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Abstract. Particle swarm optimisation is a metaheuristic algorithm
which finds reasonable solutions in a wide range of applied problems
if suitable parameters are used. We study the properties of the algo-
rithm in the framework of random dynamical systems (RDS) which, due
to the quasi-linear swarm dynamics, yields exact analytical results for
the stability properties in the single particle case. The calculated stabil-
ity region in the parameter space extends beyond the region determined
by earlier approximations. This is also evidenced by simulations which
indicate that the algorithm performs best in the asymptotic case if para-
meterised near the margin of instability predicted by the RDS approach.
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1 PSO Introduction

Particle Swarm Optimisation (PSO, [13]) is a metaheuristic algorithm which is
widely used to solve search and optimisation tasks. It employs a number of par-
ticles as a swarm of potential solutions. Each particles shares knowledge about
the current overall best solution and also retains a memory of the best solu-
tion it has encountered itself previously. Otherwise the particles, after random
initialisation, obey a linear dynamics of the following form

vi,t+1 = ωvi,t + α1R1(pi − xi,t) + α2R2(g − xi,t)
xi,t+1 = xi,t + vi,t+1 (1)

Here xi,t and vi,t, i = 1, . . . , N , t = 0, 1, 2, . . . , represent, respectively, the d-
dimensional position in the search space and the velocity vector of the i-th
particle in the swarm at time t. The velocity update contains an inertial term
parameterised by ω and includes attractive forces towards the personal best
location pi and towards the globally best location g, which are parameterised by
α1 and α2, respectively. The symbols R1 and R2 denote diagonal matrices whose
non-zero entries are uniformly distributed in the unit interval. The number of
particles N is quite low in most applications, usually amounting to a few dozens.
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In order to function as an optimiser, the algorithm uses a nonnegative cost
function F : R

d → R. In many problems, where PSO is applied, also states
with near-optimal costs can be considered as good solutions. The cost function
is evaluated for the state of each particle at each time step. If F (xi,t) is better
than F (pi), then the personal best pi is replaced by xi,t. Similarly, if one of
the particles arrives at a state with a cost less than F (g), then g is replaced
in all particles by the position of the particle that has discovered the new best
solution. If its velocity is non-zero, a particle will depart even from the current
best location, but can still return guided by the force terms in the dynamics (1).

In the next section we will consider an illustrative simulation of a particle
swarm and move on to a standard matrix formulation of the swarm dynamics in
order to describe some of the existing analytical work on PSO. In Sect. 3 we will
argue for a formulation of PSO as a random dynamical system which will enable
us to derive a novel exact characterisation of the dynamics of a one-particle
system. In Sect. 4 we will compare the theoretical predictions with multi-particle
simulations on a representative set of benchmark functions. Finally, in Sect. 5
we will discuss the assumption we have made in Sect. 3 based on the empirical
evidence for our approach.

2 Swarm Dynamics

2.1 Empirical Properties

The success of the algorithm in locating good solutions depends on the dynamics
of the particles in the state space of the problem. In contrast to many evolution
strategies, it is not straight forward to interpret the particle swarm as following
a landscape defined by the cost function. Unless the current best position g
changes, the particles do not interact with each other and follow an intrinsic
dynamics that does not even indirectly obtain any gradient information.

The particle dynamics depends on the parameterisation of the Eq. 1. To
obtain the best result one needs to select parameter settings that achieve a
balance between the particles exploiting the knowledge of good known loca-
tions and exploring regions of the problem space that have not been visited
before. Although adaptive schemes are available [6,9,20], parameter values often
need to be experimentally determined, and poor selection may result in prema-
ture convergence of the swarm to poor local minima or in a divergence of the
particles.

Empirically we can execute PSO against a variety of problem functions with
a range of ω and α1,2 values. Typically the algorithm shows performance of the
form depicted in Fig. 1. The best solutions found show a curved relationship
between ω and α = α1 + α2, with ω ≈ 1 at small α, or α � 4 at small ω.
Large values of both α and ω are found to cause the particles to diverge leading
to results far from optimality, while at small values for both parameters the
particles converge to a nearby solution which sometimes is acceptable. For other
cost functions similar relationships are observed in numerical tests (see Sect. 4)
unless no good solutions found due to problem complexity or runtime limits.
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Fig. 1. Typical PSO performance as a function of its ω and α parameters. Here a 25
particle swarm was run for pairs of ω and α values (α1 = α2 = α/2). Cost function
here was the d = 10 non-continuous rotated Rastrigin function [15]. Each parameter
pair was repeated 100 times and the minimal costs after 2000 iterations were averaged.

For simple cost functions, such as a single well potential, there are also parameter
combinations with small ω and small α will usually lead to good results. The
choice of α1 and α2 at constant α may have an effect for some cost functions,
but does not seem to have a big effect in most cases.

2.2 Matrix Formulation

In order to analyse the behaviour of the algorithm it is convenient to use a matrix
formulation by inserting the velocity explicitly in the second equation (1).

zt+1 = Mzt + α1R1(p,p)� + α2R2(g,g)� (2)

with z = (v,x)� and

M =
(

ωId −α1R1 − α2R2

ωId Id − α1R1 − α2R2

)
, (3)

where Id is the unit matrix in d dimensions. Note that the two occurrence of R1

in Eq. 3 refer to the same realisation of the random variable. Similarly, the two
R2’s are the same realisation, but different from R1. Since the second and third
term on the right in Eq. 2 are constant most of the time, the analysis of the algo-
rithm can focus on the properties of the matrix M . PSO’s wide applicability has
led to the analyses discussed in Sect. 2.3. These focused either on simplifying the
algorithm to make it deterministic or on the expectation and variance values of
the update matrix. Here we analyse the long term behaviour of the swarm con-
sidering both the stationary probability distribution of the particles within the
z state space and the properties of the infinite product of the stochastic matrix.
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2.3 Analytical Results

An early exploration of the PSO dynamics [12] considered a single particle in
a one-dimension space where the personal and global best locations were taken
to be the same. The random components were replaced by their averages such
that apart from random initialisation the algorithm was deterministic. Varying
the parameters was shown to result in a range of periodic motions and divergent
behaviour for the case of α1 + α2 ≥ 4. The addition of the random vectors was
seen as beneficial as it adds noise to the deterministic search.

Control of velocity, not requiring the enforcement of an arbitrary maximum
value as in Ref. [12], is derived in an analytical manner by [4]. Here eigenvalues
derived from the dynamic matrix of a simplified version of the PSO algorithm
are used to imply various search behaviours. Thus, again the α1 + α2 ≥ 4 case
is expected to diverge. For α1 + α2 < 4 various cyclic and quasi-cyclic motions
are shown to exist for a non-random version of the algorithm.

In Ref. [19] again a single particle was considered in a one dimensional problem
space, using a deterministic version of PSO, setting R1 = R2 = 0.5. The eigen-
values of the system were determined as functions of ω and a combined α, which
leads to three conditions: The particle is shown to converge when ω < 1, α > 0 and
2ω − α + 2 > 0. Harmonic oscillations occur for ω2 + α2 − 2ωα − 2ω − 2α + 1 < 0
and a zigzag motion is expected if ω < 0 and ω − α + 1 < 0. As with the pre-
ceding papers the discussion of the random numbers in the algorithm views them
purely as enhancing the search capabilities by adding a drunken walk to the parti-
cle motions. Their replacement by expectation values was thus believed to simplify
the analysis with no loss of generality.

A weakness in these early papers stems from the treatment of the stochastic
elements. Rather than replacing the R1 and R2 vectors by 0.5 the dynamic behav-
iour can be explored by considering their expectation values and variances. An
early work doing this produced a predicted best performance region in parame-
ter space similar to the curved valley of best values that is seen empirically [10].
The authors explicitly consider the convergence of means and variances of the
stochastic update matrix. The curves they predict marks the locus of (ω, α)-pairs
they believed guaranteed swarm convergence, i.e. parameter values within this
line will result in convergence. Similar approaches yielded matching lines [17]
and utilised a weaker stagnation assumption [16]. Ref. [1] provides an extensive
recent review of such analyses. We will refer to this locus as the Jiang line [10].
It is included for comparison with the curves derived here, see Fig. 2 below.

We show in this contribution that the iterated use of these random factors R1

and R2 in fact adds a further level of complexity to the dynamics of the swarm
which affects the behaviour of the algorithm in a non-trivial way. Essentially
it is necessary to consider both the stationary distribution of particles in the
system’s state space and the properties of the infinite product of the stochastic
update matrix. This leads to a loci of parameters leading to stable swarms that
differs from previous solutions and depends upon the values of α1 and α2 used.
All solutions lie outside the Jiang line [10]. We should note that they state
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that their solution is a guarantee of convergence but may not be its limit. Our
analytical solution of the stability problem for the swarm dynamics explains why
parameter settings derived from the deterministic approaches are not in line with
experiences from practical tests. For this purpose we will now formulate the PSO
algorithm as a random dynamical system and present an analytical solution for
the swarm dynamics in a simplified but representative case.

3 Critical Swarm Conditions for a Single Particle

3.1 PSO as a Random Dynamical System

As in Refs. [12,19] the dynamics of the particle swarm will be studied here
as well in the single-particle case. This can be justified because the particles
interact only via the global best position such that, while g (1) is unchanged,
single particles exhibit qualitatively the same dynamics as in the swarm. For the
one-particle case we have necessarily p = g, such that shift invariance allows us
to set both to zero, which leads us to the following is given by the stochastic-map
formulation of the PSO dynamics (2).

zt+1 = Mzt (4)

Extending earlier approaches we will explicitly consider the randomness of the
dynamics, i.e. instead of averages over R1 and R2 we consider a random dynam-
ical system with dynamical matrices M chosen from the set

Mα,ω =
{(

ωId −αR
ωId Id − αR

)
, Rij = 0 for i �= j and Rii ∈ [0, 1] ,

}
(5)

with R being in both rows the same realisation of a random diagonal matrix that
combines the effects of R1 and R2 (1). The parameter α is the sum α1 +α2 with
α1, α2 ≥ 0. As the diagonal elements of R1 and R2 are uniformly distributed in
[0, 1], the distribution of the random variable Rii = α1

α R1,ii + α2
α R2,ii in Eq. 4

is given by a convolution of two uniform random variables, namely

Pα1,α2(s) =

⎧⎪⎨
⎪⎩

α2s
α1α2

if 0 ≤ s ≤ min{α1
α , α2

α }
α

max{α1,α2} if min{α1
α , α2

α } < s ≤ max{α1
α , α2

α }
α2(1−s)

α1α2
if max

{
α1
α , α2

α

}
< s ≤ 1

(6)

if the variable s ∈ [0, 1] and Pα1,α2(s) = 0 otherwise. Pα1,α2(s) has a tent shape
for α1 = α2 and a box shape in the limits of either α1 → 0 or α2 → 0. Thus, the
selection of particular α1 and α2 parameters will determine the distribution for
the random multiplier Rii in Eq. 5.

We expect that the multi-particle PSO is well represented by the simplified
version for α2 � α1 or α1 � α2, the latter case being irrelevant in practice.
For α1 ≈ α2 deviations from the theory may occur because in the multi-particle
case p and g will be different for most particles. We will discuss this as well as
the effects of the switching of the dynamics at discovery of better solutions in
Sect. 5.
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3.2 Marginal Stability

As the PSO algorithm runs, the particles locate new and better solutions. These
result in updates to the personal best locations of the particles, and sometimes
to the swarm’s global best location. Typically, these updates become rarer over
time. When the swarm is not discovering new and better solutions, the dynamics
of the system is determined by an infinite product of matrices from the set
Mα,ω (5). Such products have been studied for several decades [7] and have found
applications in physics, biology and economics. Here they provide a convenient
way to explicitly model the stochasticity of the swarm dynamics such that we
can claim that the performance of PSO is determined by the stability properties
of the random dynamical system (4).

Since the equation (4) is linear, the analysis can be restricted to vectors on
the unit sphere in the (v,x) space, i.e. to unit vectors a = (x,v)�

/ ‖ (x,v)�‖,
where ‖·‖ denotes the Euclidean norm. Unless the set of matrices shares the same
eigenvectors (which is not the case here) standard stability analysis in terms of
eigenvalues is not applicable. Instead we will use tools from the theory of random
matrix products in order to decide whether the set of matrices is stochastically
contractive. The properties of the asymptotic dynamics can be described based
on a double Lebesgue integral over the unit sphere S2d−1 and the set Mα,ω [14].
As in Lyapunov exponents, the effect of the dynamics is measured in logarithmic
units in order to account for multiplicative action.

λ (α, ω) =
∫

dνα,ω (a)
∫

dPα,ω (M) log ‖Ma‖ (7)

If λ (α, ω) is negative the algorithm will converge to p with probability 1, while
for positive λ arbitrarily large fluctuations are possible. While the measure for
the inner integral (7) is given by Eq. 6, we have to determine the stationary
distribution να,ω (called invariant measure in [14]) on the unit sphere for the
outer integral. It tells us where (or rather in which sector) the particles are
likely to be in the system’s state space. It is given as the solution of the integral
equation

να,ω (a) =
∫

dνα,ω (b)
∫

dPα,ω (M) δ (a,Mb/ ‖Mb‖) , a,b ∈ S2d−1, (8)

which represents the stationarity of να,ω, i.e. the fact that under the action
of the matrices from Mα,ω the distribution of particles over sectors remains
unchanged. Obviously, if the particles are more likely to reside in some part
then this part should have a stronger influence on the stability, see Eq. 7.

The existence of the invariant measure requires the dynamics to be ergodic
which is ensured if at least some of elements of Mα,ω have complex eigenvalues,
such as being the case for ω2 + α2/4 − ωα − 2ω − α + 1 < 0 (see above, [19]).
This condition excludes a small region in the parameters space at small values
of ω, such that there we have to take all ergodic components into account.
There are not more than two components which due to symmetry have the same
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stability properties. It depends on the parameters α and ω and differs strongly
from a homogenous distribution. Critical parameters are obtained from Eq. 7 by
the relation

λ (α, ω) = 0. (9)

A similar goal was followed in Ref. [6], where, however, an adaptive scheme rather
than an analytical approach was invoked in order to identify critical parameters.
Solving Eq. 9 is difficult in higher dimensions, so we rely on the linearity of the
system when considering the (d = 1)-case as representative. In Fig. 2 critical
loci of parameter values are plotted. Two lines are plotted in black: one (outer)
derived for the case of α = α1 + α2, and α1 = α2, the other (inner) for the
case of α = α2, and α1 = 0. We also plot a line (in dark green) showing the
earlier solution of swarm stability [10]. Inside the contour λ (α, ω) is negative,
meaning that the state will approach the origin with probability 1. Along the
contour and in the outside region large state fluctuations are possible. Interesting
parameter values are expected near the curve where due to a coexistence of stable
and unstable dynamics (induced by different sequences of random matrices) a
theoretically optimal combination of exploration and exploitation is possible. For
specific problems, however, deviations from the critical curve can be expected
to be beneficial.

ω
-1 -0.5 0 0.5 1

α

0

1

2

3

4

5

Fig. 2. Solution of Eq. 9 representing a single particle in one dimension with a fixed
best value at g = p = 0. The curve that has higher α-values on the right (solid)
is for α1 = α2, the other curve (dashed) is for α = α2, α1 = 0. Except for the
regions near ω = ±1, where numerical instabilities can occur, a simulation produces
an indistinguishable curve. In the simulation we tracked the probability of a particle
to either reach a small region (10−12) near the origin or to escape beyond a radius of
1012 after starting from a random location on the unit circle. Along the curve both
probabilities are equal. For comparison the line of stability predicted by [10] is shown
in green (the innermost line). (Color figure online)
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4 Optimisation of Benchmark Functions

4.1 Experimental Setup

Metaheuristic algorithms are often tested in competition against benchmark
functions designed to present different problem space characteristics. The 28
functions [15] contain a mix of unimodal, basic multimodal and composite
functions. The domain of the functions in this test set are all defined to be
[−100, 100]d where d is the dimensionality of the problem. Particles were ini-
tialised uniformly randomly within the same domain. We use 10-dimensional
problems throughout. It may be interesting to consider higher dimensionalities,
but d = 10 seems sufficient in the sense that random hits at initialisation are
already very unlikely. Our implementation of PSO performed no spatial or veloc-
ity clamping. In all trials a swarm of 25 particles was used. For the competition
50000 fitness evaluation were allowed which corresponds to 2000 iterations with
25 particles. Other iteration numbers (20, 200, 20000) were included here for
comparison. Results are averaged over 100 trials. This protocol was carried out
for pairs of ω ∈ [−1.1, 1.1] and α ∈ [0, 6]. This was repeated for all 28 functions.
The averaged solution costs as a function of the two parameters showed curved
valleys similar to that in Fig. 1 for all problems. For each function we obtain
different best values along (or near) the theoretical curve (9). There appears to
be no preferable location within the valley.

4.2 Empirical Results

Using the 28 functions (in 10 dimensions) from the CEC2013 competition [15] we
can run our unconstrained PSO algorithm for each parameter pairing. Randomly
sampling of each problem is used to estimate its average value. This average is
used to approximately normalise the PSO results obtained for each the function.
We combined these results for 100 runs. The 5 % best parameter pairs are shown
in Fig. 3 for different iteration budgets. As the iteration budget increases the best
locations move out from the origin as we would expect. For 2000 iterations per
run the best performing locations appear to agree well with the Jiang line [10]. It
is known that some problem functions return good results even when parameters
are well inside the stable line. Simple functions (e.g. Sphere) will benefit from
early swarm convergence. Thus, our average performance may mask the full
effects. Figure 3 also shows an example of a single function’s best performing
parameter for 2000 iterations. This function now shows many locations beyond
the Jiang line for which good results are obtained.

In Fig. 4 detailed explorations of two functions are shown. For these, we set
ω = 0.55, while α is varied with a much finer granularity between 2 and 6.
2000 repetitions of the algorithm are performed for each parameter pairing. The
curves shown are for increasing iteration budgets (20, 200, 2000, 20000). Vertical
lines mark where the two predicted stable loci sit on these parameter space slices.

The best results lie outside the Jiang line for these functions. Our predicted
stable limit appears to be consistent with these results. In other words, if the
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Fig. 3. Empirical cost function value results. (left) 5 % best parameter pair locations
across all 28 functions plotted against our curve (black) and Jiang curve [10] (green).
Iteration budgets are 20 (green circles), 200 (blue crosses), 2000 (red ×’s). (right) 5 %
best parameter pair locations for function 21 plotted against our curve (black) and
Jiang curve (green). Red dot is best location. (Color figure online)

solution is to be found in a short time a more stable dynamics is preferable,
because the particles can settle in a nearby optimum at smaller fluctuations. If
more time is available, then parameter pairs more close to the critical curve lead
to an increased search range which obviously allows the swarm to explore better
solutions. Similarly, we expect that in larger search spaces (e.g. relative to the
width of the initial distribution of the particles) parameters near the critical line
will lead to better results.

5 Discussion

Our analytical approach predicts a locus of α and ω pairings that maintain the
critical behaviour of the PSO swarm. Outside this line the swarm will diverge
unless steps are taken to constrain it. Inside, the swarm will eventually converge
to a single solution. In order to locate a solution precisely in the search space, the
swarm needs to converge at some point, so the line represents an upper bound on
the exploration-exploitation mix that a swarm manifests. For parameters on the
critical line, fluctuations are still arbitrary large. Therefore, subcritical parameter
values can be preferable if the settling time is of the same order as the scheduled
runtime of the algorithm. If, in addition, a typical length scale of the problem is
known, then the finite standard deviation of the particles in the stable parameter
region can be used to decide about the distance of the parameter values from
the critical curve. These dynamical quantities can be approximately set, based
on the theory presented here, such that a precise control of the behaviour of the
algorithm is in principle possible.

The observation of the distribution of empirically optimal parameter values
along the critical curve, confirms the expectation that critical or near-critical
behaviour is the main reason for success of the algorithm. Critical fluctuations are
a plausible tool in search problem if apart from certain smoothness assumptions
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Fig. 4. Detailed empirical cost function value results. Detailed PSO performance along
the (ω = 0.55)-slice of parameter space for functions 7 (left) and 21 (right) [15]. Differ-
ent iteration budgets are shown: 20 (red), 200 (yellow), 2000 (green) and 20000 (cyan)
fitness evaluations. Vertical lines show our limit (black) and Jiang limit [10] (dark
green). (Color figure online)

nothing is known about the cost landscape: The majority of excursions will
exploit the smoothness of the cost function by local search, whereas the fat tails
of the jump distribution allow the particles to escape from local minima.

The critical line in the PSO parameter space has been previously investigated
and approximated by various authors [2,8,11,17,18]. Many of these approxi-
mations are compared alongside empirical simulation in [16]. As the authors
of Ref. [3] note, the most accurate calculation of the critical line so far is pro-
vided by Poli in Refs. [17,18], however, not without pointing out that the effects
of the higher-order terms were actually ignored. In contrast, the method we
present here uses an approach which does not exclude the effects of higher order
terms. Thus, where our results differ from those previously published, we can
conclude that the difference is a result of incorporating the effects of these higher
order terms. Further, a second result is that these higher order terms do not have
noticeable effect for ω values close to ±1, and thus in these regions of the para-
meter space both methods coincide.

The critical line (9) defines the best parameters for a PSO allowed to run
for infinite steps. As the number of steps (and the size of the problem space)
decrease, the best parameters move inwards, such that for e.g. 2000 steps the line
proposed by Poli in Refs. [17,18] provides a good estimate for good parameters.

The work presented here can be seen as a Lyapunov condition based approach
to uncovering the phase boundary. Previous work considering the Lyapunov
condition has produced rather conservative estimates for the stability region [8,
11] which is a result of the particular approximation used, while we avoid this
by directly calculating the integral (7) for the one-particle case.

Equation 2 shows that the discovery of a better solution affects only the con-
stant terms of the linear dynamics of a particle, whereas its dynamical properties
are governed by the (linear) parameter matrices. However, in the time step after
a particle has found a new solution the corresponding force term in the dynamics
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is zero (see Eq. 1) such that the particle dynamics slows down compared to the
theoretical solution which assumes a finite distance from the best position at all
(finite) times. As this affects usually only one particle at a time and because new
discoveries tend to become rarer over time, this effect will be small in the asymp-
totic dynamics, although it could justify the empirical optimality of parameters
in the unstable region for some test cases.

The question is nevertheless, how often these changes occur. A weakly con-
verging swarm can still produce good results if it often discovers better solutions
by means of the fluctuations it performs before settling into the current best
position. For cost functions that are not ‘deceptive’, i.e. where local optima tend
to be near better optima, parameter values far inside the critical contour (see
Fig. 2) may give good results, while in other cases more exploration is needed.

A numerical scan of the (α1, α2)-plane shows a valley of good fitness values,
which, at small fixed positive ω, is roughly linear and described by the relation
α1 + α2 = const, i.e. only the joint parameter α = α1 + α2 matters. For large
ω, and accordingly small predicted optimal α values, the valley is less straight.
This may be because the effect of the known solutions is relatively weak, so the
interaction of the two components becomes more important. In other words, if
the movement of the particles is mainly due to inertia, then the relation between
the global and local best is non-trivial, while at low inertia the particles can
adjust their p vectors quickly towards the g vector such that both terms become
interchangeable.

6 Conclusion

In previous approaches, inherent stochasticity of PSO was handled via various
simplifications such as the consideration of expectation values, thus excluding
higher order terms that were, however, included in the present approach. It was
shown here that the system is more correctly understood by casting PSO as a
random dynamical system. Our analysis shows that there exists a locus of (ω,α)-
pairings that result in the swarm behaving in a critical manner. This plays a role
also in other applications of swarm dynamices, e.g., the behaviour reported in
Ref. [5] occurred as well in the vicinity of critical parameter settings.

A weakness of the current approach is that it focuses on the standard
PSO [13] which is outperformed on benchmark sets as well as in practical appli-
cations by many of the existing PSO variants. Similar analyses are certainly
possible and can be expected to be carried out for some of these variants.
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