
Synthesizing Rulesets for Programmable
Robotic Self-assembly: A Case Study
Using Floating Miniaturized Robots

Bahar Haghighat(B), Brice Platerrier, Loic Waegeli, and Alcherio Martinoli

Distributed Intelligent Systems and Algorithms Laboratory,
School of Architecture, Civil and Environmental Engineering,

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
bahar.haghighat@epfl.ch

Abstract. Programmable stochastic self-assembly of modular robots
provides promising means to formation of structures at different scales.
Formalisms based on graph grammars and rule-based approaches have
been previously published for controlling the self-assembly process. While
several rule-synthesis algorithms have been proposed, formal synthesis
of rulesets has only been shown for self-assembly of abstract graphs.
Rules deployed on robotic modules are typically tuned starting from
their abstract graph counterparts or designed manually. In this work,
we extend the graph grammar formalism and propose a new encoding of
the internal states of the robots. This allows formulating formal methods
capable of automatically deriving the rules based on the morphology of
the robots, in particular the number of connectors. The derived rules
are directly applicable to robotic modules with no further tuning. In
addition, our method allows for a reduced complexity in the rulesets. In
order to illustrate the application of our method, we extend two synthesis
algorithms from the literature, namely Singleton and Linchpin, to syn-
thesize rules applicable to our floating robots. A microscopic simulation
framework is developed to study the performance and transient behav-
ior of the two algorithms. Finally, employing the generated rulesets, we
conduct experiments with our robotic platform to demonstrate several
assemblies.

1 Introduction

Self-assembly (SA) plays a key role in many of the natural structuring phenom-
ena at all scales. SA is defined as the reversible and spontaneous phenomenon
of an ordered spatial structure emerging from the aggregate behavior of sim-
pler preexisting entities, through inherently local and random interactions in
the system. In recent years, SA has been extensively studied both as an enabling
technique for micro/nano-fabrication, and as a coordination mechanism for dis-
tributed robotic systems of miniaturized modules with limited capabilities, where
highly stochastic sensing, actuation, and interactions are inevitable.

c© Springer International Publishing Switzerland 2016
M. Dorigo et al. (Eds.): ANTS 2016, LNCS 9882, pp. 197–209, 2016.
DOI: 10.1007/978-3-319-44427-7 17

198 B. Haghighat et al.

SA has been used as a means for coordination in several robotic systems
[2,8,11,12]. Programmable SA has been demonstrated in [8,11]. In [11], a deter-
ministic and quasiserial approach to shape formation is implemented in a large
swarm of miniaturized Kilobot robots. Stochastic SA can be realized by taking
advantage of the stochastic ambient dynamics for module transportation. In [8],
the robots stochastically self-assemble on an air table based on their internal
rule-based behavior. Using a synthesis algorithm, a ruleset is first derived for SA
of a similar abstract target graph. The rules are then tuned to suit the specific
morphology of the robots.

The problem of ruleset synthesis for programmable SA of graphs was first
addressed in [9]. In [10], the formalism of graph grammars is applied to the SA
of graphs and two rule synthesis algorithms are presented. A deadlock situation
is discussed, where the number of copies of the target being built in parallel is
higher than the maximum feasible number, considering the total number of avail-
able agents. In the same work, in order to avoid deadlocks the authors propose
a disassociation rule which requires implementation of a consensus algorithm
among the agents. In [3], the formalism of graph grammars is employed and it
is shown that SA of graphs can be achieved while avoiding deadlocks by intro-
ducing probabilistic dissociating rules. Two formal rule-synthesis algorithms,
Singleton and Linchpin, are introduced in the same work. In [4], weighted graphs
are considered in a case study to encode the geometric orientations of the edges.
Stochastic SA of simulated underwater robots in 3D using a rule-based app-
roach has been studied in [5]. A rule-based approach incorporating a state
machine is manually designed for the specific simulated platform and targets
under study.

While several formal rule-synthesis algorithms have been proposed for pro-
grammable SA of graphs, the derived rules are not directly applicable to robotic
SA where orientation of the bonding links determines the structure and is part
of the internal state of the modules. In this work, we extend the graph grammars
formalism for the problem of ruleset synthesis for programmable SA of robots.
In particular, we extend the concept of abstract graphs by introducing vertices
with link-slots and propose a new way to encode a robot’s internal state. This
allows formulating general methods for synthesizing rules directly applicable to
robotic modules. Each module is associated with one vertex in the graph and
its internal state is encoded by a control state label and an orientation index.
For a module with N connectors, we achieve a ruleset complexity of O(N) com-
pared with O(N2) obtained in [8]. Using our method, we extend the Singleton
and Linchpin algorithms from [3] to synthesize rules for our miniature floating
robots. These two algorithms incorporate reversible rules, a feature offering two
key advantages. First, reversibility is necessary for scenarios in highly stochas-
tic environments, where permanent bonds are not always feasible. Second, by
exploiting reversible rules the system can recover from deadlock situations.

Synthesizing Rulesets for Programmable Robotic Self-assembly 199

We begin in Sect. 2 by describing the SA process in our robotic system. In
Sect. 3, the graph grammars formalism for SA of graphs is summarized. Section 4
discusses our proposed extension for the case of SA of robots. Section 5 describes
synthesis of rules for SA of our robots using two algorithms. In Sect. 6, we detail
the simulation framework. Simulated and experimental results are presented in
Sect. 7, with the conclusions offered in Sect. 8.

2 Fluidic Self-assembly of Lily Robots

Our system consists of two main components: (1) the Lily robots, originally
presented in [7], which serve as the building blocks of the SA process, and (2)
the experimental setup built around them. Lilies are endowed with four custom-
designed Electro-Permanent Magnets (EPM) to latch and also to communicate
locally with their neighbors. They can also communicate over a radio link to a
base station to receive commands, new firmware, or to report specific informa-
tion. Being power-autonomous, the robots can actively take part in the assembly
process at all times. Given a target structure, an appropriate ruleset is derived
as explained in Sect. 5, and deployed on all robots through wireless bootloading.
The robots’ EPM latches are by default enabled, resulting in a default latching
upon meeting another robot. Once latched, the EPM-to-EPM inductive com-
munication channel is physically established. The robots then exchange their
internal states and look for an applicable rule in their ruleset. If no applicable
rule is found, they unlatch by turning off their EPM latches; otherwise they
remain latched and update their internal states accordingly. Each robot then
updates the base station with its new internal state over the radio. Lilies are
not self-locomoted, they are instead stirred by the flow field produced within a
tank by several peripheral pumps. To monitor the evolution of the system, we
use an overhead camera to visually track a passive marker on the top of each
robot (Fig. 1).

Fig. 1. An overview of the system: The experimental setup (left). Visual tracking of
ten Lily robots during an experiment (middle). The Lily robot (right).

200 B. Haghighat et al.

3 Graph Grammars for Self-assembly of Graphs

In this section we summarize the graph grammars formalism for formulating SA
of graphs as presented in [3,8]. A labeled graph is a triple G = (V,E, �) where
V = {1, ..., N} is the set of vertices, E ⊂ V ×V is the set of edges, and � : V → Σ
is a labeling function, with Σ being a set of labels. A pair of vertices {x, y} ∈ E
is represented by xy. The nE(k) represents the neighbors of vertex k relative to
the edge set E. Two graphs are considered to be isomorphic when there exists a
bijection h : VG1 → VG2 such that ij ∈ EG1 ⇔ h(i)h(j) ∈ EG2. The function h
is called a witness. A label-preserving isomorphism has the additional property
that �G1(x) = �G2(h(x)),∀x ∈ VG1. A graph G is said to contain a graph H if a
subgraph of G is isomorphic to H.

Definition: A rule is an ordered pair of graphs r = (L,R) such that VL = VR.
The graphs L and R are the left hand side (LHS) and right hand side (RHS) of
the rule r. A binary rule can be depicted as a b ⇀ c − d, with the characters
denoting the labels of the two engaged vertices.

Definition: A rule r = (L,R) is applicable to a graph G if there exists I ⊂ VG

such that the subgraph G ⊂ I has a label-preserving isomorphism h : I → VL.

Definition: The triple (r, I, h) is called an action. Application of an action with
r = (L,R) to G gives a new graph G′ = (VG, EG′ , lG′) defined by

EG′ = (EG − xy : xy ∈ EG ∩ I × I) ∪ (xy : h(x)h(y) ∈ ER)

�G′(x) =

{
�G(x), if x ∈ VG − I

�R(h(x)), otherwise

Definition: The complement or reverse of a rule r = (L,R), is r̄ = (R,L), such

that G
r,I,h−−−→ G′ r̄,I,h−−−→ G′′ = G.

Definition: A trajectory of a system (G0, φ), where G0 is the initial graph of the

system and φ is a ruleset, is a finite or infinite sequence of G0
r1,I,h−−−−→ G1

r2,I,h−−−−→
G2

r3,I,h−−−−→ ...
Given a set of rules φ, we can study the sequences of graphs obtained from

successive application of the rules in φ. For a probabilistic ruleset, a probability
may be associated with each rule by the mapping P : φ → (0, 1], indicating the
tendency for the corresponding event to take place provided that the conditions
under which the rule is applicable are met. The formal rule-synthesis methods
proposed for programmable SA of graphs automatically generate a ruleset φ for
assembling a desired target by iteratively browsing and parsing the target graph
[3,8,10]. Section 5 provides details on the functionality of such methods and how
they can be extended to generate rules for SA of robots.

Synthesizing Rulesets for Programmable Robotic Self-assembly 201

4 Graph Grammars for Self-assembly of Robots

In this section we explain how we extend the graph grammars formalism to
formulate the synthesis problem for programmable SA of robots. While the SA
process in a system of atomic agents can be directly modeled by abstract graphs
evolving over time, for the case of robotic modules the morphology of the robots,
in particular the orientation of the links they may form, strictly determines the
shape of the resulting structure. This information can not be directly encoded
in the abstract graphs. Figure 2 (left) gives a simple illustration of this issue.

Fig. 2. Different structures with similar graph representation (left). Association of one
label with one latch [8] (middle). Relative CCW hop numbering (right).

The method in [8] associates each latching connector on the robot with one
vertex in the graph and connects them using permanent links, as depicted in
Fig. 2 (middle). This method of encoding the internal state of the robots within
a graph grammar formalism has several drawbacks. First, the graph modeling
the system is augmented with vertices and edges which encode redundant infor-
mation, resulting in an increased complexity of model analysis and simulation.
Second, manual tuning of the rules is necessary to obtain a ruleset applicable on
the robots. A synthesis algorithm is first run on an abstract description of the
desired target, the resulting rules are then manually adapted to account for the
correct orientation of the forming links. Third, for a robot with N connectors
each acquiring a dedicated state label, the ruleset complexity grows in O(N2).

Our goal is to be able to formulate general methods for automatic synthesis
of rules for programmable SA of robots. To this end, we extend the notion of
labeled graphs by extending the definition of vertices and labels. While we are
particularly interested in scenarios involving our Lily robots in 2D, the assump-
tions we make are general enough to be directly applied to similar platforms.
The method is also easily applicable to 3D SA with similar assumptions.

Definition: An extended vertex has ordered link-slots which correspond to the
latching connectors of a robotic module. The numbering on the slots is assumed

202 B. Haghighat et al.

to match the one of the robot, following a counter-clockwise (CCW) rotation
convention. We assume that the robotic modules have a rotational symmetry.
As a result, for an isolated module the connectors are anonymous.

Definition: An extended label is a pair l = (la, ln) encoding the internal state of
a module. la represents the control state of the robotic module and ln represents
the index of the most recently engaged connector.

Definition: An extended labeled graph is a quadruple G = (V,E, S, �) where
V = {1, ..., N} is the set of extended vertices, E ⊂ V × V is the set of edges,
S : E → K × K defines which slots are involved in a link between two vertices,
and � : V → Σ is a labeling function, with Σ being a set of extended labels.

Following the extension of the graphs, the rules are also extended to be
described using elements which are a combination of a control state variable and
a relative hop number. The idea is that a robotic module can only take part
in a reaction defined by a certain rule if it has the appropriate control state
and is participating in the reaction with the appropriate orientation. We assume
that the robotic modules exchange information of their respective internal states
once their connectors are latched. More specifically, once one of the connectors is
engaged, the robot may communicate its internal state in the form of a relative
extended label of l = (la, lh) with la being the robot’s control state and lh
being a relative hop number which represents the relative orientation of the
currently engaged connector with respect to its predecessor, assuming a CCW
hop convention (see Fig. 2, right). For a vertex with an extended label of (la, ln)
on a robot with N connectors lh = [(ln − lc)modN] + 1, where ln and lc are the
indexes of the most recently and the currently engaged connectors, respectively.

Definition: An extended rule is an ordered pair of extended graphs r = (L,R).
An extended binary rule can be depicted as l1 l2 ⇀ l3−l4, with the li = (lia, lih)
values being the relative extended label of the engaged vertex.

5 Synthesizing Rules for Robots

In the previous section, we explained the extension of the graph grammars for-
malism to the case of SA of robots. Our goal is to employ the extended formal-
ism to (1) automatically synthesize rules to control programmable SA of robotic
modules, and (2) model and simulate the evolution of the SA process in a system
of robotic modules. Here we explain how our extended formalism may be used to
formulate formal methods for deriving rules for SA of robots of arbitrary shapes,
for a given target. In particular, we pick two synthesis algorithms from the lit-
erature, namely Singleton and Linchpin, presented in [3], which are capable of
deriving rules for SA of graphs for any given acyclic target. Using our formalism,
we extend these algorithms such that they generate rules for programmable SA

Synthesizing Rulesets for Programmable Robotic Self-assembly 203

of robots, for a given target represented as an extended graph. We then use the
extended Singleton and Linchpin to synthesize rulesets for SA of our Lily robots
for two specific targets, a chain and a cross structure, consisting of 6 robots.

For a given target graph G, Singleton generates a serial ruleset where each
rule progresses the SA of the target graph by appending an isolated vertex
to the structure. In contrast, Linchpin synthesizes a parallel ruleset, where
the target graph is assembled from each leaf towards a final vertex, with the
process culminating in two subgraphs joining together [3]. As an example con-
sider G = (V = {1, 2, 3, 4, 5, 6}, E = {12, 23, 34, 45, 56}), assuming vertex 2 as
the root vertex fed to the algorithms in [3], the resulting rulesets are as below:

φSingleton =

⎧⎪⎪⎨
⎪⎪⎩

0 0 � 1 − 2 (r1, r̄1)

1 0 � 3 − 4 (r2, r̄2)

4 0 � 5 − 6 (r3, r̄3)

6 0 � 7 − 8 (r4, r̄4)

8 0 � 9 − 10 (r5, r̄5)

φLinchpin =

⎧⎪⎪⎨
⎪⎪⎩

0 0 � 1 − 2 (r1, r̄1)

0 0 � 7 − 8 (r2, r̄2)

2 0 � 3 − 4 (r3, r̄3)

4 0 � 5 − 6 (r4, r̄4)

8 6 � 9 − 10 (r5, r̄5)

5.1 Singleton and Linchpin for Robots

Algorithm 1 depicts the pseudo codes for the extended Singleton algorithm
for robots with N connectors, denoted as SingletonR, and the original one for
abstract graphs, denoted as SingletonG. l, k, and NE(k) denote the largest label,
the root vertex, and the neighbors of node k with respect to edge set E, respec-
tively. For a given target graph Ĝ, running SingletonG((VĜ, EĜ, k, 0)) for any
k ∈ VĜ generates a ruleset. The ruleset allows the SA process to grow the target
graph outwards from the starting vertex k. Similarly, SingletonR generates a
ruleset for robots based on a given target structure, represented by an extended
graph G = (VG, EG, SG), where S(vi, vj) returns the ordered pair of (si, sj), the
involved link-slots on the two linked vertices. L(v) returns the current extended
label of a vertex, (la, ln). The GVL (short for Get Vertex Label) procedure
returns the ordered pair of (la, lh) by updating the value of lh such that it indi-
cates the relative position of the currently engaged slot, s, with respect to the
previously engaged one. The SVL (short for Set Vertex Label) procedure updates
the extended label (la, ln) by updating the value of ln considering the value of
the applied label. Compared to the SingletonG algorithm where only the state
labels are synthesized, SingletonR produces the relative hop number lh indicat-
ing the proper linking orientation as well. The combination of these two values
provides a general description of the full internal state of a robot. Alternatively
for a robot with N connectors, the internal state may be fully described using
an ordered N-tuple by associating one state label to each connector. Considering
interactions between any two connectors, this would result in a ruleset com-
plexity of O(N2). Utilizing our extended label convention, we obtain a ruleset
complexity of O(N). LinchpinR is similarly obtained by extending the standard
Linchpin algorithm with the notion of link-slots. We skip its pseudo code is for
brevity here.

204 B. Haghighat et al.

1: C : (V, E, S, L, k, l)
2: procedure SingletonR(C)
3: φ ← ∅
4: if |nE(k)| = 0 then
5: return (l, φ)
6: else
7: {vj : j = 1, 2, ..., |nE(k)|} ← nE(k)
8: for j = 1 to |nE(k)| do
9: (sk, sj) ← S(vk, vj)
10: lk ← GVL(L, sk, vk)
11: lj ← GVL(L, sj , vj)
12: l̄ ← IncrementState(l, 1)
13: l ← IncrementState(l, 2)
14: φ ← φ ∪ {lk lj � l̄ − l}
15: SVL(L, vk, sk, l̄)
16: SVL(L, vj , sj , l)

17: Let (V j , Ej , Sj) be the
component of (V, E − {kvj}) containing vj

18: Cj : (V j , Ej , S, L, vj , l)
19: (l, φj) ← SingletonR(Cj)
20: φ ← φ ∪ φj

21: end for
22: end if
23: return (l, φ)
24: end procedure

25: procedure GVL(L, s, v)
26: (la, ln) ← L(v)
27: lh ← (ln − s + 1) (mod N)
28: return (la, lh)
29: end procedure

30: procedure SVL(L, v, s, l)
31: (la, lh) ← l(1 : 2)
32: ln ← s
33: L(v) ← (la, ln)
34: end procedure

35: procedure IncrementState(l, k)
36: return (la + k, ln)
37: end procedure

1: C : (V, E, k, l)
2: procedure SingletonG(C)
3: φ ← ∅
4: if |nE(k)| = 0 then
5: return (l, φ)
6: else
7: {vj : j = 1, 2, ..., |nE(k)|} ← nE(k)
8: l̄ ← l
9: for j = 1 to |nE(k)| do
10: φ ← φ ∪ {l̄ 0 � (l + 1) − (l + 2)}
11: l̄ ← l + 1
12: l ← l + 2
13: Let (V j , Ej) be the

component of (V, E − {kvj}) containing vj

14:
Cj : (V j , Ej , vj , l)

15: (lj , φj) ← SingletonG(Cj)
16: φ ← φ ∪ φj

17: l ← lj
18: end for
19: end if
20: return (l, φ)
21: end procedure

Alg. 1: SingletonR for robotic SA and SingletonG for SA of graphs [3].

Fig. 3. Progress of the SA process for cross shape employing φL.

Synthesizing Rulesets for Programmable Robotic Self-assembly 205

5.2 Rulesets for Self-assembly of Lily Robots

The rulesets returned by SingletonR for a chain, φS , and the one returned by
LinchpinR for a cross, φL, using 6 Lilies are reported below. The (la, lh) notation
is used for the relative extended labels and the reverse rules are separated.

φS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) (0, 0)
r1−−→ (1, 1) − (2, 1)

(1, 3) (0, 0)
r2−−→ (3, 1) − (4, 1)

(4, 3) (0, 0)
r3−−→ (5, 1) − (6, 1)

(6, 3) (0, 0)
r4−−→ (7, 1) − (8, 1)

(8, 3) (0, 0)
r5−−→ (9, 1) − (10, 1)

(1, 1) − (2, 1)
r̄1−−→ (0, 0) (0, 0)

(3, 1) − (4, 1)
r̄2−−→ (1, 3) (0, 0)

(5, 1) − (6, 1)
r̄3−−→ (4, 3) (0, 0)

(7, 1) − (8, 1)
r̄4−−→ (6, 3) (0, 0)

(9, 1) − (10, 1)
r̄5−−→ (8, 3) (0, 0)

φL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) (0, 0)
r1−−→ (1, 1) − (2, 1)

(0, 0) (0, 0)
r2−−→ (3, 1) − (4, 1)

(0, 0) (4, 4)
r3−−→ (5, 1) − (6, 1)

(0, 0) (6, 3)
r4−−→ (7, 1) − (8, 1)

(2, 3) (8, 2)
r5−−→ (9, 1) − (10, 1)

(1, 1) − (2, 1)
r̄1−−→ (0, 0) (0, 0)

(3, 1) − (4, 1)
r̄2−−→ (0, 0) (0, 0)

(5, 1) − (6, 1)
r̄3−−→ (0, 0) (4, 2)

(7, 1) − (8, 1)
r̄4−−→ (0, 0) (6, 3)

(9, 1) − (10, 1)
r̄5−−→ (2, 3) (8, 4)

Consider φS . While the state labels returned by SingletonR for Lilies are
similar to the ones for a chain shape in abstract graphs, it can be seen that the
values of lh = 3 on the LHS of the rules dictate 2 hops between the successive
latching events, resulting in a linear structure considering the square shaped
modules. The reverse rules all have lh = 1 at the LHS, indicating that the rule
happens at the slot engaged the latest. Figure 3 depicts the SA process employing
φL on 6 Lilies. Each square represents a Lily, labeled with the la value. The
most recent engaged link-slot is indicated with a blue mark, while the relative
hop numbers of lh are marked in red for one Lily. For each Lily, numbering the
slots always starts with lh = 1 at the most recently engaged slot and follows a
CCW convention. Note that the synthesis algorithms only generate the rules;
appropriate probabilities should be associated with forward and reverse rules to
allow the system to recover from deadlocks, while reliably forming the target.

6 Simulation Framework

In order to compare the performance of our rulesets for SA of robots and to
study the transient behavior, we develop a microscopic simulation framework.
Our approach is based upon the abstract model for randomized interactions
among atomic agents introduced in [3]. We build on this method in two ways.
First, in order to model interactions between robots the notion of extended
graphs along with appropriate geometrical constraints is utilized. Second, we
introduce a new shape recognition method which is an extension over a graph
isomorphism check to track the progress of the SA process in the system.

6.1 Random Pairwise Interactions

In our extended formalism, a random pairwise interaction dynamics is defined
as a quadruple (G,F, φ, P). Rule probabilities are assigned by P : φ → (0, 1].

206 B. Haghighat et al.

The set of pairs of disjoint vertices is defined as PW (G) = {(x, y) :	 ∃I ⊂
G|(x, y) ∈ VI , x 	= y}, where I is a connected subgraph of G. The set PW (G)
defines modules among which an interaction is feasible as they are not on the
same sub-assembly. F (G) maps an extended graph G to probabilities of pairwise
vertex selections from VG. A random trajectory of the system, is generated by
sampling F (Gt) at each time instant to obtain a pair (x, y) and then executing
an appropriate action on the selected pair. For two selected vertices to interact,
the link-slots are chosen randomly from the available slots. Sampling from F (Gt)
introduces an inherent stochasticity to the trajectories even if the ruleset contains
only deterministic rules. The interaction probabilities, defined by F (Gt), depend
on the current graph Gt and can be calibrated.

6.2 Shape Recognition

Tracking the progress of the SA process of the simulated system requires a
mapping between the connected components of the graph of the system and the
shape of the corresponding sub-assemblies. For the case of SA of graphs where the
system is represented by an abstract graph at each time instant, this describes a
problem of graph isomorphism. However, for the case of our extended graphs, the
relative position of the engaged slots need to be taken into account to recognize
the shapes. We propose a simple method for recognizing the shapes based on
traversing the connected components of the extended graph and constructing a
series of locations of the Center Of Mass (COM) of the robotic modules. The
relative ordering of the slots of neighboring modules determines the orientation of
each traverse. The series of locations are then rotated and translated such that all
coordinates are positive. The resulting ordered set is used as the identifier of the
structure. This method can be applied to modules with a variety of shapes. Our
method is sufficient for the case of structures confined in 2D and is substantially
less computationally expensive than general approaches [1,6].

Fig. 4. Comparison of rulesets derived by the two extended synthesis algorithms for
the two target structures of chain and cross shape. The solid lines and shaded regions
summarize the mean and standard deviation of 100 runs, respectively.

Synthesizing Rulesets for Programmable Robotic Self-assembly 207

7 Experiments and Results

SingletonR and LinchpinR algorithms are utilized to derive rules for (1) a target
assembly of a chain shape, and (2) a target assembly of a cross shape, both
of size 6. The resulting rulesets are deployed in microscopic simulations with
24 modules, and on 6 real robots. Within a ruleset, all the rules with identical
LHS are set to be equi-probable. For forward rules P (.) = 1 and for reverse
rules P (.) = 0.1 is chosen. The finishing rule is chosen to be irreversible in all
the rulesets, giving rise to stable target assemblies once they are formed. Care
should be taken in comparing simulated and experimental results. First, a higher
number of available modules compared to the target size in simulation allows for
inherently larger opportunities for interaction, particularly in the early stages
of the process. Second, the simulation framework assumes all interactions to
be equiprobable, this can be a good assumption when the number of available
modules is much higher than the target size. Third, the simulation results are
reported as a function of steps, representing formation events in the system, a
progress unit suitable for measuring the concurrency of the rulesets.

Table 1. Formation time statistics

Algorithm Target Mean (s) Std. (s)

SingletonR Chain shape 844.3 165.8

LinchpinR Chain shape 941.1 138.9

SingletonR Cross shape 181.1 25.8

LinchpinR Cross shape 190.3 77.6

Figure 4 shows the performance of the rulesets derived by the two extended
synthesis algorithms for the two target assemblies in simulation. The vertical axis
shows the number of copies of the target assembly in the system at each step. For
the cross shape target, the naturally serial ruleset of SingletonR is outperformed
by the more concurrent one of LinchpinR. For the chain shape target, the rule-
sets of the two algorithms perform similarly. Looking into the generated rules,
LinchpinR builds dimers with two possible labeling assigned probabilistically,
while SingletonR adds modules one by one, labeled deterministically.

For the experimental studies, 6 Lily robots were programmed with the derived
rulesets to build the two target structures. Each experiment was repeated five
times. Table 1 details the formation time statistics. Considering the chain shape,
while the average formation time for SingletonR is less than that of LinchpinR,
SingletonR exhibits a higher standard deviation. This can be ascribed to the
assembly strategy of the rulesets. LinchpinR builds the target out of dimers and
requires two dimers labeled differently. Since the labeling is done at random,
when the available modules are scarce this can easily result in longer forma-
tion times. More generally, LinchpinR does not necessarily make the best use of
the available resources. For the cross shape, both the smallest and the largest

208 B. Haghighat et al.

Fig. 5. SingletonR rulesets for chain and cross shapes on six Lily robots.

formation times were obtained by LinchpinR. This can be explained by consid-
ering the interaction between the intermediate sub-assemblies. While LinchpinR
builds the target through four concurrent steps as opposed to SingletonR’s five,
the relative orientation of the connecting sub-assemblies is more easily achieved
for SingletonR where one component, i.e. the isolated Lily, is always symmetric
(Fig. 5).

8 Conclusion

In this paper, we addressed the problem of rule synthesis for programmable SA
of robots. We extended the graph grammar formalism to account for the mor-
phology of the robots and proposed a formal method to automatically synthesize
rules for robots. We introduced the notion of extended graphs comprising ver-
tices with ordered link-slots representing the robotic modules’ connectors. The
state of each module is represented by an extended label. We showed that our
formalism achieves a ruleset complexity of O(N) compared to the conventional
methods’ O(N2). Using our method, two synthesis algorithms originally intro-
duced for SA of graphs were then extended to synthesize rules for our robots.
Studies on the synthesized rulesets in simulation and real experiments demon-
strated the functionality of our method. In the future, we will investigate novel
rule-synthesis algorithms allowing for higher concurrency in the process by con-
sidering geometrical features of the target. Finally, we plan to fully utilize our
setup to conduct systematic real experiments involving up to 100 Lily robots.

Acknowledgments. This work has been sponsored by the Swiss National Science
Foundation under the grant numbers 200021 137838/1 and 200020 157191/1.

Synthesizing Rulesets for Programmable Robotic Self-assembly 209

References

1. Asadpour, M., Ashtiani, M.H.Z., Sproewitz, A., Ijspeert, A.: Graph signature for
self-reconfiguration planning of modules with symmetry. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 5295–5300 (2009)

2. Ayanian, N., White, P.J., Hálász, A., Yim, M., Kumar, V.: Stochastic control for
self-assembly of xbots. In: International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, pp. 1169–1176 (2008)

3. Fox, M., Shamma, J.: Probabilistic performance guarantees for distributed self-
assembly. IEEE Trans. Autom. Control 60(12), 3180–3194 (2015)

4. Fox, M.J., Shamma, J.S.: Communication, convergence, and stochastic stabil-
ity in self-assembly. In: IEEE International Conference on Decision and Control,
pp. 7245–7250 (2010)

5. Ganesan, V., Chitre, M.: On stochastic self-assembly of underwater robots. IEEE
Robot. Autom. Lett. 1(1), 251–258 (2016)

6. Golestan, K., Asadpour, M., Moradi, H.: A new graph signature calculation method
based on power centrality for modular robots. In: Martinoli, A., Mondada, F.,
Correll, N., Mermoud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., Støy, K. (eds.)
Distributed Autonomous Robotic Systems. STAR, vol. 83, pp. 505–516. Springer,
Heidelberg (2013)

7. Haghighat, B., Droz, E., Martinoli, A.: Lily: a miniature floating robotic platform
for programmable stochastic self-assembly. In: IEEE International Conference on
Robotics and Automation, pp. 1941–1948 (2015)

8. Klavins, E.: Programmable self-assembly. IEEE Control Syst. 27(4), 43–56 (2007)
9. Klavins, E.: Automatic synthesis of controllers for distributed assembly and for-

mation forming. In: IEEE International Conference on Robotics and Automation,
pp. 3296–3302 (2002)

10. Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing
robotic systems. IEEE Trans. Autom. Control 51(6), 949–962 (2006)

11. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

12. Salemi, B., Moll, M., Shen, W.M.: Superbot: a deployable, multi-functional, and
modular self-reconfigurable robotic system. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 3636–3641 (2006)

	Synthesizing Rulesets for Programmable Robotic Self-assembly: A Case Study Using Floating Miniaturized Robots
	1 Introduction
	2 Fluidic Self-assembly of Lily Robots
	3 Graph Grammars for Self-assembly of Graphs
	4 Graph Grammars for Self-assembly of Robots
	5 Synthesizing Rules for Robots
	5.1 Singleton and Linchpin for Robots
	5.2 Rulesets for Self-assembly of Lily Robots

	6 Simulation Framework
	6.1 Random Pairwise Interactions
	6.2 Shape Recognition

	7 Experiments and Results
	8 Conclusion
	References

