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Abstract. This paper studies how an operator with limited situational
awareness can collaborate with a swarm of simulated robots. The robots
are distributed in an environment with wall obstructions. They aggregate
autonomously but are unable to form a single cluster due to the obstruc-
tions. The operator lacks the bird’s-eye perspective, but can interact
with one robot at a time, and influence the behavior of other nearby
robots. We conducted a series of experiments. They show that untrained
participants had marginal influence on the performance of the swarm.
Expert participants succeeded in aggregating 85 % of the robots while
untrained participants, with bird’s-eye view, succeeded in aggregating
90 %. This demonstrates that the controls are sufficient for operators to
aid the autonomous robots in the completion of the task and that lack
of situational awareness is the main difficulty. An analysis of behavioral
differences reveals that trained operators learned to gain superior situa-
tional awareness.

1 Introduction

As multi-robot systems continue to assist humans in an increasing variety of
roles, more and more humans will need to interact with them. Swarm robotic
systems are a subset of multi-robot systems with characteristics, also observed
in natural swarms, that seem to complicate such interactions. In particular,
they use local sensing and communication capabilities, have no access to global
information, and are governed by simple rules. Yet, complex behaviors may result
from interactions among the robots and of robots with their environment.

Krause et al. [9] proposes that swarm-intelligent systems could become a
useful tool for solving problems. Self-organization could lead to novel solutions
to problems, for example, path finding in dynamic environments, exploration,
or rescue and support. However, this does not mean that swarm intelligence
will necessarily be the best solution for a particular situation. Interaction with
humans can be beneficial, for example, to adapt and react to critical environment
changes or make decisions in which human experience is important.

A problem with swarm systems is that the attractive features of their social
structure also makes interactions with (external) users complex. There have been
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several proposals suggested for the implementation of human interaction with
robot swarms, surveyed in [8]. Some of these explored proposals are: controlling
units as a leader [18], with haptic interactions [17] or with body gestures [1].

In this paper we consider further restrictions where operators can only receive
local sensor information from a single robot and its local cluster and do not have
access to global positions. This is more in line with the nature of distributed
systems in which global state information can be difficult to obtain. In addition,
it simulates better real-world scenarios such as search and rescue missions, where
keeping visual contact with each member of the swarm would be infeasible.

The paper is organized as follows. In Sect. 2 related work is presented.
Section 3 details the methodology used in this study. The results are presented
in Sect. 4. Section 5 concludes the paper.

2 Related Work

Research on human-swarm interaction has produced a number of studies on the
topic. A recent survey on human interaction with robotic swarms is available
in [8]. One of the most frequently studied questions in human-swarm interac-
tion is the design of appropriate control inputs for swarms. Four basic con-
trol approaches are distinguished in [8]: (1) algorithm switching; (2) parameter
changing; (3) indirect control through environment influence; and (4) control
through selected leaders. In our study we utilize algorithm switching and con-
trol through teleoperated leaders. These two approaches have been studied in a
variety of scenarios.

In [3] a hybrid control approach allowed operators to teleoperate leaders and
switch the swarm algorithm after teleoperation. In contrast to our work, the
operator had access to global position information for all robots and algorithm
switches did not propagate through the local swarm network. Teleoperation of
leaders and their effect on the remaining swarm has been studied in [7] with
an emphasis on determining what kind of flocking and motion behaviors can be
generated from different human inputs.

The problem of obtaining and visualizing the information about the state
of the swarm has been studied somewhat less than swarm controls. The studies
that focused on controls usually assumed access to and present the position of
all swarm robots in an interface. Work that considers limited access to state
information due to bandwidth or latency restrictions has been presented in [14,
19]. An emphasis on how to display a limited amount of information while still
allowing the human to detect patterns is found in [5]. In [11] a brief overview of
potential display visualization for swarms is given.

We are not aware of any work in human-swarm interaction that studies the
impact on and adaption of operators when removing access to global state infor-
mation (such as position) and restricting the interaction to be strictly local and
distributed. Such interaction schemes are pointed out as desirable in [2,4]. It is
not clear, however, what the cost of such an interaction scheme is with regard
to the operator’s ability to observe and control the swarm effectively. Our study
is aimed to contribute towards this area.
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Neglect benevolence [13,19] is a concept that is concerned with the dynamic
nature of emergent behaviors. Most swarm algorithms require time to converge
to an emergent behavior and should their dynamics be disturbed, for example,
by interacting with an operator, convergence may be delayed and the interaction
may be detrimental. Hence, some swarms may benefit from a period of neglect.
This stands in contrast to the concept of neglect tolerance studied in the context
of multi-robot systems [15]. In these systems the performance deteriorates due
to periods of neglect. In our study we observed positive effects and some learning
of neglect benevolence dynamics by experienced operators, further supporting
the evidence from [13] that human operators can learn to adapt the timing of
their commands to the neglect benevolence of the swarm.

3 Methodology

3.1 Problem Formulation

We study a distributed interaction scheme between a human and a swarm of
robots in the context of an aggregation task. The robots operate in a bounded
environment with wall obstructions. They are equipped with motors, a communi-
cation device, a camera and proximity sensors. Initially, the robots are randomly
distributed in the environment. Their goal is to aggregate into a single cluster in
a given time period. By default, the robots execute the aggregation (clustering)
behavior presented in [6]. Unlike [6], we consider environments with obstruc-
tions and robots which have limited range sensors, both of which can prevent
aggregation.

The operator has access to a graphical interface that provides a connection to
a single randomly selected robot. The robot, upon request, transmits either the
readings from the proximity sensor or the camera. The operator can also issue
motion commands to the selected robot and switch the behavior of it and all its
neighbors to either clustering, following, or gossip, which can count the robots
in the cluster. The operator does not have access to any other state information,
but is shown a map of the environment prior to the experiment. Details on the
robots, swarm behaviors and interface are provided in the following sections.

3.2 Robot and Simulation Platform

In our study, the operator interacts with a swarm of simulated robots. We use
the open source physics simulator Enki [10], which treats the kinematics and
dynamics of rigid objects in two dimensions.

We consider the e-puck miniature mobile robot [12]. Enki has a built-in model
of the e-puck. The robot is represented as a disk with a diameter of 7.4 cm and a
weight of 152 g. It is a differential wheeled robot. Each wheel can move backward
and forward at different speeds with a maximum of 12.8 cm/s.

Each robot has a color camera, providing a horizontal field of view of 56
degree and a maximum range of 150 cm. We assume that the robot can use
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Fig. 1. Snapshot showing the simulation environment from a bird’s-eye perspective.
The operator is not provided with this global state information (except for the control
experiments). The robots can perform three swarm behaviors: aggregation (top right),
following (middle right), and gossip (bottom right).

the camera to detect other robots in the direct line of sight. In addition, the
robot has eight infra-red sensors distributed around its body and a simulated
Bluetooth communication device. These sensors help the operator interact with
the robots.

Figure 1 provides an overview of the simulation environment. The robots
operate in a rectangular arena of size 400 × 300 cm that contains two walls,
which are symmetrically arranged. Their lengths are 2/3 of the corresponding
side length of the arena and divide it in three equally sized areas joined only at
the extremes. The walls are sufficiently tall to prevent robots at opposite sites
from perceiving each other.

3.3 Swarm Behaviors

Each robot can execute three swarm algorithms (the corresponding behaviors
are shown in Fig. 1):

– The aggregation algorithm is identical to the one reported in [6]. By default,
this algorithm is executed. Each robot measures whether another robot is
in its direct line of sight or not. It maps this binary sensor input onto a
pair of constant wheel velocities. For simplicity we state the velocity values
after scaling them from −1 to 1. If another robot is perceived, the velocity
pair is (1,−1); the robot thus turns clockwise on the spot. Otherwise, the
scaled velocity pair is (−0.7,−1); the robot thus moves backward, following a
clockwise circular trajectory. As shown in [6], this simple algorithm leads to
the overall aggregation of the swarm, provided the sensing range is sufficiently
large and no obstacles are present in the environment.
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(a) GUI (b) Epuck Frame

Fig. 2. (a) Graphical user interface that the participants used in the human-robot
swarm interaction study. (b) Image taken by a simulated robot and provided to the
operator via the graphical user interface.

– The follower algorithm uses the same line-of-sight sensor and reactive control
architecture as the aggregation algorithm. The wheel velocity constants are
however different. If another robot is perceived, the robot moves straight for-
ward (1, 1), attempting to approach the detected robot; otherwise, the robot
rotates anti-clockwise on the spot (−1, 1).

– The gossip algorithm prevents the selected robot from changing its position
(yet, the operator has control over its orientation). The robot requests all
other robots in its neighborhood to stop. These requests get relayed, so that
all ‘connected’ robots finally stop. Only in this mode the operator can obtain
a count of the connected robots. The counting algorithm is explained in [16].

The robots do not use their IR sensors for obstacle avoidance. Nevertheless,
the user can detect any obstacle by monitoring a robot’s sensors (IR or camera).

3.4 User Interface

The interaction between the operator and the robot swarm occurs through the
graphical user interface (GUI) shown in Fig. 2a. The operator can connect with
one random robot at a time (“Request Bot” button). The operator is shown
the robot’s (unique) identification number and which of the three algorithms is
currently being executed.

Once connected to a robot, the operator has two options to obtain informa-
tion from its sensors. To simulate bandwidth limitations of the hardware, only
one of these options can be selected at a time:

– Requesting an image of the camera: By clicking the “Image Request” button,
the user is shown a 80× 60 pixels snapshot of the robot’s camera as shown
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in Fig. 2b. Between requesting and displaying the image, a 1 s delay occurs,
emulating the time the Bluetooth protocol would take to transfer the data.

– Monitoring the robot’s other sensors: By activating the “Sensors On/Off”
button, the operator can either observe the status of the binary line-of-sight
sensor, indicating whether another robot is perceived, or, they can see the raw
values of the proximity sensors. Unlike the camera image, the sensor data is
updated periodically.

The operator has two options to influence the robots:

– The operator issues basic motion commands to the currently selected robot.
These are forward, backward, rotate left, rotate right and stop. When in the
gossip mode, the forward and backward buttons are disabled.

– The operator changes the algorithm that is being executed on the selected
robot to either aggregation, follower or gossip. The change is broadcast from
the selected robot to the entire local network of robots connected via IR, and
all robots in the network change their algorithm as well. When disconnecting
from a robot, the algorithm which it is currently executing remains active.
However, it is not possible to disconnect from a robot while in gossip mode.
This is to avoid robots from being left in a static position.

3.5 Experimental Setup

A series of human-robot swarm interaction experiments were conducted. The
study received ethical approval by The University of Sheffield. All participants
were students of the university and their age ranged between 18 and 39.

Participants were given a 10 min presentation explaining the mission, the
three swarm behaviors, and the user interface. They were also shown a snapshot
of the simulation environment (see Fig. 1).

The default group of participants, referred to as untrained participants, were
not provided with the opportunity to test the system in advance of the exper-
iment. Overall, data for 38 untrained participants were collected. The data for
three participants were excluded as they did not complete all three trials.

Six further participants received training on the system prior to conducting
trials. Three of these received 60 min training (five to six trials), these are referred
to as trained participants. Three further participants, chosen from the developer
team, received several hours of training and are considered as experts.

All participants conducted three trials with 25 robots and lasting 10 min
(600 s) each. The untrained participants were further assigned to one of two
conditions at random:

– Blind-Blind-Blind (BBB): Participants of this group had no access to global
state information (i.e., the bird’s-eye perspective) during any of their trials.
There were 19 participants in this group.

– Visual-Blind-Blind (VBB): Participants of this group had access to global
state information for the entire duration of their first trial (referred to as
VBB V), but had no access to that information during the second and third
trials (referred to as VBB B). There were 16 participants in this group.
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Fig. 3. The graph presents the percentage of robots in the biggest cluster at the end of
the trial for each group of untrained participants (BBB and VBB). The performance of
all baselines and the average performance in the last three trials of trained and expert
participants are plotted as lines to provide a reference performance. The table presents
the percentage of robots in the biggest cluster at the end of the trials with human
participants.

Throughout all trials, the robots’ positions and the participant’s interactions
through the interface were recorded.

4 Results

4.1 Performance Metrics and Baseline Performance

The main performance metric is the number of robots in the largest cluster.
A pair of robots is considered in close proximity if the distance between their
centers is less than 15 cm. We consider two robots that are in close proximity to
belong to the same cluster. Moreover, if {a, b} belong to the same cluster and
{b, c} belong to the same cluster, then the same holds true for {a, c}.

We establish the following baselines for comparison:

– No Interaction: This is the performance of the swarm in the absence of any
interaction with an operator. In other words, each robot of the swarm executes
the aggregation algorithm for the entire duration of the trial.

– No Walls or Interactions: This is the performance of the swarm when aggre-
gating in the absence of wall obstructions and interactions with an operator.
These represent the ideal conditions for the algorithm as presented in [6].

– Random Interactions: This is the performance of the swarm when interact-
ing with a virtual operator agent choosing random commands drawn from a
distribution that models the average participant across all trials.

For each of the baseline performance measures, 10 trials of 600 s were con-
ducted. The table in Fig. 3 shows the average size of the biggest cluster at the
end of the trial. Random commands resulted in slightly better performance than
no interactions but with a larger standard deviation.
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4.2 Operator Performance

We compared the performance of untrained, trained and expert operators to
the baseline performance. Figure 3 presents this comparison where untrained
operators with access to real-time global state information of the position of all
robots (trial 1 for group VBB) aggregate 90 % of robots and perform as well as
the ‘no walls or interactions’ baseline. This validates the efficacy of the swarm
controls available to the operator. Operators were able to use the available con-
trols to mitigate the shortcomings of the aggregation algorithm in the presence
of obstacles.

Untrained participants in their final trial aggregated 51 % (BBB) or 59 %
(VBB) of robots into a single cluster, an improvement over the no interactions
baseline that aggregated 42 % (two-sided Mann–Whitney test, p-values = 0.049
and 0.029). The blind trials of both groups of untrained operators (trials 1, 2
and 3 for BBB and trials 2 and 3 for VBB) did not perform significantly better
than the random interaction baseline (two-sided Mann–Whitney test, p-values =
0.985 and 0.481). Note that the proportion of the types of instructions is identical
but the random interactions baseline does obviously not exploit any sensory
information. This suggests that operators have similar difficulties in exploiting
local sensory information.

A comparison between the blind trials of BBB and VBB shows no significant
differences in performance (two-sided Mann–Whitney test, p-values = 0.215).
This suggests a minimal learning effect of the initial trial with global state infor-
mation. It further supports the conclusion that operator performance in blind
trials was diminished due to a lack of situational awareness rather than lack of
planning. If it were due to a lack of planning the trial with global state informa-
tion would be expected to have facilitated the learning of plans.

Trained and expert operators were able to obtain significantly improved per-
formance in their three trials over the random interactions baseline (two-sided
Mann–Whitney test, p-values = 0.029 and 0.001). They aggregated 57–69 % and
76–99 % of robots respectively.

In summary, the results show a dramatic drop in performance of untrained
operators when removing access to global state information, with performance on
par with a random agent. The recovery of performance for trained and expert
operators shows that learning does occur and warrants a closer look, in the
following section, at the actions and strategies that are being learned.

4.3 Interaction Analysis

A detailed history of the operators’ actions was recorded throughout all trials.
The data is grouped into three categories: (i) the operator moves the robot, (ii)
the operator uses the robot’s sensors and (iii) the operator switches between
algorithms. Figure 4a shows the distribution of time spent on these activities for
the last three trials for untrained, trained and expert operators.

As expected, untrained operators with access to global state information
(trial 1 in group VBB) rarely request local sensory information and instead
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Fig. 4. (a) Percentage of time spent with type of command. (b) Average initial inactive
time.

move the robots and switch algorithms more frequently. Untrained operators in
the blind trials, however, spend a larger proportion on obtaining sensor infor-
mation to recover some situational awareness. The key observation is found by
comparing trained and expert operators to untrained operators.

The improved performance of the later seems to rely on more requests for
sensor observations while reducing the amount of time spent moving the robots.
The time spent switching algorithms is identical between all groups. Given that
the time spent on motion commands is significantly less for trained and expert
operators than for untrained operators with global state information, the effi-
ciency of the motion commands for the former group was higher. This is likely
where the training effect materializes.

In addition to varying the time spent on certain activities we observed a
difference in the initial interactions with the swarm, that is, the time the opera-
tors waited at the beginning of the trials before performing the first interaction.
Figure 4b show the average time that operators waited at the beginning of the
trials. This period of inactivity allows the swarm to exhibit local aggregation
behavior and form small clusters within parts of the environment. These clus-
ters may be controlled more effectively than dispersed robots. Operators that
interact with the swarm too early may disturb this process and have hence
less effective subsequent interactions. This suggests evidence for the concept of
neglect benevolence in these experiments that is being learned and exploited by
trained and expert operators. It is worth noting that untrained participants with
access to global state information also increase their initial period of inactivity
while observing the global dynamics, yet they do not repeat this in subsequent
blind trials.

To illustrate the above more qualitatively, Fig. 5(a–f) shows a sequence of
snapshots taken from an example trial. The initial positions of the robots
are randomly distributed through the arena (a). Because of the aggregation
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(a) Initial Setup (b) After 240s (c) After 270s

(d) After 300s (e) After 360s (f) After 480s

Fig. 5. Sequence of snapshots taken during a trial with an expert participant. The
expert was not provided with the bird’s-eye view of the scene, which is depicted here.

algorithm, the robots start grouping and form three clusters (b). The operator
then starts moving the right cluster to the center area (c). The operator finds
the third cluster and guides it to the center area (d). Again, when the robots
are in visual range, they attempt to group together (e). Finally, the operator is
monitoring the process until the swarm reports a complete aggregation of the
swarm (f).

5 Conclusions and Future Work

This study investigated a distributed human-swarm interaction scheme in which
operators have access to only local information when aiding a swarm in an aggre-
gation task. Operators had access to swarm controls with which they were able
to complete the aggregation task successfully when given global state informa-
tion. When given only local information, however, untrained operators did not
perform significantly better than random interactions. Nor did they exhibit a
significant learning effect within three trials. Furthermore, operators that once
were given global state information did not demonstrate improved performance
on subsequent trials when being restricted to local information. This suggests
no learning benefit from having observed the global dynamics once.

Trained and expert operators, with at least one hour of training, showed
significantly improved performance suggesting the task is solvable. These opera-
tors compensated the lack in global situational awareness with increased requests
for local sensory information while reducing the number of motion commands.
Expert operators performed nearly as well as the baseline performance of the
autonomous algorithm under ideal conditions, that is, without obstructions.

In addition, we observed evidence for neglect benevolence for trained and
expert operators. These operators waited at the beginning of the trial for the
swarm to converge to the emergent local clusters. From this configuration, inter-
actions with the swarm were more beneficial as emerging clusters could be
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changed into leader-follower formations more easily. Untrained operators dis-
turbed and interacted with the swarm prior to it settling into local clusters.

Overall, our findings suggest that exposure to global swarm dynamics does
not necessarily accelerate learning, neither for improving situational awareness
nor for understanding swarm dynamics to accommodate for neglect benevolence.
In addition, learning to interact with a swarm through a distributed interaction
scheme that relies on local information requires training times even for sim-
ple tasks and interfaces. This should inform future research on human-swarm
interaction.

Simulation experiments, however, only offer a limited potential to validate
human-swarm interaction schemes as they simulate simplified dynamics. Future
work is planned to investigate the interaction scheme with physical robots and a
wider range of tasks. This will answer whether the presented findings generalize
to other scenarios and whether the dynamics of physical robots interfere with
successful human-swarm interaction.
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