; : : : ;m.n/, so that

Im.n/

�Z :

0

H.n/
s dWs

�

D im.n/

 
	 kX

`D1
Hn
`�1Zn

`




kD0Wm.n/

!

:

Let Fm.n/ be defined by (5) from the convex functional F (with .r; k : ksup/-
polynomial growth). It is clearly convex. One derives from Step 1 applied with
horizon m.n/ and discrete time random sequences .Zn

k /kD1Wm.n/, .Hn
k /kD0Wm.n/�1,

.hk/kD0Wm.n/�1 that

EFıIm.n/

	 Z :

0

H.n/
s dWs



D EFm.n/

 
	 kX

`D1
Hn
`�1Z

n
`




kD0Wm.n/

!

� EFm.n/

 
	 kX

`D1
hn
`�1Z

n
`




kD0Wm.n/

!

D EFıIm.n/

	 Z :

0

h.n/s dWs



:

Combining the above functional weak convergence, Lemma 2 and the uniform
integrability derived form (15) (with any p > r) yields the expected inequality by
letting n go to infinity.

Step 3 (Second Approximation). Let K2 N and �K W R! R be the thresholding
function defined by �K .u/ D .u ^ K/ _ .�K/. It follows from the B.D.G.
Inequality that, for every p2 .0;C1/,

E sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

HsdWs �
Z t

0

�K .Hs/dWs

ˇ
ˇ
ˇ
p � cp

p EjH � �K .H/jpL2
T

D cp
p Ej

�jHj � K
�

CjpL2
T

(16)

� cp
p j
�jhj � K

�
CjpL2

T
(17)
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where uC D max.u; 0/, u 2 R. The same bound obviously holds when
replacing H by h. This shows that the convergence holds in every Lp.P/ space,
p2 .0;C1/, as K !C1. Hence, one gets the expected inequality by letting K
go to infinity in the inequality

EF

�Z :

0

�K .Hs/dWs

�

� EF

�Z :

0

�K .hs/dWs

�

D EF

�Z :

0

hs ^ KdWs

�

:

(18)

.b/ We consider the same steps as for the upper-bound established in .a/ with the
same notations.

Step 1. First, in a discrete time setting, we assume that 0 � hk � Hk 2 Lr.P/

and we aim at showing by a backward induction that Mk � �k.X0Wk/ where
Mk D E

�
˚.X0Wn/ jF Z

k

�
.

If k D n, the inequality holds as an equality since �n D ˚ . Now assume
MkC1 � �kC1.X0WkC1/. Then, like in .a/, we have

Mk D E
�
MkC1 jF Z

k

�

� E
�
�.X0WkC1/ jF Z

k

�

D E
�
�.X0Wk;XkCHkZkC1/ jF Z

k

�D
	

Qk�kC1.x0Wk; xk C : /.Hk/



jx0WkDX0Wk

�
	

Qk�kC1.x0Wk; xk C : /.hk/



jx0WkDX0Wk
D �k.X0Wk/:

Step 2. This step is devoted to the approximation in a bounded setting where 0 �
ht � Ht � K. It follows the lines of its counterpart in claim .a/, taking
advantage of the global boundedness by K.

Step 3. This last step is devoted to the approximation procedure in the general
setting. It differs from .a/ since there is no longer a deterministic upper-
bound provided by the function h 2 L2

T
. Then, the key is to show that

the process
R :
0 �K .Hs/dWs converges for the sup norm over Œ0;T� in Lr.P/

toward the process
R :
0 HsdWs as K ! C1. In fact, it follows from (16)

applied with p D r that

E

 

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

HsdWs �
Z t

0

�K .Hs/dWs

ˇ
ˇ
ˇ
r
!

� cr
r E

	
j�jHj � K

�
CjrL2T



:

As jHjL2
T
2 Lr.P/, one concludes by the Lebesgue convergence Theorem by

letting K ! C1.

Remark 5

• Step 1 can be extended to non-symmetric, centered independent random variables
.Zk/1�k�n if the sequences .Hk/0�k�n�1 and .hk/0�k�n�1 under consideration
satisfy 0 � Hk � hk, k D 0; : : : ; n � 1.
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• When H has left continuous paths, the proof can be significantly simplified
by considering the simpler approximating sequence H.n/

t D eHn
t which clearly

converges toward H dP˝ dt-a:e: (and in the appropriate Lp.dP˝ dt/-spaces as
well).

3.2 Lévy-Itô Martingales

Proposition 5 Let Z D .Zt/t2Œ0;T� be an integrable centered Lévy process with
Lévy measure � satisfying �.jxjp1fjxj�1g/ < C1 for a real exponent p > 1.
Let F W D.Œ0;T�;R/ ! R be a convex Skorokhod continuous functional with
.p; k : ksup/-polynomial growth. Let .Ht/t2Œ0;T� be an .Ft/-predictable process and
let h D .ht/t2Œ0;T� such that jhj

L
p_2
T

< C1.

.a/ If 0 � Ht � ht dt-a:e:, P-a:s: then

EF

�Z :

0

HsdZs

�

� EF

�Z :

0

hsdZs

�

:

If furthermore Z is symmetric, the result still holds if jHtj � ht dt-a:e:, P-a:s:.
.b/ If Ht � ht � 0 dt-a:e:, P-a:s: and jHj

L
p_2
T
2 Lp.P/, then

EF

�Z :

0

HsdZs

�

� EF

�Z :

0

hsdZs

�

:

.c/ If the Lévy process Z has no Brownian component, the above claims .a/ and
.b/ remain true if we only assume h2 Lp

T
and jHjLp

T
2 Lp.P/ respectively.

Proof .a/ This proof follows the approach introduced for the Brownian case but
requires more technicalities due to Lévy processes.

Step 1 (Discrete Time). This step does not differ from that developed for
Brownian-Itô martingales, except that in the Lévy setting we rely on claim .a/
of Lemma 1 since the marginal distribution of the increment of a Lévy process
has no reason to be symmetric.

Step 2 (Approximation-Regularization). Temporarily assume that h is bounded.
We consider the approximation procedure of H by stepwise constant càglàd .Ft/-
adapted, hence predictable, processes H.n/ already defined by (13). Then, we first
consider the Lévy-Khintchine decomposition of the Lévy martingale Z

8 t2 Œ0;T�; Zt D a Wt CeZ	t C Z	t ; a � 0;

where eZ	 is a martingale with jumps of size at most 	 and Lévy measure
�. : \ fjzj � 	g/ and Z	 is a compensated Poisson process with (finite) Lévy
measure �.:\fjzj > 	g/. Let n be a positive integer. We will perform a “cascade”
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procedure to make p decrease thanks to the B.D.G. Inequality. This—classical—
method is more detailed in the proof of Proposition 4 in Appendix 2 (higher
moments of Lévy driven diffusions).

We first assume that p2 .1; 2�. Combining Minkowski’s and B.D.G.’s Inequali-
ties yields
�
�
�
�
�

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

HsdZs �
Z t

0

H.n/
s dZs

ˇ
ˇ
ˇ

�
�
�
�
�

p

� cp a
�
�
�jH �H.n/jL2

T

�
�
�

p

Ccp

�
�
�
X

0<s�T

.Hs �H.n/
s /2.�Zs/

21fj�Zsj>	g
�
�
�
1
2

p
2

Ccp

�
�
�
X

0<s�T

.Hs �H.n/
s /2.�Zs/

21fj�Zsj�	g
�
�
�
1
2

1

where we used in the last line the monotony of the Lp.P/-norm and p
2
� 1.

Using now the compensation formula and again that p
2
2 .0; 1�, it follows

E

ˇ
ˇ
ˇ
X

0<s�T

.Hs � H.n/
s /2.�Zs/

21fj�Zsj>	g
ˇ
ˇ
ˇ

p
2 � E

"
X

0<s�T

jHs � H.n/
s jpj�Zsjp1fj�Zsj>	g

#

D E jH �H.n/jp
L

p
T
�.jzjp1fjzj>	g/

� T1�
p
2E
�jH � H.n/jp

L2
T

�
�.jzjp1fjzj>	g/

� T1�
p
2

	
EjH �H.n/j2L2

T


 p
2
�.jzjp1fjzj>	g/:

On the other hand,

E

ˇ
ˇ
ˇ
X

0<s�T

.Hs �H.n/
s /2.�Zs/

21fj�Zsj�	g
ˇ
ˇ
ˇ D E jH � H.n/j2L2

T
�.z2 ^ 	/:

We derive from (14) that the above three terms go to 0 as n goes to infinity so
that

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

H.n/
s dZs �

Z t

0

HsdZs

ˇ
ˇ
ˇ

Lp.P/�! 0:

Then, Lemma 3 applied to the subsequence .m.n//n�1 implies that the stepwise

constant process

�Z tm.n/

0

H.n/
s dZs

�

t2Œ0;T�
satisfies

distSk

�Z :m.n/

0

H.n/
s dZs;

Z :

0

HsdZs

�
P�! 0
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which in turn implies the functional Sk-weak convergence. Furthermore, the above

Lp-convergence implies that the sequence

 

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

H.n/
s dZs

ˇ
ˇ
ˇ

!

n�1
is uniformly

Lp-integrable which is also clearly true for

 

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z tm.n/

0

H.n/
s dZs

ˇ
ˇ
ˇ

!

n�1
. Following

the same lines and still using Lemma 3, we get

distSk

�Z :m.n/

0

h.n/s dZs;

Z :

0

hsdZs

�
P-a:s:�! 0 and

 

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

h.n/s dZs

ˇ
ˇ
ˇ

!

n�1

is uniformly Lp-integrable.
As 0 � Ht � h.t/ dt-a:e: P-a:s: (or 0 � jHtj � ht if Z is symmetric), for every

fixed integer n � 1, we have, owing to Step 1 and following the lines of Step 3 of
the proof of Proposition 4,

E

�

F
	 Z tm.n/

0

H.n/
s dZs




t2Œ0;T�

�

� E

�

F
	 Z tm.n/

0

h.n/s dZs




t2Œ0;T�

�

:

Letting n ! C1 yields the announced result since F is Sk-continuous with
.p; k : ksup)-polynomial growth (owing to the above uniform Lp-integrability results).

Assume now p > 2. First note that since h is bounded one can extend (14) as
follows: there exists a sequence m.n/ " C1 such that the processes H.n/ and the
functions h.n/ defined by (13) satisfy

E jH � H.n/jp
L

p
T
C jh� h.n/jLp

T
�! 0 as n! C1: (19)

To this end, we introduce the dyadic logarithm of p i.e. the integer `p such that where
2`p < p � 2`pC1. Thus, if p2 .2; 4� i.e. `p D 1,

�
�
�
�
�

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

HsdZs �
Z t

0

H.n/
s dZs

ˇ
ˇ
ˇ

�
�
�
�
�

p

� cp

�

a
�
�
�jH �H.n/jL2

T

�
�
�

p

C
�
�
�
X

0<s�T

.Hs � H.n/
s /2.�Zs/

2
�
�
�
1
2

p
2

!

: (20)

Now, Minkowski’s Inequality applied with k:k p
2

yields

�
�
�
X

0<s�T

.Hs � H.n/
s /2.�Zs/

2
�
�
� p
2

�
�
�
�
X

0<s�T

.Hs � H.n/
s /2.�Zs/

2 � �.z2/
Z T

0

.H.n/
s � Hs/

2ds
�
�
� p
2

C�.z2/��jH.n/ � HjL2
T

�
�2

p:
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In turn, the B.D.G. Inequality applied to the martingale

M.1/
t D

X

0<s�t

.Hs � H.n/
s /2.�Zs/

2 � �.z2/
Z t

0

.H.n/
s � Hs/

2ds; t 2 Œ0;T�;

yields

�
�
�
X

0<s�T

.Hs �H.n/
s /2.�Zs/

2 � nu.z2/
Z T

0

.H.n/
s � Hs/

2ds

��
� p
2

� c p
2

�
�
�
X

0<s�T

.Hs � H.n/
s /4.�Zs/

4
�
�
�
1
2

p
4

� c p
2

	
E

X

0<s�T

jHs � H.n/
s jpj�Zsjp


 2
p

D c p
2

	
�.jzjp/E

Z T

0

jHs �H.n/
s jpds


 2
p

D c p
2

	
�.jzjp/


 2
p ��jH � H.n/jLp

T

�
�2

p

where we successively used that p
4
� 1 in the second line and the compensation

formula in the third line. Finally, we note that, as p � 2, the convergence (19)
implies

�
�jH.n/ �HjL2

T

�
�

p � T
1
2� 1

p
�
�jH.n/ �HjLp

T

�
�

p ! 0 as n! C1:

This shows that both terms in the right hand side of (20) converge to 0 as n! C1,
so that

�
�
�
�
�

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

H.n/
s dZs �

Z t

0

HsdZs

ˇ
ˇ
ˇ

�
�
�
�
�

p

�! 0 as n! C1:

We show likewise
�
�
�
�
�

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

h.n/s dZs �
Z t

0

hsdZs

ˇ
ˇ
ˇ

�
�
�
�
�

p

�! 0 as n!C1:

These two convergences imply the Lp.P/-uniform integrability of both sequences 

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

H.n/
s dZs

ˇ
ˇ
ˇ

!

n�1
and

 

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

h.n/s dZs

ˇ
ˇ
ˇ

!

n�1
. At this stage, one con-

cludes like in the case p2 .1; 2�.
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In the general case, one proceeds by a classical “cascade” argument based on
repeated applications of the B.D.G. Inequality involving the martingales (see the
proof of Proposition 12 in Appendix 2 for a more detailed implementation of this
cascade procedure in a similar situation)

M.k/
t D

X

0�s�t

.H.n/
s �Hs/

2k
.�Zs/

2k��.jzj2k
/

Z t

0

.H.n/
s �Hs/

2k
ds; t � 0; k D 1; : : : ; `p:

We show by switching from p to p=2; p=22; : : : ; p=2k; : : : until we get p=2`p 2 .1; 2�
when k D `p, that

�
�
�
�
�

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

HsdZs �
Z t

0

H.n/
s dZs

ˇ
ˇ
ˇ

�
�
�
�
�

p

� cp a
�
�
�jH � H.n/jL2

T

�
�
�

p
C�p;�

`pX

`D1

�
�
�jH.n/ �Hj

L2
`

T

�
�
�
2

p

C�p;�

�
�
�jH.n/ � HjLp

T

�
�
�
2

p
:

One shows likewise the counterpart related to h and h.n/.

Step 3 (Second Approximation). Now we have to get rid of the boundedness of
h. Like in the Brownian Itô case, we approximate h by h ^ K and H by �K .H/
where the thresholding function�K have been introduced in Step 3 of the proof of
Theorem 2 (to take into account at the same time the symmetric and the standard
settings for the Lévy process Z). Let p2 .1;C1/.

�
�
�
�
�

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

HsdZs �
Z t

0

�K .Hs/dZs

ˇ
ˇ
ˇ

�
�
�
�

p

� cp

 

a
�
�
�jH � �K .H/jL2T

�
�
�

p
C
�
�
�
X

0<s�T

.Hs � �K .Hs//
2.�Zs/

2
�
�
� p
2

!

D cp

 

a
�
�
�j.jHj � K/CjL2

T

�
�
�

p
C
�
�
�
X

0<s�T

.jHsj � K/2C.�Zs/
2
�
�
� p
2

!

� cp

 

aj.h� K/CjL2
T
C
�
�
�
X

0<s�T

.hs � K/2C.�Zs/
2
�
�
� p
2

!

:

We derive again by this cascade argument that
�
�
�
P

0<s�T.hs�K/2C.�Zs/
2
�
�
� p
2

can

be upper-bounded by linear combinations of quantities of the form

j.h� K/CjL2k
T
�.z2

k
/; 0 � k � `p;
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and

E

X

0<s�T

.hs � K/pCj�Zsjp D j.h � K/CjpLp
T
�.jzjp/:

Consequently, if h2 Lp
T
, all these quantities go to zero as K ! C1, owing to the

Lebesgue dominated convergence Theorem. In turn this implies that
�
�
�
�
�

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

HsdZs �
Z t

0

�K .Hs/dZs

ˇ
ˇ
ˇ

�
�
�
�
�

p

�! 0 as K ! C1:

The same holds with h and h ^ K. So it is possible to let K go to infinity in the
inequality

EF
	 Z :

0

�K .Hs/dZs


� EF

	 Z :

0

�K .hs/dZs



to get the expected result.

.b/ is proved adapting the lines of the proof Proposition 4.b/ as we did for .a/. The
main point is to get rid of the boundedness of h i.e. to obtain the conclusion
of the above Step 3 without “domination property” of H by h. The additional
assumption jHj

L
p_2
T
2 Lp clearly yields the expected conclusion.

.c/ This follows from a careful reading of the proof, having in mind that terms of

the form
�
�
�jH �H.n/jL2

T

�
�
�

p
vanish when a D 0.

3.2.1 Brownian Doléans Exponentials

Our paradigm applied to Doléans exponentials yields similar results with direct
applications to the robustness of Black-Scholes formula for option pricing. First
we recall that the Doléans exponential of a continuous local martingale .Mt/t2Œ0;T� is
defined by

E
�
M
�

t
D eMt� 1

2 hMit ; t2 Œ0;T�:

It is a martingale on Œ0;T� if and only if E eMt� 1
2 hMit D 1. A practical criterion for

“martingality”, due to Novikov, is E e
1
2 hMiT < C1.

Proposition 6 Let .Wt/t2Œ0;T�, .Ht/t2Œ0;T� and h D .ht/t2Œ0;T� be like in Proposition 4.
Let F W C .Œ0;T�;RC/ ! R be a convex functional with .r; k : ksup/-polynomial
growth, r � 1.

.a/ If ( jHtj � ht dt-a:e:) P-a:s:, then

EF

�

E
	 Z :

0

HsdWs


�

� EF

�

E
	 Z :

0

hsdWs


�

:
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.b/ If (Ht � ht � 0 dt-a:e:) P-a:s: and there exists " > 0 such that

E

	
e

r2.1� 1
2r C
p

r�1
r C"/jHj

L2T



< C1;

then

EF

�

E
	 Z :

0

HsdWs


�

� EF

�

E
	 Z :

0

hsdWs


�

:

Proof

.a/ Step 1. For a fixed integer n � 1, we consider the sequence of random
variables .�n

k /kD0Wn recursively defined in a forward way by

�n
0 D 1 and �n

k D �n
k�1 exp

	
Htnk�1

�Wtnk �
T

2n
H2

tnk�1



; k D 1; : : : ; n;

where �Wtnk D Wtnk � Wtnk�1
and the sequences .�n;k

` /`DkWn defined, still in a
recursive forward way, by

�
n;k
k D 1; �n;k

` D �n;k
`�1 exp

	
htn`�1

�Wtn`
� T

2n
h2tn`�1



; ` D kC 1; : : : ; n:

We denote byeQ.n/ the operator defined on Borel functions f W RC ! R with
polynomial growth by

8 x; h2 RC; eQ.n/. f /.x; h/ D E f
	

x exp
�
hW T

n
� T

2n
h2
�

:

It is clear that
	

exp
�
hW T

n
� T

2n h2
�


h�0 is increasing for the convex

order (i.e. a peacock as already mentioned in the introduction) since

exp
�
hW T

n
� T

2n
h2
� d� exp

�
Wh2 T

n
� 1
2

T

n
h2
�

and .eWu� u
2 /u�0 is a martingale.

Hence, if f is convex,

h 7! eQ.n/. f /.x; h/ satisfies the maximum principle (21)

i.e. is even and non-decreasing on RC. In turn, it implies that the function
.x; h/ 7! eQ.n/. f /.x; h/ is convex on R � RC since, for every x; x0 2 RC,
h; h02 R, 
2 Œ0; 1�,

E f
	

x exp

�

hW T

n
� T

2n
.
h/2

�C .1� 
/x0 exp
�
.1� 
/h0W T

n
� T

2n
..1� 
/h0/2

�


� 
E f
	

x exp
�

hW T

n
� T

2n
.
h/2

�


C.1� 
/E f
	

x0 exp
�
.1� 
/h0W T

n
� T

2n
..1� 
/h0/2

�
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� 
E f
	

x exp
�jhjW T

n
� T

2n
h2
�


C.1� 
/E f
	

x0 exp
�jh0jW T

n
� T

2n
.h0/2

�


D 
E f
	

x exp
�
hW T

n
� T

2n
h2
�
C .1� 
/E f

	
x0 exp

�
h0W T

n
� T

2n
.h0/2

�


where we used the convexity of f in the first inequality and (21) in the second
one. From now on, we consider the discrete time filtration G n

k D FW
tnk

and

set Ek D E. : jG n
k /, k D 0; : : : ; n � 1.

We temporarily assume that for every k D 0; : : : ; n, jHtnk j � htnk P-a:s:.
Let F W C .Œ0;T�;R/ ! R be a (Borel) functional with .r; k : ksup/-polynomial
growth and let Fn D F ı in. Now let us show that, for every k2 f1; : : : ; ng,

Ek�1Fn.�
n
0Wk�1; �n

k �
n;k
kWn/ � Ek�1Fn.�

n
0Wk�2; �n

k�1�
n;k�1
k�1Wn/ (22)

with the convention�n
0W�1 D ;. Starting from the identity

Fn.�
n
0Wk�1; �n

k �
n;k
kWn/ D Fn

	
�n
0Wk�1; �n

k�1 exp
�
Htnk�1

�Wtnk �
T

2n
H2

tnk�1

�
�n;k

kWn


;

we derive

Ek�1Fn.�
n
0Wk�1; �n

k �
n;k
kWn/

D
�

E

	
F.x0Wk�1; xk�1 exp

�
	�Wtnk �

T

2n
	2
�
�

n;k
kWn/

�

jx0Wk�1 D �n
0Wk�1;

j	 D Htnk�1

since .�n
0Wk�1;Htnk�1

/ is G n
k�1-measurable and .�Wtnk ; �

n;k
kWn/ is independent of

G n
k�1. Now set, for every x0Wk�12 R

kC, Qxk2 RC,

Gn;k.x0Wk�1; Qxk/ D EFn
�
x0Wk�1; Qxk �

n;k
kWn
�

so that

eQ.n/.Gn;k.x0Wk�1; ://.xk�1; 	/ D EFn

	
x0Wk�1; xk�1 exp

�
	�Wtnk �

T

2n
	2
�
�

n;k
kWn


:

The function Fn being convex on R
nC1
C , it is clear that Gn;k is convex on R

kC1
C

as well. It is in particular convex in the variable Qxk which in turn implies by (21)
that 	 7! eQ.n/.Gn;k.x0Wk�1; ://.xk�1; 	/ satisfies the maximum principle i.e. is
even and convex. As a consequence, jHtnk�1

j � htnk�1
implies

Ek�1Fn.�
n
0Wk�1; �

n
k �

n;k
kWn/ D


eQ.n/

�
Gn;k.x0Wk�1; : /

�
.xk�1; 	/

�
jx0Wk�1D�n

0Wk�1;	DHtnk�1

D 
eQ.n/

�
Gn;k.x0Wk�1; : /

�
.xk�1; 	/

�
jx0Wk�1D�n

0Wk�1;	DjHtnk�1
j
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� eQ.n/
�
Gn;k.x0Wk�1; : /

�
.xk�1; 	/

�
jx0Wk�1D�n

0Wk�1;	Dhtnk�1

D Ek�1

	
Fn
�
�n
0Wk�1; �

n
k�1 exp

�
htnk�1

�Wtnk �
T

2n
h2tnk�1

�
�

n;k
kWn

�


D Ek�1

	
Fn
�
�n
0Wk�2; �

n
k�1�

n;k�1
k�1Wn

�


where we used once again that �n;k
kWn is independent of G n

k�1 in the penultimate
line.

One derives by taking expectation of the resulting inequality that the
sequence EFn.�

n
0Wk�1; �n

k �
n;k
kWn/, k D 1 W n, is non-increasing. Finally, by

comparing the terms for k D n and k D 0, we get

EF
�
Xn;n

� D EFn.�
n
0Wn/ � EFn.�

n;0
0Wn/ D EF

�
Xn;0

�
:

Step 2 (Approximation-Regularization). We closely follow the approach
developed in Steps 2 and 3 of Proposition 4. First, we temporarily assume
that h is bounded by a real constant K and we introduce the stepwise
constant càglàd processes .H.n//t2Œ0;T� and .h.n/t /t2Œ0;T� defined by (13). Both
satisfy (14), namely

�
�
�jH.n/ �HjL2

T

�
�
�
2

C ˇˇh.n/ � h
ˇ
ˇ
L2

T
�! 0 as n! C1:

Now, as

sup
t2Œ0;T�

ˇ
ˇ
ˇ

Z t

0

.H.n/
s /2ds �

Z t

0

H2
s ds
ˇ
ˇ
ˇ � 2K

ˇ
ˇH.n/ �H

ˇ
ˇ
L1

T
� 2K

p
T
ˇ
ˇH.n/ � H

ˇ
ˇ
L2

T
;

we get

sup
t2Œ0;T�

ˇ
ˇ
ˇ
ˇ

Z t

0

H.n/
s dWs � 1

2

Z t

0

.H.n/
s /2ds �

�Z t

0

HsdWs � 1
2

Z t

0

H2
s ds

�ˇˇ
ˇ
ˇ

� sup
t2Œ0;T�

ˇ
ˇ
ˇ
ˇ

Z t

0

.H.n/
s � Hs/dWs

ˇ
ˇ
ˇ
ˇC K

p
T
ˇ
ˇH.n/ �H

ˇ
ˇ
L2

T
:

For notational convenience, we temporarily set

X.n/t D E
	 Z :

0

H.n/
s dWs




t
and Xt D E

	 Z :

0

HsdWs




t
; t2 Œ0;T�;

which are both true martingales owing to Novikov’s criterion. The above
inequality combined with Doob’s Inequality implies that

sup
t2Œ0;T�

ˇ
ˇ
ˇ log X.n/t � log Xt

ˇ
ˇ
ˇ

L2�! 0 as n!C1:
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As a consequence, X.n/
L .k : ksup/�! X since the exponential function is

continuous. Denoting by x.n/ and x the counterpart of these processes for

the functions h.n/ and h, we get likewise x.n/
L .k : ksup/�! x. Owing once again

to Lemma 2, the continuity of the exponential, and the chain rule for weak
convergence, we finally obtain

eIm.n/.log X.n//
L .k : ksup/�! elog X D X and eIm.n/.log x.n//

L .k : ksup/�! elog x D x as n!C1:

Applying Step 1 with X.n/ and x.n/ yields

8 n2 N; EF.X.n// � EF.x.n//:

To let n go to infinity in this inequality, we again need a uniform integrability
argument namely that kX.n/ksup and kx.n/ksup are both Lp-bounded for a p >

r since the functional F has at most a .r; k : ksup/-polynomial growth. So, let
p > r _ 1. It follows from Doob’s Inequality applied to the non-negative sub-
martingale .X.n//p that

E

	
sup

t2Œ0;T�
.X.n/t /p



�
	 p

p � 1

p
E
�
X.n/

T
/p

�
	 p

p � 1

p
E

�

E
�
p
Z :

0

H.n/
s dWs

�
T
e

p.p�1/
2

R T
0 .H

.n/
s /2ds

�

�
	 p

p � 1

p

e
p.p�1/
2 K2T

where we used that
	
E
	

p
R :
0

H.n/
s dWs




t




t�0 is a true martingale, owing to

Novikov’s criterion. The case of F.x.n// follows likewise.

Step 3. The extension to h 2 L2
T

is similar to that performed in the former
propositions: first note that

E
	 Z :

0

�K .Hs/dWs


 L .k : ksup/�! E
	 Z :

0

HsdWs



as K ! C1:

The uniform integrality of sup
t2Œ0;T�

E
	 Z :

0

�K .Hs/dWs




t
as K grows to infinity

follows from its Lp.P/-boundedness for a p 2 .1;C1/ which in turn is a
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consequence of Doob’s inequality as above:

sup
K>0

E sup
t2Œ0;T�

�

E
	 Z :

0

�K .Hs/dWs




t

�p

�
	 p

p � 1

p

e
p.p�1/
2 jhj2

L2T < C1

.b/ The discrete time part is established by adapting item .a/ in the spirit of
Proposition 4.b/. The approximation step follows like above as well, except
for the final uniform integrability argument which needs specific care. It

suffices to show that supt2Œ0;T� E
	 R :

0 �K .Hs/dWs




t
is Lp-bounded as K !

C1 for a p > r.

Let p > r. Combining successively Doob’s Inequality and Hölder’s Inequality
for every Hölder conjugate exponents 
;� D 



�1 > 1, leads to

E

h
sup

t2Œ0;T�

�

E
	 Z :

0

�K .Hs/dWs




t

�p i
�
	 p

p � 1

p
E

�

E
	 Z :

0

�K .Hs/dWs


p

T

�

�
	 p

p � 1

p

2

6
6
4E
h
E
	

p
Z :

0

�K .Hs/dWs




T

i

„ ƒ‚ …
D1

3

7
7
5

1



h
E e


p.
p�1/
2.
�1/

R T
0 �K .Hs/

2ds
i 
�1




�
	 p

p � 1

p
�

E e

p.
p�1/
2.
�1/ jHj2

L2T

� 
�1



:

Now min
>1

.
p�1/p
2.
�1/ D p2.1 � 1

2p C
q

p
p�1 / which can be made lower than r2.1 �

1
2r C

p r
r�1 /C " for p close enough to r.

3.2.2 A Counter-Example

The counter-example below shows that Theorem 4 is no longer true if we relax the
assumption that the dominating process .ht/t2Œ0;T� is deterministic.

Let X D X� D .X�0W2/ be a two period process satisfying

X0 D 0; X1 D �Z1 and X2 D X1 C
p
2v.Z1/Z2

where Z1W2
L� N .0I I2/, � � 0, and v W R ! RC is a bounded non-increasing

function.
Let f .x/ D ex and let ' W RC ! R be the function defined by

'.�/ WD Ef .X2/ D E
�
e�Z1Cv.Z1/�:



Convex Order for Path-Dependent Derivatives: A Dynamic Programming Approach 69

Differentiating ' yields

' 0.�/ D E
�
e�Z1Cv.Z1/Z1

�

so that

' 0.0/ D E
�
ev.Z1/Z1

�
< E ev.Z1/EZ1 D 0

by a standard one-dimensional co-monotony argument: the functions z 7! ev.z/ and
z 7! z are non-increasing and non-decreasing respectively which implies ' 0.0/� 0
but none of them are PZ1-a:s: constant, hence equality cannot hold. As a consequence
' 0.0/ < 0 so that ' is (strictly) decreasing on a right neighbourhood Œ0; �0�, �0 > 0,
of 0.

To include this into a Brownian stochastic integral framework, one proceeds as
follows: let W be a standard Brownian motion and �; Q� 2 .0; �0�, � < Q� .

Ht D �1Œ0;1�.t/C
p
2v.W1/1.1;2�.t/; eHt D Q�1Œ0;1�.t/C

p
2v.W1/1.1;2�.t/:

It is clear that 0 � Ht � eHt, t2 Œ0; 2�, whereas

E

	
e
R 2
0 HsdWs



> E

	
e
R 2
0eHsdWs




which contradicts the conclusion of Proposition 4.a/.
It has to be noted that if the function v is non-decreasing, then choosing f .x/ D

e�x leads to a similar result since  .�/ WD Ef .X2/ D E
�
e��Z1Cv.Z1/� satisfies

� 0.�/ D �E�e��Z1Cv.Z1/�. In particular one still has by a co-monotony argument
that  0.0/ < 0 since v is not constant.

3.2.3 A Comparison Theorem for Laplace Transforms of Brownian
Stochastic Integrals

Applying our paradigm, we start by a discrete time result with its own interest for
applications.

Proposition 7 Let .Zk/1�k�n be a sequence of N .0I 1/-distributed random vari-
ables. We set S0 D 0 and Sk D Z1 
 
 
 C Zk, kD1; : : : ; n (partial sums). We consider
the two discrete time stochastic integrals

Xk D
kX

`D1
f`.S`�1/Z` and Yk D

kX

`D1
g`.S`�1/Z`; k D 1; : : : ; n; X0 D Y0 D 0

where fk; gk W R! RC, k D 1; : : : ; n are non-negative Borel functions satisfying:
either all fk, k D 1; : : : ; n, or all gk, k D 1; : : : ; n, are non-decreasing.
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If, furthermore, 0 � fk � gk for all k D 1; : : : ; n, then

8
 � 0; E e
Xn � E e
Yn :

Proof We start from the Cameron-Martin identity which reads on Borel functions
' W R! R

8 � 2 R; E e�ZC'.Z/ D e
�2

2 E e'.ZC�/ � C1:

First, we define in a backward way functions Qf k and Qgk, k D 1; : : : ; n C 1 by
Qf nC1 D QgnC1 	 0,

Qf k.x/ D

2

2
f 2k .x/C logE

	
eQf kC1.xC
fk.x/CZ/



; k D 0; : : : ; n; (23)

where Z � N .0I 1/. The function Qgk is defined from the gk the same way round.
Then, relying on the chaining rule for conditional expectations, we check by a
backward induction that

E e
Xn D E e
XkCQf kC1.Sk/; k D 1; : : : ; n:

In particular, when k D 0, we get

E e
Xn D eQf 1.0/:

It follows from (23) and a second backward induction that, if the functions fk are
non-decreasing for every k D 1; : : : ; n, so are the functions Qf k. The same holds
for Qgk with respect to the functions gk. Assume e.g. that all the functions Qf k are
non-decreasing. Then, a third backward induction shows: that Qf k � Qgk for every
k D 0; : : : ; n � 1. It is clear that Qf n � Qgn. If Qf kC1 � QgkC1, then for every x2 R,

Qf kC1.xC 
fk.x/C Z/ � Qf kC1.xC 
gk.x/C Z/ � QgkC1.xC 
gk.x/C Z/:

Plugging this inequality in (23) combined with f 2k � g2k , one concludes that Qf k � Qgk.
A similar reasoning can be carried out if the functions Qgk are non-decreasing.

By the standard weak approximation method detailed beforehand, we derive a
following continuous time version involving (non-decreasing) completely monotone
functions defined below.

Definition 2 A non-decreasing function ' W R ! R is completely monotone if
it is the Laplace transform of a non-negative Borel measure � supported by the
non-negative real line, namely

8 x2 R; '.x/ D
Z

RC

e
x�.d
/:
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Theorem 3 Let f ; g W Œ0;T� � R! RC two bounded Borel functions such that

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

.i/ f ; g are dt˝ dx-a:e: continuous;

.ii/ 0 � f � g;

.iii/
	
8 t2 Œ0;T�; f .t; :/ is non-decreasing




or
	
8 t2 Œ0;T�; g.t; :/ is non-decreasing



:

(24)

Then,

8
 � 0; E e

R T
0 f .t;Wt/dWt � E e


R T
0 g.t;Wt/dWt

so that, for every non-decreasing completely monotone function ' W R! RC

E'

�Z T

0

f .t;Wt/dWt

�

� E'

�Z T

0

g.t;Wt/dWt

�

:

Remark 6

• The finiteness of these integrals follows from Novikov’s criterion.
• One derives from (24) the seemingly more general result

8
<̂

:̂

.i/ f ; g are dt˝ dx-a:e: continuous;

.ii/ 9 h W Œ0; T� � R
Borel�! RC such that

(
.a/ 0 � f � h � g and
.b/ 8 t2 Œ0; T�; h.t; :/ is non-decreasing:

(25)

Proof Assume e.g. that f .t; :/ is non-decreasing for every t 2 Œ0;T�. First note that
by Fubini’s Theorem and Itô’s isometry

�
�
�

Z T

0

f .s;Ws/dWs �
Z T

0

f .sn;Wsn
/dWs

�
�
�
2

2
D
Z T

0

E
�
f .s;Ws/� f .sn;Wsn

/
�2

ds:

Now, if we denote Cs D fx 2 R j f is continuous at .s; x/g for every t 2 Œ0;T�, it
follows from Assumption (24).i/ that 
.cCs/ D 0 ds-a:e: still by Fubini’s Theorem.
As PXs is equivalent to the Lebesgue measure, one derives that Ps.Cs/ D 1 ds-

a:e:. As a consequence, E
�
f .s;Ws/ � f .sn;Wsn

/
�2 ! 0 ds-a:e: as n ! C1

since .sn;Wsn
/ ! .s;Ws/. One concludes by the dominated Lebesgue theorem that�

�
�
R T
0

f .s;Ws/dWs �
R T
0

f .sn;Wsn
/dWs

�
�
�
2
! 0 as n!C1 since f is bounded.

Now, define for every k D 1; : : : ; n,

Xk D
Z tnk

0

f .sn;Wsn
/dWs D

r
T

n

kX

`D1
f .tn

`�1;Wtn`�1
/Un

`
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where Un
` D

p n
T .Wtn`

� Wtn`�1
/, ` D 1; : : : ; n. We define likewise .Yk/kD0Wn with

respect to the function g. It is clear that both .Xk/ and .Yk/ satisfy the assumptions
of the above Proposition 7 so that

8
 � 0; E e

R T
0 f .sn;Wsn /dWs � E e


R T
0 g.sn;Wsn /dWs :

One concludes by combining the above quadratic (hence weak) convergence and
the uniform integrability argument which follows from

8
 > 0; sup
n

E e

R T
0 f .sn;Wsn /dWs � e


2

2 k f ksupT < C1:

4 Convex Order for the Réduites and Applications
to Path-Dependent American Options

In this section, we aim at applying the paradigm developed in the former sections
to Optimal Stopping Theory, which corresponds in Quantitative finance to Bermuda
and American style options. For background on Optimal stopping theory, we refer
to [27, Chap. VI] and [7, Chap. 5.1] in discrete time and, among others, to [8, 19, 33]
in continuous time.

4.1 Bermuda Options

We start from the discrete time dynamics introduced in Sect. 2. Let .Zk/kD1Wn be a
sequence of centered independent random variables satisfying Zk 2 Lr.˝;A ;P/,
r � 1 and EZk D 0; k D 1; : : : ; n. Let .Xx

k/kD0Wn and .Yx
k /kD0Wn be the two sequences

of random vectors defined by (1) i.e.

Xx
kC1 D Xx

kC�k.X
x
k/ZkC1; Yx

kC1 D Yx
kC�k.Y

x
k /ZkC1; 0 � k � n�1; Xx

0 D Yx
0 D x

where �k, �k, k D 0; : : : ; n are functions from R to R, all with linear growth. This
implies by a straightforward induction that the random variable Xx

k and Yx
k all lie in Lr

since, e.g., �k.Xx
k/ is F Z

k -measurable, hence independent of ZkC1, k D 0; : : : ; n� 1.
Let F D .Fk/kD0;:::;n and G D .Gk/kD0;:::;n be two filtrations on .˝;A ;P/ such

that Xx is F -adapted and Yx is G -adapted. Let Fk W RkC1 ! RC, k D 0 W n be a
sequence of non-negative functions with r -polynomial growth (i.e. 0� Fk.x0Wk/�
C.1Cjx0Wkjr/, k D 0 W n). Then, the processes

�
Fk.Xx

0Wk/
�

kD0Wn and .Fk.Yx
0Wk//kD0Wn,

called payoff or obstacle processes, are F -adapted and G -adapted respectively.
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We define the F - and G -“réduites” associated to these obstacle processes by

u0.x/ D sup
˚
EF� .X

x
0W� /; � F -stopping time

�

and

v0.x/ D sup
˚
EF� .Y

x
0W� /; � G -stopping time

�

respectively. Each quantity is closely related to the optimal stopping problem
attached to its underlying dynamics Xx (Yx respectively) since it represents the
supremum of all possible gains among “honest” (i.e. non-anticipative with respect to
the filtration) stopping strategies in a game where the player wins Fk.Xx

0Wk/ (Fk.Yx
0Wk/

respectively) when leaving at time k. Owing to the dynamic programming formula
and the Markov property shared by both dynamics Xx and Yx (see the proof of
Proposition 8 below), it is clear that we may assume without loss of generality that
F D F X (natural filtration of Xx), G D F Y or even F D G D F Z without
changing the value of the réduites.

The proposition below is the counterpart of Proposition 1 from Sect. 2.

Proposition 8 Let Fk W RkC1 ! RC, k D 0; : : : ; n, be a sequence of non-negative
convex functions with r-polynomial growth, r � 1.

.a/ Convex Partitioning function: If, for every k 2 f0; : : : ; n � 1g, there exists a
convex function �k such that 0 � �k � �k � �k, then, for every x2 R,

u0.x/ � v0.x/:
.b/ Convex Dominating function: If the random variables Zk have symmetric

distributions, the functions �k, k D 0; : : : ; n � 1, are convex and j�kj � �k,
k D 0; : : : ; n � 1, then the above inequality remains true.

Remark 7 An equivalent formulation of claim .a/ is: assume that both .�k/kD0;:::;n�1
and .�k/kD0;:::;n�1 are non-negative convex functions with r-linear growth, then for
every sequence .�k/kD0;:::;n�1 of functions such that �k � �k � �k, k D 0; : : : ; n� 1,

u0.x/ � c�.x/ � v0.x/

where c�.x/ is the réduite of .Fk.Kx
0Wk//kD0;:::;n where .Kx

k/kD0;:::;n satisfies the
discrete time dynamics

Kx
kC1 D Kx

k C �k.K
x
k/ZkC1; k D 0; : : : ; n � 1; Kx

0 D x:

This follows from claim .a/ applied successively to the pairs .�k; �k/kD0;:::;n�1 and
.�k; �k/kD0;:::;n�1.

Proof

.a/ It is clear that this claim is equivalent to proving the expected inequality, either
if all the functions .�k/kD0;:::;n, or all the functions .�k/kD0;:::;n are convex.
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We introduce Ux D .Ux
k/kD0;:::;n and Vx D .Vx

k /kD0;:::;n the .P;F /- and .P;G /-
Snell envelopes of

�
Fk.Xx

0Wk/
�

kD0;:::;n and
�
Fk.Yx

0Wk/
�

kD0;:::;n respectively i.e.

Ux
k D P- ess sup

n
E
�
F� .X

x
0W� / jFk

�
; � F -stopping time; � � k

o

and

Vx
k D P- ess sup

n
E
�
F� .Y

x
0W� / jGk

�
; � G -stopping time; � � k

o
:

The connection between réduite and Snell envelope is a classical fact from Optimal
Stopping Theory for which we refer e.g. to [27, Chap. VI], namely

u0.x/ D EUx
0

(idem for v0, Vx
0 for Yx). It is also classical background on Optimal stopping

theory (see again e.g. [27, Chap. VI]) that the .P;F /-Snell envelope Ux satisfies
the following Backward Dynamic Programming principle

Ux
n D Fn.X

x
0Wn/; Ux

k D max
	

Fk.X
x
0Wk/;E.Ux

kC1 jFk/


; k D 0; : : : ; n � 1:

Then, we derive by a backward induction from the Markov dynamics satisfied by
the Xx

k that Ux
k D uk.Xx

0Wk/ a:s:, k D 0; : : : ; n, where uk W RkC1 ! RC, k D 0; : : : ; n
are Borel functions satisfying

un D Fn; uk.x0Wk/ D max
	

Fk.x0Wk/;
�
QkC1ukC1.x0Wk; xkC:/

�
.�k.xk//



; k D 0; : : : ; n�1:

(26)

that is a backward dynamic programming principle in distribution. We define
likewise the functions vk W RkC1 ! R, k D 0; : : : ; n, related to the .P;G /-Snell
envelopes of

�
Fk.Yx

0Wk/
�

kD0;:::;n.
To emphasize the analogy with the proof of Proposition 1 we will detail the

case where all the functions �k D �k are convex and satisfy 0 � �k � �k,
k D 0; : : : ; n � 1. Following the lines of the proof of this proposition, we show,
still by induction, that the functions uk are convex by combining Lemma 1 and (26).
The additional argument to ensure the propagation of convexity is to note that the
function .u; v/ 7! max.u; v/ is convex and increasing in each of its variable u
and v.

On the other hand, as 0 � �k � �k, k D 0; : : : ; n � 1 and �k are all convex, we
can show by a new backward induction that uk � vk, k D 0; : : : ; n. If k D n, this is
obvious. If it holds true for kC 1 � n, then for every x0Wk2 R

kC1,

uk.x0Wk/ � max
	
Fk
�
x0Wk
�
;
�
QkC1ukC1.x0Wk; xk C :/

�
.�k.xk//




� max
	
Fk
�
x0Wk
�
;
�
QkC1vkC1.x0Wk; xk C :/

�
.�k.xk//



Dvk.x0Wk/



Convex Order for Path-Dependent Derivatives: A Dynamic Programming Approach 75

where we used successively that u 7! �
QkC1ukC1.x0Wk; xkC :/

�
.u/ is non-decreasing

on RC since ukC1 is convex and that ukC1 � vkC1. Finally, the inequality for k D 0
reads

u0.x/ D EUx
0 � EVx

0 D v0.x/

which yields the announced result. Other cases follow the same way round,
following the lines of the proof of Proposition 1.

4.2 Continuous Time Optimal Stopping and American Options

4.2.1 Brownian Diffusions

In this section, we switch to continuous time. We will investigate the functional
convex order properties of the réduite of obstacle/payoff processes of the form
.F.t;Xt//t2Œ0;T�, where Xt is a Brownian martingale diffusion [like that defined in (4)]
stopped process at time t2 Œ0;T�. The functional F defined on Œ0;T� � C .Œ0;T�;R/
satisfies: F.t; :/ is convex for every t2 Œ0;T�.

As far as pricing American options in local volatility models is concerned,
the results of this section appear as an extension to path-dependent payoffs of
El Karoui-Jeanblanc-Shreve’s Theorem (see [9]) which mainly deals with convex
functions of the marginal of the processes at time T (see also [14] devoted to path-
dependent lookback options). The proposition below is also close to former results
by Bergenthum and Rüschendorf by combining Theorems 3.2 and 3.6 from [1] with
Theorem 4.1 from [3]. Here, we focus on the convex partitioning function.

Proposition 9 Let �; � W Œ0;T� � R ! RC be two Lipschitz continuous functions
in .t; x/ and let W be a standard F D .Ft/t�0-Brownian motion defined on a
probability space .˝;A ;P/ where F is a filtration satisfying the usual conditions.
Let .X.�/;xt /t2Œ0;T� and .X.�/;xt /t2Œ0;T� be the martingale unique strong solutions to (4)
starting at x2 R (where W.�/ D W.�/ D W/.

Assume that there exists a partitioning function � W Œ0;T� � R ! RC such that
�.t; :/ is convex for every t 2 Œ0;T� with linear growth in x uniformly in t 2 Œ0;T�
and

0 � �.t; :/ � �.t; :/ � �.t; :/; t2 Œ0;T�:

Let F W Œ0;T� � C .Œ0;T�;R/ ! RC be a continuous functional for the product
topology j:j̋ k : ksup, with .r; k : ksup/-polynomial growth, r � 1, in ˛2 C .Œ0;T�;R/,
uniformly in t2 Œ0;T�. Moreover, assume that, for every t2 Œ0;T�, F.t; :/ is convex
on C .Œ0;T�;R/. Let u0.x/ and v0.x/ denote the F -réduites of

�
F.t; .X.�/;x/t/

�
t2Œ0;T�
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and
�
F.t; .X.�/;x/t/

�
t2Œ0;T� respectively defined by

u0.x/ D sup
n
EF

�
�; .X.�/;x/�

�
; � 2 T F

0;T

o

and

v0.x/ D sup
n
EF

�
�; .X.�/;x/�

�
; � 2 T F

0;T

o

where T F
Œ0;T� D f� W ˝ ! Œ0;T�;F -stopping timeg. Then, one can replace T F

0;T by

T FW
Œ0;T� and

u0.x/ � v0.x/:

Remark 8 All the quantities involved in the above theorem are well-defined since
kX.�/;xksup and kX.�/;xksup have polynomial moments at any order. Moreover, the
Lipschitz continuity assumption is most likely too stringent: we adopt it to shorten
the proof of the transfer from discrete to continuous time by reasoning on strong
solutions.

Proof Step 1 (Euler Schemes). We consider the Euler schemes NX.�/;n and NX.�/;n
with step T

n of both diffusions (we drop the dependence on the starting value x).
Both schemes are adapted to the filtration F .n/ WD .Ftnk /kD0;:::;n.
It follows from Proposition 8 that the .P;F .n//-Snell envelopes NU.n/ D
. NU.n/

tnk
/kD0;:::;n, NK.n/ D . NK.n/

tnk
/kD0;:::;n and NV.n/ D . NV.n/

tnk
/kD0;:::;n of the F .n/-adapted

obstacle processes
	

F
�
tn
k ;

In
� NX.�/;n��tnk

�


kD0;:::;n,
	

F
�
tn
k ;

In
� NX.�/;n��tnk �




kD0;:::;nand
	

F
�
tn
k ;

In
� NX.�/;n��tnk

�


kD0;:::;n satisfy

E NUn
0 � E NKn

0 � E NVn
0 : (27)

Note that it is always possible to define the Euler scheme associated to the
function � regardless of its convergence toward the related SDE.

Step 2 (Convergence). First, set for convenience
NY.n/tnk
D
	
F
�
tn
k ;

In
� NX.�/;n��tnk

�


kD0;:::;n, so that

NU.n/
tnk
D P- ess sup

n
E. NY.n/� jFtnk /; � 2 T

.n/
tnk ;T

o
; k D 0; : : : ; n;

where T
.n/

tnk ;T
D
n
� W ˝ ! ftn

k ; : : : ; t
n
` ; : : : ; t

n
ng; F .n/-stopping time

o
; we also

know that the .P;F /-Snell envelope of the process Yt D F.t;Xt/, t 2 Œ0;T�, is
defined by

Ut D P- ess sup
n
E
�
Y� jFt

�
; � 2 T F

t;T

o
; t 2 Œ0;T�;
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where T F
t;T D

n
� W ˝ ! Œt;T�; F -stopping time

o
. This Snell envelope is well-

defined since kXksup lies in every Lp.P/, p 2 .0;C1/, which implies in turn
that kYksup lies in every Lp.P/. Note that the obstacle process .F.t;Xt//t2Œ0;T�
has continuous paths since ˛ 7! .t; ˛t/ is continuous from Œ0;T� to .Œ0;T� �
C .Œ0;T�;R/; j:j ˝ k:ksup/ and F is continuous. Being uniformly integrable, it is
regular for optimal stopping and t 7! EUt is continuous (see [8, 24]). Hence,
the super-martingale .Ut/t2Œ0;T� has a non-negative càd modification whose non-
decreasing compensator is continuous. More generally, if a sequence of stopping
times �n " � < C1 and U� 2 L1, then EU�n ! EU� . As a temporary
intermediate quantity, we introduce an intermediate quantity defined by

eU.n/
tnk
D P- ess sup

n
E.Y� jFtnk /; � 2 T

.n/
tnk ;T

o
� Utnk ; k D 0; : : : ; n:

We will prove, after having extended NU.n/ into a càdlàg stepwise constant process
by setting NU.n/

t D NU.n/
tnk

, t 2 Œtn
k ; t

n
kC1/, that E NU.n/

t converges to EUt for every
t2 Œ0;T�. We start from the fact that

jEUt � E NU.n/
tn
j � jEUt � EUtn j C EUtn � EeU.n/

tn
C E jeU.n/

tn
� NU.n/

tn
j: (28)

The regularity of U for optimal stopping implies that EUtnk ! EUt as n! C1.
As concerns the second term in the right hand side of (28), we proceed as follows

0 � Utnk � eU.n/
tnk
� P- ess sup

n
E
�
Y� � Y�.n/ jF .n/

tnk

�
; � 2 Ttnk ;T

o

where �.n/ DPn
`Dk

`T
n 1f .`�1/Tn <�� `T

n g D
Pn

`Dk Ntn1ftn`�1<��tn`g2 T
.n/

tnk ;T
� Ttnk ;T so that

0 � Utnk � eU.n/
tnk
� E

�
sup
t�tnk

jYt � Ytn j jFtnk

� � E
�

sup
t2Œ0;T�

jYt � Ytn j jFtnk

�
:

Doob’s Inequality applied to the martingale Mn D E
�

supt2Œ0;T� jYt � Ytn j jFtnk

�
,

n � 1, implies that for every p2 .1;C1/,
�
�
� max

kD0;:::;n.Utnk�eU.n/
tnk
/
�
�
�

p
� p

p � 1kMnkpD
p

p � 1
�
�
� sup

t2Œ0;T�
jYt�Ytn j

�
�
�

p
! 0 as n!C1

since Xtn a:s: converges towards Xt for the sup-norm owing to the pathwise
continuity of X. In turn, this implies that F.tn

;Xtn/ a:s: converges toward F.t;Xt/

since F is continuous. The Lp-convergence follows by uniform integrability, still
since kYksup has polynomial moments at any order.

Now we investigate the third term in the right hand side of (28).

jeU.n/
tnk
� NU.n/

tnk
j � P- ess sup

n
E
�jY� � NY.n/� j jFtnk

�
; � 2 T

.n/
tnk ;T

o
� E

h
max

kD0;:::;n
j NY.n/tnk
� Ytnk j jFtnk

i
:



78 G. Pagès

On the other hand,

max
kD0;:::;n j NY

.n/
tnk
� Ytnk j � max

kD0;:::;n
ˇ
ˇF
�
tn
k ; .In. NX.�/;n//tnk

� � F
�
tn
k ; .X

.�//t
n
k
�ˇˇ

� sup
t2Œ0;T�

ˇ
ˇF
�
t; .In. NX.�/;n//t

� � F
�
t; .X.�//t

�ˇˇ: (29)

Now, note that the functional ˛ 7!
	
t 7! F

�
t; ˛t

�

defined from

.C .Œ0;T�;R/; k : ksup/ into itself is continuous: if .tn; ˛n/ ! .t; ˛/ for the product
topology on the product space Œ0;T� � .C .Œ0;T�;R/, then

k˛tn
n � ˛tksup � k˛n � ˛ksup C w.˛; jt � tnj/

so that .tn; ˛tn
n / ! .t; ˛t/. As a consequence, the functional F being continuous on

Œ0;T� � C .Œ0;T�;R/, F.tn; ˛tn
n / ! F.t; ˛t/ which in turn implies that kF.t; ˛t

n/ �
F.t; ˛t/ksup ! 0. As lim

n
kIn.˛/ � ˛ksup D 0, we derive that, if ˛n ! ˛ for the sup

norm, then kF.t; In.˛n/
t/ � F.t; ˛t/ksup ! 0 as n! C1.

Then, under the Lipschitz continuity assumption on � , we know that the Euler
scheme NX.�/;x;n ! X.�/;x P-a:s: as n ! C1 a:s: (see e.g. [5, Theorem B.14,
p. 276]). The .r; k : ksup/-polynomial growth assumption made on F and the fact
that sup

n�1
Ek NX.�/;x;nkp

sup < C1 for any p > r implies the L1-convergence to 0 of the

term in (29). Finally, this shows limn jEUt � E NUtn
j D 0 so that, for t D 0,

E NUn
0 ! u0.x/ as n! C1:

The conclusion follows from (27) in Step 1 by letting n ! C1 in the inequality
E NUn

0 � E NVn
0 .

Applications to Comparison Theorems for American Options in Local Volatil-
ity Models By specifying our diffusion dynamics as a local volatility model as
defined by (7), we can extend the comparison result (8) to path-dependent American
options provided the “payoff” functionals F.t; :/ are convex with polynomial growth
as specified in the above theorem.

4.2.2 The Case of Jump Martingale Diffusions

In what follows the product space Œ0;T� �D.Œ0;T�;R/ is endowed with the product
topology j : j ˝ Sk. The notation Xt.˛/ D ˛.t/, ˛ 2 D.Œ0;T�;R/ still denotes the
canonical process on D.Œ0;T�;R/ and � denotes the canonical random variable on
Œ0;T� (i.e. �.t/ D t, t2 Œ0;T�).

Let .Ft/t2Œ0;T� be a right continuous filtration on a probability space .˝;A ;P/

and let Y be an .Ft/t2Œ0;T�-adapted càdlàg process defined on this probability space.
We introduce the filtration enlargement assumption, the so-called (H )-assumption
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which reads as follows:

.H / 	 8H W ˝ ! R; bounded and F Y
T

-measurable; E
�
H jFt

� D E
�
H jF Y

t

�
P-a:s:

This filtration enlargement assumption is equivalent to the following more tractable
condition: there exists D � Œ0;T�, everywhere dense in Œ0;T�, with T 2 D, such that

8n � 1; 8t1; : : : ; tn 2 D; 8h2 C0.R
n;R/; E

�
h.Yt1 ; : : : ;Ytn / jFt

� P-a:sD E
�
h.Yt1 ; : : : ;Ytn / jF Y

t

�

where C0.Rn;R/ D f f 2 C .Rn;R/ such that limjxj!C1 f .x/ D 0g.
We still consider in this section jump diffusions of the form (10) i.e.

dXt D �.t;Xt�/dZt

where � W Œ0;T� � R ! R is a continuous function, Lipschitz continuous in x
uniformly in t2 Œ0;T�.

The aim of this section is to extend the result obtained for functional convex
order for Brownian diffusions to such jump diffusions. We will rely on an abstract
convergence result for réduites established in [25] (Theorem 3.7 and the remark that
follows) that we recall below. To this end, we need to recall two classical definitions
on stochastic processes.

Definition 3

.a/ Class .D/ processes: A càdlàg process .Yt/t2Œ0;T� is of class .D/ if

˚
Y� ; � 2 TŒ0;T�

�
is uniformly integrable. (30)

.b/ Aldous tightness criterion (see e.g. [17, Chap. VI, Theorem 4.5, p. 356]): A
sequence of F n-adapted càdlàg processes Yn D .Yn

t /t2Œ0;T�, n � 1, defined on
filtered stochastic spaces .˝n;A n;F n;Pn/, n � 1, satisfies Aldous’ tightness
criterion with respect to the filtrations F n, n � 1, if

8 	 > 0; lim
ı!0

lim
n

sup
�n�� 0

n�.�nCı/^T
P

n
�jYn

�n
� Yn

� 0

n
j � 	� D 0 (31)

where �nand � 0
n run over Œ0;T�-valued F Yn

-stopping times.

Then, the sequence .Yn/n�1 is tight for the Skorokhod topology.
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Theorem 4

.a/ Let .Xn/n�1 be a sequence of adapted quasi-left càdlàg processes1 defined on
probability spaces .˝n;F n;Pn/ of class .D/ and satisfying the above Aldous
tightness criterion (31). For every n � 1, let

un
0 D sup fEXn

� ; � Œ0;T�-valuedF n-stopping timeg

denote the F n-réduite of Xn. Let .��
n /n�1 be a sequence of

�
F Xn

;Pn/-optimal
stopping times (2). Assume furthermore that .Xn/n�1 satisfies

Xn L�! P; P probability measure on .D.Œ0; T�;R/;DT/ such that EP sup
t2Œ0;T�

jXtj<C1:

If every limiting value Q of L .Xn; ��
n / on D.Œ0;T�;R/ � Œ0;T� satisfies

the filtration enlargement (H ) property, then the .F n;Pn/-réduites un
0 of Xn

converge toward the .D ;P/-réduite u0 of X i.e.

lim
n

un
0 D u0:

Moreover, if the optimal stopping problem related to .X;Q;D� / has a unique

solution in distribution, i.e. �
dD ��

�� , not depending on Q, then ��
n

L .Œ0;T�/�! ��
�� .

.b/ The same result holds when considering a sequence of companion processes Yn

having values in a Polish metric space .E; dE/. To be more precise, we consider
that the filtration of interest at finite range n is now

�
F

.Xn;Yn/
t

�
t2Œ0;T�. We assume

that Xn is quasi-left continuous with respect to this enlarged filtration. We
will only ask the couple .Xn;Yn/ to converge for the product topology i.e. on
.D.Œ0;T�;R/; SkR/ � .D.Œ0;T�;E/; SkE/ since this product topology spans the
same Borel �-field as the regular Skorokhod topology on D.Œ0;T�;R � E/.

The main result of this section is the following:

Theorem 5 Let Z D .Zt/t2Œ0;T� be a martingale Lévy process with Lévy measure �
satisfying �.jzjp/ < C1 for p2 Œ2;C1/, so that the process Z is an L2-martingale
null at 0. Let �i W Œ0;T� � R ! RC, iD 1; 2, be two continuous functions, Lipschitz
continuous in x uniformly in t2 Œ0;T� and let X.�i;x/ be the martingale jump diffusion
solution to (10) (driven by Z with coefficient �i) starting at (the same) x2 R, i D 1; 2.
Let F W Œ0;T� � D.Œ0;T�;R/ ! RC be a functional satisfying the following local

1A càdlàg .Ft/t2Œ0;T�-adapted process X D .Xt/t2Œ0;T� is quasi-left continuous with respect to
the right continuous filtration F D .Ft/t2Œ0;T� if, for every F -stopping time � having values in
Œ0; T�[fC1g and every increasing sequence of F -stopping times .�k/k�1 with limit � , limk X�k D
X� on the event f� < C1g (see e.g. [17, Chap. I.2.25, p. 22]).
2i.e. satisfying EXn

��

n
D un

0.
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Lipschitz continuity, convexity and Skorokhod continuity assumptions, namely

8
ˆ̂
<̂

ˆ̂
:̂

.i/ 8 t2 Œ0;T�; F.t; :/ is a convex functional on D.Œ0;T�;R/;

.ii/ F W Œ0;T� � D.Œ0;T�;R/! RC is Sk-continuous;

.iii/ jF.t; ˇ/� F.s; ˛/j � C
	
jt � sj�0Ck˛ � ˇk�sup

�
1Ck˛kr��

sup Ckˇkr��
sup
�

;

�; �02 .0; 1�; r2 Œ1; p/:
(32)

Let U.�i/ denote the Snell envelopes of the processes
�
F.t; .X�i//t

�
t2Œ0;T�, i D 1; 2

respectively.
If there exists a partitioning function � W Œ0;T� � R ! R, convex in x for every

t2 Œ0;T�, such that

0 � �1 � � � �2:

Then

U.�1/
0 � U.�2/

0 :

Remark 9

• Note that, as p � 2,

�.jzjp/ < C1” �.jzjp1fjzj�1g/ < C1” Zt2 Lp ” sup
t2Œ0;T�

jZtj2 Lp:

• One proves likewise that, for every t2 Œ0;T�,

E.U.�1/
t / � E.U.�2/

t /:

• If the functions �.t; :/, t 2 Œ0;T� are all convex (but possibly not the functions
�i.t; :/) then the same proof shows by coupling .�1; �/ and .�; �2/ that

E.U.�1/
0 / � E.U.�/

0 / � E.U.�2/
0 /:

Lemma 5 Let X D .Xt/t2Œ0;T� be an .Ft/t2Œ0;T�-adapted càdlàg process defined
on a probability space .˝;A ;P/ where .Ft/t2Œ0;T� is a càd filtration. Let G W
Œ0;T� � D.Œ0;T�;R/ ! RC be a Skorokhod continuous functional such that
jG.˛/j � C.1 C k˛kr

sup/, r 2 .0; p/. If X is quasi-left continuous and if kXksup 2
Lp, then the obstacle process .G.t;Xt//t2Œ0;T� is regular for optimal stopping i.e.
EG.�n;X�n/! EG.�;X� / as soon as � < C1 P-a:s:

Proof First one easily proves by coming back to the very definition of Skorokhod

topology that ˛n
Sk�! ˛ and tn ! t 2 Cont.˛/ then ˛tn

n
Sk�! ˛t. Let .�n/n�1 be a

sequence of Ft-stopping times satisfying �n " � < C1 P-a:s:, then X� D X��
P-a:s: i.e. �.!/2 Cont.X.!// P.d!/-a:s:. It follows that .�n;X�n/! .�;X� / P-a:s:.
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The continuity assumption made on G implies that G.�n;X�n/
Sk�! G.�;X� /. One

concludes by a uniform integrability argument that EG.�n;X�n/! EG.�;X� / since
kXksup2 Lp implies that

�
G.�n;X�n/

�
n�1 is Lp=r-bounded.

Proof Step 1 (Aldous Tightness Criterion). We still consider the stepwise con-
stant Euler scheme NXn D . NXn

t /t2Œ0;T� with step T
n defined for every t 2 Œ0;T� by

NXn
t D NXn

tn
where, for every k2 N

�,

NXn
tnk
D NXn

tnk�1
C �.tn

k�1; NXn
tnk�1
/.Ztnk � Ztnk�1

/; NXn
0 D X0:

Let �n, �n2 T Fn

Œ0;T� , such that �n � �n � .�nCı/^T. In fact, following Lemma 3,
we may assume without loss of generality that �n and �n take values in ftn

k ; k D
0; : : : ; ng. Then, owing to (32),

E
ˇ
ˇF.�n; . NXn/�n/�F.�n; . NXn/�n /

ˇ
ˇ � Cı�

0CC E
�k. NXn/�n�. NXn/�nk�sup.1C2k NXnkr��

sup /
�
:

Hölder’s Inequality applied with the conjugate exponents a D r
�

and b D r
r��

yields

E

	
k. NXn/�n � . NXn/�nk�sup

�
1C 2k NXnkr��

sup

�


�
�
�
� sup
�n�s�.�nCı/^T

j NXn
s � NXn

�n
j
�
�
�
�

r

	
1C 2�� sup

t2Œ0;T�
j NXn

t j
�
�r��

r



:

As �.z2/ < C1, we can decompose the Lévy process Z into Zt D a Wt CeZt,
a � 0 where W is a standard Brownian motion and eZ is a pure jump square
integrable martingale Lévy process.

• If r 2 Œ1; 2�: the B.D.G. Inequality applied to the local martingale . NX�nC iT
n
�

NXn
�n
/i�0 implies

�
�
� sup
�n�tnk �.�nCı/^T

j NXn
tnk
� NXn

�n
j
�
�
�

r

r

� cra
r
�
�
�

X

�n<tnk �.�nCı/^T

�.tn
k�1; NXn

tnk�1
/2
�
Wtnk
�Wtnk�1

�2
�
�
�

r
2

r
2

Ccr

�
�
�

X

�n<tnk �.�nCı/^T

�.tn
k�1; NXn

tnk�1
/2
�
eZtnk �eZtnk�1

�2
�
�
�

r
2

r
2

� cra
r
�
�
�

X

�n<tnk �.�nCı/^T

�.tn
k�1; NXn

tnk�1
/2
�
Wtnk �Wtnk�1

�2
�
�
�

r
2

1

CcrE

"
X

k

1f�n<tnk �.�nCı/^Tgj�.tn
k�1; NXn

tnk�1
/jrjZtnk � Ztnk�1

jr
#

:
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Now

E

h X

�n<tnk �.�nCı/^T

�.tn
k�1; NXn

tnk�1
/2
�
Wtnk�ŠWtnk�1

�2i

D T

n
E

h X

�n<tnk �.�nCı/^T

�.tn
k�1; NXn

tnk�1
/2
i

� T

n
E

h
max
1�k�n

j�.tn
k�1; NXn

tnk�1
/j2�cardfk W�n< tn

k� .�n C ı/^Tg
i

� T

n
E

h
max
1�k�n

j�.tn
k�1; NXn

tnk�1
/j2
iın

T

D ı
�
�
� max
1�k�n

j�.tn
k�1; NXn

tnk�1
/j
�
�
�
2

2
:

On the other hand,

�
�
�

X

�n<tnk �.�nCı/^T

�.tn
k�1; NXn

tnk�1
/2
�
eZtnk �eZtnk�1

�2
�
�
�

r
2

L
r
2

� E

X

k

1f�n<tnk �.�nCı/^Tgj�.tn
k�1; NXn

tnk�1
/jrjeZtnk �eZtnk�1

jr

D EjeZ T
n
jrE
hX

k

1f�n<tnk �.�nCı/^Tgj�.tn
k�1; NXn

tnk�1
/jr
i

D EjeZ T
n
jrE
h

max
1�k�n

j�.tn
k�1; NXn

tnk�1
/jr�cardfk W�n< tn

k� .�n C ı/^Tg
i

� EjeZ T
n
jrE
h

max
1�k�n

j�.tn
k�1; NXn

tnk�1
/jr
iın

T

� ı
	 n

T
EjeZ T

n
jr


E

h
max

0�k�n�1 j�.t
n
k�1; NXn

tnk�1
/jr
i

� C�;eZ;T ı
�
�
� max
1�k�n

j�.tn
k�1; NXn

tnk�1
/j
�
�
�

r

r

where we used that t 7! 1
t EjeZtjr remains bounded on the whole interval .0;T�.

Under the assumptions �.z2/ < C1 and � with linear growth (in x uniformly
in t2 Œ0;T�), it follows from Proposition 12 in Appendix 2 that

sup
n�1

�
� sup

kD0;:::;n
j�.tn

k ;
NXn

tnk
/j��r < C1

since r � 2 (see the first remark below the statement of the theorem), we get

�
�
� sup
�n�tnk �.�nCı/^T

j NXn
tnk
� NXn

�n
j
�
�
�

r
� C�;r;�;Z;T

�
ı
1
4 C ı 1r �
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where the real constant C�;r;�;Z;T does not depend on n, �n, �n and ı. This
implies in turn that

lim
ı!0

lim
n

sup
�n<�n�.�nCı/^T

E
ˇ
ˇF.�n; NXn;�n/� F.�n; NXn;�n/

ˇ
ˇ D 0

and the conclusion follows.
• If r2 Œ2; 4�: One writes

X

�n<tnk �.�nCı/^T

�.tn
k�1; NXn

tnk�1
/2
�
Ztnk � Ztnk�1

�2

D
X

�n<tnk �.�nCı/^T

�.tn
k�1; NXn

tnk�1
/2.
�
Ztnk � Ztnk�1

�2 � EjZ T
n
j2/

CEjZ T
n
j2

X

�n<tnk �.�nCı/^T

�.tn
k�1; NXn

tnk�1
/2
�
Ztnk � Ztnk�1

�2
:

The second term of the sum in the right hand side of the above equality can be
treated as above (it corresponds to r D 2). As concerns the first one, note that
the i:i:d: sequence

�
.Ztnk �Ztnk�1

/2�EjZ T
n
j2�

1�k�n
is centered and lies in L

r
2 .P/

with r
2
2 Œ1; 2�. Hence, it can be controlled like in the former case. Carrying on

the process by a cascade induction as detailed in the proof of Proposition 12
(Appendix 2), one can lower r to r=2; : : : ; r=2`r 2 .1; 2�, owing to the B.D.G.
inequality.

Step 2. It follows from Step 1 of Theorem 2, adapted to a 2-dimensional
framework with .�; 1/ as a drift, that

	 NXn; In.Z/



L .Sk/�! .X;Z/ as n!C1:

If we consider the discrete time Optimal Stopping problems related to the Euler
schemes NX.n;�i/, i D 1; 2, which turns out the be the same as in Step 1 of the
proof of Proposition 9, the existence of optimal stopping times �.i/n , i D 1; 2,
taking values in ftn

k ; k D 0 W ng is straightforward since it is a discrete time
optimal stopping problem with a finite horizon (see e.g. [27, Chap. VI]).

Step 3. Let ˝c D D.Œ0;T�;R/2 � Œ0;T� be the canonical space of the distribution
of the sequence . NXn; In.Z/; ��

n /n�1. For every .˛; u/2 D.Œ0;T�;R/2 � Œ0;T�, the
canonical process is defined by �t.˛; u/ D ˛.t/ D .˛1.t/; ˛2.t// 2 R

2 and the
canonical random times is given by �.˛; u/ D u. Furthermore, we will denote by
� D .�1;�2/ the two components of � . Let

D�
t D \s>t�.�u; f� � ug; 0 � u � sg if t2 Œ0;T/; D�

T D �
�
�s; f� � sg; 0 � s � T

�
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denote the canonical right-continuous filtration on ˝c. This canonical space ˝c

is equipped with the product metric topology Sk˝2 ˝ j:j where j:j denotes the
standard topology on Œ0;T� induced by the absolute value.
In order to conclude to the convergence of the réduites, we need to show, follow-

ing Theorem 4 from [25], that any limiting distribution Q D limn P.. NXn;In.Z//;��

n /
on

the canonical space
�
D.Œ0;T�;R2/�Œ0;T�; Sk˝2˝j:j� satisfies the .H /-assumption,

namely

EQ

�
H jD�

t

� D EQ

�
H jDt

�
Q-a:s:

for every random variable H defined on ˝c.
Let AtomQ.�/ D

˚
s 2 Œ0;T�; Q� .fsg/ > 0

�
be the set, possibly empty, of Q-

atoms of � . Let ˚ W D.Œ0;T�;R2/ ! R and � W D.Œ0;T�;R/ ! R be two bounded
functionals, Sk˝2- and Sk-continuous respectively and let u… AtomQ.�/, u � s � T.
As �.In.Z/s/1f��

n �ug is F n
s -measurable, we get

EQ


˚.�/�.�2;s/1f��ug

� D lim
n

E

h
˚. NXn; In.Z//�.In.Z/

s/1f��

n �ug
i

D lim
n

E

h
E
�
˚. NXn; In.Z//jF Z

s

�
�.In.Z/

s/1f��

n �ug
i
:

Up to an extraction .n0/, we may assume that E

˚. NXn0

; In0.Z//jF Z
s

�
weakly con-

verges to E

˚.X;Z/jF Z

s

�
since ˚. NXn0

; In0.Z// weakly converges toward ˚.X;Z/.
Up to a second extraction, still denoted .n0/, we may assume that �.In0.Z/s/ a:s:
converges toward �.Zs/ for the Skorokhod topology since P.�Zs ¤ 0/ D 0 (the
stopping operator at time s, ˛ 7! ˛s, is Sk-continuous at functions ˛ which are
continuous at s). Consequently, going back on the canonical space ˝c, we obtain

	
E
�
˚. NXn; In.Z//jF Z

s

�
; � .In.Z/

s/; 1f��

n �ug



L�! LQ

	
E
�
˚.�/jF�2

s

�
; � .�2;s/; 1f��ug




which ensures that

EQ


˚.�/ .�2;s/1f��ug

� D EQ


EQ

�
˚.�/jDs�

�
�.�2;s/1f��ug

�
:

One concludes by standard functional monotone approximation arguments that
the equality holds true for any bounded measurable functional ˚ , � and any u 2
Œ0;T�. Then, by considering a sequence sn # s, sn > s, we derive by a standard
reverse martingale argument that

EQ

�
˚.�/ jD�

s

� D EQ

	
˚.�/ jDs



:

The .H /-assumption being fulfilled, Theorem 4 applies i.e. EUn
0 converges toward

EU0. �
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Appendix 1: Euler Scheme for Brownian Martingale
Diffusions

Proposition 10 Let . NXn
t /t2Œ0;T� be the genuine Euler scheme of step T

n of the SDE 	
dXt D �.t;Xt/dWt, X0 D x defined as the solution to

d NXn
t D �.tn;

NXn
tn
/dWt; NXn

0 D x; t2 Œ0;T�:

If � W Œ0;T� � R! R is continuous and satisfies the linear growth assumption

8 t2 Œ0;T�; 8 x2 R; j�.t; x/j � C� .1C jxj/;

then the sequence . NXn/n�1 is C-tight on C .Œ0;T�;R/ and any of its limiting
distributions is a weak solution to the above SDE. In particular if a weak uniqueness

assumption holds, then NXn
L .k : ksup/�! X.

Following e.g. [5] (Lemma B.1.2, p. 275, see also [22, 29]), we first show that,
owing to the linear growth assumption, the non-decreasing function 'p;n.t/ D
E
�

sups2Œ0;t� j NXn
s jp
�
, p 2 Œ1;C1/, is finite for every t 2 Œ0;T�. Using Doob’s

Inequality and Gronwall’s Lemma, it follows that

'p;n.t/ � 'p.t/ WD CeCt.1C jxjp/

for a real constant C D C0
p;� > 0. Consequently, it follows from the Lp-B.D.G. and

Hölder inequalities, applied successively that, for every for p2 .2;C1/ and every
s; t2 Œ0;T�, s � t,

Ej NXn
t � NXn

s jp � cp
pE

�Z t

s
j�.un;

NXn
un
/j2du

� p
2

� cp
pjt � sj p2 �1C 'p.T/

�
:

Kolmogorov’s criterion (see [4, Theorem 12.3, p. 95]) implies that the sequence
Mn D .Wt; NXn

t /t2Œ0;T� is C-tight, i.e. tight on .C .Œ0;T�;R2/; k : ksup/. From
now on, we mainly rely on the results established in [18]. Let n0 be a
subsequence such that . NXn0

;W/ functionally weakly converges to a probability
Q on .C .Œ0;T�;R2/; k : ksup/; hence it satisfies the U:T: (for Uniform Tightness)
assumption (see Proposition 3.2 in [18]). The function � being continuous on
Œ0;T� � R, the sequence of càdlàg processes .�.tn;

NXn
tn
//n�1 is C-tight on the

Skorokhod space since
�
.tn;
NXn

tn
/t2Œ0;T�

�
n�1 clearly is. One derives that, up to a new

extraction still denoted .n0/, we may assume that
�
.�.tn0 ; NXn0

tn0
//t2Œ0;T�; NXn0

;W
�

n�1
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functionally converges toward a probability P on D.Œ0;T�;R3/. By Theorem 2.6
from [18]—the functional weak convergence of stochastic integrals theorem—we
know that

�

�.tn0 ; NXn0

tn0
/; . NXn0

t ;Wt/;

Z t

0

�.sn0 ; NXn0

sn0
/dWs

�

t2Œ0;T�
L .Sk/�! Q as n! C1

whereQ is a probability distribution on D.Œ0;T�;R4/ such that the canonical process

Y D .Yi/iD1W4 satisfies Y
L� �

Y1; .Y2;B/;
R :
0

Y2s dBs/ where B WD Y3 is a standard
Q-Brownian motion with respect to the Q-completed right continuous canonical
filtration .D4

t /t2Œ0;T� on D.Œ0;T�;R4/. Furthermore, we know that Y1 D �.:;Y2/ Q-
a:s: since supt2Œ0;T� j�.tn0 ; NXn0

tn0
/��.t; NXn0

t /j converges to 0 in probability. The former

claim follows from the facts that supt2Œ0;T� j NXn
t j is tight and �.t; �/ is uniformly

continuous on every compact set of Œ0;T� � R, with linear growth in � uniformly
in t2 Œ0;T�. On the other hand, we know that NXn0 D x C R :

0
�.sn0 ; NXn0

sn0
/dWs, which

in turn implies that Y2: D x C R :
0
�.s;Y2s /dWs. This shows the existence of a weak

solution to the SDE Xt D xC R t
0 �.s;Xs/ dWs; t2 Œ0;T�.

Under the weak uniqueness assumption, this distribution is unique, hence is
the only functional weak limiting distribution for the tight sequence . NXn/n�1. The
convergence in distribution on C .Œ0;T�;R/ follows.

Remark 10 If the original SDE has a unique strong solution, the same proof leads
to establish the convergence in probability of the Euler scheme toward X. One just
has to add the process X itself to the sequence

�
.�.tn;

NXn
tn
//t2Œ0;T�; NXn;W

�
n�1.

Appendix 2: Euler Scheme for a Lévy Driven Martingale
Diffusion

We consider the following SDE driven by a martingale Lévy process Z with Lévy
measure �:

Xt D xC
Z

.0;t�
�.s;Xs�

/dZs; t2 Œ0;T�; X0 D x; (33)

where � is a Borel function on Œ0;T� � R. Its genuine Euler scheme is defined by

NXn
tkC1
D NXn

tk
C �.tk; NXtk/.ZtkC1

� Ztk /; k D 1; : : : ; n; NX0 D X0 D x (34)

at discrete times tn
k and extended into a continuous time càdlàg process by setting

NXn
t D xC

Z

.0;t�
�.sn�; NXn

sn�/dZs; t2 Œ0;T�: (35)
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Convergence of the Euler Scheme Toward a Solution to the Lévy
Driven SDE

Proposition 11

.a/ Let p 2 .1; 2�. Assume that �.jzjp/ < C1 and that Z has no Brownian
component and �.t; �/ has linear growth in �, uniformly in t2 Œ0;T�. Then

sup
n�1

�
� sup

t2Œ0;T�
j NXn

t j
�
�

p C
�
� sup

t2Œ0;T�
jXtj

�
�

p < C1:

If moreover � is continuous, then SDE (33) has at least one weak solution.
Finally, under a weak uniqueness assumption, one has

NXn L .Sk/�! X:

.b/ If �.z2/ < C1, the same result remains true mutatis mutandis if Z has a non-
zero Brownian component.

Remark 11 In fact, if (33) has a strong solution, one shows using arguments similar
to those developed below, the stronger result

sup
t2Œ0;T�

j NXn
t � Xtj P�! 0 as n!C1:

We refer to [15] (devoted to error bounds) for a simpler proof when � is homoge-
neous and C on the real line.

Proof .a/ We consider the Lévy-Khintchine decomposition of the Lévy process
Z D .Zt/t2Œ0;T�, namely

Zt DeZt C Z1; t2 Œ0;T�;

where eZ is a pure jump, square integrable martingale with jumps of size at
most 1 and Lévy measure �. : \ fjzj � 1g/ and Z1 is a compensated (hence
martingale) Poisson process with (finite) Lévy measure �. :\ fjzj > 1g/.

It is clear from (34) that NXn
tnk
2 Lp for every k D 0; : : : ; n. Then, as �.jzjp/ < C1,

it follows classically that supu2Œtnk ;tnkC1�
jZ1u � Z1tnk

j d� supŒ0; T
n �
jZ1u j2 Lp (see e.g. [32]).

Combining these two results implies that 'p;n.t/ WD
�
� sups2Œ0;t� j NXn

s j
�
�

p
is finite for

every t2 Œ0;T�.
It follows from Eq. (35) satisfied by NX that

'p;n.t/ � jxj C
�
�
� sup

s2Œ0;t�

ˇ
ˇ
ˇ

Z

.0;s�
�.un�; NXn

un�

/dZu

ˇ
ˇ
ˇ
�
�
�

p
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The Lp-B.D.G. Inequality implies (since p > 1)

�
�
� sup

s2Œ0;t�

ˇ
ˇ
ˇ

Z

.0;s�
�.un;

NXun�/dZu

ˇ
ˇ
ˇ
�
�
�

p
� cp

�
�
�
X

0<s�t

�.sn;
NXsn�

/2.�Zs/
2
�
�
�
1
2

p
2

:

Using that p
2
� 1, we derive

�
�
�
X

0<s�t

�.sn;
NXsn�

/2.�Zs/
2
�
�
�
1
2

p
2

�
	
E

X

0<s�t

j�.sn;
NXsn�

/jpj�Zsjp

 1

p

D
	
�.jzjp/E

Z t

0

j�.sn;
NXsn�

/jpds

 1

p

� Cp
�;p�.jzjp/

1
p

	 Z t

0

.1C 'p;n.s/
p/ds


 1
p

where C�;p is a real constant satisfying j�.s; �/j � C�;p.1Cj�jp/ 1p , .s; �/2 Œ0;T��R.
Finally, there exists a positive real constant C0 D C0

�;p;� such that the function
'p;n satisfies

'p;n.t/
p � C0	jxjp C tC

Z t

0

'p;n.s/
pds


:

One concludes by Gronwall’s Lemma that

8 t2 Œ0;T�; 'p;n.t/
p � eC0tC0.T C jxjp/

or, equivalently, there exists a real constant C00 D C00
T;�;p;� such that

8 t2 Œ0;T�; 'p;n.t/ � 'p.t/ D eC00tC00.1C jxj/:

To establish the Skorokhod tightness of the sequence . NXn/n�1, we rely on the
Aldous tightness criterion (see Definition 3.b/ or [17, Theorem 4.5, p. 356]). Let
�2 .0; 1�. Let � and � be two Œ0;T�-valued F Z-stopping times such that � � � �
.� C ı/ ^ T.

Ej NXn
� � NXn

� j� D E

ˇ
ˇ
ˇ
X

�<u��
�.un;

NXn
un�

/�Zu

ˇ
ˇ
ˇ
� � E

	 X

�<u��
j�.un;

NXn
un�

/j�j�Zuj�



D �.jzj�/E
Z .�Cı/^T

�

j�.un;
NXn

un�

/j�du

� ı �.jzj�/E sup
t2Œ0;T�

j�.t; NXn
t /j�

�

� ı �.jzj�/C�.1C 'p.T//
�
p
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where we used that � � 1 � p and �.jzj�/ � �.jzj2 ^ 1/C �.jzjp/ < C1. Then

sup
˚
Ej NXn

� � NXn
� j� C EjZ� � Z� j�; � � � � .� C ı/ ^ T;F Z-stopping times

�

� �.jzj�/.1C C�.1C 'p.T//
�
p
�
ı

which goes to 0 as ı ! 0. This implies that the sequence Mn D . NXn;Z/, n � 1,
is Sk-tight. Moreover, following Proposition 3.2 from [18], the sequence .Mn/n�1
satisfies the U:T: condition since it is Sk-tight and

E sup
t2Œ0;T�

�j� NXn
t j _ j�Ztj

� �
h
E

	 X

0<t�T

j� NXn
t jp C j�Ztjp


i 1
p

�
h
�.jzjp/E

Z T

0

�
1C j�.tn;

NXn
tn
/jp�dt

i 1
p

� ��.jzjp/� 1p �T C Cp
�;p.1C 'p.T//

� 1
p < C1:

On the other hand, the sequence
	
.�
�
tn;
NXn

tn
//t2Œ0;T�;Mn




n�1 is Sk-tight, owing to

the following lemma.

Lemma 6 Let V C
Œ0;T� be the set of functions � W Œ0;T� ! Œ0;T� such that �.0/ D

0 and �.T/ D T endowed with the sup norm. Assume � W Œ0;T� � R ! R is
continuous. Then the mapping � W V C

Œ0;T� � ID.Œ0;T�;Rd/! ID.Œ0;T�;R1Cd/ defined

by �.�; ˛/ D �
�.�.:/; ˛1.://; ˛

�
is continuous (˛ D .˛1; : : : ; ˛d/) for the product

topology.

Proof (Proof of the Lemma) Let .
n/n�1 be a sequence of increasing homeomor-
phisms of Œ0;T� such that 
n ! IdŒ0;T� and ˛n ı 
n ! ˛ uniformly and let
�n ! � in V C

Œ0;T� where IdŒ0;T� denotes the identity on Œ0;T�. Then the closure of

.˛n ı 
n.t//n�1;t2Œ0;T� is a compact set K of Rd so that the function � is uniformly
continuous on Œ0;T� � K. On the other hand

k�n ı 
n � IdŒ0;T�ksup � k�n � IdŒ0;T�ksup C k
n � IdŒ0;T�ksup as n! C1

and k˛n ı 
n � ˛ksup ! 0 as n! C1. The conclusion follows.

Up to an extraction, we may assume that the triplet
��
�.tn0 ; NXn0

tn0

�
t2Œ0;T�;Mn0

�
n�1

weakly converges for the Skorokhod topology toward a probability P on the
canonical Skorokhod space .ID.Œ0;T�;R3/; .Dt/t2Œ0;T�/.
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By Theorem 2.6 from [18] for the functional convergence of stochastic integrals,
we know that

	
�.tn0 ; NXn0

tn0
/; . NXn0

t ;Zt/;

Z t

0

�.sn0�; NXn0

sn0
�

/dZs




t2Œ0;T�
L .Sk/�! Q

where Q is a probability on D.Œ0;T�;R4/ such that the canonical process Y D
.Yi/iD1W4 satisfies Y

d� �
Y1; .Y2;Y3/;

Z :

0

Y2s dY3s / where Y3 is a Lévy process

with respect to the Q and the Q-completed right continuous canonical filtration
.DQ

t /t2Œ0;T� on D.Œ0;T�;R4/ having the distribution of Z (i.e. QY3 D L .Z/). Fur-
thermore, we know that Y1 D �.:;Y2:/ Q-a:s: since the mapping .�; .˛i/iD1W4/ 7!
˛1 � �.�; ˛2/ is continuous from V C

Œ0;T� � D.Œ0;T�;R4/ to D.Œ0;T�;R/ (and tn
converges uniformly to IdŒ0;T�).

On the other hand we know that NXn0

t D xC
Z t

0

�.sn0�; NXn0

sn0
�

/dZs; t2 Œ0;T� which

in turn implies that .Y2t D x C
Z t

0

�.s;Y2s�

/dZs; t 2 Œ0;T�/ Q-a:s:. This shows the

existence of a weak solution to the SDE Xt D xC R t
0
�.s;Xs�

/dZs; t2 Œ0;T�.
Under the weak uniqueness assumption, the distribution QY2 of Y2 is unique

equal, say, to PX .

.b/ We assume that the Lévy measure has a finite second moment �.z2/ < C1 on
the whole real line. Then one can decompose Z as

Zt D a Wt CeZt; t2 Œ0;T�; .a � 0/

where a � 0 andeZ is a pure jump martingale Lévy process with Lévy measure
�. Then one shows like in the Brownian case that '.t/ D E

�
sups2Œ0;t� j NXn

s j2
�

is
finite over Œ0;T� using that all NXtk are square integrable and E

�
sups2Œtk;tkC1/

jZs�
Ztk j2

� D E
�

sups2Œ0; T
n �
jZsj2

�
< C1. Then, using Doob’s Inequality, we show

that

'.t/ � 4C2
�.a

2 C �.z2/�
	

tC
Z t

0

'.s/ds



where C� is a real constant satisfying �.t; �/ � C�.1C j�j2/ 12 , �2 R.

To establish the Skorokhod tightness of the sequence, we rely again on Aldous’
tightness criterion (see Definition 3.b/ or[17, Theorem 4.5, p. 356]). Let � , � be two
Œ0;T�-valued F Z-stopping times such that � � � � .� C ı/ ^ T. Applying Doob’s
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Inequality, to the martingale
	 R �Cs

� �.un;
NXun�

/dZu




s�0 yields

Ej NXn
� � NXn

� j2 � 4a2E

�Z �

�

j�.un;
NXn

un�

/j2du

�

C 4E
 
X

�<u��
j�.un;

NXn
un�

/j2j�Zuj2
!

D 4�a2 C �.z2/�E
�Z �

�

j�.un;
NXn

un�

/j2du

�

� 4�a2 C �.z2/�E
 Z .�Cı/^T

�

j�.un;
NXn

un�

/j2du

!

� 4.a2 C �.z2/�ı C2
�.1C '.T//:

It follows that Ej NX� � NX� j2 C EjZ� � Z� j2 � 4C2
�.a

2 C �.z2/��.z2/.1C '.T/�ı
which clearly implies the Sk-tightness of the sequence Mn D . NXn;Z/, n � 1.

The sequence satisfies the U:T: condition from [18] since .Mn/n�1 is Sk-tight and
(see Proposition 3.2 from [18])

E

h
sup

t2Œ0;T�
�j� NXn

t j _ j�Ztj
�i �

	
E

h X

0<t�T

j� NXn
t j2 C j�Ztj2

i
 1
2

�
	
�.z2/E

Z T

0

�
1C j�.tn;

NXn
tn
/j2�dt


 1
2

�
	
�.z2/.T C C�

�
1C '.T//�


 1
2
< C1:

From this point, the proof is similar to that of claim .a/.

Higher Moments

Let Zt D aWt CeZt, t2 Œ0;T�, be the decomposition of the Lévy process Z where W
is a standard B.M. andeZ is a pure jump Lévy process independent of W.

Proposition 12 Let p2 Œ2;C1/. If �.jzjp/ < C1 then

sup
n�1

�
�
� sup

t2Œ0;T�
j NXn

t j
�
�
�

p
< C1:

Proof If p 2 .1; 2�, the claim follows from the above Proposition 11. Assume
from now on p 2 Œ2;C1/. Let 'p;n.t/ D E

�
supt2Œ0;T� j NXn

t jp
�
. Let `p be the unique

integer defined by the inequality 2`p < p � 2`pC1. It is straightforward, using the
same arguments as above, that 'p;n.T/ < C1 since supt2Œ0;T� jZtjp 2 L1 (see [32,
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Theorem 25.18, p. 166]) and Xtk 2 Lp by induction using (34). For convenience, we
set �s�

D �.sn;
NXn

sn�/.
Now, combining the integral and the regular Minkowski Inequalities with the

B.D.G. Inequality implies

'p;n.t/
1
p � jxj C cp

�
�
�a2

Z t

0

�2s�

dsC
X

0<s�t

�2s�

.�Zs/
2
�
�
�
1
2

p
2

� jxj C cp

	
a
�
�
�

Z t

0

�2s�

ds
�
�
�
1
2

p
2

C
�
�
�
X

0<s�t

�2s�

.�Zs/
2
�
�
�
1
2

p
2



(36)

where we used in the second inequality that
p

uC v � puCpv, u; v � 0. First
note that by two successive applications of Hölder Inequality to dt and dP, we obtain

�
�
�

Z t

0

�2s�

ds
�
�
�
1
2

p
2

� T
1
2� 1

p

	 Z t

0

E j�s�
jpds


 1
p
: (37)

Using that for every `2 f1; : : : ; `pg,
	 X

0<s�t

j�s�
j2` j�Zsj2` �

Z t

0

j�s�
j2`ds �.jzj2`/




t2Œ0;T�, is a true martingale, we have by

combining this time the Minkowski inequality, the B.D.G. Inequality applied with
p
2`
> 1 and the elementary inequality .uC v/r � ur C vr, u, v � 0, r2 .0; 1� that:

�
�
�
X

0<s�t

j�s�
j2`.�Zs/

2`
�
�
�

1

2`

p

2`

�
�
�
�
X

0<s�t

j�s�
j2`.�Zs/

2` �
Z t

0

j�s�
j2`ds �.jzj2`/

�
�
�

1

2`

p

2`

C
�
�
�

Z t

0

j�s�
j2`ds

�
�
�

1

2`

p

2`

�.jzj2`/ 12`

� c
1

2`
p

2`

�
�
�
X

0<s�t

j�s�
j2`C1

.�Zs/
2`C1

�
�
�

1

2`C1

p

2`C1

C
�
�
�

Z t

0

j�s�
j2`ds

�
�
�

1

2`

p

2`

�.jzj2`/ 12` :

Then two applications of Hölder Inequality applied to dt and dP successively
imply

�
�
�

Z t

0

j�s�
j2`ds

�
�
�

1

2`

p

2`

� T
1

2`
� 1

p

	 Z t

0

E j�s�
jpds


 1
p
:
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Summing up these inequalities in cascade finally yields a positive real constant
K.0/

p;�;a;T such that

�
�
�
X

0<s�t

j�s�
j2.�Zs/

2
�
�
�
1
2

p
2

� K.0/
p;�;a;T

		 Z t

0

E j�s�
jpds


 1
p

C
�
�
�
X

0<s�t

j�s�
j2`pC1

.�Zs/
2`pC1

�
�
�

1

2
`pC1

p

2
`pC1



:

Now, as p

2`pC1 � 1, one gets by the compensation formula

�
�
�
X

0<s�t

j�s�
j2`pC1 j�Zsj2`pC1

�
�
�

1

2
`pC1

p

2
`pC1

�
	
E

X

0<s�t

j�s�
jp.�Zs/

p

 1

p

D
	 Z t

0

Ej�s�
jpds


 1
p
�.jzjp/ 1p :

Hence, there exists a real constant K.1/
p;�;a;T > 0

�
�
�
X

0<s�t

j�s�
j2.�Zs/

2
�
�
�
1
2

p
2

� K.1/
p;�;a;T

	 Z t

0

Ej�s�
jpds


 1
p
: (38)

Finally, plugging (37) and (38) in (36), there exist positive real constants K.`/
p;�;a;T ,

` D 2; 3, such that

'p;n.t/
1
p � K.2/

p;�;a;T

	
jxjC

	 Z t

0

Ej�s�
jpds


 1
p


� K.3/

p;�;a;T

	
jxjC1C

	 Z t

0

'p;n.s/ds

 1

p



where we used in the second inequality that � has linear growth. Hence

'p;n.t/ � 2p�1.K0.3/
p;�;a;T/

p
	�jxj C 1�p C

Z t

0

'p;n.s/ds


:

Gronwall’s lemma completes the proof since it implies that

'p;n.t/ � e2
p�1.K

0.3/
p;�;a;T /

p t2p�1.K0.3/
p;�;a;T/

p.jxj C 1/p:
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Stability Problem for One-Dimensional
Stochastic Differential Equations with
Discontinuous Drift

Dai Taguchi

Abstract We consider one-dimensional stochastic differential equations (SDEs)
with irregular coefficients. The goal of this paper is to estimate the Lp.˝/-difference
between two SDEs using a norm associated to the difference of coefficients. In our
setting, the (possibly) discontinuous drift coefficient satisfies a one-sided Lipschitz
condition and the diffusion coefficient is bounded, uniformly elliptic and Hölder
continuous. As an application of this result, we consider the stability problem for
this class of SDEs.

2010 Mathematics Subject Classification: 58K25, 41A25, 65C30

1 Introduction

Let X D .Xt/0�t�T be a solution of the one-dimensional stochastic differential
equation (SDE)

Xt D x0 C
Z t

0

b.Xs/dsC
Z t

0

�.Xs/dWs; x0 2 R; t 2 Œ0;T�; (1)

where W WD .Wt/0�t�T is a standard one-dimensional Brownian motion on a prob-
ability space .˝;F ;P/ with a filtration .Ft/0�t�T satisfying the usual conditions.
The drift coefficient b and the diffusion coefficient � are Borel-measurable functions
from R into R. The diffusion process X is used in many fields of application, for
example, mathematical finance, optimal control and filtering.

Let X.n/ be a solution of the SDE (1) with drift coefficient bn and diffusion
coefficient �n. We consider the stability problem for .X;X.n// when the pair of
coefficients .bn; �n/ converges to .b; �/. Stroock and Varadhan introduced the
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stability problem in the weak sense in order to consider the martingale problem
with continuous and locally bounded coefficients (see Chap. 11 of [17]). In [11],
Kawabata and Yamada consider the strong convergence of the stability problem
under the condition that the drift coefficients b and bn are Lipschitz continuous
functions, the diffusion coefficients � and �n are Hölder continuous and .bn; �n/

locally uniformly converges to .b; �/ (see [11, Example 1]). Kaneko and Nakao
[10] prove that if the coefficients bn and �n are uniformly bounded, �n is uniformly
elliptic and .bn; �n/ tends to .b; �/ in L1-sense, then .X.n//n2N converges to X in L2-
sense. Moreover they also prove that the solution of the SDE (1) can be constructed
as the limit of the Euler-Maruyama approximation under the condition that the
coefficients b and � are continuous and of linear growth (see [10, Theorem D]).
Recently, under the Nakao-Le Gall condition, Hashimoto and Tsuchiya [8] prove
that .X.n//n2N converges to X in Lp sense for any p � 1 and give the rate
of convergence under the condition that bn ! b and �n ! � in L1 and L2

sense, respectively. Their proof is based on the Yamada-Watanabe approximation
technique which was introduced in [19] and some estimates for the local time.

On a related study, the convergence for the Euler-Maruyama approximation with
non-Lipschitz coefficients has been studied recently. Yan [18] has proven that if the
sets of discontinuous points of b and � are countable, then the Euler-Maruyama
approximation converges weakly to the unique weak solution of the corresponding
SDE. Kohatsu-Higa et al. [12] have studied the weak approximation error for the
one-dimensional SDE with the drift 1.�1;0�.x/� 1.0;C1/.x/ and constant diffusion.
Gyöngy and Rásonyi [7] give the order of the strong rate of convergence for a class
of one-dimensional SDEs whose drift is the sum of a Lipschitz continuous function
and a monotone decreasing Hölder continuous function and its diffusion coefficient
is a Hölder continuous function. The Yamada-Watanabe approximation technique
is a key idea to obtain their results. In [15], Ngo and Taguchi extend the results in
[7] for SDEs with discontinuous drift. They prove that if the drift coefficient b is
bounded and one-sided Lipschitz function, and the diffusion coefficient is bounded,
uniformly elliptic and 	-Hölder continuous, then there exists a positive constant C
such that

sup
0�t�T

EŒjXt � X
.n/
t j� �

8
<̂

:̂

C

n	�1=2
; if 	 2 .1=2; 1�;

C

log n
; if 	 D 1=2;

where X
.n/

is the Euler-Maruyama approximation for SDE (1). This fact implies
that the strong rate of convergence for the stability problem may also depend on the
Hölder exponent of the diffusion coefficient.

The goal of this paper is to estimate the difference between two SDEs using the
norm of the difference of coefficients. More precisely, let us consider another SDE
given by

OXt D x0 C
Z t

0

Ob. OXs/dsC
Z t

0

O�. OXs/dWs: (2)
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We will prove the following inequality:

sup
0�t�T

EŒjXt � OXtj� �
8
<

:

C.jjb � Objj1 _ jj� � O� jj22/.2	�1/=.2	/; if 	 2 .1=2; 1�;
C

log.1=.jjb� Objj1 _ jj� � O� jj22//
; if 	 D 1=2;

(3)

where 	 is the Hölder exponent of the diffusion coefficients, C is a positive constant
and jj 
 jjp is a Lp-norm which will be defined by (4). We will also estimate
EŒsup0�t�T jXt � OXtjp� for any p � 1. It is worth noting that in the papers [10]
and [11], the authors only prove the strong convergence for the stability problem.
On the other hand, applying our main results, we are able to establish the strong rate
of convergence for the stability problem (see Sect. 4). In order to obtain (3), we use
the Yamada-Watanabe approximation technique and a Gaussian upper bound for the
density of SDE (2) (see [2, 16] and [14]).

Finally, we note that SDEs with discontinuous drift coefficient have many
applications in mathematical finance [1] and [9], optimal control problems [4] and
other domains (see also [5] and [13]).

This paper is organized as follows: Sect. 2 introduces our framework and main
results. All the proofs are shown in Sect. 3. In Sect. 4, we apply the main results to
the stability problem.

2 Main Results

2.1 Notations and Assumptions

We will assume that the drift coefficient b belongs to the class of one-sided Lipschitz
functions which is defined as follows.

Definition 1 A function f W R! R is called a one-sided Lipschitz function if there
exists a positive constant L such that for any x; y 2 R,

.x � y/. f .x/ � f .y// � Ljx � yj2:

Let L be the class of all one-sided Lipschitz functions.

Remark 1 By the definition of the class L , if f ; g 2 L and ˛ � 0, then f C g,
˛f 2 L . The one-sided Lipschitz property is closely related to the monotonicity
condition. Actually, any monotone decreasing function is one-sided Lipschitz.
Moreover, any Lipschitz continuous function is also a one-sided Lipschitz.

Now we give assumptions for the coefficients b; Ob; � and O� .
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Assumption 1 We assume that the coefficients b; Ob; � and O� satisfy the following
conditions:

A-(i): b 2 L .
A-(ii): b and Ob are measurable and there exists K > 0 such that

sup
x2R

	
jb.x/j _ jOb.x/j



� K:

A-(iii): � and O� are 	 WD .1=2C ˛/-Hölder continuous with some ˛ 2 Œ0; 1=2�,
i.e., there exists K > 0 such that

sup
x;y2R;x¤y

� j�.x/ � �.y/j
jx � yj	 _ j O�.x/ � O�.y/jjx � yj	

�

� K:

A-(iv): a D �2 and Oa D O�2 are bounded and uniformly elliptic, i.e., there exists

 � 1 such that for any x 2 R,


�1 � a.x/ � 
 and 
�1 � Oa.x/ � 
:

Remark 2 Assume that A-(ii), A-(iii) and A-(iv) hold. Then the SDE (1) and the
SDE (2) have unique strong solution (see [20]). Note that the one-sided Lipschitz
property is used only in (11) for b, so we don’t need to assume Ob 2 L .

2.2 Gaussian Upper Bound for the Density of SDE

A Gaussian upper bounded for the density of Xt is well-known under suitable
conditions for the coefficients. If coefficients b and � are Hölder continuous and
� is bounded and uniformly elliptic, then a Gaussian type estimate holds for
the fundamental solution of parabolic type partial differential equations (see [6,
Theorem 11, Chap. 1]). Under A-(ii), (iii) and (iv), the density function pt.x0; 
/ of
Xt exists for any t 2 .0;T� and there exist positive constants C and c� such that for
any y 2 R and t 2 .0;T�,

pt.x0; y/ � Cpc�
.t; x0; y/;

where pc.t; x; y/ WD e�
.y�x/2

2ctp
2�ct

(see [14, Remark 4.1]).
Using a Gaussian upper bound for the density of Xt, we can prove the following

estimate.
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Lemma 1 Let p � 1. Assume that A-(ii), A-(iii) and A-(iv) hold. Then we have

Z T

0

EŒjb. OXs/ � Ob. OXs/jp�ds � CT jjb � Objjpp

and

Z T

0

EŒj�. OXs/ � O�. OXs/j2p�ds � CT jj� � O� jj2p
2p;

where CT WD C
q

2T
�c�

and for any bounded measurable function f , jj 
 jjp is defined

by

jj f jjp WD
�Z

R

j f .x/jpe� jx�x0 j
2

2c�T dx

�1=p

: (4)

Proof We only prove the first estimate. The second one can be obtained by using a
similar argument. From a Gaussian upper bound for the density of OXt, for any x 2 R

and s 2 .0;T�, we have

Ops.x0; x/ � Cpc�
.s; x0; x/ � Cp

2�c�s
e� jx�x0 j

2

2c�T ;

where Ops.x0; 
/ is a density function of OXs. Hence we obtain

Z T

0

EŒjb. OXs/ � Ob. OXs/jp�ds D
Z T

0

ds
Z

R

dxjb.x/� Ob.x/jp Ops.x0; x/

�
Z T

0

ds
Cp
2�c�s

Z

R

dxjb.x/� Ob.x/jpe� jx�x0 j
2

2c�T (5)

D CT jjb � Objjpp:

This concludes the proof.

Remark 3 Our proof of Lemma 1 is based on the fact that we are in the one-
dimensional setting. In multi-dimensional case, the integrand of (5) is not integrable
with respect to s in general. This is the main reason for restricting our discussion to
the one-dimensional SDE case.
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2.3 Rate of Convergence

For any p � 1, we define

"p WD jjb � Objjpp _ jj� � O� jj2p
2p:

Then we have the following estimate for the difference between two SDEs.

Theorem 1 Suppose that Assumption 1 holds. We assume that "1 < 1 if ˛ 2
.0; 1=2� and 1= log.1="1/ < 1 if ˛ D 0. Then there exists a positive constant C
which depends on C; c�;K;L;T; ˛; 
 and x0 such that

sup
�2T

EŒjX� � OX� j� �
8
<

:

C"2˛=.2˛C1/
1 if ˛ 2 .0; 1=2�;

C

log.1="1/
if ˛ D 0;

where T is the set of all stopping times � � T.

Theorem 2 Suppose that Assumption 1 holds. We assume that "1 < 1 if ˛ 2
.0; 1=2� and 1= log.1="1/ < 1 if ˛ D 0. Then there exists a positive constant C
which depends on C; c�;K;L;T; ˛; 
 and x0 such that

EŒ sup
0�t�T

jXt � OXtj� �

8
<̂

:̂

C"4˛
2=.2˛C1/

1 if ˛ 2 .0; 1=2�;
C

p
log.1="1/

if ˛ D 0:

Theorem 3 Suppose that Assumption 1 holds and p � 2. We assume that "p < 1 if
˛ 2 .0; 1=2� and 1= log.1="p/ < 1 if ˛ D 0. Then there exists a positive constant C
which depends on C; c�;K;L;T; p; ˛; 
 and x0 such that

EŒ sup
0�t�T

jXt � OXtjp� �

8
ˆ̂
<

ˆ̂
:

C"1=2p if ˛ D 1=2;
C"2˛=.2˛C1/

1 if ˛ 2 .0; 1=2/;
C

log.1="1/
if ˛ D 0:

Using Jensen’s inequality, we can extend Theorem 3 as follows.

Corollary 1 Suppose that Assumption 1 holds and p 2 .1; 2/. We assume that "2p <

1 if ˛ 2 .0; 1=2� and 1= log.1="2p/ < 1 if ˛ D 0. Then there exists a positive
constant C which depends on C; c�;K;L;T; p; ˛; 
 and x0 such that

EŒ sup
0�t�T

jXt � OXtjp� �

8
ˆ̂
<̂

ˆ̂
:̂

C"1=22p if ˛ D 1=2;
C"˛=.2˛C1/

1 if ˛ 2 .0; 1=2/;
C

p
log.1="1/

if ˛ D 0:
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Next, we will find a bound for EŒjg.XT/ � g. OXT/jr� where g is a function of
bounded variation and r � 1.

Definition 2 For a function f W R! R, we define

Tf .x/ WD sup
NX

jD1
j f .xj/ � f .xj�1/j:

Here the supremum is taken over all positive integers N and all partitions �1 <

x0 < x1 < 
 
 
 < xN D x <1: We call f a function of bounded variation, if

V. f / WD lim
x!1 Tf .x/ <1:

Denote by BV the class of all functions of bounded variation.

Corollary 2 Suppose that Assumption 1 holds. Furthermore assume that "1 < 1 if
˛ 2 .0; 1=2� and 1= log.1="1/ < 1 if ˛ D 0. Then there exists a positive constant C
which depends on C; c�;K;L;T; ˛; 
 and x0 such that for any g 2 BV and r � 1,

EŒjg.XT/� g. OXT/jr� �

8
<̂

:̂

3rC1V.g/rC"˛=.2˛C1/
1 if ˛ 2 .0; 1=2�;

3rC1V.g/rC
p

log.1="1/
if ˛ D 0:

Remark 4 In the proof of all results, we calculate the constant C explicitly. In
Theorems 1–3 and Corollary 1, the constant C does not blow up when T ! 0.
On the other hand, in Corollary 2, the constant C may tend to infinity as T ! 0

because we use a Gaussian upper bound for the density of XT in (17).

3 Proofs

3.1 Yamada-Watanabe Approximation Technique

In this section, we introduce the approximation method of Yamada and Watanabe
(see [19] and [7]) which is the key technique for our proof. We define an
approximation for the function �.x/ D jxj. For each ı 2 .1;1/ and � 2 .0; 1/,
there exists a continuous function  ı;� W R ! R

C with supp  ı;� � Œ�=ı; �� such
that

Z �

�=ı

 ı;� .z/dz D 1 and 0 �  ı;�.z/ � 2

z log ı
; z > 0:
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For example, we can take

 ı;� .z/ WD �ı;� exp

�

� 1

.� � z/.z � �=ı/
�

1.�=ı;�/.z/;

where ��1
ı;� WD

R �
�=ı exp.� 1

.��z/.z��=ı/ /dz. We define a function �ı;� 2 C2.RIR/ by

�ı;�.x/ WD
Z jxj

0

Z y

0

 ı;�.z/dzdy:

It is easy to verify that �ı;� has the following useful properties:

�0
ı;� .x/

x
> 0; for any x 2 R n f0g: (6)

0 � j�0
ı;�.x/j � 1; for any x 2 R: (7)

jxj � � C �ı;�.x/; for any x 2 R: (8)

�00
ı;� .˙jxj/ D  ı;�.jxj/ �

2

jxj log ı
1Œ�=ı;��.jxj/; for any x 2 R n f0g: (9)

The property (8) implies that the function �ı;� approximates �.

3.2 Proof of Theorem 1

To simplify the discussion, we set

Yt WD Xt � OXt; t 2 Œ0;T�:

Proof (Proof of Theorem 1) Let ı 2 .1;1/ and � 2 .0; 1/. From Itô’s formula, (7)
and (8), we have

jYtj � � C �ı;�.Yt/

D � C
Z t

0

�0
ı;�.Ys/.b.Xs/ � Ob. OXs//ds

C 1

2

Z t

0

�00
ı;�.Ys/j�.Xs/� O�. OXs/j2dsCMı;�

t

D � C
Z t

0

�0
ı;�.Ys/.b.Xs/ � b. OXs//dsC

Z t

0

�0
ı;� .Ys/.b. OXs/� Ob. OXs//ds

C 1

2

Z t

0

�00
ı;�.Ys/j�.Xs/� O�. OXs/j2dsCMı;�

t
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� � C
Z t

0

�0
ı;� .Ys/.b.Xs/ � b. OXs//dsC

Z T

0

jb. OXs/� Ob. OXs/jds

C 1

2

Z t

0

�00
ı;�.Ys/j�.Xs/� O�. OXs/j2dsCMı;�

t ; (10)

where

Mı;�
t WD

Z t

0

�0
ı;�.Ys/.�.Xs/ � O�. OXs//dWs:

Note that since � , O� and �0
ı;� are bounded, .Mı;�

t /0�t�T is a martingale so

EŒMı;�
t � D 0. Since b 2 L , for any x; y 2 R with x ¤ y, we have, from (6)

and (7),

�0
ı;� .x � y/.b.x/� b.y// D �0

ı;� .x � y/

x � y
.x � y/.b.x/� b.y//

� L
�0
ı;� .x � y/

x � y
jx � yj2 (11)

� Ljx � yj:

Therefore we get

Z t

0

�0
ı;� .Ys/.b.Xs/� b. OXs//ds � L

Z t

0

jYsjds: (12)

Using Lemma 1 with p D 1, we have

Z T

0

EŒjb. OXs/ � Ob. OXs/j�ds � CT jjb � Objj1: (13)

From (9) and .xC y/2 � 2x2 C 2y2 for any x; y � 0, we have

1

2

Z t

0

�00
ı;� .Ys/j�.Xs/ � O�. OXs/j2ds �

Z t

0

1Œ�=ı;��.jYsj/
jYsj log ı

j�.Xs/ � O�. OXs/j2ds

� 2
Z t

0

1Œ�=ı;��.jYsj/
jYsj log ı

j�.Xs/ � �. OXs/j2dsC 2
Z t

0

1Œ�=ı;��.jYsj/
jYsj log ı

j�. OXs/� O�. OXs/j2ds

� 2
Z t

0

1Œ�=ı;��.jYsj/
jYsj log ı

j�.Xs/ � �. OXs/j2dsC 2ı

� log ı

Z T

0

j�. OXs/� O�. OXs/j2ds:

(14)
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Again using Lemma 1 with p D 1, we have

2ı

� log ı

Z T

0

EŒj�. OXs/� O�. OXs/j2�ds � 2CTı

� log ı
jj� � O� jj22: (15)

Since � is .1=2C ˛/-Hölder continuous, we have

2

Z T

0

1Œ�=ı;��.jYsj/
jYsj log ı

j�.Xs/ � �. OXs/j2ds � 2K2

Z T

0

1Œ�=ı;��.jYsj/
jYsj log ı

jYsj1C2˛ds

� 2TK2�2˛

log ı
: (16)

Let � be a stopping time with � � T and Zt WD jYt^� j. From (10), (12), (13), (15)
and (16), we obtain

EŒZt� � � C L
Z t

0

EŒZs�dsC CT jjb� Objj1 C 2CTı

� log ı
jj� � O� jj22 C

2TK2�2˛

log ı

� � C L
Z t

0

EŒZs�dsC CT"1 C 2CTı

� log ı
"1 C 2TK2�2˛

log ı
:

If ˛ 2 .0; 1=2�, then since "1 < 1, by choosing ı D 2 and � D "1=.2˛C1/
1 , we have

EŒZt� � L
Z t

0

EŒZs�dsC "1=.2˛C1/
1 C CT"1 C 4CT"

1�1=.2˛C1/
1

log 2
C 2TK2"

2˛=.2˛C1/
1

log 2

� L
Z t

0

EŒZs�dsC C1.˛;T/"
2˛=.2˛C1/
1 ;

where

C1.˛;T/ WD 1C CT C 4CT

log 2
C 2TK2

log 2
:

By Gronwall’s inequality, we get

EŒZt� � C1.˛;T/e
LT"

2˛=.2˛C1/
1 :

Therefore by the dominated convergence theorem, we conclude the statement by
taking t! T.
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If ˛ D 0, then since 1= log.1="1/ < 1, by choosing ı D "
�1=2
1 and � D

1= log.1="1/, we have

EŒZt� � L
Z t

0

EŒZs�dsC 1

log.1="1/
C CT"1 C 4CT"

1=2
1 C

4TK2

log.1="1/

� L
Z t

0

EŒZs�dsC C1.0;T/

log.1="1/
;

where

C1.0;T/ WD 1C 5CT C 4TK2:

By Gronwall’s inequality, we obtain

EŒZt� � C1.0;T/eLT

log.1="1/
:

Therefore by the dominated convergence theorem, we conclude the statement by
taking t! T.

3.3 Proof of Corollary 2

To prove Corollary 2, we recall the upper bound for EŒjg.X/ � g. OX/jr� where g is a
function of bounded variation, r � 1, X and OX are random variables.

Lemma 2 ([3], Theorem 4.3) Let X and OX be random variables. Assume that X
has a bounded density pX. If g 2 BV and r � 1, then for every q � 1, we have

EŒjg.X/� g. OX/jr� � 3rC1V.g/r
�

sup
x2R

pX.x/

� q
qC1

EŒjX � OXjq�1=.qC1/:

Using the above Lemma, we can prove Corollary 2.

Proof (Proof of Corollary 2) From the Gaussian upper bound for the density
pT.x0; 
/ of XT , we have for any y 2 R,

pT.x0; y/ � Cpc�
.T; x0; y/ � Cp

2�c�T
: (17)
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This means that the density pT.x0; 
/ of XT is bounded. Hence from Lemma 2 with
q D 1 and Theorem 1 with � D T, for any g 2 BV and r � 1, we have

EŒjg.XT/� g. OXT/jr� � 3rC1V.g/rC1=2

.2�c�T/1=4
EŒjXT � OXT j�1=2

�

8
<̂

:̂

3rC1V.g/rC2.˛;T/"˛=.2˛C1/
1 if ˛ 2 .0; 1=2�;

3rC1V.g/rC2.0;T/
p

log.1="1/
if ˛ D 0;

where

C2.˛;T/ WD C
1=2

C1.˛;T/1=2eLT=2

.2�c�T/1=4
; for ˛ 2 Œ0; 1=2�:

This concludes the proof of statement.

3.4 Proof of Theorem 2

Let Vt WD sup0�s�t jYsj. Recall that for each ı 2 .1;1/ and � 2 .0; 1/,

Mı;�
t D

Z t

0

�0
ı;� .Ys/.�.Xs/� O�. OXs//dWs:

Hence the quadratic variation of Mı;�
t is given by

hMı;�it D
Z t

0

j�0
ı;�.Ys/j2j�.Xs/� O�. OXs/j2ds:

Before proving Theorem 2, we estimate the expectation of sup0�s�t jMı;�
s j for

any t 2 Œ0;T�, ı 2 .1;1/ and � 2 .0; 1/.
Lemma 3 Suppose that the assumption of Theorem 2 hold. Then for any t 2 Œ0;T�,
ı 2 .1;1/ and � 2 .0; 1/, we have

EŒ sup
0�s�t

jMı;�
s j� �

8
<̂

:̂

1

2
EŒVt�C C3.˛;T/"

4˛2=.2˛C1/
1 if ˛ 2 .0; 1=2�;

C3.0;T/p
log.1="1/

if ˛ D 0;
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where

C3.˛;T/ WD
( OC2

1K
2TC1.˛;T/

2˛e2˛LT Cp2 OC1C1=2
T ; if ˛ 2 .0; 1=2�;p

2 OC1KT1=2C1.0;T/
1=2eLT=2 Cp2 OC1C1=2

T ; if ˛ D 0;

and OCp is the constant of Burkholder-Davis-Gundy’s inequality with p > 0.

Proof From Burkholder-Davis-Gundy’s inequality, we have

EŒ sup
0�s�t

jMı;�
s j� � OC1EŒhMı;�i1=2t � � OC1E

"�Z t

0

j�.Xs/ � O�. OXs/j2ds

�1=2#

� p2 OC1E
"�Z t

0

j�.Xs/ � �. OXs/j2ds

�1=2#

Cp2 OC1E
"�Z T

0

j�. OXs/� O�. OXs/j2ds

�1=2#

:

From Jensen’s inequality and Lemma 1, we have

E

"�Z T

0

j�. OXs/ � O�. OXs/j2ds

�1=2#

�
�Z T

0

E

h
j�. OXs/ � O�. OXs/j2

i
ds

�1=2

� C1=2
T jj� � O� jj2:

Since � is .1=2C ˛/-Hölder continuous, we obtain

EŒ sup
0�s�t

jMı;�
s j� �

p
2 OC1KE

"�Z t

0

jYsj1C2˛ds

�1=2#

Cp2 OC1C1=2
T jj� � O� jj2:

(18)

If ˛ 2 .0; 1=2�, then we get

p
2 OC1KE

"�Z t

0

jYsj1C2˛ds

�1=2#

� p2 OC1KE

"

V1=2
t

�Z t

0

jYsj2˛ds

�1=2#

:
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Using Young’s inequality xy � x2

2
p
2 OC1K C

p
2 OC1Ky2

2
for any x; y � 0 and Jensen’s

inequality, we obtain

p
2 OC1KE

"�Z t

0

jYsj1C2˛ds

�1=2#

� 1

2
EŒVt�C 2 OC2

1K
2

2

Z T

0

EŒjYsj2˛�ds

� 1

2
EŒVt�C OC2

1K
2T1�2˛

�Z T

0

EŒjYsj�ds

�2˛
:

From Theorem 1 with � D s, we have

p
2 OC1KE

"�Z t

0

jYsj1C2˛ds

�1=2#

� 1

2
EŒVt�C OC2

1K
2TC1.˛;T/

2˛e2˛LT"
4˛2=.2˛C1/
1 :

(19)

Since 4˛2=.2˛C 1/ � ˛ � 1=2, from (18) and (19), we get

EŒ sup
0�s�t

jMı;�
s j� �

1

2
EŒVt�C C3.˛;T/"

4˛2=.2˛C1/
1

which concludes the statement for ˛ 2 .0; 1=2�.
If ˛ D 0, then from Jensen’s inequality and Theorem 1 with � D s, we get

p
2 OC1KE

"�Z t

0

jYsjds

�1=2#

� p2 OC1K
�Z T

0

EŒjYsj�ds

�1=2

�
p
2 OC1KT1=2C1.0;T/1=2eLT=2

p
log.1="1/

:

Therefore we have

EŒ sup
0�s�T

jMı;�
s j� �

p
2 OC1KT1=2C1.0;T/1=2eLT=2

p
log.1="1/

Cp2 OC1C1=2
T jj� � O� jj2

� C3.0;T/p
log.1="1/

:

This concludes the statement for ˛ D 0.

Using the above estimate, we can prove Theorem 2.
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Proof (Proof of Theorem 2) From (10), (12), (14) and (16), we have

Vt � � C L
Z t

0

VsdsC
Z T

0

jb. OXs/� Ob. OXs/jds

C 2ı

� log ı

Z T

0

j�. OXs/� O�. OXs/j2dsC 2TK2�2˛

log ı
C sup

0�s�t
jMı;�

s j: (20)

If ˛ 2 .0; 1=2�, then from (20), Lemmas 1 and 3, we have

EŒVt� � � C L
Z t

0

EŒVs�dsC CT jjb� Objj1 C 2CTı

� log ı
jj� � O� jj22 C

2TK2�2˛

log ı

C 1

2
EŒVt�C C3.˛;T/"

4˛2=.2˛C1/
1

� � C L
Z t

0

EŒVs�dsC CT"1 C 2CTı

� log ı
"1 C 2TK2�2˛

log ı

C 1

2
EŒVt�C C3.˛;T/"

4˛2=.2˛C1/
1 :

Hence we get

EŒVt� � 2� C 2L
Z t

0

EŒVs�dsC 2CT"1 C 4CTı

� log ı
"1

C 4TK2�2˛

log ı
C 2C3.˛;T/"

4˛2=.2˛C1/
1 :

Note that 0 < 4˛2=.2˛C 1/ � ˛ � 1=2. Taking ı D 2 and � D "1=21 , we have

EŒVt� � 2L
Z t

0

EŒVs�dsC 2
�

1C CT C 4CT

log 2

�

"
1=2
1

C 4TK2

log 2
"˛1 C 2C3.˛;T/"

4˛2=.2˛C1/
1

� 2L
Z t

0

EŒVs�dsC C4.˛;T/"
4˛2=.2˛C1/
1 ;

where

C4.˛;T/ WD 2
�

1C CT C 4CT C 2TK2

log 2
C C3.˛;T/

�

:
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By Gronwall’s inequality, we obtain

EŒVt� � C4.˛;T/e
2LT"

4˛2=.2˛C1/
1 :

If ˛ D 0, then from (20), Lemmas 1 and 3, we have

EŒVt� � � C L
Z t

0

EŒVs�dsC CT"1 C 2CTı

� log ı
"1 C 2TK2

log ı
C C3.0;T/p

log.1="1/
:

Taking ı D "�1=2
1 and � D 1= log.1="1/, we get

EŒVt� � L
Z t

0

EŒVs�dsC C4.0;T/p
log.1="1/

;

where

C4.0;T/ WD 1C 5CT C 4TK2 C C3.0;T/:

By Gronwall’s inequality, we obtain

EŒVt� � C4.0;T/eLT

p
log.1="1/

:

Hence we conclude the proof of Theorem 2.

3.5 Proof of Theorem 3

In this section, we also estimate the expectation of sup0�s�t jMı;�
s jp for any p � 2,

t 2 Œ0;T�, ı 2 .1;1/ and � 2 .0; 1/.
Lemma 4 Let p � 2. Assume that A-(ii), A-(iii) and A-(iv) hold. Then for any
t 2 Œ0;T�, ı 2 .1;1/ and � 2 .0; 1/, we have

EŒ sup
0�s�t

jMı;�
s jp� � C5.p;T/E

"�Z t

0

jYsj1C2˛ds

�p=2
#

C C6.p;T/jj� � O� jjp2p;

where C5.p;T/ WD 2p=2CpKp and C6.p;T/ WD 2p=2T
p�1
2 CpC1=2

T . In particular, if
˛ D 1=2, we have

EŒ sup
0�s�t

jMı;�
s jp� �

1

2 
 5p�1EŒV
p
t �C 5p�1C5.p;T/2Tp�1

2

Z t

0

EŒVp
s �ds

C C6.p;T/jj� � O� jjp2p:
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Proof (Proof of Lemma 4) From Burkholder-Davis-Gundy’s inequality, we have

EŒ sup
0�s�t

jMı;�
s jp� � CpEŒhMı;� ip=2t � � CpE

"�Z t

0
j�.Xs/ � O�. OXs/j2ds

�p=2
#

� 2p=2Cp

0

@E

"�Z t

0
j�.Xs/ � �. OXs/j2ds

�p=2
#

C E

2

4

 Z T

0
j�. OXs/� O�. OXs/j2ds

!p=2
3

5

1

A :

From Jensen’s inequality and Lemma 1, we have

E

"�Z T

0

j�. OXs/ � O�. OXs/j2ds

�p=2
#

� T
p�1
2

�Z T

0

EŒj�. OXs/� O�. OXs/j2p�ds

�1=2

� T
p�1
2 C1=2

T jj� � O� jjp2p:

Since � is .1=2C ˛/-Hölder continuous, we get

EŒ sup
0�s�t

jMı;�
s jp� � C5.p;T/E

"�Z t

0

jYsj1C2˛ds

�p=2
#

C C6.p;T/jj� � O� jjp2p:

This concludes the first statement.
In particular, if ˛ D 1=2, then we get from definition of Vt,

C5.p;T/E

"�Z t

0

jYsj2ds

�p=2
#

� C5.p;T/E

"

.Vt/
p=2
�Z t

0

jYsjds

�p=2
#

:

Using Young’s inequality xy � x2

2�5p�1C5.p;T/
C 5p�1C5.p;T/y2

2
for any x; y � 0 and

Jensen’s inequality, we obtain

C5.p;T/E

"�Z t

0

jYsj2ds

�p=2
#

� 1

2 
 5p�1EŒV
p
t �C 5p�1C5.p;T/2

2
E

��Z t

0

jYsjds

�p�

� 1

2 
 5p�1EŒV
p
t �C 5p�1C5.p;T/2Tp�1

2

Z t

0

EŒVp
s �ds;

which concludes the second statement.

To prove Theorem 3, we recall the following Gronwall type inequality.

Lemma 5 ([7] Lemma 3.2.-(ii)) Let .At/0�t�T be a nonnegative continuous
stochastic process and set Bt WD sup0�s�t As. Assume that for some r > 0, q � 1,
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� 2 Œ1; q� and C1; � � 0,

EŒBr
t � � C1E

��Z t

0

Bsds

�r�

C C1E

"�Z t

0

A�s ds

�r=q
#

C � <1

for all t 2 Œ0;T�. If r � q or qC 1 � � < r < q hold, then there exists constant C2
depending on r; q; �;T and C1 such that

EŒBr
T � � C2� C C2

Z T

0

EŒAs�ds:

Now using Lemmas 4 and 5, we can prove Theorem 3.

Proof (Proof of Theorem 3) From (20) and the inequality
�Pm

iD1 ai
�p �

mp�1Pm
iD1 ap

i for any p � 2 ai > 0 and m 2 N, and Jensen’s inequality, we
have

Vp
t � 5p�1

 

�p C
�

L
Z t

0

Vsds

�p

C Tp�1
Z T

0

jb. OXs/ � Ob. OXs/jpds

C 2Tp�1ıp

�p.log ı/p

Z T

0

j�. OXs/� O�. OXs/j2pdsC .2TK2/p�2p˛

.log ı/p
C sup

0�s�t
jMı;�

s jp
!

:

From Lemma 1 with p � 2, we have

EŒVp
t � � 5p�1�p C 5p�1Lp

E

��Z t

0

Vsds

�p�

C .5T/p�1CT jjb� Objjpp

C 2.5T/p�1CTı
p

�p.log ı/p
jj� � O� jj2p

2p C
5p�1.2TK2/p�2p˛

.log ı/p
C 5p�1

EŒ sup
0�s�t

jMı;�
s jp�:

If ˛ D 1=2, using Lemma 4, we have

EŒVp
t � � 5p�1�p C .5T/p�1

�

Lp C C5.p;T/2

2

�Z t

0

EŒVp
s �dsC .5T/p�1CT jjb� Objjpp

C 2.5T/p�1CTı
p

�p.log ı/p
jj� � O� jj2p

2p C
5p�1.2TK2/p�p

.log ı/p

C 1

2
EŒVp

T �C 5p�1C6.p;T/jj� � O� jjp2p:
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Hence we get

EŒVp
t � � 2 
 5p�1�p C .5T/p�1 �2Lp C C5.p;T/

2
� Z t

0

EŒVp
s �ds

C 2.5T/p�1CT jjb � Objjpp C
4.5T/p�1CTı

p

�p.log ı/p
jj� � O� jj2p

2p

C 2 
 5p�1.2TK2/p�p

.log ı/p
C 2 
 5p�1C6.p;T/jj� � O� jjp2p

� 2 
 5p�1�p C .5T/p�1 �2Lp C C5.p;T/
2
� Z t

0

EŒVp
s �dsC 2.5T/p�1CT"p

C 4.5T/p�1CTı
p

�p.log ı/p
"p C 2 
 5p�1.2TK2/p�p

.log ı/p
C 2 
 5p�1C6.p;T/"1=2p :

Taking ı D 2 and � D "1=.2p/
p , we have

EŒVp
t � � .5T/p�1 �2Lp C C5.p;T/

2
� Z t

0

EŒVp
s �dsC C7.1=2; p;T/"

1=2
p ;

where

C7.1=2; p;T/ WD 2 
 5p�1 C 2.5T/p�1CT C 4 
 2p.5T/p�1 C 2 
 5p�1.2TK2/p

.log 2/p

C 2 
 5p�1C6.p;T/:

By Gronwall’s inequality, we obtain

EŒVp
t � � C7.1=2; p;T/ exp.5p�1Tp

�
2Lp C C5.p;T/

2
�
/"1=2p :

If ˛ 2 Œ0; 1=2/, using Lemma 4, we have

EŒVp
t � � 5p�1�p C 5p�1Lp

E

��Z t

0

Vsds

�p�

C .5T/p�1CT jjb� Objjpp

C 2.5T/p�1CTı
p

�p.log ı/p
jj� � O� jj2p

2p C
5p�1.2TK2/p�2p˛

.log ı/p

C 5p�1C5.p;T/E
"�Z t

0

jYsj1C2˛ds

�p=2
#

C 5p�1C6.p;T/jj� � O� jjp2p

� 5p�1Lp
E

��Z t

0

Vsds

�p�

C 5p�1C5.p;T/E
"�Z t

0

jYsj1C2˛ds

�p=2
#
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C 5p�1�p C ..5T/p�1CT C 5p�1C6.p;T//"1=2p

C 2.5T/p�1CTı
p

�p.log ı/p
"p C 5p�1.2TK2/p�2p˛

.log ı/p
:

Now we apply Theorem 1 with � D s and Lemma 5 with r D p, q D 2, � D 1C 2˛
and

� D 5p�1�p C ..5T/p�1CT C 5p�1C6.p;T//"1=2p

C 2.5T/p�1CTı
p

�p.log ı/p
"p C 5p�1.2TK2/p�2p˛

.log ı/p
:

Then there exists C7.˛; p;T/ which depends on p; ˛;T;L and C5.p;T/ such that

EŒVp
T � � C7.˛; p;T/

�

�p C "1=2p C
ıp"p

�p.log ı/p
C �2p˛

.log ı/p

�

C C7.˛; p;T/
Z T

0

EŒjYsj�ds

� C7.˛; p;T/

�

�p C "1=2p C
ıp"p

�p.log ı/p
C �2p˛

.log ı/p

�

C
8
<

:

C7.˛; p;T/C1.˛;T/e
LT T"2˛=.2˛C1/

1 if ˛ 2 .0; 1=2/;
C7.0; p;T/C1.0;T/eLTT

log.1="1/
if ˛ D 0:

Taking ı D 2 and � D "1=.2p/
p if ˛ 2 .0; 1=2/ and ı D "�1=.2p/

p and � D 1= log.1="p/

if ˛ D 0, we get

EŒVp
T � �

8
<

:

C8.˛; p;T/"
2˛=.2˛C1/
1 if ˛ 2 .0; 1=2/;

C8.˛; p;T/

log.1="1/
if ˛ D 0;

where

C8.˛; p;T/ WD
8
<

:
C7.˛; p;T/

�

2C 2p C 1
.log 2/p

C C1.˛;T/e
LTT

�

if ˛ 2 .0; 1=2/;
C7.˛; p;T/

�
2C 2.2p/p C C1.˛;T/e

LT T
�

if ˛ D 0;

Hence we conclude the proof of Theorem 3.
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4 Application to the Stability Problem

In this section, we apply our main results to the stability problem. For any n 2 N,
we consider the one-dimensional stochastic differential equation

X.n/t D x0 C
Z t

0

bn.X
.n/
s /dsC

Z t

0

�n.X
.n/
t /dWs:

Assumption 2 We assume that the coefficients b; � and the sequence of coefficients
.bn/n2N and .�n/n2N satisfy the following conditions:

A0-(i): b 2 L .
A0-(ii): b and bn are bounded measurable i.e., there exists K > 0 such that

sup
n2N;x2R

.jbn.x/j _ jb.x/j/ � K:

A0-(iii): � and �n are 	 D 1=2 C ˛-Hölder continuous with ˛ 2 Œ0; 1=2�, i.e.,
there exists K > 0 such that

sup
n2N;x;y2R;x¤y

� j�.x/ � �.y/j
jx � yj	 _ j�n.x/� �n.y/j

jx � yj	
�

� K:

A0-(iv): a D � and an WD �2n are bounded and uniformly elliptic, i.e., there exists

 � 1 such that for any x 2 R and n 2 N,


�1 � a.x/ � 
 and 
�1 � an.x/ � 
:

A0-(p): For given p > 0,

"p;n WD jjb� bnjjpp _ jj� � �njj2p
2p ! 0

as n!1.

For p � 1 and ˛ 2 Œ0; 1=2�, we define N˛;p by

N˛;p WD
�

minfn 2 N W "p;m < 1;8m � ng; if ˛ 2 .0; 1=2�;
minfn 2 N W "p;m < 1=e;8m � ng; if ˛ D 0:

Then using Theorem 1–3 and Corollary 1, 2, we have the following corollaries.

Corollary 3 Suppose that Assumption 2 holds with p D 1. Then there exists
a positive constant C which depends on C; c�;K;L;T; ˛; 
 and x0 such that for
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any n � N˛;1,

sup
�2T

EŒjX� � X.n/� j� �
8
<

:

C"2˛=.2˛C1/
1;n if ˛ 2 .0; 1=2�;

C

log.1="1;n/
if ˛ D 0

and

EŒ sup
0�t�T

jXt � X.n/t j� �

8
<̂

:̂

C"4˛
2=.2˛C1/

1;n if ˛ 2 .0; 1=2�;
C

p
log.1="1;n/

if ˛ D 0

and for any g 2 BV and r � 1, we have

EŒjg.XT/ � g.X.n/T /jr� �

8
<̂

:̂

3rC1V.g/rC"˛=.2˛C1/
1;n if ˛ 2 .0; 1=2�;

3rC1V.g/rC
p

log.1="1;n/
if ˛ D 0:

Corollary 4 Suppose that Assumption 2 holds with p � 2. Then there exists a
positive constant C which depends on C; c�;K;L;T; p; ˛; 
 and x0 such that for
any n � N˛;p,

EŒ sup
0�t�T

jXt � X.n/t jp� �

8
ˆ̂
<

ˆ̂
:

C"1=2p;n if ˛ D 1=2;
C"2˛=.2˛C1/

1;n if ˛ 2 .0; 1=2/;
C

log.1="1;n/
if ˛ D 0:

Corollary 5 Suppose that Assumption 2 holds with 2p for p 2 .1; 2/. Then there
exists a positive constant C which depends on C; c�;K;L;T; p; ˛; 
 and x0 such that
for any n � N˛;2p,

EŒ sup
0�t�T

jXt � X.n/t jp� �

8
ˆ̂
<̂

ˆ̂
:̂

C"1=22p;n if ˛ D 1=2;
C"˛=.2˛C1/

1;n if ˛ 2 .0; 1=2/;
C

p
log.1="1;n/

if ˛ D 0:

The next proposition shows that there exist the sequences .bn/n2N and .�n/n2N
satisfying Assumption 2.

Proposition 1

(i) Assume supx2R jb.x/j � K. If the set of discontinuity points of b is a null set with
respect to the Lebesgue measure, then there exists a differentiable and bounded
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sequence .bn/n2N such that for any p � 1,
Z

R

jb.x/� bn.x/jpe� jx�x0j
2

2c�T dx! 0 (21)

as n ! 1. Moreover, if b is a one-sided Lipschitz function, we can construct
an explicit sequence .bn/n2N which satisfies a one-sided Lipschitz condition.

(ii) If the diffusion coefficient � satisfies A0-(ii) and A0-(iii), then there exists a
differentiable sequence .�n/n2N such that for any n 2 N, �n satisfies A0-(iii),
A0-(iv) and for any p � 1,

Z

R

j�.x/ � �n.x/j2pe� jx�x0 j
2

2c�T dx � K2p
p
2�c�T

n2p	
:

Proof Let �.x/ WD �e�1=.1�jxj2/1.jxj < 1/ with ��1 D R
jxj<1 e�1=.1�jxj2/dx and a

sequence .�n/n2N be defined by �n.x/ WD n�.nx/. We set bn.x/ WD
R
R

b.y/�n.x�y/dy
and �n.x/ WD

R
R
�.y/�n.x� y/dy. Then for any n 2 N and x 2 R, we have jbn.x/j �

K and 
�1 � an.x/ WD �2n .x/ � 
, bn and �n are differentiable.
Proof of (i). From Jensen’s inequality, we have

Z

R

jb.x/� bn.x/jpe� jx�x0 j
2

2c�T dx �
Z

R

dx

�Z

R

dyjb.x/� b.y/j�n.x � y/

�p

e� jx�x0 j
2

2c�T

D
Z

R

dx

�Z

jzj<1
dzjb.x/� b.x � z=n/j�.z/

�p

e� jx�x0 j
2

2c�T

�
Z

jzj<1
dz
Z

R

dxjb.x/� b.x � z=n/jpe� jx�x0 j
2

2c�T �.z/:

Since b is bounded, we have

Z

R

jb.x/� b.x � z=n/jpe� jx�x0j
2

2c�T dx � .2K/p
Z

R

e� jx�x0j
2

2c�T dx D .2K/p
p
2�c�T:

(22)

On the other hand, since the set of discontinuity points of b is a null set with respect
to the Lebesgue measure, b is continuous almost everywhere. From (22), using the
dominated convergence theorem, we have

Z

R

jb.x/ � b.x � z=n/jpe� jx�x0j
2

2c�T dx! 0

as n ! 1. From this fact and the dominated convergence theorem, .bn/n2N
satisfies (21).
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Let b be a one-sided Lipschitz function. Then, we have

.x � y/.bn.x/ � bn.y// D
Z

R

.x � y/.b.x � z/� b.y � z//�n.z/dz

D
Z

R

f.x � z/ � .z � y/g.b.x � z/ � b.y� z//�n.z/dz

� Ljx � yj2;

which implies that .bn/n2N satisfies the one-sided Lipschitz condition.
Proof of (ii). In the same way as in the proof of (i), we have from Hölder

continuity of �

Z

R

j�.x/ � �n.x/j2pe� jx�x0 j
2

2c�T dx �
Z

jzj<1
dz
Z

R

dxj�.x/� �.x � z=n/j2pe� jx�x0j
2

2c�T �.z/

� K2p

n2p	

Z

jzj<1
dz
Z

R

dxe� jx�x0 j
2

2c�T �.z/ D K2p
p
2�c�T

n2p	
:

Finally, we show that �n is 	-Hölder continuous. For any x; y 2 R,

j�n.x/ � �n.y/j �
Z

R

j�.x � z/ � �.y � z/j�n.z/dz � Kjx � yj	;

which implies that �n is 	-Hölder continuous. This concludes that .�n/n2N satis-
fies (ii).
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The Maximum of the Local Time of a Diffusion
Process in a Drifted Brownian Potential

Alexis Devulder

Abstract We consider a one-dimensional diffusion process X in a .��=2/-drifted
Brownian potential for � ¤ 0. We are interested in the maximum of its local time,
and study its almost sure asymptotic behaviour, which is proved to be different from
the behaviour of the maximum local time of the transient random walk in random
environment. We also obtain the convergence in law of the maximum local time of
X under the annealed law after suitable renormalization when � � 1. Moreover, we
characterize all the upper and lower classes for the hitting times of X, in the sense
of Paul Lévy, and provide laws of the iterated logarithm for the diffusion X itself.
To this aim, we use annealed technics.

AMS Classification (2010): 60K37, 60J60, 60J55, 60F15

1 Introduction

In this section, we successively present the model, the maximum local time, and the
main results of the paper.

1.1 Presentation of the Model

We consider a diffusion process in random environment, defined as follows. For
� 2 R, we introduce the random potential

W�.x/ WD W.x/ � �
2

x; x 2 R; (1)

A. Devulder (�)
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where .W.x/; x 2 R/ is a standard two-sided Brownian motion. Informally, a
diffusion process (X.t/; t � 0/ in the random potential W� is defined by

�
dX.t/ D dˇ.t/ � 1

2
W 0
�.X.t//dt;

X.0/ D 0;

where .ˇ.t/; t � 0/ is a Brownian motion independent of W. More rigorously,
.X.t/; t � 0/ is a diffusion process such that X.0/ D 0, and whose conditional
generator given W� is

1

2
eW�.x/

d

dx

�

e�W� .x/
d

dx

�

:

Let P be the probability measure associated to W� . We denote by PW�
the law of X

conditionally on the environment W� , and call it the quenched law. We also define
the annealed law P as follows:

P.
/ WD
Z

PW�
.
/P.W� 2 d!/:

Notice in particular that X is a Markov process under PW�
, but not under P. Such

a diffusion can also be constructed from a Brownian motion through (random)
changes of time and scale (see (90) below). This diffusion X, introduced by
Schumacher [42] and Brox [11], is generally considered as the continuous time
analogue of random walks in random environment (RWRE), which have many
applications in physics and biology (see e.g. Le Doussal et al. [37]); for an account
of general properties of RWRE, we refer to Révész [39] and Zeitouni [53]. This
diffusion has been studied for example by Kawazu and Tanaka [36], see Theorem 1
below, later improved by Hu et al. [33]. Large deviations results are proved in
Taleb [47] and Talet [48] (see also Devulder [20] for some properties of the rate
function), and moderate deviations are given by Hu and Shi [32] in the recurrent
case, and by Faraud [25] in the transient case. A localization result and an aging
theorem are provided by Andreoletti and Devulder [3] in the case 0 < � < 1.
For a relation between RWRE and the diffusion X, see e.g. Shi [44]. See also
Carmona [12], Cheliotis [13], Mathieu [38], Singh [45, 46] and Tanaka [49] for
diffusions in other potentials.

In this paper, we are interested in the transient case, that is, we suppose � ¤ 0.
If X is a diffusion in the random potential W� , then �X is a diffusion in the random
potential .W�.�x/; x 2 R/ which has the same law as .W��.x/; x 2 R/. Hence we
may assume without loss of generality that � > 0. In this case, X.t/ !t!C1 C1
P-almost surely.

Our goal is to study the asymptotics of the maximum of the local time of X.
Corresponding problems for RWRE have attracted much attention, and have been
studied, for example, in Révész [39, Chap. 29], Shi [43], Gantert et al. [26, 27], Hu
et al. [30], Dembo et al. [18] and Andreoletti ([2], see also [1]). Moreover the local
time of such processes in random environment plays an important role in estimation
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problems (see e.g. Comets et al. [15]), in persistence (see Devulder [21]) and in the
study of processes in random scenery (see Zindy [54]).

1.2 Maximum Local Time

We denote by .LX.t; x/; t � 0; x 2 R/ the local time of X, which is the jointly
continuous process satisfying, for any positive measurable function f ,

Z t

0

f .X.s//ds D
Z C1

�1
f .x/LX.t; x/dx; t � 0: (2)

The existence of such a process was proved by Hu and Shi [30, Eq. (2.6)]; see (91)
below for an expression of LX . We are interested in the maximum local time of X at
time t, defined as

L�
X.t/ WD sup

x2R
LX.t; x/; t � 0:

In the recurrent case � D 0, Hu and Shi [30] first proved that for any x 2 R,

log LX.t; x/

log t

L�! U ^ OU;

where U and OU are two independent random variables uniformly distributed in

Œ0; 1�, and “
L�!” denotes convergence in law under the annealed law P. Moreover,

throughout the paper, log denotes the natural logarithm. The limit law of L�
X.t/,

suitably renormalized, is determined by Andreoletti and Diel [4] when � D 0:

L�
X.t/

t

L�!
	 Z 1

�1
e�eW.x/dx


�1
; (3)

where
�
eW.x/; x 2 R

�
is a two-sided Brownian motion conditioned to stay positive.

Furthermore, Shi [43] proved the following surprising result: P-almost surely when
� D 0,

lim sup
t!C1

L�
X.t/=.t log log log t/ � 1=32: (4)

The question whether this is the good renormalization remained open during 13
years, until Diel [22] gave a positive answer to this question. He proved indeed that
in this recurrent case � D 0,

lim sup
t!C1

L�
X.t/=.t log log log t/ � e2=2;

j20=64 � lim inf
t!C1 L�

X.t/=Œt=.log log log t/� � e2�2=4
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P-almost surely, where j0 is the smallest strictly positive root of the Bessel function
J0. Moreover, the convergence in law (3) is extended to the case of stable Lévy
environment by Diel and Voisin [23]. Finally, related questions about favorite sites,
that is, locations in which the local time is maximum at time t, are considered by
Hu and Shi [31], Cheliotis [14], and Andreoletti et al. [5].

1.3 Results

We define the first hitting time of r by X as follows:

H.r/ WD infft � 0; X.t/ > rg; r � 0: (5)

We recall that there are three different regimes for H in the transient case � > 0:

Theorem 1 (Kawazu and Tanaka, [36]) When r tends to infinity,

H.r/

r1=�
L�! c0S

ca
� ; 0 < � < 1; (6)

H.r/

r log r

P:�! 4; � D 1; (7)

H.r/

r

a:s:�! 4

� � 1; � > 1; (8)

where c0 D c0.�/ > 0 is a finite constant, the symbols “
L�!”, “

P:�!” and “
a:s:�!”

denote respectively convergence in law, in probability and almost sure convergence,
with respect to the annealed probability P. Moreover, for 0 < � < 1, Sca

� is a
completely asymmetric stable variable of index �, and is a positive variable (see (14)
for its characteristic function).

The asymptotics of the maximum local time L�
X.t/ heavily depend on the value

of �. We start with the upper asymptotics of L�
X.t/:

Theorem 2 If 0 < � < 1, then

lim sup
t!C1

L�
X.t/

t
D C1 P-a.s.

Theorem 2 tells us that in the case 0 < � < 1, the maximum local time of X has
a completely different behaviour from the maximum local time of RWRE (the latter
is trivially bounded by t=2 for any positive integer t, for example). Such a peculiar
phenomenon has already been observed (see (4)) by Shi [43] in the recurrent case,
and is even more surprising here since X is transient.
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Theorem 3 gives, in the case � > 1, an integral test which completely
characterizes the upper functions of L�

X.t/, in the sense of Paul Lévy.

Theorem 3 Let a.
/ be a positive nondecreasing function. If � > 1, then

1X

nD1

1

na.n/

�
< C1
D C1 ” lim sup

t!1
L�

X.t/

Œta.t/�1=�
D
�
0

C1 P-a.s.

This is in agreement with a result of Gantert and Shi [26] for RWRE. We notice
in particular that lim supt!C1 L�

X.t/=t is almost surely C1 when 0 < � < 1 by
Theorem 2, whereas it is 0 when � > 1 by Theorem 3. We have not been able to
prove whether lim supt!C1 L�

X.t/=t is infinite in the very delicate case � D 1, since
a proof similar to that of Theorem 2 just shows that it is greater than a positive
deterministic constant (see Remark 1 page 158 for more details).

We now turn to the lower asymptotics of L�
X.t/.

Theorem 4 We have

lim inf
t!1

L�
X.t/

t= log log t
� �2c1.�/ P-a.s. if 0 < � < 1;

lim inf
t!1

L�
X.t/

t=Œ.log t/ log log t�
� 1

2
P-a.s. if � D 1;

lim inf
t!1

L�
X.t/

.t= log log t/1=�
D 4

�
.� � 1/�2

8

�1=�
P-a.s. if � > 1;

where c1.�/ is defined in (65).

Theorem 5 We have, for any " > 0,

lim inf
t!1

L�
X.t/

t=Œ.log t/1=�.log log t/.2=�/C"�
D C1 P-a.s. if 0 < � � 1:

In the case 0 < � � 1, Theorems 4 and 5 give different bounds, for technical
reasons.

We also get the convergence in law under the annealed law P of L�
X.t/, suitably

renormalized, when � � 1:

Theorem 6 We have as t! C1, under the annealed law P,

L�
X.t/

t= log t

L�! 1

2E
if � D 1;

L�
X.t/

t1=�
L�!4�2.� � 1/=8�1=�E �1=� if � > 1;

where E denotes an exponential variable with mean 1.
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We notice that in the previous theorem, the case 0 < � < 1 is lacking. Indeed,
we did not succeed in obtaining it with the annealed technics of the present paper,
because due to (6), H.r/ suitably renormalized converges in law but does not
converge in probability to a positive constant in this case. This is why we used
quenched technics in Andreoletti et al. [5] to prove that L�

X.t/=t converges in law
under P as t ! C1 when 0 < � < 1. To this aim, we used and extended to local
time the quenched tools developed in Andreoletti et al. [3] to get the localization
of X in this case 0 < � < 1, combined with some additional tools such as two
dimensional Lévy processes and convergence in Skorokhod topology.

So, Theorem 6 completes the results of [4] (see our (3)) and [5], that is, these 3
results give the convergence in law of L�

X.t/ suitably renormalized for any value of
� 2 R.

In the proof of Theorems 2–5, we will frequently need to use the almost sure
asymptotics of the first hitting times H.
/. In view of the last part (8) of Theorem 1,
we only need to study the case � 2 .0; 1�.
Theorem 7 Let a.
/ be a positive nondecreasing function. If 0 < � < 1, then

1X

nD1

1

na.n/

�
< C1
D C1 ” lim sup

r!1
H.r/

Œra.r/�1=�
D
�
0

C1 P-a.s.

If � D 1, the statement holds under the additional assumption that

lim sup
r!C1

log r

a.r/
<1:

Theorem 8 We have P a.s. (� denotes the usual gamma function)

lim inf
r!C1

H.r/

r1=�=.log log r/.1=�/�1
D 8�Œ���1=�.1 � �/ 1���

2� 2.�/ sin.��/

�1=� DW c2.�/ if 0 < � < 1; (9)

lim inf
r!C1

H.r/

r log r
D 4 if � D 1: (10)

The following corollary follows immediately from Theorem 7 and gives a
negative answer to a question raised in Hu et al. [33, Remark 1.3 p. 3917]:

Corollary 1 The convergence in probability H.r/=.r log r/ ! 4 in Theorem 1 in
the case � D 1 cannot be strengthened into an almost sure convergence.

We observe that in the case 0 < � < 1, the process H.
/ has the same almost sure
asymptotics as �-stable subordinators (see Bertoin [7, p. 92]).

Finally, define log1 WD log and logk WD logk�1 ı log for k > 1. Theorems 7 and 8,
and the fact that X.t/ is not very far from sup0�s�t X.s/ (see Lemma 4 below) lead
to
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Corollary 2 Recall that c2.�/ is defined in (9). We have P-a.s. for k 2 N
�,

lim sup
t!1

X.t/

t�.log log t/1��
D 2� 2.�/ sin.��/

�8���C1.1 � �/1�� D
1

Œc2.�/��
if 0 < � < 1; (11)

lim sup
t!1

X.t/

t= log t
D 1

4
if � D 1; (12)

�
˛ � 1
˛ > 1

” lim inf
t!C1

X.t/

t�=Œ.log t/ : : : .logk�1 t/.logk t/˛�

� D 0
D C1 if 0 < � � 1;

(13)

where for k D 1, .log t/ : : : .logk�1 t/ D 1 by convention. These results remain true
if we replace X.t/ by sup0�s�t X.s/.

Corresponding results in the recurrent case � D 0 are proved by Hu et al. [29],
extended later by Singh [45] to some asymptotically stable potentials and following
results of Deheuvels et al. [16] for Sinai’s walk.

Our proof hinges upon stochastic calculus. In particular, one key ingredient of
the proofs of Theorems 2–8 is an approximation of the joint law of the hitting time
HŒF.r/� of F.r/ � r by X and the maximum local time L�

X ŒH.F.r//� of X at this time,
stated in Lemma 2, and proved in Sect. 6. Another important tool is a modification
of the Borel-Cantelli lemma, stated in Lemma 3, which, loosely speaking, says that
one can chop the real half line Œ0;1/ into regions in which the diffusion X behaves
in an “independent” way.

The rest of the paper is organized as follows. In Sect. 2.1, we give some
preliminaries on local time and Bessel processes. We present in Sect. 2.2 some
estimates which will be needed later on; the proof of one key estimate (Lemma 2)
is postponed until Sect. 6. Section 3 is devoted to the study of the almost sure
asymptotics of L�

X ŒH.r/�, stated in Theorems 9 and 10. In Sect. 4, we study the Lévy
classes for the hitting times H.r/ and prove Theorems 7 and 8 and Corollary 2. In
Sect. 5, we study L�

XŒH.r/�=H.r/ and prove Theorems 2–6. Section 6 is devoted to
the proof of Lemma 2. Finally, we prove in Sect. 7 some lemmas dealing with Bessel
processes, Jacobi processes and Brownian motion.

Throughout the paper, the letter c with a subscript denotes constants that are finite
and positive.

2 Some Preliminaries

We provide in this section some preliminaries on local time, on Bessel processes
and on the diffusion X.
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2.1 Preliminaries on Local Time and Bessel Processes

We first define, for any Brownian motion .B.t/; t � 0/ and r > 0, the hitting time

�B.r/ WD infft > 0; B.t/ D rg:

Moreover, we denote by .LB.t; x/; t � 0; x 2 R/ the local time of B, i.e., the jointly
continuous process satisfying

R t
0

f .B.s//ds D R C1
�1 f .x/LB.t; x/dx for any positive

measurable function f . We define the inverse local time of B at 0 as

�B.a/ WD infft � 0; LB.t; 0/ > ag; a > 0:

Furthermore, for any ı 2 Œ0;1/ and x 2 Œ0;1/, the unique strong solution of the
stochastic differential equation

Z.t/ D xC 2
Z t

0

p
Z.s/dˇ.s/C ıt;

where .ˇ.s/; s � 0/ is a (one dimensional) Brownian motion, is named a
ı-dimensional squared Bessel process starting from x. A Bessel process with
dimension ı (or equivalently with order ı=2 � 1) starting from x � 0 is defined
as the (nonnegative) square root of a ı-dimensional squared Bessel process starting
from x2

�
see e.g. Borodin et al. [10], 39 p. 73 for a more general definition as a linear

diffusion with generator 1
2

d2

dx2
C ı�1

2x
d
dx for every ı 2 R; see also Göing-Jaeschke et

al. [28, Definition 3 p. 329]
�
. We recall some important results.

Fact 1 (First Ray-Knight Theorem) Consider r > 0 and a Brownian motion
.B.t/; t � 0/. The process .LB.�B.r/; r�x/; x � 0/ is a continuous inhomogeneous
Markov process, starting from 0. It is a 2-dimensional squared Bessel process for
x 2 Œ0; r� and a 0-dimensional squared Bessel process for x � r.

Fact 2 (Second Ray-Knight Theorem) Fix r > 0, and let .B.t/; t � 0/ be a
Brownian motion. The process .LB.�B.r/; x/; x � 0/ is a 0-dimensional squared
Bessel process starting from r.

See e.g. Revuz and Yor [40, Chap. XI] for more details about Ray-Knight
theorems and Bessel processes. Following the method used by Hu et al. [33, see
Eq. (3.8)], we also need the following well known result:

Fact 3 (Lamperti Representation Theorem, see Yor [51, Eq. (2.e)])
Consider W�.x/ D W.x/ � �x=2 as in (1) with � > 0, where .W.x/; x � 0/ is a

Brownian motion. There exists a .2�2�/-dimensional Bessel process .�.t/; t � 0/,
starting from �.0/ D 2, such that expŒW�.t/=2� D �.A.t//=2 for all t � 0, where
A.r/ WD R r

0
eW�.s/ds, r � 0.
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We also recall the following extension to Bessel processes of Williams’ time
reversal theorem (see Yor [52, p. 80]; see also Göing-Jaeschke et al. [28, Eq. (34)]).

Fact 4 One has, for ı < 2,

.Rı.T0 � s/; s � T0/
LD .R4�ı.s/; s � �a/;

where
LD denotes equality in law, .Rı.s/; s � 0/ denotes a ı-dimensional Bessel

process starting from a > 0, T0 WD inffs � 0; Rı.s/ D 0g, .R4�ı.s/; s � 0/ is a .4�
ı/-dimensional Bessel process starting from 0, and �a WD supfs � 0; R4�ı.s/D ag.

Let Sca
� be a (positive) completely asymmetric stable variable of index � for 0 <

� < 1, and Cca
8 a (positive) completely asymmetric Cauchy variable of parameter 8.

Their characteristic functions are given by:

EeitSca
� D exp

h
�jtj�

	
1 � i sgn.t/ tan

���

2

�
i
; (14)

EeitCca
8 D exp

h
� 8

	
jtj C it

2

�
log jtj


i
:

Throughout the paper, we set 
 WD 4.1C �/. If .B.t/; t � 0/ denotes, as before, a
Brownian motion, we introduce

Kˇ.�/ WD
Z C1

0

x1=��2Lˇ.�ˇ.
/; x/dx; 0 < � < 1; (15)

Cˇ WD
Z 1

0

Lˇ.�ˇ.8/; x/� 8
x

dxC
Z C1

1

Lˇ.�ˇ.8/; x/

x
dx: (16)

We have the following equalities in law:

Fact 5 (Biane and Yor [8]) For 0 < � < 1,

Cˇ
LD 8c3 C .�=2/Cca

8 ; Kˇ.�/
LD ��2�1=�c4.�/=4

�
Sca
� ;

where c3 > 0 denotes an unimportant constant, and

 .�/ WD
�

��

4� 2.�/ sin.��=2/

�1=�
; c4.�/ WD 8 .�/
1=���1=� : (17)

This fact is proved in (Biane and Yor [8]); the identity in law related to Cˇ is given
in its paragraph (4.3.2) pp. 64–66 and the one related to Kˇ.�/ follows from its (1.a)
p. 24.
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Finally, the first Ray-Knight theorem leads to the following formula. For v > 0

and y > 0,

P

�

sup
0�s��ˇ.v/

ˇ.s/ < y

�

D P

Lˇ.�ˇ.y/; 0/ > v

� D P
�
R22.y/ > v

� D exp

�

� v
2y

�

;

(18)

where .R2.s/; s � 0/ is a 2-dimensional Bessel process starting from 0.

2.2 Some Preliminaries on the Diffusion

We assume in the rest of the paper that � > 0, and so X is a.s. transient to the right.
We start by introducing

A.x/ WD
Z x

0

eW�.y/dy; x 2 R; A1 WD
Z 1

0

eW� .y/dy <1 a.s.

We recall that A is a scale function of X under the quenched law PW�
(see e.g.

Shi [44, Eq. (2.2)]). That is, if Py
W�

denotes the law of the diffusion X in the potential
W� , starting from y instead of 0, we have conditionally on the potential W� ,

Py
W�


H.z/ < H.x/

� D A.y/ � A.x/
�
=

A.z/� A.x/

�
; x < y < z: (19)

We observe that, since � > 0, A.x/! A1 <1 a.s. when x!C1.
For technical reasons, we have to introduce the random function F as follows.

Fix r > 0. Since the function x 7! A1 � A.x/ DW D.x/ is almost surely continuous
and (strictly) decreasing and has limits C1 and 0 respectively on �1 and C1,
there exists a unique F.r/ 2 R, depending only on the process W� , such that

A1 � A.F.r// D exp.��r=2/ DW ı.r/: (20)

Our first estimate describes how close F.r/ is to r, for large r.

Lemma 1 Let � > 0 and 0 < ı0 < 1=2. Define for r > 0,

E1.r/ WD
˚�
1 � 5r�ı0=�

�
r � F.r/ � �1C 5r�ı0=�

�
r
�
: (21)

Then for all large r,

P

E1.r/

c
� � exp

� � r1�2ı0
�
: (22)

As a consequence, for any " > 0, we have, almost surely, for all large r,

.1 � "/r � F.r/ � .1C "/r: (23)
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Proof of Lemma 1 Let 0 < ı0 < 1=2, and fix r > 0. We have

P

E1.r/

c
� � P


F.r/ < .1 � 5r�ı0=�/r

�C P

F.r/ > .1C 5r�ı0=�/r

�
: (24)

Define s˙ WD .1 ˙ 5r�ı0=�/r, and A.s/1 WD
R1

s exp.W�.u/ � W�.s//du for s � 0.
Observe that D is strictly decreasing, D.F.r// D e��r=2 and notice that D.s˙/ D
A
.s

˙
/

1 exp.W�.s˙//. Consequently,

P

F.r/ < .1 � 5r�ı0=�/r

� � P

D.F.r// > D.s�/

�

D P
 � �r=2 > log

�
A.s�/1

�CW�.s�/
�
:

Moreover, A
.s

˙
/

1
LD A1

LD 2=�� , where �� is a gamma variable of parameter
.�; 1/ (see Dufresne [24] or Borodin et al. [10, IV.48 p. 78]), that is, �� has density
1

� .�/
e�xx��11RC

.x/. Hence

P

F.r/ < .1 � 5r�ı0=�/r

� � P


log.2=��/ < �r1�ı0
�C P


W.s�/ < �3r1�ı0=2

�

� 2 exp
� � 9r1�2ı0=8

�
;

for large r, since PŒW.1/ < �x� � e�x2=2 for x � 1. Similarly, we have for large r,

P

F.r/ > sC

� � P


log.2=��/ > r1�ı0=2
�C P


W.sC/ > 2r1�ı0

�

� exp
� � 9r1�2ı0=8

�
:

This yields (22) in view of (24).
Then

P
n�1 P


E1.n/c

�
<1, so (23) follows from the Borel–Cantelli lemma and

the monotonicity of F.
/. ut
In the rest of the paper, we define, for ı1 > 0 and any r > 0,

c5 WD 2.
=�/ı1;  ˙.r/ WD 1˙ c5
rı1
; t˙.r/ WD � ˙.r/r



: (25)

Taking ˙.r/ as defined above instead of simply 1˙" is necessary e.g. in Lemma 5
below. Moreover, if .ˇ.s/; s � 0/ is a Brownian motion and v > 0, we define the
Brownian motion .ˇv.s/; s � 0/ by ˇv.s/ WD .1=v/ˇ.v2s/, s � 0.

We prove in Sect. 6 the following approximation of the (annealed) joint law of�
L�

X ŒH.F.r//�;H.F.r//
�
.

Lemma 2 Let � > 0 and " 2 .0; 1/. For ı1 > 0 small enough, there exists c6 > 0

and ˛ > 0 such that for r large enough, there exist a Brownian motion .ˇ.t/; t � 0/
such that the following holds:
(i) Whenever � > 0, we have

PŒE2.r/� � 1 � r�˛;
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where

E2.r/ WD
n
.1 � "/bL�.r/ � L�

XŒH.F.r//� � .1C "/bLC.r/
o
; (26)

bL˙.r/ WD 4Œ�t˙.r/�1=�
�

sup
0�u��ˇt

˙
.r/ .
/

ˇt
˙
.r/.u/

�1=�
D 4

�

sup
0�u��ˇ.
t

˙
.r//
�ˇ.u/

�1=�
:

(27)

(ii) If 0 < � � 1, we have

PŒE3.r/� � 1 � r�˛;

where, using the notation introduced in (15) and (16),

E3.r/ WD
n
.1 � "/bI�.r/ � H.F.r// � .1C "/bIC.r/

o
; (28)

bI˙.r/ WD
8
<

:

4�1=��2t˙.r/1=�

Kˇt

˙
.r/ .�/˙ c6t˙.r/1�1=�

�
; 0 < � < 1;

4t˙.r/

Cˇt

˙
.r/ C 8 log t˙.r/

�
; � D 1: (29)

Notice in particular that the Brownian motion ˇ is the same in (i) and (ii); this
allows to approximate the law of quantities depending on both L�

X ŒH.F.r//� and
H.F.r//, such as L�

X ŒH.F.r//�=H.F.r//, which is useful in Sect. 5. This is possible
because we kept the random function F.r/ in the expressions L�

XŒH.F.r//� and
H.F.r//, in order to have the same Brownian motion ˇ in the left hand side and
the right hand side of the inequalities defining E2.r/ and E3.r/.

The proof of Lemma 2 is postponed to Sect. 6.
With an abuse of notation, for z � 0, we denote by X ı �H.z/ the process

.X.H.z/ C t/ � z; t � 0/. Notice that due to the strong Markov property applied
at stopping time H.z/ under the quenched law PW� , X ı �H.z/ is, conditionally on
W� , a diffusion in the .��=2/-drifted Brownian potential W� ı�z WD .W�.xC z/�
W�.z/; x 2 R/, starting from 0. Define HXı�H.z/.s/ D H.z C s/ � H.z/, s � 0,
which is the hitting time of s by X ı �H.z/. In view of (20), we also define FW�ı�z

by
R1

FW�ı�z .r/
eW�ı�z.u/du D ı.r/, r > 0. That is, FW�ı�z plays the same role for

W� ı�z (resp. for X ı�H.z/) as F does for W� (resp. for X). Similarly, L�
Xı�H.z/

and
.L� ı H/Xı�H.z/ denote respectively the processes L� and L� ı H for the diffusion
X ı �H.z/, with .L�/X WD L�

X . The following lemma is a modification of the Borel-
Cantelli lemma.

Lemma 3 Let � > 0, ˛ > 0, rn WD exp.n˛/ and Zn WDPn
kD1 rk for n � 1. Assume

f is a continuous function .0;C1/2 ! R and .�n/n�1 is a sequence of open sets
in R such that

X

n�1
P
˚
f Œ.H ı F/.r2n/; .L

�
X ı H ı F/.r2n/� 2 �n

� D C1: (30)



The Maximum of the Local Time of a Diffusion Process in a Drifted Brownian Potential 135

Then for any 0 < " < 1=2, P almost surely, there exist infinitely many n such that
for some tn 2 Œ.1 � "/r2n; .1C "/r2n�,

f

HXı�H.Z2n�1/

.tn/; .L
� ı H/Xı�H.Z2n�1/

.tn/
� 2 �n:

The results remain true if rn D nn for every n � 1.

Proof (Proof of Lemma 3) We divide RC into some regions in which the diffusion
X will behave “independently”, in order to apply the Borel-Cantelli lemma.

To this aim, let n � 1 and

E4.n/ WD
�

inf
ftW H.Z2n�1/�t�H.Z2nCr2nC1=2/g

X.t/ > Z2n�2 C 1

2
r2n�1

�

:

Define xn WD r2n�1=2. For any environment, i.e., for any realization of W� , X is a
Markov process under PW�

, and H.Z2n�1/ is a stopping time. Hence, PW�
.E4.n/c/

is the probability that the diffusion in the potential W� started at Z2n�1 hits level
Z2n�2 C xn before Z2n C xnC1, that is

PW�


E4.n/

c
� D

 

1C
R Z2n�1

Z2n�2Cxn
eW�.u/du

R Z2nCxnC1

Z2n�1
eW�.u/du

!�1
�
R Z2nCxnC1

Z2n�1
eW� .u/du

R Z2n�1

Z2n�2Cxn
eW� .u/du

; (31)

where we used (19). Observe that r2n�1�xn D xn and define for some 0 < "0 < �=4,

E5.n/

WD
�

sup
0�u�r2n�1�xn

ˇ
ˇ
ˇW�.uC Z2n�2 C xn/�W�.Z2n�2 C xn/C �

2
u
ˇ
ˇ
ˇ

� "0.r2n�1 � xn/

�

and E6.n/ WD ˚
supu�0ŒW�.uC Z2n�1/ �W�.Z2n�1/� � vn

�
, where vn WD

2.log n/=�. Since sup0�u�xn
W.u/

LD jW.xn/j and supx�0 W�.x/ has an exponential
law of parameter � (see e.g. Borodin et al. [10, 1.1.4 (1) p. 251]), we have for
large n,

P

E5.n/

c
� D P

	
sup

0�u�xn

jW.u/j > "0xn



� 4 exp

h
� "

2
0xn

2

i
;

P

E6.n/

c
� D exp.��vn/ D n�2:
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Moreover by (31), we have for n large enough, on E5.n/\ E6.n/,

PW�


E4.n/

c
� � � .r2n C xnC1/ expŒvn CW�.Z2n�1/�

expŒW�.Z2n�2 C xn/ � "0.r2n�1 � xn/�

� �.r2n C xnC1/ expŒvn C .2"0 � �=2/.r2n�1 � xn/�: (32)

We now integrate (32) over E5.n/ \ E6.n/. Since PŒE5.n/c� and PŒE6.n/c� are
summable, this yields since "0 < �=4,

C1X

nD1
P

E4.n/

c
�
<1: (33)

To complete the proof of Lemma 3, let 0 < " < 1=2, and define

Dn WD
n
9tn 2 Œ.1 � "/r2n; .1C "/r2n�;

f

HXı�H.Z2n�1/

.tn/; .L
� ı H/Xı�H.Z2n�1/

.tn/
� 2 �n

o
;

En WD
n	
1 � 5r�ı0

2n =�



r2n � FW�ı�Z2n�1
.r2n/ �

	
1C 5r�ı0

2n =�



r2n

o
:

Let Qtn WD FW�ı�Z2n�1
.r2n/. We have uniformly for large n,

Dn \ E4.n/ 
n

f

HXı�H.Z2n�1/

�Qtn
�
; .L� ı H/Xı�H.Z2n�1/

�Qtn
�� 2 �n

o
\ E4.n/\ En:

(34)

Due to our assumption (30),
P

n�1 Pf f ŒHXı�H.Z2n�1/
.Qtn/; .L� ı H/Xı�H.Z2n�1/

.Qtn/� 2
�ng D 1, since X ı�H.Z2n�1/ is a diffusion process in the .��=2/-drifted Brownian
potential W� ı �Z2n�1 , which also gives P.En/ D P.E1.r2n//. In view of (33), (34)
and Lemma 1, this yields

P
n2N P.Dn \ E4.n// D C1.

Define x^ y WD inffx; yg, .x; y/ 2 R
2. Since "r2n � r2nC1=2 for large n, the event

Dn\E4.n/ is measurable with respect to the �-field generated by .W�.xCZ2n�1/�
W�.Z2n�1/;�r2n�1=2 � x � Z2n C r2nC1=2 � Z2n�1/ and

�
X ı �H.Z2n�1/.t/; 0 �

t � HXı�H.Z2n�1/
.�r2n�1=2/ ^ HXı�H.Z2n�1/

.Z2n C r2nC1=2 � Z2n�1
�
. So, the events

Dn \ E4.n/, n � 1, are independent by the strong Markov Property, because the
intervals


Z2n�1 � r2n�1=2;Z2n C r2nC1=2

�
, n � 1 are disjoint. Hence, Lemma 3

follows by an application of the Borel-Cantelli lemma. ut

3 Almost Sure Asymptotics of L�
XŒH.r/�

As a warm up, we first prove the following results, which are useful in Sect. 5.
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Theorem 9 Let � > 0. For any positive nondecreasing function a.
/, we have

1X

nD1

1

na.n/

�
<1
D C1 ” lim sup

r!1
L�

XŒH.r/�

Œra.r/�1=�
D
�
0

C1 P-a.s.

Theorem 10 For � > 0,

lim inf
r!C1

L�
XŒH.r/�

.r= log log r/1=�
D 4

�
�2

2

�1=�
P-a.s.

3.1 Proof of Theorem 9

Let rn WD en and Zn WD Pn
kD1 rk. Denote by a.
/ be a positive nondecreasing

function. We begin with the upper bound in Theorem 9.
First, notice that forbL˙ which is defined in (27), and any positive y and r, we

have

P

	
bL˙.r/ < .yr/1=�



D P

�

sup
0�u��ˇ.
t

˙
.r//
ˇ.u/ <

yr

4��

�

D exp

�

��
24� ˙.r/
2y

�

;

(35)

by (18) and (25). This together with Lemma 2 gives, for some ˛ > 0, " > 0 and all
large r,

P

n
L�

XŒH.F.r//� >
�
ra.e�2r/

�1=�o � 1 � exp

�

� .1C "/
��24� C.r/

2a.e�2r/

�

C r�˛

� c7
a.e�2r/

C r�˛; (36)

since 1 � e�x � x for all x 2 R. Assume
PC1

nD1 1
na.n/ < 1, which is equivalent to

PC1
nD1 1

a.rn/
<1. Then (36) leads to

PC1
nD1 PfL�

XŒH.F.rn//� > Œrna.rn�2/�1=�g <1:
So by the Borel–Cantelli lemma, almost surely for all large n, L�

XŒH.F.rn//� �
Œrna.rn�2/�1=� . On the other hand, rn�1 � F.rn/ almost surely for all large
n (see (23)). As a consequence, almost surely for all large n, L�

X ŒH.rn�1/� �
Œrna.rn�2/�1=� . Let r 2 Œrn�2; rn�1�, for such large n. Then

L�
XŒH.r/� � L�

X ŒH.rn�1/� � Œrna.rn�2/�1=� � e2=�Œra.r/�1=� :

Consequently,

lim sup
r!C1

L�
X ŒH.r/�

Œra.r/�1=�
� e2=� P-a.s. (37)
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Since
PC1

nD1 1
n"a.n/ is also finite, (37) holds for a.
/ replaced by "a.
/, " > 0. Letting

"! 0 yields the “zero” part of Theorem 9.
Now we turn to the proof of the “infinity” part. Assume

PC1
nD1 1

na.n/ D C1,

that is,
PC1

nD1 1
a.rn/

D C1. Observe that we may restrict ourselves to the case
a.x/ ! C1 when x ! C1, since the result in this case yields the result when a
is bounded.

By an argument similar to that leading to (36), we have, for some ˛ > 0 and all
large r,

P

n
L�

XŒH.F.r//� >
�
ra.e2r/

�1=�o � c8
a.e2r/

� r�˛;

which implies
PC1

nD1 P
˚
.L�

X ı H ı F/.r2n/ > Œr2na.r2nC2/�1=�
� D C1: Let 0 < " <

1=2 and recall that Zn DPn
kD1 rk; by Lemma 3, almost surely, there exist infinitely

many n such that

sup
s2Œ.1�"/r2n;.1C"/r2n�

.L� ı H/Xı�H.Z2n�1/
.s/ > Œr2na.r2nC2/�1=� :

For such n, we have sups2Œ.1�"/r2n;.1C"/r2n�
L�

X ŒH.Z2n�1 C s/� > Œr2na.r2nC2/�1=� .
Consequently,

sup
s2Œ.1�"/r2n;.1C"/r2n�

L�
X.H.Z2n�1 C s//

Œ.Z2n�1 C s/a.Z2n�1 C s/�1=�
� c9;

almost surely for infinitely many n. This gives

lim sup
r!C1

L�
XŒH.r/�

Œra.r/�1=�
� c9 P-a.s.

Replace a.
/ by a.
/=", and let "! 0. This leads to the “infinity” part of Theorem 9.
ut

3.2 Proof of Theorem 10

We fix " 2 .0; 1/. By Lemma 2 and (35), we get for some ˛ > 0, for every positive
function g and all large r,

P

h
L�

XŒH.F.r//� < Œr=g.r/�1=�
i
� exp

h
��24�.1�"/� �.r/g.r/=2

i
Cr�˛: (38)

We choose g.r/ WD 2.1C"/
�24�.1�"/�C1 �.r/

log log r. Let sn WD exp.n1�"/. It follows

from (38) that
P1

nD1 P
˚
L�

X ŒH.F.sn//� < Œsn=g.sn/�
1=�
�
< 1: Hence by the Borel-
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Cantelli lemma, almost surely for all large n,

L�
X ŒH.F.sn//� � Œsn=g.sn/�

1=�:

On the other hand, by (22) and the Borel-Cantelli lemma, sn � F.sn�1/ almost
surely for all large n, which implies that, for r 2 Œsn; snC1�,

L�
X ŒH.r/� � L�

X ŒH.F.sn�1//� � Œsn�1=g.sn�1/�1=� � .1 � "/Œr=g.r/�1=�;

since sn�1=snC1 ! 1 as n! C1. Consequently,

lim inf
r!1

L�
X ŒH.r/�

.r= log log r/1=�
� 4

�
�2

2

�1=�
P-a.s.

Now we prove the inequality “�”. Let " 2 .0; 1=2/, rn WD exp.n1C"/, Zn WDPn
kD1 rk, n � 1, and Qg.r/ WD 2.1�"/

�24�.1C"/�C1 C.r/
log log r. By Lemma 2 and (35), for

some ˛ > 0 and all large r,

P

h
L�

XŒH.F.r//� < Œr=Qg.r/�1=�
i
� exp

h
� �24�.1C "/� C.r/Qg.r/=2

i
� r�˛:

Therefore,

X

n�1
P

h
L�

XŒH.F.r2n//� <

r2n=Qg.r2n/

�1=�i D C1:

It follows from Lemma 3 that, almost surely, there are infinitely many n such that

inf
s2Œ.1�"/r2n;.1C"/r2n�

.L� ı H/Xı�H.Z2n�1/
.s/ <


r2n=Qg.r2n/

�1=�
: (39)

On the other hand, an application of Theorem 9 with a.x/ �x!C1 .log x/2

gives that almost surely for large n, L�
XŒH.Z2n�1/� � ŒZ2n�1 log2 Z2n�1�1=� �

"

r2n=Qg.r2n/

�1=�
; since Zp � prp � p exp.�p"/rpC1 for p large enough. Therefore,

inf
s2Œ.1�"/r2n;.1C"/r2n�

L�
X ŒH.Z2n�1 C s/� � .1C "/r2n=Qg.r2n/

�1=�

almost surely, for infinitely many n, where we used L�
X ŒH.rCs/� � L�

XŒH.r/�C.L� ı
H/Xı�H.r/.s/, r � 0, s � 0. Hence, for such n,

inf
s2Œ.1�"/r2n;.1C"/r2n�

L�
X ŒH.Z2n�1 C s/�

Œ.Z2n�1 C s/= log log.Z2n�1 C s/�1=�

� .1C c10"/

�
�24� C.r2n/

2

�1=�
:
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This yields

lim inf
r!C1

L�
X.H.r//

.r= log log r/1=�
� 4

�
�2

2

�1=�
P-a.s.,

proving Theorem 10. ut

4 Proof of Theorems 7 and 8 and Corollary 2

RecallbI˙ from (29) and c4.�/ from (17). By Fact 5,

bI˙.r/
LD t˙.r/1=�

˚
c4.�/ Sca

� ˙ c11 t˙.r/1�1=�
�
; 0 < � < 1; (40)

bI˙.r/
LD 4t˙.r/Œ8c3 C .�=2/Cca

8 C 8 log t˙.r/� � D 1; (41)

where c11 > 0 and c3 > 0 are unimportant constants.
We have now all the ingredients to prove Theorems 7 and 8.

4.1 Proof of Theorem 7

This subsection is devoted to the proof of Theorem 7. We start with the case 0 <
� < 1.

4.1.1 Case 0 < � < 1

We assume 0 < � < 1. Let a.
/ be a positive nondecreasing function. Without loss
of generality, we suppose that a.r/!1 (as r!1).

It is known (see e.g. Samorodnitsky and Taqqu [41, (1.2.8) p. 16]) that

P
�
Sca
� > x

� �
x!C1 c12x

��;

where f .x/ �
x!C1 g.x/ means lim

x!C1 f .x/=g.x/ D 1, and c12 > 0 is a constant

depending on �.
Recall t˙.
/ from (25). By Lemma 2 and (40), for some ˛ > 0, we have for

large r,

P

H.F.r// >

�
a.e�2r/tC.r/

�1=�� � c13
a.e�2r/

C r�˛: (42)
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As in Sect. 3.1, we define rn WD en and Zn WD Pn
kD1 rk. Assume

P
n�1 1

a.rn/
< 1,

which is equivalent to
P

n�1 1
na.n/ <1. By the Borel–Cantelli lemma, almost surely

for n large enough,

HŒF.rn/� � Œa.rn�2/tC.rn/�
1=� : (43)

On the other hand, by Lemma 1, almost surely for all large n, we have rnC1 �
F.rnC2/, which together with (43) implies that for r 2 Œrn; rnC1�,

H.r/ � HŒF.rnC2/� � Œ C.rnC2/�rnC2a.rn/=
�
1=� � c14Œra.r/�

1=� :

Therefore, lim supr!C1
H.r/

Œra.r/�1=�
� c14 P-a.s.; implying the “zero” part of Theo-

rem 7, since we can replace a.
/ by any constant multiple of a.
/.
To prove the “infinity” part, we assume

P
n�1 1

na.n/ D C1, and observe that, by
an argument similar to that leading to (42), we have, for some ˛ > 0 and all r large
enough,

P

H.F.r// >

�
a.e2r/t�.r/

�1=�� � c15
a.e2r/

� r�˛: (44)

Thanks to Lemma 3, sups2Œ.1�"/r2n;.1C"/r2n�
HXı�H.Z2n�1/

.s/ > Œa.r2nC2/t�.r2n/�
1=�;

almost surely for infinitely many n. Since H.Z2n�1 C s/ � HXı�H.Z2n�1/
.s/ for all

s > 0, this implies, for these n,

sup
s2Œ.1�"/r2n;.1C"/r2n�

H.Z2n�1 C s/=Œa.Z2n�1 C s/.Z2n�1 C s/�1=� � c16: (45)

This gives lim supr!C1
H.r/

Œra.r/�1=�
� c16 P-a.s. , proving the “infinity” part in

Theorem 7, in the case 0 < � < 1 by replacing a.:/ by any constant multiple of
a.:/. ut

4.1.2 Case � D 1

Let rn WD en and Zn WD Pn
kD1 rk. We recall that there exists a constant c17 WD 16

�

such that P.Cca
8 > x/ �

x!C1
c17
x (see e.g. Samorodnitsky et al. [41, Prop. 1.2.15

p. 16]). Hence, by Lemma 2 and (41), for some ˛ > 0 and all large r,

P
˚
H.F.r// > 4tC.r/.1C "/


8c3 C a.e�2r/C 8 log tC.r/

�� � c18=a.e�2r/C r�˛:
(46)

Assume
P

n�1 1
na.n/ <1. Then by the Borel-Cantelli lemma, almost surely, for all

large n,

HŒF.rn/� � 4.1C "/tC.rn/Œ8c3 C a.rn�2/C 8 log. C.rn/�rn=8/�:
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Under the additional assumption lim supr!C1.log r/=a.r/ < 1, we have, almost
surely, for all large n and r 2 Œrn; rnC1� (thus r � F.rnC2/ by Lemma 1),

H.r/ � HŒF.rnC2/� � c19rnC2Œa.rn/C log rnC2� � c20ra.r/:

As in the case 0 < � < 1, this yields the “zero” part of Theorem 7 in the case � D 1.
For the “infinity” part, we assume

P
n�1 1

na.n/ D C1. As in (46), we have, for
some ˛ > 0,

P
˚
H.F.r// > 4t�.r/.1 � "/a.e2r/

� � c21=a.e2r/� r�˛;

for large r. As in the displays between (44) and (45), this yields the “infinity part”
of Theorem 7 in the case � D 1. ut

4.2 Proof of Theorem 8

This subsection is devoted to the proof of Theorem 8. We start with the case 0 <
� < 1.

4.2.1 Case 0 < � < 1

We have E
�
e�tSca

�
� D expŒ�t�= cos.��=2/�, t � 0, e.g. by Samorodnitsky et al. ([41,

Proposition 1.2.12], in the notation of [41], Sca
� is distributed as S�.1; 1; 0/). So by

Bingham et al. [9, Example p. 349],

logP
�
Sca
� < x

� �
x!0; x>0

�c22x
��=.1��/; (47)

where c22 WD .1 � �/��=.1��/Œcos.��=2/��1=.1��/. By Lemma 2, (40) and (47), for
any (strictly) positive function f such that limx!C1 f .x/ D 0 and " > 0 small
enough, we have for large r,

P

H.F.r// < t�.r/1=� f .r/

�

� exp

�

� .c22 � "/
�

.1 � "/c4.�/
f .r/C .1 � "/c11t�.r/1�1=�

��=.1��/ �
C r�˛: (48)

We define for " > 0 and r > 1,

f"̇ .r/ WD .1˙ "/c4.�/
�
.1˙ "/.c22 ˙ "/
.1� "/ log log r

�.1��/=�
˙ c11.1˙ "/t˙.r/1�1=� :
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So, (48) gives

P

H.F.r// < t�.r/1=� f �

" .r/
� � .log r/�.1C"/=.1�"/ C r�˛:

With sn WD exp.n1�"/, this gives
PC1

nD1 P

H.F.sn// < t�.sn/

1=� f �
" .sn/

�
< 1,

which, by the Borel-Cantelli lemma, implies that, almost surely, for all large n,
HŒF.sn/� � t�.sn/

1=� f �
" .sn/.

Recall from Lemma 1 that, almost surely, for all large n, we have F.sn/ � .1C
"/sn. Let r be large. There exists n (large) such that .1 C "/sn � r � .1 C 2"/sn.
Then if r is large,

H.r/ � HŒF.sn/� � t�.sn/
1=� f �

" .sn/ � t1=��
�

r

1C 2"
�

f �
"

�
r

1C "
�

:

Plugging the value of t�. r
1C2" / (defined in (25)), this yields inequality “�” of (9)

with

c2.�/ WD 8 .�/c.1��/=�22 D 8Œ���1=�.1 � �/ 1��� �=2� 2.�/ sin.��/
�1=�

(49)

where c22 D c22.�/ is defined after (47) and  and c4.�/ in (17).
To prove the upper bound, let rn WD exp.n1C"/ and Zn WD Pn

kD1 rk. By means
of an argument similar to that leading to (48), we have

P
n�1 P


H.F.r2n// <

tC.r2n/
1=� f C

" .r2n/
� D C1. So by Lemma 3, for 0 < " < 1=2, there exist almost

surely infinitely many n such that

inf
u2Œ.1�"/r2n;.1C"/r2n�

HXı�H.Z2n�1/
.u/ < ŒtC.r2n/�

1=� f C
" .r2n/:

Moreover, by Theorem 7, H.Z2n�1/ <

Z2n�1 log2 Z2n�1

�1=� � "ŒtC.r2n/�
1=� f C

" .r2n/

almost surely for all large n, since
P

n�1 1=.n log2 n/ < 1 and Zp �
p exp.�p"/rpC1 for all large p as before. This yields almost surely for large n,

inf
v2ŒZ2n�1C.1�"/r2n; Z2n�1C.1C"/r2n�

H.v/ < .1C "/ŒtC.r2n/�
1=� f C

" .r2n/:

Consequently,

lim inf
r!C1

H.r/

r1=�.log log r/.��1/=� � 8 .�/c
.1��/=�
22 D c2.�/ P-a.s.

This gives inequality “�” of (9) and thus yields Theorem 8 in the case 0 < � < 1.
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4.2.2 Case � D 1

Assume � D 1 (thus 
 D 8). By Samorodnitsky et al. [41, Proposition 1.2.12],
EŒexp.�Cca

8 /� D 1 (in the notation of [41], Cca
8 is distributed as S1.8; 1; 0/). Hence,

PŒCca
8 � �" log r� � r�"

EŒexp.�Cca
8 /� D r�"; r > 0; (50)

for " > 0. By Lemma 2 and (41), we have if " > 0 is small enough, for all large r,

P
˚
HŒF.r/� � 32t�.r/.1 � 2"/Œc3 C log t�.r/�

� � P
�
Cca
8 � �" log r

�C PŒE3.r/
c�

� 2r�":

Let sn WD exp.n1�"/. Thus, by the Borel-Cantelli lemma, almost surely, for all
large n,

HŒF.sn/� > 32t�.sn/.1 � 2"/Œc3 C log t�.sn/� � 4.1� 3"/sn log sn:

In view of the last part of Lemma 1, this yields inequality “�” in (10) similarly
as before (49). The inequality “�”, on the other hand, follows immediately from
Theorem 1 (that H.r/=.r log r/! 4 in probability). Theorem 8 is proved. ut

4.3 Proof of Corollary 2

First, we need the following lemma, which says that X does not go back too far on
the left, and so X.t/ is very close from sup0�s�t X.s/:

Lemma 4 For every � > 0, there exists a constant c23.�/ such that P a.s. for large t,

0 � sup
0�s�t

X.s/� X.t/ � c23.�/ log t: (51)

Notice that this is not true in the recurrent case � D 0. An heuristic explanation
for 0 � � < 1 would be that the valleys of height approximatively log t have a
length of order .log t/2 in the case � D 0, whereas they have a height of order at
most log t in the case 0 < � < 1, see e.g. Andreoletti et al. [3, Lemma 2.7].

Proof (Proof of Lemma 4) Let � > 0. By Kawazu et al. ([35], Theorem p. 79
applied with c D �=2 to our �X), there exists a constant c24.�/ > 0 such that
P


infu�0 X.u/ < �c24.�/ log n
� � 1=n2 for large n. Since infu�0 X.H.n/Cu/�n has

the same law under P as infu�0 X.u/ due to the strong Markov property as explained
before Lemma 3, this gives

P
n P


infu�0 X.H.n/C u/ � n < �c24.�/ log n
�
< 1.

So by the Borel-Cantelli lemma, almost surely for large n,

inf
u�0X.H.n/C u/� n � �c24.�/ log n: (52)
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For t > 0, there exists n 2 N such that H.n/ � t < H.n C 1/. We have by (52),
almost surely if t is large,

sup
0�s�t

X.s/� X.t/ � sup
0�s�H.nC1/

X.s/� X.t/

D nC 1 � XŒH.n/C .t � H.n//�

� 1C c24.�/ log n:

Moreover, we have log v � 2 log H.v/ P a.s. for large v, by Theorem 1 if � > 1 and
by Theorem 8 if 0 < � � 1. Hence almost surely for large t, with the same notation
as before,

sup
0�s�t

X.s/ � X.t/ � 1C c24.�/ log n � 1C 2c24.�/ log H.n/ � 1C 2c24.�/ log t:

This proves the second inequality of (51). The first one is clear. ut
Proof (Proof of Corollary 2) By Lemma 4,

lim sup
t!1


X.t/=.t= log t/

� D lim sup
t!1

h	
sup
0�s�t

X.s/


=.t= log t/

i
:

So, (12) is equivalent to (12) with X.t/ replaced by sup0�s�t X.s/. The same remark
also applies to (11) and (13).

Now, we have sup0�s�y X.s/ � r ” H.r/ � y, r > 0, y > 0.
Consequently (11)–(13) with X.t/ replaced by sup0�s�t X.s/ follow respectively
from (9), (10) and Theorem 7 applied to a.r/ D .log r/ : : : .logk�1 r/.logk r/˛ .
Indeed for (13) when � D 1, cases k D 1, ˛ � 1 and k D 2, ˛ � 0 follow
from the case k D 3, ˛ D 1. This proves Corollary 2. ut

5 Proof of Theorems 2–6

Proof (Proof of Theorem 4: Case � > 1) Follows from Theorems 10 and 1. ut
Proof (Proof of Theorem 3) Follows from Theorems 9 and 1. ut
Proof (Proof of Theorem 6) We first notice that for every � > 0, thanks to Lemma 2
(i),

L�
X ŒH.F.r//�=r1=�

L�! 4

�2=


�1=��
sup0�u��ˇ.
/ ˇ.u/

�1=�
; (53)

where
L�! denotes convergence in law under P as r!C1.
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We now assume � > 1. In this case, H.F.r//=r !r!C1 4=.� � 1/ P-a.s. by
Lemma 1 Eq. (23) and Theorem 1 Eq. (8). This and (53) lead to the convergence

in law under P of L�
X.t/=t1=� to 4Œ�2.� � 1/=.4
/�1=�� sup0�u��ˇ.
/ ˇ.u/

�1=�
. Since

sup0�u��ˇ.
/ ˇ.u/ has by (18) the same law as 
=.2E /, where E is an exponential
variable with mean 1, this proves Theorem 6 when � > 1.

We finally assume � D 1. In this case, H.FŒt=.4 log t/�/=t !t!C1 1 in
probability under P by Lemma 1 and Theorem 1 Eq. (7). This, combined with (53)
leads to the convergence in law of L�

X.t/=.t= log t/ to 
�1 sup0�u��ˇ.
/ ˇ.u/, which
proves Theorem 6 when � D 1. ut

We now assume 0 < � � 1, and need to prove Theorems 2, 4 and 5.
Unfortunately, it follows immediately from Theorems 7 and 8 that there is no almost
sure convergence result for H.r/ in this case due to strong fluctuations; hence a joint
study of L�

X ŒH.r/� and H.r/ is useful. In Sect. 5.1, we prove a lemma which will be
needed later on. Section 5.2 is devoted to the proof of Theorems 2–5 in the case
0 < � < 1, whereas Sect. 5.3 to the proof of Theorems 4 and 5 in the case � D 1.

5.1 A Lemma

In this section we assume 0 < � � 1. Let ı1 > 0 and recall the definitions of t˙.r/
from (25) andbL˙.r/ from (27).

Lemma 5 Define E7.r/ WD
˚
bL�.r/ D bLC.r/

�
. For all ı2 2 .0; ı1/ and all large r,

we have

P

E7.r/

c
� � r�ı2 :

Proof Let ı2 2 .0; ı1/. Observe that

1 �
�bLC.r/
bL�.r/

��
� max

�

1;
sup0�u�� Q̌fŒ C.r/� �.r/��rg Q̌.u/

sup0�u��ˇ. �.r/�r/ ˇ.u/

�

; (54)

where Q̌.u/ WD ˇŒuC�ˇ. �.r/�r/�, u � 0, is a Brownian motion independent of the
random variable sup0�u��ˇ. �.r/�r/ ˇ.u/. By (18) and the usual inequality 1�e�x � x
(for x � 0),

P

�

sup
0�u�� Q̌fŒ C.r/� �.r/��rg

Q̌.u/ > Œ C.r/ �  �.r/��r1Cı2
�

� 1

2rı2
;

P

�

sup
0�u��ˇ. �.r/�r/

ˇ.u/ <
 �.r/�r

4ı2 log r

�

D 1

r2ı2
� 1

2rı2
;
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for large r. By definition,  ˙.r/ D 1 ˙ c5r�ı1 (see (25)). Therefore, we have for
large r, with probability greater than 1 � r�ı2 ,

sup0�u�� Q̌fŒ C.r/� �.r/��rg Q̌.u/
sup0�u��ˇ. �.r/�r/ ˇ.u/

� Œ C.r/�  �.r/��r1Cı2
 �.r/�r=.4ı2 log r/

D 8c5ı2r�.ı1�ı2/ log r

1 � c5r�ı1 < 1:

This, combined with (54), yields the lemma. ut

5.2 Case 0 < � < 1

This section is devoted to the proof of Theorems 2, 4 and 5 in the case 0 < � < 1.
For any Brownian motion .ˇ.u/; u � 0/, let

Nˇ WD
R C1
0

x1=��2Lˇ.�ˇ.
/; x/dx


sup0�u��ˇ.
/ ˇ.u/
�1=� :

So, in the notation of (15), (25) and (27), Nˇt
˙
.r/ D 4Œ�t˙.r/�1=�Kˇt

˙
.r/ .�/=

bL˙.r/,
r > 0.

On E2.r/ \ E3.r/ \ E7.r/ (the events E2.r/ and E3.r/ are defined in Lemma 2,
whereas E7.r/ in Lemma 5), we have, for some constant c25, " > 0 small enough
and all large r,

H.F.r//

L�
X ŒH.F.r//�

� 4.1� "/�1=��2t�.r/1=�fKˇt�.r/ .�/ � c6t�.r/1�1=�g
.1C "/bL�.r/

� .1 � 3"/��2Nˇt�.r/ � c25t�.r/=bL�.r/: (55)

Similarly, on E2.r/\ E3.r/\ E7.r/, for some constant c26 and all large r,

H.F.r//

L�
X ŒH.F.r//�

� .1C 3"/��2Nˇt
C
.r/ C c26

tC.r/
bLC.r/

: (56)

Define E8.r/ WD
˚
c25t�.r/=bL�.r/ � "; c26tC.r/=bLC.r/ � "

�
. By (35), PŒE8.r/c� �

1=r2 for large r. Thus PŒE2.r/\E3.r/\E7.r/\E8.r/� � 1� r�˛1 for some ˛1 > 0
and all large r by Lemmas 2 and 5. In view of (55) and (56), we have, for some
˛1 > 0 and all large r,

P

�

.1 � 3"/��2Nˇt�.r/ � " �
H.F.r//

L�
X ŒH.F.r//�

� .1C 3"/��2Nˇt
C
.r/ C "

�

� 1 � 1

r˛1
:

(57)
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We now proceed to the study of the law of Nˇ . By the second Ray-Knight theorem
(Fact 2), there exists a 0-dimensional Bessel process .U.x/; x � 0/, starting fromp

, such that

.Lˇ.�ˇ.
/; x/; x � 0/ D
�
U2.x/; x � 0�; (58)

sup
0�u��ˇ.
/

ˇ.u/ D inffx � 0; U.x/ D 0g DW U; (59)

Nˇ D �1=�
U

Z U

0

x1=��2U2.x/dx: (60)

By Williams’ time reversal theorem (Fact 4), there exists a 4-dimensional Bessel
process .R.s/; s � 0/, starting from 0, such that

.U.U � s/; s � U/
LD .R.s/; s � �a/; a WD

p

; �a WD supfs � 0; R.s/ D

p

g:

(61)

Therefore,

Nˇ
LD ��1=�

a

Z �a

0

x1=��2R2.�a � x/dx D
Z 1

0

.1 � v/1=��2
�

R.�av/p
�a

�2
dv:

Recall (Yor [52], p. 52) that for any bounded measurable functional G,

E

�

G

�
R.�au/p
�a

; u � 1
��

D E

�
2

R2.1/
G
�
R.u/; u � 1�

�

: (62)

In particular, for x > 0,

P
�
Nˇ > x

� D E

�
2

R2.1/
1fR 10 .1�v/1=��2R2.v/dv>xg

�

: (63)

5.2.1 Proof of Theorem 5 (Case 0 < � < 1)

Fix y > 0. By (63), for r > 1,

P.Nˇ > y log log r/ � E

�
2

R2.1/
1fR 10 .1�v/1=��2R2.v/dv>y log log r; R2.1/�1g

�

C2P
�Z 1

0

.1 � v/1=��2R2.v/dv > y log log r

�

WD ˘1.r/C˘2.r/ (64)

with obvious notation.
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We first consider ˘2.r/. Let H WD ˚�
t 2 Œ0; 1� 7! R t

0
f .s/ds

�
; f 2

L2
�
Œ0; 1�;R4

��
. As R is the Euclidean norm of a 4-dimensional Brownian motion

.�.t/; t � 0/, we have by Schilder’s theorem (see e.g. Dembo and Zeitouni [17],
Theorem 5.2.3),

lim
r!C1

1

y log log r
logP

�Z 1

0

.1 � v/1=��2R2.v/dv > y log log r

�

D � inf

�
1

2

Z 1

0

k�0.v/k2dv W � 2H ;

Z 1

0

.1 � v/1=��2k�.v/k2dv � 1
�

DW �c1.�/; (65)

where k 
 k denotes the Euclidean norm. For � 2H , k�.v/k2 D �� R v
0
�0.u/du

�
�2 �

v
R 1
0 k�0.u/k2du, where we applied Cauchy-Schwarz to each coordinate; thus

R 1
0 .1�

v/1=��2k�.v/k2dv �  R 1
0
.1 � v/1=��2vdv

� R 1
0
k�0.v/k2dv. So, c1.�/ 2 .0;1/.

By (65), for 0 < " < 1 and large r,

˘2.r/ � .log r/�.1�"/yc1.�/: (66)

Now, we consider ˘1.r/. As R is the Euclidean norm of a 4-dimensional
Brownian motion .�.t/; t � 0/, we have

˘1.r/ D E

�
2

k�.1/k2 1fk�.1/k�1g1fR 10 .1�v/1=��2k�.v/k2dv>y log log rg

�

:

By the triangular inequality, for any finite positive measure � on Œ0; 1�,

sZ 1

0

k�.v/k2d�.v/ �
sZ 1

0

k�.v/ � v�.1/k2d�.v/C
sZ 1

0

v2d�.v/ k�.1/k:

Therefore, applying this to d�.v/ D .1 � v/1=��2dv, we have for large r,

˘1.r/ � E

�
2

k�.1/k2 1fR 10 .1�v/1=��2k�.v/�v�.1/k2dv>.
p

y log log r�c27/2g

�

WD E

�
2

k�.1/k2 1E

�

;

where c27 WD
qR 1

0 v
2.1 � v/1=��2dv. By the independence of �.1/ and .�.v/ �

v�.1/; v 2 Œ0; 1�/, the expectation on the right hand side is D E
�

2
k�.1/k2

�
P.E/ D

P.E/ (the last identity being a consequence of (62) by taking G D 1 there).
Therefore,˘1.r/ � P.E/.



150 A. Devulder

Again, by the independence of �.1/ and .�.v/ � v�.1/; v 2 Œ0; 1�/, we see that,
by writing c28 WD 1=P.k�.1/k � 1/, ˘1.r/ � c28 P.E; k�.1/k � 1/. By another
application of the triangular inequality, this leads to, for large r:

˘1.r/ � c28 P

�Z 1

0

.1 � v/1=��2k�.v/k2dv >
	p

y log log r � 2c27

2�

:

In view of (65), we have, for all large r, ˘1.r/ � .log r/�.1�"/yc1.�/. Plugging this
into (64) and (66) yields that, for any y > 0, " > 0 and all large r,

P.Nˇ > y log log r/ � 2.log r/�.1�"/yc1.�/: (67)

Let 0 < " < 1=2, and sn WD exp.n1�"/. We get

C1X

nD1
P
˚ H.F.sn//

L�
X ŒH.F.sn//�

>
.1C 4"/ log log sn

.1� "/3�2c1.�/
�
<1

due to (57) and (67). By the Borel–Cantelli lemma, almost surely, for all large n,

H.F.sn//

L�
XŒH.F.sn//�

� 1C 4"
.1 � "/3�2c1.�/ log log sn: (68)

We now bound H.F.snC1//

H.F.sn//
. Observe that for large n, snC1 � sn � n�"sn. By

Lemma 1, almost surely for all large n,

HŒF.snC1/� � HŒF.sn/�

� H
�
1C 5s�ı0

nC1=�
�
snC1

� �H
�
1 � 5s�ı0

n =�
�
sn
�

� H
�
1 � 5s�ı0

n =�
�
sn C .2 � "/n�"sn

� �H
�
1 � 5s�ı0

n =�
�
sn
�

D inf
n
u � 0 W bXn.u/ > .2 � "/n�"sn

o
; (69)

where
�
bXn.u/; u � 0

�
is, conditionally on W� , a diffusion process in the random

potential bW�.x/ WD W�


x C �1 � 5

�
s�ı0

n

�
sn
� � W�

�
1 � 5

�
s�ı0

n

�
sn
�
, x 2 R, starting

from 0. We denote by bHn.r/ the hitting time of r � 0 bybXn, so that

inf
n
u � 0 W bXn.u/ > .2 � "/n�"sn

o
D bHn


.2 � "/n�"sn

�
: (70)

Note that for any r > 0, under P, bHn.r/ is distributed as H.r/. Therefore,
applying (42) and Lemma 1 to r D 2n�"sn yields that, for any 0 < ı0 < 1

2
,

X

n

P

h
bHn
�
1 � 5.2n�"sn/

�ı0=�
�
2n�"sn

�
>

n.log n/1C"tC.2n�"sn/

�1=�i
<1:
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Since

1 � 5

�
.2n�"sn/

�ı0�2n�"sn � .2 � "/n�"sn (for large n), it follows from

the Borel–Cantelli lemma that, almost surely for all large n, bHn Œ.2 � "/n�"sn� �
n.log n/1C"tC.2n�"sn/

�1=�
: This, together with (69) and (70), yields that, almost

surely for all large n,

HŒF.snC1/� �HŒF.sn/� �

n.log n/1C"tC.2n�"sn/

�1=� � c29

n1�".log n/1C"sn

�1=�
:

Recall from Lemma 1 and Theorem 8 that, almost surely, for all large n, HŒF.sn/� �
HŒ.1 � "/sn� � c30s

1=�
n

.log log sn/1=��1 , which yields

HŒF.snC1/�
HŒF.sn/�

� 1C c29Œn1�".log n/1C"sn�
1=�

c30s
1=�
n =.log log sn/1=��1 � c31.log sn/

1=�.log log sn/
.2C"/=��1:

In view of (68), this gives, almost surely, for large n and t 2 ŒH.F.sn//; H.F.snC1//�,

t

L�
X.t/
� HŒF.sn/�

L�
XŒH.F.sn//�

HŒF.snC1/�
HŒF.sn/�

< c32.log sn/
1=�.log log sn/

.2C"/=�:

Since, almost surely for all large n, log HŒF.sn/� � log HŒ.1 � "/sn� � 1�"
�

log sn

(this is seen first by Lemma 1, and then by Theorem 8), we have proved that

lim inf
t!C1

L�
X.t/

t.log t/�1=�.log log t/�.2C"/=�
� c33 P-a.s.

Since " 2 .0; 1
2
/ is arbitrary, this proves Theorem 5 in the case 0 < � < 1. ut

5.2.2 Proof of Theorem 4 (Case 0 < � < 1)

By (63), for any s > 0 and u > 0,

P.Nˇ > s/ � 2

u
P

�Z 1

0

.1 � v/1=��2R2.v/dv > s; R2.1/ � u

�

� 2

u
P

�Z 1

0

.1 � v/1=��2R2.v/dv > s

�

� 2
u
P
�
R2.1/ > u

�
:

The first probability term on the right hand side is taken care of by (65), whereas
for the second, we have 1

u logP.R2.1/ > u/ ! � 1
2
, for u ! 1, since R2.1/ has

a chi-squared distribution with 4 degrees of freedom. Taking u WD exp.
p

log log r /
leads to: for any y > 0,

lim inf
r!1

logP.Nˇ > y log log r/

log log r
� �yc1.�/:
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Plugging this into (57) yields that, for rn WD exp.n1C"/,

X

n�1
P

�
.H ı F/.r2n/

.L�
X ı H ı F/.r2n/

>
.1 � 3"/ log log r2n

�2c1.�/.1C "/3 � "
�

D C1:

Let Zn WD Pn
kD1 rk. By Lemma 3 (in its notation), almost surely, for infinitely

many n,

sup
u2Œ.1�"/r2n;.1C"/r2n�

HXı�H.Z2n�1/
.u/

.L� ı H/Xı�H.Z2n�1/
.u/

>
.1 � 8"/ log log r2n

�2c1.�/
; (71)

if " > 0 is small enough. Observe that

.L� ı H/Xı�H.Z2n�1/
.u/ D sup

x2R
LeXn

�
eHn.u/; x

� DW L�
eXn

�
eHn.u/

�
; (72)

where
�
eXn.v/; v � 0

�
is a diffusion process in the random potential W�.xCZ2n�1/�

W�.Z2n�1/, x 2 R,
�
LeXn
.t; x/; t � 0; x 2 R

�
is its local time and eHn.r/ WD inf

˚
t >

0; eXn.t/ > r
�
, r > 0. Hence, for any u > 0, under P, the left hand side of (72) is

distributed as L�
X.H.u//. Applying (38) and Lemma 1 to Qr2n WD .1 � "/2r2n, there

exists c34 > 0 such that

X

n

P

h
L�
eXn

�
eHn
�
1C 5.Qr2n/

�ı0=�
�Qr2n

��
< c34Œr2n= log log r2n�

1=�
i
<1:

Since
�
1 C 5

�
.Qr2n/

�ı0�Qr2n � .1 � "/r2n for large n, the Borel-Cantelli lemma gives
that, almost surely, for all large n,

c34

r2n= log log r2n

�1=� � L�
eXn

�
eHnŒ.1 � "/r2n�

� � L�
eXn

�
eHn.u/

�
(73)

for any u 2 Œ.1� "/r2n; .1C "/r2n�. Applying Theorem 9, we have almost surely for
large n,

L�
X ŒH.Z2n�1/� � ŒZ2n�1 log2 Z2n�1�1=� � "Œr2n= log log r2n�

1=� � ."=c34/L
�
eXn

�
eHn.u/

�

for u 2 Œ.1 � "/r2n; .1C "/r2n�, since Zk � k exp.�k"/rkC1 for large k. Hence,

L�
XŒH.Z2n�1 C u/� � .1C "=c34/L

�
eXn

�
eHn.u/

�
: (74)

On the other hand, we have by Theorem 7, almost surely, for all large n,

log log r2n � .1 � "/ log log H.Z2n�1 C u/; u 2 Œ.1 � "/r2n; .1C "/r2n�:
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Consequently, almost surely for infinitely many n, by (74) and (71),

inf
v2ŒZ2n�1C.1�"/r2n;Z2n�1C.1C"/r2n�

L�
XŒH.v/�

H.v/= log log H.v/

� .1C c35"/ inf
u2Œ.1�"/r2n;.1C"/r2n�

.L� ı H/Xı�H.Z2n�1/
.u/

HXı�H.Z2n�1/
.u/= log log r2n

� .1Cc36"/�
2c1.�/;

proving Theorem 4 in the case 0 < � < 1. ut

5.2.3 Proof of Theorem 2

Assume 0 < � < 1. Fix x > 0, and let rn WD exp.n1C"/. Since P.Nˇ < x/ > 0, (57)

implies
P

n2N P

	
.HıF/.r2n/

.L�

X ıHıF/.r2n/
<

.1C3"/x
�2
C "



D C1. By Lemma 3, for small " >

0, almost surely for infinitely many n,

inf
u2Œ.1�"/r2n; .1C"/r2n�

HXı�H.Z2n�1/
.u/

.L� ı H/Xı�H.Z2n�1/
.u/

<
.1C 3"/x

�2
C ": (75)

With the same notation as in (72), HXı�H.Z2n�1/
.u/ D H.Z2n�1 C u/ � H.Z2n�1/ is

the hitting time eHn.u/ of u by the diffusioneXn. For any u, under P, it has the same
distribution as H.u/. Hence, applying (48) and Lemma 1 to Qr2n D .1 � "/2r2n leads
to (for 0 < ı0 < 1=2)

X

n

P

�
eHn

�	
1C 5

�
.Qr2n/

�ı0


Qr2n

�

< r1=�2n = log r2n

�

<1:

Since
�
1C 5

�
.Qr2n/

�ı0�Qr2n < .1� "/r2n for large n, it follows from the Borel-Cantelli
lemma that, almost surely, for all large n,

r1=�2n

log r2n
� eHnŒ.1 � "/r2n� � inf

u2Œ.1�"/r2n;.1C"/r2n�
HXı�H.Z2n�1/

.u/: (76)

On the other hand, by Theorem 7, H.Z2n�1/ � ŒZ2n�1 log2 Z2n�1�1=� � "
r
1=�
2n

log r2n

almost surely, for all large n. This and (76) give, for u 2 Œ.1 � "/r2n; .1 C "/r2n�,
H.Z2n�1 C u/ � .1C "/HXı�H.Z2n�1/

.u/. Plugging this into (75) yields that, almost
surely, for infinitely many n,

inf
u2Œ.1�"/r2n; .1C"/r2n�

H.Z2n�1 C u/

L�
X.H.Z2n�1 C u//

<
.1C "/.1C 3"/x

�2
C ".1C "/:
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Hence lim supt!C1
L�

X .t/
t � �2

x , a.s. Sending x ! 0 completes the proof of
Theorem 2. ut

5.3 Case � D 1

This section is devoted to the proofs of Theorems 4 and 5 in the case � D 1 (thus

 D 8; since 
 D 4.1C �/). Let

Nˇ.t/ WD 1

sup0�u��ˇ.8/ ˇ.u/

� Z 1

0

Lˇ.�ˇ.8/; x/� 8
x

dx

C
Z C1

1

Lˇ.�ˇ.8/; x/

x
dxC 8 log t

�

:

Exactly as in (57), we have, for some ˛1 > 0, any " 2 .0; 1=3/, and all large r,

P

�

.1 � 3"/Nˇt�.r/ Œt�.r/� �
H.F.r//

L�
X ŒH.F.r//�

� .1C 3"/Nˇt
C
.r/ ŒtC.r/�

�

� 1 � 1

r˛1
;

(77)

where t˙.
/ are defined in (25), and Cˇ in (16). (Compared to (57), we no longer
have the extra “˙"” terms, since they are already taken care of by the presence of
8 log t in the definition of Nˇ.t/).

With the same notation as in (58) and (59), the second Ray-Knight theorem
(Fact 2) gives

Nˇ.t/ D 1

U

� Z 1

0

U2.x/� 8
x

dxC
Z C1

1

U2.x/

x
dxC 8 log t

�

(78)

D 1

U

"Z U

0

U2.x/� 8
x

dxC 8 log U C 8 log t

#

; (79)

since U.x/ D 0 for every x � U.

5.3.1 Proof of Theorem 5 (Case � D 1)

We have 
 D 8 in the case � D 1. Since supx>0
log x

x <1, we have

Nˇ.t/ � c37 C 1

U

Z U

0

jU2.x/ � 8j
x

dxC 8 log t

U
: (80)
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We claim that for some constant c38 > 0,

lim sup
y!C1

1

y
logP

 
1

U

Z U

0

jU2.x/� 8j
x

dx > y

!

� �c38: (81)

Indeed, U D sup0�u��ˇ.8/ ˇ.u/ by definition (see (59)), which, in view of (18),

implies that P.U > z/ D 1� e�4=z � 4=z for z > 0. Therefore, if we write p.y/ for
the probability expression at (81), we have, for any z > 0,

p.y/ � 4

z
C P

 
1

U

Z U

0

jU2.x/� 8j
x

dx > y; U � z

!

:

In the notation of (61)–(62), this yields

p.y/ � 4

z
C P

�
1

�a

Z 1

0

jR2.�av/� 8j
1 � v dv > y; �a � z

�

D 4

z
C E

�
2

R2.1/
1fR 10 jR2.v/�R2.1/j

1�v dv>y; R2.1/�8=zg

�

� 4

z
C z

4
P

�Z 1

0

jR2.v/ � R2.1/j
1 � v dv > y

�

: (82)

In order to apply Schilder’s theorem as in (65), let � 2 H . As before

between (65) and (66), we have k�.t/k � pt
 R 1

0
k�0.s/k2ds

�1=2
. Similarly,

ˇ
ˇk�.u/k � k�.1/kˇˇ � k�.u/� �.1/k � p1 � u

 R 1
0
k�0.s/k2ds

�1=2
. Hence,

Z 1

0

ˇ
ˇk�.u/k2 � k�.1/k2ˇˇ

1 � u
du D

Z 1

0

ˇ
ˇk�.u/k � k�.1/kˇˇ

1 � u

k�.u/k C k�.1/k�du

� 2
�Z 1

0

dup
1 � u

�Z 1

0

k�0.s/k2ds:

Consequently,

c39 WD inf

�
1

2

Z 1

0

�
��0.u/

�
�2du W � 2H ;

Z 1

0

ˇ
ˇk�.u/k2 � k�.1/k2ˇˇ

1 � u
du>1

�

2.0;1/:

Applying Schilder’s theorem gives lim supy!C1 1
y logP

	R 1
0

jR2.v/�R2.1/j
1�v dv > y



�

�c39. Plugging this into (82), and taking z D exp. c39
2

y/ there, we obtain the claimed
inequality in (81), with c38 WD c39=2.

On the other hand, by (18) and (59),

P

�
8 log t

U
> 2.1C 2"/.log t/ log log t

�

D 1

.log t/1C2"
:
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This, combined with (80) and (81) gives, for all large t,

P
˚
Nˇ.t/ > 2.1C 3"/.log t/ log log t

� � 2

.log t/1C2"
:

Let sn WD exp.n1�"/. By (77), we have

C1X

nD1
P

�
H.F.sn//

L�
X ŒH.F.sn//�

> 2.1C 3"/2.log sn/ log log sn

�

<1;

which, by means of the Borel–Cantelli lemma, implies that, almost surely, for all
large n,

H.F.sn//

L�
X ŒH.F.sn//�

� 2.1C 3"/2.log sn/ log log sn: (83)

Now we give an upper bound for H.F.snC1//

H.F.sn//
. By Lemma 1, almost surely for n large

enough, F.sn/ � .1 � "/sn. An application of Theorem 8 yields that, almost surely,
for large n,

HŒF.sn/� � HŒ.1 � "/sn� � 4.1� 2"/sn log sn: (84)

With the same notation and the same arguments as in (69) and (70), almost surely
for all large n, HŒF.snC1/� � HŒF.sn/� � bHnŒ.2 � "/n�"sn�. Moreover, bHn.r/ is
distributed as H.r/ under P for any r > 0. Hence, applying Lemma 1 and (46) to
r D Qsn WD 2n�"sn and a.e�2Qsn/ D 8n.log n/1C" for 0 < ı0 < 1

2
, we get

X

n

P

h
bHn
�
.1 � 5.Qsn/

�ı0=�/esn
�
> 32.1C "/tC.Qsn/


c3 C n.log n/1C"C log tC.Qsn/

�i

<1:

Since Œ1� 5
�
.Qsn/

�ı0 �Qsn � .2� "/n�"sn (for large n), the Borel-Cantelli lemma yields
that

bHn
�
.2 � "/n�"sn

� � 32.1C "/tC.2n�"sn/Œc3 C n.log n/1C" C log tC.2n�"sn/�;

almost surely for large n. Hence, HŒF.snC1/� � HŒF.sn/� � c39sn.log sn/.log n/1C".
Hence, by (84), we have, almost surely, for all large n,

HŒF.snC1/�=HŒF.sn/� � c40.log log sn/
1C":
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Let t 2 ŒH.F.sn//; H.F.snC1//�. By (83), if t is large enough,

t

L�
X.t/
� HŒF.sn/�

L�
X ŒH.F.sn//�

HŒF.snC1/�
HŒF.sn/�

< 3c40.log sn/.log log sn/
2C":

Since almost surely for large n, log HŒF.sn/� � log HŒ.1 � "/sn� � log sn (by
Lemma 1 and Theorem 8), this yields

lim inf
t!C1

L�
X.t/

t=Œ.log t/.log log t/2C"�
� 1

3c40
P-a.s.

Theorem 5 is proved in the case � D 1. ut

5.3.2 Proof of Theorem 4 (Case � D 1)

Again, 
 D 8. Let 0 < " < 1=2. Recall that U D sup0�u��ˇ.8/ ˇ.u/, and that

Nˇ.t/ D 1
U

h R U

0
U2.x/�8

x dxC 8 log U C 8 log t
i

(see (59) and (79)). This time, we

need to bound Nˇ.t/ from below. By (18) for large z,

P

�

8
log U

U
< �z

�

� P

�

� 1
2U

< �z

�

D P

�

U <
1p

z

�

D exp
��4pz

�
:

By (18) again,

P

�
8 log t

U
> 2.1� "/.log t/ log log t

�

D 1

.log t/1�"
:

On the other hand, for all large y, P
�
1
U

R U

0
jU2.x/�8j

x dx > y
� � e�c41y (see (81)).

Assembling these pieces yields that, for all large t,

PŒNˇ.t/ > 2.1� 2"/.log t/ log log t� � 1

2.log t/1�"
:

Let rn WD exp.n1C"/. In view of (77) and Lemma 3, we get almost surely for
infinitely many n,

sup
u2Œ.1�"/r2n; .1C"/r2n�

HXı�H.Z2n�1/
.u/

.L� ıH/Xı�H.Z2n�1/
.u/

> 2.1� 2"/.1� 3"/.log r2n/ log log r2n:

(85)

The expression on the left hand side of (85) is “close to” H.r2n/=L�
XŒH.r2n/�,

but we need to prove this rigorously. With the same argument as in the displays
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between (72) and (73), we get that there exists c42 > 0 such that, almost surely for
large n,

inf
u2Œ.1�"/r2n;.1C"/r2n�

.L� ı H/Xı�H.Z2n�1/
.u/ � c42r2n= log log r2n:

Observe that Zk � k exp.�k"/rkC1 for large k, as in the paragraph after (39). Exactly
as in the case 0 < � < 1, we apply Theorem 9, to see that almost surely for large n,

L�
XŒH.Z2n�1/� � "r2n= log log r2n � ."=c42/ inf

u2Œ.1�"/r2n;.1C"/r2n�
.L� ı H/Xı�H.Z2n�1/

.u/;

which implies, for all u 2 Œ.1 � "/r2n; .1C "/r2n�,

L�
X ŒH.Z2n�1 C u/� � .1C "=c42/.L

� ı H/Xı�H.Z2n�1/
.u/: (86)

By Theorem 7, almost surely for all large n, supu2Œ.1�"/r2n;.1C"/r2n�
log H.Z2n�1Cu/ �

.1C "/ log r2n. In view of (86) and then (85), there are almost surely infinitely many
n such that

inf
v2ŒZ2n�1C.1�"/r2n;Z2n�1C.1C"/r2n�

L�
X ŒH.v/�

H.v/=Œ.log H.v// log log H.v/�

� .1C c43"/ inf
u2Œ.1�"/r2n;.1C"/r2n�

.L� ı H/Xı�H.Z2n�1/
.u/

HXı�H.Z2n�1/
.u/Œ.log r2n/ log log r2n��1

� .1C c44"/=2:

This proves Theorem 4 in the case � D 1. ut
Remark 1 Assume � D 1. We also prove that in this case, P almost surely,

lim sup
t!C1

L�
X.t/=t � 8=Œc17�� D 1=2: (87)

This is in agreement with Theorem 1.1 of Gantert and Shi [26] for RWRE. However,
we could not prove whether this lim sup is finite or not, contrarily to the cases � 2
.0; 1/ and � > 1, and to the case of RWRE, for which the maximum local time at
time t is clearly less than t=2.

We now prove (87). With the same notation as in (58) and (59), let bCU WDR 1
0

U2.x/�8
x dx C R C1

1
U2.x/

x dx, " 2 .0; 1=3/ and y WD .1 C "/2c17�=Œ8.1 � "/�. We
have for z > 0, by (78),

PŒNˇ.t/ < y� D P

bCU C 8 log t < yU

� � P

.zC 8/ log t < yU;bCU � z log t

�
:
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Notice that bCU
LD Cˇ

LD 8c3 C .�=2/Cca
8 first by (58) and (16), then by Fact 5. So,

P

bCU > z log t

� D P

Cca
8 > .2z=�/ log t � 16c3=�

� �t!C1 �c17=.2z log t/ (see
before (46)). Moreover, PŒ.z C 8/ log t < yU� �t!C1 4y=Œ.z C 8/ log t� by (59)
and (18). Thus,

PŒNˇ.t/ < y� � P

.zC 8/ log t < yU

� � P

bCU > z log t

�

� Œ4.1� "/y=.zC 8/� .1C "/�c17=.2z/�= log t

D .1C "/c17�Œ.1C "/=.zC 8/� 1=z�=.2 log t/:

So we can choose z so that PŒNˇ.t/ < y� � c45= log t for some constant c45 > 0. We
now set rk WD kk, k 2 N

�. This and (77) give for some ˛1 > 0,

P

�
L�

XŒH.F.r2n//�

H.F.r2n//
> Œ.1C 3"/y��1

�

� P

�

NˇŒtC.r2n/� < y

�

� 1

r˛12n

� c45
2 log r2n

� c45
5n log n

for large n. Hence by Lemma 3 in its notation, P almost surely, there exist infinitely
many n such that for some tn 2 Œ.1 � "/r2n; .1C "/r2n�,

.L� ı H/Xı�H.Z2n�1/
.tn/

HXı�H.Z2n�1/
.tn/

> Œ.1C 3"/y��1: (88)

Notice that Z2n�1 DP2n�1
kD1 kk � .2n� 1/2n�1CP2n�2

kD1 .2n� 2/2n�2 � 2.2n/2n�1 D
r2n=n. We have by Theorem 7, almost surely for all large n,

H.Z2n�1/ � Z2n�1.log Z2n�1/.log log Z2n�1/2 � "r2n log r2n: (89)

On the other hand, first by Lemmas 1 and 2, then by (41) and since EŒexp.�Cca
8 /� D

1 as before (50), for every " > 0 small enough,

P

HXı�H.Z2n�1/

..1 � "/r2n/ < .1 � 10"/32t�.r2n/Œlog t�.r2n/C c3�
�

� P

.1 � "/bI�..1 � 2"/r2n/ < .1 � 10"/32t�.r2n/Œlog t�.r2n/C c3�

�C 2r�˛1
2n

� P

Cca
8 < �".16=�/ log r2n

�C 2r�˛1
2n � 2r�16"=�

2n :

Hence, thanks to the Borel Cantelli lemma, almost surely for large n,

HXı�H.Z2n�1/
.tn/ � HXı�H.Z2n�1/

..1� "/r2n/

� .1 � 10"/32t�.r2n/Œlog t�.r2n/C c3� � .1 � 11"/4r2n log r2n:
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This together with (88) and (89) gives P almost surely for infinitely many n,

L�
XŒH.Z2n�1 C tn/�

H.Z2n�1 C tn/
� .L� ı H/Xı�H.Z2n�1/

.tn/

HXı�H.Z2n�1/
.tn/

HXı�H.Z2n�1/
.tn/

H.Z2n�1/C HXı�H.Z2n�1/
.tn/

� Œ.1C 3"/y��1.1C "/�1 � .1 � 10"/8=Œc17��;

for small ". As before, let t! C1, and then "! 0. This proves (87) since c17 D 16
�

as before (46).

6 Proof of Lemma 2

This section is devoted to the proof of Lemma 2. The basic idea goes back to Hu
et al. [33], but requires considerable refinements due to the complicated nature of
the process x 7! LX.t; x/ and to the fact that we are interested in the joint law of�
L�

X ŒH.:/�;H.:/
�
. Throughout the proof we consider the annealed probability P.

Let � > 0 and " 2 .0; 1/. We fix r > 1. Recall that A.x/ D R x
0

eW� .u/du, and
A1 D limx!C1 A.x/ < 1, a.s. As in Brox [11, Eq. (1.1)], the general diffusion
theory leads to

X.t/ D A�1ŒB.T�1.t//�; t � 0; (90)

where .B.s/; s � 0/ is a Brownian motion independent of W, and for 0 � u <

�B.A1/, T.u/ WD R u
0

expf�2W�ŒA�1.B.s//�gds (A�1 and T�1 denote respectively
the inverses of A and T). The local time of X can be written as (see Shi [43,
Eq. (2.5)])

LX.t; x/ D e�W� .x/LB
�
T�1.t/;A.x/

�
; t � 0; x 2 R: (91)

As in (5), H.
/ denotes the first hitting time of X. Then as in Shi [44, Eqs. (4.3)–
(4.6)],

H.u/ D TŒ�B.A.u//� D
Z 0

�1
C
Z A.u/

0

e�2W� ŒA�1.x/�LB.�BŒA.u/�; x/dx

DW H�.u/C HC.u/ (92)

for u � 0. Recall F from (20) and notice that F.r/ > 0 on E1.r/ if r is large enough.
By scaling since W� and then A.F.r// are independent of B, and then by the first
Ray-Knight theorem (Fact 1), there exists a squared Bessel process of dimension 2,
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starting from 0 and denoted by
�
R22.s/; s � 0�, independent of W� , such that

�
LBf�BŒA.F.r//�;A.F.r// � sA.F.r//g

A.F.r//
; s 2 Œ0; 1�

�

D �R22.s/; s 2 Œ0; 1�� :

Hence, it is more convenient to study L�
X ŒH.:/� instead of L�

X.t/. We consider

LC
X ŒH.u/� WD sup

x�0
LX.H.u/; x/ D sup

0�x�u

˚
e�W� .x/LBŒ�B.A.u//;A.x/�

�
; u � 0:

In particular,

LC
X ŒH.F.r//� D sup

x2Œ0;F.r/�

�

e�W� .x/A.F.r//R22

�
A.F.r//� A.x/

A.F.r//

��

:

Moreover, by Lamperti’s representation theorem (Fact 3), there exists a Bessel
process � D .�.t/; t � 0/, of dimension .2� 2�/, starting from �.0/ D 2, such that
for all t � 0, eW� .t/=2 D 1

2
�.A.t//. Now, let

eR2C2�.t/ WD �.A1 � t/; 0 � t � A1:

By Williams’ time reversal theorem (Fact 4),eR2C2� is a Bessel process of dimension
.2 C 2�/, starting from 0. Since W� and A.F.r// are independent of R2, u 7!p

A.F.r//R2.u=A.F.r/// is a 2-dimensional Bessel process, starting from 0 and
independent ofeR2C2� . We still denote by R2 this new Bessel process. We obtain

LC
X ŒH.F.r//� D 4 sup

x2Œ0;F.r/�
R22ŒA.F.r//� A.x/�
eR22C2� ŒA1 � A.x/�

D 4 sup
v2Œ0;A.F.r//�

R22.v/
eR22C2�ŒA1 � A.F.r//C v� :

Doing the same transformations on HC.F.r// (see (92)) and recalling that A1 �
A.F.r// D ı.r/ D exp.��r=2/ and so is deterministic thanks to the random
function F, we obtain

�
LC

X ŒH.F.r//�;HCŒF.r/�
�

D
 

4 sup
v2Œ0;A.F.r//�

R22.v/
eR22C2�Œı.r/C v�

; 16

Z A.F.r//

0

R22.s/
eR42C2�Œı.r/C s�

ds

!

D
 

4 sup
u2Œ0;ı.r/�1A.F.r//�

R22Œı.r/u�
eR22C2�Œı.r/.1Cu/�

; 16

Z ı.r/�1A.F.r//

0

R22Œı.r/u�ı.r/du
eR42C2�Œı.r/.1Cu/�

!

:
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We still denote by R2 the 2-dimensional Bessel process u 7! 1p
ı.r/

R2.ı.r/u/. We
define

bR2C2�.u/ D 1
p
ı.r/

eR2C2�Œı.r/.1C u/�; u � 0: (93)

Notice that bR2C2�.u/ is a .2 C 2�/-dimensional Bessel process, starting from
eR2C2�.ı.r//=

p
ı.r/ and independent of R2.

Recall (see e.g. Karlin and Taylor [34, p. 335]) that a Jacobi process .Y.t/; t � 0/
of dimensions .d1; d2/ is a solution of the stochastic differential equation

dY.t/ D 2pY.t/.1 � Y.t// d Ǒ.t/C d1 � .d1 C d2/Y.t/
�
dt; (94)

where
� Ǒ.t/; t � 0� is a standard Brownian motion.

Due to Warren and Yor [50, p. 337], there exists a Jacobi process .Y.t/; t � 0/ of
dimensions .2; 2C 2�/, starting from 0, independent of

�
R22.t/CbR22C2�.t/; t � 0�,

such that

8u � 0; R22.u/

R22.u/CbR22C2�.u/
D Y ı�Y.u/; �Y.u/ WD

Z u

0

ds

R22.s/CbR22C2�.s/
:

(95)

In particular, .�Y.t/; t � 0/ is independent of Y. As a consequence, for all r � 0,

.LC
X ŒH.F.r//�;HCŒF.r/�/

D
 

4 sup
u2Œ0;ı.r/�1A.F.r//�

Y ı�Y.u/

1 � Y ı�Y.u/
; 16

Z ı.r/�1A.F.r//

0

ŒY ı�Y.u/��0
Y.u/du

Œ1 � Y ı�Y.u/�2

!

D
�

4 sup
u2Œ0;'.r/�

Y.u/

1 � Y.u/
; 16

Z '.r/

0

Y.u/

.1 � Y.u//2
du

�

;

where

'.r/ WD �Y

ı.r/�1A.F.r//

�
: (96)

Define ˛� WD 1=.4C 2�/ and let TY.˛�/ WD infft > 0;Y.t/ D ˛�g be the hitting
time of ˛� by Y. We introduce

L.r/ WD 4 sup
u2Œ0;TY .˛� /�

Y.u/

1 � Y.u/
; H.r/ WD 16

TY .˛�/Z

0

Y.u/

.1 � Y.u//2
du; (97)
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L0.r/ WD 4 sup
u2ŒTY .˛�/;'.r/�

Y.u/

1 � Y.u/
; H0.r/ WD 16

'.r/Z

TY .˛�/

Y.u/

.1� Y.u//2
du:

We have on E9 WD fTY.˛�/ � 64 log r � �r=.2
/ � '.r/g,
�
LC

X ŒH.F.r//�; HC.F.r//
� D �maxfL.r/;L0.r/g; H.r/CH0.r/

�
; (98)

L.r/ � 4˛�

1 � ˛� and H.r/ � 16˛�

.1 � ˛�/2 TY.˛�/ � 210˛�

.1 � ˛�/2 log r: (99)

Observe that S.y/ WD R y
˛�

dx
x.1�x/1C� , y 2 .0; 1/ is a scale function of Y, as in Hu et

al. [33, Eq. (2.27)]. Hence t 7! SŒY.t C TY .˛�//� is a continuous local martingale,
so by Dubins-Schwarz theorem, there exists a Brownian motion .ˇ.t/; t � 0/ such
that for all t � 0,

YŒt C TY.˛�/� D S�1fˇŒUY .t/�g; (100)

UY.t/ WD 4

Z t

0

ds

YŒsC TY.˛�/�f1 � YŒsC TY .˛�/�g1C2� : (101)

The rest of the proof of Lemma 2 requires some more estimates, stated as
Lemmas 6–9 below. Lemmas 6–8 deal only with Bessel processes, Jacobi processes
and Brownian motion, and may be of independent interest, whereas Lemma 9 gives
an upper bound for the total time spent by X on .�1; 0/, and for the maximum
local time of X in .�1; 0/. We defer the proofs of Lemmas 6–8 to Sect. 7, and we
complete the proof of Lemma 2.

Lemma 6 Let .R.t/; t � 0/ be a Bessel process of dimension d > 4, starting from

R0
LD eRd�2.1/, where

�
eRd�2.t/; t 2 Œ0; 1�� is .d � 2/-dimensional Bessel process.

For any ı3 2 .0; 12 / and all large t,

P

�ˇˇ
ˇ
ˇ
1

log t

Z t

0

ds

R2.s/
� 1

d � 2
ˇ
ˇ
ˇ
ˇ >

1

.log t/.1=2/�ı3

�

� exp
��c46 .log t/2ı3

�
:

Lemma 7 Let ı1 > 0 and define

E10 WD
˚
�ˇ
�
1 � v�ı1�
v

� � UY.v/ � �ˇ
�
1C v�ı1�
v

��
: (102)

If ı1 is small enough, then for all large v, P.Ec
10/ � 1

v1=4�5ı1
.

In the two previous lemmas, taking respectively 1

.log t/.1=2/�ı3
and v�ı1 instead of

simply some fixed Q" > 0 is necessary to obtain Lemma 2 with  ˙.r/ instead of
simply 1 ˙ Q" in the definition of bL˙.r/ andbI˙.r/, which itself is necessary for
example to prove Lemma 5.
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Lemma 8 Let .ˇ.s/; s � 0/ be a Brownian motion, and 
 D 4.1C �/ as before.
We define

Jˇ.�; t/ WD
Z 1

0

y.1� y/��2Lˇ

�ˇ.
/; S.y/=t

�
dy; 0 < � � 1; t � 0: (103)

Let 0 < d < 1 and recall that 0 < " < 1.

(i) Case 0 < � < 1: recall Kˇ.�/ from (15). There exist c47 > 0 and c48 > 0 such
that for all large t, on an event E11 of probability greater than 1 � c47=td, we
have

.1 � "/Kˇ.�/ � c48t
1�1=� � �2�1=� t1�1=�Jˇ.�; t/ � .1C "/Kˇ.�/C c48t

1�1=� :
(104)

(ii) Case � D 1: recall Cˇ from (16). There exists c47 > 0 such that for t large
enough, on an event E11 of probability greater than 1 � c47=td,

.1 � "/ŒCˇ C 8 log t� � Jˇ.1; t/ � .1C "/ŒCˇ C 8 log t�: (105)

Lemma 9 Let � > 0 and define

L��
X .C1/ WD sup

r�0
sup
x<0

LX.H.r/; x/D sup
t�0

sup
x<0

LX.t; x/; H�.C1/ WD lim
r!C1 H�.r/:

There exist c49 > 0 and c50 > 0 such that for all large z,

P

L��

X .C1/ > z
� � c49z

��=.�C2/; (106)

P

H�.C1/ > z

� � c50Œ.log z/=z��=.�C2/: (107)

Proof (Proof of Lemma 9) This lemma is proved in Andreoletti et al. ([3,
Lemma 3.5], which is true for every � > 0). More precisely, (107) is proved in
[3, Eq. (3.29)], whereas (106) is proved in [3, Eq. (3.31)]. ut

By admitting Lemmas 6–8, we can now complete the proof of Lemma 2.

Proof (Proof of Lemma 2: Part (i)) Notice that

S.y/ �
y!1

Z y

˛�

ds

.1� s/1C�
�

y!1

1

�

1

.1 � y/�
:

y

1 � y
�

y!1
Œ�S.y/�1=�: (108)

DefineeL0.r/ WD 4


supu2ŒTY .˛�/;'.r/� �S.Y.u//
�1=�

. We have,

eL0.r/ D 4
h

sup
u2Œ0;'.r/�TY .˛�/�

�ˇ
�
UY.u/

�i1=� D 4
h

sup
s2Œ0;UY .'.r/�TY .˛� //�

�ˇ.s/
i1=�

:

(109)
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Recall L0 from (97). By (108), there exists a constant c51 > 0 depending on " such
that

˚
eL0.r/ > c51

� � ˚.1 � "/eL0.r/ � L0.r/ � .1C "/eL0.r/
�
: (110)

We look for an estimate of UY Œ'.r/ � TY.˛�/� appearing in the expression of
eL0.r/ in the right hand side of (109). Recall (see Dufresne [24], or Borodin et al.

[10, IV.48 p. 78]) that A1
LD 2=�� , where �� is a gamma variable of parameter

.�; 1/, with density e�xx��11.0;1/.x/=� .�/. Since A.F.r// � A1, we have

P

A.F.r// > r2=�

� � P

�� < 2r�2=�� � 2�r�2=Œ�� .�/�:

On the other hand, by definition, A.F.r// D A1 � ı.r/ D A1 � e��r=2 (see (20)),
which implies

P

�

A.F.r// <
1

2 log r

�

D P

�
2

��
<

1

2 log r
C ı.r/

�

� 1

r2

for large r. Consequently,

P
˚
�r=2� 2 log log r � log


ı.r/�1A.F.r//

� � �r=2C .2=�/ log r
� � 1 � c52r

�2:

Recall that '.r/ D �Y Œı.r/�1A.F.r//� by (96). Thus, for large r,

P
˚
�Y


exp.�r=2 � 2 log log r/
� � '.r/ � �Y


exp.�r=2C .2=�/ log r/

��

� 1 � c52r
�2:

By definition, �Y.u/ D
R u
0

ds

R22.s/CbR22C2�.s/
. Notice that

�
R22.t/ CbR22C2�.t/; t � 0� is

a .4 C 2�/-dimensional squared Bessel process starting from eR22C2�Œı.r/�=ı.r/ by
the additivity property of squared Bessel processes (see e.g. Revuz et al. [40, XI th.
1.2]). So, it follows from Lemma 6 applied with d D 4 C 2� and ı3 D 1=4, that
there exist constants c53 > 0 and c54 > 0, such that

P
˚
�r=
� c53r

1=2Cı3 � '.r/ � �r=
C c53r
1=2Cı3� � 1 � c54r

�2; (111)

for large r, where 
 D 4.1C �/, as before.
In order to study TY.˛�/, we go back to the stochastic differential equation in (94)

satisfied by the Jacobi process Y.
/, with d1 D 2 and d2 D 2C 2�. Note that Y.s/ 2
.0; 1/ for any s > 0. By the Dubins–Schwarz theorem, there exists a Brownian
motion

�
bB.s/; s � 0� such that

Y.t/ DbB
�

4

Z t

0

Y.s/.1 � Y.s//ds

�

C
Z t

0

Œ2 � .4C 2�/Y.s/�ds; t � 0:
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Recall that ˛� D 1=.4C 2�/, and let t � 2˛� . We have, on the event fTY.˛�/ � tg,

inf
0�s�4t

bB.s/ �bB
�

4

Z t

0

Y.s/.1 � Y.s//ds

�

� ˛� � t � � t

2
;

since Y.s/ � ˛� � 1 if 0 � s � t � TY.˛�/. As a consequence, for t � 2˛� ,

PŒTY.˛�/ > t� � P

�

inf
0�s�4t

bB.s/ � � t

2

�

D P

	ˇ
ˇbB.4t/

ˇ
ˇ � t

2



� 2 exp

	
� t

32



:

(112)

In particular, PŒTY .˛�/ > 64 log r� � 2r�2 for large r. Plug this into (111), let c55 >
c53 and define ' D '.r/ WD �r=
� c55r1=2Cı3 and ' D '.r/ WD �r=
C c53r1=2Cı3 .
This gives,

P

n
UY.'/ � UY Œ'.r/ � TY.˛�/� � UY.'/

o
� 1 � c56r

�2

for large r. By Lemma 7, for small ı1 > 0 and all large r,

P

n
�ˇ

h�
1 � .'/�ı1�
'

i
� UY Œ'.r/ � TY.˛�/� � �ˇ

�
1C .'/�ı1�
'�

o

� 1 � r�c57 :

We choose ı1 such that ı1 < 1=2� ı3. Then for large r, we have
�
1� .'/�ı1�
' �


1� 2.


�
/ı1r�ı1��r D 
t�.r/, and

�
1C .'/�ı1�
' � 1C 2.


�
/ı1r�ı1��r D 
tC.r/

(see (25)). Thus,

P
˚
�ˇŒ
t�.r/� � UY Œ'.r/ � TY.˛�/� � �ˇŒ
tC.r/�

� � 1 � r�c57 : (113)

With bL˙.r/ D 4


sups2Œ0;�ˇ.
t
˙
.r//� �ˇ.s/

�1=�
(see (27)), (113) and (109) give for

large r,

P

n
bL�.r/ �eL0.r/ �bLC.r/

o
� 1 � r�c57 : (114)

By (35), P
˚
bL�.r/ > r.1�ı1/=�

� � 1 � r�1 for large r. Applying (110) and (114),
this yields

P

n
.1 � "/r.1�ı1/=� < .1 � "/bL�.r/ � L0.r/ � .1C "/bLC.r/

o
� 1 � r�c58 :

Recall that PŒTY.˛�/ > 64 log r� � 2r�2 for large r, which together with (111) gives
P.Ec

9/ � .c54 C 2/r�2. In view of (98) and (99), for large r,

P

n
.1 � "/r.1�ı1/=� < .1 � "/bL�.r/ � LC

X ŒH.F.r//� � .1C "/bLC.r/
o
� 1 � r�c59 :

(115)
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On the other hand, applying Lemma 9 to z D r.1�2ı1/=� gives

P

h
sup
x<0

LXŒH.F.r//; x� > r.1�2ı1/=�
i
� PŒL��

X .C1/ > r.1�2ı1/=�� � c49
r.1�2ı1/=.�C2/

for large r. This implies

P

n
.1 � "/bL�.r/ � L�

XŒH.F.r//� � .1C "/bLC.r/
o
� 1� 1

rc59
� c49

r.1�2ı1/=.�C2/ ;

proving the first part of Lemma 2. ut
Proof (Proof of Lemma 2: Part (ii)) In this part, we assume 0 < � � 1.

Recall that H0.r/ D 16
R '.r/�TY .˛�/

0
YŒuCTY .˛�/�

.1�YŒuCTY .˛� /�/2
du and that YŒt C TY.˛�/� D

S�1fˇŒUY .t/�g, see (97) and (100). As in Hu et al. ([33] p. 3923, calculation of ��),
this and (101) lead to:

H0.r/ D 4
Z '.r/�TY .˛� /

0

.YŒuC TY.˛�/�/
2.1 � YŒuC TY.˛�/�/

2��1dUY.u/

D 4
Z 1

0

x.1 � x/��2LˇŒUY.'.r/� TY.˛�//; S.x/�dx: (116)

Recall that t˙.r/ D

1˙2.


�
/ı1r�ı1� �



r, ˇv.s/ D ˇ.v2s/=v and let Jˇ be as in (103).

We have,

Z 1

0

x.1 � x/��2Lˇf�ˇŒ
t˙.r/�; S.x/gdx

D t˙.r/
Z 1

0

x.1 � x/��2Lˇt
˙
.r/f�ˇt

˙
.r/ .
/;

S.x/

t˙.r/
gdx

D t˙.r/Jˇt
˙
.r/ Œ�; t˙.r/�:

By (113) and (116), we have for large r,

P

h
4t�.r/Jˇt�.r/ Œ�; t�.r/� � H0.r/ � 4tC.r/Jˇt

C
.r/ Œ�; tC.r/�

i
� 1 � r�c57 :

Now, apply Lemma 8 to d D 1=2. So there exist c6 > 0 and c60 > 0 such that for
large r,

P

n
.1� "/bI�.r/ � H0.r/ � .1C "/bIC.r/

o
� 1 � r�c60 ; (117)

wherebI˙.r/ is defined in (29).



168 A. Devulder

In the case 0 < � < 1, we know that P.Ec
9/ � .c54 C 2/r�2 for large r as proved

before (115), so by (99), P

H.r/ � c61 log r

� � P.E9/ � 1 � .c54 C 2/r�2 for
some c61 and all large r. On the other hand, by Lemma 9, PŒH�.F.r// � "r� �
PŒH�.C1/ � "r� � 1 � c62r�.1�ı1/�=.�C2/, for all large r. Consequently, by (117)
and (98), for large r,

P
˚
.1 � "/bI�.r/ � H.F.r// � .1C "/bIC.r/C .4"
=�/tC.r/

� � 1 � r�c63 :

Changing the value of c6, this proves Lemma 2 (ii) in the case 0 < � < 1.
Now we consider the case � D 1. As before, PŒH�.F.r// C H.r/ � 2"r� �

1 � r�c64 (for large r). Moreover, P

Cˇt

˙
.r/ > �� log r

� � 1 � r�2 by Fact 5

and (50). Therefore, (29) gives P
˚
bIC.r/ � 16tC.r/ log r

� � 1� r�2. Consequently,
for large r,

P

0 � H�.F.r//CH.r/ � "bIC.r/

� � 1 � r�c65 ;

which, in view of (117), yields that, for large r,

P

.1 � "/bI�.r/ � H.F.r// � .1C 2"/bIC.r/

� � 1 � r�c66 :

This proves Lemma 2 (ii) in the case � D 1. ut

7 Proof of Lemmas 6–8

This section is devoted to the proof of Lemmas 6–8. For the sake of clarity, the
proofs of these lemmas are presented in separated subsections.

7.1 Proof of Lemma 6

First, notice that we can not apply Talet [48, Lemma 3.2 Eq. (3.4)] since her
constant c3 depends on her (fixed) ı, whereas we would like to take her ı D
.log t/ı3�1=2 !t!C1 0, which is necessary for example for our Lemma 5. A similar
remark applies for Talet [48, Prop. 5.1] and our Lemma 7. So we need different
estimates than in her paper.

Let d > 4 and R0
LDeRd�2.1/, whereeRd�2 is a .d�2/-dimensional Bessel process.

We consider a d-dimensional Bessel process R, starting from R0. We introduce
�.t/ WD R t

0
R�2.s/ds. Itô’s formula gives log R.t/ D log R0 C M.t/ C d�2

2
�.t/,

where M.t/ WD R t
0 R.s/�1d Ǒ.s/ and

� Ǒ.t/; t � 0
�

is a Brownian motion. By the

Dubins–Schwarz theorem, there exists a Brownian motion
� Q̌.t/; t � 0� such that

M.t/ D Q̌.�.t// for all t � 0. Accordingly,

.d � 2/�.t/=2 D log R.t/ � log R0 � Q̌.�.t//; t � 0: (118)
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Let ı3 2 .0; 1
2
/, 0 < " < 1, and x D x.t/ WD d�2

6
1

.log t/.1=2/�ı3
.

We have (see e.g. Göing-Jaeschke et al. [28, Eq. (50)]), P
�
R20 2 du

� D
ud=2�2e�u=21.0;1/.u/=


� .d=2� 1/2d=2�1�. So for large t,

P

�ˇˇ
ˇ
ˇ
log R0
log t

ˇ
ˇ
ˇ
ˇ > x

�

D P

�
log R0
log t

> x

�

C P

�
log R0
log t

< �x

�

� exp

�

�.1 � "/ t2x

2

�

C c67
tx.d=2�1/ : (119)

Denote by n WD dde the smallest integer such that n � d. Since an n-dimensional
Bessel process can be realized as the Euclidean modulus of an R

n-valued Brownian
motion, it follows from the triangular inequality that R.t/ �L R0 CbRn.t/, where
.bRn.t/; t � 0/ is an n-dimensional Bessel process starting from 0. Consequently, for
large t, P

�
R.t/ > t.1=2/Cx

� � P
�
bRn.t/ > t.1=2/Cx=2

�C P
�
R0 > tx

� � 2 exp.�.1 �
"/t2x=8/; and P

�
R.t/ < t.1=2/�x

� � 2t�x, e.g. since
ˇ
ˇ Q̌.t/ˇˇ �L R.t/. Therefore, for

large t,

P

�ˇˇ
ˇ
ˇ
log R.t/

log t
� 1
2

ˇ
ˇ
ˇ
ˇ > x

�

� 2 exp

�

�.1 � "/ t2x

8

�

C 2t�x: (120)

Define E12 WD
nˇˇ
ˇ log R.t/

log t � 1
2

ˇ
ˇ
ˇ � x

o
\
nˇˇ
ˇ log R0

log t

ˇ
ˇ
ˇ � x

o
and

E13 WD
�

d � 2
2

�.t/ < log t

�

; E14 WD
�

sup
0�s�2.log t/=.d�2/

ˇ
ˇ Q̌.s/ˇˇ � x log t

�

:

By (119) and (120), we have for large t,

P.Ec
12/ � 3 exp

 � .1 � "/t2x=8
�C 3t�x: (121)

We now estimate P.E12 \ Ec
13/. We first observe that on E12, we have, by (118),

ˇ
ˇ Q̌.�.t//C .d � 2/�.t/=2� .log t/=2

ˇ
ˇ � 2x log t:

We claim that E12 \ Ec
13 �

˚ˇˇ Q̌.�.t//ˇˇ > d�2
6
�.t/

�
for large t. Indeed, on the event

E12 \ Ec
13 \

˚ˇˇ Q̌.�.t//ˇˇ � d�2
6
�.t/

�
,

.d � 2/�.t/=2 � .2xC 1=2/ log t � Q̌.�.t// � .2xC 1=2/ log tC .d � 2/�.t/=6;

which implies d�2
2
�.t/ � . 3

4
C3x/ log t. This, for large t, contradicts d�2

2
�.t/ � log t

on Ec
13. Therefore, E12 \ Ec

13 �
˚ˇˇ Q̌.�.t//ˇˇ > d�2

6
�.t/

�
holds for all large t, from
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which it follows that

P
�
E12 \ Ec

13

� � P

�

sup
s�2.log t/=.d�2/

ˇ
ˇ Q̌.s/ˇˇ

s
>

d � 2
6

�

D P

�

sup
u�1

ˇ
ˇ Q̌.u/ˇˇ

u
>

r
.d � 2/ log t

18

�

D P

 

sup
0�v�1

ˇ
ˇ Q̌.v/ˇˇ > p.d � 2/.log t/=18

!

� 4 exp
 � .d � 2/.log t/=36

�
;

because u 7! u Q̌.1=u/ is a Brownian motion and sup0�v�1 Q̌.v/ LD ˇ
ˇ Q̌.1/ˇˇ. Since

P
�
Ec
14

� � 4 exp
 � d�2

4
x2 log t

�
for large t, this and (121) give for large t,

P
�
Ec
12 [ Ec

13 [ Ec
14

� � P
�
Ec
12

�C P
�
E12 \ Ec

13

�C P
�
E12 \ E13 \ Ec

14

�

� exp
� � c68 x2 log t

�
:

Since E12 \E13\E14 �
˚ˇˇ �.t/

log t � 1
d�2

ˇ
ˇ � 6x

d�2
�

by (118), this completes the proof of
Lemma 6. ut

7.2 Proof of Lemma 7

Let v > 0. Recall that for every x � 0, ˇv.x/ D .1=v/ˇ.v2x/, and notice that
v2�ˇv .x/ D �ˇ.xv/ almost surely. Then,

E10 D
˚
�ˇv
�
1 � v�ı1�


� � UY.v/=v
2 � �ˇv

�
1C v�ı1�


��
: (122)

For ı1 > 0, define E15 WD
˚

sup0�s��ˇv .2
/ j"1.v; s/j < v�ı1�, where

"1 D "1.v; s/ WD 1

4

Z 1

0

.1 � x/�
�

Lˇv

�

s;
S.x/

v

�

� Lˇv .s; 0/

�

dx; s � 0:

By Hu et al. [33, Eq. (2.34) p. 3924], E15 � E10. Thus it remains to prove that for ı1
small enough, P.Ec

15/ � 1=v1=4�5ı1 for large v. Notice that for s � 0,

j"1j �
�Z

fS.x/>
p
vg
C
Z

fS.x/<�p
vg
C
Z

fjS.x/j�p
vg

�
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.1 � x/�

4

ˇ
ˇ
ˇ
ˇLˇv

�

s;
S.x/

v

�

� Lˇv .s; 0/

ˇ
ˇ
ˇ
ˇ dx

DW "2.v; s/C "3.v; s/C "4.v; s/: (123)

Since S.y/ D R y
˛�

dx
x.1�x/1C� , we have 1 � S�1.u/ �

u!C1 .�u/�1=� . So, we have

sup
0�s��ˇv .2
/

"2.v; s/ � 1

4

Z 1

1�
	

2
�
p

v


1=� .1 � x/� sup
0�s��ˇv .2
/

sup
u�0


Lˇv .s; u/CLˇv .s; 0/

�
dx

� Œ2=.�pv/� 1� C1 supu�0

Lˇv .�ˇv .2
/; u/C 2


�
;

for all large v. Thanks to the second Ray-Knight theorem (Fact 2), we know that
Q WD .Lˇv .�ˇv .2
/; u/; u � 0/ is a 0-dimensional squared Bessel process starting
from 2
. Moreover, x 7! x is a scale function of Q (see e.g. Revuz et al. [40, p.
442]). Hence, for large v,

P

�

sup
0�s��ˇv .2
/

"2.v; s/ �

2=.�
p
v/
�1=�C1p

v

�

� P

 

sup
u�0

Q.u/ �
p
v

2

!

D 4
p
v
:

(124)
Similarly (this time, using S.x/ � log x, x! 0), we have, for large v,

P

h
sup0�s��ˇv .2
/ "3.v; s/ � exp.�pv=2/pv

i
� 4
=pv: (125)

To estimate "4.v; s/, we note that

"4.v; s/ � sup
juj�1=pv

ˇ
ˇLˇv .s; u/ � Lˇv .s; 0/

ˇ
ˇ: (126)

Let " 2 .0; 1=2/, tv > 0, � � 1 and define .M/�t WD sup0�s�t jM.s/j for t >
0 and any Brownian motion .M.s/; s � 0/. Applying Barlow and Yor [6, (ii) p.
199] to the continuous martingale ˇv.: ^ tv/ and its jointly continuous local time
.Lˇv .u ^ tv; a/; u � 0; a 2 R/, we see that for some constant C�;" > 0,

�
�
�
�
�

sup
0�s�tv;a¤b

ˇ
ˇLˇv .s; b/� Lˇv .s; a/

ˇ
ˇ

jb � aj1=2�"
�
�
�
�
�
�

�C�;"
�
�Œ.ˇv/�tv �

1=2C"��
�
DC�;"

�
�Œ.ˇ/�tv �

1=2C"��
�
;

where k:k� D E.j:j� /1=� . Then, by Chebyshev’s inequality and a change of scale,
for ˛ > 0,

P

 

sup
0�s�tv; a¤b

ˇ
ˇLˇv .s; b/� Lˇv .s; a/

ˇ
ˇ

jb � aj1=2�" �˛
!

� .
p

tv/.1=2C"/�

˛�

h
C�;"

�
�Œ.ˇ/�1 �1=2C"

�
�
�

i�
:

(127)
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On E16 WD
n

sup0�s��ˇv .2
/;a¤b
jLˇv .s;b/�Lˇv .s;a/j

jb�aj1=2�" � v 1
2 .

1
2�2"/

o
, we have by (126),

sup
0�s��ˇv .2
/

"4.v; s/ � v� 1
2 .
1
2�"/v

1
2 .

1
2�2"/ D v�"=2: (128)

We now choose � WD 2 and tv WD v
1=4�"
1=2C" . Since PŒ�ˇv .2
/ > tv� D PŒLˇv .tv; 0/ <

2
� D P


sup0�s�tv ˇ.s/ < 2

� D PŒjˇ.tv/j < 2
� � 4
=ptv by Lévy’s theorem

(see e.g. Revuz et al. [40, VI th. 2.3]), we get for all large v (if " is small enough),

P

E16.v/

c
� �P�ˇv .2
/ > tv

�C P

 

sup
0�s�tv;a¤b

jLˇv .s; b/� Lˇv .s; a/j
jb� aj1=2�" � v 1

2 .
1
2�2"/

!

�4
 v "�1=4
1C2" C c69v

�1=4C" � v�1=4C2"=2:

Combining this with (123)–(125) and (128), we obtain that, for " > 0 small enough,

P

	
sup0�s��ˇv .2
/ j"1.v; s/j � 2v�"=2



� v�1=4C2":

This gives, with the choice of ı1 WD 2"=5, P.Ec
10/ � P.Ec

15/ � v�1=4C5ı1 (for
large v). ut

7.3 Proof of Lemma 8

Assume 0 < � � 1. Consider 0 < d < 1, " 2 .0; 1=2/ such that d.1=2C "/C ." �
1/.1=2 � "/ < 0, M" > 0, and a Brownian motion .ˇ.t/; t � 0/. We can write for
t > 0,

Jˇ.�; t/

D
�Z S�1.�t"/

0

C
Z ˛�

S�1.�t"/
C
Z S�1.M"/

˛�

C
Z 1

S�1.M"/

�

Lˇ

�

�ˇ.
/;
S.y/

t

�
ydy

.1 � y/2��

WD J1 C J2 C J3 C J4:

We begin by estimating J1. Since S.x/ �x!0 log x, we have, for large t, J1 �
exp.�t"=2/ sups�0 QQ.s/ where QQ is a 0-dimensional squared Bessel process starting
from 
 (by the second Ray-Knight theorem stated in Fact 2, applied to �ˇ). Hence,
we get P


J1 � exp.�t"=2/td

� � 
=td:
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Fix a large constant � > 0 such that d.1=2C "C 1=�/C ." � 1/.1=2� "/ < 0,
and define

E17 WD
˚
�ˇ.
/ � t2d

�
;

E18 WD
(

sup
0�s�t2d ; a¤b

jLˇ.s; b/� Lˇ.s; a/j
jb � aj1=2�" � td.1=2C"C1=�/

)

:

Recall that S.˛�/ D 0. To estimate J2, we note that, on E17 \ E18, uniformly for all
large t,

J2 �
�Z ˛k

0

ydy

.1 � y/2��

�

sup
�t"�1�b�0

Lˇ.�ˇ.
/; b/

�˛�


C td.1=2C"C1=�/.t"�1/ 12�"�

.1 � ˛k/2��
� 2˛�


.1 � ˛k/2��
:

Notice that P.Ec
17/ � 2
t�d as proved after (128), and that P.Ec

18/ � c70t�d

(by (127) with t2d instead of tv). Therefore, there exists c71 > 0 such that for large t,

P .J2 � c71/ � P.E17 \ E18/ � 1 � c72t
�d : (129)

We now turn to J3. As already noticed after (123), we have 1 � S�1.u/ �
u!C1

.�u/�1=� . Therefore, we can choose M" > 0 such that

8u � M";
Œ1 � S�1.u/�2��1

.�u/1=��2 2 .1� "; 1C "/ and S�1.u/ � 1� ": (130)

On the event E17 \ E18, uniformly for all large t,

J3 � sup
0�x�M"=t

Lˇ.�ˇ.
/; x/
Z S�1.M"/

˛�

y.1� y/��2dy

�c73
h

C td.1=2C"C1=�/.M"=t/

1
2�"i � 2
c73:

Consequently, PŒJ3 � 2
c73� � P.E17 \ E18/ � 1 � c72t�d for large t.
Now we write

J4 D �1=��2 t1=��1
Z C1

M"=t


S�1.tx/

�2

1 � S�1.tx/

�2��1

.�t/1=��2 Lˇ.�ˇ.
/; x/dx:
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Therefore, (130) leads to

.1 � "/3
Z C1

M"=t
x1=��2Lˇ.�ˇ.
/; x/dx � �2�1=� t1�1=�J4

� .1C "/
Z C1

M"=t
x1=��2Lˇ.�ˇ.
/; x/dx: (131)

Proof (Proof of Lemma 8: Part (i)) We first assume 0 < � < 1.
On E17\E18, for large t, we have

R M"=t
0

x1=��2Lˇ.�ˇ.
/; x/dx � c74t1�1=� . Recall
Kˇ from (15). It follows from (131) and (129) that, for large t,

P

.1 � "/3Kˇ.�/ � .1� "/3c74t1�1=� � �2�1=� t1�1=�J4 � .1C "/Kˇ.�/

�

� 1 � c72t
�d:

Since Jˇ.�; t/ D J1 C J2 C J3 C J4, we get for large t,

P

n
.1� "/3Kˇ.�/ � c48

t1=��1 � �2�1=� t1�1=�Jˇ.�; t/ � .1C "/Kˇ.�/C c48
t1=��1

o

� 1 � c75t
�d;

for some c48 > 0, proving the lemma in the case 0 < � < 1. ut
Proof of Lemma 8: Part (ii) We assume � D 1, thus 
 D 8.

By the definition of Cˇ (see (16)), we have

Z 1

M"=t

Lˇ.�ˇ.8/; x/

x
dx D Cˇ �

Z M"=t

0

Lˇ.�ˇ.8/; x/� 8
x

dxC 8 log t � 8 log M":

On E17 \ E18, for large t,

Z Me=t

0

jLˇ.�ˇ.8/; x/ � 8j
x

dx �
Z Me=t

0

td.1=2C"C1=�/x1=2�"

x
dx � ":

As in (50), P.Cˇ C 8 log t < log t/ � t�7. Therefore, by (131) and (129), we have
for large t,

P
˚
.1 � "/4ŒCˇ C 8 log t� � J4 � .1C "/2ŒCˇ C 8 log t�

� � 1 � c76t
�d :

Since Jˇ.1; t/ D J1 C J2 C J3 C J4, we get for large t,

P
˚
.1 � "/4ŒCˇ C 8 log t� � Jˇ.1; t/ � .1C "/3ŒCˇ C 8 log t�

� � 1 � c77t
�d:

This proves the lemma in the case � D 1. ut
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A Link Between Bougerol’s Identity
and a Formula Due to Donati-Martin,
Matsumoto and Yor

Mátyás Barczy and Peter Kern

Dedicated to the memory of Marc Yor 1949–2014

Abstract We point out an easy link between two striking identities on exponential
functionals of the Wiener process and the Wiener bridge originated by Bougerol,
and Donati-Martin, Matsumoto and Yor, respectively. The link is established using a
continuous one-parameter family of Gaussian processes known as ˛-Wiener bridges
or scaled Wiener bridges, which in case ˛ D 0 coincides with a Wiener process and
for ˛ D 1 is a version of the Wiener bridge.

1 Introduction

Our starting point is Bougerol’s identity in [5] which states that

sinh.Bt/
dD WAt for every fixed t � 0; (1)

where .Bt/t�0 and .Wt/t�0 are independent standard Wiener processes,
dD denotes

equality in distribution, and

At D
Z t

0

exp.2Bs/ ds for t � 0:
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In fact there is also a generalization of Bougerol’s identity with equality in law for
stochastic processes due to Alili et al. [1, Proposition 2]; cf. also [13, formula (69)]
or [15, page 200]. Recently, there has been a renewed interest in generalizations
of Bougerol’s identity (1). Bertoin et al. [3] presented a two-dimensional extension
of (1) that involves some exponential functional and the local time at 0 of a standard
Wiener process. For another two-dimensional extension of (1), and even a three-
dimensional one we refer to Vakeroudis [13, Sects. 4.2 and 4.3].

We are only interested in the following particular case of the identity (1)
presented in [13, 14]. Bougerol’s identity (1) is equivalent to the equality of the
corresponding continuous Lebesgue densities, which yields

1
p
.1C x2/t

exp

 

�Arsinh2.x/

2t

!

D E

�
1p
At

exp

�

� x2

2At

��

for all t > 0 and x 2 R, see, e.g., [14, formula (1.e)]. Especially, for x D 0,
by the 1=2-self-similarity of a standard Wiener process and a change of variables
r D .4=ˇ2/s for some ˇ > 0 we get

t�1=2 D E

"�Z t

0

exp.2Bs/ ds

��1=2#
D E

"�Z t

0

exp.ˇB.4=ˇ2/s/ ds

��1=2#

D 2

ˇ

 E
2

4

 Z .4=ˇ2/t

0

exp.ˇBr/ dr

!�1=23

5 :

(2)

Hence, setting t D ˇ2=4 we get for every ˇ > 0

E

"�Z 1

0

exp.ˇBs/ ds

��1=2#
D 1:

This formula is a consequence of Bougerol’s identity (1) which obviously holds for
ˇ D 0 and also remains true for ˇ < 0, since .�Bt/t�0 is a Wiener process, i.e.,

E

"�Z 1

0

exp.ˇBs/ ds

��1=2#
D 1 for every ˇ 2 R: (3)

A similar identity due to Donati-Martin, Matsumoto and Yor [7, 8] holds when
replacing the Wiener process .Bt/t�0 by a Wiener bridge .Bı

t D Bt � t B1/t2Œ0;1�, a
zero mean Gaussian process with covariance function Cov.Bı

s ;B
ı
t / D s.1 � t/ for

0 � s � t � 1. Namely, this identity states that

E

"�Z 1

0

exp.ˇBı
s / ds

��1#
D 1 for every ˇ 2 R: (4)
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Hobson [9] provides a simple proof of (4) using a relationship between a Wiener
bridge and a Wiener excursion obtained by Biane [4]. A further elementary proof
of (4) is given in [7, Proposition 2.1].

Donati-Martin et al. [7] already pointed out how to obtain a link between the two
identities (3) and (4) in the sense that the identity (3) follows from the identity (4)
as a consequence of a formula combining exponential functionals of the Wiener
process and the Wiener bridge, for details we refer to [7, Proposition 3.2].

Our aim is to give a different link between the two identities (3) and (4) using
so-called ˛-Wiener bridges (also known as scaled Wiener bridges). These processes
build a one-parameter family of Gaussian processes for parameter ˛ 2 R. They have
been first considered by Brennan and Schwartz [6] and later have been investigated
by Mansuy [11] and Barczy and Pap [2]. For our purposes an ˛-Wiener bridge
.X.˛/t /t2Œ0;1/ can be defined as a (weak) solution of the stochastic differential equation
(SDE)

dX.˛/t D � ˛

1 � t
X.˛/t dtC dBt; t 2 Œ0; 1/; (5)

with initial condition X.˛/0 D 0. Barczy and Pap [2] have shown that .X.˛/t /t2Œ0;1/
is a bridge in the sense that X.˛/t ! 0 DW X.˛/1 as t " 1 almost surely if and only

if ˛ > 0. Moreover, for ˛ � 0 it is shown in [2] that .X.˛/t /t2Œ0;1� is a zero mean
Gaussian process with covariance function

Cov.X.˛/s ;X.˛/t / D
(
.1�s/˛.1�t/˛

1�2˛
�
1 � .1 � s/1�2˛

�
if ˛ 6D 1

2p
.1 � s/.1 � t/ log

�
1
1�s

�
if ˛ D 1

2

(6)

for 0 � s � t � 1. Note that for fixed 0 � s � t � 1, (6) is continuous in ˛ � 0,
which for ˛ ! 1

2
can be easily seen by l’Hospital’s rule. The unique strong solution

of the SDE (5) with initial condition X.˛/0 D 0 is given by

X.˛/t D
Z t

0

�
1 � t

1 � s

�˛
dBs for t 2 Œ0; 1/; (7)

and shows that .X.0/t /t2Œ0;1� D .Bt/t2Œ0;1� and .X.1/t /t2Œ0;1�
dD .Bı

t /t2Œ0;1�. The latter is
due to the fact that both sides of the equation are zero mean Gaussian processes
with the same covariance function. Hence, variation of the parameter ˛ 2 Œ0; 1�
continuously connects the Wiener process for ˛ D 0with the Wiener bridge for ˛ D
1 in the sense that for ˛; ˛0 � 0, the finite dimensional distributions of .X.˛//t2Œ0;1�
converge weakly to those of .X.˛0//t2Œ0;1� as ˛ ! ˛0. This follows directly from the
continuity in ˛ of the covariance function (6) and is the key observation for our link
between the identities (3) and (4).

The paper is organized as follows. We will first show that certain space-time
rescalings of an ˛-Wiener bridge either coincide in law with a usual Wiener bridge
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for ˛ > 1
2

or with the Wiener process for 0 � ˛ < 1
2
, see Proposition 1. Then an

application of these space-time rescalings to the identity (4) and (3), respectively,
yields two new identities for certain transformations of exponential functionals of
˛-Wiener bridges which coincide when ˛ D 1

2
, see Theorem 1. We further show

that a 1
2
-Wiener bridge can be scaled to both, a Wiener bridge and a standard

Wiener process, see Proposition 2. As a consequence, we present another two
identities for certain transformations of exponential functionals of 1

2
-Wiener bridges

in Theorem 2.

2 Link Between the Identities

In the sequel,
DD denotes equality in law for stochastic processes on the space of

continuous functions C.Œ0; 1�/ or C.Œ0;1//, respectively.

Proposition 1 (a) For ˛ > 1
2

we have

	p
2˛ � 1 t

˛�1
2˛�1 X.˛/

1�t1=.2˛�1/




t2Œ0;1�
DD.X.1/t /t2Œ0;1�:

(b) For 0 � ˛ < 1
2

we have

	p
1 � 2˛ .1 � t/�

˛
1�2˛ X.˛/

1�.1�t/1=.1�2˛/




t2Œ0;1�
DD.X.0/t /t2Œ0;1�:

Proof We will first prove that the processes under consideration are zero mean
Gaussian processes having almost surely continuous trajectories, which is not
obvious for the left-hand sides as t # 0 for ˛ 2 . 1

2
; 1/ in (a), and as t " 1 in

(b), respectively. Once we know this, it remains to show the equality of covariance
functions.

(a) Let us introduce a continuous martingale .Mt/t2Œ0;1/ related to the process X.˛/

given by (7). Namely, let

Mt WD X.˛/t

.1 � t/˛
D
Z t

0

1

.1 � s/˛
dBs for t 2 Œ0; 1/

with quadratic variation hMit D .1 � .1 � t/1�2˛/=.1 � 2˛/ ! 1 as t " 1
for ˛ > 1

2
as obtained in [2, formula (3.1)]. Then, similarly to the proof of

[2, Lemma 3.1], for the increasing function Œ1;1/ 3 x 7! f .x/ D x3=4 withR1
1
.f .x//�2 dx < 1, an application of [10, Theoreme 1] or Exercise 1.16 in

Chapter V of [12] gives Mt=f .hMit/! 0 a.s. as t " 1. Letting t D 1�s1=.2˛�1/ "
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1 as s # 0 this shows

s
�˛
2˛�1 X.˛/

1�s1=.2˛�1/

�
.1 � s�1/=.1� 2˛/�3=4

! 0 a.s. as s # 0:

To obtain s
˛�1
2˛�1 X.˛/

1�s1=.2˛�1/ ! 0 a.s. as s # 0 it suffices to see that for s # 0 we
have

s
˛�1
2˛�1 s

˛
2˛�1 .s�1 � 1/3=4 D s.s�1 � 1/3=4 D s1=4.1 � s/3=4 ! 0:

Hence the centered Gaussian processes under consideration almost surely have
continuous sample paths on Œ0; 1� starting in the origin. Thus it remains to show
the equality of their covariance functions for 0 < s � t � 1. Using (6) and
the fact that the function .0; 1� 3 t 7! 1 � t1=.2˛�1/ is decreasing, we get for
0 < s � t � 1

Cov
	

X.˛/
1�s1=.2˛�1/ ;X

.˛/

1�t1=.2˛�1/



D s

˛
2˛�1 t

˛
2˛�1

1 � 2˛ .1 � t�1/

D s
˛

2˛�1 t
˛

2˛�1�1

2˛ � 1 .1 � t/ D s
1�˛
2˛�1 t

1�˛
2˛�1

2˛ � 1 s.1 � t/

from which the assertion easily follows.
(b) In case ˛ D 0 the identity is trivially fulfilled. For 0 < ˛ < 1

2
it is shown in the

proof of [2, Lemma 3.1] that limt"1.1 � t/�˛X.˛/t exists in R almost surely and
has a normal distribution as a limit of normally distributed random variables.
Letting t D 1 � .1� s/1=.1�2˛/ " 1 as s " 1 we have

lim
s"1
.1 � s/�

˛
1�2˛ X.˛/

1�.1�s/1=.1�2˛/
exists a.s.,

which shows that the centered Gaussian processes under consideration almost
surely have continuous sample paths on Œ0; 1� starting in the origin. Thus it
remains to show the equality of their covariance functions. Using (6) and the
fact that the function Œ0; 1� 3 t 7! 1 � .1 � t/1=.1�2˛/ is increasing, we get for
0 � s � t � 1

Cov
	

X.˛/
1�.1�s/1=.1�2˛/

;X.˛/
1�.1�t/1=.1�2˛/



D .1� s/

˛
1�2˛ .1 � t/

˛
1�2˛

1 � 2˛ s

from which again the assertion easily follows. ut
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Theorem 1

(a) For ˛ > 1
2

and any ˇ 2 R we have

E

"�Z 1

0

exp

�
ˇ

.1 � s/1�˛
X.˛/s

�
ds

.1 � s/2.1�˛/

��1#
D 2˛ � 1:

(b) For 0 � ˛ < 1
2

and any ˇ 2 R we have

E

"�Z 1

0

exp

�
ˇ

.1 � s/˛
X.˛/s

�
ds

.1 � s/2˛

��1=2#
D p1 � 2˛:

(c) For ˛ D 1
2

and any ˇ 2 R both identities in (a) and (b) hold.

Remark 1 For the 1
2
-Wiener bridge the two identities in (a) and (b) of Theorem 1

are valid by part (c) and are in fact equivalent, since both identities show that for
any ˇ 2 R the non-negative random variable

Y.ˇ/ WD
�Z 1

0

exp

�
ˇp
1 � s

X.1=2/s

�
ds

1 � s

��1=2
D 0 almost surely.

Hence the version of the Bougerol identity in (b) represents the mean EŒY.ˇ/� D 0,
whereas the formula (a), as a version of the identity due to Donati-Martin,
Matsumoto and Yor, represents the second moment EŒ.Y.ˇ//2� D 0.

Proof of Theorem 1

(a) An application of Proposition 1 (a) to (4) together with a change of variables
s D 1 � t

1
2˛�1 yields for any ˇ 2 R

1 D E

"�Z 1

0

exp.ˇX.1/t / dt

��1#

D E

"�Z 1

0

exp
	
ˇ
p
2˛ � 1 t

˛�1
2˛�1 X.˛/

1�t1=.2˛�1/



dt

��1#

D E

2

4

 Z 1

0

exp

 Q̌
.1 � s/1�˛

X.˛/s

!


 .2˛ � 1/ ds

.1 � s/2.1�˛/

!�13

5 ;

where Q̌ D ˇp2˛ � 1 2 R is arbitrary.
(b) For ˛ D 0 the identity is a restatement of (3). For 0 < ˛ < 1

2
an application of

Proposition 1 (b) to (3) together with a change of variables s D 1�.1�t/1=.1�2˛/
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yields for any ˇ 2 R

1 D E

"�Z 1

0

exp.ˇX.0/t / dt

��1=2#

D E

"�Z 1

0

exp
	
ˇ
p
1 � 2˛ .1 � t/� ˛

1�2˛ X.˛/
1�.1�t/1=.1�2˛/



dt

��1=2#

D E

2

4

 Z 1

0

exp

 Q̌
.1 � s/˛

X.˛/s

!


 .1 � 2˛/ ds

.1 � s/2˛

!�1=23

5 ;

where Q̌ D ˇp1 � 2˛ 2 R is arbitrary.
(c) For ˛ D 1

2
the process .Mt/t2Œ0;1/ with Mt D .1 � t/�1=2X.1=2/t D R t

0
.1 �

s/�1=2dBs is a centered continuous martingale with quadratic variation hMit D
� log.1 � t/ ! 1 as t " 1; see formulas (3.1) and (3.2) in [2]. Hence by the
Dambis, Dubins-Schwarz theorem there exists a Wiener process . QBt/t�0 such
that .Mt/t2Œ0;1/ D . QBhMit/t2Œ0;1/ almost surely; see Theorem 1.6 in Chapter V of
[12]. It follows by a change of variables t D hMis D � log.1�s/ and monotone
convergence that for ˇ 6D 0

E

"�Z 1

0

exp

�
ˇp
1 � s

X.1=2/s

�
ds

1 � s

��1=2#

D E

"�Z 1

0

exp
�
ˇ QB� log.1�s/

� ds

1 � s

��1=2#
D E

"�Z 1

0

exp
�
ˇ QBt

�
dt

��1=2#

D lim
T!1 E

"�Z T

0

exp
�
ˇ QBt

�
dt

��1=2#
D lim

T!1 T�1=2 D 0;

where the last but one equality follows by setting t D ˇ2T=4 in (2). Since in
case ˇ D 0 the expectation is obviously vanishing, this shows that the identity
in (b) is fulfilled for ˛ D 1

2
. In particular it shows that a non-negative random

variable has zero expectation and thus is equal to zero almost surely. Hence also
its second moment vanishes, which proves the identity in (a) for ˛ D 1

2
. ut

In case ˛ D 1
2

it is possible to link the 1
2
-Wiener bridge .X.1=2/t /t2Œ0;1� to both

identities (4) and (3) with non-vanishing expectation by either introducing an
additional log-term in the integrand or by integrating over a smaller domain as
follows. We first present the corresponding space-time scalings, which might be
of independent interest.
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Proposition 2 We have

	
t
p

exp.t�1 � 1/X.1=2/
1�exp.1�t�1/




t2Œ0;1�
DD.X.1/t /t2Œ0;1�: (8)

	
et=2X.1=2/1�exp.�t/




t�0
DD.X.0/t /t�0: (9)

Proof We first show that as t # 0 we have

t
p

exp.t�1 � 1/X.1=2/
1�exp.1�t�1/

! 0 a.s. (10)

From the proof of part (c) of Theorem 1 we know that there exists a Wiener
process . QBt/t�0 such that ..1 � s/�1=2X.1=2/s /s2Œ0;1/ D . QB� log.1�s//s2Œ0;1/ almost
surely. Letting s D 1 � exp.1 � t�1/ we get

	p
exp.t�1 � 1/X.1=2/

1�exp.1�t�1/




t2.0;1� D
� QBt�1�1

�
t2.0;1� a.s.

from which (10) follows by the strong law of large numbers for Brownian motion,
since almost surely

t
p

exp.t�1 � 1/X.1=2/
1�exp.1�t�1/

D t QBt�1�1 D .1 � t/
t

1 � t
QB 1�t

t
! 0

as t # 0. Hence the centered Gaussian processes under consideration in (8) almost
surely have continuous sample paths on Œ0; 1� starting in the origin. Thus it remains
to show the equality of their covariance functions for 0 < s � t � 1. Using (6) and
the fact that the function .0; 1� 3 t 7! 1� exp.1� t�1/ is decreasing, we get for any
0 < s � t � 1,

Cov
	

X.1=2/
1�exp.1�s�1/

;X.1=2/
1�exp.1�t�1/



D
p

exp.1 � s�1/
p

exp.1 � t�1/.t�1 � 1/

D
p

exp.1 � s�1/
p

exp.1 � t�1/
s 
 t s.1 � t/;

from which (8) easily follows. Similarly, for any 0 � s � t we get using (6)

Cov
	

X.1=2/1�exp.�s/;X
.1=2/

1�exp.�t/



D e�s=2e�t=2 s

from which (9) easily follows. ut
Theorem 2 For any ˇ 2 R we have

E

"�Z 1

0

exp

�
ˇp

1 � s .1 � log.1 � s//
X.1=2/s

�
ds

.1 � s/ .1 � log.1 � s//2

��1#
D 1
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and

E

2

4

 Z 1�e�1

0

exp

�
ˇp
1 � s

X.1=2/s

�
ds

1 � s

!�1=23

5 D 1:

Proof Applying (8) to (4) together with a change of variables s D 1 � e�.t�1�1/
yields for any ˇ 2 R

1 D E

"�Z 1

0

exp.ˇX.1/t / dt

��1#

D E

"�Z 1

0

exp
	
ˇt
p

exp.t�1 � 1/X.1=2/
1�exp.1�t�1/



dt

��1#

D E

"�Z 1

0

exp

�
ˇp

1 � s .1 � log.1 � s//
X.1=2/s

�
ds

.1 � s/ .1 � log.1 � s//2

��1#

which proves the first identity. Similarly, an application of (9) to (3) together with a
change of variables s D 1 � e�t yields for any ˇ 2 R

1 D E

"�Z 1

0

exp.ˇX.0/t / dt

��1=2#

D E

"�Z 1

0

exp
	
ˇ et=2X.1=2/1�e�t



dt

��1=2#

D E

2

4

 Z 1�e�1

0

exp

�
ˇp
1 � s

X.1=2/s

�
ds

1 � s

!�1=23

5

which proves the second identity. ut
Remark 2 Motivated by the identities (3) and (4), one can formulate the open
question whether there exists a (continuous) function p W Œ0; 1� ! .�1; 0/ such
that

E

"�Z 1

0

exp
	
ˇX.˛/t



dt

�p.˛/
#

D 1 for every ˇ 2 R:
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Large Deviation Principle for Bridges
of Sub-Riemannian Diffusion Processes

Ismaël Bailleul

Abstract We prove that bridges of subelliptic diffusions on a compact manifold,
with distinct ends, satisfy a large deviation principle in the space of Hölder
continuous functions, with a good rate function, when the travel time tends to 0.
This leads to the identification of the deterministic first order asymptotics of the
distribution of the bridge under generic conditions on the endpoints of the bridge.

1 Introduction

Let M be a compact, connect and oriented m-dimensional smooth manifold,
embedded in some ambient Euclidean space

�
R

d; j 
 jd
�
. Let V1; : : : ;V` be smooth

vector fields on M, whose Lie algebra has maximal rank everywhere. Given another
vector field V on M, set

L D 1

2

X̀

iD1
V2

i C V: (1)

The semi-group associated with L has a smooth positive fundamental solution
pt.z; z0/ with respect to any smooth volume measure VOL on M. Given any two
points x and y in M, denote by ˝x;y the set of continuous paths ! W Œ0; 1�! M with
!0 D x and !1 D y. For � > 0, we define uniquely a probability measure P

x;y
� on

˝x;y defining P
x;y
�

�
!t1 2 A1; : : : ; !tk 2 Ak

�
for all k > 1; 0 < t1 < 
 
 
 < tk < 1 and

any Borel sets A1; : : : ;Ak of M, by the formula

1

p�.x; y/

Z
0

@
kY

jD1

�
ptj��tj�1�.xj�1; xj/1Aj.xj/

1

A p��tk�.xk; y/VOL.dx1/ 
 
 
VOL.dxk/

(2)
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where t0 D 0 and x0 D x. This formula describes the law of the diffusion process
associated with �L, conditioned on having position x at time 0 and position y at
time 1.
We are interested in this work in proving a large deviation result for the family of

measures
	
P

x;y
�




0<�61
, seen as measures supported on some space of Hölder func-

tions. Such kind of results were stated without proofs in Takanobu and Watanabe’s
famous paper [1], and proved for the first time in a recent paper by Inahama [2] in as
general a framework as in the present paper. See also an earlier work of his [3] where
similar results are proved under some stronger ellipticity assumptions. His analysis
rests on the dynamic description of the diffusion associated with L, given by the
stochastic differential equation dxt D V.xt/dt CP`

iD1 Vi.xt/ıdBi
t, or rather on its

rough path counterpart. By using quasi-sure analysis, he is able to lift the measures
P

x;y
� to some measures Px;y

� on the space of geometric rough paths, which requires the
quasi-sure existence of the Brownian rough path. The large deviation principle for
P

x;y
� is then obtained as a consequence of a subtle large deviation principle for Px;y

�

involving Watanabe’s theory of Donsker’s Delta function, via the continuity of the
Ito-Lyons map. Our proof is more analytic, in that its essential ingredients are the
heat kernel estimates of Léandre and Sanchez-Calle. We also use the machinery of
rough paths as a convenient tool for proving the exponential tightness of the family
of probability measures

�
P

x;y
�

�
0<�61 on C˛x;y

�
Œ0; 1�;M

�
. This way of proceeding is

probably simpler than Inahama’s approach, and much shorter; however, Inahama’s
approach has the advantage to prove a large deviation result on a rough paths space,
so his result on the rough bridge measure can be propagated to other measures
constructed as the image measure of the former via any Itô-Lyons map.

We need a little bit of notation to state our result. Write H1
0 for the set of R`-

valued paths h over the time interval Œ0; 1�, with starting point 0; its H1-norm is
denoted by khk. Given h 2 H1

0 , we define a path �h by solving the differential
equation

P�h
t D

X̀

iD1
Vi
�
�h

t

�Phi
t; (3)

for 0 6 t 6 1, given any specified starting point. The Lie bracket condition ensures
that one defines a metric topology identical to the manifold topology setting for any
pair of points .a; b/ in M

d.a; b/ D inf
Z 1

0

jPhsj`ds
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where the infimum is over the non-empty set of H1
0-controls h such that �h

0 D a and
�h
1 D b. It is called the sub-Riemannian distance associated with L. The notation
j 
 j` stands here for the Euclidean norm on R

`. We define an Œ0;1�-valued function
J on ˝x;y setting

J.�/ D 1

2

	
inf
˚khk2 I �h D �� � d.x; y/2



; (4)

with the convention inf; D 1. The above infimum is called the energy of the path
� , classically denoted by 2I.�/. Given any 0 < ˛ < 1, denote by kxk˛ the ˛-Hölder
norm of a path x from Œ0; 1� to the ambient space R

d. Write C˛x;y
�
Œ0; 1�;M

�
for the

set of all M-valued paths with finite ˛-Hölder norm, with endpoints x and y; it is
equipped with the topology associated with k 
 k˛ .

Theorem 1 (Large Deviation Principle for Bridges of Degenerate Diffusion
Processes)

(i) Given any 1
3
< ˛ < 1

2
, the probabilities Px;y

� are supported on C˛x;y
�
Œ0; 1�;M

�
.

(ii) The family
�
P

x;y
�

�
0<�<1

satisfies a large deviation principle in C˛x;y
�
Œ0; 1�;M

�
,

with good rate function J.

This statement calls for a few remarks.

1. The above definition of the space C˛x;y
�
Œ0; 1�;M

�
rests on the ambient Euclidean

metric. It is straightforward to see that it coincides with the set of M-valued paths
which are ˛-Hölder for any choice of Riemannian metric on M, so C˛x;y

�
Œ0; 1�;M

�

is intrinsically defined.
2. It seems possible however to trace back the large deviation upper bound to some

works of Gao [4] and Gao and Ren [5] on large deviation principles for stochastic
flows in the framework of capacities on Wiener space. They prove in these works
a Freidlin-Wentzell estimate/large deviation principle for .r; p/-capacities on
Wiener space. Denote by X� the solution to the stochastic differential equation

dX�t D � V.X�t /dtC � 12
X̀

iD1
Vi.X

�
t / ıdwi

t;

for a Brownian motion w D .w1; : : : ;w`/. As the probability measure P
x;y
� has

finite energy [6], a theorem of Sugita, theorem 4.2 in [7], ensures that we have

˚
P

x;y
� .A/

�p 6 c Cr
p.X

� 2 A/;

for some positive constant c and all Borel sets A in Wiener space; so a large
deviation upper bound for Cr

p implies a corresponding result for Px;y
� .
/. It does

not seem possible to get the large deviation lower bound by these methods.
Theorem 1 was also proved by different methods in the recent work [8] of
the author, in possibly unbounded manifolds—this setting is not covered by
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Inahama’s result in so far as unbounded manifolds do not necessary have
immersed versions in an ambient Euclidean space unlike closed manifolds, by
Whitney’s theorem.

3. We shall see in Sect. 3 that the large deviation principle stated in Theorem 1 leads
directly to the identification of the first order asymptotics of Px;y

� under some mild
conditions on .x; y/, in the sense that Px;y

� converges weakly to a Dirac mass on
some particular path � from x to y. It is natural in that setting to push further
the analysis and try and get a second order asymptotics. This is done in the work
[8] where it is proved that the fluctuation process around the deterministic limit
� is a Gaussian process whose covariance involves the (non-constant rank) sub-
Riemannian geometry associated with the operator L. This requires that the pair
.x; y/ lies outside some intrinsic cutlocus associated with L

4. See the two works [9, 10] of Baldi, Caramellino and Rossi for recent results
related to the above theorem., on large deviation results for the probability of
exit of a domain for a bridge of a diffusion process.

2 Proof of the Large Deviation Principle

The proof of Theorem 1 follows the pattern of proof devised by Hsu in [11] to prove
a similar large deviation principle in a Riemannian setting where L is the Laplacian
of some Riemannian metric on M. Our reasoning relies crucially on Léandre’s
logarithmic estimate [12, 13]

lim
�&0

� log p�.z; z
0/ D �d2.z; z0/

2
; (5)

which holds uniformly with respect to .z; z0/ 2 M2, as well as on Sanchez-Calle’s
estimate

pt.z; z
0/ 6 c t�m; (6)

which holds for some positive constant c and all z; z0 2 M and t > 0, see [14].
Write˝x for the set of continuous paths ! W Œ0; 1�! M started from x; we equip

˝x and ˝x;y with the metric of uniform convergence inherited from the ambient
space. Fix ˛ 2 � 1

3
; 1
2

�
.
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2.1 Exponential Tightness of the Family of Probability
Measures .P

x;y
� /0<�61 on C˛

x;y

�
Œ0; 1�; M

�

Given n D n.N/ > 7 and K D K.N/, to be fixed later as functions of some
parameter N, we define a compact subset CN both of˝x;y and C˛x;y

�
Œ0; 1�;M

�
setting

CN D
n
! 2 ˝x;y I sup

0<t�s6 1
n

j!t � !sjd
jt � sj˛ 6 K

o
:

The above supremum is over the set of all times s; t 2 Œ0; 1�. We first work on the
time interval Œ0; 2=3� to evaluate the P

x;y
� -probability of CN , to avoid the difficulties

coming from the singularities of the drift at time 1, in the classical dynamical
description of the bridge as the solution to a stochastic differential equation. Set

.?/ WD P
x;y
�

0

@ sup
s;t2Œ0;2=3�; 0<t�s6 1

n

j!t � !sjd
jt � sj˛ > K

1

A

6 n

2
sup

06r62=3
P

x;y
�

 

sup
r6s<t6rC2=n

j!t � !sjd
jt � sj˛ > K

!

:

Using (2) and the Markov property provides the upper bound

.?/ 6 sup
06r6 2�

3

E
x

2

4
p.��r� 2�

n /
.!�.rC 2�

n /
; y/

p�.x; y/
I sup

r6s<t6rC 2�
n

j!t � !sjd
jt � sj˛ > K

3

5

6 c��m

p�.x; y/
sup
z2M

P
z
	

sup
06s<t6 2�

n

j!t � !sjd
jt � sj˛ > K



:

(7)

By Lyons’ universal limit theorem, as stated for instance under the form given in
Theorem 11 in [15], there exists universal controls on the oscillation of solutions of
stochastic differential equations in terms of the oscillations of Brownian motion and
its Lévy area. More precisely, there exists positive constants ai; bi, depending only
on the vector fields V;Vi, such that

sup
z2M

P
z
	

sup
06s<t6 2�

n

j!t � !sj
jt � sj˛ >K



6 a1

n
P
	�
�BŒ0;.2�/=n�

�
�> b1K



C P

	�
�BŒ0;.2�/=n�

�
�3>K ^ n

3


o
;

6 a2P
	�
�BŒ0;.2�/=n�

�
� > b2.K ^ n/1=3




(8)

where BŒ0;.2�/=n� is the Brownian 1
˛

-rough path on the time interval

0; 2�n

�
, defined

on some probability space .�;F ;P/, and
�
�BŒ0;.2�/=n�

�
� stands for the homogeneous
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rough path norm of BŒ0;.2�/=n�; see for instance Chap. 10.1 of [16]. It follows from

the equality in law
�
�BŒ0;.2�/=n�

�
� D

q
2�
n

�
�BŒ0;1�

�
�, the Gaussian character of

�
�BŒ0;1�

�
�

under P, and Léandre’s estimate (5) for p�.x; y/, that

� logPx;y
�

0

@ sup
s;t2Œ0;2=3�; 0<t�s6 1

n

j!t � !sj
jt � sj˛ > K

1

A 6 d2.x; y/

2
C o�.1/� n.K ^ n/2=3

2
b22;

so we have

lim
�&0

� logPx;y
�

0

@ sup
s;t2Œ0;2=3�; 0<t�s6 1

n

j!t � !sj
jt � sj˛ > K

1

A 6 �N (9)

by choosing n D n.N/ and K D K.N/ big enough.
To get a similar estimate when working on the whole time interval Œ0; 1�, remark

that since M is compact and the operator L is hypoelliptic, it has a smooth positive
invariant measure by Hörmander’s theorem; positivity is [17]. If we use this measure
as our reference measure VOL, then Opt.z; z0/ D pt.z0; z/ is the heat kernel of another
operator bL which satisfies the same conditions as L. Write bPz;z0

� for the law of

the associated bridge. So the class of measures
	
P

z;z0

�




z¤z02M
constructed from

hypoelliptic operatorsL as in (1), satisfying the Lie bracket assumption, is preserved
under time reversal. Applying inequality (9) to the measurebPy;x

� on˝y;x obtained by
time-reversal of Px;y

� , we conclude with (9) that

lim
�&0

� logPx;y
� .C

c
N/ 6 �N:

So the family
�
P

x;y
�

�
0<�<1

of probabilities on Cx;y
˛

�
Œ0; 1�;M

�
is exponentially tight,

which proves in particular point (i). As the inclusion of Cx;y
˛

�
Œ0; 1�;M

�
into

�
˝x;y; k 


k1
�

is continuous, it suffices, by the inverse contraction principle, to prove that�
P

x;y
�

�
0<�<1

satisfies a large deviation principle in
�
˝x;y; k 
 k1

�
, with good rate

function J, to prove point (ii) of the theorem, in so far as J is also a good rate
function on Cx;y

˛

�
Œ0; 1�;M

�
. We follow closely Hsu’s work [11] to prove that fact.

2.2 Large Deviation Upper Bound for .P
x;y
� /0<�61

We first prove the upper bound for a compact subset C of ˝x;y. For 0 < a < 1, set

Ca D ˚! 2 ˝x;y I 9 � 2 C such that !s D �s; for 0 6 s 6 1 � a
�
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and

Ca� D
˚
! 2 ˝x I 9 � 2 C such that !s D �.1�a/s; for all 0 6 s 6 1

�
:

The set Ca is closed in both ˝x and ˝x;y, and C � Ca. Using (2) and the Markov
property, we get as in (7) the inequality

P
x;y
� .C/ 6 P

x;y
� .C

a/ 6 E
x
�

�
pa�.!1; y/

p�.x; y/
1!2Ca

�

�

6 c��m

p�.x; y/
P

x
�.C

a�/:

As Ca� is closed in ˝x, we have by the classical Freidlin-Wentzell large deviation
principle for Px

�

lim sup
�&0

� logPx;y
� .C/ 6 d2.x; y/

2
� 1

1� a
inf
!2Ca

�

I.!/:

Using the lower semicontinuity of I on ˝x, it is straightforward to use the
compactness of C to see that lim sup

a&0

inf
!2Ca

�

I.!/ > inf
!2C

I.!/, as done in [11, p. 112].

This proves the upper bound

lim sup
�&0

� logPx;y
� .C/ 6 � inf

C
J;

for a compact set C; it is classical that the exponential tightness proved in Sect. 2.1
implies in that case the upper bound for any closed set.

2.3 Large Deviation Lower Bound for .P
x;y
� /0<�61

We use the notation k fkŒa;b� to denote the uniform norm of some function f defined
on some time interval Œa; b�. Given an open set U in ˝x;y,we aim at proving that we
have

lim inf
�&0

� logPx;y
� .U/ > �J.�/ (10)

for any � 2 U with finite energy I.�/. Pick such a path � 2 U and b > 0 small
enough for the ball in ˝x with center � and radius b to be included in U. Set for
0 < a < 1

Ua;b D ˚! 2 ˝x;y I k! � �kŒ0;1�a� < b
�
; Fa;b D ˚! 2 ˝x;y I k! � �kŒ1�a;1� > b

�
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and Ua;b� D ˚
!� 2 ˝x I 9! 2 U such that !�.s/ D !.1�a/s; for all 0 6 s 6 1

�
.

We have Ua;b � �U [ Fa;b
�
, so P

x;y
� .U/ > P

x;y
�

�
Ua;b

��P
x;y
�

�
Fa;b

�
. We prove (10) by

showing that lim inf
�&0

� logPx;y
�

�
Ua;b

�
> �J.�/, and lim inf

�&0
� logPx;y

�

�
Fa;b

� D �1.

Given 
 > 0, write B
.y/ for the sub-Riemannian open ball in M, with center y
and radius 
. Using the Markov property as above, we have

P
x;y
�

�
Ua;b

� D E
x;y
�

h
P

x;X1�a
�.1�a/

�
Ua;b�

�i
>
Z

P
x;z
�.1�a/

�
Ua;b�

�p�.1�a/.x; z/p�a.z; y/

p�.x; y/
1z2B
.y/ dz

>
min

z2B
.y/
p�a.z; y/

p�.x; y/

Z
P

x;z
�.1�a/

�
Ua;b�

�
1z2B
.y/p�.1�a/.x; z/ dz

>
min

z2B
.y/
p�a.z; y/

p�.x; y/
P

x
�.1�a/

�
Ua;b� \ f!1 2 B
.y/g

�
:

Define �a.s/ D �.1�a/s for all 0 6 s 6 1. As � has finite energy, one can pick

some control h 2 H1
0 such that �h D � ; we have d.�a.1/; y/ 6

R 1
1�a jPhsj` ds 6q

a
R 1
1�a jPhsj2` ds. The choice of 
 D 
.a/ D 2

q
a
R 1
1�a jPhsj2` ds ensures that the open

set Ua;b� \
˚
!1 2 B
.y/

�
contains �a, so it is nonempty; also, 
.a/

2

a ! 0 as a tends
to 0. Using the classical Freidlin-Wentzell large deviation theory and the uniform
character of Léandre’s estimate (5), the above lower bound for Px;y

�

�
Ua;b

�
gives

lim inf
�&0

� logPx;y
�

�
Ua;b

�
> �I.�a/

1 � a
C d.x; y/2

2
� 
.a/

2

2a
;

from which the inequality lim inf
�&0

� logPx;y
�

�
Ua;b

�
> �J.�/ follows, since I.�a/ !

I.�/ and 
.a/2

a ! 0 as a tends to 0.
We now deal with the term P

x;y
�

�
Fa;b

�
. Set � s D �1�s, for 0 6 s 6 1, and choose

a small enough to have
�
�� � y

�
�
Œ0;a�

6 b
2
. We use the same time reversal trick and

notations as above to estimate Px;y
�

�
Fa;b

�
. Write

P
x;y
�

�
Fa;b

� DbPy;x
�

���! � ���
Œ0;a�

> b
�

6bPy;x
�

���! � y
�
�
Œ0;a�

> b

2

�

6 c��m

p�.y; x/
bPy
�

���! � y
�
�
Œ0;a�

> b

2

�
:

Léandre’s estimate (5) and the classical large deviation results for bPy
� give the

existence of a positive constant c such that we have

lim inf
�&0

� logPx;y
�

�
Fa;b

�
6 d.x; y/2

2
� c

a
I
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this upper bound tends to �1 as a tends to 0. Sections 2.1, 2.2 and 2.3 all together
prove Theorem 1.

3 First Order Asymptotics for Bridges of Degenerate
Diffusion Processes

Theorem 1 provides a straightforward mean for investigating the first order asymp-
totics of Px;y

� as � tends to 0, for x and y in generic positions.

Theorem 2 (First Order Asymptotics of Px;y
� ) If there exists a unique path � with

minimal energy from x to y, then P
x;y
� converges weakly in

�
˝x;y; k 
 k1

�
to a Dirac

mass on � as � tends to 0.

The proof of this result follows the proof of Lemma 3.1 in [11]. Since the family
.P

x;y
� /0<�61 is tight by point (a) in Sect. 2, let Q be any limit measure. Given b > 0,

set

Cb
N D CN \ f! 2 ˝x;y I k! � �k1 > bgI

then inf
!2Cb

N

J.!/ > 0. Indeed, since the paths of Cb
N are equicontinuous, if the

infimum were null, we could extract from any sequence of paths .!n/n>0 such that

J.!n/ converges to 0 a uniformly converging subsequence with limit ! 2 C
b
N , say.

We should then have J.!/ D 0, by the lower semicontinuity of J, that is ! D � ,
since there is a unique path from x to y with minimal energy, in contradiction with

the fact that elements of C
b
N satisfy the inequality k! � �k1 > b > 0. As a

consequence, the above large deviation upper bound implies

Q
�
Cb

N

�
6 lim inf

�&
P

x;y
�

�
C

b
N

� D 0 I

sending N tend to infinity, it follows that

Q
�
! 2 ˝x;y I k! � �k1 > b

� D 0:

As this holds for all b > 0, we have Q D ı� , from which the convergence of Px;y
� to

ı� follows.
Note that the set of pairs of points .x; y/ 2 M2 such that x and y are joined by a

unique path of minimal energy is dense in M2.
A different proof of this result is given in the work [8] of the author, where

we also study the limit law of the fluctuations of the bridge process around this
deterministic limit. It happens to be a Gaussian process, whose covariance is
explicitly determined by the bicharacteristic flow in the cotangent bundle of the
manifold.
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Dévissage of a Poisson Boundary Under
Equivariance and Regularity Conditions

Jürgen Angst and Camille Tardif

Abstract We present a method that allows, under suitable equivariance and regu-
larity conditions, to determine the Poisson boundary of a diffusion starting from the
Poisson boundary of a sub-diffusion of the original one. We then give two examples
of application of this dévissage method. Namely, we first recover the classical
result that the Poisson boundary of Brownian motion on a rotationally symmetric
manifolds is generated by its escape angle, and we then give an “elementary”
probabilistic proof of the delicate result of Bailleul (Probab Theory Relat Fields
141(1–2):283-329, 2008), i.e. the determination of the Poisson boundary of the
relativistic Brownian motion in Minkowski space-time.

MSC Classification: 60J45, 60J60, 53C30, 58D19

1 Introduction

The Poisson boundary of a Markov process is a measure space which reflects
precisely its long-time asymptotic behavior. In the same time, it can be seen as a
random compactification of the state space since it gives some salient information
on its geometry at infinity. Finally, it provides a nice representation of bounded
harmonic functions associated to the generator of the process, see for example [3, 9]
for nice introductions to the topic.

Focusing on the case of Brownian motion on Lie groups or Riemannian mani-
folds, the Poisson boundary can be computed explicitly in a number of examples:
semi-simple groups [13], constant curvature Riemannian manifolds and pinched
Cartan-Hadamard manifolds [15] etc. Nevertheless, the explicit determination of the
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Poisson boundary of the Brownian on a general Riemannian manifold is largely out
of reach. Indeed, even in the case of Cartan-Hadamard manifolds, the question of its
triviality (which is a priori a much simpler problem than its explicit determination)
is equivalent to the Green-Wu conjecture on the existence of bounded harmonic
functions, see [2] and the references therein.

In this paper, we present a so-called dévissage method that allows, under
equivariance and regularity conditions, to determine the Poisson boundary of a
diffusion starting from the Poisson boundary of a sub-diffusion of the original one.
Namely, if the state space E can be written as E D X�G in an appropriate coordinate
system, where X is a differentiable manifold and G is a finite dimensional connected
Lie group, and with standard notations recalled in Sect. 2.1 below, we prove the
following result:

Theorem A.1 (Theorems 1–2 Below) Let .xt; gt/t�0 be a diffusion process with
values in X � G, starting from .x; g/ 2 X � G and satisfying Hypotheses 1–
4 of Sect. 2.2 below. In particular the first projection .xt/t�0 is itself a diffusion
process with values in X and when t goes to infinity, the second projection .gt/t�0
converges P.x;g/-almost surely to a random element g1 of G. Then, the invariant
sigma field Inv..xt; gt/t�0/ of the full diffusion coincides up to P.x;g/-negligeable sets
with Inv..xt/t�0/ _ �.g1/.

Under some natural extra hypothesis, the above theorem can be extended
to the case where the group G is replaced by a finite dimensional co-compact
homogeneous space Y WD G=K.

Theorem B.1 (Theorem 3 Below) Let .xt; yt/t�0 be a diffusion process with values
in X�Y, starting from .x; y/ 2 X�Y and satisfying Hypothesis 5 of Sect. 2.2 below.
In particular the first projection .xt/t�0 is itself a diffusion process with values in
X and when t goes to infinity, the second projection .yt/t�0 converges P.x;y/-almost
surely to a random element y1 of Y. Then, the two sigma fields Inv..xt; yt/t�0/ and
Inv..xt/t�0/ _ �.y1/ coincide up to P.x;y/-negligeable sets.

The plan of the paper is the following: in the next Sect. 2, we specify the
geometric and probabilistic backgrounds and then the equivariance and regularity
conditions under which the dévissage method can be applied. Section 3 is devoted
to the proofs of the results stated above: we first consider the case where Inv..xt/t�0/
is trivial and G is a finite dimensional Lie group (Theorem 1 of Sect. 3.1), then the
case where Inv..xt/t�0/ is non-trivial but G is still a finite dimensional Lie group
(Theorem 2 of Sect. 3.2). Finally, we extend this result to case where Y D G=K
is a finite dimensional co-compact homogeneous space (Theorem 3 of Sect. 3.3).
In Sect. 4.1, we first apply the dévissage method to recover the classical result that
the Poisson boundary of the standard Brownian motion on a rotationally symmetric
manifold is generated by its limit escape angle, see e.g. [1, 12]. To conclude, in
Sect. 4.2, we give an “elementary” probabilistic proof of the main result of [4] i.e.
the determination of the Poisson boundary of the relativistic Brownian motion in
Minkowski space-time.



Dévissage of a Poisson Boundary Under Equivariance and Regularity Conditions 201

2 The Dévissage Method Framework

2.1 Geometric and Probabilistic Background

Let X be a differentiable manifold and G a finite dimensional connected Lie group,
in particular G carries a right invariant Haar measure �. As usual, let us denote by
C1.X � G;R/ the set of smooth functions from X � G to the real line R. From the
natural left action of G on itself

G � G! G
.g; h/ 7! g:h WD gh

;

we deduce a left action of G on C1.X �G;R/, namely:

G � C1.X �G;R/! C1.X � G;R/
.g; f / 7! g 
 f WD ..x; h/ 7! f .x; g:h//

:

In this context, let .xt; gt/t�0 be a diffusion process with values in X � G and with
infinite lifetime. We denote byL its infinitesimal generator acting on C1.X�G;R/.
Without loss of generality, we can suppose that the process .xt; gt/t�0 is defined on
the canonical space .˝;F / where˝ WD C.RC;X �G/ is the paths space and F is
its standard Borel sigma field. A generic element ! D .!t/t�0 2 ˝ can be written
! D .!X ; !G/ where !X D .!X

t /t�0 2 C.RC;X/ and !G D .!G
t /t�0 2 C.RC;G/.

The law of a sample path .xt; gt/t�0 starting from .x; g/ will be denoted by P.x;g/ and
E.x;g/ will denote the associated expectation. Note that we have again a natural left
action of G on ˝:

G �˝ ! ˝

.g; !/ 7! g:! WD .!X ; g:!G/
;

where g:!G WD .g:!G
t /t�0 2 C.RC;G/. Without loss of generality, we can also

suppose that .xt; gt/t�0 is the coordinate process, namely: xt.!/ D !X
t , gt.!/ D !G

t ,
for all t � 0. With standard notations, we introduce tail sigma field associated to
the diffusion: F1 WD T

t�0 �..xs; gs/; s � t/; and we consider the classical shift
operators .�s/s�0 on ˝:

�s W ˝ ! ˝

! D .!t/t�0 7! �s! WD .!tCs/t�0
:

Recall that, by definition, the invariant sigma field Inv..xt; gt/t�0/ associated to the
diffusion process .xt; gt/t�0 is the sub-sigma field of F1 composed of invariant
events, that is events A 2 F1 such that ��1

s A D A for all s > 0.
If K is a compact subgroup of G, we will denote by Y the associated homoge-

neous space i.e. Y WD G=K and by � the canonical projection � W G ! G=K. As
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above, given a diffusion process .xt; yt/t�0 on X�Y, we will denote by P.x;y/ the law
of the path starting from .x; y/ 2 X � Y, which we realize as probability measure on
the canonical space �.˝/ D C.RC;X � Y/.

2.2 Dévissage, Convergence, Equivariance and Regularity
Conditions

In the case of a group i.e. given a diffusion process .xt; gt/t�0 with values in X � G,
the dévissage method can be applied under the following set of hypotheses:

Hypothesis 1 (Dévissage Condition) The first projection .xt/t�0 is a sub-diffusion
of the full process .xt; gt/t�0. Its own invariant sigma field Inv..xt/t�0/ is either
trivial or generated by a random variable `1 with values in a separable measure
space .S;G ; 
/ and the law of `1 is absolutely continuous with respect to 
.

Hypothesis 2 (Convergence Condition) For any starting point .x; g/ 2 X �G, the
process .gt/t�0 converges P.x;g/-almost surely when t goes to infinity to a random
variable g1 in G.

Hypothesis 3 (Equivariance Condition) The infinitesimal generator L of the
diffusion is equivariant under the action of G on C1.X � G;R/, i.e. 8f 2 C1.X �
G;R/, we have

L .g 
 f / D g 
 .L f /:

Hypothesis 4 (Regularity Condition) All bounded L -harmonic functions are
continuous on the state space X � G.

In the homogeneous case, i.e. given a diffusion process .xt; yt/t�0 on X�Y where
Y D G=K is a co-compact homogeneous space, our hypothesis can be formulated
as follows:

Hypothesis 5 (Homogeneous Case) There exists a K-right equivariant diffusion
.xt; gt/t�0 in X�G satisfying Hypotheses 1–4 above such that under P.x;y/ the process
.xt; yt/t�0 has the same law as .xt; �.gt//t�0 under P.x;g/ for g 2 ��1.fyg/.

2.3 Comments on the Assumptions

Let us first remark that Hypotheses 1 and 2 ensure that the two sigma fields
Inv..xt/t�0/ and �.g1/ appearing in Theorem A.1 are well defined.
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2.3.1 On the Dévissage Condition

The starting point of the dévissage method is that the state space E of the original
diffusion can be written as X � G (resp. X � G=K) in an appropriate coordinate
system, where the corresponding first projection .xt/t�0 is a sub-diffusion of
.xt; gt/t�0 (resp. .xt; yt/t�0). This “splitting property” occurs in a large number of
situations, in particular when considering diffusion processes on manifolds that
show some symmetries.

For example, any left invariant diffusion .zt/t�0 with values in a semi-simple Lie
group H can be decomposed in Iwasawa coordinates as zt D ntatkt where nt 2 N,
at 2 A, kt 2 K take values in Lie subgroups and .kt/t�0 and .at; kt/t�0 are sub-
diffusions. In other words, the state space can be decomposed as the product of
X D A � K and G D N. Under some regularity conditions (see e.g. [11]), it can
be shown that the Poisson boundary of the sub-diffusion .at; kt/ is trivial and that nt

converges almost-surely to a random variable n1 2 N when t goes to infinity. Thus,
our results ensure that the Poisson boundary of the full diffusion .zt/t�0 is generated
by the single random variable n1.

Another typical situation where the dévissage condition is fulfilled is the case
of standard Brownian motion on a Riemannian manifold with a warped product
structure, a very representative example being the classical hyperbolic space Hd seen
in polar coordinates .r; �/ 2 R

�C � S
d�1, i.e. X D R

�C and G=K D SO.d/=SO.d �
1/. In that case, the radial component .rt/t�0 is a one-dimensional transient sub-
diffusion whose Poisson boundary is trivial and the angular component .�t/t�0 is a
time-changed spherical Brownian motion on S

d�1 that converges almost surely to a
random variable �1 2 S

d�1. Again, the dévissage method ensures that the Poisson
boundary of the full diffusion is generated by the single random variable �1. This
example generalizes to the case of a standard Brownian motion on a rotationally
symmetric manifold, see Sect. 4.1.

The hypothesis that the first projection .xt/t�0 is a sub-diffusion of the full diffu-
sion .xt; gt/t�0 (resp. .xt; yt/t�0) is convenient and easy to check when considering
examples. Nevertheless it is not necessary in the sense that there are cases where
the couple .xt; gt/t�0 does not a priori satisfy the dévissage condition, but where a
simple change of coordinates allows to implement the method, see Remark 1 below
for such an example.

Finally, remark that the absolute continuity condition required when Inv..xt/t�0/
is non-trivial, is ensured for example if the infinitesimal generator of the diffusion
process .xt/t�0 is hypoelliptic. Moreover, without loss of generality, we can suppose
in that case that the measure 
 on .S;G / is a probability measure, see [10].

2.3.2 On the Equivariance Condition

The main hypothesis that allows to implement the dévissage scheme is the third
one i.e. the equivariance condition. To emphasize its role, let us first consider the
following example where the diffusion process .xt; gt/t�0 with values X�G D R�R
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is solution of the stochastic differential equations system:

dxt D dtC e�x2t dBt; dgt D e�xt dt; .x0; g0/ 2 R �R; (1)

where .Bt/t�0 is a standard real Brownian motion. The infinitesimal generator L of
the diffusion is hypoelliptic, so that Hypothesis 4 is fulfilled. Naturally, the process
.xt/t�0 is a one dimensional sub-diffusion of .xt; gt/t�0 and from the Lemma 1 below,
Hypothesis 1 is also fulfilled.

Lemma 1 There exists a process .ut/t�0 that converges P.x;g/-almost surely to a
random variable u1 in R when t goes to infinity such that for all t � 0

xt D x0 C tC ut:

Moreover, the invariant sigma field Inv..xt/t�0/ is trivial.

Proof For all t � 0, we have xt D x0 C t C ut; where ut WD
R t
0

e�x2s dBs:

The martingale ut satisfies huit D
R t
0

e�2x2s ds � t so that from the law of iterated
logarithm, we have almost surely xt � t=2 for t sufficiently large. In particular,
hui1 < C1 almost surely and ut is convergent. Since xt goes almost surely
to infinity with t, standard shift-coupling arguments apply and we deduce that
Inv..xt/t�0/ is trivial. Note however that the tail sigma field of .xt/t�0 i.e. the
invariant sigma field of the space-time process Inv..t; xt/t�0/ is not trivial. Indeed,
x0 C u1 D limt!C1.xt � t/ is a non-trivial shift invariant random variable. �

From Lemma 1 again, the second projection gt D g0C
R t
0

e�xs ds convergesP.x;g/-
almost surely when t goes to infinity to a random variable g1 in R and Hypothesis 2
is satisfied. Finally, considering the action of G D .R;C/ on itself by translation,
Hypothesis 3 is also satisfied since, for f 2 C.R�R;R/ and .x; g; h/ 2 R

3 we have

L .h 
 f /.x; g/ D .@x f /.x; gC h/C 1

2
e�x2 .@2x f /.x; gC h/C e�x.@gf /.x; gC h/

D h 
 .L f /.x; g/:

Hence, from Theorem A, the invariant sigma field Inv..xt; gt/t�0/ coincide with
Inv..xt/t�0/_�.g1/ D �.g1/ up to P.x;g/-negligeable sets i.e. the dévissage scheme
applies. Let us now consider a very similar process, namely the diffusion process
.xt; gt/t�0 with values X � G D R � R which is solution of the new following
stochastic differential equations system:

dxt D dtC e�x2t dBt; dgt D �gtdt; .x0; y0/ 2 R �R; (2)

where .Bt/t�0 is again a standard real Brownian motion. With a view to apply the
dévissage method, the context seems favorable because the infinitesimal generator
L of the diffusion is hypoelliptic, .xt/t�0 is a one dimensional sub-diffusion of
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.xt; gt/t�0, and gt D g0e�t converges (deterministically) to g1 D 0 when t goes to
infinity. In particular, the sigma field Inv..xt/t�0/ _ �.g1/ is trivial. Nevertheless,
we have the following proposition:

Proposition 1 Let .x; g/ 2 R � R with g ¤ 0, then the sigma field Inv..xt; gt/t�0/
differs from Inv..xt/t�0/ _ �.g1/ by a P.x;g/-non-negligeable set.

Proof If g ¤ 0, the sigma field Inv..xt; gt/t�0/ is not trivial under P.x;g/ because the
process xt C log.jgtj/ converges P.x;g/-almost surely to x0 C log.jg0j/C u1 which,
from the proof of Lemma 1, is a non-trivial invariant random variable. �

The reason for which the dévissage method does not apply in this last example
is that Hypothesis 3 i.e. the equivariance condition is not fulfilled. Indeed, the
generator of the full diffusion writes

L D @x C 1

2
e�x2@2x � g@g;

and in general, for f 2 C.R � R;R/ and .x; g; h/ 2 R
3 we have

L .h 
 f /.x; g/ D .@xf /.x; gC h/C 1

2
e�x2 .@2xf /.x; gC h/� g.@gf /.x; gC h/

¤
h 
 .L f /.x; g/ D .@xf /.x; gC h/C 1

2
e�x2 .@2xf /.x; gC h/� .gC h/.@gf /.x; gC h/:

Remark 1 The equivariance condition is relatively strong and forces .xt/t�0 to be a
sub-diffusion (which is already supposed in Hypothesis 1). Indeed, since a function
f W X �G! R does not depend on its second variable if and only if g 
 f D f for all
g 2 G, the equivariance condition implies that L maps C1.X/ onto C1.X/ (and
thus .xt/ is a sub-diffusion). Nevertheless, some cases where this assumption is not
fulfilled can be solved by the dévissage method. For example, consider the diffusion
process .xt; gt/t�0 solution of following system of stochastic differential equations

8
ˆ̂
<

ˆ̂
:

dxt D
	

xtg2t
x2t Cg2t

C gt



dtC gtdBt;

dgt D g3t
x2t Cg2t

dt;

(3)

where, clearly, there is no equivariance. It is yet possible to show that, almost
surely, xt escapes to infinity with t, gt converges to a random variable g1 and that
Inv..xt; gt/t�0/ D �.g1/ almost surely. Indeed the invariant sigma-field of .xt; gt/

coincides with the one of .ut; vt/ WD .xt=gt; log.gt// (since the map is bijective). But
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now .ut; vt/ solves the system

8
<̂

:̂

dut D dtC dBt;

dvt D 1

1Cu2t
dt;

(4)

and one can easily check that, for this new diffusion, all the hypotheses of the
dévissage method are now fulfilled. Therefore, applying Theorem A, we can
conclude that Inv..xt; gt/t�0/ D Inv..ut; vt/t�0/ D �.v1/ D �.g1/.

2.3.3 On the Regularity Condition

As already noticed in the examples of the last section, the regularity condition is
automatically satisfied for a large class of diffusion processes, namely when the
infinitesimal generator L is elliptic or hypoelliptic. The role of this assumption will
be clear at the end of the proof of Theorems 1 and 2, since it allows to go to the limit
in the regularization procedure. In a more heuristical way, the regularity condition
can be seen as a mixing hypothesis which prevents pathologies that may occur when
considering foliated dynamics.

To be more precise on the kind of pathologies we have in mind, consider
the following discrete and deterministic example that was suggested to us by S.
Gouëzel. The underlying space is the product space X � Y D S

1 � S
1 where S

1 is
identified to R=Z. Fix ˛ … Q, and define the transformation T W X � Y ! X � Y
such that T.x; y/ WD .xC˛; y/. Now let X.x; y/ WD x and Y.x; y/ WD y be the first and
second projections and for n � 0 define Xn WD X ıTn i.e. Xn.x; y/ D .xC n˛; y/ and
Yn WD Y ı Tn 	 Y. In this discrete time context, the resulting sequence .Xn;Yn/n�0
plays the role of .xt; yt/t�0 in the framework described in Sect. 2.1. The dynamics of
.Xn/ does not depend on .Yn/, which is constant, and thus converges when n goes to
infinity. It is thus natural to ask if the devissage method applies or not in this context.
The answer is negative in general. To see this, for y 2 S

1, consider the probability
measure

�y WD C
X

n2Z

1

1C n2
ıyCn˛;

where C is a normalizing constant and define a measure P on X � Y such that

Z

X�Y
h.x; y/P.dx; dy/ WD

Z

y2S1

�Z

x2S1
h.x; y/

�
1

2
�y.dx/C 1

2
�yC1=2.dx/

��

dy:

Note that the first marginal PX.
/ D
R

Y P.
; dy/ of P is the Lebesgue measure hence
the invariant sigma field Inv..Xn/n�0/ is trivial under P. Since Y is T-invariant, the
invariant sigma field Inv..Yn/n�0/ is composed of events that do not depend on the
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first coordinate x. Thus, under P, the sigma field Inv..Xn/n�0/_ Inv..Yn/n�0/ is only
composed of events that do not depend on the first coordinate. Now consider the
sets A WD f.yC n˛; y/; y 2 S

1; n 2 Zg and B WD f.yC 1=2C n˛; y/; y 2 S
1; n 2 Zg.

Both sets are invariant by the dynamics but they do depend on the first coordinate.
Hence, the global invariant sigma field Inv..Xn;Yn/n�0/ differs from Inv..Yn/n�0/
by some P-non negligeable events and the dévissage method does not apply here:

Inv..Xn;Yn/n�0/ ¤ Inv..Xn/n�0/ _ Inv..Yn/n�0/:

3 Proof of the Main Result

We now give the proof of our results. To highlight the main ideas behind the proof,
we first consider the simplest case when the invariant sigma field of .xt/t�0 is trivial
and when Y D G is a finite dimensional Lie group. Then, we extend the result in the
case where the invariant sigma field of .xt/t�0 is non-trivial and finally, we consider
the homogeneous case.

3.1 Starting from a Trivial Poisson Boundary

Let us first prove the following result:

Theorem 1 Suppose that the full diffusion .xt; gt/t�0 satisfies Hypotheses 1–4.
Suppose moreover that for all .x; g/ 2 X � G, the invariant sigma field Inv..xt/t�0/
is trivial for the measure P.x;g/. Then the two sigma fields

Inv..xt; gt/t�0/ and �.g1/

coincide up to P.x;g/-negligeable sets. Equivalently, if H is a bounded L -harmonic
function, then there exists a bounded measurable function  on G such that H can
be written as H.x; g/ D E.x;g/Œ .g1/�, for all .x; g/ 2 X �G.

Proof (Proof of Theorem 1) The first step of the proof is the following lemma,
which is valid under Hypotheses 1–4 (the triviality of Inv..xt/t�0/ is not required
here). From Hypothesis 2, for all .x; g/ 2 X � G, the process .gt/t�0 converges
P.x;g/-almost surely to a random variable g1 D g1.!/ in G.

Lemma 2 Under Hypotheses 1–4, and for all starting points .x; g/ 2 X � G and
h 2 G, the law of the process h:.xt; gt/t�0 D .xt; h:gt/t�0 under P.x;g/ coincides with
the law of .xt; gt/t�0 under P.x;h:g/. In particular,

1. the law of the limit g1 under P.x;h:g/ is the law of h:g1 under P.x;g/;
2. for all .g; g0/ 2 G2, the push-forward measures of both P.x;g/ and P.x;g0/ under

the measurable map ! D .!X ; !G/ 7! hg�11 :! D .!X ; hg�11 .!/:!G/ coincide.



208 J. Angst and C. Tardif

Proof (Proof of Lemma 2) The result is an direct consequence of the equivariance
Hypothesis 3. Indeed, if f 2 C1.X � G;R/ is compactly supported, from Itô’s
formula, under P.x;g/ we have for all h 2 G:

f .xt; h:gt/ D .h 
 f /.xt; gt/ D .h 
 f /.x; g/C
Z t

0

L .h 
 f / .xs; gs/dsCMt

D f .x; h:g/C
Z t

0

h 
 .L f / .xs; gs/dsCMt

D f .x; h:g/C
Z t

0

.L f / .xs; h:gs/dsCMt;

where Mt is a martingale vanishing at zero. Otherwise, under P.x;h:g/ we have:

f .xt; gt/ D f .x; h:g/C
Z t

0

.L f /.xs; gs/dsC Nt;

where Nt is again a martingale vanishing at zero. In other words, under P.x;g/

and P.x;h:g/ respectively, both processes h:.xt; gt/t�0 and .xt; gt/t�0 solve the same
martingale problem, hence their laws coincide. �

Let us go back to the proof of Theorem 1. From Hypothesis 2, for all starting
points .x; g/ 2 X�G, the process .gt/t�0 convergesP.x;g/-almost surely to a random
variable g1 D g1.!/ in G. We define

˝
.x;g/
0 WD f! 2 ˝; lim

t!C1 gt.!/ existsg;

and consider Qg1 such that Qg1 WD g1 on ˝.x;g/
0 and Qg1 WD IdG on ˝n˝.x;g/

0 . Let
H be a bounded L -harmonic function. By the standard duality between bounded
invariant random variables and bounded harmonic functions, see e.g. Proposition 3.4
p. 423 of [14], there exists a bounded variable Z W ˝ ! R which is measurable with
respect to Inv..xt; gt/t�0/, i.e. Z is F1-measurable and satisfies Z.�s!/ D Z.!/ for
all ! 2 ˝ , such that for all .x; g/ 2 X �G:

H.x; g/ D E.x;g/ŒZ�:

Moreover, .x; g/ 2 X �G being fixed, for P.x;g/-almost all paths !, we have:

Z.!/ D lim
t!C1 H.xt.!/; gt.!//:

The first idea here is to use the Lie group structure to condition the diffusion to
escape at a prescribed point in G. Remark that standard conditioning methods such
as Doob h-transform can not be implemented here since the law of the limit g1 is
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not known a priori. For h 2 G, consider the random variable

Zh.!/ WD Z.h:Qg�11 :!/ D Z.!X ; hQg1.!/�1!G/:

This new variable Zh can be seen as modification of the initial variable Z so that
the value of Zh.!/ is the value of Z but conditioned by the event that the G-valued
component !G of the sample path ! does not exit at the random point g1.!/ but
at the fixed point h. This variable is again Inv..xt; gt/t�0/-measurable. Indeed, since
the constant function equal to h and the random variable Z are shift-invariant, we
have

Z.h:Qg�11 .�s!/:�s!/ D Z.�s.h:Qg�11 :!// D Z.h:Qg�11 :!/:

Since Zh is bounded and is measurable with respect to Inv..xt; gt/t�0/, the function
.x; g/ 7! E.x;g/ŒZh� is also a bounded L -harmonic function. But from the second
point of Lemma 2, for all starting points .x; g; g0/ 2 X � G2, we have

E.x;g/ŒZ
h� D E.x;g0/ŒZ

h�:

In other words, the harmonic function .x; g/ 7! E.x;g/ŒZh� is constant in g and its
restriction to X is L X-harmonic, where L X denotes the infinitesimal generator of
the sub-diffusion .xt/t�0. Since Inv..xt/t�0/ is supposed to be trivial, we deduce that
the function .x; g/ 7! E.x;g/ŒZh� is constant. In the sequel, we will denote by  .h/
the value of this constant. Note that h 7!  .h/ is a bounded measurable function
since h 7! Zh is. The resulting function  is precisely the one appearing in the
statement of Theorem 1. By construction, .h/ is the common value, for all starting
points .x; g/ 2 X � G, of E.x;g/ŒZh�, i.e. the expectation of Z “conditioned” by the
event that !G exit in h instead of g1.!/. The second step of the proof consists in
considering a “smooth version” of the map h 7! Zh, that will allow us to deal with
non-countable union of negligeable sets, which is necessary if we want to mimic
the above approach replacing h by g1.!/. So let us introduce an approximate unity
.�n/n�0 on G, fix g 2 G, n 2 N and consider the “conditioned and regularized”
version Z, namely:

Zg;n.!/ WD
Z

G
Zh.!/�n.gh�1/�.dh/:

The exact same reasoning as above shows that Zg;n is bounded and measurable
with respect to Inv..xt; gt/t�0/ so that the function .x; g/ 7! E.x;g/ŒZg;n� is constant.
Hence, for all g 2 G, n 2 N and .x; g/ 2 X � G, there exists a set ˝g;n;.x;g/ � ˝

such that P.x;g/.˝g;n;.x;g// D 1 and such that for all paths ! in ˝g;n;.x;g/, we have:

Zg;n.!/ D lim
t!1E.xt.!/;gt.!//ŒZ

g;n� D E.x0.!/;g0.!//ŒZ
g;n� D E.x;g/ŒZ

g;n�:
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Let D be a countable dense set in G and consider the intersection

˝.x;g/ WD
\

g2D;n2N
˝g;n;.x;g/:

We have naturally P.x;g/.˝
.x;g// D 1 and for ! 2 ˝.x;g/:

8g 2 D; n 2 N; Zg;n.!/ D E.x;g/ŒZ
g;n�:

Since the above expressions are continuous in g, we deduce that the last inequality
is true for all g 2 G. In other words, we have shown that for all g 2 G and for all !
in ˝.x;g/:

Zg;n.!/ D E.x;g/ŒZ
g;n� D

Z

G
 .h/�n.gh�1/�.dh/:

In particular, taking g D Qg1.!/, we obtain that for all ! 2 ˝.x;g/ and for all n 2 N:

ZQg1.!/;n.!/ D
Z

G
 .h/�n.Qg1.!/h�1/�.dh/: (5)

Recall that the Haar measure � is right invariant so that

ZQg1.!/;n.!/ D
Z

G
Zh.!/�n.g1.!/h�1/�.dh/ D

Z

G
Z.h:!//�n.h

�1/�.dh/;

and
Z

G
 .h/�n.Qg1.!/h�1/�.dh/ D

Z

G
 .hQg1.!//�n.h

�1/�.dh/:

Thus, Eq. (5) is equivalent to

Z

G
Z.h:!/�n.h

�1/�.dh/ D
Z

G
 .hQg1.!//�n.h

�1/�.dh/:

Taking the integral in ! with respect to P.x;g/ on˝.x;g/, we deduce that for all n 2 N:

Z

G
E.x;g/ŒZ.h:!/��n.h

�1/�.dh/ D
Z

G
E.x;g/Œ .hQg1/��n.h

�1/�.dh/;

which, from Lemma 2 yields

Z

G
H.x; hg/�n.h

�1/�.dh/ D
Z

G
E.x;hg/Œ .Qg1/��n.h

�1/�.dh/:
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From Hypothesis 4, bounded L -harmonic functions are continuous, hence we can
let n go to infinity in the above expressions to get the desired result, namely:

H.x; g/ D E.x;g/Œ .g1/�:

ut

3.2 Starting from a Non-trivial Poisson Boundary

Let us now consider the general case when Inv..xt/t�0/ is not trivial but generated
by a random variable `1 with values in a separable measure space .S;G /. We will
prove the following result:

Theorem 2 Suppose that the full diffusion .xt; gt/t�0 satisfies Hypotheses 1–4.
Then, for all starting points .x; g/ 2 X � G, the two sigma fields

Inv..xt; gt/t�0/ and �.`1; g1/

coincide up to P.x;g/-negligeable sets. Equivalently, if H is a bounded L -harmonic
function, there exists a bounded measurable function  on S � G such that H can
be written as H.x; g/ D E.x;g/Œ .`1; g1/� for all .x; g/ 2 X � G.

Proof The proof is very similar to the one of Theorem 1, but it requires an extra
argument to ensure the measurability of the function  . So let H be a bounded L -
harmonic function and Z W ˝ ! R the associated bounded random variable which
is measurable with respect to Inv..xt; gt/t�0/. For g; h 2 G and n 2 N, we consider
the random variables

Zh.!/ WD Z.h:Qg�11 :!/; Zg;n.!/ WD
Z

G
Zh.!/�n.gh�1/�.dh/:

As in the proof of Theorem 1, the element h being fixed, the variable Zh is
bounded and Inv..xt; gt/t�0/-measurable, so that the function .x; g/ 7! E.x;g/ŒZh�

is bounded and L -harmonic. From Lemma 2, this function is constant in g and its
restriction to X is thus L X-harmonic. Hence, there exists a bounded measurable
function  h W S! R such that

8.x; g/ 2 X � G; E.x;g/ŒZ
h� D E.x;g/Œ h.`1/�: (6)

By Hypothesis 1, the random variable `1 admits a density k with respect to the
reference probability measure 
 on .S;G /, so that the last equation can be written

8.x; g/ 2 X � G; E.x;g/ŒZ
h� D

Z
 h.`/k.x; `/
.d`/:
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The difficulty here is that, a priori, the function .h; `/ 7!  h.`/ is not measurable in
both variables. To deal with this difficulty, note that for any A 2 G , we have also:

Ex;gŒ1`12AZh� D Ex;gŒ1`12A h.`1/� D
Z

1A.`/ h.`/k.x; `/
.d`/: (7)

Let us fix x0 2 X and define

Qh.d`/ WD  h.`/

E.x0;g/ŒZh�
k.x0; `/
.d`/:

For each h, the measure Qh is absolutely continuous with respect to k.x0; `/
.d`/
and, by Eq. (7), the one parameter family .Qh/h is a measurable family of probability
measures. Recall that by Hypothesis 1, the measurable space .S;G / is separable,
thus Theorem 58 p. 57 of [6] applies and there exists a measurable map X W S�G!
R such that X.:; h/ is a density of Qh with respect to k.x0; `/
.d`/, i.e. for all h 2 G

X.`; h/ D  h.`/

E.x0;g/ŒZh�
for 
 � almost all `:

The map h 7! E.x0;g/ŒZ
h� being measurable, the function

Q .`; h/ WD X.`; h/E.x0;g/ŒZ
h�

is also measurable and for all .x; g/ 2 X �G, we have E.x;g/ŒZh� D E.x;g/Œ Q .`1; h/�:
For all g 2 G, n 2 N and .x; g/ 2 X �G, we thus have:

E.x;g/ŒZ
g;n� D

Z

G
E.x;g/ŒZ

h��n.gh�1/�.dh/ D
Z

G
E.x;g/Œ Q .`1; h/��n.gh�1/�.dh/

D E.x;g/

�Z

G

Q .`1; h/�n.gh�1/�.dh/

�

:

Hence, .x; g/ 2 X � G being fixed, we obtain that P.x;g/-almost surely

Zg;n D lim
t!C1E.xt;gt/ŒZ

g;n�

D lim
t!C1E.xt;gt/

�Z

G

Q .`1; h/�n.gh�1/�.dh/

�

D
Z

G

Q .`1; h/�n.gh�1/�.dh/:

In other words, .g; n; .x; g// being fixed, there exists a set ˝g;n;.x;g/ � ˝ of full
measure i.e. P.x;g/.˝g;n;.x;g// D 1 such that for all ! 2 ˝g;n;.x;g/

Zg;n.!/ D
Z

G

Q .`1.!/; h/�n.gh�1/�.dh/:
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If D a countable dense set in G, we get that for all ! 2 ˝.x;g/ WDTg2D;n2N˝g;n;.x;g/:

8g 2 D; n 2 N; Zg;n.!/ D
Z

G

Q .`1.!/; h/�n.gh�1/�.dh/:

The above expressions being continuous in g, we can take g D Qg1.!/ to get

8! 2 ˝.x;g/;8n 2 N; ZQg1.!/;n.!/ D
Z

G

Q .`1.!/; h/�n.Qg1.!/h�1/�.dh/

D
Z

G

Q .`1.!/; hQg1.!//�n.h
�1/�.dh/:

Taking the expectation under P.x;g/, the left hand side gives :

E.x;g/ŒZ
Qg1 ;n� D

Z

˝

�Z

G
Zh.!/�n.Qg1.!/h�1/�.dh/

�

P.x;g/.d!/

D
Z

˝

�Z

G
ZhQg1.!/.!/�n.h

�1/�.dh/

�

P.x;g/.d!/

D
Z

˝

�Z

G
Z.h:!/�n.h

�1/�.dh/

�

P.x;g/.d!/

D
Z

˝

�Z

G
Z.!/�n.h

�1/�.dh/

�

P.x;hg/.d!/

D
Z

G
E.x;hg/ŒZ��n.h

�1/�.dh/

and the right hand side

E.x;g/

�Z

G

Q .`1; hQg1/�n.h
�1/�.dh/

�

D
Z

G
E.x;g/

 Q .`1; hQg1/
�
�n.h

�1/�.dh/

D
Z

G
E.x;hg/

 Q .`1; Qg1/
�
�n.h

�1/�.dh/:

Since L -harmonic functions are continuous, letting n go to infinity, we deduce

E.x;g/ŒZ� D E.x;g/Œ Q .`1; Qg1/�:

�
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3.3 Extension to Homogeneous Manifolds

Finally, we give the proof of Theorem B, i.e. we extend the previous results to the
homogeneous case. Consider K a compact sub-group of G, denote by Y WD G=K
the homogenous space associated and � W G ! G=K the canonical projection. Let
.xt; yt/ be a diffusion on X � Y.

Theorem 3 Suppose that the full diffusion .xt; yt/t�0 satisfies Hypothesis 5 of
Sect. 2.2, then for all starting points .x; y/ 2 X � Y, the two sigma fields

Inv..xt; yt/t�0/ and Inv..xt/t�0/ _ �.y1/

coincide up to P.x;y/-negligeable sets.

Proof We consider here the case where Inv..xt/t�0/ is generated by a random
variable `1 with values in a separable measure space .S;G ; 
/. The case where
Inv..xt/t�0/ is trivial can be treated is a very similar way. Let us fix .x; y/ 2 X � Y
and g 2 ��1.fyg/. By Hypothesis 5, there exists a K-right equivariant diffusion
.xt; gt/t�0 on X�G such that, under P.x;g/, the process .xt; �.gt//t�0 has the same law
as the process .xt; yt/t�0 under P.x;�.g//. Moreover, .xt; gt/t�0 satisfies Hypotheses 1–
4, in particular gt converges P.x;g/-almost surely to g1 when t goes to infinity.
Hence, yt converges P.x;�.g//-almost surely to the asymptotic random variable

y1 W ! 2 �.˝/ 7!
�

limt!C1yt.!/ if exists;
�.Id/ else:

Moreover, for any g in ��1.fyg/, the law of y1 under P.x;y/ is the same as the law
of �.g1/ under P.x;g/. So let us consider Z W �.˝/ ! R a bounded �t-invariant
random variable, for any g in ��1.fyg/, we have:

E.x;y/ŒZ� D E.x;g/ŒZ ı �� D
Z

K
E.x;gk/ŒZ ı ��Haar.dk/:

Since Z ı � is Inv..xt; gt/t�0/-measurable and bounded, by Theorem 2 applied to
.xt; gt/t�0, there exists a bounded measurable function .`; g/ 7! eH.`; g/ such that:

8.x; g/ 2 X � G; 8k 2 K; E.x;gk/ŒZ ı �� D E.x;gk/ŒeH.`1; g1/�:

Then, using the K-right equivariance of .xt; gt/t�0 we obtain for g 2 ��1.fyg/:

E.x;y/ŒZ� D
Z

K
E.x;gk/ŒeH.`1; g1/�Haar.dk/

D
Z

K
E.x;g/ŒeH.`1; g1k/�Haar.dk/:



Dévissage of a Poisson Boundary Under Equivariance and Regularity Conditions 215

Now introduce S W Y ! G a measurable section of � . Then g1 D S .�.g1//k0
for some random k0 2 K and we have

E.x;y/ŒZ� D E.x;g/

�Z

K

eH.`1;S .�.g1//k0k/Haar.dk/

�

D E.x;g/

�Z

K

eH.`1;S .�.g1//k/Haar.dk/

�

:

Finally denoting by H the bounded measurable function on S � Y defined by

H.`; y/ WD
Z

K

eH.`;S .y/k/Haar.dk/;

we have

E.x;y/ŒZ� D E.x;y/ŒH.`1; y1/�:

�

4 Examples of Application

In this last section, we give two examples of application of the dévissage method.
The first one, which concerns the asymptotic behavior of the standard Brownian
motion on a rotationally symmetric manifold, is a direct consequence of Theorem 3.
The second one, which characterizes the Poisson boundary of the relativistic
Brownian motion in Minkowski space is an application of Theorem 1, after a
suitable change of coordinates.

4.1 Brownian Motion on Rotationally Invariant Models

Let us consider a rotationally invariant model .M; g/ i.e. a differentiable Riemannian
manifold .M; g/, diffeomorphic to the Euclidean space Rn and such that there exists
a point o 2 M called the center of the manifold, such that Mnfog admits a global
polar coordinate system .r; �/ 2 R

�C � S
n�1, in which the metric g takes the form

g D dr2 C f 2.r/d�2;
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where the warping function f is smooth and positive on R
�C. The Laplace-Beltrami

operator�M on M is then given by the formula

�M D @2r C .n� 1/
f 0

f
.r/@r C 1

f .r/2
�S

n�1

� ;

where �S
n�1

� is the classical Laplace operator on the round sphere S
n�1. In this

context, let X be a Brownian motion on .M; g/ starting from X0 D x0 ¤ o which is
decomposed according to Mnfog D R

�C � S
n�1 into its radial and angular process,

namely Xt D .rt; �t/. The process .rt; �t/ then solves the following system of
stochastic differential equations:

drt D dWt C n � 1
2

f 0

f
.rt/dt; d�t D 1

f .rt/
d�t;

where Wt and �t are independent Brownian motions on R and S
n�1 respectively.

Note that, whatever the warping function is, the radial component rt is a one
dimensional sub-diffusion of Xt and the angular component �t is time-changed
spherical Brownian motion parametrized by the clock

Ct WD
Z t

0

1

f .rs/2
ds;

which only depends on the radial component. The general theory of one-
dimensional diffusions then ensures that (see e.g. [1])

1. if

Z C1

1

f 1�n.r/dr < C1;

then rt goes to infinity almost surely;
2. if

Z C1

1

f n�1.r/
�Z C1

r
f 1�n.�/d�

�

dr D C1;

then the lifetime of rt is almost surely infinite;
3. if

Z C1

1

f n�3.r/
�Z C1

r
f 1�n.�/d�

�

dr < C1;

then the clock Ct is almost surely convergent i.e.

C1 D
Z C1

0

1

f .rs/2
ds < C1:
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Fig. 1 Asymptotic behavior
of Xt under conditions 1–3 Xt

o

o

M

Thus, under these integrability conditions on f , the process Xt is transient, does
not explode and its angular part �t converges almost surely to some asymptotic
random variable �1 2 S

n�1. In other words, Xt goes to infinity in a random preferred
direction or equivalently, the model M being seen as the interior of the unit ball B,
its converges to a random point �1 of its visual boundary, see Fig. 1 below.

Thus, choosing the natural polar coordinates on M, and considering the sphere
S

n�1 as a SO.n/-homogeneous space, we are in position to apply Theorem 3 to
obtain:

Theorem 4 Under conditions 1–3 on the warping function f , the Poisson boundary
of the Brownian motion Xt D .rt; �t/ on M is generated by its escape angle �1.

Proof Let us denote by Lr the infinitesimal generator of the radial sub-diffusion
.rt/. The devissage and regularity conditions are fulfilled and since rt goes almost
surely to infinity with t, by shift coupling, it is easy to see that boundedLr-harmonic
functions are constant, or equivalently that the invariant sigma field of the radial
diffusion is trivial. Indeed, let h be a bounded Lr-harmonic function and fix two
points r10 ¤ r20 in R

C. Without loss of generality, we can suppose that r20 < r10. Let
.r2t / be a version of the radial process starting from r20. Almost surely, the process
r2t goes to infinity with t so that the stopping time T WD infft > 0; r2t D r10g is finite
almost surely. By the stopping time theorem, we obtain that h.r10/ D EŒh.r2T/� D
h.r20/, hence the function h is constant. It remains to check that Hypothesis 5,
concerning the homogeneous case, is fulfilled. Let us denote by

� W SO.n/ �! S
n�1 D SO.n/=SO.n� 1/
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the canonical projection which makes SO.n/ the orthonormal frame bundle over
S

n�1. We can lift horizontally the Sn�1-Brownian motion .�t/t�0 into a left invariant
diffusion living in SO.n/. Namely, denoting by .Hi/iD1:::n�1 the canonical horizontal
vector fields on SO.n/ (which are moreover left invariant) we have

8� 2 C2.Sn�1;R/; �.�/ ı � D
 

n�1X

iD1
H2

i

!

.� ı �/:

Thus denoting by .rt; gt/ the diffusion on �0;C1Œ�SO.n/ generated by

L WD @2r C .n � 1/
f 0

f
.r/@r C 1

f .r/2

n�1X

iD1
H2

i ;

we obtain that .rt; �.gt// is a Brownian motion on M. Moreover, according thatR C1 f .rs/
�2ds is almost surely finite, the process gt converges almost surely to

some SO.n/-valued asymptotic random variable g1. Note that, .Hi/iD1:::n�1 being
left-invariant, the equivariance condition is satisfied, and finally Hypothesis 5 is
fulfilled. �

4.2 Relativistic Brownian Motion in Minkowski Space

Both Euclidean Brownian motion Bt and Langevin process are standard models for
the physical Brownian motion. They are non relativistic models because, in both
cases, the reference frame in which the fluid is at rest plays a specific role (taking
into account the fluid viscosity). For instance the dynamics of those processes
change when a constant drift is added to the frame. So, in both models, there is no
Galilean covariance and a fortiori no Lorentzian covariance neither. Nevertheless, it
is remarkable that when the viscosity coefficient of the fluid is null the Langevin
process simply writes .Bt;

R t Bsds/ and it shows a Galilean covariant dynamics.
In 1966, Dudley introduced in [7] a Lorentzian analogue to this process, more
precisely he proved that there exists a unique diffusion process, taking values in
the Minkowskian phase space and having a Lorentzian covariant dynamics with
time-like C1 trajectories. In [4], Bailleul characterized the long-time asymptotic
behavior of this relativistic diffusion by computing its Poisson boundary. He showed
in particular that it corresponds to the causal boundary to Minkowski space-time. We
propose in this section to use Theorem 1 to provide a direct proof of his result.
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4.2.1 Dudley Diffusion in Minkowski Space-Time

We denote by R
1;d the Minkowski space-time R

dC1 endowed with the Lorentz
quadratic form q

q.�/ WD ��0�2 �
dX

iD1

�
� i
�2
:

The canonical basis is denoted by .e0; : : : ; ed/. Let denote by H
d the half pseudo

unit sphere

H
d WD f� 2 R

1;d; q.�/ D 1 �0 > 0g:

The restriction of the quadratic form �q to THd makes Hd a Riemannian manifold
of constant negative curvature, so H

d is the hyperboloïd model of the hyperbolic
space of dimension d.

Via the following polar coordinates

R
�C � S

d�1 �! H
d n fe0g

.r; �/ 7�! cosh.r/e0 C sinh.r/
dX

iD1
� iei

the hyperbolic space H
d is a rotationally invariant model centered at e0 with metric

ds2 D dr2 C sinh.r/2d�2; and the Laplacian is given by

�H
d

r;� D @2r C .d � 1/ coth.r/@r C 1

sinh.r/2
�S

d�1

� :

Let now define Dudley’s diffusion introduced in [7].

Definition 1 Dudley’s diffusion is the diffusion process . P�t; �t/ with values in the
phase space Hd �R

1;d and generated by

L WD �2

2
�H

d

P� C P� 
 @�;

thus P�t is a classical Riemannian Brownian motion in H
d and �t D �0 C

R t
0
P�sds.

Note that the paths �t are C1 and time-like (since q. P�t/ D 1). Moreover since
Lorentz linear transforms act by isometry on H

d and the H
d-Brownian motion P�t

has isometries equivariant dynamics, it follows that Dudley’s process has Lorentz
equivariant dynamics.
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4.2.2 Asymptotic Random Variables

Since the warping function f WD sinh satisfies the integrability condition 1–3 of
Sect. 4.1, the angular process �t of P�t converges almost surely to a random variable
�1 2 S

d�1. There is another asymptotic random variable associated to �t. We have
indeed that q.�t; e0C�1/ converges almost surely to some real random variable R1.
Geometrically this asymptotic random variable R1 defines the position of some
asymptotic affine hyperplan, whose direction is q-orthogonal to e0 C �1, see Fig. 2
below.

We refer to [4] for a detailed proof. Briefly, it follows from the decomposition

q.�t; e0 C �1/ D q.�0; e0 C �1/C
Z t

0

.cosh.rs/� sinh.rs/h�s; �1i/ ds

D q.�0; e0 C �1/C
Z t

0

�
e�rs � sinh.rs/d.�s; �1/2

�
ds;

where d.
; 
/ is the Riemannian distance on S
d�1 and from the fact

rt

t
�!
t!1

d � 1
2

�2; lim sup
t!C1

log.d.�t; �1// � �d � 1
2

�2:

In [4], Bailleul proved that the two variables �1 and R1 are the only asymptotic
variables associated to Dudley’s diffusion. Namely, using coupling techniques,
almost-coupling techniques, uniform continuity estimates for harmonic functions
obtained via delicate Harnack inequalities, he proved that

Fig. 2 Typical behavior of the relativistic diffusion in Minkowski space
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Theorem 5 (Bailleul) The invariant �-field of Dudley’s diffusion . P�t; �t/t�0 is
generated by the couple .�1;R1/ 2 S

d�1 � R
�C.

We propose here to use the devissage method to recover this result. For that we
write the dynamics of the diffusion in a new coordinate system .˛t; ˇt; �t; ht; ıt/

which makes appear a decomposition of the original diffusion into a sub-diffusion
.˛t; ˇt; �t/ with values in R � R � R

d�1 and a process .ht; ıt/ with values in the
group R

d�1 � R and which has equivariant dynamics. Then, we show that this
R

d�1 � R-valued process converges almost surely to some asymptotic random
variable .h1; ı1/ 2 R

d�1 � R. We conclude the proof by checking that the
sub-diffusion .˛t; ˇt; �t/ has a trivial Poisson boundary. In Remark 4 below, we
explicit the link between the limit variables .h1; ı1/ and .�1;R1/, namely h1
is a stereographical projection of �1 and ı1 is proportional to R1. Our approach is
inspired by Bailleul and Raugi’s work [5] where the authors use Raugi’s results on
random walks on Lie groups to find the Poisson boundary of the Dudley diffusion.

4.2.3 New System of Coordinates in H
d � R

1;d

We first exhibit a new coordinates in which Dudley’s diffusion splits up in a sub-
diffusion and a process with values in the group R

d�1 �R. For this, let us introduce
the Iwasawa coordinates on H

d (see for instance [8] where the authors consider the
equivalent decomposition T t

h D˛.e0/)

R � R
d�1 �! H

d

.˛; h/ 7�!
0

@

e˛

2
.1C jhj2/C e�˛

2
e˛

2
.1 � jhj2/ � e�˛

2

e˛h

1

A D ThD˛.e0/;

where Th and D˛ are the following matrix of q-isometries of R1;d:

Th WD exp

0

@
0 0 ht

0 0 �ht

h h 0

1

A D

0

B
@
1C jhj2

2
jhj2
2

ht

� jhj2
2

1� jhj2
2
�ht

h h Id

1

C
A ;

and

D˛ WD exp

0

@
0 ˛ 0

˛ 0 0

0 0 0

1

A D
0

@
cosh.˛/ sinh.˛/ 0
sinh.˛/ cosh.˛/ 0
0 0 Id

1

A :

Note that we have the product relations ThCh0 D ThTh0 and D˛C˛0 D D˛D˛0 and
that the coordinates .y WD e�˛; h/ are the classical half-space coordinates of the
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hyperbolic space H
d. For � 2 R

1;d denote by

.�/C WD q.�; e0 � e1/; .�/� WD q.�; e0C e1/; .�/? WD .q.�; ei//iD2;:::;d 2 R
d�1:

We have then the following q-orthogonal decomposition of � on the eigenspaces of
the matrices D˛

� D .�/C e0 C e1
2
C .�/� e0 � e1

2
C

dX

iD2
.�/?i ei:

Now let us consider the new system of coordinates in H
d � R

1;d given by the
following diffeomorphism

H
d � R

1;d �! R �R � R
d�1 � R

d�1 � R

.ThD˛.e0/; �/ 7�! .˛; ˇ; �; h; ı/
Î

.˛; .T �1
h �/C; .T �1

h �/?; h; .T �1
h �/�/

:

Remark 2 In Proposition 2 below, we recover the fact that the H
d-component P�t D

ThtD˛t .e0/ of Dudley diffusion escapes at infinity (˛t goes to infinity) and have
an asymptotic angle (the stereographical projection ht converges to h1). Thus, one
can naively imagine that the R

1;d-component �t of Dudley diffusion asymptotically
rotates together with its derivative P�t in the asymptotic direction given by h1. In
order to catch some extra invariant information, it is then natural to consider the
process T �1

ht
�t rather than �t and to decompose it on the eigenspaces of the matrices

D˛ . This explains why we introduced the previous diffeomorphism.
Moreover, this new system of coordinates in H

d�R1;d corresponds to coordinates
in the Poincaré group introduced by Bailleul and Raugi in [5] where they study the
asymptotic behavior of random walks in the Poincaré group lifting Dudley diffusion.

The following lemma shows that the Dudley diffusion, written in those new
coordinates, splits up in a tower of sub-diffusions.

Lemma 3 In this new system of coordinates, Dudley’s diffusion .˛t; ˇt; �t; ht; ıt/

satisfies the following system of stochastic differential equations:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

d˛t D �dWt C 1
2
�2.d � 1/dt;

dˇt D e˛t dt;

d�t D �e�˛tˇtdBt;

dht D �e�˛t dBt;

dıt D
�
e�˛t C �2.d � 1/ˇte�2˛t

�
dtC 2�e�˛t�t 
 dBt;
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where .Wt;Bt/ is a standard Brownian motion on R � R
d�1.

Proof Considering Iwasawa coordinates .˛; h/, the restricted Riemannian metric
�qjTHd writes d˛2 C e2˛jdhj2 and the hyperbolic Laplacian is (see also [8])

�H D e�2˛�R
d�1

h C @2

@˛2
C .d � 1/ @

@˛
: (8)

Thus there exists two standard independent Brownian motions Wt and Bt with values
in R and R

d�1 respectively such that

8
<̂

:̂

d˛t D �dWt C �2

2
.d � 1/dt;

dht D �e�˛t dBt:

Moreover, recall that by definition we have P�t WD ThtD˛t .e0/ thus

dˇt WD d.T �1
ht
�t/

C D dq.T �1
ht
�t; e0 � e1/

D dq.�t; e0 � e1/ since Tht .e0 � e1/ D e0 � e1

D q. P�t; e0 � e1/dt D e˛t dt:

Moreover for i D 2 : : : d, we have

d.�t/
i WD dq.T �1

ht
�t; ei/ D dq.�t;Tht.ei//

D q. P�t;Tht .ei//C q.�t; ıdTht.ei//

D q.D˛t .e0/; ei/C q.T �1
ht
�t;T

�1
ht
ı dTht .ei//

D 0C q.T �1
ht
�t; ıdhi

t.e0 � e1//

D ˇt ı dhi
t D ˇte

�˛t dBi
t:

Finally, we have

dıt D dq.T �1
ht
�t; e0 C e1/

D dq.�t;Tht .e0 C e1//

D q. P�t;Tht .e0 C e1//C q.T �1
ht
�t;T

�1
ht
ı dTht .e0 C e1//

D e�˛t dtC q.T �1
ht
�t; 2

dX

iD2
ıdhi

tei/
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D e�˛t dtC 2
dX

iD2
� i

t ı dhi
t

D e�˛t dtC 2�e�˛t�t 
 dBt C �2.d � 1/ˇte
�2˛t dt:

�

Remark 3 From Lemma 3, one can check easily that the process .˛t; ˇt; �t/t�0 with
values in X D R � R � R

d�1 is indeed a .d C 1/-dimensional sub-diffusion of
Dudley’s diffusion. Moreover, the infinitesimal generator L of the whole process
.˛t; ˇt; �t; ht; ıt/t�0 is of the form

L D L˛ˇ� C F.˛/
@2

@h2
C G.˛; ˇ/

@

@ı
C H.˛; �/

@2

@ı2
;

where L˛ˇ� is the generator of the sub-diffusion .˛t; ˇt; �t/t�0 and F;G;H are
smooth functions. Therefore,L is clearly equivariant under the action by translation
of elements .h; ı/ of the additive group G D R

d�1 � R.

4.2.4 Asymptotic Behavior in the New Coordinates

We now establish the asymptotic behavior of Dudley’s diffusion in the new
coordinates system .˛; ˇ; �; h; ı/. Namely, we show that both processes ht and ıt

converge almost surely to some asymptotic random variables h1 2 R
d�1 and

ı1 2 R. Moreover ˛t and ˇt are transient and go almost surely to infinity with t,
and finally the process �t is recurrent in R

d�1. This qualitative asymptotic behavior
is illustrated in Fig. 3 below.

Proposition 2 We have almost surely

˛t

t
�!

t!C1
1

2
�2.d � 1/; (9)

ht �!
t!C1 h1; (10)

ıt �!
t!C1 ı1; (11)

where h1 and ı1 are two asymptotic random variables. Moreover, .�t/t�0 is a local
martingale whose quadratic variation satisfies

h�i1 D
Z C1

0

ˇ2ue�2˛u du D C1 almost surely; (12)

in particular .�t/t�0 is recurrent.
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Fig. 3 Asymptotics of Dudley’s diffusion in the new coordinates

Note that the asymptotic random variables .h1; ı1/ associated to .˛t; ˇt; �t;

ht; ıt/t�0 are related to the limit variables .�1;R1/ introduced in Sect. 4.2.2 in
simple way which is explained in Remark 4 below.

Proof Since ˛t D ˛0 C 1
2
�2.d � 1/t C �Wt, the convergence (9) follows from

the law of iterated logarithm. Hence, the integrants in the expressions defining ht

and ıt are dominated by exp
��. 1

2
�2.d � 1/� "/t� for some " > 0 fixed and for t

sufficiently large, so that ht and ıt converge almost surely. Let us now check (12)
and set ut WD ˇte�˛t . Then ut is a one dimensional diffusion solution of

dut D ��utdWt C
�

1 � d � 2
2

�2ut

�

dt;

and it admits the explicit representation

ut D u0e
� d�1

2 �2t��Wt

�

1C 1

u0

Z t

0

e
d�1
2 �2sC�Wsds

�

:

Then, one easily checks that .ut/t�0 is ergodic in .0;C1/ with invariant measure

�.dx/ WD 1

Z�

e� 2

�2x

xd
1.0;C1/.x/dx;
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where Z� is a normalizing constant. In particular, we have
R C1
0

u2s ds D C1 almost
surely, hence the result.

�

Remark 4 The asymptotic random variable �1 and h1 define the same asymptotic
line in the light cone. Namely we have

1

q.e0;Th1
.e0 C e1//

Th1
.e0 C e1/ D e0 C �1;

or more explicitly, h1 is a stereographical projection of �1

�1 D 1

1C jh1j2
 

.1 � jh1j2/e1 C 2
dX

iD2
hi1ei

!

:

Moreover R1 and ı1 are proportional

R1 D 1

1C jh1j2 ı1:

4.2.5 Poisson Boundary

To finally recover Bailleul’s result using the devissage method, we have to show that
the sub-diffusion .˛t; ˇt; �t/ has a trivial Poisson boundary. Precisely we find a two
steps shift-coupling for that sub-diffusion and obtain the following proposition.

Proposition 3 The sub-diffusion .˛t; ˇt; �t/ has a trivial Poisson boundary.

Proof Fix two initials points x WD .˛; ˇ; �/ and Nx WD . N̨ ; Ň; N�/ in R � R � R
d�1.

We will exhibit two random times S and NS, that are almost surely finite, and two
copies xt WD .˛t; ˇt; �t/ and Nxt WD . N̨ t; Ňt; N�t/ starting at x and Nx respectively such
that xS D NxNS (Fig. 4).

Let us first consider two copies ˛t and Q̨ t starting respectively at ˛ and N̨

˛t WD ˛ C �Wt C d � 1
2

�2t and Q̨ t WD N̨ C � NWt C d � 1
2

�2t;

where Wt and NWt are two independent Brownian motions. Then, the following
increasing processes

ˇt WD ˇ C
Z t

0

e˛s ds and Q̌
t WD Ň C

Z t

0

e Q̨s ds
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Fig. 4 A two steps shift-coupling

admit inverses denoted respectively by .ˇ�1
t /t�ˇ and . Q̌�1t /t� Q̌. The time changed

processes

ut WD ˛.ˇ�1
t / and Qut WD Q̨ . Q̌�1t /

are then two independent copies of a one-dimensional diffusion, and their difference
ut � Qut (for t � max.ˇ; Q̌/) is recurrent, in particular the processes will couple
automatically at some random and almost surely finite time R. Defining T WD ˇ�1

R

and NT WD Q̌�1R we obtain a first shift-coupling

˛T D Q̨ NT ; ˇT D Q̌ NT :

Let us then define . N̨ t; Ňt/ to be . Q̨ t; Q̌t/ up to time NT

8t 2 Œ0; NT� . N̨ t; Ňt/ WD . Q̨ t; Q̌t/;

and coinciding with .˛t; ˇt/ after time NT

8s � 0; . N̨ NTCs;
Ň NTCs/ WD .˛TCs; ˇTCs/: (13)

By the Markov property . N̨ t; Ňt/t�0 is well defined and is a copy of .˛t; ˇt/t�0.
Now let define two copies �t and N�t which will couple at different times. Denote
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by .Bu/u�0 and . OBu/u�0 two independent Brownian motions on R
d�1 starting at 0

and independent of .Wu/u�0 and . NWu/u�0. Set

�t WD � C B

�Z t_T

0

�2ˇ2s e�2˛s ds

�

C OB
�Z T^t

T
�2ˇ2s e�2˛s ds

�

:

Now consider LB the Brownian motion starting at 0 obtained from OB by reflexion in

the linear hyperplan orthogonal to �T �
	
N� C B

	R NT
0 �

2 Ň2
s e�2 N̨s ds




and set

N�t WD N� C B

 Z t_ NT

0

�2 Ň2s e�2 N̨s ds

!

C LB
 Z NT^t

NT
�2 Ň2s e�2 N̨s ds

!

:

By the Markov property . N�t/t�0 is well defined and is a copy of .�t/t�0. Moreover,
by symmetry there exists a finite time U such that �T C OBU D N�T C LBU. By (12)
of Proposition 2 we know that

R s
T �

2ˇ2ue�2˛u du tends to C1 when s goes to C1,

thus we can consider the finite time S such that U D R S
T �

2ˇ2s e�2˛s ds. Then define
NS WD S � T C NT and using (13) we obtain

Z NS

NT
�2 Ň2s e�2 N̨s ds D

Z NS�NT

0

�2 Ň2NTCs
e�2 N̨ NTCs ds

D
Z S�T

0

�2ˇ2TCse
�2˛TCs ds D

Z S

T
�2ˇ2s e�2˛s ds D U:

Thus we finally obtain

�S D �T C OB
�Z S

T
�2ˇ2s e�2˛s ds

�

D �T C OBU

D N�T C LBU

D N�T C LB
 Z NS

NT
�2 Ň2s e�2 N̨s ds

!

D N�NS:

Moreover, since NS � NT D S � T we have also ˛S D N̨ NS and ˇS D ŇNS. Thus we
have constructed two copies .˛t; ˇt; �t/t�0 and . N̨ t; Ňt; N�t/t�0 that couple at the finite
times S and NS and it ends the proof of the proposition. �

We are finally in position to apply the dévissage scheme to the diffusion .xt; gt/t�0
where xt WD .˛t; ˇt; �t/ 2 X WD R � R � R

d�1 and gt WD .ht; ıt/ 2 G WD R
d�1 � R.

Namely, from Theorem 1, we can conclude that
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Theorem 6 For all . P�; �/ 2 H
d�R1;d, the invariant �-algebra of Dudley’s diffusion

starting from . P�; �/ coincides with �.h1; ı1/ up to P.P�;�/ negligible sets.

Note that by Remark 4, we have �.h1; ı1/ D �.�1;R1/ i.e. we precisely recover
Bailleul’s result.
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Weitzenböck and Clark-Ocone Decompositions
for Differential Forms on the Space of Normal
Martingales

Nicolas Privault

Abstract We present a framework for the construction of Weitzenböck and Clark-
Ocone formulae for differential forms on the probability space of a normal
martingale. This approach covers existing constructions based on Brownian motion,
and extends them to other normal martingales such as compensated Poisson
processes. It also applies to the path space of Brownian motion on a Lie group
and to other geometries based on the Poisson process. Classical results such as the
de Rham-Hodge-Kodaira decomposition and the vanishing of harmonic differential
forms are extended in this way to finite difference operators by two distinct
approaches based on the Weitzenböck and Clark-Ocone formulae.

AMS Classification: 60H07, 60J65, 58J65, 58A10

1 Introduction

Vanishing theorems for harmonic forms on Riemannian manifolds can be proved
by the Bochner method, which involves the Weitzenböck formula and relates the
Hodge Laplacian on differential n-forms�n D dn�1d.n�1/� C dn�dn to the Bochner
Laplacian L D r�r through a zero order curvature term Rn, i.e.

�n D LC Rn: (1)

Here, dn is the exterior derivative on n-forms with adjoint dn�, r is the covariant
derivative with adjoint r�, and Rn is the Weitzenböck curvature which reduces to
the usual Ricci tensor on one-forms. In particular, since both Laplacian operators�n

and L are non-negative, the identity (1) shows that there are no L2 harmonic n-forms
on a complete manifold when the curvature term Rn is positive.
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The Bochner vanishing technique extends to infinite dimension, in particular in
the linear case. On abstract Wiener spaces, the de Rham-Hodge decomposition and
a Weitzenböck formula have been derived in [20] with �L the Ornstein-Uhlenbeck
operator and Rn D nId, and it has been shown therein that there exist no nontrivial
harmonic n-forms for n � 1. Various other Weitzenböck-type formulae have
been established on infinite-dimensional manifolds with curvature, for example,
on submanifolds of the Wiener space in [12], on path spaces over Riemannian
manifolds [6], and on loop spaces over Lie groups [10], with more complicated
curvature terms Rn. On the path spaces over compact Lie groups, the Itô map has
been in used in [11] to construct a diffeomorphism which transfers the Weitzenböck
formula of [20], and thus the vanishing theorem, from the Wiener space to path
groups. The vanishing of harmonic one-forms on loop groups has also been proved
in [1] using the Weitzenböck formula [10].

Vanishing theorems on path spaces can also be proved using martingale repre-
sentation and the Clark-Ocone formula

F D EŒF�C
Z 1

0

EŒDtF j Ft�dBt;

cf. [5, 15], which decomposes a square-integrable function into the sum of a constant
and an Itô integral with respect to Brownian motion, where Dt denotes the Malliavin
gradient, cf. (6) below. The Clark-Ocone formula has been extended to differential
forms in [22] on the Wiener space and in [7] on the path space over a Riemannian
manifold, in order to decompose an n-form into the sum of an exact form and a
martingale. As the martingale component in the decomposition vanishes when the
given n-form is closed, such a formula can be used to show that there exist no non-
trivial harmonic n-forms. On the classical Wiener space, these generalised Clark-
Ocone formulae [22] provide an alternative proof of the vanishing results of [20]; in
addition, they give explicit expression for closed differential forms, while their dual
versions apply to the representation of co-closed forms. The vanishing of harmonic
one-forms on the path spaces over Riemannian manifolds, has been proved by the
Clark-Ocone formula in [7].

Until now, those vanishing techniques have only been applied in the Brownian
framework, where the underlying gradient operator satisfies the derivation property.
The aim of this paper is to show that they also apply to a large family of stochastic
processes, without requiring the derivation property of the gradient operator nor a
Gaussian setting. In particular, our argument applies to gradient operators defined
by chaos expansion methods with respect to normal martingales. In this way the
Weitzenböck and Clark-Ocone decompositions are shown to apply not only on the
Wiener space, but also to other normal continuous-time martingales such as the
compensated Poisson process, for which the gradient operator can be defined by
finite differences. Our approach relies on a direct proof inspired by the arguments
of [9] and [10] for the Weitzenböck formula on path and loop groups.
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In Sect. 3 we construct a Hodge Laplacian �n D dn�1d.n�1/� C dn�dn on
differential n-forms and we derive the de Rham-Hodge decomposition

L2.˝IH^n/ D Im dn�1 ˚ Im dn� ˚ Ker�n; n � 1;

cf. (21). Section 4 deals with examples to which our general framework applies,
including chaos-based settings and a non-chaos based constructions such as the path
space over a Lie group.

In Theorem 1 we prove the Weitzenböck identity

�n D nIdH^n Cr�r; n � 1;

and in Proposition 2 we show the vanishing of harmonic forms Ker�n D f0g, from
which the de Rham-Hodge decomposition

L2.˝IH^n/ D Im dn�1 ˚ Im dn�; n � 1;

follows. This result is also derived in Corollary 1 from the Clark-Ocone formula of
Theorem 2, showing the complementarity of the two approaches.

It can be shown in addition that this method goes beyond chaos expansions and
encompasses other natural geometries in addition to the path space over a Lie group
described in Sect. 4, for example on the Poisson space over the half line IRC, cf.
[19], in which case the gradient operator has the derivation property.

In [2, 3], n-differential forms on the configuration space over a Riemannian
manifold under a Poisson random measure have been constructed in a different
way by a lifting of the underlying differential structure on the manifold to the
configuration space. We also refer the reader to [4] for a different approach to the
construction of the Hodge decomposition on abstract metric spaces.

This paper is organized as follows. Sections 2 and 3 introduce the general
framework of differential and divergence operators on functions and differential
forms, including duality and commutation relations. Section 4 describes a number
of examples to which this framework applies, while Sects. 5 and 6 present the main
results on the Weitzenböck identity and the generalised Clark-Ocone formulae,
respectively, including the vanishing of harmonic forms. The examples of Sect. 4,
which range from normal martingales to Lie-group valued Brownian motion, are
revisited one by one in the frameworks of Sects. 5 and 6. The appendix contains the
proofs of the main results.

2 Differential Forms and Exterior Derivative

In this section we introduce an abstract gradient and divergence framework based on
a probability space .˝;F ;P/ and an algebra S � L2.˝/ for the pointwise product
of random variables, dense in L2.˝/.
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Deterministic Forms
We fix a measure space .X; �/ and we consider a linear space H of IRd-valued

functions, dense in L2.X; IRd/, d � 1, and endowed with the inner product induced
from L2.X; IRd/. Denote by H˝n the n-th tensor power of H, and by Hın, resp.
H^n, its subspaces of symmetric, resp. skew-symmetric tensors, completed using
the inherited Hilbert space cross norm. The exterior product ^ is defined as

h1 ^ 
 
 
 ^ hn WD An.h1 ˝ 
 
 
 ˝ hn/; h1; : : : ; hn 2 H; (2)

where An denotes the antisymmetrization map on n-tensors given by

An.h1 ˝ 
 
 
 ˝ hn/ D
X

�2˙n

sign.�/.h�.1/ ˝ 
 
 
 ˝ h�.n//; (3)

and the summation is over nŠ elements of the symmetric group˙n consisting of all
permutations of f1; : : : ; ng. We also equip H^n with the inner product

h fn; gniH^n WD 1

nŠ

Z

X

 
 

Z

X
h fn.x1; : : : ; xn/; gn.x1; : : : ; xn/i.IRd/˝n�.dx1/ 
 
 
�.dxn/

D 1

nŠ
h fn; gniH˝n ; fn; gn 2 H^n;

so that we have in particular

hh1 ^ 
 
 
 ^ hn; k1 ^ 
 
 
 ^ kniH^n

WD 1

nŠ

Z

X

 
 

Z

X
hAn.h1 ˝ 
 
 
 ˝ hn/;An.k1 ˝ 
 
 
 ˝ kn/i.IRd/˝n�.dx1/ 
 
 
�.dxn/

D 1

nŠ

Z

X

 
 

Z

X

D X

�2˙n

sign.�/.h�.1/ ˝ 
 
 
 ˝ h�.n//;

X

	2˙n

sign.	/.k	.1/ ˝ 
 
 
 ˝ k	.n//
˛
.IRd/˝n�.dx1/ 
 
 
�.dxn/

D
X

�2˙n

sign.�/
Z

X

 
 

Z

X
hh�.1/ ˝ 
 
 
 ˝ h�.n/; k1 ˝ 
 
 
 ˝ kn/i.IRd/˝n�.dx1/ 
 
 
�.dxn/

D
X

�2˙n

sign.�/
Z

X

 
 

Z

X
hh�.1/; k1iIRd 
 
 
 hh�.n/; kniIRd�.dx1/ 
 
 
�.dxn/

D det..hhi; kjiH/1�i;j�n/;

h1; : : : ; hn, k1; : : : ; kn 2 H.
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Covariant Derivative
In the sequel we will use a covariant derivative operator

r WH �! H ˝ H

h 7�! rh D .rxh/x2X;

where rxh 2 IRd ˝ H, x 2 X, is defined from the relation

hrxh; kiH WD hrh; kiH.x/ 2 IRd; x 2 X; h; k 2 H:

We will extend the definition of r to an operator

r W H^n �! H ˝ H^n

on differential forms in H^n, by the following steps.

(i) Let

r.l/x .h1 ^ 
 
 
 ^ hn/ 2 H ^ 
 
 
 ^H„ ƒ‚ …
l-1 times

^.IRd ˝H/ ^H ^ 
 
 
 ^ H„ ƒ‚ …
n-l times

as

r.l/x .h1 ^ 
 
 
 ^ hn/ WD h1 ^ 
 
 
 ^ hl�1 ^ rxhl ^ hlC1 ^ 
 
 
 ^ hn; x 2 X;

l D 1; : : : ; n.
(ii) We define rx.h1 ^ 
 
 
 ^ hn/ in IRd ˝ H^n, x 2 X, as

rx.h1 ^ 
 
 
 ^ hn/ WD
nX

jD1
r.j/x .h1 ^ 
 
 
 ^ hn/ (4)

D
nX

jD1
h1 ^ 
 
 
 ^ hj�1 ^ rxhj ^ hjC1 ^ 
 
 
 ^ hn;

by canonically identifying the space

H ^ 
 
 
 ^ H„ ƒ‚ …
l-1 times

^.IRd ˝ H/ ^H ^ 
 
 
 ^H„ ƒ‚ …
n-l times

to IRd ˝ H^n, for l D 1; : : : ; n.

Given g 2 H we also define rg.h1 ^ 
 
 
 ^ hn/ 2 H^n by

rg.h1 ^ 
 
 
 ^ hn/ D
Z

X
hg.x/;rx.h1 ^ 
 
 
 ^ hn/iIRd�.dx/
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D
nX

jD1

Z

X
hg.x/; .h1 ^ 
 
 
 ^ hj�1 ^ rxhj ^ hjC1 ^ 
 
 
 ^ hn/iIRd�.dx/

D
nX

jD1

.h1 ^ 
 
 
 ^ hj�1 ^ rghj ^ hjC1 ^ 
 
 
 ^ hn/:

Exterior Derivative–Deterministic Forms
We now define the exterior derivative on n-forms un 2 H^n by

hdnun; h1^
 
 
^hnC1iH^.nC1/ WD
nC1X

kD1

.�1/k�1hrhk un; h1^
 
 
^hk�1^hkC1^
 
 
^hnC1iH^n ;

(5)

where h1; : : : ; hnC1 2 H, i.e. dn D 1

nŠ
AnC1r, and the .nC1/-form dn.h1^ 
 
 
^hn/

is given by

dn
xnC1

..h1 ^ 
 
 
 ^ hn/.x1; : : : ; xn// D dn.h1 ^ 
 
 
 ^ hn/.x1; : : : ; xnC1/

D
nC1X

jD1
.�1/j�1rxj.h1 ^ 
 
 
 ^ hn/.x1; : : : ; xj�1; xjC1; : : : ; xnC1/

D
nC1X

jD1
.�1/j�1

nX

iD1
r.i/xj

.h1 ^ 
 
 
 ^ hn/.x1; : : : ; xj�1; xjC1; : : : ; xnC1/

D
nC1X

jD1
.�1/j�1

nX

iD1
.h1 ^ 
 
 
 ^ rxj hi ^ 
 
 
 ^ hn/.x1; : : : ; xj�1; xjC1; : : : ; xnC1/:

Random Forms
In the sequel we will need a linear gradient operator

D WS �! L2.˝IH/
F 7�! DF D .DxF/x2X (6)

acting on random variables in S .
We work on the space S ˝ H^n of elementary (random) n-forms that can be

written as linear combinations of terms for the form

un D F ˝ h 2 S ˝ H^n; F 2 S ; h 2 H^n: (7)

The operator D is extended to un 2 S ˝ H^n as in (7) by the pointwise equality

Dxun WD .DxF/˝ .h1 ^ 
 
 
 ^ hn/; x 2 X; (8)
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i.e. Dun 2 S˝H˝H^n. We also extendr to random forms un D F˝fn 2 S˝H^n

by defining run 2 S ˝ H ˝ H^n as

ry.un.x1; : : : ; xn// WD .DyF/˝ fn.x1; : : : ; xn/C F ˝ryfn.x1; : : : ; xn/

D .DyF/˝ fn.x1; : : : ; xn/C F ˝
nX

lD1
r.l/y fn.x1; : : : ; xn/;

x1; : : : ; xn; y 2 X. In particular for n D 1, r extends to stochastic processes (or
one-forms) as

rx.u1.y// D rx.F˝ f1.y// D .DxF/˝ f1.y/C F ˝rx f1.y/;

with u1 D F ˝ f1 2 S ˝ H.

Lie Bracket and Vanishing of Torsion
The Lie bracket f f ; gg of f ; g 2 H, is defined to be the unique element w of H

satisfying

.Df Dg �DgDf /F D DwF; F 2 S ; (9)

where

Df F WD h f ;DFiH; f 2 H; F 2 Dom.D/;

and is extended to u; v 2 S ˝ H by

fFu;Gvg.x/ D FGfu; vg.x/C v.x/FDuG � u.x/GDvF; x 2 X;

u; v 2 H, F;G 2 S . In the sequel we will make the following assumption.

(A1) Vanishing of torsion. The connection defined by r has a vanishing torsion,
i.e. we have

fu; vg D ruv � rvu; u; v 2 S ˝ H: (A1)

From (9) the vanishing of torsion Assumption (A1) can be written as

Z

X

Z

X
h.DxDyF � DyDxF/; f .x/˝ g.y/iIRd˝IRd�.dx/�.dy/ (10)

D
Z

X

Z

X
hryg.x/;DxF ˝ f .y/iIRd˝IRd�.dx/�.dy/

�
Z

X

Z

X
hryf .x/;DxF ˝ g.y/iIRd˝IRd�.dx/�.dy/; F 2 S ; f ; g 2 H:
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Exterior Derivative–Random Forms
From Assumption (A1) we may now define the (nC 1)-form dnun as

dnun.x1; : : : ; xnC1/ WD dn
xnC1

.un.x1; : : : ; xn//

D 1

nŠ
AnC1.r�un/.x1; : : : ; xnC1/

D .D�F ^ fn/.x1; : : : ; xnC1/C 1

nŠ
F ˝AnC1.r�fn/.x1; : : : ; xnC1/;

which is also equal to

nC1X

jD1
.�1/j�1rxj un.x1; : : : ; xj�1; xjC1; : : : ; xnC1/

in H^.nC1/, for un 2 S ˝H^n of the form (7). In other words, on elementary forms
we have

dn
xnC1

.F ˝ h1 ^ 
 
 
 ^ hn.x1; : : : ; xn// D dn.F ˝ h1 ^ 
 
 
 ^ hn/.x1; : : : ; xnC1/
(11)

D ..D�F/ ^ h1 ^ 
 
 
 ^ hn/.x1; : : : ; xnC1/C F ˝ dn.h1 ^ 
 
 
 ^ hn/.x1; : : : ; xnC1/:

In particular, for n D 0 we have

d0xF D rxF D DxF; F 2 S ˝ H^0 D S :

and for n D 1,

d1.F˝h1/.x1; x2/ D d1x2.F˝h1.x1// D F˝d1x1h1.x2/C.Dx1F/˝h.x2/�Dx2F˝h.x1/:

We also note that

dn.S ˝ H^n/ � Dom.dnC1/; n 2 N: (12)

Assumption (A1) and the invariant formula for differential forms (see e.g. Proposi-
tion 3.11 page 36 of [13]) also show that we have

dnC1dn D 0; n 2 N; (13)

which implies

Im dn � Ker dnC1 � Dom.dnC1/; n 2 N: (14)
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3 Divergence of n-Forms and Duality

In this section we consider a divergence operator

ı W S ˝ H �! L2.˝/;

u D .u.x//x2X 7�! ı.u/

acting on stochastic processes, and extended to elementary n-forms by letting

ı.h1 ^ 
 
 
 ^ hn/

WD 1

n

nX

jD1
.�1/j�1ı.hj/˝ .h1 ^ 
 
 
 ^ hj�1 ^ hjC1 ^ 
 
 
 ^ hn/ 2 S ˝ H^.n�1/;

and to simple elements u 2 S ˝ H^n of the form (7) by

ı.un/.x1; : : : ; xn�1/ WD ı.un.
; x1; : : : ; xn�1// (15)

D ı.F˝ .h1 ^ 
 
 
 ^ hn//.x1; : : : ; xn�1/

D 1

n

nX

jD1
.�1/j�1ı.F˝ hj/˝ .h1 ^ 
 
 
 ^ hj�1 ^ hjC1 ^ 
 
 
 ^ hn/.x1; : : : ; xn�1/:

Divergence of Random Forms
The divergence operator dn� on .nC 1/-forms unC1 D F˝ fnC1 2 S ˝H^.nC1/

of the form (7) is defined by

dn�unC1.x1; : : : ; xn/ WD ı.F ˝ fnC1.
; x1; : : : ; xn// � Ftrace.r�fnC1.
; x1; : : : ; xn//

where

trace.r�fnC1.
; x1; : : : ; xn// WD
Z 1

0

Trrx fnC1.x; x1; : : : ; xn/�.dx/

and Tr denotes the trace on IRd ˝ IRd, i.e. we have

dn�unC1.x1; : : : ; xn/

D ı.F˝ fnC1.
; x1; : : : ; xn//� F
Z 1

0

Trrx fnC1.x; x1; : : : ; xn/�.dx/; (16)
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which belongs to S ˝ H^n from (15), n � 1, and

d0�u1 D ı.u1/; u1 2 S ˝H; (17)

when n D 0 since rx f1.x/ D 0.

Duality Relations
We will make the following assumptions on ı, D and r:

(A2) The operators D and ı satisfy the duality relation

EŒhDF; uiH� D EŒFı.u/�; F 2 Dom.D/; u 2 Dom.ı/: (A2)

The above duality condition (A2) implies that the operators D and ı are closable,
cf. Proposition 3.1.2 of [18], and the operators D and ı are extended to their
respective closed domains Dom.D/ and Dom.ı/.

(A3) The operator r satisfies the condition

Z

XnC1

hgnC1.x1; : : : ; xnC1/;rx1 fn.x2; : : : ; xnC1/i.IRd/˝.nC1/�.dx1/ 
 
 
�.dxnC1/ D

�
Z

XnC1

hTrrxgnC1.x; x1; : : : ; xn/; fn.x1; : : : ; xn/i.IRd/˝n�.dx1/ 
 
 
�.dxn/�.dx/;

(A3)

fn 2 H˝n, gnC1 2 H˝.nC1/, n � 1.
The compatibility condition (A3) is weaker than the usual compatibility of r
with the metric h
; 
iH, which reads

hrx fn; gniH˝n D �h fn;rxgniH˝n ; x 2 X; (18)

fn; gn 2 H˝n. Indeed, when applying (18) to fnC1.x; 
/ 2 H˝n and gn 2 H˝n,
x 2 X, n � 1, we get

Z

XnC1

hTrrx fnC1.x; x1; : : : ; xn/; gn.x1; : : : ; xn/i.IRd/˝n�.dx1/ 
 
 
 �.dxn/�.dx/

D
dX

kD1

Z

XnC1

h.rx f .k/nC1
.x; x1; : : : ; xn//

.k/; gn.x1; : : : ; xn/i.IRd/˝n�.dx1/ 
 �.dxn/�.dx/

D �
dX

kD1

Z

XnC1

h f .k/nC1.x; x1; : : : ; xn/; .rxgn.x1; : : : ; xn//
.k/i.IRd/˝n�.dx1/ 
 �.dxn/�.dx/

D �
Z

XnC1

h fnC1.x; x1; : : : ; xn/;rxgn.x1; : : : ; xn/i.IRd/˝.nC1/�.dx1/ 
 �.dxn/�.dx/;
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where f .k/nC1.x; x1; : : : ; xn/ denotes the k-th component in IRd of the first component
of fnC1.x; x1; : : : ; xn/ in .IRd/˝.nC1/. In this sense, Assumption (A3) is automati-
cally satisfied in all settings which incorporate the compatibility (18) with h
; 
i.

Proposition 1 (Duality) Under Assumptions (A1)–(A3), for any un 2 S ˝ H^n

and vnC1 2 S ˝ H^.nC1/ we have

hdnun; vnC1iL2.˝;H^.nC1// D hun; dn�vnC1iL2.˝;H^n/: (19)

As above we note that the duality (19) implies the closability of both dn and dn�vnC1,
which are extended to their closed domains Dom.dn/ and Dom.dn�/, n 2 N, by
the same argument as in Proposition 3.1.2 of [18]. When n D 0, the statement of
Proposition 1 reduces to (A2).

The proof of Proposition 1 is postponed to the appendix. In the case of one-forms
it reads

hd1t2 .Ff1.t1//;Gg2.t1; t2/iL2.˝;H^2/

D
�

rt1

�
F

2
f1.t2/

�

;Gg2.t1; t2/

�

L2.˝;H˝2/

�
�

rt2

�
F

2
f1.t1/

�

;Gg2.t1; t2/

�

L2.˝;H˝2/

D
�

Dt1
F

2
f1.t2/;Gg2.t1; t2/

�

L2.˝;H˝2/

�
�

Dt2
F

2
f1.t1/;Gg2.t1; t2/

�

L2.˝;H˝2/

C
�

F

2
rt1 f1.t2/;Gg2.t1; t2/

�

L2.˝;H˝2/

�
�

F

2
rt2 f1.t1/;Gg2.t1; t2/

�

L2.˝;H˝2/

D
�

F

2
f1.t2/; ı.Gg2.
; t2//

�

L2.˝;H/

�
�

F

2
f1.t1/; ı.Gg2.t1; 
//

�

L2.˝;H/

�
�

F

2
f1.t2/;G

Z
1

0

Trrtg2.t; t2/dt

�

L2.˝;H/

�
�

F

2
f1.t1/;G

Z
1

0

Trrtg2.t1; t/dt

�

L2.˝;H/

D
�

F

2
f1.t2/; ı.Gg2.
; t2//

�

L2.˝;H/

C
�

F

2
f1.t1/; ı.Gg2.
; t1//

�

L2.˝;H/

�
�

F

2
f1.t2/;G

Z
1

0

Trrtg2.t; t2/dt

�

L2.˝;H/

C
�

F

2
f1.t1/;G

Z
1

0

Trrtg2.t; t1/dt

�

L2.˝;H/

D hFf1.t1/; ı.Gg2.
; t1//iL2.˝;H/ �
D
Ff1.t1/;G

Z
1

0

Trrtg2.t; t1/dt
E

L2.˝;H/

D hFf1.t1/; d
1�.Gg2/.t1/iL2.˝;H/; F;G 2 S ; f1 2 H; g2 2 H^2:

As in (A2) above, the duality (19) shows that dn extends to a closed operator

dn W Dom.dn/ �! L2.˝IH^.nC1//
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with domain Dom.dn/ � L2.˝IH^n/, and dn�, n 2 N, extends to a closed operator

dn� W Dom.dn�/ �! L2.˝IH^n/

with domain Dom.dn�/ � L2.˝IH^.nC1//, by the same argument as in Proposi-
tion 3.1.2 of [18].

In addition, by the coboundary condition (13) and the duality (19) we find

dn�d.nC1/� D 0; n 2 N:

Based on (14) we define the Hodge Laplacian on differential n-forms as

�n D dn�1d.n�1/� C dn�dn; (20)

and call harmonic n-forms the elements of the kernel Ker�n of �n. By (13)–(14)
and Proposition 1 we have the de Rham-Hodge decomposition

L2.˝IH^n/ D Im dn�1 ˚ Im dn� ˚ Ker�n; n � 1: (21)

Indeed, the spaces of exact and co-exact forms Im dn�1 and Im dn� are mutually
orthogonal by (13) and the duality of Proposition 1. Moreover, the orthogonal
complement .Ker d.n�1/�/ \ .Ker dn/ of Im dn�1 ˚ Im dn� in L2.˝IH^n/ is made
of n-forms un that are both closed (dnun D 0) and co-closed (d.n�1/�un D 0), hence
it is contained in (and equal to) Ker�n by (20).

Intertwining Relations
The statements and proofs of both the Weitzenböck identity and Clark-Ocone

formula in the sequel will also require the following conditions. We assume that

(A4) the operator r satisfies

rx f .y/ 
 ryf .x/ D 0; �.dx/�.dy/ � a:e:; f 2 H; (A4)

i.e. �.dx/�.dy/ � a:e: we have rx f .y/ D 0 or ryf .x/ D 0.
(A5) Intertwining relation. For all u 2 S ˝ H of the form u D F ˝ f we have

hg;Dı.u/iH D hg; uiH C ı.rgu/C hDF;rf giH; g 2 H: (A5)

We make the following remarks.

Remark 1

(i) When r D 0 on H, Assumption (A5) reads

Dxı.u/ D u.x/C ı.Dxu/; x 2 X;

for all u D F ˝ f 2 S ˝ H.
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(ii) Under the torsion free Assumption (A1), Relation (10) shows that (A5) reads

Dxı.u/ D u.x/Cı.rxu/ChDDxF; f iH�hDxDF; f iHChD�F;rx f .
/iH; (22)

u D F ˝ f 2 S ˝ H, x 2 X.
(iii) As a consequence of (22), Assumption (A5) simplifies to

Dxı.h/ D h.x/C ı.rxh/; x 2 X; h 2 H: (A5’)

when D satisfies the Leibniz rule of derivation

Dx.FG/ D FDxGCGDxF; F;G 2 S ; x 2 X: (23)

This will be the case in examples where r does not vanish on H.
(iv) When D has the derivation property (23), Relation (16) rewrites as the

divergence formula

dn�unC1.x1; : : : ; xn/

D Fı. fnC1.
; x1; : : : ; xn//�
Z 1

0

Trrx.FfnC1.x; x1; : : : ; xn//�.dx/;

unC1 D F ˝ fnC1 2 S ˝ H^.nC1/.

Proof We only prove (iii) and (iv).

(iii) First, we note that the duality condition (A2) and the Leibniz rule (23) imply

ı.Fh/ D Fı.h/� hDF; hiH; F 2 S ; h 2 H: (24)

Hence by (A5’) and (23) we have

Dxı.Fh/ D Dx.Fı.h/� hDF; hiH/
D ı.h/DxF C FDxı.h/�DxhDF; hiH
D ı.h/DxF C Fh.x/C Fı.rxh/� DxhDF; hiH
D Fh.x/C ı.hDxF/C hDDxF; hiH C ı.Frxh/C hD�F;rxh.
/iH
� hDxDF; hiH
D u1.x/C ı.rxu1/C hDDxF; hiH � hDxDF; hiH C hD�F;rxh.
/iH:

The converse statement is immediate.
(iv) This is a consequence of (16) and the divergence formula (24).
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4 Examples

In this section we consider examples of frameworks satisfying Assumptions (A1)–
(A5).

Commutative Examples–Chaos Expansions
We start by considering a family of examples based on chaos expansions, in

which we take rh D 0 for all h 2 H. Here .X; �/ is a measure space, we take
H D L2.X; �/ and d � 1 and we assume that the chaos decomposition holds, i.e.
every F 2 L2.˝;F ;P/ can be decomposed into a series

F D
1X

nD0
In. fn/; fn 2 Hın;

of multiple stochastic integrals, where I0. f0/ D EŒF� and for all n � 1, the multiple
stochastic integral In W Hın ! L2.˝/ satisfies the isometry condition

hIn. fn/; Im.gm/iL2.˝/ D nŠ1fnDmgh fn; gmiHın ; n;m � 1:

In this case the space S is made of the finite chaos expansions

S D
(

CC
nX

kD1
Ik. fk/; fk 2 L2.X/ık; k D 1; : : : ; n; n � 1; C 2 IR

)

;

the operator

D W Dom.D/ �! L2.˝ � X; dP � �.dx//

is defined by

DxIn. fn/ WD nIn�1. fn.�; x//; dP � �.dx/ � a:e:; n 2 N: (25)

On the other hand,

ı W Dom.ı/ �! L2.˝/;

is defined on processes of the form .In. fnC1.�; t///t2IRC
as

ı.In. fnC1.�; 
/// WD InC1.QfnC1/; n 2 N; (26)

where QfnC1 denotes the symmetrization of fnC1 2 Hın ˝ H in (nC 1) variables. In
this chaos expansion framework we have r D D and rf D 0 for all f 2 H, hence
Assumptions (A1) and (A3)–(A4) are obviously satisfied and the exterior derivative
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d is defined by the skew-symmetrisation of D, i.e. (11) becomes

dn
xnC1

.F˝h1^
 
 
^hn.x1; : : : ; xn// D ..D�F/^h1^
 
 
^hn/.x1; : : : ; xnC1/; (27)

x1; : : : ; xnC1 2 X. As for Assumptions (A2) and (A5) we have the following:

(A2) the duality relation holds in the general framework of chaos expansions; see,
e.g., Proposition 4.1.3 of [18];

(A5) given that r D D, the commutation relation (A5) holds for u 2 S ˝H, see,
e.g., Proposition 4.1.4 of [18].

Note that here, Relations (13)–(14) hold by the definition (27) of the exterior
derivative d and the symmetry of second derivative.

Next, we consider some specific examples based on chaos expansions.

Example 1.1—Poisson random measures
On the probability space of a Poisson random measure !.dx/ with �-finite intensity
measure �.dx/ on X, In. f / is the multiple compensated Poisson stochastic integral

In. fn/ WD
Z

�n

fn.x1; : : : ; xn/.!.dx1/ � �.dx1// 
 
 
 .!.dxn/ � �.dxn//

of the symmetric function fn 2 Hın with respect to !.dx/, where

�n D f.x1; : : : ; xn/ 2 Xn W xi 6D xj; 1 � i < j � ng:

Here the operator Dx defined in (25) acts by finite differences and addition of a
configuration point at x 2 X, i.e.

DxF.!/ D F.! [ fxg/� F.!/; x 2 X;

where ! [ fxg represents the addition of the point x to the point configuration !,
see e.g., Proposition 6.4.7 of [18]. Being a finite difference operator, D does not
have the derivation property. We refer the reader to Sect. 6.5 of [18] and references
therein for the expression of ı defined in (26) in this setting.

Example 1.2—Normal martingales
When X D IRC, chaos-based examples satisfying the above conditions (A1)–(A5)
include normal martingales having the chaos representation property (CRP). An
.Ft/t2IRC

-martingale .Mt/t2IRC
on a filtered probability space .˝; .Ft/t2IRC

;P/ is
called a normal martingale under P if

EŒ.Mt �Ms/
2 j Fs� D t � s; 0 � s � t;

see, e.g., [18] and references therein. Here we also assume that .Mt/t2IRC
has the

chaos representation property (CRP), and the multiple stochastic integral In. fn/ of
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fn 2 L2.IRC/ın with respect to .Mt/t2IRC
is given by

In. fn/ D nŠ
Z 1

0

Z tn

0


 
 

Z t2

0

fn.t1; : : : ; tn/dMt1 
 
 
 dMtn ; n � 1:

Examples of normal martingales satisfying the CRP include the Brownian motion
and the compensated Poisson process, both of which we discuss in more details
below, as well as certain processes with non-independent increments such as the
Azéma martingales, for which the explicit expression of the gradient D is generally
unknown; see [8] and Sect. 2.10 of [18].

Example 1.2-a)—Brownian motion
When X D IRC and .Mt/t2IRC

is the standard Brownian motion with respect to its
own filtration .Ft/t2IRC

, it is usual to take S as the space of smooth cylindrical
functionals of the form

F D f .I1.h1/; : : : ; I1.hn//; h1; : : : ; hn 2 H; f 2 C1
b .IR

n/;

on which the gradient D is defined by

DF D
nX

iD1
hi@i f .I1.h1/; : : : ; I1.hn//; (28)

e.g., see Definition 1.2.1 in [14]. Here, D is a derivation, whose adjoint ı is also
called the Skorohod integral, the multiple integrals In are the well-known multiple
Itô integrals, and .Ft/t2IRC

is the standard Brownian filtration.

Example 1.2-b)—Standard Poisson process
In the special case X D IRC we can define a standard compensated Poisson process
.Mt/t2IRC

as .Mt/t2IRC
WD .Nt � t/t2IRC

, which is a martingale with respect to its
own filtration .Ft/t2IRC

, and Dt becomes a finite difference operator whose action is
given by addition of a Poisson jump at time t 2 IRC, i.e.

DtF.N�/ D F.N� C 1Œt;1/.
//� F.N�/; t 2 IRC; (29)

which does not have the derivation property. The construction in [19] also applies to
the standard Poisson process, via a different construction using differential operators
on the Poisson space.

Example 1.2-c)—Discrete-time chaos expansions
Let ˝ D f�1; 1gN with X D N, and consider the family .Yk/k�1 of independent
f�1; 1g-valued Bernoulli random variables constructed from the canonical projec-
tions on ˝ under P. That is, with F�1 D f;;˝g and Fn D �.Y0; : : : ;Yn/ for
n 2 N, the conditional probabilities pn WD P.Yn D 1 j Fn�1/ and qn WD P.Yn D
�1 j Fn�1/ are given by

pn D P.Yn D 1/ and qn D P.Yn D �1/;



Weitzenböck and Clark-Ocone Decompositions for Differential Forms 247

respectively. We take X D N and H D `2.N; �/, where � is the counting measure
on N, and

S D ˚F D f .Y0; : : : ;Yn/; f W NnC1 �! IR bounded; n 2 N
�
;

As in the continuous-time case, every F 2 L2.˝;F ;P/ can be decomposed into a
series of discrete-time multiple stochastic integrals, which here take the form

In. fn/ D
X

k1 6D���6Dkn�0
fn.k1; : : : ; kn/Zk1 
 
 
Zkn ; (30)

where the sequence Zk WD 1fYkD1g
r

qk

pk
�1fYkD�1g

r
pk

qk
, k 2 N, defines a normalized

i.i.d. sequence of centered random variables with unit variance; see, e.g., Chap. 1
of [18]. The gradient D is given by

DkIn. fn/ D nIn�1. fn.�; k/1fk…�g/; k 2 N;

and more explicitly it satisfies, for F 2 S and k 2 N,

DkF.!/ D ppkqk.F..!i1fi6DkgC 1fiDkg/i2N/� F..!i1fi6Dkg � 1fiDkg/i2N//: (31)

The divergence ı is defined as in (26), and again we have r D D, hence
Assumptions (A1) and (A3)–(A4) are automatically satisfied. Similarly, the duality
relation (A2) is known to hold in the discrete-time case by e.g. Proposition 1.8.2
of [18].

Note however that here the operators D and ı do not satisfy the commutation
relation (A5) in this discrete-time setting, due to the exclusion of diagonals in the
construction (30) of multiple stochastic integrals. For this reason, the framework of
Sect. 3 and the subsequent sections do not cover this discrete-time setting.

Noncommutative Example
Here we consider an example which is not based on chaos (or multiple stochastic

integral) expansions, and for whichr does not vanish on H^n, n � 1, with X D IRC.
In this case we need to show that Assumptions (A1)–(A5) are satisfied. A different
noncommutative example, based on the standard Poisson process, is given in [19].

Example 1.3—The Lie-Wiener path space
Take X D IRC and let G be a compact connected m-dimensional Lie group, with
identity e and whose Lie algebra G , with orthonormal basis .e1; : : : ; em/ and Lie
bracket Œ
; 
�, is identified to IRm and equipped with an Ad-invariant, left invariant
metric h
; 
i.
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Brownian motion .�.t//t2IRC
on G is constructed from a standard m-dimensional

Brownian motion .Bt/t2IRC
via the Stratonovich differential equation

8
<

:

d�.t/ D �.t/ ı dBt

�.0/ D e;
(32)

with the image measure of the Wiener measure by the mapping I W .Bt/t2IRC
7�!

.�.t//t2IRC
. Here we take H D L2.IRCIG / with the inner product induced by G ,

and let

S D fF D f .�.t1/; : : : ; �.tn// W f 2 C 1
b .Gn/g:

Next is the definition of the right derivative operator D, cf. [9].

Definition 1 For F of the form

F D f .�.t1/; : : : ; �.tn// 2 S ; f 2 C1
b .Gn/; (33)

we let DF 2 L2.˝ � IRCIG / be defined as

hDF; hiH WD d

d"
f
	
�.t1/e

"
R t1
0 hsds; : : : ; �.tn/e

"
R tn
0 hsds




j"D0 ; h 2 L2.IRC;G /:

Given F of the form (33) we also have

DtF D
nX

iD1
@i f .�.t1/; : : : ; �.tn//1Œ0;ti�.t/; t � 0: (34)

The covariant derivative operator r W S ˝ H ! L2.˝IH ˝ H/ is defined as

rsu.t/ D Dsu.t/C 1Œ0;t�.s/adu.t/ 2 G ˝ G ; s; t 2 IRC; (35)

where ad.u/v D Œu; v�, u; v 2 G , .adu/.t/ WD ad.u.t//, t 2 IRC, for u 2 S ˝ H,
and adu is the linear operator defined on G by

hei ˝ ej; aduiG˝G D hej; ad.ei/uiG D hej; Œei; u�iG ; i; j D 1; : : : ;m; u 2 G :

We now check that all required assumptions are satisfied in the present setting.

(A1) The vanishing of torsion is satisfied from Theorem 2.3-.i/ of [9].
(A2) The operator D admits an adjoint ı that satisfies the duality relation

EŒFı.v/� D EŒhDF; viH�; F 2 S ; v 2 L2.IRCIG /; (36)

cf. e.g. [9], which shows that (A2) is satisfied.
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(A3) We note that adu is skew-adjoint as the inner product in G is chosen Ad-
invariant, hence the connection from r is torsion free and (18) is satisfied.

(A4) Assumption (A4) clearly holds by the definition (35) which shows that

rtf .s/ D 0; 0 < s < t; f 2 H:

This also applies in the setting of loop groups [10].
(A5) By Theorem 2.4-.ii/ of [9] it is known that D and r satisfy the commutation

relation (A5) for f 2 H, hence by Remark 1, Assumption (A5) is satisfied for
u 2 H ˝ S since by (34) the operator D satisfies the chain rule of derivation
(23). Here, (13)–(14) also hold from Corollary 2 of [11] which is proved using a
mapping of r on the path group to D on the Wiener space by the Itô map.

5 Weitzenböck Identities for n-Forms

In this section we will need the following additional assumption:

(B1) For all n � 1 the covariant derivative operator satisfies

dn�1
xn
rx fn.x; x1; : : : ; xn�1/ D rxdn�1

xn
fn.x; x1; : : : ; xn�1/; (B1)

x1; : : : ; xn 2 X, x 2 X, fn 2 H^n.

Assumption (B1) is straightforwardly satisfied in all examples of Sect. 4, except for
the discrete-time Example 1.2-c), however it requires a specific proof in the Poisson
derivation case of [19]. Note that Assumption (B1) differs from the usual vanishing
of curvature condition, which reads

rurv � rvru D rfu;vg

where fu; vg is the Lie bracket of two vector fields u, v, cf. Theorem 2.3-.ii/ of [9].

Lemma 1 (Intertwining Relation) Under Assumptions (A1)–(A5) and (B1), for
any un 2 S ˝H^n of the form un D F˝ fn, with F 2 S and fn; gn 2 H^n, we have

hdn�1d.n�1/�un.x1; : : : ; xn/; gn.x1; : : : ; xn/iH^n D nFh fn.x1; : : : ; xn/; gn.x1; : : : ; xn/iH^n

C
nX

jD1

hı.rxj.F ˝ fn.x1; : : : ; xj�1; 
; xjC1; : : : ; xn///; gn.x1; : : : ; xn/iH^n

�
D
dn�1

xn
.F ˝ tracer�fn.
; x1; : : : ; xn�1//; gn.x1; : : : ; xn/

E

H^n

C
nX

jD1

Z

X
hDxF ˝ fn.x1; : : : ; xn/;r.j/xj

gn.x1; : : : ; xj�1; x; xjC1; : : : ; xn/iH^n�.dx/:

(37)
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The proof of Lemma 1 is deferred to the appendix. Here we verify that for n D 1,
Lemma 1 coincides with Assumption (A5) since rx f1.x/ D 0 and

d0x1d
0�u1 D Dx1ı.Ff1/

D ı. f1Dx1F/C Ff1.x1/C ı.Frx1 f1/

C hDDx1F; f1iH � hDx1DF; f1iH C hD�F;rx1 f1.
/iH
D ux1 C ı.rx1u1/C hDDx1F; f1iH � hDx1DF; f1iH C hD�F;rx1 f1.
/iH;

for any u1; v1 2 S ˝ H of the form u1 D F ˝ f1 with F 2 S , and f1; g1 2 H. By
the vanishing of torsion Assumption (A1), this yields

hd0x1d0�u1.x1/; g1.x1/iH D Fh f .x1/; g1.x1/iH C hı.rx1.Ff1//; g1.x1/iH
C hhDDx1F; f1iH � hDx1DF; f1iH; g1.x1/iH C hhD�F;rx1 f1.
/iH; g1.x1/iH
D Fh f .x1/; g1.x1/iH C hı.rx1.Ff1//; g1.x1/iH

C
Z

X

Z

X
hryg1.x/;DxF ˝ f1.y/iIRd˝IRd�.dx/�.dy/

�
Z

X

Z

X
hryf1.x/;DxF ˝ g1.y/iIRd˝IRd�.dx/�.dy/

C hhD�F;rx1 f1.
/iH; g1.x1/iH
D Fh f .x1/; g1.x1/iH C hı.rx1.F ˝ f1//; g1.x1/iH C hhD�F;rx1g1.
/iH; f1.x1/iH :

which coincides with Lemma 1 since rx f1.x/ D 0 when n D 1.

Weitzenböck Identity
Recall that the de Rham-Hodge Laplacian (21) is given on n-forms by

�n D dn�1d.n�1/� C dn�dn; n � 1:

Theorem 1 Under the Assumptions (A1)–(A5) and (B1) we have the Weitzenböck
identity

�n D nIdH^n Cr�r; un 2 S ˝ H^n; n � 1: (38)

By duality (38) shows that

nŠkd.n�1/�unk2L2.˝;H^.n�1//
C nŠkdnunk2L2.˝;H^.nC1//

(39)

D nnŠkunk2L2.˝;H^n/
C krunk2L2.˝;H˝.nC1//

;
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un 2 S ˝ H^n, n � 1. We first check that the Weitzenböck identity (39) holds for
one-forms, i.e.

kd0�u1k2L2.˝/ C
1

2
kd1u1k2L2.˝;H˝2/

D ku1k2L2.˝;H/ C kru1k2L2.˝;H˝2/
; (40)

and we refer to the appendix for the proof in the case of n-forms. By Assump-
tion (A5) and the commutation relation (10) we have, taking u1 D F ˝ f1 and
following the argument of [9],

hd0x1d0�u1; u1.x1/iL2.˝;H/ D hDx1ı.F ˝ f1/;Ff1.x1/iL2.˝;H/
D hFf1.x1/C ı.rx1.F ˝ f1//C hDDx1F; f1iH � hDx1DF; f1iH
C hD�F;rx1 f1.
/iH;Ff1.x1/iL2.˝;H/
D hu1.x1/; u1.x1/iL2.˝;H/ C hrx1u1.
/;D�u1.x1/iL2.˝;H˝2/

C hFhDDx1F; f1iH � FhDx1DF; f1iH C FhD�F;rx1 f1.
/iH; f1.x1/iL2.˝;H/
D hu1.x1/; u1.x1/iL2.˝;H/ C hrx1u1.
/;D�u1.x1/iL2.˝;H˝2/

C hhDx1F;Fr�f1.x1/iH; f1.
/iL2.˝;H/
D hu1.x1/; u1.x1/iL2.˝;H/ C hrx1u1.x2/;rx2u1.x1/iL2.˝;H˝2/ (41)

D hu1.x1/; u1.x1/iL2.˝;H/ �
1

2
hd1u1; d1u1iL2.˝;H˝2/

C hrx2u1.x1/;rx2u1.x1/iL2.˝;H˝2/; (42)

where we used Assumption (A4) to reach (41). This implies (40) and

kı.u1/k2L2.˝;H/C
1

2
kd1u1k2L2.˝;H^2/

D ku1k2L2.˝;H/Ckru1k2L2.˝;H˝2/
; u1 2 S˝H:

Theorem 1 shows that the Bochner Laplacian L D �r�r and the Hodge Laplacian
�n have same closed domain Dom.�n/ on the random n-forms and that all
eigenvalues 
n of the Bochner Laplacian L satisfy 
n � n. Indeed, if wn is an
eigenvector of �n with eigenvalue 
n, by rewriting (38) as

L D nIdH^n ��n;

we find that L and�n share the same eigenvectors and that 
n � n � 1 since

0 � �hLwn;wniL2.˝;H^n/

D h.�n � nIdH^n/wn;wniL2.˝;H^n/

D h�nwn;wniL2.˝;H^n/ � nhwn;wniL2.˝;H^n/

D .
n � n/hwn;wniL2.˝;H^n/; n � 1: (43)
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Proposition 2 Under Assumptions (A1)–(A5) and (B1), the de Rham-Hodge-
Kodaira decomposition (21) rewrites as

L2.˝IH^n/ D Im dn�1 ˚ Im dn�; n � 1: (44)

Proof By (43) the operator �n D nIdH˝n � L becomes invertible for all n � 1,
and the space Ker�n of harmonic forms for the de Rham Laplacian �n is equal to
f0g. i.e. any harmonic form for the de Rham Laplacian �n has to vanish, and we
conclude by (21).

Next, we consider a number of examples to which the framework and results of this
section can be applied.

Commutative Examples–Chaos Expansions
All commutative examples of Sect. 3 satisfy Assumption (B1) since in this case,

r vanishes on H^n, n � 1, as in all chaos-based examples.

Example 2.1—Poisson random measures
In the Poisson case the semi-group .Pt/t2IRC

associated to the Bochner Laplacian
L WD �r�r, cf. [21], admits an integral representation, cf. e.g. Lemma 6.8.1 of
[18]. Proposition 2 shows here that any harmonic form for the de Rham Laplacian
has to vanish.

Example 2.2—Normal martingales

Example 2.2-a)—Brownian and Poisson cases
In the Brownian case, Theorem 1 covers Proposition 3.1 of [20] on the Weitzenböck
decomposition, and Proposition 2 is known to hold also from [20].

Example 2.2-b)—Discrete-time case
Proposition 2 holds in this discrete-time setting as the semi-group .Pt/t2IRC

is
contractive, cf. Proposition 1.9.3 and Lemma 1.9.4 of [18]. However, Theorem 1
does not hold here as (A5) is not satisfied.

Noncommutative Example
Example 2.3—Lie-Wiener path space
We need to check the following condition, which immediately holds because the
operation ad in (35) commutes with itself.

(B1) In other words, we can write adu as

adu D
mX

kD1
hu; ekiG adek

D
mX

i;j;kD1
hu; ekiG .ei ˝ ej/hei ˝ ej; adekiG˝G

D
mX

i;j;kD1
hu; ekiG .ei ˝ ej/Ai;j;k;
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where the matrix A D .Ai;j;k/1�i;j;k�m is the 3-tensor given by

Ai;j;k D hei ˝ ej; adekiG˝G D hej; ad.ei/ekiG D hej; Œei; ek�iG ;

1 � i; j; k � m.

Note that Assumption (B1) differs from the vanishing of curvature in e.g. Theo-
rem 2.3-.ii/ of [9] in the path group case.

6 Clark-Ocone Representation Formula

In this section we take d D 1 and X D IRC, and we consider a normal martingale
.Mt/t2IRC

generating a filtration .Ft/t2IRC
on the probability space .˝;F ;P/. We

assume that D satisfies the following Assumptions (C1) and (C2), in addition to
(A1)–(A5).

(C1) The operator D satisfies the Clark-Ocone formula

F D EŒF j Ft�C
Z 1

t
EŒDrF jFr�dMr; t 2 IRC; (C1)

for F 2 Dom.D/.
(C2) The operator D satisfies the commutation relation

DsEŒF j Ft� D 1Œ0;t�.s/EŒDsF j Ft�; s; t 2 IRC; (C2)

for F 2 Dom.D/,
(A4’) The operator r satisfies the condition

rsf .t/ D 0; 0 � t < s; f 2 H; (A4’)

We note that (A4’) is stronger than (A4), and that (C2) implies

rsEŒu.t/ j Ft� D 1Œ0;t�.s/EŒrsu.t/ j Ft�; s; t 2 IRC;

for u 2 Dom.r/. In addition, under the duality assumption (A2), Assumption (C1)
is equivalent to stating that .Mt/t2IRC

has the predictable representation property
and ı coincides with the stochastic integral with respect to .Mt/t2IRC

on the square-
integrable predictable processes, cf. Corollary 3.2.8 and Propositions 3.3.1 and 3.3.2
of [18]. Also it is sufficient to assume that (C1) holds for t D 0, cf. Proposition 3.2.3
of [18].

Clark-Ocone Formula for n-Forms
In this section extend the Clark-Ocone formula for differential forms of [22] to

the general framework of this paper.
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Theorem 2 Under the Assumptions (A1)–(A5) and (C1)–(C2), for un 2 Dom.dn/,
we have, for a.e. t1; : : : ; tn 2 IRC,

un.t1; : : : ; tn/ D dn�1
tn

Z 1

t1_���_tn�1

EŒun.r; t1; : : : ; tn�1/ j Fr�dMr (45)

C
Z 1

t1_���_tn

EŒdn
tn

un.r; t1; : : : ; tn�1/ j Fr�dMr:

In particular, Theorem 2 shows that any closed form un 2 Dom.dn/ can be written as

un.t1; : : : ; tn/ D dn�1
tn

Z 1

t1_���_tn�1

EŒun.r; t1; : : : ; tn�1/ j Fr�dMr;

t1; : : : ; tn 2 IRC. As a consequence of Theorem 2 the range of the exterior derivative
dn is closed, and similarly for its adjoint dn�, for all n � 1. In this way we
recover the fact that the Hodge Laplacian �n has a closed range as well, so it has
a spectral gap, cf. Theorem 6.6 and Corollary 6.7 of [7]. However this does not
yield an explicit Poincaré inequality and lower bound for the spectral gap, unlike
for the classical Clark-Ocone formula cf. e.g. Proposition 3.2.7 of [18]. Note that
the Weitzeböck formula (43) also shows that all eigenvalues 
n of the Bochner
Laplacian L D �r�r on n-forms satisfy 
n � n, n � 1. A quick proof of the
identity (45) for one-forms is instructive while we delay the proof for general n-
forms to the appendix. When n D 1, for u 2 S ˝ H, we have, by (A4’) and the
Clark-Ocone formula (C1) for t 2 IRC,

u.t/ D EŒu.t/ j Ft�C
Z 1

t
EŒDru.t/ j Fr�dMr

D EŒu.t/ j Ft�C
Z 1

t
EŒrru.t/ j Fr�dMr;

and by (A5) and (C2) we find

Dt

Z 1

0

EŒu.r/ j Fr�dMr D EŒu.t/ j Ft�C
Z 1

0

rtEŒu.r/ j Fr�dMr (46)

D EŒu.t/ j Ft�C
Z 1

t
EŒrtu.r/ j Fr�dMr;

hence

u.t/ D Dt

Z 1

0

EŒu.r/ j Fr�dMr C
Z 1

t
EŒrru.t/ � rtu.r/ jFr�dMr

D Dt

Z 1

0

EŒu.r/ j Fr�dMr C
Z 1

t
EŒd1t u.r/ j Fr�dMr:
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Note that in (46) above we applied Assumption (A5) to an adapted process v, in
which case the condition simply reads

Dtı.v/ D v.t/C ı.rtv/; t 2 IRC; (A5”)

since when v.
/ D 1Œt;1/.
/F ˝ a is a simple adapted process, where a 2 IRd and F
is Ft-measurable, we have 1Œt;1/.r/DrF D 0, r 2 IRC, as follows from (C2), i.e.

DrF D DrEŒF j Ft� D 1Œ0;t�.r/EŒDrF j Ft�;D 0; r � t:

The Clark-Ocone formula Theorem 2 allows us in particular to recover the de Rham-
Hodge-Kodaira decomposition (44).

Corollary 1 We have Im dn D Ker dnC1, n 2 N, and the de Rham-Hodge-Kodaira
decomposition (21) reads

L2.˝IH^n/ D Im dn�1 ˚ Im dn�; n � 1:

Proof By Theorem 2 we have Im dn  Ker dnC1, which shows by (14) that Im dn D
Ker dnC1, n 2 N.

As a consequence of Corollary 1, we also get the exactness of the sequence

Dom.dn/
dn

�! Im .dn/ D Ker .dnC1/ dnC1

�! Im .dnC1/; n 2 N; (47)

as in Theorem 3.2 of [20]. By duality of (47) we also find by Corollary 1 that

Im d.nC1/� D Ker dn�; n 2 N;

and the following sequence is also exact:

Im .dn�/ dn�

 � Ker .dn�/ D Im .d.nC1/�/ d.nC1/�

 � Dom.d.nC1/�/; n 2 N:

Next, we consider some examples to which the above framework applies.

Commutative Examples–Chaos Expansions
As written at the beginning of this section, we take X D IRC in all cases due to

the need of a time scale in order to state the Clark-Ocone formula.

Example 3.1-a)—Normal martingales
As in Section “Commutative Examples–Chaos Expansions” we have X D IRC and
r D 0 on H, i.e. r D D and Assumption (A4’) is automatically satisfied. Let
us check that Assumptions (C1) and (C2) are satisfied in the framework of normal
martingales that have the chaos representation property (CRP).
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(C1) Since the normal martingale .Mt/t2IRC
has the chaos representation property,

the Clark-Ocone formula holds for any F 2 Dom.D/ � L2.˝;F ;P/ as

F D EŒF�C
Z 1

0

EŒDtF j Ft�dMt; (48)

cf. Proposition 4.2.3 of [18] for a proof via the chaos expansion of F.
(C2) This condition is satisfied from the definition (25) of D and e.g. Lemma 2.7.2

page 88 of [18] or Proposition 1.2.8 page 34 of [14] in the Wiener case.

Example 3.1-b)—Discrete-time chaos expansions
The Clark-Ocone formula (C1) holds in the discrete-time case as

F D EŒF�C
1X

kD0
EŒDkF jFk�1�Zk; (49)

cf. Proposition 1.7.1 of [18] and references therein, hence Assumption (C2) is also
satisfied here, as it is satisfied for normal martingales. However, Theorem 2 does
not hold here because (A5) is not satisfied.

Noncommutative Example
Example 3.2)—Lie-Wiener path space (Example 1.3 continued)

(C1) On the classical Wiener space, when .u.t//t2IRC
is square-integrable and

adapted to the Brownian filtration .Ft/t2IRC
, ı.u/ coincides with the Itô integral

of u 2 L2.˝IH/ with respect to the underlying Brownian motion .Bt/t2IRC
, i.e.

ı.u/ D
Z 1

0

u.t/dBt; (50)

and this shows that Assumption (C1) is satisfied, cf. e.g. Proposition 3.3.2 of
[18].

(C2) Assumption (C2) is satisfied here as in the case of normal martingales as in
e.g. Lemma 2.7.2 page 88 of [18], or for Brownian motion as in Proposition 1.2.8
page 34 of [14].
On the Lie-Wiener path space we note that we have the relation

hDF; hiH D h ODF; hiH C Oı
�Z �

0

ad.h.s//ds OD�F
�

; F 2 S ; (51)

where OD and Oı denote here the gradient and divergence appearing in (28) on the
underlying standard Wiener space with Brownian motion .Bt/t2IRC

in (32), cf.
e.g. Lemma 4.1 of [17] and references therein, or Corollary 5.2.1 of [16] for the
more general setting of Riemannian manifolds. Relation (51) shows that

EŒDsF j Fr� D EŒ ODsF j Fr�; 0 � r � s; (52)
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cf. also Relation (5.7.5) page 191 of [18] on Riemannian manifolds, hence (C1)
is satisfied for D because it holds for OD as noted above.
Consequently, (C2) holds on the Lie-Wiener path space since we have

hDEŒF jFt�; hiH D h ODEŒF j Ft�; hiH C Oı
�Z �

0

ad.h.s//ds OD�EŒF j Ft�

�

D h1Œ0;t�.
/EŒ OD�F j Ft�; hiH C Oı
�Z �

0

ad.h.s//ds1Œ0;t�.
/EŒ OD�F jFt�

�

D h1Œ0;t�.
/EŒ OD�F j Ft�; hiH C E

�
Oı
�Z �

0

1Œ0;t�.s/ad.h.s//ds OD�F
� ˇ
ˇ
ˇFt

�

D h1Œ0;t�.
/EŒD�F j Ft�; hiH ; t 2 IRC:

Assumption (A4’) is also clearly satisfied by the definition (35) of r.

Hence Theorems 2 covers Theorems 3.1 of [22] on the Wiener space as well as its
extension to the path space using the diffeomorphism approach of [11].
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Appendix

In this section we state the proofs of Proposition 1, Theorems 1 and 2, by extension
of the original arguments of [10, 11, 20] and [22] to our framework.

Proof of Proposition 1 (Duality Relation) Assuming that un 2 S˝H^n and vnC1 2
S ˝ H^.nC1/ have the form (7) and using the definition (5) of dn and the duality
assumption (A2) we have, using the antisymmetry of gnC1,

hdn
tnC1

.Ffn.t1; : : : ; tn//;GgnC1.t1; : : : ; tnC1/iL2.˝;H^.nC1/ /

D
nC1X

jD1

.�1/j�1

.n C 1/Š
hrtj .Ffn.t1; : : : ; tj�1; tjC1; : : : ; tnC1//;GgnC1.t1; : : : ; tnC1/iL2.˝;H˝.nC1//

D
nC1X

jD1

.�1/j�1

.n C 1/Š
hDtj Ffn.t1; : : : ; tj�1; tjC1; : : : ; tnC1/;GgnC1.t1; : : : ; tnC1/iL2.˝;H˝.nC1/ /

C
nC1X

jD1

.�1/j�1

.n C 1/Š
hFrtj fn.t1; : : : ; tj�1; tjC1; : : : ; tnC1/;GgnC1.t1; : : : ; tnC1/iL2.˝;H˝.nC1//
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D 1

.n C 1/Š

nC1X

jD1

.�1/j�1hFfn.t1; : : : ; tj�1; tjC1; : : : ; tnC1/;

ı.GgnC1.t1; : : : ; tj�1; �; tjC1; : : : ; tnC1//iL2.˝;H˝n/

� 1

.n C 1/Š

nC1X

jD1

.�1/j�1hFfn.t1; : : : ; tj�1; tjC1; : : : ; tnC1/;

G

Z
1

0

Tr rtgnC1.t1; : : : ; tj�1; t; tjC1; : : : ; tnC1/dtiL2.˝;H˝n/

D 1

.n C 1/Š

nC1X

jD1

hFfn.t1; : : : ; tj�1; tjC1; : : : ; tnC1/;

ı.GgnC1.�; t1; : : : ; tj�1; tjC1; : : : ; tnC1//iL2.˝;H˝n/

� 1

.n C 1/Š

nC1X

jD1

hFfn.t1; : : : ; tj�1; tjC1; : : : ; tnC1/;

G

Z
1

0

Tr rtgnC1.t; t1; : : : ; tj�1; tjC1; : : : ; tnC1/dtiL2.˝;H˝n/

D hFfn.t1; : : : ; tn/; dn�.GgnC1/.t1; : : : ; tn/iL2.˝;H^n/;

where we applied the antisymmetry condition (A3) and the definition (16) of dn�.
ut

Proof of Lemma 1 (Intertwining Relation) When n D 1, by (A5) or (22) we have

d0x1d
0�u1 D Dx1ı.u1/

D u1.x1/C ı.rx1u1/C hDDx1F; f1iH � hDx1DF; f1iH C hD�F;rx1 f1.
/iH;

for u1 D F ˝ f1 2 S ˝ H. Next, by the definition (5) of dn and (A5) or (22) we
have

dn�1
tn ı.F ˝ fn.
; x1; : : : ; xn�1//

D
nX

jD1
.�1/j�1rxjı.F ˝ fn.
; x1; : : : ; xj�1; xjC1; : : : ; xn//

D
nX

jD1
.�1/j�1F ˝ fn.xj; x1; : : : ; xj�1; xjC1; : : : ; xn/

C
nX

jD1
.�1/j�1ı.rxj.F ˝ fn.
; x1; : : : ; xj�1; xjC1; : : : ; xn///
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C
nX

jD1
.�1/j�1hD�DxjF � Dxj D�F; fn.
; x1; : : : ; xj�1; xjC1; : : : ; xn/iH

C
nX

jD1
.�1/j�1hD�F;r.1/xj

fn.
; x2; : : : ; xj�1; xjC1; : : : ; xn/iH

D nF˝ fn.x1; : : : ; xn/

C
nX

jD1
ı.rxj.F ˝ fn.x1; : : : ; xj�1; 
; xjC1; : : : ; xn///

C
nX

jD1

Z

X
hDxF ˝ fn.x1; : : : ; xn/;r.j/xj

gn.x1; : : : ; xj�1; x; xjC1; : : : ; xn/iH^n�.dx/:

where we applied (10). We conclude by the definition (16) of dn� which states that

d.n�1/�.F ˝ fn/.x1; : : : ; xn�1/ D ı.F˝ fn.
; x1; : : : ; xn�1//

�F
Z

X
Trrx fn.x; x1; : : : ; xn�1/�.dx/:

ut
Proof of Theorem 1 (Weitzenböck Identity) We will show that

kd.n�1/�unk2L2.˝;H˝.n�1//
C 1

nC 1kd
nunk2L2.˝;H˝.nC1//

D nkunk2L2.˝;H˝n/
C krunk2L2.˝;H˝.nC1//

;

for un 2 S ˝H^n. By the intertwining relation of Lemma 1 combined with the use
of Assumption (B1) to reach (53) below, we have

hdn�1d.n�1/�un.x1; : : : ; xn/; gn.x1; : : : ; xn/iH^n D nFh fn.x1; : : : ; xn/; gn.x1; : : : ; xn/iH^n

C
nX

jD1

hı..Dxj F/˝ fn.x1; : : : ; xj�1; 
; xjC1; : : : ; xn//; gn.x1; : : : ; xn/iH^n

C
nX

jD1

hı.F ˝rxj fn.x1; : : : ; xj�1; 
; xjC1; : : : ; xn/; gn.x1; : : : ; xn/iH^n

�
nX

jD1

.�1/j�1 (53)
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nX

lD2

D
.Dxj F/˝

Z

X
Trr.l/x fn.x; x1; : : : ; xj�1; xjC1; : : : ; xn/�.dx/; gn.x1; : : : ; xn/

˛
H^n

� F

�Z

X
Trrxdn�1

xn
fn.x; x1; : : : ; xn�1/�.dx/; gn.x1; : : : ; xn/

�

H^n

(54)

C
nX

jD1

Z

X
h.DxF/˝ fn.x1; : : : ; xn/;r.j/xj

gn.x1; : : : ; xj�1; x; xjC1; : : : ; xn/iH^n�.dx/:

Hence, applying Assumption (A4) from (53)–(56), and Assumption (A4) from (56)
to (57), we find

hdn�1
xn

d.n�1/�un.
; x1; : : : ; xn�1/; vn.x1; : : : ; xn/iL2.˝;H^n/

D nhun.x1; : : : ; xn/; vn.x1; : : : ; xn/iL2.˝;H^n/

C
nX

jD1

hı..DxjF/˝ fn.x1; : : : ; xj�1; 
; xjC1; : : : ; xn//;G˝ gn.x1; : : : ; xn/iL2.˝;H^n/

C
nX

jD1

hı.F ˝rxj fn.x1; : : : ; xj�1; 
; xjC1; : : : ; xn//;G˝ gn.x1; : : : ; xn/iL2.˝;H^n/

C 1

n

nX

jD1

.�1/n�j
n�1X

lD1

Z

X

Z

X
h.DyF/˝ fn.x1; : : : ; xj�1; x; xjC1; : : : ; xn/; (55)

G˝r.l/x gn.x1; : : : ; xj�1; xjC1; : : : ; xn; y/iL2.˝;H^.n�1//�.dx/�.dy/

C 1

n

nX

lD1

nX

jD1
j6Dl

Z

X

Z

X
hF ˝r.j/y fn.x1; : : : ; xl�1; x; xlC1; : : : ; xn/; (56)

G˝r.l/x gn.x1; : : : ; xj�1; y; xjC1; : : : ; xn/iL2.˝;H^.n�1//�.dx/�.dy/

C
nX

lD1

.�1/n�j
Z

X

˝
.DyF/˝ fn.x1; : : : ; xn/;

G˝r.n/xl
gn.x1; : : : ; xl�1; xlC1; : : : ; xn; y/

˛
L2.˝;H^n/

�.dy/

D nhun.x1; : : : ; xn/; vn.x1; : : : ; xn/iL2.˝;H^n/

C 1

n

nX

jD1

Z

X

Z

X
h.DxF/˝ fn.x1; : : : ; xj�1; y; xjC1; : : : ; xn/;

.DyG/˝ gn.x1; : : : ; xj�1; x; xjC1; : : : ; xn/iL2.˝;H^.n�1//�.dx/�.dy/

C 1

n

nX

jD1

Z

X

Z

X
hF ˝rx fn.x1; : : : ; xj�1; y; xjC1; : : : ; xn/;
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.DyG/˝ gn.x1; : : : ; xj�1; x; xjC1; : : : ; xn/iL2.˝;H^.n�1//�.dx/�.dy/

C 1

n

nX

jD1

.�1/n�j
nX

lD1

Z

X

Z

X
h.DyF/˝ fn.x1; : : : ; xj�1; x; xjC1; : : : ; xn/;

G˝r.l/x gn.x1; : : : ; xj�1; xjC1; : : : ; xn; y/iL2.˝;H^.n�1//�.dx/�.dy/

C 1

n

nX

jD1

nX

lD1

Z

X

Z

X
hF ˝r.j/y fn.x1; : : : ; xl�1; x; xlC1; : : : ; xn/; (57)

G˝r.l/x gn.x1; : : : ; xj�1; y; xjC1; : : : ; xn/iL2.˝;H^.n�1//�.dx/�.dy/

D nhun.x1; : : : ; xn/; vn.x1; : : : ; xn/iL2.˝;H^n/

C 1

n

nX

lD1

Z

X

Z

X
h.DxF/˝ fn.x1; : : : ; xl�1; y; xlC1; : : : ; xn/;

.DyG/˝ gn.x1; : : : ; xj�1; x; xjC1; : : : ; xn/iL2.˝;H^.n�1//�.dx/�.dy/

C 1

n

nX

jD1

Z

X

Z

X
hF ˝rx fn.x1; : : : ; xj�1; y; xjC1; : : : ; xn/;

.DyG/˝ gn.x1; : : : ; xj�1; x; xjC1; : : : ; xn/iL2.˝;H^.n�1//�.dx/�.dy/

C 1

n

nX

jD1

.�1/n�j
nX

lD1

Z

X

Z

X
h.DyF/˝ fn.x1; : : : ; xj�1; x; xjC1; : : : ; xn/;

G˝r.l/x gn.x1; : : : ; xj�1; xjC1; : : : ; xn; y/iL2.˝;H^.n�1//�.dx/�.dy/

C 1

n

nX

jD1

.�1/n�j
nX

lD1

Z

X

Z

X
hF ˝r.j/y fn.x1; : : : ; xl�1; x; xlC1; : : : ; xn/;

G˝r.l/x gn.x1; : : : ; xj�1; xjC1; : : : ; xn; y/iL2.˝;H^.n�1//�.dx/�.dy/

D nhun.x1; : : : ; xn/; vn.x1; : : : ; xn/iL2.˝;H^n/

C 1

nŠ

D
.DxnC1

F/˝ fn.x1; : : : ; xn/C F ˝rxnC1
fn.x1; : : : ; xn/;

nX

jD1

.�1/n�j.DxjG/˝ gn.x1; : : : ; xj�1; xjC1; : : : ; xn; xnC1/

C
nX

jD1

.�1/n�j
nX

lD1

G˝r.l/xj
gn.x1; : : : ; xj�1; xjC1; : : : ; xn; xnC1/

+

L2.˝;H˝.nC1//

D nhun.x1; : : : ; xn/; vn.x1; : : : ; xn/iL2.˝;H^n/

� .�1/
n

nŠ

˝
.DxnC1

F/˝ fn.x1; : : : ; xn/C F ˝rxnC1
fn.x1; : : : ; xn/;
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nC1X

jD1

.�1/j�1.DxjG/˝ gn.x1; : : : ; xj�1; xjC1; : : : ; xnC1/

C
nC1X

jD1

.�1/j�1
nX

lD1

G˝r.l/xj
gn.x1; : : : ; xj�1; xjC1; : : : ; xnC1/

+

L2.˝;H˝.nC1//

C 1

nŠ

D
.DxnC1

F/˝ fn.x1; : : : ; xn/C F ˝rxnC1
fn.x1; : : : ; xn/;

.DxnC1
G/˝ gn.x1; : : : ; xn/C G˝

nX

lD1

r.l/xnC1
gn.x1; : : : ; xn/

+

L2.˝;H˝.nC1//

D nhun.x1; : : : ; xn/; vn.x1; : : : ; xn/iL2.˝;H^n/

� .�1/
n

nŠ

˝
.DxnC1

F/˝ fn.x1; : : : ; xn/C F ˝rxnC1
fn.x1; : : : ; xn/;

nC1X

jD1

.�1/j�1.DxjG/˝ gn.x1; : : : ; xj�1; xjC1; : : : ; xnC1/

C
nC1X

jD1

.�1/j�1G˝rxj gn.x1; : : : ; xj�1; xjC1; : : : ; xnC1/

+

L2.˝;H˝.nC1//

C 1

nŠ

˝
.DxnC1

F/˝ fn.x1; : : : ; xn/C F ˝rxnC1
fn.x1; : : : ; xn/;

.DxnC1
G/˝ gn.x1; : : : ; xn/C G˝rxnC1

gn.x1; : : : ; xn/
˛
L2.˝;H˝.nC1//

D nhun.x1; : : : ; xn/; vn.x1; : : : ; xn/iL2.˝;H^n/

� 1

.nC 1/Š

*
nC1X

jD1

.�1/j�1.Dxj F/˝ fn.x1; : : : ; xj�1; xjC1; : : : ; xnC1/

C
nC1X

jD1

.�1/j�1F ˝rxj fn.x1; : : : ; xj�1; xjC1; : : : ; xnC1/;

nC1X

jD1

.�1/j�1.DxjG/˝ gn.x1; : : : ; xj�1; xjC1; : : : ; xnC1/

C
nC1X

jD1

.�1/j�1G˝rxj gn.x1; : : : ; xj�1; xjC1; : : : ; xnC1/

+

L2.˝;H˝.nC1//

C 1

nŠ

˝
.DxnC1

F/˝ fn.x1; : : : ; xn/C F ˝rxnC1
fn.x1; : : : ; xn/;

.DxnC1
G/˝ gn.x1; : : : ; xn/C G˝rxnC1

gn.x1; : : : ; xn/
˛
L2.˝;H˝.nC1//
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D nhun.x1; : : : ; xn/; vn.x1; : : : ; xn/iL2.˝;H^n/ � hdnun; d
nvniL2.˝;H^.nC1//

C 1

nŠ
hrxnC1

un.x1; : : : ; xn/;rxnC1
vn.x1; : : : ; xn/iL2.˝;H^.nC1//;

where we used (A4). Hence we have

hd.n�1/�un; d
.n�1/�vniL2.˝;H^n/ C hdnun; d

nvniL2.˝;H^.nC1//

D nhun; vniL2.˝;H^n/ C
1

nŠ
hrun;rvniL2.˝;H˝.nC1//;

i.e.

hd.n�1/�un; d.n�1/�vniL2.˝;H˝n/ C
1

nC 1 hd
nun; dnvniL2.˝;H˝.nC1//

D nhun; vniL2.˝;H˝n/ C hrun;rvniL2.˝;H˝.nC1//;

and applying the duality

hrun;rvniL2.˝;H˝.nC1// D hr�run; vniL2.˝;H^n/; un; vn 2 S ˝ H^n;

we get

dn�1d.n�1/� C dn�dn D nIH^n Cr�r:

ut
Proof of Theorem 2 (Clark-Ocone Formula) By the Clark-Ocone formula (C1) and
Assumption (A4’) we have

un.t1; : : : ; tn/ D EŒun.t1; : : : ; tn/ j Ft1_���_tn �C
Z 1

t1_���_tn

EŒDrun.t1; : : : ; tn/ jFr�dMr

D EŒun.t1; : : : ; tn/ j Ft1_���_tn �C
Z 1

t1_���_tn

EŒrrun.t1; : : : ; tn/ j Fr�dMr; (58)

t1; : : : ; tn 2 IRC. Next, by the definition (5) of dn and (22) applied to adapted
processes we have

dn�1
tn

Z
1

t1_���_tn�1

EŒun.r; t1; : : : ; tn�1/ j Fr�dMr

D
nX

jD1

.�1/j�1rtj

Z
1

t1_���_tj�1_tjC1_���_tn

EŒun.r; t1; : : : ; tj�1; tjC1; : : : ; tn/ j Fr�dMr
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D
nX

jD1

.�1/j�11Œt1_���_tn;1/.tj/EŒun.tj; t1; : : : ; tj�1; tjC1; : : : ; tn/ j Ftj �

C
nX

jD1

.�1/j�1
Z

1

t1_���_tj�1_tjC1���_tn

rtj EŒun.tnC1; t1; : : : ; tj�1; tjC1; : : : ; tn/ j FtnC1
�dMtnC1

D
nX

jD1

1Œt1_���_tn ;1/.tj/EŒun.t1; : : : ; tn/ j Ftj �

C
nX

jD1

.�1/j�1
Z

1

t1_���_tj�1_tjC1���_tn

rtj EŒun.tnC1; t1; : : : ; tj�1; tjC1; : : : ; tn/ j FtnC1
�dMtnC1

D EŒun.t1; : : : ; tn/ j Ft1_���_tn �

C
nX

jD1

.�1/j�1
Z

1

t1_���_tn

EŒrtj un.tnC1; t1; : : : ; tj�1; tjC1; : : : ; tn/ j FtnC1
�dMtnC1

; (59)

where on the last line we used the fact that by (A4),rtj un.tnC1; t1; : : : ; tj�1; tjC1; : : : ;
tn/ vanishes when t1 _ 
 
 
 _ tj�1 _ tjC1 
 
 
 _ tn < tnC1 < tj, hence by taking the
difference of (58) and (59) we find

un.t1; : : : ; tn/ D dn�1
tn

Z 1

t1_���_tn�1

EŒun.r; t1; : : : ; tn�1/ j Fr�dMr

�
nX

jD1
.�1/j�1

Z 1

t1_���_tn

EŒrtj un.t1; : : : ; tj�1; tjC1; : : : ; tnC1/ j FtnC1
�dMtnC1

C
Z 1

t1_���_tn

EŒrrun.t1; : : : ; tn/ j Fr�dMr

D dn�1
tn

Z 1

t1_���_tn�1

EŒun.r; t1; : : : ; tn�1/ j Fr�dMr

C
Z 1

t1_���_tn

EŒdn
tnC1

un.t1; : : : ; tn/ j FtnC1
�dMtnC1

;

t1; : : : ; tn 2 IRC. ut
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On the Range of Exponential Functionals
of Lévy Processes

Anita Behme, Alexander Lindner, and Makoto Maejima

Abstract We characterize the support of the law of the exponential functionalR1
0

e��s� d	s of two one-dimensional independent Lévy processes � and 	. Further,
we study the range of the mapping ˚� for a fixed Lévy process �, which maps the
law of 	1 to the law of the corresponding exponential functional

R1
0

e��s� d	s. It is
shown that the range of this mapping is closed under weak convergence and in the
special case of positive distributions several characterizations of laws in the range
are given.

1 Introduction

Given a bivariate Lévy process .�; 	/T D ..�t; 	t/
T/t�0, its exponential functional is

defined as

V WD
Z 1

0

e��s�d	s; (1)
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provided that the integral converges almost surely. Exponential functionals of Lévy
processes appear as stationary distributions of generalized Ornstein-Uhlenbeck
(GOU) processes. In particular, if � and 	 are independent and �t tends to C1 as
t ! 1 almost surely, then the law of V defined in (1) is the stationary distribution
of the GOU process

Vt D e��t

�Z t

0

e�s�d	s C V0

�

; t � 0; (2)

where V0 is a starting random variable, independent of .�; 	/T , on the same
probability space (cf. [22, Theorem 2.1]). Hence, when V0 is chosen to have the
same distribution as V , then the process .Vt/t�0 is strictly stationary.

Unless �t D at with a > 0, the distribution of V is known only in a few
special cases. See e.g. Bertoin and Yor [7] for a survey on exponential functionals
of the form V D R1

0 e��s� ds, or Gjessing and Paulsen [15], who determine the
distribution of

R1
0 e��s� d	s for some cases. A thorough study of distributions of

the form
R1
0 e��s� d	s when 	 is a Brownian motion is carried out in Kuznetsov et

al. [20]. We state the following example due to Dufresne (e.g. [7, Eq. (16)]) of an
exponential functional whose distribution has been determined and to which we will

refer later. Here and in the following we write “
dD” to denote equality in distribution

of random variables.

Example 1 For .�t; 	t/ D .�Bt C at; t/ with � > 0, a > 0 and a standard Brownian
motion .Bt/t�0 it holds

V D
Z 1

0

e�.�BtCat/dt
dD 2

�2� 2a
�2

;

where �r denotes a standard Gamma random variable with shape parameter r, i.e.
with density

P.�r 2 dx/ D xr�1

� .r/
e�x1.0;1/.x/dx:

Denote by L .X/ the law of a random variable X and let � D .�t/t�0 be a
one-dimensional Lévy process drifting to C1. In this paper we will consider the
mapping

˚� W D� !P.R/ WD the set of probability distributions on R;

L .	1/ 7! L

�Z 1

0

e��s� d	s

�

;
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defined on

D� WD fL .	1/ W 	 D .	t/t�0 one-dimensional Lévy process independent of �

such that
Z 1

0

e��s� d	s converges a.s.g:

An explicit description of D� in terms of the characteristic triplets [cf. (3)] of � and
	 follows from Theorem 2 in Erickson and Maller [14]. Denote the range of ˚� by

R� WD ˚�.D�/:

Although the domain ˚� can be completely characterized by Erickson and Maller
[14], much less is known about the range R� and properties of the mapping ˚� . In
the case that �t D at; a > 0 is deterministic, it is well known that D� D IDlog.R/,
the set of real-valued infinitely divisible distributions with finite logC-moment, and
that ˚� is an algebraic isomorphism between IDlog.R/ and R� D L.R/, the set of
real-valued selfdecomposable distributions [17, Proposition 3.6.10].

For general �, the mapping ˚� has already been studied in [4], where it has been
shown that ˚� is injective in many cases, while injectivity cannot be obtained if
� and 	 are allowed to exhibit a dependence structure. Further in [4] conditions
for continuity (in a weak sense) of ˚� are given. These results were then used
to obtain some information on the range R� . In particular it has been shown that
centered Gaussian distributions can only be obtained in the setting of (classical) OU
processes, namely, for � being deterministic and 	 being a Brownian motion.

In this paper we take up the subject of studying properties of the mapping˚� and
of distributions in R� , and start in Sect. 2 with a classification of possible supports
of the laws in R� . Section 3 is devoted to show closedness of the range R� under
weak convergence. It also follows that the inverse mapping ˚�1

� is continuous if
it is well-defined, i.e. if ˚� is injective. In Sects. 4 and 5 we specialize on positive
distributions in R� . Section 4 gives a general criterion for positive distributions to
belong to R� . In Sect. 5 we use this criterion to obtain further results in the case that
� is a Brownian motion with drift. We derive a differential equation for the Laplace
exponent of a positive distribution in R� and from this we gain concrete conditions
in terms of Lévy measure and drift for some distributions to be in R� . We end up
studying the special case of positive stable distributions in R� .

For an R
d-valued Lévy process X D .Xt/t�0, the characteristic exponent is given

by its Lévy-Khintchine formula (e.g. [28, Theorem 8.1])

log�X.u/ WD log E
h
eihu;X1i

i

D ih�X; ui � 1
2
hu;AXui C

Z

Rd
.eihu;xi � 1 � ihu; xi1jxj�1/�X.dx/; u 2 R;

(3)
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where .�X;AX; �X/ is the characteristic triplet of the Lévy process X. In case that X
is real-valued we will usually replace AX by �2X . In the special case of subordinators
in R, i.e. nondecreasing Lévy processes, we will also use the Laplace transform

LX.u/ WD EŒe�uX1 � D e X.u/; u � 0;

of X and call  X.u/ the Laplace exponent of the Lévy process X. We refer to
[28] for further information on Lévy processes. In the following, when the symbol
X is regarded as a real-valued random variable, we also use the notation �X.u/
and LX.u/ for its characteristic function and Laplace transform, respectively. The
Fourier transform of a finite measure � on R is written as O�.u/ D R

R
eiux �.dx/. We

write “
d!” to denote convergence in distribution of random variables, and “

w!” to
denote weak convergence of probability measures. We use the abbreviation “i.i.d.”
for “independent and identically distributed”. The set of all twice continuously
differentiable functions f W R ! R which are bounded will be denoted by C2

b.R/,
and the subset of all f W R! R which have additionally compact support by C2

c.R/.

2 On the Support of the Exponential Functional

In this section we shall give the support of the distribution of the exponential
functional V D R1

0
e��s� d	s when � and 	 are independent Lévy processes. In

particular it turns out that the support will always be a closed interval. A similar
result does not hold for solutions of arbitrary random recurrence equations, or for
exponential functionals of Lévy processes with dependent � and 	, as we shall show
in Remark 1.

For � being spectrally negative, it is well known (e.g. [8]) that V has a
selfdecomposable and hence infinitely divisible distribution. In [28, Theorem 24.10]
a characterization of the support of infinitely divisible distributions is given in terms
of the Lévy triplet. In particular the support of a selfdecomposable distribution on
R is either a single point, R itself or a one-sided unbounded interval. Unfortunately
the characteristic triplet of V is not known in general and also, for not spectrally
negative � this result can not be applied.

Before we characterize the support of the law of V D R1
0

e��s� d	s when � and
	 are general independent Lévy processes, we treat the special case when 	t D t in
the following lemma. Much attention has been paid to this case, and in particular, it
has been shown that the stationary solution has a density under various conditions,
see e.g. Pardo et al. [25] or Carmona at al. [12]. Haas and Rivero [16, Theorem 1.4,
Lemma 2.1] gave a characterization when this law is bounded and obtained that this
is the case if and only if � is a subordinator with strictly positive drift, and derived
the support then. So parts of the following lemma follow already from results in
[16], nevertheless we have decided to give a detailed proof.
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Lemma 1 Let � be a Lévy process drifting to C1 and set V D R1
0 e��s ds. Then

suppL .V/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

˚
1
b

�
; if �t D bt with b > 0;


0; 1b

�
; if � is a non-deterministic subordinator with drift b > 0;


1
b ;1

�
; if � is non-deterministic and of finite variation;

with drift b > 0 and ��..0;1// D 0;
Œ0;1/; otherwise.

Proof The claim is clear if � is deterministic, while it follows from Remark 1 if � is a
Brownian motion with drift, so suppose that �� 6	 0. Suppose first that ��..0;1// >
0, and let x0 2 suppL .V/\ .0;1/. Let c 2 supp �� \ .0;1/ and y0 2 .e�cx0; x0/.
We shall show that also y0 2 suppL .V/, so that by induction suppL .V/ must be
an interval with lower endpoint 0 if ��..0;1// > 0. To see this, define z0 2 .0; y0/
so that

z0 C e�c.x0 � z0/ D y0:

Let " 2 .0; x0�z0
2
/ and define

A D A" WD
�

! 2 ˝ W
Z 1

0

e��s.!/ ds 2 .x0 � "; x0 C "/
�

:

Then P.A/ > 0 since x0 2 suppL .V/. Define the stopping time T1 2 Œ0;1� by

T1.!/ WD inf

�

t � 0 W
Z t

0

e��s.!/ ds D z0

�

:

Since t 7! R t
0 e��s.!/ ds is continuous, T1 is finite on A. Let ı1 2 .0; x0�z0

2
/ and

ı2 2 .0; c/. Then �	..c � ı2; c C ı2// > 0, and since P.A/ > 0, there are a
(sufficiently large) constant K D K."; ı1; ı2/ > 0 and a (sufficiently small) constant
ı D ı."; ı1; ı2/ > 0 such that ı < 1 and

B WD B";ı1;ı2;ı;K WD A \
n
T1 � K;

Z T1Cı

T1

e��s ds � ı1;

��s 62 .c � ı2; cC ı2/; 8 s 2 .T1;T1 C ı�
o

has a positive probability. Now define the set C D C";ı1;ı2;ı;K to be the set of all
! 2 ˝ , for which there exists an !0 2 B, some time t.!0/ 2 .T1 ^ K; .T1 ^ K/C ı�
and some ˛.!0/ 2 .c � ı2; cC ı2/ such that

.�t.!//t�0 D .�t.!
0/C ˛.!0/1Œt.!0/;1//t�0;
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namely, the set of ! whose paths behave exactly like a sample path from the set B,
but with the exception that additionally exactly one jump of size in .c � ı2; cC ı2/
occurs in the interval .T1 ^ K; .T1 ^ K/ C ı�. Since T1 ^ K is a finite stopping
time, it follows from the strong Markov property of � and from P.B/ > 0 that also
P.C/ > 0. But for ! 2 C, with !0 2 B and ˛ D ˛.!0/ 2 .c � ı2; cC ı2/ as in the
definition of C, we obtain

Z 1

0

e��s.!/ ds

D
Z T1.!0/

0

e��s.!
0/ dsC

Z T1.!0/Cı

T1.!0/

e��s.!/ dsC e�˛
Z 1

T1.!0/Cı
e��s.!

0/ ds

2
h
z0 C

Z T1.!0/Cı

T1.!0/

e��s.!/ dsC e�˛
	

x0 � " � z0 �
Z T1.!0/Cı

T1.!0/

e��s.!
0/ ds



;

z0 C
Z T1.!0/Cı

T1.!0/

e��s.!/ dsC e�˛
	

x0 C " � z0 �
Z T1.!0/Cı

T1.!0/

e��s.!
0/ ds


i

�
h
z0 � ı1 C e�c.x0 � z0 � "/C .e�c�ı2 � e�c/.x0 � z0 � "/� e�cCı2ı1;

z0 C ı1 C e�c.x0 � z0 C "/C .e�cCı2 � e�c/.x0 � z0 C "/C e�cCı2ı1
i
:

Since y0 D z0 C e�c.x0 � z0/, we see that y0 2 suppL .V/ by choosing "; ı1 and
ı2 sufficiently small. So we have shown that suppL .V/ is an interval with 0 as its
lower endpoint if ��..0;1// > 0.
By a similar reasoning, one can show that suppL .V/ is an interval withC1 as its
upper endpoint if ��..�1; 0// > 0.

It follows that suppL .V/ D Œ0;1/ if ��..0;1// > 0 and ��..�1; 0// > 0.
Now suppose that � is of infinite variation with ��..0;1// > 0 (but ��..�1; 0// D
0), or ��..�1; 0// > 0 (but ��..0;1// D 0). Then there is ˛ > 0 such that for
each t1; t0 > 0 with t1 > t0 and K > 0 the event

f�s � �2; 8s 2 Œ0; t0�; �s � K; 8s 2 Œt0; t1�; �s � ˛s; 8s � t1g

has a positive probability, since limt!1 t�1�t exists almost surely in .0;1� by
Doney and Maller [13, Theorems 4.3 and 4.4]) and since suppL .�t/ D R for all
t > 0 (cf. [28, Theorem 24.10]). Choosing t0 small enough and t1;K big enough, it
follows that 0 2 suppL .V/ since suppL .V/ is closed. On the other hand, since
also the event

f�s � 2; 8s 2 Œ0; t2�g
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has positive probability for each t2 > 0 as a consequence of the infinite variation
of �, it follows that suppL .V/ is unbounded, hence showing that suppL .V/ D
Œ0;1/ if � is of infinite variation.

Now assume that � is of finite variation with drift b 2 R, ��..0;1// > 0 and
��..�1; 0// D 0. We already know that 0 2 suppL .V/. If b � 0, then the event
f�s � 2; 8s 2 Œ0; t2�g has a positive probability for each t2 > 0, and hence
suppL .V/ is unbounded. If b > 0, then for each " > 0 and t2 > 0, the event
f�s � .b C "/s; 8s 2 Œ0; t2�g has a positive probability by Shtatland’s result (cf.
[28, Theorem 43.20]), so that sup suppL .V/ � R t2

0
e�.bC"/s ds for each t2 > 0

and " > 0, and hence sup suppL .V/ � 1=b. On the other hand, in that case
V D R1

0
e��s ds � R1

0
e�bs ds D 1=b, so that suppL .V/ D Œ0; 1=b�.

Finally, assume that � is of finite variation with drift b > 0, ��..0;1// D 0

and ��..�1; 0// > 0. Then suppL .V/ is unbounded and by arguments similar to
above, using that limt!1 t�1�t D EŒ�1� 2 .0; b/, we see that inf suppL .V/ D 1=b,
so that suppL .V/ D Œ1=b;1/. This finishes the proof. ut

Now we can characterize the support of L
�R1
0

e��s� d	s
�

when � and 	 are
independent Lévy processes. Observe that Theorem 1 below together with Lemma 1
provides a complete characterization of all possible cases.

Theorem 1 Let � and 	 be two independent Lévy processes such that V WDR1
0 e��s� d	s converges almost surely.

(i) Suppose 	 is of infinite variation, or that �	..0;1// > 0 and �	..�1; 0// > 0.
Then suppL .V/ D R.

(ii) Suppose 	 is of finite variation with drift a, �	..0;1// > 0 and �	..�1; 0// D
0. Then for a � 0

suppL .V/ D

8
ˆ̂
<

ˆ̂
:


a
b ;1

�
; if � is of finite variation with drift b > 0

and ��..0;1// D 0;
Œ0;1/; otherwise;

and for a < 0

suppL .V/ D
( 

a
b ;1

�
; if � is a subordinator with drift b > 0;

R; otherwise.

(iii) Suppose 	 is of finite variation with drift a, �	..0;1// D 0 and �	..�1; 0// >
0. Then for a > 0

suppL .V/ D
( ��1; a

b

�
; if � is a subordinator with drift b > 0;

R; otherwise,
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and for a � 0

suppL .V/ D

8
ˆ̂
<

ˆ̂
:

��1; a
b

�
; if � is of finite variation with drift b > 0

and ��..0;1// D 0;
.�1; 0�; otherwise.

Proof Denote by D.Œ0;1/;R/ the set of all real valued càdlàg functions on Œ0;1/.
Since � and 	 are independent, we can condition on � D f with f 2 D.Œ0;1/;R/
and it follows that, for P�-almost every f 2 D.Œ0;1/;R/,

Vf WD
Z 1

0

e�f .s�/ d	s D lim
T!1

Z T

0

e�f .s�/ d	s

converges almost surely. Hence we can apply the results in [27] for such f , and
obtain that Vf is infinitely divisible with Gaussian variance

Af D A	

Z 1

0

e�2f .s/ ds

and Lévy measure �f , given by

�f .B/ D
Z 1

0

ds
Z

R

1B.e
�f .s/x/ �	.dx/ for B 2 B.Rd/ with 0 62 B

(cf. [27, Theorem 3.10]). In particular, Af > 0 if and only if A	 > 0, �f ..0;1// > 0
if and only if �	..0;1// > 0, and �f ..�1; 0// > 0 if and only if �	..�1; 0// > 0.
Further, since lims!1 f .s/ D C1 P�-a.s.. f /, for any " > 0 we conclude that

�f ..�"; "/ n f0g/ D
Z 1

0

�	..�e f .s/"; e f .s/"/ n f0g/ds D1

provided that �	 6	 0. This shows that 0 2 supp �f , P�-a.s.. f /. It then follows from
[28, Theorem 24.10] that

suppL .Vf / D R; P� � a.s.. f /

if A	 > 0, or if �	..0;1// > 0 and �	..�1; 0// > 0.
Hence in that case P.Vf 2 Bj� D f / > 0 P�-a.s.. f / for any open set B ¤ ;, so

that P.V 2 B/ D R
P.Vf 2 Bj� D f / dP�. f / > 0. Thus suppL .V/ D R, which

shows (i).
To show (ii), suppose 	 is of finite variation with drift a, and �	..0;1// > 0

and �	..�1; 0// D 0. Then, for P�-a.e. f , Vf � a
R1
0 e�f .s/ ds > �1 and hence

Vf is of finite variation. It then follows from [27, Theorem 3.15] that Vf has drift
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a
R1
0 e�f .s/ ds and [28, Theorem 24.10] gives

suppL .Vf / D
�

a
Z 1

0

e�f .s/ ds;1
�

:

Since P.V 2 B/ D R
P.Vf 2 Bj� D f / dP�. f /, the assertion (ii) follows from

Lemma 1. Finally, (iii) follows from (ii) by replacing 	 by �	. ut
The following result is now immediate.

Corollary 1 Let � be a Lévy process drifting to C1, and 	 another Lévy process,
independent of � such that L .	1/ 2 D� . Then V D R1

0 e��s� d	s � 0 a.s. if and
only if 	 is a subordinator.

Remark 1

(i) Let � and 	 be two independent Lévy processes such that V D R1
0

e��s� d	s

converges almost surely and consider the associated GOU process .Vt/t�0
defined by (2). Then it is easy to see that Vn D AnVn�1 C Bn for each n 2 N,
where ..An;Bn/

T/n2N is an i.i.d. sequence of bivariate random vectors given by

.An;Bn/
T D

�

e�.�n��n�1/; e�.�n��n�1/

Z

.n�1;n�
e�s���n�1 d	s

�T

(e.g. [22, Lemma 6.2]). Further, if V0 is chosen to be independent of .�; 	/T ,
then .V0; : : : ;Vn�1/T is independent of ..Ak;Bk/

T/k�n for each n. Since L .V/ is
the stationary marginal distribution of the GOU process, it is also the stationary
marginal distribution of the random recurrence equation Vn D AnVn�1CBn, n 2
N. We have seen in particular, that the support of L .V/ was always an interval.
Hence it is natural to ask if stationary solutions to arbitrary random recurrence
equations will always have an interval as its support. We will see that this is
not the case. To be more precise, let

�
.An;Bn/

T
�

n2N be a given i.i.d. sequence of
bivariate random vectors. Suppose that .Xn/n2N0 is a strictly stationary sequence
which satisfies the random recurrence equation

Xn D AnXn�1 C Bn; n 2 N; (4)

such that .X0; : : : ;Xn�1/ is independent of
�
.Ak;Bk/

T
�

k�n
(provided that such a

solution exists) for every n 2 N. Then the support of L .X0/ does not need to
be an interval, even if An is constant and hence An and Bn are independent. To
see this, let An D 1=3 and let .Bn/n2Z be an i.i.d. sequence such that P.Bn D
0/ D P.Bn D 2/ D 1

2
. Then

Xn D
1X

kD0
3�kBn�k; n 2 N0; (5)
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defines a stationary solution of (4), which is unique in distribution. Obviously,
the support of L .X0/ is given by the Cantor set

( 1X

nD0
3�nzn W zn 2 f0; 2g; 8 n 2 N0

)

;

which is totally disconnected and not an interval.
(ii) The stationary solution constructed in (5) is a 1=3-decomposable distribution

(see [28, Definition 64.1] for the definition). By Proposition 6.2 in [4], there
exists a bivariate Lévy process .�; 	/T such that �t D .log 3/Nt for a Poisson
process .Nt/t�0 and such that

Z 1

0

e��s� d	s D
Z 1

0

3�Ns� d	s

has the same distribution as X0 from (5). In particular, its support is not
an interval. Hence a similar statement to Theorem 1 does not hold under
dependence.

3 Closedness of the Range

This section is devoted to show that, as in the well-known case of a deterministic
process �, the range R� D ˚�.D�/ is closed under weak convergence. On the
contrary, closedness of R� under convolution does not hold any more as will be
shown in Corollary 2 below.

It will also follow that the inverse mapping .˚�/�1 is continuous, provided that
˚� is injective. Recall that ˚� is injective if, for instance, � is spectrally negative (cf.
[4, Theorem 5.3]). Further, for any � drifting to C1, ˚� is always injective when
restricted to positive measures L .	1/ [4, Remark 5.4]. Thus, although ˚� need
not be continuous (which follows by an argument similar to [4, Example 7.1]), the
inverse of ˚� restricted to positive measures will turn out to be always continuous.

We start with the following proposition, which shows that the mapping ˚� is
closed.

Proposition 1 Let � be a Lévy process drifting to C1. Then the mapping ˚� is

closed in the sense that if L .	
.n/
1 / 2 D� , 	

.n/
1

d! 	1 and ˚�.L .	
.n/
1 //

w! � for some
random variable 	1 and probability measure � as n ! 1, then L .	1/ 2 D� and
˚�.L .	1// D �.

Proof For n 2 N, let W.n/ be a random variable such that

W.n/ dD
Z 1

0

e��s� d	.n/s and W.n/ is independent of .�; 	.n//T ;
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where 	.n/ is a Lévy process induced by 	.n/1 independent of �. Then the limit
L .	1/ is infinitely divisible by Sato [28, Lemma 7.8]) and we can define 	 as
a Lévy process induced by 	1, independent of �. Let W be a random variable
with distribution �, independent of .�; 	/T . The proof of Behme and Lindner [4,
Theorem 7.3], more precisely the part leading to Eq. (7.12) there, then shows that
for every t > 0 we have

�

e��t ;

Z t

0

e�s� d	.n/s

�T
d!
�

e��t ;

Z t

0

e�s� d	s

�T

; n!1:

Due to independence this yields

�

W.n/; e��t ;

Z t

0

e�s� d	.n/s

�T
d!
�

W; e��t ;

Z t

0

e�s� d	s

�T

; n!1;

and since L .W.n// is the invariant distribution of the GOU process driven by
.�; 	.n//T , this implies

W.n/ dD e��t

�

W.n/ C
Z t

0

e�s� d	.n/s

�
d! e��t

�

W C
Z t

0

e�s� d	s

�

; n!1:

Since also W.n/ d! W as n!1, this shows that

W
dD e��t

�

W C
Z t

0

e�s� d	s

�

for any t > 0, so that � D L .W/ is an invariant distribution of the GOU process
driven by .�; 	/T . By Lindner and Maller [22, Theorem 2.1], or alternatively [6,
Theorem 2.1 (a)], this shows that

R1
0 e��s� d	s converges a.s., i.e. L .	1/ 2 D� , and

that

� D L .W/ D L

�Z 1

0

e��s� d	s

�

D ˚�.L .	1//;

giving the claim. ut
In order to show that R� is closed, we shall first show in Proposition 2 below

that if a sequence .˚�.L .	
.n/
1 ///n2N is tight, then .	.n/1 /n2N is tight. To achieve

this, observe first that as a consequence of Kallenberg [19, Lemma 15.15] and
Prokhorov’s theorem, a sequence .L .	

.n/
1 //n2N of infinitely divisible distributions

on R with characteristic triplets .�n; �
2
n ; �n/ is tight if and only if

sup
n2N

ˇ
ˇ
ˇ
ˇ�n C

Z

R

x

�
1

1C x2
� 1jxj�1

�

�n.dx/

ˇ
ˇ
ˇ
ˇ <1
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and the sequence . Q�n/n2N of finite positive measures on R with

Q�n.dx/ D �2n ı0.dx/C x2

1C x2
�n.dx/

is weakly relatively compact (in particular, this implies that supn2N Q�n.R/ < 1).
Using Prokhorov’s theorem for finite measures (e.g. [1, Theorem 7.8.7]), it is easy
to see that this is equivalent to

sup
n2N

�2n <1; (6)

sup
n2N

Z

Œ�1;1�
x2 �n.dx/ <1; (7)

sup
n2N

�n.R n Œ�r; r�/ <1; 8 r > 0; (8)

lim
r!1 sup

n2N
�n.R n Œ�r; r�/ D 0; and (9)

sup
n2N
j�nj <1: (10)

The following lemma gives direct uniform estimates for�.Œ�r; r�/ in terms of the
Lévy measure or Gaussian variance of an infinitely divisible distribution � which
will be needed to prove Proposition 2.

Lemma 2 Let � be an infinitely divisible distribution on R with characteristic
triplet .�; �2; �/. For " 2 .0; 1/ denote by I" the set

I" WD fz 2 R W 1 � cos z � "g:

Then for any p 2 .0; 1/ and a > 0, there is some " D ".a; p/ 2 .0; 1/ such that


1.I" \ Œ�y; y�/


1.Œ�y; y�/
� 1 � p; 8 y � a; (11)

where 
1 denotes the Lebesgue measure on R. For ı > 0, denote by

k�kı WD �.R n Œ�ı; ı�/

the total mass of �jRnŒ�ı;ı� and

M.�/ WD
Z

Œ�1;1�
x2 �.dx/:
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Further, let c > 0 be a constant such that

cos.t/ � 1 � �ct2; 8 t 2 Œ�1; 1�:

Then

�.Œ�r; r�/ � 4.e�".ı=r;p/k�kı .1 � p/C p/; 8 p 2 .0; 1/; r; ı > 0; (12)

�.Œ�r; r�/ � 1 �minfe�k�k2r ; 1 � e�k�k2r=2g; 8 r > 0; (13)

�.Œ�r; r�/ � 2r
Z 1=r

�1=r
e�M.�/ct2 dt; 8 r � 1; (14)

and

�.Œ�r; r�/ � 2r
Z 1=r

�1=r
e��2t2=2 dt; 8 r > 0: (15)

Proof Equation (11) is clear. Let r > 0. Then an application of Kallenberg [19,
Lemma 5.1] shows

�.Œ�r; r�/ � 2r
Z 1=r

�1=r
j O�.t/j dt D 2r

Z 1=r

�1=r
exp

�

��2t2=2C
Z

R

.cos.xt/� 1/�.dx/

�

dt

(16)

which immediately gives (15). Let ı > 0. Equation (12) is trivial when k�kı D 0,
and for k�kı > 0 observe that by (16) and Jensen’s inequality we can estimate

�.Œ�r; r�/ � 2r
Z 1=r

�1=r
exp

�Z

jxj>ı
.cos.xt/ � 1/k�kı �.dx/

k�kı
�

dt

� 2r
Z 1=r

�1=r

�Z

jxj>ı
e.cos.xt/�1/k�kı �.dx/

k�kı
�

dt

D
Z

jxj>ı

 
2r

jxj
Z jxj=r

�jxj=r
e.cos z�1/k�kı dz

!
�.dx/

k�kı : (17)

By (11) we estimate for jxj � ı and p 2 .0; 1/ with " D ".ı=r; p/

2r

jxj
Z jxj=r

�jxj=r
e.cos z�1/k�kı dz

� 4


1.Œ� jxj
r ;

jxj
r �/

�

e�"k�kı
1
�

Œ�jxj
r
;
jxj
r
� \ I"

�

C 
1
�

Œ�jxj
r
;
jxj
r
� n I"

��

� 4.e�"k�kı .1� p/C p/;
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which together with (17) results in (12). Similarly, (14) is trivial when M.�/ D 0,
while for M.�/ > 0 define the finite measure � on Œ�1; 1� by �.dx/ D x2�.dx/. We
then estimate with (16) and Jensen’s inequality, for r � 1,

�.Œ�r; r�/ � 2r
Z 1=r

�1=r
exp

�Z

Œ�1;1�
cos.xt/ � 1

x2
M.�/

�.dx/

M.�/

�

dt

� 2r
Z 1=r

�1=r

�Z

Œ�1;1�
exp

�
cos.xt/ � 1

x2
M.�/

�
�.dx/

M.�/

�

dt

� 2r
Z 1=r

�1=r

�Z

Œ�1;1�
e�ct2M.�/ �.dx/

M.�/

�

dt;

which gives (14). Finally, let us prove Eq. (13). This is again trivial when k�k2r D 0,
so assume k�k2r > 0. By symmetry, we can assume without loss of generality that

�..�1;�2r// � k�k2r=2 > 0:

Let .Xt/t�0 be a Lévy process with L .X1/ D �, and define

Yt WD
X

0<s�t;�Xs<�2r

�Xs and Zt WD Xt � Yt; t 2 R;

where �Xs WD Xs � Xs� denotes the jump size of X at time s. Then .Yt/t�0 and
.Zt/t�0 are two independent Lévy processes, and .Yt/t�0 is a compound Poisson
process with Lévy measure �j.�1;�2r/. Denote by .Nt/t�0 the underlying Poisson
process in .Yt/t�0 which counts the number of jumps of .Yt/t�0. Then

�.R n Œ�r; r�/ D P.jY1 C Z1j > r/

� P.jZ1j > r;Y1 D 0/C P.jZ1j � r;Y1 < �2r/

D P.jZ1j > r/P.N1 D 0/C P.jZ1j � r/P.N1 � 1/
D P.jZ1j > r/e��..�1;�2r// C .1 � P.jZ1j > r//.1 � e��..�1;�2r///

� minfe��..�1;�2r//; 1 � e��..�1;�2r//g
� minfe�k�k2r ; 1 � e�k�k2r=2g;

which implies (13). ut
The next result is the key step in proving closedness of R� .

Proposition 2 Let � be a Lévy process drifting to C1 and .L .	
.n/
1 //n2N be a

sequence in D� such that .�n WD ˚�.L .	
.n/
1 ///n2N is tight. Then also .	.n/1 /n2N

is tight.
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Proof Denote by .�n; �
2
n ; �n/ the characteristic triplet of 	.n/1 . We have to show that

conditions (6)–(10) are satisfied. Let n 2 N. Since
R1
0

e��s� d	.n/s converges almost
surely and since 	.n/ and � are independent, conditioning on � D f shows that

�Z 1

0

e��s� d	.n/s

ˇ
ˇ
ˇ
ˇ � D f

�

D
Z 1

0

e�f .s�/ d	.n/s

for P�-almost every f 2 D.Œ0;1/;R/, where the integral
R1
0

e�f .s�/ d	.n/s converges
almost surely for each such f . Further, since sups2Œ0;1� j�sj < 1 a.s. by the càdlàg
paths of �, there are 0 < D1 � 1 � D2 <1 such that

P
�
D1 � e��s � D2 8 s 2 Œ0; 1�� � 1=2:

Consequently there are some measurable sets An � D.Œ0;1/;R/ with P�.An/ �
1=2 such that

D1 � e�f .s/ � D2 8 f 2 An; s 2 Œ0; 1�;

and
Z 1

0

e�f .s�/ d	.n/s converges a.s., 8f 2 An:

Further, we obtain

�n.R n Œ�r; r�/ �
Z

An

P

�ˇˇ
ˇ
ˇ

Z 1

0

e�f .s�/ d	.n/s

ˇ
ˇ
ˇ
ˇ > r

�

P�.df /

� 1

2

 

1 � sup
f 2An

P

�ˇˇ
ˇ
ˇ

Z 1

0

e�f .s�/ d	.n/s

ˇ
ˇ
ˇ
ˇ � r

�!

: (18)

For fixed f 2 An the distribution of
R1
0

e�f .s�/ d	.n/s is infinitely divisible with
Gaussian variance

�2f ;n D �2n
Z 1

0

.e�f .s//2 ds � D2
1�

2
n (19)

and Lévy measure �f ;n satisfying

�f ;n.B/ D
Z 1

0

ds
Z

R

1B.e
�f .s/x/ �n.dx/ (20)
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for any Borel set B � R n f0g (cf. [27, Theorem 3.10]). In particular, for f 2 An and
any ı > 0,

�f ;n.R n Œ�ı; ı�/ �
Z 1

0

ds
Z

R

1RnŒ�ıe f .s/;ıe f .s/�.x/ �n.dx/

� �n.R n Œ�ı=D1; ı=D1�/: (21)

From (20) we obtain

Z

Œ�1;1�
t2�f ;n.dt/ D

Z 1

0

ds
Z

R

�
e�f .s/x

�2
1fje�f .s/xj�1g.x/ �n.dx/;

for f 2 An, hence

Z

Œ�1;1�
t2�f ;n.dt/ � D2

1

Z

Œ�1;1�
x21fjD2xj�1g.x/�n.dx/

D D2
1

Z

Œ�1=D2;1=D2�
x2�n.dx/: (22)

Now suppose (6) were violated. Then by (18), (15) and (19) we conclude that

sup
n2N

˚
�n.R n Œ�r; r�/

� � 1

2
sup
n2N

(

1 � 2r
Z 1=r

�1=r
e�D21�

2
n t2=2 dt

)

D 1

2

for every r > 0, contradicting tightness of .�n/n2N. Hence (6) must be true.
Now suppose that (8) were violated, so that there is some ı > 0 such that

supn2N k�nkı D 1 with the notions of Lemma 2. Let p 2 .0; 1=4/ be arbitrary.
Then by (12) and (21), we have for every f 2 An, with � D �.D1ı=r; p/ as defined
in Lemma 2, that

P

�ˇˇ
ˇ
ˇ

Z 1

0

e�f .s�/ d	.n/s

ˇ
ˇ
ˇ
ˇ � r

�

� 4
	

e�".D1ı=r;p/k�f ;nkD1ı .1 � p/C p



� 4e�".D1ı=r;p/k�nkı .1 � p/C 4p: (23)

From (18) we then obtain that

sup
n2N

˚
�n.R n Œ�r; r�/

� � 1

2
.1 � 4p/ > 0; 8 r > 0;

which again contradicts tightness of .�n/n2N so that (8) must hold.
Now suppose that (9) were violated. Then there is some a > 0 and a sequence

.ık/k2N of positive real numbers tending to C1 and an index n.k/ 2 N for each k
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such that

k�n.k/k2ık=D1 � a; 8 k 2 N:

Let p 2 .0; 1=4/ be arbitrary and choose " D ".D1; p/ as in Lemma 2. Let b > 0 be
such that

b1 WD 4
�
e�".D1;p/b.1 � p/C p

�
< 1:

Let f 2 An. Then if k�f ;n.k/kD1ık � b we have

P

�ˇˇ
ˇ
ˇ

Z 1

0

e�f .s�/ d	.n.k//s

ˇ
ˇ
ˇ
ˇ � ık

�

� b1 < 1

by (23), while if k�f ;n.k/kD1ık < b we obtain from (13) and (21) that

P

�ˇˇ
ˇ
ˇ

Z 1

0

e�f .s�/ d	.n.k//s

ˇ
ˇ
ˇ
ˇ � ık

�

� 1 �minfe�k�f ;n.k/k2ık ; 1 � e�k�f ;n.k/k2ık =2g

� 1 �minfe�b; 1 � e�k�n.k/k2ık=D1 =2g
� 1 �minfe�b; 1 � e�a=2g:

From (18) we then conclude

�n.k/.R n Œ�ık; ık�/ � 1

2

�
1 �maxfb1; 1 � e�b; e�a=2g� > 0 8 k 2 N:

In particular,

lim sup
r!1

sup
n2N
f�n.R n Œ�r; r�/g � 1

2

�
1 �maxfb1; 1 � e�b; e�a=2g� > 0;

which again contradicts tightness of .�n/n2N. We conclude that also (9) must be
valid.

Now suppose that (7) were violated, but (8) holds. Then by (18), (14), (22) and
with c from Lemma 2 we have for every r � 1

sup
n2N

˚
�n.R n Œ�r; r�/

�

� 1

2
sup
n2N

(

1 � 2r
Z 1=r

�1=r
exp

�

�D2
1ct2

Z

Œ�1=D2;1=D2�
x2 �n.dx/

�

dt

)

D 1

2
;
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where we have used that (8) together with supn2N
R
Œ�1;1� x

2 �n.dx/ D 1 imply

supn2N
R
Œ�1=D2;1=D2�

x2 �n.dx/ D 1. This again contradicts tightness of .�n/n2N so
that (7) must hold.

Finally, suppose that (10) were violated but that (6)–(9) hold. Then there is
a subsequence of .�n/n2N which diverges to C1 or �1, and without loss of
generality assume that this is .�n/n2N. Since .�n/n2N is tight by assumption, there
is a subsequence of .�n/n2N which converges weakly, and for the convenience
of notation assume again that .�n/n2N converges weakly to some distribution �.
Let the Lévy process U with characteristic triplet .�U ; �

2
U ; �U/ be related to � by

E .U/t D e��t , where E .U/ denotes the stochastic exponential of U. Then it follows
from [4, Corollary 3.2 and Eq. (4.1)] that

�n

Z

R

f 0.x/ �n.dx/ D �1
2
�2n

Z

R

f 00.x/ �n.dx/

�
Z

R

�n.dx/
Z

R

�
f .xC y/� f .x/� f 0.x/y1jyj�1

�
�n.dy/

� �U

Z

R

f 0.x/x�n.dx/� 1
2
�2U

Z

R

f 00.x/x2 �n.dx/

�
Z

R

�n.dx/
Z

R

�
f .xC xy/� f .x/ � f 0.x/xy1jyj�1

�
�U.dy/

for every function f 2 C2
c .R/. Consider the right hand side of this equation. The first

summand remains bounded in n by (6) and weak convergence of �n, and the second
remains bounded in n by (7) and (8), since

j f .xC y/ � f .x/ � f 0.x/1jyj�1j � 2k fk11jyj>1 C k f 00k1y21jyj�1

(cf. [4, Proof of Lemma 4.2]), where k 
 k1 denotes the supremum norm. The
third and fourth summands converge by weak convergence of �n, and the fifth
summand remains bounded in n by Behme and Lindner [4, Eq. (3.6)] (actually, the
fifth summand can be shown to converge). We conclude also that �n

R
R

f 0.x/�n.dx/
must be bounded in n for every f 2 C2

c .R/. Choosing f 2 C2
c .R/ such thatR

R
f 0.x/ �.dx/ ¤ 0, we obtain that .�n/n2N must be bounded and hence the desired

contradiction. Summing up, we have verified (6)–(10) so that .	.n/1 /n2N must be
tight. ut

Now define

DC
� WD fL .	1/ 2 D� W 	1 � 0 a.s.g;

˚C
� WD .˚�/jDC

�
;
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and

RC
� WD ˚�.DC

� / D ˚C
� .D

C
� /:

By Corollary 1,

RC
� D R� \ f� 2P.R/ W supp� � Œ0;1/g:

We now show closedness of R� under weak convergence and that the inverse of
˚� (provided that it exists) is continuous.

Theorem 2 Let � D .�t/t�0 be a Lévy process drifting toC1.

(i) Then R� and RC
� are closed under weak convergence.

(ii) If ˚� is injective, then the inverse ˚�1
� W R� ! D� is continuous with respect

to the topology induced by weak convergence.
(iii) The inverse .˚C

� /
�1 W RC

� ! DC
� is continuous.

Proof

(i) Let .�n D ˚�.L .	
.n/
1 ///n2N be a sequence in R� which converges weakly

to some � 2 P.R/. Then .�n/n2N is tight, and by Proposition 2, .	.n/1 /n2N
must be tight, too. Hence there is a subsequence .	.nk/

1 /k2N which converges
weakly to some random variable 	1. It then follows from Proposition 1 that also
L .	1/ 2 D� and that ˚�.L .	1// D �. Hence � 2 R� so that R� is closed.
Since f� 2 P.R/ W supp� � Œ0;1/g is closed, this gives also closedness
of RC

� .

(ii) Let .�n D ˚�.L .	
.n/
1 ///n2N be a sequence in R� which converges weakly to

some �. By Proposition 2, .	.n/1 /n2N is tight. Let .	.kn/
1 /k2N be a subsequence

which converges weakly to some 	1, say. Then L .	1/ 2 D� and˚�.L .	1// D
� by Proposition 1, and since ˚� is injective we have L .	1/ D ˚�1

� .�/. Since

the convergent subsequence was arbitrary, this shows that L .	
.n/
1 / D ˚�1

� .�n/

converges weakly to ˚�1
� .�/ as n!1 (cf. [9, Corollary to Theorem 25.10]).

Hence ˚� is continuous.
(iii) This can be proved in complete analogy to (ii). ut
Remark 2 Closedness of RC

� under weak convergence and continuity of .˚C
� /

�1
can also be proved in a simpler way by circumventing Proposition 2 but using a
formula for the Laplace transforms of 	.n/1 and�n (cf. [4, Remark 4.5], or Theorem 3

below), and showing that �.n/
w! � implies convergence of the Laplace transforms

of 	.n/1 . A similar approach for showing closedness of R� is not evident since there
is not a similarly convenient formula for the Fourier transforms available, but only
one in terms of suitable two-sided limits (cf. [4, Eq. (4.7)]).

As a consequence of Theorem 2, we can now show that R� will not be
closed under convolution if � is non-deterministic and satisfies a suitable moment
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condition. We conjecture that R� will never be closed under convolution unless � is
deterministic.

Corollary 2 Let � D .�t/t�0 be a non-deterministic Lévy process drifting to C1
such that EŒ.e�2�1 /� < 1. Then R� is not closed under convolution.

Proof Let .	t/t�0 be a symmetric compound Poisson process with Lévy measure
� D ı�1 C ı1, where ıa denotes the Dirac measure at a. Then L .	1/ 2 D� and
V WD R1

0
e��s� d	s is symmetric, too, and since by Behme [3, Theorem 3.3] we have

EŒV2� <1, this yields EŒV� D 0. Now let .Vi/i2N be an i.i.d. family of independent
copies of V . Then by the Central Limit Theorem,

L
	

n� 1
2 .V1 C 
 
 
 C Vn/



! N .0;Var .V//; n!1;

with Var .V/ ¤ 0. If the range R� was closed under convolution, we consequently

had L .n� 1
2 .V1 C 
 
 
 C Vn// 2 R� and due to closedness of R� under weak

convergence this gave N .0;Var .V// 2 R� . This contradicts [4, Theorem 6.4]. ut

4 A General Criterion for a Positive Distribution
to be in the Range

From this section on, we restrict ourselves to positive distributions in R� , i.e. we only
consider ˚C

� and RC
� as defined in Sect. 3. We start by giving a general criterion to

decide whether a positive distribution is in the range RC
� of ˚C

� for a given Lévy
process �.

Theorem 3 Let � be a Lévy process drifting to C1. Let � D L .V/ be a
probability measure on Œ0;1/ with Laplace exponent  V . Then � 2 RC

� if and
only if the function

g� W .0;1/! R

g�.u/ WD .�� �
�2�

2
/u 0

V.u/�
�2�

2
u2
�
 00

V .u/C . 0
V.u//

2
�

�
Z

R

�
e V .ue�y/� V .u/ � 1C u 0

V.u/y1jyj�1
�
��.dy/; u > 0; (24)

defines the Laplace exponent of some subordinator 	, i.e. if there is some subordi-
nator 	 such that

E Œe�	1u� D eg�.u/; 8 u > 0: (25)

In that case, ˚�.L .	1// D �.
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Using a Taylor expansion for jyj � 1, it is easy to see that the integral defining
g� converges for every distribution � on Œ0;1/.
Proof Observe first that

�E

Ve�uV

� D L
0
V .u/ D  0

V .u/e
 V.u/ (26)

E

V2e�uV

� D L
00
V .u/ D  00

V .u/e
 V.u/ C . 0

V .u//
2e V .u/ (27)

for u > 0. Hence

g�.u/LV .u/ D �u��E

Ve�uV

�� �
2
�

2

�
E

V2e�uV

�
u2 � E


Ve�uV

�
u
�

�
Z

.�1;1/

�
LV.ue�y/ � LV.u/ � uE


Ve�uV

�
y1jyj�1

�
��.dy/; 8 u > 0:

(28)

Now if � D L .V/ 2 RC
� , let L .	1/ 2 DC

� such that � D L .V/ D ˚�.L .	1//.
Then g� D logL	 by Remark 4.5 of Behme and Lindner [4], so that (25) is satisfied.

Conversely, suppose that V � 0, and let 	 be a subordinator such that (25) is
true. Define the Lévy process U by e��t D E .U/t, where U denotes the stochastic
exponential of U. Then by Behme and Lindner [4, Remark 4.5] and (28), (25) is
equivalent to

logL	.u/LV.u/ D u�UE

Ve�uV

� � �
2
Uu2

2
E

V2e�uV

�

�
Z

.�1;1/

�
LV .u.1C y//� LV.u/C uE


Ve�uV

�
y1jyj�1

�
�U.dy/;

8 u > 0;

and a direct computation using (26) and (27) shows that this in turn is equivalent to

0 D
Z

Œ0;1/

�

f 0.x/.x�U C �0	 /C
1

2
f 00.x/x2�2U

�

�.dx/

C
Z

Œ0;1/

�.dx/
Z

.�1;1/

�
f .xC xy/� f .x/� f 0.x/xy1jyj�1

�
�U.dy/

C
Z

Œ0;1/

�.dx/
Z

Œ0;1/

.f .xC y/� f .x// �	.dy/ (29)

for all functions f 2 G WD fh 2 C2
b.R/ W 9 u > 0 such that h.x/ D e�ux; 8x � 0g,

where �0	 denotes the drift of 	. Observe that (29) is also trivially true for f 	 1.
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Denote by

RŒG � WD ˚h 2 C2
b.R/ W 9n 2 N0; 9
1; : : : ; 
n 2 R; 9u1; : : : ; un � 0

such that h.x/ D
nX

kD1

ke�ukx 8 x � 0�

the algebra generated by G . By linearity, (29) holds true also for all f 2 RŒG �. Since
G is strongly separating and since for each x 2 R there exists h 2 G such that
g0.x/ ¤ 0, the set G satisfies condition (N) of Llavona [23, Definition 1.4.1], and
hence RŒG � is dense in S 2.R/ by Llavona [23, Corollary. 1.4.10], where

S 2.R/ WD fh 2 C2.R/ W lim
jxj!1

.1Cjxj2/k.jh.x/jCjh0.x/jCjh00.x/j/ D 0; 8 k 2 N0g

is the space of rapidly decreasing functions of order 2, endowed with the usual
topology (cf. [23, Definition 0.1.8]). In particular, for every f 2 C2

c .R/ � S 2.R/

there exists a sequence . fn/n2N in RŒG � such that

lim
n!1 sup

x2R

.1C jxj2/ �j fn.x/ � f .x/j C j f 0

n.x/� f 0.x/j C j f 00
n .x/ � f 00.x/j�� D 0:

Since (29) holds for each fn, an application of Lebesgue’s dominated convergence
theorem shows that (29) also holds for f 2 C2

c .R/; remark that Lebesgue’s theorem
can be applied by Eqs. (3.5) and (3.6) in [4] for the integral with respect to �U and
� and by observing that

j f .xC y/ � f .x/j � 2k fk11y>1 C k f 0k1y10<y�1

for the integral with respect to �	 and �.
Since C2

c.R/ is a core for the Feller process

Wx
t D xC

Z t

0

Wx
s� dUs C 	t (30)

with generator

AWf .x/ D f 0.x/.x�U C �0	 /C
1

2
f 00.x/x2�2U

C
Z

.�1;1/

. f .xC xy/� f .x/ � f 0.x/xy1jyj�1/�U.dy/

C
Z

Œ0;1/

. f .xC y/� f .x//�	.dy/
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for f 2 C2
c.R/ (cf. [4, Theorem 3.1 and Corollary 3.2] and [28, Eq. (8.6)]), we

have that
R
R

AWf .x/ �.dx/ D 0 for all f from a core, and hence � D L .V/ is
an invariant measure for the GOU process (30) by Liggett [21, Theorem 3.37]. By
Behme et al. [6, Theorem 2.1(a)], this implies that

R1
0

e��s� d	s converges a.s. and
that L .

R1
0

e��s� d	s/ D �, so that L .	1/ 2 DC
� and ˚�.L .	1// D �, completing

the proof. ut
Remark 3 To obtain a similar handy criteria for a non-positive distribution to be
in the range D� seems harder. A general necessary condition in this vein for a
distribution � D L .V/ to be in the range R� , where � is a Lévy process with
characteristic triplet .�� ; �2� ; ��/, can be derived from Eq. (4.7) in [4]. If further

EŒV2� < 1, and log�	.u/ denotes the characteristic exponent of a Lévy process
	 such that EŒeiu	1 � D �	.u/, u 2 R, then by Eq. (4.8) in [4],

�V.u/ log�	.u/ D ��u�0
V.u/�

�2�

2

�
u2�00

V.u/C u�0
V.u/

�

�
Z

R

.�V.ue�y/� �V .u/C uy�0
V.u/1jyj�1/ ��.du/: (31)

In [5, Example 3.2], this equation has been derived using the theory of symbols.
Hence, a necessary condition for V with EŒV2� < 1 to be in R� is that there
is a Lévy process 	, such that the right-hand side of (31) can be expressed as
�V.u/ log�	.u/, u 2 R. In Example 4.3 of Behme and Schnurr [5] it has been shown
that the existence of some Lévy process 	 such that the right-hand side of (31) can be
expressed as �V.u/ log�	.u/ is also sufficient for � D L .V/ with EŒV2� <1 to be
in R� , hence this is a necessary and sufficient condition for L .V/ with EŒV2� <1
to be in R� , similar to Theorem 3. Without the assumption EV2 < 1, a necessary
and sufficient condition is not established at the moment.

We conclude this section with the following results:

Lemma 3 Let � be a spectrally negative Lévy process of infinite variation, drifting
to C1. Then every element in RC

� is selfdecomposable and of finite variation with
drift 0.

Proof That any element in RC
� must be selfdecomposable has been shown in [8],

since � is spectrally negative. Since every element in RC
� is positive, it must be of

finite variation, and it follows from Theorem 1 and [28, Theorem 24.10] that the
drift must be 0. ut
Remark 4 It is well known that a selfdecomposable distribution cannot have finite
non-zero Lévy measure, in particular it cannot be a compound Poisson distribution,
which follows for instance immediately from [28, Corollary 15.11]. This applies in
particular to exponential functionals of Lévy processes with spectrally negative �.
However, even if � is not spectrally negative, and .�; 	/T is a bivariate (possibly
dependent) Lévy process, then

R1
0

e��s� d	s (provided it converges) still cannot
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be a non-trivial compound Poisson distribution, with or without drift. For if c
denotes the drift of a non-trivial compound Poisson distribution with drift, then
this distribution must have an atom at c. However, e.g. by Bertoin et al. [8,
Theorem 2.2], L .

R1
0

e��s� d	s/ must be continuous unless constant. In other
words, if

R1
0

e��s� d	s is infinitely divisible, non-constant and has no Gaussian
part, then its Lévy measure must be infinite. In particular, it follows that if 	 is a
subordinator and

R1
0

e��s� d	s is infinitely divisible and non-constant, then its Lévy
measure must be infinite.

5 Some Results on RC
�

When � is a Brownian Motion

It is particularly interesting to study the distributions
R1
0 e��s� d	s when one of

the independent Lévy processes � or 	 is a Brownian motion with drift. While the
paper [20] focuses on the case when 	 is a Brownian motion with drift, in this
section we specialise to the case �t D �Bt C at, t � 0, with �; a > 0 and .Bt/t�0 a
standard Brownian motion. Then by Lemma 3, RC

� is a subset of L.RC/, the class
of selfdecomposable distributions on RC. Recall that a distribution � D L .V/ on
RC is selfdecomposable if and only if it is infinitely divisible with non-negative
drift and its Lévy measure has a Lévy density of the form .0;1/ ! Œ0;1/,
x 7! x�1k.x/ with a non-increasing function k D kV W .0;1/ ! Œ0;1/ (cf. [28,
Corollary 15.11]). Further, to every distribution � D L .V/ 2 L.RC/ there exists a
subordinator X D .Xt/t�0 D .Xt.�//t�0, unique in distribution, such that

� D L

�Z 1

0

e�t dXt

�

; (32)

(cf. [18, 31]). The Laplace exponents of V and X are related by

 X.u/ D u 0
V.u/; u > 0 (33)

[e.g. [2, Remark 4.3]; alternatively, (33) can be deduced from (24)]. Denoting the
drifts of V and X by bV and bX , respectively, it is easy to see that

bV D bX

Z 1

0

e�tdt D bX: (34)

Since the negative of the Laplace exponent of any infinitely divisible positive
distribution is a Bernstein function and these are concave (cf. [29, Definition 3.1
and Theorem 3.2]) it holds u 0.u/ �  .u/ for any such Laplace exponent. Together
with the above we observe that  X.u/ �  V .u/ and hence

Z

.0;1/

.1 � e�ut/ �X.dt/ �
Z

.0;1/

.1 � e�ut/ �V.dt/; 8 u � 0:
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Finally, the Lévy density x�1k.x/ of V with k non-increasing and the Lévy measure
�X are related by

k.x/ D �X..x;1//; x > 0 (35)

(e.g. [2, Eq. (4.17)]). In particular, the condition k.0C/ < 1 is equivalent to
�X.RC/ <1, and the derivative of �k is the Lévy density of �X .

5.1 Differential Equation, Necessary Conditions, and Nested
Ranges

In the next result we give the differential equation for the Laplace transform of V ,
which has to be satisfied if L .V/ is in the range DC

� . In the special case when 	 is a
compound Poisson process with non-negative jumps, this differential equation (36)
below has already been obtained by Nilsen and Paulsen [24, Proposition 2]. We then
rewrite this differential equation in terms of  X , which turns out to be very useful
for the further investigations.

Theorem 4 Let �t D �Bt C at, t � 0, �; a > 0 for some standard Brownian motion
.Bt/t�0. Let � D L .V/ 2 L.RC/ have drift bV and Lévy density given by x�1k.x/,
x > 0, where k W .0;1/! Œ0;1/ is non-increasing. Then the following are true:

(i) � 2 RC
� if and only if there is some subordinator 	 such that

1

2
�2u2L00

V.u/C
�
�2

2
� a

�

uL0
V.u/C  	.u/LV.u/ D 0; u > 0; (36)

in which case � D L .V/ D ˚�.L .	1//. In particular, if 	 is a subordinator,
then the Laplace transform of V satisfies (36) with LV .0/ D 1, and if V is not
constant 0, then limu!1 LV .u/ D 0.

(ii) Let the subordinator X D X.�/ be related to � by (32). Then � 2 RC
� if and

only if the function

.0;1/! R; u 7! a X.u/� �
2

2
u 0

X.u/�
�2

2
. X.u//

2

defines the Laplace exponent  	.u/ of some subordinator 	. In that case

˚�.L .	1// D L

�Z 1

0

e�t dXt

�

D �: (37)
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Proof

(i) By Theorem 3, � D L .V/ 2 RC
� if and only if

 	.u/ D
�

a � �
2

2

�

u 0
V .u/�

�2

2
u2
�
 00

V .u/C . 0
V .u//

2
�
; u > 0; (38)

for some subordinator 	, in which case � D ˚�.L .	1//. Using (26) and (27),
it is easy to see that this is equivalent to (36). That LV .0/ D 1 is clear. If V is
not constant 0, then it cannot have an atom at 0 (e.g. [8, Theorem 2.2]), hence
limu!1 LV.u/ D 0.

(ii) If L .V/ D L
�R1
0

e�t dXt
� 2 L.RC/ for some subordinator X, then by (33)

 0
V .u/ D u�1 X.u/ and 00

V .u/ D u�1 0
X.u/�u�2 X.u/. Inserting this into (38)

yields the condition

 	.u/ D a X.u/� �
2

2
u 0

X.u/�
�2

2
. X.u//

2; u > 0; (39)

which gives the claim. ut
Remark 5

(i) Since u 0
X.u/ �  X.u/ as observed after Eq. (34), it follows from (39) that

 	.u/ �
�

a � �
2

2

�

 X.u/� �
2

2
. X.u//

2; u > 0;

when the subordinators X and 	 are related by (37).
(ii) Equation (39) is a Riccati equation for  X . Using the transformation y.u/ D

exp.
R u
1
 X.v/

v
dv/ D C LV .u/ for u > 0 by (33), it is easy to see that it reduces

to the linear equation (36). Unfortunately, in general it does not seem possible
to solve (36) in a closed form.

(iii) Since for any subordinator 	,  	.u/ has a continuous continuation to fz 2 C W
<.z/ � 0g which is analytic in fz 2 C W <.z/ > 0g (e.g. [29, Proposition 3.6]),
for any fixed u0 > 0 Eq. (36) can be solved in principle on .0; 2u0/ by the power
series method (e.g. [11, Sect. 2.8, Theorem 7, p. 190]). In particular when �	
is such that

R
.1;1/

eux�	.dx/ < 1 for every u > 0 (e.g. if �	 has compact

support), then  	.z/ D �b	zC
R
.0;1/.e

�zx � 1/ �	.dx/, z 2 C, is an analytic
continuation of  	 in the complex plane. Hence it admits a power series
expansion of the form  	.z/ D P1

nD0 fnzn, z 2 C, with f0 D 0 and Eq. (36)
may be solved by the Frobenius method (e.g. [11, Sect. 2.8, Theorem 8, p.
215]). To exemplify this, assume for simplicity that 2a=�2 is not an integer.
Equation (36) has a weak singularity at 0. Its so-called indicial polynomial is
given by

r 7! r.r � 1/C
�

1 � 2a

�2

�

r D r

�

r � 2a

�2

�

:
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The exponents of singularity are the zeros of this polynomial, i.e. 0 and 2a=�2,
and since we have assumed that 2a=�2 is not an integer, the general real
solution of (36) is given by

LV.u/ D C1u
2a=�2

1X

nD0
cnun C C2

1X

nD0
dnun; u > 0;

where C1;C2 2 R, c0 D d0 D 1, the coefficients cn; dn are defined recursively
by

cn WD �1
n.nC 2a=�2/

n�1X

kD0
ckfn�k; dn D �1

n.n� 2a=�2/

n�1X

kD0
dkfn�k; n 2 N;

(e.g. [11, Sect. 2.8, Eq. (14), p. 209]) and the power series
P1

nD0 cnun andP1
nD0 dnun converge in u 2 C. Since LV.0/ D 1, we even conclude that

C2 D 1.

Next, we show that the ranges of ˚� , when �t D �BtCat, are nested when � and
a vary over all positive parameters.

Theorem 5 Let B D .Bt/t�0 be a standard Brownian motion. For a; � > 0 let
�.a;�/ WD .�.a;�/t /t�0 WD .�Bt C at/t�0. Then RC

�.a;�/
D RC

�.a=�
2;1/

.

Further, for a; �; a0; � 0 > 0 such that a=�2 � a0=� 02 we have RC
�.a;�/
� RC

�.a
0;�0/

.

In particular, for fixed � > 0, the family RC
�.a;�/

, a > 0, is nested and non-

decreasing in a, and for fixed a > 0 the family RC
�.a;�/

, � > 0, is nested and
non-increasing in � .

Proof Since .�BtC at/t�0 has the same distribution as .Bt�2 C at/t�0, we obtain for
a Lévy process 	 D .	t/t�0 such that L .	1/ 2 D�.a;�/ and 	 is independent of B,

Z 1

0

e�.�BtCat/ d	t
dD
Z 1

0

e�.Bt�2Cat/ d	t D
Z 1

0

e�.BtC.a=�2/t/ d	t=�2 :

Hence L .	1=�2/ 2 D
�.a=�

2;1/ and ˚�.a;�/ .L .	1// D ˚
�.a=�

2;1/ .L .	1=�2//. In partic-

ular, RC
�.a;�/
� RC

�.a=�
2;1/

. Similarly, RC
�.a;�/
 RC

�.a=�
2;1/

so that RC
�.a;�/
D RC

�.a=�
2;1/

. For

the second assertion, it is hence sufficient to assume � D 1. Now if a < a0 and
� 2 RC

�.a;1/
, let the subordinator X be related to � by (32). Then

a X.u/� 1
2

u 0
X.u/�

1

2
. X.u//

2 D  	.u/; u > 0;
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by Theorem 4 (ii), hence

a0 X.u/� 1
2

u 0
X.u/�

1

2
. X.u//

2 D  	.u/C .a0 � a/ X.u/; u > 0;

defines the Laplace exponent of a subordinator by Schilling et al. [29, Corollary 3.8
(i)]. Hence � 2 RC

�.a
0 ;1/

again by Theorem 4 (ii). The remaining assertions are clear.
ut

Remark 6 Although RC
�.1;�/

� RC
�.1;�

0/
for 0 < � 0 < � , and �Bt C t converges

pointwise to t when � ! 0, we do not have
S
�>0 RC

�.1;�/
D RC

�tDt .D L.RC//. For

example, a positive 3=4-stable distribution is in L.RC/ but not in
S
�>0 RC

�.1;�/
, as

follows from Example 2 or Corollary 3 below.

While it is difficult to solve Eqs. (36) and (39) for given  	, they still allow to
obtain results about the qualitative structure of the range. The following gives a
simple necessary condition in terms of the Lévy density x�1k.x/ for � to be in RC

� ,

and to calculate the drift b	 of .˚C
� /

�1.�/ when � 2 RC
� .

Theorem 6 Let �t D �Bt C at, t � 0, for �; a > 0 and some standard Brownian
motion B D .Bt/t�0. Let � D L .V/ 2 L.RC/ with drift bV and Lévy density
x�1k.x/. Let the subordinator X be related to � by (32) and denote its drift by bX.

(i) If � 2 RC
� , then bX D 0 and limu!1 u�1=2j X.u/j D limu!1 u1=2j 0

V.u/j
exists and is finite. If � D ˚�.L .	1// for some subordinator 	 with drift b	,
then b	 and  X are related by

b	 D �2

2
lim

u!1 u�1. X.u//
2 D �2

2
lim

u!1 u. 0
V.u//

2: (40)

(ii) If � 2 RC
� has Lévy density x�1k.x/, then it holds lim supx#0 x�1=2 R x

0 k.s/ ds <
1 and bV D 0. In particular, if � D ˚�.L .	1// for some subordinator 	 with
drift b	, then b	 > 0 if and only if lim supx#0 x�1=2 R x

0 k.s/ ds > 0.

Proof

(i) Suppose that � D L .V/ D ˚�.L .	1// 2 RC
� . Then bV D 0 by Lemma 3

and hence bX D 0 by (34). Since  0
X.u/ D �

R
.0;1/

e�uxx �X.dx/ we conclude
that limu!1 0

X.u/ D 0 by dominated convergence. Since bX D 0 and
limu!1 u�1 X.u/ D �bX D 0 and limu!1 u�1 	.u/ D �b	 by Schilling
et al. [29, Remark 3.3 (iv)], (40) as well as the necessity of the stated condition
follow from (39) and (33).

(ii) Since k.x/ D �X..x;1// by (35), it follows from [29, Lemma 3.4] that

e � 1
e
� j X.u/j

u
R 1=u
0

k.s/ ds
� 1; u > 0:

Hence (ii) is an immediate consequence of (i) and Lemma 3. ut
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Example 2 Let �t D �BtCat be as in Theorem 6. Let� 2 L.RC/with Lévy density
x�1k.x/. Then

R 1
0

k.x/ dx <1.
If lim infs#0 k.s/s1=2 D C1, then lim infx#0 x�1=2 R x

0
k.s/ ds D C1. Hence � 62

RC
� . In particular, a non-degenerate positive ˛-stable distribution with ˛ > 1=2

cannot be in RC
� . A more detailed result will be given in Corollary 3 below.

5.2 Selfdecomposable Distributions with k.0C/ < 1

In this subsection we specialize to selfdecomposable distributions with k.0C/ <1
and give a characterization when they are in the range RC

� for � a Brownian motion
with drift.

Theorem 7 Let �t D �Bt C at, t � 0, �; a > 0 for some standard Brownian motion
.Bt/t�0. Let � D L .V/ 2 L.RC/ have drift bV and Lévy density x�1k.x/, x > 0,
where k D kV W .0;1/! Œ0;1/ is non-increasing. Let the subordinator X D X.�/
be related to� by (32). Assume that k.0C/ <1, equivalently that �X.RC/ <1.

(i) Then � 2 RC
� if and only if bX D 0 and �X has a density g on .0;1/ such that

lim
t!1 tg.t/ D lim

t!0
tg.t/ D 0 (41)

and such that the function

G W .0;1/! Œ0;1/; (42)

t 7! .aC �2�X.RC//
Z t

0

g.v/ dv C �2

2
tg.t/ � �

2

2

Z t

0

.g � g/.v/ dv

is non-decreasing. If these conditions are satisfied, then

˚�.L .	1// D �;

where 	 is the subordinator with drift 0 and finite Lévy measure �	.dx/ D
dG.x/.

(ii) Equivalently, � D L .V/ 2 RC
� if and only if bV D 0 and �k W .0;1/ !

.�1; 0� is absolutely continuous with derivative g on .0;1/ satisfying (41)
and such that G defined by (42) is non-decreasing. In that case, ˚�.L .	1// D
�, where 	 is a subordinator with drift 0 and finite Lévy measure �	.dx/ D
dG.x/.

Proof

(i) Assume that �X.RC/ < 1. Suppose first that � 2 RC
� , and let .	t/t�0 be a

subordinator such that ˚�.L .	1// D �. Then bX D 0 by Theorem 6 (i), and
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by Theorem 4 (ii), we have (39) with

 	.u/ D �b	u �
Z

.0;1/

.1 � e�ut/ �	.dt/

and  X.u/ D �
Z

.0;1/

.1 � e�ut/ �X.dt/; u � 0:

Since L�X .u/
2 D L�X��X.u/ and .�X � �X/.RC/ D �X.RC/2, where L�X denotes

the Laplace transform of the finite measure �X , we conclude

 X.u/
2 D

�Z

.0;1/

.1 � e�ut/ �X.dt/

�2

D �X.RC/2 � 2�X.RC/
Z

.0;1/

e�ut �X.dt/C
Z

.0;1/

e�ut.�X � �X/.dt/

D
Z

.0;1/

.1 � e�ut/ .2�X.RC/�X � �X � �X/.dt/:

Hence, from (39), on the one hand

�2

2
u 0

X.u/ D b	uC
Z

.0;1/

.1� e�ut/ �1.dt/�
Z

.0;1/

.1� e�ut/ �2.dt/; (43)

where

�1 WD �	 C �2

2
�X � �X and �2 WD .aC �2�X.RC//�X:

On the other hand, u 0
X.u/ D �u

R
.0;1/

e�utt �X.dt/, and rewriting the integral
R
.0;1/

.1 � e�ut/�i.dt/ D R1
0

ue�ut�i..t;1// dt by Fubini’s theorem as in [29,
Remark 3.3(ii)], (43) gives

�2

2
u
Z

.0;1/
e�utt�X.dt/ D �b	uC u

Z 1

0
e�ut .�2..t;1// � �1..t;1/// dt; u > 0:

Dividing by u, the uniqueness theorem for Laplace transforms then shows
b	 D 0 and that �X has a density g, given by

g.t/ D 2

�2t
.�2..t;1//� �1..t;1/// ; t > 0: (44)

From this we conclude that limt!1 tg.t/ D 0 and that the limit limt!0 tg.t/ D
2
�2
.�2.RC/� �1.RC// exists in Œ�1;1/ since �2.RC/ <1. But since g � 0,

the limit must be in Œ0;1/, hence �1.RC/ <1 so that �	.RC/ <1, and since



On the Range of Exponential Functionals of Lévy Processes 297

R 1
0

tg.t/
t dt D R 1

0
g.t/ dt < 1, we also have limt!0 tg.t/ D 0. Further, by (44),

the total variation of t 7! tg.t/ over .0;1/ is finite. Knowing now that �X has
a density g with limt!1 tg.t/ D limt!0 tg.t/ D 0, we can write using partial
integration

u 0
X.u/ D

Z 1

0

�
d

dt
e�ut

�

tg.t/ dt D
Z 1

0

tg.t/d
�
e�ut

�

D tg.t/e�ut
ˇ
ˇtD1
tD0 �

Z 1

0

e�ut d.tg.t// D
Z 1

0

.1 � e�ut/ d.tg.t//:

Inserting this in (43), we obtain by uniqueness of the representation of Bernstein
functions (cf. [29, Theorem 3.2]) that

�2

2
d.tg.t// D �	.dt/C �2

2
.g � g/.t/ dt � .aC �2�X.RC//g.t/ dt;

or equivalently

�	.dt/ D .aC �2�X.RC//g.t/ dtC �2

2
d.tg.t//� �

2

2
.g � g/.t/ dt: (45)

Since �	 is a positive (and finite) measure, so is the right-hand side of (45),
and hence G is non-decreasing with �	.dt/ D dG.t/, finishing the proof of the
“only if”-assertion. The converse follows by reversing the calculations above,
by defining a subordinator 	 with drift 0 and Lévy measure �	.dt/ WD dG.t/,
observing that t 7! tg.t/ is of finite total variation on .0;1/ by (41) and (42),
and then showing that �	 satisfies (43) and hence that  	 satisfies (39).

(ii) This follows immediately from (i), (34) and (35). ut
Remark 7 Let �t D �Bt C at, t � 0, with �; a > 0 and .Bt/t�0 a standard Brownian
motion.

(i) If � 2 RC
� and X is a subordinator such that (32) holds and such that �X.RC/ <

1, then the Lévy density g of �X cannot have negative jumps, since by (42) this
would contradict non-decreasingness of G.

(ii) Let X be a subordinator with �X.RC/ < 1 and bX D 0, and suppose that �X

has a density g such that there is r � 0 with g.t/ D 0 for t 2 .0; r� and g is
differentiable on .r;1/ (the case r D 0 is allowed). Then L .

R1
0

e�t dXt/ 2 RC
�

if and only if g satisfies (41) and

�

aC �2�X.RC/C �2

2

�

g.t/C�
2

2
tg0.t/��

2

2
.g�g/.t/ � 0; 8 t > r: (46)

This follows immediately from Theorem 4 (iii) since the right-hand side of (46)
is the derivative of the function G defined by (42).
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The following gives an example for a distribution in RC
� such that �X.RC/ <1.

Example 3 Let r � 0 and let g W Œ0;1/! Œ0;1/ be a function such that g.t/ D 0
for all t 2 .0; r/ (a void assumption if r D 0), gjŒr;1/ is continuously differentiable
with derivative g0, such that g is strictly positive on Œr;1/, limt!1 g.t/ D 0 and
such that �g0 is regularly varying at1 with index ˇ < �2 (in particular, g0.t/ < 0

for large enough t). Then g defines a Lévy density of a subordinator X with drift 0
such that �X.RC/ < 1 and L .

R1
0

e�t dXt/ 2 RC
�BtCat for large enough a (but �

fixed).

Proof Since �g0 is regularly varying with index ˇ and limt!1 g.t/ D 0, g is
regularly varying at1 with index ˇ C 1 < �1 and limt!1 �tg0.t/

g.t/ D �ˇ � 1 by
Karamata’s Theorem (e.g. [10, Theorem 1.5.11]). In particular, limt!1 tg.t/ D 0,
further limt!0 tg.t/ D 0 since g.0/ < 1, and g is a density of a finite measure.
Next, observe that

.g � g/.t/

g.t/
D
Z t=2

r

g.t � x/

g.t/
g.x/ dxC

Z t�r

t=2

g.x/

g.t/
g.t � x/ dx; t � 2r:

But for any " > 0, when t � t" is large enough, we have g.t � x/=g.t/ � 2�ˇ�1 C "
for x 2 .r; t=2�, and g.x/=g.t/ � 2�ˇ�1 C " for x 2 Œt=2; t � r� by the uniform
convergence theorem for regularly varying functions (e.g. [10, Theorem 1.5.2]). AsR1
0

g.t/ dt < 1, this shows that lim supt!1
.g�g/.t/

g.t/ < 1. Since also g � g as well
as jg0j are bounded on Œr;1/, it follows that (46) is satisfied for all t � r for large
enough a, and for t 2 .0; r/ it is trivially satisfied. Hence L .

R1
0

e�t dXt/ 2 RC
�BtCat

for large enough a. ut
Next we give some examples of selfdecomposable distributions which are not

in RC
� .

Example 4 Let �t D �Bt C at, t � 0, with a standard Brownian motion B and
parameters �; a > 0.

(i) A selfdecomposable distribution with Lévy density c1.0;1/.x/x�1 and c > 0 is
not in RC

� by Theorem 7, since k.x/ D 1.0;1/.x/ satisfies k.0C/ <1 but is not
continuous.

(ii) If X is a subordinator with non-trivial Lévy measure �X such that �X has
compact support, then L .

R1
0 e�t dXt/ is not in RC

� by Theorem 7, since if
it were then �X had a density g, and if xg denotes the right end point of the
support of g, then 2xg is the right endpoint of the support of g�g, showing that
the function G defined by (42) cannot be non-decreasing on .0;1/.

(iii) If X is a subordinator with finite Lévy measure and non-trivial Lévy density
g which is a step function (with finitely or infinitely many steps), then
L .

R1
0 e�t dXt/ is not in RC

� by Remark 7 (i), since g must have at least one

negative jump as a consequence of
R1
0 g.t/ dt <1.
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5.3 Positive Stable Distributions

In this subsection we characterize when a positive stable distribution is in the
range RC

� . We also consider (finite) convolutions of positive stable distributions, i.e.
distributions of the form L .

Pn
kD1 Xi/, where n 2 N and X1; : : : ;Xn are independent

positive stable distributions.

Theorem 8 Set �t D �BtC at, t � 0, a; � > 0 for some standard Brownian motion
.Bt/t�0. Let 0 < ˛1 < 
 
 
 < ˛n < 1 for some n 2 N and bi � 0, i D 1; : : : ; n
and let � be the distribution of

Pn
iD1 Xi where the Xi are independent and each Xi

is non-trivial and positive ˛i-stable with drift bi. Then if � is in RC
� it holds bi D 0,

i D 0; : : : ; n, ˛1 � . 2a
�2
^ 1

2
/ and ˛n � 1

2
. Conversely, if bi D 0, i D 0; : : : ; n and

˛n � . 2a
�2
^ 1

2
/, then � is in RC

� .

Proof Assume � D L .V/ D L .
R1
0

e��s�d	s/ 2 RC
� for some subordinator 	.

Since  V .u/ D Pn
iD1  Xi.u/, the drift of V is

Pn
iD1 bi. By Lemma 3, this impliesPn

iD1 bi D 0 and hence bi D 0 for all i. Since each Xi is positive ˛i-stable with
drift 0 and non-trivial, we know from [28, Remarks 14.4 and 21.6] that the Laplace
exponent of Xi is given by

 Xi.u/ D
Z

.0;1/

.e�ux � 1/�Xi.dx/ D
Z 1

0

.e�ux � 1/cix
�1�˛i dx

with ci > 0. Hence

 V .u/ D
nX

iD1

Z 1

0

.e�ux � 1/cix
�1�˛i dx;

such that

 0
V.u/ D �

nX

iD1
ciu

˛i�1� .1 � ˛i/ and  00
V .u/ D

nX

iD1
ciu

˛i�2� .2 � ˛i/; u > 0:

Hence (38) reads

 	.u/ D �
nX

iD1

���

a � �
2

2

�

ci � .1� ˛i/C �2

2
ci � .2 � ˛i/

�

u˛i

C�2
i�1X

jD1
cicj� .1 � ˛i/� .1 � ˛j/u

˛iC˛j C �2

2
c2i .� .1 � ˛i//

2u2˛i

3

5

DW �
nX

iD1

0

@Aiu
˛i C

i�1X

jD1
Bi;ju

˛iC˛j C Ciu
2˛i

1

A DW �f .u/; u > 0: (47)
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Observe that Ai 2 R, and Bi;j;Ci > 0 for all i; j. As the left hand side of (47) is
the Laplace exponent of a subordinator it is the negative of a Bernstein function [29,
Theorem 3.2] and thus f .u/, u � 0, has to be a Bernstein function if a solution to (47)
exists. By Schilling et al. [29, Corollary 3.8 (viii)] a Bernstein function cannot
grow faster than linearly, which yields directly that ˛i 2 .0; 1=2�, i D 1; : : : ; n.
As by Schilling et al. [29, Definition 3.1] the first derivative of a Bernstein function
is completely monotone, considering limu!0 f 0.u/ � 0 we further conclude that
necessarily A1 � 0, which is equivalent to ˛1 � 2a

�2
.

Conversely, let V be a non-trivial finite convolution of positive ˛i-stable distribu-
tions with drift 0 and 0 < ˛1 < 
 
 
 < ˛n � . 2a

�2
^ 1

2
/. Then Ai � 0 for all i and the

preceding calculations show that the right hand side of (38) is given by f .u/, which
is the Laplace exponent of a subordinator, namely an independent sum of positive
˛i-stable subordinators (for each Ai � 0), .˛i C ˛j/-stable subordinators (for each
Bi;j), 2˛i-stable subordinators (for each Ci with ˛i <

1
2
) and possibly a deterministic

subordinator (if ˛n D 1=2). Hence L .V/ 2 RC
� by Theorem 3. ut

As a consequence of the above theorem, we can characterize which positive
˛-stable distributions are in RC

� :

Corollary 3 Let �t D �BtCat, t � 0, a; � > 0 for some standard Brownian motion
.Bt/t�0. Then a non-degenerate positive ˛-stable distribution � is in RC

� if and only

if its drift is 0 and ˛ 2 .0; 2a
�2
^ 1

2
�. If this condition is satisfied and � has Lévy

density x 7! cx�1�˛ on .0;1/ with c > 0, then � D ˚�.L .	1//, where in the case
˛ < 1=2, 	 is a subordinator with drift 0 and Lévy density on .0;1/ given by

x 7! c˛

�

a � �
2

2
˛

�

x�˛�1 C �2c2 ˛.� .1 � ˛//
2

� .1 � 2˛/ x�2˛�1;

and in the case ˛ D 1=2 D 2a=�2, 	 is a deterministic subordinator with drift
�2c2.� .1� ˛//2=2.

Proof The equivalence is immediate from Theorem 8. Further, by (47), we have
˚�.L .	1// D � where the Laplace exponent of 	 is given by

 	.u/ D �
��

a � �
2

2

�

c� .1 � ˛/C �2

2
c� .2 � ˛/

�

u˛ � �
2

2
c2.� .1 � ˛//2u2˛:

The case ˛ D 1=2 D 2a=�2 now follows immediately, and for ˛ < 1=2 observe
that

Z 1

0

.e�ux � 1/x�1�ˇ dx D
Z u

0

�
d

dv

Z 1

0

.e�vx � 1/x�1�ˇ dx

�

dv

D �
Z u

0

vˇ�1� .1 � ˇ/ dv D �� .1 � ˇ/
ˇ

uˇ
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for ˇ 2 .0; 1/ and u > 0, which gives the desired form of the drift and Lévy density
of 	 also in this case. ut
Example 5 Reconsider Example 1, namely,

V D
Z 1

0

e�.�BtCat/dt
dD 2

�2� 2a
�2

;

where V has the law of a scaled inverse Gamma distributed random variable with
parameter 2a

�2
. In the case that 2a

�2
D 1

2
, or equivalently a D �2=4 this is a so called

Lévy distribution and it is 1=2-stable (cf. [30, p. 507]). Reassuringly, by Corollary 3,
L .V/ is a 1=2-stable distribution if a D �2=4.

Corollary 4 Let �t D �BtCat, t � 0, �; a > 0 for some standard Brownian motion
.Bt/t�0. Then RC

� contains the closure of all finite convolutions of positive ˛-stable

distributions with drift 0 and ˛ 2 .0; 2a
�2
^ 1

2
�, which is characterized as the set of

infinitely divisible distributions � with Laplace exponent

 .u/ D
Z

.0; 2a
�2

^ 1
2 �

m.d˛/
Z 1

0

.e�ux � 1/ x�1�˛dx (48)

where m is a measure on .0; 2a
�2
^ 1

2
� such that

Z

.0; 2a
�2

^ 1
2 �

˛�1m.d˛/ <1: (49)

Proof Denote by M1 the class of all finite convolutions of positive ˛-stable
distributions with drift 0 and ˛ 2 .0; 2a

�2
^ 1

2
�, by M2 its closure with respect to

weak convergence, and by M3 the class of all positive distributions on R whose
characteristic exponent can be represented in the form (48) with m subject to (49).
We show that M2 D M3, then since M2 � RC

� by Theorems 8 and 2 (i), this
implies the statement. To see M2 � M3, denote by L1.R/ the closure of all finite
convolutions of stable distributions on R (cf. [26, Theorem 3.5], where L1.R/ is
defined differently, but shown to be equivalent to this definition). Using the fact
that L1.R/ is closed, it then follows easily from [26, Theorem 4.1] that also M3 is
closed under weak convergence. Since obviously M1 � M3 (take m to be a measure
supported on a finite set), we also have M2 � M3. Conversely, M3 � M2 can be
shown in complete analogy to the proof of Sato [26, Theorem 3.5]. ut
Remark 8 From the proof of Theorem 8 it is possible to obtain a necessary and
sufficient condition for a finite convolution of positive, stable distributions to be in
RC
� . Indeed if the Xi are such that  Xi.u/ D �ciu˛i with ci > 0 and ˛i 2 .0; 1/, then

� D L .
Pn

iD1 Xi/ is in RC
� if and only if the function f defined by (47) is a Bernstein

function. After ordering the indices, the function f can be written as
Pm

iD1 Diu�i with



302 A. Behme et al.

0 < �1 < 
 
 
�m < 2 and coefficients Di 2 R n f0g. Since

X

iD1;:::;mI�i<1

Diu
�i D

Z 1

0

.1 � e�ux/
X

iD1;:::;mI�i<1

Di�i

� .1 � �i/
x�1��i dx

as seen in the proof of Corollary 3, it follows from [29, Corollary 3.8(viii)] and [28,
Example 12.3] that f is a Bernstein function if and only if �m � 1, Dm � 0 and

X

iD1;:::;mI�i<1

Di�i

� .1 � �i/
x�1��i � 0; 8 x > 0:
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t-Martin Boundary of Killed Random Walks
in the Quadrant

Cédric Lecouvey and Kilian Raschel

Abstract We compute the t-Martin boundary of two-dimensional small steps
random walks killed at the boundary of the quarter plane. We further provide explicit
expressions for the (generating functions of the) discrete t-harmonic functions. Our
approach is uniform in t, and shows that there are three regimes for the Martin
boundary.

1 Introduction and Main Results

1.1 Aim of This Paper

This work is concerned with discrete t-harmonic functions associated to Laplacian
operators with Dirichlet conditions in the quarter plane. Let f pk;`g be non-negative
numbers summing to 1. Consider the associated discrete t-Laplacian, acting on
functions f defined on the quarter plane N2 D f0; 1; 2; : : :g2 by

Lt. f /.i; j/ D
X

k;`

pk;` f .iC k; jC `/� t 
 f .i; j/; 8i; j � 1:

Our aim is to characterize the functions f D f f .i; j/gi;j�0 which are

1. t-harmonic in the interior of the quarter plane, i.e., Lt. f /.i; j/ D 0 for all i;
j � 1;

2. positive in the interior of the quarter plane: for all i; j � 1, f .i; j/ > 0;
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3. zero on the boundary and at the exterior of the quarter plane: for all .i; j/ 2 Z2

such that i � 0 and/or j � 0, f .i; j/ D 0.

The probabilistic counterpart of this potential theory viewpoint is the following:
t-harmonic functions satisfying to (1)–(3) are t-harmonic for random walks (whose
increments have the law f pk;`g) killed at the boundary of the quarter plane.

1.2 Literature

In general, it is a difficult problem to determine the Martin boundary (essentially,
the set of harmonic functions) of a given class of Markov chains, especially
for non-homogeneous processes (in our case, the inhomogeneity comes from the
boundary of the quadrant). The t-Martin boundary plays a crucial role to determine
the Martin boundary (i.e., the t-Martin boundary with t D 1) of products of
transition kernels [9, 15]. Moreover, via the procedure of Doob h-transform, discrete
harmonic functions have also applications to defining random processes conditioned
on staying in given domains of Zd (the latter processes arise a great interest in
the mathematical community, as they appear in several distinct domains: quantum
random walks [2, 3], random matrices, non-colliding random walks [13]). Further
details and motivations of considering the t-Martin boundary can be found in [9,
Introduction].

For non-zero drift random walks in cones, the Martin boundary has essentially
been found for very particular cones, as half spaces N � Zd�1 and orthants Nd.
In [10, Corollary 1.1] it has been found in the case of N2 for random walks with
exponential moments, using ratio limit theorems for local processes and large
deviation techniques. The Martin boundary was proved to be homeomorphic to
Œ0; �=2�. In [12], under the small steps and non-degeneration hypotheses, namely,

(a) the pk;` are 0 as soon as jkj > 1 and/or j`j > 1,
(b) in the (clockwise) list p1;1; p1;0; p1;�1; p0;�1; p�1;�1; p�1;0; p�1;1; p0;1, there are

no three consecutive zeros,

the exact asymptotics of Green functions was obtained, and a similar result as in
[10] on the Martin boundary was derived. In [10, 12], no explicit expressions for the
harmonic functions were provided.

For random walks with zero drift, the results are rarer, and typically require a
strong underlying structure: the random walks are cartesian products in [15], they
are associated with Lie algebras in [2, 3], etc. Last but not least, knowing the
harmonic functions for zero drift random walks in Nd�1 is necessary for constructing
harmonic functions of walks with drift in Nd, see [8]. The first systematical result
was obtained in [17]: under (a)–(c), where (c) is the zero drift hypothesis

(c)
P

k;` kpk;` DPk;` `pk;` D 0,
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it was proved that there is a unique discrete harmonic function (up to multiplicative
factors). In [17], there is also an explicit expression for the generating function

H.x; y/ D
X

i;j�1
f .i; j/xi�1yj�1 (1)

of the values of the harmonic function. Finally, this uniqueness result is extended in
[4] to a much larger class of transition probabilities and dimension.

The are less examples of studies of t-Martin boundary. One of them is [9], for
reflected random walks in half-spaces.

1.3 Main Results

Our main results are on the structure of the t-Martin boundary (Theorem 1) and on
the explicit expression of the t-harmonic functions (Theorem 2).

Define t0 by

t0 D min
a2R2

�.a/; (2)

where we have noted

�.a/ D �.a1; a2/ D
X

k;`

pk;`e
ka1e`a2 : (3)

Notice that t0 2 .0; 1�, and t0 D 1 if and only if (c) holds (Fig. 1).

Theorem 1 For any random walk satisfying to (a)–(b), the t-Martin boundary is,

(i) for t > t0, homeomorphic to a segment St (with non-empty interior);
(ii) for t D t0, reduced to one point;

(iii) for t < t0, empty.

For t D 1 and non-zero drift, Theorem 1 (i) is proved in [10, 12]; for t D 1 and
zero drift, Theorem 1 (ii) is obtained in [17, Theorem 12]. Theorem 1 (iii) follows
from general results on Markov kernels, see, e.g., [16].

� �
0 t0 1
• • •

0 t0 = 1
• •

Fig. 1 Location of t0 in the non-zero drift case (left) and in the zero drift case (right). There are
three regimes for the t-Martin boundary: empty (green, left), reduced to one point (red, middle),
homeomorphic to a segment (blue, right), see Theorem 1
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We shall give two proofs of Theorem 1. The first one is based on a functional
equation satisfied by the generating function (1) of any t-harmonic function
[see (6)]. This method (solving the functional equation via complex analysis) was
introduced in [17] for the case t D 1 and zero drift. As we shall see, it has the
following advantages: it works for any t; the critical value t0 appears very naturally;
finally, it provides an expression for the t-harmonic functions (see our Theorem 2).

The second proof is based on an exponential change of measure, which allows
to reduce the general case to the case t D 1. In particular, with this second method,
Theorem 1 can be extended to a much larger class than those satisfying to (a)–
(b): namely, Theorem 1 (i) to the class of random walks whose increments have
exponential moments (thanks to [10, Corollary 1.1]), and Theorem 1 (ii) to random
walks with bounded symmetric jumps (thanks to [4, Theorem 1]).

Our second theorem provides an explicit expression for the generating func-
tion (1). We recall that a t-harmonic function f > 0 is said to be minimal if for
any t-harmonic function g > 0, the inequality g � f implies the equality g D c 
 f ,
for some c > 0. Notice that

H.x; 0/ D
X

i�1
f .i; 1/xi�1; H.0; y/ D

X

j�1
f .1; j/yj�1 (4)

are the generating functions of the values of the harmonic function above/on the
right of the coordinate axes. Introduce the second order (in x and y) polynomial,
called the kernel,

L.x; y/ D xy

0

@
X

�1�k;`�1
pk;`x

�ky�` � t

1

A : (5)

The kernel is fully characterized by the jumps f pk;`g.
Theorem 2 Let f pk;`g be any jumps satisfying to (a)–(b), and let St be the segment
in Theorem 1.

In case (i) .t 2 .t0;1//, there exists a universal function w [see (19) and (20)],
i.e., a function depending only on the kernel L (and therefore also on t), such that
for any minimal t-harmonic function f f .i; j/g, there exist p 2 St and two constants
˛; ˇ [see (13) and (14)], with

H.x; 0/ D 1

L.x; 0/

�
˛

w.x/ � w. p/
C ˇ

�

:

In case (ii) .t D t0/, the t-harmonic function is unique, up to multiplicative
factors. Its expression can be obtained either as the limit of the above expression
when t! t0, or directly with Eqs. (19) and (23).
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A similar expression holds for H.0; y/, and finally the functional equation (6) gives
the announced expression for H.x; y/. Theorem 2 will be stated in full details in
Sect. 3.

1.4 Organization of the Paper

In Sect. 2 we state the functional equation (6), we introduce some notation, we
compute the growth of t-harmonic functions (Lemmas 2 and 3), and we finally
show that the generating function (4) satisfies a simple boundary value problem
(Lemma 4). In Sect. 3 we solve this boundary value problem, by introducing the
notion of conformal gluing functions (Definition 1). In Sect. 4 we extend our
Theorem 1 to a larger class of jumps f pk;`g, by making an exponential change of
jumps (Corollary 1). In Sect. 5 we propose some remarks and a conjecture around
our results. In Appendix we give an explicit expression for the conformal gluing
function w of Theorem 2.

Our paper is self-contained. However, for some technical aspects of our work,
specially those concerning random walks in the quarter plane, we decided to state
the results without proof, referring the readers to the large existing literature (see,
e.g., [5, 6, 11, 12, 17]).

2 Boundary Value Problem for the Generating Functions
of Harmonic Functions

Our approach extends the one in [17], and consists in using the generating function
H.x; y/ [see (1)] of the harmonic function. The key point is that this function H.x; y/
satisfies the functional equation

L.x; y/H.x; y/ D L.x; 0/H.x; 0/C L.0; y/H.0; y/� L.0; 0/H.0; 0/; (6)

where L is defined in (5).
The proof of (6) simply comes from multiplying the relation Lt. f /.i; j/ D 0 by

xiy j and then from summing w.r.t. i; j � 1. In (6), the variables x and y can be seen
as formal variables, but they will mostly be used as complex variables.

This section is organized as follows: we first study important properties of the
kernel (5). Then we are interested in the regularity (as complex functions) of H.x; 0/
and H.0; y/, which is related to the exponential growth of harmonic functions. Then
we state a boundary value problem satisfied by these generating functions.
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2.1 Notations

The kernel L.x; y/ in (5) can also be written

L.x; y/ D ˛.x/y2 C ˇ.x/yC �.x/ D Q̨ .y/x2 C Q̌.y/xC Q�.y/; (7)

where (without loss of generality, we assume that p0;0 D 0)

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

˛.x/ D p�1;�1x2 C p0;�1xC p1;�1;
ˇ.x/ D p�1;0x2 � txC p1;0;
�.x/ D p�1;1x2 C p0;1xC p1;1;
Q̨ .y/ D p�1;�1y2 C p�1;0yC p�1;1;Q̌.y/ D p0;�1y2 � tyC p0;1;
Q�.y/ D p1;�1y2 C p1;0yC p1;1:

We also define

ı.x/ D ˇ.x/2 � 4˛.x/�.x/; Qı.y/ D Q̌.y/2 � 4 Q̨ .y/ Q�.y/; (8)

which are the discriminants of the polynomial L.x; y/ as a function of y and x,
respectively. The following facts regarding the polynomial ı are proved in [6,
Chap. 2] for t D 1, their proof for general values of t � t0 [t0 being defined in (2)]
would be similar: under (a)–(b), ı has degree (in x) three or four. We denote its roots
by fx`g1�`�4, with

jx1j � jx2j � jx3j � jx4j; (9)

and x4 D 1 if ı has degree three. We have x1 2 Œ�1; 1/, x4 2 .1;1/ [ f1g [
.�1;�1�, and x2; x3 > 0. Further ı.x/ is negative on R if and only if x 2 .x1; x2/[
.x3; x4/. The polynomial Qı in (8) and its roots fy`g1�`�4 satisfy similar properties.

In what follows, we define the algebraic functions X.y/ and Y.x/ by L.X.y/; y/ D
0 and L.x;Y.x// D 0. With (7) and (8) we have the obvious expressions

X.y/ D �
Q̌.y/˙

q
Qı.y/

2 Q̨ .y/ ; Y.x/ D �ˇ.x/˙
p
ı.x/

2˛.x/
: (10)

The functions X.y/ and Y.x/ both have two branches, called X0;X1 and Y0;Y1,
which are meromorphic on the cut planes C n .Œy1; y2�[ Œy3; y4�/ and C n .Œx1; x2�[
Œx3; x4�/, respectively. The numbering of the branches can be chosen so as to satisfy
jX0.y/j � jX1.y/j (resp. jY0.x/j � jY1.x/j) on the whole of the cut planes, see [6,
Theorem 5.3.3].

Note that except ˛; �; Q̨ ; Q� , all quantities defined above depend on t.
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2.2 Growth of t-Harmonic Functions

By definition, the exponential growth of a sequence fuig of positive real numbers
is lim supi!1 u1=i

i . We first identify (Lemma 1) the exponential growth of f f .i; 1/g
and f f .1; j/g for t D 1, and then (Lemma 2) we treat the general case in t.

2.2.1 First Case: t D 1

Consider on R2 the function � defined by (3), and define the set D1 D fa 2 R2 W
�.a/ � 1g and its boundary @D1 D fa 2 R2 W �.a/ D 1g. If the drift is zero
(hypothesis (c)), the set D1 is reduced to f0g, see [7, Proposition 4.3]. If not, it is
homeomorphic to the unit disc. More precisely, for a 2 @D1, let q.a/ D r�.a/

jr�.a/j 2
S1 (the unit circle). If the drift is non-zero, the function q is a homeomorphism
between @D1 and S1, see [7, Proposition 4.4] or [10, Introduction]. Define finally
S1C D S1 \ R2C as well as � C

1 D fa 2 @D1 W q.a/ 2 S1Cg. The following result is
proved in [10].

Lemma 1 ([10]) For any non-zero minimal 1-harmonic function f , there exists a D
.a1; a2/ 2 � C

1 such that the exponential growth of f f .i; 1/g (resp. f f .1; j/g) is a1
(resp. a2).

(And reciprocally, any a 2 � C
1 is the growth of a minimal 1-harmonic function.)

Lemma 1 follows from Eq. (1.3) in [10], which gives the structure of any minimal
harmonic function. It holds a priori only in the case of a non-zero drift, but it turns
out to be also true in the zero drift case, as there is then no exponential growth, i.e.,
a1 D a2 D 0, which is guaranteed by Raschel [17, Lemma 2].

2.2.2 General Case in t

We introduce Dt D fa 2 R2 W �.a/ � tg as well as (with obvious notation) @Dt

and � C
t .

The function � is strictly convex on R2, and due to the hypothesis (b) it admits a
global minimum on R2. Let t0 as in (2). Note that t0 � 1 (evaluate � at 0) and that
t0 D 1 if and only if the drift is zero (see [7, Proposition 4.3]). The following result
extends Lemma 1 to t-harmonic functions.

Lemma 2 Let t � t0. For any non-zero minimal t-harmonic function f , there exists
a 2 � C

t such that the exponential growth of f f .i; 1/g (resp. f f .1; j/g) is a1 (resp.
a2).

(And reciprocally, any a 2 � C
t is the growth of a minimal t-harmonic function.)

Lemma 2 could be proved along the same lines as Lemma 1, but it can also be
obtained thanks to the exponential change of the parameters f pi;jg presented in
Sect. 4. As Lemma 1, Lemma 2 holds for any value of the drift.
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2.2.3 Reformulation in Terms of the Kernel

Lemma 2 can be reformulated as follows, in terms of quantities related to the
kernel (5). This will be more convenient for our analysis.

Lemma 3 Let t � t0. For any non-zero minimal t-harmonic function f , there exists
p 2 Œx2;X.y2/� (resp. p0 2 Œy2;Y.x2/�) with p0 D Y0. p/ (or p D X0. p0/), such that
the exponential growth of f f .i; 1/g (resp. f f .1; j/g) is 1=p (resp. 1=p0).

Proof We first notice that �.a/ D t if and only if L.1=ea1 ; 1=ea2 / D 0, see (3)
and (5). Moreover, the real and positive points of f.x; y/ 2 C2 W L.x; y/ D 0g are
(see [6, 11])

P D f.x;Y0.x// W x 2 Œx2; x3�g [ f.x;Y1.x// W x 2 Œx2; x3�g:

The fact that a 2 � C
t implies that x 2 Œx2;X.y2/�, since the normal to the curve P

at x2 (resp. X.y2/) is .�1; 0/ (resp. .0;�1/). ut
As a consequence of Lemmas 2 and 3, we obtain a proof of Theorem 1 (i). We

shall give more details on the proof of Theorem 1 in Sect. 3.

2.3 A Boundary Value Problem

In this section we prove that the function L.x; 0/H.x; 0/ satisfies a simple boundary
value problem. A boundary value problem is composed of a boundary condition
(Lemma 4) and a regularity condition (Lemma 5).

With the previous notation we introduce

M D X.Œy1; y2�/ D X0.Œy1; y2�/ [ X1.Œy1; y2�/:

This curve is symmetrical w.r.t. the real axis, since Qı is non-positive on Œy1; y2�, and
hence the two branches X0 and X1 are complex conjugate on that interval. See Fig. 2
for an example of curve M .

Denote by x the complex conjugate of x 2 C.

Lemma 4 We have the boundary condition: for all x in M ,

L.x; 0/H.x; 0/� L.x; 0/H.x; 0/ D 0:

We have a similar equation for L.0; y/H.0; y/ on the curve L D Y.Œx1; x2�/.

Proof Lemma 4 is classical; see [17, Sect. 2.6] for the original proof in the zero drift
case. The main idea is to evaluate (6) at .X0.y/; y/, and then to make the difference
of the two equations obtained by letting y go to Œy1; y2� from above and below in C
(i.e., with y having a positive and then a negative imaginary part). ut
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Fig. 2 The curve M D X.Œy1; y2�/ is symmetrical w.r.t. the real axis. It is smooth everywhere
except at X.y2/, where it may have a corner point (if and only if t D t0). Any 1=p, with p point of
the red segment St, is the exponential growth of a harmonic function

Lemma 3 implies that: to any minimal t-harmonic function f f .i; j/g we can
associate a number p 2 Œx2;X.y2/� such that 1=p (resp. 1=p0, with p0 D Y0. p/) is the
exponential growth of f f .i; 1/g (resp. f f .1; j/g). We write f fp.i; j/g and Hp.x; y/ to
emphasize this exponential growth.

Let DM be the interior domain delimited by the curve M (containing x2 on
Fig. 2) andDM D DM[M be its closure. The lemma hereafter gives the regularity
of the complex function Hp.x; 0/ (a similar result holds for Hp.0; y/).

Lemma 5 For any t 2 Œt0;1/, the generating function Hp.x; 0/ is meromorphic in
DM , and has in DM a unique singularity, at p. The singularity is on the boundary
M if and only if t ¤ t0 and p D X.y2/ or if t D t0. In case (i) .t ¤ t0/, the
singularity is polar. In case (ii) .t D t0/, it can be polar or not polar.

Proof The case t D t0 is rather special. In the case of a zero drift (t0 D 1), it
has been proved in [17, Lemma 3]. For other values of t D t0, the proof would be
completely similar.

We therefore assume that t ¤ t0. It follows from Lemma 3 that the function
Hp.x; 0/ is analytic in the open disc D.0; p/ centered at 0 and of radius p. The same
holds for Hp.0; y/ in D.0; p0/. Consider the identity

L.x; 0/Hp.x; 0/C L.0;Y0.x//Hp.0;Y0.x//� L.0; 0/Hp.0; 0/ D 0; (11)



314 C. Lecouvey and K. Raschel

which is the functional equation (6) evaluated at .x;Y0.x//. The fact that (11) holds
on a non-empty set is not clear a priori, and follows from Lemma 6, with x on the
circle of radius p. A consequence of (11) is that Hp.x; 0/ can be continued on the
whole of DM . Indeed, writing

DM D D.0; p/[ .DM nD.0; p//;

the generating function is defined through its power series in the first domain,
and thanks to Hp.0;Y0.x// in the complementary domain. Further, we have that
limx!p jHp.x; 0/j D 1 (independently of the way that x! p), so that p is indeed a
pole, and not an essential singularity. ut

The following result has been used in the proof of Lemma 5. For the proof we
refer to [12, Lemma 28], which is a very close statement.

Lemma 6 Let x 2 Œx2;X.y2/�. Then for all juj D x, we have jY0.u/j � Y0.juj/.
Furthermore, the inequality is strict, except for u D x.

3 Resolution of the Boundary Value Problem: Proof
of Theorems 1 and 2

3.1 Conformal Gluing Functions

Lemmas 4 and 5 imply that the function L.x; 0/H.x; 0/ belongs to the set of
functions f which are meromorphic in DM and satisfy on M the equality f .x/ D
f .x/. This set of functions is too large to work on: for instance, P ı f still belongs to
this set for any polynomial P. The good idea is to impose a minimality condition on
f , and to introduce the notion of conformal gluing functions (our general reference
for this is the book of Litvinchuk [14], and more specifically its second chapter).

Definition 1 A conformal gluing function w for DM is a function meromorphic
and injective on DM , continuous on DM except at a finite number of points, and
such that w.x/ D w.x/ for x 2M .

As stated in the lemma below, conformal gluing functions exist. They must have
a unique singularity on DM (of order 1 if the singularity is in the interior DM ), and
are essentially characterized by the location of this singularity.

Lemma 7 ([14]) Let p 2 DM . Up to additive and multiplicative constants, there
exists a unique conformal gluing function w for DM with a pole at p. Further,
for any two conformal gluing functions w1 and w2, there exist a; b; c; d 2 C with
ad � bc ¤ 0 such that w2 D aw1Cb

cw1Cd .
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3.2 Complete Statement of Theorem 2

Let w be a conformal mapping as in Lemma 7 with a pole at x0 2 .X.y1/; x2/ n f0g
(this reference point x0 is arbitrary), see Fig. 2 for its location. Subtracting by w.0/,
we may assume that w.0/ D 0.

The singularity of L.x; 0/Hp.x; 0/ is not located anywhere in DM , but on the
segment Œx2;X.y2/�, see Lemma 5. Let us call ˛

w�w. p/ C ˇ the class of conformal
gluing functions with a pole at p 2 Œx2;X.y2/�, see Lemma 7. Our Theorem 2 will
be restated as:

L.x; 0/Hp.x; 0/ D ˛

w.x/ � w. p/
C ˇ: (12)

In other words, the conformal gluing functions parametrized by p 2 Œx2;X.y2/� offer
a complete solution to our problem. Notice that expressions for the constants ˛ and
ˇ will follow from a one or two term(s) expansion of the equality (12).

We now state the theorem in full details. Define

˛ D �f .1; 1/�

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

p0;1w. p/2

w0.0/
if p1;1 D 0 and p0;1 ¤ 0;

2p�1;1w. p/2

w00.0/
if p1;1 D 0 and p0;1 D 0;

.w.X0.0// � w. p//w. p/

w.X0.0//
if p1;1 ¤ 0;

(13)

and

ˇ D p1;1 f .1; 1/C ˛

w. p/
: (14)

Theorem 3 (Complete version of Theorem 2) Let ˛ and ˇ be defined in (13)
and (14). We have

Hp.x; 0/ D 1

L.x; 0/

�
˛

w.x/ � w. p/
C ˇ

�

;

Hp.0; y/ D p1;1 f .1; 1/� L.X0.y/; 0/Hp.X0.y/; 0/

L.0; y/
:

3.3 Proof of Theorem 3

Proof The proof of Theorem 3 is based on the following remark (see [17, Lemma 4],
taken from [14]): if a function f is analytic on DM , continuous on DM and satisfies
f .x/ D f .x/ for x 2M , then it must be a constant function.
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Let us begin with the case t > t0. Lemma 5 implies that L.x; 0/Hp.x; 0/ has a
unique pole at p. Let us assume for a while that this pole is of order 1 (which will
always be the case, except if p D X.y2/, in which case the pole has order 2). Then
by choosing suitably the value of ˛, the function

L.x; 0/Hp.x; 0/� ˛

w.x/ � w. p/
� ˇ (15)

has no pole in DM (since w is injective in DM , see Definition 1, the function
1

w.x/�w.p/ has a pole of order 1 at p, as soon as p 2 DM ) and is continuous on

DM . The function (15) also satisfies the condition f .x/ D f .x/ on the boundary.
Hence we can use the above remark to conclude that (15) is a constant function. The
value of ˇ can be adapted so as to have that (15) is 0. To compute the exact values
of the constants ˛ and ˇ, a series expansion of (12) around 0 is enough.

In the case t > t0 but p D X.y2/, the pole of 1
w.x/�w.p/ at p is of order 2 (indeed,

around p 2 fX.y1/;X.y2/g, the equality w.x/ D w.x/ yields w0. p/ D 0), and the
same expression as (15) can be obtained.

The fact that L.x; 0/Hp.x; 0/ has a pole of order 1 or 2 at p follows essentially
from that we are looking for positive harmonic functions f f .i; j/g. If the pole were
of higher order, then the solution would have negative coefficients in its expansion
near 0, see [17, Lemma 11], which is impossible.

See [17, Sects. 3.1–3.3] for the proof of Theorem 3 in the case t D t0 D 1, which
can be immediately adapted to the case t D t0 ¤ 1. ut

3.4 Proof of Theorem 1

Proof In the small steps case [assumptions (a)–(b)], (i) and (ii) of Theorem 1 follow
independently from Theorem 2 or from Lemma 2 (or its reformulation Lemma 3).
Theorem 1 (iii) is a consequence of classical results, see [16]. ut

4 Extension and Second Proof of Theorem 1

In this section we consider weights f pk;`g having exponential moments. This
assumption implies that the function � introduced in (3) is well defined on R2.

We note f f Œpk;`�g the set of 1-harmonic functions, once the jumps f pk;`g have
been fixed. For any a such that �.a/ D t, we define new weights as follows (with
h
; 
i denoting the standard scalar product in R2)

pa
k;` D pk;`e

ha;.k;`/it�1: (16)
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The identity �.a/ D t implies that
P

k;` pa
k;` D 1, and thus the f pa

k;`g can be
interpreted as transition probabilities. Our main result in Sect. 4 is the following:

Proposition 1 Assume that the f pk;`g have all exponential moments. Then the set
of t-harmonic functions is equal to

f.i; j/ 7! ehat;.i;j/if Œ pat
k;`�.i; j/g;

for any at such that �.at/ D t.

Proposition 1 is a direct consequence of the following simple correspondence
between t-harmonic and 1-harmonic functions. Hereafter, we shall denote by f a

(a 2 R2) the function

f a.i; j/ D f .i; j/e�ha;.i;j/i: (17)

Lemma 8 For any at such that �.at/ D t and any t-harmonic function f , f at is
1-harmonic w.r.t. the weights f pat

k;`g.
As a consequence of Proposition 1 and Lemma 8, we can reprove and extend

Theorem 1.

Corollary 1 Theorem 1, initially proved for small steps random walks, can be
generalized as follows:

• Theorem 1 (i) to random walks whose increments have exponential moments,
• Theorem 1 (ii) to random walks with bounded symmetric jumps.

Proof We first assume that the equation �.at/ D t has a unique solution. In this
case at is the global minimizer of � on R2 and the new weights f pat

k;`g have zero drift
(this corresponds to �0.at/ D 0). For random walks with bounded symmetric jumps,
there exists a unique f Œpat

k;`� which is 1-harmonic (up to multiplicative factors), see
[4, Theorem 1]. Corollary 1 follows in this case.

We now suppose that the equation�.at/ D t has more than one solution (and then
in fact, infinitely many). In this case the f pat

k;`g have non-zero drift (independently
of at). For any choice of at, we can use the result [10, Corollary 1.1] for t D 1 (valid
for random walks whose increments have exponential moments), and then with (17)
and Lemma 8 we transfer it to other values of t > t0. ut

We now present some remarks and consequences of Proposition 1:

• Proposition 1 is independent of the choice of at.
• Proposition 1 is not only a result on the structure of the Martin boundary, it also

provides an expression of the t-harmonic functions in terms of the 1-harmonic
functions.
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• The exponential factor in (17) does not affect the fact that on the boundary of the
quadrant, the functions f and f a are 0. Incidentally, this explains that the simple
exponential change (17) cannot be used in other situations than killed random
walks, like reflected random walks on a quadrant (see [9] for the study of the
t-Martin boundary of reflected random walks on a half-space).

5 Miscellaneous

5.1 Stable Martin Boundaries

According to [15, Definition 2.4], the Martin boundary is stable if the Martin
compactification does not depend on the eigenvalue t (with a possible exception
at the critical value) and if the Martin kernels are jointly continuous w.r.t. space
variable and eigenvalue.

The first item is clearly satisfied in our context (see our Theorem 1). As for the
second one, it does not formally come from our results. However, it is most probably
true (in this direction, see Sect. 5.5, where we show that the harmonic functions are
continuous w.r.t. the eigenvalue t). For small steps random walks and t D 1, it
is proved in [12, Remark 29] that the Martin kernel is continuous w.r.t. the space
variable.

5.2 Transformations of the Step Set and Consequences
on Harmonic Functions

It is natural to make some transformations of the step set, as f pk;`g ! f p˙k;˙`g, and
to see the effect on the harmonic functions f f .i; j/g. In fact, the consequence will
be simpler to read on the generating functions H.x; 0/ and H.0; y/, without obvious
implications on the coefficients f f .i; j/g.

The starting point of all our approach is the functional equation (6), and the
difference between two functional equations associated with different jumps is all
contained in the kernel (5).

Consider first the transformation f pk;`g ! f p�k;`g. The new kernel is
x2L.1=x; y/, with new branch points in x equal to the 1=x`, while the y` remain
the same. The new roots of the kernel are 1=X.y/ and Y.1=x/. The curve L is the
same, and the new M is obtained by an inversion.

The new conformal mapping is an algebraic function of w. To find it we can
proceed as in the proof of Theorem 3, by compensating the poles of w in the new
curve M [see (15)]. Changing accordingly the values of the constants ˛ and ˇ and
replacing L.x; 0/ by x2L.1=x; 0/ yields the correct statement of Theorem 3 for the
step set f p�k;`g.
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Regarding the transformation f pk;`g ! f pk;�`g, w takes the same value but
L.x; 0/, which is equal to �.x/ in the case f pk;`g, should be ˛.x/.

Similar facts can be obtained for other transformations, or for the symmetry
f pk;`g ! f p`;kg.

5.3 Simple Random Walks

If p0;1 C p1;0 C p0;�1 C p�1;0 D 1, the minimal t-harmonic functions take the form
(with p 2 Œx2;X.y2/� and p0 D Y0. p/)

fp.i; j/ D

8
ˆ̂
<

ˆ̂
:

˚�
1
p

�i � � p�1;0

p1;0
p
�i�

j
�
1
p0

�j
if p D x2;

˚�
1
p

�i � � p�1;0

p1;0
p
�i�˚� 1

p0

�j � � p0;�1
p0;1

p0�j�
if p 2 .x2;X.y2//;

i
�
1
p

�i˚� 1
p0

�j � � p0;�1
p0;1

p0�j�
if p D X.y2/:

(18)

In the particular case t D 1, Eq. (18) is obtained in [12, Sect. 5.1]. By using
techniques coming from representation theory, the authors of Lecouvey et al. [13]
have obtained an explicit expression for one 1-harmonic function, the one equal to
the probability of never hitting the cone.

The explicit expression (18) could also be obtained from Sect. 5.5 (via the
computation of the generating functions Hp.x; y/), where we derive an expression
for the function w.

5.4 Generating Functions of Discrete Harmonic Functions
as Tutte’s Invariants

The equality L.x; 0/H.x; 0/ D L.x; 0/H.x; 0/ for x 2 M (Lemma 4) implies
that, in the terminology of Bernardi et al. [1], L.x; 0/H.x; 0/ is a Tutte’s invariant
(these invariants were introduced in the 1970s, when studying properly q-colored
triangulations, see [18]).

In [1] the authors identity some models of quadrant walks such that their
generating function can be expressed in terms of such Tutte’s invariants. This
illustrates that our results do not only concern Martin boundary theory, but also
combinatorial problems as the enumeration of walks in the quarter plane.
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5.5 A Conjecture

Our conjecture is that Theorem 1, a priori valid only for a subclass of jumps f pk;`g
with exponential moments, can be extended as follows:

Conjecture 1 Theorem 1 is valid for any f pk;`g such that
P

k;`.k
2 C `2/pk;` < 1

(i.e., with moments of order 2).

In the particular case of zero drift jumps f pk;`g (i.e., t D t0 D 1), this conjecture is
stated in [17, Conjecture 1].
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Appendix: Explicit Expressions for w

It turns out that a suitable expression for w has been found in [6, Sect. 5.5.2]. Let us
briefly explain why such a function appears in [6]. The main goal of Fayolle et al. [6]
is to develop a theory for solving a functional equation satisfied by the stationary
probabilities generating function of reflected random walks in the quarter plane.
The functional equation in [6] is closed to ours [compare [6, Eq. (1.3.6)] with (6)].
Roughly speaking, the general solution of Fayolle et al. [6] can be expressed as

Z
f .y/

w0.y/
w.x/� w.y/

dy

for some function f , with the same function w as ours. Our situation is therefore
simpler, since we can express the solutions directly in terms of w, without any
integral.

In this section we simply state the expression of w, and we refer to [6, Chap. 5]
or to [12, Sect. 3] for the details. The expression is

w.x/ D u.x0/

u.x/� u.x0/
� u.x0/

u.0/� u.x0/
(19)

(the second term u.x0/
u.0/�u.x0/

in (19) is to ensure that w.0/ D 0), where the function u
is different in the two cases t 2 .t0;1/ and t D t0.
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Case t 2 .t0; 1/

In that case, u can be expressed in terms of Weiertrass elliptic functions, with the
formula

u.x/ D }1;3.s�1.x/ � !2=2/; (20)

where

• }1;3 is the Weierstrass elliptic function associated with the periods !1 and !3
defined in (21), i.e.,

}1;3.!/ D 1

!2
C

X

n1;n32Z

�
1

.! � n1!1 � n3!3/2
� 1

.n1!1 C n3!3/2

�

;

• !1 and !2 are defined as below [with ı as in (8)]:

!1 D i
Z x2

x1

dx
p�ı.x/ ; !2 D

Z x3

x2

dx
p
ı.x/

; !3 D
Z x1

X.y1/

dx
p
ı.x/

; (21)

• s.!/ D g�1.}1;2.!//, where }1;2 is the Weierstrass elliptic function associated
with the periods !1 and !2, and g�1 is the reciprocal function of

g.x/ D

8
<̂

:̂

ı00.x4/
6
C ı0.x4/

x � x4
if x4 ¤1;

ı00.0/
6
C ı000.0/x

6
if x4 D1;

(22)

• x0 2 .X.y1/; x2/ n f0g is arbitrary.

Case t D t0

We have

u.x/ D
�
�

!3

�2
8
<̂

:̂
sin

0

B
@
�

�

2

6
4arcsin

0

B
@

1
q

1
3
� 2g.x/

ı00.1/

1

C
A � �

2

3

7
5

1

C
A

�2

� 1
3

9
>=

>;
; (23)
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with g as in (22) and

� D arccos

 

�
P

�1�i;j�1 ijpi;jxi
2y

j
2

2
p
˛.x2/ Q̨ .y2/

!

:

Remarks

It can be shown that:

• The expressions given in (20) and (23) are a priori complicated, but it may happen
that for some f pk;`g, they become much simpler. If p0;1Cp1;0Cp0;�1Cp�1;0 D 1
for instance, the function u is rational. More generally, if !2=!3 2 Q, then u is an
algebraic function. See [12, Proposition 15 and Remark 16] for further remarks
on u.

• The function u is continuous w.r.t. the eigenvalue t 2 Œt0;1/, see [5, Sect. 2.2].
• At t D t0 we have x2 D x3 and y2 D y3 (in fact t0 D infft > 0 W x2 D x3g D

infft > 0 W y2 D y3g).
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On the Harmonic Measure of Stable Processes

Christophe Profeta and Thomas Simon

Abstract Using three hypergeometric identities, we evaluate the harmonic measure
of a finite interval and of its complementary for a strictly stable real Lévy process.
This gives a simple and unified proof of several results in the literature, old and
recent. We also provide a full description of the corresponding Green functions. As
a by-product, we compute the hitting probabilities of points and describe the non-
negative harmonic functions for the stable process killed outside a finite interval.

1 Introduction and Statement of the Results

Let L D fLt; t � 0g be a real strictly ˛-stable Lévy process, with characteristic
exponent

�.
/ D log.EŒei
L1 �/ D � .i
/˛e�i�˛� sgn.
/; 
 2 R: (1)

Above, ˛ 2 .0; 2� is the self-similarity parameter and � D PŒL1 � 0� is the positivity
parameter. Recall that when ˛ D 2; one has � D 1=2 and �.
/ D �
2; so that L
is a rescaled Brownian motion. When ˛ D 1; one has � 2 .0; 1/ and L is a Cauchy
process with a linear drift. When ˛ 2 .0; 1/[.1; 2/ the characteristic exponent reads

�.
/ D � �˛;�j
j˛.1 � iˇ tan.�˛=2/ sgn.
//;
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where ˇ 2 Œ�1; 1� is the asymmetry parameter, whose connection with the positivity
parameter is given by Zolotarev’s formula:

� D 1

2
C 1

�˛
arctan.ˇ tan.�˛=2//;

and �˛;� D cos.�˛.� � 1=2// > 0 is a scaling constant. We refer e.g. to Chap. VIII
in [2] for more details on this parametrization. One has � 2 Œ0; 1� if ˛ < 1 and
� 2 Œ1 � 1=˛; 1=˛� if ˛ > 1: When ˛ > 1; � D 1=˛ or ˛ < 1; � D 0; the process L
has no positive jumps, whereas it has no negative jumps when ˛ > 1; � D 1 � 1=˛
or ˛ < 1; � D 1:

Set OL D �L for the dual process and O� D 1 � � for its positivity parameter.
Throughout, it will be implicitly assumed that all quantities enhanced with a hat
refer to the same quantities for the dual process, that is with � and O� switched. We
denote by Px the law of L starting from x 2 R: Introduce the harmonic measures

Hx.dy/ D PxŒLT 2 dy; T <1� and H�
x .dy/ D PxŒLT� 2 dy; T� <1�;

where T D infft > 0; jLtj > 1g and T� D infft > 0; jLtj < 1g: Observe that by
spatial homogeneity and the scaling relationship

.fkLt; t � 0g;Px/
dD .fLk˛ t; t � 0g;Pkx/ ; k > 0; (2)

we can deduce from Hx the expression of the harmonic measure of the complemen-
tary of any closed bounded interval, whereas the knowledge of H�

x gives that of the
harmonic measure of any open bounded interval. Introduce the following notation

xC D max.x; 0/; c˛;� D sin.�˛�/

�
and  ˛;�.t/ D .t � 1/˛ O��1.tC 1/˛��1:

In the remainder of this section it will be implicitly assumed that L has jumps of both
signs. The corresponding results where L has one-sided jumps, which are simpler,
will be briefly described in the last section.

Theorem A

(a) For any x 2 .�1; 1/; the measure Hx.dy/ has density

h.x; y/ D c˛;� .1C x/˛ O�.1 � x/˛�.1C y/�˛ O�.y � 1/�˛�.y � x/�1

if y > 1 and h.x; y/ D Oh.�x;�y/ if y < �1:
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(b) For any x 2 Œ�1; 1�c; the measure H�
x .dy/ has density

h�.x; y/ D c˛; O� .1C y/�˛�.1 � y/�˛ O� 	.xC 1/˛�.x � 1/˛ O�.x � y/�1

�.˛ � 1/C
Z x

1

 ˛;�.t/ dt

�

if x > 1; and h�.x; y/ D Oh�.�x;�y/ if x < �1:
In the symmetric case, these computations date back to [5]—see Theorems A–C

therein. Notice that the results of [5], which rely on Kelvin’s transformation and the
principle of unicity of potentials, deal with the more general rotation invariant stable
processes on Euclidean space. In the general case, Part (a) of the above theorem was
proved in Theorem 1 of [17], whereas Part (b) was recently obtained in Theorem 1 of
[13]. Both methods used in [17] (coupled integral equations) and in [13] (Lamperti’s
representation and the Wiener-Hopf factorization) are complicated. In this paper we
show that the original method of [5] works in the asymmetric case as well, thanks
to elementary considerations on the hypergeometric function

2F1

�
a; b

c
I z
�

D
X

n�0

.a/n.b/n
.c/n

zn

nŠ
:

More precisely, we use three basic identities for the latter function, due respectively
to Euler, Pfaff and Gauss, allowing to perform a simple potential analysis of the
function

'.t/ D .1 � t/�˛�.1C t/�˛ O� (3)

and to obtain the required generalization of the key Lemma 3.1 in [5].
Define next the killed potential measures

Gx.dy/ D Ex

�Z T

0

1fLt2dyg dt

�

and G�
x .dy/ D Ex

"Z T�

0

1fLt2dyg dt

#

:

It is easy to see from the absolute continuity of the two killed semi-groups with
respect to the original stable semigroup, that both these measures are absolutely
continuous. We denote by g.x; y/ and g�.x; y/ their respective densities on .�1; 1/
and Œ�1; 1�c; the so-called Green functions. These functions are of central interest
because they allow to invert the stable infinitesimal generator on .�1; 1/ and on
Œ�1; 1�c—see e.g. Formula (1.42) in [6] in the symmetric case. Observe that they
are related to the harmonic measure and to the density of the Lévy measure of L:

�.y/ D � .˛ C 1/jyj�˛�1 �c˛;�1fy>0g C c˛; O�1fy<0g
�
; (4)
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through the integral formulæ

h.x; y/ D
Z

.�1;1/
g.x; v/�.y�v/ dv resp. h�.x; y/ D

Z

Œ�1;1�c
g�.x; v/�.y�v/ dv

for all x 2 .�1; 1/ and y 2 Œ�1; 1�c resp. for all x 2 Œ�1; 1�c and y 2 .�1; 1/;
which are both instances of a general formula by Ikeda-Watanabe—see Theorem 1
in [9]. For this reason, the density of the harmonic measure coincides with that of
the Poisson kernel—see [6, pp. 16–17]. The closed expression of the Poisson kernel
and the Green function for .�1; 1/ in the symmetric case, and more generally for
the open unit ball in the rotation invariant case, are classic results dating back to
Riesz [15, 16]. We refer to [6, pp. 18–19] for more details and references, and to the
whole monograph [6] for several extensions, all in the rotation invariant framework.

Theorem B Set z D z.x; y/ D
ˇ
ˇ
ˇ 1�xy

x�y

ˇ
ˇ
ˇ for every x ¤ y:

1. For every x 2 .�1; 1/; one has

g.x; y/ D 1

� .˛�/� .˛ O�/
	y � x

2


˛�1 Z z

1

 ˛;�.t/ dt

if y 2 .x; 1/; and g.x; y/ D Og.y; x/ if y 2 .�1; x/:
2. For every x > 1; one has

g�.x; y/ D 21�˛

� .˛�/� .˛ O�/
�

.y � x/˛�1
Z z

1

 ˛;�.t/dt

� .˛ � 1/C
Z x

1

 ˛;�.t/dt
Z y

1

 ˛; O�.t/ dt

�

if y 2 .x;1/; g.x; y/ D Og.y; x/ if y 2 .1; x/; and

g�.x; y/ D c˛; O� 21�˛

c˛;� � .˛�/� .˛ O�/
�

.x � y/˛�1
Z z

1

 ˛;�.t/dt

�.˛ � 1/C
Z x

1

 ˛;�.t/ dt
Z jyj

1

 ˛;�.t/ dt

!

if y < �1:
Observe that in Part (b) of the above result, the condition x > 1 is no restriction

since by duality we have g�.x; y/ D Og�.�x;�y/ for every x < �1 and y 2 Œ�1; 1�c:
Part (a) was obtained as Corollary 4 of [5] in the symmetric case, and as Theorem 1
of [12] in the general case. Part (b) was proved as Theorem 4 in [13], in the only
cases ˛ � 1 and x; y > 1: The methods of [12, 13], relying on the Lamperti
transformation and an analysis of the reflected process, are complicated. In this
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paper, we observe that all formulæ of Theorem B can be quickly obtained from
the Désiré André equation and one of the two simple lemmas leading to the proof
of Theorem A.

The explicit knowledge of the Green function has a number of classical conse-
quences. In this paper we will focus on two of them. The first one deals, in the
relevant case ˛ > 1; with the hitting probability �.x; y/ D PxŒTy < T�; where
Ty D infft > 0; Lt D yg:
Corollary 1 Assume ˛ > 1 and set z D

ˇ
ˇ
ˇ 1�xy

x�y

ˇ
ˇ
ˇ : For every x; y 2 .�1; 1/; one has

�.x; y/ D .˛ � 1/
�

x � y

1 � y2

�˛�1 Z z

1

 ˛; O�.t/ dt

if x > y; and �.x; y/ D O�.�x;�y/ if x < y:

Observe that the above formula extends by continuity on the diagonal, with the
expected property that PxŒTx < T� D 1: Of course, this follows from the fact that
fxg is regular for x in the case ˛ > 1:When ˛ ! 2; Corollary 1 amounts to the very
standard Brownian formula

PxŒTy < T1� D 1 � x

1 � y



By the Markov property, one can deduce from Corollary 1 the harmonic measure of
the set fyg [ Œ�1; 1�c: Using one of our three hypergeometric identities, it is also
possible to derive the asymptotic behaviour of PxŒTy < T� when x ! y; which
is fractional. Last, by spatial homogeneity and scaling, we can quickly recover the
statement of Theorem 1.5 in [13]. See Remark 6 below for more detail.

We next consider non-negative harmonic functions on .�1; 1/; which are the
non-negative solutions to

L˛;�u 	 0

on .�1; 1/; where L˛;� is the infinitesimal generator of L. As in the Brownian case,
an equivalent characterization—see e.g. [6, p. 20] in the symmetric case—is the
mean-value property, which reads ExŒu.L�U /� D u.x/ for every open set U whose
closure belongs to .�1; 1/; where �U D infft > 0; Lt 62 Ug:
Corollary 2 The non-negative harmonic functions on .�1; 1/ which vanish on
Œ�1; 1�c are of the type

x 7! 
.1 � x/˛�.1C x/˛ O��1 C �.1C x/˛ O�.1 � x/˛��1

with 
;� � 0:
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This result might be already known—compare e.g. with Theorem 10, p. 569 in
[18], although we could not find it written down explicitly in the literature. Recall
that in order to obtain all non-negative harmonic functions on .�1; 1/, one needs—
see e.g. Theorem 2.6 in [6] in the symmetric case—to add to the above functions
the integral of the Poisson kernel h.x; y/ along some suitably integrable measure on
Œ�1; 1�c:

Both Corollaries 1 and 2 could be obtained for the process killed inside the
interval .�1; 1/; with analogous computations relying on Part (b) of Theorem B.
But the formulæ have a rather lengthy aspect, so that we prefer leaving them to the
interested reader. The remainder of the paper is as follows. In the three next sections
we prove Theorem A, Theorem B, and the two Corollaries. In the last section we
gather, for the sake of completeness, the corresponding formulæ in the cases of
semi-finite intervals and of one-sided jumps.

2 Proof of Theorem A

As mentioned in the introduction, the argument hinges upon three classical hyper-
geometric identities, to be found in Theorem 2.2.1, Formula (2.2.6) and For-
mula (2.3.12) of [1], and which will be henceforth referred to as Euler, Pfaff and
Gauss1 formula respectively.

2.1 Proof of Part (b)

2.1.1 The Case ˛ < 1

We reason along the same lines as in Theorem B of [5]. Set pt.x/ for the transition
density of L: The following computation, left to the reader, is a well-known
consequence of (1), Fourier inversion and the Fresnel integral: one has

Z 1

0

pt.z/ dt D � .1 � ˛/ c˛;� z˛�1

for every z > 0: Observe that by duality, one also has

Z 1

0

pt.z/ dt D
Z 1

0

Opt.�z/ dt D � .1 � ˛/ c˛; O� jzj˛�1

1Among of course many others. This one is a simple consequence of the two-dimensional structure
of the space of solutions to the hypergeometric equation. Notice that it can also be obtained
by Mellin-Barnes inversion. See the end of the article Calculs asymptotiques in Encyclopedia
Universalis.
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for every z < 0: Applying the Désiré André equation (2.1) in [5] and letting s! 0

therein shows that

Z 1

�1
u.t; y/H�

x .dt/ D c˛; O� jx � yj˛�1 (5)

for every x > 1 and y 2 .�1; 1/; where we have set

u.t; y/ D �
c˛;� 1fy>tg C c˛; O� 1fy<tg

� jt � yj˛�1:

In the symmetric case, this Abelian integral equation with constant boundary terms
is solved in Sect. 3 of [5], following the method of [15]. See also [7] for the original
solution, with a more general term on the left-hand side. After proving the following
lemma, which remains valid for ˛ 2 .1; 2/;we will see that the pole-seeking method
of [15] applies in the asymmetric case as well.

Lemma 1 The unique positive measure on .�1; 1/ satisfying

Z 1

�1
Ou.t; y/ �.dt/ D 1; y 2 .�1; 1/ (6)

has the density '.t/ given in (3).

Proof The fact that there is a unique measure solution of (6) is a standard fact in
potential theory—see e.g. Theorem 1 in [14] or Proposition VI.1.15 in [4]. In our
concrete context, this unicity can also be obtained by a straightforward adaptation
of Lemma 4.1 in [5]. To show the lemma, we compute by a change of variable

Z 1

�1

Ou.t; y/.1 � t/�˛�.1C t/�˛ O� dt D c˛;O�

Z 1Cy

0

t˛�1.1 � yC t/�˛�.1C y � t/�˛ O� dt

C c˛;�

Z 1�y

0

t˛�1.1 � y� t/�˛�.1C yC t/�˛ O� dt:

Using two further changes of variable, the Euler formula, and the complement
formula for the Gamma function, we transform the expression on the right-hand
side into

� .˛/

� .˛ O�/� .1C ˛�/
�
1C y

1 � y

�˛� �

2F1

�
˛�; ˛

1C ˛� I
yC 1
y � 1

�

C �

O�
�
1 � y

1C y

�˛
2F1

�
˛ O�; ˛
1C ˛ O� I

y � 1
yC 1

��

;
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and then, using the notation

z D yC 1
y � 1 ;

into

� .˛/.�z/˛�

� .˛ O�/� .1C ˛�/
�

2F1

�
˛�; ˛

1C ˛� I z
�

C �.�z/�˛

O� 2F1

�
˛ O�; ˛
1C ˛ O� I

1

z

��

D 1;

where the last equality follows from the Gauss formula.

Remark 1 The solution to (6) in the symmetric case was obtained in Lemma 3.1
of [5], via a reflection argument. Alternatively, the non-symmetric solution can be
deduced in a constructive way, following the approach of [15, pp. 41–42] or that
of [7]. Observe that the above argument is significantly shorter than in these three
references.

We can now finish the proof. Introduce the changes of variables

t D x C 1 � x2

x � s
and y D x C 1 � x2

x � z
; (7)

and observe that they map .�1; 1/ onto .�1; 1/; in a decreasing way. Plugging these
changes of variables into (6) implies after some computation that

.xC 1/˛�.x � 1/˛ O�
Z 1

�1
.1C s/�˛�.1 � s/�˛ O�.x � s/�1 u.s; z/ ds D jx � zj˛�1

for every x > 1 and z 2 .�1; 1/: Multiplying both sides by c˛; O� shows the required
solution to (5), which is unique by Lemma 1 and the changes of variables (7). ut
Remark 2 In the following, we shall make a repeated use of the changes of
variables (7), which may be written formally :

j1Cxj˛�j1�xj˛ O�
Z
jy� tj˛�1 j1C tj�˛�jt � 1j�˛ O�

jx � tj dt D jx�yj˛�1
Z
jz�sj˛�1'.s/ds:

The interest of this change of variable is to transform an Abelian integral with two
inside parameters into an integral of the hypergeometric type, with one parameter
inside.
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2.1.2 The Case ˛ > 1

We follow the method of Theorem C in [5]. Recall that since L a.s. hits points in
finite time, the measure H�

x .dt/ has total mass one. We will need the evaluation

Z 1

0

. pt.z/ � pt.0// dt D � .1 � ˛/ c˛;� z˛�1

for every z > 0; which is easy and classical—see the introduction of [14]. This
implies

�Z 1

0

e�stpt.z/ dt � p1.0/� .1 � 1=˛/s 1˛�1
�

# � .1 � ˛/ c˛;� z˛�1

as s! 0; for every z > 0: Proceeding as in [5, pp. 544–545] shows that

c˛; O� jx � yj˛�1 D
Z 1

�1
u.t; y/H�

x .dt/ C ��̨
;�.x/ (8)

for every x > 1 and y 2 .�1; 1/; where

��̨
;�.x/ D

p1.0/� .1 � 1=˛/
� .1� ˛/ � lim


!0

1=˛�1

	
Ex

h
e�
T�

i
� 1




is a non-negative function which will be determined in the same way as in (4.1)
of [5]. Multiplying both sides of (8) by '.y/ and integrating on .�1; 1/ shows by
Lemma 1 that

��̨
;�.x/ D

�Z 1

�1
'.y/ dy

��1 �
c˛; O�

Z 1

�1
.x � y/˛�1'.y/ dy � 1

�

for every x > 1: The next lemma, generalizing the second part of Lemma 3.1 in [5],
allows to compute the right-hand side.

Lemma 2 With the above notation, one has

c˛; O�
Z 1

�1
.x � y/˛�1'.y/ dy D 1 � � .1 � ˛�/21�˛

� .˛ O�/� .1 � ˛/
Z x

1

 ˛;�.t/ dt

for every x > 1:
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Proof As in Lemma 1, a change of variable and the Euler formula show first that

sin.�˛ O�/
Z 1

�1
.x � y/˛�1'.y/ dy

D � .1 � ˛�/
� .˛ O�/� .2 � ˛/

�
xC 1
2

�˛�1
2F1

�
1 � ˛; 1 � ˛ O�

2 � ˛ I 2

xC 1
�

D � .1 � ˛�/
� .˛ O�/� .2 � ˛/

�
x � 1
2

�˛�1
2F1

�
1 � ˛; 1 � ˛�

2 � ˛ I 2

1 � x

�

;

where the second equality follows from the Pfaff formula. Using now the Gauss
formula, we next transform

.�z/˛�1
2F1

�
1 � ˛; 1 � ˛�

2 � ˛ I 1
z

�

D � .˛ O�/� .2 � ˛/
� .1 � ˛�/ C .˛ � 1/

˛ O� .�z/˛ O�
2F1

�
1 � ˛�; ˛ O�
1C ˛ O� I z

�

with the notation z D .1� x/=2: Putting everything together and applying again the
Euler formula completes the proof.

We can now finish the proof of the case ˛ > 1. From Lemma 2 and an easy
computation, we first deduce

��̨
;�.x/ D c˛; O� 2˛�1 1

˛ O�
�

x � 1
2

�˛ O�
2F1

�
1 � ˛�; ˛ O�
1C ˛ O� I

1 � x

2

�

:

Coming back to (8) and reasoning as in [5, p. 552], we finally see from Lemma 1
that H�

x .dy/ has density

c˛; O� .xC 1/˛�.x � 1/˛ O�.1C y/�˛�.1 � y/�˛ O�.x � y/�1 � ��̨
;�.x/ O'.y/:

To conclude the proof, it suffices to observe by the Euler formula and a change of
variable that

��

˛;�.x/ O'.y/

D c˛; O� .1C y/�˛�.1� y/�˛ O�.˛ � 1/ 2˛�1 1

˛ O�
�

x � 1
2

�˛ O�

2F1

�
1 � ˛�; ˛ O�
1C ˛ O� I

1 � x

2

�

D c˛; O� .1C y/�˛�.1� y/�˛ O� .˛ � 1/
Z x

1

 ˛;�.t/ dt:

ut
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Remark 3 Since ��̨
;�.x/ is finite and positive, we can deduce from Karamata’s

Tauberian theorem that

PxŒT
� > t� � �� .1 � ˛/ sin.�=˛/

�p1.0/
��̨
;�.x/ t1=˛�1 as t!C1:

This asymptotic is given in Corollary 3 of [5] in the symmetric case, and in
Theorem 2 of [14] in the asymmetric case, with a more general formulation. Notice
that T� has infinite expectation.

2.1.3 The Case ˛ D 1

This case is known to be more subtle from the computational point of view, because
it involves logarithmic kernels. The transition density of Lt is

pt.x/ D c1;� t

t2 C 2tx cos��C x2



The process L does not hit points a.s. but it is recurrent, so that H�
x .dt/ has total mass

one. After some computation, one finds

Z 1

0

. pt.1/� pt.x// dt D c1;� log jxj:

See also [14, p. 391]. With this formula, it is possible to finish the proof as in the
case ˛ > 1; but the computations are lengthy and we hence prefer to invoke a
simple argument relying on the Skorokhod topology. Fix � 2 .�1; 1/ and let ˛ # 1:
It follows from Corollary VII.3.6 in [10] that

L .L˛;�/ ) L .L1;�/

with obvious notation for L1;� and L˛;� , and where ) means weak convergence
in the classical Skorokhod space. Using Remark VI.3.8 and Proposition VI.2.12 in
[10], it is then easy to deduce that

L˛;�T

d�! L1;�T :

The conclusion follows from pointwise convergence of the densities h�.x; y/ as ˛ #
1; and Scheffé’s lemma. ut
Remark 4 The above argument relying on a.s. continuity for the Skorokhod topol-
ogy will be used repeatedly in the sequel, under the denomination Skorokhod
continuity argument.
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2.2 Proof of Part (a)

By the Skorokhod continuity argument, it is enough to consider the case ˛ ¤ 1:

Fixing x 2 .�1; 1/ and proceeding as in [5, pp. 544–545], the harmonic measure
Hx.dt/ is seen to be the unique solution of the equation

u.x; y/ D
Z

.�1;1/c
u.t; y/Hx.dt/ (9)

for every y 2 Œ�1; 1�c: In the case ˛ < 1; this is indeed an immediate consequence
of the Markov property, leading to the corresponding equation (5). And in the case
˛ > 1, the well-known fact—see Lemma 4.1 in [19]—that the tail distribution of T
is exponentially small at infinity implies that the perturbative term �˛;� is zero in the
corresponding equation (8). Define

�x.dt/ D
(

c˛;� O'.t/ dt if t � x;

c˛; O� O'.t/ dt if t > x:

We shall deal with the two cases y > 1 and y < �1 separately.

.i/ Let � 2 .�1; x/. Applying Lemma 1 with � and O� interchanged, we get

c˛;�

Z �

�1

j� � tj˛�1�x.dt/ C c˛;O�

Z x

�

j� � tj˛�1�x.dt/ C c˛;�

Z 1

x
j� � tj˛�1�x.dt/

D c˛;�

�Z �

�1

c˛;�j� � tj˛�1 O'.t/dt C
Z 1

�

c˛;O�j� � tj˛�1 O'.t/dt

�

D c˛;�:

The changes of variable (7) implies after some rearrangement

Z

Œ�1;1�c
jy � tj˛�1 Hx.dt/ D c˛;�.y � x/˛�1

for every y > 1 with the required expression for Hx.dt/; which is Eq. (9).
.ii/ Take now � 2 .x; 1/. Applying again Lemma 1, we have

c˛;O�

Z x

�1

j� � tj˛�1�x.dt/ C c˛;�

Z �

x
j� � tj˛�1�x.dt/ C c˛;�

Z 1

�

j� � tj˛�1�x.dt/

D c˛;O�

�Z �

�1

c˛;�j� � tj˛�1 O'.t/dt C
Z 1

�

c˛;O�j� � tj˛�1 O'.t/dt

�

D c˛;O�:
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The same changes of variables (7) gives

Z

Œ�1;1�c
jy � tj˛�1 Hx.dt/ D c˛; O�.x � y/˛�1

for every y < �1; which is again Eq. (9). ut
Remark 5

(a) The behaviour at infinity of the distribution function of T is more mysterious
than that of T�. In the non-subordinator case it is known—see Proposi-
tion VIII.3 in [2]—that there exists �x positive and finite such that

� logPxŒT > t� � ��x t as t! C1;

but the exact value of �x is unknown except in the completely asymmetric
case—see [3]. We refer to Chap. 4 in [6] for more on this topic in the rotation
invariant case. Notice that the result of Theorem B (a) allows to compute the
expectation of T:

ExŒT� D
Z 1

�1
g.x; y/ dy D .1� x/˛�.1C x/˛ O�

� .˛ C 1/ 


(b) With our computations, we can also check the values of the total masses
Hx.�1; 1/c and H�

x .�1; 1/: On the one hand, Lemma 1 and the changes of
variables (7) imply

Z

.�1;1/c
Hx.dt/ D c˛;�

Z x

�1
.x� z/˛�1 O'.z/dz C c˛; O�

Z 1

x
.z� x/˛�1 O'.z/dz D 1:

On the other hand, in the case ˛ > 1; (7) and Lemma 2 show that

Z 1

�1
H�

x .dt/ D c˛; O�
Z 1

�1
.x� z/˛�1'.z/ dz � ��̨

;�.x/
Z 1

�1
O'.y/ dy

D 1 �
 
� .1 � ˛�/21�˛
� .˛ O�/� .1 � ˛/ C .˛ � 1/ c˛; O�

Z 1

�1
O'.y/dy

!Z x

1
 ˛;�.t/dt D 1;

because

Z 1

�1
O'.y/dy D 21�˛ B.1 � ˛�; 1 � ˛ O�/ D 21�˛� .1 � ˛�/

.1 � ˛/c˛; O�� .˛ O�/� .1 � ˛/ 
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In the case ˛ D 1, the measure H�
x has also total mass one by continuity. In the

case ˛ < 1; we find

Z 1

�1
H�

x .dt/ D 1 � PxŒT
� D1� D 1 � � .1 � ˛�/21�˛

� .˛ O�/� .1 � ˛/
Z x

1

 ˛;�.t/dt;

in accordance with Corollary 2 of [5] and Corollary 1.2 of [13].

3 Proof of Theorem B

3.1 Proof of Part (a)

It is enough to consider the case y > x; the case x > y following from Hunt’s
switching identity—see e.g. Theorem II.5 in [2]. By the Skorokhod continuity
argument, it is also enough to consider ˛ ¤ 1: Reasoning as above, the Désiré
André equation yields

g.x; y/ D c˛

�

c˛;� .y � x/˛�1 �
Z

.�1;1/c
u.t; y/Hx.dt/

�

D c˛

�

c˛;�.y � x/˛�1 � c˛;�

Z �1

�1
.y � t/˛�1Hx.dt/

�c˛; O�
Z C1

1

.t � y/˛�1Hx.dt/

�

with c˛ D � .1 � ˛/: Changing the variables as in (7), we deduce

g.x; y/ D � .1 � ˛/ c˛;� .y � x/˛�1
�

1 � c˛; O�
Z 1

�1
.zC t/˛�1 O'.t/dt

�

D � .1 � ˛/ c˛;� .y � x/˛�1
�

1 � c˛; O�
Z 1

�1
.z � s/˛�1'.s/ds

�

and the result follows from Lemma 2, since z > 1: ut
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3.2 Proof of Part (b) in the Case ˛ < 1

3.2.1 The Case y > 1

Hunt’s switching identity shows again that it is enough to consider the case y > x:
As above, the Désiré André equation and the changes of variables (7) imply

g�.x; y/ D � .1 � ˛/ c˛;�

�

.y � x/˛�1 �
Z 1

�1
.y � t/˛�1H�

x .dt/

�

D � .1 � ˛/ c˛;� .y � x/˛�1
�

1 � c˛; O�
Z 1

�1
.z � u/˛�1'.u/du

�

with z > x > 1; and we can conclude by Lemma 2.

3.2.2 The Case y < �1

Still using (7), we now have

g�.x; y/ D � .1 � ˛/ c˛; O�
�

.x � y/˛�1 �
Z 1

�1
.t � y/˛�1H�

x .dt/

�

D � .1 � ˛/ c˛; O� .x � y/˛�1
�

1 �
Z 1

�1
.z � u/˛�1'.u/du

�

with z 2 .1; x/; and we again conclude by Lemma 2. ut

3.3 Proof of Part (b) in the Case ˛ > 1

We only consider the case y > x: The case x > y > 1 is obtained by Hunt’s
switching identity and the case y < �1 by analogous computations. Proceeding as
for Eq. (8), we first deduce

g�.x; y/ D � .1�˛/ c˛;�

�

.y � x/˛�1 �
Z 1

�1
.y � t/˛�1H�

x .dt/

�

� � .1�˛/��̨
;�.x/:
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Using Theorem A and the computations of the case ˛ < 1, the expression may be
transformed into

1

� .˛�/� .˛ O�/
	y � x

2


˛�1 Z z

1

 ˛;�.t/ dt

� � .1 � ˛/ ��̨
;�.x/

�

1 � c˛;�

Z 1

�1
.y � t/˛�1 O'.t/dt

�

:

The result follows from the hat version of Lemma 2 and the expression of ��̨
;�.x/:
ut

4 Proof of the Corollaries

4.1 Proof of Corollary 1

By duality, it is enough to consider the case x > y: From Part (a) of Theorem B and
a change of variable, we see that g.x; y/ extends by continuity on the diagonal, with

g.y; y/ D 1

.˛ � 1/� .˛�/� .˛ O�/
�
1 � y2

2

�˛�1
:

Moreover, it is clear that g vanishes on the boundary fjxj D 1g [ fjyj D 1g and is
hence bounded on .�1; 1/ � .�1; 1/: By Proposition VI.4.11, Exercise VI.4.18 and
Formula V.3.16 in [4], we deduce

PxŒTy < T� D g.x; y/

g.y; y/

and the conclusion follows by Theorem B. ut
Remark 6

(a) In the case ˛ � 1; the process L does not hit points, so that the problem is
irrelevant. In general, one can ask for an evaluation of the probabilityPxŒTI < T�
where I is a closed subinterval of .�1; 1/ not containing x; and TI is its first
hitting time. In the transient case ˛ < 1; this problem is solved theoretically as
a particular instance of the so-called condenser problem—see Formula (3.4) in
[8]. It is an interesting open problem to find out an explicit formula in the real
stable framework.

(b) By the Markov property, we can write down the following expression for the
harmonic measure Hfyg

x .dt/ of the set fyg [ Œ�1; 1�c W

Hfyg
x .dt/ D �.x; y/.ıfyg.dt/� Hy.dt// C Hx.dt/: (10)
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In particular, for every x; y 2 .�1; 1/; one has

PxŒLT 2 dt; T < Ty� D Hx.dt/� �.x; y/Hy.dt/:

(c) It is interesting to mention that using the Gauss formula, we can deduce the
asymptotic behaviour of PxŒTy > T� when x ! y; which is fractional. For
instance, if y D 0; one has

PxŒT0 > T� �
x!0C

� .2 � ˛/� .˛�/
� .1 � ˛ O�/ .2x/˛�1

and PxŒT0 > T� �
x!0�

� .2 � ˛/� .˛ O�/
� .1 � ˛�/ j2xj˛�1:

(d) By (2) and spatial homogeneity, it is easy to deduce from Corollary 1 the
following expression of Q�.x; y/ D PxŒTy < �� where � D infft > 0; Lt > 1g W
one finds

Q�.x; y/ D .˛ � 1/
ˇ
ˇ
ˇ
ˇ
x � y

1 � y

ˇ
ˇ
ˇ
ˇ

˛�1 Z
ˇ
ˇ
ˇ 1�x

x�y

ˇ
ˇ
ˇ

0

t˛��1.tC 1/˛ O��1 dt

if x > y; and Q�.x; y/ D OQ�.�x;�y/ if x < y: When y D 0; this is Theorem 1.5
in [13], correcting a misprint (the 1 � 1=x in the second integral should be
�1=x) therein. Notice that Corollary 1.6 in [13] is also analogously recovered
from (10).

4.2 Proof of Corollary 2

By the general theory of Martin boundary—see e.g. Theorem 1 in [11], we need to
compute the Martin kernels

M1.x/ D lim
y!1

g.x; y/

g.0; y/
and M�1.x/ D lim

y!�1
g.x; y/

g.0; y/



Part (a) of Theorem B and a straightforward asymptotic analysis show that these
Martin kernels exist and equal respectively

M1.x/ D .1 � x/˛��1.1C x/˛ O� and M�1.x/ D .1C x/˛ O��1.1 � x/˛�;

whence the result. ut
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5 Final Remarks

In this section, we briefly describe the analogues of the above results in the case of
semi-finite intervals and in the spectrally one-sided situation.

5.1 The Case of Semi-finite Intervals

By scaling and spatial homogeneity, one can deduce from Theorem A—either its
Part (a) or its Part (b)—the following expression of the density of L� under Px;

where x < 1 and � D infft > 0; Lt > 1g: One finds

fL� .y/ D
c˛;�.1 � x/˛�

.y � 1/˛�.y � x/



This expression has been found by several authors and can be obtained in different
ways (see Exercise VIII.3 in [2] and the references therein). Observe that it serves
as a starting formula in [17] in order to prove Part (a) of Theorem A. Notice last
that the expression extends to the case with no negative jumps, by the Skorokhod
continuity argument. In the relevant case with no positive jumps ˛ > 1; � D 1=˛;

the law of L� is a Dirac mass at one.
The Green function is

g� .x; y/ D .y � x/˛�1

� .˛�/� .˛ O�/
Z 1�y

y�x

0

 ˛;�.t/ dt

if x < y < 1 and g� .x; y/ D Og� .y; x/ if y < x < 1: In the case ˛ > 1; the analogue
of Corollary 1 which is already given in Remark 6 (d) above, can then be recovered.
Finally, one finds that the non-negative harmonic functions vanishing on .1;C1/
are of the type


.1 � x/˛� C �.1� x/˛��1

with 
;� � 0; in accordance with Theorem 4 in [18] and the paragraph thereafter.

5.2 The Case of Stable Processes with One-Sided Jumps

By duality, it is enough to consider the two cases ˛ < 1; � D 1 and ˛ > 1; � D 1=˛:
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5.2.1 The Case ˛ < 1; � D 1

It follows readily from the above paragraph that

h.x; y/ D c˛;1.1 � x/˛

.y � 1/˛.y � x/
1fy>1g

for all x 2 .�1; 1/: See also Example 3 in [9] and the references therein for the
expression of the density of .LT�;LT / under Px: Similarly, one has

h�.x; y/ D c˛;1j1C xj˛
.1C y/˛.y � x/

1fjyj<1g

for all x < �1 and h�.x; y/ D 0 for all x > 1: In accordance with the fact that L is a
subordinator, the Green function is

g.x; y/ D .y � x/˛�1

� .˛/
1fx<yg

for all x; y 2 .�1; 1/;

g�.x; y/ D .y � x/˛�1

� .˛/

 

1fx<y<�1g C c˛;1

 Z j1Cxj.y�1/
2

0

t˛�1.1C t/�1 dt

!

1fy>1g

!

for all x < �1; and g�.x; y/ D g.x; y/ for all x > 1: The problem of Corollary 1
is irrelevant. Finally, the non-negative harmonic functions on .�1; 1/ vanishing on
Œ�1; 1�c are constant multiples of .1 � x/˛�1:

5.2.2 The Case ˛ > 1; � D 1=˛

Using Skorokhod continuity in Theorem A (a) and the absence of positive jumps,
one has

Hx.dy/ D c˛;1�1=˛.1 � x/
.1C x/˛�1jyC 1j1�˛

.1 � y/.x � y/
1fy<�1g dy C PxŒT1 < T� ı1.dy/:

Either taking the limit in Remark 6 (d) or integrating the first term, we can compute
the weight of the Dirac mass, and find

Hx.dy/ D c˛;1�1=˛.1 � x/
.1C x/˛�1jyC 1j1�˛

.1 � y/.x � y/
1fy<�1g dy C

�
xC 1
2

�˛�1
ı1.dy/:
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The corresponding Green function is

g.x; y/ D 1

� .˛/

 �
.1 � y/.1C x/

2

�˛�1
� .x � y/˛�11fx>yg

!

:

The hitting probabilities are

PxŒTy < T� D
�
1C x

1C y

�˛�1

for every x � y; which is also a consequence of a well-known result on scale
functions—see e.g. Theorem VII.8 in [2], and

PxŒTy < T� D
�
1C x

1C y

�˛�1
�
�
2.x� y/

1� y2

�˛�1

for every x > y: Finally, the non-negative harmonic functions on .�1; 1/ which
vanish on Œ�1; 1�c are of the type 
.1�x/˛�1.1Cx/˛�2C�.1Cx/˛�1 with 
;� � 0:

It is clear that H�
x .dy/ D ı�1.dy/ for all x < �1: To compute H�

x .dy/ for x > 1;

let us introduce �� D infft > 0; Lt < 1g: The absence of positive jumps and the
formula for semi-finite intervals imply after some computation

H�
x .dy/ D 1fjyj<1gPxŒL�� 2 dy� C PxŒL�� < �1�ı�1.dy/

D c˛;1�1=˛
�
.x � 1/˛�1.1 � y/1�˛

x � y
1fjyj<1gdy

C
 Z x�1

xC1

0

z˛�2.1 � z/1�˛dz

!

ı�1.dy/

!

;

in accordance with Remark 3 in [14]—see also Proposition 1.3 in [13].
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On High Moments of Strongly Diluted Large
Wigner Random Matrices

Oleskiy Khorunzhiy

Abstract We consider a dilute version of the Wigner ensemble of n � n random
real symmetric matrices H.n;�/, where � denotes the average number of non-zero
elements per row. We study the asymptotic properties of the moments M.n;�/

2s D
E Tr.H.n;�//2s in the limit when n, s and � tend to infinity. Our main result is that the
sequence M.n;�n/

2sn
with sn D b��nc, � > 0 and �n D o.n1=5/ is asymptotically

close to a sequence of numbers n Om.�n/
sn , where f Om.�/

s gs�0 are determined by an
explicit recurrence that involves the second and the fourth moments of the random
variables .H.n;�//ij, V2 and V4, respectively. This recurrent relation generalizes
the one that determines the moments of the Wigner’s semicircle law given by
ms D lim�!1 Oms.�/, s 2 N. It shows that the spectral properties of random matrices
at the edge of the limiting spectrum in the asymptotic regime of the strong dilution
essentially differ from those observed in the case of the weak dilution, where the
dependence on the fourth moment V4 does not intervene.

1 Introduction, Main Results and Discussion

Spectral theory of high dimensional random matrices represents an intensively
developing branch of modern mathematical physics that reveals deep links between
probability theory, analysis, combinatorics and other various fields of mathematics
(see monographs [1, 16]). The first studies of spectral properties of random matrices
of infinitely increasing dimensions were started by E. Wigner (see e.g. [25]), where
the ensemble of real symmetric matrices of the form

.A.n//ij D 1p
n

aij (1)

was introduced and the limiting eigenvalue distribution of A.n/, n ! 1 was
determined explicitly. The random matrix entries of A.n/ (1) are given by jointly

O. Khorunzhiy (�)
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independent random variables faij; i � jg that have all moments finite and the odd
moments zero. At present, this ensemble is referred to as the Wigner ensemble
of random matrices. It was proved in [25] that the eigenvalue distribution of A.n/

converges in average as n ! 1 to a non-random limit with the density of the
semi-circle form. At present this convergence is widely known as the semicircle (or
Wigner) law for random matrix ensembles.

The semicircle law was generalized in several directions. One group of gener-
alizations concerns the properties of the probability distributions of elements aij,
another one is related with the studies of the spectral norm of A.n/ and other local
properties of the eigenvalue distribution at the border of the limiting spectrum or
inside of it.

A large number of works is related with various generalizations of the Wigner
ensemble that involve modifications of the random matrix entries. In the present
paper we study one of such generalizations given by the ensemble of dilute random
matrices. We consider a family of real symmetric random matrices fH.n;�/g whose
elements are determined by equality

�
H.n;�/

�
ij
D aij b.n;�/ij ; 1 � i � j � n; (2)

where A D faij; 1 � i � jg is an infinite family of jointly independent identically

distributed random variables and Bn D fb.n;�/ij ; 1 � i � j � ng is a family of jointly
independent between themselves random variables that are also independent from
A. We denote by E D En the mathematical expectation with respect to the measure
P D Pn generated by random variables fA;Bng. We assume that the probability
distribution of random variables aij is symmetric and denote their even moments by

V2l D E.aij/
2l; l D 1; 2; 3; : : :

Random variables b.n;�/ij are proportional to the Bernoulli ones,

b.n;�/ij D 1p
�

(
1 � ıij; with probability �=n;

0; with probability 1 � �=n,
(3)

where ıij D ıi;j is the Kronecker ı-symbol. In the case when the dilution parameter
� is equal to n, one gets the Wigner ensemble of real symmetric random matrices
An (1). Let us note that the random matrix B.n;�/ with the entries

p
� bij (3) can

be regarded as the adjacency matrix of the Erdős-Rényi random graph [3]. In this
interpretation, the dilution parameter � represents the average degree of a given
vertex of the graph.

The initial interest in the dilute versions of Wigner ensemble was motivated by
theoretical physics studies (see for instance, the pioneering works [17, 18] and the
review [14] for more references), where the spectral properties of large systems with
a number of broken interactions were considered. This kind of random matrices is
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also important in the studies of various mathematical models, such as random graphs
[4, 5, 7, 15] and many others.

In the present paper we study the asymptotic behavior of the moments of H.n;�/

given by expression

M.n;�/
2s D E

 
nX

iD1
.H.n;�//2s

ii

!

D E
�

Tr .H.n;�//2s
�
:

The moment method represents an effective tool of the spectral theory. It is used in
the studies of the spectral properties of large random matrices since the pioneering
works of E. Wigner [25]. In particular, the semicircle law was proved initially by
the convergence of the moments M.n;n/

2s in the limit of infinite n and given s. The
principal idea of the Wigner’s approach is to consider the trace of the product of
random matrices as the sum over the family of trajectories of 2s steps and then to
compute the weights of these trajectories given by the mathematical expectation of
the products of corresponding random variables.

The moments M.n;n/
2s of Wigner random matrices A.n/ (1) in the limit n ! 1

with infinitely increasing s D sn were studied in a long series of papers, where the
eigenvalue distribution at the edge of the limiting spectra was studied in more and
more details [2, 7, 8]. The crucial step has been performed in papers [19, 20], where
the original Wigner’s moment method has got a powerful and deep improvement. In
these studies, the Tracy-Widom law for random matrices A.n/ established in the case
of normally distributed entries aij is shown to be true in the general case of arbitrary
probability distribution of aij [21, 24]. This result is obtained by analysis of the high

moments M.n;n/
2sn

in the limit n; sn !1 with sn D O.n2=3/.
The high moments of large dilute random matrices H.n;�n/ (2) were studied in

[10] in the asymptotic regime when � D �n D O.n˛/ with 2=3 < ˛ < 1. It
was proved that the limiting expression of the moments M.n;�n/

2sn
with sn D O.n2=3/

coincides with that of the moments of the Wigner random matrices M.n;n/
2sn

. This fact
can be regarded as an evidence of the universal behavior of the local eigenvalue
statistics for weakly dilute random matrices, i.e. when the dilution parameter � is
sufficiently large. In the present paper we study the opposite asymptotic regime of
strongly dilute random matrices, i.e. when the dilution parameter �n tends to infinity
as n ! 1 but with much lower range than before, �n D O.n˛/ with ˛ < 1=5. We
show that in the limit

n; �n !1; �n D o.n1=5/; sn D b��nc; � > 0; (4)

where bxc is the integer part of x, the limiting expressions of M.n;�n/
2sn

are different
from those obtained for the Wigner random matrix ensemble. This difference is due
to the fact that the leading contribution to the moments M.n;�/

2s in the asymptotic
regime (4) is given by the trajectories that generalize in certain sense the Catalan
numbers that describe the moments of the Wigner ensemble. Up to our knowledge,
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these trajectories of the new type were not considered before. Their combinatorial
properties are of their own interest and this fact has strongly motivated the work
presented. In our studies, in particular, we obtain a number of explicit relations that
were not known in the context of random matrices and plane rooted trees (see, for
example, relation (9) below and formulas (106) and (108) of Sect. 5).

To make more compact the formulas we use, everywhere below we refer to the
limiting transition (4) as .n; s; �/ ! 1. Our main result is given by the following
statement.

Theorem 1 Assume that V2 D 1 and that for all 1 � i � j the random variables aij

are bounded with probability 1,

jaijj � U: (5)

There exists a constant �0 D �0.U/ > 0 such that for any given 0 < � < �0 the
following upper bound holds in the limit (4),

lim sup
.n;s;�/!1

1

nts
M.n;�n/
2sn

� 4e16�V4 ; (6)

where

ts D .2s/Š

sŠ .sC 1/Š ; s D 0; 1; 2; : : : (7)

are the Catalan numbers. The moments M.n;�n/
2sn

are given by the following asymptotic
relation,

M.n;�/
2sn
D n Om.�n/

sn
.1C o.1//; .n; s; �/!1; (8)

where the sequence f Om.�/
s gs�0 is such that its generating function F�.z/ DPs zs Om.�/

s

verifies equation

F�.z/ D 1C z
�
F�.z/

�2 C z2V4
�

�
1

1 � zF�.z/

�4
(9)

with the initial condition Om.�/
0 D 1.

Remarks

1. We restrict the rate of �n by n1=5 (4) not to overload the technical part of
the paper. In fact, it follows from the proof of Theorem 1 that relations (6)
and (8) can be obtained with (4) replaced by the limit �n ! 1 such that
�n D o.n1=2/ (see formula (57) and the discussion below). Moreover, one can
expect that Theorem 1 remains valid in the asymptotic regime when �n D n˛

with 0 < ˛ < 2=3. This asymptotic regime is complementary to the one studied
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in [10]. However, in the present paper we are aimed mostly at the lowest rates
of �n having a particular interest in the asymptotic regime when �n D O.log n/;
n!1.

2. In contrast to the technical restriction (4), it is not clear whether condition (5)
can be essentially relaxed, especially in the case of the asymptotic regime when
�n D O.log n/; n ! 1 and sn D b��nc. However, a part of the estimates that
concerns the tree-type walks can be proved under considerably less restricted
conditions than (5) (see relation (66) of Sect. 4 below).

3. We will show that the numbers Om.�/
s are uniquely determined and verify the

following upper bound [cf. (6)],

1

ts
Om.�/

s � 4e3V4s=�: (10)

Therefore the generating function F�.z/ (9) exists and is bounded in absolute
value for any given � > 0. Then it follows from (9) that the limiting function
f .z/ D lim�!1 F�.z/ exists and verifies the following relation,

f .z/ D 1C z. f .z//2: (11)

This equation has a unique solution that determines the generating function of
the Catalan numbers (7), f .z/ DPk�0 tkzk.

4. Relation (8) can be rewritten in slightly more precise form. We will show that
there exists a constant C > 0 such that the following relation holds

lim sup
.n;s;�/!1

�n

nts

	
M.n;�n/
2sn
� n Om.�n/

sn



� C�e16�V4 (12)

in the limit n; sn; �n ! 1 such that sn D b��nc, 0 < � � �0 and �n D o.n1=6/
(see Sect. 4.2 below). In fact, one can show that the left-hand side of relation (12)
admits the asymptotic expansion in powers of � and that the first terms of this
expansion are given by relation

1

nts
M.n;�/
2s D 1

ts

�

Om.�/
s C

1

�
R.1/s C o.��1/

�

; (13)

where

R.1/s D
4V2

4

�

.2s/Š

.s� 4/Š .sC 4/Š C
V6
�

.2s/Š

.s� 3/Š .sC 3/Š C O.��1/

and s; �!1 are such that s D b��c with � > 0 (see Sect. 5.2).
5. As we will see, the numbers f Om.�/

s gk�0 of (8) can be regarded as a generalization
of the Catalan numbers tk; k � 0 in the following sense. The Catalan number
tk counts the half-plane rooted trees Tk of k edges. Regarding the chronological
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run over Tk, we get a closed walk of 2k steps such that in its graph each edge is
passed two times, in there and back directions. Using this terminology, we can
say that Om.�/

s represents the sum of weighs of all closed walks of 2s steps such
that in their graphs each edge is passed either two or four times when counted
in there and back directions. Also it is shown that in the corresponding graph
the edges passed four times do not share a common vertex (see Sect. 4 for the
rigorous definition of the tree-type .2; 4/�-walks). One of the consequences of
this definition of numbers Om.�/

s is given by the following inequality (see also
formula (105) of Sect. 5 below),

Om.�/
s � ts C V4

�

.2s/Š

.s � 2/Š .sC 2/Š ;

where the last fraction represents the number of closed tree-type walks of 2s
steps such that their graphs contain exactly one edge passed four times. Then in
the limiting transition (4) we get the following lower bound,

lim inf
.n;s;�/!1

1

ts
Om.�/

s � lim inf
.n;s;�/!1

�

1C V4
s.s � 1/
�.sC 2/

�

D 1C �V4: (14)

Let us discuss relations of the results of Theorem 1 with the spectral properties
of large dilute random matrices H.n;�/ (2). Regarding the ordered family of real
eigenvalues of the matrix H.n;�/.!/, 
.n;�/1 .!/ � 
 
 
 � 


.n;�/
n .!/, we denote its

spectral norm by 
.n;�/max .!/,

kH.n;�/.!/k D 
.n;�/max .!/ D maxfj
.n;�/1 .!/j; j
.n;�/n .!/jg:

The well-known analog of the Chebyshev inequality for the deviation probability

P
�

.n;�/max � 2.1C "/

� � 1

.2.1C "//2s
E

0

@
nX

jD1
.

.n;�/
j /2s

1

A D 1

.2.1C "//2s
M.n;�/
2s

(15)

allows us to deduce from estimate (6) the following upper bound valid for all n � n0
with some n0,

P
�

.n;�/max � 2.1C "/

� � 6e16V4�
nts

.2.1C "//2s
:

Applying the Stirling formula to the Catalan numbers ts (7), we get inequality

P
�

.n;�/max � 2.1C "/

� � 4e16V4�
n

s3=2.1C "/2s
: (16)
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Remembering that sn D b��nc, we deduce from (16) that if the sequence .�n/n�1 is
such that �n= log n!1 as n!1, then for any given " > 0

X

n�n0

P
�

.n;�n/

max � 2.1C "/
�
<1: (17)

Relation (17) means that P
	

lim supn!1 

.n;�n/
max � 2



D 1 in this asymptotic regime.

Taking into account the fact that the semicircle law is valid for the eigenvalue
distribution of H.n;�n/ in the limit n; �n ! 1 [14], it is not hard to conclude that
with probability 1,

lim
n!1 kH

.n;�n/k D 2; �n

log n
!1; n!1: (18)

This statement slightly improves our earlier results [13], where the convergence
of 
.n;�n/

max to 2 has been proved in the asymptotic regime when �n D .log n/1Cı
with given ı > 0. Let us note however, that in the present article we prove
Theorem 1 and (18) under condition (5) that is more restrictive than those imposed
in paper [13].

Returning to inequalities (15) and (16), we can rewrite them in the following
form

�n.x/ D P

�


.n;�/max � 2
�

1C x

hn

��

� 4n

s3=2
exp

�

2�

�

8V4 � x�n

hn

��

: (19)

The right-hand side of (19) shows that in the limit of infinite n, the probability to
find eigenvalues of H.n;�n/ outside of the interval .�2.1Cx=hn/; 2.1Cx=hn/ goes to
zero provided hn is much smaller than �n.ln n/�1, i.e. the length of the corresponding
interval is larger than .log n/=�n.

Neglecting the first factor in the right-hand side of (19), we can observe that to
obtain a non-trivial and non-zero limit �n.x/ ! �.x/, it is natural to consider the
scaling parameter hn of the left-hand side of (19) to be of the order O.�n/. This
reasoning could be compared with the result widely known as the Tracy-Widom
distribution for the maximal eigenvalue of Gaussian Unitary (and Orthogonal)
Ensembles of random matrices of the form (1), where the limiting expression of
�n.x/ is explicitly determined with the scaling factor hn D n�2=3 [24] (see also
monograph [1]).

It should be stressed that in papers [21, 22], the existence of a non-trivial non-
zero limit of the moments limn!1 M.n;n/

2sn
D M .�/, sn D b�n2=3c of the Wigner

random matrices An (1) is shown to imply the Tracy-Widom distribution for the
maximal eigenvalue 
max in the case of arbitrarily distributed matrix entries aij.
The limiting expression M .�/ being independent from the particular values of
the moments V2l; l � 2 of aij, the result of [21] means a wide universality of the
Tracy-Widom law for large random matrices. In paper [10] we have proved that
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the same limiting expression M .�/ D limn!1 M.n;�n/
2sn

, sn D b�n2=3c is valid
for the ensemble of dilute random matrices (2) in the asymptotic regime of weak
dilution, �n=n2=3 !1. In contrast, when the dilution becomes moderate, i.e. when
�n D n2=3 with given  > 0, the estimate from below takes the following form (see
[10], Theorem 7.1),

lim inf
n!1 M.n;�n/

2sn
� 4V4

p
��

e�e�3 : (20)

This inequality could be interpreted as an argument to support our earlier conjecture
that the universality of the Tracy-Widom distribution discussed above cannot hold
in the asymptotic regimes of moderate and strong dilution [10]. The fourth moment
V4 enters explicitly into the lower bound (20) while this is not so in the case of non-
diluted or weakly diluted Wigner random matrices according to the statements of
[21, 22].

Returning to the case of the strong dilution when �n D o.n1=5/ (4), we
observe that the difference with respect to the Wigner ensemble becomes even
more striking the sequence M.n;�n/

2sn
=.nts/ diverges as the ratio sn=�n goes to infinity

[see relation (13) and the lower bound (14)]. Moreover, we expect the exponential
divergence of M.n;�n/

2sn
=.nts/ with respect to sn=�n � � as � tends to infinity (see

relations (109) and (110) and their discussion at the end of Sect. 5.2). This behavior
of M.n;�n/

2sn
=.nts/ can be regarded as one more argument to the conjecture that the

scaling parameter hn (19) at the edge of the spectrum of large strongly diluted
random matrices has to be switched from n�2=3 to another value related rather with
��1

n . We postpone the study of this problem to subsequent publications.

2 Trajectories, Walks and Graphical Representations

In this section we describe the main components of the method we develop to study
the high moments of dilute random matrices H.n;�/ (2). In the pioneering works of
E. Wigner (see e.g. [25]), it was proposed to consider the moments M2s of random
matrices as a weighted sum over paths of 2s steps. In the case of dilute random
matrices, we can write that

M.n;�/
2s D

nX

iD1
E
�
H.n;�/

�2s

ii
D

X

I2s2I2s.n/

˘a;b.I2s/ D
X

I2s2I2s.n/

˘a.I2s/˘b.I2s/;

(21)

where the sequence I2s D .i0; i1; : : : ; i2s�1; i0/; ik 2 f1; 2; : : : ; ng is regarded as a
closed path of 2s steps .it�1; it/ with the discrete time t 2 Œ0; 2s�. We will also say
that I2s is a trajectory of 2s steps. The set of all possible trajectories of 2s steps over
f1; : : : ; ng is denoted by I2s.n/. The weights˘a.I2s/ and˘b.I2s/ are determined as
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the mathematical expectations of the products of corresponding random variables,

˘a.I2s/ D E .ai0i1 
 
 
 ai2s�1i0 / ; ˘b.I2s/ D E .bi0i1 
 
 
 bi2s�1i0 / : (22)

Here and below, we omit the superscripts in b.n;�/ij when no confusion can arise.
In papers [19, 20] a deep and powerful generalization of the E. Wigner’s approach

was proposed by Ya. Sinai and A. Soshnikov to study the high moments of random
matrices. Somehow different point of view has been developed to consider the
ensembles of dilute random matrices [10, 11, 13]. The difference between these
two approaches is related with the fact that the leading contribution to the moments
M.n;�/
2s of the dilute random matrices H.n;�/ (2) can be given by those trajectories I2s

that have a vanishing weight in the case of non-diluted Wigner random matrices
An (1) studied in [19, 20]. In the first part of the present paper we use a combination
of these two approaches to study the terms that determine the vanishing contribution
to the moments of strongly diluted random matrices (see Sect. 3). On the second
stage we develop a new method that allows us to prove that in the limit of infinitely
increasing dimension, the non-zero contribution to the moments M.n;�/

2s is given by
a new kind of tree-type walks such that their weight contains the factors V2 and V4
only (see Sect. 4). We refer to this kind of walks as to (2,4)-walks. To determine
rigorously the corresponding classes of trajectories, we need to describe briefly the
fundamental notions of the methods developed in papers mentioned above.

Regarding a trajectory I2s, one can determine a walk

W2s D W
.I2s/
2s D fW .t/; t 2 Œ0; 2s�g; where Œ0; 2s� D f0; 1; 2; : : : ; 2sg;

that we define as a sequence of 2s C 1 symbols (or equivalently, letters) from an
ordered alphabet, say A D f˛1; ˛2; : : : g. The walk W

.I2s/
2s is constructed with the

help of the following rules of recurrence [11]. Given a trajectory I2s, we write that
I2s.t/ D it, t 2 Œ0; 2s� and consider a subset U.I2sI t/ D fI2s.t0/; 0 � t0 � tg �
f1; 2; : : : ; ng. We denote by jU.I2sI t/j its cardinality. Then

1. W2s.0/ D ˛1;
2. if I2s.tC 1/ … U.I2sI t/, then W2s.tC 1/ D ˛jU.I2sIt/jC1;

if there exists t0 � t such that I2s.tC 1/ D I2s.t0/, then W2s.tC 1/ D W2s.t0/.
For example, I16 D .5; 2; 7; 9; 7; 1; 5; 2; 7; 9; 7; 2; 7; 2; 7; 1; 5/produces the walk

W16 D .˛1; ˛2; ˛3; ˛4; ˛3; ˛5; ˛1; ˛2; ˛3; ˛4; ˛3; ˛2; ˛3; ˛2; ˛3; ˛5; ˛1/: (23)

We say that the pair .W2s.t � 1/;W2s.t// represents the tth step of the walk W2s and
that ˛1 represents the root of the walk W2s.
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Taking two trajectories I 0
2s and I 00

2s such that W
.I 0

2s/

2s D W
.I 00

2s/

2s D W2s, we say
that they are equivalent, I 0

2s � I 00
2s. We denote by CW2s the corresponding class of

equivalence. It is clear that

jCW2s j D n.n� 1/ 
 
 
 .n � jU.I2sI 2s/j C 1/: (24)

Given W2s, one can introduce a graphical representation g.W2s/ D .Vg;Eg/

that can be considered as a kind of multigraph with the set of vertices Vg D
f˛1; : : : ; ˛jU.I2sI2s/jg and the set Eg of 2s oriented edges (or equivalently, arcs)
labelled by t 2 f1; : : : ; 2sg. To describe the properties of g.W2s/ in general
situations, we will use the Greek letters ˛; ˇ; �; : : : instead of the symbols from
A . In this case, the root of the walk will be denoted by %. In what follows, we refer
to g.W2s/ simply as to the graph of the walk W2s. If W2s.t/ D � , we say that � is the
value of the walk W2s at the instant of time t.

Let us define the current multiplicity of the couple of vertices fˇ; �g, ˇ; � 2 Vg

up to the instant t by the following variable

m
.fˇ;�g/
W .t/ D #ft0 2 Œ1; t� W

.W2s.t
0 � 1/;W2s.t

0// D .ˇ; �/ or .W2s.t
0 � 1/;W2s.t

0// D .�; ˇ/g

and say that m.fˇ;�g/
W .2s/ represents the total multiplicity of the couple fˇ; �g.

The probability law of aij being symmetric, the weight of I2s (22) is non-zero

if and only if I2s is such that in the corresponding graph of the walk W .I2s/
2s each

couple f˛; ˇg has an even multiplicity m
.f˛;ˇg/
W .2s/ D 0.mod 2/. We refer to the

walks of such trajectories as to the even closed walks [19] and denote by W2s the set
of all possible even closed walks of 2s steps. In what follows, we consider the even
closed walks only and refer to them simply as to the walks.

It is natural to say that the pair .W2s.t � 1/;W2s.t// D st represents the step of
the walk number t. Given W2s 2 W2s, we say that the instant of time t is marked
[19] if the couple f˛; ˇg D fW2s.t � 1/;W2s.t/g has an odd current multiplicity
m
.f˛;ˇg/
W .t/ D 1.mod 2/. We also say that the corresponding step st and the edge et

of g.W2s/ are marked. All other steps and edges are called the non-marked ones.
Regarding a collection of the marked edges NEg of g.W2s/, we consider a multigraph
Ngs D . NVg; NEg/. Clearly, NVg D Vg and j NEgj D s. It is useful to keep the time labels
of the edges NEg as they are in Eg. Given two edges e0 D et0 and e00 D et00 such that
t0 < t00, we write that e0 < e00. Sometimes we denote t0 D t.e0/.

In general, Ng.W2s/ is a multigraph with multiple edges. Replacing the multiple
edge by a simple one, we get a new graph that we refer to as the skeleton SNg of the
graph Ng.

Any even closed walk W2s 2 W2s generates a sequence �2s of s marked and
s non-marked instants. Corresponding sequence of 2s signs C and � is known to
encode a Dyck path of 2s steps [23]. We denote by �2s D �.W2s/ the Dyck path of
W2s and say that �.W2s/ represents the Dyck structure of W2s.
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Let us denote by �2s the set of all Dyck paths of 2s steps. It is known that �2s

is in one-by-one correspondence with the set of all half-plane rooted trees Ts 2 Ts

constructed with the help of s edges [23]. The correspondence between �2s and Ts

can be established with the help of the chronological run R over the edges of Ts.
It is known that the cardinalities of Ts, s D 0; 1; 2; : : : are given by the Catalan
numbers, jTsj D ts (7). We refer to the elements of Ts as to the Catalan trees. We
consider the edges of the tree Ts as the oriented ones in the direction away from the
root of Ts.

Given a Catalan tree Ts 2 Ts, one can label its vertices with the help of letters
of A according to RT . The root vertex gets the label ˛1 and each new vertex that
has no label is labelled by the next in turn letter. We denote the walk obtained by

ı
W 2sŒTs� and the corresponding Dyck path �2s D �.

ı
W 2s/ will be denoted also as

�2s D �.Ts/.
Any Dyck path �2s generates a sequence .�1; �2; : : : ; �s/, �i 2 f1; 2; : : : ; 2s � 1g

such that each step s�i , 1 � i � s of
ı
W 2sŒ�2s� is marked. We denote this sequence

by �s D �.�2s/. Given �s and � 2 Œ1; s�, one can uniquely reconstruct �2s and find
corresponding instant of time �� 2 f1; : : : ; 2s � 1g. We will say that the interval
Œ1; s� represents the �-marked instants or instants of marked time that varies from
1 to s; sometimes we will simply say that � 2 Œ1; s� is the marked instant when no
confusion can arise.

Given a walk W2s and a letter ˇ such that ˇ 2 Vg.W2s/, we say that the instant of
time t0 such that W2s.t0/ D ˇ represents an arrival a at ˇ. If t0 is marked, we will say
that the corresponding arrival a.ˇ/ is the marked arrival at ˇ. In W2s, there can be
several marked arrival instants of time at ˇ that we denote by 1 � t.ˇ/1 < 
 
 
 < t.ˇ/N .
For any non-root vertex ˇ, we have N D Nˇ � 1. The first arrival instant of time
ˇ is always the marked one. We can say that ˇ is created at this instant of time. To
unify the description, we assume that the root vertex % is created at the zero instant
of time t.�/1 D 0 and add the corresponding zero marked instant to the list of the
marked arrival instants at %.

If Nˇ � 2, then we say that the N-plet .t.ˇ/1 ; : : : ; t.ˇ/N / of marked arrival instants of
time represents the self-intersection of W2s, ˇ is the vertex of self-intersection, and
this self-intersection is of the degree N [19]. We say that the self-intersection degree
~.ˇ/ is equal to N and denote this by ~.ˇ/ D Nˇ. If Nˇ D 1, then we will say that
~.ˇ/ D 1.

Finally, let us consider a vertex ˇ and a collection of the marked edges of the
form .ˇ; ˛i/. We say that this collection is the exit cluster of ˇ and denote it by
�.ˇ/,

�.ˇ/ D �W .ˇ/ D fe 2 NE.W2s/ W e D .ˇ; ˛i/g: (25)

Sometimes we will say that �.ˇ/ is given by the collection of corresponding
vertices ˛i.
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Given W2s, we can say that it is of the tree-type structure if the skeleton SNg of
g.W2s/ is a tree. Regarding a walk of the tree-type structure OW2s, we will say that it
is a (2,4)-walk if the weight of the corresponding trajectory ˘.I2s/ (22) contains
the factors V2 and V4 only. If the (2,4)-walk is such that in its graph the multiple
edges passed four times have no vertices in common, we will say that this walk is
the .2; 4/�-walk.

To complete this section, let us note that the number of the tree-type walks of 2s
steps whose weight contains the factor Vs

2 is given by the Catalan numbers ts (7). It
follows from (7) that these numbers verify the following recurrent relation

tk D
k�1X

jD0
tk�1�j tj; k � 1 (26)

with the initial condition t0 D 1. As a by-product of the studies of the .2; 4/-walks,
we find a number of generalizations of relations (7) and (26).

3 Walks of Non-tree Type

Given a walk W2s with Ng.W2s/ D .Vg; NEg/, let us consider two arbitrary vertices
˛; ˇ 2 Vg. We denote by Ef˛;ˇg the collection of all edges .˛; ˇ/ 2 NE.W2s/ and
.ˇ; ˛/ 2 NE.W2s/ and determine the minimal edge Qe D minfe W e 2 Ef˛;ˇgg. Let
us assume that Ef˛;ˇg is non-empty and that Qe D .˛; ˇ/. If the multi-edge Ef˛;ˇg
contains the edge e1 of the first arrival at ˇ, e1 D e.a1.ˇ//, then Qe D e1 and we say
that this edge Qe D .˛; ˇ/ creates ˇ and that Qe is the base edge of ˇ or simply the
base edge.

3.1 Classification of Vertices and Weights of Walks

Let us consider the edge of the second arrival at ˇ, e2 D e.a2.ˇ//. If e2 D .˛; ˇ/,
then we color it in green and say that ˇ is the green p-vertex.

Let us consider the edge e2 D e.a2/ D .�; ˇ/ of the second arrival at ˇ such that
� ¤ ˇ. If e2 is the minimal edge of the multi-edge Efˇ;�g, then we say that ˇ is the
blue r-vertex and color e2 in blue.

Let us consider the case when Qe D minfe W e 2 Ef�;ˇgg D .ˇ; �/. If Qe is the edge
of the first or the second arrival at � , Qe D ai.�/ with i D 1 or i D 2, then we color
e2 D .�; ˇ/ in red and say that ˇ is the red q-vertex. If Qe D aj.�/ with j � 3, then
we color e2 D .�; ˇ/ in blue and consider ˇ as the blue r-vertex.

It is not hard to see that all edges of the second arrival to one or another vertex
are colored and that their colors are uniquely determined. All remaining edges of
Ng.W2s/ that are not the base or the color ones are referred as to the grey u-edges.
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Lemma 1 Let I2s be such that the graph of its walk W2s D W .I2s/ contains r
blue r-vertices, p green p-vertices, q red q-vertices. Also we assume that Ng.W2s/ has
u grey u-edges. Then the weight of I2s (22) is bounded as follows

˘a.I2s/˘b.I2s/ D ˘a.W2s/˘b.W2s/ �
�

V2
2

n2

�r �
V2U2

n�

�pCq

�
�

U2

�

�u �
V2
n

�s�u�2.rCpCq/

: (27)

Remark 1 To make the statements of the present section and their proofs clearer,
we keep the factors V2 as they are remembering that V2 D 1.

Proof The weight of the walk ˘a;b.W2s/ D ˘a.W2s/˘b.W2s/ is given by the
product of weights of all existing multi-edges ˘a;b.Efı;�g/. It is easy to see that
the weight of the multi-edge can be estimated from above as follows,

˘a;b.Efı;�g/ �
�

V2
n

�Ib;r
�

U2

�

�Ir;pCIqCu.E /

;

where Ib;r D 1 if the minimal edge Qe of Efı;�g is either the base one or the blue
one and zero otherwise, Ir;p is equal to one if Efı;�g contains a green edge and zero
otherwise, Iq is equal to one if Efı;�g contains a red edge and zero otherwise and
u.E / D u.Efı;�g/ represents the number of the grey edges in Efı;�g. Due to this
factorized upper bound, the weight of the walk can be estimated by the product of
factors V2=n and U2=� that can be rearranged into the product with respect to all
vertices of the graph g.W2s/. This can be done by attributing the weights V2=n to all
base and blue edges of the graph Ng.W2s/ and the weights U2=� to all green, red and
grey edges of Ng.W2s/ and by attributing to each vertex ˇ the product of weights of
all edges that enter ˇ. It is clear that any color vertex has exactly one edge of the
second arrival that is of the same color as the vertex. This observation completes the
proof of Lemma 1. ut

3.2 Tree-Type Walks and Walks of Non-tree Type

Given a walk W2s, we can say that is it a tree-type walk if its graph Ng.W2s/ does not
contain any blue r-vertex. We denote by OW2s a collection of tree-type walks. If W2s

is such that its graph Ng.W2s/ contains at least one blue r-vertex, then we say that W2s

is of non-tree type. We denote a collection of all non-tree-type walks by QW2s.
The following simple statement plays an important role in our studies.

Lemma 2 If W2s is such that its graphical representation g.W2s/ has at least one
red q-vertex, then g.W2s/ contains at least one blue r-vertex and therefore is of non-
tree type.
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We prove Lemma 2 in Sect. 5. Regarding the example walk W16 (23), we see
that its graphical presentation contains two vertices of the self-intersection degree
2 (these are ˛1 and ˛4) and one vertex ˛2 of the self-intersection degree 3. Among
vertices of Ng.W16/, there is one p-vertex ˛4 and one q-vertex ˛2. The root vertex ˛1
has one blue edge of the (mute) first arrival and one blue edge e.6/ of the second
distinct arrival. So, the root vertex ˛1 is the blue r-vertex and W16 is of non-tree
type.

According to definitions of the tree-type and non-tree type walks, we can rewrite
relation (21) in the form

M.n;�/
2s D QZ .n;�/

2s C OZ .n;�/
2s ; (28)

where

QZ .n;�/
2s D

X

I2sW W .I2s/2 QW2s

˘a.I2s/˘b.I2s/

and

OZ 2s.n; �/ D
X

I2sW W .I2s/2 OW2s

˘a.I2s/˘b.I2s/:

The following statements represents the main technical result of this section.

Theorem 2 Under conditions of Theorem 1, the following relation holds

QZ2sn.n; �/ D O

�

ntsnVsn
2

s5n
n

�

; .n; s; �/!1: (29)

Remark Observing that all terms of the right-hand side of the definition of OZ .n;�/
2s

are non-negative, we conclude that OZ 2s.n; �/ � ntsVs
2 D nts. Therefore relation (29)

implies the asymptotic estimate

QZ2s.n; �/ D o. OZ 2s.n; �//; .n; s; �/!1: (30)

We prove Theorem 2 in Sect. 3.5 below. In Sects. 3.3 and 3.4 we formulate
necessary notions and auxiliary statements.

3.3 Diagrams G .c/. N	/ and Their Realizations

Each walk W2s generates a set of numerical data, N� D .�2; �3; : : : ; �s/, where �k is
the number of vertices ˇi of Ng.W2s/ such that their self-intersection degree is equal
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to k, ~.ˇi/ D k. To estimate the number of elements of the set QW2s, we construct a
kind of diagrams G .c/. N�/.

To explain general principles of the estimates, let us start with the construction
of non-colored diagram G . N�/. This diagram consists of j N�j DPs

kD2 �k vertices. We
arrange these vertices in s � 1 levels, the kth level contains �k vertices. Each vertex
v of kth level is attributed by k half-edges that have heads attached to v but have no
tails. Instead of the tail of each edge, we join a square box (or window) to it. Then
any vertex v of this kth level has k edge-boxes (or edge-windows) attached.

Given G . N�/, one can attribute to its edge-windows the values from the set
f1; 2; : : : ; sg such that there is no pair of windows with the same value. The diagram
together with the corresponding values produces a realization of G . N�/ that we
denote by hG . N�/is.

One of the principal components of the Sinai-Soshnikov method is given by the
observation that an even closed walk W2s can be completely determined by its values
at the marked instant of time added by a family of rules that indicate the values of
the walk at the non-marked instant of time. Given Dyck path �s and a realization
hG . N�/is, the positions of the walk at the marked instants of time are completely
determined.

The values at the non-marked instant of time are determined by a family of rules
Y. N�/ that indicate the way to leave a vertex ˇ of self-intersection with the help of
the non-marked step out. It is shown in [19, 20] that if ~.ˇ/ D k, then the number
of the exit rules at this vertex is bounded as follows, jY.ˇ/j � .2k/k. An additional
proof of this upper bound was given in [9, 12]. No such rule as � is needed for the
non-marked instants of time when the walk leaves a vertex of the self-intersection
degree 1 because in this case the continuation of the run is uniquely determined.
Then the total number of the rules can be estimated as follows,

jY. N�/j �
sY

kD2
.2k/k�k : (31)

The number of all possible realizations of G . N�/ is given by the following
expression

X

hG .N�/is

1 D sŠ

�2Š.2Š/�2 �3Š.3Š/�3 
 
 
 �sŠ.sŠ/�s .s � kN�k/Š ;

where kN�k DPs
kD2 k�k. It is easy to see that the following upper bound is true,

X

hG .N�/is

1 �
sY

kD2

1

�kŠ

�
sk

kŠ

��k

:
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Combining this inequality with (31), we conclude that the number of elements in
W2s. N�/ can be estimated as follows,

jW2sj � ts

sY

kD2

1

�kŠ

�
.2k/k sk

kŠ

��k

� ts

sY

kD2

.C1s/k�k

�kŠ
; where C1D sup

k�1
.2kC 2/
.kŠ/1=.kC1/ :

(32)

We have introduced the constant C1 in the form that simplifies further computations.
The upper bound (32) clearly explains the role of the diagrams G . N�/ in the

estimates of the number of walks. However, it is rather rough and does not
give inequalities needed in the majority of cases of interest. In particular, the
estimate (32) is hardly compatible with the upper bound of the weight of walks (27)
in the case of dilute random matrices.

To improve the upper bound (32), we adapt the diagram technique to our model
by introducing more informative diagrams based on G . N�/. Also, we formulate a new
filtering principle to estimate more accurately the number of walks. A kind of the
filtration principle has been implicitly used already by Ya. Sinai and A. Soshnikov.
The rigorous formulation of the filtration technique is given in [9]. In paper [10] it
was adapted to the study of the moments of dilute random matrices.

Let us describe the construction of the color diagram G .c/. N�; Np; Nq/ determined by
parameters N� D .�2; : : : ; �s/, Np D . p2; : : : ; ps/ and Nq D .q2; : : : ; qs/. We start with
the non-colored diagram G . N�/ and consider �k vertices of the kth level of it. We fill
the second edge-box attached to each vertex by using the set f1; : : : ; sg. This can be
done by

sŠ

�kŠ.s � �k/Š
� s�k

�kŠ
D srkCpkCqk

�kŠ
(33)

ways. Then we color the �k vertices in blue, red and green colors by one of �kŠ
rkŠ pk Š qkŠ

ways, where rk D �k � pk � qk. Then we color corresponding edge-boxes in grey,
blue, red and green colors. The base edge-boxes of the first arrivals attached to blue
vertices are colored in blue. Instead of boxes, the base edges of the red and green
vertices get circles colored with respect to the color of the corresponding vertex.

Taking the empty k � 2 edge-boxes attached to green or red vertex, we fill them
with the values from the set f1; : : : ; sg. This can be done by not more than sk�2=.k�
2/Š ways. Regarding the edges of the first arrivals at red and green vertices that
remain empty, we replace corresponding boxes by circles colored according to the
color of the vertex.

Let us consider k�1 empty edge-boxes attached to a blue vertex and fill them with
the values from f1; : : : ; sg. Ignoring the restriction of the edge-box of the second
arrival, we estimate the number of ways to do this by expression sk�1=.k � 1/Š.
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This procedure being performed at each level independently, we get the following
estimate from above of the number of different realizations of color diagrams,

X

hG .c/.N�;Np;Nq/is

1 �
sY

kD2

1

rkŠ

�
sk

.k � 1/Š
�rk 1

pkŠ

�
sk�1

.k � 2/Š
�pk 1

qkŠ

�
sk�1

.k � 2/Š
�qk

:

(34)

The filtration procedure is follows: we consider a realization of the color diagram
hG .c/is such that all grey, blue, red and green boxes of edge-windows of G .c/ are
filled with different values of f1; : : : ; sg while the red and green circles of the first
arrivals at the q-vertices and p-vertices remain empty.

Having a Dyck path �s and a rule � 2 Y. N�/ pointed out, we start the run of the
walk W according �s, hG .c/is and � till the marked instant of the first p-edge or
q-edge appear. Let us denote by v0 the corresponding vertex of the diagram G .c/.
Let us denote the marked instant mentioned above by � 0 with t0 D �� 0 and assume
that the sub-walk WŒ0;t0�1� get its end value ˇ D WŒ0;t0�1�.t0 � 1/. Then at the instant
of time t0 the walk has to choose one of the admissible vertices from the set � D
f�1; : : : ; �Lg such that the edge .ˇ; �j/ possesses the properties of either p-edge or
q-edge, respectively. Clearly, the set � depends on the color of the edge-box with
� 0. Once the vertex �j is chosen, we take the marked instant of the first arrival at �j

and record its value to the edge-box of the first arrival O1.v0/. Clearly, the number
of walk is bounded by j� j. This is why it is natural to say that we apply the filtering
of all possible values to fill O1.v0/.

Having chosen the value of O1, we continue the run of the walk, if it is possible,
till the marked value of the second arrival at the next in turn red or green vertex v00 is
seen. Then the filtering procedure is repeated. When all the walk is constructed, if it
exists, we denote by hhG .c/i.b/s iW the set of values in red and green circles obtained
during this run of W .

Lemma 3 Given a realization of a color diagram hG .c/. N�; Np; Nq/is, let us denote by
W2s.D; hG .c/. N�; Np; Nq/is; � / the set of walks W2s that have this realization of G .c/ and
follow the rule � and such that the maximal exit degree

D.W2s/ D max
ˇ2V.W2s/

j�.ˇ/j

is equal to D, D.W2s/ D D. Then the number of possible realizations of the values
of red and green circles of G .c/ admits the following upper bound,

jhhG .c/isiW j � 2jNqj DjNpj; (35)

where jNqj DPs
kD2 qk and jNpj DPs

kD2 pk and therefore

jW2s.D; hG .c/. N�; Np; Nq/is; � /j � 2jNqj DjNpj ts: (36)
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Proof First let us prove (36) in the case when the color diagram G .c/ has one red
vertex v and no the green ones. Following the filtration principle, we take a Dyck
path �s and perform the run of the walk in accordance with the data given by the
self-intersections of hG .c/. N�; Np; Nq/i.b/s and � till the value �� 0 appear, where � 0 is
attributed to the second arrival edge-box attached to v. By the definition, the edge
.W .�� 0 � 1/;W .�� 0 � 1// D .ˇ; �/ D e is red only in the case when the edge
Qe D .�; ˇ/ is the edge either of the first or the second arrival at � and Qe < e.
Therefore the sub-walk WŒ0;�� 0 �1� has not more that two vertices available to join at
the instant �� 0 . This explains the factor 2 in the left-hand side of (35).

In the case when v is the one green vertex and no the red ones, the sub-walk
WŒ0;�� 0 �1� has the set �.ˇ/ completely determined, and the vertex to join at the
instant �� 0 necessarily belongs to this set. This gives the factor D in the upper
bound (35).

It is clear that the general case can be treated by the same reasoning and the upper
bound (36) can be proved by recurrence. This observation completes the proof of
Lemma 3. ut

Now we can estimate the number of walks that have a color diagram G .c/. N�; Np; Nq/
and the maximal exit degree D,

jW2s.D;G
.c/. N�; Np; Nq//j � ts

sY

kD2

.C1s/krk

rkŠ

�
D.C1s/k�1�pk

pkŠ

�
2.C1s/k�1�qk

qkŠ
: (37)

This relation follows from inequalities (31), (34) and (36).
We will use Lemma 3 and a version of relation (37) in the proof of Theorem 2

below. However, to get the estimates we need, we have to show that the number of
Catalan trees Ts generated by the elements of W2s.D;G .c// is exponentially small
with respect to the total number ts of all Ts [20, 21]. To do this, we need to study
the vertex of maximal exit degree of walks W2s in more details.

3.4 Vertex of Maximal Exit Degree, Arrival Cells
and BTS-Instants

Let us consider a walk W2s and find the first letter that we denote by M̌ such that

j�. M̌/j D D.W2s/: (38)

We will refer to M̌ as to the vertex of maximal exit degree and denote for simplicity
D D D.W2s/. To classify the arrival instants at M̌, we need to determine reduction
procedures similar to those considered in [12] and further modified in [10]. Certain
elements of the reduction procedure of [12] were independently introduced in
paper [6].
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3.4.1 Reduction Procedures and Reduced Sub-walks

Given W2s, let t0 be the minimal instant of time such that

(i) the step st0 is the marked step of W2s;
(ii) the consecutive to st0 step st0C1 is non-marked;

(iii) W2s.t0 � 1/ D W2s.t0 C 1/.
If such t0 exists, we apply to the ensemble of steps S D fst; 1 � t � 2s; st 2 W2sg a
reduction PR that removes from S two consecutive elements st0 and st0C1; we denote
PR.S/ D S0. The ordering time labels of elements of S0 are inherited from those

of S.
The new sequenceS0 can be regarded again as an even closed walk. We can apply

to this new walk the reduction procedure PR. Repeating this operation maximally
possible number of times m, we get the walk

PW2Ps D . PR/m.W2s/; Ps D s� m;

that we refer to as the strongly reduced walk. We denote PS D . PR/m.S/ and say that
PR is the strong reduction procedure.

We introduce a weak reduction procedure MR of S that removes from S2s the pair
.st0 ; st0C1/ in the case when the conditions (i)–(iii) are verified and

(iv) W2s.t0/ ¤ M̌.
We denote by

MW2Ms D . MR/l.W2s/; Ms D s � l (39)

the result of the action of maximally possible number of consecutive weak
reductions MR and denote MS D . MR/l.S/. In what follows, we sometimes omit the
subscripts 2Ps and 2Ms. Regarding the example walk W16 (23), we observe that M̌ D ˛3
and that the strongly and weakly reduced walks coincide and are as follows,

PW8 D MW8 D .˛1; ˛2; ˛3; ˛5; ˛1; ˛2; ˛3; ˛5; ˛1/:

Taking the difference MS n PS D RS, we see that it represents a collection of sub-
walks, RW D [j

RW . j/. Each sub-walk RW . j/ can be reduced by a sequence of the
strong reduction procedures PR to an empty walk. We say that RW . j/ is of the Dyck-
type structure. It is easy to see that any RW . j/ starts by a marked step and ends by a
non-marked steps and there is no steps of PW between these two steps of RW . j/. We
say that RW . j/ is the non-split sub-walk.
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It is not hard to see that the collection of steps LS D Sn MS is given by a collection
of subsets LS D [k LS.k/, each of LS.k/ represents a non-split Dyck-type sub-walk
LW .k/,

LW D [k
LW .k/: (40)

In this definition, we assume that each sub-walk LW .k/ is maximal by its length.

3.4.2 Arrival Instants and Dyck-Type Sub-walks Attached to M̌

Given W2s, let us consider the instants of time 0 � t1 < t2 < : : : tR � 2s such that
for all i D 1; : : : ;R the walk arrives at M̌ by the steps of MW2Ms,

W2s.ti/ D M̌ and sti 2 MW2Ms; i D 1; 2; : : : ;R: (41)

We say that ti are the Mt-arrival instants of time of W2s. Let us consider a sub-walk
that corresponds to the subset SŒtiC1;tiC1� D fst; ti C 1 � t � tiC1g � S; we denote
this sub-walk by WŒti ;tiC1�. In general, we denote a sub-walk that is not necessary
even and/or closed by WŒt0;t00 � also.

Let us consider the interval of time Œti C 1; tiC1 � 1� between two consecutive
Mt-arrivals at M̌. It can happen that W2s arrives at M̌ at some instants of time t0 2
Œti C 1; tiC1 � 1�, W2s.t0/ D M̌. We denote by Lt.i/ the maximal value of such t0.

Lemma 4 The sub-walk WŒti;Lt.i/� coincides with one of the maximal Dyck-type sub-

walks LW .k0/ of (40).

Lemma 4 is proved in [10].
Let us consider a collection of all marked exit edges from M̌ performed by the

marked steps on the interval of time Œti; Qt.i/� and denote this collection by L�i. We say

that L�j represents the exit sub-clusters of Dyck type attached to M̌. Or simply that
L�j are the exit sub-clusters of W2s. We denote their cardinalities by dj D j L�jj. The

exit sub-clusters are ordered in natural way. To keep a unified description, we accept
the existence of empty exit sub-clusters; then we get equality D DPR

jD1 dj; dj � 0.
Clearly, any exit sub-cluster is attributed to a uniquely determined Mt-arrival instant
at M̌.

Regarding the reduced walk MW2Ms of W2s (39), we can determine corresponding
Dyck path M�2Ms D �. MW2Ms/ and the tree MTMs D T . M�/. It is easy to show that MTMs is
a sub-tree of the original tree Ts D T .�.W2s//. One can introduce the difference
LT D TsŸ MTMs and say that it is represented by a collection of sub-trees LT . j/.

Returning to the Catalan tree T .�2s/, let us consider the chronological run over
it that we denote by RT . Then the Mt-arrival instant tl (41) determines the step $l of
RT . Also the corresponding vertex L#l of the tree Ts is determined. It is clear that L#l

are not necessarily different for different l.
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The sub-trees LT .l/ are attached to L#l and the chronological run over LT .l/ starts
immediately after the step $l is performed. We will say that these steps $l, 1 �
l � R represent the nest cells from where the sub-trees LT .l/, 1 � l � L grow. It
is clear that the sub-tree Tl has dl � 0 edges attached to its root %l and this root
coincides with the vertex L#l. Returning to W2s, we will say that the arrival instants
of time Mtl represent the arrival cells at M̌. In the next sub-section, we describe a
classification of the arrival cells at M̌ that represents a natural improvement of the
approach proposed in [12].

3.4.3 Classification of Arrival Cells at M̌

Let us consider a walk W2s together with its reduces counterparts PW2Ps D PW and
MW2Ms D MW . Let ti denote a Mt-arrival cell (30). If the step sti of W2s is marked, then

we say that ti represents a proper cell at M̌. If the step sti is non-marked and sti 2RW D MW n PW , then we say that ti represents a mirror cell at M̌. If the step sti 2 PW is
non-marked, then we say that ti represents an imported cell at M̌.

Let us consider I proper cells Rti such that sRti belongs to RS. We denote by xi the
corresponding marked instants, xi D �Rti , 1 � i � I and write that NxI D .x1; : : : ; xI/.
It is easy to see that each proper cell xi can be attributed by a number 1 or 0 in
dependence of whether it produces a corresponding mirror cell at M̌ or not. We
denote this number by mi 2 f0; 1g and write that

M D
IX

iD1
mi

and NmI D .m1; : : : ;mI/. Clearly, M � I.
Regarding the strongly reduced walk PW2Ps, we denote by Ptk the proper cells such

that the steps sPtk 2 PS. Corresponding to Ptk marked instants will be denoted by zk,

1 � k � K. Then NzK D .z1; : : : ; zK/ and the total self-intersection degree of M̌ is
~. M̌/ D I C K.

Given W2s with non-empty set PS, there exists at least one pair of elements of PS
denoted by .s0; s00/ such that s0 is a marked step of PW2Ps, s00 is the non-marked one
and s00 follows immediately after s0 in PS. We refer to each pair of this kind as to the
pair of broken tree structure steps of W2s or in abbreviated form, the BTS-pair of
W2s. If � 0 is the marked instant that corresponds to s0, we will simply say that � 0 is
the BTS-instant of W2s [12].

Regarding the strongly reduced walk PW , let us consider a non-marked arrival
step at M̌ that we denote by Ns D sNt. Then one can find a uniquely determined marked
instant � 0 such that all steps st 2 PS with �� 0 C 1 � t � Nt are the non-marked ones.
Let us denote by t00 the instant of time of the first non-marked step sNt00 2 OS of this
series of non-marked steps. Then .st0 ; st00/ with t0 D �� 0 is the BTS-pair of W2s that
corresponds to Nt. We will say that Nt is attributed to the corresponding BTS-instant � 0.



368 O. Khorunzhiy

It can happen that several arrival instants Nti are attributed to the same BTS-instant
� 0. We will also say that the BTS-instant � 0 generates the imported cells that are
attributed to it.

Let us consider a BTS-instant � such that W2s.�� / D M̌. As it is said above,
there are K such marked instants denoted by zk, 1 � k � K. We refer to such
BTS-instants as to the local ones. Assuming that a marked BTS-instant zk generates
f 0
k � 0 imported cells, we denote by '.k/1 ; : : : ; '

.k/
f 0

k
the positive numbers such that

W2s.�zk C
lX

jD1
'
.k/
j / D M̌ for all 1 � l � f 0

k : (42)

If for some Qk we have f 0
Qk D 0, then we will say that zQk does not generate any imported

cell at M̌. We denote N'.k/ D .'.k/1 ; : : : ; '.k/f 0

k
/.

Let us consider a BTS-instant � that generates imported cells at M̌ and such that
W2s.�� / ¤ M̌. We denote these BTS-instants by yj, 1 � j � J a say that yj is a remote

BTS-instant with respect to M̌. Assuming that a marked BTS-instant yj generates

f 00
j C 1 imported cells, f 00

j � 0, we denote by�j;  
. j/
1 ; : : : ;  

. j/
f 00

j
the positive numbers

such that W2s.�yj C�j/ D M̌ and

W2s

 

�yj C�j C
kX

lD1
 
. j/
l

!

D M̌ for all 1 � k � f 00
j : (43)

In this case we will say that the first arrival at M̌ given by the instant of time �yj C
�j represents the principal imported cell at M̌. All subsequent arrivals at M̌ given
by (41) represent the secondary imported cells at M̌. We will use denotations NyJ D
.y1; : : : ; yJ/ and N�J D .�1; : : : ; �J/. We also denote N . j/ D . . j/

1 ; : : : ;  
. j/
f 00

j
/.

We see that for a given walk W2s, the proper, mirror and imported cells at its
vertex of maximal exit degree are characterized by the set of parameters, .Nx; Nm/I ,
.Nz; ˚; Nf 0/K , where ˚K D . N'.1/; : : : N'.K//, Nf 0

K D . f 0
1; : : : ; f

0
K/ and .Ny; N�;�; Nf 00/J, where

�J D . N .1/; : : : ; N . j//, Nf 00
J D . f 00

1 ; : : : ; f
00
J /. We also denote

F0 D
KX

kD1
f 0
k and F00 D

JX

jD1
f 00
j :

Summing up, we observe that the vertex M̌ with the self-intersection degree
~. M̌/ D I C K has the total number of cells given by R D I C M C K C J C F,
where I is the number of proper cells from the Dyck-type parts, M is the number
of corresponding mirror cells, K is the number of local BTS-instants and J is the
number of remote BTS-instants, F represents the number of imported cells at M̌
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generated by the local and remote BTS-instants, F D F0 C F00. In what follows, we
denote the family of the parameters described above by

PR D
˚
.Nx; Nm/I; .Ny; N�;�; Nf 00/J; .Nz; ˚; Nf 0/K

�
: (44)

3.5 Proof of Theorem 2

We are going to estimate the number of walks in the family of walks QW2s.D/ that
have a vertex of maximal exit degree D. We rewrite (28) in the following form

QZ2s.n; �/ D
sX

DD1

X

W2s2 QW2s.D/

˘a.W2s/˘b.W2s/ jCW2s j ;

where jCW2s j is given by (24). To estimate the number of elements in QW2s.D/, we
have to consider a kind of color diagrams that have a separate vertex Mv attributed
by the parameters from the family PR, namely by NxI and NzK . Also we have to
incorporate into the diagram description the parameters NyJ. Thus we get a new type
of color diagrams that we are going to determine.

3.5.1 Color Diagrams with a Vertex of Maximal Exit Degree

Let us consider a vertex Mv and attach to it ICK edge-boxes. We denote by h MvI;Kis a
realization of the values of marked instants that fill these boxes. Given N�; Np and Nq, we
consider a realization of the corresponding color diagram hG .c/. N�; Np; Nq/is and point
out J edge-boxes that will provide the marked instants Ny. Joining such a realization
with chosen J edge-boxes hG .c/

Ny . N�; Np; Nq/i.b/s with h MvI;Kis, we get a realizations of the
diagram we need,

h MG .c/
Nx;Nz;Ny. N�; Np; Nq/i.b/s D hMvI;Kis ] hG .c/

J . N�; Np; Nq/i.b/s D hMv ] G .c/i.b/s :

The last equality of the formula presented above introduces a denotation for a
realization of the diagram we consider.

The number of different realizations of the color diagram G .c/. N�; Np; Nq/ is esti-
mated by the right-hand side of (34). Regarding realizations h MvI;Kis, we can write
that

jh MvI;Kisj � sICK

.I C K/Š
2ICK; (45)

where the last factor gives the upper bound for the choice of K elements among ICK
ones to be marked as the values of NzK . The vertex M̌ of the walk can be attributed by
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the weight

˘a. M̌/˘b. M̌/ D

8
ˆ̂
<̂

ˆ̂
:̂

V2
n ; if ~. M̌/ D 1;
1

n2�ICK�2 V2
2U2.ICK/�4; if M̌ is an r-vertex;

1
n�ICK�1 V2U2.ICK/�2; if M̌ is a p-vertex or a q-vertex.

(46)

In the first and in the third cases of (46), at least one blue r-vertex is necessarily
present in G .c/. N�; Np; Nq/.

Regarding hG .c/. N�; Np; Nq/is, one can choose J edge-boxes to be labeled as the
values of the realization hNyi among

Ps
kD2.k � 1/�k D kN�k1 edges only. This is

because the first arrival to a vertex cannot be the marked BTS-instant. The number
of ways to choose J ordered places among kN�k1 ordered edges can be estimated as
follows,

 
kN�k1

J

!

� kN�k
J
1

JŠ
� 1

hJ
0

exp fh0kN�k1g ; (47)

where h0 > 1 is a constant.

3.5.2 Exit Sub-clusters and Cells at M̌

The maximal exit degree of a walk W2s 2 W2s.D/ can be represented as follows,
D D PD C RD C LD, where PD is the number of marked edges of the form . M̌; �/ that
belong to the strongly reduced walk PW (39), RD represents the exit edges that belong
to RW D MW n PW . It is known that PD D FCJ and that F � K [12] (see also Lemma 12
of [9]). Also we observe that RD D M. Taking into account that M � I, we can write
that

LD D D �M � F � J � D � I � K � J: (48)

The remaining LD edges of NE.W2s/ belong to the exit sub-clusters of the Dyck-
type sub-walks LW .k/ (40) attached to M̌. They are distributed among R arrival cells at
M̌. We denote by Nd D .Ld1; : : : ; LdR/ a particular distribution such that

PR
lD1 Ldl D LD.

The number of cells R depends on hG .c/i.b/s , �s and � . However, the inequalities
used to get (48) show that

R D I C K CM C F C J � 2I C 2K C J D R�: (49)



High Moments of Strongly Diluted Random Matrices 371

Then the first relation of (48) implies that LDCR � DCR� and we deduce from (49)
that

X

NdR ;jNdRjD LD
1 D

 LDC R � 1
R � 1

!

�
 

DC R� � 1
R� � 1

!

:

Elementary analysis shows that if D � 2, then

 
DC R� � 1

R� � 1

!

� hR�

0 sup
R��2

1

hR��1
0

 
DC R� � 1

R� � 1

!

� h2IC2KCJ
0 exp

�
eD

h0

�

; h0 > e:

(50)

Indeed, using the standard estimates

p
2�n

	n

e


n � nŠ � e
p

n
	n

e


n
; n � 1;

we can write that

1

hm
0

.DC m/Š

DŠmŠ
� 1

hm
0

e

2�

r
DCm

mD

	
1C m

D


D
�

1C D

m

�m

� em

hm
0

�

1C D

m

�m

;

where we take into account that DCm � 2mD. Then the last relation of (50) follows.
Now we are ready to perform the estimates that prove Theorem 2.

3.5.3 Exponential Estimates and QZ2s

In this subsection we estimate the contribution of the non-tree type walks QZ2s and
prove relation (29) with the help of computations that are very similar to those used
in the pioneering papers by Ya. Sinai and A. Soshnikov. The following statement
can be regarded as the principal result of the method.

Lemma 5 Given D, a realization of the color diagram h Mv ] G .c/i.b/s and a rule � ,
let us consider a family of walks W2s.D; h Mv ] G .c/is; � / such that the vertex of the
maximal exit degree given by Mv has D exit edges of the form . Mv; �i/, i D 1; : : : ;D.
Then

jW2s.D; h Mv ] G .c/is; � /j � 2jNqj DjNpj �e	h20
�ICKCJ

e�	DCeD=h0 ts; (51)

where 	 D ln.4=3/.
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We prove Lemma 5 in Sect. 5. The walks we consider are of the non-tree type
and therefore contain at least one blue r-vertex v0. Let us divide the sum QZ2s in two
parts in dependence whether v0 D Mv or v0 ¤ Mv,

QZ2s.n; �/ D QZ .1/
2s C QZ .2/

2s ; (52)

respectively. Then we can write that

QZ .1/
2s D

sX

DD1

sX

JD0

 
sY

kD2

X

rk;pk;qk

!? X

I;KW ICK�1
jCW2s j

�
X

Mv]G
.c/
s

X

h Mv]G .c/is

X

W2s2W2s.D;h Mv]G .c/is/

˘a;b.W2s/; (53)

where the star means that the values of rk; pk and qk are such that
P
.k � 1/�k � J

and
P

rk � 1. The first sum of the second line of (53) takes into account the choice
of the J places in G .c/ to be marked as the edge-boxes of values yj [see also (47)];
the second sum is performed over all possible realizations of the diagram Mv ] G .c/

obtained with the help of the values from f1; : : : ; sg (see (34) for example).
Using relations (27), (37), (45) and (46), we deduce from (53) that

QZ .1/
2s �

sX

DD1

sX

JD0

X

ICK�1

.2s/ICK

.I C K/Š
.2.I C K//ICK h2.ICK/CJ

0 e	.ICJCK/

�
 

sY

kD2

X

rk ;pk ;qk

!?

eh0kN�k1
1

rkŠ

�
.2k/ksk

.k � 1/Š

�rk 1

pkŠ

�
.2k/kDsk�1

.k � 2/Š

�pk 1

qkŠ

�
.2k/k2sk�1

.k � 2/Š

�qk

� e�	DCeD=h0 ts � nsC1�.kN�k1C.ICK�1//

� V2U2.ICK�1/

n �ICK�1

�
V2
2

n2

�rk �V2U2

n�

�pkCqk �U2

�

�.k�2/�k �V2
n

�s�kN�k�.ICK/

; (54)

where we denoted kN�k DPs
kD2 k�k.

Let us consider a constant [cf. (32)]

C2 D max

(

sup
k�2

2k

..k � 1/Š/1=k
; sup

k�2
.2k/k=.k�1/

..k � 2/Š/1=.k�1/

)

and denote

B D C2h0e
h0C	 D 4C2h0e

h0=3;



High Moments of Strongly Diluted Random Matrices 373

where h0 > e will be determined below. Remembering that s D ��, we can deduce
from (54) the following inequality,

QZ .1/
2s � Vs

2

sX

DD1
e�	DCeD=h0n ts

sX

JD0

X

ICK�1
2sB

	
2B OU2�


ICK�1
 

sY

kD2

X

rk;pk ;qk

!?
1

rkŠ

�
 

B OU2s2

n
.B OU2�/k�2

!rk
1

pkŠ

	
D.B OU2�/k�1
pk 1

qkŠ

	
2.B OU2�/k�1
qk

:

(55)

If � is such that

2B OU2� � 1; (56)

then (55) implies inequality

QZ .1/
2s � 4Bs3

�

exp

�
2Bs2

n

�

� 1
�

e4B OU2� ntsVs
2

1X

DD1
exp

n
�	C 2B OU2�C e=h0D

o
:

(57)
Remembering that 	 D ln.4=3/ > 0:28, we see that if

3C2U2h0eh0

V2
�C e

h0
� 0:28 (58)

then

QZ .1/
2s D O.ntsV

s
2s
5=n/ D o.ntsV

s
2/ (59)

in the limit .n; s; �/!1 (4). Clearly, the choice of h0 and � such that

h0 D 4e and � � V2
400e4eC1C2U2

(60)

makes (56) and (58) valid. Let us note that more detailed analysis of the walks with
maximal exit degree D show that the factor s3 in the right-hand side of (57) could
be eliminated. However, in the present paper we do not aim the maximal rate of �n

and therefore the upper bound (57) is sufficient for our purposes.
Let us consider the second term of (52). The sub-sum QZ .2/

2s can be estimated from
above by the expression given by the right-hand side of (54), where the sum over I;K
is performed over the range ICK � 2 and the weight factor V2U2.ICK�1/=.n�ICK�1/
is replaced by V2

2U2.ICK�2/=.n2�ICK�2/ [see relation (47)] and where the conditionP
k rk � 1 is omitted.
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Then we can write that

QZ .2/
2s � ntsVs

2

sX

DD1
e�	DCeD=h0

sX

JD0

X

ICK�2

2s2B

n
.2BOu2�/ICK�2

sY

kD2

X

rk;pk ;qk

1

rkŠ

�
 

B OU2s2

n
.B OU2�/k�2

!rk
1

pkŠ

	
D.B OU2�/k�1


pk 1

qkŠ

	
2.B OU2�/k�1


qk

:

If (60) is true, then we get the following upper bound

QZ .2/
2s � ntsVs

2

4s4B

n
e2B OU2�

1X

DD1
exp

n
�	C 2B OU2�C e=h0D

o
:

Then

QZ .2/
2s D O.ntsVs

2s
4=n/ D o.ntsVs

2/ (61)

under conditions of Theorem 1. Combining this estimate with the estimate of
QZ .1/
2s (59), we get (29). Theorem 2 is proved.

4 Tree-Type Walks and .2 ; 4?/-Walks

Let us consider the family OW2s of tree-type walks and separate it into two non-
intersecting subsets,

OW2s D PW2s t RW2s;

where PW2s contains the walks W2s such that their weights have the factors V2 D 1

and V4 only and the graph Ng.W2s/ is such that the V4-edges do not share a vertex in
common. We also denote this set by W

.2;4?/
2s D PW2s and say that if W2s 2 W

.2;4?/
2s ,

then this W2s is a tree-type .2; 4?/-walk. We denote

PZ .n;�/
2s D

X

W2s2W.2;4?/
2s

˘a;b.W2s/ jCW2s j ; RZ .n;�/
2s D

X

W2s2 RW2s

˘a;b.W2s/ jCW2s j

and OZ .n;�/
2s D PZ .n;�/

2s C RZ .n;�/
2s . Let us point out that two following relations are true,

jCW2s j D njV.W2s/j.1C o.1//; n!1 and jCW2s j � njV.W2s/j; (62)

where V.W2s/ is the ensemble of vertices of the graph Ng.W2s/.
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Theorem 3 Under conditions of Theorem 1, the following upper bounds are true

lim sup
.n;s;�/!1

1

nts
PZ .n;�/
2s � 4 expf16V4�g (63)

and

lim sup
.n;s;�/!1

�

nts
RZ .n;�/
2s � C� expf16V4�g; (64)

for all 0 < � � �0 D �0.U/ and C � C0 D C0.U/, where

�0.U/ D 1

411U2
and C0.U/ D 3 
 416U6: (65)

Remark Theorem 3 can be proved under conditions of Theorem 1 with (5) replaced
by much less restrictive condition on the probability distribution of aij to be such
that all its moments exist and are bounded as follows,

V2C2k � kŠV2 bk
0; k D 2; 3; : : : (66)

with given b0 > 0 (see also [13]). In this case the constants of (65) should be
replaced by

�0
0.b0/ D

1

3 
 219b0 and C0
0.b0/ D 3 
 416b20; (67)

respectively, where we assumed that (66) holds with V2 D 1.

To describe the general structure of the tree-type walk, let us introduce several
auxiliary notions. Regarding a sub-walk of 2a steps W2a and its graph Ng.W2a/, let
us denote by �% the ensemble of the multiple edges of Ng that make a connected
component attached to the root %. If the graph Ng.W2a/ has no other multiple edges
than those of �% and the first step and the last step of W2a are performed along the

edges of �%, we say that W2a is the element of the block of the first level B.1/a .� /,
� D �%,

W2a DBa 2 B
.1/
a .� /:

We will say also that W2s by itself is a block of the first level, when no confusion
can arise.

We say that a walk W2b is a block of the second level, W2s D B
.2/
b , if it starts and

ends with the steps along the root component of multiple edges �% and in W2b there
exists at least on sub-walk W 0

2a that is the block of the first level.
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By recurrence, we say that W2s belongs to the block of the .k C 1/th level, if it
starts and end by the steps of �% and contains sub-walks B.l1/; : : : ;B.lp/ such that
li � k and there exists at least one lj such that lj D k.

In general, the tree-type walk W2s is such that its graph Ng.W2s/ represents a
tree Th of h � 0 edges and along the chronological run over Th, the sub-walks

B
.l1/
a1 ; : : : ;B

.lq/
ap of the levels 1 � lj � s=3 appear at the different moments t1; : : : tq,

tj 2 Œ0; 2hC 1�, ti ¤ tj.

4.1 Proof of Theorem 3

Let us introduce the weight �.W2s/ D Qe2SNg
V2me�

1�me ; where SNg is the skeleton of
the graph Ng.W2s/ and me is the multiplicity of the edge e.

Lemma 6 Let us consider a family of walks W˘.m/ such that all edges of Ng.W2m/

are multiple and all of them are attached to the root %. Then for any given 0 < � �
�0 and C � C0 (65) the following estimate,

P.m/ D
X

W2m2W˘.m/

�.W2m/ � C

44m
�1CIfm�3g (68)

holds for all 1 � m � s D b��c�1, where IA D 1 if A is true and IA D 0 otherwise.

Proof In the cases of m D 2; 3; 4 relation (68) can be deduced directly from
relations

P.2/ D V4
�
; P.3/ D V6

�2
; and P.4/ D 3V2

4

�2
:

In the general case of m � 5, we can write that

P.m/ D
m�5X

lD1

 
m � 1

l

!
V2C2l

�l
P.m � 1 � l/C

 
m � 1
3

!
V2m�6V6
�m�2

C
 

m � 1
2

!
V2m�4V4
�m�2 C V2m

�m�1 : (69)

Using upper bound (5) and assuming that (68) holds for P.m�1�l/ of the right-hand
side of (69), we can write that

P.m/ � C

44m�2
R;
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where

R D
m�5X

lD1

44C4l

lŠ

 V2U2lsl

�l
C .m � 1/.m� 2/.m � 3/

3Š

 4

4mV2
2U2m�4

C�m�4

C .m � 1/.m � 2/
2


 4
4mV2

2U2m�4

C�m�4 C 44mV2U2m�2

C�m�3 : (70)

Denoting � D 44U2� and remembering that V2 D 1, we deduce from (70) that

R � 44 � e� C 416U4

C
�max

m�5
m.m � 1/.m � 2/

6mm�4 C �2 4
12U4

Cmm�3 :

It is easy to see that under conditions of Lemma 6, R � R0 < 1. Similar
computations based on (69) show that Lemma 6 is true under conditions (66)
and (67). ut

Given a Catalan tree Th, let us consider the ensemble of vertices #1; #2; : : : ; #q

that have exit edges and denote by ı1; ı2 : : : ; ıq the number of such edges, ıi � 1.
In this case we will say that the tree Th has q inner vertices with exit clusters (or
bushes)�1; : : : ; �q [cf. (25)]. Given N� D .�1; : : : ; �q/ with �i � ıi, let us consider
the family of walks W˘.Th; N�/ of 2hC 2 Om steps, Om D �1 C 
 
 
 C �q such that all
edges of their graphs Ng.W2hC2 Om/ are multiple, SNg D Th and the vertex #i has ıiC�i

exit edges, 1 � i � q.

Lemma 7 Given N� D .�1; : : : ; �q/ with �i � ıi, consider the family of walks
W

˘.Th; N�q/ of 2hC 2 Om steps, Om D j N�qj D �1 C 
 
 
 C �q such that all edges of
their graphs Ng.W2hC2 Om/ are multiple, the skeleton of Ng is given by SNg D Th and the
vertex #i has ıi C �i exit edges, 1 � i � q. Then under conditions of Lemma 6,

P.Th; N�q/ D
X

W2hC2 Om2W˘.Th; N�q/

�.W2hC2 Om/ � 4hC Om
qY

jD1
P.ıj C �j/: (71)

Proof We prove Lemma 7 by recurrence. On the first step, let us consider the family
of walks W˘. p; �0/ such that each walk W2pC2�0 has the graph Ng.W2pC2�0/ with all
edges attached to the root �, the skeleton SNg is a bush with p edges and each edge of
SNg is multiple. Then

X

W2pC2�0
2W˘. p;�0/

�.W2pC2�0 / � P. pC �0/ (72)

and (71) is true. Inequality (72) follows from the obvious observation that
W

˘. p; �0/ �W
˘. pC �0/.

On the next step of recurrence we consider the family of walks W˘. p; �0I Nıp; N�p/

such that their skeleton is given by a tree that has a bush with the root % and p exit
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edges .%; #i/, 1 � i � p and there are ıi > 0 main exit edges and �i additional exit
edges at each #i, 1 � i � p. Given a sub-walk W2pC2�0 2 W

˘. p; �0/ of (72), we
denote by �1; : : : ; �p the multiplicities of the p edges of its skeleton. It is not hard to
see that

X

W 2W˘. p;�0INıp; N�p/

�.W / D
X

W 2W˘. p;�0/

�.W /

pY

iD1

0

@�.�i/.ıi C �i/
X

W 2W˘.ıi;�i/

�.W /

1

A ;

(73)

where �.�i/.ıi C �i/ denotes the number of possibilities to perform ıi C �i exits
from the vertex #i after �i arrivals to #i. In (73), we do not indicate the number of
steps of corresponding walks that is obvious. Taking into account the upper estimate

�.�i/.ıi C �i/ D
 
ıi C �i C �i � 1

�i � 1

!

� 2ıiC�iC�i ; (74)

and relation (72), we deduce from (73) that

X

W 2W˘. p;�0INıp; N�p/

�.W / �
X

W 2W˘. p;�0/

�.W /

pY

iD1

0

@2ıiC�iC�i
X

W 2W˘.ıi;�i/

�.W /

1

A

� 2pC�0P. pC �0/
pY

iD1
2ıiC�i P.ıi C �i/: (75)

Remembering that h D p C ı1 C 
 
 
 C ıp and Om D �0 C �1 C 
 
 
 C �p, we see
that (71) follows from (75).

Now it is clear how to proceed in the general case of the walks W 2W
˘.T I N�/

whose skeleton is given by a tree Th. It is sufficient to consider the chronological
run over Th and to find the first inner vertex #0 such that there are no inner vertices
among its children #1; : : : ; #p. In other words, the vertex #0 is such that all of the
exit edges .#0; #i/ are leaves and ui are the outer vertices. Then we can apply (75) to
the corresponding sub-walks of W 0 2W

˘. p; �0I Nıp; N�p/. After that we can consider
the vertex #0 as the outer one with respect to the reduced walk W nW 0 and repeat
the reduction procedure by recurrence.

We see that in this process the vertex #0 and the edges .# 0; #0/ are considered
twice in the estimates of the form (74): first in the role of � enters at #i and then in
the role of ıC� exits from # 0. Therefore the base of the exponent 2 is replaced by 4
in the final estimate (71). We do not present the detailed computations here because
they repeat those of (73) and (75). Lemma 7 is proved. ut
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As a corollary of Lemma 7, we deduce from (71) with the help of (68) that

P.Th; N�q/ � Cq

43.hC Om/ �
qCPq

iD1 IfıiC�i�3g (76)

for any C � C0.U/ determined by (65).

Lemma 8 Let us denote by B.1/s the sum of weights of all walks of 2s steps that
represent the blocks of the first level. Then

B.1/s D
X

W2s2B.1/s

�.W2s/ D PB.1/s C RB.1/s ;

where PB.1/s is the sum over all walks that have only one multiple edge, this edge is
the V4-edge attached to the root,

PB.1/s D
V4
�

T.3/s�2; (77)

where

T.3/s�2 D
X

a1;a2;a3�0

a1Ca2Ca3Ds�2

ta1 ta2 ta3 D ts
3s

2.2s� 1/ : (78)

If � � C (76), then

RB.1/s �
C

120�2
ts: (79)

Proof Taking into account the definition of the blocks of the first level and
remembering that V2 D 1, we can write that

B.1/s D
bs=2cX

hD1

X

Th

X

Om�2h

X

�1;:::;�q�1

�1C���C�qD Om

P.Th; N�q/ T.2.hC Om/�1/
s�h� Om ; (80)

where the sum is taken over all possible values of Om and �i � 1 and similarly
to (78),

T.2.hC Om/�1/
s�h� Om D

X

ai�0

a1C���Ca2.hC Om/�1Ds�h� Om

2.hC Om/�1Y

iD1
tai � 42.hC Om/ts: (81)
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The upper bound (81) is proved in Sect. 5. Using (76), we deduce from (80) that

B.1/s � ts

s=2X

hD1

X

Th

Cq

42h �q

qY

iD1

0

@
1X

�iD1

1

42�i �IfıiC�i�3g

1

A

� ts

s=2X

hD1

X

Th

Cq

42h �q

qY

iD1

0

@ 1

42�Ifıi�2g
C

1X

�iD2

1

42�i �2

1

A

� ts

s=2X

hD1

X

Th

Cq

42h .8�/q

qY

iD1

1

�Ifıi�2g
: (82)

Regarding the last expression, we observe that if h D 1, then q D 1 and ı1 D 1 and
we get the term (78) in this case, and therefore PB.1/s � 3V4ts=.4�/. For the remaining
terms of the sum over h � 2, we observe that if q D 1, then the tree Th is determined
uniquely with ı1 � 2. Therefore we can write that

X

h�2

X

Th

Cq

42h .8�/q

qY

iD1

1

�Ifıi�2g
�
X

h�2

1

42h

�
C

8�2
C .th � 1/ C

8�2

�

� C

120�2
;

where we have used inequality C=� � 1. Relation (79) is proved. We prove
relation (78) in Sect. 5. Lemma 8 is proved. ut

It follows from (77), (78) and (79) that if � � C, then

B.1/s �
V4
�

ts: (83)

Lemma 9 Let us denote by B.k/s the sum of the weights of walks that represent the
blocks of the kth level. If � � C (65), then the following upper bound holds,

B.k/s �
˛ts
�
O�k�1; (84)

where ˛ D V4 and O� D 128V4� with � determined by (65).

Proof We prove Lemma 9 by recurrence. The case of k D 1 is verified directly with
the help of (83). In the general case, we can write that

B.kC1/
s �

X

p�1

X

aCb1C���CbpDs

B.1/a

 
2a � 1

p

!

pB.k/b1

pY

iD2

	
B.1/bi
C B.2/bi

C 
 
 
 C B.k/bi



;

(85)
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where B.1/a counts the sub-walks attached to the root and
�
2a�1

p

�
gives the upper

bound of the possibilities to choose the instants to start the remaining sub-walks
of B

.l/
bi

; among them there is at least one block of the kth level, we denote the

corresponding sum by B.k/b1
.

Using (83) and assuming that (84) can be applied to the right-hand side of (85),
we obtain that

B.kC1/
s � ˛

�

X

p�1

X

aCb1C���CbpDs

tatb1 
 
 
 tbp

.2s˛/p

. p � 1/Š�p
O�k�1

0

@
kX

jD1
O�j�1

1

A

p�1

� ˛

�
ts
2 
 42s˛
�

X

p�1

1

pŠ

�
8˛�

1 � O�
�p�1

� ˛ts
�
O�k expf8˛�=.1 � O�/g

4
: (86)

It is easy to deduce from (65) that O� < 1=2 and expf16˛�g < 4. Then B.kC1/ �
˛ O�kts=� and Lemma 9 is proved. ut
Lemma 10 Denote by RB.k/s the sum of the weights of walks that represent the blocks
of kth level and such that some of its sub-walks contains two or more V4-edges that
share a vertex or at least one V2l-edge with l � 3. Then

RB.k/s �
ˇts
�2
O�k�1; k � 1; (87)

where ˇ D C=120.

Proof Relation (87) with k D 1 is verified by (79). In the case of k � 2, we can use
the denotations of (85) and write that

RB.kC1/ �
X

p�1

X

aCb1C���CbpDs

 
2a

p

!

p
	 RB.1/a B.k/b1

C B.1/a
RB.k/b1


 pY

iD2

kX

jiD1

B. ji/
bi

C
X

p�1

X

aCb1C���CbpDs

 
2a

p

!

p. p � 1/B.1/a B.k/b1

	 RB.1/b2
C 
 
 
 C RB.k/b2


 pY

iD3

kX

jiD1

B. ji/
bi
:

(88)

Using (79), (83) and (84) and repeating computations of (86), we deduce from (88)
that

RB.kC1/
s � ts

ˇ O�k�1

�2
43˛s

�

X

p�1

1

. p � 1/Š
�
8˛�

1 � O�
�p�1

C ts
ˇ O�k�1

�2

�
8˛s

�

�2
4

1 � O�
X

p�2

1

. p� 2/Š
�
8˛�

1 � O�
�p�2

:
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Then we can write that

RB.kC1/
s � ts

ˇ O�k

�2

�
1

2
C 2˛�

1 � O�
�

exp

�
8˛�

1 � O�
�

:

Taking into account the conditions (65), it is easy to see that RB.kC1/
s � tsˇ O�k=�2.

Lemma 10 is proved. ut
According to the general description of the tree-type walks given above and using

the second relation of (62), we can write that

OZ .n;�/
2s � n

X

h�0

X

Th

X

p�0

 
2h

p

!
X

l1�1;:::;lp�1

X

a1C���CapDs�h

pY

jD1
B
.lj/
aj ;

where the sums over lj and ai are taken over all possible values such that aj � 2lj.
Using the result of Lemma 9, we get for all � � C the following estimate from
above,

OZ .n;�/
2s � n

X

h�0
th
X

p�0

1

pŠ

�
2s˛

�.1 � O�/
�p X

a1C���CapDs�h

ta1 
 
 
 tap � 4nts exp

�
8˛�

1 � O�
�

:

(89)

Then the upper bound (63) follows.
To prove relation (64), we observe that if a walk W2a belongs to RB.k/a , then it

belongs to B
.k/
a . Therefore RB.k/a � B.k/a and we can write that

RZ2s � n
X

h�0

X

p�0

X

Th

Vh
2

 
2h

p

!
X

l1�1;:::lp�1

X

a1C���CapDs�h

p RB.l1/a1
B.l2/a2

 
 
B.lp/ap :

Then for sufficiently large � � C we get the following upper bound,

RZ2s � n
X

h�0

2ˇs

.1 � O�/�2 th
X

p�1

1

. p � 1/Š
�

2s˛

�.1 � O�/
�p�1 X

a1C���CapDs�h

ta1 
 
 
 tap

� nts
8ˇ�

�
exp

�
8˛�

1 � O�
�

(90)

and relation (64) follows. Theorem 3 is proved.
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4.2 Proof of Theorem 1

It follows from relations (28), (29) and Theorem 3 that

M.n;�n/
2sn

D PZ .n;�n/
2sn

C RZ .n;�n/
2sn

C QZ .n;�n/
2sn

D PZ .n;�n/
2sn

.1C o.1//:

Then the upper bound (6) follows from inequality (63). Also, it follows from
Theorem 3 and the first relation of (62) that

PZ .n;�n/
2sn

D n Om.�n/
sn
.1C o.1//; (91)

where

Om.�/
s D

X

W2s2W.2;4?/
2s

�.W2s/ (92)

is the total weight of .2; 4?/-walks of 2s steps.

Lemma 11 The generating function F�.z/ DPs�0 zs Om.�/
s verifies Eq. (9).

Proof Given a walk W2s 2W
.2;4?/
2s , we will say that it is of M -type. Let us consider

the first edge e1 D .%; ˛/ of the graph Ng.W2s/ of this walk. If e1 is the V2-edge, then
W2s splits into three parts, the sub-walk .%; ˛; %/ and two M -type sub-walks W2a

and W2b, aC b D s � 1.
If the edge e1 is the V4-edge, then W2s splits in five parts, the sub-walk

.%; ˛; %; ˛; %/ and four sub-walks of S -type, W2ai , i D 1; 2; 3; 4 and a1 C a2 C
a3 C a4 D s � 4. We say that the sub-walk W2a is of S -type if it is an M -type
sub-walk such that its graph Ng.W2s/ has the root %0 attached by V2-edges only.

Let us denote by Sk the total weight of S -type walks of 2k steps. It is clear that

Sk D
kX

lD0

X

a1C���CalDk�l

Om.�/
a1 
 
 
 Om.�/

al
: (93)

Elementary computation shows that (93) implies the following relation,

S.z/ D
1X

kD0
Skzk D 1

1 � zF�.z/
: (94)

Taking into account the two possibilities described above, it is not hard to see that

F�.z/ D 1C zV2
�
F�.z/

�2 C z2V4
�
.S.z//4:

This equality together with (94) implies (9). Lemma 11 is proved. ut
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It is easy to see that Lemma 11 combined with (91) completes the proof of
Theorem 1. Let us discuss the corollaries of Theorem 1. Regarding the number
Om.�/

s , we consider its part Œ Om.�/
s �p that contains the factor Vp

4 . One can write that

Œ Om.�/
s �p D

�
V4
�

�pX

h�p

 
Th

p

!?

T.2p/
s�h�p; (95)

where
�Th

p

�?
denotes the number of possibilities to choose p edges Oe1; : : : ; Oep in the

tree Th such that they do not share a common vertex. The factor T.2p/
s�h�p counts

the number of trees that can be attached to the extremities of the additional edges
Qei joined to Oei, i D 1; : : : ; p, respectively. Using corollary of Lemma 12 (see
formula (103) below), we deduce from (95) that

Œ Om.�/
s �p � 1

pŠ

�
3sV4
�

�pX

h�p

th ts�h � 1

pŠ

�
3sV4
�

�p

tsC1: (96)

Then the upper bound (10) follows.
Regarding the right-hand sides of the upper bounds (57) and (61), it is easy to

see that

1

nts
QZ .n;�/
2s D O

�
s5

n

�

; .n; s; r/!1: (97)

Regarding the total weight of the trajectories that belong to the classes of W.2;4�/
2s

and using more precise version of (62), we conclude that

PZ .n;�/
2s D

sX

pD0
Œ Om.�/

s �p � n.n � 1/ 
 
 
 .n � .s � p//

ns�p
(98)

Using elementary inequality

.n � 1/ 
 
 
 .n � .s � p//

ns�p
� exp

�

� .s � pC 1/2
2n

C .s � p/3

3n2

�

; for all s D o.
p

n/;

we deduce from (96) and (98) that under conditions of Theorem 1 the following
relation holds [cf. (91)],

PZ .n;�/
2s D n Om.�/

s

�
1C o.s�1/

�
: (99)

Assuming that s D o.n1=6/, we see that relations (29), (64) and (99) imply (12).
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5 Auxiliary Statements

In this section we collect the auxiliary statements and prove lemmas needed for the
proof of Theorems 2 and 3.

5.1 Proof of Lemma 2

Let us consider the q-vertex ˇ such that the edge of the second arrival e2 D e.a2/ D
.ˇ; ˛2/ is the minimal q-edge over the whole walk W2s. We denote by t2 the instant
of time such that e2 D e.t2/ and consider the sub-walk WŒ0;t2�1�. The reasonings
below concern WŒ0;t2�1� D W � only.

If the edge Œˇ; ˛2� represents the second distinct arrival at ˛2 by W �, then ˛2 is
the blue r-vertex and we are done. Let us consider the case when Œˇ; ˛2� D E0

1 is
the first distinct arrival at ˛2 by W � and denote by e0

max D maxfe; e 2 E0
1.˛2/g.

This edge e0
max is closed in W � by a non-marked edge f . We consider two possible

orientations of f separately.
Let us consider first the cases when f D .˛2; ˇ/. Then W � has to go from ˇ to

˛2 after t. f / to create the q-edge e.t2/. It can arrive at ˛2 only with by a non-marked
step h D .�; ˛2/, � ¤ ˇ that closes the marked edge .˛2; �/ D Oe. Thus, the sub-walk
W � has to go from ˇ to � to perform h. If W � arrives at � by a marked edge .ı; �/,
then � is the blue r-vertex because ı ¤ ˛2. If W � arrives at � by a non-marked step
.ı; �/, then this step closes a marked edge fı; �g. If fd; �g D .ı; �/, then � is the
blue r-vertex. If fı; �g D .�; ı/, then we get the recurrence, where the couple a2; �
is replaced by ı; � . Since ~W �.ˇ/ D 1 byE1, then this recurrence will be terminated
before we come to ˇ and the r-vertex will be specified.

Let us consider the case when f D .ˇ; ˛2/. To perform this step, the sub-walk
W � has to go from ˛2 to ˇ before t. f /. Assume that it arrives at ˇ by the step
h D .�; ˇ/, � ¤ ˛2 that has to be the non-marked one.

Let us consider first the case when � ¤ ˛1. The sub-walk has to go from ˛2
to � and arrive at � by the step g D .ı; �/. If this step is marked, then � is the
blue r-vertex and we are done. If g is non-marked, then it closes the marked edge
f�; ıg. If f�; ıg D .ı; �/, then � is the blue r-vertex. If f�; ıg D .�; ı/, then we get a
recurrence. Since ~W �.˛2/ D 1 by E1, then this recurrence will be terminated by a
blue r-vertex.

Finally, let us consider the case when � D ˛1 and h D .˛1; ˇ/. Then the sub-
walk has to go from ˛2 to ˛1 and arrive it by the step g D .�; ˛1/. If this step is
marked, then ˛1 is the blue r-vertex. If g is non-marked, then either � D � or � ¤ �,
where the edge .�; ˛1/ 2 E1.˛1/.

If g D �, then we get a recurrence with the couple ˛1; ˇ replaced by �; ˛1. Please
note that the fact that .�; ˛1/ generally is not the first arrival at ˛1 does not alter this
recurrence. Then we terminate with the blue r-edge.
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If � ¤ �, then g closes a marked edge f�; ˛1g. If f�; ˛1g D .�; ˛1/, then ˛1 is
the blue r-vertex. If f�; ˛1g D .˛1; �/, then we get a recurrence that will terminate
before ˛2 and the blue r-vertex will be specified. Lemma 2 is proved.

5.2 Catalan Trees and Exponential Estimates

In papers [10, 13], the following statement is proved with the help of recurrent
relation (26).

Lemma 12 Consider the family of Catalan trees constructed with the help of s
edges and such that the root vertex % has d edges attached to it and denote by t.d/s

its cardinality,

t.d/s D
X

u1C���Cud�1CudDs�d

tu1 tu2 
 
 
 tud�1 tud ;

where the sum runs over all possible ui � 0. Then the upper bound

t.d/s � e�	d ts; 	 D ln.4=3/ (100)

is true for any given integers d and s such that 1 � d � s.

Remark 2 We can say that t.d/s represents the number of Catalan trees such that
their root vertex % has the exit sub-cluster of cardinality d. It is not hard to deduce
from (26) that the numbers ft.d/s ; 1 � d � sg verify the following recurrent
relation [13],

t.d/s D t.d�1/
s � t.d�2/

s�1 ; 3 � d � s (101)

with the initial values t.1/s D ts�1, s � 1 and t.2/s D ts�1, s � 2.

Denoting t.d/s D T.d/s�d, changing variables k D s � d, p D d and using an
elementary consequence of (7) tsC1 � 4ts that holds for any s � 0, we deduce
from (100) the following inequalities,

T. p/
k � e�	p tkCp D

�
3

4

�p

tkCp � 3p tk: (102)

Let us note that T. p/
k enumerates the family of Catalan trees constructed on p roots

with the help of k edges. Another useful consequence of (100) is as follows,

T.2p/
k�p �

�
3

4

�2p

tkCp � 3ptk: (103)

These relations prove the upper bounds (81) and (96).
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Regarding the numbers Rs D T.3/s�2 (78), it is easy to see that

1X

sD2
zs Rs D z2f 3.z/:

It follows from (11) that zf 2.z/ D f .z/ � 1. Using this equality several times, we
obtain that

Rs D 3 .2s� 2/Š
.s� 2/Š.sC 1/Š ; s � 2:

This proves the last relation of (78).
Let us denote by N .1;2/

s the number of tree-type walks of 2s steps such that their
graph contains one V4-edge .˛; ˇ/ and remaining s � 2 edges are V2-edges. Then it
is not hard to see that [cf. (78)]

N .1;2/
s D

X

aCb1C2Cb3Ds�2
.2aC 1/ta tb1 tb2 tb3 ; s � 2;

where the factor .2a C 1/ gives the number of choice of the root � in the sub-tree
Ta attached to the vertex ˛ while the remaining three sub-trees Tbi are attached to
the vertex ˇ. Then the generating function

˚.1;2/.z/ D
1X

sD2
zsN .1;2/

s ; N
.1;2/
2 D 1

is given by expression

˚.1;2/.z/ D 2z3f 0.z/f 3.z/C z2f 4.z/: (104)

Using (11), one can deduce from (104) that

N .1;2/
s D .2s/Š

.s � 2/Š .sC 2/Š D sts

�

1 � 3

sC 2
�

; s � 2: (105)

More generally, denoting by N.1;m/
s the family of even closed walks W2s such

that their graphs contain one edge of total multiplicity 2m and all other edges of
multiplicity 2, we can write for its cardinality the following relation,

N .1;m/
s D jN.1;m/

s j D .2s/Š

.s �m/Š .sC m/Š
; s � m � 1: (106)
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To prove (106), let us introduce variables

D.m/
k D

X

aCb1C���Cb2m�1Dk�m

.2aC 1/tatb1 
 
 
 t2m�1; k � m � 1;

such that D.l/
k D 0 for all 0 � l < k and

E.m/k D
X

aCb1C���Cb2m�1Dk�m

.2aC 1/tatb1 
 
 
 t2m; k � m � 1;

such that E.l/k D 0 for all 0 � l < k. It is not hard to see that D.m/
s D N

.1;m/
s . Indeed,

regarding a vertex ˛, we attach to it m blue edges and get the sub-cluster �m. Then
we attach to ˛ a green Catalan tree Ta and determine the root % by choosing one of
2aC 1 instants of time of the chronological run over Ta. Then we attach 2m� 1 red
Catalan trees Tbi at the remaining 2m � 1 instants of time of the chronological run
over the sub-cluster�m of blue edges. The chronological run over the tree obtained
gives a walk that belongs to N.1;m/

s .
According to these definitions, we get that

D.1/
k D

X

aCbDk�1
.2aC 1/tatb; k � 1

and D.1/
0 D 0. Then the generating function D .1/.z/ DPk�0 zkD.1/

k is such that

D .1/.z/ D 2z2f 0.z/f .z/C z. f .z//2 D zf 0.z/

and therefore

D.1/
k D

.2k/Š

.k � 1/Š .kC 1/Š ; k � 1:

In this computation, we have used the identity 2zf 0.z/f .z/ D f 0.z/ � . f .z//2 that
follows from (11). We can also write that D.1/

k D ktk. This relation is obvious

because the number D.1/
k by its definition enumerates the ensemble of Catalan trees

with one marked edge colored in blue.
It follows from the definition of fE.m/k gk�0 that the generating function E .1/.z/ D

P
k�0 zkE.1/k is given by the formulas

E .1/.z/ D 2z2f 0.z/. f .z//2 C z. f .z//3 D f 0.z/
2
� f .z/ � 1

2z
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and therefore

E.1/k D
k

2
tkC1; k � 0:

Using the fundamental recurrence (26), we can write that

D.m/
k D

X

aCb1C���Cb2m�3CcDk�m

.2aC 1/tatb1 
 
 
 t2m�3
X

b2m�2Cb2m�1Dc

t2m�2 t2m�1

D
X

aCb1C���Cb2m�3CcDk�m

.2aC 1/tatb1 
 
 
 t2m�3tcC1:

Then we get the following equality,

D.m/
k D E.m�1/

k �D.m�1/
k ; k � m � 2:

Similar computation shows that

E.m/k D D.m/
kC1 � E.m�1/

k ; k � m � 2:

Using these recurrent relations together with the initial expressions given by D.1/
k

and E.1/k , one can easily check that

D.m/
k D .2k/Š

.k � m/Š .kC m/Š
and E.m/k D .2kC 1/Š

.kC 1 �m/Š .kC m/Š

for all k � m � 1. This proves relation (106).
It is interesting to note that with the help of the same reasoning as above, one can

deduce from (101) the following relation,

t.d/s D
8
<

:

.2m � 1/ts�m
Qm�1

iD1 sC 1 �m � i
sC 1 � i ; if d D 2m � 1; m � 1;

mts�m
Qm�1

iD1 s �m � i
sC 1 � i ; if d D 2m; m � 0.

(107)

Let us denote by N
.2;2/

s the number of tree-type walks that contain two V4-
edges while the remaining ones are the V2-edges. One can show that the generating
function ˚.2;2/

s is given by the following expression,

˚.2;2/.z/ D z4

2
f 00.z/f 4.z/C 3z4f 0.z/f 6.z/:
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Then

N .2;2/
s D ts

k4 C 8k3 C 39k2 C 12
2.kC 2/.kC 3/ � 4k C 3 .2k/Š

.k � 4/Š .kC 4/Š : (108)

Although the right-hand side of (108) is not as compact as that of (106), we can
easily deduce from them that

lim
s!1

1

sts
N .1;2/

s D 1 and lim
s!1

1

s2ts
N .2;2/

s D 1

2
:

These relations agree with the upper bounds (96) in the cases of p D 1 and p D 2.
Moreover, one can put forward a conjecture that

N . p;2/
s D sp

pŠ
ts .1C o.1//; s!1: (109)

This allows one to expect that the following lower bound holds [cf. (14)],

lim inf
.n;s;�/!1

1

ts
Om.�/

s � e�V4 : (110)

Finally, let us note that a part of N .2;2/
s given by

RN .2;2/
s D 4 .2s/Š

.s� 4/Š .sC 4/Š
represents the number of .2; 4/-walks of 2s steps such that have two V4-edges with
common vertex. It is easy to see that RN .2;2/

s D sts.1 C o.1// and therefore these
walks do not contribute to the limiting expression for M.�/

2s (8). This is in complete

accordance with the definition of the numbers Om.�/
s as the total weight of the tree-

type .2; 4?/-walks. The terms RN .2;2/
s and N

.1;3/
s provide the leading contribution

to the asymptotic expansion (13) given by R.1/s .

5.3 D-Lemma

In the present subsection we prove Lemma 5. Let us introduce an auxiliary
collection of variables

H D . NmI ; . N�;�; Nf 00/J ; .˚; Nf 0/K/
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that represents a part of parameters PR.Nx; Ny; Nz;H / (44) and consider its numerical
realization hH i. Then relation (51) can be rewritten in the following form,

j thH i W2s.D; h Mv ] G .c/is; hH i; � /j � 2jNqj DjNpj �e	h20
�ICJCK

e�	DCeD=h0 ts;
(111)

where the disjoint union is taken over the set of all possible realizations H D
fhH ig. By the construction, the values of h.Nx; Ny; Nz/is are determined by the real-
ization of the color diagram hG .c/is. As we will see below, the set .hNx; Ny; Nzis; hH i/
uniquely determine the nest cells L#1; : : : ; L#R in the underlying trees T .W2s/

where the clusters L�1; : : : ; L�R are attached. Then we can apply inequalities of the
form (106) to get the upper bound of the set of underlying trees that is exponential
with respect to the sum

PR
iD1 di, di D j L�ij.

We prove (111) by recurrence with respect to R and N D I C J C K.

5.3.1 The Case of R D 1

If the total number of cells at M̌ is equal to one, R D 1, then either P1 D x1
or P1 D z1 and the set of variables H is empty. For simplicity, we consider the
former case such that hx1is D �1 � 1. Regarding a walk W2s from the left-hand
side of (111) and the corresponding tree Ts D T .W2s/, we observe that its vertex
L# such that L# D R.��1/ is attached by a sub-cluster L�1 of d1 edges. It is easy to
construct the corresponding family of trees Ts.�1; d1/ with the help of the following
procedure.

Let us take a root vertex b0 and attach to it a linear branch Bl that consists of l
edges and lC 1 vertices b0; b1; : : : ; bl. Regarding the set of vertices fb0; : : : ; bl�1g,
we attach to them the sub-trees Ta1 ; : : : ;Tal with given Na D .a1; : : : ; al/ such that
jNaj D a1C
 
 
Cal D �1� l. We do this in the way that the sub-trees grow to the left
of the branch Bl with respect to the ascending chronological run over Bl�1 from b0
to bl�1.

We attach to the vertex L# D bl the sub-cluster L�1 of D D d edges. Using d
vertices of L�1, we attach to them d sub-trees Tb1 ; : : : ;Tbd . Regarding the vertices
bl1 ; : : : ; b0 as the descending part of the chronological run over Bl�1, we construct
on these vertices the sub-trees Tc1 ; : : : ;Tcl , where bi and cj are such that

Pd
iD1 biCPl

jD1 cj D s � �1 � d.
Then we can write that

Ts.�1; d/ D jTs.�1; d/j D
�1X

lD1

X

NaWjNajD�1�l

ta1 
 
 
 tal

X

Nb;NcW

jNbjCjNcjDs��1�d

tb1 
 
 
 tbd tc1 
 
 
 tcl :

(112)
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It follows from Lemma 12 that

X

NbW jNbjDm

tb1 
 
 
 tbd � e�	d tmCd: (113)

Then we can deduce from (112) the following inequality,

Ts.�1; d/ � e�	d
�1X

lD1

X

Na;b;NcW jNaj;b;jNcj�0

jNajCbCjNcjDs�l

t.Na/ tb t.Nc/ D e�	d ts; (114)

where we denoted t.Na/ D ta1 
 
 
 tal . The last equality follows from the observation
that the sum in the central part of (114) represents the cardinality of the set of
Catalan trees Ts that have the vertex L# seen at the instant ��1 of the chronological
run RfT g colored in white, the others being the black ones. Clearly, given Ts, there
exists only one such vertex and therefore the cardinality of this family is equal to ts.

Using inequality (114) with d D D and applying the filtration estimate (36) to
the number of realizations of the color diagram G .c/. N�; Np; Nq/, we get the following
inequality

jW2s.D; Mv.x1/ ] hG .c/. N�; Np; Nq/i.b/s ; � /j � 2jNqj DjNpj e�	D ts (115)

that implies the upper bound (111).

5.3.2 The Case of R D 2, N D 2

(a) Let us consider first the case when R D 2; I D 2. Then there is no mirror
cells at M̌ and J D K D 0. Therefore P2 (44) is such that Nx D .x1; x2/ and
hNxis D .�1; �2/; 1 � �1 < �2 and the set H is empty. In this case the tree
Ts D T .W2s/ is such that the vertices L#1 and L#2 lie on two different branches
B1 and B2, respectively. Let us describe the construction of the corresponding
subset of trees and estimate its cardinality.

We start with the first branch B1 D Bl1 that contains l1 edges and
lC1 vertices b0; b1; : : : ; bl1 and construct on its first l1 vertices the sub-trees
T1; : : : ;Tal1

such that jNaj D �1 � l1. Assuming that D D d1 C d2, we attach

to bl1 D L#1 the sub-cluster L�1 of d1 edges and join to each of d1 vertices the
sub-trees T

b
.1/
1

; : : : ;T
b
.1/
d1

such that jNb.1/j D m1 � 0.

Performing 
 steps down along the descending part of B1, we stop at the
vertex bl1�
, 1 � 
 � l1 and attach to it the second branchB2 with vertices c0 D
bl1�
, c1; : : : ; cl2 . Regarding vertices bl1�1; : : : ; bl1�
; c1; : : : cl2�1, we construct
attach to them the sub-trees T

c
.1/
j

such that jNc.1/j D c.1/1 C : : : c.1/
 C c.1/
C1C
 
 
C
c.1/
Cl2�1 D �2 � �1 � l1 � l2 � m1.
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We construct the second sub-cluster L�d2 with j L�d2 j D d2 on the
vertex cl2 D L#2 and construct on the d2 vertices obtained the sub-trees
T

b
.2/
1

; : : : ;T
b
.2/
d2

. Finally, we join the sub-trees T
c
.2/
1

; : : : ;T
c
.2/

l1Cl2�


to the vertices

fcl2�1; : : : ; c1; bl1�
; : : : ; b0g. Then we can write that

jTs.�1; d1I �2; d2/j D
�1X

l1D1

l1X


D1

�2�l1�d1X

l2D1

X

NaW jNajD�1�l1

t.Na/
�2��1�l1X

m1D0

X

Nb.1/W jNb.1/jDm1

t.Nb.1//

�
�2��1�d1�m1�l2X

Nc.1/W jNc.1/jD0

t.Nc.1//
s��2�d2X

m2D0

X

Nb.2/W jNb.2/jDm2

t.Nb.2// X

Nc.2/W jNc.2/jDs��2�d2�m2

t.Nc.2//:

(116)

We apply (113) two times with respect to the sub-trees with the exit sub-
clusters Ld1 and Ld2 and get the estimate

X

Nb.1/W jNb.1/jDm1

t.Nb.1//
X

Nb.2/W jNb.2/jDm2

t.Nb.2// � e�	.d1Cd2/ tm1Cd1 tm2Cd2 (117)

Substituting the right-hand side of (117) into (116), we get an expression similar
to (114) with d replaced by d1 C d2. In this case, ts is interpreted as the number
of Catalan trees such that the vertices seen at the instants ��1 and ��2 are colored
in white. The sum over all possible values of d1 is estimated with the help of
the right-hand side of (50). Using (35), it is easy to complete the proof of (115).
Then (111) follows.

(b) Let us consider the case of two cells P2 D .x1; .y1;�// such that h.x1; y1/is D
.�1; �2/ are given as well as h�i D 
0. This means that M̌ is attributed by one
proper cell and one imported cell. We first study the case when y1 does not
fill the edge-box attached to a red or to a green vertex of G .c/. There is no
mirror cells at M̌ and therefore the vertices L#1 D R.��1/ and L#2 D R.��2 / are
situated on different branches of Ts. Let us briefly describe the construction of
the corresponding tree Ts that is very similar to that we performed above.

Taking the root vertex b0, we draw a branch B1 with the help of l1 edges.
Starting from the extreme vertex bl1 , we descend by 
1 steps till the vertex bl1�
1
and attach to it the second branch B2 of l2 edges. We attach to the vertex L#1 the
sub-cluster d1 of d1 edges. We denote the skeleton obtained by K.l1; d1; 
1I l2/.
Regarding the vertices of K, we construct on them the subtrees T .Na/, T . Nm1/,
T .Nb/ and T .Nc.1// with properly chosen values. In this construction, we do not
use the vertices of the descending part of K from the vertex L#2 to b0. We denote
the sub-tree obtained by JT D T .Na; Ň; Nc.1/; Nm1IK/.

Now let us consider a sub-walk WŒ0;��2�1�.
JT / D JW performed according to

the rules of hG .c/is and � . The vertex M̌ is completely determined by the run
of JW as well as the vertex W .��2 / D � . Therefore the path L from � to M̌
by non-marked steps according to � , if it exists, is completely determined as
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well as its length jL j D 
2. This produces the indicator function I JW .

0/ that is

equal to 1 if 
0 D 
2 and zero otherwise.
With 
2 determined, we descend from L#2 to b0 of K by 
2 steps and attach

to the vertex obtained the sub-cluster d2 of d2 edges. Then the family of sub-
trees KT .d2/ D Ts��2.Nc.2/; Nm2/.d2/ with the help of the remaining edges is
constructed.

Regrading the sum over all values of hH i D 
0, we see that the cardinality
of the set of trees obtained is given by the following expression [cf. (116)],

X


0

X

l1;
1;l2

X

K.l1;d1;
1Il2/

X

JT
I JW .


0/
X

KT
1: (118)

Taking into account that

X

KTs��2 .Nc.2/; Nm2/.d2/
1 � e�	d2

X

KTs��2 .Nc.2/; Nm2/
1

and that
P


0 I JW .

0/ D 1, we conclude that the right-hand side of (118) is

bounded by the sum

e�	d2
X

l1;
1;l2

X

K.l1;d1;
1Il2/

X

JT

X

KT
1 � e�	.d1Cd2/ ts: (119)

To get the last inequality, we have used the same reasoning as that
of (112), (113) and (114). Now it is clear that (35) and (50) together with (119)
imply (111).

(c) Let us consider the case of hP2i D .�1; .�2; 

0// such that the variable y1 is

attributed to the second arrival at the green vertex Ov of G .c/. The case when it is
attributed to the red edge-box is similar and we do not discuss it here.

Let us denote by q0 and p0 the number of red and green vertices that lie to
the left of Ov and by q00 and p00 � 1 the number of red and green vertices to the
right of Ov. We construct the skeleton K and the tree JT as it is described above.

Then we perform the run of the sub-walk JW D W
. JT /

Œ0;t2�1�, t2 D ��2 following the

prescriptions of h Mv ] G .c/i.b/s and the rule � . The vertex ˛ D JW .t2 � 1/ being
determined, the exit cluster �.˛/ D f�1; : : : ; �mg is also uniquely determined.

At the instant of time J��2 the walk has to choose a vertex � 0 from �.˛/

such that � 0 is situated on the distance of h�i D 
0 non-marked steps from
M̌. Therefore the indicator function of (118) I JW .


0/ is replaced by I.�1;:::;�m/

JW
.
0/

that is non-zero only in the case when 
0 takes one of the values that correspond
to the length of one of the paths of non-marked edges from �i to M̌, if such paths



High Moments of Strongly Diluted Random Matrices 395

exist. Thus,

X


0

I.�1;:::;�m/

JW
.
0/ � m D j�.˛/j � D: (120)

Denoting W
�
2s D W2s.d1; d2I h Mv ] G .c/is; hH i; � /, we can write the

following equality

W
�
2s D t JT

˚
WŒ0;��2�1�

�˝ fhW .��2 /i
0g ˝ t KT
n
W . KT /

Œ��2C1;2s�

o
;

where the curly brackets denote the families of realizations of corresponding
sub-walks and hW .��2 /i
0 indicates the set of possible values � 0. Then

X


0

jW�
2sj �

Y

JT
#
˚
WŒ0;��2�1�

��
X


0

# fhW .��2/ilambda0g�e�	d2 2q00

Dp00�1 #
n KT

o
;

where we have used inequality (119).
It follows from (120) that

X


0

# fhW .��2 /ilambda0g � D:

Using this inequality and estimates

#
n
W
Œ0; J��2�1�

o
� 2q0

Dp0

and

Y

JT
1 
 #

n KT
o
� e�	d1 ts; (121)

we conclude that

X


0

jW�
2sj � 2jNqj DjNpj e�	.d1Cd2/ts:

Remembering (50), it is easy to show that (111) is true in the case under
consideration.

5.3.3 The Cases of N D 2; R � 3

Let us consider P3 such that the first two cells at M̌ are given by the instants
h.x1; x2/i D .�1; �2/ while the third one is represented by the mirror cell. The
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presence of this mirror cell with m2 D 1 means that in the Dyck-type part of the
walk, and in the corresponding tree the vertices L#1 D R.��1 / and L#2 D R.��2 / lie
on the same branch of edges that starts at the root vertex b0. Therefore the tree T
is of the following structure: we choose a length l1 and construct the branch B1 of
l1 edges that starts by b0 and ends by L#1 D bl1 . Then we attach to L#1 another linear
branch B2 of l2 edges that ends by L#2. We attach the exit sub-cluster Ld1 to #1 at the
instant l1 of the chronological run R.B1 ]B2/ and the sub-cluster Ld3 to the vertex
#1 at the instant l1 C 2l2 C 1 of R.B1 ]B2/.

Then we attach the sub-cluster Ld2 at the vertex L#2. Regarding 2.l1 C l2/ C 1 C
d1Cd2Cd3 vertices of the obtained skeleton, we attach to them the sub-trees of the
total number of edges s� .l1C l2C d1C dC 2C d3/. Using three times inequalities
of the from (113) we easily get exponential estimates of (112) in this case.

To complete the study of the initial step of the proof of Lemma 12, we consider
the case of numerous imported cells of the form PR D .z1; .y1;�; 1; : : : ;  f //,
where f D f 00

1 and R D 3C f . We assume for simplicity that h.z1; y1/i D .�1; �2/ and
that �1 < �2. The reasoning presented below can be applied without any changes to
the case of imported cells generated by the local BTS instants h.z1; z2/i D .�1; �2/.
Let us point out that in this situation either f D 0 or f D 1 [see inequality (49)].
However, we include into considerations the general case of greater values of f .
Another remark is that we can ignore the presence of the proper cell hz1i D �1

with the exit sub-cluster Ld1 at M̌ and consider the imported cells and corresponding
exit sub-clusters only. We also assume for simplicity that y2 is attributed to a blue
r-vertex Ov of G .c/.

To get a realization of hH i, we take an integer f and then attribute numerical
values to the variables �; 1; : : : ;  f given by 
0;  0

1; : : : ;  
0
f . Let us take a tree

JT D JT�2 and consider a part of the chronological run over it RŒ0;t0�1� with
t0 D ��2 . Following this run, we construct a sub-walk WŒ0;t0�1� according to the

rules prescribed by h Mv]G .c/i.b/s and � . At the instant of time t0, the walk has to join
a vertex � of g.WŒ0;t0�1�/ prescribed by the values of marked instants of the edge-
boxes attached to Ov. This vertex � is uniquely determined and therefore we are able
to conclude whether the set of numerical data f ; .
0;  0

1; : : : ;  
0
f / is compatible with

WŒ0;t0�1� or not. We mean that it becomes clear whether there exists a path from � to
M̌ of 
0 non-marked steps that the walk can perform according to the rules � or not.

The same concern f consecutive returns to M̌ with the help of  0
l non-marked steps.

The f C 1 nest cells are uniquely determined in JT�2 and the exit sub-clusters
of the total cardinality LD D D � . f C 1/ are to be distributed to these nest cells.
Let us denote by Ndf C1 this distribution. We also denote by Ts. JT�2 ] fLd1; : : : ; Ldf C1g/
a collection of Catalan trees constructed over the base tree JT with the exit sub-
clusters Ldj attached.

Using (114) and (117) several times, one can easily prove the exponential
estimate for the number of trees

jTs. JT�2 ] fLd1; : : : ; Ldf C1g/j � e�	 LD jTs.T�2 /j:
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By changing somehow the point of view, we can say that given h Mv ] G .c/i.b/s and
� , the set of all possible values of f and h.�; 1; : : : ;  f /i is filtered by the run of
the walk WŒ0;t0�1�. The values f and LD D D � . f C 1/ depend on the realization of
WŒ0;t0�1�. With the help of the filtration principle, we get the following inequality,

j thH i W. JT /
2s .D; h Mv ] G .c/i.b/s ; hH i; � /j

� 2jNqj DjNpj sup
f

(

e	. f C1/
 LDC f

f

!)

e�	D
X

JT
jTs.T�2/j; (122)

where the superscript JT means that the walks have this tree as the first part of the
underlying trees. Taking into account the upper bound f � K D 1 [see (49)], we
can apply to the right-hand side of (122) relations (48) and (50) and write that

sup
f

(

e	. f C1/
 LDC f

f

!)

� e2	 h20 eeD=h0 : (123)

Repeating the reasoning of (114), we get from (122) and (123) the upper
bound (111).

5.3.4 General Step of Recurrence

The general step of the proof of (111) is to show that if this estimate is true for
N D I C J CK, then it is true in the case of N0 D N C 1, where N0 D I0 C J0 CK0.
Let us consider the case when K0 D K C 1 and I0 D I, J0 D J. This means that if
the set .NxI; NyJ ; Nzk/ is represented by N marked instants of time �1 < �2 < 
 
 
 < �N ,
then �NC1 > �n and zKC1 D �NC1. Obviously, the numbers f 00

KC1 D f and N'.KC1/ D
.'

.KC1/
1 ; : : : ; '

.KC1/
f / are also joined to the set of parameters hPRi (44).

Let us briefly describe the steps that we perform to get the estimate needed.
Regarding the vertices and the edge-boxes of realization of the color diagram
hG .c/.Np; Nq; N�/is, we separate the edge-boxes of each vertex into two groups in
dependence of whether the values in the boxes are less than �NC1 or greater than
�NC1. Clearly, the vertex attached by the edge-box with �NC1 plays a special role
here. By this procedure, we obtain realizations of two sub-diagrams h JG i and h KG i
determined in obvious way.

The underlying trees Ts D T .W2s/ of the walks are of the following structure:
there exists a branch BNC1 such that the descending path from the extreme vertex
LuNC1 to the root b0 is of the total length not less than j N�.KC1/j D Pf

iD1 '
.KC1/
i . At

the vertex L#NC1 and corresponding f vertices of the descending part of BNC1, the
sub-clusters of the total number of DNC1 edges are attached. Then the remaining
edges are used to construct sub-trees attached to lNC1 C DNC1 � f vertices. We
denote this part of T by KT .
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It is clear that the set of the walks under consideration can be represented in
the form of the right-hand side of (118) with �2 replaced by �NC1 and that the
exponential estimate with the factor e�	DNC1 can be obtained for the family of trees
f KT g (see also inequality (119), where q00 and p00 are determined with the help of
sub-diagram KG ). Using (123), it is not hard to complete the proof of (111) in the
case of N0 D N C 1. We omit the detailed computations here because they repeat
in major part those performed earlier in this sub-section (see also [10] for more
discussion of the general step of recurrent estimates).
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Dyson Processes on the Octonion Algebra

Songzi Li

Abstract We consider Brownian motion on symmetric matrices of octonions,
and study the law of the spectrum. Due to the fact that the octonion algebra is
nonassociative, the dimension of the matrices plays a special role. We provide two
specific models on octonions, which give some indication of the relation between
the multiplicity of eigenvalues and the exponent in the law of the spectrum.

1 Introduction

The study of the laws of the spectrum is one of the most important topics in random
matrix theory. One may consider stochastic diffusion processes on specific set of
matrices, for example symmetric or Hermitian matrices. Usually one considers the
empirical measure of the spectrum, which is often again a stochastic diffusion
process, called a Dyson process, see the works of Wigner [18], Mehta [14],
Dyson [7], Anderson-Guionnet-Zeitouni [1], Erdös et al. [8–10], Forrester [11] and
references therein.

Let us recall some classical results on this topic. Consider specific matrices with
independent Gaussian elements: real symmetric (ˇ D 1), Hermitian (ˇ D 2) and
real quaternionic (ˇ D 4). Then the law of their eigenvalues .
i/1�i�n, ordered as

1 � : : : � 
n, has a density with respect to the Lebesgue measure d
1 : : : d
n

which is

Cˇ;nexp.�ˇ
2

nX

jD1

2j /

Y

1�j�k�n

j
k � 
jjˇ; (1)

where Cˇ;n are constants depending on ˇ, n.
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On the other hand, one can also consider random matrices with stochastic process
as entries. In his paper [7], Dyson derived the stochastic equations of the eigenvalues
of Hermitian matrices whose elements are independent complex Brownian motions
(see also in this direction Anderson-Guionnet-Zeitouni [1], Mehta [14], Li-Li-Xie
[13]). The stochastic process on the spectrum provides a dynamic way to study
the law of the eigenvalues of the matrix with Gaussian entries. In fact there are
two ways: one is through the law of the eigenvalues of matrices with Brownian
motions as entries, considered at time t D 1; the other one is through the matrix
whose elements are Ornstein-Uhlenbeck process, since when t!1 the law of the
matrix converges to a matrix with Gaussian entries, and the law of its spectrum is
invariant through O-U process: in this case, the law of the spectrum may be seen
as the invariant (in fact reversible, see Definition 4) law of the process. This is in
general a much easier way to identify the law, since reversible measures are easy to
identify through the knowledge of the generator.

Meanwhile, if we consider real symmetric matrix, Hermitian matrix and real
quaternionics matrix as real ones of dimension respectively n � n, 2n � 2n, 4n �
4n, the multiplicity of the eigenvalues is again 1, 2 and 4. This fact leads us to
wonder whether this exponent factor in the density reflects the multiplicity of the
eigenvalues. However, this is not true.

In a recent paper, Bakry and Zani [3], the authors considered real symmetric
matrices whose elements are independent Brownian motions depending on some
associative algebra structure of the Clifford type. Their computation of the law of
the spectrum shows that, even though there is still the term

Q
1�j�k�n j
k � 
jjˇ

with ˇ D 1; 2; 4, the factor ˇ here reflects the structure of the algebra, known as
Bott periodicity, rather than the dimension of the eigenspaces, which in this situation
may be as large as we want.

The previous study on Dyson Brownian motion, including the work of Bakry
and Zani [3] on Clifford algebra, mainly concentrated on the case where the
underlying algebra is associative. It is therefore worth understanding how important
this property is in the study of the related Dyson processes. The octonion algebra,
which is nonassociative but only alternative, provides a good example for us to start
with. Its structure differs from the Clifford one, although Clifford algebras with
one or two generators coincide with complex numbers and quaternions, the Clifford
algebra with three generators does not coincide with octonions, even if the algebras
have the same real dimension 8. In his book [11, Sect. 1.3.5], Forrester mentions
that the distribution (1) with ˇ D 8 can be realized by 2 � 2 matrices on octonions,
with Gaussian entries. It is therefore worth to look at the associated Dyson process,
which could also provide this result through the study of its reversible measure.

There are only four normed division algebras: R, C, H and O. We are familiar
with R, C, and while the quaternion algebra H is noncommutative but associa-
tive,the octonion algebraO is nonassociative, but only alternative. Even though their
properties are not so nice, octonions have some important connections to different
fields of mathematics, such as geometry, topology and algebra. One interesting
example is its role in the classification of simple Lie algebra. There are three
infinite families of simple Lie algebras, coming from the isometry groups of the
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projective spaces RPn, CPn and HP
n. The remaining five simple Lie algebras were

later discovered to be in connection with octonions: they come from the isometry
groups of the projective planes over O, O˝C, O˝H, O˝O and the automorphism
group of octonions. It is also worth to mention that, according to the independent
work by Kervaire [12] and Bott-Milnor [5] in 1958, there are only four parallelizable
spheres: S0, S1, S3 and S

7, which correspond precisely to elements of unit norm in
the normed division algebras of the real numbers, complex numbers, quaternions,
and octonions. See more examples in the paper by Baez [2].

For the eigenvalue problem of matrices on octonions, Y.G. Tian proved in his
paper [17] that 2 � 2 Hermitian matrix on octonions has two eigenvalues, each of
them has multiplicity 8. For 3 � 3 Hermitian octonionic matrix, Dray-Manogue [6]
and Okubo [16] showed that it has six eigenvalues with multiplicity 4. For 4�4 and
5�5Hermitian octonionic matrices, there are only numerical results, indicating that
the eigenvalues have multiplicity 2 [17]. It is still unknown for matrices in higher
dimension. Following the analysis of Bakry and Zani [3], one may expect that the
study of probabilistic models on matrices of octonions could give new insights in
these directions.

In this paper, we consider Brownian motions on symmetric matrices of octonions.
Due to the fact that octonions are nonassociative, and in contrast with the Clifford
case, the dimension of the matrices plays a specific role. In fact, contrary to the
real, complex and quaternionic cases, octonions do not give rise to infinite series of
Lie groups but only specific ones, which are closely related to dimension 2. Thus
the study of Dyson processes is mainly pertinent in this dimension, although we
introduce another probabilistic model related to the octonion algebra, but with a
special structure, see Sect. 4.2. To study the law of the spectrum of the matrices,
we consider the processes on the characteristic polynomials P.X/, as introduced in
the paper by Bakry and Zani [3]. Because of the specific structure of octonions, the
traditional way to compute the law of the spectrum turns out to be quite hard, while
computation on the process of P.X/ provides a simpler and more efficient method
to see things clearly.

The paper is organized as follows. Section 2 gives an introduction to the basics
of the octonion algebra; Sect. 3 explains briefly the language and tools of symmetric
diffusion process; Sect. 4 states our main results, two specific models on octonions,
and then we explain what is so special about dimension 2; Sect. 5 is devoted to the
demonstration of the connection between the algebra structure and the Euclidean
structure associated with the associated symmetric matrices, and the fact that the
two exponents, multiplicity of eigenvalues and exponent in the law of eigenvalues,
are not correlated.
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2 The Octonion Algebra

In this section, we recall some facts about the octonion algebra, and we refer to [2]
for more details. We start with a few definitions.

Definition 1 An algebra A is a division algebra if for any a; b 2 A, with ab D 0,
then either a D 0 or b D 0. A normed division algebra is a division algebra that is
also a normed vector space with kabk D kakkbk.
Definition 2 An algebra A is alternative if the subalgebra generated by any two
elements is associative. By a theorem of Artin [15], this is equivalent to the fact that
for any a; b 2 A, .aa/b D a.ab/; .ba/a D b.aa/.

As mentioned earlier, there are only four normed division algebras, R, C, H, O.
There is a nice way called “Cayley-Dickson construction” to produce this sequence
of algebras: the complex number a C ib can be seen as a pair of real numbers
.a; b/; the quaternions can be defined as a pair of complex number; and similarly
the octonions is a pair of quaternions. As the construction proceeds, the property
of the algebra becomes worse and worse: the quaternions are noncommutative but
associative, while the octonions are only alternative but not associative.

Since octonions and Clifford algebra are both the algebra with dimension 2n (in
this case n D 3), which share some special property, we can use the presentation
provided in Bakry and Zani [3] to describe the algebra structure on a basis of
octonions, in order to simplify the computations. This presentation is not classical,
and we shall therefore use the table below.

Define E D f1; 2; 3g, and let P.E/ denote the set of the subsets of E. For every
set A 2 P.E/,we associate a basis element !A in the octonion algebra, with !; D
Id, the identity element. Then an element x 2 O can be written in the form

x D
X

A

xA!A; xA 2 R;

and the product of two elements x and y is given by

xy D
X

A;B

xAyB!A!B:

It remains to define !A!B for A;B 2 P.E/ through the following rule: denote by
A:B the symmetric difference A [ B n .A \ B/, then !A!B D .AjB/!A:B, where
.AjB/ takes value in f�1; 1g. Then, the multiplication rule in the octonion algebra is
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defined by a sign table, which is as follows:

; f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g
; 1 1 1 1 1 1 1 1

f1g 1 �1 1 1 �1 �1 1 �1
f2g 1 �1 �1 1 1 �1 �1 1

f3g 1 �1 �1 �1 1 1 1 �1
f1; 2g 1 1 �1 �1 �1 �1 1 1

f1; 3g 1 1 1 �1 1 �1 �1 �1
f2; 3g 1 �1 1 �1 �1 1 �1 1

f1; 2; 3g 1 1 �1 1 �1 1 �1 �1

In this table, the element .i; j/ is the sign .AijAj/, where Ai is the ith element in
the first column, Aj is the jth element in the first row.

From the facts that for A;B ¤ ;, !2A D �1 and !A!B D �!B!A, it is easy to get
the following rules:

.AjA/ D
� �1; A ¤ ;,
1; A D ;,

.AjB/ D �.BjA/; for B ¤ A;A;B ¤ ; :

It can be seen from the above table that O is an algebra, non-associative but
alternative. Moreover O can be equipped with the Euclidean structure obtained by
identifying O as a 8 dimensional (real) vector space via

x D
X

A

xA!A 7! .x;; xf1g; xf2g; xf3g; xf1;2g; xf1;3g; xf2;3g; xf1;2;3g/ ;

so that the inner product and the norm are respectively:

hx; yi D
X

A

xAyA ; kxk D .
X

A

x2A/
1=2 ;

so that f!A; A 2P.E/g form a real orthonormal basis for the algebra O.
Let us recall that to prove that O is a division algebra, it is usual to introduce the

conjugate

x D
X

A

xA!A 7! x� D
X

A

xA!A.AjA/;

and observe that .xy/� D y�x�, xx� D x�x and kxk2 D xx�, so that kxyk2 D
.xy/.xy/� D .xy/.y�x�/ D x.yy�/x� D kxk2kyk2.
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Although the previous table does not provide an associative algebra, the octonion
algebra satisfies however some useful identities. In what follows, we shall make a
strong use of Moufang identities, which are stated as follows: for elements x; y; z
belongs to O, we have

z.x.zy// D .zxz/y;

..xz/y/z D x.zyz/;

.zx/.yz/ D .z.xy//z;

.zx/.yz/ D z..xy/z/ :

We shall mainly use this for the elements !A 2 O, although Moufang identities
provide more information than this.

According to the alternativity property, we can get some basic formulae about
the sign table f.AjB/g for octonions.

Lemma 1 For A;B;C;D 2P.E/, we have

1. .A:BjB/ D .AjB/.BjB/.
2. .A:BjA/.A:BjB/ D .A:BjA:B/.
3. If A:B ¤ ;, .A:CjA/.B:CjB/ D �.A:CjB/.B:CjA/.
4. If A:B:C:D D ;,

.B:CjC/.C:DjD/.D:AjA/.A:BjB/ D .B:DjB:D/:

Proof The first one is just the result of alternativity:

.!A!B/!B D .AjB/!A:B!B D .A:BjB/!A;

while

.!A!B/!B D !A.!B!B/ D .BjB/!A;

Hence

.A:BjB/ D .AjB/.BjB/:

The second one can be easily proved by the first statement.
For the third statement, we first remark that, for any vector x DP

xC!C , x!A is
always orthogonal to x!B if A ¤ B. Indeed, to see this, we may reduce to the case
where kxk D 1, and then observe that the fact that the algebra is a division algebra
shows that for any y 2 O, y 7! xy is an orthogonal transformation. For A;B 2P.E/,
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A:B ¤ ;, and any C 2P.E/, choose D D A:B:C and set x D !C C !D. Then

0 D hx!A; x!Bi
D h.CjA/!C:A C .DjA/!D:A; .CjB/!C:B C .DjB/!D:Bi
D h.CjA/!C:A; .DjB/!D:Bi C h.DjA/!D:A; .CjB/!C:Bi
D .CjA/.DjB/C .DjA/.CjB/ :

Since D D A:B:C, the above formula indicates that for A;B;C 2P.E/, A:B ¤ ;,

.CjA/.A:B:CjB/C .A:B:CjA/.CjB/ D 0:

By changing C into A:C, we get

.A:CjA/.B:CjB/C .B:CjA/.A:CjB/ D 0;

then the third statement is proved.
For the last statement, denote

� WD .B:CjC/.C:DjD/.D:AjA/.A:BjB/: (2)

Then, from Moufang identities,

..!B:C!C/.!D:A!A//..!C:D!D/.!A:B!B//

D .B:CjC/.C:DjD/.D:AjA/.A:BjB/.!B!D/.!C!A/

D �.BjD/.CjA/!B:D!C:A

D �.BjD/.CjA/!B:D!B:D

D �.BjD/.CjA/.B:DjB:D/ :
On the other hand,

!A!B D .A:BjA:B/.AjA/.BjB/!B!A ;

and

..!B:C!C/.!D:A!A//..!C:D!D/.!A:B!B//

D .DjD/.B:CjB:C/.AjA/.AjA/.BjB/.A:BjA:B/..!B:C!C/.!A!B:C//..!A:B!D/.!B!A:B//

D .DjD/.B:CjB:C/.BjB/.A:BjA:B/.!B:C.!C!A/!B:C/.!A:B.!D!B/!A:B/

D .DjD/.B:CjB:C/.BjB/.A:BjA:B/.CjA/.DjB/.!B:C!C:A!B:C/.!A:B!D:B!A:B/

D .DjD/.BjB/.CjA/.DjB/!C:A!D:B

D .DjD/.BjB/.CjA/.DjB/.B:DjB:D/ :
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Hence,

� D .BjD/.CjA/.B:DjB:D/.DjD/.BjB/.CjA/.DjB/.B:DjB:D/
D .BjD/.DjD/.BjB/.DjB/D .B:DjB:D/;

which ends the proof of the lemma.

For a n � n matrix on octonions, write it as M D P
A MA!A, where fMAg are

real n � n matrices. For an n dimensional vector
P

B XB!B,

.
X

A

MA!A/.
X

XB!B/ D
X

A;B

MAXB.AjB/!A:B D
X

A;B

.A:BjB/MA:BXB!A:

Therefore, M can be expressed by the real 8n � 8n block matrix fMA;B
ij g, where

MA;B
ij D .A:BjB/MA:B

ij .
This leads to the following definition:

Definition 3 A .23�n/� .23�n/ block matrix MA;B (where A;B 2P.E/) is a real
octonionic if MA;B D .A:BjB/MA:B, where MA D MA;; is a family of 8 n � n square
matrices. It is the real form of a matrix with octonionic entries. We shall denote it
as M DPA MA!A.

Then, we shall say that an octonionic matrix is symmetric if its real form is
symmetric. This corresponds to the fact that, for any A 2P.E/, .MA/t D .AjA/MA.

That is to say, .MA;B/t D .A:BjB/.MA:B/t D MB;A D .B:AjA/MA:B. Due to
property 2 of Lemma 1, this leads to the fact that for any A 2 P.E/, .MA/t D
.AjA/MA, i.e. M; is symmetric while MA is antisymmetric for any A ¤ ;.

It is worth to point out that since the octonion algebra is not associative, there
is no matrix representation of the algebra structure for the octonions, and therefore
the matrix multiplication of the real octonionic matrices does not corresponds to the
octonionic multiplication of the associated matrices with octonion entries. Even the
product of octonionic matrices is not octonionic in general.

The inverse of an octonionic matrix is in general not octonionic, and its exact
structure is not easy to decipher; the octonionic property may not be preserved. The
following lemma gives a condition for this last property to hold, and will play an
important role in the rest of this paper.

Lemma 2 Let M D P
MA!A be an octonionic matrix such that M; is invertible.

Assume moreover that, for any A;B 2P.E/

MA.M;/�1MB D MB.M;/�1MA; (3)
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and that
P

C MC.M;/�1MC is invertible. Then, M is invertible and its inverse N is
octonionic, satisfying N DPA !ANA, with

NA D �N;MA.M;/�1; forA ¤ ;; (4)

N; D .
X

C

MC.M;/�1MC/�1: (5)

Proof In fact, assume the octonionic matrix NA;B D .A:BjB/NA:B D .A:BjA/ QNA:B is
the inverse of M, where

NA:B D .A:BjA:B/ QNA:B D
� � QNA:B; A:B ¤ ;;
QN;; A:B D ;.

Then

X

C

.A:CjA/.C:BjB/ QNA:CMC:B D 0; forA ¤ B; (6)

X

C

.A:CjA/.C:AjA/ QNA:CMC:A D Id: (7)

Changing C into A:B:C in (6), we get
P

C.B:CjA/.A:CjB/ QNB:CMC:A D 0, then it is
enough to have

.A:CjA/.C:BjB/ QNA:CMC:B C .B:CjA/.A:CjB/ QNB:CMC:A D 0:

According to Lemma 1, it holds as soon as

QNA:CMC:B D QNB:CMC:A: (8)

Choosing C D B and then setting D D A:C, this leads to

QND D N;MD.M;/�1; (9)

for every D 2 P.E/. Now choose C D ; in (8) and apply (9) to NA and NB,
plugging into (8), this reduces to

N;MA.M;/�1MB D N;MB.M;/�1MA:

Now (7) is

X

D

QNDMD D Id;
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and using (9), this gives

N;.
X

MC.M;/�1MC/�1 D Id;

which means that N; is invertible, and gives its inverse, such that (5) holds true.
Then we can use (5) and (9) to get (4).

Remark 1 It is worth to observe for later use that if the matrix M on the octonions
satisfies the assumptions of Lemma 2, then it is also the case of M � XId.

3 Symmetric Diffusion Operators on Matrices

We introduce the basics on symmetric diffusion operators, in a simplified version
adapted to our case. For further details see [4].

Let E be an open set in R
n, endowed with a �-finite measure � and let A0 be the

set of smooth compactly supported functions, or of polynomials functions on E. For
any linear operator L W A0 7! A0, we define its carrè du champ operator as

� . f ; g/ D 1

2

	
L. fg/� f L.g/� gL. f /



:

We have the following

Definition 4 A symmetric diffusion operator is a linear operator L: A0 ˚ 1 7! A0,
such that

1. L.1/ D 0,
2. 8f ; g 2 A0 ˚ 1;

R
f L.g/ d� D R gL. f / d�,

3. 8f 2 A0; � . f ; f / � 0,
4. 8f D . f1; 
 
 
 ; fn/, where fi 2 A0, ˚ is a smooth function R

n 7! R and
˚.0/ D 0,

L.˚. f // D
X

i

@i˚. f /L. fi/C
X

i;j

@2ij˚. f /� . fi; fj/: (10)

Consider an open set˝ � E, and a given system of coordinates .xi/, then we can
write

L. f / D
X

ij

gij.x/@2ijf C
X

i

bi.x/@if ;

where

gij.x/ D � .xi; xj/; bi.x/ D L.xi/:
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In this paper, we perform computations on the characteristic polynomial P.X/ D
det.M � XId/ of a matrix M. Assume that we have some diffusion operator acting
on the entries of a matrix M, described by the values of L.Mij/ and � .Mij;Mkl/ for
any .i; j; k; l/. Then, we have,

� .log P.X/; log P.Y// D
X

i;j;k;l

@Mij log.P.X//@Mkl log.P.Y//� .Mij;Mkl/

L.log P.X// D
X

i;j

@Mij log.P.X//L.Mij/

C
X

i;j;k;l

@Mij@Mkl log.P.X//� .Mij;Mkl/ :

To compute @Mij log.P.X// and @Mij@Mkl log.P.X// in the above formulae, we use [3,
Lemma 6.1], which we quote here without proof.

Lemma 3 Let M D .Mij/ be a matrix and M�1 be its inverse, on the set fdetM ¤ 0g
we have

@Mij log detM D M�1
ji ;

@Mij@Mkl log detM D �M�1
jk M�1

li :

Hence, with M�1.X/ D .M � XId/�1,

� .log P.X/; log P.Y// D
X

i;j;k;l

M�1.X/jiM�1.Y/lk� .Mij;Mkl/; (11)

L.log P.X// D
X

i;j

M�1
ji .X/L.Mij/�

X

i;j;k;l

M�1
jk .X/M

�1
li .X/� .Mij;Mkl/:

(12)

According to Bakry and Zani [3], one can get from � .P.X/;P.Y// and L.P.X//
informations about the multiplicities of the eigenvalues, and on the invariant
measure of the operator L acting on P.X/:

If for some constants ˛1; ˛2; ˛3,

L.P/ D ˛1P00C˛2P02

P
; � .log P.X/; log P.Y// D ˛3

Y � X

	P0.X/
P.X/

�P0.Y/
P.Y/



: (13)

and if there exists for some a 2 R, a ¤ 0 which satisfies

a2.˛1 C ˛2/ � a.˛1 C ˛3/C ˛3 D 0; (14)
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then,

1. If a is a positive integer, it is the multiplicity of the eigenvalues of M;
2. Write P.X/ D Qn

iD1.X � xi/
a, the invariant measure for the operator L in the

Weyl chamber fx1 < 
 
 
 < xng is, up to a multiplicative constant,

d� D .
Y

i<j

.xi � xj/
2/

� a2.˛1C˛2/
˛3 d�0;

where d�0 is the Lebesgue measure.

4 Symmetric Matrices on Octonions

Our aim is to describe the law of the spectrum of the real form of symmetric matrices
on octonions. The block matrix is M D ..A:BjB/MA:B/A;B2P.E/, satisfying .MA/t D
.AjA/MA from the symmetry assumption.

We will focus on cases where the symmetry condition (3) of matrix M � XId is
satisfied, i.e. where the matrix

U.X/ WD .M � XId/�1

is octonionic (almost surely for the stochastic process under consideration).
Setting

P.X/ WD det.M � XId/;

by Lemma 3 we have

� .log P.X/; log P.Y// D
X

A;B;C;D
i;j;k;l

UB;A
ji UD;C

lk � .MA;B
ij ;MC;D

kl /

D
X

A;B;C;D
i;j;k;l

.A:BjA:B/.C:DjC:D/UA:B
ji UC:D

lk � .MA:B
ij ;MC:D

kl /

(15)

where we used property 2 of Lemma 1 and

L.log P.X// D
X

A;B
i;j

UA;B
ji .X/L.MA;B

ij / �
X

A;B;C;D
i;j;k;l

UB;C
jk .X/UD;A

li .X/� .MA;B
ij ;MC;D

kl /:

(16)
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For further use in both examples, we state (without proof) two preliminary
lemmas. The first lemma collects some elementary facts, consequences of the
definition, the symmetries and property 2 of Lemma 1.

Lemma 4 For F 2P.E/, we have

tr U.X/F D
X

i

U.X/Fii ; (17)

tr U.X/ D8 tr U.X/; ; (18)

tr ŒU.X/FU.Y/F� D
X

ij

U.X/Fji U.Y/
F
ij ; (19)

.FjF/ trŒU.X/FU.Y/F� D
X

ij

U.X/Fji U.Y/
F
ji ; (20)

tr ŒU.X/U.Y/� D8
X

C

.CjC/ tr ŒU.X/CU.Y/C� : (21)

The second lemma gives expressions of the traces in terms of the characteristic
polynomials. The first two identities are obtained by derivation from

log P.X/ D tr log.M � XId/ D � tr log U.X/ ;

and the third one is a consequence of the first one and the resolvent equation.

Lemma 5

tr U.X/ DP0.X/
P.X/

(22)

tr.U.X/2/ DP0.X/2

P.X/2
� P00.X/

P.X/
(23)

tr ŒU.X/U.Y/� D 1

Y � X

�
P0.X/
P.X/

� P0.Y/
P.Y/

�

: (24)

4.1 The Dimension 2 Case

Consider M DPMA!A, where fMAg are matrices whose elements are independent
Brownian motions. For A ¤ ;, due to symmetry of M , .MA/t D .AjA/MA D �MA.
Such matrices naturally satisfy the symmetry restriction 3 in dimension 2, since the

2� 2 antisymmetric matrices are all of the form

�
0 �z
z 0

�

, and they are therefore all
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proportional to each other. This property fails in higher dimensions. Set

� .MA
ij ;M

B
kl/ D

1

2
ıA;B.ıikıjl C .AjA/ıilıjk/; L.MA

ij / D 0; (25)

which reflects the symmetry of the matrices. Notice that the inverse matrix U.X/ is
also symmetric with .UA/t D .AjA/UA. We have the following result:

Proposition 1 For the 2 � 2 symmetric matrix M DPMA!A,

� .log P.X/; log P.Y// D 8

Y � X

�
P0.X/
P.X/

� P0.Y/
P.Y/

�

; (26)

L.log P.X// D 3
�

P0.X/2

P.X/2
� P00.X/

P.X/

�

� 1
2

P0.X/2

P.X/2
: (27)

Proof Proof of (26): From (15) and (25) we have

� .log P.X/; log P.Y//

D
X

A;B;C;D
ABDCD

.A:BjA:B/.C:DjC:D/U.X/B:Aji U.Y/D:Clk

1

2
.ıikıjl C .A:BjA:B/ıilıjk/

D 8
X

F

tr.U.X/FU.Y/F/.FjF/

D 8 tr.U.X/U.Y// D 8

Y � X

�
P0.X/
P.X/

� P0.Y/
P.Y/

�

;

where we applied (20), (19), (21) and (24). This ends the proof of (26).
Proof of (27): In the following, we write U is for U.X/. From (16) and (25), we

have

L.log P.X// D� 1
2

X

B;C;D

.B:DjB:D/
X

ij

.UB:C
ji /2

� 1
2

X

A;B;C;D
A:B:C:DD;

.B:DjB:D/.A:BjA:B/.
X

i

UBC
ii /

2: (28)

On the one hand, in view of (20) and (21)

X

B;C;D

.B:DjB:D/
X

ij

�
UB:C

ji

�2 D �6 tr.U2/:
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On the other hand, since for F 6D ;, UF is antisymmetric, so that tr UF D 0,

X

A;B;C;D
A:B:C:DD;

.B:DjB:D/.A:BjA:B/.
X

i

UB:C
ii /2 D 82 �tr U;�2 :

Combined as in (28), these sums give:

L.log P.X// D 3 tr U2 � 4 
 8 �tr U;�2 D 3 tr U2 � 1
2
.tr U/2 ; (29)

which, in view of (22) and (23) ends the proof of (27) and then the proof of the
Proposition.

Remark 2 By the results of above proposition and formula (10), it is easy to get

L.P/ D .11� 1
2
/
P0.X/2

P.X/
� 11P00.X/:

Now chose ˛1 D �11, ˛2 D 11� 1
2

and ˛3 D 8 in formula (13): the resulting value
for a is a D 8. This shows that the multiplicity of the eigenvalues is 8. Assume
� is the density of the invariant measure of L of the coordinates fxig in the Weyl
chamber, then according to our discussion in the previous section, we have

� D C
Y

i<j

.xi � xj/
8:

4.2 Another Model in Any Dimension

We now provide another set of random octonionic matrices for which the symmetry
condition (3) is automatically satisfied.

Let M; be a symmetric matrix with independent Brownian motions as its entries.
For all A;B ¤ ;, let MA D MB D A be a random antisymmetric matrix with
independent Brownian motion as its off diagonal entries. Then consider M D
M;!; C A

P
C¤; !C. This model is similar to the Hermitian case considered in

Bakry and Zani [3] (see Remark 4). Similarly to the Hermitian case, we set

� .M;
ij ;M

;
kl/ D

1

2
.ıikıjl C ıilıjk/; (30)

� .Aij;Akl/ D 1

14
.ıikıjl � ıilıjk/; (31)

� .M;
ij ;Akl/ D 0; L.MA

ij / D 0: (32)
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Due to Lemma 1, for the inverse matrix U.X/ D .M � XI/�1, we have for every
C ¤ ;

UC D �U;MC.M; � XI/�1 D �U;A .M; � XI/�1;

which means for all C ¤ ;, UC is the same, and we denote it by Ua.

Proposition 2 For the matrix M D M;!; CPC¤; A !C on the octonions,

� .log P.X/; log P.Y// D 8

Y � X

�
P0.X/
P.X/

� P0.Y/
P.Y/

�

;

L.log P/ D� 1
8

P0.X/2

P.X/2
:

Proof On the one hand, from (15) and (32)

� .log P.X/; log P.Y// D 1

2
S1 C 1

14
S2; (33)

where

S1 WD
X

ADB;CDD

X

i;j;k;l

U.X/;jiU.Y/;lk.ıikıjl C ıilıjk/;

S2 WD
X

A 6DB;C 6DD

X

i;j;k;l

U.X/A:Bji U.Y/C:Dlk .ıikıjl � ıilıjk/:

A careful computation, using the fact that U.Y/; is symmetric and U.Y/a is
antisymmetric gives

S1 D 2 
 82 tr

U.X/;U.Y/;

�
; S2 D �2 
 72 
 82 tr ŒU.X/aU.Y/a� ; (34)

and then, using (33)

� .log P.X/; log P.Y// D 82 tr

U.X/;U.Y/;

� � 7 
 82 tr ŒU.X/aU.Y/a� :

Going back to (21) we see that

tr ŒU.X/U.Y/� D 8 tr

U.X/;U.Y/;

� � 7 
 8 tr ŒU.X/aU.Y/a� ;

so that

� .log P.X/; log P.Y// D 8 tr ŒU.X/U.Y/� D 8

Y � X

�
P0.X/
P.X/

� P0.Y/
P.Y/

�

:
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On the other hand, with U for U.X/

L.log P/ D �1
2

X

ADB;CDD
i;j;k;l

.B:CjC/.D:AjA/.A:BjB/.C:DjD/U.X/B:Cjk U.X/D:Ali .ıikıjl C ıilıjk/

� 1

14

X

A 6DB;C 6DD
i;j;k;l

.B:CjC/.D:AjA/.A:BjB/.C:DjD/U.X/B:Cjk U.X/D:Ali .ıikıjl � ıilıjk/

DW �1
2

S0
1 �

1

14
S0
2 : (35)

Let us first remark that

X

ijkl

UF
jkUG

li .ıikıjl ˙ ıilıjk/ D .FjF/ tr.UFUG/˙ .tr UF/.tr UG/: (36)

For the first part, we have

S0
1 D

X

B;C

tr.UB:C/2 C
X

B;C

.B:CjB:C/Œtr UB:C�2

D8 tr.U;/2 C 7 tr.Ua/
2
�C 8Œtr U;�2: (37)

For the second part, going back to the notation (2) for � and applying (36) we
have

S0
2 D

X

A 6DB;C 6DD

� � �.B:CjB:C/ tr ŒUB:CUA:D� � tr UB:C tr UA:D
�
: (38)

Let us split the sum into four parts according to B D C or not, and A D D or not.

(i) When A 6D D;B D C, the sum vanishes. Indeed, in this case,

.B:CjB:C/ tr ŒUB:CUA:D� � .tr UB:C tr UA:D/ D trŒU;Ua�; (39)

and � D .A:DjA/.A:BjB/.B:DjD/ which is antisymmetric in A;B.
(ii) The same occurs when A D D and B 6D C.

(iii) When A D D and B D C,

.B:CjB:C/ tr ŒUB:CUA:D� � .tr UB:C tr UA:D/ D tr ŒU;�2 � .tr U;/2 ;
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and � D .B:DjB:D/ in view of property 4 of Lemma 1, so that the
contribution is

X

A 6DB;C 6DD;BDC;ADD

.B:DjB:D/ �.B:CjB:C/ tr ŒUB:CUA:D� � tr UB:C tr UA:D
�

D �7 
 8 �trŒU;�2 � .tr U;/2
�
:

(iv) When A 6D D;B 6D C,

.B:CjB:C/ tr ŒUB:CUA:D� � .tr UB:C tr UA:D/ D � tr.Ua/
2 :

With the help of some computer algebra, we get

X

A 6DB;C 6DD;B 6DC;A 6DD

� D 23 
 72 :

Finally all the contributions in (38) give

S0
2 D �7 
 8

�
tr ŒU;�2 � .tr U;/2

� � 72 
 8 tr.Ua/
2 :

Going back to (35) and (37), we conclude, using again (32)

L.log P/ D �8.tr U;/2 D �1
8
.tr U/2 ;

which ends the proof of the proposition.

Remark 3 Similarly we have

L.P.X// D .8 � 1
8
/
P0.X/2

P
� 8P00.X/ :

Chose ˛1 D �8, ˛2 D 8 � 1
8
, ˛3 D 8, we still obtain the multiplicity a D 8, while

the density of the invariant measure of L is then

C
Y

i<j

jxi � xjj2:

Remark 4 Recall that in Bakry and Zani [3, Sect. 7.1], for a Hermitian matrix H D
M C iA with independent Brownian motions as its entries (where M is symmetric,
A is anti-symmetric), we have

� .Mij;Mkl/ D1
2
.ıikıjl C ıilıjk/;

� .Aij;Akl/ D1
2
.ıikıjl � ıilıjk/ :
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In our model M D M;!; C A
P

C¤; !C, denote e the specific element in the
octonion algebra, e DPC¤; !C . Notice that

e2 D �7;

which indicates that e works like i in the Hermitian matrices, just with a different
variance. Therefore, this example is indeed similar to the case of Hermitian matrices.

Remark 5 In this remark we would like to discuss why the dimension 2 is so special.
Consider a more general model: let

M D M;!0 C
X

C¤;
MC!C;

with MC D xCA0, where M; is a Brownian motion on symmetric matrices, fxCg
a series of Brownian motions on R, and A0 D faijg a fixed anti-symmetric matrix.
Obviously this model satisfies the symmetry condition (3). When M is a 2�2matrix,
it can be considered as a special example of the first case. Let e D P

C¤; xC!C .
Different from the previous model, in this case e can be considered as a Brownian
motion on the basis of octonions satisfying e2 D �PC¤; jxCj2 D �jej2.
Therefore,

� .M;
ij ;M

;
kl/ D

1

2
.ıikıjl C ıilıjk/;

� .MA
ij ;M

B
kl/ D ıADBaijakl;A;B ¤ ;;

� .M;
ij ;M

A
kl/ D 0;A ¤ ; :

Similar computations yield

� .log P.X/; log P.Y// D 8
X

A:BD;
tr.U.X/;U.Y/;/

C 8
X

A:B¤;
.tr.U.X/B:AA0/ tr.U.Y/B:AA0//;

L.log P/ D �1
2

X

A:C¤;
tr.U.X/A:C/2 � 4 tr.U.X/;/2 � 4.tr U.X/;/2

C 5
X

B:C¤;
tr.U.X/B:CA0U.X/

B:CA0/C 56 tr.U.X/;A0U.X/
;A0/;
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which are hard to describe in terms of P. When the matrix is 2 � 2, the following
equalities hold: for C ¤ ;,

tr.U.X/CA0/ tr.U.Y/CA0/ D � tr.U.X/CU.Y/C/;

tr.U.X/CA0U.X/
CA0/ D � tr.U.X/C/2;

tr.U.X/;A0U.X/
;A0/ D tr.U;/2 � .tr U;/2 :

which give rise to the results in the first model.
However, in higher dimensions, the above conditions are hard to satisfy. In fact

when n D 2, it is enough to take A0 D
�
0 �1
1 0

�

. Set xf1g D z. By the formula

U; D .M; C z2A0.M
;/�1A0/

�1;

Uf1g D �zU;A0.M
;/�1 :

It is easily seen that Uf1g is a 2 � 2 antisymmetric matrix and can be written as

Uf1g D 
A0; 
 D z

z2 � det.M;/
:

Compare it with the expressions of U; and Uf1g, we have

A0 D 



z2 � z
M;A0M

; :

Since A20 D �I, this leads to .M;A0/2 D z�
z2



I D �det.M;/I, which is impossible

to hold for any symmetric matrix M; in higher dimensions. This restriction insures
the first two conditions, and the third one is proved by this and the fact that tr.M2/�
.tr M/2 D �2det.M/ holds in dimension 2.

5 Some Remarks

Our two models provide examples where the multiplicity of eigenvalues and the
exponent ˇ in the law are not related, which is in accordance with the conclusion in
Bakry and Zani [3], that the exponent reflects the structure of the algebra while the
multiplicity of the eigenvalues is decided by the dimension of the eigenspaces.

As we have seen, the octonionic structure of the matrix plays an important role.
For higher dimension, the problem may be studied by our method if we know
the structure of the inverse matrix, which is not necessarily octonionic. The main
obstacle is still the non-associativity, which prevents any matrix presentation for
octonionic multiplication. Let us recall that the 3 � 3 matrices on octonions have
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been studied by Dray and Manogue [6] and Okubo [16] using algebraic method,
showing that there are six eigenvalues with multiplicity 4. It it still an open problem
to provide a probabilistic model in this case which would lead to this conclusion.
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Necessary and Sufficient Conditions
for the Existence of ˛-Determinantal Processes

Franck Maunoury

Abstract We give necessary and sufficient conditions for existence and infinite
divisibility of ˛-determinantal processes. For that purpose we use results on negative
binomial and ordinary binomial multivariate distributions.

AMS 2010 Subject Classifications 60G55, 60E07

1 Introduction

Several authors have already established necessary and sufficient conditions for
existence of ˛-determinantal processes.

Macchi in [8] and Soshnikov in its survey paper [11] gave a necessary and
sufficient condition for determinantal processes with self-adjoint kernels, which
corresponds to the case ˛ D �1.

The same condition has also been established in a different way by Hough
et al. in [7] in the case ˛ D �1. They have also given a sufficient condition of
existence in the case ˛ D 1 and self-adjoint kernel.

In the special case when the configurations are on a finite space, the paper of
Vere-Jones [13] provides necessary and sufficient conditions for any value of ˛.

Finally, Shirai and Takahashi have given sufficient conditions for the existence
of an ˛-determinantal process for any values of ˛. However, in the case ˛ > 0, their
sufficient condition (Condition B) in [10] does not work for the following example:
the space is reduced to a single point space and the reference measure 
 is a unit
point mass. With their notations, the two kernels K and J˛ are respectively reduced
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to two real numbers k and j˛ , with

j˛ D k

1C ˛k

We can choose ˛ > 0 and k < 0 such that j˛ > 0. Under these assumptions,
Condition B is fulfilled but the obtained point process has a negative correlation
function (�1.x/ D k), which has to be excluded, since a correlation function is an
almost everywhere non-negative function.

We are going to strengthen Condition B of Shirai and Takahashi and obtain a
necessary and sufficient condition in the case ˛ > 0. This is presented in Theorem 1.

Besides, in the case ˛ < 0, we extend the result of Shirai and Takahashi to
the case of non self-adjoint kernels and show that the obtained condition is also
necessary (Theorems 3 and 4). Moreover, we show that �1=˛ is necessarily an
integer. This has been noticed by Vere-Jones in [12] in the case of configurations on
a finite space.

We also give a necessary and sufficient condition for the infinite divisibility of an
˛-determinantal process for all values of ˛.

The main results are presented in Sect. 3. Section 2 introduces the needed
notation. In Sect. 4, we write a multivariate version of a Shirai and Takahashi
formulae on Fredholm determinant expansion. Sections 5 and 6 present the proofs
of the results concerning respectively the cases ˛ > 0 and ˛ < 0. The proofs
concerning infinite divisibility are presented in Sect. 7.

2 Preliminaries

Let E be a locally compact Polish space. A locally finite configuration on E is an
integer-valued positive Radon measure on E. It can also be identified with a set
f.M; ˛M/ W M 2 Fg, where F is a countable subset of E with no accumulation points
(i.e. a discrete subset of E) and, for each point in F, ˛M is a non-null integer that
corresponds to the multiplicity of the point M (M is a multiple point if ˛M � 2).

Let 
 be a Radon measure on E. Let X be the space of the locally finite
configurations of E. The space X is endowed with the vague topology of measures,
i.e. the smallest topology such that, for every real continuous function f with
compact support, defined on E, the mapping

X 3 � 7! h f ; �i D
X

x2�
f .x/ D

Z
fd�

is continuous. Details on the topology of the configuration space can be found in [1].
We denote by B.X / the corresponding �-algebra. A point process on E is a

random variable with values in X . We do not restrict ourselves to simple point
processes, as the configurations in X can have multiple points.
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For a n � n matrix A D .aŒij/1�i;j�n, set:

det˛ A D
X

�2˙n

˛n��.�/
nY

iD1
ai�.i/

where ˙n is the set of all permutations on f1; : : : ; ng and �.�/ is the number of
cycles of the permutation � .

For a relatively compact set � � E, the Janossy densities of a point process �
w.r.t. a Radon measure 
 are functions (when they exist) j�n W En ! Œ0;1/ for
n 2 N, such that

j�n .x1; : : : ; xn/ D nŠ P.�.�/ D n/ ��n .x1; : : : ; xn/

j�0 .;/ D P.�.�/ D 0/;

where ��n is the density with respect to 
˝n of the ordered set .x1; : : : ; xn/, obtained
by first sampling �, given that there are n points in �, then choosing uniformly an
order between the points.

For�1; : : : ; �n disjoint subsets included in�,
R
�1������n

j�n .x1; : : : ; xn/
.dx1/ : : :

.dxn/ is the probability that there is exactly one point in each subset�i (1 � i � n),
and no other point elsewhere.

We recall that we have the following formula, for a non-negative measurable
function f with support in a relatively compact set � � E:

E. f .�// D f .;/ j�0 .;/C
1X

nD1

1

nŠ

Z

�n
f .x1; : : : ; xn/ j�n .x1; : : : ; xn/
.dx1/ : : : 
.dxn/:

For n 2 N and a 2 R, we denote a.n/ DQn�1
iD0 .a � i/.

The correlation functions (also called joint intensities) of a point process � w.r.t.
a Radon measure 
 are functions (when they exist) �n W En ! Œ0;1/ for n � 1,
such that for any family of mutually disjoint relatively compact subsets�1; : : : ; �d

of E and for any non-null integers n1; : : : ; nd such that n1 C 
 
 
 C nd D n, we have

E

 
dY

iD1
�.�i/

.ni/

!

D
Z

�
n1
1 ������nd

d

�n.x1; : : : ; xn/
.dx1/; : : : ; 
.dxn/:

Intuitively, for a simple point process, �n.x1; : : : ; xn/
.dx1/ : : : 
.dxn/ is the
infinitesimal probability that there is at least one point in the vicinity of each xi

(each vicinity having an infinitesimal volume 
.dxi/ around xi), 1 � i � n.
Let ˛ be a real number and K a kernel from E2 to R or C. An ˛-determinantal

point process, with kernel K with respect to 
 (also called ˛-permanental point
process) is defined, when it exists, as a point process with the following correlation
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functions �n; n 2 N with respect to 
:

�n.x1; : : : ; xn/ D det˛.K.xi; xj//1�i;j�n:

We denote by �˛;K;
 the probability distribution of such a point process.
We exclude the case of a point process almost surely reduced to the empty

configuration.
The case ˛ D �1 corresponds to a determinantal process and the case ˛ D 1 to

a permanental process. The case ˛ D 0 corresponds to the Poisson point process.
We suppose in the following that ˛ ¤ 0.

We will always assume that the kernel K defines a locally trace class integral
operator K on L2.E; 
/. Under this assumption, one obtains an equivalent definition
for the ˛-determinantal process, using the following Laplace functional formula:

E�˛;K;


�

exp

�

�
Z

E
fd�

��

D Det
�I C ˛KŒ1 � e�f �

��1=˛
(1)

where f is a compactly-supported non-negative function on E, KŒ1� e�f � stands forp
1 � e�fK

p
1 � e�f , I is the identity operator on L2.E; 
/ and Det is the Fredholm

determinant. Details on the link between the correlation function and the Laplace
functional of an ˛-determinantal process can be found in the Chap. 4 of [10]. Some
explanations and useful formula on the Fredholm determinant are given in Chap. 2.1
of [10].

For a subset � � E, set: K� D p�Kp�, where p� is the orthogonal projection
operator from L2.E; 
/ to the subspace L2.�; 
/.

For two subsets�;�0 � E, set: K��0 D p�Kp�0 , and denote by K��0 its kernel.
We have for any x; y 2 E, K��0.x; y/ D 1�.x/1�0.y/K.x; y/.

When IC˛K (resp. IC˛K�) is invertible,J˛ (resp. J �
˛ ) is the integral operator

defined by: J˛ D K.I C ˛K/�1 (resp. J �
˛ D K�.I C ˛K�/

�1) and we denote by
J˛ (resp. J�˛ ) its kernel. Note that J �

˛ is not the orthogonal projection of J˛ on
L2.�; 
/.

3 Main Results

Theorem 1 For ˛ > 0, there exists an ˛-permanental process with kernel K iff:

• Det.I C ˛K�/ � 1, for any compact set � � E
• det˛.J�˛ .xi; xj//1�i;j�n � 0, for any n 2 N, any compact set � � E and any

˝n-a.e. .x1; : : : ; xn/ 2 �n.

Remark 1 Even when E is a finite set, note that the second condition of Theorem 1
consists in an infinite number of computations. Finding a simpler condition, that
could be checked in a finite number of steps is still an open problem.



Necessary and Sufficient Conditions for the Existence of ˛-Determinantal Processes 427

Theorem 2 For ˛ > 0, if an ˛-permanental process with kernel K exists, then:

SpecK� � fz 2 C W Re z > � 1

2˛
g , for any compact set � � E:

We remark that this condition is equivalent to

SpecJ �
˛ � fz 2 C W jzj < 1

˛
g , for any compact set � � E

Theorem 3 For ˛ < 0 and K an integral operator such that IC˛K� is invertible,
for any compact set � � E, an ˛-determinantal process with kernel K exists iff the
two following conditions are fulfilled:

(i) �1=˛ 2 N

(ii) det.J�˛ .xi; xj//1�i;j�n � 0, for any n 2 N, any compact set � � E and any

˝n-a.e. .x1; : : : ; xn/ 2 �n.

The arguments developed in the proof of Theorem 3 shows that actually .ii/ H)
.i/. Consequently, Condition .ii/ is itself a necessary and sufficient condition. It also
implies that Det.I C ˇK�/ > 0 for any ˇ 2 Œ˛; 0� and any compact� � E.

Theorem 4 For ˛ < 0 and K an integral operator such that for some compact
set �0 � E, I C ˛K�0 is not invertible, an ˛-determinantal process with kernel K
exists iff:

(i’) �1=˛ 2 N

(ii’) det.J�ˇ .xi; xj//1�i;j�n � 0, for any n 2 N, any ˇ 2 .˛; 0/, any compact set

� � E and any 
˝n-a.e. .x1; : : : ; xn/ 2 �n.

As in Theorem 3, we also have .ii0/ H) .i0/ and Condition .ii0/ is itself a
necessary and sufficient condition.

Note that I C ˛K�0 is not invertible if and only if there is almost surely at least
one point in �0.

Corollary 1 For m a positive integer, the existence of a .�1=m/-determinantal
process with kernel K is equivalent to the existence of a determinantal process with

the kernel
K

m
.

Corollary 2 For ˛ < 0 and K a self-adjoint operator, an ˛-determinantal process
with kernel K exists iff:

• �1=˛ 2 N

• SpecK � Œ0;�1=˛�
This result is well known in the case ˛ D �1 (see for example Hough et al.

in [7]).
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The sufficient part of this necessary and sufficient condition corresponds to
condition A in [10] of Shirai and Takahashi.

Theorem 5 For ˛ < 0, an ˛-determinantal process in never infinitely divisible.

Theorem 6 For ˛ > 0, an ˛-determinantal process is infinitely divisible iff

• Det.I C ˛K�/ � 1, for any compact set � � E
•
P

�2˙nW�.�/D1
Qn

iD1 J�˛ .xi; x�.i// � 0, for any n 2 N, any compact set � � E and

˝n-a.e. .x1; : : : ; xn/ 2 �n.

This theorem gives a more general condition for infinite-divisibility of an
˛-permanental process than the condition given by Shirai and Takahashi in [10].

Theorem 7 For K a real symmetric locally trace class operator and ˛ > 0, an
˛-permanental process is infinitely divisible iff

• Det.I C ˛K�/ � 1, for any compact set � � E
• J�˛ .x1; x2/ : : : J

�
˛ .xn�1; xn/J�˛ .xn; x1/ � 0, for any n 2 N, any compact set � � E

and 
˝n-a.e. .x1; : : : ; xn/ 2 �n.

Following Griffith and Milne’s remark in [6], when an ˛-permanental process
with kernel K exists and is infinitely divisible, we can replace J˛� by jJ˛�j and obtain
an ˛-permanental process with the same probability distribution.

Remark 2 In Theorems 1, 6 and 7 , the condition

Det.I C ˛K�/ � 1, for any compact set � � E

can be replaced by

Det.I C ˛K�/ > 0, for any compact set � � E:

4 Fredholm Determinant Expansion

In [10], Shirai and Takahashi have proved the following formula

Det.I � ˛zK/�1=˛ D
1X

nD0

zn

nŠ

Z

En
det˛.K.xi; xj//1�i;j�n
.dx1/ : : : 
.dxn/ (2)

for a trace class integral operator K with kernel K and for z 2 C such that k˛zKk <
1. In the case where the space E is finite, this formula is also given by Shirai in [9].

As z 7! Det.I�˛zK/ is analytic onC and z 7! z�1=˛ is analytic on C
�, we obtain

that z 7! Det.I � ˛zK�;˛/
�1=˛ is analytic on fz 2 C W I � ˛zK�;˛ invertibleg.

Therefore, the formula can be extended to the open disc D, centered in 0 with
radius R D supfr 2 RC W 8z 2 C; jzj < r) I � ˛zK is invertibleg.
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D is the open disc of center 0 and radius 1=k˛Kk, if the operatorK is self-adjoint,
but it can be larger if K is not self-adjoint.

As remarked by Shirai and Takahashi, the formula (2) is valid for any z 2 C if
�1=˛ 2 N.

The following proposition extends (2) to a multivariate case.

Proposition 1 Let � � E be a relatively compact set, �1; : : : �d mutually disjoint
subsets of � and K a locally trace class integral operator with kernel K.

We have the following formula

Det

 

I � ˛
dX

kD1
zk K�k�

!�1=˛

D
1X

n1;:::;ndD0

 
dY

kD1

znk
k

nkŠ

!Z

�
n1
1 ������nd

d

det˛.K.xi; xj//1�i;j�n 
.dx1/ : : : 
.dxn/

(3)

for any z1; : : : ; zd 2 C, such that I �˛�Pd
kD1 zkK�k� is invertible for any complex

number � satisfying j� j < 1 (n denotes n1 C 
 
 
 C nd).

Proof We apply the formula (2) to the class trace operator
Pd

kD1 zkK�k� and we
use the multilinearity property of the ˛-determinant of a matrix with respect to its
rows.

We obtain

Det

 

I � ˛
dX

kD1
zkK�k�

!�1=˛

D
1X

nD0

1

nŠ

Z

En
det˛

 
dX

kD1
zkK�k�.xi; xj/

!

1�i;j�n


.dx1/ : : : 
.dxn/

D
1X

nD0

1

nŠ

Z

En

dX

k1;:::knD1
det˛

�
zki1�ki

.xi/1�.xj/K.xi; xj/
�
1�i;j�n


.dx1/ : : : 
.dxn/

D
1X

nD0

1

nŠ

dX

k1;:::knD1

Z

�k1������kn

det˛
�
zki K.xi; xj/

�
1�i;j�n


.dx1/ : : : 
.dxn/

D
1X

nD0

1

nŠ

dX

k1;:::knD1

 
nY

iD1
zki

!Z

�k1������kn

det˛
�
K.xi; xj/

�
1�i;j�n


.dx1/ : : : 
.dxn/
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where we have used the fact that K�k�.xi; xj/ D 1�k.xi/1�.xj/K.xi; xj/ for the
equality between the first and the second line.

As the value of the ˛-determinant of a matrix is unchanged by simultaneous
interchange of its rows and its columns, the product zn1

1 : : : z
nd
d where n1C: : : nd D n,

will be repeated
� n

n1:::nd

�
times. This gives the desired formula.

For a relatively compact set � � E and �1; : : : ; �d mutually disjoint subsets
of �, the computation of the Laplace functional of an ˛-determinantal process for
the function f W .z1; : : : ; zd/ 7! �Pd

kD1.log zk/1�k , with z1; : : : ; zd 2 .0; 1� gives
thanks to (1):

E�˛;K;


"
dY

kD1
z�.�k/

k

#

D Det

 

I C ˛
dX

kD1
.1� zk/K�k�

!�1=˛
(4)

which is the probability generating function (p.g.f.) of the finite-dimensional
random vector .�.�1/; : : : ; �.�d//.

For ˛ < 0, the formula (4) reminds the multivariate binomial distribution p.g.f.
and for ˛ > 0, the multivariate negative binomial distribution p.g.f., given by Vere-
Jones in [13], in the special case where the space E is finite.

5 ˛- Permanental Process (˛ > 0)

Proof (Theorem 1)
We first prove that the conditions are necessary. We suppose that there exists an

˛-permanental process with ˛ > 0, kernel K defining the locally trace class integral
operator K.

By taking d D 1 in the formula (4), we have

E�˛;K;


�
z�.�/

� D Det .I C ˛.1 � z/K�/
�1=˛

for any compact set � � E and z 2 .0; 1�.
Thus, Det.I C ˛.1 � z/K�/ � 1 for z 2 .0; 1�. By continuity (as z 7! Det.I C

.1 � z/K�/ is indeed analytic on C), we obtain that Det.I C ˛K�/ � 1, which
is the first condition. This implies that for any compact set � � E, I C ˛K� is
invertible. Hence J �

˛ exists and we have, for any non-negative function f , with
compact support included in �

E�˛;K;


0

@
Y

x2�
e�f .x/

1

A D Det.I C ˛KŒ1 � e�f �/�1=˛

D Det.I C ˛K�.1 � e�f //�1=˛

D Det.I C ˛K�/�1=˛ Det.I � ˛J�
˛ e�f /�1=˛
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D Det.I C ˛K�/�1=˛

�
1X

nD0

1

nŠ

Z

�n

 
nY

iD1
e�f .xi/

!

det˛.J�˛ .xi; xj//1�i;j�n
.dx1/ : : : 
.dxn/

(5)

where we have used for the equality between the first and the second line the fact
that Det.ICAB/ D Det.ICBA/, for any trace class operator A, and any bounded
operator B.

As the Laplace functional defines a.e. uniquely the Janossy density of a point
process, one obtains:

det˛.J�˛ .xi; xj//1�i;j�n � 0 
˝n-a.e. .x1; : : : ; xn/ 2 En

j�˛;n.x1; : : : ; xn/ D Det.I C ˛K�/
�1=˛ det˛.J�˛ .xi; xj//1�i;j�n is the Janossy density.

Conversely, if we assume Det.IC˛K�/
�1=˛ > 0 and det˛.J�˛ .xi; xj//1�i;j�n � 0

for any n 2 N, any compact set � � E and any 
˝n-a.e. .x1; : : : ; xn/ 2 �n, the
Janossy density will be correctly defined and, on any compact set �, we get the
existence of a point process �� with kernel K� (see Proposition 5.3.II. in [2]—here
the normalization condition is automatic by choosing f D 0 in (5)).

The restriction of a point process 	, defined on �0 � E, to a subspace� � �0 is
the point process denoted 	j�, obtained by keeping the points in � and deleting the
points in �0n�.

For any compact sets �;�0 � E, such that � � �0, �� and ��0 j� have the same
Laplace functional, because we have for any non-negative function f, with compact
support included in �:

E

�

exp

�

�
Z

�

fd��0 j�
��

D Det.I C ˛K�0 Œ1 � e�f �/�1=˛

D Det.I C ˛K�Œ1 � e�f �/�1=˛

D E

�

exp

�

�
Z

�

fd��

��

:

Therefore, �� and ��0 j� have the same probability distribution. We say that the
family .L.��//, � compact set included in E, is consistent.

Then, we can obtain a point process on the complete space E by the
Kolmogorov existence theorem for point processes. See Theorem 9.2.X in [3]

with Pk.A1; : : : ;AkI n1; : : : ; nk/ D P

	
�[k

iD1Ai
.A1/ D n1; : : : ; �[k

iD1Ai
.Ak/ D nk



: as

�[k
iD1Ai

is a point process, it follows that the properties (i), (iii), (iv) are fulfilled ; (ii)
is fulfilled because the family .L.��//, � compact set included in E, is consistent.
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As we used in this second part of the proof, only the fact that Det.I C
˛K�/

�1=˛ > 0 (instead of Det.I C ˛K�/
�1=˛ � 1), the assertion in Remark 2

is also proved.

Proof (Theorem 2)
We suppose there exists an ˛-permanental process with ˛ > 0, kernel K defining

the locally trace class integral operator K.
Then, following the proof of the preceding theorem, we get that, for all z 2 Œ0; 1�

Det.I C ˛.1 � z/K�/ D Det.I C ˛K�/Det.I � ˛zJ �
˛ / > 0:

As the power series of Det.I � ˛zJ �
˛ /

�1=˛ has all its terms non-negative,

j.Det.I � ˛zJ ˛
� /

�1=˛j � .Det.I � ˛ jzjJ ˛
�/

�1=˛:

If z0 is a complex number with minimum modulus such that .Det.I �˛z0J ˛
�/ D

0, by analyticity of z 7! Det.I � ˛zJ �
˛ / on C and z 7! z�1 on C

�, Det.I �
˛zJ �

˛ /
�1=˛ converges for jzj < jz0j and diverges for z D z0. Thus the series diverges

in z D jz0j and jz0j > 1. This means that the series converges for jzj � 1 thus, in
this case, Det.I � ˛zJ �

˛ / > 0.

This implies the necessary condition: SpecJ �
˛ � fz 2 C W jzj < 1

˛
g.

As � eigenvalue of K is equivalent to
�

1C ˛� eigenvalue of J , and as, K and J
being compact operators, their non-null spectral values are their eigenvalues, we get
the other equivalent necessary condition:

SpecK� � fz 2 C W Re z > � 1

2˛
g:

6 ˛- Determinantal Process (˛ < 0)

We recall the following remark, already made for example in [7].

Remark 3 If we define kernels only 
˝2-almost everywhere, there can be problems
when we consider only the diagonal terms, as 
˝2f.x; x/ W x 2 �g D 0. For example,
in the formula

tr K� D
Z

�

K.x; x/
.dx/;
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tr K� is not uniquely defined. To avoid this problem, we write the kernel K� as
follows:

K�.x; y/ D
1X

kD0
ak'k.x/ k.y/

where .'k/k2N, . k/k2N are orthonormal basis in L2.�; 
/ and .ak/k2N is a sequence
of non-negative real number, which are the singular values of the operator K�.

The functions 'k and  k, k 2 N, are defined 
-almost everywhere, but this gives
then a unique value for the expression of type

Z

�n
F.K.xi; xj/1�i;j�n/G.x1; : : : ; xn/
.dx1/ : : : 
.dxn/

where F is an arbitrary complex function from C
n2 and G is an arbitrary complex

function from�n.
With this remark, the quantities that appear with F D det˛ are well defined.

Lemma 1 Let K be a kernel defined as in Remark 3 and defining a trace class
integral operator K on L2.�; 
/, where � is a non-
-null compact set included in
the locally compact Polish space E, 
 be a Radon measure, n an integer and ˛ a
real number. Let F be a continuous function from C

n2 to C. The three following
assertions are equivalent

(i) F.K.xi; xj/1�i;j�n/ � 0 
˝n � a:e:.x1; : : : ; xn/ 2 �n

(ii) there exists a set �0 � � such that 
.�n�0/ D 0 and F..K.xi; xj//1�i;j�n/ � 0
for any .x1; : : : ; xn/ 2 .�0/n

(iii) there exists a version of K such that F..K.xi; xj//1�i;j�n/ � 0
for any .x1; : : : ; xn/ 2 �n

Proof (i) is clearly a consequence of (ii). We assume now that (i) is satisfied
and we denote by N the 
˝n-null set of n-tuples .x1; : : : ; xn/ 2 �n such that
F..K.xi; xj//1�i;j�n/ < 0. As in Remark 3, we write the kernel K as follows

K.x; y/ D
1X

kD0
ak'k.x/ k.y/ D

˝
.
p

ak'k/k2N.x/j.pak k/k2N.y/
˛

where .'k/k2N, . k/k2N are orthonormal basis in L2.�; 
/, .ak/k2N is a sequence of
non-negative real number, which are the singular values of the operator K and h:j:i
denote the inner product in the Hilbert space l2.C/.
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As K is trace class, we have
P1

kD0 ak <1. Hence:

1X

kD0
akj'k.x/j2 <1 and

1X

kD0
akj k.x/j2 <1 
-a.e. x 2 �

From Lusin’s theorem, there exists an increasing sequence .Ap/p2N of compact
sets included in � such that, for any p 2 N

.
p

ak'k/k2N and .
p

ak k/k2N are continuous from Ap to l2.C/ and 
.�nAp/ <
1

p

Therefore the kernel K W .x; y/ 7! ˝
.
p

ak'k/k2N.x/j.pak k/k2N.y/
˛

is continuous
on A 2

p .
As E is a Polish space, it can be endowed with a distance that we denote by d.

We consider the sets

A0
p D fx 2 Ap W 8r > 0; 
.B.x; r/\ Ap/ > 0g

Bp;n D fx 2 Ap W 
.B.x; 1=n/\ Ap/ D 0g

where B.x; r/ is the open ball in E of radius r centered at x and n is an integer.
Let .xk/k2N be a sequence in Bp;n converging to x 2 Ap. Then we have, when

d.x; xk/ < 1=n,


.B.x; 1=n� d.x; xk/\ Ap/ � 
.B.xk; 1=n/\ Ap/ D 0

Therefore 
.B.x; 1=n/\ Ap/ D 0 and x 2 Bp;n : Bp;n is closed, thus compact (as
it is included in the compact set Ap).

The set of open balls fB.x; 1=n/ W x 2 Bp;ng is a cover of Bp;n. Then, by
compactness, Bp;n can be covered by a finite numbers of such balls. As the
intersections of Ap and any such a ball is a 
-null set, we get 
.Bp;n/ D 0.

Hence we have: 
.A0
p/ D 


�
Apn [n2N Bp;n

� D 
.Ap/ > 
.�/� 1=p.
Let .x1; : : : ; xn/ 2 .A0

p/
n. If .x1; : : : ; xn/ … N, then F..K.xi; xj//1�i;j�n/ � 0.

Otherwise .x1; : : : ; xn/ 2 N. For any i 2 �1; n� and any r > 0, we have


.Ap \ B.xi; r// > 0, then 
˝n.An
p \ B..x1; : : : ; xn/; r// D 
˝n.

nY

iD1

.Ap \ B.xi; r/// > 0:

where B..x1; : : : ; xn/; r/ denotes the open ball of radius r centered at x, in
En endowed with the distance d..x1; : : : ; xn/; .y1; : : : ; yn// D max

1�i�n
d.xi; yi/.

Then, as 
˝n.N/ D 0, for any q 2 N, there exists .y.q/1 ; : : : ; y
.q/
n / 2 An

p \
B..x1; : : : ; xn/; 1=q/nN and thus .y.q/1 ; : : : ; y

.q/
n / converge to .x1; : : : ; xn/ when

q!1.
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As .y.q/1 ; : : : ; y
.q/
n / … N, F..K.y.q/i ; y

.q/
j //1�i;j�n/ � 0.

As K is continuous on A2p and F is continuous on C
n2 , we have that the function

.x1; : : : ; xn/ 7! F..K.xi; xj//1�i;j�n/ is continuous on An
p.

Hence we have: F..K.xi; xj//1�i;j�n/ � 0.
Therefore, in all cases, if .x1; : : : ; xn/ 2 .A0

p/
n, F..K.xi; xj//1�i;j�n/ � 0.

As .Ap/p2N is an increasing sequence, it is the same for .A0
p/p2N.

Hence we have: [p2N.A0
p/

n D �[p2NA0
p

�n
.

We obtain:

F..K.xi; xj//1�i;j�n/ � 0 for any .x1; : : : xn/ 2
�[p2NA0

p

�n

As 
.�n �[p2NA0
p

�
/ D 0, we finally obtain (ii) with �0 D [p2NA0

p.
We obtained that (i) and (ii) are equivalent conditions.
(i) is clearly a consequence of (iii). Assume now (ii). We will define a version K1

of K satisfying the condition (iii).
As 
.�/ ¤ 0, �0 ¤ ;. We set an arbitrary x0 2 �0.
For .x; x0/ 2 �2, we define, y D x if x 2 �0, y D x0 if x 2 �n�0, y0 D x0 if

x0 2 �0, y0 D x0 if x0 2 �n�0 and K1.x; x0/ D K.y; y0/.
For .x1; : : : ; xn/ 2 �n, we define, for 1 � i � n, yi D xi if xi 2 �0 and yi D x0 if

xi 2 �n�0. Then we have, F..K1.xi; xj//1�i;j�n/ D F..K.yi; yj//1�i;j�n/ � 0 and K1
is a version of K satisfying the condition (iii).

Remark 4 Let Fn; n 2 N; be continuous functions from C
n2 to C. For any non-


 � null compact set �, the condition:

(i) Fn..J�˛ .xi; xj//1�i;j�n/ � 0, for any n 2 N and 
˝n-a.e. .x1; : : : ; xn/ 2 �n

can always be replaced by the equivalent conditions:

(ii) there exists a set �0 � � such that 
.�n�0/ D 0 and Fn..J�˛ .xi; xj//1�i;j�n/

� 0, for any n 2 N and .x1; : : : ; xn/ 2 .�0/n.

or:

(iii) there exists a version of the kernel J such that Fn..J�˛ .xi; xj//1�i;j�n/ � 0, for
any n 2 N and .x1; : : : ; xn/ 2 �n.

Proof The proof of (ii) H) (iii) is done in the same way as in Lemma 1. The other
parts of the proof are a direct application of Lemma 1.

Proof (Proof that (i) is Necessary in Theorem 3)
This has been mentioned by Vere-Jones in [13] for the multivariate binomial

probability distribution, which corresponds to a determinantal process with E being
finite. To our knowledge, this has not been proved in other cases.

We consider the n � n matrix 1n, whose elements are all equal to one.
We have:

Qn�1
jD0 .1C j˛/ D 1CPn�1

kD1
P

1� j1<���<jk�n�1 j1 : : : jk ˛k

We will show by induction on n that the number of permutations in ˙n having
n � k cycles for k ¤ 0 is ank D P

1� j1<���<jk�n�1 j1 : : : jk: this is true for n D 2 and
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k D 1. Assume it is true for a given n 2 N
� and for any k 2 �1; n�1�. If we consider

the permutations � 2 ˙nC1 having nC1�k cycles (0 � k � n), we have 2 cases:

– either �.nC 1/ D nC 1: there is exactly ank permutations corresponding to this
case (with the convention ann D 0, for the case k D n),

– or �.n C 1/ ¤ n C 1. Then, if we denote �nC1 �.nC1/ the transposition in ˙nC1
that exchange nC1 and �.nC1/, �nC1 �.nC1/ ı� is a permutation having nC1 as
fixed point and nC 1 � k other cycles (with elements in �1; n�): there is exactly
nan k�1 permutations corresponding to this case.

Then we have

anC1 nC1�k D ank C nan k�1

D
X

1� j1<���<jk�n�1
j1 : : : jk C

X

1�j1<���<jk�1�n�1
jkDn

j1 : : : jk

D
X

1� j1<���<jk�n

j1 : : : jk

which is what we expected.
Thus: det˛ 1n D Qn�1

jD0 .1C j˛/.
If ˛ < 0 but �1=˛ … N, there exists therefore n 2 N such that det˛ 1n < 0.
We suppose that there exists an ˛-determinantal process with ˛ < 0 but �1=˛ …

N and kernel K. Then we have det˛.K.xi; xj//1�i;j�n � 0 
˝n-a.e. .x1 : : : ; xn/ 2 En.
As we exclude the case of a point process having no point almost surely and there

is a sequence of compact sets �p such that [p2N�p D E, there exists a compact set
� 2 E such that

E.�.�// D
Z

�

K.x; x/
.dx/ > 0:

Applying Lemma 1, we get that there exist a version K1 of the kernel K such that
det˛.K1.xi; xj//1�i;j�n � 0 for any .x1 : : : ; xn/ 2 �n. We also have:

Z

�

K.x; x/
.dx/ D
Z

�

K1.x; x/
.dx/ > 0:

Hence there exists x0 2 � such that K1.x0; x0/ > 0.
For .x1; : : : ; xn/ D .x0; : : : ; x0/, we get:

det˛.K1.xi; xj//1�i;j�n D K.x0; x0/
n det˛ 1n < 0

which is a contradiction. Therefore if ˛ < 0 and an ˛-determinantal process exists,
then ˛ must be in f�1=m W m 2 Ng.
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We consider a d � d square matrix A. If n1; : : : ; nd are d non-negative integers,
AŒn1; : : : ; nd� is the .n1C 
 
 
C nd/� .n1C 
 
 
C nd/ square matrix composed of the
block matrices Aij:

AŒn1; : : : ; nd� D

0

B
B
B
@

A11 A12 : : : A1d

A21 A22 : : : A2d
:::

:::
: : :

:::

Ad1 Ad2 : : : Add

1

C
C
C
A
;

where Aij is the ni � nj matrix whose elements are all equal to aij (1 � i; j � d).

Lemma 2 Given a d � d square matrix A, the following assertions are equivalent

(i) det�1=m AŒn1; : : : ; nd� � 0; 8n1; : : : ; nd 2 N

(ii) det�1=m AŒn1; : : : ; nd� � 0; 8n1; : : : ; nd 2 f0; : : : ;mg
(iii) det AŒn1; : : : ; nd� � 0; 8n1; : : : ; nd 2 N

(iv) det AŒn1; : : : ; nd� � 0; 8n1; : : : ; nd 2 f0; 1g

Proof If there exists k 2 �1; d� such that nk > 1, the matrix AŒn1; : : : ; nd� has at
least two identical rows and its determinant is null. So it is clear that (iii) and (iv)
are equivalent.

We have:

det.I C ZA/m D
1X

n1;:::;ndD0
mn1C:::nd

 
dY

kD1

znk
k

nkŠ

!

det�1=m AŒn1; : : : ; nd� (6)

where Z D diag.z1; : : : ; zd/ and z1; : : : ; zd are d complex numbers. It is a special
case of the formula (3) with ˛ D �1=m, finite space E D �1; d� and reference
measure 
 atomic, where each point of E has measure 1, �k D fkg, for k 2 �1; d�,
� D E. Indeed, ZA D Pd

kD1 zkAk, where Ak is the d � d square matrix having
the same kth row as A and the other rows with all elements equal to 0. The matrix
A corresponds to the operator K, the matrix Ak corresponds to the operator K�k�.
Formula (6) also corresponds to the one given by Vere-Jones in [12].

We also have for m D 1:

det.I C ZA/ D
1X

n1;:::;ndD0

 
dY

kD1

znk
k

nkŠ

!

det AŒn1; : : : ; nd�: (7)

as det AŒn1; : : : ; nd� D 0 if there exists k 2 �1; d� such that nk > 1.

(i) is equivalent to the fact that the multivariate power series (6) has all its
coefficients non-negative.
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(iii) is equivalent to the fact that the multivariate power series (7) has all its
coefficients non-negative.

The power series (6) being the mth power of the power series (7), if there exists
k 2 �1; d� such that nk > m, the coefficient of

Qd
kD1 znk is null. Therefore, (i) is

equivalent to (ii).
For the same reason, we also have that (i) is a consequence of (iii).
Conversely, following Vere-Jones in [13], we can show by induction on the order

of the matrix A, that the fact that the power series (6) has all its coefficients non-
negative implies that the power series (7) has all its coefficient non negative.

This proves the equivalence between (i) and (iii).

Proposition 2 Let ˛ < 0 and K be an integral operator such that I C ˛K� is
invertible, for any compact set � � E. An ˛-determinantal process with kernel K
exists iff:

det˛.J�˛ .xi; xj//1�i;j�n � 0, for any n 2 N; and any compact set �


˝n-a.e. .x1; : : : ; xn/ 2 �n (8)

Condition (8) implies that � 1
˛
2 N and Det.I C ˇK/ > 0 for any ˇ 2 Œ˛; 0�.

Proof We assume that there exists an ˛-determinantal process � with kernel K.
We already proved that it is necessary to have �1=˛ 2 N.
By taking d D 1 in the formula (4), we have

E
�
z�.�/

� D Det .I C ˛.1 � z/K�/
�1=˛

for any compact set � � E and z 2 .0; 1�. Then Det .I C ˛.1 � z/K�/ > 0 for
z 2 .0; 1�, and by continuity, Det .I C ˛K�/ � 0. As we assumed that I C ˛K� is
invertible, we have necessarily Det .I C ˛K�/ > 0.

For any non-negative function f , with compact support included in �

E

0

@
Y

x2�
e�f .x/

1

A D Det.I C ˛KŒ1 � e�f �/�1=˛

D Det.I C ˛K�/
�1=˛ Det.I � ˛J �

˛ e�f /�1=˛

D Det.I C ˛K�/
�1=˛

�
1X

nD0

1

nŠ

Z

�n

 
nY

iD1
e�f .xi/

!

det˛.J�˛ .xi; xj//1�i;j�n
.dx1/ : : : 
.dxn/
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As the Laplace functional defines a.e. uniquely the Janossy density of a point
process, one obtains:

det˛.J
�
˛ .xi; xj//1�i;j�n � 0 
˝n-a.e. .x1; : : : ; xn/ 2 En

Conversely, we assume that the condition

det˛.J�˛ .xi; xj//1�i;j�n � 0, for any n 2 N, 
˝n-a.e. .x1; : : : ; xn/ 2 �n and any
compact set �

is fulfilled. We have

Det.I � ˛zJ �
˛ /

�1=˛ D
1X

nD0

zn

nŠ

Z

�n
det˛.J�˛ .xi; xj//1�i;j�n
.dx1/ : : : 
.dxn/

As �1=˛ 2 N, this formula is valid for any z 2 C. Then we obtain for z D 1,
Det.I � ˛J �

˛ /
�1=˛ � 0.

We also have .I � ˛J �
˛ /.I C ˛K�/ D .I C ˛K�/.I � ˛J �

˛ / D I.
Then Det.I � ˛J �

˛ / > 0 and Det.I C ˛K�/ > 0.
Thus the Janossy density is correctly defined and, on any compact set � we get

the existence of a point process with kernel K and reference measure 
.
Then it can be extended to the complete space E by the Kolmogorov existence

theorem (see Theorem 9.2.X in [3]).

Proof (Theorem 3)
For any m 2 N, applying Lemma 2, we have for any compact set �

det�1=m.J
��1=m.xi; xj//1�i;j�n � 0, for any n 2 N, and any .x1; : : : ; xn/ 2 �n

is equivalent to

det.J��1=m.xi; xj//1�i;j�n � 0, for any n 2 N, and any .x1; : : : ; xn/ 2 �n

Now, assume we only have

det�1=m.J
��1=m.xi; xj//1�i;j�n � 0, for any n 2 N, 
˝n-a.e. .x1; : : : ; xn/ 2 �n:

By Lemma 1, for each n 2 N, there exists a set �0
n � � such that 
.�n�0

n/ D 0
and det�1=m.J��1=m.xi; xj//1�i;j�n � 0 for any .x1 : : : ; xn/ 2 .�0

n/
n.

If �0 D \n2N�0
n, we have 
.�n�0/ D 0 and det�1=m.J��1=m.xi; xj//1�i;j�n � 0

for any n 2 N and .x1 : : : ; xn/ 2 .�0/n.
Then, by Lemma 2, we have: det.J��1=m.xi; xj//1�i;j�n � 0, for any n 2 N and

.x1 : : : ; xn/ 2 .�0/n.
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Therefore, we have

det.J��1=m.xi; xj//1�i;j�n � 0, for any n 2 N, 
˝n-a.e. .x1; : : : ; xn/ 2 �n:

The converse is done through a similar proof, using Lemmas 1 and 2.
Thus, we obtain:

det˛.J�˛ .xi; xj//1�i;j�n � 0, for any n 2 N, 
˝n-a.e. .x1; : : : ; xn/ 2 �n

is equivalent to

det.J�˛ .xi; xj//1�i;j�n � 0, for any n 2 N, 
˝n-a.e. .x1; : : : ; xn/ 2 �n

Theorem 3 is then a consequence of Proposition 2.

Proof (Theorem 4) We assume that there exists � an ˛-determinantal process with
kernel K.

For p 2 .0; 1/, let �p be the process obtained by first sampling �, then
independently deleting each point of � with probability 1 � p.

Computing the correlation functions, we obtain that �p is an ˛-determinantal
process with kernel pK.

Thus we get from Theorem 3 that the conditions of the theorem must be fulfilled.
Conversely, we assume that these conditions are fulfilled. We obtain from

Theorem 3 that an ˛-determinantal process �p with kernel pK exists, for any
p 2 .0; 1/.

We consider a sequence .pk/ 2 .0; 1/N converging to 1 and a compact�.

E.exp.�t�pk .�// D Det.I C ˛pkK�.1 � e�t//�1=˛ �!
k!1

Det.I C ˛K�.1 � e�t//�1=˛

As t 7! Det.IC˛K�.1� e�t//�1=˛ is continuous in 0, .L.�pk .�///k2N converge
weakly. Thus .L.�pk.�///k2N is tight.
� � X is relatively compact if and only if, for any compact set � � E, f�.�/ W

� 2 � g is bounded.
Let .�n/n2N be an increasing sequence of compact sets such that [n2N�n D E.
As, for any n 2 N, .L.�pk .�n///k2N is tight, we have that, for any � > 0 and

n 2 N, there exists Mn > 0 such that for any k 2 N;P.�pk.�n/ > Mn/ < � 2
�n�1.

Let � D f� 2 X W 8n 2 N; �.�n/ � Mng. It is a compact set and for any
k 2 N;P.�pk 2 � c/ < �.

Therefore, .L.�pk //k2N is tight. As E is Polish, X is also Polish (endowed with the
Prokhorov metric). Thus there is a subsequence of .L.�pk //k2N converging weakly
to the probability distribution of a point process �. By unicity of the distribution of
an ˛-determinantal process for given kernel and reference measure, � must be an
˛-determinantal process with kernel K, which gives the existence.
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Lemma 3 Let J be a trace class self-adjoint integral operator with kernel J. We
have

det.J.xi; xj//1�i;j�n � 0 for any n 2 N; 
˝n-a.e..x1; : : : ; xn/ 2 �n

if and only if

SpecJ � Œ0;1/

Proof If we assume that the operator J is positive, the kernel can be written as
follows:

J.x; y/ D
1X

kD0
ak'k.x/'k.y/

where ak � 0 for k 2 N.
Hence:

det.J.xi; xj//1�i;j�n � 0 for any n 2 N; and any .x1; : : : ; xn/ 2 �n

Conversely, assume that

det.J.xi; xj//1�i;j�n � 0 for any n 2 N; 
˝n-a.e..x1; : : : ; xn/ 2 �n:

From formula (2) with ˛ D �1, we have then for any z 2 C

Det.I C zJ / D
1X

nD0

zn

nŠ

Z

En
det.J.xi; xj//1�i;j�n
.dx1/ : : : 
.dxn/: (9)

As J is assumed to be self-adjoint, its spectrum is included in R. Thanks to (9), it
is impossible to have an eigenvalue in R

��, as the power series has all its coefficients
real non-negative and the first coefficient (n D 0/ is real positive. Hence SpecJ �
Œ0;1/.
Proof (Corollary 2)

We assume: �1=˛ 2 N and SpecK � Œ0;�1=˛�. Then we have, as K is self-
adjoint, that for any compact set�, SpecK� � Œ0;�1=˛�. Then Det.ICˇK�/ > 0

for any ˇ 2 .˛; 0�.
If I C ˛K� is invertible for any compact set � � E, we have Spec J�˛ � Œ0;1/

and J�˛ is a trace class self adjoint operator for any compact set �.
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Then, applying Lemma 3, we get that

det.J.xi; xj//1�i;j�n � 0 for any n 2 N; compact set � and 
˝n-a.e..x1; : : : ; xn/ 2 �n

Using Theorem 3, we get the existence of an ˛-determinantal process with
kernel K.

When there exists a compact set �0 such that I C ˛K�0 is not invertible, by the
same line of proof, we obtain the announced result, using Theorem 4.

Conversely, we assume that there exists an ˛-determinantal process with ker-
nel K.

Then, from Theorem 3 or 4, we get that �1=˛ 2 N.
If I C ˛K� is invertible for any compact set � � E, we have Spec J�˛ � Œ0;1/,

using Theorem 3 and Lemma 3. Then Spec K� � Œ0;�1=˛/ � Œ0;�1=˛�, for any
compact set �.

If there exists a compact set �0 such that I C ˛K�0 is not invertible, we have
Spec J�ˇ � Œ0;1/ for any compact set � and any ˇ 2 .˛; 0/, using Theorem 4 and
Lemma 3. Then Spec K� � Œ0;�1=ˇ/ for any ˇ 2 .˛; 0/. Therefore Spec K� �
Œ0;�1=˛� for any compact set �.

As K is self-adjoint, this implies in both cases that Spec K � Œ0;�1=˛�.
Remark 5 Using the known result in the case ˛ D �1 (see for example Hough et al.
in [7]) and Corollary 1, one obtains a direct proof of Corollary 2.

7 Infinite Divisibility

Proof (Theorem 5) For ˛ < 0, we have proved that it is necessary to have �1=˛ 2
N. If an ˛-determinantal process was infinitely divisible, with ˛ < 0, it would be
the sum of N i.i.d ˛N-determinantal processes for any N 2 N

�, as it can be seen for
the Laplace functional formula (1). This would imply that �1=.N˛/ 2 N, for any
N 2 N

�, which is not possible. Therefore, an ˛-determinantal process with ˛ < 0

is never infinitely divisible.

Some characterization on infinite divisibility have also been given in [4] in the
case ˛ > 0.

Proof (Theorem 6) For ˛ > 0, assume that Det.I C ˛K�/ � 1 and

X

�2˙nW�.�/D1

nY

iD1
J�˛ .xi; x�.i// � 0;

for any compact set � � E, n 2 N and 
˝n-a.e. .x1; : : : ; xn/ 2 �n.
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Then we have:

X

�2˙nW�.�/Dk

nY

iD1
J�˛ .xi; x�.i// D

X

fI1;:::;Ikg

partition of �1;n�

X

�12˙.I1/;:::;�k2˙.Ik/W
�.�1/D���D�.�k /D1

kY

qD1

Y

i2Iq

J�˛ .xi; x�q.i//

D
X

fI1;:::;Ikg

partition of �1;n�

kY

qD1

0

B
@
X

�2˙.Iq/W
�.�/D1

Y

i2Iq

J�˛ .xi; x�.i//

1

C
A � 0;

for any compact set � � E, n 2 N, k 2 �1; n� and 
˝n-a.e. .x1; : : : ; xn/ 2 �n,
where, for a finite set I, ˙.I/ denotes the set of all permutations on I.

Then, for any N 2 N
� and any compact set � 2 E, detN˛.J�˛ .xi; xj/=N/1�i;j�n �

0. From Theorem 1, we get that there exists a .N˛/-permanental process with kernel
K=N. This means that an ˛-permanental process with kernel K is infinitely divisible.

Conversely, if we assume an ˛-permanental process with kernel K is infinitely
divisible, we get the existence of a N˛-permanental process with kernel K=N, for
any N 2 N

�.
From Theorem 1, we have that Det.I C ˛K�/ � 1 for any compact set � 2 E.
We also have

1

.N˛/n�1 detN˛.J
�
˛ .xi; xj//1�i;j�n � 0;

for any N 2 N
�, any n 2 N, any compact set � 2 E and 
˝n-a.e. .x1; : : : ; xn/ 2 �n.

When N tends to1, we obtain:

X

�2˙nW�.�/D1

nY

iD1
J�˛ .xi; x�.i// � 0;

which is the desired result.

Proof (Theorem 7) We use the argument of Griffiths in [5] and Griffiths and Milne
in [6]. Assume

X

�2˙nW�.�/D1

nY

iD1
J�˛ .xi; x�.i// � 0;

for any n 2 N and any .x1; : : : ; xn/ 2 �n.
The condition J�˛ .x1; x2/ : : : J

�
˛ .xn�1; xn/J�˛ .xn; x1/ � 0 is satisfied for the

elementary cycles, i.e. cycles such that J�˛ .xi; xj/ D 0 if i < j C 1 and (i ¤ 1

or j ¤ n). Then it can be extended to any cycle by induction, using J�˛ .xi; xj/ D
J�˛ .xj; xi/.
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With Lemma 1, we can then extend the proof to the case when

X

�2˙nW�.�/D1

nY

iD1
J�˛ .xi; x�.i// � 0;

for any n 2 N and 
˝n-a.e. .x1; : : : ; xn/ 2 �n.

Remark 6 Note that the argument from Griffiths and Milne in [5] and [6] is only
valid for real symmetric matrices.
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Filtrations of the Erased-Word Processes

Stéphane Laurent

Abstract We define a class of erased-word processes and prove that the poly-
adic filtration generated by such a process is standard. This is shown by firstly
constructing a generating process of innovations in the case of a finite alphabet
equipped with the uniform probability measure, and then by deriving the general
case with the help of the tools of Vershik’s theory of filtrations in discrete negative
time.

1 The Filtration of the Erased-Word Process

An erased-word process is depicted on Fig. 1. It is a stochastic process indexed
by the set of negative integers �N, and consists in picking at random a word Wn

with jnj letters at time n and then to obtain the next word WnC1 by deleting at
random one letter of Wn (thus the final word W0 is the empty word). More precisely,
given a Lebesgue probability space .A; �/, and calling A the alphabet, the erased-
word process on .A; �/ is the Markov process .Wn; 	n/n60 whose law is defined as
follows: for every n 6 �1,

• Wn is a random word on A made of jnj letters i.i.d. according to �;
• 	nC1 is a random variable uniformly distributed on f1; 2; : : : ; jnjg and indepen-

dent of the past �-field �.Wm; 	mIm 6 n/;
• WnC1 is obtained by deleting the 	nC1-th letter of Wn.

The filtration F generated by the erased-word process .Wn; 	n/n60 is defined by
Fn D �.Wm; 	mIm 6 n/. We will sometimes term the 	n as the erasers. According
to definition given below, the sequence .	n/n60 made of the erasers is a process of
innovations of the filtration F.

Definition 1 Let F be a filtration. A random variable 	n that is independent of Fn�1
and such that Fn D Fn�1 _ �.	n/ is called an innovation of F (more precisely, we
should say an innovation at time n, but thanks to the subscript in 	n this is not a
point worth quibbling about). A sequence .	n/n60 of independent random variables
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Fig. 1 A trajectory of the erased-word process

such that each 	n is an innovation of F at time n, is called a process of innovations
of F.

When such a process of innovations exist, it defines the local structure of the
filtration: for any other process of innovations .	0

n/n60, the two random variables
	n and 	0

n possibly generate two different �-fields �.	n/ and �.	0
n/, but there is a

Boolean isomorphism between the measure algebras
�
�.	n/;P

�
and

�
�.	0

n/;P
�

for
every n 6 0. Details about this point can be found in [1] and [5]. Thus, any possible
innovation 	0

n of the filtration of the erased-word process is uniformly distributed
on jnj C 1 values, similarly to the eraser 	n. For this reason, the filtration F of the
erased-word process is said to be

�jnj C 1�-adic, and it belongs to the class of poly-
adic filtrations, according to definition below.

Definition 2 A filtration F is poly-adic if there exists a process of innovations
.	n/n60 of F such that each 	n is uniformly distributed on a finite set.

The poly-adicity will play an important role in the proof of theorem below, which
is the main result of this article.

Theorem 1 For any Lebesgue alphabet .A; �/, the filtration of the erased-word
process is of product type, that is to say, it is generated by a process of innovations.

Let us comment this theorem. Consider the filtration E generated by the process
of innovations .	n/n60. Obviously E � F , but E ¤ F because En is independent
of Wn for every n 6 0. But that does not mean that E and F are not isomorphic.
Theorem 1 asserts that there exists another process of innovations . Q	n/n60 which
generates F (then called a generating process of innovations), and this says that E
and F are isomorphic. Thus F, which is bigger than E , is no more than E up to
isomorphism.

This theorem together with Kolmogorov’s zero-one law imply that the tail �-field
F�1 WD \Fn is degenerate. But it is not difficult to directly prove the degeneracy
of F�1 with the help of the reverse martingale convergence theorem (this proof
would be similar to the one given in [2] for the dyadic split-word process), whereas
the proof of Theorem 1, even in the simpler case when A is finite and � is uniform
(see below our three demonstration steps), is not easy. The motivation of Theorem 1
is precisely the surprising fact that it is not a trivial result once we know that F�1
is degenerate: it is known that for any type of poly-adicity (such as the

�jnj C 1�-
adicity), there exist some filtrations whose tail �-fields are degenerate but for which
there does not exist any generating process of innovations. Thus, such a filtration
is locally isomorphic to F and, similarly to F, has a degenerate �-field, but is
not isomorphic to F. This surprising fact has been discovered by Vershik [8–11],
who developed a theory to characterize the existence of a generating process of
innovations for poly-adic filtrations.
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To give a better idea of the subtlety of Theorem 1, we mention that the opposite
conclusion holds for a process seemingly close to the erased-word process. Namely,
this process is similar to the erased-words process except that at each time, the letter
deleted at random is either the first one or the last one with equal probabilities of
1=2. It generates a dyadic (2-adic) filtration which is not of product type although
its tail �-field is degenerate. This result is not explicitly written in the literature but
Heicklen and Hoffman’s proof of their main result in [3] implicitly relies on it.

We will use the tools of the theory of filtrations developed by Vershik to derive
the general case in Theorem 1 from the particular case when � is uniform on a finite
alphabet A. More precisely, our theorem will be proved in three steps:

1. we will prove Theorem 1 in the case when � is the uniform probability measure
on a finite alphabet A using a ‘bare-hands’ approach, that is, we will construct a
generating process of innovations in this case;

2. using some tools of Vershik’s theory, we will prove Theorem 1 in the case when
� is the Lebesgue measure on A D Œ0; 1�;

3. again using some tools of Vershik’s theory, we will derive the general case of
Theorem 1 from the case when � is the Lebesgue measure on A D Œ0; 1�.
The main theorem of Vershik’s theory that will be used is the equivalence

between the existence of a generating process of innovations and standardness in
the case of poly-adic filtrations:

Theorem 2 A poly-adic filtration is of product type if and only if it is standard.

Different definitions of standardness are used in the literature. Probabilists
usually consider that a standard filtration is by definition a filtration which can be
immersed in a filtration of product type [2, 5], and this definition directly yields
that filtrations of product type are standard. The deep assertion of Theorem 2 is
the reciprocal fact. Under the usual assumption that the final �-field F0 of the
filtration F is essentially separable, standardness is known to be characterized by
a criterion discovered by Vershik, called Vershik’s standardness criterion or the
Vershik property [2, 6, 7]. A filtration satisfying the Vershik property is also said to
be Vershikian. We will write an easy proposition (Proposition 1) about the Vershik
property to derive step 2 from step 1 in the proof of Theorem 1. Then step 3 will
be derived from step 2 and from the heritability property of standardness under
immersion, with the help of Theorem 2.

The standardness property will be more precisely explained in Sect. 3, at time we
will resort to it.

In Sect. 4 we derive standardness of the multidimensional Pascal filtration from
standardness of the erased-word filtration. This filtration arises when one observes
the evolution of the numbers of occurrences of each letter in the erased-word
process.

It is worth mentioning that the filtration of the erased-word process can be
viewed as the filtration induced by an ergodic central measure on a Bratteli
graph, because there is a recent interest in the study of standardness of such
filtrations [4, 12, 13]. This Bratteli graph arises by taking as probability space of the
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Fig. 2 The Bratteli graph of the erased-word filtration

erased-word process a so-called canonical space in the theory of stochastic process,
that is, a space representing the trajectories of the erased-word process, equipped
with a probability measure � such that picking a trajectory according to � defines
the law of the erased-word process. The Bratteli graph is shown on Fig. 2 for a two-
letters alphabet A D fa; bg.

The graph is graded: the vertices at each level n 6 0 correspond to the possible
states of the random word Wn, in particular it has a unique vertex ¿ at level 0. The
edges connecting a vertex at level n � 1 to a vertex at level n correspond to the
possible values of the eraser 	n. In this way, a trajectory of the erased-word process
corresponds to an infinite path in the graph, starting from the root vertex ¿, and
the law of the erased-word process defines a probability measure � on the set �
of such paths. This graph is termed as Bratteli because in addition to be graded,
each vertex at level n 6 0 is connected to at least one vertex at level n � 1, and
each vertex at level n 6 �1 is connected to at least one vertex at level n. Thus, a
trajectory of the erased-words process can be viewed as an infinite path in � taken at
random according to �, and the �-field Fn is the one generated by the path observed
up to level n. We can similarly define the filtration F for any Bratteli graph and a
given probability measure � on the space � of its infinite paths. In our case where
� is the law of the erased-word process, it is an ergodic central measure with the
terminology of Vershik [12, 13]. The measure � is said to be central when for every
given path observed up to level n, the remaining finite piece of the path from the
vertex picked at level n to the root vertex ¿ at level 0 is taken uniformly on the set
of all such finite pieces of path (see [4] for more details). This obviously holds in
our case because of the poly-adicity of F. The measure � is said to be ergodic when
the tail �-field F�1 is degenerate, and as already said before, this property holds in
our case as a consequence of standardness but it is not difficult to prove it directly.
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2 Discrete Uniform Case

Throughout this section, we assume that A is finite and � is the uniform probability
measure on A. We will prove Theorem 1 in this case by a more or less explicit
construction of a generating process of innovations . Q	n/n60. We also set � D #A
and we fix a total order on A. Then we denote A D fa1; : : : ; a�g where ai is the i-th
letter of A.

2.1 Ingredients of the Construction

The main ingredient of the construction is the canonical coupling. It is very easy to
roughly explain what is the canonical coupling with the help of the picture shown
on Fig. 3, but it is a bit tedious to write its rigorous definition. Below, we split the
description of the canonical coupling into three paragraphs: we firstly define the
canonical word (the periodic word at right on Fig. 3), then we introduce the notation
N�

i .w/ for the number of occurrences of the i-th letter of w to the left of position i,
and finally we define the canonical coupling of a word (the permutation shown on
Fig. 3, induced by the word at left).

The canonical word of length ` on A is the word Qw 2 A` in which the letters of A
appear in the order and repeat periodically: the i-th letter Qw.i/ of the canonical word
Qw is the r-th letter ar of A if i 	 r .mod �/. For example, the canonical word of
length 8 on A D fa1; a2; a3g, shown at right on Fig. 3, is the word a1a2a3a1a2a3a1a2.

Given a word w and a position in w, that is to say an index i of one letter of w, we
denote by N�

i .w/ D
Pi�1

kD1 1fw.k/Dw.i/g the number of occurrences of the i-th letter
of w to the left of position i. If Qw is the canonical word, then N�

i . Qw/ is the quotient
in the Euclidean division of i � 1 by � D #A.

The canonical coupling �w of a word w on the finite ordered alphabet A D
fa1; : : : ; a�g is the permutation illustrated on Fig. 3 and rigorously defined as
follows. Let Qw be the canonical word on A having the same length ` as w. The
canonical coupling �w is a permutation of the set f1; : : : ; `g of positions in w. Its
construction is made in two steps:

Fig. 3 A canonical coupling
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• First step. Take a position i 2 f1; : : : ; `g in w. If w.i/ D ar then we set �w.i/ D
rC �N�

i .w/ provided rC �N�
i .w/ 6 `, i.e. when N�

i .w/ is strictly less than the
number of occurrences of ar in the canonical word Qw. Then w.i/ D Qw��w.i/

�
for

all such i. This step is illustrated on Fig. 3 by the solid lines.
• Second step. After performing the first step for every possible i, we assign the

remaining positions in w to the remaining positions in Qw in the increasing way.
This step is illustrated on Fig. 3 by the dashed lines.

The last ingredient of the construction are the cascaded permutations. Consider
the canonical coupling �Wn0

of Wn0 for an arbitrary small n0, providing a correspon-
dence between Wn0 and the canonical word of length jn0j denoted by Qwn0 . Figure 3
is helpful to keep in mind that �Wn0

represents one-to-one connections between
the letters of Wn0 and the letters of Qwn0 . In parallel to .Wn0 ;Wn0C1; : : : ;W0/, we
construct a sequence of erased words .W 0

n0 ;W
0
n0C1; : : : ;W

0
0/, starting from W 0

n0 DQwn0 and erasing one letter at each step as follows. At time n D n0C1, the word Wn0C1
is obtained by deleting the 	n0C1-th letter of Wn0 , and we delete the corresponding
�Wn0

.	n0C1/-th letter of the canonical word Qwn0 D W 0
n0 , thereby obtaining a subword

W 0
n0C1 of W 0

n0 having the same length as Wn0C1. Thus 	0
n0C1 WD �Wn0

.	n0C1/ is
the first eraser in the parallel erased-word sequence . Qwn0 ;W

0
n0C1; : : : ;W

0
0/, and its

realization fully determines the realization of the random word W 0
n0C1. Moreover,

by deleting the connection between 	n0C1 and 	0
n0C1 in the canonical coupling

�Wn0
, we obtain a new permutation �Wn0 ;	n0C1

representing one-to-one connections
between the letters of Wn0C1 and the letters of W 0

n0C1. Then we continue so on (this
is illustrated on Fig. 4):

• At each time n 2 fn0 C 1; : : : ;�1g we have a word W 0
n of length jnj and

a permutation �Wn0 ;	n0C1;:::;	n representing one-to-one connections between the
letters of W 0

n and the letters of Wn.
• At time n C 1 we have a word W 0

nC1 obtained by deleting the 	0
nC1-th letter of

W 0
n, where 	0

nC1 D �Wn0 ;	n0C1;:::;	n.	nC1/, and this provides a new permutation
�Wn0 ;	n0C1;:::;	nC1

connecting the letters of W 0
nC1 to the letters of WnC1.

Figure 4 illustrates the “cascaded” permutations �Wn0 ;	n0C1;:::;	n initiated at time
n0 D �5 by the canonical coupling �Wn0

and sequentially obtained from the erasers
	n0C1 and 	n0C2. By this way the random word W 0

n is measurable with respect to
�.	0

n0
C 1; : : : ; 	0

n/. Lemma 1 in the next section shows that the 	0
n are innovations

Fig. 4 A cascaded permutation
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of F and Wn D W 0
n with probability as high as desired when the construction starts

from an arbitrary small n0, and this will allow us to construct a generating process
of innovations.

2.2 Key Lemma

A generating process of innovations of F will be derived from Lemma 1 below.
The following construction, already sketched in the previous section, is used in the
statement of this lemma. Let fn be the function from AjnjC1 � f1; : : : ; jnj C 1g to
Ajnj defined by setting fn.w; e/ to the word obtained by deleting the e-th letter of
w. This function represents the update from Wn�1 to Wn because of the equality
Wn D fn.Wn�1; 	n/. Now, consider a random vector .	0

n0C1; : : : ; 	
0
0/ having the same

law as .	n0C1; : : : ; 	0/. Then define a Markov process
�
Yn.n0/

�
n06n60 by the initial

condition Yn0 .n0/ D Qwn0 (the canonical word of length jn0j), and by the inductive
relation

YnC1.n0/ WD fnC1
�
Yn.n0/; 	

0
nC1
�
:

Setting W 0
n D Yn.n0/, the process

�
.W 0

n0C1; 	
0
n0C1/; : : : ; .W

0
0; 	

0
0/
�

has the same
distribution as the process

�
.Wn0C1; 	n0C1/; : : : ; .W0; 	0/

�
conditionally to Wn0 D

Qwn0 . Lemma 1 below shows that Wn D W 0
n with probability as high as desired when

the construction starts from an arbitrary small n0 and when we use the innovations
	0

n encountered in the previous section when we defined the cascaded permutations.

Lemma 1 Let n0 < 0 be an integer and �Wn0
be the canonical coupling of Wn0 . For

every integer m 2 Œn0 C 1;�1� let �Wn0 ;	n0C1;:::;	m be, as explained in Sect. 2.1, the
cascaded permutation initiated by �Wn0

and sequentially obtained from 	n0 ; : : : ; 	m,
and define 	0

mC1 D �Wn0 ;	n0C1;:::;	m.	mC1/ for every m 2 Œn0;�1�. Then .	0
n/n0C16n60

has the same law as .	n/n0C16n60 and each 	0
n is, just as 	n, an innovation of F, that

is, 	0
n is independent of Fn�1 and Fn D Fn�1 _ �.	0

n/. Moreover, with the notations
above,

P
�
Wn ¤ Yn.n0/

�! 0 as n0 ! �1

for every n 6 0, where Qwn0 is the canonical word of length jn0j.
Proof It is easy to check that 	0

n is an innovation as any other Fn�1-measurable
random permutation of 	n. The word Wn is a subword of Wn0 , and we denote by
Qn0;n � f1; : : : ; jn0jg the set of positions in the word Wn0 forming its subword
Wn. Moreover, by construction of the cascaded permutations, W 0

n D Yn.n0/ is a
subword of Qwn0 and the set of positions in Qwn0 forming W 0

n is the image of Qn0;n

by the canonical coupling �Wn0
. We can check the intuitively clear fact that Qn0;n

is independent of Wn0 and is uniform on the subsets of f1; : : : ; jn0jg having size
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jnj. Indeed, there is a bijective correspondence between the erasers .	n0C1; : : : ; 	n/

and the .n � n0/-tuple listing the successive positions in the word Wn0 of the
letters deleted at times n0 C 1; : : : ; n. The set of all theses positions is exactly
the complement of Qn0;n in f1; : : : ; jn0jg. Therefore there is a correspondence
between .	n0C1; : : : ; 	n/ and Qn0;n, and consequently there is independence between
Qn0;n and Wn0 . Moreover, this correspondence between .	n0C1; : : : ; 	n/ and Qn0;n is
surjective and .n�n0/Š to one, wherefrom follows the uniformity of the law of Qn0;n.

Now, to abbreviate notations, set p D jn0j, q D jnj, Q D Qn0;n and W D Wn0 .
Thus we have seen that Q is a random variable independent of W and uniformly
distributed on the subsets of f1; : : : ; pg having size q. With these abbreviated
notations, the main statement of the lemma is rephrased by

�. p; q/ WD P
�
WjQ D Qwj�W .Q/

� �! 1 as p! C1;

where �w is the canonical coupling of a word w and Qw is the canonical word of
length p, and we use the notation wjJ to denote the subword of a word w obtained
by keeping only those of its letters whose indices belong to the subset J.

Recall the notation � D #A. To show that �. p; q/ ! 1 when p ! 1, we
introduce the three events

E1 D
˚
max.Q/ 6 p � p3=4 � ��;

E2 D
˚8.i; j/ 2 Q2; i D j or ji � jj > 3p3=4

�
;

E3 D
˚8i 2 Q; i� 1 � p3=4 6 �N�

i .W/ 6 i � 1C p3=4
�
;

and we are going to show that

E1 \ E2 \ E3 �
˚
WjQ D Qwj�W .Q/g

if p is sufficiently large, and

P.Ec
1 [ Ec

2 [ Ec
3/ ���!p!1 0:

We firstly show the inclusion. As a first step, we show that W.i/ D Qw��W.i/
�

for
every i 2 Q on the event E1 \ E3. Consider i 2 Q and assume that W.i/ D ar. On
the event E3,

rC �N�
i .W/ 6 � C i � 1C p3=4;

and � C i � 1 C p3=4 6 p on the event E1. Thus, by definition of the canonical
coupling, �W.i/ D r C �N�

i .W/ on the event E1 \ E3 and W.i/ D Qw��W.i/
�

for
every i 2 Q. Moreover,

1C .i � 1 � p3=4/ 6 rC �N�
i .W/ 6 � C .i � 1C p3=4/;
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on the event E3, therefore �W satisfies the following property on E1 \ E3:

8i 2 Q;
ˇ
ˇi� �W.i/

ˇ
ˇ 6 � � 1C p3=4:

Consequently, if we are on E1 \ E2 \ E3 and if p is sufficiently large so that
3p3=4 > 2

�
�Cp3=4

�
, then the restriction of �W to Q is increasing, and finally WjQ D

Qwj�W .Q/, as desired.
It remains to show that P.Ec

1 [ Ec
2 [ Ec

3/ ���!p!1 0. The following upper bound of

P.Ec
1/ is easily obtained:

P.Ec
1/ 6 q

p3=4 C � C 1
p

���!
p!1 0:

The following upper bound of P.Ec
2/ is obtained by sampling the elements of Q

without replacement:

P.Ec
2/ 6 6p3=4 C 2

p � 1 C 2.6p3=4 C 2/
p � 2 C 
 
 
 C .q � 1/.6p3=4 C 2/

p � qC 1

6 .q � 1/2.6p3=4 C 2/
p � qC 1 ���!

p!1 0:

To find an upper bound of P.Ec
3/, we call Ik the k-th element of Q for every

k 2 f1; : : : ; qg. Conditionally to Ik D i, the number of occurrences N�
Ik
.W/ has

the binomial distribution with size i � 1 and probability of success 1=�, because
of the independence between W and Q. Therefore, using Bienaymé-Chebyshev’s
inequality,

P

�ˇˇ
ˇ
ˇN

�
Ik
.W/� Ik � 1

�

ˇ
ˇ
ˇ
ˇ >

p3=4

�

ˇ
ˇ
ˇ Ik D i

�

6
�
�

p3=4

�2
.i � 1/ 1

�

�

1 � 1
�

�

<
p�

p3=2
D �p

p
;

and this being true for every i 2 f1; : : : ; pg, one also has

P

�ˇˇ
ˇ
ˇN

�
Ik
.W/� Ik � 1

�

ˇ
ˇ
ˇ
ˇ >

p3=4

�

�

<
�p
p
:

By summing this equality over all k 2 f1; : : : ; qg,

P.Ec
3/ <

q�p
p
���!
p!1 0;

and the proof is over. ut



454 S. Laurent

2.3 Proof of Standardness

We finish to prove that the erased-word process .Wn; 	n/n60 generates a filtration
of product type in the discrete uniform case. This can be quickly proved from
Lemma 1 with the help of Vershik’s first level criterion and Proposition 2.22 in
[5]. Lemma 1 says that each random variable Wn satisfies Vershik’s first level
criterion. Since .	n/n60 is a process of innovations of F, and since the �-fields
�.Wn; 	nC1; : : : ; 	0/ increase to F0 as n! �1, Proposition 2.22 in [5] ensures that
F satisfies Vershik’s first level criterion, and then F is of product type by Vershik’s
theorem (Theorem 2.25 in [5])

But we have not stated Vershik’s first level criterion in the present paper, and we
can give a self-contained proof that F is of product type by constructing a generating
process of innovations. First recall that W 0

n D Yn.n0/ in Lemma 1 is measurable with
respect to �.	0

n0C1; : : : ; 	
0
n/. Then, given a sequence .ık/k60 of real numbers ık > 0

satisfying ık ! 0 as k ! �1, recursively applying Lemma 1 provides a strictly
increasing sequence .nk/k60 of integers with n0 D �1 and an innovation process
. Q	n/n60 such that:

(i) . Q	nkC1; : : : ; Q	n/ D �Wnk ;n
.	nkC1; : : : ; 	n/ for every k < 0 and every integer n 2

ŒnkC1; 0�, where each �w;n is a permutation of f1; : : : ; jnkjg� 
 
 
�f1; : : : ; jnjC
1g;

(ii) for every k 6 0 there is a random word QWnk measurable with respect to
�. Q	nk�1C1; : : : ; Q	nk / and satisfying P.Wnk ¤ QWnk/ < ık.

Now we check that . Q	n/n60 generates F. It suffices to construct, for each n 6 0

and every ı > 0, a pair of random variables . OWn; O	n/ that is measurable with respect
to �.: : : ; Q	n�1; Q	n/ and that satisfies P

�
.Wn; 	n/ ¤ . OWn; O	n/

�
< ı. To do so, let k be

sufficiently small in order that ık < ı and nk < n. Then define

. O	nkC1; : : : ; O	n/ D ��1
QWnk ;n

. Q	nkC1; : : : ; Q	n/

and define OWm for m 2 Œnk; n� by initially setting OWnk D QWnk and recursively setting
OWmC1 D fmC1. OWm; O	mC1/ (the functions fm were introduced before Lemma 1). Now,
. O	nkC1; : : : ; O	n/ D .	nkC1; : : : ; 	n/ on the event fWnk D QWnkg, hence OWn D Wn on
this event too.

3 Vershikian Tools and the General Case

Here we finish the proof of Theorem 1 by following steps 2 and 3 announced in the
introduction.

Consider the erased-word process .Wn; 	n/n60 in the case when A D Œ0; 1� and �
is the Lebesgue measure on A, and denote by G the filtration it generates. In order
to prove that G is of product type (step 2), the idea consists in approximating this
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process by an erased-word process on a finite alphabet with equiprobable letters,
known to generate a filtration of product type by the previous section (step 1). Then
the tools of Vershik’s theory of filtrations will allow to conclude.

For every integer k > 1, let fkWA ! A be the function defined by fk.x/ D
2�kb2kxc. Then fk sends the Lebesgue measure� to the uniform probability measure

on the finite alphabet Ak WD
n
0; 1

2k ; : : : ;
2k�1
2k

o
. Applying fk to each letter of a word

w on A gives a word on Ak denoted by fk.w/. Then the process
�

fk.Wn/; 	n
�

n60 is
an erased-word process generating a filtration of product type by Sect. 2. Moreover,
denoting by Gk this filtration, the sequence of �-fields .Gk

0/k>1 is increasing and
_C1

kD1Gk
0 D G0

We give two ways to prove that G is of product type from the fact that each Gk

is of product type. The first one uses Vershik’s first level criterion, as the proof of
the similar result 2.45 in [5] about the split-word processes. Vershik’s first level
criterion is known to be equivalent to productness (see [5]), hence we know it is
satisfied by each filtration Gk. Moreover, every innovation 	0

n of Gk at time n is also
an innovation of G, because by Lemma 2.4 in [5] it can be written 	0

n D ˚.	n/

where˚ is a Gk
n�1-measurable random bijection from f1; : : : ; jnjC1g to some finite

set of size jnj C 1. Thus, every random variable in [kL1.Gk
0/ belongs to the set of

random variables in L1.G0/ satisfying Vershik’s first level criterion with respect to
G. But this set is closed in L1.G0/ by Proposition 2.7 in [5], consequently G satisfies
Vershik’s first level criterion.

The second proof we give relies on a more general result stated in our original
Proposition 1 below. As we have seen, the key point in the previous proof is the fact
that every innovation of Gk is also an innovation of G and it is very specific to our
situation. This fact implies that each Gk is immersed in G (see Lemma 1.6 in [5];
that means here that the process

�
fk.Wn/; 	n

�
n60 is Markovian with respect to G),

and this is the key point of the second proof.

Proposition 1 Let F be a filtration. If there exists a sequence of Vershikian
filtrations .Fk/k>1 such that the sequence of �-fields .Fk

0/k>1 is increasing and
satisfies _C1

kD1Fk
0 D F0, and if each Fk is immersed in F, then F is Vershikian.

Proof Saying that Fk is Vershikian means by definition that the final �-field Fk
0 is

Vershikian with respect to the filtration Fk, but thanks to Lemma 4.1 in [6], this
tantamounts to say that Fk

0 is Vershikian with respect to the filtration F because
of the immersion of Fk in F. Now, because of _C1

kD1Fk
0 D F0, Lemma 4.2 in [6]

(closedness of the set of Vershikian random variables) shows that F0 is Vershikian
with respect to F, that is to say F is Vershikian. ut

Thus, we know that G is standard by Proposition 1 and by the equivalence
between standardness and the Vershik property. By Theorem 2, we conclude that
G is of product type.

Step 2 of the proof of Theorem 1 is achieved. Step 3 (the general case) is easily
achieved with the help of Theorem 2. Consider an arbitrary Lebesgue alphabet
.A; �/ and take a measurable function f W Œ0; 1� ! A sending the Lebesgue measure
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to �. Then the process
�

f .Wn/; 	n
�

n60 is the erased-word process on .A; �/, and the
filtration it generates is immersed in G. We conclude that this filtration is of product
type by using Theorem 2 and the heritability of standardness under immersion, an
immediate consequence of the definition of standardness (see [2] or [5]). Now step
3 is achieved and the proof of Theorem 1 is over.

4 Standardness of the Multidimensional Pascal Filtration

The d-dimensional Pascal filtration is introduced in [4]. It is the filtration generated
by the Markov chain .Vn/n60 whose distribution depends on a given probability
vector .�1; : : : ; �d/, where d > 2 is a finite integer or d D 1, and is defined as
follows:

• (instantaneous distributions) the random variable Vn has the multinomial distri-
bution on

Vd
n D

˚
v 2 N

d j v.1/C 
 
 
 C v.d/ D jnj�

with success probability vector .�1; : : : ; �d/;
• (Markov transitions) the transition laws from n to nC 1 are

L.VnC1 jVn D v/ D
dX

iD1

v.i/

jnj ıv�ei ; (1)

where ei is the vector in R
d whose i-th term is 1 and all the other ones are 0. In

other words, given Vn D
�
v.1/; : : : ; v.d/

�
, coordinate i is picked at random with

probability v.i/
jnj and VnC1 is obtained by subtracting 1 to this coordinate.

The case when d D 2 is illustrated on Figs. 5 and 6 (with p playing the role of �1),
and the case when d D 3 is illustrated on Fig. 7. We refer to [4] for more detailed
explanations.

It has been shown in [4] that the filtration generated by the d-dimensional
Pascal random walk is standard for any d and any .�1; : : : ; �d/. This result is
straightforwardly derived from our Theorem 1 and from the heritability property of
standardness under immersion, already mentioned in the introduction and in Sect. 3.
Indeed, taking the erased-word process .Wn; 	n/n60 on an alphabet A with d letters
and equipped with the probability � whose masses are given by the probability
vector .�1; : : : ; �d/, and defining the function fnWAjnj ! Vn as the one returning
the list of the numbers of occurrences of each letter of A in a given word of
length jnj, then the process

�
fn.Wn/; 	n

�
n60 is the d-dimensional Pascal random

walk defined by the probability vector .�1; : : : ; �d/, and the filtration F it generates
is immersed in the filtration G generated by the erased-word process .Wn; 	n/n60
because

�
fn.Wn/; 	n

�
n60 is Markovian with respect to G. Then standardness of the
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Fig. 5 2-dimensional Pascal random walk, directed from n D 0 to n D �1

Fig. 6 2-dimensional Pascal random walk, directed from n D �1 to n D 0

Fig. 7 Step in the 3-dimensional Pascal random walk: from n D �2 to n D �3 (left), and from
n D �3 to n D �2 (right)

d-dimensional Pascal filtration F results from Theorem 1, from the obvious fact that
standardness holds for filtrations of product type, and from the heritability property
of standardness under immersion.
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Projections, Pseudo-Stopping Times
and the Immersion Property

Anna Aksamit and Libo Li

Abstract Given two filtrations F � G, we study under which conditions the F-
optional projection and the F-dual optional projection coincide for the class of
G-optional processes with integrable variation. It turns out that this property is
equivalent to the immersion property for F and G, that is every F-local martingale
is a G-local martingale, which, equivalently, may be characterised using the class
of F-pseudo-stopping times. We also show that every G-stopping time can be
decomposed into the minimum of two barrier hitting times.

1 Introduction

The study of pseudo-stopping times started in the paper by Williams [11]. The
author describes there an example of a non-stopping time � which has the optional
stopping property, namely, for every uniformly integrable martingale M, E.M� / D
E.M0/. Let us recall this example here. Let B be a Brownian motion and define:

T1 WD infft W Bt D 1g and � WD supft � T1 W Bt D 0g:

Therefore � is the last zero of the process B before it reaches one. Let � be the time
of the maximum of B over Œ0; ��, that is

� WD supft < � W Bt D B�
t g with B�

t WD sup
s�t

Bs:

Then, as shown in [11], � has the optional stopping property. Such random times
were then called pseudo-stopping times and further studied by Nikeghbali and Yor
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in [10]. In particular, it was shown in [10] that a finite random time � is a pseudo-
stopping time if and only if the optional projection of the process 1ŒŒ�;1ŒŒ coincides
with its dual optional projection. We want to study the conditions under which
the later property holds not only for 1ŒŒ�;1ŒŒ but for a larger class of processes. In
other words, the main motivation of this work is to better understand the property
that the optional projection is equal to the dual optional projection for processes of
integrable variation, which is not true in general.

We work on a filtered probability space .˝;A ;F;P/, where F WD .Ft/t�0
denotes a filtration satisfying the usual conditions and we set F1 WD W

t�0Ft �
A . A process that is not necessarily adapted to the filtration F is said to be raw. As
convention, for any martingale, we work always with its càdlàg modification, while
for any random process .Xt/t�0, we set X0� D 0 and X1 D limt!1 Xt a.s, if it
exists.

Let G WD .Gt/t�0 be another filtration such that F � G, that is for each t � 0,
Ft � Gt.

The aim is to study under which conditions the F-optional projection and the
F-dual optional projection coincide for the class of G-optional processes with
integrable variation. It turns out that this is closely related to the immersion property
from the theory of enlargement of filtrations. A filtration F is said to be immersed
in G and we write F ,! G if every F-local martingale is a G-local martingale.
Often the immersion property is called the hypothesis .H / in the literature. We
refer the reader to Brémaud and Yor [4] for further discussions and other conditions
equivalent to the immersion property.

The results of this paper are also motivated by the study of the converse
implications to the following known observations in the literature. Let us define a
filtration F

� WD .F �
t /t�0 as the progressive enlargement of F with � , i.e. the smallest

right-continuous filtration containing F such that � is a stopping time, that is

F �
t WD

\

s>t

.Fs _ �.� ^ s//:

In the reduced form approach to credit risk modelling (see Bielecki et al. [3]), given
a filtration F, a popular way to model the default time � is to use a barrier hitting
time of an F-adapted increasing process and an independent barrier. It is known that
a random time constructed in this fashion has the property that the filtration F is
immersed in F

� . It is also known that the property that F ,! F
� implies that every

F
� -stopping time is an F-pseudo stopping time. In fact, the authors of [10] have

observed that, given two filtrations F and G such that F is immersed in G, every
G-stopping time is an F-pseudo-stopping time.

The main contributions of this work are condition .v/ of Theorems 1 and 2. In
Theorem 2 we show that the converse of the observation made by the authors of [10]
is true: if everyG-stopping time is F-pseudo-stopping time then F is immersed in G.
Hence, it provides an alternative characterization of the immersion property based
on pseudo-stopping times. Furthermore in Theorem 2 we show that the immersion
property for F and G is equivalent to the property that the F-optional projection
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and F-dual optional projection coincide for the class of G-optional processes with
integrable variation.

As an application of Theorem 1 .v/, which gives another equivalent character-
isation for pseudo-stopping times, and Theorem 2, we provide in Proposition 1 an
alternative proof to a result regarding the immersion property and the progressive
enlargement with honest times. The advantage of our method is that we do not
use specific structures of the progressive enlargement and the characterization of
predictable sets as done in Jeulin [9].

As another application, assuming that F is immersed in G, we show in Theorem 3
that every G-stopping time can be written as the minimum of two G-stopping times,
one of which is a barrier hitting time of an F-adapted increasing process, where the
barrier is ‘almost’ independent, and the other is an F-pseudo-stopping time whose
graph is contained in the union of the graphs of a family of F-stopping times.

2 Characterisation of Pseudo-Stopping Times

The main object of interest in this section is the class of pseudo-stopping times. We
start with recalling the definition of pseudo-stopping times from [10], with a slight
modification, that is the random time is allowed to take the value infinity.

Definition 1 A random time � is an F-pseudo-stopping time if for every uniformly
integrable F-martingale M, we have E.M� / D E.M0/.

The main tools used in this study are the (dual) optional projections onto the
filtration F. We record here some known results from the general theory of stochastic
processes. For more details on the theory the reader is referred to He et al. [7] or
Jacod and Shiryaev [8] and for specific results from the theory of enlargement of
filtrations to Jeulin [9].

For any locally integrable variation process V , we denote the F-optional projec-
tion of V by oV and the F-dual optional projection of V by Vo. It is known that the
process NV WD oV � Vo is a uniformly integrable F-martingale with NV

0 D 0 and
o.�V/ D �Vo.

We specialize the above notions to the study of random times. For an arbitrary
random time � , we set A WD 1ŒŒ�;1ŒŒ and define

• the supermartingale Z associated with � , Z WD o.1ŒŒ0;� ŒŒ/ D 1 � oA,
• the supermartingaleeZ associated with � ,eZ WD o.1ŒŒ0;� ��/ D 1 � o.A�/,
• the martingale m WD 1 � . oA � Ao/.

These processes are linked through the following relationships:

Z D m � Ao and eZ D m � Ao�:

We present in Theorem 1 an extension of Theorem 1 from Nikeghbali and Yor
[10]. We extend their result in two directions. Firstly, we allow for non-finite pseudo-
stopping times. Secondly, Theorem 1 from [10] states that if either all F-martingales
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are continuous or the random time � avoids all finite F-stopping times, i.e.�Ao D 0,
then the random time � is an F-pseudo-stopping time if and only if the process Z
is a decreasing F-predictable process. We will remove these additional assumptions
and present another equivalent characterization based on the processeZ instead of Z
in condition .v/ of Theorem 1. We point out that the equivalence of condition .v/ of
Theorem 1 is one of the key results of this paper.

Before presenting Theorem 1 let us give a motivating example of a random time
which is not a pseudo-stopping time and Z DeZ is decreasing but not predictable. It
illustrates the importance of the càglàd property in condition .v/ of Theorem 1.

Example 1 Let N be a Poisson process with intensity 
 and jump times .Tn/n.
Consider the random time � D 1

2
.T1 C T2/. Then we obtain

E.N�^1 � 
.� ^ 1// < E.NT1^1 � 
.T1 ^ 1// D 0

which implies that � is not a pseudo-stopping time. Furthermore we compute

eZt D Zt D 1fT1>tg C 1fT1�tg1fT2>tge�
.t�T1/

henceeZ D Z is a decreasing and càdlàg process. This example is further studied in
Proposition 5.3 in [2].

Theorem 1 The following are equivalent:

(i) � is an F-pseudo-stopping time;
(ii) Ao1 D P.� <1jF1/;

(iii) m D 1 or equivalently oA D Ao;
(iv) for every F-local martingale M, the process M� is an F

� -local martingale;
(v) the processeZ is a càglàd decreasing process.

Before proceeding to the proof of Theorem 1, we give an auxiliary lemma which
characterizes the main property of our interest, that is, given a process of finite
variation, when is its optional projection equal to the dual optional projection.

Lemma 1 Given a raw locally integrable increasing process V, the following are
equivalent:

(i) o.V�/ is a càglàd increasing process;
(ii) o.V�/ D Vo�;

(iii) o.V�/ D oV�;
(iv) oV D Vo .

Proof For any raw locally integrable increasing process V , from classic theory we
know that the process NV WD oV � Vo is a uniformly integrable martingale with
NV
0 D 0 and o.�V/ D �Vo. As a consequence we have

NV D o.V�/� Vo� and NV� D oV� � Vo�: (1)
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If o.V�/ is a càglàd increasing process, then from (1), we see that NV is a
predictable martingale of finite variation, therefore is constant and equal to zero,
since predictable martingales are continuous which shows .i/ H) .ii/ and
.i/ H) .iv/. To prove .iv/ H) .ii/, it is enough to use the definition of
NV . Since NV is càdlàg, we know that NV 	 0 if and only if NV� 	 0. This fact
combined with (1) gives the equivalence between .ii/ and .iii/ and the equivalence
between .ii/ and .iv/. ut
Proof of Theorem 1 To see that .i/ and .ii/ are equivalent, suppose � is an F-pseudo-
stopping time. Then, by properties of optional and dual optional projection, for any
uniformly integrable F-martingale M we have

E.M�1f�<1g/ D E.

Z

Œ0;1/

MsdAo
s / D E.M1Ao1/:

Therefore, the equality, E.M� / D E.M1/ holds true for every uniformly integrable
F-martingale M if and only if Ao1 D P.� <1jF1/, since E.M� / D E.M1.Ao1C
P.� D1jF1///.

On the other hand, we have oA1 D lims!1 P.� � s jFs/ D P.� < 1jF1/
a.s., and from the definition of m, we note that .ii/ holds if and only if .iii/ holds,
that is m D 1 or equivalently oA D Ao. The equivalence of .iii/ and .v/ follows
directly from Lemma 1.

To see that .i/ H) .iv/, let M be a uniformly integrable F-martingale. For
any F

� -stopping time �, from Dellacherie et al. [5, p. 186], we know there exists
an F-stopping time � such that � ^ � D � ^ � . Therefore, from the definition of
pseudo-stopping time,

E.M�^�/ D E.M�^� / D E.M0/;

which shows that M� is a uniformly integrable F� -martingale by Theorem 1.42 [8].
The implication .iv/ H) .i/ is straightforward. ut
Remark 1 The importance of the càglàd property in condition .v/ of Theorem 1
is illustrated in Example 1. From this example we also see that a decreasing
supermartingale Z is not sufficient to ensure that the time is a pseudo-stopping
time. We would also like to point out that condition .v/ in Theorem 1 is crucial
when working with non-continuous filtrations and it is used later in the proof of
Proposition 1.

3 Main Results and Applications

In this section, we formulate in Theorem 2 our main result which provides the nec-
essary and sufficient conditions for the property that the F-dual optional projection
and F-optional projection of anyG-optional process of integrable variation coincide.
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As a part of this result we derive a new characterization of the immersion property
in terms of pseudo-stopping times.

Theorem 2 Given filtrations F and G such that F � G, the following are
equivalent,

(i) the F-dual optional projection of any G-optional process of integrable varia-
tion is equal to its F-optional projection;

(ii) every G-stopping time is an F-pseudo-stopping time;
(iii) the filtration F is immersed in G.

Proof The implication .i/ H) .ii/ follows directly from Theorem 1 .iii/.
Let us now show the implication .iii/ H) .i/. Under the immersion property,

the F-optional projection of any bounded G-optional process is equal to its optional
projection on to the constant filtration F1 (see Bremaud and Yor [4]). More
explicitly, for any given locally integrable increasing G-adapted process V , we have
o.V�/� D E.V��jF1/ for any F-stopping time � . From this we see that the process
o.V�/ is increasing càglàd and .i/ follows from Lemma 1.

To show .ii/ H) .iii/, suppose that M is a uniformly integrable F-martingale
and � is any G-stopping time. Since every G-stopping time is an F-pseudo-
stopping time, we have E.M�/ D E.M0/ for every G-stopping time �, which by
Theorem 1.42 in [8], implies that M is a uniformly integrable G-martingale.

The theorem is now proved, however, for the sake of completeness, let us directly
show that .iii/ H) .ii/. To this end, let M be any uniformly integrable F-
martingale and � a G-stopping time. Then, from the immersion property, M is a
uniformly integrable G-martingale and E.M�/ D E.M0/, which implies � is an F-
pseudo-stopping time. ut

We now give two applications of our main results in Theorems 1 and 2. An
important class of random times is the class of honest times. A random time � is
an F-honest time if for every t > 0 there exists an Ft-measurable random variable
�t such that � D �t on f� < tg. In Proposition 1 we relate pseudo-stopping times with
honest times and, as an application of Theorem 1 .v/ combined with the equivalence
between .ii/ and .iii/ in Theorem 2, we recover a new proof of a result regarding
honest times and the immersion property found in Jeulin [9]. Therein the result
is obtained by computing explicitly the G-semimartingale decompositions of F-
martingales. The equivalence .i/ ” .ii/ in Proposition 1 was already presented
in Proposition 6 in [10] under the simplifying assumption that all F-martingales are
continuous and the proof therein uses distributional arguments. Here, we show that
a similar result can be obtained in full generality by using sample path properties
based on Theorem 1 .v/.

Proposition 1 Let � be a random time. The following conditions are equivalent,

(i) � is equal to an F-stopping time on f� <1g,
(ii) � is an F-pseudo-stopping time and an F-honest time.
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In particular if � is an F-honest time which is not equal to an F-stopping time on
f� < 1g and a G-stopping time for some filtration G  F then F is not immersed
in G.

Proof The implication .i/ H) .ii/ is obvious so we show only .ii/ H) .i/. Given
that � is a honest time, by Proposition 5.2. in [9], we have that � D supft W eZt D
1g on f� < 1g. On the other hand, by Theorem 1 .v/, the pseudo-stopping time
property of � implies thateZ D 1 � Ao�. Therefore, on f� <1g,

� D supft WeZt D 1g D supft W Ao
t� D 0g D infft W Ao

t > 0g;

so, � is equal to an F-stopping time on f� <1g.
Therefore if � is an F-honest time which is not equal to an F-stopping time on
f� <1g and a G-stopping time for some filtration G  F then, by Theorem 2, F is
not immersed in G. ut

In the remaining, given that F ,! G, we show that every G-stopping time can be
written as the minimum of two barrier hitting times for which the F1-conditional
distribution of the barriers can be computed. The proof of our final result given in
Theorem 3 relies on the equivalence .i/ ” .iii/ in Theorem 2.

Theorem 3 Assume that F ,! G and let � be a G-stopping time. Then � can be
written as �c ^ �d, where:

(i) The random time �c is a G-stopping time which avoids all finite F-stopping
times. Denote by Ac;o the F-dual optional projection of the process 1ŒŒ�c;1ŒŒ. Then
the F1-conditional distribution of Ac;o

�c
is uniform on the interval Œ0;Ac;o1 /, with

an atom of size 1 � Ac;o1 at Ac;o1 , that is

P.Ac;o
�c
� ujF1/ D u1fu<Ac;o

1g C 1fu�Ac;o
1g:

(ii) The random time �d is a G-stopping time whose graph is contained in the
disjoint union of the graphs of the jump times of the process Ao given by .�k/k2N.
Denote by Ad;o the F-dual optional projection of the process 1ŒŒ�d ;1ŒŒ. Then

P.Ad;o
�d
D ujF1/ D

X

k

1fAd;o
�k Dug�Ad;o

�k
:

Before proceeding to the proof of Theorem 3, we show that in fact any random
time � can be written as a barrier hitting time of an F-adapted increasing process
given the appropriate barrier. We refer the reader to Remark 3.2 in Gapeev [6] where
the author considers the situation where the process Ao is strictly increasing. We will
demonstrate this result with no assumptions on Ao.

Lemma 2 A random time � can be written as the barrier hitting time of the process
Ao with the barrier Ao

� , that is � D infft > 0 W Ao
t � Ao

�g:
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Proof We first define another random time �� by setting

�� WD infft > 0 W Ao
t � Ao

�g:

To see that �� D � (it is obvious that �� � �), we use Lemma 4.2 of [9] which
states that the left-support of the measure dA, i.e.,

f.!; t/ W 8" > 0 At.!/ > At�".!/g D ŒŒ� ��

belongs to the left-support of dAo, i.e., to the set f.!; t/ W 8" > 0 Ao
t .!/ >

Ao
t�".!/g. ut

Proof of Theorem 3 For any G-stopping time � and the set D WD f�Ao
� > 0g 2 G� ,

we see that � can be written as �c ^ �d, where �c WD �1Dc C 11D and �d WD
�1DC11Dc . The random times �c and �d are therefore G-stopping times, where �c

avoids finite F-stopping times and the graph of �d is contained in the graphs of the
jump times of Ao. For more details on this decomposition of a random time see [1].

Given � is a G-stopping time that avoids all finite F-stopping times. The F1-
conditional distribution of Ao

� is given by

E.1fAo
��ugjF1/ D E.1fAo

��ugjF1/1fu<Ao
1g C 1fu�Ao

1g:

Let us set C to be the right inverse of Ao, then the first term in the right hand side
above is

E.1fAo
��ug1fCu<1gjF1/ D E.1f��Cug1fCu<1gjFCu/

D oACu1fCu<1g
D Ao

Cu
1fCu<1g

D u1fu<Ao
1g

where we apply Theorem 2 in the third equality, while the last equality follows from
the fact that Ao

Cu
D u, since Ao is continuous except, perhaps, at infinity. This implies

that the F1-conditional distribution of Ao
� is uniform on Œ0;Ao1/.

On the other hand, given � is a G-stopping time whose graph is contained in the
graphs of the jump times of Ao given by .�k/k2N. Then

P.Ao
� D ujF1/ D

X

k

P.f� D �kg \ fAo
�k
D ugjF1/

D
X

k

1fAo
�k

DugP.� D �kjF1/

D
X

k

1fAo
�k

Dug�Ao
�k

where the last equality follows from the fact that F ,! G. ut
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Remark 2 As a special case of Theorem 3, if � is a finiteG-stopping time that avoids
finite F-stopping times, then Ao

� is independent of F1 and uniformly distributed on
the interval Œ0; 1�. In this case, the G-stopping time � is a barrier hitting time of an
F-adapted increasing process, with the barrier being independent from F1. This is
a class of random times widely used in credit risk modelling to model default times.
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Stationary Random Fields on the Unitary Dual
of a Compact Group

David Applebaum

Abstract We generalise the notion of wide-sense stationarity from sequences of
complex-valued random variables indexed by the integers, to fields of random
variables that are labelled by elements of the unitary dual of a compact group. The
covariance is positive definite, and so it is the Fourier transform of a finite central
measure (the spectral measure of the field) on the group. Analogues of the Cramer
and Kolmogorov theorems are extended to this framework. White noise makes sense
in this context and so, for some classes of group, we can construct time series and
investigate their stationarity. Finally we indicate how these ideas fit into the general
theory of stationary random fields on hypergroups.

1 Introduction

There are many important classes of stochastic process that have been systematically
developed, both because of their mathematical vitality, and their importance for
applications. These include, for example, Markov chains, branching processes, and
diffusion processes. The emphasis in this paper is on discrete-time (wide-sense)
stationary, complex-valued processes .Xn; n 2 Z/, so that E.jXnj2/ <1 and

E.XmXn/ D E.Xm�nX0/; (1)

for all m; n 2 Z. These may be used to model fluctuations from some fixed
background signal. Stationarity is a vital ingredient in the theory of time series (see
e.g. [6]) which has a wide range of applications, including economics and climate
science.

A stationary process is characterised by its covariance function C.n/ D E.XnX0/,
which is positive-definite, and so by the Herglotz theorem, there is a finite measure
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� on the torus T, known as the spectral measure of the process, for which

C.n/ D
Z

T

e�2� in��.d�/;

for all n 2 N.
If we are interested in describing the interaction of chance with symmetry, then it

is natural to consider stationary random fields on a group G, i.e. mappings X W G!
L2.˝;C/ for which1

E.X.hg1/X.hg2// D E.X.g1/X.g2//;

for all g1; g2; h 2 G. The study of these, and related objects on homogeneous
spaces, seems to have begun with work by A.M. Yaglom in the late 1950s (see e.g.
[15]); recently there have been monograph treatments and new applications to e.g.
earthquake modelling and the study of the cosmic background radiation left over
from the Big Bang [13, 14].

In this paper, we suggest that, although replacing Z as the index of a stationary
field by a group G is mathematically highly productive, it may not be the most
natural generalisation. As was discussed above, the spectral measure of a stationary
process is defined on the torus T; this is the simplest compact group, and its
dual group is Z. We propose that T should be replaced by a general (and so, not
necessarily abelian) compact group, so that the role of Z is now played by the unitary
dual bG of G. Note that bG is not itself a group if G fails to be abelian.

In Sect. 2 of this paper we generalise the definition (1) to random fields over bG.
Indeed we say that a field .Y� ; � 2 bG/ is stationary if

E.Y�1Y�2/ D E.Y�1˝��

2
Y�/;

for all �1; �2 2 bG, where �� is the irreducible representation that is conjugate to
� , and � is the trivial representation. Some justification as to why this is a sensible
generalisation of (1) will be provided. We also define the covariance function and
show that it is the Fourier transform (in the group-theoretic sense) of a finite central
measure on G, which we call the spectral measure of the field. We establish a
Cramer-type representation of stationary fields as stochastic integrals with respect
to orthogonally scattered random measures on G, and we prove a theorem of
Kolmogorov-type to the effect that every positive-definite function on bG is the
covariance of a stationary random field on bG.

1We only write down the left-invariant case here, but of course right-invariance is equally valid.
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We have already pointed out thatbG is not in general a group, but it is a hypergroup
[4] and we discuss this in Sect. 4. There is an existing literature on stationary random
fields on hypergroups [9, 11, 12] which this current work complements. We make
some observations:

1. The definition of stationarity for general hypergroups is quite non-intuitive. But
in our case, the parallel with the classical case is very direct.

2. The duality between the hypergroup bG and the group G is manifest in the
relationship between the stationary field and its spectral measure. There is a
rich structure here that merits further investigation, and which could lead to new
examples of the important class of central measures on compact groups.

3. The key process of “white noise” may not exist in general hypergroups. But it
always does in our case. This means that, at least for some classes of compact
groups, we may develop a theory of time series on their unitary duals, and
investigate stationarity. Some examples for the case of the dual of SU.2/ are
considered in Sect. 3 of this paper.

Notation If A is a complex-valued matrix, then tr.A/ is its trace (i.e. the sum across
the leading diagonal). If U is a topological space, then B.U/ is the Borel �-algebra
of U (i.e. the smallest �-algebra containing all open sets). Haar integrals of suitable
functions f on a compact group G are written

R
G f .�/d� .

2 Definition and Main Results

Let G be a compact (second countable, Hausdorff) topological group, bG be its
unitary dual, comprising equivalence classes of irreducible unitary representations
of G, and cGF be the set of equivalence classes of finite-dimensional unitary
representations of G (each with respect to unitary conjugation). Since G is compact,
bG is countable and bG � cGF .2 We denote the trivial representation of G by � 2 bG.
The character �� of � 2 cGF is defined by

��.g/ D tr.�.g//

for each g 2 G, and it is consequence of the celebrated Peter-Weyl theorem that
f��; � 2 bGg is a complete orthonormal basis in the complex Hilbert space L2c.G/
of all central (i.e. conjugate invariant) square-integrable (with respect to normalised
Haar measure) functions on G. It follows that we may decompose each � 2 cGF as

� D
M

� 02bG
M.�; � 0/� 0; (2)

2We refer to a standard text, such as [5], for all facts about compact groups quoted herein. See also
the account for probabilists in [2].
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where

M.�; � 0/ D
Z

G
��.g

�1/�� 0.g/dg; (3)

is the multiplicity of � 0 is � . Of course M.�; � 0/ 2 ZC vanishes for all but finitely
many � 0 2 bG. The conjugate representation associated to � 2 cGF is denoted ��
and the tensor product of the representations �1 and �2 is �1 ˝ �2. Note that for all
g 2 G,

���.g/ D ��.g/ ; ��1˝�2.g/ D ��1.g/��2.g/: (4)

Proposition 1 For all �1; �2 2 bG,

M.�; �1 ˝ ��
2 / D ı�1;�2 :

Proof Using (3), (4), and orthonormality of characters, we have

M.�; �1 ˝ ��
2 / D

Z

G
��1.g/��2.g/dg

Dı�1;�2 :

Let .˝;F ;P/ be a probability space. A mapping Y W cGF ! L2.˝;F ;PIC/ is
said to be a decomposable random field on cGF if it satisfies

Y� D
X

� 02bG
M.�; � 0/Y� 0 ;

with respect to the decomposition (2). Clearly such a field is uniquely determined
by its values on bG. We say that such a field is (wide-sense) stationary if

E.Y�1Y�2/ D E.Y�1˝��

2
Y�/; (5)

for all �1; �2 2 bG. The motivation for the definition (5) comes from the well-
known case G D T D Œ0; 2�/;bG D Z. In that case the irreducible representation
corresponding to �1 D n is uniquely determined by the character � ! ein� , and the
character associated to �1 ˝ ��

2 , where �2 D m, is precisely � ! ei.n�m/� .

Remark Clearly if the random field is stationary, then E.jY� j/ < 1, for all � 2
bG. It may seem strange to some readers that we do not impose some additional
stationarity condition on the means, i.e. that the quantity E.Y�/ does not depend on
� 2 bG, or even that the field is centred, in that E.Y�/ D 0, for all � 2 bG. Here we
follow Doob [7, p. 95], who, in the classical case G D T;bG D Z wrote, “Usually
the added condition that E.Xs/ does not depend on s is imposed. This condition
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is unnatural mathematically, and has nothing to do with the essential properties of
interest in these processes, and we shall therefore not impose it.”

If Y is a stationary random field on bG, we define its covariance function CY W
cGF ! C by

CY.�/ D E.Y�Y�/;

for all � 2 cGF , and we note that it is a decomposable mapping on cGF in that

CY .�/ D
X

� 02bG
M.�; � 0/CY.�

0/;

with respect to (2).
We recall from [8] that ˚ W bG ! C is positive definite if for all N 2

N; �1; : : : ; �N 2 bG and c1; : : : ; cN 2 C,

NX

m;nD1
cmcn

X

�2bG
M.�; �m ˝ ��

n /˚.�/ � 0:

If ˚ extends to a mapping cGF ! C that is decomposable, then we have the
equivalent condition

NX

m;nD1
cmcn˚.�m ˝ ��

n / � 0: (6)

Proposition 2 If Y is a stationary random field on bG, then its covariance function
CY is positive definite.

Proof Using (6) and (5), we find that

NX

m;nD1
cmcnCY.�m ˝ ��

n / D
NX

m;nD1
cmcnE.Y�m˝��

n
Y�/

D
NX

m;nD1
cmcnE.Y�mY�n/

DE
0

@

ˇ
ˇ
ˇ
ˇ
ˇ

NX

nD1
cnY�n

ˇ
ˇ
ˇ
ˇ
ˇ

2
1

A � 0:

It follows from Proposition 2 and the Bochner theorem (Theorem 5.5 in [8]) that
there exists a unique finite Radon central measure�Y defined on the Borel �-algebra
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of G for which

CY.�/ D
Z

G
��.g/�Y.dg/ (7)

for all � 2 bG. We call �Y the spectral measure of the random field Y.
As an example, consider the white noise Z W cGF ! L2.˝;F ;P/which is defined

to be a decomposable random field which is uncorrelated in that

E.Z�Z� 0/ D ı�;� 0 ;

for all �; � 0 2 bG. It follows from Proposition 1 that Z is stationary and the spectral
measure is easily seen to be (normalised) Haar measure on G.

The next result gives a Cramer representation for the field.

Theorem 1 If .Y� ; � 2 bG/ is a stationary random field, then there exists an
orthogonally scattered random measure �Y on G so that for all � 2 bG,

Y� D
Z

G
��.g/�Y.dg/ a.s.: (8)

Furthermore, E.j�Y.A/j2/ D �Y.A/ for all A 2 B.G/, and �Y is a.s. central in that
for each g 2 G,

P.�Y.gAg�1/ D �Y.A// D 1:

Proof This is along standard lines. We sketch the details following the argument
given in [10, pp. 46–47] for the classical case.

Let M be the closed subspace of L2.˝;F ;PIC/ generated by fY� ; � 2 bGg.
Consider the linear mapping V from the complex linear span of fY� ; � 2 bGg into
L2c.G; �Y / WD L2c.G;B.G/; �Y W C/ (where the subscript c, indicates the restriction
to central functions) given by

V

0

@
nX

jD1
˛jY�j

1

A D
nX

jD1
˛j��j :

It is straightforward to check that V is isometric. Since the set of all finite linear
combinations of characters is dense in L2c.G; �Y /, it follows that V extends to a
unitary isomorphism between M and L2c.G; �Y/. For each A 2 B.G/, define

�Y.A/ D V�1A:
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Then it is straightforward to check that �Y has the desired properties. Moreover, for
all f 2 L2.G; �Y/,

V

�Z

G
f .g/�Y.dg/

�

D f :

Then for all � 2 bG,

V

�Z

G
��.g/�Y.dg/

�

D ��.g/ D VY� ;

and we thus obtain (8).

We also have a reconstruction theorem of Kolmogorov type:

Theorem 2 Given a positive definite function ˚ W bG ! C with ˚.�/ D 1, there
exists a stationary random field .Y� ; � 2 cGF/ having covariance ˚ .

Proof By the Bochner theorem of [8], there exists a unique finite Radon central
measure � on .G;B.G// so that for all � 2 bG,

˚.�/ D
Z

G
��.g/�.dg/;

and the normalisation˚.�/ D 1 ensures that� is a probability measure. Now define
.Y� ; � 2 bG/ on the probability space .G;B.G/; �/ by the prescription Y� D �� ,
for each � 2 cGF . Then the field is automatically decomposable and is stationary
since

E.Y�1Y�2/ D
Z

G
��1.g/��2.g/�.dg/

D
Z

G
��1˝��

2
.g/�.dg/

DE.Y�1˝��

2
Y�/;

and Y� D �� D 1.

Let � be a central probability measure on G. Then its central Fourier transform
b� W bG ! C is positive definite, and so is the covariance of a stationary random
field by Theorem 2. So Theorem 2 tells us that there are a rich variety of stationary
random fields on bG. One important example is white noise, as discussed in Sect. 2.
For further examples, suppose that G is a compact, connected Lie group and that �
is Gaussian, so that �.d�/ D k1.�/d� , where .kt; t � 0/ is the heat kernel on G.
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Then for each � 2 bG;

b�.�/ WD
Z

G
��.g/�.dg/ D d�e��� ;

where d� is the dimension of the complex linear space in which � acts, and f��; � 2
bGg is the Casimir spectrum. A large class of non-Gaussian infinitely divisible central
measures on G may be obtained by subordination of the heat kernel (see e.g. [1] or
Chap. 4 of [2]).

3 Examples: Time Series

It is interesting to seek examples in the case where G is a rank-one, connected,
compact Lie group. Then the lattice of weights is a subset of the real line, and so
inherits an ordering that can be used to develop a theory of time series, by analogy
with the familiar one on the group of integers. As an example, let us consider the
group G D SU.2/. In this case bG is in one-to-one correspondence with the set ZC
(with 0 corresponding to �) and we may consider the AR.1/ process defined for
each n 2 ZC; 
 2 C by

Yn D 
Yn�1 C Zn; (9)

where Y�1 WD 0.
Here we may take the index n 2 ZC as labelling the unique equivalence class of

irreducible representations having representation space with dimension nC 1.
We show that this process cannot be stationary.
Define the backwards shift operator B on the linear space generated by fYn; n 2

ZCg by

BYn D Yn�1:

Then

Yn D .I � 
B/�1Zn

D
nX

kD0

kZn�k: (10)

Note that in contrast to the familiar case of G D T, no condition is needed on

 to obtain the moving average representation (10) as this series is finite. It follows
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easily from (10) that .Yn; n 2 ZC/ has covariance

E.YnChYn/ D
nChX

kD0

nX

lD0

k
le.ZnCh�kZn�l/

D 
�h

nX

kD0
j
j2.kCh/

D

8
ˆ̂
<

ˆ̂
:


h

�
1 � j
j2nC2

1 � j
j2
�

if j
j ¤ 1

.nC 1/
�h if j
j D 1:

On the other hand, consider the MA.q/ process on 1SU.2/ given by

Yn D
qX

kD0
ˇkZn�k;

where ˇk 2 C for all k 2 ZC. Then by standard arguments, .Yn; n 2 ZC/ is easily
seen to be a stationary random field with covariance function

E.YnChYn/ D
8
<

:

Pq�h
kD0 ˇkChˇk if 0 � h � q

0 if h > q:

4 The Hypergroup Connection

Let K be a non-empty locally compact Hausdorff space which is equipped with
an involution x ! x0. Let Mb.K/ be the complex linear space of all bounded,
complex Radon measures on K. We say that .K;�/ is a hypergroup if there is a
binary operation � defined on Mb.K/ with respect to which Mb.K/ is a algebra,
and if certain axioms hold. We state only one of these here; that there must exist a
“neutral element” e 2 K so that for all x 2 K,

ıx � ıe D ıe � ıx D ıx;

where ıx is the Dirac mass at x. The others may be found on p. 9 of [4]; they will
play no direct role in the sequel. Examples are locally compact groups (where � is
the usual convolution of measures), double coset spaces and the unitary dual of a
compact group (see below). The hypergroup is said to be discrete if K is equipped
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with the discrete topology, and commutative if �1 � �2 D �2 � �1 for all �1; �2 2
Mb.K/.

Now let bG be the unitary dual of a compact group G. It becomes a discrete,
commutative hypergroup, with neutral element � and involution � ! ��, under the
convolution:

ı�1 � ı�2 D
X

�2bG
M.�1 ˝ �2; �/ı� ; (11)

for each �1; �2 2 bG; relative to the decomposition

�1 ˝ �2 D
M

�2bG
M.�1 ˝ �2; �/�:

The convolution (11) is extended to general measures in Mb.bG/ by taking weak
limits of linear combinations. Note that this is not the same convolution as that
given in [4, p. 13], where the following is found:

ı�1 �0 ı�2 D
X

�2bG

d�
d�1d�2

M.�1 ˝ �2; �/ı� ; (12)

with d� being the dimension of the representation space corresponding to � 2 bG.
Following Sect. 8.2 in [4], the survey article [9] and the original source [11] we

define a stationary random field over a commutative hypergroup K to be a mapping
X W K ! L2.˝;F ;PIC/ which has covariance

C.a; b/ D E.XaXb/;

that satisfies the stationarity condition:

C.a; b/ D
Z

K
C.x; e/.ıa � ıb0/.dx/; (13)

for each a; b 2 K.
Now suppose that .Y� ; � 2 bG/ is a stationary random field on bG in the sense

of (5). We will show that it is also stationary in the hypergroup sense, by using the
convolution (11) to define the hypergroup structure. Note that if we used (12) then
this assertion would be false. It is enough to show that (13) is satisfied. Indeed for
all �1; �2 2 bG,

C.�1; �2/ D E.Y�1Y�2/

D E.Y�1˝��

2
Y�/
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D C.�1 ˝ ��
2 ; �/

D
X

�2bG
M.�1 ˝ ��

2 ; �/C.�; �/

D
Z

bG
C.�; �/.ı�1 � ı��

2
/.d�/;

as required.
Let MY.bG/ be the closure in L2.˝;F ;PIC/ of fY� ; � 2 bGg. Following [9, 11,

12], for fixed � 0 2 bG, we define the translation operator �� 0 associated to Y to
be the linear contraction in MY.bG/ obtained by continuous linear extension of the
prescription

�� 0.Y�/ D Y�˝� 0 ; (14)

for each � 2 bG. Note that because of the rather concrete context in which we work,
the definition (14) is much more transparent than that in the general hypergroup
case. A useful list of properties of such operators is collected in Theorem 2 of
Leitner [12].

Now let A be a family of subsets ofbG. For each A 2 A , let MY.A/ be the closure
of the linear span of fY� ; � 2 Ag, and MY WD T

A2A MY.A/. We say that the
stationary field Y is A -singular if MY DMY.bG/, A -regular if MY D f0g, and A -
adapted if ��.MY/ �MY for all � 2 bG. The following abstract version of the Wold
decomposition is proved for general commutative hypergroups in Theorem 2.2.5.2
of [9]. We will be content to state the result.

Theorem 3 (The Wold Decomposition) If Y is an A -adapted stationary random
field, then there is a unique orthogonal decomposition

Y� D Y.1/� C Y.2/� ; (15)

for all � 2 bG, where Y.1/ is A -regular, and Y.2/ is A -singular.

If G is a rank one, connected, compact Lie group then it is natural to choose A
in accordance with the lattice structure, e.g. for G D SU.2/;A D fAn; n 2 ZCg,
where An WD f0; 1; : : : ; ng.

We conjecture that there is a generalisation to this context of the classical result
that can be found e.g. in Chap. 4 of [10], whereby the absolutely continuous measure
�1 and the singular measure �2 which arise in the Lebesgue decomposition of the
spectral measure of Y are themselves the spectral measures of the processes Y.1/ and
Y.2/ (respectively) of (15).
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On the Spatial Markov Property of Soups
of Unoriented and Oriented Loops

Wendelin Werner

Abstract We describe simple properties of some soups of unoriented Markov loops
and of some soups of oriented Markov loops that can be interpreted as a spatial
Markov property of these loop-soups. This property of the latter soup is related to
well-known features of the uniform spanning trees (such as Wilson’s algorithm)
while the Markov property of the former soup is related to the Gaussian Free
Field and to identities used in the foundational papers of Symanzik, Nelson, and
of Brydges, Fröhlich and Spencer or Dynkin, or more recently by Le Jan.

1 Introduction

Symanzik and then Nelson have pioneered the study of Euclidean field theory more
than 40 years ago [13, 17]. In their approach, measures on random paths and loops
play an important role and led to further important developments such as in the work
of Brydges, Fröhlich and Spencer [1] (see also Dynkin [4, 5]). In all these papers, a
gas of closed loops is used to represent partition functions and correlation structures
of random fields.

The present note will be in the same spirit, but the focus will be on this random
gas of loops itself as the main object of interest, rather than viewing it as a
combinatorial diagrammatic tool to evaluate quantities related to fields. We will in
particular focus on the role of orientation of loops and describe a particular simple
property of such random configurations of unoriented loops as well as for random
configurations of oriented loops. These properties are very directly related to the
combinatorial features used in the aforementioned papers as well as to some features
in the more recent study by Le Jan (in particular in Sects. 7 and 9 of [9]), who focuses
more on properties of the occupation times of these soups.

These gases of loops, or loop-soups (as they have been called in [8]) are a random
Poissonian (i.e. non-interacting) collection of random unrooted loops in a domain,
that can be associated naturally to a Markov process or a discrete-time Markov chain
(see [9] and the references therein). When one discovers the configurations of the
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loop-soup within a given sub-domain U of the entire domain in which the soup is
defined, one observes on the one hand loops that are entirely contained in U (which
form a loop-soup in U), and on the other hand, excursions in U that are parts of loops
that do not entirely stay in U. Note that different such excursions can belong to the
same loop or not, depending on the configuration outside of U. The Markovian
property that we shall discuss basically describes how to randomly complete the
missing pieces into the loops i.e. it describes the conditional distribution of the loop-
soup outside of U when conditioning on these excursions of the loop-soup in U. As
we shall see, this takes a nice “Markovian form” in two special cases:

• When one considers the loops to be oriented, and the intensity of the loop-soup
to be the one that relates it to the partition function of uniform spanning trees i.e.
to the number of spanning trees (and to Wilson’s algorithm [20] to generate them
uniformly at random, see e.g. [6, 7, 19, 20]).

• In the case where the chain is reversible, if one considers the loops to be
unoriented, and chooses the intensity to be the one that relates the loop-soup to
the Gaussian Free Field (for instance via their partition functions—and in fact the
occupation time of a continuous-time version of the loop-soup then corresponds
exactly to the square of the GFF, see [9]).

In those two cases, the only relevant information in order to complete the excursions
in U into loops is the family of all endpoints of the excursions on @U, and not how
these endpoints are connected by the excursions within U (nor which excursion end-
point is connected to which other by an excursion). In other words, the trace of the
discrete loop-soup inside U and outside of U are conditionally independent given
their trace on @U (more precisely, given their trace on the edges between U and the
complement of U).

Let us illustrate another instance of the spatial Markov property in an impres-
sionistic and heuristic way via the following figures (Figs. 1 and 2): We consider a

Fig. 1 The unoriented loop(s) in the soup that touch both circles, and the endpoints of their (four
in this case) crossings between the two circles
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Fig. 2 Conditionally on the set of endpoints of crossings on each of the two circles, these three
pictures, corresponding to different parts (excursions and bridges) of the loops that touch both
circles, are independent conditionally on the endpoints on the circles

loop-soup of unoriented loops in the inside of the rectangle, of well-chosen intensity
(related to the partition function of the GFF). In this loop-soup, only finitely many
loops do touch the two circles, and in each such loop, there are an even number of
“crossings” from one circle to the other. The statement in the caption of Fig. 2 is the
type of result that we will derive.

To conclude this introduction, let us briefly mention that of the motivations for the
present work is to explore the relation between the natural “Markovian” structures
emerging from the loop-soups with the theory of local sets for the discrete and
continuous GFF, as defined by Schramm and Sheffield in [15].

2 Background and Definitions

In this section, we recall standard facts about Markov loops and loop-soups, make
some elementary comments about the orientation/non-orientation of loops, and we
define the natural measures on Markov bridges that we will need.

2.1 The Measure on Unrooted Oriented Loops

Let us consider a discrete oriented graph � , where each vertex x has a finite number
d.x/ of outgoing edges, so that it is possible to define simple random walk on
� (d.x/ is however not necessarily the same for all x). Note that there could be
“several” parallel edges from a vertex x to a vertex y. Also, as opposed to the
unoriented case, the could be an edge from x to y but no edge from y to x.
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We say that l D .l0; e1; l1; l2; : : : ; ln�1; en�1; ln/ for n � 1 is a rooted loop with
n D jlj steps in � if l0; l1; ln�1 are sites of the graph, if l0 D ln and if for all
i 2 f1; : : : ; ng, ei denotes an edge from li�1 to li in the graph. Let us notice that in
the case of parallel edges in the graph, the information about which oriented edges
were used are part of the information contained in the loop.

We can note that the probability p.l/ that a random walk starting from l0 follows
exactly this loop during its first n steps is exactly 1=

Qn�1
iD0 d.li/. We define the

measure � on rooted loops by �.l/ D p.l/=n. Note that this is not a probability
measure (a loop l might for instance contain another loop as its first steps if it visits
l0 several times before time n; furthermore, we sum over all possible starting points
l0 in the graph).

The quantity �.l/ remains unchanged if one changes the root of the loop (if
one considers the loop .li; eiC1; liC1; : : : ; ln; e1; l1; : : : ; li/ instead of l), which leads
naturally to the definition of an unrooted loop L as an equivalence class of rooted
loops, where two loops are equivalent as soon as they are obtained from one another
by rerooting. The measure � on unrooted oriented loops is then the image of the
measure � under the mapping that maps each rooted oriented loop to its equivalence
class of unrooted loops. This is the loop-measure that has been used and studied
extensively in recent years, in connection with loop-erased random walks, Gaussian
Free Fields, Dynkin’s isomorphism theorems and in the continuous two-dimensional
(Brownian) setting, with conformal loop ensembles and SLE curves, see e.g. [9, 19]
and the references therein.

In many cases, the number of different rooted loops in the same equivalence class
of unrooted loops is the length n.l/ D jlj of the loop (one possible root per step on
the loop). However, when a loop l consist exactly of the concatenation of J � 1

copies of exactly the same loop, ie, n D Jn1 and l is exactly the concatenation of
J copies of .l0; : : : ; ln1 / (and J D J.l/ is the maximal such number—note that this
number is also invariant under rerooting of l so that we can view it as a function of
L), then the number of rooted loops that give rise to the same unrooted loop as l is
n=J.L/. Hence, the general formula for � is �.L/ D p.l/=J.l/, when l is any loop in
the equivalence class L.

In the sequel, we will refer to loops l D .l0; e1; : : : ; ln/ (or their equivalence
class) such that J.l/ D 1 as single loops, and we say that the loop lk defined as the
concatenation of k copies of l i.e. as .l0; e1; : : : ; ln�1; l0; e1; : : : ; ln�1; : : : ; ln�1; en; l0/
with J.lk/ D k is its k-fold multiple.

2.2 The Measure on Unrooted Unoriented Loops

In the previous subsection, the graph was oriented, and all our loops (rooted
and unrooted) were oriented. Let us now consider an unoriented graph, where
each vertex x has a finite number d.x/ of outgoing edges (here a single edge
from x to x would be counted twice, and we also allow parallel edges between
two sites x and y). Then the previous quantity p.l/ remains unchanged when
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one changes the orientation of the loop; indeed, if one defines the time-reversal
Ol WD .ln; en; ln�1; : : : ; l1; e1; l0/, then p.l/ D 1=Qn

iD1 d.li/ D p.Ol/.
We now define an unrooted unoriented loop as the equivalence class of oriented

rooted loops, where two such loops are said to be equivalent as soon as they
are obtained from one another by rerooting and possibly by time-reversal. Or
alternatively, we say that an unrooted unoriented loop is the equivalence class of
unrooted oriented loops, modulo time-reversal.

We then define the measure � on unrooted unoriented loops to be the image of
�=2 under the mapping that maps each rooted oriented loop onto to its equivalence
class of unrooted and unoriented loops. The measure � is of course just the
unoriented projection of �=2.

When the time reversal Ol of a rooted oriented loop l is not in the same unrooted
oriented class of loops as l, then there will be twice more rooted oriented loops in
the same class QL of unoriented unrooted loops of l than in its class L of oriented
unrooted loops, so that �. QL/ D �.L/. It however can happen that l and Ol define the
same oriented unrooted loop L (for instance when the loop l is the concatenation of
a loop with its time-reversal). In that case, �. QL/ D �.L/=2. We define QJ. QL/ D J.L/
or 2J.L/ depending on whether L 6D OL or not, so that �. QL/ D p.l/=QJ. QL/ for all QL.

All the previous definitions have also straightforward counterparts and gen-
eralizations for general Markov processes (not necessarily random walks)—the
processes would need to be reversible for the unoriented loops—, and in continuous
time and/or in continuous space. Note that as soon as one deals with continuous
time, the multiplicity issues (raised by the fact that J is not constant) do not exist.
One fundamental example is of course the Brownian loop measure that gives rise to
the loop-soup, as introduced in [8]. Other examples include the Brownian loops on
cables systems associated to discrete graphs, as studied in [10].

Since our purpose here is to give an elementary presentation of the resampling
property of loop-soups, we have opted in the present paper to state and explain
things in the most transparent settings (random walk loops on regular graphs, where
all points in � have the same number g of outgoing edges—which we will from now
on assume—, and Brownian loops). The generalization of the proofs to continuous-
time and discrete space Markov processes do not require any new idea.

2.3 Loop-Soups

For a given graph, one can define simple natural random objects out of the measures
on loops. For each ˛ > 0, one can define a Poisson point process of loops, with
intensity given by ˛ times the measure � on loops. This is the loop-soup, as
introduced in the Brownian setting in [8] and studied more recently in the discrete
setting in [9]. It is also the gas of loops that was already used in [1, 17].

Of course, when one samples a soup of (unrooted) oriented loops according to
the loop measure ˛�, and one forgets about the orientation of the loops, one gets
a soup of unrooted unoriented loops with intensity 2˛�, and conversely, one can
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recover the former by choosing at random the orientation of each loop. In order
to avoid confusions, we will use the letters ˛ to denote the intensity of soups of
oriented loops (i.e. with intensity measure ˛�) and c to denote the intensity of soups
of unoriented loops (i.e. with intensity measure c�). The natural relation between c
and ˛ is then c D 2˛.

We will not recall all the properties of these loop-soups, but we would like to
stress the following points:

• The soup of oriented loops with intensity ˛ D 1 is very closely related to uniform
spanning trees. In particular, the loops in such a loop-soups correspond exactly
to the family of loops that have been erased when performing Wilson’s algorithm
to sample a uniform spanning tree in � . And in this context, it is somewhat more
natural to consider oriented loops.

• The soup of unoriented loops with intensity c D 1 is very closely related to
the Gaussian Free Field in � and its square. In this context, because one looks
only at the cumulated occupation times of the loops, it is in fact somewhat more
natural to consider unoriented loops (as the orientation is not needed to define
the occupation time measure).

With this notation, the UST is related to c D 2 and the GFF to c D 1, and more
generally, in two dimensions, in the conformal field theory language, the value of c
corresponds to the absolute value of the central charge of the corresponding models.

Suppose now that L1; : : : ;Lk are k different oriented unrooted loops, and let
U1; : : : ;Uk denote the respective number of occurrences of these loops in an
unrooted loop-soup with intensity ˛�. These are k independent Poisson random
variables with respective means ˛�.L1/; : : : ; ˛�.Lk/, so that

P.U1 D u1; : : : ;Uk D uk/ D
kY

jD1
..˛�.Lj//

uj e�˛�.Lj/=ujŠ/:

In the special case where ˛ D 1, the ˛uj terms disappear, and we get

P.U1 D u1; : : : ;Uk D uk/

P.U1 D : : : D Uk D 0/ D
kY

jD1

. p.Lj/=J.Lj//
uj

ujŠ
:

Similarly, if we are considering instead a loop-soup of unoriented loops with
intensity � (i.e. for c D 1), the very same formula holds, i.e. if QL1; : : : ; QLk are
k different unoriented loops, and if QU1; : : : ; QUk denote the respective number of
occurrences of these loops in a soup of unrooted loops with intensity �, then

P. QU1 D u1; : : : ; QUk D uk/

P. QU1 D : : : D QUk D 0/
D

kY

jD1

. p.Lj/=QJ. QLj//
uj

ujŠ
:
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2.4 Random Bridges

Recall that in order to slightly simplify notations and some of our considerations,
we are from now going to assume that (both in the oriented and in the unoriented
cases), the graph � will be such that each site has the same number g of outgoing
edges. Note that this is not really a restriction, because it is for instance always
possible starting from an unoriented graph � where each site x has d.x/ outgoing
edges, with supx d.x/ � g, to add .g � d.x// stationary edges from x to x to the
graph, without changing the behavior of the random walks (and this leads to the
natural way to extend the results to the case of graphs with non-constant degree).

Let us first suppose that � is an oriented graph. Consider now a subgraph D � �
and two points x and y in D. We say that a bridge b from x to y in D is a finite
nearest-neighbour path (keeping track of the oriented edges used) in D starting at x
and finishing at y. We call n.b/ the length (number of jumps) of b. A bridge from x
to x is allowed to have a zero length.

Suppose now that the Green’s function GD.x; y/ is positive and finite. Recall that
this is the mean number of visits at y before exiting D, by a random walk starting at
x. In other words, it is the sum over all bridges from x to y in D of g�n.b/. We can
therefore define a probability measure on bridges from x to y in D, that assigns a
probability g�n.b/=GD.x; y/ to each bridge b.

Suppose now that we are given N points x1; : : : ; xN and N points y1; : : : ; yN in
D. We say that a the family of paths b1; : : : ; bN is an ordered bridge in D from
X D .x1; : : : ; xN/ onto Y D .y1; : : : ; yN/ if each bj is a bridge from xj to yj in D. We
also define GD.X;Y/ D QN

jD1 GD.xj; yj/ and when this quantity is not equal to zero
nor infinite, we define the probability measure on ordered bridges from X to Y in D
to be obtained by taking N independent bridges from xj to yj respectively.

An unordered bridge from X to Y is defined to be the knowledge of a permutation
s from f1; : : :Ng and of an ordered bridge from X to Ys D .ys.1/; : : : ; ys.N//. We
now define a probability measure BD

X;Y on unordered bridges from X to Y in D as
follows:

1. First sample a permutation � so that the probability of � D s is proportional to
GD.X;Ys/.

2. Then, conditionally on � , sample the ordered bridge from X to Y� according to
the probability measure on ordered bridges in D described above.

For this to make sense, we need that for at least one s, GD.X;Ys/ > 0. This
procedure basically samples an unordered bridge from X to Y in such a way that
the probability of a given unordered bridge is proportional to g�K , where K denote
the sum of the length of the N bridges that form the generalized bridge. Mind that in
the present setting, when y2 D y3 say, we do count the same collection of N bridges
(corresponding to interchanging y2 and y3) twice in our partition function, because
they correspond to different permutations.

Let us now suppose that the graph � is not oriented. In the previous definition,
each bridge has an implicit orientation (from x to y). On the other hand, the image
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under time-reversal (i.e. consider Obj D bn�j) of the bridge probability from x to y in
D is exactly the bridge probability from y to x in D (note that we use here the fact
that x and y have the same number of outgoing edges g). One can therefore define
the probability measure on unoriented bridges in D joining x and y to be the law
obtained by considering BD

x;y and then forgetting about the time-orientation.
Suppose now that Z D .z1; : : : ; z2N/ are 2N points in D. An unoriented Z-bridge

is the knowledge of a pairing t of f1; : : : ; 2Ng (this is a permutation that contains
only cycles of length exactly 2—and we say that i and t.i/ are paired—we will
denote the N pairs of t by .t11; t

2
1/; : : : ; .t

1
N ; t

2
N/ using some lexicographic rule), and

of N unoriented bridges joining the N pairs .zt1k
; zt2k

/ for k � N.

For each Z, we then define the measure BD
Z on unoriented unordered Z-bridges as

follows:

1. We first sample a pairing � in such a way that the probability of a given pairing t
is proportional to

QN
kD1 GD.zt1k

; zt2k
/.

2. When � D t, we then sample an N independent (unoriented) bridges in D joining
the two points of each of the N pairs .zt1k

; zt2k
/.

Again, this only makes sense if for at least one pairing t,
Q

k GD.zt1k
; zt2k

/ is positive.
Then, the definition just means that we sample a Z-bridge in such a way that the
probability of a given Z-bridge is just proportional to g�K where K denote the sum
of the length of the N bridges that form this Z-bridge.

These definitions of bridges can be trivially extended to the Brownian settings
(both in d-dimensional space as well as on cable systems), provided that no two zj’s
coincide (in the unoriented bridges) and that no xi is equal to an yj (for the oriented
bridges) so that the Green’s functions involved are all finite. The only difference is
that the distribution of an individual bridge from x to y is done in two steps:

1. First, sample the time-length T of the Brownian bridge according to the
probability measure pD;t.x; y/dt=GD.x; y/, where pD;t.x; y/ is the density at y of
the law of a Brownian motion at time t, starting from x and killed upon exiting
D.

2. Then, conditionally on T, sample a usual Brownian bridge from x to y and time-
length T, conditioned to stay in D.

3 Partial Resampling of Soups, and Spatial Markov
Properties

We now describe various instances of the partial resampling properties of loop-
soups, and discuss some consequences.



Spatial Markov Property of Loop-Soups 489

3.1 Partial Resampling of Soups of Oriented Loops at ˛ D 1

Let us suppose that � is an oriented graph of degree g as before, and that D � �
is a subgraph of � where the Green’s function is finite. We are going to describe
the resampling property of the soup of oriented loops with intensity ˛ D 1. Suppose
that F1 and F2 are two disjoint finite set of vertices in our graph. When one considers
a loop-soup in D, then the number of loops in the loop-soup that do intersect both F1
and F2 is a Poisson random variable M DM .F1;F2/ with finite mean equal to the
�-mass of the set of loops that intersect both F1 and F2. We denote the family of M
loops that intersect both F1 and F2 by L (the information in L includes how many
occurrences of any given oriented unrooted loop that intersects F1 and F2 there
are). We will write L D .L1; : : : ;LM /, where the chosen order of the loops in
the family follows some lexicographic (deterministic) rule, so that the information
provided by L and .L1; : : : ;LM / are identical.

When L is an unrooted loop that intersects F1 and F2, we can consider the finitely
many portions of L that are of the type .a0; e1; a1; a1; : : : ; ak/ where the points a0; ak

are in F2, where fa1; : : : ; ak�1g \ F2 D ; and at least one of the ai is in F1. In
other words, these are the excursions of L away from F2 that do reach F1. We allow
a0 D ak, or the excursion to be the entire loop (which happens if L visits F2 only
once) and it can also happen that the same excursion occurs several times in the
same loop.

When we sample L , we call 	 the collection of all excursions of its loops. We
can again decide to order them in some lexicographic predetermined deterministic
way, so that we can write 	 D .	1; : : : ; 	N / (again, it is important that if a given
piece appears several times in the loop-soup, then it appears several times in this list
as well). Note that N � M because each loop that intersects F1 and F2 contains
at least one such excursion. The pieces 	1; : : : ; 	N might be part of N different
loops (in which case N DM ), but they could also be all parts of the same loop (in
which case M D 1). Of course, the probability that N DM D 0 is also positive.

Observe that one intuitive way to discover all these excursions is in fact to explore
all the loops “starting” from their intersection points with F1, in both the positive
time-direction and the negative time-direction, until reaching F2 in both directions.

Each of the pieces 	j are naturally oriented as parts of oriented loops, and we can
define their respective starting points Yj and endpoints Xj (note that all these points
are on F2). The missing parts of the loops that the 	’s are part of will therefore
be bridges in the complement of F1, that join each of the Xj’s to a Y�.j/ for a
permutation � i.e. the missing part will be an unordered bridge ˇ from the vector
X D .X1; : : : ;XN / to the vector Y D .Y1; : : : ;YN / in D n F1. Now, the
resampling result in this case goes as follows:

Proposition 1 The conditional distribution of ˇ given 	 is exactly the unordered
bridge measure BDnF1

X ;Y .

Note that this conditional distribution is fully described by the vectors X and
Y (i.e. it depends on 	 just as a function of X and Y ), which is one of the main
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(a)

(b)

Fig. 3 Illustration for Proposition 1: discovering (a) the oriented excursions away from the right
part that reach the small square, (b) sampling the three oriented bridges in the complement of the
small square

features of this result. In other words, conditionally on X and Y , 	 and ˇ are
independent. In particular, the number of actual loops that are being created by ˇ
when one concatenates it with 	 does not intervene in the conditional distribution,
which is a specific feature of this ˛ D 1 case.

Let us comment on the case where F2 D D n F1: If one then conditions on the
number of jumps of the loop-soup on each edges from a point in F1 to a point of
F2 (one then gets a collection .X 0

j ;Xj/j�N of jumps from X 0
j 2 F1 to Xj 2 F2),

and on the number of jumps of the loop-soup on each edge from a point of F2 to
a point of F1 (one then gets a collection .Yj;Y 0

j /j�N of jumps from Yj 2 F2 to
Y 0

j 2 F1), then the conditional distribution of the missing pieces in F2 and in F1 are
independent, and there are respectively the unordered bridge measure in F2 from X
to Y (this corresponds to ˇ), and the unordered bridge measure from Y 0 to X 0 in
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F1 (this corresponds to 	 without the first and last jumps of each excursion). This
can be interpreted as a spatial Markov property of the occupation field on oriented
edges (the random function that assigns to each oriented edge the total number of
jumps of the soup along this edge) of the ˛ D 1 soup of oriented loops. We will
discuss this again at the end of this section.

In the same spirit, we can in fact “symmetrize” also Proposition 1 also when F2 is
a subset of the complement of F1. Let us then define the collection of crossings 	1!2

to be the parts of the loops in the loop-soup of the type a0; e1; : : : ; an with a0 2 F1,
an 2 F2 and a1; : : : ; an�1 2 D n .F1 [ F2/. We also define 	2!1 similarly, and note
that there are as many crossings from F1 to F2 as there are crossings from F2 to F1.
Let X (resp. X 0) denote the vector of endpoints of 	1!2 (resp. 	2!1) and Y (resp.
Y 0) the vector of starting points of 	2!1 (resp. 	1!2). Then, we can note that X
and Y are exactly the same as the ones defined in Proposition 1, while X 0 and Y 0
correspond to those that one obtains when interchanging F1 and F2. Furthermore,
	1!2 and 	2!1 are fully determined by 	 (or alternatively by the symmetric family
	0 of excursions outside of F1 that do reach F2). It follows readily from Proposition 1
that:

Proposition 2 Conditionally on 	1!2 and on 	2!1, the missing parts of the loops
that they are part of (these are the loops of the ˛ D 1 soup of oriented loops that
intersect both F1 and F2) are described by two independent unordered bridges with
conditional distributions BDnF1

X ;Y and BDnF2
X 0;Y 0 .

Note that the other loops in the loop-soup (i.e. the loops that either do not
intersect at least one of the two sets F1 or F2) are just described by a loop-soup
in the complement of F1 and a loop-soup in the complement of F2, that are coupled
to share exactly the same loops that stay in D n .F1 [ F2/.

Let us now prove Proposition 1.

Proof Let us consider a family E of N excursions, such that P.	 D E/ > 0 and such
that the N excursions E1; : : : ;EN of E are all different. Then if 	 D E and QL D L,
all the loops in L are simple, and they do occur necessarily exactly once (and not
more). Hence, for such an L, the probability that L D L is proportional to g�n.L/

where n is the sum of the lengths of the loops in L (and the proportionality constant
does not depend on L).

On the other hand, if X and Y are the vector of end-points of E, the BDnF1
X;Y -

probability to sample a unordered bridge that gives rise exactly to L when
concatenating it to E is proportional to g�K (where K D n.L/ � n.E/ is the
total length of the generalized bridge), because there is just one permutation per
bridge that works. It therefore follows immediately that conditionally on 	 D E, the
distribution of the missing bridges is indeed BX ;Y in D n F1.

Instead of treating directly the case of multiple occurrences of the same
excursions in 	, we will use the following trick (a similar idea can be used to show
the fact that the loops erased during Wilson algorithm do correspond exactly to an
oriented loop-soup, see for instance [19]). We choose a very large integer W (that
is going to tend to infinity), and we decide to replace the graph � by the graph
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� W , which is obtained by keeping the same set of vertices as � , but where each
edge of � is replaced by W copies of itself. In this way, each site has now gW
outgoing edges instead of g. There is of course a straightforward relation between
random walks, loops and bridges on � W and on � . For instance, a loop-soup (resp.
bridge, resp. excursion) on � W is directly projected on a loop-soup (resp. bridge,
resp. excursion) on � .

Let us couple loop-soups with intensity ˛ D 1 in all of the � W ’s on the same
probability space, in such a way that the projections of the loop-soups in � W onto
� (in the sense described above) are the same for all W’s. We fix also F1, F2, and
define (with obvious notation), L W , 	W , L

W
etc. Note that the vectors of extremal

points X and Y are then the same for all 	W ’s.
We can also note that the probability that some edge is used more than once in

the loop-soup does tend to 0 as W ! 1. The probability that all excursions in 	W

are different therefore tends to 1 as W !1.
But conditionally on the fact that all excursions in 	W are different (applying our

previous result to � W ), we know that the conditional distribution of L
W n	W given

	W is the bridge probability measure from X to Y in DW n F1. Projecting this onto
� , we get that the conditional distribution of ˇ given 	W (on the event that in 	W ,
no two excursions are the same) is the unordered bridge measure BX ;Y in D n F1.

If U.W/ is the event that no two excursions of 	W appear twice, we therefore
get that, conditionally on 	 D E and U.W/, the conditional distribution of ˇ is
the unordered bridge measure BX ;Y in D n F1. We now just let W ! 1, which
concludes the proof of the proposition.

3.2 Partial Resampling of Soups of Unoriented Loops at c D 1

Let us now come back to the setting where the graph � is unoriented. When one
considers a soup of unoriented loops with intensity � (recall that this corresponds
to c D 1 or ˛ D 1=2 i.e. to a soup of oriented loops with intensity �=2 where we
forget the orientation of each loop). We denote the collection of unoriented loops
that intersect both F1 and F2 by L D . QL1; : : : ; QLM /, the corresponding collection
of (unoriented) excursions by 	 D . Q	1; : : : ; Q	N / and the endpoints of these N
excursions byZ D .Z1; : : : ;Z2N /. The missing parts of the (unoriented) loops are
unoriented paths that join each Zi to exactly one other Zj, so that ˇ is an unordered
Z -bridge in D n F1.

Note again that it is intuitively possible to explore the excursions Q	j “starting”
from their intersections with F1 in both directions, until hitting F2 (and in this way,
one did yet discover the missing parts ˇ).

Proposition 3 The conditional distribution of ˇ given 	 is exactly the unordered
unoriented bridge measure BZ in D n F1.
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Just as in the oriented case, we stress that an important feature in this statement is
that this conditional distribution is a measurable function of the vector Z (the other
information on the excursions are not needed). We will further comment on this in
the next subsection.

Proof We will follow the same idea as in the proof of the oriented case. As in the
unoriented case, when the N pieces QE1; : : : ; QEN of E are all different, the statement is
almost immediate (for each good ordered bridge, only one pairing works in order to
complete E into L, and the probability to complete these N pieces into L is therefore
proportional to g�K where K is the difference between the total number of jumps in
the loop-configuration and in E).

We then use the same trick with copying each edge a large number of times. The
very same argument the works, almost word for word.

(a)

(b)

Fig. 4 Illustration of Proposition 3: discovering (a) the unoriented excursions away from the right
part that reach the small square, (b) sampling the three unoriented bridges in the complement of
the small square
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3.3 Spatial Markov Properties

The particular case where F2 is the complement of F1 is also of interest for the soup
of unoriented loops. Let us for instance describe how things work for the occupation
times of loop-soups (which is the main focus of the papers of Le Jan [9]). If one
then conditions on the numbers of jumps of the loop-soup on all edges between
a point in F1 and a point of F2 (in either direction—the loops being unoriented
there is anyway no direction), then the conditional distribution of the parts ˇ in F2
of the loops that intersect both F1 and F2 is described by Proposition 3 and it is a
unordered unoriented bridge in F2 (and it is in fact fully described by the knowledge
of the number of jumps along the edges between F1 and F2, i.e. this conditional
distribution is a function of these number jumps of the edges between F1 and F2).
But, the situation is symmetric and we can interchange the roles of F1 and F2; we
therefore conclude that given ˇ and the numbers of jumps along the edges between
F1 and F2, the conditional distribution of 	0 defined to be the collection 	 where one
has removed the two extremal jumps of each 	j (these are the jumps between F1 and
F2), is that of an unordered unoriented bridge in F1 (and the law of this bridge is
also fully described by the number of jumps between F1 and F2).

In other words, when one conditions on these number of jumps along the edges
between F1 and F2, we can enumerate these jumps (using some deterministic
lexicographic rule) by .Z 0

j ;Zj/j�2N where Z 0
j 2 F1 and Zj 2 F2. Then,

the conditional distribution of 	0 and ˇ are conditionally independent unordered
bridges, respectively following the unordered bridge measures BDnF2

Z 0 and BDnF1
Z . In

particular, when adding on top of this the loop-soups in F1 and the loop-soups in F2,
it follows that conditionally on the occupation times (i.e. on the number of jumps
Ne across each edge) on the edges between F1 and F2, the occupation times on sites
and edges in F1 is independent of the occupation times on sites and edges in F2.
We can rephrase this property in the following sentence: The occupation time field
on edges of the soup of unoriented loops for c D 1 does satisfy the spatial Markov
property.

We can note that if U is a non-negative function of the occupation time field on
the edges of the form U..Ne// D Qe ue.Ne/, such that the expectation of U (for the
c D 1 loop-soup) is equal to one, then if we define the new probability measure Q
on occupation times on edges by dQ=dP..Ne// D U..Ne//, then the spatial Markov
property also holds for Q. This can be used to represent a modification of the Markov
chain (i.e. different walks with non-uniform jump probabilities).

If we consider an unoriented graph, but that we interpret as an oriented graph
(each unoriented edge defines an oriented edge in each direction), on which we
define an ˛ D 1 soup of oriented loops, then we can also reformulate the results
of Sect. 3.1 in a similar way. More precisely, for each edge, we can define the total
number of jumps N1.e/ by the soup in one direction of e, and N2.e/, the number
of jumps in the opposite direction. Then, if we define Ne WD ..N1.e/;N2.e//, this
two-component occupation time field on edges of the ˛ D 1 soup of oriented loops
satisfies the spatial Markov property in the same sense as above.
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Let us now come back to the study of the loops themselves, and not just of the
cumulated occupation time of the soup. As in the oriented case, we can also (when
F2 is a subset of F1) rephrase Proposition 3 in a more symmetric way, involving the
crossings between F1 and F2. We define 	1$2 the set of (unoriented) parts of loops
in the c D 1 loop-soup that join a point of F1 to a point of F2 and otherwise stay in
the complement of F1 [ F2, and we denote by Z the vector of endpoints of these
crossings in F2, and by Z 0 the set of endpoints in F1. Then:

Proposition 4 Conditionally on 	1$2, the missing parts of the unoriented loops
that these crossings are part of (these are the loops in the loop-soup that intersect
both F1 and F2) are described by two independent unordered unoriented bridges
with respective conditional distributions BDnF1

Z and BDnF2
Z 0 .

Figure 5 that illustrates the corresponding result in the Brownian case, can also be
used to illustrate this result.

It is also easy to generalize Proposition 4 and Proposition 2 to more than two
sets F1 and F2 (and have instead n disjoint sets F1; : : : ;Fn). For instance, in the
unoriented case, one then conditions on the set 	$ of all crossings from any Fi to
any other Fj that also stay in the complement of all the other Fk’s. These crossings
define n vectors Z 1; : : : ;Z n (where Z j is a list of the even number of endpoints
on Fj of the aforementioned crossings). Conditionally on 	$, the missing parts of
the loops (that are the loops in the loop-soup that touch at least two different Fj’s)
are described by n conditionally independent unordered unoriented bridges with

respective distributions B
D0[Fj

Zj
(where D D D n [iFi) for j � n.

Such decompositions of the loops in the soup that intersect disjoint compact sets
into crossings + conditionally independent unordered bridges, can be immediately
transcribed to the case of Brownian loops on the cable system associated to this
graph as studied in [10]; we leave this as a simple exercise to the reader. This is all
of course closely related to the Markov property of the Gaussian Free Field, as well
as to Dynkin’s isomorphism theorem [4] via the relation between the square of the
GFF and the loop-soup (see e.g., [9] and the references therein for background).

With such Markovian-type properties in hand, a natural next step is to define
random sets that play the role of stopping times for one-dimensional Markov
processes. In the setting of the discrete GFF, these are the local sets as defined
in [15], and that turned out to be very useful concepts. Just as for one-dimensional
stopping times, there are several possible ways to define them, depending on
what precise filtration on considers. In the present case (we do here describe the
definitions in the unoriented loop-soup for c D 1, but the oriented case would be
almost identical), one can for instance say that:

• A random set of points F is a stopping set for the occupation time field filtration,
if for any F1, the event fF D F1g is measurable with respect to the occupation
time field on all edges adjacent to F1.

• A random set of points F is a stopping set for the loop-soup filtration, if for any
F1, the event fF D F1g is measurable with respect to the trace of the loop-soup
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on all edges adjacent to F1 (i.e. it is measurable with respect to the set of loops
that are fully contained in F1 and the set of excursions 	 defined above, when F2
is the complement of F1.

• A random set of points F is a stopping set for the loop-soup, if for any F1 such
that P.F D F1/ > 0, conditionally on the event fF D F1g, the distribution of
the loop-soup outside of F1 consists of the union of an independent loop-soup
in the complement F2 of F1 and of a set of bridges in F2, with law described as
above via the end-points of the excursions 	 in F1.

Clearly, the first definition implies the second one, which implies the third one by
Proposition 3 (the third property for the first two definitions can be viewed as a
“strong Markov property” of these fields), but the converse is not true (the last
definition allows the use of “external randomness” in the definition of F (while
the second does not), and the second one allows features of individual loop (while
the first does not).

3.4 Brownian Loop-Soup Decompositions

The previous results have almost identical counterparts in the setting of oriented
Brownian loop-soups with intensity ˛ D 1 and unoriented Brownian loop-soups
with intensity c D 1.

Suppose that D is an open set in d-dimensional space, such that the (Dirichlet)
Green’s function in D is finite (away from the diagonal). Suppose that F1 and F2
are two disjoint compact sets in D, that are both non-polar for Brownian motion
(i.e. Brownian motion started away from these sets has a non-zero probability to hit
them). Then, we can again define:

1. The law of unordered oriented Brownian bridges in D n F1 from a finite family
X D .x1; : : : ; xn/ of points to another such family Y D .y1; : : : ; yn/, and the law
of unordered unoriented Z-Brownian bridges in D n F1 from a finite family of
points Z D .z1; : : : ; z2n/ to itself (in the latter case, points of Z are paired, like in
the random walk case). This works as long as all Green’s functions involved are
finite (which is the case as soon as all xi 6D yj for all i; j, and that zi 6D zj for all
i 6D j).

2. The set 	 of N oriented (resp. unoriented) excursions of the loops in an oriented
(resp. unoriented) loop-soup with intensity ˛ D 1 (resp. c D 1) away from
F2, that reach F1. In the ordered case, we call their endpoints vector X D
.X1; : : : ;XN / and their starting point vector Y , and in the unoriented case,
we call Z D .Z1; : : : ;Z2N / the extremity vector.
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Then, the Brownian counterparts of Proposition 1 and of Proposition 3 go as follows:

Proposition 5

– For the soup of oriented Brownian loops with ˛ D 1: Conditionally on 	, the
missing pieces of the loops (that the pieces 	 are part of) are distributed like an
unordered Brownian bridge from X to Y in D n F1.

– For the soup of unoriented Brownian loops with c D 1: Conditionally on 	,
the missing pieces of the loops are distributed like an unordered unoriented Z -
Brownian bridge in D n F1.

And as before, one can derive the more symmetric results: For instance, if F1
and F2 are two disjoint compact subsets of D, we can define the crossings from
F1 to F2 and vice-versa in the oriented case, and the crossings between F1 and
F2 in the unoriented case. When one conditions on these crossings, one can then
complete the picture with two conditionally independent unordered oriented bridges
(in the oriented case) or by two conditionally independent unordered unoriented
bridges (in the unoriented case). We illustrate this result in Figs. 5 and 6 (here we
consider the oriented case, D is the rectangle, F1 is the small circle and F2 the large
circle). Conditionally on the points (and their status—square or circle depending
on the orientation of the loops) on the two circles, the three pictures in Fig. 6 are
independent (this is the oriented version of Fig. 2).

In the context of two-dimensional continuous systems, clusters of loops in a
loop-soup are interesting to study, as pointed out in [18]; it has been proved in [16]
that boundaries of such clusters for c � 1 form Conformal Loop Ensembles with
parameter � D �.c/, where �.1/ D 4. The CLE4 (and the SLE4 curves) is also
known (see [3, 15]) to be related quite directly to the Gaussian Free Field. The role
of the c D 1-clusters of loops in the framework of cable-systems and in relation to

(a) (b)

Fig. 5 Sketch of the oriented Brownian case: (a) the two oriented loops that touch the two circles,
(b) keeping only the endpoints of these crossing on each circle, with trace of the orientation
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(c) (d) (e)

Fig. 6 (c) The outer bridges joining each circle point to a square point, (d) sampling the inner
bridges joining each circle point to a square point, (e) the six crossings, joining a circle point to a
square point. The final loops are oriented so that the crossings from small to large circle go from a
circle point to a square point

the Gaussian Free Field has been pointed out by Lupu [10] (the clusters provides
a direct link between the loop-soups and the Gaussian Free Field itself, rather than
just to its square). The present result sheds some light on the recently derived [14]
decomposition of critical 2d loop-soup clusters (for c D 1) in terms of Poisson point
processes of Brownian excursions (we refer to [14] for comments and questions).

4 Resampling for Continuous-Time Loop-Soups, the GFF
and Random Currents

We devote now a short separate section on the case of discrete continuous-time
loop-soups, that have been studied by Le Jan [9]. As we shall see, in that setting, it
is natural to consider the conditioned distribution of the loop-soup (unoriented for
c D 1 i.e. ˛ D 1=2, or oriented for ˛ D 1) given the value of their local times
on a given family of sites. Some of the results are very closely related to Dynkin’s
isomorphism theorem (i.e. it will be a pathwise version of a generalization of it). Just
as previously, we will describe the case of simple random walk on the graph where
each point x has the same number g of outgoing edges, but the results can easily be
generalized to the case of general Markov chains. Some of following considerations
will be reminiscent of the arguments in [9] (Sects. 7 and 9 in particular). In the first
subsections, we will focus on the case of unoriented loop-soups, and we will briefly
indicate the similar type of results that one gets in the oriented case.
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4.1 Slight Reformulation of the Resampling Property
of the Discrete Loop-Soup

We can start with the same setting as before, with the graphs � and D � � , the
random walk on this graph killed upon hitting � n D, and its Green’s function
GD.
; 
/. In the previous sections, we chose for expository reasons (as this was
for instance the natural preparation for the Brownian case) to study loops in the
loop-soup that visit two different sets of sites F1 and F2. But in fact, the following
setting is a little more natural and more general: Consider now a family e1; : : : ; en

of edges of D, and the graph D0 obtained by removing these n edges from D. We
can now sample an unoriented loop-soup (for c D 1), and observe the numbers
N1; : : : ;Nn of jumps along those n unoriented edges. We now want to know the
conditional distribution of the entire loop-soup given this information. In particular,
we would like to know how these N1 C 
 
 
 C Nn jumps are hooked together into
loops (clearly, the loop-soup in D0 consisting of the loops that use none of these n
edges is independent of N WD .N1; : : : ;Nn/).

We can associate to N the vector Z consisting of the 2N1C 
 
 
 C 2Nn endpoints
of these jumps. Once we label them, we can as before the collection ˇ of pairing and
bridges that join them in the loop-soup. Note that the bridge is allowed to contain
no jump when one pairs two identical end-points. We can also define the unordered
bridge measures in D0 (corresponding to paths that use no edge of D nD0) as before.
Then, exactly as before, one can prove the following version of the resampling:

Proposition 6 The conditional distribution of ˇ given N1; : : : ;Nn is exactly the
unordered unoriented bridge measure BZ in D0.

Note that for some choices of family of edges e1; : : : ; eN , it can happen that an
even number of endpoints of the discovered jumps are at a certain vertex where
no neighboring edge is in D0. In that case, the bridge measure pairs these jumps
at random and the corresponding bridge is anyway the empty bridge from x to x.
A trivial example is of course the case where e1; : : : ; en are all the edges of D.
Then, the proposition just says that the conditional distribution of the loops given
the occupation time measure is obtained by just pairing at random the incoming
edges at each site. “Loops can exchange their hats uniformly at random at each
site”.

This reformulation makes it clear that in the discrete time setting, the Markov
property of the occupation time field is really a Markov property on the edges (which
is not surprising, given that the field is actually naturally defined on the edges).

4.2 Continuous-Time Loops

Following Le Jan’s approach [9], we now introduce the associated continuous-
time Markov chain, for each site x, the chain stays an exponential waiting time
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of mean 1=g before jumping along one of the g outgoing edges chosen at random
(for expository reasons, we describe this in the case where each edge has the same
number of outgoing edges). Note that we allowed stationary edges in the graph,
so that the continuous-time Markov chain can also “jump” along those (and we
can keep track of these jumps, even if they do not affect the occupation time at
sites). As pointed out by Le Jan, the loop-soup of such continuous-time loops for
˛ D 1=2 is particularly interesting, as its cumulated occupation time (on sites) is
exactly the square of a Gaussian Free Field on this graph (here one may introduce
one or more killing point, so that the loop-soup occupation-time is finite, and the free
field with boundary value 0 at this point is well-defined). In this setting, the loops
of the discrete Markov chain do correspond exactly to loops of the continuous-time
chain, but the latter also contains some additional stationary loops, that just stay at
one single point without jumping during their entire life-time.

When one considers a continuous-time loop and a finite set of vertices in the
graph that it does visit, one can cut-out from the loops the time that it does spend
at these points and obtain a finite sequence of excursions away from this set. This
corresponds to the usual excursion theory of continuous-time Markov processes (an
excursion from x to y will be a path that jumps out of x at time 0 and jumps into y at
the endpoint of the excursion). One can the introduce the natural excursion measure
�A

x;y, which is the natural measure on set of unoriented excursions that go from x to
y while avoiding all the points in A (it corresponds to the discrete excursion measure
that puts a mass g�n to such an excursion with n jumps, and one then adds n � 1
independent exponential waiting times at the .n � 1/ points inside the excursions.

One can view the continuous-time Markov chain as the limit when M ! 1
of the discrete-time Markov chain on a graph DM , where one has added to each
site x, M stationary edges from x to itself (when one renormalizes time by 1=M,
the geometric number of successive jumps along these added stationary edges from
x to x before jumping on another edge, does converges to the exponential random
variables)—this approach is for instance used in [19] in order to derive the properties
of the continuous-time chains and loop-soups from the properties of the discrete-
time loop-soups. Let us now consider a finite set of points x1; : : : ; xn in the graph,
and for a given M, we condition on the N1; : : : ;Nn of jumps by the loop-soup along
the stationary unoriented edges e1; : : : ; en. More precisely N1 will denote the total
number of jumps in the loop-soup along the M added stationary edges from x to x.
Note that because both end-points of a stationary edge are the same, these N1 jumps
correspond to 2N1 jump-endpoints, that are all at x1. We can now apply Proposition 6
to this case; this describes the distribution of how to complete and hook up these
N1C 
 
 
CNn jumps into unoriented loops in order to recover the loops in the loop-
soup that they correspond to. One has to pair all these 2N1 C 
 
 
 C 2Nn endpoints.

Mind that as M gets large, the mass of the trivial excursion from x1 to x1 with
zero life-time is always 1, while the mass of (unoriented) excursions with at least
one jump along the “non-added” nM stationary edges neighboring these points from
x1 to some xj that stays away from fx1; : : : ; xng during the entire positive lifetime (if
it is positive) will be of order 1=M (unless all neighbors of x1 are in fx1; : : : ; xng in
which case this quantity is zero) and that the set of excursions from x1 to xj that visit
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at least one of the points of fx1; : : : ; xng during its positive life-time is of the order
of O.1=M/2. It is a simple exercise that we safely leave to the reader to check that
in the M !1 limit, the discrete Markovian description becomes the following:

Proposition 7 If we consider the continuous-time Markov chain loop-soup and
condition on the total occupation time l.x1/; : : : ; l.xn/ at the n points x1; : : : ; xn,
then the unoriented excursions away from this set of points by the loop-soup will
be distributed exactly like a Poisson point process of excursions with intensity
�l D .1=2/ �Pi�j l.xi/l.xj/�

x1;:::;xn
xi;xj

conditioned on the event that the number of
excursions starting or ending at each of the n points x1; : : : ; xn is even.

The particular case where the set of points fx1; : : : ; xng is the whole vertex set
is again of some interest: The conditional distribution of the number of unoriented
jumps on the edges given the occupation time field on the vertices is a collection of
independent Poisson random variables with respective means l.xi/l.xj/, conditioned
by the event that for all site x, the total number of jumps on the incoming edges at
x is even. This is exactly the random current distribution associated with the Ising
model. For some further comments on this relation with random currents, the GFF
and Ising, we refer to [11].

4.3 Relation with Dynkin’s Isomorphism

It should be of course noted that this decomposition is closely related Dynkin’s
isomorphism (see [4, 5, 12] and the references therein), except that one here
conditions here on the value of the square of the GFF instead of the value of the
GFF itself. The previous result implies (when one only looks at occupation times
and not at the loop-soup itself) that conditionally on the value of the square of the
GFF at the set of points fx1; : : : ; xng, the square of the value of the GFF at the other
points is the sum of the occupation times of the conditioned Poisson point process
of excursions with an independent squared GFF in the remaining (smaller) domain.

If one however conditions the GFF at the n sites to be all equal to the same value
t, then one can consider instead a graph where all these points are identified as a
single point and note that when the GFF on the new graph conditioned to have value
t at that point is distributed as the GFF on the initial graph, conditioned to have value
t at each of the n points. One can apply the previous statement to that new graph and
note that the conditioning on the event that the number of excursions-extremities
at each boundary site is even then disappears, because when there is just one such
site, this number is anyway even (each excursion from this point to itself has two
endpoints). Here it is however essential that the signs of all these values are the same
(because if one identifies them into a single point, then they will anyway correspond
to the same value of the GFF, not just to the same value of its square.

In summary, conditioning by the value of the square of the GFF gives rise to the
parity conditioning, but it is also possible to condition on the actual value of the GFF
and the parity conditioning becomes irrelevant when one looks at the occupation
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times only. Note that Dynkin’s isomorphism then follows, because in the latter case,
the conditional distribution of the square of the GFF at the other points (which is
therefore the square of the GFF in this smaller domain with boundary conditions
given by these conditioned boundary values) will be the sum of the contribution
of the loops that only visit those points (which is a squared GFF in the remaining
domain) with the occupation time of the Poisson point process of excursions, while
the conditioned GFF is a GFF with some prescribed boundary conditions, that can
be viewed as the sum of a GFF in the complement of the set of marked points with
the deterministic harmonic extension of these boundary values.

4.4 The Oriented Case

One can follow almost word for word the same strategy to study the conditional
distribution of oriented continuous-time loop-soups at ˛ D 1 given their cumulated
local time at sites. In that case, the excursions will be oriented, and the conditional
distribution of the excursions away from these points will be a Poisson point process
conditioned on the event that for each site, the number of incoming excursions is
equal to the number of outgoing ones.

The particular case where the set of points is the whole vertex set is again
interesting. The conditional distribution of the set of jumps will be independent
Poisson on each oriented edge, but conditioned on the fact that the number of
incoming jumps at each site is going to its number of outgoing jumps. We leave
all the details and further results to the interested reader.

Note We found out that the recently posted preprint [2] by Camia and Lis describes
some ideas that are similar to the present paper (which was prepared totally
independently of [2]).
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