Observing the Effects of Overdesign
in the Automatic Design of Control Software
for Robot Swarms

Mauro Birattari'®™), Brian Delhaisse!, Gianpiero Francesca!,

and Yvon Kerdoncuff!2

L TRIDIA, Université Libre de Bruxelles, Brussels, Belgium
mbiroQulb.ac.be
2 ENSTA ParisTech, Palaiseau, France

Abstract. We present the results of an experiment in the automatic
design of control software for robot swarms. We conceived the experi-
ment to corroborate a hypothesis that we proposed in a previous pub-
lication: the reality gap problem bears strong resemblance to the gen-
eralization problem faced in supervised learning. In particular, thanks
to this experiment we observe for the first time a phenomenon that we
shall call overdesign. Overdesign is the automatic design counterpart of
the well known overfitting problem encountered in machine learning.
Past an optimal level of the design effort, the longer the design process
is protracted, the better the performance of the swarm becomes in sim-
ulation and the worst in reality. Our results show that some sort of early
stopping mechanism could be beneficial.

Keywords: Swarm robotics - Automatic design - Evolutionary
robotics * Reality gap + Generalization + Overdesign - Early stopping

1 Introduction

Designing the control software of the individual robots so that the swarm per-
forms a given task is a difficult problem. A number of interesting approaches have
been proposed to address specific cases—e.g., [3,7,28,32,34,45,56]. Nonetheless,
there is no ultimate and generally applicable method on the horizon.
Automatic design is a viable alternative. To date, the automatic design of
control software for robot swarms has been mostly studied in the framework
of evolutionary swarm robotics [52], which is the application of evolutionary
robotics [40] in the context of swarm robotics. In the classical evolutionary swarm

This research was conceived by MB and GF and was directed by MB. The experiment
was performed by YK using automatic design software developed by BD on the basis
of a previous version by GF. The article was drafted by MB and GF. All authors
read the manuscript and provided feedback. BD is currently with the Department
of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy.

© Springer International Publishing Switzerland 2016

M. Dorigo et al. (Eds.): ANTS 2016, LNCS 9882, pp. 149-160, 2016.
DOI: 10.1007/978-3-319-44427-7_13



150 M. Birattari et al.

robotics, the control software of each individual robot is a neural network that
takes sensor readings as an input and returns actuation commands as an output.
The parameters of the neural network are obtained via an evolutionary algorithm
that optimizes a task-specific objective function. The optimization process relies
on computer-based simulation. Once simulation shows that the swarm is able to
perform the given task, the neural network is uploaded to the robots and the
actual real-world performance of the swarm is assessed.

The reality gap [9,30] is one of the major issues to be faced in evolutionary
swarm robotics—and in all automatic design methods that rely on simulation.
The reality gap is the intrinsic difference between reality and simulation. As
a consequence of the reality gap, differences should be expected between how
an instance of control software behaves in simulation and in reality. Indeed, as
pointed out by Floreano et al. [18], the control software is optimized “to match
the specificities of the simulation, which differ from the real world.”

A number of ideas have been proposed to reduce the impact of the reality
gap, including methods to increase the realism of simulation [31,36] and design
protocols that alternate simulation with runs in reality [5,33]. In a recent article,
Francesca et al. [22] argued that the reality gap problem is reminiscent of the
generalization problem faced in supervised learning. In particular, the authors
conjectured that the inability to overcome the reality gap satisfactorily might
result from an excessive representational power of the control software architec-
ture adopted. Taking inspiration from a practice that is traditionally advocated
in the supervised learning literature [13], the authors explored the idea of inject-
ing bias in the process as a means to reduce the representational power.

In this article, we elaborate further on the relationship between the real-
ity gap problem and the generalization problem faced in supervised learning.
Understanding this relationship can enable the development of new approaches
to handle the reality gap. We present an experiment whose goal is to highlight,
in context of the automatic design of control software for robot swarms, a phe-
nomenon similar to overfitting. Indeed, if the reality gap problem is similar to
the generalization problem of machine learning, one should observe that, past an
optimal level of the design effort, the further the control software is optimized
in simulation, the worse the performance in reality gets. In the context of the
automatic design of control software, we shall call this phenomenon overdesign.

2 Related Work

The automatic generation of control software is a promising approach to the
design of robot swarms [8,19]. Most of the published research belongs in evolu-
tionary swarm robotics [52], which is the application of the principles of evolu-
tionary robotics [40] in the context of swarm robotics. Evolutionary robotics has
been covered by several recent reviews [6,14,48,53]. In the following, we briefly
sketch some of its notable applications in swarm robotics.

A number of authors adopted the classical evolutionary robotics approach:
robots are controlled by neural networks optimized via an evolutionary algo-
rithm. Quinn et al. [43] developed a coordinated motion behavior and tested it



Observing the Effects of Overdesign 151

on three Kheperas. Christensen and Dorigo [11] developed a simultaneous hole-
avoidance and phototaxis behavior and tested it on three s-bots. Baldassarre
et al. [1] developed a coordinated motion behavior for physically connected
robots and tested it on four s-bots. Trianni and Nolfi [51] developed a self-
organizing synchronization behavior and tested it on two and three s-bots.
Waibel et al. [54] developed an idealized foraging behavior and tested it on
two Alices.

For completeness, we mention a number of studies in the automatic design of
control software for robot swarms that departed from the classical evolutionary
swarm robotics. Hecker et al. [29] developed a foraging behavior by optimizing
the parameters of a finite state machine via artificial evolution. They tested the
behavior on three custom-made robots. Gauci et al. [24,25] developed object
clustering and self-organized aggregation by optimizing the six parameters of a
simple control architecture using evolutionary strategy and exhaustive search,
respectively. Experiments were performed with five and forty e-pucks, respec-
tively. Duarte et al. [15,16] proposed an approach based on the hierarchical
decomposition of complex behaviors into basic behaviors, which are then devel-
oped via artificial evolution or implemented manually. The authors obtained
behaviors for object retrieval and patrolling. In a successive study [17], the
authors used artificial evolution to produce control software for a swarm of ten
aquatic robots and solve four different sub-tasks: homing, dispersion, cluster-
ing and area monitoring. The control software for the four sub-tasks was then
combined in a sequential way to accomplish a complex mission. The authors
performed experiments in a 330 m x 190 m waterbody next to the Tagus river in
Lisbon, Portugal. The results show that the control software produced crosses
the reality gap nicely. Francesca et al. [20-22] proposed AutoMoDe: an app-
roach that automatically assembles and fine tunes robot control software start-
ing from predefined modules. The authors developed behaviors for seven tasks:
aggregation, foraging, shelter with constrained access, largest covering network,
coverage with forbidden areas, surface and perimeter coverage, and aggregation
with ambient cues. The developed behaviors were tested with swarms of twenty
e-pucks.

3 Facts and Hypotheses

Neural networks have been studied for over seven decades, with alternating
fortune—e.g., [12,35,37,46,55]. Around the year 2000, neural networks appeared
to be superseded by other learning methods. They regained the general attention
of researchers and practitioner in the last decade, thanks to the major success of
deep learning—e.g., see [47]. In the context of our reasoning, we are interested in
scientific facts about neural networks and their generalization capabilities that
where established mostly in the 1990’s. In particular, we are interested in the
relationship between prediction error and two characteristics: (1) the complexity
of the neural network; and (2) the amount of training effort.



152 M. Birattari et al.

A fundamental result for understanding the relationship between error and
complexity is the so called bias/variance decomposition [26].1 It has been proved
that the prediction error can be decomposed into a bias and a variance compo-
nent. Low-complexity neural networks—i.e., those with a small number of hidden
neurons and therefore low representational power—present a high bias and a low
variance. Conversely, high-complexity neural networks—i.e., those with a large
number of hidden neurons and therefore a high representational power—present
a low bias and a high variance.

As the bias and variance com-
ponents combine additively, the error
presents a U shape: for an increasingly
large level of complexity, the error first
decreases and then increases again. This
implies that high complexity (i.e., high
representational power and low bias) is
not necessarily a positive characteris-
tic: indeed an optimal value of the com-
plexity exist. Beyond that value, pre-
diction error increases. See Fig.1 for a
graphical illustration of the concept. In
other terms, a complex network (i.e.,
high number of neurons and therefore
high representational power) is able to learn complex functions but then gener-
alizes poorly. Indeed, it is an established fact that the higher the complexity of a
neural network (as of any functional approximator), the lower is the error on the
training set and the higher is the error on a previously unseen test set—provided
that we are beyond the optimal complexity. This fact is graphically represented
in Fig.2a: past the optimal level of complexity, the errors on training set and
test set diverge.

Concerning the relationship between prediction error and training effort, a
second important fact has been established, which goes under the name of over-
fitting—or alternatively overtraining. Overfitting is the tendency of a neural
network (as of any functional approximator) to overspecialize to the examples
used for training, which impairs its generalization capabilities. As a result of
overfitting, one can observe that if the learning process is protracted beyond
a given level, the error on the training and test sets diverge. Indeed, past an
optimal level of the training effort, which is typically unknown a priori, the error
on a previously unseen test set increases, while the one on the training set keeps
decreasing. This fact is graphically represented in Fig. 2c.

It should be noted that the two facts illustrated in Figs. 2a and c are strictly
related. The former considers the case in which the level of training effort is
fixed and the complexity of the approximator is varied; the latter, considers the
dual case in which the complexity of the approximator is fixed and the amount

error

optimal complexity complexity

Fig. 1. Decomposition of the error into a
bias and a variance component

! For a more advanced and general treatment of the issue, see also [57].



Supervised Learning

high bias low bias
| low variance high variance
«— —_—

prediction error

-

complexity of approximator

(a) Error on training and test sets vs
complexity of approximator

Observing the Effects of Overdesign 153

Automatic Design
realy,

bas

high variance,
—_—

performance

high bias
low variance

- @

complexity of control architecture

(b) Performance in simulation and real-
ity vs complexity of control architecture

’ =ty

design effort

performance

prediction error

-

training effort

(¢) Error on training and test sets vs
training effort

(d) Performance in simulation and real-
ity vs design effort

Fig. 2. Conceptual relationship between the bias-variance tradeoff in supervised learn-
ing and in automatic design (a/b) and between overfitting in supervised learning and
overdesign in automatic design (c¢/d)

of training effort is varied. In both cases, past an a priori unknown level of the
independent variable, the error on the training and test sets diverge.

Several ideas have been proposed to deal with these facts and produce so
called robust learning methods. The most notable ones are cross-validation and
regularization techniques—e.g., see [2,49]. In the context of this article, it is
worth mentioning a technique known as early stopping, which consists in halting
the learning process before the error on training and test set start to diverge—
e.g., see [10,39,42, 44].

In a previous article, Francesca et al. [22] argued that the reality gap prob-
lem faced in automatic design of robot control software is reminiscent of the
generalization problem faced in supervised learning. If the two problems are
indeed sufficiently similar, one should be able to observe in the automatic design



154 M. Birattari et al.

the counterparts of the facts illustrated in Figs.2a and c. In particular, one
should observe that the performance in simulation and reality diverge (1) for
an increasing level of complexity of the control architecture—Fig.2b; and (2)
for an increasing level of the design effort—F'ig. 2d. The only difference between
Figs. 2a and b (and between Figs. 2c and d) is that the former concerns the mini-
mazation of error, while the latter the mazimization of performance. On Figs. 2b
and d, we superimposed a large question mark to signify that these plots repre-
sent hypotheses, as opposed to the plots appearing on their left, which represent
established scientific facts supported by a vast literature.

Guided by the hypothesis depicted in Fig. 2b, Francesca et al. [22] proposed
an automatic design method that, according to their intentions, has a lower rep-
resentational power (i.e., lower complexity) than the neural network typically
adopted in evolutionary swarm robotics. Experimental results confirm that, with
respect to a control architecture with a higher representational power, one with
lower representational power yields a lower performance in simulation but a
higher one in reality [20-22]. Although these results are preliminary and insuffi-
cient to establish the hypothesis depicted in Fig. 2b as a scientific fact, they are
coherent with our expectations and corroborate our reasoning.

On the other hand, the hypothesis depicted in Fig. 2d has never been subject
of investigation, at least to the best of our knowledge. In Sect. 4, we present an
experiment whose goal is to see whether, for a sufficiently large design effort, the
performance in simulation and reality of automatically designed control software
tend to diverge. As this phenomenon would be the automatic design counterpart
of overfitting, we shall call it overdesign.

4 Experiment

In this section, we present the material adopted in the experiment, the automatic
design method, the task, the protocol, and the results.

Robots. We consider a particular version of the e-puck robot [38]. This version
was formally defined in [22] via a reference model that describes the set of sensors
and actuators exposed to the control software. In this section, we provide a brief
sketch of the reference model. We refer the reader to [22] for the details. The e-
puck moves thanks to a two-wheel differential steering system. The e-puck senses
the obstacles (e.g., walls and other robots) via eight infrared proximity sensors.
The e-puck measures the reflectance of the floor via three ground sensors placed
under the front of the body. Thanks to a range-and-bearing extension board [27],
the e-puck perceives the presence of other e-pucks in a 0.7 m range. For each
perceived robot, the e-puck senses its relative distance and angle.

The control cycle has a period of 100 ms. At each time step, the control
software receives the readings through the variables proz;, light;, gnd;, Tm,
and Zb,, that abstract respectively, proximity, light, ground sensors and the
readings of the range-and-bearing board. Based on these variables, the control
software decides the command values v; and v,. to be applied to the wheel motors.



Observing the Effects of Overdesign 155

Design Method. We adopt EvoStick, an automatic design method presented
n [22]. We briefly illustrate EvoStick here and we refer the reader to [22] for
the details. EvoStick is an implementation of the classical evolutionary swarm
robotics approach: an evolutionary algorithm optimizes the feed-forward neural
network that controls each robot. Inputs and outputs of the neural networks are
defined on the basis of the reference model. In particular, the neural network has
24 inputs: 8 readings from the proximity sensors, 8 from the light sensors, 3 from
the ground sensors and 5 that are obtained by aggregating the range-and-bearing
readings [22]. The outputs are the commands to the two wheel motors.

The neural network has 50 real-valued parameters that are optimized by
an evolutionary algorithm that features mutation and elitism. The evolutionary
algorithm operates on populations of 100 neural networks. At a given iteration,
each neural network is tested 10 times in simulation. The population to be tested
at the subsequent iteration is created as follows: the 20 best performing neural
networks (the elite), are included unchanged; 80 further neural networks are gen-
erated from the elite via mutation. Simulations are performed using ARGoS [41].

Task. A swarm of N = 20 e-pucks must perform the aggregation task previously
studied in [22]. The environment is a dodecagonal arena of 4.91 m? surrounded
by walls—see Fig. 3. The floor is gray, except two circular black areas, a and b.
These areas have the same radius of 0.35 m and are centered at 0.60 m from
the center of the arena. The swarm must aggregate on either a or b. At the
beginning of the run, each robot is randomly positioned in the arena. The run
lasts for T = 240 s during which, the robots move in the arena according to their
control software. At the end of a run, the performance of the swarm is computed
using the objective function

F = max(Ngy, Ny)/N, (1)

where N, and N, are the number of e-pucks that, at the end of the run, are
on a and b, respectively, and N is the total number of e-pucks. The objective
function ranges from 0, when no e-puck is either on a or b, to 1, when all e-pucks
are either on a or b.

Protocol. The experiment comprises two phases. In Phase 1, EvoStick is run
30 times for 256 iterations each. In order to evaluate the performance of the
swarm at different levels of the design effort, for each run of EvoStick we collect
the best neural network produced at four different stages: iteration 4, 16, 64,
and 256. In Phase 2, we evaluate the neural networks collected in Phase 1. Each
neural network is evaluated once in simulation and once in reality. The evaluation
is performed under the same experimental conditions of Phase 1. Concerning the
evaluation in reality, we tried to reduce human intervention as much as possible
to avoid biasing the results: (1) the control software is automatically uploaded
to each e-puck via the infrastructure described in [23]; (2) the performance of
the swarm is formally evaluated using the objective function defined in Eq. 1



156 M. Birattari et al.

-0~
o - A

A and A, are significant according
to Wilcoxon (a = 0.05)

—_

Y1
¥]
8
. on
g s\m\'\\at/ A
8 = s
S —_
[]
o
51

0- 64 256
4 16 design effort (iterations)
Fig. 3. Arena and twenty e-pucks Fig. 4. Results of the experiment

and is computed automatically via the tracking system described in [50]; (3) the
tracking system is also used to automatically drive the robots to random initial
positions at the beginning of each evaluation.

Results. Figure4 summarizes the results. Visually, the two curves representing
the average performance in simulation and reality closely resemble the hypothet-
ical ones that we sketched in Fig. 2d. In particular, between iteration 64 and 256
of the evolutionary algorithm, the performance in simulation increased while the
one in reality decreased. To confirm that the observed trends are a genuine phe-
nomenon rather than simply random fluctuations, we used the paired Wilcoxon
signed rank test (with 95 % confidence level) to analyze the performance differ-
ence between iteration 64 and 256. We did this for both curves. In both cases, the
null hypothesis we tested is that the performance at iteration 64 and 256 is the
same and that the observed differences are the result of random fluctuations. As
alternative hypotheses we used those suggested by Fig. 2d: from iteration 64 to
256, the performance in simulation increases while the one in reality decreases. In
both cases, the observations reject the null hypothesis in favor of the alternative.

5 Conclusions

In the article, we presented results that corroborate a previously formulated
hypothesis: the reality gap problem bears strong resemblance to the generaliza-
tion problem faced in supervised learning. In particular, we presented an experi-
ment that highlights a phenomenon that we shall call overdesign: as the training
effort increases, past an optimal value, the performance that an automatically
designed swarm obtains in reality diverges from the one it obtains in simulation.

The results presented in this article are preliminary, as they concern a single
automatic design method and a single task. To establish overdesign as a scien-
tific fact, further experimental work is needed and should involve a sufficiently
large number of automatic design methods and tasks. Nonetheless, the results



Observing the Effects of Overdesign 157

presented here are in line with our expectations and corroborate our hypothesis.
Moreover, they are in line also with similar results previously obtained in the
automatic fine-tuning of the parameters of metaheuristics. Within that context,
Birattari [4] devised an experiment in which an iterated local search algorithm is
fine-tuned on an instance of the quadratic assignment problem and is then tested
on another instance of the same problem. The author recorded the cost of the
best solution found by the algorithm on the two instances as a function of the
tuning effort. The results show that, past an optimal value of the tuning effort,
the costs diverge: on the tuning instance the cost keeps decreasing, while on the
test instance it starts increasing. In the context of the automatic fine-tuning of
metaheuristics, the phenomenon observed has been named overtuning.

In the article, we have developed our reasoning and conducted our experi-
ment within the domain of the automatic design of control software for robot
swarms. The choice was dictated simply by the fact that this is our research
domain and it is within this domain that we wish to investigate the effects of the
reality gap. Moreover, we have focused on a classical evolutionary swarm robotics
setting because a relatively large number of studies have been developed under
this setting. Indeed, there is an established research community that operates
in the framework of evolutionary swarm robotics and that could be potentially
affected by our contribution. Nonetheless, we do not have any reason to doubt
that the phenomenon of overdesign could be observed in other approaches to
the automatic design of control software for robot swarms and for single robots,
as well. The experimental methodology we adopted in the study presented is
sufficiently general and straightforward to be applicable in further studies. Yet,
it should be noticed that an experiment to observe overdesign can be time con-
suming. The experiment presented in this article comprises 120 runs with 20
e-pucks and 30 x 100 x 10 x 256 4+ 120 = 7,680, 120 runs in simulation.

Besides shedding new light on the reality gap problem, the concepts dis-
cussed in this article and the results presented could suggest improvements to
the current practice in evolutionary (swarm) robotics and more generally in the
automatic design of robot control software. In particular, the results suggest that
one should check whether the control software obtained upon convergence of the
design process is indeed the one that perform the best in reality. Moreover, these
results suggest that a form of early stopping could be beneficial.

To summarize, future work should produce further evidence that the risk
of overdesign is concrete in the automatic design of control software for robot
swarms. Moreover, future research could be devoted to the development of early
stopping mechanisms or similar overdesign-aware techniques that could con-
tribute to mitigate the reality gap problem.

Acknowledgments. Mauro Birattari acknowledges support from the Belgian
F.R.S.-FNRS, of which he is a Senior Research Associate.



158 M. Birattari et al.
References
1. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., Nolfi, S.:

10.

11.

12.

13.

14.

15.

16.

17.

18.

Self-organised coordinated motion in groups of physically connected robots. IEEE
Trans. Syst. Man Cybern. Part B 37(1), 224-239 (2007)

Bauer, F., Pereverzev, S., Rosasco, L.: On regularization algorithms in learning
theory. J. Complex. 23, 52-72 (2007)

Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomo-
geneous robot swarms with application to commercial pollination. In: International
Conference on Robotics and Automation, ICRA 2011, pp. 378-385. IEEE Press,
Piscataway (2011)

Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer,
Germany (2009)

Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-
modeling. Science 314(5802), 1118-1121 (2006)

Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74-83 (2013)
Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-driven design
for swarm robotics: a design method based on prescriptive modeling and model
checking. ACM Trans. Auton. Adapt. Syst. 9(4), 17.1-17.28 (2015)

Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1-41 (2013)

Brooks, R.A.: Artificial life and real robots. In: Varela, F.J., Bourgine, P. (eds.)
Toward a Practice of Autonomous Systems. Proceedings of the First European
Conference on Artificial Life, pp. 3-10. MIT Press, Cambridge (1992)

Caruana, R., Lawrence, S., Giles, L.: Overfitting in neural nets: backpropagation,
conjugate gradient, and early stopping. In: Leen, T., Dietterich, T., Tresp, V. (eds.)
Advances in Neural Information Processing Systems 13, NIPS 2000, pp. 402—408.
MIT Press (2001)

Christensen, A.L., Dorigo, M.: Evolving an integrated phototaxis and hole-
avoidance behavior for a swarm-bot. In: Artificial Life, ALIFE 2006, pp. 248-254.
MIT Press, Cambridge (2006)

Cybenko, G.: Approximations by superpositions of a sigmoidal function. Math.
Control Signals Syst. 2(4), 303-314 (1989)

Dietterich, T., Kong, E.B.: Machine learning bias, statistical bias, and statistical
variance of decision tree algorithms. Technical report, Department of Computer
Science, Oregon State University (1995)

Doncieux, S., Mouret, J.B.: Beyond black-box optimization: a review of selective
pressures for evolutionary robotics. Evol. Intell. 7(2), 71-93 (2014)

Duarte, M., Oliveira, S.M., Christensen, A.L.: Evolution of hierarchical controllers
for multirobot systems. In: Artificial Life, ALIFE 2014, pp. 657-664. MIT Press,
Cambridge (2014)

Duarte, M., Oliveira, S.M., Christensen, A.L.: Hybrid control for large swarms of
aquatic drones. In: Artificial Life, ALTFE 2014, pp. 785-792. MIT Press, Cambridge
(2014)

Duarte, M., Costa, V., Gomes, J.C., Rodrigues, T., Silva, F., Oliveira, S.M., Chris-
tensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface
robots. arXiv-CoRR abs/1511.03154 (2015)

Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B.,
Khatib, O. (eds.) Handbook of Robotics, pp. 1423-1451. Springer, Germany (2008)



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Observing the Effects of Overdesign 159

Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and
challenges. Front. Robot. Al 3(29), 1-9 (2016)

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn,
G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V.,
Birattari, M.: AutoMoDe-Chocolate: automatic design of control software for robot
swarms. Swarm Intell. 9(2/3), 125-152 (2015)

Francesca, G., et al.: An experiment in automatic design of robot swarms. In:
Dorigo, M., Birattari, M., Garnier, S., Hamann, H., Montes de Oca, M., Solnon,
C., Stiitzle, T. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 25-37. Springer, Heidelberg
(2014)

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89-112 (2014)

Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software
infrastructure for e-puck (and TAM). Technical report 2015-004, IRIDIA, Univer-
sité Libre de Bruxelles, Brussels, Belgium (2015)

Gauci, M., Chen, J., Li, W., Dodd, T.J., Grof}; R.: Self-organized aggregation
without computation. Int. J. Robot. Res. 33(8), 1145-1161 (2014)

Gauci, M., Chen, J., Li, W., Dodd, T.J., Gro8, R.: Clustering objects with robots
that do not compute. In: Lomuscio, A., et al. (eds.) Autonomous Agents and
Multiagent Systems, AAMAS 2014, pp. 421-428. IFAAMAS, Richland (2014)
Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural Comput. 4(1), 1-58 (1992)

Gutiérrez, A., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open e-puck range & bearing miniaturized board for local communica-
tion in swarm robotics. In: International Conference on Robotics and Automation,
ICRA 2009, pp. 3111-3116. IEEE Press, Piscataway (2009)

Hamann, H., Worn, H.: A framework of space-time continuous models for algorithm
design in swarm robotics. Swarm Intell. 2(2), 209-239 (2008)

Hecker, J.P., Letendre, K., Stolleis, K., Washington, D., Moses, M.E.: Formica
ex machina: ant swarm foraging from physical to virtual and back again. In:
Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Grof},
R., Stiitzle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 252-259. Springer, Heidel-
berg (2012)

Jacobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation
in evolutionary robotics. In: Mordn, F., et al. (eds.) Advances in Artificial Life.
LNCS (LNAI), vol. 929, pp. 704-720. Springer, London (1995)

Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis.
Adapt. Behav. 6(2), 325-368 (1997)

Kazadi, S., Lee, J.R., Lee, J.: Model independence in swarm robotics. Int. J. Intell.
Comput. Cybern. 2(4), 672-694 (2009)

Koos, S., Mouret, J., Doncieux, S.: The transferability approach: crossing the real-
ity gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122-145 (2013)
Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., Dodd, T.J., Grof}, R.: Supervisory
control theory applied to swarm robotics. Swarm Intell. 10(1), 65-97 (2016)
McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity.
Bull. Math. Biophys. 5(4), 115-133 (1943)

Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real
environments. Artif. Life 2(4), 417-434 (1995)

Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge (1969)



160

38.

39.

40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

M. Birattari et al.

Mondada, F., et al.: The e-puck, a robot designed for education in engineering.
In: 9th Conference on Autonomous Robot Systems and Competitions, pp. 59-65.
Instituto Politécnico de Castelo Branco, Portugal (2009)

Morgan, N., Bourlard, H.: Generalization and parameter estimation in feedforward
nets: some experiments. In: Touretzky, D. (ed.) Advances in Neural Information
Processing Systems 2, NIPS 1990, pp. 630-637. Morgan Kaufman, San Mateo
(1990)

Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)
Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella,
L.M., Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271-295 (2012)

Prechelt, L.: Early stopping-but when? In: Orr, G.B., Miiller, K.-R. (eds.) NIPS-
WS 1996. LNCS, vol. 1524, pp. 55-59. Springer, Heidelberg (1998)

Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homo-
geneous system of physical robots: structured cooperation with minimal sensors.
Philos. Trans. Royal Soc. London A Math. Phys. Eng. Sci. 361(1811), 2321-2343
(2003)

Raskutti, G., Wainwright, M.J., Yu, B.: Early stopping and non-parametric regres-
sion: an optimal data-dependent stopping rule. J. Mach. Learn. Res. 15, 335-366
(2014)

Reina, A., Valentini, G., Ferndndez-Oto, C., Dorigo, M., Trianni, V.: a design
pattern for decentralised decision making. PLoS ONE 10(10), e0140950 (2015)
Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65(6), 386-408 (1958)

Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85-117 (2015)

Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues
in evolutionary robotics. Evol. Comput. (2016, in press)

Stone, M.: Cross-validatory choice and assessment of statistical predictions. J.
Royal Stat. Soc. Ser. B (Methodol.) 36(2), 111-147 (1974)

Stranieri, A., Turgut, A., Salvaro, M., Garattoni, L., Francesca, G., Reina, A.,
Dorigo, M., Birattari, M.: IRIDIA’s arena tracking system. Technical report 2013—
013, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2013)

Trianni, V., Nolfi, S.: Self-organising sync in a robotic swarm. A dynamical system
view. IEEE Trans. Evol. Comput. 13(4), 722-741 (2009)

Trianni, V.: Evolutionary Swarm Robotics. Springer, Germany (2008)

Trianni, V.: Evolutionary robotics: model or design? Front. Robot. AI 1(13), 1-6
(2014)

Waibel, M., Keller, L., Floreano, D.: Genetic team composition and level of selec-
tion in the evolution of cooperation. IEEE Trans. Evol. Comput. 13(3), 648-660
(2009)

Werbos, P.: Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. Ph.D. thesis, Harvard University, Cambridge (1974)

Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-
inspired robot construction team. Science 343(6172), 754-758 (2014)

Wolpert, D.: On bias plus variance. Neural Comput. 9(6), 1211-1243 (1997)



	Observing the Effects of Overdesign in the Automatic Design of Control Software for Robot Swarms
	1 Introduction
	2 Related Work
	3 Facts and Hypotheses
	4 Experiment
	5 Conclusions
	References


