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Abstract. Molecular docking is a complex optimization problem aimed
at predicting the position of a ligand molecule in the active site of a recep-
tor with the lowest binding energy. This problem can be formulated as a
bi-objective optimization problem by minimizing the binding energy and
the Root Mean Square Deviation (RMSD) difference in the coordinates of
ligands. In this context, the SMPSO multi-objective swarm-intelligence
algorithm has shown a remarkable performance. SMPSO is character-
ized by having an external archive used to store the non-dominated solu-
tions and also as the basis of the leader selection strategy. In this paper,
we analyze several SMPSO variants based on different archiving strate-
gies in the scope of a benchmark of molecular docking instances. Our
study reveals that the SMPSOhv, which uses an hypervolume contribu-
tion based archive, shows the overall best performance.

Keywords: Multi-objective optimization · Particle Swarm Optimiza-
tion · Molecular docking · Archiving strategies · Algorithm comparison

1 Introduction

Molecular docking is a complex optimization problem found in biology, which
consists in predicting the position of a small molecule (ligand) in the active
site of a receptor (macromolecule) that registers the minimum binding energy.
Molecular docking is traditionally faced by means of metaheuristics [4,8] as a
continuous optimization problem, since it requires to adjust position variables
corresponding to coordinates of translation and torsion movements of molecules.

In the last decade, a number of studies have centered on the application of
single- and multi-objective metaheuristics [4–6,8,15] to the molecular docking
problem, showing successful results for a number of molecular compounds. In
these previous works, different objective formulations were proposed that focused
on energy scoring functions. Recently, a new multi-objective approach has been
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proposed [9] in which two different objectives are to be minimized: the binding
energy (the unbound and bound energy terms of the ligand/receptor complex)
and the Root-Mean-Square-Deviation (RMSD) score. The latter objective leads
the algorithms to guide the search when the co-crystallized ligand is known,
which complements the traditional energy function.

Among these optimization techniques, a multi-objective swarm-intelligence
approach, namely SMPSO [11], has emerged as one of the most prominent opti-
mizers for molecular docking [4,9]. This technique performs a limitation mecha-
nism of particle’s velocity to avoid the movement of particles in search regions out
of the problem ranges. SMPSO uses an external archive to store non-dominated
solutions according to the crowding distance [2]. This archive is also used in the
leader selection mechanism. Here, our motivation is to go one step beyond by
evaluating, in the scope of a benchmark of molecular instances, new versions
of SMPSO using different archiving strategies (hypervolume, cosine distance,
and aggregation) and, consequently, different strategies for the selection of the
leaders.

With this aim, we compare and analyze the proposed versions of SMPSO
when solving 11 flexible ligand-receptor docking complexes taken from the Auto-
Dock 4.2 benchmark [10]. This dataset includes flexible ligands with different
sizes and flexible side-chains of HIV-protease receptors. The performance of the
algorithms has been assessed by applying two main quality indicators intended to
measure convergence and diversity of the computed Pareto front approximations.

The remainder of this article is organized as follows: Sect. 2 describes the
molecular docking problem from a multi-objective formulation. Studied algo-
rithms are described in Sect. 3. Section 4 reports the experimentation methodol-
ogy and Sect. 5 analyzes the obtained results. Finally, Sect. 6 reports conclusions
and future lines of research.

2 Molecular Docking

From a biological point of view, the main objective in the molecular docking
problem is to find an optimized conformation between the ligand (L) and the
receptor (R) that results in a minimum binding energy. The interaction between
L and R can be described by an energy function calculated from three compo-
nents representing degrees of freedom: (1) the translation of the ligand molecule,
involving the three axis values (x, y, z) in cartesian coordinate space; (2) the lig-
and orientation, modeled as a four variables quaternion including the angle slope
(θ); and (3) the flexibilities, represented by the free rotation of torsion (dihedral
angles) of the ligand and sidechains of the receptor.

- Solution Encoding: Each problem solution is then encoded by a real-value
vector of 7 + n variables (as illustrated in Fig. 1), in which the first three values
correspond to the ligand translation, the next four values correspond to the
ligand and/or receptor orientation, and the remaining n values are the ligand
torsion dihedral angles.
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Fig. 1. Solution encoding. The first three values (translation) are the coordinates of
the center of rotation of the ligand. The next four values correspond to quaternion and
(θ). The rest of the values hold the torsion angles in degrees.

The range of translation variables (x, y, z) is [0 · · · 120], which has been delim-
ited between the limits of the coordinates of a grid space previously set for each
problem. Orientation (quaternion) and torsion variables are measured in radians
and encoded in the range of [−π, π].

- Fitness Functions: the bi-objective formulation used here consists of: the
Ebinding and the RMSD score. The Ebinding is the energy function as used in
Autodock, which is calculated as follows:

Ebinding = QR−L
bound + QR−L

unbound (1)

Q = Wvdw

∑

i,j

(
Aij

r12ij

− Bij

r6ij
) + Whbond

∑

i,j

E(t)

(
Cij

r12ij

− Dij

r10ij

)

+Welec

∑

i,j

qiqj

ε(rij)rij
+ Wsol

∑

i,j

(SiVj + SjVi)e(−r2
ij/2σ2)

(2)

QR−L
bound and QR−L

bound are the states of bound and unbound of the ligand-receptor
complex, respectively. Each pair of energetic evaluation terms includes evalua-
tions (Q) of dispersion/repulsion (vdw), hydrogen bonds (hbond), electrostatics
(elec) and desolvation (sol). Weights Wvdw, Whbond, Wconf , Welec, and Wsol of
Eq. 2 are constants for Van der Waals, hydrogen bonds, torsional forces, electro-
static interactions and desolvation, respectively. An extended explanation of all
these variables can be found in [10].

The RMSD is a measure of similarity between the real ligand position in the
receptor and the computed position of the docking ligand. The lower RMSD score
the better the solution is. A ligand-receptor docking solution with an RMSD
score below 2Å is considered as a solution with high docking accuracy.
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The RMSD score for two identical structures a and b is defined as follows:

RMSDab = max(RMSD
′
ab, RMSD

′
ba), with RMSD

′
ab =

√
1
N

∑

i

min
j

rij
2

(3)
The sum is over all N heavy atoms in structure a, the minimum is over all

atoms in structure a with the same element type as atom i in structure b.

3 Algorithms

In this section, we describe the SMPSO variants we are going to study. We start
with the original algorithm and then we give details of the considered variants.

SMPSO is a Multi-Objective Particle Swarm Optimization (MOPSO) charac-
terized by two features: a velocity constraint mechanism and an external bounded
archive to store the non-dominated solutions found during the search [11]. A per-
turbation, implemented as a mutation operator, is also incorporated. Its pseudo-
code is included in Algorithm 1. The archive contains the current Pareto front
approximation found by the algorithm, and it applies the crowding distance den-
sity estimator [2] to decide which particle to remove when it is full. The archive
is also used in the leader strategy selection, consisting on binary tournament
based on randomly selecting two solutions from it and taking the one with the
highest crowding distance value (i.e., the one located in less crowded region of
the front composed by all archived solutions). The local best position of a par-
ticle i is obtained by applying a dominance test with the rest of particles in the
swarm, in such a way that the current best particle (which initially is particle i)
is updated when it is dominated by another one.

In [12], a study of different leader selection mechanisms on SMPSO was
conducted. In that work, the most salient variant consisted in replacing the
crowding distance by the degree of contribution of the solutions in the external
archive according to the hypervolume indicator [18]. This way, the leader selec-
tion is based on a binary tournament that chooses the particle having the largest
hypervolume contribution value. This version was named as SMPSOhv and it is
the second selected algorithm to be compared in our study.

We introduce in this paper a new variant of SMPSO. The cosine similarity is
a measure of similarity between two vectors that measures the cosine of the angle
between them. This way, two vectors in the same direction have a cosine similar-
ity value equals to zero, while two perpendicular vectors have a cosine similarity
value of 1. As all the solutions in an external archive are non-dominated, we can
define a density estimator by fixing a reference point and computing the cosine
similarity among the vectors conformed by the archive solutions with regards
to that reference point. The studied problem in this paper has two objectives,
so we can sort the solutions in the archive by the first objective and compute,
for each solution, a density value by summing up the cosine similarity of each
point to their previous and next points; extreme points have a similarity dis-
tance equals to 0. This way, points having a largest cosine density value are in
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Algorithm 1. Pseudocode of SMPSO
1: initializeSwarm()
2: initializeLeadersArchive()
3: generation = 0
4: while generation < maxGenerations do
5: computeSpeed()
6: updatePosition()
7: mutation() // perturbation
8: evaluation()
9: updateLeadersArchive()

10: updateParticlesMemory()
11: generation ++
12: end while
13: returnLeadersArchive()

the most densely populated region. The resulting algorithm is called SMPSOC.
An important issue in this technique is to select the proper reference point. Our
previous study [9] indicated that the fronts have a convex shape, so we choose
an approximation to the nadir point by taking the highest objective values of
the solutions in the archive.

The fourth SMPSO version in our study, also presented in this paper for
the first time, is an archive-less approach and it is called SMPSOD. To leave
out the archive, we take the strategy of designing an aggregative version of
SMPSO inspired by MOEA/D [17], where a multi-objective problem can be
decomposed into a set of single-objective problems that can be optimized at the
same time. This way, a set of evenly spread weight vectors λ1, λ2, . . . , λN are
defined, being N the size of the swarm. Then, each particle i has associated the
vector λi and a neighborhood defined as a set of its several closest weight vectors
in λ1, λ2, . . . , λN . The scalarizing strategy follows the Tchebycheff scheme. The
strategy for getting the local best of a particle i is the same procedure as used
by MOEA/D to update a neighborhood. The leader updating strategy consists
in finding the best solution in the neighborhood by considering the scalar values
of the particles taking into account their weight vectors.

SMPSO was inspired in the OMOPSO algorithm proposed by Reyes and
Coello in [14], so we decided to also include it in our comparisons as a reference
multi-objective particle swarm optimizer in the state of the art.

In summary, in our study we include OMOPSO and four SMPSO variants
with different archiving strategies: crowding distance based (original SMPSO),
hypervolume contribution based (SMPSOhv), cosine distance based (SMPSOC),
and archive-less (SMPSOD), being the last two ones proposed in this paper.

4 Experimentation

For the experiments, we have considered a benchmark of 11 molecular instances
with receptor and ligand flexibility. These complexes are actually difficult dock-
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Table 1. The accession codes, the X-ray crystal structure and resolution taken from
PDB database are presented.

PDB code Protein-ligand complexes Resolution (Å)

1AJV HIV-1 protease/AHA006 2.00

1AJX HIV-1 protease/AHA001 2.00

1BV9 HIV-1 protease/α-D-glucose 2.20

1D4K HIV-1 protease/Macrocyclic peptidomimetic inhibitor 8 1.85

1G2K HIV-1 protease/AHA047 1.95

1HIV HIV-1 protease/U75875 2.00

1HPX HIV-1 protease/KNI-272 2.00

1HTF HIV-1 protease/GR126045 2.20

1HTG HIV-1 protease/GR137615 2.00

1HVH HIV-1 protease/Q8261 1.80

2UPJ HIV-1 protease/U100313 3.00

ing problems containing a wide range of ligand sizes (from small to large
inhibitors). The docking studies performed with these instances in [10] to test
the energy function of AutoDock 4.2 demonstrated that the most difficult prob-
lems are those involving smaller ligands. This is due to the flexibility added to
the receptor side-chains (ARG-8) that increases the space of ligand interactions.
These instances have been taken from the PDB database1.

Table 1 summarizes the set of problems selected showing the PDB accession
code, the X-ray crystal structures names and the structure resolution (Å). For all
instances, the torsional degrees of freedom for ligands and receptors are 10 and
6, respectively, selecting those torsions that allow the fewest number of atoms to
move around the ligand core. Therefore, the solution vector contains: 3 variables
for translation, 4 variables for rotation quaternion, and 16 variables for torsional
degrees, summing up a total number (n) of 23 variables.

4.1 Methodology

The followed methodology consists in running each combination of algorithm
and molecular instance 30 independent times. From these executions, we have
calculated the median and interquartile range (IQR) as measures of central ten-
dency and statistical dispersion, respectively. We have considered two quality
indicators to assess the algorithm performance: Hypervolume (IHV ) [18] and
Unary Additive Epsilon Indicator (Iε+) [19]. The former takes into account both
convergence and diversity, whereas the later gives a measure of the convergence
degree of the obtained Pareto front approximations. It is worth noting that we
are dealing with a real-world optimization problem, and therefore the Pareto

1 In URL: http://www.rcsb.org/pdb/home/home.do.

http://www.rcsb.org/pdb/home/home.do
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Table 2. Parameter settings.

Common parameters

Swarm size 150 Particles

Iterations 10,000

SMPSO [3] & SMPSOhv & SMPSOD & SMPSOC

Archive size 100

C1, C2 1.5

w 0.9

Mutation polynomial mutation

Mutation probability 1.66

Mutation distribution index ηm 20

Selection method Rounds

OMOPSO [1]

Archive size 100

C1, C2 rand(1.5, 2.0)

w rand(0.1, 0.5)

Mutation uniform + non-uniform + no mutation

Mutation probability Each mutation is applied to 1/3 of the swarm

fronts to calculate these two metrics are not known. To cope with this issue, we
have generated a reference Pareto front for each instance by combining all the
non-dominated solutions computed in all the executions of all the algorithms.

We have used the implementation of the five studied algorithms provided in
the jMetalCpp framework [7], in combination with AutoDock 4.2 to evaluate
the new generated solutions. To cope with the high computational requirements
needed to carry out all the experiments, we have used the Condor2 system, a
middleware platform acting a distributed task scheduler of up to 400 cores.

The parameter settings are summarized in Table 2. We set a common subset
of parameters which are the same for all the evaluated algorithms. The size of
the swarm is 150 and the stopping condition is reached when 1,500,000 function
evaluations are performed. These values were chosen as they are the default
settings in AutoDock and they have been used in previous studies [13]. The
archive size, when applicable, is set to 100.

All SMPSO versions use the polynomial mutation with distribution index
ηm = 20, which is applied to one sixth of the particles in the swarm. The
acceleration coefficients C1 and C2 are set to 1.5 and the inertia weight is w = 0.9.
With these parameters setting, our approach has been to use common settings in
order to make a fair comparison, keeping the rest of the parameters of SMPSO
and OMOPSO according to the papers where they were originally described.

2 In URL: http://research.cs.wisc.edu/htcondor/.

http://research.cs.wisc.edu/htcondor/
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Table 3. Median and interquartile range of IHV for each algorithm and instance. Best
and second best median results have dark and light gray backgrounds, respectively.

SMPSO SMPSOhv SMPSOD SMPSOC OMOPSO
1AJV 3.65e − 015.1e−02 4.33e − 014.0e−02 3.63e − 014.6e−02 3.55e − 014.8e−02 0.00e + 000.0e+00
1AJX 4.31e − 012.5e−02 5.06e − 012.7e−02 4.74e − 013.7e−02 4.43e − 013.6e−02 0.00e + 000.0e+00
1D4K 6.67e − 018.1e−02 8.48e − 011.1e−01 7.11e − 019.4e−02 7.35e − 019.2e−02 0.00e + 000.0e+00
1G2K 3.84e − 015.3e−02 4.58e − 015.9e−02 3.82e − 014.1e−02 3.52e − 015.2e−02 0.00e + 000.0e+00
1HIV 4.86e − 012.0e−01 6.74e − 012.9e−02 5.87e − 017.1e−02 4.66e − 012.4e−01 0.00e + 000.0e+00
1HPX 3.60e − 011.8e−01 6.30e − 019.7e−02 4.77e − 011.0e−01 4.63e − 011.4e−01 0.00e + 000.0e+00
1HTF 2.61e − 013.3e−01 4.17e − 012.4e−01 3.96e − 017.9e−02 2.77e − 013.1e−01 0.00e + 000.0e+00
1HTG 8.33e − 021.3e−01 1.46e − 019.6e−02 1.03e − 018.2e−02 7.13e − 021.3e−01 0.00e + 000.0e+00
1HVH 7.78e − 014.7e−02 8.69e − 019.3e−03 7.70e − 012.4e−02 7.85e − 012.9e−02 0.00e + 000.0e+00
1VB9 4.10e − 011.2e−01 5.09e − 015.6e−02 4.12e − 011.1e−01 4.38e − 019.1e−02 0.00e + 000.0e+00
2UPJ 5.82e − 019.6e−02 6.96e − 015.1e−02 6.27e − 017.4e−02 6.20e − 016.8e−02 1.99e − 016.4e−01

Table 4. Median and interquartile range of Iε+ for each algorithm and instance. Best
and second best median results have dark and light gray backgrounds, respectively.

SMPSO SMPSOhv SMPSOD SMPSOC OMOPSO
1AJV 5.12e − 011.0e−01 3.94e − 016.7e−02 5.35e − 011.0e−01 5.46e − 011.0e−01 5.31e + 002.0e+00
1AJX 2.31e − 011.1e−01 1.32e − 014.3e−02 1.94e − 016.1e−02 2.57e − 019.4e−02 2.54e + 003.2e+00
1D4K 2.06e − 018.6e−02 4.41e − 021.2e−01 1.54e − 017.3e−02 1.57e − 018.1e−02 8.81e + 004.1e+00
1G2K 4.29e − 011.7e−01 2.81e − 012.0e−01 4.75e − 019.7e−02 5.15e − 011.1e−01 6.01e + 002.3e+00
1HIV 3.95e − 013.6e−01 9.03e − 026.4e−02 2.66e − 011.2e−01 4.36e − 013.2e−01 4.91e + 001.1e+00
1HPX 4.25e − 012.8e−01 1.30e − 019.2e−02 2.95e − 011.2e−01 3.17e − 011.7e−01 1.13e + 015.7e+00
1HTF 6.60e − 011.5e+00 5.46e − 013.7e−01 5.64e − 011.1e−01 6.85e − 014.3e−01 1.49e + 006.2e−01
1HTG 9.07e − 011.4e−01 8.35e − 019.3e−02 8.84e − 018.8e−02 9.23e − 012.1e−01 1.21e + 017.7e+00
1HVH 1.46e − 014.4e−02 6.12e − 024.8e−03 1.47e − 013.9e−02 1.52e − 013.1e−02 5.11e + 002.4e+00
1VB9 3.34e − 012.2e−01 1.96e − 017.7e−02 3.44e − 011.8e−01 2.97e − 011.3e−01 9.31e + 001.6e+00
2UPJ 2.86e − 017.9e−02 1.76e − 019.2e−02 2.25e − 011.4e−01 2.70e − 015.1e−02 7.74e − 014.0e+00

5 Results and Analysis

A first analysis in our experimentation corresponds to the of results in terms of
the hypervolume indicator IHV . This indicator computes the sum of the con-
tributed volume of each point in the Pareto front (non-dominated solutions) with
regards to a reference point. Therefore, the higher the convergence and diversity
degree of a front, the higher (better) the resulting IHV value is.

Table 3 shows the median and interquartile range of the computed distribu-
tions (out of 30 independent runs) of IHV , for the set of 11 docking instances
and for the five compared algorithms. As we can observe, SMPSOhv obtains
the best median values of IHV for all the molecular instances and SMPSOD is
the second best performing technique. We have to mention that some results
of OMOPSO have a IHV equal to zero. This happens when all the points of
the produced fronts are dominated by the reference point. In contrast, all the
SMPSO versions obtained IHV values higher than zero, which indicates that
they are all able to produce solutions within the limits of the reference point.

In the case of Iε+, a similar observation can be extracted from Table 4. That
is, SMPSOhv shows the best results for all instances, followed by SMPSOD
and SMPSO (the lower Iε+ value, the better the result is). For this indicator,
SMPSOC obtains a second best median value only for instance 1VB9.

These results are assessed with statistical confidence (in this study p-value =
0.05) by focusing on the entire distribution of each of the two studied metrics. In
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Table 5. Average Friedman’s rankings with Holm’s Adjusted p-values (0.05) of com-
pared algorithms for the test set of 11 docking instances. Symbol * indicates the control
algorithm and column at right contains the overall ranking of positions with regards
to IHV and Iε+.

Hypervolume (IHV ) Epsilon (Iε+) Overall

Algorithm FriRank HolmAp Algorithm FriRank HolmAp Algorithm Rank

*SMPSOhv 1.01 - *SMPSOhv 1.00 - SMPSOhv 2

SMPSOD 2.54 2.18e − 02 SMPSOD 2.45 3.09e − 02 SMPSOD 4

SMPSOC 3.09 3.85e − 03 SMPSO 2.99 6.02e − 03 SMPSOC 5

SMPSO 3.36 1.36e − 03 SMPSOC 3.54 4.79e − 04 SMPSO 5

OMOPSO 4.99 1.19e − 08 OMOPSO 4.98 1.19e − 08 OMOPSO 10

concrete, we have applied Friedman’s ranking and Holm’s post-hoc multicompare
tests [16] to know which algorithms are statistically worse than the control one
(i.e., the one ranking the best).

This way, as shown in Table 5, SMPSOhv is the best ranked variant according
to Friedman test for the two indicators (IHV and Iε+), and it is followed by SMP-
SOD. Therefore, SMPSOhv is established as the control algorithm in the post-hoc
Holm tests, which is compared with the rest of algorithms. The adjusted p-values
(HolmAp in Table 5) resulting from these comparisons are, for the remaining vari-
ants (SMPSO, SMPSOD, SMPSO, and OMOPSO), lower than the confidence
level (0.05), meaning that SMPSOhv is statistically better than these algorithms.
SMPSO and SMPSOC obtained similar overall performances, although showing
SMPSOC better ranking than SMPSO in terms of IHV .

Figure 2 shows the boxplots of the distributions of results concerning the
IHV values, for each compared algorithm and molecular instance. In this figure,
we can check that SMPSOhv variant obtains the best distributions for all the
instances. An interesting observation can be made regarding OMOPSO, whose
distributions denote poor results, although it produces outlier solutions with the
best indicator values for some instances: 1AJV, 1AJX, 1HPX, and 1HTF. These
outliers lead OMOPSO to contribute with many solutions to the reference Pareto
fronts. An example of this can be observed in Fig. 3, where the fronts with best
IHV values of all compared algorithms are plotted for instance 1AJX. However,
the overall results (in boxplots) of OMOPSO indicate that it behaves irregular
(non-robust) for all the molecular instances.

Following with Fig. 3, another interesting observation lies in the ability of
SMPSOD to obtain non-dominated solutions in the region of the reference Pareto
front with low energy and high RMSD values (top-left in plots of Fig. 3). In
contrast with the other compared algorithms, SMPSOD is able to properly cover
this area, as well as other areas with low RMSD. Therefore, as suggested in our
previous study [9], a hybrid implementation of SMPSO using an aggregative
(archive-less) strategy as done in MOEA/D, would cover the reference front
with non-dominated solutions in the two objective ends. This assumption is now
tested with SMPSOD in this study.



A Study of Archiving Strategies in Multi-objective PSO 49

S
M

P
S

O

S
M

P
S

O
hv

S
M

P
S

O
D

S
M

P
S

O
C

O
M

O
P

S
O

0.0

0.1

0.2

0.3

0.4

0.5

HV:1AJV

S
M

P
S

O

S
M

P
S

O
hv

S
M

P
S

O
D

S
M

P
S

O
C

O
M

O
P

S
O

0.0

0.1

0.2

0.3

0.4

0.5

HV:1AJX

S
M

P
S

O

S
M

P
S

O
hv

S
M

P
S

O
D

S
M

P
S

O
C

O
M

O
P

S
O

0.0

0.2

0.4

0.6

0.8

HV:1D4K

S
M

P
S

O

S
M

P
S

O
hv

S
M

P
S

O
D

S
M

P
S

O
C

O
M

O
P

S
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

HV:1G2K

S
M

P
S

O

S
M

P
S

O
hv

S
M

P
S

O
D

S
M

P
S

O
C

O
M

O
P

S
O

0.0

0.2

0.4

0.6

HV:1HIV

S
M

P
S

O

S
M

P
S

O
hv

S
M

P
S

O
D

S
M

P
S

O
C

O
M

O
P

S
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

HV:1HPX

S
M

P
S

O

S
M

P
S

O
hv

S
M

P
S

O
D

S
M

P
S

O
C

O
M

O
P

S
O

0.0

0.2

0.4

0.6

HV:1HTF

S
M

P
S

O

S
M

P
S

O
hv

S
M

P
S

O
D

S
M

P
S

O
C

O
M

O
P

S
O

0.0

0.2

0.4

0.6

0.8

HV:1HTG

S
M

P
S

O

S
M

P
S

O
hv

S
M

P
S

O
D

S
M

P
S

O
C

O
M

O
P

S
O

0.0

0.2

0.4

0.6

0.8

HV:1HVH

S
M

P
S

O

S
M

P
S

O
hv

S
M

P
S

O
D

S
M

P
S

O
C

O
M

O
P

S
O

0.0

0.1

0.2

0.3

0.4

0.5

0.6

HV:1VB9

S
M

P
S

O

S
M

P
S

O
hv

S
M

P
S

O
D

S
M

P
S

O
C

O
M

O
P

S
O

0.0

0.2

0.4

0.6

HV:2UPJ

Fig. 2. Resulting boxplots of each compared algorithm and instance for IHV

In summary, SMPSOhv shows the overall best behaviour followed by SMP-
SOD. Intuitively, the former obtains the best IHV as it performs a leader selec-
tion method of non-dominated solutions (from the external archive) with largest
hypervolume contributions. That is, the particles in the swarm are guided by
leaders with large hypervolume contributions, which would enable SMPSOhv to
obtain, not only high values of IHV , but also accurate results in terms of Iε+.
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Fig. 3. Fronts with best IHV values on problem 1AJX.

6 Conclusions

In this paper, we analyze new variants of SMPSO, a multi-objective swarm
optimization technique, based on different archiving strategies in the scope of a
benchmarking set of molecular docking instances. The problem is formulated as
a bi-objective optimization problem, by minimizing the binding energy and the
Root Mean Square Deviation (RMSD) difference in the coordinates of ligands.

Our study reveals that SMPSOhv shows the overall best performance, fol-
lowed by SMPSOD, SMPSOC, and SMPSO. The former variant obtains the
best IHV as it performs a leader selection method of those non-dominated solu-
tions (from the external archive) having the largest hypervolume contributions,
which seems to be responsible of the best diversity and convergence values in
this comparison. OMOPSO shows moderate results, although reaching outper-
forming outlier solutions for some instances: 1AJV, 1AJX, 1HPX, and 1HTF.
Interestingly, SMPSOD variant is able to cover the reference front with non-
dominated solutions in the two objective extremes, i.e., with low energy and
RMDS values. In this regard, as suggested in our previous study [9], a hybrid
implementation of SMPSO using an aggregative (archive-less) strategy as done
in MOEA/D, would cover the reference front with non-dominated solutions in
the two objective ends. This assumption is now tested with SMPSOD in this
study. Ideally, this SMPSO variant would contribute to discover other different
(unknown) active sites in the receptor molecule with low energy, but far from
the known active site (that is, with low RMSD).
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This last open a future line of research for us on the selection and study of
interesting solutions to be evaluated from a biological point of view. In addition,
a natural extension of this work would be to test these conclusions on a greater
number of molecular instances and using other quality indicators.
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3. Durillo, J.J., Garćıa-Nieto, J., Nebro, A.J., Coello, C.A.C., Luna, F., Alba,
E.: Multi-objective particle swarm optimizers: an experimental comparison. In:
Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO
2009. LNCS, vol. 5467, pp. 495–509. Springer, Heidelberg (2009)
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