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Abstract. Learning cluster-based classification systems is the process of
partitioning a training set into data subsets (clusters), and then building
a local classifier for each data cluster. The class of a new instance is pre-
dicted by first assigning the instance to its nearest cluster, and then using
that cluster’s local classification model to predict the instance’s class. In
this paper, we use the Ant Colony Optimization (ACO) meta-heuristic
to optimize the data clusters based on a given classification algorithm in
an integrated cluster-with-learn manner. The proposed ACO algorithms
use two different clustering solution representation approaches: instance-
based and medoid-based, where in the latter the number of clusters is
optimized as part of the ACO algorithm’s execution. In our experiments,
we employ three widely-used classification algorithms, k-nearest neigh-
bours, Ripper, and C4.5, and evaluate performance on 30 UCI bench-
mark datasets. We compare the ACO results to the traditional c-means
clustering algorithm, where the data clusters are built prior to learning
the local classifiers.

Keywords: Ant Colony Optimization (ACO) · Data mining ·
Classification · Clustering · Cluster-based classification system

1 Introduction

Classification is an important supervised learning task, concerned with predict-
ing the class of a given instance based on its input attributes, using a well-
constructed classification model [28]. The classification process consists of two
stages. The training stage utilizes a training set of labelled instances, that is a set
of instances along with their correct class labels, that should be sufficiently rep-
resentative of the domain of interest. A classification algorithm uses the training
set to construct an internal model of the relationships between the attributes of
the input instances and their corresponding class labels. Then, during the sub-
sequent operating stage, the classifier uses its internal model to predict the class
of new unlabelled instances, which have not been presented to the algorithm
during the training stage.
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A cluster-based classification system consists of several local classifiers, one
for each subset of the dataset, to model an asymmetric set of relationships
between the predictor attributes and the predictable class for each data sub-
set. Clustering techniques [3] are utilized to discover data partitions in which
each cluster holds more consistent attributes-class relationships given the data
subset in the partition. Consequently, more effective local classifiers are built for
each data subset.

Ant Colony Optimization (ACO) [2] is a meta-heuristic for solving combina-
torial optimization problems, inspired by observations of the behaviour of ant
colonies in nature. While ACO has been used for data clustering in general
[1,4,6,23], the focus of this paper is on using ACO to build classification sys-
tems, based on data partitions of the original training set. In other words, the
performance of the proposed methods is evaluated mainly in terms of the pre-
dictive accuracy of the constructed classification system, rather than the cohe-
sion/separation quality of the clusters per se.

In this paper we introduce AntClust-Miner, an algorithm which employs the
ACO meta-heuristic to learn the data clusters and build the local classification
models in a “cluster-with-learn” fashion. Such an integrated approach aims to
find the best data partitions that improve the overall predictive accuracy of the
cluster-based classification system. We use the AntClust-Miner algorithm with
two ACO clustering methods: (1) instance-based, where a solution is a set of
instance-class assignments, and (2) medoid-based, where a solution is a set of
instances to be used as the mediods of clusters. In this paper, we extend the
medoid-based ACO clustering method to automatically optimize the number of
clusters as part of the ACO algorithm execution. For building the local clas-
sifiers, we use three widely used classification algorithms from three different
classification families, namely, k-nearest neighbours from instance-based classi-
fication, Ripper from classification rule induction, and C4.5 from decision tree
construction. We evaluate the performance of our proposed ACO algorithms on
30 UCI benchmark datasets, using 3, 5 and 8 clusters. We compare the ACO
results to a cluster-based classification system based on the traditional c-means
clustering algorithm, where the data clusters are built before learning the local
classifiers.

The rest of the paper is structured as follows. We begin in Sect. 2 with a
brief overview on ACO related work in the field of classification and clustering
data mining problems. We then present our ACO approach for learning cluster-
based classification systems in Sect. 3. Experimental methodology and results
are presented in Sect. 4, and final remarks are offered in Sect. 5.

2 ACO Related Work

Inspired by the “intelligent” behaviour of natural ant colonies foraging to find the
shortest path between a food source and the nest, Dorigo et al. have introduced
Ant Colony Optimization (ACO) [2] as a population-based, global search meta-
heuristic to solve a wide range of (mainly combinatorial) optimization problems.
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A number of ACO-based classification algorithms have been introduced in the
literature with different classification learning approaches [8]. Ant-Miner [12] is
the first ant-based classification algorithm, which discovers a list of classification
rules. The algorithm has been followed by several extensions in [7,9,10,12,15].
Two different ACO-based algorithms were proposed in [11,22] for inducing deci-
sion trees. ACO was also employed by Salama and Freitas in [18,19,21] to learn
various types of Bayesian network classifiers. Blum and Socha applied an ACO
variation for continuous optimization [5,25] to train feed-forward neural networks
[24]. ANN-Miner [13] was introduced by Salama and Abdelbar as an ACO-based
algorithm for learning neural network topologies. ACO has recently been utilized
in data reduction for classification [14]. Furthermore, ACO has recently been
applied to feature weighting in the context of instance-based learning [16].

The authors have introduced the idea of using ACO in building cluster-based
classification systems in [17,20], but only using Bayesian network classifiers. In
other words, in [17,20], ACO was employed to produce cluster-based Bayesian
multi-nets models, which consist of only Näıve-Bayes or Tree-Augmented Näıve-
Bayes local classifiers. However, in the present work we explore using ACO for
building cluster-based classification models by employing three different algo-
rithms to build the local classifiers: the k-nearest neighbour algorithm, the Rip-
per rule induction algorithm, and the C4.5 decision tree construction algorithm.
Also, while the Medoid-based method for clustering solution representation was
introduced in previous work [17,20], it had the limitation of needing the number
of clusters to be supplied by the user. In this work, we extend the Medoid-based
ACO method for building cluster-based classification systems by automatically
optimizing the number of clusters to be used in the system.

A useful general review of (unsupervised) clustering is [29]. ACO algorithms
for clustering are reviewed in [4].

3 Ant Colony for Building Cluster-Based Classifiers

3.1 The AntClust-Miner Overall Algorithm

The AntClust-Miner algorithm for building cluster-based classification systems
carries out the data clustering process as well as the local classifiers construction
process in a synergistic fashion via the ACO meta-heuristic. In such a “cluster-
with-learn” approach, each ant in the colony creates a complete cluster-based
classification system, rather than just a clustering solution. This is in contrast
to having a—conventional or evolutionary-based—clustering algorithm complete
the creation and optimization of the data clusters before the local models are
constructed. The advantage of the integrated “cluster-with-learn” approach is
that the clusters are optimized to maximize the predictive accuracy of the clas-
sification system, rather than just optimizing the cohesion/separation of the
clusters. The overall procedure of AntClust-Miner is shown in Algorithm 1.

Before the ACO procedure begins, the trainingSet data is split into a
learningSet and a validationSet (lines 6–7). The learningSet is 75 % of the
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Algorithm 1. Pseudo-code of AntClust-Miner.
1: begin
2: K ⇐ input ; /* number of clusters */
3: algorithm ⇐ input; /* classification algorithm */
4: trainingSet ⇐ input;
5: systemgbest = φ; /* final cluster-based classification system */
6: datasets = Split(training set);
7: learningSet = datasets[0]; validationSet = datasets[1];
8: InitializeConstructionGraph(learningSet, K);
9: qualitygbest = 0; t = 1;

10: repeat
11: systemtbest = φ;
12: qualitytbest = 0;
13: for i = 1 → colonySize do
14: clustSolutioni = anti.CreateClusteringSolution();
15: for k = 1 → K do
16: dataSubset = clustSolutioni.GetDataCluster(k)
17: classifierk = LearnClassifier(dataSubset, algorithm);
18: append classifierk to systemi;
19: qualityi = ComputeQuality(systemi, validationSet);
20: if qualityi > qualitytbest then
21: systemtbest = systemi;
22: qualitytbest = qualityi;
23: PerformLocalSearch(systemtbest);
24: UpdatePheromone();
25: if qualitytbest > qualitygbest then
26: systemgbest = systemtbest;
27: qualitygbest = qualitytbest;
28: t = t + 1;
29: until t = maxIterations or Convergence();
30: return systemgbest;
31: end

trainingSet and is used to construct the data clusters and build the local clas-
sifiers, while the validationSet, consisting of the remaining 25 % of the training
set, is used for evaluating the constructed classification system. Note that the
class distribution in learningSet and validationSet is kept roughly the same as
in trainingSet. The construction graph (discussed in the following subsections)
is initialized in line 8 prior to the commencement of the ACO procedure.

In essence, the AntClust-Miner algorithm works as follows. In the inner for-
loop (lines 13 to 22), each anti in the colony constructs a complete cluster-based
classification systemi. A candidate systemi is produced by first constructing a
clustering solution clustSolutioni in line 14 (this is based on the ACO clustering
method used, which will be discussed in the following two subsections), then for
each data cluster k, a local classifierk is created using the input algorithm,
and appended to the classification systemi (lines 15 to 18). Then, the qualityi
of the candidate systemi produced by anti is evaluated using the validationSet
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in line 19 (this will be discussed in Subsect. 3.4). The iteration-best systemtbest

produced in the colony at iteration t is maintained (lines 20 to 22).
At the end of iteration t, a local search procedure is performed on the

iteration-best cluster-based classification systemtbest (line 23). Basically, the
clustering solution of systemtbest undergoes c-means clustering, initialized by the
centroids of the clustering solution. Then the pheromone amounts are updated
(line 24) and the global-best cluster-based classification systemgbest produced
throughout the execution of the ACO algorithm is maintained (lines 25 to 27).
This concludes one iteration of the outer repeat-loop, which continues until
either the maxIteration is reached, or the ACO algorithm converges on a
solution. The ACO algorithm converges when it produces the same solution in
convIteration consecutive iterations. In our experiments, we set colonySize
to 10, maxIteration to 10000, and convIteration to 10. Finally, systemgbest

is returned as the output of the algorithm.

3.2 Instance-Based ACO Clustering Method

As discussed in [17,20], the instance-based method for ACO clustering assigns
each of the N instances in the learningSet to one out of K clusters. The con-
struction graph contains N × K solution components: each instance with each
possible cluster assignment. Each ant in the colony starts with a list of N ele-
ments with unassigned clusters (an empty solution). Then, the ant selects a
cluster assignment from the construction graph for each element. The selec-
tion is performed probabilistically, based on the pheromone amount associated
with each instance-cluster decision component. When every instance has been
assigned to a cluster, the ant has a complete candidate clustering solution.

A candidate clustering solution in the instance-based method consists of N
elements, the index of an element represents the instance, and the element repre-
sents the cluster assignment of this instance. For example, a candidate clustering
solution for a dataset with 10 instances and 4 clusters is represented in the fol-
lowing form:

3 1 3 4 1 2 1 3 4 2

This representation means that in this candidate clustering solution, for exam-
ple, the first instance belongs to cluster number 3, along with the third and
the eighth instances. However, such a clustering solution representation method
has two drawbacks. First, the mapping between a clustering solution and this
representation is one-to-many [20]. That is, the same clustering solution can be
obtained by several instance-based representations. This is an example of the
classical competing conventions problem studied for example by Whitley et al.
[27]. The redundancy of this kind of encoding enlarges the size of the search
space, which affects the search’s efficiency, and may have a noticeable impact on
the effectiveness of the ACO algorithm in terms of the quality of the solution
found. Second, the number of the clusters has to be supplied to the algorithm,
rather than being optimized within the algorithm.
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3.3 Medoid-Based ACO Clustering Extended Method

The medoid-based ACO clustering method avoids the competing conventions
problem of the instance-based method. In the medoid-based method, a clustering
solution is represented by the choice of V instances to act as the cluster medoids,
where V is the number of clusters. More precisely, the construction graph is a
complete (fully connected) graph containing only N solution components (recall
that N denotes the number of instances), each representing an instance that is
a candidate cluster medoid.

When constructing a solution, an ant chooses V instances based on the
pheromone information associated with each solution component. The chosen
instances represent a medoid-based clustering solution, where the k-th element
(instance) represents the medoid of the k-th cluster. The medoid selection is
performed under the constraint that a node can be visited at most once by an
ant during a single solution construction.

Once a medoid-based candidate solution has been constructed by an ant,
each instance i in the learningSet is assigned to the k-th cluster for which the
similarity between instance i and the k-th medoid is the highest (compared to the
other medoids). The similarity measure is discussed in the following subsection.

In this paper, we extend the medoid-based method to allow the ACO pro-
cedure to optimize the number of clusters. The algorithm receives K as the
maximum number of clusters that can be produced. Every integer within the
inclusive range 2 to K has an associated decision component in the construction
graph, and an associated pheromone amount. Each training instance also has
an associated decision component and associated pheromone amount. Thus, the
construction graph consists of (N + K) decision components.

When constructing a candidate solution, an ant first probabilistically selects
the number of clusters V (between 2 and K) by selecting one of these decision
components based on their pheromone amounts. It then selects V instances to
act as cluster medoids. The V instances are selected one by one; each selection
is made probabilistically based on pheromone amounts and under the constraint
that an instance cannot be selected more than once.

3.4 Quality Evaluation and Pheromone Update

The AntClust-Miner algorithm evaluates the quality of a candidate solution as a
classifier, rather than a clustering solution. That is, we use predictive accuracy, a
widely-used measure in the context of classification, as an evaluation measure for
the quality of the produced cluster-based classification system as a whole, rather
than the cohesion/separation measure of the clusters per se. The validationSet
is used to calculate the predictive accuracy of a candidate classification system
as follows. First, each instance is assigned to its nearest cluster. Then, the local
classifier of that cluster is used to predict the class of the validation instance.
The predictive accuracy is computed as the ratio of the number of correctly
classified instances to the total number of instances in the validation set.
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The nearest cluster for instance i is the one that has the maximum total
similarity between instance i and each instance j in the cluster. The similarity
between any two instances i and j is computed according to:

Similarity(i, j) = 1 −
a∑

v=1

|C|∑

l=1

|P (Cl|iv) − P (Cl|jv)|, (1)

where a is the number of attributes and P (Cl|iv) is the conditional probability
of the class value Cl given the attribute value iv. This conditional probability
is measured empirically as the ratio of the number of instances with attribute
value iv and the class value Cl to the number of instances with attribute value
iv in the learningSet. Accordingly, if a class value occurs frequently with two
attribute values, then these two values are considered similar; the same applies
if the class value does not occur frequently with both of the attribute values.
On the other hand, if a class value occurs frequently with one attribute value,
but does not occur frequently with the other attribute value, then these two
attribute values are considered dissimilar. Note that the continuous attributes
in the learningSet are discretized using the supervised C4.5-disc algorithm [28].

As for pheromone update, pheromone level τx is increased on each solu-
tion component x of the construction graph included in the clustering solution,
based on the quality of the iteration-based cluster-based classification solution
(systemtbest), using the following formula:

τx(t + 1) = τx(t) + τx(t) · qualitytbest(t) (2)

To simulate pheromone evaporation, normalization is then applied; each τx is
divided by the total pheromone amounts in the construction graph.

4 Experimental Methodology and Results

In our experiments, we used three classification algorithms to learn the local clas-
sifiers of the cluster-based classification systems constructed by our AntClust-
Miner algorithm, namely the k-nearest neighbour lazy learning algorithm, the
Ripper classification rule induction algorithm, and the C4.5 decision tree con-
struction algorithm [26,28]. We used the WEKA implementation for these algo-
rithms: k-NN, JRip, and J48, and used WEKA’s default parameter settings in
each case. We evaluated the performance of the two versions of the AntClust-
Miner algorithm (IB-AntClust-Miner and MB-AntClust-Miner), using each algo-
rithm g to build the local classifiers, against several methods. Specifically, for
each classification algorithm g, we evaluated IB-AntClust-Miner (with 3, 5, and
8 clusters) and MB-AntClust-Miner, using g as the underlying local classification
algorithm. We compared these to the base algorithm g (using the whole training
set to build the classifier without any data clustering). We further compared
performance to a cluster-based classification system with the c-means algorithm
as the clustering algorithm and g as the underlying local classifier (without any
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ACO)—this was evaluated with 3, 5, and 8 clusters. All of these evaluations
used 30 benchmark datasets from the University of California at Irvine (UCI)
Machine Learning repository. In all, 24 algorithms were evaluated and compared
in this study.

Table 1. Predictive accuracy (%) results using k-NN as the local classifier.

Dataset k-NN c-means-3 c-means-5 c-means-8 IB-Ant-3 IB-Ant-5 IB-Ant-8 MB-Ant

audiology 50.00 78.00 36.42 54.43 65.00 62.50 58.07 79.17

automobile 48.36 71.64 68.85 74.62 56.02 56.69 60.03 65.05

breast-l 61.09 63.99 64.20 63.93 67.04 63.18 64.69 74.89

breast-p 65.24 65.18 64.88 63.68 70.21 67.55 65.48 68.58

breast-w 93.85 93.61 94.26 95.39 95.09 94.31 95.88 95.22

car 66.67 59.81 65.78 66.31 72.75 74.62 63.85 74.77

chess 78.18 82.53 76.49 72.33 86.07 79.25 79.39 85.60

credit-a 77.68 79.02 79.32 78.92 80.29 81.01 79.77 79.57

credit-g 65.40 69.50 68.30 68.91 68.00 68.80 66.98 69.98

cylinder 55.92 66.75 72.41 72.29 60.38 50.37 72.60 72.91

dermat 82.21 92.53 87.55 91.53 92.62 88.77 86.12 89.92

ecoli 71.82 79.31 77.67 77.41 81.88 77.72 79.34 80.11

heart-c 53.18 50.52 53.36 53.16 52.44 51.23 53.77 53.16

heart-h 59.30 44.55 60.81 50.81 56.57 58.16 62.61 62.76

horse 71.07 77.05 75.24 78.01 77.87 78.89 79.15 77.30

ionospere 73.66 85.38 79.42 78.09 69.68 79.97 80.67 85.81

liver 53.34 58.87 63.21 61.22 62.05 65.20 62.01 64.58

lymphography 75.00 77.10 81.09 81.21 77.00 76.48 78.95 79.10

monks 58.18 54.73 58.93 60.48 60.91 59.27 69.58 61.64

pima 65.63 68.31 67.58 67.31 65.24 68.98 67.66 71.11

s-heart 78.52 71.33 80.79 79.10 77.78 74.07 82.19 82.52

segmentation 78.48 93.60 81.42 84.87 88.74 82.46 85.82 93.17

soybean 32.07 86.62 84.50 56.81 86.55 84.97 58.99 86.55

thyroid 85.89 94.23 96.42 95.43 93.48 89.31 95.84 96.41

transfusion 62.85 59.55 63.42 62.55 62.84 64.33 65.20 64.74

ttt 70.53 65.37 65.23 70.17 72.11 73.79 70.40 72.32

vertebral-2c 80.00 78.97 80.22 82.50 77.10 84.65 83.61 82.35

vertebral-3c 73.87 76.71 71.59 79.47 75.81 79.29 79.93 79.35

voting 86.85 86.73 87.29 88.35 88.28 86.84 86.91 88.17

wine 88.17 92.94 95.48 96.55 96.63 97.52 97.21 97.49

Rank (avg.) 6.7 5.2 5.0 4.7 4.3 4.3 3.5 2.3

The experiments were carried out using the stratified 10-fold cross validation
procedure. The results (accuracy rate on the test set) are averaged and reported
as the accuracy rate of the classifier. Because ACO is a stochastic method, we ran
our AntClust-Miner algorithms ten times—using a different random seed to ini-
tialize the search each time—in each iteration of the cross-validation procedure,
and took the average accuracy as the iteration result. The c-means algorithm
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was also run ten times in each cross validation iteration with different cluster
initializations, and the average accuracy was taken as the iteration result.

Tables 1, 2 and 3 report the predictive accuracy results of our experiments, one
for each base algorithm: k-NN, Ripper, and C4.5, respectively. In each table, the
first column shows the results for the base algorithm (i.e., using the whole training
set to build the classifier without any data clustring). The second, third and fourth
columns show the results for the c-means algorithm, where the number of clusters
are 3, 5 and 8 respectively. The fifth, sixth and seventh column show the results
for the IB-AntClust-Miner algorithm, with 3, 5 and 8 clusters, respectively. The
last column shows the results for the MB-AntClust-Miner algorithm—note that
the latter optimizes the number of clusters, and the maximum number of clusters
was set to 8. The last row of each table shows the average rank of each algorithm
over the 30 datasets in terms of the predictive accuracy results. Note that in the

Table 2. Predictive accuracy (%) results using Ripper as the local classifier.

Dataset Ripper c-means-3 c-means-5 c-means-8 IB-Ant-3 IB-Ant-5 IB-Ant-8 MB-Ant

audiology 77.17 49.17 43.33 43.92 51.67 44.48 49.17 56.83

automobile 66.69 62.14 66.07 60.12 72.12 68.96 68.43 80.91

breast-l 67.44 69.13 67.54 69.42 69.92 69.85 68.24 70.87

breast-p 73.79 78.82 64.71 66.85 74.58 66.96 72.63 70.06

breast-w 92.20 90.82 87.89 94.89 92.39 93.94 85.23 93.79

car 85.66 78.30 69.82 65.54 78.60 70.56 66.50 74.77

chess 97.00 93.18 87.39 85.61 92.61 87.70 86.10 91.58

credit-a 83.51 82.93 81.59 75.23 84.03 85.98 86.96 86.17

credit-g 70.20 69.20 69.00 66.80 70.50 69.39 68.45 70.36

cylinder 62.29 56.72 52.56 65.55 72.97 75.80 72.68 73.38

dermat 86.01 86.91 31.66 88.17 86.51 91.75 79.21 93.80

ecoli 79.86 65.50 64.00 80.58 81.18 81.82 81.44 82.67

heart-c 52.15 47.49 49.78 52.48 52.47 54.56 54.74 54.81

heart-h 61.72 61.60 57.83 63.77 64.70 65.13 62.68 65.34

horse 81.54 74.92 79.59 75.97 82.19 81.00 80.19 82.32

ionospere 87.66 66.95 69.99 73.46 70.05 72.93 76.46 73.96

liver 64.34 56.81 60.02 60.34 64.71 63.31 64.70 63.22

lymphography 77.95 57.24 64.86 68.86 74.57 76.44 73.89 74.78

monks 58.36 61.64 61.09 61.51 62.36 61.88 60.18 62.94

pima 71.55 68.88 69.78 62.63 71.61 73.07 72.28 72.41

s-heart 76.52 62.22 78.52 83.29 77.30 83.65 81.11 83.81

segmentation 92.10 76.54 84.81 74.22 88.88 83.84 79.98 90.05

soybean 81.10 42.41 42.07 49.47 50.34 40.00 48.62 50.35

thyroid 90.53 75.80 79.83 73.23 91.70 93.45 91.92 93.80

transfusion 71.71 67.94 71.00 69.41 72.48 71.89 70.06 72.06

ttt 96.00 72.11 61.05 52.41 69.05 60.40 51.16 69.83

vertebral-2c 80.58 81.29 80.00 78.55 83.87 79.04 76.13 82.52

vertebral-3c 78.32 74.19 79.35 78.71 79.68 81.08 80.03 82.34

voting 91.66 92.95 90.53 89.29 92.93 92.37 90.48 93.14

wine 90.19 79.38 83.63 82.55 92.65 95.07 92.91 96.05

Rank (avg.) 4.1 5.8 6.4 6.0 3.2 3.5 4.9 2.0
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following tables, IB-Ant refers to AntClust-Miner with the instance-based clus-
tering method, while MB-Ant refers to AntClust-Miner with the medoid-based
clustering method.

As shown in Table 1, MB-AntClust-Miner with k-NN obtained the best over-
all average rank of 2.3, and achieved the best results in 9 datasets. IB-AntClust-
Miner using 8 clusters came in second place with an overall rank of 3.4, achieving
the best results in 6 datasets, followed by IB-AntClust-Miner using 3 clusters,
which obtained 4.2 as an overall rank and achieved the best results in 5 datasets.
With k-NN, the Friedman test with the Holm post hoc test, at the conventional
0.05 significance level, indicates that MB-AntClust-Miner is significantly better
than the other algorithms, except for IB-AntClust-Miner with 8 clusters.

Table 3. Predictive accuracy (%) results using C4.5 as the local classifier.

Dataset C4.5 c-means-3 c-means-5 c-means-8 IB-Ant-3 IB-Ant-5 IB-Ant-8 MB-Ant

audiology 80.50 46.67 55.75 52.50 64.42 50.00 55.93 65.83

automobile 79.36 56.07 69.25 61.50 76.92 67.43 60.08 78.79

breast-l 70.86 69.49 68.17 65.74 69.42 69.48 67.20 67.12

breast-p 69.08 71.29 72.04 67.13 74.44 70.24 72.01 72.68

breast-w 92.91 90.49 94.59 86.48 94.46 91.18 95.03 94.04

car 90.98 72.28 67.67 63.63 72.10 68.07 64.05 73.74

chess 97.47 91.38 87.68 84.97 91.00 88.71 84.88 89.75

credit-a 83.80 78.84 82.44 77.10 85.59 84.10 83.90 82.03

credit-g 67.60 69.20 68.70 68.50 70.08 65.80 67.21 68.90

cylinder 72.50 53.95 67.29 56.74 70.15 58.51 68.19 72.74

dermat 92.00 43.39 86.62 84.02 86.94 82.80 86.71 91.01

ecoli 81.66 50.26 80.34 64.05 80.21 81.82 79.24 81.66

heart-c 49.21 50.80 53.96 49.92 54.93 51.82 53.71 55.88

heart-h 64.73 31.12 63.35 63.58 65.54 64.97 61.85 64.42

horse 80.75 78.94 80.03 76.25 80.43 79.34 78.83 80.36

ionospere 86.26 70.69 70.21 61.91 71.94 72.14 71.28 75.37

liver 62.56 61.42 58.25 58.05 63.71 62.82 63.22 63.39

lymphography 74.38 68.24 76.98 62.24 74.68 72.86 76.38 74.95

monks 59.46 60.55 60.67 58.55 61.25 61.64 60.11 63.09

pima 70.51 72.01 71.08 67.43 73.48 74.52 73.67 64.99

s-heart 73.56 75.56 75.19 77.41 84.65 83.78 83.07 75.93

segmentation 93.59 87.04 80.49 74.95 88.07 81.62 70.72 84.64

soybean 81.11 45.17 37.61 39.66 49.99 38.97 37.88 53.45

thyroid 89.15 79.03 94.09 93.31 94.47 93.01 92.92 93.48

transfusion 71.78 71.37 70.44 66.33 71.25 69.78 68.62 71.57

ttt 83.58 79.26 67.59 54.95 80.92 68.95 55.49 81.89

vertebral-2c 79.29 80.32 77.10 69.68 80.63 78.06 78.63 79.55

vertebral-3c 76.71 80.32 75.81 80.32 81.22 79.72 79.75 72.90

voting 92.48 93.92 92.01 90.53 93.50 92.80 90.63 92.68

wine 91.30 87.12 83.66 93.04 96.15 94.22 93.13 91.60

Rank (avg.) 3.6 5.2 5.1 6.7 2.4 4.5 5.1 3.3
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The results shown in Table 2 indicate that MB-AntClust-Miner with Ripper
obtained the best overall rank of 2.0, and achieved the best results in 13 datasets.
In second place came IB-AntClust-Miner using 3 clusters with an overall rank of
3.1, achieving the best results in 4 datasets. IB-AntClust-Miner using 5 clusters
came in third place by obtaining 3.5 as an overall rank and achieving the best
results in 2 datasets. With Ripper, the Friedman test with the Holm post hoc test,
at the conventional 0.05 significance level, indicates that MB-AntClust-Miner is
significantly better than the other algorithms except for IB-AntClust-Miner with
3 and 5 clusters.

The results for C4.5 shown in Table 3 indicate that IB-AntClust-Miner using
3 clusters obtained the best overall rank of 2.4, and achieved the best results
in 10 datasets. MB-AntClust-Miner came in the second place with an overall
rank of 3.3, achieving the best results in 3 datasets. In third place came the
baseline C4.5 algorithm, which obtained 3.6 as an overall rank and achieved the
best results in 12 datasets. With C4.5, the Friedman test with the Holm post hoc
test, at the conventional 0.05 significance level, indicates that IB-AntClust-Miner
with 3 clusters is significantly better than c-means with 3, 5, and 8 clusters, and
also significantly better than IB-AntClust-Miner with 5 and 8 clusters.

5 Conclusions and Future Work

In this paper, we have employed Ant Colony Optimization to create cluster-based
classification systems. The AntClust-Miner algorithm produces the data clusters
and learns the local models in an integrated fashion so that the clusters are opti-
mized to maximize the predictive accuracy of the overall classification system.
We used two ACO clustering methods, instance-based and medoid-based, and
we extended the medoid-based method to automatically optimize the number
of clusters. In our experiments, we used three widely-used classification algo-
rithms, namely k-nearest neighbours, Ripper, and C4.5. We compared our ACO
algorithm to the baseline classifiers and to the cluster-based classifiers using the
c-means algorithm to produce the clusters (instead of the ACO algorithms),
using 30 datasets. The results indicate that the ACO algorithms perform sta-
tistically significantly better than c-means in terms of the predictive accuracy
of the produced classification models with k-NN, Ripper, and C4.5, and also
significantly better than the base k-NN and Ripper algorithms (however, in the
case of the C4.5 base algorithm, the difference was not statistically significant).
It is not clear why the C4.5 algorithm benefited the least from the cluster-based
classification approach, and we would like to explore this further in future work.

We would also like to consider allowing different classification algorithms to
be used to learn the local models, based on the characteristics of each cluster,
with the choice of the algorithm to use per data cluster being automatically
optimized by the ACO procedures. Furthermore, we would like to investigate
using all the constructed local models to decide on the class of an instance using
a weighted voting ensemble method, where the weight would be computed based
on the fuzzy membership of the instance in each cluster.
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