
Chapter 18
Geometry and Physical Space

Mary Leng

Geometry as a branch of mathematics studies the properties of points, lines, planes,
solids, and their higher dimensional analogues. As applied to physical world,
geometry is the study of figures in three-dimensional physical space. Until the
mid-nineteenth century, ‘geometry’ meant Euclidean geometry, the axiomatic
theory that forms the basis for the plane geometry will be familiar to most with a
high school education, and the postulates on which this theory is based were
considered to be indubitable truths about physical points and lines. But with the
development of non-Euclidean geometries in the nineteenth century, mathemati-
cians began to distinguish between geometry as a theory of physical space and
geometries as theories of mathematical spaces. Doing so raises the question of the
status of geometry considered as a theory of physical space.

Euclid presented his geometry in the Elements (c. 300 BCE), which gathered
together and systematized the geometrical knowledge of the day. The presentation
is still the paradigm of an axiomatic theory. The Elements starts with 23 definitions,
five ‘common notions’ (essentially logical and arithmetical assumptions), and five
postulates (now more commonly known as Euclid’s axioms), as follows:

1. It is possible to draw a straight line from any point to another point.
2. It is possible to produce a finite straight line continuously in a straight line.
3. It is possible to describe a circle with any center and radius.
4. All right angles are equal to one another.
5. If a straight line falling on two straight lines makes the interior angles on the same side

less than two right angles, the straight lines (if extended indefinitely) meet on the side
on which the angles which are less than two right angles lie.

(Wolfram Mathworld Elements, http://mathworld.wolfram.com/Elements.html (accessed
April 2016)
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Of these axioms, the first three can be thought of as idealized claims about what
can be done with a ruler and pair of compasses, if we assume that these instruments
could be arbitrary large. The fourth, though not about our constructing abilities, still
has a very basic and intuitive character that makes it seem appropriate as an axiom
rather than something in need of proof. The fifth postulate (which is equivalent to
the claim that, given a straight line and a point not on that line, there exists one and
only one parallel line through that point), however, was long thought to be different
from the rest, looking much more like the theorems that can be proved on the basis
of these axioms than something so basic as to be axiomatic. So while mathemati-
cians had no doubt that all of these axioms were true of points and lines in physical
space, there were questions about the appropriateness of the fifth axiom as an
axiom, and attempts were made to prove it from the other four.

A standard method of mathematical proof is proof by contradiction, or reductio
ad absurdum: we prove that a proposition P follows from a collection of
assumptions by deriving a contradiction (or absurdity) from those assumptions
together with the negation of P. So in trying to derive Euclid’s parallel postulate, a
reasonable approach to take would be to start by assuming the first four axioms and
the negation of the parallel postulate, and show that this combination of assump-
tions leads to a contradiction. This approach was taken by many mathematicians
including Gerolamo Saccheri (1667−1733), who derived sufficient bizarre seeming
consequences from the assumption that the parallel postulate was false that he
published his results under the title Euclides ab Omni Naevo Vindicatus (‘Euclid
Vindicated from All Faults’), declaring that parallel axiom as established [1].

However, Saccheri had not succeeded in proving a formal contradiction from the
negation of the parallel postulate, and mathematicians began to suspect that the
postulate was indeed independent of the other axioms. In the early 19th century
Gauss, Bolyai, and Lobachevsky independently came to the conclusion that the
assumption that, given a line and a point not on that line there is more than one
parallel line running through it, was logically possible (if not true of physical points
and lines). Later Gauss’s student Riemann explored the hypothesis that there are no
parallel lines, and again came to view this assumption as consistent. The inde-
pendence of the parallel postulate was finally established in 1868 by Beltrami,
whose ‘Essay on the Interpretation of non-Euclidean Geometry’ presented a model
for a two dimensional non-Euclidean geometry on a three dimensional Euclidean
surface (a pseudosphere). Before long, models had been given for both
Bolyai-Lobachevsky (or hyperbolic) geometry and Riemannian (or elliptic)
geometry, and it was clear that it was consistent to assume exactly one parallel
(Euclid—surfaces of zero curvature); more than one (Bolyai-Lobachevsky—sur-
faces of negative curvature) or no parallels (Riemann—surfaces of positive cur-
vature). Looking back on Saccheri’s book, it could be recognised that his supposed
absurdities derived when assuming the parallel postulate to be false were
straightforward theorems of these new non-Euclidean geometries.

The development of non-Euclidean geometries was of ground breaking impor-
tance in mathematics in allowing the distinction for the first time between geometry
as the theory of mathematically possible spaces, and geometry as the theory of

232 M. Leng



physical space. As Michael Scanlan puts it, in a paper on the proof of the inde-
pendence of the parallel postulate, “In the past, mathematical practice did not
involve a distinction between theory and interpretation. In the eighteenth century,
mathematics was seen as the ‘abstract’ study of certain aspects of nature” [2].
Geometry was a body of truths about physical points and straight lines, and it could
reasonably be argued by Immanuel Kant that the truths of geometry are synthetic a
priori, substantial (not merely definitional) truths about physical space that are
knowable a priori through reflection on our intuition of the nature of our experience
of space. The development of non-Euclidean geometries, and their acceptance as
part of mathematics, brought to the fore the question of what the proper subject
matter of mathematics is. While it could be thought that the points and lines of
Euclidean geometry were just slightly idealized abstractions from the physically
inscribed points and lines of the diagrams used to convince us of Euclid’s proofs,
we now had new geometries, with their own terminology of ‘points’ and ‘lines’ but
with different assumptions about parallels. At most one could be true of (idealized)
points and lines in physical space, but all were equally good considered as math-
ematical theories. The distinction between mathematical spaces and physical space
was thus drawn, raising the question of the status of mathematical objects as
nonspatiotemporal abstracta.

What interests me here, though, is not so much the status of geometry as the
theory of mathematical spaces, but the status of geometry as a theory of physical
space. Even once the conceptual possibility of non-Euclidean geometries was
recognized, it remained in theory acceptable still to think that Euclidean geometry
was knowable a priori to be true as a theory of physical points and straight lines.
Beltrami’s and Klein’s models of non-Euclidean geometries showed the consis-
tency of these axiomatic theories by reinterpreting ‘point’ and particularly ‘straight
line’ to apply to things that were not, by our own lights, really straight lines. It
remained then possible to argue that, if by point we mean point in physical space,
and if by straight line we mean straight line in physical space, then the mere
consistency of alternative geometries should in no way shake our confidence in the
truth of Euclid’s axioms when understood as a theory of physical points and lines.
But in fact, Scanlan tells us, “the mathematicians who originally conceived of
non-euclidean geometry, Bolyai, Lobachevsky, and to some extend Gauss, seem all
to have conceived of the theory as one which is potentially applicable to physical
space” [2], and while our experience locally is Euclidean, the question was raised as
to whether on a large scale the Euclidean laws continue to hold. The story is told of
Gauss measuring the angles of the triangle formed by three mountain peaks looking
for evidence that on a large scale the angles did not add up to two right angles
(which is equivalent to the falsity of the parallel postulate), though it is unclear that
Gauss’s interest here was testing the possibility of curvature in space, as opposed to
effects on measurements due to the curvature of the earth’s surface. Lobachevsky,
however, explicitly conceived of a test of the geometry of space suggesting that one
might measure a stellar triangle consisting of the distant star Sirius together with
two different positions of the earth at six month intervals, to determine whether the
angles were as predicted in a Euclidean or non-Euclidean geometry (see [3], p. 15).
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For these mathematicians, then, the question of the correct geometry of physical
space was now an empirical matter, to be determined by experiment.

We now know that our best physical theory of space and time is general rela-
tivity, according to which spacetime has variable curvature (neither Euclidean, nor
elliptic, nor hyperbolic, all of which are geometric theories of constant curvatures).
One major confirmation of this theory was via the measurement of distant stars. In
1919 the physicist Arthur Eddington travelled to the island of Principe, close to the
equator and just off the coast of western Africa, to photograph the solar eclipse of
29 May (see Kennefick [4]). With the sun’s light dimmed by the eclipse, it was
possible to photograph positions of bright stars from the Hyades cluster beyond the
sun, and to achieve measurement results that are generally taken to have confirmed
Einstein’s prediction of a space curved by the presence of the sun over Newton’s
assumed flat Euclidean space.

Should we conclude, then, that the question of whether physical space is
Euclidean is an empirical one, answerable—and indeed answered in the negative—
by experiment? Henri Poincaré argued forcefully against this conclusion, and in
favour of the view that the question of the appropriate geometry of physical space is
not a priori or empirical but rather a matter of convention. Thus at the turn of the
twentieth century, Poincaré, well aware of the proposals for empirical tests of
geometrical hypotheses, though prior to the development and testing of general
relativity, could write:

If Lobatschewsky’s geometry is true, the parallax of a very distant star will be finite. If
Riemann’s is true, it will be negative. These are the results which seem within the reach of
experiment, and it is hoped that astronomical observations may enable us to decide between
the two geometries. But what we call a straight line in astronomy is simply the path of a ray
of light. If, therefore, we were to discover negative parallaxes, or to prove that all parallaxes
are higher than a certain limit, we should have a choice between two conclusions: we could
give up Euclidean geometry, or modify the laws of optics, and suppose that light is not
rigorously propagated in a straight line. It is needless to add that every one would look upon
this solution as the more advantageous. Euclidean geometry, therefore, has nothing to fear
from fresh experiments. [5]

According to Poincaré, then, the status of geometry as a theory of space is
neither a priori nor empirical, but conventional, simply a matter of how we define
our terms.

What, then, are we to think of the question: Is Euclidean geometry true? It has no meaning.
We might as well ask if the metric system is true, and if the old weights and measures are
false; if Cartesian co-ordinates are true and polar coordinates false. One geometry cannot be
more true than another; it can only be more convenient. Now, Euclidean geometry is, and
will remain, the most convenient [5].

In stating that, in the light of apparent experimental refutation we could choose
to alter our hypothesis that light propagates in straight lines rather than altering our
geometry, Poincaré’s discussion suggests that his conventionalism is simply an
application of what has become known as the Quine-Duhem thesis, the claim that,
given that no theoretical statement can be tested in isolation, but only against a
backdrop of further theoretical assumptions, it is always possible to hold on to any
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statement in light of recalcitrant experience, simply by adjusting assumptions in our
background theory: “Any statement can be held true come what may, if we make
drastic enough adjustments elsewhere in the system.” (Quine [6], p. 43). But if
Poincaré’s claim is simply that we could redefine our terms so that ‘straight line’
doesn’t mean ‘path taken by a light ray’, then this is not a terribly exciting form of
conventionalism: there would still be the empirical question of what paths light rays
take, and it would still be an empirical matter whether the paths taken by light rays
are best described by a Euclidean or a non-Euclidean geometry.

In fact, Poincaré’s conventionalism is about more than simply choosing our
terms, as is seen in a thought experiment he presents of a world enclosed within a
sphere with some rather peculiar properties. In this world, there is a property like
temperature, which varies according to the distance from the centre. If R is the
radius of the sphere and r the distance of a point in the sphere from the centre, the
temperature at this point is proportional to R2 − r2. Bodies in this world expand and
contract at a uniform rate according to changes in temperature, so that a rod that is a
metre long by our standards at the centre will get smaller and smaller as it is moved
away from the centre, approaching but never reaching zero (the world consists of all
points inside the sphere, but not the sphere’s boundary). Imagine a plane in this
sphere consisting of a great circle of the sphere (i.e. cutting through the centre and
with diameter R), and imagine an inhabitant starting at the centre of the plane with a
surveyor’s wheel with circumference 1 m. As they walk along a radius of the
sphere towards the edge, both they and their wheel will contract uniformly. To
them, they will feel as though their universe is unbounded of infinite extent as
however many metres they travel they will be able to continue. From our per-
spective this is an error—the universe has finite bounds, but the strange behavior of
their measuring instruments mean that the inhabitants are unable to realise this. If
surveyors in Poincaré’s sphere universe continue to take measurements they will
conclude that they are living in a hyperbolic geometry of infinite extent, whereas
from our perspective they are living in a Euclidean sphere with physical features
that affect their ability to measure.

On one reading of this picture, the possibility of the sphere world presents an
epistemic challenge to the claim that the question of the proper geometry of
physical space is an empirical matter. On this view, two accounts are available that
fit the observed phenomena for the inhabitants within the sphere world. One holds
that they and their measuring instruments do not change size as they move around,
and that the geometry of their world is hyperbolic. The other holds that they and
their measuring instruments change size as they move around, and that the
geometry of their world is Euclidean. The inhabitants can’t choose between these
two hypotheses, so for them the question of the ‘true’ geometry of physical space
cannot be determined empirically (even though as a matter of fact the true geometry
is Euclidean). Poincaré’s own view, though, is that the lack of knowledge in this
case is not because the truth is out there but beyond the inhabitants’ grasp, but
rather, that there is nothing ‘out there’ to be known. The epistemic view of the
inhabitants’ predicament holds that there is a fact of the matter about whether their
measuring instruments shrink and grow as they move around or stay the same size,
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but that this fact is unavailable to the inhabitants. Poincaré, on the other hand, holds
that the question of whether the inhabitants shrink or not is itself not an empirical
matter, but dependent on a conventional choice for us to make about what we are
going to take as counting as ‘congruence’. There is no ‘God’s eye view’ which
determines what is really going on in this example. The two descriptions: the
measuring instruments stay the same size and the geometry is hyperbolic, and the
measuring instruments change in size and the geometry is Euclidean, are equally
good ways of describing the same basic facts. We can choose to define ‘congru-
ence’ in terms of the behaviour of measuring instruments (so that lengths that
measure the same when measured by a meter stick that has been transferred from
one to the other are counted as congruent), or we could choose to define it so that
measuring whether lengths are congruent depends on knowledge of their distance
from the centre. Each choice is a matter of conventional decision, and each leads to
a different conclusion about ‘the’ geometry of the space, so the question of which
geometry is correct turns out to be answered by conventional decision rather than
empirical investigation.

Poincaré’s picture can seem compelling once we consider that we too are in the
position of the sphere dwellers. We assume by and large that our measuring
instruments remain the same size as we move around in our universe, but an
alternative picture according to which we grow and shrink according to location
could also be made compatible with our observations. Should we, then, conclude
that the question of the correct geometry of physical space can only be made sense
of downstream of a conventional decision, and as such, is itself a matter of con-
vention rather than empirical fact? Despite the conventionalist elements of the
aforementioned ‘Quine-Duhem’ thesis, the empiricist response to this conven-
tionalist claim is actually to be found in the work of W.V. Quine. Poincaré’s
conventionalism depends on holding that there are some elements of our theories
that are purely conventional choices about how to set the meanings of terms, that
before we can measure and build theories we have to define our terms, and these
definitions are a matter of pure convention. Quine argues forcefully against this
picture, holding that in the web of beliefs that makes up our best empirically tested
theory of the world any element, including those that were originally introduced as
conventional definitions to get theorizing going, can be amended in the light of
recalcitrant experience. So even though decisions that may seem arbitrary or con-
ventional may need to be made to get theorizing going, those decisions can be
revised in the light of recalcitrant experience, making them as empirical as any
other elements of our theories. Thus, Quine writes,

The lore of our fathers is a fabric of sentences. In our hands it develops and changes,
through more or less arbitrary and deliberate additions and revisions of our own, more or
less directly occasioned by the continuing stimulation of our sense organs. It is a pale grey
lore, black with fact and white with convention. But I have found no substantial reasons for
concluding that there are any quite black threads in it, or any white ones [7].

In Quine’s view, then, the fact that conventional choices about how to use our
terms are made on the way to theorizing does not stop our theories—conventions
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included—from being empirically tested as a package. Indeed, in special and
general relativity our previous assumptions about congruence and the behaviour of
measuring instruments are challenged; we now adopt a theory according to which
our measurements of length are relative to frame of reference (special relativity) and
relative to our location with respect to the distribution of mass in the universe
(general relativity). In Quine’s view, the success of the theoretical package that
includes these assumptions is confirmation of the package as a whole. All truths
depend in part on the meaning of terms and in part on how the world is, but in this
respect, the claim (supported by general relativity) that the spacetime we inhabit has
a non-Euclidean geometry of variable curvature is as empirical as anything can be.
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