
Chapter 23
The Fundamental Problem of Dynamics

Julian Barbour

Abstract In a world in which all objects are in relative motion, there arises the prob-

lem of equilocality: the identification of points in space that have the same position

at different times. Newton recognized this as the fundamental problem of dynamics

and to solve it introduced absolute space. Inspired by Mach, Einstein created gen-

eral relativity in the hope of eliminating this controversial concept, but his indirect

approach left the issue unresolved. I will explain how the general method of best

matching always leads to dynamical theories with an unambiguous notion of equi-

locality. Applied to the dynamics of Riemannian 3-geometry, it leads to a radical

rederivation of general relativity in which relativity of local scale replaces replaces

relativity of simultaneity as a foundational principle. Whereas in the standard space-

time picture there is no unique notion of simultaneity or history, if this alternative

derivation leads to the physically correct picture both are fixed in the minutest detail.

New approaches to several outstanding problems, including singularities and the ori-

gin of time’s arrows, are suggested.

23.1 Introduction

In his unpublished De Gravitatione [1], Newton addressed what might be called the
fundamental problem of dynamics: if all motion is relative, how can one identify

a point in space that has the same location at different times? This is the problem

of equilocality. Because he did not present the problem or repeat his arguments in

the Principia, the issue has attracted little attention. In this paper, I will take direct

resolution of the problem as the basis of an alternative derivation of general relativ-

ity (for a complementary account, see [2]). The main justification for this are new

research avenues that are opened up. It is also interesting to see how Einstein’s the-
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ory can be derived and radically reformulated following essentially one single idea:

the definition of position at different instants of time.

My starting point is Leibniz’s notion of space. Although it does not solve the

problem, it is a first step. I then describe the creation of dynamical theories by best
matching, which always leads to a notion of equilocality. Equations that govern the

evolution of Riemannian 3-geometries are obtained more or less directly by appli-

cation of best matching under the condition that only angles, but not lengths, can be

compared at spatially separated points. This leads to shape dynamics [2]. Remark-

ably, one recovers not only Einstein’s evolution equations in a distinguished foliation

but also, in a single package, a prescription for how the initial-value problem of gen-

eral relativity is to be solved and the resulting Cauchy data are to be evolved. To the

extent the evolution can be continued, this leads to construction of an Einsteinian

spacetime in a foliation by spacelike hypersurfaces of constant mean extrinsic cur-

vature and simultaneously a fibration of the spacetime by timelike curves that pass

through equilocal points defined by best matching. It is in this sense that history is

fixed in minutest detail.

23.2 The Relational Definition of Position

In his famous correspondence [3] with Clarke, Leibniz rejected Newton’s absolute

space and time, mainly on the basis the principle of the identity of indiscernibles: if

two supposedly distinct things or states are in fact indistinguishable, then they are in

fact one and the same. This led Leibniz to argue that

if space was an absolute being, there would something happen for which it would be impos-

sible there should be a sufficient reason. . . Space is something absolutely uniform; and,

without the things placed in it, one point of space does not absolutely differ in any respect

whatsoever from another point of space. Now from hence it follows, (supposing space to be

something in itself, besides the order of bodies among themselves,) that ‘tis impossible there

should be a reason, why God, preserving the same situations of bodies among themselves,

should have placed them in space after one certain particular manner, and not otherwise;

why everything was not placed quite the contrary way, for instance, by changing East into

West.

When Clarke objected that “space and time are quantities; which situation and

order are not” Leibniz responded

I will here show, how men come to form to themselves the notion of space. They consider

that many things exist at once and they observe in them a certain order of co-existence,

according to which the relation of one thing to another is more or less simple. This order,

is their situation or distance. When it happens that one of those co-existent things changes

its relation to a multitude of others, which do not change their relation among themselves;

and that another thing, newly come, acquires the same relation to the others, as the former

had; we then say, it is come into the place of the former; and this change, we call a motion in

that body. . . And though many, or even all the co-existent things, should change according

to certain known rules of direction and swiftness; yet one may always determine the relation

of situation, which every co-existent acquires with respect to every other co-existent. . . And
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supposing, or feigning, that among those co-existents, there is a sufficient number of them,

which have undergone no change; then we say, that those which have such a relation to those

fixed existents, as others had to them before, have now the same place which those others

had. And that which comprehends all those places, is called space.

Note, first, that Leibniz equates situation with distance without saying how that

is determined and, second, his definition of space requires “a multitude of others,

which do not change their relation among themselves”. This means that he had not

given a definition of space applicable to the realistic situation in which all bodies of

the universe are in motion relative to each other. As I noted, Newton had introduced

absolute space precisely to overcome this problem (without explaining the difficulty

in the Principia). The comment that if all bodies move relative to each other “yet

one may always determine the relation of situation, which every co-existent acquires

with respect to every other co-existent” is correct at a given instant but does not solve

the real problem: how can one pair up points whose positions are defined relationally

at different times and say they are at the same place.

This is the problem of equilocality. Unless it is solved, dynamics (understood as

the evolution of relative configurations) has no firm foundation. Consider the prin-

ciple of least action, which plays a truly essential role in both classical and quantum

dynamics. The calculation of the action is impossible if one cannot quantify dis-

placements of particles, which in turn is impossible without a notion of equilocality.

The Leibniz–Clarke correspondence gives no guidance on this. In Sect. 23.4, I will

show how equilocality can be defined provided certain conditions are met. First it

will be helpful to present a notion of space somewhat different from Leibniz’s.

23.3 Space as the Order of Coexisting Facts

As we have seen, Leibniz claimed that space is the order of coexisting things and,

when pushed, defined order as the distance between things. However, Leibniz did not

say how distance, which plays a primary role in his notion of space, is to be deter-

mined. I have not researched the history of distance determination, which clearly

involves measurement and is part of the beautiful discipline of metrology. I will

merely note that in the famous lecture given in 1854 in which he introduced his

generalization of Euclidean geometry, Riemann said that “measurement consists of

placing the quantities that are to be compared on top of each other”.

At least since the dawn of agriculture, distance measurement has been been impor-

tant and remarkably easy thanks to one of what I call ‘the gifts of nature’, by which

I mean the ready availability of measuring rods in the form of straight sticks like

bamboo canes or ropes. These have an empirical property of the utmost importance:

to a high degree they remain mutually congruent. I can take one short cane as unit,

use it to mark notches on as many other long canes as I like, move them around indi-

vidually over large distances and then bring them back together. The ratios of their

lengths, as measured by the notches, will not have changed perceptibly. It was surely
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thanks to this basic property of rods that Pythagoras’ theorem was discovered by the

ancient Egyptians at the latest about 4000 years ago.

Now consider this scenario. Suppose N,N ≥ 5, fixed points in our familiar three-

dimensional space. Let the N(N − 1)∕2 distances between them be measured, yield-

ing a corresponding number of positive numbers. These numbers, the measured dis-

tances, are empirical facts. A priori, there is no reason why they should bear any

relation to each other. However, it turns out that, provided N ≥ 5, they will satisfy

certain algebraic relations that will hold to the accuracy with which the measure-

ments have been made and our space is Euclidean. In other words, certain combina-

tions of these distances will, to the corresponding accuracy, be zero. Such a state of

affairs is a profound fact and indicates the existence of a controlling law.

The consequences of the law are remarkable. It makes data compression possi-

ble. Instead of representing the geometrical arrangement of the N points by means

of the N(N −1)∕2 positive numbers, one can express it by means of 3N coordinates,

conveniently taken to be Cartesian (𝐫a, a = 1,… ,N). The measured distances, the

separations rab ∶= |𝐫a − 𝐫b|, are invariant under the Euclidean translations and rota-

tions that can be applied to the 𝐫a. If N is large, the data compression is very sig-

nificant since the number of distances grows as the square of the number of fixed

points (Leibniz’s coexisting things), whereas the number of coordinates grows only

linearly.

The essential geometry revealed by the possibility of data compression can be

taken one step further by the introduction of the root-mean-square length of the sys-

tem:

𝓁
rms

∶=
√∑

a<b
r2ab, rab ∶= |𝐫a − 𝐫b|. (23.1)

If we now divide all the rab by 𝓁
rms

, the resulting r̃ab = rab∕𝓁rms
still satisfy algebraic

relations analogous to the ones I have already described. However, they are now ‘lib-

erated’ from the arbitrary the unit of length and therefore scale-invariant. The scale-

free separations r̃ab are invariants of the similarity group (Euclidean translations

and rotations augmented by dilatations). In modern terms, Leibniz’s case against

Newton, as applied to a single configuration, is that it is the invariants r̃ab which

define reality.

In the light of this discussion, what then is space? Intuitively, many people

(including Newton one suspects) think of it as something like a perfectly translu-

cent block of ice. I would argue that this is a mistake. It reifies the data compression

of empirical facts found in observable relations into space. The empirical facts and

the relations they satisfy are all we need. They ensure the data compression and

our intuitive understanding. Here it is worth quoting Piaget [4], who comments that

“space is often conceived as an empty box into which bodies are fitted” but says

space is not a container. It is the totality of the relationships between the bodies we perceive

or imagine, or rather, the totality of the relationships we use to endow these bodies with a

structure. Space is in fact the logic of the apparent world or at least one of the two essential

aspects (the other being time).
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This seems to me very close to the scenario I described, the only difference being

the quantitative sharpening made possible by the ‘gifts’ nature gives us in the form

of near perfect measuring rods.

In summary, I replace Leibniz’s aphorism “space is the order of coexisting things”

with space is “the order of coexisting facts”. There is a ‘totality of relationships’. Our

intuition gives us a conceptual space that enables us to understand the logic of the

world and predict its consequences.

23.4 Best Matching

As we have seen, Leibniz failed to give a satisfactory definition of motion in a uni-

verse in which all things are in motion relative to each other. However, he did point

out that, in any given instant, the distances between all the bodies in the universe

will be well defined. I now want to show how equilocality, and with it motion, can

defined relationally if the number of bodies in the universe is finite. Ironically, the

key to this is to use the very thing that Leibniz employed to argue against the reality

of absolute space: the possibility, in imagination, to place one and the same rela-

tive configuration of the universe in different positions in conceptual space without

changing anything observable. The ‘moving to different positions and orientations’

is achieved mathematically by means of the generators of Euclidean translations and

rotations. Scaling (dilation) brings in fascinating issues which I will discuss later.

Best matching does not use the Euclidean generators to move relative configura-

tions in space but relative to each other. For simplicity, let us suppose the conceptual

space is two dimensional, so we can picture it as a flat table. Let us also consider the

simplest possible non-trivial dynamical situation of three distinguishable point par-

ticles of masses ma, a = 1, 2, 3, interacting through Newtonian gravity.

We start with a single configuration: a triangle with the particles at its vertices. We

can lay the triangle on the table wherever we please and then, like Leibniz, use the

generators to move it anywhere else. We choose one position. Now we take another,

slightly different triangle. We can lay it on the table in any position we choose. Each

position will correspond to certain displacements of the particles. Because of the

freedom in the different placings, it seems we cannot say there have been any definite

motions. This is the problem of relative motion. But there is one placing of the second

triangle relative to the first that is uniquely singled out.

To see that, suppose Cartesian coordinates on the table and let the positions of

the particles in the first triangle be 𝐫a and those of the second in an arbitrary placing

be �̄�a. Now consider the quantity

dstrial =
√∑

a
ma|𝐫a − �̄�a|2. (23.2)
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This is a positive definite quantity and, for some position of the second triangle

relative to the first, must have a minimum. Let this best matched (bm) position be

𝐫a + d𝐫 bm
a . Then

dsbm =
√∑

a
mad𝐫 bm

a ⋅ d𝐫 bm
a (23.3)

defines a metric on the space of relative configurations (relative configuration space:

RCS) [5, 6]. As I said, best matching keeps Leibnizian displacement of relative con-

figurations but not to place them differently in space but relative to each other. The

freedom that created the problem becomes the solution to it. Best matching applies

to any finite number of particles and has important properties:

∙ dsbm (23.3) is independent of the position of the first triangle in the conceptual space. The

best-matched pair can be moved around in that space in exactly the way Leibniz imag-

ined moving a single configuration around in absolute space without changing anything

observable. The dsbm are invariants of the Euclidean group.

∙ dsbm (23.3) is unchanged under swapping of the first for the second triangle. The resulting

dynamics is time-reversal symmetric.

∙ Best matching establishes a unique pairing of any one point on the first triangle with a

best-matched point on the second triangle. A notion of equilocality is well defined.

∙ Best matching brings the centres of mass of the configurations to coincidence and

‘squeezes’ the relative rotation out of the pair. The instantaneous state of the best-matched

system has vanishing momentum 𝐏 and angular momentum 𝐋.

We can now define best-matched N-body dynamics on the timeless relative con-

figuration space. Suppose two such configurations A and B and any continuous curve

joining them in the RCS and for it calculate

Atrial =
∫

B

A

√

(E − V)
∑

a
ma(𝐫a + d𝐫 bm

a ) ⋅ (𝐫a + d𝐫 bm
a ), (23.4)

where E is a constant and V , a potential, is a function on the RCS. For all such

curves, one seeks (as in the standard procedure of the calculus of variations) the one

that extremalizes (23.4).

There is now a very interesting way to ‘stack’ the successive configurations in

the conceptual space. Place A anywhere. Then move all the configurations, one

after another, into their best-matched position relative to their predecessors (for

one of the two possible directions chosen for the advance of time). This is called

horizontal stacking in [5] and leads to dynamical best-matched evolution in the

conceptual space with moreover a uniquely preferred time labelling obtained by

vertical stacking [5, 7].

When this is all done, it is found, first, that the particles evolve in the stacked con-

ceptual space, which is infinitely many copies of the one needed for a single config-

uration, exactly as would a system in absolute space and time. Newton’s framework

is not presupposed but derived. Second, the system will have energy E and vanish-

ing angular momentum: 𝐋 = 0. This latter condition does not follow from Newton’s
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equations and is a prediction of the theory. The total momentum 𝐏 will also be zero

in the stacked frame, but one can always find an inertial frame in which that happens

in Newtonian theory. In [5] it was asserted that in such an approach the constant E
must also vanish, but the argument for that was flawed.

An argument for E = 0 is scale invariance. In Newtonian dynamics both E and

𝐋 are conserved. If therefore they vanish at some initial time, they will vanish at all

subsequent times. Now to give magnitude to E and 𝐋 one needs an external scale,

which Leibniz would surely reject. However, vanishing of E and 𝐋 remains true

whatever the scale (choice of unit). This argument for scale invariance is supported

by the principle of sufficient reason: if the energy is to have some value, what reason

can one give for it to have one value rather than another? A reason for zero is that it

alone is independent of the choice of unit.

Although such an argument is not decisive—it would also require a vanishing cos-

mological constant—scale invariance comes into consideration in another way. As

noted in [8, 9], the N-body problem with E = 𝐋 = 0 has a very interesting property.

In all of its solutions, except for a set of measure zero, there is a point J at which the

system’s size, as measured by its centre-of-mass moment of inertia, passes through

a unique minimum and rises to infinity in both time directions. In [9], this point is

called the Janus point J by analogy with the Roman god because the two halves of

the evolution curve are qualitatively the same either side of J and define arrows of

time that point in opposite directions away from J. A further striking property of

the point J is that at it one can specify fully scale invariant ‘mid-point’ data that

determine the evolution in either direction away from J [9]. Thus, all the solution-

determining information that is encoded in the mid-point data (and conserved by the

dynamical evolution) is represented in a form invariant under the action of the simi-

larity group. We recall that this group expresses the essence of Euclidean geometry

and leads to the construction of the conceptual space from the ‘totality of relation-

ships’ that Piaget identified as the true basis of our notion of space.

It may also be mentioned that throughout the 20th century many physicists,

including Schrödinger, repeatedly rediscovered a relational mechanics of N mass

points based on replacement of the kinetic term
∑

a ma�̇�a ⋅ �̇�a in the Newtonian action

by

W =
∑

a<b

ṙ2ab
rab

, rab ∶= |𝐫a − 𝐫b|. (23.5)

Such an action, augmented by the Newton potential, leads to a very interesting rela-

tional theory, see [10]. However, it suffers from a fatal defect: it predicts anisotropy

of effective inertial masses at a level ruled out to many orders of magnitude by the

most accurate null experiments, of Hughes–Drever type [11], so far performed in

physics. This led Bertotti and myself to abandon our original Leibnizian/Machian

proposal based on (23.5) and replace it by the theory of [5] based on best matching,

in which there is no mass anisotropy. It is well known that Einstein sought to employ

the equivalence principle to implement Mach’s call for the replacement of absolute

motion by relative motion. It is interesting that isotropy of inertial mass, and with
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it certain aspects of Lorentz invariance, is now confirmed by generalizations of the

Hughes–Drever experiment to many orders of magnitude better than the equivalence

principle.

23.5 Equilocality in Dynamical Geometry

It is striking that in creating metric geometry in 1854 Riemann did not take into

account his words I cited in Sect. 23.3: “measurement consists of placing the quan-

tities that are to be compared on top of each other”. Indeed, the central section of his

paper is headedMetrical relationships that a n-dimensional manifold can have under
the assumption that any interval can be measured by any other. The final words here

mean that intervals have a definite length whatever their position in the considered

manifold. In other words, intervals at spatially separated points can be said to have

the same length even though there is obviously no way in which they can be laid on

top of each other to confirm that fact.

The analogy between Riemann’s assumption and the implicit assumption of a

universal notion of simultaneity at spatially separated points is obvious. The diffi-

culty with simultaneity was first clearly noted by Poincaré in 1898 [12] and resolved

in 1905 by him and Einstein. So far as I know, the first person to note the signifi-

cance of Riemann’s assumption was Weyl in 1918 [13]. In 1916 Levi-Civita (soon

followed independently by Weyl) had discovered parallel transport. Weyl noted that

parallel transport of a vector in a Riemannian space brings it back to its original posi-

tion with a changed angle but the same length. Weyl called this rigidity of length
and the last vestige of Euclidean ‘distance geometry’ (Ferngeometrie). To elimi-

nate it, he introduced the notion of parallel transport of length by means of a new

1-form field, for which he coined the term gauge. Although his idea was later to play

a key role in the discovery of the various gauge theories that underlie the standard

model of particle physics, Weyl’s initial belief in the identity of his 1-form field and

the analogous gauge field in electromagnetism ran into the well known difficulties

that Einstein noted.

In fact, Weyl’s desire to eliminate ‘distance geometry’ can be realized, without

introduction of any auxiliary field, at the level of three-dimensional Riemannian, i.e.,

with +++ signature, geometry as opposed to the −+++ Lorentzian four-geometry

with which Weyl worked, no doubt because, as he emphasized in the strongest terms

in his book Space–Time–Matter, he believed there could be no way back from the

four-dimensional world of Einstein and Minkowski.

However, there is a case for taking a step back if one can then take two forward

or, as the French say, reculer pour mieux sauter. The ‘jumping off point’ to shape

dynamics [2] is that though lengths at spatially separated points cannot be directly

compared (any more than clock readings can) angles are absolute. Their determina-

tion is purely local. Thus, a radian is the angle subtended at the centre of a circle by

an arc equal in length to the radius, which can be taken infinitesimally small. Such

an angle emerges from an ‘order of coexisting facts’ and truly belongs to a point.
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Bearing this in mind, consider now a Riemannian metric gab in a three-

dimensional manifold. At any point gab is represented by a symmetric 3 × 3 matrix.

Three of its six coordinates encode coordinate information, two encode information

about the angle between curves in the manifold that meet at the considered point, and

one is a local scale factor. Following Weyl’s argument and by analogy with the objec-

tion to simultaneity at spatially separated points, this is the one datum that needs to

be questioned: two such scales at spatially separated points cannot be compared. It

may already be noted that the two angle degrees of freedom in gab, which constitute

the conformal part of the geometry, match the two degrees of freedom per space

point associated with the gravitational field in general relativity.

It is well known that Clifford, who had translated Riemann’s 1854 paper, mooted

the idea that three-dimensional Riemannian geometry could be dynamical (see

[14], p. 1202). If we say that only position-independent aspects of geometry are

real, as opposed to gauge, then we should look to construct dynamics of con-

formal 3-metrics (defined as equivalence classes of a Riemannian 3-metrics with

respect to conformal transformations). If we assume a spatially closed universe, the

dynamical arena will be the space of all conformal 3-geometries on a closed 3-

manifold: conformal superspace, which is obtained by quotienting Riem (the space

of Riemannian 3-geometries) by three-dimensional spatial and conformal transfor-

mations. The resulting group is analogous to the similarity group of Euclidean geom-

etry and may be called the Riemann group.

The question then arises of whether one can create a dynamics of conformal 3-

geometries by best matching with respect to the Riemann group. The answer is yes

[15]. The theory turns out to be vacuum general relativity derived in a manner that

bears only a remote connection with Einstein’s derivation and has some remarkable

additions and restrictions that I will list shortly. The basic idea is already clearly

suggested by the manner in which we imagined slightly different triangles ‘placed on

top of each other’ and moved relative to each other into their best-matching position.

In dynamical geometry, we suppose two 3-metrics gab(x) and ḡab(x),

ḡab(x) = gab(x) +
𝜕gab(x)
𝜕𝜏

that differ slightly and imagine them initially placed ‘on top of each other’ by saying

that points in the two metrics with the same coordinate x are equilocal. As quantity to

be extremalized by best matching, it is natural, without at this stage worrying about

simultaneity at spatially separated points, to take

Atrial =
∫

d𝜏
∫

d3x
√

RGabcd 𝜕gab
𝜕𝜏

𝜕gcd
𝜕𝜏

, (23.6)

where R is the (three-dimensional) scalar curvature and Gabcd = gacgbd − 𝜆gabgcd
(𝜆 is an as yet undetermined parameter and 𝜏 is a time label). I won’t attempt to give

a detailed first-principles derivation of the ansatz (23.6) except to say that the square

root ensures reparametrization invariance and hence the absence of an external time.
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What is critical is the taking of the square root before the integration over space. This

leads to one quadratic constraint per space point. Its interplay with the constraints

that arise from the diffeomorphism and conformal best matching ensures that the

geometry has the two expected dynamical degrees of freedom. Another critical point

is that the conformal best matching is marginally restricted to transformations that

preserve the spatial volume and merely redistribute the local scale factor det gab. The

restriction makes it possible for the universe to expand and necessitates the inclusion

of 𝜆 in Gabcd
.

As regards the main things that emerge from this shape-dynamic approach, I sim-

ply give the main results with references to their derivations:

∙ Best matching creates a succession of conformal 3-geometries that, at least in an open

neighbourhood, stacks by equilocality into a four-dimensional spacetime that satisfies

the Einstein equations [15].

∙ A point and tangent vector in conformal superspace determine such a succession of con-

formal 3-geometries [16].

∙ Best matching also prescribes solution of the initial-value problem of general relativity

by the method that York [17] found by trial and error in 1972. The restriction to volume-
preserving conformal transformations explains York’s hitherto unexplained scaling law

for the trace of the extrinsic curvature [15].

∙ Best matching imposes a distinguished foliation of the emergent spacetime by surfaces

of constant mean extrinsic curvature (CMC surfaces) and ensures its propagation by also

requiring a lapse-fixing equation to be satisfied [15].

∙ The attempt to couple matter fields to the evolving conformal geometry enforces a uni-

versal light cone (and with it the value −1 of the DeWitt supermetric in (23.6) [18]. The

gauge principle for 1-form fields is also enforced. The taking of the square root at each

space point in (23.6) is crucial for these results.

I think it must be agreed that the solution to the equilocality problem, which New-

ton so clearly formulated in De Gravitazione perhaps already 20 years before he

wrote thePrincipia (and which Leibniz manifestly failed to solve), is thought provok-

ing. As Clifford’s reaction showed, once Riemann had at least partially ‘loosened up’

geometry, so that it is only locally Euclidean, the idea of making geometry dynam-

ical was very natural. In fact, Riemann effectively created the ADM phase space of

dynamical geometry and with it the two infinite-dimensional Lie groups (diffeomor-

phic and conformal) that act on it. It is especially striking that a theory designed to

ensure that at spatially separated points only angles can be compared, ensuring rela-
tivity of local scale, simultaneously enforces relativity of simultaneity. One gets two

for the price of one—and the gauge principle for good measure. Note that Lorentz

invariance emerges late in the programme and, in contrast to Einstein’s route to gen-

eral relativity, is not a derivational postulate. The status of the equivalence principle

is interesting. Both it and isotropy of inertial mass are strongly suggested on empir-

ical grounds, but the extraordinarily high accuracy of Hughes–Drever type exper-

iments make them an even more powerful guide to theory construction—by best

matching—than the equivalence principle.
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23.6 Caveats and Conclusions

The attentive reader will have noted the caveats “if this alternative derivation leads

to the physically correct picture” (in the abstract), “to the extent the evolution can

be continued” (in the introduction), and “at least in an open neighbourhood” (first of

the final set of bullet points). The fact is that the results of [15], including the crucial

unique solvability of the lapse-fixing equation, ensure evolution in conformal super-

space and an emergent CMC-foliated spacetime only in an open neighbourhood. It

is well known that CMC foliations have ‘singularity-avoiding’ tendencies, but there

are solutions of general relativity in which the complete spacetime cannot be covered

by a CMC foliation. The best known example is the Schwarzschild solution.

However, this is not yet a failure of shape dynamics, which rules out all solu-

tions of general relativity for which space, as in a single Schwarzschild solution, is

not closed. It is obvious that the universe contains many collapsed objects. It also

appears to have begun very smooth, without any such objects. If shape dynamics is to

supplant the spacetime representation of gravity, a major (clearly daunting) research

project for it is to establish the extent to which the evolution in conformal superspace,

and with it CMC foliation of an emergent spacetime, can be continued. However, it

is encouraging that shape dynamics and the solution of what I have called the fun-

damental problem of dynamics suggest promising new directions of research, some

more immediately tractable:

∙ The various arrows of time may have a dynamical origin and be nothing to do with

special conditions at the big bang [8, 9].

∙ Since only shape degrees of freedom are regarded as physical, while scale is gauge,

this suggests reconsideration of the singularity theorems in general relativity. They

are generally held to signal the demise of classical spacetime, but that will not be

so if the shape evolution remains well behaved.

∙ Most approaches to quantum gravity assume that space and time become discrete

at the Planck length. If best matching and the underlying assumption of continuity

that goes with it are foundational, the belief in discreteness may be unfounded.

∙ In quantization, symmetry with respect to four-dimensional diffeo-morphisms

may be inappropriate. Instead, symmetry with respect to three-dimensional dif-

feomorphisms and conformal transformations is suggested.

∙ If the approach based on best matching is correct, many solutions allowed in the

spacetime representation are ruled out. For example, spatial closure is required

and could lead to testable predictions.
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