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Abstract. A group of mobile agents, identical, anonymous, and oblivi-
ous (memoryless), having the capacity to sense only the relative direction
(bearing) to neighboring agents within a finite visibility range, are shown
to gather to a meeting point in finite time by applying a very simple rule
of motion. The agents’ rule of motion is: set your velocity vector to be
the sum of the two unit vectors in R

2 pointing to your “extremal” neigh-
bours determining the smallest visibility disc sector in which all your
visible neighbors reside, provided it spans an angle smaller than π, oth-
erwise, since you are “surrounded” by visible neighbors, simply stay put.
Of course, the initial constellation of agents must have a visibility graph
that is connected, and provided this we prove that the agents gather to a
common meeting point in finite time, while the distances between agents
that initially see each other monotonically decreases.

Keywords: Gathering · Bearing-only · Convex polygon

1 Introduction

This paper studies the problem of mobile agent convergence, or robot gathering
under severe limitations on the capabilities of the agent-robots. We assume that
the agents move in the environment (the plane R

2) according to what they
currently “see”, or sense in their neighborhood. All agents are identical and
indistinguishable (i.e. they are anonymous having no i.d’s) and, all of them
are performing the same “reactive” rule of motion in response to what they
see. Our assumption will be that the agents have a finite visibility range V ,
a distance beyond which they cannot sense the presence of other agents. The
agents within the “visibility disk” of radius V around each agent are defined as
its neighbors, and we further assume that the agent can only sense the direction
to its neighbors, i.e. it performs a “bearing only” measurement yielding unit
vectors pointing toward its neighbor. Therefore, in our setting, each agent senses
its neighbors within the visibility disk and sets its motion only according to the
distribution of unit vectors pointing to its current neighbors. Figure 1 shows a
constellation of agents in the plane (R2), their “visibility graph” and the visibility
disks of some of them, each agent moves based on the set of unit vectors pointing
to its neighbors.
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Fig. 1. A constellation of agents in the plane displaying the “visibility disks” of agents
Ak, Al, Ai, Aj , Ap and the visibility graph that they define, having edges connecting
pairs of agents that can see each other.

In this paper we shall prove that continuous time limited visibility sensing
of directions only and continuous adjustment of agents’ velocities according to
what they see is enough to ensure the gathering of the agents in finite time to a
point of encounter. The literature of robotic gathering is vast and the problem
was addressed under various assumptions on the sensing and motion capabil-
ities of the agents. Here we shall only mention papers that deal with gather-
ing assuming continuous time motion and limited visibility sensing, since these
are most relevant to our work reported herein. The paper [6] by Olfati-Saber,
Fox, and Murray, nicely surveys the work on the topic of gathering (also called
consensus) for networked multi-agent systems, where the connections between
agents are not necessarily determined by their relative position or distance. This
approach to multi-agent systems was indeed the subject of much investigation
and some of the results, involving “switching connection topologies” are useful
in dealing with constellation-defined visibility-based interaction dynamics too.
A lot of work was invested in the analysis of “potential functions” based multi-
agent dynamics, where agents are sensing each other through a “distance-based”
influence field, a prime example here being the very influential work of Gazi and
Passino [7] which analyses beautifully the stability of a clustering process. Inter-
actions involving hard limits on the “visibility distance” in sensing neighbors
were analysed in not too many works. Ji and Eggerstedt in [2] analysed such
problems using potential functions that are “visibility-distance based barrier
functions” and proved connectedness-preservation properties at the expense of
making some agents temporarily “identifiable” and “traceable” via a hysteresis
process. Ando, Oasa, Suzuki and Yamashita in [8] were the first to deal with
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hard constraints of limited visibility and analysed the “point convergence” or
gathering issue in a discrete-time synchronized setting, assuming agents can see
and measure both distances and bearings to neighbors within the visibility range.
Subsequently, in a series of papers, Gordon, Wagner, and Bruckstein, in [3–5],
analysed gathering with limited visibility and bearing only sensing constraints
imposed on the agents. Their work proved gathering or clustering results in
discrete-time settings, and also proposed dynamics for the continuous-time set-
tings. In the sequel we shall mention the continuous time motion model they
analysed and compare it to our dynamic rule of motion. In our work, as well as
most of the papers mentioned above one assumed that the agents can directly
control their velocity with no acceleration constraints. We note that the lit-
erature of multi-agent systems is replete with papers assuming more complex
and realistic dynamics for the agents, like unicycle motions, second order sys-
tems and double integration models relating the location to the controls, and
seek sensor based local control-laws that ensure gathering or the achievement of
some desired configuration. However we feel that it is still worthwhile exploring
systems with agents directly controlling their velocity based on very primitive
sensing, in order to test the limits on what can be achieved by agents with such
simple, reactive behaviours.

2 The Gathering Problem

We consider N agents located in the plane (R2) whose positions are given by
{Pk = (xk, yk)T }k=1,2,...,N , in some absolute coordinate frame which is unknown
to the agents. We define the vectors

uij =

{
Pj−Pi

‖Pj−Pi‖ 0 < ‖Pj − Pi‖ ≤ V

0 ‖Pj − Pi‖ = 0 or ‖Pj − Pi‖ > V

hence uij are, if not zero, the unit vectors from Pi to all Pj ’s which are neighbors
of Pi in the sense of being at a distance less than V from Pi, i.e. Pj ’s obeying:

‖Pj − Pi‖ � [(Pj − Pi)T (Pj − Pi)]1/2 ≤ V

Note that we have uij = −uji,∀(i, j). For each agent Pi, let us define the special
vectors, u+

i and u−
i (from among the vectors uij defined above). Consider the

nonzero vectors from the set {uij}j=1,2,...,N . Anchor a moving unit vector η̄(θ)
at Pi pointing at some arbitrary neighbor, i.e. at uik �= 0, η̄(0) = uik and rotate
it clockwise, sweeping a full circle about Pi. As η̄(θ) goes from η(0) to η(2π) it
will encounter all the possible uij ’s and these encounters define a sequence of
angles α1, α2, . . . , αr that add to 2π = α1 + . . . + αr (αk = angle from k-th to
(k+1)-th encounter with a uij , αr = angle from last encounter to first one again,
see Fig. 2). If none of the angles {α1, . . . , αr} is bigger than π, set u+

i = u−
i = 0.

Otherwise define u+
i = ui(m) and u−

i = ui(n), the unit vectors encountered when
entering and exiting the angle αb > π bigger than π.
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Fig. 2. Leftmost and rightmost visible agents of agent located at Pi.

One might call u−
i the pointer to the “leftmost visible agent” from Pi and u+

i

the pointer to the “rightmost visible agent” among the neighbors of Pi. If Pi has
nonzero right and leftmost visible agents it means that all its visible neighbors
belong to a disk sector defined by an angle less than π, and Pi will be movable.
Otherwise we call it “surrounded” by neighbors and, in this case, it will stay in
place while it remains surrounded. The dynamics of the multi-agent system will
be defined as follows.

dPi

dt
= v0(u+

i + u−
i ) for i = 1, . . . , N (1)

Note that the speed of each agent is in the span of [0, 2v0]. With this we have
defined a local, distributed, reactive law of motion based on the information
gathered by each agent. Notice that the agents do not communicate directly, are
all identical, and have limited sensing capabilities, yet we shall show that, under
the defined reactive law of motion, in response to what they can “see” (which is
the bearings to their neighboring agents), the agents will all come together while
decreasing the distance between all pairs of visible agents. A simulated example
of such a system is given in Fig. 3.

Assume that we are given an initial configuration of N agents placed in the
plane in such a way that their visibility graph is connected. This just means
that there is a path (or a chain) of mutually visible neighbors from each agent
to any other agent. Our first result is that while agents move according to the
above described rule of motion, the visibility graph will only be supplemented
with new edges and old “visibility connections” will never be lost.
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Fig. 3. Simulated evolution at different snapshots of a system composed of 15 agents
obeying the laws of (1) with a random initial constellation. The convex hull of the set
of agents is also represented.

2.1 Connectivity is Never Lost

We shall show that

Theorem 1. A multi-agents system under the dynamics

{Ṗi = v0(u+
i + u−

i )}i=1,...,N )

ensures that pairs of neighboring agents at t = 0 (i.e. agents at a distance less
than V ) will remain neighbors forever.

Proof. To prove this result we shall consider the dynamics of distances between
pairs of agents. We have that the distance Δij between Pi and Pj is

Δij = ‖Pj − Pi‖ = [(Pj − Pi)T (Pj − Pi)]1/2

hence
d
dtΔ

(t)
ij = 1

‖Pj−Pi‖ (Pj − Pi)T (Ṗj − Ṗi)
= uT

ij(Ṗj − Ṗi)
= −uT

ijṖi − uT
jiṖj

= −v0u
T
ij(u

+
i + u−

i ) − v0u
T
ji(u

+
j + u−

j )

where we used the dynamics (1). However for every agent Pi we have either
u+

i + u−
j � 0 if agent is surrounded, or u+

i + u−
i is in the direction of the center

of the disk sector in which all neighbors (including Pj) reside. Therefore the
inner product uT

ij(u
+
i + u−

i ) =< uij , (u+
i + u−

i ) > will necessary be positive,
hence
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d

dt
Δ

(t)
ij = −(v0 ∗ positive + v0 ∗ positive) ≤ 0

This shows that distances between neighbors can only decrease (or remain
the same). Hence agents never lose neighbors under the assumed dynamics.

2.2 Finite-Time Gathering

We have seen that the dynamics of the system (1) ensures that agents that
are neighbors at t = 0 will forever remain neighbors. We shall next prove that,
as time passes, agents acquire new neighbors and in fact will all converge to a
common point of encounter. We prove the following:

Theorem 2. A multi-agent system with dynamics given by (1) gathers all
agents to a point in R

2, in finite time.

Proof. We shall rely on a Lyapunov function L(P1, . . . , PN ), a positive function
defined on the geometry of agent constellations which becomes zero if and only
if all agents’ locations are identical. We shall show that, due to the dynamics
of the system, the function L(P1, . . . , PN ) decreases to zero at a rate bounded
away from zero, ensuring finite time convergence. The function L will be defined
as the perimeter of the convex hull of all agents’ locations, CH{Pi(t)}i=1,...,N.

Indeed, consider the set of agents that are, at a given time t, the vertices of
the convex hull of the set {Pi(t)}i=1,...,N . Let us call these agents {P̃k(t)} for
k = 1, . . . ,K ≤ N . For every agent P̃k on the convex hull (i.e. for every agent
that is a corner of the convex polygon defining the convex hull), we have that
all other agents, are in a region (wedge) determined by the half lines from P̃k

in the directions P̃kP̃k−1 and P̃kP̃k+1, a wedge with an opening angle say θk.
Since clearly θk ≤ π for all k we must have that agent P̃k has all its visible
neighbors in a wedge of its visibility disk with an angle αk ≤ θk ≤ π hence
its u+

k and u−
k vectors will not be zero, causing the motion of P̃k towards the

interior of the convex hull. This will ensure the shrinking of the convex hull,
while it exists, and the rate of this shrinking will be determined by the evolution
of the constellation of agents’ locations. Let us formally prove that indeed, the
convex hull will shrink to a point in finite time. Consider the perimeter L(t) of
CH{Pi(t)}i=1,...,N

L(t) =
K(t)∑
k=1

Δk,k+1 =
K(t)∑
k=1

[(P̃k+1)(t) − P̃k(t))T (P̃k+1(t) − P̃k(t))]1/2

where the indices are considered modulo K(t).
We have, assuming that K remains the same for a while, that

d

dt
L(t) =

K∑
k=1

d

dt
Δk = −

K∑
k=1

(
v0ũ

T
k,k+1(u

+
k + u−

k ) + v0ũ
T
k,k+1(u

+
k+1 + u−

k+1)
)
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but note that ũk,k+1 does not necessarily lie between u+
k and u−

k anymore, since,
in fact, P̃k and P̃k+1 might not even be neighbors.

Now let us consider d
dtL(t) and rewrite it as follows

d

dt
L(t) = −v0

K∑
k=1

ũT
k,k+1(u

+
k + u−

k ) − v0

K∑
k=1

ũT
k+1,k(u+

k+1 + u−
k+1)

Rewriting the second term above, by moving the indices k by −1 we get

d

dt
L(t) = −v0

K∑
k=1

ũT
k,k+1(u

+
k + u−

k ) − v0

K∑
k=1

ũT
k,k−1(u

+
k + u−

k )

This yields

d

dt
L(t) = −v0

K∑
k=1

< u+
k , ũk,k+1 + ũk,k−1 > −v0

K∑
k=1

< u−
k , ũk,k+1 + ũk,k−1 >

Note that we have here inner products between unit vectors, yielding the
cosines of the angles between them. Therefore, defining θk = the angle between
ũk,k−1 and ũk,k+1 (i.e. the interior angle of the convex hull at the vertex k, see
Fig. 4), and the angles:

α+
k � γ(u+

k , ũk,k+1)
β+

k � γ(ũk,k−1, u
+
k )

α−
k � γ(ũk,k−1, u

−
k )

β−
k � γ(u−

k , ũk,k+1)

we have α+
k + β+

k = α−
k + β−

k = θk and all these angles are between 0 and π.
Using these angles we can rewrite

d

dt
L(t) = −

K∑
k=1

v0(cos α+
k + cos β+

k ) −
K∑

k=1

v0(cos α−
k + cos β−

k )

Fig. 4. Angles at a vertex of the convex hull.
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Now, using the inequality (proved in Appendix 1)

cos α + cos β ≥ 1 + cos(α + β)
0 ≤ α, β, α + β ≤ π

(2)

we obtain that

− d

dt
L(t) ≥ 2v0

K∑
i=1

(1 + cos θi) (3)

For any convex polygon we have the following result (see the detailed proof
in Appendix 1):

Lemma 1. For any convex polygon with K vertices and interior angles
θ1, . . . , θK , with (θ1 + . . . + θK) = (K − 2)π we have that

K∑
k=1

cos(θi) ≥
⎧⎨
⎩

1 + (K − 1) cos
(

(K−2)π
K−1

)
2 ≤ K ≤ 6

K cos
(

(K−2)π
K

)
K ≥ 7

(4)

Therefore, we obtain from (3) and (4) that

− d

dt
L(t) ≥ μ(K) (5)

where

μ(K) = 2v0

⎛
⎝K +

⎧⎨
⎩

1 + (K − 1) cos
(

(K−2)π
K−1

)
2 ≤ K ≤ 6

K cos
(

(K−2)π
K

)
K ≥ 7

⎫⎬
⎭

⎞
⎠

= 2v0K
(
1 − max

{
cos

(
2π
K

)
, K−1

K cos
(

π
K−1

)
− 1

K

})
Note here that, since (1 − max{. . .}) > 0 we have that the rate of decrease

in the perimeter of the configuration is srictly positive while the convex hull of
the agent location is not a single point.

The argument outlined so far assumed that the number of agents determining
the convex hull of their constellation is a constant K. Suppose however that in the
course of evolution some agents collide and/or some agents become “exposed” as
vertices of the convex hull, and hence K may jump to some different integer value.
At a collision between two agents we assume that they merge and thereafter
continue to move as a single agent. Since irrespective of the value of K the
perimeter decreases at a rate which is strictly positive and bounded away from
zero we have effectively proved that in finite time the perimeter of the convex
hull will necessarily reach 0. This concludes the proof of Theorem2.

Figure 5 shows the bound as a function of K assuming v0 = 1. Note that we
always have K ≤ N , and μ(K) is a decreasing function of K, hence we have an
upper bound on the time of convergence for any configuration of N agents given
by L(0)

μ(N) .
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Fig. 5. Graph of the bound μ(K) of (5). The graph on the right is a zoom on small val-
ues of K. Note the change of curve between K = 6 and K = 7, due to the “interesting”
discontinuity in the geometric result exhibited in Eq. (4).

The inequalities of (2) and of (4) become equalities for particular configura-
tions of the agents (for example a regular polygon in which each pair of adjacent
neighbors are visible to each other, if K ≥ 7). In this case, the bound in (3)
yields the exact rate of convergence of the convex-hull perimeter as long as K
remains the same.

3 Generalizations

All the above analysis can be generalized for dynamics of the form

dPi

dt
= f(P (i))(u+

i + u−
i ) for i = 1, . . . , N (6)

f(P (i)) ≥ 0 is some positive function of the configuration of the neighbours
seen by agent i. This generalization also guarantees that the rule of motion is
locally defined and reactive, and defined in the same way for all agents. The
dynamics (1) corresponds to a particular case of (6), with f(P (i)) = v0 =
constant for all agents.

It is easy to slightly change the proofs above in order to show that Theorem1
(ensuring that connectivity is not lost) is still valid as long as f(P (i)) ≥ 0 for
all i, and that Theorem2 (ensuring finite time gathering) is also valid as long as
f(P (i)) ≥ ε > 0 for all i.

Note that in the work of Gordon et al. [3], a constant speed for the agents
was considered, and this corresponds to setting f(P (i)) = 1

||u+
i +u−

i || for a mobile

agent i, rather than v0. Given that in this case f(P (i)) ≥ 1
2 , the conditions for

Theorems 1 and 2 are verified, and hence the dynamics with constant speed also
ensures convergence to a single point without pairs of initially visible agents
losing connectivity. We therefore also have a proof for the convergence of the
algorithm that was proposed in the above-mentioned paper.
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4 Concluding Remarks

We have shown that a very simple local control on the velocity of agents in the
plane, based on limited visibility and bearing only sensing of neighbors ensures
their finite time gathering. We provided a very simple geometric proof that finite
time gathering is achieved, and provided precise bounds on the rate of decrease
of the perimeter of the agent configuration’s convex hull. These bounds are based
on a geometric lower bound on the sum of cosines of the interior angles of an
arbitrary convex planar polygon, that is interesting on its own right (a curious
breakpoint occurring in the bound at 7 vertices). Our result may be regarded as a
convergence proof for a highly nonlinear autonomous dynamic system, naturally
handling dynamic changes in its dimension (the events when two agents meet
and merge). The reader is refered to [1] for a more complete analysis of these
results including various simulations illustrating them.

Appendix 1: Proof of Lemma 1

We shall first prove the following facts:

Fact a. Let 0 ≤ a ≤ b ≤ π and 0 ≤ a + b ≤ π. Then we have√
2(1 + cos(a + b)) = 2 cos

(
a+b
2

) ≥ cos(a) + cos(b) ≥
2 cos2

(
a+b
2

)
= 1 + cos(a + b)

Proof. The function cosine is decreasing in [0, π], and given that a+b
2 ≥ b−a

2 :

1 ≥ cos
(

b − a

2

)
≥ cos

(
a + b

2

)

multiplying by 2 cos
(

a+b
2

) ≥ 0:

2 cos
(

a+b
2

) ≥ 2 cos
(

a+b
2

)
cos

(
b−a
2

) ≥ 2 cos2
(

a+b
2

)
2 cos

(
a+b
2

) ≥ cos(a) + cos(b) ≥ 1 + cos(a + b)

A direct consequence is the following fact.

Fact b. Let 0 ≤ a, b ≤ π. Then

cos(a) + cos(b) ≥
{

1 + cos(a + b) : a + b ≤ π
2 cos

(
a+b
2

)
: a + b ≥ π

Proof. The first line is already part of Fact a. The second line can be proven by
using the left inequality of Fact a with π−a and π−b, noticing that 0 ≤ π−a ≤ π,
0 ≤ π − b ≤ π, and π − a + π − b ≤ π for a + b ≥ π.

Now we can prove Lemma 1. Suppose any given initial configuration of the
polygon with interior angles 0 ≤ x1, . . . , xn ≤ π. We then have x1 + . . . + xn =
(n − 2)π.
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Now repeat the following step: Go through all the pairs of non-zero values
(xi, xj). As long as there is still a pair verifying xi + xj ≤ π, transform it from
(xi, xj) to (0, xi+xj). When there are no such pairs, then among all the non-zero
values, take the minimum value and the maximum value, say xi and xj (they
must verify xi + xj ≥ π due to the previously applied process), and transform

the pair from (xi, xj) to
(

xi+xj

2 ,
xi+xj

2

)
.

Repeat the above process until convergence. We prove that the process con-
verges and that we can get as close as desired to a configuration where all non-
zero values are equal. Note that after each step, the sum of the values equals
(n − 2)π, and that the values of all xi’s remain between 0 and π.

The number of values that the above process set to zero must be less or equal
to 2 in order to have the sum of the n positive values equal to (n−2)π. Therefore
it is guaranteed that after a finite number of iterations, there will be no pairs of
nonzero values whose sum is less than π (otherwise this would allow us to add
a zero value without changing the sum).

Once in this situation, all we do is replacing pairs of “farthest” non-zero
values (xi, xj) with the pair

(
xi+xj

2 ,
xi+xj

2

)
. Let us show that all the nonzero

values converge to the same value, specifically to their average.
Let k be the number of remaining non-zero values after the iteration t0

which sets the “last value” to zero. Denote these values at the i-th iteration
by (x(i)

1 , . . . , x
(i)
k ). Define:

m =
x
(i)
1 + . . . + x

(i)
k

k
=

(n − 2)π
k

Ei = (x(i)
1 − m)2 + . . . + (x(i)

k − m)2

Without loss of generality, suppose that at the i-th iteration the extreme

values were x1 and x2 and so we transformed (x(i)
1 , x

(i)
2 ) into

(
x
(i+1)
1 = x

(i)
1 +x

(i)
2

2 ,

x
(i+1)
2 = x

(i)
1 +x

(i)
2

2

)
. So we have:

Ei+1 − Ei = 2(x
(i)
1 +x

(i)
2

2 − m)2 − (x(i)
1 − m)2 − (x(i)

2 − m)2)
= − 1

2 (x(i)
1 − x

(i)
2 )2

But x
(i)
1 and x

(i)
2 being the extreme values, we have for any 1 ≤ l ≤ k:

(x(i)
1 − x

(i)
2 )2 ≥ (x(i)

l − m)2

and by summing over l we get that:

k(x(i)
1 − x

(i)
2 )2 ≥ Ei
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Hence
Ei+1 − Ei = − 1

2 (x(i)
1 − x

(i)
2 )2 ≤ −Ei

2k
Ei+1 ≤ (

1 − 1
2k

)
Ei

0 ≤ Ei ≤ (
1 − 1

2k

)i−t0
Et0

proving that Ei converges to zero, i.e. all the non-zero values converge to m.
At each step of the above described process, according to Fact b, the sum

of cosines can only decrease. Therefore from any given configuration we can get
as close as possible to a configuration in which all non-zero values are equal,
without increasing the sum of the cosines. Hence, the minimum value must be
reached in a configuration in which all non-zero values are equal.

Since there can be at most only two zero values, the minimum value of the
sum of the cosines is the minimum of the following:

– 2 + (n − 2) cos
(

(n−2)π
n−2

)
= −(n − 4) (case with 2 zeros)

– 1 + (n − 1) cos
(

(n−2)π
n−1

)
(case with 1 zero)

– n cos
(

(n−2)π
n

)
(case with no zero)

An analytical comparison of these values depending on n leads to the result
stated in Lemma 1.
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