
Chapter 7
Ab Initio Thermodynamics
and First-Principles Microkinetics
for Surface Catalysis

Karsten Reuter

Abstract Ab initio thermodynamics and first-principles microkinetic simulations
have become standard tools in research on model catalysts. Complementing dedi-
cated in situ experiments, these techniques contribute to our evolving mechanistic
understanding, in particular of a reaction-induced dynamical evolution of the
working catalyst surface. This topical review surveys the methodological founda-
tions and ongoing developments of both techniques, and specifically illustrates the
type of insights they provide in the context of in situ model catalyst studies. This
insight points at substantial deviations from the standard picture that analyzes
catalytic function merely in terms of properties of and processes at active sites as
they emerge from a crystal lattice truncation of the nominal catalyst bulk material.

7.1 Introduction

An obvious target of research in heterogeneous catalysis is to develop “better”
catalysts. “Better” may thereby stand for quite different aspects. Among others this
can be higher activity, higher selectivity, longer lifetimes, or preferable materials.
Whatever the targeted improvements are specifically though, if they are to be found
by anything but mindless trial and error, one necessarily needs “ideas”. One
powerful source of ideas to find better catalysts is to understand what limits the
function of existing catalysts. Generally, the better or detailed this understanding is,
the better defined are the ideas that emerge from it. This line of thinking is the basic
motivation for catalysis research that aims for what one refers to as mechanistic
understanding. Here, mechanistic ideally means understanding the function down to
the atomistic level of the individual elementary processes that underlie the catalytic
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cycle. It turns out that this is a pretty daunting goal. One possibility to make it at
least a bit more tractable is to reduce the complexity of the problem and achieve this
understanding first for model catalysts [1, 2], i.e. typically single-crystals of the
actual catalyst material or defined nanoparticles of the material on single-crystal
supports. This dismisses many aspects of a real catalyst, and may therefore only
generate a subset of ideas—but, one has to make a start.

One of the central, novel aspects that have recently emerged from such mech-
anistic studies on model catalysts is that an operating catalyst surface could be
anything but a static entity [3, 4]. A prevailing view of heterogeneous catalysis
often found in introductory textbooks is instead that of impinging and reacting
gas-phase species on a rigid solid surface [5–7]. If the atomic structure of the
surface is resolved at all in such a picture, then this is the crystallographic structure
as resulting from a mere surface truncation of the bulk catalyst lattice. For instance,
for metal catalysts one pictures a low-index facet like a (111) or (100) fcc surface,
flat like a tablet, at best with some steps in between. The surface metal atoms have a
reduced metal coordination in comparison to the coordination of a bulk atom. This
makes them “active” and one views particular high-symmetry adsorption sites on
the lattice defined by the position of these “active” surface atoms as the ones driving
the catalysis. Consequently denoted as “active sites”, in the example of the fcc
metal surface this could e.g. be hollow, bridge or atop adsorption sites on the
terraces, or equivalent sites at upper or lower step edges. The surface metal atoms
around these active sites adapt their positions slightly to the ongoing elementary
processes of the catalytic reaction, namely adsorption, diffusion, reaction, and
desorption of the reactants and reaction intermediates. However, apart from such
small structural relaxations, the surface morphology is assumed to be pretty static.
As such, the catalytic function is analyzed in terms of the properties of and pro-
cesses at these active sites, thinking specifically of sites as they emerge from the
crystal lattice truncation of the nominal catalyst bulk material.

While seductively familiar and intuitive, this picture could fall short in capturing
much of real heterogeneous catalysis. For sure, the picture is largely correct in the
defined environment offered by controlled gas dosage in ultra-high vacuum
(UHV) and at low temperatures. Most of what we know on an atomic level about
surface catalytic reactions derives from such environments and this is why the
above sketched picture is familiar and intuitive to us. However, heterogeneous
catalysis does not operate in UHV. Technologically relevant gas-phase conditions
comprise ambient pressures or beyond. Under a corresponding, much fiercer
gas-phase impingement we at least have to expect increased adsorbate concentra-
tions at the surface and concomitantly higher reaction rates, typically measured in
turnover frequencies (TOF) with units of product molecules per catalyst surface
area and time. If this was all, it should still be possible to extrapolate from UHV to
ambient conditions and to slow things down by studying lower temperatures. Such
“thermodynamic scaling” (vide infra) was the original hope or assumption of the
Surface Science approach to Heterogeneous Catalysis. Increasingly, we are able to
scrutinize this assumption. This is made possible by the advent of so-called in situ
studies that investigate model catalysts at ideally similar atomic resolution as in
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traditional UHV Surface Science, but at (near-)ambient pressures [8, 9]. What we
have learnt from such studies so far, sketches a picture of heterogeneous catalysis
that goes far beyond a simple thermodynamic scaling.

For instance, the surface concentrations of certain reaction intermediates can
become so high that phase transitions to new compound materials composed of the
original (nominal) catalyst material and the reaction intermediate may occur—and it
is this new material that then actuates the catalysis [4, 8, 9]. Both for thermody-
namic or kinetic reasons these new materials must furthermore by no means be
restricted to known bulk phases. Instead they can exhibit completely new structures
that are (temporarily) stabilized for instance as thin surface films on top of the bulk
catalyst. A prominent example for such surface morphological transitions is oxide
formation at the late transition metals employed in oxidation catalysis [10–14].
Another aspect that speaks against a simple scaling from UHV to ambient pressures
is the much higher amount of reaction energy that is released in case of exothermic
reactions at the increased reaction rates. We presently know very little about how
and how quickly this energy is dissipated on an atomic-scale [15]. Yet, if heat
transfer is limited, scenarios like molten catalyst materials with a surface dynamics
much beyond that of rigidly lattice-aligned active sites are well conceivable.

One needs to stress that the current understanding we have gained through in situ
studies is far from being complete; Certainly much less than what we have collected
in decades of UHV Surface Science work. At present it is not clear whether those
instances reported are exotic oddities or the top of the iceberg. The data we already
have is nevertheless good enough to formulate a working hypothesis opposite to the
prevalent static picture: Why not view a catalyst surface as something entirely
dynamic? A surface that while operating adapts sensitively to the reaction condi-
tions in everything ranging from the local atomic structure to overall composition
and morphology? Yes, new surface phases can form in the reactive gas-phase, but
why should they always cover the entire catalyst surface? As a result, if the surface
is then heterogeneous, why should this surface heterogeneity not vary with time?
Maybe new active site configurations form and decay continuously as a result of
interaction with the reactants and reaction intermediates, and maybe they even form
specifically at phase boundaries arising on the evolving surface. Clearly, the only
possibility we have to validate or falsify such “ideas”—and the consequences they
would suggest for the design of “better” catalysts—is to study the catalyst not in
UHV, not before it goes on stream, not after it has gone out of stream, but precisely
operando, when it is working under technologically relevant gas-phase conditions.

This has exactly been the motivation of the aforementioned in situ studies on
model catalysts that have made their fulminant appearance over the last decade or
so [8, 9]. At spatial and temporal resolution that is ever increasing and at pressures
that come closer and closer to technological conditions, such studies precisely focus
on the surface structure, composition and morphology—and try to relate it to the
catalytic activity. Aiming e.g. to extend the use of UHV electron spectroscopies to
these pressure regimes, the experimental setups are necessarily involved. Mass flow
limitations in the resulting complex reactor chambers together with still limited
resolving powers render the measured data not always straightforward to interpret
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[16–18]. As in many areas of materials and chemical science much synergy has
therefore been achieved by complementing these measurements with modern
computational theory. To a large degree these are the same (typically first-principles
based) calculations of thermostability, spectroscopic signals, and reactivity
descriptors as they have already been successfully conducted for a long time in the
realm of UHV Surface Science. In addition, however, new theoretical approaches
have been developed and advanced that have exactly the same objectives as the
in situ studies [19]: For given reaction conditions in form of defined reactant partial
pressures pi and temperature T, what is the surface structure and composition—and
what is the corresponding catalytic activity?

Aiming to provide this information independently, i.e. be of predictive character,
such theory necessarily has to be based on first-principles electronic structure
calculations. In order to account for the effect of finite temperature and pressure, as
well as for the ensemble character introduced by the ongoing surface chemical
reactions, these quantum mechanical calculations need to be combined with con-
cepts from thermodynamics and statistical mechanics. Notably, two such approa-
ches have been established that have proven so powerful that they are nowadays
firmly anchored in the conceptual toolbox of everybody working in surface catal-
ysis: (constrained) ab initio thermodynamics and first-principles microkinetics. The
prior technique provides exclusively access to the surface structure and composition
as a function of (T, pi). The theory is approximate, but therefore computationally
less intense and applicable to more complex surface structures. As the name
implies, first-principles microkinetics explicitly accounts for the kinetic effects due
to the ongoing chemical reactions. It is therefore intrinsically more accurate and
additionally gives access to the catalytic activity. This comes at the price of larger
computational cost and, at least in its most rigorous implementations, presently still
with quite some restrictions with respect to the complexity of the surface structures
and reaction networks it can handle. In this topical review I will survey both
techniques, yet not so much in terms of their detailed methodological foundations
and technical implementations. Extended reviews are available for this [19–22].
Instead, I will focus on their concepts, discuss some current frontiers and ongoing
developments, and specifically illustrate the type of insights they provide in the
context of in situ model catalyst studies.

7.2 (Constrained) Ab Initio Thermodynamics

7.2.1 Methodology

Even though they form the basis of both techniques that will be covered I will not at
all dwell on the underlying first-principles electronic structure calculations [23]. In
the context of in situ studies on model catalysts these calculations are at present
almost exclusively performed within density-functional theory (DFT). The central
output of these calculations that enters into the first-principles thermodynamics or
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statistical mechanics approaches is the total energy Etot, i.e. the energy contained in
the chemical bonds for a defined structural configuration of atoms. For the present
purposes there are two aspects of these total energies that need to be highlighted:
First, the total energies are only approximate, which is primarily due to the
approximate exchange-correlation (xc) functional that is employed in the DFT
calculations [24]. In fact, due to the typically rather large system sizes, computa-
tionally less demanding, so-called lower-rung xc functionals are predominantly
applied [19, 25, 26]. For metal catalysts these are largely still semi-local generalized
gradient approximation (GGA) functionals, while for materials with more localized
bonding aspects like oxides these are increasingly hybrid functionals. What this
implies is that we have to expect an uncertainty in central quantities like binding
energies (suitable differences of total energies) or reaction barriers (difference of
binding energies at initial and transition state) that is of the order of ∼0.3 eV
(∼30 kJ/mol). Of course, since we lack the exact xc functional this is only a rough
estimate, and for reaction barriers some error cancelation when taking a difference
from differences might make the uncertainty a bit smaller. Notwithstanding, the
latter is more a hope than something to rely on. In any case, we thus have to count
with potential errors that are much larger than kBT. This obviously has to be kept in
mind when attempting to make statements about temperature-dependent properties
or even more so about catalytic activities where reaction barriers enter through
exponential Boltzmann-type factors.

The other aspect to highlight is to repeat that Etot = Etot(Ni, Nj), where Ni and Nj

are the number of species i and j in the particular configuration that has been
calculated. I distinguish here and in the following between species i that are also
present in the gas phase (i.e. contained in the reactants), and species j that are not
(i.e. that are only present on the solid catalyst). A straightforward comparison of the
stability of two configurations on the basis of DFT total energies is therefore only
possible, if both configurations contain exactly the same numbers N′i = Ni and N
′j = Nj of all species i and j in the system. On the contrary, in the context of
near-ambient catalysis the surface composition is precisely one of the targeted
quantities, i.e. one does a priori not know how many atoms of which kind there are
in the surface fringe. As already pointed out before, to the very least one would
expect surface coverages of reaction intermediates to change with varying pres-
sures. In order to find out which coverage there is for given reactant partial pres-
sures pi, one would thus have to compare the stability of configurations with
different coverages, i.e. with differing numbers Ni. This is precisely what cannot be
achieved on the basis of the Etot alone. In order to answer such questions one would
need to know the cost of bringing the difference in species ΔNi = N′i − Ni and
ΔNj = N′j − Nj between two configurations either into one of the configurations or
out of the other configuration. Thermodynamically, it would thereby not matter
through which particular (atomistic) mechanism this happens. The only thing that
would matter is where they ultimately come from or go to.

The entire idea of ab initio thermodynamics is to provide this information by
considering such reservoirs where species go to or come from, and then work
within an appropriate thermodynamic framework to compare configurations with
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varying numbers of species [27–35]. Since experiments and heterogeneous catalysis
are generally run at defined temperatures and reactant partial pressures, the
appropriate thermodynamic ensemble for this framework is the Gibbs ensemble (T,
pi). To assess the stability of a given surface configuration, a suitable quantity to
evaluate is then for instance the surface free energy per surface area A,

γ T , pið Þ= 1
A

G T , pi,Ni,Nj
� �

−Niμi −Njμj
� �

, ð7:1Þ

where G is the Gibbs free energy of a particular surface configuration containing Ni

species i and Nj species j, and μi and μj are the chemical potentials of the corre-
sponding reservoirs of species i and j. This surface free energy represents the cost of
creating the particular surface configuration by taking all of its constituent atoms out
of their respective reservoirs. Calculating γ(T, pi) for a range of potential surface
configurations, the one that exhibits the lowest surface free energy is this way the
most stable one that (if thermodynamics is correct) should be observed in experiment.

In order to evaluate (7.1) for a given surface configuration one needs to know the
chemical potentials. For any gas-phase species i, the obvious reservoir that deter-
mines this chemical potential is the gas-phase environment itself. Approximating
this gas phase as an ideal gas, it is straightforward to obtain Δμi = Δμi(T, pi), where
Δμi = μi − Etot(i) and Etot(i) is the DFT total energy of the isolated gas-phase
species i. For atoms and small molecules this can even be calculated analytically
[36, 37]. For others, values can be found in thermodynamic tables [38]. For the
other species j that are not present in the gas phase, e.g. species constituting the
actual catalyst material, alternative reservoirs need to be found. This can often be
facilitated by choosing a suitable reference configuration and evaluating only the
excess surface free energy with respect to this reference

γ T , pið Þ− γo T , pið Þ= 1
A

G T , pi,Ni,Nj
� �

−Go T , pi,N 0
i ,N

0
j

� �
−ΔNiμi −ΔNjμj

h i
,

ð7:2Þ

where γo and Go are the surface free energy and Gibbs free energy of the reference
configuration, respectively. This has the advantage that one only needs to define
reservoirs for non-gas-phase species j, for which ΔNj ≠ 0. If we are for instance
interested in evaluating the relative stability of different surface coverages of a
given reactant on the surface of a solid catalyst, then the clean surface at zero
reactant coverage is obviously a useful reference configuration. In this case we
would only need to determine a suitable reservoir for species constituting the
catalyst and not being present in the gas phase, if the changing concentration of
adsorbed reactants would actually affect the density of catalyst species in the sur-
face fringe. In the case of compound materials, such a density change could thereby
for example proceed via precipitation of another (bulk) phase. In this case, this
other phase, say for instance pure metal droplets at the surface of metal oxide
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catalysts, is in turn a suitable reservoir defining the chemical potential of the
substrate species involved in the density change.

What is thus left to get hard numbers out of (7.1) or (7.2) is to compute the
solid-state Gibbs free energies (and equivalently the chemical potentials of the
non-gas-phase reservoirs). Similar to the procedure for the gas-phase species, it is
thereby useful to separate off the DFT total energy, which in terms of thermody-
namic potentials amounts to the Helmholtz free energy minus the zero point
energies. We thus have G = Etot + ΔG(T, pi), where the zero point energies are
now considered to be contained in the temperature and pressure dependent free
energy part ΔG(T, pi). In comparison to the ideal gas situation, calculating this free
energy part is more involved for solids, and, unfortunately, the term itself is also
generally not negligible [39–41]. Fortunately, however, it is not this absolute free
energy part that matters for calculating in particular the excess surface free energy.
As apparent from (7.2) it is only the difference of two solid-state Gibbs free
energies and additional chemical potentials that enters, and in this difference many
contributions can cancel. Since the predominant contribution to solid-state ΔG(T,
pi) comes from vibrational free energy, it is thus not the absolute vibrations that
enter. Instead it is only changes of these vibrations (phonon spectrum, to be precise)
with respect to the reference configuration that matter, and these changes can often
be neglected for a first assessment. In the difference of (7.2)—and only there—we
can then write

γ T , pið Þ− γo T , pið Þ≈ 1
A

ΔEtot −ΔNiΔμi T , pið Þ½ � ð7:3Þ

with

ΔEtot =Etot Ni,Nj
� �

−Etot
o N

0
i ,N

0
j

� �
−ΔNiEtotðiÞ−ΔNjEtotðjÞ

and Etot(j) the DFT total energy of the solid-state reservoir chosen for species j. In
this approximation, the computational demand to evaluate the excess surface free
energy of a given configuration is therefore reduced to DFT calculations of the
surface configuration, the reference surface configuration, as well as of all isolated
gas-phase species and the chosen additional solid-state reservoirs. The entire tem-
perature and pressure dependence is instead exclusively contained in the terms
ΔNiΔμi T , pið Þ, where Δμi T , pið Þ is a look-up quantity that is generic for the species
and not for the particular systems studied.

It is this low computational demand that makes this formulation of ab initio
thermodynamics so appealing. One has to stress that this holds only within this
prevalent approximation though. The neglected terms ΔG(T, pi) are more involved.
This refers thereby less to the predominant vibrational contribution to these terms,
which can be and needs to be at least approximately calculated in many cases [39,
41]. The more elusive contribution comes instead from the configurational entropy
[20]. Fortunately, for not too high temperatures this entropy is not large and for
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hitherto typically studied systems neglecting it affects the results only in a pre-
dictable way that I will further discuss below.

There is, however, a much more critical aspect than the neglect of these indi-
vidual solid-state free-energy contributions. This is the way how the configurational
sampling is performed in present applications of this theory. What is generally done
is to consider a given number of configurations that is presumed to be of relevance
for the problem at hand. Computing the excess surface free energies for every one
of them, one of these configurations will exhibit the lowest value for given
gas-phase conditions (T, pi). This configuration is then declared to be most stable
for these conditions, but obviously this statement can only refer to relative stability
within the group of configurations that has actually been tested. If a configuration
that was not considered was to exhibit an even lower excess surface free energy, it
would not be identified. There is also no warning mechanism of such cases in any
form in the present formulation of ab initio thermodynamics: The results obtained
would simply be wrong. This limitation with respect to the considered configura-
tions must always be born in mind when assessing the results of present-day
ab initio thermodynamics studies. Of course, this limitation is not conceptual, but
results merely from the steeply increasing computational costs when comparing
extended numbers of configurations (certainly in the context of in situ studies of
model catalysts). Any form of more systematic configurational sampling, as e.g.
resulting from global geometry optimization algorithms, can be straightforwardly
incorporated into the ab initio thermodynamics framework. The resulting total
energies of all configurations sampled just need to be entered into thermodynamic
equations of the type of equations (7.1)–(7.3), or one directly performs the sam-
pling in the appropriate thermodynamic ensemble by evaluating different cost
functions than the total energy.

7.2.2 Oxide Formation at (Near-)Ambient Conditions

After this brief methodological survey, let me illustrate the kind of insights and the
effect of the discussed approximations and limitations with an application example
in the in situ context. As mentioned before, a possible formation of oxides at the
surface of late transition metal oxidation catalysts is a prototypical manifestation of
the type of surface morphological transitions that one suspects to occur under
technologically relevant, (near-)ambient reaction conditions. While nominally Rh,
Pd, or Pt would thus be materials that one cites as catalysts employed for such
reactions, in fact their oxides or “oxidic” films could be the ones that really actuate
the catalysis. If true, it would obviously not make much sense to discuss the
catalytic activity (and any “ideas” for improved catalysts) in terms of the classic
active sites offered by fcc(111) of fcc(100) facets of these metals. One would have
simply looked at the wrong material. Ab initio thermodynamics has been heavily
employed in this context and a natural starting point is to only consider the effect of
an oxygen environment. Using the clean metal surface as a suitable reference, one
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would calculate the excess surface free energy for a range of surface configurations
with increasing oxygen content, and in turn evaluate their relative stabilities as a
function of the oxygen chemical potential of the surrounding gas phase. Figure 7.1
exemplifies this for a Pd(100) surface [42–44]. Natural surface configurations to
consider in such a case are various (ordered) simple adsorption layers of different
concentrations as they could for example have been characterized in UHV Surface
Science work. For the O/Pd(100) surface this would be so-called p(2 × 2) and c
(2 × 2) structures with O atoms adsorbed at the fcc(100) hollow sites at ¼
monolayer (ML) and ½ ML coverage, respectively [45, 46]. The excess surface free
energies of these structures will vary with varying O content in the gas phase. In
(7.3) this enters through the linear dependence on the (oxygen) chemical potential,
which scales differently for configurations with different amounts of (oxygen)
species incorporated into the surface fringe. In the limit of an infinitely dilute gas
(ΔμO → –∞), incorporating any O into the surface configuration would incur an
infinite cost due to the concomitant infinite loss of entropy. This is why the clean
surface reference naturally exhibits the lowest excess surface free energy under
these conditions, cf. Fig. 7.1a.

With increasing oxygen content in the gas phase, ΔμO will become less negative
and it will become increasingly more favorable to stabilize oxygen at the surface. In

Fig. 7.1 a Excess surface free energies and b surface phase diagram for O/Pd(100). Considered
are two ordered O adsorbate layers with different coverage (p(2 × 2), ¼ monolayer (ML), and c
(2 × 2), ½ ML) and a (√5 × √5)R27°–O surface oxide film (0.8 ML). Note the extended
stability range of the surface oxide compared to the known PdO bulk oxide. The total energies
(DFT-GGA, PBE) used to construct this graph via (7.3) are taken from [42–44]

7 Ab Initio Thermodynamics and First-Principles Microkinetics … 159



the example of O/Pd(100) in Fig. 7.1a this happens at ΔμO = −1.3 eV, which is
when the excess surface free energy of the p(2 × 2) adsorption structure becomes
lower than the clean surface reference. The higher the surface O concentration of a
configuration, the steeper will be the decrease of its excess surface free energy in a
plot like Fig. 7.1a. This can eventually stabilize such configurations at higher O
chemical potentials. The obvious upper limit of surface O concentration is thereby a
complete transformation of the bulk metal into a bulk oxide, as this then implies an
infinite number of O atoms in the normalization per surface area employed in (7.3)
[47]. In a plot like Fig. 7.1a this leads to an infinite negative slope, i.e. a vertical
excess surface free energy line. For the shown example of O/Pd(100) this line
indicating the formation of bulk PdO lies at ΔμO = −0.7 eV, and for any higher
oxygen chemical potential the PdO bulk oxide will be the stable phase.

Already at this stage it is worthwhile to point out what has been gained through
this theory. On the basis of only a handful of static DFT calculations we can discuss
the possible surface structure and composition at finite temperature and pressure. In
a plot like Fig. 7.1a the latter two-dimensional (T, pO2)-dependence is thereby
conveniently described through the one-dimensional dependence on the corre-
sponding chemical potential. By defining suitable references one can convert one
dependence into the other on an absolute scale [34]. As done in Fig. 7.1a this
allows to include additional x-axes that give the pressure dependence at some
specific temperature (or alternatively the temperature dependence at some fixed
pressure). The surface configuration exhibiting the lowest excess surface free
energy for a certain range of chemical potentials would be identified as the most
stable one for the corresponding gas-phase conditions. Another way of plotting the
results would be to concentrate only on these most stable structures and plot their
(T, pO2)-stability ranges in a so-called surface phase diagram as done in Fig. 7.1b.
Such surface phase diagrams are more intuitive to read, but there is also a certain
caveat to them. This has to do with the uncertainty due to the mentioned approx-
imate DFT total energies. For a surface phase diagram this implies that the obtained
boundaries between different phases can typically be wrong by ∼100 K and (de-
pending on temperature) several orders of magnitude in pressure. As a large part of
the error arises often from the DFT description of the gas-phase species, such shifts
tend to similarly apply to all phase boundaries though. The overall topology of the
surface phase diagram (which phases are predicted to be stable at some finite range
of (T, pO2)-conditions) is then more robust, and this is what one should generally
focus on. In this respect, an intriguing immediate result contained in the O/Pd(100)
example of Fig. 7.1 is for example that the c(2 × 2) adsorbate structure which has
been observed and characterized after gas dosage in UHV [45, 46] is never pre-
dicted to be a stable phase on the basis of the employed DFT functional.

A second intriguing aspect of ab initio thermodynamics that can be highlighted
with the example of Fig. 7.1 is the possibility to test the stability of surface con-
figurations one suspects to potentially play a role at finite temperatures and pres-
sures. In the context of oxide formation this would prominently be thin oxide films
at the surface. For O/Pd(100) such a structure had again be stabilized after excessive
O dosage in UHV and was subsequently characterized as a layer of PdO(101) in a
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commensurate (√5 x √5)R27° stacking on top of Pd(100) [48, 49]. Evaluating the
excess surface free energy for this surface structure, there is indeed a finite range of
O chemical potentials where it is predicted to be most stable, cf. Figure 7.1. This
range extends over ΔμO lower than the ones of the known bulk oxide phase, i.e.
ab initio thermodynamics predicts a range of less O-rich gas-phase conditions
where bulk PdO is not yet stable, but such a PdO(101) overlayer is. Such an
extended stability range of surface oxide films has been found for many low-index
late transition metal facets [48–57]. It can arise from an enhanced coupling of the
film to the underlying metal [58], but also simply because the structure of the thin
films is by no means restricted to those of the known bulk oxides. The latter point
thereby hints at the mentioned limitation of prevalent ab initio thermodynamics
with respect to the configurational sampling. Maybe there are more complex, highly
O-enriched surface configurations that would exhibit even lower excess surface free
energies. Without knowing their explicit structure (or being able to represent this
structure in computationally tractable periodic supercell geometries) their excess
surface free energies cannot be calculated and the corresponding stabilities not be
assessed. Even within the drive towards (near-)ambient catalysis this underscores
the value of dedicated UHV Surface Science work that aims to stabilize and
characterize such structures and therewith serves as a generator for structural
models to test. Just as much as one might rather focus more on the overall topology
of surface phase diagrams than their absolute phase boundaries, this also suggests
that the really valuable “idea” that has emerged out of studies of the kind of the
discussed O/Pd(100) work is not necessarily that of a particular, defined surface
oxide structure. These ordered structures are likely just idealized models. Instead it
is the general notion that such kind of O-enriched surface configurations (be they
called surface oxides, oxidic films or sub-surface oxygen) can be stabilized in
environments far less O-rich than those where bulk oxides are known to be stable.

7.2.3 Constrained Thermodynamics: Approximate Structure
and Composition Under Reaction Conditions

Whether such configurations really play a role for (near-)ambient oxidation catal-
ysis, then critically depends on the particular reaction. The presence of the other
reactant tends to reduce the catalyst surface. In order to assess whether an oxidized
configuration will prevail under reactive conditions, the other reactant thus needs to
be accounted for. In ab initio thermodynamics this seems straightforward to do as a
multi-component gas phase can simply be considered through multiple reservoirs
for the corresponding gas-phase species [39]. In (7.1)–(7.3) this is already indicated
through the dependence on several chemical potentials μi. There is a slight catch to
this for heterogeneous catalysis though. If one was to consider full thermodynamic
equilibrium, then also these various reservoirs would be in equilibrium with each
other. However, if all reactants were in full equilibrium with each other, the gas
phase would only consist of products, as a catalyst can only operate under
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gas-phase conditions where the products are thermodynamically more favorable
than the reactants. As this is obviously not the situation we want to describe, one
instead suitably resorts to a kind of “constrained” equilibrium approach [37, 59]. In
order to capture the effect of exposure to the reactant gas phase, the catalyst surface
is considered to be in full equilibrium with all reactant gas-phase chemical
potentials, while the latter are treated as mutually independent of each other. The
approximation that is introduced through this is to neglect that the actual on-going
surface catalytic reactions may consume surface reaction intermediates faster than
they can be replenished from the gas phase [60]. A “constrained” ab initio ther-
modynamics study can therefore only provide some first rough insight into the
surface structure and composition in reactive environments, but its advantage is
that, as before, a wide range of structurally and compositionally largely differing
configurations can readily be compared in a computationally undemanding way.

Figure 7.2 illustrates this for the CO oxidation at Pd(100) system, where in
contrast to Fig. 7.1 the CO chemical potential is now explicitly considered as a
second axis [43, 44]. Comparing the stability of a large set of on-surface (co)
adsorption, surface oxide and bulk oxide structures, several phases involving the
(√5 × √5)R27° surface oxide are found to be most stable over a wide range of
(T, pO2, pCO)-conditions. Again, this range largely exceeds the stability range of
bulk PdO. Intriguingly, this range extends in fact so much that it even just touches
the gas-phase conditions typical for technological CO oxidation, i.e., partial pres-
sures of the order of 1 atm and temperatures around 300–600 K. In terms of a
potential oxide formation under reaction conditions, this would suggest that instead
of thick bulk-like oxide films it would rather be such a nanometer-thin oxidic
overlayer that could play a role. Indeed, in situ reactor scanning tunneling micro-
scopy (STM) experiments observed substantial morphology changes that were
precisely assigned to the formation of a thin oxidic overlayer [56, 61, 62]. However,
in these experiments, a continuous consumption and formation of this surface oxide
even under the employed steady-state reaction conditions was reported—which
would directly relate to the general “idea” of a working catalyst as a very dynamic
entity. For this aspect the proximity of the technologically-relevant (near-)ambient
reaction conditions to the phase boundary between the surface oxide and reduced
metal configurations in Fig. 7.2 has to be emphasized. In Fig. 7.2 this boundary is
drawn as an infinitely sharp transition, whereas in reality any such phase transition
would occur over a finite range of pressures and/or temperatures. This abrupt
change in (μO, μCO)-space in Fig. 7.2 is the result of the neglect of the solid-state
configurational entropy contributions in (7.3). While these contributions are gen-
erally small compared to absolute excess surface free energies, they particularly
matter for chemical potential conditions where the excess surface free energy lines
of two competing configurations cross, i.e. exactly at phase boundaries. Under such
conditions the thermally induced possibility to explore both configurations leads to
enhanced fluctuations and phase coexistence [37, 59].

Under the neglect of configurational entropic contributions the prevalent for-
mulation of (constrained) ab initio thermodynamics cannot explicitly account for
such a phase coexistence (and the implied fluctuations). As done in Fig. 7.3 one
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may estimate its width in (T, pi)-space and represent this information by drawing
the phase boundaries as regions with a corresponding finite width [37, 59]. Fig-
ure 7.3 shows results equivalent to Fig. 7.2, but obtained for CO oxidation at
RuO2(110) [60]. Strikingly, technologically relevant feed conditions fall again
precisely into such a phase coexistence region. The thus suggested notion to view
heterogeneous catalysis as a phase transition phenomenon may thereby be
rationalized by recalling that a so-called stable phase is not stable on an atomistic
scale. Instead it represents an average over many continuously on-going processes
such as dissociation, adsorption, diffusion, association, and desorption. As all these
elementary processes and their interplay are of crucial importance for catalysis,
regions in (T, pi)-space that exhibit enhanced thermal fluctuations, i.e. where the
dynamics of these atomistic processes is particularly strong, appear naturally as
most relevant [37]. In this understanding where in phase space catalytically relevant
regions might emerge, insights of the type provided by Figs. 7.2 and 7.3 also allow
to comment on the possibility to further explore them by bridging the pressure gap
between (near-)ambient real catalysis and UHV Surface Science. In the thermo-
dynamic Gibbs ensemble the only ruling quantities are the chemical potentials μi.

Fig. 7.2 Surface phase diagram for the Pd(100) surface in “constrained” thermodynamic
equilibrium with an environment consisting of O2 and CO. The atomic structures underlying the
various stable (co-)adsorption phases on Pd(100) and the (√5 × √5)R27° surface oxide, as well
as a thick bulk-like oxide film (indicated by the bulk unit-cell), are also shown (Pd: large blue
spheres, O: small red spheres, C: white spheres). Phases involving surface or bulk oxide are to the
right bottom of the dotted and dashed line, respectively. The dependence on the chemical
potentials of O2 and CO in the gas phase is translated into pressure scales at 300 and 600 K. The
black hatched ellipse marks gas-phase conditions representative of technological CO oxidation
catalysis, i.e., partial pressures of 1 atm and temperatures between 300 and 600 K. Adapted from
[43]
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As long as the (T, pi)-conditions of two experiments correspond to the same μi,
thermodynamically the same results would be expected. In order to represent the
chemical potentials of (near-)ambient catalysis in UHV Surface Science one would
correspondingly have to resort to much lower temperatures, cf. the different pres-
sure scales in Figs. 7.2 and 7.3. Note, however, that this idea of thermodynamic
scaling by maintaining the same chemical potentials is not necessarily the same as
simply maintaining a constant reactant partial pressure ratio and varying the total
pressures or temperature. Such a procedure does not keep the chemical potentials
constant, and in case of dissociatively adsorbing reactants generally not even the
chemical potential ratios. Without knowledge of the surface phase diagram, the
concomitantly explored chemical potential range may easily cross phase bound-
aries, and then lead to incomparable results even on thermodynamic grounds alone.

Obviously, also kinetic limitations will contribute to deviations from thermody-
namic scaling and further jeopardize a reliable bridging of the pressure gap by simple
thermodynamic recipes for the gas-phase concentrations [10]. Such kinetic effects are
thereby not necessarily more prominent at low temperatures. At higher temperatures
one may generally expect higher turnover frequencies. The surface-reaction processes
might thus increasingly occur at higher rates than the adsorption and desorption
processes that maintain the equilibrium with the surrounding gas phase that is assumed
in (constrained) ab initio thermodynamics. As further discussed below, the resulting
depletion of particular surface species may then well lead to significant deviations
from the predicted surface structure and composition [60]. Already for the pure for-
mation of the thin surface oxide overlayer on Pd(100) at increasing O pressures, in situ
surface X-ray diffraction (SXRD) experiments indicated severe kinetic limitations that
suppressed formation of the overlayer at near-ambient pressures and elevated temperatures
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Fig. 7.3 Surface phase diagram for the RuO2(110) surface in “constrained” thermodynamic
equilibrium with an environment consisting of O2 and CO. The labels of the different stable phases
reflect a predominant population (O, CO or empty “–”) of the two prominent adsorption sites
offered by this surface, br(idge) and coordinatively unsaturated (cus) site. Coexistence regions at
the phase boundaries are marked in white, with the width of these regions corresponding to 600 K.
Technologically relevant catalytic conditions around partial pressures of 1 atm and temperatures
between 300 and 600 K are indicated by the black hatched ellipse. Above the dashed line bulk
RuO2 is thermodynamically unstable against CO-induced decomposition (see text). Adapted from
[60]
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on the time scale of hours [42]. One may well imagine such limitations to intensify
in the presence of a reducing co-reactant, or when formation of thick bulk-like films
is concerned. This should be kept in mind when assessing the results of Fig. 7.3.
For the more reactive Ru metal, the stability region of its bulk RuO2 oxide is much
larger than for Pd and PdO [47]. In terms of the surface phase diagram,
technologically-relevant reaction conditions fall therefore well into the stability
region of this bulk oxide, cf. Fig. 7.3. Instead of a potential (dynamic) formation of
a nanometer-thin surface oxide overlayer as on Pd(100), this would rather suggest
thick bulk-like oxide films to occur on Ru, with the catalytic phase coexistence then
restricted to the adsorbate overlayer on these films. However, kinetic growth lim-
itations, e.g. due to slow diffusion of either O or Ru atoms through the formed film
[63, 64] might significantly change this picture. Indeed, while the formation of
crystalline, bulk-like RuO2(110) during (near-)ambient CO oxidation catalysis has
indeed been observed experimentally at Ru(0001), even after long operation times
the reported film thicknesses never exceeded about 20 Å [13, 65, 66].

This restates to really view the results of (constrained) ab initio thermodynamics
only as very rough first insights. However, even on this level these insights can be
very valuable and in the discussed context of oxide formation in (near-)ambient
oxidation catalysis these insights do support the dynamical catalysis picture in
terms of substantial surface morphological transformations in the reactive envi-
ronment that has emerged from corresponding in situ experiments. In fact, as there
is no reason why a possible formation of (surface) oxides should simultaneously
occur on different facets of the same metal, such transformations can also contribute
to substantial changes in the shape and morphology of (supported) nanoparticles.
(Constrained) ab initio thermodynamics can also contribute to this context by
calculating surface free energies of different facets and combining them within
Wulff (Kaischew) constructions [67, 68]. Significant particle shape changes have
this way indeed been predicted as a function of the surrounding gas-phase envi-
ronment [69–72]. The possibility to quickly compare surface configurations that
vary as widely as metal, oxidic overlayer, and bulk-like oxides is thereby an asset
that—behold of the highly approximate nature of this theory—cannot be overstated
and that serves ideally to elucidate the dynamics of working catalysts.

7.3 First-Principles Microkinetics

7.3.1 Methodology

In order to properly capture the kinetic effects that are suspected to modify the
approximate picture obtained within ab initio thermodynamics, the simulations
need to explicitly account for a time dependence. The involved time integration is
thereby extensive and may exceed time scales of the order of seconds. The reason
for this is the so-called rare-event dynamics underlying surface catalytic processes.
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While a catalyst generally reduces the barriers of these processes, they are still
typically of the order of ∼1 eV. Since this is much larger than kBT, the time scales
of these relevant elementary processes are largely decoupled from the regular
thermal (vibrational) motion. A vanilla-flavor molecular dynamics simulation
integrating the Newtonian equations of motion for the nuclei would be able to
capture these vibrations. Yet, it is largely intractable to integrate up over time scales
that would allow for a statistically relevant averaging of the rare catalytic processes.

In microkinetic theories this separation of time scales is instead exploited by
abandoning the continuous dynamical description in favor of a discrete
state-to-state time evolution, in which the individual elementary processes drive the
system in discrete jumps from one system state to the next [73, 74]. The central
equation to solve is then a Markovian master equation

dPαðtÞ
dt

= ∑
β

WαβPβðtÞ−WβαPαðtÞ
� �

, ð7:4Þ

where α and β are states of the system with corresponding probabilities Pα(t) and
Pβ(t). Wαβ and Wβα are the transition probabilities per unit time, specifying the rate
with which the system changes due to the elementary processes (adsorption, des-
orption, reaction, and diffusion), respectively from state β to α and vice versa. These
master equations, one for each system state α, are thus simple balancing equations:
The probability to find the system Pα(t) in state α at any time t changes because
transitions from any other state β can occur into state α (WαβPβðtÞ) or they can
occur out of state α into any other state β (−WβαPαðtÞ). Importantly, one has
thereby applied a Markov approximation, because none of these transitions depend
on the history through which states the system has gone before. Rather than
involving probabilities that depend on any past time t′ < t, (7.4) thus only shows
probabilities at the same instant in time t: Transitions involving a hopping out of
state α at time t depend only on the probability that the system actually is in state α
at time t (PαðtÞ). Transitions involving a hopping from any other state β into state α
at time t depend only on the probability that the system is in state β at this time
(PβðtÞ). The rationale behind this approximation is that one assumes that during the
long vibrational motion before a rare event eventually brings the system out of the
current state into the next one, the system completely forgets how it actually got
into this state in the first place. Limitations in the dissipation of the reaction energy
released during individual elementary processes might potentially lead to violations
of this Markov approximation [15], but for the time being this approximation is
unanimously assumed in prevalent formulations of chemical kinetics.

For a small number of system states, a Markovian master equation like (7.4) can
be solved analytically. Unfortunately, in surface catalysis we are not facing such a
small number. On the contrary. Assume that our catalyst surface exhibits a total of
N active sites. A unique system state would then be defined by the detailed pop-
ulation of every single one of these sites, and any elementary process that changes
the population of one or more of these sites corresponds to one entry in the
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transition matrix Wαβ [75]. Since the examples I use are for CO oxidation catalysis,
let’s stick to this reaction to see what this means in terms of numbers. In this
reaction, any active site can either be empty, or occupied by the reaction inter-
mediates O or CO (if we assume that CO2 formation leads to immediate desorption
of the product). This yields three population possibilities for every site and if we for
example assume that there are N = 100 active sites, then the total number of system
states, also known as detailed population configurations of the sites, is 3100 ≈ 1047.
Obviously, this is not a small number and for any more complex reaction network
with a correspondingly increased number of different reaction intermediates it will
even be higher. Yet, we still have to rationalize why N = 100 should be a good
representation for an extended catalyst surface. This comes about as in order to
appropriately capture the ensemble effects at such a surface, the explicitly con-
sidered group of active sites (that is suitably continued through periodic boundary
conditions) must be large enough to exceed the correlation length between sites.
This is the length over which the statistics of the processes that are ongoing at one
site still influences the statistics of the processes that occur at another. From present
experience on the type of systems discussed in this review an area spanned by
(10 × 10) = 100 sites is a good (in fact lower) estimate for this [22, 75].

For a surface catalytic system we thus have to generally expect a transition
matrix with a dimension of the order of ∼(3100 × 3100) or larger, i.e. with at
least ∼(3100)2 ≈ 1095 matrix elements. Fortunately, most of these matrix entries are
zero [75]. This has to do with the fact that chemical elementary processes typically
affect only the population of a small number of sites. A unimolecular adsorption or
desorption event of a molecule like CO changes the occupation of one particular
site. A diffusion process of such a molecule changes the occupation at two active
sites, one being emptied and an empty one being filled. Any transition connecting
states that differ in their populations by more than a few individual sites has
therefore a Wαβ = 0. An additional important feature that simplifies the transition
matrix immensely is translational symmetry at a crystalline extended surface. In
such a situation our ensemble of N = 100 active sites may only comprise a much
smaller number of inequivalent site types. At a simple low-index metal surface
maybe something on the order of two or three, say hollow or bridge terrace sites or
high-symmetry sites at an upper or lower step edge. In the crystalline symmetry the
elementary processes occurring at any site type are equivalent, which means that
their corresponding transition matrix elements Wαβ are the same. While the total
number of non-zero matrix elements even in the largely sparse transition matrix is
thus generally still too large to even be stored, the total number of inequivalent
matrix entries Wαβ is then typically rather small and determined by the total number
of inequivalent elementary reactions in the reaction network [75–77]. For a simple
CO oxidation model comprising only one active site type this total number can in fact
be as low as seven: Dissociative adsorption of O2, associative desorption of two
adsorbed O, CO adsorption, CO desorption, O diffusion, CO diffusion, and CO + O
reaction. It is only this immense simplification due to a prevailing and despite the
ongoing catalytic reactions static crystalline symmetry that makes any kind of
microkinetic model computationally tractable today. I come back to this point later,
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but already here we should realize that this obviously clashes with our working
hypothesis of a dynamically evolving, possibly amorphous or highly heterogeneous
catalyst surface that we intend to scrutinize with such simulations. This is precisely
the dilemma. We are largely constrained to conduct microkinetic simulations within
static models focusing on impinging and reacting gas-phase species on a rigid solid
surface. In a self-fulfilling prophecy this then contributes to the present widespread
acceptance of such a picture of catalysis.

Even though the transition matrix is thus sparse and contains only few
non-equivalent non-zero matrix elements, this does not change the fact that its
dimension is of the order of ∼(3100 × 3100) already for the discussed CO oxidation
reaction. While in the notation of (7.4) the master equation has a deceptively simple
form, it is hence so high-dimensional that it generally escapes any direct solution.
Kinetic Monte Carlo (kMC) simulations overcome this problem by generating an
ensemble of state-to-state trajectories with the property that an average over the
entire ensemble of trajectories yields the probability densities Pα(t) of (7.4) [21, 22].
In this way, only those matrix elements Wαβ of transitions between states α and β
are required that are actually executed along the generated trajectories. Despite the
averaging over the trajectory ensemble, a central feature of the finally obtained
explicit numerical solution is thereby that it contains the information of the detailed
spatial distribution of the reaction intermediates over the considered active sites,
along with the equally resolved occurrence of the individual elementary processes.
The still prevailing alternative to achieve a solution of (7.4) discards this detailed
information and instead considers only the occupation probabilities at different site
types, i.e. the averaged coverage θ of all equivalent sites of a given type [5–7]. This
represents a significant simplification of the problem, as the master equation then
decays into a small number of differential rate equations describing the time evo-
lution of these coverages at the different site types [78, 79]. These are exactly the
type of rate equations that are often phenomenologically formulated. Typically the
resulting network of differential equations is extremely stiff and requires special
solution techniques. Nevertheless, even then the computational solution is so
undemanding that it can mostly be achieved on time scales of the order of seconds
on simple desktop computers.

There is also an additional simplification with respect to the input that such a
mean-field (MF) rate equation model requires. It only needs to know what kind of
active site types are considered and which elementary processes can take place at
each one of them. In contrast, as it resolves the spatial distributions at the surface, a
kMC model additionally needs to know how these active site types are geometri-
cally arranged with respect to each other. As already mentioned such simulations
are presently only tractable under a prevailing translational symmetry. Typically,
kMC simulations in the field are therefore performed for a given lattice model that
reflects the crystalline structure of the studied single crystal surface or nanoparticle
facet. From this perspective, and recalling our objective to investigate a possible
dynamical picture of catalysis, this sounds like a disadvantage or limitation in
comparison to the MF rate equation approach. To some extent this is true. On the
other hand, one has to realize that an MF model does not even know whether there
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is a crystalline order at the surface or not. It does not even know that step sites are
per definition linearly coordinated next to each other and are thus differently
accessible to surface reaction intermediates than active sites at a two-dimensional
terrace. The only thing an MF model knows and can correspondingly account for is
that there are the different active site types that it considers. Obviously, MF rate
equation theory is thus a gross approximation in comparison to kMC and we can
only expect it to yield a faithful description of the surface kinetics if this approx-
imation is justified. The latter is the case, when there is a perfect mixing of the
reaction intermediates over the active sites of the surface. Then, indeed, the details
of the spatial distribution do not matter. Fast diffusion processes can ensure such a
mixing. In turn, diffusion limitations, as we can often expect them for example at
oxide surfaces, are one of the two classic situations known to cause a break-down of
the MF approximation, with rate equation theory correspondingly providing inac-
curate solutions [79, 80]. The other situation arises in the case of strong lateral
interactions between reaction intermediates, as the implied preferences of certain
reaction intermediates to either seek or avoid each other naturally oppose the dif-
fusional tendency to randomly mix the adlayer [78]. As it is not a priori obvious if
the MF assumptions are fulfilled for a given system, MF rate equation theory should
not be applied uncritically. Clearly, if they are fulfilled, MF theory is the much
more efficient approach that should be pursued. If they are not fulfilled, wrong
results and concomitant “ideas” might result.

KMC and MF rate equations are presently the two predominant microkinetic
theories. As rate equations are the far more traditional and widespread approach,
people often exclusively associate them with the label microkinetic modeling. This
is sloppy as both theories formally provide solutions to the same microkinetic
master equation. With the rapidly advancing use of kMC simulations in the field of
surface catalysis one should thus rather refer to microkinetic modeling as a joint
label for both approaches. The formal similarity of the two approaches is also
reflected in the equivalent input they require. As already discussed these are the
inequivalent active sites (in kMC additionally a lattice model fixing their geomet-
rical arrangement) and the list of elementary processes that can occur at these sites.
It is worthwhile to emphasize that this is an input, not an outcome of the simula-
tions. Neither approach has any built-in warning feature if a relevant process or site
type has been overlooked, or even more desirable the capability to automatically
generate complete lists of such processes and sites. If a relevant process or site is
not included in the microkinetic model, the results are nothing, but simply just
wrong.

7.3.2 The First-Principles Input

Apart from these lists the remaining input that is additionally needed are the
inequivalent, non-zero transition matrix elements. With units of time−1, these
matrix elements correspond to the rate constants of the various elementary
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processes, i.e. Wαβ = ka if the transition from state α to state β results from ele-
mentary process a with rate constant ka [22, 75]. In first-principles (1p) microkinetic
approaches these rate constants are determined by electronic structure theory cal-
culations, and it is through these rate constants that such kind of modeling then
obtains its (hopefully) predictive character. To derive the rate constants predomi-
nantly from computationally less demanding static, again typically DFT, calcula-
tions, the currently most commonly employed approach in the area of surface
catalysis is transition-state theory (TST) [19, 81, 82]. Without having seen much
systematic scrutiny, this approach seems to meet sufficient accuracy, which is thus
quite different to the situation in other fields e.g. when liquids are involved. TST
yields rate constants of a general form

ka =A T , pið Þexp −ΔEa

kBT

� 	
, ð7:5Þ

where the prefactor A(T, pi) accounts for entropic changes between the initial and
transition state (TS) of the process, and ΔEa is the corresponding energy barrier. As
the prefactor enters this equation only linearly, various, in parts drastic, approxi-
mations for it characterize the present state-of-the-art in the field [19, 83]. In par-
ticular for adsorption or desorption processes or Eley-Rideal reaction steps that may
involve large entropy changes this will have to be improved in future work [60, 84].
Apart from their direct quantitative impact on the rate constant and subsequently the
microkinetic simulation result, such approximations have generally also to be seen
in the light of microscopic reversibility. In order to be thermodynamically con-
sistent, rate constants of forward and (time-reversed) backward processes like
adsorption and desorption have to fulfill a detailed balance condition. If different
approximations are made for the two processes, this condition can be broken.
Kinetic models that correspondingly do not yield the proper thermodynamic limits
should be met with great skepticism, but are unfortunately frequently found in the
literature.

This leaves as most crucial DFT input the energy barriers ΔEa for every
inequivalent elementary process a. Already for decently sized reaction networks
and considering only a few inequivalent active site types, the explicit calculation of
these barriers quickly becomes the predominant computational bottleneck of 1p
microkinetic studies [19]. This in particular, as the ΔEa generally depend on the
local environment, i.e. lateral interactions with nearby co-adsorbates modify the
energy barriers. In order to capture such effects, multiple DFT calculations of the
same process need to be performed for different local adsorbate configurations. In
1p-kMC simulations these are then cast into some (short-range truncated)
lattice-gas Hamiltonian expansion [85–88], while in 1p-MF rate equation theory
this dependence is considered through an effective coverage-dependence ΔEa =
ΔEa(θ) [7, 89, 90]. In their prevalent formulation 1p microkinetic studies thus carry
an enormous overhead. Extensive DFT calculations are required to determine all
process barriers and their environment dependencies. This information is then
stored in look-up tables, which serve as basis for the subsequent and
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computationally typically far less demanding actual 1p-kMC or 1p-MF rate equa-
tion simulations. An obvious disadvantage of such a static divide-and-conquer type
procedure is that potentially extensive DFT calculations are performed for reaction
intermediates or coverage regimes that in the actual microkinetic simulations for the
targeted reaction conditions are never met.

A pragmatic solution to this is to start with quite simple formulations for the
reaction network and lateral dependencies, possibly using lower-level theories for
an only approximate account of the lateral interactions. In a second step one iter-
atively refines the model depending on the simulation results one obtains. Due to
the non-linearities of the reaction network, such an approach is not fool proof
though, i.e. the initial model can be so coarse that it leads into a completely wrong
direction. A highly appealing alternative especially for the trajectory-based 1p-kMC
simulations would therefore be to only compute the really required reaction barriers
on-the-fly, i.e. in the course of the on-going 1p-kMC simulation. Such approaches
come with names like adaptive kMC, on-the-fly kMC, self-learning kMC, or kinetic
activation-relaxation technique [91–94]. They would indeed also be most appealing
from the perspective of a dynamical catalysis picture, as such approaches would not
necessarily be restricted to a fixed lattice model. The essential idea of these kind of
on-the-fly kMC formulations is to compute all energetically low-lying (and there-
fore dynamically relevant) barriers out of a given system state α. In accordance with
the kMC algorithm, one of the corresponding elementary processes is executed and
brings the simulation into a new system state β. This process is then iterated, i.e.
barrier calculations are performed sequentially for every new state visited. Huge
savings in computational time can thereby be achieved when appropriately storing
the already computed barriers and introducing some form of state recognition. If the
algorithm thus realizes that the new state β corresponds to an already visited earlier
state α, barriers are not recomputed, but drawn from the existing look-up tables.
Despite these savings, the computational effort of an at least semi-reliable explo-
ration of all low-lying barriers at individual kMC steps is generally still orders of
magnitude higher than those of the traditional divide-and-conquer look-up formu-
lation. Applications of on-the-fly kMC in surface catalysis are therefore presently
either restricted to very specialized systems with only reduced configurational
complexity or they employ force fields rather than DFT calculations for the process
barriers.

The computationally expensive part of an actual barrier calculation is in either
case the location of the TS through advanced transition state search algorithms [95,
96]. In on-the-fly 1p-kMC, where the final states are not known, this would be
one-ended techniques like the dimer method [97, 98]. In the prevalent divide-and-
conquer 1p microkinetic approaches, where initial and final state of an elementary
process are known, most accurate results are instead obtained by state-of-the-art
two-ended techniques like the (climbing image) nudged elastic band (NEB) method
or string approaches [99–101]. Regardless of dimer, NEB, or string, one TS search
will involve numerous individual DFT calculations. For the system sizes typical for
surface catalytic problems these DFT calculations may furthermore exhibit severe
convergence issues, or the actual TS search algorithm has problems converging to
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the (right) TS. The barrier determinations are therefore the by far most critical and
(human and CPU) time-consuming step in a 1p microkinetic study. Obviously, it is
thus also this step that has the highest leverage for speed-ups through more
approximate approaches. This starts already with the use of less rigorous TS search
algorithms like drag methods or a mere calculation of energy profiles along
assumed reaction paths. However, most prominently and with highest efficiency
gains, this has been exploited by approximate relations between the activation
energies and the thermochemistry of the reaction [102–108]. One prominent
example are the well-known Brønsted-Evans-Polanyi (BEP) relationships [5, 7,
106–108], which yield linear relations of the kind ΔEa ≈ c1 (Ef –Ei) + c2, where c1,
c2 are constants and (Ef –Ei) is the energy difference of the initial and final state of
the reaction. Since the latter thermochemical energy difference only involves
geometry optimizations of (meta)stable configurations, knowledge of such a rela-
tion yields substantial reductions in computational cost as compared to an explicit
TS search. An even further reduction in cost and the number of independent
parameters has been achieved by realizing that the binding energetics of many
reaction intermediates can be related to the binding energetics of a few base ele-
ments out of which these reaction intermediates are typically composed, namely H,
C, N, O, and S [108–110]. While the initial task was thus to explicitly compute a
considerable number of energy barriers for each elementary process of the con-
sidered reaction network, exploitation of the latter scaling relations and BEP rela-
tions may reduce this to the calculation of the binding energies of a few base
elements. This can imply such an enormous reduction in the computational cost that
it allows to access quite complex reaction networks and in particular engage in
computational screening studies [7, 108, 111–119]. This route has hitherto been
exclusively pursued within 1p-MF rate equation approaches. As the goal of kMC-
based 1p microkinetic modeling is typically more a comprehensive and most
accurate understanding of a particular system, use of such more approximate
scaling and BEP energetics may have seemed less obvious. However, there is no
conceptual obstacle against doing so in the future.

7.3.3 Surface Morphological Transitions in Near-Ambient
Catalysis

Just as with (constrained) ab initio thermodynamics, a central outcome of 1p
microkinetic modeling is the surface structure and composition as a direct function
of the surrounding gas phase. As the theory is explicitly time dependent, this can be
for steady-state reaction conditions, but equally for non-stationary situations as for
example in temperature-programmed-reaction (TPR) experiments. 1p-MF rate
equation theory provides this information in the form of average coverages at the
considered active sites. 1p-kMC simulations additionally provide the detailed
spatial distributions and fluctuations at the surface. Such insight is invaluable to
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properly capture and analyze microstructural effects, for instance at oxide surfaces
or defects like vacancies or steps. Of course, the 1p-kMC distributions can also be
averaged to obtain (proper) average coverages without having to resort to the MF
approximation.

In the resulting surface populations the kinetic effects due to the on-going reaction
events (that were neglected in constrained ab initio thermodynamics) are now
explicitly considered. Also, “phase” transitions are better described as “configura-
tional entropy” is accounted for. In 1p-MF rate equation theory without any cov-
erage dependencies this is at a level equivalent to Langmuir models [120], in
1p-kMC this is the accurate numerical evaluation on the ensemble of active sites
considered. Quite deliberately, I have put the words “phase” and “configurational
entropy” in quotes here, as these are inherently thermodynamically defined terms,
while the consideration of an open catalytic system with on-going reaction events in
1p-kMC and 1p-MF obviously brings us outside the realm of thermodynamics. To
reflect this, pioneering kMC work on surface catalytic problems [121] has created
the, sometimes critically mocked word “kinetic phase diagrams” (then containing
“kinetic phase transitions” etc.) to denote the equivalent compositional output as
compiled in the surface phase diagrams of (constrained) ab initio thermodynamics as
e.g. shown in Figs. 7.1, 7.2 and 7.3. In the following I will stay within this type of
nomenclature in exactly the spirit as put forward by Ziff, Gulari, and Barshad [121].

Figure 7.4 shows such a kinetic phase diagram for the CO oxidation problem at
RuO2(110) that I discussed at the (constrained) ab initio thermodynamics level
above. Directly compared are results obtained by 1p-kMC simulations and 1p-MF
rate equation theory [60, 78]. Both microkinetic simulations have been based on
exactly the same DFT input and the same considered reaction network, such that the
differences discernible in Fig. 7.4 arise exclusively from the mean-field approxi-
mation in the MF approach. Even though the overall topology of the phase diagram
is largely robust against this approximation, the positions of the catalytically most
relevant kinetic phase boundaries are somewhat shifted. A detailed analysis shows
that this goes hand-in-hand with significant shortcomings of MF theory to appro-
priately describe the catalytic activity and underlying reaction mechanisms [78].
More important for the present context are, however, the much more significant
deviations in the predicted surface structure and composition when comparing both
1p microkinetic theories with the approximate thermodynamic insight in Fig. 7.3.
What prevails is the insight that technologically relevant reaction conditions with
pressures of the order of 1 atm and near-stoichiometric reactant ratios fall in the
vicinity of a phase transition, and in particular the one in which adsorbed O and CO
compete for the so-called coordinately unsaturated (cus) sites offered by this sur-
face. This finding and the importance of the cus sites for the catalytic activity of
RuO2(110) are fully consistent with all presently available experimental data [11,
13, 14]. Substantial differences between (constrained) thermodynamic and
microkinetic theory are, however, obtained for the population of the other (br) idge
active site type offered by the RuO2(110) surface. While (constrained) ab initio
thermodynamics predicts a predominant population with Obr even for largely
CO-rich gas-phase conditions [37, 59], both microkinetic theories agree on an
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essentially complete replacement by CObr species in this regime. This is a classic
illustration of the surface catalytic reactions consuming a reaction intermediate, here
Obr, faster than it can be replenished by adsorption from the gas phase. Since
ab initio thermodynamics is blind to such kinetic effects, it only assesses the very
strong binding of O to these bridge sites and thereby largely overestimates the
presence of this species at the surface.

This showcase example thus nicely underscores the approximate nature of
(constrained) ab initio thermodynamics results and the added value of explicit 1p
microkinetic theories. Of course, not everything is perfect in the latter theories
either. Even in the highly CO-rich gas-phase conditions in the upper left parts of the
panels in Fig. 7.4 both 1p microkinetic theories predict at maximum a fully
CO-poisoned oxide surface, whereas the thermodynamic estimates in Fig. 7.3
immediately reveal the proper complete reduction of the oxide. This difference
arises as the predictive power of the 1p microkinetic approaches extends, of course,
only to the active sites and concomitant set of elementary processes considered in
the model. In the studies behind Fig. 7.4 this framework corresponded to the active
sites of a reduced, but otherwise intact RuO2(110) surface. The structural com-
plexity that would arise when considering a full oxide reduction path would pre-
sently imply a completely intractable 1p input (vide infra), let alone that at best only
a conceptual perception of the individual mechanistic steps involved in such a path
is available to date [122, 123]. For the targeted CO oxidation activity of RuO2(110)
this limitation with respect to oxide reduction is thereby not actually the real
problem. Relevant, near-stoichiometric gas-phase conditions are located sufficiently
well inside the stability regime of the bulk oxide, cf. Figs. 7.3 and 7.4. However, a
long-term deactivation of this RuO2(110) facet has been experimentally reported
even for oxidizing feeds, which was assigned to a microfaceting into an inactive c
(2 × 2)-RuO2(100) structure [124]. Again, such a reaction-induced complex
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Fig. 7.4 Kinetic surface phase diagrams for the RuO2(110) surface in an environment consisting
of O2 and CO at 600 K. Compared are results from 1p-kMC simulations (left panel) with results
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surface morphological transition—which is a prototypical example for exactly the
dynamical view of an evolving catalyst we would like to scrutinize—is presently
largely outside the reach of predictive-quality microkinetic modeling capabilities.

Fortunately, the situation is a bit more accessible for the Pd(100) example dis-
cussed before. Due to the reduced stability of bulk PdO, here “only” the (possibly
continuous) formation and reduction of a thin surface oxide film while on stream is
to be assessed. A first step in this direction has been taken by simply performing
1p-kMC simulations once on the pristine metal, i.e. for a lattice model and set of
elementary reactions pertinent to Pd(100), and once on the perfectly intact surface
oxide, i.e. for a lattice model and set of elementary reactions pertinent to the
(√5 × √5)R27° surface oxide [87]. Evaluating the average surface composition
for a wide range of gas-phase conditions one can assess the boundaries within
which one would still trust either of the two models. Detailed experimental work
indicates the onset of surface oxide formation once a critical O coverage around and
above 0.5 ML on Pd(100) is exceeded [46]. This suggests the 1p-kMC Pd(100)
model as a faithful representation for gas-phase conditions where the O coverage
stays well below this value. Equivalently, one would expect the onset of surface
oxide decomposition whenever a critical coverage of surface oxygen vacancies, say
10%, is exceeded [44]. For gas-phase conditions where this coverage is much lower,
the intact 1p-kMC surface oxide model should be a good representation. Intrigu-
ingly, the results of the corresponding 1p-kMC simulations shown in Fig. 7.5
identify a finite range of (T, pCO, pO2)-conditions where both stability criteria are
fulfilled [87]. In this range the Pd(100) 1p-kMC model predicts an O coverage
below 0.25 ML, while simultaneously the (√5 × √5)R27° surface oxide 1p-kMC
model predicts a surface oxygen vacancy concentration well below 10%. The
corresponding bistability region is thereby quite robust against uncertainties in the
DFT energetics or the treatment of lateral interactions. Moreover, its location in (T,
pO2)-space in fact comprises precisely the near-ambient reaction conditions for

Fig. 7.5 Bistability region in CO oxidation catalysis, i.e. gas-phase conditions where 1p-kMC
models simultaneously predict the stability of pristine Pd(100) and the (√5 × √5)R27° surface
oxide. At 600 K this bistability region comprises technologically relevant (near-)ambient,
stoichiometric gas-phase conditions. At 400 K this region is shifted to more O-rich conditions as
employed in the Reactor STM experiments by Hendriksen et al. [56, 61, 62]. From [87]

7 Ab Initio Thermodynamics and First-Principles Microkinetics … 175



which Reactor STM studies had reported an oscillatory formation and decompo-
sition of an oxidic film at the surface of the working catalyst [56, 61, 62].

In particular at elevated temperatures, 600 K in Fig. 7.5, the bistability region
centers on technologically most relevant near-stoichiometric partial-pressure ratios.
These findings thus fully support a dynamic view of catalysis at least in the sense
that a surface morphological transition, here the formation of a thin surface oxide
layer, may indeed occur in the reactive environment. The simulations, performed
separately on the two intact surface states, can, however, not address whether the
very dynamics of the transition itself is a key factor. In other words, whether it is
only the continuous formation and decomposition of the oxidic film in the exper-
imentally reported oscillations that creates the real active sites, e.g. in form of
transient structures or at domain boundaries on the evolving surface. For this the
1p-kMC simulations would have to be able to represent both surface states and
transitions between them. For this very system a step in this direction has in fact
recently been taken through a novel multi-lattice kMC approach, which exploits the
lattice commensurability of the (√5 × √5)R27° surface oxide with the Pd(100)
surface [125]. The latter allows to establish a superlattice model that simultaneously
comprises both metal and surface oxide sites, with the multi-lattice kMC algorithm
keeping track of which surface areas are either in the oxide or the pristine metal
state by appropriately activating or deactivating elementary processes at the cor-
responding sites. At present this approach has only been applied to the reduction of
the surface oxide in a CO atmosphere [125]. Intriguingly, CO oxidation reaction
steps across metal-oxide domain boundaries turned indeed out to be essential to
reproduce the experimentally reported temperature dependence of the reduction rate
[126].

Whether the same or other processes related to the dynamics of an evolving
surface are also crucial for steady-state CO oxidation catalysis remains yet to be
seen. The price to pay for such insight through multi-lattice kMC simulations is to
establish a detailed atomistic pathway for the transition between the treated system
states, here the pristine metal and the surface oxide. The exploitation of the lattice
commensurability renders this endeavor tractable. It nevertheless constitutes a
computationally most expensive step involving a multitude of 1p calculations
[125]. While this obviously restricts the dynamical phenomena in catalysis that can
presently be tackled, an important aspect to keep in mind is the following.
Regardless of whether traditional single- or multi-lattice 1p-kMC, already the lattice
models and concomitant elementary process lists that can be handled today allow to
treat quite complex reaction networks that comprise many different reaction
mechanisms. Which of these reaction mechanisms dominates the catalysis is then
an output of the simulations, not an input. This is a crucial asset that distinguishes
such 1p microkinetic simulations from ubiquitous kinetic studies where a certain
reaction mechanism is simply assumed, often based on rather little or only indirect
evidence.
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7.3.4 Catalytic Activity from First Principles

Another important asset of 1p microkinetic simulations is, of course, that they do
not only provide information about the surface structure and composition, but also
determine the catalytic activity and, if applicable, the selectivity. Just as much as for
the surface (kinetic) phase diagrams this information can be computed in steady
state for a range of gas-phase conditions and then be compiled in corresponding,
so-called TOF maps. Alternatively, if transient situations are addressed, it can for
example be computed for various initial system states. Figure 7.6 shows examples
for such data drawing on the previously-discussed example of CO oxidation at
RuO2(110) [127, 128]. In both shown examples the absolute pressures addressed
are in the UHV regime, which makes it possible to directly compare to corre-
sponding data from Surface Science experiments (vide infra). In both cases
excellent agreement is reached, which in particular for the transient TPR data is
only obtained through the appropriate consideration of the spatial distributions at
the catalyst surface. As shown in Fig. 7.6 qualitatively different variations with
initially prepared Ocus coverage would be expected for two competing reaction
mechanisms, Obr + COcus (∼linear variation) and Ocus + COcus (∼parabolic vari-
ation). The latter mechanism is known to be the more reactive one due to the much
weaker binding of the Ocus species. The at first glance enigmatic strong suppression
of this mechanism seen in Fig. 7.6 is instead a direct result of diffusion limitations
in the trench-like arrangement of the cus sites under the specific experimental TPR
conditions. Such an effect can only be captured by 1p-kMC simulations, which only
then are able to reconcile the known higher reactivity of the Ocus + COcus mech-
anism with the linear profile measured in the TPR experiments [128]. Both for this
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example and in general, the capability to explicitly resolve the contributions of
individual reaction mechanisms to the overall (and observable) catalytic activity is
thus a most important aspect for the mechanistic understanding. Obtaining wrong
relative contributions correspondingly bears the risk of deducing wrong conclusions
(and “ideas”). Similar to the TPR case, a wrong ordering of the contribution from
different reaction mechanisms in 1p-MF rate equation theory has also been reported
for steady-state reaction conditions [78], which thus adds to the list of shortfalls of
this theory if the MF approximation is unjustified.

Despite reports of a number of similarly successful 1p microkinetic studies
[113], one has to recognize that reaching a quantitative agreement in absolute TOFs
cannot generally be expected. This holds already because of the typically large
uncertainties in experimental absolute TOFs. The uncertainties on the theoretical
side are not any smaller, primarily due to the aforementioned uncertainties in the
approximate DFT energetics. At the temperatures of interest in catalysis, the quo-
ted ∼0.3 eV (∼30 kJ/mol) uncertainty in DFT barrier values translates into 1p rate
constants that can be wrong by several orders of magnitude. For more approximate
BEP or scaling-derived barriers, this will be even worse. At first glance such a large
uncertainty seems to invalidate any attempt to compute meaningful TOFs, or it
lends support to the pragmatic approach to empirically “correct” 1p microkinetic
simulations such that they match certain experimental findings [129]. A more
constructive approach that does not sacrifice the invaluable independence of a
first-principles theory is instead to systematically analyze which errors in the 1p
energetic data base can really contribute to what degree to errors in the predicted
activity (or other properties of interest). A central concept in this respect are
so-called sensitivity analyses, which loosely speaking are nothing but a systematic
variation of the input energetic parameters to assess the influence this has on the
outcomes of the microkinetic model (surface composition, activity, selectivity,
relative contributions of reaction mechanism, etc.) [130–136].

Formulated as linear response theories, approaches like the degree of rate control
[131, 135] thereby vary individual rate constants (barriers), while keeping every-
thing else fixed. The insight such analysis provides is which of the elementary
processes are rate-controlling (rate-determining) and which ones are not. There are
several things one can learn from this. An immediate insight is the corresponding
mechanistic understanding about the reaction network per se. This is often much
more robust with respect to the DFT uncertainties and in itself typically much more
relevant than being able to quantitatively determine an absolute TOF. Among
others knowledge of the rate-determining steps is the gateway to simplified
descriptions of the reaction network and therewith to computational screening, as
much as it identifies those kinetic bottlenecks that need to be addressed in a rational
design of improved catalysts. With respect to the DFT uncertainty, rate constants of
not- rate-determining processes can typically be varied by several orders of mag-
nitude without having any effect on the simulation result. We correspondingly learn
that DFT errors in such rate constants are irrelevant. On the contrary, any error
contained in the description of rate-determining steps will directly propagate
through and these are then the errors one should worry about.
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In some cases knowing which energetic input quantities are the crucial ones
already allows to rationalize agreement or disagreement with experimental data. For
the steady-state catalytic activity shown in Fig. 7.6 a degree of rate control analysis
e.g. reveals that under the probed gas-phase conditions it is primarily the disso-
ciative adsorption of O2 into a cus site pair that is rate determining [135]. The good
agreement with experiment then comes about as this is a non-activated process.
Rather than by the possibly inaccurate DFT rate constant, the TOF is in this case
controlled by the limited availability of free site pairs for O2 adsorption which is
determined on the statistical-mechanical level. In the general case, sensitivity
analyses identify those microscopic input quantities on which attention should be
focused, say a particular binding energy or a particular reaction barrier. Benchmark
against higher-level theory or experiment can then in principle provide an assess-
ment how much the particular DFT quantity is actually in error, and through the
sensitivity analysis how much this propagates through to the absolute TOF. The
latter step is important as it tells, whether a deviation between simulated and
experimental TOFs is really (exclusively) due to an inaccuracy in the underlying 1p
energetics. As I will illustrate further below, there can be multiple other reasons for
such deviations. This alone is an important argument against simply empirically
“correcting” the microkinetic simulations by fitting selected 1p energetic values to
match experimental activities or other meso-/macroscopic observables. Such a
fudging can easily mask the true reasons for the deviation between 1p theory and
experiment. Also replacing the 1p energetic quantity with a corresponding exper-
imental microscopic benchmark quantity is a dangerous endeavor. Even if exper-
imental quantities carry microscopic names like “adsorption energy” or “reaction
barrier” they are typically the result of some approximate data analysis scheme, for
which the multitude of TPR analyses represents a prominent example [137]. Rather
than clean data, such numbers are thus effective quantities that contain an
unspecified systematic error that is not covered by the quoted statistical error bars.
Even in case of allegedly direct energetic measurements like microcalorimetry,
firmly believed reference numbers do change with time and it remains an ongoing
challenge to fully establish a safe experimental database for adsorption energetics
[138].

A further argument against selectively replacing individual DFT energetic
parameters with empirical numbers are the systematic trends often exhibited by
DFT errors, with the widespread PBE functional [139] for instance suspected to
show a systematic overbinding at metal surfaces [140]. Replacing individual
energetic quantities breaks such trends and thereby a potential compensation of the
systematic errors. Such correlations in the underlying energetic data base could also
not be captured by the above-described linear-response type sensitivity analyses. In
this respect, the concept behind the recently introduced Bayesian error estimation
functionals (BEEF) represents an intriguing step forward [141–143]. The idea here
is to generate an entire ensemble of functionals where known errors in adsorption
energetics are mapped onto uncertainties of the parameters entering the electronic
xc model. Rather than once, a 1p microkinetic simulation is then run multiple times,
each time with different energetic data sets obtained from an appropriate sampling
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of this ensemble of functionals. The spread of the results obtained provides a
quantitative error estimate and first applications of this BEEF concept indeed
indicate that correlations in the DFT errors significantly reduce the predicted error
on calculated TOFs [144].

In fact, an even larger reduction of errors was reported when comparing TOFs
calculated for different metal catalysts [144]. This is important as corresponding
relative activity comparisons, also of the same catalyst for different reaction con-
ditions, are in any case much more relevant than the computation of an individual
absolute TOF for one set of reaction conditions. The increased robustness of such
trends could furthermore also rationalize the success of emerging computational
screening studies which rest entirely on a comparison of relative activities varying
over many orders of magnitude [7, 108, 111–119]. The critical aspect here is
therefore likely less the 1p energetic data base, but the rather drastic assumptions on
the microkinetic level that are presently made to make such studies tractable. Even
through comparing an entire series from early to late transition metals, identical
reaction mechanisms are for instance simply imposed (and not evaluated as in
1p-kMC simulations). As discussed at the beginning of this section, these reaction
mechanisms furthermore typically only consider a few active sites as offered by a
static, bulk-truncated surface. Even though the typically obtained, volcano-shaped
activity variations over a transition metal series often exhibit their peaks close to
metals that are known to be good catalysts for the studied reaction, it is presently
not clear if this should really be seen as a validation of the imposed mechanism. As
such it is an open question whether the success of the seminal screening studies has
any bearing on the issue of a static versus a dynamically evolving catalyst surface.
The true answer will eventually only come from future 1p microkinetic (screening)
studies in which the possibility of surface morphological transitions is explicitly
contained in the employed model.

7.3.5 Mass Transfer Limitations Under Near-Ambient
Conditions

Regardless of the already discussed uncertainties in 1p calculated TOFs, there is yet
another complication when comparing them to experiment that particularly applies
to the in situ context, i.e. to the quest to specifically address catalytic activities at
technologically relevant near-ambient conditions. For corresponding pressures the
actual flow of mass and heat through the employed reactor becomes a significant
factor. In fact, especially the dedicated experimental setups employed in in situ
studies of model catalysts are likely to exhibit most complex flow profiles, as
sophisticated spectroscopic probes and pumps often need necessarily to be placed in
the direct vicinity of the catalyst surface [8, 9]. For the intrinsically targeted reaction
conditions with highest turnovers of reactants into products this can give rise to heat
and mass transfer limitations, i.e. significant temperature and (partial) pressure
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gradients inside the reactor [16–18, 145]. The local gas-phase composition (and
therewith reaction conditions) directly at the catalyst surface may then deviate
significantly from the nominal reaction conditions controlled at the inlet of the
reactor. Existence of such mass transfer limitations generally prevents any mean-
ingful measurements of the catalytic activity via the standard compositional anal-
ysis at a reactor outlet or orifices placed at the reactor walls. They also prevent any
straightforward comparison to 1p microkinetic simulations, unless the latter are
suitably integrated into a computational framework that appropriately accounts for
the concentration and flow profiles in the reactor.

Such an integration into corresponding computational fluid dynamics
(CFD) simulations has a longer history for MF rate equation theory [146], but could
only recently be achieved for kMC based microkinetic simulations [16–18]. Placed
into the context of 1p microkinetic simulations, resulting 1p-MF–CFD or 1p-kMC–
CFD multiscale modeling frameworks are in their absolute infancy. For the theme
of a potentially dynamically-evolving catalyst surface they nevertheless bear
exciting prospects. Up to now this discussion centered only on the possibility of
surface morphological transitions at the working catalyst, with in particular the CO
oxidation at Pd(100) example pointing at an intrinsic heterogeneity of the surface.
This does not answer the central question as to the nature of the active sites. Is one
of the coexisting phases much more active than the other, or are active sites maybe
only created at the (evolving) phase boundaries? Corresponding answers could be
provided by a dedicated analysis of in situ activity data, appropriately accounting
for potential flow limitations in the experiment. For the CO oxidation at Pd(100)
system such a first analysis of laser-induced fluorescence (LIF) data has in fact
already heralded the intriguing contributions this can make [147].

Figure 7.7 shows the LIF-measured CO2 concentration directly above the cat-
alyst surface, which is a non-invasive local measure of the product formation and
therewith of the catalytic activity [147]. Also shown are the corresponding signals
as predicted by 1p-kMC–CFD simulations either employing the 1p-kMC lattice
model for the pristine Pd(100) surface or the 1p-kMC lattice model for the surface
oxide. For the measured range of reaction conditions, namely a temperature ramp at
constant pressure and slightly O-rich stoichiometry, only the prior model yields a
signature compatible with the experimental data. This suggests the predominant
catalytic activity to be due to active sites still being in a metallic surface termina-
tion. On the other hand, there is a notable shift of the theoretical signature
by ∼100 K to lower temperatures. A sensitivity analysis points at the CO oxidation
reaction barrier as rate-determining step, and rerunning the simulations on an
energetic data base obtained with the less binding RPBE functional [140] indeed
brings the theoretical signature into much closer agreement with experiment, cf.
Fig. 7.7. In an empirically “correcting” approach one could now attribute the
remaining difference to a still deficient RPBE energetics and simply fit the CO
oxidation barrier so as to perfectly match the theoretical and experimental LIF
profile.

Alternatively, we could recall that the probed reaction conditions fall into the
bistability regime discussed above, and both metal and surface oxide phase could
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potentially coexist at the surface [87]. Indeed, at the RPBE level and disregarding
any special catalytic activity of sites at domain boundaries, a quantitative agreement
with the experimental signature can also be reached when assuming that the pre-
dominantly active pristine metal domains cover only a fraction of ∼25% of the total
surface area [147]. On a methodological level this is a perfect illustration that
disagreement of a first-principles theory with experiment can have multiple, quite
distinct sources. A naïve fudging of just the 1p energetics to reach agreement in
macroscopic observables like catalytic activity is thus ill-advised. Instead, further
experiments and/or calculations are required to single out the true source for the
disagreement. In the present example, the suggested surface heterogeneity could be
scrutinized by combining the LIF activity measurements with an in situ surface
characterization technique. If the rationalization in terms of a phase mixture pre-
vails, this could potentially resolve quite some controversies in the emerging field
of in situ model catalyst studies. With a prevailing focus on spectro-/microscopic
measurements, phases that are predominantly characterized at the working surface
have there often tacitly been assumed to also be the ones actuating the catalysis.
From a modeling perspective, the truly exciting validation would instead come
when multi-lattice or off-lattice kMC simulations are able to explicitly treat an
evolving surface heterogeneity. This is the great challenge for the future, and it will
for sure create many interesting “ideas” in the context of a reaction-induced
dynamical picture of surface catalysis.
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Fig. 7.7 Measured CO2 LIF signal over the active catalyst surface for a temperature ramp from
500 to 650 K and back (as indicated by the arrows). Feed gas conditions are: 4:1 O2/CO ratio, total
pressure 180 mbar; 50% Ar; inlet mass flow 72 mln/min. Additionally shown is the corresponding
calculated CO2 concentration variation as predicted for the (√5 × √5)R27°-O surface oxide
(blue lines) and for the pristine metal state of Pd(100) (red lines). To assess the uncertainties
arising from the approximate DFT energetics, data obtained with the PBE [139] (solid lines) and
RPBE [140] (dashed lines) xc functional are shown. From [147]
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7.4 Conclusions and Outlook

Over the last 10–15 years (constrained) ab initio thermodynamics and
first-principles microkinetics have become well-established tools in surface catal-
ysis research. (Constrained) ab initio thermodynamics is in fact a routine approach
that has spread even well out of academia. It provides first, approximate insight into
the structure and composition of the catalyst surface at finite, technologically-
relevant gas-phase compositions. Near-term advancement of this technique will
most likely center on coupling this thermodynamic framework with global geom-
etry optimization algorithms and thereby overcome the prevalent restricted sam-
pling of configuration space in form of small sets of structural candidates
hand-selected by the researcher.

More refined insight into the structure and composition, as well as intrinsic TOFs
can be obtained from computationally more involved 1p microkinetic approaches.
The power of these techniques and the step-out changes connected with their advent
are presently already impressively heralded by trend studies, where rough activity
estimates are used for a computational screening of catalyst materials. Such studies
are currently based on simplified mean-field kinetic models that assume reaction
mechanisms and rate-determining steps, and they employ approximate scaling rela-
tions to reduce the required first-principles energetic input. At this level of theory
obtaining a detailed mechanistic understanding and quantitative TOFs of an indi-
vidual system is neither intended, nor achievable. In fact, already the uncertainty in
presently-available DFT energetics for extended surface systems will generally pre-
vent reaching quantitative absolute TOFs in the foreseeable future. However, con-
sidering that reaching such numbers is similarly elusive in experimental studies this is
also not really a goal to worry about. Important is, instead, to systematically validate,
e.g. through sensitivity analysis, that the relevant (mechanistic and activity) conclu-
sions drawn are robust with respect to these and other methodological uncertainties.

Due to the continuously increasing computer power alone we will certainly see a
rapid spreading of 1p microkinetic modeling in the next years, eventually also into
industry. Obvious advancements are the extension to more complex reaction net-
works with ever diminishing assumptions on reaction paths and intermediates, the
move from presently-studied individual facets to entire (supported) nanoparticles,
and a gradual shift from prevalent mean-field kinetics to spatially-resolved kinetic
Monte Carlo simulations. The central challenge to all of this is that all of the here
discussed methodology relies inherently on a rather rigid picture of the catalyst
substrate, exploiting a certain level of crystalline order and static active site
structures. Addressing the highly dynamic picture of heterogeneous catalysis
increasingly suggested by in situ studies—with reaction-induced complex (surface)
morphological changes and an evolving, possibly liquid-like phase behavior—is
largely impossible with currently available methodology. Great care has to be taken
that this incapability to describe such scenarios with present models does not
generate the “idea” to readily dismiss them. Instead, it should be a source of
motivation to further push the field and tackle the methodological frontiers.
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