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Chapter 16
Can Bacillus Species Enhance Nutrient 
Availability in Agricultural Soils?

Vijay Singh Meena, B.R. Maurya, Sunita Kumari Meena, 
Rajesh Kumar Meena, Ashok Kumar, J.P. Verma, and N.P. Singh

Abstract  One major challenge for the twenty-first century will be the production of 
sufficient food for the global human population. The negative impacts on soil–plant–
microbes–environmental sustainability due to injudicious use of chemical fertilizer, 
pesticide, insecticide, etc. by the unaware farmers deteriorate soil and environment 
quality. One possible way to use efficient soil microorganisms to remediate nutrient 
deficiency in agricultural soils and other plant growth-promoting (PGP) activities 
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that can be of help for plant growth and development. The Bacillus species is one the 
most dominant rhizospheric bacterial/rhizobacteria species like Bacillus subtilis, B. 
cereus, B. thuringiensis, B. pumilus, B. megaterium, etc. that can help enhance the 
plant growth and development by different mechanisms, which PGPR can inhibit 
phytopathogens is the production of hydrogen cyanide (HCN) and/or fungal cell wall 
degrading enzymes, e.g., chitinase and ß-1,3-glucanase. Direct plant growth promo-
tion includes symbiotic and non-symbiotic PGPR which function through produc-
tion of plant hormones such as auxins, cytokinins, gibberellins, ethylene, and abscisic 
acid. Mitigate the challenge by adopting eco-friendly crop production practices. 
Some Bacillus species function as a sink for 1-aminocyclopropane-1-carboxylate 
(ACC), the immediate precursor of ethylene in higher plants, by hydrolyzing it into 
α-ketobutyrate and ammonia and in this way promote root growth by lowering indig-
enous ethylene levels in the micro-rhizo environment. Bacillus species also help in 
solubilization of mineral phosphates, potassium, zinc, and other nutrients; rhizobac-
teria retain more soil organic N and other nutrients in the soil–plant system, thus 
reducing the need for fertilizers and enhancing release of the nutrients from indige-
nous or mineral sources, enhancing the economic and environmental sustainability.

Keywords  Bacillus spp. • Mineral solubilization • Rhizosphere • Fe sequestration 
• Efficient microorganisms • Nutrient uptake

16.1  �Introduction

World food insecurity is a chronic problem and is likely to worsen with climate change 
and rapid population growth. It is largely due to poor yields of the cereal, pulse, and 
millet crops caused by factors including soil–plant–environment system. The world’s 
population is assumed to increase from ~7 billion now to 8.3 billion in 2025. The 
world will need 70–100 % more food by 2050 (Godfray et al. 2010). The increasing 
human population is placing greater pressure on soil and water resources and threat-
ening our ability to produce sufficient food, feed, and fiber. As a result, there is a 
growing consensus within our global community that the protection of natural 
resources and implementation of environmentally and economically sound agricul-
ture practices is of the utmost priority (Ahmad et al. 2016; Bahadur et al. 2016a).

Nowadays world agriculture is facing new challenges in which ecological and 
molecular approaches are being integrated to achieve higher crop yields while mini-
mizing negative impacts on the environment. In this direction, enhancing nutrient 
availability, plant growth and yield, and plant multi-stress resistances are key strate-
gies. Root-, soil-, and plant-associated eco-friendly numerous microorganisms pro-
duce plant growth-promoting activities with specific action against coexisting 
microorganisms toward the soil sustainability (Raaijmakers et  al. 2009; 
Combes-Meynet et al. 2011; Genilloud et al. 2011; Pineda et al. 2012; Meena et al. 
2013; Maurya et al. 2014; Kumar et al. 2015; Verma et al. 2015b). Global agricul-
ture has to double food production by 2050 in order to feed the world’s growing 
population and at the same time reduce its reliance on mineral/inorganic agricul-
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tural inputs. To achieve this goal, there is an urgent need to harness the multiple 
beneficial interactions that occur between soil microorganisms, plant, and the envi-
ronment. Beneficiary impacts of soil microorganisms enhance the sustainability of 
soil–plant–environment ecosystem (Gupta 2012; Bahadur et  al. 2016b; Das and 
Pradhan 2016; Dominguez-Nuñez et al. 2016).

16.2  �Soil Microbial Diversity

The beneficial influences of soil microorganisms on plant growth and development 
include nitrogen fixing (Peix et al. 2001; Riggs et al. 2001; Marino et al. 2007), 
phosphorus solubilization (Yasmin et al. 2004; Tajini et al. 2012; Verma et al. 2013), 
potassium solubilization (Phua et al. 2012; Yadegari et al. 2012; Zhang et al. 2013: 
Meena et  al. 2014; Maurya et  al. 2014; Saha et  al. 2016a), zinc solubilization  
(Mäder et al. 2010; Saravanan et al. 2007; Bahadur et al. 2016b), and indirect mech-
anisms such as productio n of phytohormones (Rashedul et al. 2009; Abbasi et al. 
2011) such as auxins (Verma et al. 2013), siderophores (Filippi et al. 2011; Yu et al. 
2011a, b), and PGPR from the rhizosphere to screen for their growth-promoting 
activity in plants under axenic conditions (Datta et al. 2011; Meena et al. 2015a, 
2016; Singh et al. 2015; Verma et al. 2015a;).

16.2.1  �Agricultural Important Soil Microorganisms

It has been reported that biological fertilization is an efficient method to supply 
plants with their necessary nutrients. It is economically and eco-friendly recom-
mendable, because its results improved the agricultural and environmental sustain-
ability. During the past century, industrialization of agriculture has provoked a 
significant and essential productivity increase, which has led to a greater amount of 
food available to the general population. Along with this abundance, the appearance 
of serious environmental and social problems came with the package: problems that 
must be faced and solved in the not too distant future. Nowadays, it is urgent to 
maintain that high productivity, but it is becoming urgent to alter as little as possible 
the environment. Clearly we must then head for a more environmentally sustainable 
agriculture while maintaining ecosystems and biodiversity. One potential way to 
decrease negative environmental impact resulting from continued use of chemical 
fertilizers, herbicides, and pesticides is the use of plant growth-promoting rhizobac-
teria (PGPR). This term was first defined by Kloepper and Schroth (1978) to 
describe soil bacteria that colonize the rhizosphere of plants, growing in, on, or 
around plant tissues that stimulate plant growth by several mechanisms. Since that 
time, research activities aimed at understanding how these bacteria perform their 
positive (or negative) effect have steadily increased, and many reports have been 
published on these microorganisms. Although interactions between soil microor-
ganisms, plants–rhizosphere, and the environment have important consequences for 
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ecosystem dynamics and changes in plant communities with time occur in concert 
with changes in soil properties, the relationships between soil microbial community 
and plant community dynamics are not fully understood (Van Der Putten 2003; 
Saha et al. 2016b). Plants are able to modify the structure of microbial communities 
in their rhizosphere (Berg and Smalla 2009), while soil microbes are important 
regulators of plant productivity, both through direct effects and through regulation 
of nutrient availability (Meena et al. 2014). However, the role of such interactions in 
plant community dynamics with time has received little attention (Bartelt-Ryser 
et al. 2005; Meena et al. 2015b, c).

16.2.2  �The Bacillus Diversity in Agricultural Soils

Bacillus is the most abundant genus in the rhizosphere, and the PGPR activity of 
some of these strains has been known for many years, resulting in a broad knowledge 
of the mechanisms involved (Probanza et al. 2002; Mañero et al.2003). Naturally 
present in the immediate vicinity of plant roots, B. subtilis is able to maintain stable 
contact with higher plants and promote their growth (Dotaniya et al. 2016; Jaiswal 
et al. 2016; Jha and Subramanian 2016). In a micro-propagated plant system, bacte-
rial inoculation at the beginning of the acclimatization phase can be observed from 
the perspective of the establishment of the soil microbiota rhizosphere. B. lichenifor-
mis when inoculated on tomato and pepper shows considerable colonization and can 
be used as a bio-fertilizer without altering normal management in greenhouses as 
well as field condition (Bacon et al. 2001; Sessitsch et al. 2002; Wu et al. 2005). 
B. megaterium is very consistent in improving different root parameters in mint. 
Phosphorus-solubilizing bacteria (PSB) B. megaterium var. phosphaticum 
(Lavakusha et al. 2014) and potassium-solubilizing bacteria (KSB) B. mucilaginosus 
(Meena et  al. 2014; Maurya et  al. 2014) when inoculated in nutrient-limited soil 
showed that rock materials (P and K rocks) and both bacterial strains consistently 
increased mineral availability, uptake, and plant growth of pepper and cucumber, 
suggesting its potential use as bio-fertilizer (Han et al. 2006; Supanjani et al. 2006).

Soil is the main reservoir of the potential bacterial rhizosphere community (Berg 
and Smalla 2009). Evidence is increasing that plants actively select specific ele-
ments of their bacterial rhizosphere micro-flora, establishing a habitat which is 
favorable for the soil–plant–environment system (Robin et al. 2007; Houlden et al. 
2008; Rudrappa et al. 2008). The soil–matrix is a favorable niche for bacteria since 
both temperature and humidity are relatively sustainable (Ranjard et  al. 2000; 
Sessitsch et al. 2001), mineral composition (Carson et al. 2009), and agricultural 
practices (Rooney and Clipson 2009; Saha et al. 2016b). The neutral soil reaction is 
the most favorable condition for higher bacterial diversity, whereas acidic soils were 
least diverse; it’s favorable for fungus growth and development. Bacterial popula-
tion revealed by culture-dependent techniques represents only 1–10 % of the total 
bacterial micro-flora present in soil and is now known as the great plate count anom-
aly (Amann et al. 1995; Meena et al. 2015d, e).
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16.2.3  �Soil–Plant–Microbe System

Soil–plant–microbe interactions in the rhizosphere soils are responsible for various 
processes that influence plant growth and development and nutrient mobilization 
(Awasthi et al. 2011; Singh 2013); a wide range of beneficial microorganisms (e.g., 
bacteria, fungi, and actinomycetes) associated with plant roots have the ability to 
promote the growth of the host plant under natural as well as agroecosystem by vari-
ous mechanisms, namely, fixation of atmospheric nitrogen (Glick et al. 2007), phos-
phorus (Verma et al. 2012a), potassium (Zhang et al. 2013), and zinc solubilization 
(Bapiri et al. 2012), and production of plant growth regulators (Meena et al. 2012; 
Miransari 2011; Rajkumar et al. 2012; Verma et al. 2012b). Besides, the plant-asso-
ciated microbes residing in the rhizosphere enhance the mobility and availability of 
plant nutrients to the plants through release of chelating agents, acidification, and 
redox changes (Glick et al. 2007; Rajkumar et al. 2012). It is also well known that 
these microbes can utilize the plant-derived substances (e.g., root exudates) com-
prising different compounds (e.g., organic acids, sugars, vitamins, and amino acids) 
as major nutrients for their growth and development (Berendsen et al. 2012; Dakora 
and Phillips 2002; Ryan et al. 2001). On the other side, plants stimulate or inhibit 
the growth of specific microorganisms through releasing secondary metabolites 
(e.g., pyrones, sesquiterpenes) into the rhizosphere (Reino et al. 2008; Berendsen 
et al. 2012; Chakraborty et al. 2012). An example of bacterial stimulation of maize 
plant root shoot growth is shown in Fig. 16.1.
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Fig. 16.1  Schematic illustration of how soil and crop management practice factors influence 
nutrient availability under soil–plant system
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16.3  �Current Nutrient Status of Agricultural Soils

A recent review of worldwide data on N use efficiency for cereal crops from 
researcher-managed experimental plots reported that single-year fertilizer N 
recovery efficiencies are ~65 % for corn, ~57 % for wheat, and ~46 % for rice. 
Differences in the scale of farming operations and management practices (i.e., 
tillage, seeding, weed and pest control, irrigation, harvesting) usually result in 
lower nutrient use efficiency (Kumar et al. 2016; Masood and Bano 2016; Meena 
et al. 2016). Nitrogen recovery in crops grown by farmers rarely exceeds ~50 % 
and is often much lower. A review of best available information suggests average 
N recovery efficiency for fields managed by farmers ranges from about 20 % to 30 
% under rainfed conditions and 30 to 40 under irrigated conditions. Looked at N 
fertilizer recovery under different cropping systems and reported 37 % recovery 
for corn grown in the north central USA. They found N recovery averaged 31 % 
for irrigated rice grown by Asian farmers and 40 % for rice under field-specific 
management. In India, N recovery averaged 18 % for wheat grown under poor 
weather conditions, but 49 % when grown under good weather conditions (von 
Braun 2007; Rajkumar and Freitas 2008a, b; Khamna et al. 2010). Phosphorus (P) 
efficiency is also of interest because it is one of the least available and least mobile 
mineral nutrients. First year recovery of applied fertilizer P ranges from less than 
10 % to as high as 30 % (Fig. 16.2).

However, because fertilizer P is considered immobile in the soil and reaction 
(fixation and/or precipitation) with other soil minerals is relatively slow, long-
term recovery of P by subsequent crops can be much higher. There is little infor-
mation available about potassium (K) use efficiency. However, it is generally 
considered to have higher use efficiency than N and P because it is immobile in 
most soils and is not subject to the gaseous losses that N is or the fixation reac-
tions that affect P. First year recovery of applied K can range from 20 % to 60 % 
(Fig. 16.3).
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Fig. 16.2  The worldwide nutrients (NPK) consumption in agricultural production system
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16.4  �PGPR Mechanism of Bacillus Species

Bacillus species have the potential to act as a PGPR, nutrient solubilization, and 
bioremediation, to enhance crop growth, yield, and nutrient uptake by different 
mechanisms that contributed through direct and indirect mechanisms in the devel-
opment of sustainable soil–plant–environment systems (Schippers et  al. 1995). 
The generally plant growth-promoting bacteria function in three different ways – 
synthesizing particular PGR compounds for the growth and development of plants 
(Zahir et al. 2004), facilitating the mineralization or solubilization of mineral from 
fixed form to plant available form or soil solution that can help to enhance the nutri-
ents’ uptake from the soil (Cakmakci et al. 2006), and helping to reduce the chances 
of disease infection or preventing the agricultural crops from insect, pest, and dis-
eases (Raj 2004; Saravanakumar et al. 2008; Meena et al. 2015f; Prakash and Verma 
et al. 2016; Priyadharsini and Muthukumar 2016).

16.4.1  �Direct and Indirect Mechanisms

The mechanisms of PGPB-mediated enhancement of plant growth and yield of many 
crops are not yet fully understood (Dey et al. 2004). However, possible explanations 
include (a) the ability to produce a vital enzyme, 1–aminocyclopropane–1–carboxyl-
ate (ACC) deaminase, to reduce the level of ethylene in the root of developing plants 
thereby increasing the root length and growth (Li et  al. 2006; Meena et  al. 2013; 
Verma et al. 2013); (b) the ability to produce hormones like auxin, i.e., indole acetic 
acid (IAA) (Patten and Glick 2002), abscisic acid (ABA) (Dangar and Basu 1987; 
Dobbelaere et al. 2003), gibberellic acid (GA), and cytokinins (Dey et al. 2004); (c) a 
symbiotic nitrogen fixation (Kennedy et  al. 2004); (d) antagonism against phyto-
pathogenic bacteria by producing siderophores, ß-1,3-glucanase, chitinases, antibiotic, 
fluorescent pigment, and cyanide (Cattelan et  al. 1999; Pal et  al. 2001; Glick and 
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Stearns 2011); (e) solubilization and mineralization of nutrients, particularly mineral 
phosphates and potassium (Maurya et al. 2014; Lavakusha et al. 2014; Meena et al. 
2014); (f) enhanced abiotic stress (Saleem et al. 2007; Stajner et al. 1997); and (g) 
production of water-soluble B group vitamins such as niacin, pantothenic acid, thia-
mine, riboflavin, and biotin (Revillas et al. 2000; Zhuang et al. 2007; Raghavendra 
et al. 2016; Rawat et al. 2016; Saha et al. 2016a) (Fig. 16.4).

16.4.2  �Nitrogen Fixer

The mineralization of soil organic nitrogen (N) through nitrate to gaseous N2 by soil 
microorganisms is a very important process in global N cycling. This cycle includes 
N mineralization, nitrification, denitrification, and N2 fixation. A number of bacterial 
species belonging to the genera Bacillus, Azospirillum, Alcaligenes, Arthrobacter, 
Acinetobacter, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Pseudomonas, 
Rhizobium, and Serratia (Yu et al. 2012; Braghini Sa et al. 2012; Thepsukhon et al. 
2013) are associated with the plant rhizosphere and are able to exert a beneficial 
effect on plant growth and development. Nowadays new techniques have identified a 
wide range of organisms with the plant rhizosphere with the capacity to carry out 
biological nitrogen fixation (BNF)  – greatly expanding our appreciation of the 
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diversity and ubiquity of N fixers – but our understanding of the rates and controls of 
BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, 
determining rates and controls of BNF is crucial to placing anthropogenic changes to 
the N cycle in context and to understanding, predicting, and managing many aspects 
of global environmental change. Here, we estimate terrestrial BNF for a preindustrial 
world by combining information on N fluxes with 15 N relative abundance data for 
terrestrial ecosystems. Our estimate is that preindustrial N fixation was 58 (range of 
40–100) TgN fixed yr 21; adding conservative assumptions for geological N reduces 
our best estimate to 44 TgNyr 21. This approach yields substantially lower estimates 
than most recent calculations; it suggests that the magnitude of human alternation of 
the N cycle is substantially larger than has been assumed (Saha et al. 2016b; Sharma 
et al. 2016; Shrivastava et al. 2016).

16.4.3  �Phosphorus Solubilizers

The role of phosphorus mobilizers and solubilizers is more important in soil–plant 
system because only ~15 % of the phosphorus fertilizer is directly available to the plant 
growth and development and the rest of the 85 % is lost by different processes like 
runoff and P fixation due to unfavorable soil conditions. However, eminent soil fertility 
scientists recognize that soil reactions with applied phosphate limit its direct uptake by 
plants in the short term; the long-term recovery can approach 90 %, because phospho-
rus is retained in the soil in slowly available forms (Syers 2003; Panhwar et al. 2012).

Phosphate solubilization by rhizospheric microorganisms in mineral phosphate 
solubilization was known as early as 1903. Since then, there have been extensive 
studies on the mineral phosphate solubilization by naturally abundant rhizospheric 
microorganisms (Fig. 16.5). Strains from bacterial genera Pseudomonas, Bacillus, 
Rhizobium, and Enterobacter along with Penicillium and Aspergillus fungi are the 
most powerful P solubilizers (Whitelaw 2000). B. megaterium, B. circulans, B. 
subtilis, B. polymyxa, and B. sircalmous could be referred as the most important 
strains (Verma et al. 2013; Meena et al. 2014; Yu et al. 2012).

16.4.4  �Potassium Solubilizers

K-solubilizing bacteria are able to release potassium from insoluble minerals 
(Sugumaran and Janarthanam 2007; Basak and Biswas 2009, 2012; Kalaiselvi and 
Anthoniraj 2009; Parmar and Sindhu 2013; Zarjani et al. 2013; Prajapati et al. 2013; 
Zhang et al. 2013; Gundala et al. 2013; Archana et al. 2012, 2013; Sindhu et al. 
2012). In addition, researchers have discovered that K-solubilizing bacteria can pro-
vide beneficial effects on plant growth through suppressing pathogens and improv-
ing soil nutrients and structure. For example, certain bacteria can weather silicate 
minerals to release potassium, silicon, and aluminum and secrete bioactive 
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materials to enhance plant growth (Fig. 16.5). These bacteria are widely used in 
biological K fertilizers and biological leaching (Lian et al. 2002; Bosecker 1997). 
The considerable populations of potassium-solubilizing microorganisms are present 
in rhizospheric soil which promotes the plant growth (Sperberg 1958).

It is generally accepted that the major mechanism of mineral K solubilization is 
the action of organic acids synthesized by rhizospheric microorganism. Productions 
of organic acids result in acidification of the microbial cell and its surroundings 
environment which promote the solubilization of mineral K. Silicate bacteria were 
found to resolve potassium, silicon, and aluminum from insoluble minerals. Silicate 
bacteria exert beneficial effects upon plant growth and yield. The KSB can promote 
K solubilization from silicate mineral and is very important to enhance the fertility 
status of soils. Rhizospheric microorganisms contribute directly and indirectly to 
the physical, chemical, and biological parameters of soil through their beneficial or 
detrimental activities (Meena et al. 2015g, h; Sindhu et al. 2016; Teotia et al. 2016).

16.4.5  �Zinc Solubilizers

Zinc is predominantly taken up as a divalent cation, Zn2+, but in some cases of cal-
careous and high pH, it is believed to be taken up as a monovalent cation ZnOH+. 
Zinc interactions in both plants and soils are quite complex and play a major role in 

Fig. 16.5  The plant growth-promoting activities of Bacillus species, like potassium-solubilizing 
bacteria (KSB), phosphorus-solubilizing bacteria (PSB), iron-sequestering bacteria (siderophore-
producing bacteria), cellulose-degrading activities, pectinase-producing bacteria, and 
phytohormone-producing bacteria (IAA, GA3, ethylene, etc.)
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how and when we should apply zinc to a crop. Increasing the Zn and Fe concentra-
tion of food crop plants, resulting in better crop production and improved human 
health is an important global challenge. Among micronutrients, Zn deficiency is 
occurring in both crops and humans (White and Zasoski 1999; Welch and Graham 
2004). Zinc is required in relatively small concentrations in plant tissues (5–100 mg/
kg). Zn deficiency is well reported in the soils of much of the world. The deficiency 
of Zn in cereals especially rice is nutritionally a major problem. Cereals play in 
satisfying daily calorie intake in the developing world, but the Zn concentration in 
the grain is inherently very low, particularly when grown on Zn-deficient soils.

The major reason for the widespread occurrence of zinc deficiency problems in crop 
plant is the low solubility of Zn in soils rather than low total amount of Zn. Zinc-
solubilizing bacteria (ZSB) help to solubilize the fixed form of Zn and increase uptake 
of Zn leading to fortification of grains with Zn (Bapiri et al. 2012). Soil microorganisms 
require various nutrients for their growth and metabolism. Among the nutrients, zinc is 
an element present in the enzyme system as cofactor and metal activator of many 
enzymes (Parisi and Vallee 1969). This causes transformation of about 96–99 % of 
applied available zinc to various unavailable forms (Fig. 16.5). The zinc thus made 
unavailable can be reverted back to available form by inoculating a bacterial strain capa-
ble of solubilizing it. Since zinc is a limiting factor in crop production, importance of 
ZSB has an immense in zinc nutrition to plants (Bapiri et al. 2012; Verma et al. 2013).

16.4.6  �Fe Sequestration

Iron (Fe) deficiency is a worldwide problem that is directly correlated with poverty 
and food insecurity. Approximately one third of the world’s population suffers from 
Fe deficiency-induced anemia, 80 % of which are in developing countries (Boccio 
and Iyengar 2003; Miethke and Marahiel 2007). Total Fe content in soil is relatively 
high, but its availability to soil microorganisms is low in aerated soils because the 
prevalent form (Fe3+) is poorly soluble. Plants and microorganisms have developed 
mechanisms to increase Fe uptake (Marschner 1995; Rajkumar et  al. 2010). In 
plants, there are two different strategies in response to Fe deficiency. Strategy I 
plants (dicots and non-graminaceous monocots) release organic acid anions which 
chelate Fe. Iron solubility is also increased by decreasing the rhizosphere pH, and 
Fe uptake is enhanced by an increased reducing capacity of the roots (Fe3+ → Fe2+). 
Strategy II plants (Poaceae) release phytosiderophores that chelate Fe3+ (Von Wiren 
et al. 1993; Sinha and Mukherjee 2008; Sullivan et al. 2012). Under Fe deficiency 
stress, soil microorganisms release organic acid anions or siderophores that chelate 
Fe3+. After movement of the ferrated chelate to the cell surface, Fe3+ is reduced 
either outside or within the cell (Neilands 1984). Microorganisms produce a range 
of siderophores, e.g., ferrichromes by fungi and enterobactin, pyoverdine, and fer-
rioxamines by bacteria (Von Wiren et  al. 1993; Ma et  al. 2011). Rhizobacterial 
strain significantly influences Fe uptake by agricultural crop (Yu et al. 2011a, b; 
Sadeghi et al. 2012; Socha and Guerinot 2014).
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Fe was supplied either as microbial siderophores (pseudobactin [PSB] or ferriox-
amine B [FOB]) or as phytosiderophores obtained as root exudates from barley 
(epi-3-hydroxy-mugineic acid [HMA]) under varied population densities of rhizo-
sphere microorganisms (axenic, uninoculated, or inoculated with different microor-
ganism cultures). When maize was grown under axenic conditions and supplied 
with FeHMA Socha and Guerinot 2014), Fe uptake rates were 100–300 times higher 
compared to those in plants supplied with Fe siderophores (Fig. 16.5). Fe from both 
sources was taken up without the involvement of an extracellular reduction process. 
The supply of FeHMA enhanced both uptake rate and translocation rate to the shoot 
(>60 % of the total uptake). However, increased density of microorganisms resulted 
in a decrease in Fe uptake rate (up to 65 %), presumably due to microbial degrada-
tion of the FeHMA. In contrast, when FeFOB or FePSB was used as the Fe source, 
increased population density of microorganisms enhanced Fe uptake. The enhance-
ment of Fe uptake resulted from the uptake of FeFOB and FePSB by microorgan-
isms adhering to the rhizoplane or living in the free space of cortical cells. The 
microbial apoplastic Fe pool was not available for root to shoot transport or, thus, 
for utilization by the plants (Socha and Guerinot 2014). These results, in addition to 
the low uptake rate under axenic conditions, are in contrast to earlier hypotheses 
suggesting the existence of a specific uptake system for Fe siderophores in higher 
plants. The bacterial siderophores PSB and FOB were inefficient as Fe sources for 
plants even when supplied by stem injection. It was concluded that microorganisms 
are involved in degradation processes of microbial siderophores, as well as in com-
petition for Fe with higher plants (Crowley et al. 1992; Socha and Guerinot 2014).

Fe sequestration of B. megaterium in iron-deficient medium detected in the expo-
nential phase of growth seems not to be affected by the glucose availability and was 
not related with the onset of endospore formation (Chincholkar et al. 2007). The car-
bon source affected the siderophore production by B. megaterium (Socha and Guerinot 
2014). Among the carbon sources tested, the growth on glycerol promoted the highest 
siderophore production. The increase of argentine concentration in the culture medium 
did not enhance the siderophore production. The agitation had a positive effect on the 
growing of B. megaterium and siderophore production. To our knowledge, this is the 
first work that describes the physiological response of B. megaterium in terms of sid-
erophore production (Das et al. 2007; Socha and Guerinot 2014).

16.5  �Impact of Bacillus Species on Yield and Nutrient 
Uptake

Nowadays rapidly increasing rate of human population with reducing land holding size 
due to urbanizations, industrialization, and modernization, by all these increasing 
presser how to we increasing our food grain production in compared to population with 
soil–plant–environment sustainability (Ilippi et al. 2011; Sullivan et al. 2012). One pos-
sible way to use of beneficially agricultural important microorganisms, with judicious 
application of mineral as well as chemical fertilizer for sustainable crop production. In 
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this context many research studies reported that Bacillus species and other rhizobacte-
rial strains inoculated to soil significantly enhanced crop growth, yield, and nutrient 
uptake (Yasmeen et al. 2012b; Velázquez et al. 2016; Yadav et al. 2016).

Bacillus spp. are used as PGPR with plant growth-promoting traits like phos-
phate, potassium, and zinc solubilization; N2 fixation and phytohormone production 
(Liu et al. 2006; Lavakusha et al. 2014; Meena et al. 2014; Maurya et al. 2014) are 
also being used as bio-inoculants for crop production. The Bacillus species are 
reported to increase the yield in wheat (de Freitas et al. 2007; Cakmakci et al. 2007), 
maize (Pal et al. 2001), sugar beet (Cakmakci et al. 2006), and spinach (Cakmakci 
et al. 2007). According to Verma et al. (2012a) observed increase in growth and yield 
of beans by co-inoculating Bacillus strains with other rhizobacteria significantly 
influenced on nodule formation in pulse crops (Lavakusha et  al. 2014; Liu et  al. 
2006; Yadav et al. 2010) and are widely used as plant health-promoting rhizobacteria 
by reducing diseases and producing antibiotic (Verma et al. 2013) (Table 16.1).

16.6  �Implications of Efficient Soil Microorganisms 
in Sustainable Agriculture

The various ways in which efficient soil microorganisms have been used over the 
past fifth decade to modern sustainable technology, human and animal health, food 
processing, food safety and quality, genetic engineering, environmental protection, 
agricultural biotechnology, and in more effective treatment of agricultural. However, 
microbial technologies have been applied to various agricultural and environmental 
problems with considerable success in recent years; they have not been widely 
accepted by the scientific community as it is often hard to consistently reproduce 
their beneficial effects. We can enhance soil–plant–environment sustainability 
through the use of efficient soil microorganisms for sustainable agricultural produc-
tion (Godfray et al. 2010). As discussed above, agriculture should consider maxi-
mizing the coadaptation between soil–plant–microbes in an effort to promote soil 
microbial diversity (Badri et al. 2008 ; Yasin et al. 2016; Zahedi 2016).

Which implications does decoupling the coadapted soil–plant–microbial rela-
tionship have on sustainable agriculture? The soil environment is likely the most 
complex biological community. Efficient soil organisms are extremely diverse and 
contribute to a wide range of ecosystem services that are essential to the sustainable 
function of natural and managed ecosystems. The efficient soil organism commu-
nity can have direct and indirect impacts on land productivity. Direct impacts are 
those where specific efficient soil microorganisms affect crop yield immediately 
(Broeckling et al. 2008). Indirect effects include those provided by soil organisms 
participating in carbon and nutrient cycles, soil structure modification, and food 
web interactions that generate ecosystem services that ultimately affect productiv-
ity. Research opportunities and gaps related to methodological, experimental, and 
conceptual approaches may be helpful to enhance sustainable agricultural produc-
tion system.
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Table 16.1  Impact of Bacillus species on growth, yield, nutrient uptake, and plant growth-
promoting activities with different crop species

Crop species Bacillus species Impact References

Cicer arietinum B. firmus strain 
NARS1

Cold stress Khan et al. (2007)

B. megaterium Phytohormones Verma et al. (2012b)

Lolium 
multiflorum

B. pumilus C2A1 Bioremediation Ahmad et al. (2006)

Cucumis melo B. subtilis Y-IV Plant growth, root 
colonization

Zhao et al. (2011)

Triticum aestivum B. pumilus strain S2 Enhance growth, yield, 
nutrient uptake

Abbasi et al. (2011)

B. pumilus S6-05 Upadhyay et al. (2009)

Atriplex 
lentiformis

B. pumilus ES4 Phyto-stabilization De-Bashan et al. 
(2008)

Glycine max B. subtilis CICC1016 Siderophore, P 
solubilization, 
antagonism with F. 
oxysporum, S. rolfsii, R. 
solani

Wahyudi et al. (2011)

B. sphaericus NUC-5

B. cereus strain SS-07

B. pumilus

B. shandongensis SD

Oryza sativa B. pumilus strain S68 ACC producing, PGRs Lavakush et al. 2014

B. sp SB1-ACC3

Artemisia annua B. subtilis strain 
Daz26

Nitrogen fixing Awasthi et al. (2011)

Fragaria spp. B. subtilis NA-101 IAA equivalents, 
siderophore, strawberry 
root, and shoot growth

Pereira et al. (2011)

B. subtilis NA-120

Solanum 
tuberosum

B. strain Phosphorus 
solubilization, IAA

Calvo et al. (2010)

Zea mays B. sp. Seed germination and 
root shoot growth

Ngoma et al. (2014)

Prunus cerasus 
cv. Kutahya

B. subtilis OSU – 142 Fruit set, pomological 
and chemical 
characteristics, color 
values

Karakurt et al. (2011)

B. megaterium M

Piper nigrum B. subtilis CAS15 Siderophore producing Yu et al. (2011a)

Lycopersicon 
esculentum

B. amyloliquefaciens 
QL5

Controlling bacterial 
wilt

Wei et al. (1996)

B. amyloliquefaciens 
QL18

Juglans spp. B. megaterium Nitrogen fixating, PSB Yu et al. (2012)

Lycopersicon 
esculentum

B. subtilis Antifungal, nutrient 
availability

Nihorimbere et al. 
(2010)

Mammillaria 
fraileana

B. megaterium M1PCa Mobilization of 
elements from rocks, 
mineral degradation

Lopez et al. (2012)

Puente et al. (2009a, b)

(continued)
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Table 16.1  (continued)

Crop species Bacillus species Impact References

Zea mays B. mojavensis Maize seedling growth 
and nutrient uptake

Bahadur et al. (2016b)

Bouteloua 
dactyloides

B. spp. Phytoremediation, 
PGPR

Ma et al. (2011)

Zea mays B. spp. Drought tolerant Singh et al. (2013)

Brassica juncea B. spp. Ba32 PGRs, P solubilization Rajkumar et al. (2006)

Rajkumar et al. 
(2008a, b)

Brassica juncea B. subtilis SJ-101 IAA, P solubilization, 
increased shoot length, 
fresh and dry weights

Zaidi et al. (2006)

Rajkumar et al. (2008)

Brassica napus B. subtilis RJ16 (RS) IAA, Cd-mobilization, 
increased root 
elongation (gnotobiotic 
conditions), shoot and 
root dry weight (pot 
experiment)

Sheng and He (2006)

Rajkumar et al. (2009)

Sorghum bicolor B. subtilis Increase root shoot 
biomass

Abou-Shanab et al. 
(2008)B. pumilus

Lycopersicon 
esculentum

B. amyloliquefaciens 
S499

PGPR, P solubilization Nihorimbere et al. 
(2011)

Sorghum bicolor 
var. sudanense

B. mucilaginosus Potassium solubilizing Basak and Biswas 
(2010)

Glycine max B. subtilis Nutrient uptake, plant 
growth

Bais et al. (2002)

Pinus thunbergii B. cereus Growth, nutrient uptake Wu et al. (2011)

Actinidia 
deliciosa

B. subtilis OSU142, Rooting and root 
growth

Erturk et al. (2010)

B. megaterium RC01

Musa paradisiaca B. amyloliquefaciens 
W19

Fusarium wilt and plant 
growth, increased 
biomass

Baset Mia et al. (2010)

Brassica napus B. licheniformis 
BLMB1

Cr, Cu, Pb, and Zn 
phytoextraction

Brunetti et al. (2011)

Rajkumar et al. (2010)

Triticum aestivum B. subtilis PGRs, nutrient uptake Upadhyay et al. (2011, 
2012)

Zea mays B. megaterium Vegetative growth, 
yield

Singh et al. (2013)

Arabidopsis 
thaliana

B. subtilis P solubilization, PGRs Zhang et al. (2008)

Persea gratissima B. megaterium Phytohormones, 
growth, yield

Nadeem et al. (2012)

Raphanus sativus B. subtilis, Bioremediation, yield, 
PGRs

Kaymak et al. (2009)

B. megaterium

Medicago sativa B. pumilus Growth, yield, nutrient 
uptake

Medina et al. (2003)

B. licheniformis

(continued)
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Table 16.1  (continued)

Crop species Bacillus species Impact References

Lycopersicon 
esculentum

B. megaterium PGRs, growth, yield Singh et al. (2013)

Manihot 
esculenta Crantz

B. megaterium Cav. 
cy3

P solubilization Chen et al. (2014)

Oryza sativa B. circulans P2 Increased rice grain 
yield

Panhwar et al. (2012)

B. megaterium P5

Spinacia oleracea B. megaterium RC07 PGRs, vegetative 
growth, bioremediation

Çakmakçi et al. (2007)

B. subtilis RC11

Sorghum bicolor B. polymyxa Increased grain and dry 
matter yields and N and 
P uptake

Alagawadi and Gaur 
(1992)

Cicer arietinum B. megaterium Increased dry matter, 
grain yield and P 
uptake, nodulation, N 
fixation

Verma et al. (2013)

Helianthus 
annuus

B. megaterium M-13 Increased yield, oil, 
protein content

Ekin (2010)

Solanum 
tuberosum

B. polymyxa Increased yield, P 
uptake

Kundu and Gaur 
(1980)

Rubus idaeus B. megaterium Increased crop yield Orhan et al. (2006)

Ammi visnaga B. simplex Increased root, shoot 
length, dry weight

Hassen et al. (2010)

B. cereus

Fragaria 
ananassa

B. megaterium Increased fruit yield, 
nutrient contents

Esitken et al. (2010)

Curcuma longa B. megaterium Plant growth and yield Sumathi et al. (2011)

Momordica 
charantia

B. subtilis Enhanced yield, quality, 
root length, and dry 
root weight

Kumar et al. (2012a)

Phyllanthus 
amarus

B. coagulans Improved growth, yield Earanna (2001)

Begonia 
malabarica

B. coagulans Biomass yield, 
nutrients, and 
secondary metabolites

Selvaraj et al. (2008)

Mentha piperita B. megaterium Root length, dry matter Kaymak et al. (2008)

Solanum viarum B. coagulans P, Fe, Zn, Cu, and Mn 
content, secondary 
metabolites

Hemashenpagam and 
Selvaraj (2011)

Sphaeranthus 
amaranthoides

B. subtilis Enhanced growth, 
biomass, nutrition

Sumithra and Selvaraj 
(2011)

Withania 
somnifera

B. circulanse Increased plant height, 
root length, and 
alkaloid content

Rajasekar and Elango 
(2011)

Rosmarinus 
officinalis

B. megaterium Increased oil content, 
yield in fresh herb, and 
total CHO

Abdullah et al. (2012)

B. circulanse
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16.7  �Future Prospect

The Bacillus species are a major integral component of soil microbial community 
and play an important role in the N fixation and phosphorus, potassium, zinc, and 
iron cycles in soil–plant rendering the plants available forms of nutrients. These 
bacterial strains have enormous potential for making use of fixed form of minerals 
and very slowly available nutrients under soil–plant systems with low availability in 
tropical and subtropical countries. The mechanism of mineral solubilization by 
Bacillus species has been studied in detail, but the K and Zn solubilization and Fe 
sequestration are a complex phenomenon affected by many factors, such as poten-
tial of bacterial strain used, nutritional status of soil, mineral type, amount of min-
eral, size of mineral particles, and environmental factors. Moreover, the sustainability 
of the Bacillus species after inoculation in soil as well as seed and seedling treat-
ment is also important for mineral availability to benefit sustainable crop growth 
and development. Therefore, further study is needed to understand the problem of 
development of efficient and indigenous Bacillus species with microbial consortium 
for growth and yield of crops. Another big problem is the commercial propagation 
of soil microorganism’s consortium and their preservation and transportation at 
farmer’s fields for sustainable agricultural production.

16.8  �Concluding Remarks

Climate change problems have raised great interest in eco-friendly sustainable agri-
cultural management practices. The use of growth-promoting rhizobacteria is a prom-
ising solution for sustainable soil–plant–microbes, environmentally friendly 
agricultural production system. The studies on Bacillus species as plant growth-
promoting activities in sustainable agriculture included isolating and screening antag-
onists targeting different diseases, evaluating their effectiveness in greenhouse as well 
as field, dissecting their mechanisms, and enhancing nutrient availability in agricul-
tural soils. Research on improvement of Bacillus species through genetic engineering 
is also conducted in order to increase effectiveness under unfavorable conditions. 
Bacillus species control the damage to plants from phytopathogens and promote the 
plant growth by a number of different mechanisms and enhance the availability of 
nutrients for sustainable growth and development of agricultural production system.
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