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Abstract

Degenerative disc disease (DDD) is a major
cause of disability in the western world. Cur-
rent treatment strategies only address the
symptoms of DDD. To meet the clinical need
of regenerative treatment strategies, biological
treatment approaches have become of increas-
ing interest in the past decade. Currently
explored treatment strategies involve biomo-
lecular treatments for early-stage degeneration,
cell-based therapies involving differentiated
cells as well as stem cells for advanced-stage
DDD, as well as tissue engineering strategies
for total disc replacement in terminal-stage disc
degeneration.

The following chapter will provide a com-
prehensive overview about recent the recent
progress in regenerative treatment strategies.
This chapter will elucidate experimental in
vivo studies as well as published and ongoing
clinical trials.

Keywords

Annulus fibrosus repair · AF repair ·
Intervertebral disc regeneration · Tissue
engineering · MSCs · Mesenchymal stem
cells · Growth factors · Gene therapy ·
TE-IVD · Bioartificial disc · Biological IVD
treatment

Pathology, Current Treatments, and
Resulting Challenges

Low back pain (LBP) is one of the major causes of
morbidity that leads to enormous costs for western
healthcare systems (Schmidt et al. 2007; Hoy et al.
2010; McBeth and Jones 2007; CDC 2009; Katz
2006). An association between LBP and degener-
ative disc disease (DDD) has been established by
recent studies, accounting DDD for up to 40% of
all LBP cases (Pye et al. 2004; MacGregor et al.

2004; Freemont 2009). The intervertebral disc
(IVD) contains the soft and gelatinous nucleus
pulposus (NP), the surrounding fibrocartilaginous
annulus fibrosus (AF), and the cartilaginous
endplate (EP) which connects the IVD to the
corpus vertebrae. DDD is characterized by extra-
cellular matrix (ECM) degradation, release of
proinflammatory cytokines, altered spine biome-
chanics, angiogenesis, and nerve ingrowth which
is associated with increased pain sensation (Le
Maitre et al. 2007; Rannou et al. 2003). Factors
including mechanical stress, trauma, genetic pre-
disposition, and inflammation can trigger and
exacerbate DDD (Podichetty 2007) (Fig. 1).

Among the most commonly performed spinal
procedures to treat disc herniation is lumbar
discectomy, with an estimated 300,000 cases per
year in the United States (Deyo and Weinstein
2001). However, while the neural tissue is
decompressed by the discectomy, it leaves the
annular defect untreated. Because of this, the
risk of recurrent disc herniation through the open
defect is elevated, which occurs in 6–23% of
patients following discectomy. It is associated
with compromised patient outcomes, the need
for revision procedures, and increased healthcare
costs (Carragee et al. 2003; Swartz and Trost
2003; Bruske-Hohlfeld et al. 1990; Ambrossi
et al. 2009; Frymoyer et al. 1978). Aggressive
surgical discectomy can reduce the rate of re-
herniation, but is associated with more severe
disc degeneration and back pain (Frei et al.
2001; Barth et al. 2008; O’Connell et al. 2011).
Since the IVD does not possess a sufficient self-
repair capacity, current treatment options for DDD
range from conservative treatments to invasive
therapies for severe and symptomatic courses of
DDD, like spinal fusion or total disc replacement
(TDR). However, long-term results do not show
significant differences between invasive and con-
servative therapies, and complications are com-
mon (Peul et al. 2007; Lequin et al. 2013; Lurie
et al. 2014).
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To address the limitations of available treat-
ments and enhancing patient outcome, biological
approaches to IVD regeneration have become a
growing area of interest.

Current strategies for regenerative biological
disc treatment can be roughly categorized in
three groups: biomolecular therapy, cell therapy,
and tissue-engineered IVD construction (An et al.

2011; Zhang et al. 2011a; Maidhof et al. 2012)
(Fig. 2).

In the early stage of IVD degeneration, which
is defined by beginning structural changes and
loss of hydration, a sufficient number of viable
cells can still be found.

Thus, these treatment strategies involve recom-
binant genes, proteins, and stem cell therapies

Fig. 1 Schematic pictures of the healthy disc show three
components of the disc both macro- and microscopically.
In degenerated discs, metabolism, cells, and structure
encounter imbalance of supply and demand, one, some,

or all of which each strategy will redress. NP nucleus
pulposus, AF annulus fibrosus, EP endplate, VB vertebral
body (Moriguchi et al. 2016)

Fig. 2 Treatment strategies for different stages of IVD degeneration (Moriguchi et al. 2016)
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(Fig. 2). These agents are meant to enhance selec-
tive protein expression by stimulating the
remaining viable cells in order to promote an
intrinsic self-healing within the IVD.

Mid-stage degeneration is characterized by
less active and rapidly disappearing viable cells
and increasing structural damage. Here, cell
transplantations and tissue-engineered biologi-
cal scaffolds are utilized to recover the damaged
IVD.

Finally, the most advanced stage of degenera-
tion is described as severe structural damage to the
whole disc and the lack of viable cell activity. For
this stage of degeneration, the treatment
approaches involve TDR with tissue-engineered
constructs.

The following part of this chapter will provide
an overview of the current biological treatment
approaches for each of the previously described
stages, including experimental in vivo studies as
well as recent clinical trials.

Biomolecular Treatment (Moriguchi
et al. 2016)

A defining compositional change in degenerated
discs is the gradual decline of NP water content
originating from the loss of proteoglycan. A
decrease in swelling pressure within the NP is
followed by the reduction of mechanical tension
in the AF collagen fibers, resulting in abnormal
loading of the spine. The consequence of these
alterations often is the instability of segments
with subsequent development of neck or back
pain and narrowing of the spinal canal, which
may induce neurological symptoms. In the early
stages of degeneration, the disc undergoes an
imbalance of anabolic and catabolic factors that
leads to the degradation of extracellular matrix
(ECM). Biomolecules such as recombinant pro-
teins and genes can regenerate expression of
target molecules through the increase in ana-
bolic or decrease in catabolic factor production,
hence facilitating ECM synthesis. The following
section will review recent in vivo studies on
biomolecules which are used to treat disc degen-
eration (Table 1).

Recombinant Protein and Growth
Factor-Based Therapy

Protein solutions injected directly into discs may
have the potential to stimulate cell growth or
anabolic response that could reverse disc degen-
eration. Since the demonstration of the disc’s
responsiveness to exogenous growth factors in
an ex vivo organ culture system (Thompson
et al. 1991), various proteins capable of modulat-
ing cell growth, differentiation, and ECM synthe-
sis have shown promising for treating DDD. Bone
morphogenetic proteins, such as BMP2; BMP7,
which is also known as osteogenic protein 1 (OP-
1); and BMP14, or growth differentiation factor-5,
as well as other transforming growth factor-beta
(TGF-β) superfamily such as TGF-beta 1 or 3
have induced bone and cartilage formation.
Their usage has been the part of extensive
research in cases of spinal arthrodesis and disc
regeneration (An et al. 2005, 2011; Imai et al.
2007; Walsh et al. 2004; Masuda et al. 2006;
Chujo et al. 2006; Miyamoto et al. 2006; Huang
et al. 2007; Chubinskaya et al. 2007; Leckie et al.
2012). In a single in vivo rabbit study by An H.
et al., intradiscal OP-1 injection resulted in an
increase in proteoglycan content of NP at
2 weeks and disc height at 8 weeks. This treatment
has recently been moved on to a clinical trial.
Though promising, protein injection is challenged
by the short duration of its therapeutic effect. The
solution for this may be the development of slow-
release carriers or gene-based delivery systems.

Gene Therapy

Gene therapy induces the modification of
intradiscal gene expression for a prolonged effect
on degenerated discs. Genes that are potentially
applicable therefore are delivered through either
viral (mostly adenovirus) or non-viral vectors,
which are then either directly injected into live
tissue (in vivo gene therapy) or transfected into
cells cultures in vitro prior to implantation into the
IVD (Woods et al. 2011). In one of the pioneering in
vivo studies in a rabbit model, NP cells were trans-
fected with TGF-β1 expressing adenovirus vector.
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Table 1 Recombinant proteins, growth factors, and gene therapy

Species Model Molecules Dose Outcome Refs

Protein injection

Rat Compression IGF-1� IGF-1 8 ng/8 ul/disc GDF-5 and TGF-beta
aid in expansion of
inner annular
fibrochondrocytes into
the nucleus

Walsh et al.
(2004)GDF-5 GDF-5 8 ng/8 ul/

disc

TGF-beta TGF-beta 1.6 ng/
8 ul/disc

bFGF bFGF 8 ng/8 ul/disc

Rat Compression BMP7
(OP-1)

0.2 ug/uL/disc OP-1 stimulates
anabolic response
characterized by the
restoration of normal
disc morphology

Chubinskaya
et al. (2007)

Rabbit Normal BMP7
(OP-1)

2 ng/10 ul/disc Increase in disc height An et al.
(2011)

Rabbit Chemonucleolysis
by C-ABC

OP-1 100 ul/10 ul/disc Increase in disc height
and PG content

Imai et al.
(2007)

Rabbit Needle puncture BMP7
(OP-1)

100 ug/10 ul/disc Improvement in disc
height and MRI
findings

Masuda et al.
(2006)

Rabbit Needle puncture GDF-5 1100 ng,1, 100 ug/
10 ul/disc

Increase in disc height Chujo et al.
(2006)

Rabbit Needle puncture OP-1 100 ug/10 ul/disc Increase in disc height
and PG content of the
NP

Miyamoto
et al. (2006)

Rabbit Annular tear
5 � 7 mm

BMP2 100 ul/10 ul/disc Exacerbated
degeneration

Huang et al.
(2007)

Rabbit Nucleotomy PRP 20 ul
PRP + microsphere/
disc

Less degeneration,
more PG

Nagae et al.
(2007)

Rabbit Nucleotomy PRP 20 ul
PRP + microsphere/
disc

Improvement in disc
height and water
content

Sawamura
et al. (2009)

Rabbit Annular puncture PRP-releasate 20 ul/disc Better X-ray and MRIs Obata et al.
(2012)

Sheep Annular incision BMP 13 300 ug/70 ul saline BMP 13 prevents loss
of hydration

Wei et al.
(2009)

Gene therapy

Rat Degenerative
model induced by
unbalanced
dynamic and static
force

Lentiviral
CHOP (C/EBP
homologous
protein)
shRNA

1 � 106 PFU/2 ul/
disc

Significant decrease of
apoptotic incidence in
cells treated with CHOP
ShRNA at 7 weeks

Zhang et al.
(2011b)

Rat Normal Plasmid DNA
mixed with
microbubbles

2 ug/2 ul/disc Reported genes were
expressed up to
24 weeks

Nishida et al.
(2006)

Rabbit Normal Ad/CMV-
hTGFβ1

6 � 106 PFU/15 ul/
disc

Leads to double
proteoglycan synthesis

Nishida et al.
(1999)

Rabbit Normal Ad-LMP1 1 � 107 PFU/10 ul/
disc

LMP1 overexpression
increases PG, BMP2,
and BMP7

Yoon et al.
(2004)

Rabbit Annular puncture ADAMTS5
siRNA
oligonucleotide

10 ug/10 ul/disc Improvement in MRI
and histological scores

Seki et al.
(2009)

(continued)
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Proteoglycan synthesis showed to be increased by
100% in treated tissue (Nishida et al. 2006).

Since, a variety of proteins were discovered as
promising targets for gene therapy: upstream pro-
teins such as LMP-1 which regulates BMP2 and
BMP7, ECM-degrading enzymes, disintegrin and
metalloproteinase with thrombospondin motifs-5,
their inhibitors (tissue inhibitor of meta-
lloproteinase-1, TIMP-1), chondrocyte-specific
transcription factors (SRY-box 9, Sox9), and apo-
ptosis inducers (C/EBP homologous protein)
(Leckie et al. 2012; Nishida et al. 1999, 2006;
Yoon et al. 2004; Seki et al. 2009; Zhang et al.
2011b; Paul et al. 2003).Though gene therapy can
be advantageous in its sustained effect, inherent risk
of viral gene delivery systems becoming infectious
or immunogenic has moved the focus toward non-
viral gene delivery systems. The development of
microbubble-enhanced ultrasound gene therapy
and injection of small interfering RNA (siRNA)
have proven to achieve long-standing transgene
expression in IVD cells in vivo (Nishida et al.
2006; Zhang et al. 2011b). However, non-viral
gene delivery systems are limited by low transfec-
tion efficiency, whichmust be overcome to enhance
their clinical applicability. The feasibility of ex vivo
gene therapy, which reduces the risks of infection
and immunogenicity and plays an important role in
the future of tissue engineering technology, has
been explored in several studies (Xin et al. 2012;
Leo et al. 2004).

Platelet-Rich Plasma

Platelet-rich plasma (PRP), an autologous blood
product manufactured by the centrifugation of

whole blood, offers a variety of proteins for the
treatment of degenerative discs due to its high
concentration of platelets. Upon activation, these
platelets release a variety of multifunctional
growth factors such as PDGF (platelet-derived
growth factor), IGF-1 (insulin-like growth factor),
TGF-β1, (transforming growth factor-beta 1),
VEGF (vascular endothelial growth factor), and
bFGF (basic fibroblast growth factor). When used
in the early stage of disc degeneration, PRP may
enhance disc hydration (Gullung et al. 2011).
Various PRP technologies have emerged to retard
the degenerative cascade, which include a gelati-
nous hydrogel scaffold, impregnated with PRP
(Nagae et al. 2007; Sawamura et al. 2009; Obata
et al. 2012) and soluble releasate derived from
activated PRP (Obata et al. 2012). The in vivo
efficacy of PRP in improving or maintaining disc
height and hydration has facilitated its transition
to ongoing clinical trials.

Cell-Based Therapy (Moriguchi et al.
2016)

The efficacy of biomolecules is limited when the
degeneration of an IVD is more advanced, since
there is a correlation between the progress of the
degeneration and the decline of the number of
cells responsive to injected genes and proteins
(Gruber et al. 2002). Mid-stage degeneration is
characterized by a decrease in the number of
cells within the IVD tissue. Therefore, cell
transplantation is a feasible treatment strategy
at this stage. A number of in vivo studies report
the efficacy of using a vast array of cell sources
(Table 2).

Table 1 (continued)

Species Model Molecules Dose Outcome Refs

Rabbit Annulotomy AAV2-BMP2
or-TIMP1

6 � 106 virus
particles/15 ul/disc

AAV-BMP2 and -
TIMP1 delayed
degeneration

Leckie et al.
(2012)

Rabbit Post-annulotomy Ad-Sox9 1 � 109 PFU/10 ul/
disc

AdSox9 helped retain
chondrocytic
appearance, cellular
morphology, and ECM
at 5 weeks

Paul et al.
(2003)
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Table 2 Cell therapy

Species Model Cell type Dose Outcome Refs

Mouse Post-annular
injury

Allogenic bone
marrow MSCs

BMSCs
1.0 � 103

ECM augmented in NP via
autonomous differentiation and
stimulation of endogenous cells
at 12 weeks

Yang et al.
(2009)

Mouse Annular
puncture

Multipotent stem
cells derived
from human
umbilical cord
blood

1.0 � 103 cells
intradiscally,
1.0 � 106 cells
intravenously

Unlike intradiscal injection,
intravenous injection did not
preserve the IVD architecture nor
disc height at 14 weeks

Tam et al.
(2014)

Sand
rat

Discectomy Autologous disc
cells

1.0 � 104 cells/
5 ul/2-mm3

Gelfoam

Implanted disc engrafted with the
host disc for up to 8 months

Gruber et al.
(2002)

Rat Normal Bone marrow
MSCs

5.0 � 105/50 ul
hyaluronan gels

MSCs maintained viability and
proliferated over 28 days

Crevensten
et al. (2004)

Rat Post-annular
puncture

Human bone
marrow MSCs

1.0 � 106/15 ul Human MSCs survived for
2 weeks post transplantation,
increasing disc height and MRI
intensity

Jeong et al.
(2009)

Rat Post-annular
puncture

Adipose-derived
MSCs (ADSCs)

1.0 � 106/50 ul Discs maintained disc height and
restored MRI signal intensity

Jeong et al.
(2010)

Rat Nucleotomy Co-culture of NP
cells and MSCs

2.5 � 105 cells
(25%NPCs and
75% MSCs)

Bilaminar co-culture pellet of NP
cells and MSCs outperformed
solely NP cells or MSCs at
5 weeks

Allon et al.
(2010, 2012)

Rabbit Nucleotomy Allogenic NP
cells

5.0 � 104 cells/
20 ul

Histology indicated delayed
degeneration at 16 weeks

Okuma et al.
(2000)

Rabbit Nucleotomy Autologous
articular
chondrocytes

2.0 � 106/
150 ul

Chondrocytes survived and
produced hyaline-like cartilage
at 6 months

Gorensek et
al. (2004)

Rabbit Normal Allogenic bone
marrow MSCs

1.0 � 105 cells MSCs survived and enhanced
PG synthesis

Zhang et al.
(2005)

Rabbit Post-
nucleotomy

Autologous
MSCs

4.0 � 104/40 ul
atelocollagen

Improved disc height, MRIs, and
histology at 48 weeks

Sakai et al.
(2003,2005,
2006)

Rabbit Post-annular
Injury

Autologous bone
marrow MSCs

1.0 � 105/25 ul Injection of MSCs significantly
increased PG synthesis in
severely degenerated discs at
16 weeks

Ho et al.
(2008)

Rabbit Normal Allogenic MSCs 1.0 � 105/15 ul Injected cells engrafted into inner
annulus fibrous at 24 weeks

Sobajima et
al. (2008)

Rabbit Post-
puncture

Xenogeneic
derivatives of
embryonic stem
cells

1.0� 106 cells/
20 ul

New notochordal cells observed;
no immune response elicited

Sheikh et al.
(2009)

Rabbit Nucleotomy Allogenic
synovial MSCs

1.0� 107 cells/
100 ul PBS

Implanted cells labeled with DiI
or GFP detected at 24 weeks.
Disc height and MRI signal
intensity were maintained

Miyamoto et
al. (2010)

Rabbit Compression Allogenic bone
marrow MSCs

0.08 ml of
1.0� 106 cells/
ml

Combination of MSC injection
and distraction led to better disc
height and histology at 8 weeks

Hee et al.
(2010)

Rabbit Post-
nucleotomy

Autologous NP
cells and
allogenic MSCs

1.0 � 106/20 ul Both NP cells and MSCSs better
maintained disc height and GAG
content at 16 weeks

Feng et al.
(2011)

(continued)
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Differentiated Cells

Implanted differentiated disc chondrocytes are
meant to produce demanded ECM components
such as proteoglycan and collagen types II and I
under hypoxia and nutrient stress and can meet the
increased cellular and metabolic demands of the
disc (Rajpurohit et al. 2002).

Accumulated evidence in an array of animal
models demonstrate the viability of autologous or
allogenic cells in vivo as well as the integration
into the host tissue. Thus, a reduction of ECM
degradation, recovery of disc height, and MRI
signal intensity can be achieved (Table 2). In
fact, the pioneering preclinical study in an injured
canine model showed that NP disc chondrocyte
implantation contributed to ECM regeneration,
retarding further disc degeneration (Ganey et al.
2003).

However favorable, disc cell transplantation
showed several challenges: (1) donor site morbid-
ity, (2) difficulty in expanding cells in vitro while
maintaining cell phenotype, and (3) paucity of
allograft donor tissue. Similar to differentiated
disc cells, cultured articular chondrocytes (AC)
are a well-established non-disc cell source in
regenerative medicine (Brittberg et al. 1994).
Their effortless extraction from non-weight-bear-
ing parts of the knee and capacity to produce NP-

like ECM when transplanted in vivo makes autol-
ogous (Gorensek et al. 2004) or allogenic (Acosta
Jr et al. 2011) AC a safe and feasible cell source in
IVD regeneration. Furthermore, potential immune
evasion by juvenile articular chondrocytes sup-
ports their applicability in allogenic cell
transplantation.

Stem Cells

Multipotent mesenchymal stem cells (MSCs),
which are present in adult bone marrow or adi-
pose tissue, can replicate as undifferentiated cells
and then differentiate into lineages of mesenchy-
mal tissue: bone, cartilage, fat, tendon, muscle,
and marrow stroma (Pittenger et al. 1999). These
somatic stem cells are a potentially ideal option
for disc repair due to their accessibility and abil-
ity to differentiate along a chondrogenic lineage
and produce the required proteoglycan and col-
lagen for the disc ECM. The feasibility of MSCs
to facilitate disc repair has been substantiated.

Yet it remains controversial whether differen-
tiated cells or stem cells are superior in terms of
regenerative capacity of disc morphology.

A porcine study comparing the utility of dif-
ferent cell sources found that committed articu-
lar chondrocytes are more suited for the use in

Table 2 (continued)

Species Model Cell type Dose Outcome Refs

Canine Post-
nucleotomy

Disc cells 6.0� 106 cells/
1 ml/disc

Disc remained viable, produced
ECM, better maintained disc
height

Ganey et al.
(2003)

Canine Post-
nucleotomy

Autologous
MSCs

1.0 � 106/ml
stem cells

MSCs led to better disc height,
MRI, and histology grading at
12 weeks

Hiyama
et al. (2008)

Canine Post-
nucleotomy

Bone marrow
MSCs

105, 106, 107
cells

The disc treated with 106 MSCs
had more viable cells than 105
and less apoptotic cells than 105
cells at 12 weeks

Serigano
et al. (2010)

Porcine Post-
nucleotomy

Human MSCs 0.5 � 106/
hydrogel carrier

Implanted cells survived and
differentiated into disc-like cells
at 6 mos

Henriksson
et al. (2009)

Porcine Nucleotomy Allogenic
juvenile
chondrocytes and
MSCs

7–10 � 106/
0.5–75 ml
fibrin carrier

JC outperformed MSCs in
proteoglycan synthesis at 12
months

Acosta et al.
(2011)
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disc repair than MSCs due to their aptness for
survival in the ischemic disc microenvironment
(Acosta Jr et al. 2011). Interestingly, a compar-
ative rabbit study found that MSC transplanta-
tion can serve as an ideal substitute for
differentiated chondrocytes of disc NP owing
to better accessibility with equivalent regenera-
tive potential (Feng et al. 2011). Studies
assessing the combination of both cells demon-
strated that rather in vitro co-culture (Okuma
et al. 2000) or co-implantation (Allon et al.
2010) yields better in vivo performance of the
implanted cells. Nonetheless, pluripotent
embryonic (Evans and Kaufman 1981; Martin
1981) and induced pluripotent stem cells
(iPSCs) (Takahashi and Yamanaka 2006), unlike
the lower potent MSCs, have unlimited prolifer-
ative and differentiate capacities, which can be
strategically exploited in cell-based disc repair.

Sheikh H et al. extracted murine embryonic
stem cells (ESCs) and differentiated them into
chondro-progenitor cells. Upon implantation into
rabbit injured discs, these cells induced noto-
chordal cell formation at site of injury without
xenograft-associated immune responses (Sheikh

et al. 2009). Unstable in vitro differentiation into
desired cell lineages and the potential risks of
tumor formation in vivo are still major obstacles
in the use of ESCs and iPSCs. However, if these
issues are overcome, the use of stem cells may
offer abundant potential for intervertebral disc
repair.

Tissue Engineering Strategies

The implementation of tissue engineering (TE)
pioneered by Langer and Vacanti in 1993 (Langer
and Vacanti 1993) has fueled the efforts toward
constructing functional biological substitutes for
TDR as a novel treatment strategy for DDD.
Recently, major efforts have been directed toward
developing a replacement for either NP or AF
using TE technology.

Tissue engineering originally consists of three,
and more recently four components (Langer and
Vacanti 1993): scaffolds, cells, growth factors,
and physical conditioning using electrical or
mechanical stimuli (Fig. 3). Since extensive loss
of matrix and structural damages are exhibited in

Fig. 3 Cells harvested from different sources can be
expanded in vitro and transplanted in vivo in cell transplant
for disc regeneration. Scaffolds can be combined with
cells, and, if they have bio-mimicking properties, these
treatments can be regarded as a part of tissue engineering

strategy, which traditionally composes of cells, scaffolds,
growth, and factors, but recently including gene treatment
and mechanical conditioning. NP nucleus pulposus cells,
AF annulus fibrosus cells, AC articular chondrocytes
(Moriguchi et al. 2016)
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Table 3 Tissue-engineered constructs

Species Model Construct Outcome Refs

Rat Subcutaneous
implantation

TE-IVD composed of a NP cell-
laden alginate surrounded by an AF
cell-laden PGL/PLA

Biochemical markers of matrix
synthesis, increasing over time,
were similar to native tissue at
12 weeks

Mizuno et al.
(2004a)

Rat Subcutaneous
implantation

Porous type II collagen/
hyaluronate-chondroitin-6-sulfate
(CII/HyA-CS)

CII/HyA-CS scaffolds had
satisfactory cytocompatibility and
histocompatibility, as well as low
immunogenicity

Li et al.
(2010)

Rat Subcutaneous
implantation

Composite IVD consisting of
demineralized bone matrix gelatin
and collagen II/hyaluronate/
chondroitin-6-sulfate scaffolds
seeded AF and NP cells

Implant, similar to native disc in
morphology and histology,
increased proteoglycan synthesis
over 12 weeks

Zhuang et al.
(2011)

Rat Total discectomy TE-IVD composed of a NP cell-
laden alginate surrounded by an AF
cell-laden collagen layer

TE-IVD maintained disc space
height, produced de novo ECM, and
integrated into the spine – yielding
intact motion segment with dynamic
mechanical properties similar to that
of native IVD

Bowles et al.
(2011a)

Rat Subcutaneous
implantation

5.0 � 106 cells/ml in pentosan
polysulfate-containing polyethylene
glycol/hyaluronic acid

MPC/hydrogel composites formed
cartilage-like tissue, well tolerated
by the host

Frith et al.
(2013)

Rabbit Laser discectomy 2.0 � 106 cells/atelocollagen
honeycomb shaped scaffold

AF cells survived and produced
hyaline-like cartilage in the disc at
12 weeks

Sato et al.
(2003)

Rabbit Microdiscectomy Cell-free implant composed of a
polyglycolic acid (PGA) felt,
hyaluronic acid (HA), and allogenic
serum

Implantation of a cell-free PGA-HA
implant immersed in serum after
discectomy improved disc
hydration and preserved disc height
6 months after surgery

Abbushi et al.
(2008)

Rabbit Post-nucleotomy 2.0 � 106 bone marrow MSCs/
0.04 ml fibrin glue containing 10-
ug/L TGF-β1 (MSC-PFG-TGF-β1)

MSC-PFG-TGF-β1 group had less
degeneration and a slower decrease
in disc height compared with both
degenerative and acellular PFG-
TGF-β1 group

Yang et al.
(2010)

Rabbit Nucleotomy Allogenic NP cell-seeded collagen
II/hyaluronan/chondroitin-6-sulfate
(CII/HyA/CS) tri-copolymer
construct

Viability of allografted NP cells,
extracellular matrix deposition, and
disc height maintenance; restoration
of T2 MRI signal intensity observed
at 24 weeks

Huang et al.
(2011)

Rabbit Post-puncture 5.0 � 103 allogenic bone marrow
MSCs/10 ul hydrogel

MSCs suppressed collagen I in NP,
reduced collagen aggregation, and
maintained proper fibrillary
properties and function

Leung et al.
(2014)

Rabbit Post-nucleotomy 1.0 � 106 human NP cell line
infected with recombinant SV40
adenovirus vector (HNPSV-5) in
atelocollagen

Deceleration of disc degeneration
was evident after HNPSV-5
transplantation as shown by disc
height and histologic examination at
24 weeks

Iwashina
et al. (2006)

Canine Total discectomy Cell-allograft IVD composites made
of allograft and NP cells, with in
vitro transduced with recombinant
adeno-associated virus (rAAV)-
hTERT

The hTERT-loaded NP cells
intervention could effectively resist
the degeneration of the allogenic
transplanted IVD at 12 weeks

Xin et al.
(2012)

(continued)
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advanced stages of disc degeneration, develop-
ment of biocompatible and biomimetic scaffold-
ing materials based on engineering innovation can
facilitate the recovery of native biological and

biomechanical functionality. Numerous studies
have assessed tissue-engineered components as
well as whole disc constructs of the disc in vivo
(Table 3).

Table 3 (continued)

Species Model Construct Outcome Refs

Canine Post-nucleotomy Autologous adipose tissue-derived
stem and regenerative cells in
hyaluronic acid carrier (ADRC/HA)

Disc that received ADRC/HA
produced matrix and resembled
native disc in morphology at
12 months

Ganey et al.
(2009)

Canine Nucleotomy Cell-scaffold composite made of
three-dimensional porous PLGA
scaffolds and NP cells

Disc height, segmental stability, and
T2-weighted MRI signal intensity
were well preserved at 12 weeks

Ruan et al.
(2010)

Porcine Nucleotomy Cell-scaffold composite made of NP
cells and injectable hyaluronan-
derived polymeric substitute
material HYADDR (1.0� 105 cells/
ml)

Injected discs had a central NP-like
region similar to the normal disc
biconvex structure and viable
chondrocytes forming matrix like
that of normal disc at 6 weeks

Revell et al.
(2007)

Porcine Post-annular
injury

1.25 � 105 autologous MSCs/ml in
either hydrogel PhotoFix or
hyaluronic acid

Stem cells in hydrogel treatment had
significantly higher T2 MRI
intensities and lower degeneration
grade at 24 weeks than hydrogel
alone treatment

Bendtsen
et al. (2011)

Porcine Partial
nucleotomy

5.0 � 105 autologous bone marrow
MSCs transduced with retrovirus
encoding luciferase in 1 mL
hyaluronan-enhanced albumin
hydrogel

In vivo 3-day analysis showed
persistent metabolically active
implanted cells in the disc

Omlor et al.
(2014)

Goat Post-disc injury 2.5 � 105 allogenic bone marrow
stromal cells/10 ul PBS + 30 ul
chondroitin sulfate-based hydrogel

Significant increase in NP
proteoglycan accumulation at
6 months

Zhang et al.
(2011c)

Sheep Total discectomy Noncrystalline polylactide
copolymer interbody cages filled
with1.0 � 106 allogenic
mesenchymal progenitor cell
(MPC)-laden Gelfoam sponge
formulated with the chondrogenic
agent pentosan polysulfate (PPS)

Biodegradable cage-contained
MPCs in combination with PPS
produced cartilaginous tissue at
3 months

Goldschlager
et al. (2010)

Sheep Post-
chondroitinase-
ABC injection

4.0 � 106 or 0.5 � 106 human
mesenchymal precursor cells
(MPCs) suspended in hyaluronic
acid

High-dose injection improved
histopathology scores at 3 months,
while low dose at 6 months

Ghosh et al.
(2012)

Sheep Nucleotomy Allogenic or autologous disc cells
(0.4–2.0 � 106 cells/0.5–1 ml
hydrogel) in hydrogel containing
hyaluronic acid and maleolyl-
albumin

Biological repair of traumatic
damage occurs in sheep discs at
6 months; hydrogel-supported disc
cells may be beneficial

Benz et al.
(2012)

Canine Total discectomy TE-IVD composed of a NP cell-
laden alginate surrounded by an AF
cell-laden collagen layer

Early displacement in some cases, if
stably implanted TE-IVD
maintained disc height, produced
new ECM, and integrated into host
tissue, intact motion segment with
dynamic mechanical properties
similar to that of native IVD

Moriguchi
et al. (2017)
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Scaffold Development

Numerous scaffold materials, including altinate,
silk-fibrin/HA composites, atelocollagen, syn-
thetic polymers, and a collagen 2/hyaluronan/
chondroitin-6-sulfate (C2/Hy/CS) composite,
which mimic the mechanical and biochemical
properties of the native NP, have been part of a
study. Extensive research on hyaluronic acid, a
native NP extracellular matrix component, has
been performed in vivo (Revell et al. 2007;
Abbushi et al. 2008; Ganey et al. 2009; Li et al.
2010; Huang et al. 2011). Resorbable cell-free
implants consisting of a polyglycolic acid (PGA)
felt, hyaluronic acid, and serum were used in a
rabbit study. This resulted in improved disc hydra-
tion and height 6 months after microdiscectomy
(Abbushi et al. 2008). The reason for the frequent
use of cells together with bio-mimicking materials
is to encourage de novo ECM production. The
findings of Ganey T. et al. were that adipose-
derived stem cells contribute significantly to the
recovery of T2 intensity and disc height in a
canine disc injury model. Synthetic polymers
such as PGA or poly-L-lactic-co-glycolic acid
(PLGA) have also been used either solely or in
combination with hydrogels to construct cell-
laden TE composites (Abbushi et al. 2008; Ruan
et al. 2010).

Biological Annulus Fibrosus Repair

In mid-stage DDD, a commonly occurring pathol-
ogy is the lumbar disc herniation. Due to the
progressive degeneration, the IVD shows reduced
hydration. The inadequate hydration of the disc
leads to fissure formation, eventually allowing the
soft NP to herniate through the defect and thus
compress neighboring neural structures
(Freemont 2009).

Lumbar discectomy is one of the most com-
monly performed spinal procedures to treat disc
herniation, with an estimated 300,000 cases
performed annually in the United States (Deyo
and Weinstein 2001). While efficient in relieving
acute symptoms by removing the herniated part of
the NP and decompressing neural structures, the

AF defect typically remains untreated after
discectomy. Persistent AF defects increase the
risk of re-herniation, which may lead to additional
operations including more invasive procedures
such as TDR and instrumented fusion (Carragee
et al. 2003; Swartz and Trost 2003; Bruske-
Hohlfeld et al. 1990; Ambrossi et al. 2009;
Frymoyer et al. 1978; Laus et al. 1993).

Previous studies of intervertebral disc repair,
which aim to halt, delay, or reverse intervertebral
disc degeneration, were primarily focused on NP
regeneration (Masuda et al. 2004; Bae and
Masuda 2011; Sakai and Grad 2015; Wang et al.
2014; Kepler et al. 2011; Blanquer et al. 2015;
Mern et al. 2014). However, the majority of these
strategies are delivered through a punctured AF,
which can generate a degenerative cascade within
the disc affecting IVD biomechanics, cellularity,
and biosynthesis even upon modest injury (Elliott
et al. 2008; Iatridis et al. 2009; Korecki et al. 2008;
Hsieh et al. 2009). Annular defects can emerge not
only from needle punctures through the AF to
reach the NP but also from the early process of
IVD degeneration. Given the sensitivity of the AF,
lesions from NP treatment can provoke further
degeneration, inducing leakage of the delivered
material and eventual failure of the regenerative
treatment. In fact, one prospective study with 10-
year follow-up found that discography performed
with a small needle puncture accelerated disc
degeneration rate of same-side disc herniation
and changes to the endplate (Carragee et al.
2009). A different study demonstrated that
injecting MSCs through the AF into the NP led
to cell leakage and augmented osteophyte forma-
tion (Vadalà et al. 2012). Combining an injectable
NP regenerative strategy with a sealant that
repairs annular defects is the optimal strategy
that can circumvent leakage of implanted cells or
material while enhancing therapeutic outcome.
Previous approaches to annular repair have
involved mechanical treatments such as suturing
and annuloplasty devices, which failed to improve
annular healing strength in long-term clinical tri-
als (Ahlgren et al. 2000; Chiang et al. 2011; Bailey
et al. 2013). Although several NP regenerative
studies and a few in vitro AF studies (Nerurkar
et al. 2009) provide critical insight on the
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reparative process within the AF tissue (Wei et al.
2009; Sakai et al. 2006; Sato et al. 2003; Zhang et
al. 2011c), there are a very limited number of in
vivo studies focusing primarily on annular repair
(Table 4). Current efforts in the biological treat-
ment for in vivo AF repair include either devel-
opment of injectable material in conjunction with
biologics such as biomolecules/cells or construc-
tion of rigid implants derived from synthetic poly-
mer or biological tissue.

In order to introduce alternative methods,
injectable biomaterials have recently gained fur-
ther popularity in the field. Injectable genipin
cross-linked fibrin collagen gel was suggested to
integrate with human AF tissue and presented
promising biomechanical and cell-seeding

properties in vitro (Schek et al. 2011). Our group
successfully tested a high-density collagen gel in
vitro and in vivo using a needle puncture rat tail
model. Furthermore, we have recently translated
this project to a large animal (ovine) model, which
demonstrated positive histologic results at
16 weeks following injury (Pennicooke et al.
2017).

Collectively, these studies demonstrate an abil-
ity to formulate and deliver injectable biomate-
rials to the lumbar spine of sheep to seal AF
defects, promote sufficient tissue healing, and
prevent further disc degeneration.

In another large animal study conducted by
Oehme et al., injected mesenchymal progenitor
cells combined with chondrogenic agent pentosan

Table 4 Annular repair

Species Model Treatment Outcome Refs

Rat Degradation tests
with
subcutaneous
implantation

Fibrin-genipin adhesive
hydrogel (fib-gen)

60% of fib-gen remained at
8 weeks and nearly all resorbed
at 16 weeks; kinetics show
better in vivo longevity
compared to fibrin

Likhitpanichkul
et al. (2014)

Rat Needle puncture Injection of cross-linked high-
density collagen (HDC) gels

Cross-liked HDC capable of
repairing annular defects most
likely due to enhanced stiffness
of HDC at 5 weeks

Grunert et al.
(2014b)

Porcine Needle puncture Injection of Gelfoam, platinum
coil, bone cement, and tissue
glue

Injection of Gelfoam better
improved integrity of
punctured disc than the other
three to potentially prevent
recurrent disc herniation at
2 months

Wang et al.
(2007)

Sheep Box annulotomy Patch and plug with small
intestinal submucosa (SIS) and
titanium bone screw

SIS-based treatment led to
better maintenance of
hydration and intradiscal
pressure at 26 weeks after
annulotomy

Ledet et al.
(2009)

Sheep Box annulotomy Triphase AF implant
composing two outer phases of
absorbable polyglycolic acid
(PGA) and a centric phase of a
nonabsorbable polyvinylidene
fluoride (PVDF) mesh

Implant-treated discs had more
reparative tissue. But, contrast
media leakage tests under
provocative pressure did not
show a difference between
groups

Hegewald et al.
(2015)

Sheep Microdiscectomy Allogenic mesenchymal
progenitor cells
(MPCs) + pentosan polysulfate
(PPS) embedded in a gelatin/
fibrin scaffold

Discs treated with MPC + PPS
showed higher PG content than
the untreated or ones treated
with solely scaffold at 6 months

Oehme et al.
(2014)

Sheep Box annulotomy Injection of cross-linked high-
density collagen (HDC) gel
into annulus defect

IVDs treated with HDC gel
showed histologically less
degeneration. Imaging
difference was not significant

Pennicooke et
al. (2017)
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polysulfate maintained disc height, disc morphol-
ogy, and NP proteoglycan content post micro-
discectomy in a sheep model (Oehme et al.
2014). Despite the few studies dedicated to annu-
lar repair, more attention is now being paid to this
field given its enhancement of even NP-targeted
therapy.

Bioartificial Total Disc Replacement
Therapies

In advanced stages of DDD with significant
structural damage and the absence of viable
cell activity, the injection of biomolecules or
cell transplantation is no longer a feasible
option.

A current surgical treatment strategy for
advanced DDD is the total removal of the IVD
followed by the fusion of the whole segment
including the adjacent vertebrae. However, fusion
may result in pseudoarthrosis or adjacent segment
disease, which may lead to reoperation and long-
distance fusion procedures (Maldonado et al.
2011; Sugawara et al. 2009; Bydon et al. 2013).
To prevent these complications and to preserve
mobility in the treated segment, TDR by synthetic
prosthesis has become an alternative treatment
strategy. Yet, current mechanical prosthetic TDR
devices have not been able to reproduce the bio-
mechanical properties of the natural IVD. Addi-
tionally, recent studies have demonstrated that
current TDR devices are not without their disad-
vantages as they also entail the risk of adjacent
segment disease (Maldonado et al. 2011; Kelly
et al. 2011).

In this case, the total replacement using a
tissue-engineered intervertebral disc with the
ability to integrate into the host environment
is a promising treatment strategy. The current
standard in whole IVD implantation involves
NP and AF composites that replace the struc-
turally damaged tissues of a severely
degenerated disc.

The first tissue-engineered whole IVD,
implanted in vitro within the subcutaneous dor-
sum of athymic mice, comprised of NP cell-laden
polyglycolic and polylactic acid (PGA/PLA) and

AF cell-laden alginate (Mizuno et al. 2004a,
2006).

More than a decade ago, our group was the first
to develop a tissue-engineered disc, composed of
NP cells seeded into an alginate hydrogel,
surrounded by a polyglycolic acid and polylactic
acid scaffold seeded with AF cells (Mizuno et al.
2004b, 2006). This de novo construct was suc-
cessfully implanted in the subcutaneous space of
the dorsum of athymic mice and demonstrated the
feasibility of creating a composite IVD including
both AF and NP tissues Several other studies have
reported the development of composite tissue-
engineered IVD constructs, using combinations
of materials such as demineralized bone matrix
gelatin with type II collagen, hyaluronate and
chondroitin-6-sulfate (C2/HyA-CS) (Zhuang
et al. 2011), electrospun polycaprolactone and
agarose (Martin et al. 2014), and self-assembled
NP cells seeded onto calcium polyphosphate
(Hamilton et al. 2006).

More recently, we developed a TE-IVD con-
struct composed of an NP cell-laden alginate
nucleus encircled by an AF cell-laden collagen
annulus (Bowles et al. 2010, 2012). The efficacy
of this construct, namely, maintaining disc height
and physiological hydration as well as integrating
into the host tissue, has been demonstrated
through its implantation in a rat tail in vivo
model (Bowles et al. 2011a; Gebhard et al. 2010,
2011; Grunert et al. 2014a; James et al. 2011).
Although these results are promising, the rat tail
has several dissimilarities with the human spine in
terms of anatomy and biomechanical properties
(O’Connell et al. 2007, 2011; Lotz 2004). Impor-
tantly, the rat tail has a significantly different
biomechanical loading profile, as the IVDs of
the human spine are exposed to higher axial
loads. Furthermore, the rat tail lacks a spinal
canal containing nervous tissue as well as poste-
rior bone and joint elements. To move our
approach closer toward clinical utilization and to
mimic the biomechanical loads and anatomy of a
human IVD more accurately, we transitioned to a
larger animal model.

In a preliminary study, we performed TDR
using TE-IVDs in the cervical spine of skeletally
mature beagle dogs. Within this, we demonstrated
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the ability of our TE-IVDs to integrate into the
host tissue of a larger animal without any signs of
inflammatory response (Moriguchi et al. 2017).
Notably, these implants performed quite well
when stably implanted in the intervertebral
space. However, there was a persistent challenge
in ensuring that implants remained firmly
implanted in the intervertebral space.

Nonetheless, the addition of growth factors or
bioactive molecules can encourage de novo ECM
deposition. Goldschlager et al. demonstrated that
adult allogenic mesenchymal progenitor cells
(MPCs) formulated with a chondrogenic agent
pentosan polysulfate (PPS) could synthesize a
cartilaginous matrix when implanted into a biode-
gradable carrier and cage and over time might
serve as a bioactive interbody spacer following
anterior cervical discectomy (Goldschlager et al.
2010). Furthermore, the integration of tissue engi-
neering and gene therapy has been attempted by a
Chinese group that developed a tissue-engineered
IVD using an allogenic disc transduced with
hTERT gene within its NP cells. When implanted
in a canine model, the hTERT-loaded NP cells
manifested enhanced antidegenerative effect than
unloaded NP cell (Xin et al. 2012). Such construc-
tions of whole disc implants, the most ambitious
therapeutic strategy yet, are met with extensive
biological and functional challenges in vivo. Yet,
the progressing field of TE continues to yield
promising modifications to meet the higher
demands of implanted discs.

Clinical Studies

Several of the above-described regenerative
treatment approaches have already been utilized
in a clinical setting. However, to date only a few
clinical trials have been published on this topic
(Table 5).

In the following section, several representative
published clinical studies for the different treat-
ment approaches will be presented.

In 2002, Meisel et al. started a multicenter
prospective, randomized, controlled, non-blinded
EuroDISC study comparing the safety and effi-
cacy of autologous disc chondrocyte transplant

(ADCT) implanted 12 weeks post discectomy.
The 2-year interim analysis revealed a significant
reduction of low back pain as well as retained disc
height in the autologous disc cell transplantation
(ADCT) group compared to the discectomy only
control group (Meisel et al. 2006, 2007). The
ADCT product is currently evaluated in a Phase
II clinical trial under the product name
NOVOCART® Disc (Meisel 2012; Tschugg
et al. 2017).

While to date there is no clinical study using
tissue-engineered material, efforts have been
made to create functional substitutes for NP
(Berlemann and Schwarzenbach 2009; Boyd and
Carter 2006). Among many clinical studies focus-
ing on NP replacement, a single-center, non-ran-
domized, prospective feasibility study was
undertaken to investigate the use of NuCore
Injectable Nucleus hydrogel (Spine Wave, Inc.,
Shelton, CT, USA) post microdiscectomy pre-
vented early disc collapse to potentially slow the
degenerative cascade of the spinal segment over
time (Berlemann and Schwarzenbach 2009).

The feasibility of a whole allogenic disc trans-
plantation has first been proven by a group in
China. Ruan et al. successfully performed trans-
plantation of fresh frozen disc allografts including
endplates in five patients. Implants successfully
integrated into the host tissue, over the course of
5 years without any inflammatory reaction,
although no immunosuppressive therapy was
administered (Ruan et al. 2007). The absence of
any immunologic response strongly supports the
hypothesis that the intervertebral disc space is
immunoprivileged tissue. Although promising,
the allogenic transplantation of spinal motion seg-
ments has several limitations in terms of availabil-
ity of healthy donor discs and potential disease
transmission.

As mentioned in the section above, a fre-
quently discussed treatment strategy is the
intradiscal injection of platelet-rich plasma
(PRP) for treating DDD. In 2016, Tuakli-Wosornu
et al. published the results of a prospective, dou-
ble-blind, randomized controlled study. Twenty-
nine patients with low back pain, refractory to
conservative treatment, received intradiscal PRP
injections, while 18 patients who received a
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placebo injection with a contrast agent served as a
control group. At the 2-month follow-up, the PRP
group showed significant improvement in pain
scales. Patients maintained these improvements
also in the 12-month follow-up (Tuakli-Wosornu
et al. 2016).

Recently the utilization of different stem cell
lines has found their way to clinical use. In
2006 Haufe et al. was the first to publish clini-
cal results, reporting about intradiscal autolo-
gous hematopoietic stem cell injections.
However, in the 12-month follow-up, none of

Table 5 Published clinical trials

Trial treatment
No. of
patients Study design

Follow-
up (m) Outcome Refs

Autologous
hematopoietic
stem cell
injection

10 Case series 12 No patients reported any
improvement in their discogenic
back pain

Haufe and Mork
(2006)

Total disc
replacement
with allogenic
IVD

5 Case series 60 Allograft engrafted disc space
without apparent immunoreaction;
all minus one disc preserved range
of motion

Ruan et al.
(2007)

Autologous disc
chondrocyte
transplantation
(EuroDisc)

28 Control study 24 ADCTwith discectomy shows
more pronounced decrease in
OPDQ than discectomy alone

Meisel et al.
(2006, 2007)

Injectable
biomimetic
nucleus
hydrogel

14 Case series 24 Significant improvement in leg and
back pain after micro-discectomy

Berlemann and
Schwarzenbach
(2009)

Autologous
bone marrow
mesenchymal
cell injection

2 Case series 24 Both patients showed
improvements in the vacuum
phenomenon as well as signal
intensity of T2-weighed MRIs

Yoshikawa et al.
(2010)

Autologous
bone marrow
mesenchymal
cell injection

10 Case series 12 Rapid improvement of pain and
disability. Disc height was not
recovered, but disc hydration was
significantly elevated

Orozco et al.
(2011)

Allogenic
juvenile
chondrocytes
injection
(NuQu)

15 Case series 12 ODI, NRS, SF-36 improved from
baseline. 89% of the patients
showed improvement on MRI

Coric et al.
(2013)

Injection of
autologous bone
marrow-
concentrated
cells

26 Case series 12 Statistically significant
improvement in pain scores and
impairment was demonstrated.
Most dramatic improvement seen
in patients with higher CFU-F
concentrations. Rehydration of the
discs observed in 8 of 20 patients

Pettine et al.
(2015)

Intradiscal
injection of PRP

47 Prospective
double-blinded
randomized
controlled study

12 Significant improvement in pain
scales after 2 months, maintained at
the 12-month follow-up

Tuakli-Wosornu
et al. (2016)

Intradiscal
injection of
stromal vascular
fraction with
PRP

15 Case series 12 Significant improvement in VAS,
no worsening, no radiographic
changes

Comella et al.
(2017)
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the ten patients reported any improvement in
back pain, and 80% of the patients required
surgical spinal intervention within a year after
injection. Mesenchymal stem cells (MSC) on
the other hand showed more promising results
in various clinical studies. Due to their rela-
tively easy accessibility and expandability in
vivo, the bone marrow has been used as a
source for MSCs in several in vitro and in
vivo studies. Pettine et al. were the first to
utilize bone marrow-concentrated cells
(BMCs) as a treatment for discogenic back
pain. In 26 patients with chronic low back
pain, BMCs harvested from the iliac crest
were injected into the IVD. The 1-year follow-
up revealed a reduction in pain as well as radio-
graphic improvement in 40% of the patients
(Pettine et al. 2015). Yoshikawa et al. reported
a case series of two patients who received a
collagen sponge soaked with 105 cells/mL sus-
pension grafted into a degenerated disc. After
2 years, both patients demonstrated improve-
ment in pain as well as increased hydration on
MRI (Yoshikawa et al. 2010). Orozco et al.
reported a rapid improvement of pain up to
85% after 3 months in ten patients who
underwent intradiscal injection of bone mar-
row-derived MSCs. Despite the fact that the
disc height remained unchanged, an improve-
ment in disc hydration could be observed in the
12-month follow-up MRI (Orozco et al. 2011).

Apart from the bone marrow, the adipose
tissue is an abundant source for mesenchymal
stem cells (Ganey et al. 2009; Jeong et al. 2010).
Due to easier accessibility and less invasive har-
vest, the utilization of adipose-derived stem
cells became more recently of increasing inter-
est. In a recent study, Comella et al. were the first
to publish clinical results on the injection of
stromal vascular fraction (SVF), containing adi-
pose-derived stem cells as a treatment for low
back pain. In this study, SVF was administered
along with PRP into lumbar IVDs in15 patients
with discogenic back pain. After a 12-month
follow-up, patients showed significant improve-
ment in pain scales. However, this study did not
provide any radiographic outcome data
(Comella et al. 2017).

Unpublished Clinical Trials

Within the last decade, a clear trend toward regen-
erative treatment approaches is recognizable. This
trend is also represented by the increasing number of
clinical studies currently emerging aiming to find
new biological treatment approaches for DDD. The
following will elucidate several promising ongoing
clinical studies that are not published yet.

Due to the similar biological profile as disc
chondrocytes and potential immunoprivileged prop-
erty, allogenic juvenile articular chondrocytes are
another promising cell source. In a prospective
cohort study, Coric et al. demonstrated that NuQu,
an injectable percutaneous fibrin-based delivery of
juvenile chondrocytes attenuated otherwise medi-
cally refractory low back pain (Coric et al. 2013).
A class II study has recently been completed.
Despite these study’s promising results, further
investigation with a prospective, randomized, dou-
ble-blinded, placebo-controlled study is necessary
to make cell transplantation a valid therapeutic
option for DDD.

Rathmell et al. are currently the first to evaluate
the effects and safety of intradiscal injections with
recombinant human growth and differentiation fac-
tor 5 (rhGDF5) in a clinical trial. GDF-5 belongs to
the transforming growth factor-beta (TGF-β) fam-
ily which is meant to influence the growth and
differentiation of various tissues including the
intervertebral disc (Xu et al. 2006). The intradiscal
administration has shown to improve the reparative
capacity of IVDs in a degenerative rabbit model
(Chujo et al. 2006).Within a Phase I/II clinical trial,
32 patients receive a single intradiscal injection of
rhGDF5 and will be observed over a 36-month
follow-up (J R 2008).

Mesoblast Ltd. developed a commercially avail-
able lineage of in vitro differentiated allogenic mes-
enchymal precursor cells (MPCs). Currently, this
product is being evaluated under the name
Rexlemestrocel-L in a Phase III prospective, multi-
center, randomized, double-blind, placebo-con-
trolled study, comparing Rexlemestrocel-L only
vs. Rexlemestrocel-L+ hyaluronic acid (Mesoblast
Ltd. 2015).

The recently completed Phase II study
included 100 patients with chronic low back
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pain due to DDD. The outcomes of this study
were promising; both treatment groups who
received 6 million MPCs and 18 million MPCs,
respectively, improved in VAS by 44.4% and
37.9%, whereas the two placebo groups who
received saline or hyaluronic acid only improved
by 11.8% and 15.8%, respectively. However, no
significant improvement in radiographic out-
comes could be observed (Mesoblast Ltd. 2019).

The data emerging from these ongoing clinical
trials will reinforce findings from published stud-
ies and provide new insight for future biological
disc repair.

Future Perspective

This present book chapter provides a comprehen-
sive overview on the recent innovations and
trends in biological disc repair (Takahashi and
Yamanaka 2006). Biomolecular therapies have
shown the potential of stimulating the intrinsic
healing capacity of the intervertebral discs in
early stages (Masuda et al. 2006; Chujo et al.
2006; Huang et al. 2011). In a more advanced
setting, cellular therapies are increasingly demon-
strating their potential as the understanding of
underlying mechanisms of cell differentiation
increases (Pittenger et al. 1999; Bernardo et al.
2007; Moroni and Fornasari 2013). A major chal-
lenge for cellular therapies remains the determi-
nation of the optimal cell type as well as the ideal
carrier for application (Acosta Jr et al. 2005).

Another challenge is that all these treatments
are inevitably associated with an annular damage
caused by the needle puncture, which is necessary
for the application of the therapeutic agent.
Carragee et al. has shown in a prospective study
of notable size that even a small needle puncture
may disturb the integrity of the AF enough to
accelerate the degeneration of the IVD (Carragee
et al. 2009). Therefore, a sufficient annular repair
strategy is mandatory in order to seal the defects
caused by the necessary needle puncture.

Since the lack of viable cells in advanced DDD
makes a stimulating agent, such as growth factors,
impossible and the final stages of DDD do not
possess enough extracellular matrix to offer an
environment for viable cells (Roberts et al. 2006),

a replacement will become inevitable. It is known
that current mechanical prosthetic devices also
involve the risk of adjacent segment disease and
thus accelerate further degeneration of the whole
spine (Maldonado et al. 2011; Kelly et al. 2011).
Therefore, it is inarguable that a biological con-
struct with the ability to integrate into the host
tissue will be the better option. Considering the
limitations of healthy allogenic transplants (Ruan
et al. 2007), tissue engineering will be the best
option for end-stage DDD. Although promising,
the described in vivo studies for TDR using tis-
sue-engineered constructs (Grunert et al. 2014a;
Moriguchi et al. 2017; Bowles et al. 2011b) are
still facing challenges that need to be solved before
a transition to clinical use will be possible.

Despite all the above-described advances, we
still have limited understanding of the physiolog-
ical concept of a healthy IVD as well as the
underlying pathomechanisms of disc degenera-
tion. Also the pathophysiological correlation
between back pain and degenerative disc disease
is still not entirely explored. Therefore, extensive
research about the physiological as well as the
pathological processes in intervertebral discs is
mandatory before the ideal treatment strategies
can be developed.
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