
Data Access Based on Faceted Queries
over Ontologies

Tadeusz Pankowski(B) and Grażyna Brzykcy

Institute of Control and Information Engineering,
Poznań University of Technology, Poznań, Poland

{tadeusz.pankowski,grazyna.brzykcy}@put.poznan.pl

Abstract. We propose a method for generating and evaluating faceted
queries over ontology-enhanced distributed graph databases. A user, who
only vaguely knows the domain ontology, starts with a set of keywords.
Then, an initial faceted query is automatically generated and the user
is guided in interactive modification and refinement of successively cre-
ated faceted queries. We provide the theoretical foundation for this way
of faceted query construction and translation into first order monadic
positive existential queries.

1 Introduction

In recent years, there is an increasing interest in developing database systems
enriched with ontologies. The terminological component of the ontology can
be used as a global schema providing an integrated global view over a set of
local databases. A crucial issue is then a query language and a query paradigm.
A standard way for querying graph databases (including RDF repositories) is
SPARQL [13]. However, it is not a suitable language for end-users. Moreover, in
order to formulate structural queries (e.g., in SPARQL or SQL), users have to
know both the structure of the underlying ontology and the query language. In
order to gain knowledge about the ontology, there is a need to query metadata.
Only then, the metadata can be used to formulate queries concerning data. It
can be expected that in order to progressively improve queries, the process of
querying data and metadata can be iterative, can make a lot of trouble and be
time consuming.

To avoid the aforementioned inconveniences, another query paradigms have
been proposed, such as keyword search [10,17], and faceted search [14]. Keyword
search is the most popular in information retrieval systems, but lately we observe
also a widespread application of keyword search paradigm to structured and
semistructured data sources [3]. Faceted search has emerged as a foundation
for interactive information browsing and retrieval and has become increasingly
prevalent in online information access systems, particularly for e-commerce and
site search [14]. Especially significant in the faceted search is implementation
of the browsing paradigm, allowing for exploring and expressing information
needs in interactive and iterative ways [7,16]. Most importantly, the browsing
and exploring concerns both the data and metadata.
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 275–286, 2016.
DOI: 10.1007/978-3-319-44406-2 21

276 T. Pankowski and G. Brzykcy

In this paper, we follow both the keyword and the faceted search paradigms
proposing a method of creating faceted queries starting from a keyword query.
As a keyword query we assume a partially ordered set consisting of keywords
being ontology concepts (unary predicates) and constants. The partial ordering
is induced by the order of keywords in the query. The response to a keyword
query is a subgraph of the ontology graph covering the given set of keywords
and preserving partial ordering of keywords in the keyword query. The subgraph
is used to generate an initial faceted query, which is presented to the user in a
form of a faceted interface. A user can interactively modify and refine the faceted
query browsing and exploring the ontology by means of the faceted interface. The
final faceted query is translated into a first order (FO) query which is evaluated
in local databases storing the extensional component of the ontology (in a form
of graph databases).

Besides providing a global schema, an ontology is used for: (a) guiding the
creation of faceted queries, (b) supporting translation of faceted queries into FO
queries, (c) query rewriting, (d) dealing with labeled nulls, (e) deciding about
query propagation, and to (f) control consistency [11]. It can be shown, that a
faceted query is equivalent to a FO monadic positive existential query in a tree-
shaped form. This allows for very efficient execution with polynomial combined
complexity (considering the size of ontology rules, sizes of local graph databases
and size of queries) [1,11].

Related work: The faceted search has been surveyed in [5,14]. This paradigm
was used for querying documents, databases and semantic data, e.g., [4,7,12,18].
Our work mostly relates to the results reported in [16] and [1]. In [16], the
authors focused on browsing-oriented semantic faceted search supporting users
in addressing their imprecise (fuzzy) needs. To this order, an extended facet tree
has been proposed, which compactly captures both facets and facet values. In
this case, faceted queries are equivalent to a subclass of FO conjunctive queries.
Our formalization of faceted queries is rooted in [1], where faceted queries are
equivalent to a subclass of FO positive existential queries. In [11], we proposed
a way of answering faceted queries in a multiagent system. We discussed, how
local agents consult with each other while evaluating queries, and we have shown
that it is enough to propagate only boolean queries during this cooperation.
The efficiency of query execution can be increased by asynchronous and parallel
processing.

Contribution: The main novelties of the paper are: (1) we propose a method
of generating faceted queries starting from a keyword query, and (2) we define
semantics of faceted queries by translating them into FO faceted queries (FOFQ).

Paper outline: The paper is organized as follows. In Sect. 2, we review pre-
liminaries and define the class of ontology under interest. A motivating running
example and architecture of the system are presented in Sect. 3. In Sect. 4, we

Data Access Based on Faceted Queries over Ontologies 277

propose the way of defining faceted queries. Formal syntax and semantics of
faceted queries are studied and illustrated in Sect. 5. In Sect. 6, we summarize
the paper.

2 Preliminaries

Let UP, BP and Const be countably infinite sets of, respectively, unary predicates
(denoted by A, B, C), binary predicates (denoted by R, S, T) and constants
(denoted by a, b, c). In BP we distinguish type (to denote the relation “type of”)
and = (to denote equality relation between constants). In Const we distinguish
a subset LabNull of labeled nulls. For constants, which are not in LabNull, the
Unique Name Assumption (UNA) holds, i.e., different constants in Const\LabNull
represent different values (nodes). For labeled nulls the UNA is not required, i.e.,
different labeled nulls may represent the same value (node) [6].

A graph database is a finite edge-labeled and directed graph G = (N , E),
where N ⊆ Const ∪ UP is a finite set of nodes, and E ⊆ N × BP × N is a finite
set of labeled edges (or facts) , such that: if (n1, R, n2) ∈ E and R ∈ BP\{type},
then n1, n2 ∈ Const, if (n1, type, n2) ∈ E then n1 ∈ Const, and n2 ∈ UP. In
first order (FO) logic, we use the following notation: A(n) for (n, type, A) ∈ E ;
n1 = n2 for (n1,=, n2) ∈ E , and R(n1, n2), for (n1, R, n2) ∈ E .

Let Σ = ΣE ∪ ΣI be a finite subset of UP ∪ BP. An ontology with signature
Σ is a triple O = (Σ,R,G), where R and G are, respectively, a finite set of
rules and a finite database graph, over Σ and Const. The pair (Σ,R) is called
the terminological component (or a TBox) of the ontology, while G is called the
assertional component (or the ABox) of the ontology [2]. Predicates occurring
in G are referred to as extensional predicates, and are denoted by ΣE . The set
ΣI = Σ \ ΣE of predicates which are not in G are called intentional predicates.
In practice, an ontology conforms to one of OWL 2 profiles [9]. In this paper, we
restrict ourselves to rules of categories (1)–(11) listed in Table 1, last category,
(12), is the category of integrity constraints [8].

A FO formula is a monadic positive existential query (MPEQ), if it has
exactly one free variable and is constructed only out of: (a) atoms of the form
A(v), R(v1, v2) and v = a; (b) conjunction (∧), disjunction (∨), and existential
quantification (∃). A query Q(x), where x is a tuple of free variables (empty for
boolean queries), is satisfiable in O = (Σ,R,G), denoted O |= Q(x) if there is a
tuple a (empty for boolean queries) from Const, such that G ∪ R |= Q(a), where
G ∪R denotes all facts deduced from G using rules from R. Then a is an answer
to Q(x) with respect to O (the empty tuple a denotes TRUE).

3 Running Example and Architecture

Let O = (Σ,R,G), where: (1) G = G1 ∪ G2 ∪ G3 (Fig. 1); (2) rules in R are of
categories listed in Table 1, some of them are given in Table 2; (3) Σ = ΣE ∪ ΣI

is clear from the context.

278 T. Pankowski and G. Brzykcy

Table 1. Categories of ontology rules

Rule Name Representation

1 B(x) → A(x) subtype (subsumption) sub(B, A)

2 R(x, y) → A(x) domain dom(R, A)

3 R(x, y) → B(y) range rng(R, B)

4 R(x, a) → A(x) specialization (by a constant) spec1(R, a, A)

5 R(x, y) ∧ B(y) → A(x) specialization (by a type) spec2(R, B, A)

6 S(x, z) ∧ T (z, y) → R(x, y) chain chain(S, T, R)

7 B(x) ∧ C(x) → A(x) conjunction conj(B, C, A)

8 B(x) ∧ R(x, y) → A(y) range (conditional) rngc(B, R, A)

9 S(y, x) → R(x, y) inversion inv(S, R)

10 A(x) ∧ B(y1) ∧ B(y2)∧
R(x, y1) ∧ R(x, y2) →
y1 = y2

functionality func(A, R, B)

11 A(x1) ∧ A(x2) ∧ B(y)∧
R(x1, y) ∧ R(x2, y) →
x1 = x2

key (functionality of
inversion)

key(A, R, B)

12 A(x) → ∃y R(x, y) existence exists(A, R)

A system providing data access based on faceted queries over ontologies
(DAFO) (Fig. 2) belongs to a class of Ontology-Based Data Access (OBDA)
systems [15], and follows so called single ontology approach. Data in different
local DAFO databases complement each other, can overlap but do not contra-
dict one another. The union of all local databases is a consistent database.

A user interacts with the system using a faceted query interface (FQ Inter-
face) (step 1) and is guided by an ontology O = (Σ,R,G), stored in part in the
global schema, Sch = (Σ,R), and partly in local databases, DBi, 1 ≤ i ≤ k. As
a result of the interaction, a faceted query is created. The query is translated
into FOFQ query Q, and rewritten into Q′ (step 2).

Table 2. Sample rules in O conforming to categories from Table 1

org(x, ACM) → ACMConf(x)

authorOf(x, y) → Author(x) ∧ Paper(y)

atConf(x, y) ∧ ACMConf(y) → ACMPaper(x)

authorOf(x, y) ∧ ACMPaper(y) → ACMAuthor(x)

atConf(x, y) ∧ cyear(y, z) → pyear(x, z)

authorOf(x, y) → writtenBy(y, x)

Paper(x1) ∧ Paper(x2) ∧ String(y) ∧ title(x1, y) ∧ title(x2, y) → x1 = x2

Author(x) → ∃y authorOf(x, y)

Data Access Based on Faceted Queries over Ontologies 279

Fig. 1. A sample graph database consisting of three graphs

Fig. 2. Architecture of DAFO system

Then, Q′ is sent to all server agents (step 3). An agent do some local data-
base specific rewritings and evaluations (step 4), propagates (if necessary) some
boolean requests to partner agents (step 5), and gathers local answers (step 6).
Finally, answers obtained from server agents are collected by the manager agent

280 T. Pankowski and G. Brzykcy

and returned to the user (step 7). Each server agent Si has its local database
DBi = (Σi,Ri,Gi), where Σi ⊆ Σ, and Ri ⊆ R, 1 ≤ i ≤ k.

4 Defining Faceted Queries

In the process of defining queries in DAFO, a user starts from specifying a
keyword query, which is understood as an ordered set of keywords. In response,
a faceted interface and a first approximation of the expected faceted query, are
generated. The user can interactively refine the query using information provided
by the interface. Finally, the resulting faceted query is translated into a first order
faceted query (FOFQ), which is a monadic PEQ.

Keyword Queries. A keyword query KQ over an ontology O is a partially
ordered (by means of the preceding relation ≺) set KQ = (K0,K1, . . . ,Kq),
q ≥ 0, of keywords, where K0 ∈ UP, Ki ∈ UP ∪ Const, 1 ≤ i ≤ q. For example,
the following keyword query asks about ACM authors who presented a paper in
2014 at a DEXA conference.

KQ = (ACMAuthor, Paper, 2014,DEXAConf). (1)

A keyword K subsumes a keyword K ′ in O, denoted O |= K ′ � K, iff: (1)
if K and K ′ are constants, then K = K ′; (2) if K ′,K ∈ UP, then: (a) K = K ′,
or (b) O |= sub(K ′,K) (rule (1) Table 1), or (c) there is A ∈ UP such that
O |= K ′ � A and O |= A � K.

A sequence s = (K1, R1,K2, . . . , Rm−1,Km) is a path in O from K1 to
Km, denoted s ∈ pathO(K1,Km), if: (1) m = 1; (2) if Ki ∈ UP then Ki is a
domain of Ri, and a range of Ri−1; (3) if Ki = ai ∈ Const, then ∃xRi(ai, x) and
∃xRi−1(x, ai) are satisfied in O.

We assume, that if s ∈ pathO(K1,Km), then also s ∈ pathO(K ′
1,K

′
m), for

each K ′
1 and K ′

m, such that K1 and Km subsume K ′
1 and K ′

m, respectively, in
O. A sequence s preserves the ordering Ki ≺ Kj if Ki precedes Kj in s, and
violates this ordering if Kj precedes Ki in s.

Definition 1. The answer to KQ in O is a set PSet of paths in O such that:

– any path starts with K0 and ends with some K ∈ KQ,
– any path preserves ordering of keywords induced by KQ.

Example 1. For the keyword query (1), PSet can have five paths:
s1 = (ACMAuthor), s2 = (ACMAuthor, authorOf, Paper),
s3 = (ACMAuthor, authorOf, Paper, atConf,DEXAConf),
s4 = (ACMAuthor, authorOf, Paper, pyear, 2014),
s5 = (ACMAuthor, authorOf, Paper, atConf,Conf, cyear, 2014).
s5 violates the preceding 2014 ≺ DEXAConf , and is removed from PSet.

Data Access Based on Faceted Queries over Ontologies 281

From a given PSet, a set TSet representing PSet is created. Each path from
PSet, longer than 1, is represented by a set of triples, and a path with length 1,
with itself:

TSet = ∪{tset(s) | s ∈ PSet′},

tset(s) = {A| s = (A)}∪{(A,R,B) | (A,R,B) ∈ s}∪{(A,R, a) | (A,R, a) ∈ s}.

For example, TSet = {ACMAuthor, (ACMAuthor, authorOf, Paper),
(Paper, atConf,DEXAConf), (Paper, pyear, 2014), . . . }.

Creating Faceted Interface and Faceted Queries. Now, we discuss the
way of creating faceted interfaces (FIs) and faceted queries (FQs) from a set
TSet of triples representing the answer to a keyword query KQ. A FQ arises
from a FI by selecting among alternatives offered by the FI.

Algorithm 1 specifies creation of FI (the upper part (FI)) and a selection
procedure constituting a FQ (the bottom part (FQ)). In result, both FI and FQ
are represented by the labeled tree T defined as the output of the algorithm.

A labeled tree in Fig. 3 represents a FI, and its underlined (selected) elements
represent a FQ. The selection is done either by default (e.g., ∨) or is determined
by the content of the underlying keyword query.

{∨, ∧}{Author ,ACMAuthor})

{∨, ∧}{Paper ,ACMPaper ,DEXAPaper})

(authorOf, {∨, ∧}{any, p1, p2, . . . })

{∨, ∧}{Conf ,ACMConf ,DEXAConf } ε

(atConf, {∨, ∧}{any, c1, c2, . . . }) (pyear, {∨, ∧}{any, 2013, 2014})

Fig. 3. FI and initial FQ generated by Algorithm 1 for the keyword query KQ (1)

In Fig. 4, there is the interface implemented in DAFO system. First, a key-
word query is defined. Next, a FI and a FQ are generated as the answer to the
keyword query. The query can be interactively modified by a user. For example,
the labeled tree viewed in Fig. 4, represents the faceted query presented in Fig. 3
after some modifications (refinement).

The textual form of FQ in Fig. 4 is:

Γ = T1[B1 ∧ B2/T2[B3/T3 ∧ B4]], (2)

where: T1 = {ACMAuthor}, B1 = (univ,∧{NY,LA}), B2 = (authorOf, {any}),
T2 = {Paper}, B3 = (atConf, {any}), T3 = ∨{ACMConf ,DEXAConf }, B4 =
(pyear, {2014}).

282 T. Pankowski and G. Brzykcy

Algorithm 1. Creating a faceted interface and a faceted query
Input: O – an ontology, TSet – a set of triples being an answer to a keyword query
KQ = (K0, K1, . . . , Kq)
Output: A labeled tree T = (r, V, E, λV , λE) representing a faceted interface (FI part)
and a faceted query (FQ part), corresponding to TSet and O, where:

– V – a set of nodes, r ∈ V – a distinguished root node,
– E ⊆ V × V – a set of ordered edges,
– λV – node labeling function,
– λE – edge labeling function.

(FI) Labeling functions for creating faceted interface:

1. λV (r) = {∨, ∧}{A | O |= K0 � A} – the set of all supertypes of K0;
2. Let e = (v1, v2) ∈ E, (A, R, Bi) ∈ TSet, 1 ≤ i ≤ k, λV (v1) = {∨, ∧}X, and A ∈ X,

then
– λV (v2) = {∨, ∧}{B | O |= rng(R, B)} – the set of all ranges of R;
– λE(e) = (R, {∨, ∧}{any}∪X), where X = {a | O |= ∃x(A(x)∧R(x, a))} – the

set of all possible values of R.
3. Let e = (v1, v2) ∈ E, (A, R, ai) ∈ TSet, 1 ≤ i ≤ k, λV (v1) = {∨, ∧}X, and A ∈ X,

then
– λV (v2) = ε;
– λE(e) = (R, {∨, ∧}{any}∪X), where X = {a | O |= ∃x(A(x)∧R(x, a))} – the

set of all possible values of R.

(FQ) Labeling functions for creating faceted query (selections in faceted interface):

1. λV (r) = ∨{K0};
2. Let e = (v1, v2) ∈ E, (A, R, Bi) ∈ TSet, 1 ≤ i ≤ k, λV (v1) = ∨X, and A ∈ X,

then
– λV (v2) = ∨{B1, . . . , Bk};
– λE(e) = (R, ∨{any}).

3. Let e = (v1, v2) ∈ E, (A, R, ai) ∈ TSet, 1 ≤ i ≤ k, λV (v1) = ∨X, and A ∈ X, then
– λV (v2) = ε;
– λE(e) = (R, ∨{a1, . . . , ak}).

Intuitively, ∨{ACMConf ,DAXAConf } denotes conferences, classified either
as ACM or DEXA conferences; (atConf, {any}) denotes papers which have
been presented at any conference; (univ,∧{NY,LA}) denotes authors repre-
senting both universities, i.e., NY and LA university.

5 Formal Syntax and Semantics of Faceted Queries

Complex faceted queries, like (2), are built of simple faceted queries defined by
Definition 3, which in turn refer to simple faceted interfaces.

Definition 2. Simple faceted interfaces over an ontology O are:

Data Access Based on Faceted Queries over Ontologies 283

Fig. 4. A sample graphical form of a faceted query in DAFO

1. F = (type, {∨,∧}X), where X ⊆ UP – a simple type-based faceted interface,
2. F = (R, ({∨,∧}{any} ∪ X), where R ∈ BP, and X ⊆ {a | O |= ∃xR(x, a)} –

a simple BP -based faceted interface.

Definition 3. Simple faceted queries over simple faceted interfaces are:

1. ◦L, where L ⊆ X – over F = (type, {∨,∧}X), ◦ ∈ {∨,∧} denotes disjunctive
(∨) and conjunctive (∧) query;

2. (R, {any}) and (R, ◦L), where L ⊆ X – over F = (R, ({∨,∧}{any} ∪ X).

Definition 4. Let T and B be simple type- and BP -based FQs, respectively. A
(complex) FQ is an expression conforming to the syntax:

Γ :: = T | T [Δ]
Δ :: = B | B/Γ | Δ ∧ Δ

Note, that the FQ Γ in (2) conforms to the above definition. A FQ in a tree
form generated by means of Algorithm 1, can be translated into a FQ in the
textual form defined by the grammar given in Definition 4. The translation is
specified in Definition 5.

Definition 5. Let T = r((v1, T1), . . . , (vk, Tk)) be a tree form of FQ, where Ti

is a subtree with a root vi. Translation τ(T) is defined recursively as follows:

τ(T) = λV (r)[κ(e1, T1) ∧ · · · ∧ κ(ek, Tk)], where ei = (r, vi),

κ(e, T) =
{

λE(e) if λV (T) = ε ,
λE(e)/τ(T) otherwise.

In order to define semantics, the faceted queries will be represented by means
of atomic faceted queries.

Definition 6. An atomic faceted query is an unary predicate A ∈ UP, a pair
(R, any), and a pair (R, a), where R ∈ BP.

284 T. Pankowski and G. Brzykcy

Any simple faceted query can be translated into a disjunction or a conjunction
of atomic faceted queries. For example:

– tr(∨{ACMConf,DAXAConf}) = ACMConf ∨ DAXAConf ,
– tr((atConf, {any})) = (atConf, any),
– tr((univ,∧{NY,LA})) = (univ,NY) ∧ (univ, LA).

Definition 7. Let t and b be atomic type- and BP -based FQs, respectively. A
(complex) FQ in the atomic normal form is defined by the grammar (◦ ∈ {∨,∧}):

α :: = t | t[β] | α ◦ α | (α)
β :: = b | b/α | β ◦ β | (β)

The translation tr(Γ) of (2) into the atomic normal form results in:

σ = t1[b1 ∧ b2 ∧ b3/t2[b4/(t3 ∨ t4) ∧ b5]], (3)

where: t1 = ACMAuthor , b1 = (univ,NY), b2 = (univ, LA), b3 =
(authorOf, any), t2 = Paper, b4 = (atConf, any), t3 = ACMConf , t4 =
DEXAConf , b5 = (pyear, 2014),.

Semantics for FQs is defined by means of the semantic function �α�x that
assigns to a FQ in the atomic normal form a first order monadic positive exis-
tential query, referred to as FOFQ. x is then the only free variable in FOFQ.

Definition 8. The semantic function �α�x for FQs conforming to the grammar
given in Definition 7, is as follows (◦ ∈ {∨,∧}):

Fig. 5. Syntactic tree of FOFQ �σ�x, where σ is defined in (3)

�t�x = t(x)
�t[b]�x = �t�x ∧ ∃y(�b�x,y)
�t[b/α]�x = �t�x ∧ ∃y(�b/α�x,y)
�t[β1 ◦ β2�x = �t[β1] ◦ t[β2]�x
�t[(β)]�x = (�t[β]�x)
�α1 ◦ α2�x = ◦(�α1�x, �α2�x)
�(α)�x = (�α�x)

�(R, any)�x,y = R(x, y)
�(R, a)�x,y = R(x, y) ∧ y = a
�b/α�x,y = �b�x,y ∧ �α�y
�β1 ◦ β2�x,y = ◦(�β1�x,y, �β2�x,y)
�(β)�x,y = (�β�x,y)

Data Access Based on Faceted Queries over Ontologies 285

In general, a FQ σ in atomic normal form, can be expressed as a FOFQ �σ�x
of the form A(x) ∧ ϕ(x), where ϕ(x) is referred to as the qualifier of the query.
For σ in (3), �σ�x = ACMAuthor(x) ∧ ϕ(x), with the syntactic tree presented
in Fig. 5.

In [11], we proposed a method for evaluating FOFQs in a multiagent system.
Then a set of server agents (see Fig. 2) cooperate in answering the query.

6 Summary and Conclusions

We proposed a method of creating and evaluating faceted queries in an ontology-
enhanced database. The ontology under consideration belongs to the class deter-
mined by OWL 2 RL profile, and serves many purposes (mainly, as the global
schema, to query rewriting and to decide about query propagation). A user for-
mulates a request starting from a keyword query which is used to generate an
initial faceted query. The faceted query can be next modified and refined in inter-
active and iterative way. Finally, the query is translated into a first ordered query
and answered by cooperating local agents. The main issue for future work con-
cerns the way of presenting and browsing the information content in the process
of faceted query creation. In particular, there is a need for: (1) creating hier-
archies of value clusters, (2) inventing a way of presenting objects represented
by null values, (3) adopting a method of compact representation of complex
structures or complex contents. We are also planning to verify our approach in
real-world applications. This research has been supported by Polish Ministry of
Science and Higher Education under grant 04/45/DSPB/0149.

References

1. Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D.: Faceted
search over ontology-enhanced RDF data. In: ACM CIKM 2014, pp. 939–948. ACM
(2014)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Petel-Schneider, P. (eds.):
The Description Logic Handbook: Theory. Implementation and Applications. Cam-
bridge University Press, New York (2003)

3. Chen, Y., Wang, W., Liu, Z., Lin, X.: Keyword search on structured and semi-
structured data. ACM SIGMOD 2009, 1005–1010 (2009)

4. Dörk, M., Riche, N.H., Ramos, G., Dumais, S.T.: Pivotpaths: Strolling through
faceted information spaces. IEEE Trans. Vis. Comput. Graph. 18(12), 2709–2718
(2012)

5. Dumais, S.T.: Faceted Search. Encyclopedia of Database Systems. Springer, Hei-
delberg (2009)

6. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization
(extended version), pp. 1–25. CoRR abs/1112.0343 (2011)

7. Heim, P., Ertl, T., Ziegler, J.: Facet Graphs: Complex semantic querying made
easy. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H.,
Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 288–302.
Springer, Heidelberg (2010)

http://www.abs/1112.0343

286 T. Pankowski and G. Brzykcy

8. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. J. Web Semant. 7(2), 74–89 (2009)

9. OWL 2 Web Ontology Language Profiles: www.w3.org/TR/owl2-profiles
10. Pankowski, T.: Keyword search in P2P relational databases. In: Agent and Multi-

Agent Systems: Technologies and Applications (KES-AMSTA 2015). Smart Inno-
vation Systems and Technologies, vol. 38, pp. 325–335. Springer, Heidelberg (2015)

11. Pankowski, T., Brzykcy, G.: Faceted query answering in a multiagent sys-
tem of ontology-enhanced databases. In: Jezic, G., Jessica Chen-Burger, Y.-H.,
Howlett, R.J., Jain, L.C. (eds.) Agent and Multi-Agent Systems: Technology and
Applications. SIST, vol. 58, pp. 3–13. Springer, Heidelberg (2016)

12. Papadakos, P., Tzitzikas, Y.: Hippalus: Preference-enriched faceted exploration.
In: Workshops of the EDBT/ICDT. CEUR Workshop Proceedings, vol. 1133, pp.
167–172. CEUR-WS.org (2014)

13. SPARQL Query Language for RDF: (2008). http://www.w3.org/TR/
rdf-sparql-query

14. Tunkelang, D.: Faceted Search. Morgan & Claypool Publishers, San Rafael (2009)
15. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,

Hübner, S.: Ontology-based integration of information - a survey of existing
approaches. IJCAI 2001, 108–117 (2001)

16. Wagner, A., Ladwig, G., Tran, T.: Browsing-oriented semantic faceted search. In:
Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part I.
LNCS, vol. 6860, pp. 303–319. Springer, Heidelberg (2011)

17. Wang, H., Aggarwal, C.C.: A survey of algorithms for keyword search on graph
data. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data.
ADS, vol. 40. Springer, Heidelberg (2010)

18. Zhuge, H., Wilks, Y.: Faceted search, social networking and interactive semantics.
World Wide Web 17(4), 589–593 (2014)

www.w3.org/TR/owl2-profiles
http://www.CEUR-WS.org
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-sparql-query

	Data Access Based on Faceted Queries over Ontologies
	1 Introduction
	2 Preliminaries
	3 Running Example and Architecture
	4 Defining Faceted Queries
	5 Formal Syntax and Semantics of Faceted Queries
	6 Summary and Conclusions
	References

