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Preface

This volume contains the papers presented at the 27th International Conference on
Database and Expert Systems Applications (DEXA 2016), which was held in Porto,
Portugal, during September 5–8, 2016. On behalf of the Program Committee, we
commend these papers to you and hope you find them useful.

Database, information, and knowledge systems have always been a core subject of
computer science. The ever-increasing need to distribute, exchange, and integrate data,
information, and knowledge has added further importance to this subject. Advances in
the field will help facilitate new avenues of communication, to proliferate interdisci-
plinary discovery, and to drive innovation and commercial opportunity.

DEXA is an international conference series which showcases state-of-the-art
research activities in database, information, and knowledge systems. The conference
and its associated workshops provide a premier annual forum to present original
research results and to examine advanced applications in the field. The goal is to bring
together developers, scientists, and users to extensively discuss requirements, chal-
lenges, and solutions in database, information, and knowledge systems.

DEXA 2016 solicited original contributions dealing with any aspect of database,
information, and knowledge systems. Suggested topics included but were not limited to:

– Acquisition, Modeling, Management and Processing of Knowledge
– Authenticity, Privacy, Security, and Trust
– Availability, Reliability and Fault Tolerance
– Big Data Management and Analytics
– Consistency, Integrity, Quality of Data
– Constraint Modeling and Processing
– Cloud Computing and Database-as-a-Service
– Database Federation and Integration, Interoperability, Multi-Databases
– Data and Information Networks
– Data and Information Semantics
– Data Integration, Metadata Management, and Interoperability
– Data Structures and Data Management Algorithms
– Database and Information System Architecture and Performance
– Data Streams, and Sensor Data
– Data Warehousing
– Decision Support Systems and Their Applications
– Dependability, Reliability and Fault Tolerance
– Digital Libraries, and Multimedia Databases
– Distributed, Parallel, P2P, Grid, and Cloud Databases
– Graph Databases
– Incomplete and Uncertain Data
– Information Retrieval



– Information and Database Systems and Their Applications
– Mobile, Pervasive, and Ubiquitous Data
– Modeling, Automation and Optimization of Processes
– NoSQL and NewSQL Databases
– Object, Object-Relational, and Deductive Databases
– Provenance of Data and Information
– Semantic Web and Ontologies
– Social Networks, Social Web, Graph, and Personal Information Management
– Statistical and Scientific Databases
– Temporal, Spatial, and High-Dimensional Databases
– Query Processing and Transaction Management
– User Interfaces to Databases and Information Systems
– Visual Data Analytics, Data Mining, and Knowledge Discovery
– WWW and Databases, Web Services
– Workflow Management and Databases
– XML and Semi-structured Data

Following the call for papers, which yielded 137 submissions, there was a rigorous
review process that saw each paper reviewed by three to five international experts.
The 39 papers judged best by the Program Committee were accepted for long pre-
sentation. A further 29 papers were accepted for short presentation.

As is the tradition of DEXA, all accepted papers are published by Springer. Authors
of selected papers presented at the conference were invited to submit extended versions
of their papers for publication in the Springer journal Transactions on Large-Scale
Data- and Knowledge-Centered Systems (TLDKS).

We wish to thank all authors who submitted papers and all conference participants
for the fruitful discussions. We are grateful to Bruno Buchberger and Gottfried Vossen,
who accepted to present keynote talks at the conference.

The success of DEXA 2016 is a result of the collegial teamwork from many indi-
viduals. We like to thank the members of the Program Committee and external reviewers
for their timely expertise in carefully reviewing the submissions. We are grateful to our
general chairs, Abdelkader Hameurlain, Fernando Lopes, and Roland R. Wagner, to our
publication chair, Vladimir Marik, and to our workshop chairs, A Min Tjoa, Zita Vale,
and Roland R. Wagner.

We wish to express our deep appreciation to Gabriela Wagner of the DEXA con-
ference organization office. Without her outstanding work and excellent support, this
volume would not have seen the light of day.

Finally, we would like to thank GECAD (Research Group on Intelligent Engi-
neering and Computing for Advanced Innovation and Development) at ISEP (Instituto
Superior de Engenharia do Porto) for being our hosts for the wonderful days in Porto.

July 2016 Sven Hartmann
Hui Ma
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From Natural Language to Automated
Reasoning

Bruno Buchberger

We outline the possible interaction between knowledge mining, natural language
processing, sentiment analysis, data base systems, ontology technology, algorithm
synthesis, and automated reasoning for enhancing the sophistication of web-based
knowledge processing.

We focus, in particular, on the transition from parsed natural language texts to
formal texts in the frame of logical systems and the potential impact of automating this
transition on methods for finding hidden knowledge in big (or small) data and the
automated composition of algorithms (cooperation plans for networks of application
software).

Simple cooperation apps like IFTTT and the new version of SIRI demonstrate the
power of (automatically) combining clusters of existing applications under the control
of expressions of desires in natural language.

In the Theorema Working Group of the speaker quite powerful algorithm synthesis
methods have been developed that can generate algorithms for relatively difficult
mathematical problems. These methods are based on automated reasoning and start
from formal problem specifications in the frame of predicate logic. We ask ourselves
how the deep reasoning used in mathematical algorithm synthesis could be combined
with recent advances in natural language processing for reaching a new level of
intelligence in the communication between humans and the web for every-day and
business applications.

The talk is expository and tries to draw a big picture of how we could and should
proceed in this area but will also explain some technical details and demonstrate some
surprising results in the formal reasoning aspect of the overall approach.



The Price of Data

Gottfried Vossen1,2

1 ERCIS, University of Münster, Münster, Germany
vossen@wi.uni-muenster.de

2 The University of Waikato Management School, Hamilton, New Zealand
vossen@waikato.ac.nz

Abstract. As data is becoming a commodity similar to electricity, as individuals
become more and more transparent thanks to the comprehensive data traces they
leave, and as data gets increasingly connected across company boundaries, the
question arises of whether a price tag should be attached to data and, if so, what
it should say. In this talk, the price of data is studied from a variety of angles and
applications areas, including telecommunication, social networks, advertising,
and automation; the issues discussed include aspects such as fair pricing, data
quality, data ownership, and ethics. Special attention is paid to data market-
places, where nowadays everybody can trade data, although the currency in
which buyers are requested to pay may no longer be what they expect.

The term “Big Data” will always be remembered as the big buzzword of 2013 and,
somewhat surprisingly, of several years thereafter. According to Bernard Marr1, “the
basic idea behind the phrase ‘Big Data’ is that everything we do is increasingly leaving
a digital trace (or data), which we (and others) can use and analyze. Big Data therefore
refers to that data being collected and our ability to make use of it.” In earlier times, it
was not unusual to leave analog traces, like purchase receipts from the grocery store,
and neither was the idea to somehow monetize these traces. The owner of the grocery
store would know his regular customers, and would try to keep old ones and attract new
ones by offering them discount coupons or other incentives. With digital traces,
business along such lines has exploded, become possible at a world-wide scale, and has
reached nuances of everyday life that nobody would ever have thought of. So it is time
to ask whether that data comes with a price tag and, if so, what it says.

This talk looks at the price of data from a variety of angles and application areas for
which pricing is relevant. In telecommunication, for example, prices for making phone
calls as well as for data (e.g., surfing the Web) have come down enormously over the
last 20 years, due to increasingly cheaper technology as well as more and more
competition. Search engines have made it popular to make money through advertising,
where participants bid on keywords that may occur in search queries, and social
networks generate revenue from letting companies have access to their user profiles and
all the data that these contain. So what is the value of a user profile?

1 http://www.datasciencecentral.com/profile/BernardMarr.

http://www.datasciencecentral.com/profile/BernardMarr


Data marketplaces [2, 4, 5, 9], on the other hand, are an emerging species of digital
platform that revisits traditional marketplaces and their mechanisms. In a data mar-
ketplace, producers of data provide query answers to consumers in exchange for
payment. In general, a data marketplace integrates public Web data with other data
sources, and it allows for data extraction, data transformation and data loading, and it
comprises meta data repositories describing data and algorithms. In addition, it consists
of technology for ‘uploading’ and optimizing operators with user-defined-functionality,
as well as trading and billing components. In return, the ‘vendor’ of this functionality
receives a monetary contribution from a buyer. Essentially, everybody can trade data
nowadays, and the roles of sellers and buyers may be swapped over time and be
exchangeable. For a seller, the interesting issue is the question of how valuable some
data may be for a customer (or what the competition is charging for the same or similar
data); if that could be figured out, the seller could adapt the price he is asking
accordingly.

From a more technical perspective, the pricing problem can be tackled from the
point of view of data quality, and here it is possible to establish a notion of fair pricing.
[6, 8] cast this problem into a universal-relation setting and study the impact of
quantifiable data quality; they follow [1] who argue that relational views can be
interpreted as versions of the ‘information good’ data and hence study the issue of
pricing for competing data sources that provide essentially the same data but in dif-
ferent quality.

Fair pricing has been addressed in depth by [7], by demonstrating how the quality
of relational data products can be adapted to match a buyer’s willingness to pay by
employing a Name Your Own Price (NYOP) model. Under that model, data providers
can discriminate customers so that they realize the maximum price a customer is
willing to pay, and data customers receive a product that is tailored to their own data
quality needs and budgets. To balance customer preferences and vendor interests, a
model is developed which translates fair pricing into a Multiple-Choice Knapsack
optimization problem, thereby making it amenable to an algorithmic solution. The
concept of trading data quality for a discount was previously suggested in [10, 11] and
applied to both relational as well as XML data.

A final aspect to be mentioned in this context is that of data used in automation.
Following [3], automation has become pervasive in recent years and has lead to the
danger that people lose their specific abilities when supported or even replaced by
machines, robots, or generally automated devices. Carr explains this, for example, with
auto-pilots in airplanes: Often pilots are so reliant on an auto-pilot that they do not want
to accept the fact the a decision the device has just made is wrong, and he gives
examples where this has ended in disaster more than once. Hence the danger is that we
overestimate the truth in data, that we trust it too much, so that, as a consequence, the
quest for its price becomes obsolete.

The Price of Data XIX
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A Preference-Driven Database Approach
to Reciprocal User Recommendations in Online

Social Networks

Florian Wenzel(B) and Werner Kießling

Institute for Computer Science, University of Augsburg, 86135 Augsburg, Germany
{wenzel,kiessling}@informatik.uni-augsburg.de

Abstract. Online Social Networks (OSN) are frequently used to find
people with common interests, though such functionality is often based
on mechanisms such as friends-of-friends that do not perform well for real
life interactions. We demonstrate an integrated database-driven recom-
mendation approach that determines reciprocal user matches, which is an
important feature to reduce the risk of rejection. Similarity is computed
in a data-adaptive way based on dimensions such as homophily, propin-
quity, and recommendation context. By representation of dimensions as
unique preference database queries, user models can be created in an
intuitive way and can be directly evaluated on datasets. Query results
serve as input for a reciprocal recommendation process that handles
various similarity measures. Performance benchmarks conducted with
data of a commercial outdoor platform prove the applicability to real-
life tasks.

Keywords: Reciprocal recommendations · Preference queries · OSN

1 Introduction

OSN are a prime medium to form new virtual and real-life connections, a behav-
ior that is endorsed through user recommendation services. However, existing
solutions neglect vast amounts of readily available user information and rather
exploit the structural properties of the social graph [1]. While this approach is
valid for some use cases, information-rich user models are favorable for scenarios
that target real-life interactions such as finding companions for common activ-
ities. User models for this purpose should include aspects such as homophily
or propinquity [4], concepts that govern the formation of social ties in real life.
A corresponding user recommendation process should find partners in a recipro-
cal fashion, taking not only the preferences of the recommendation subject, but
also those of the objects into account, to reduce the risk of rejection [5].

We present a recommendation approach that addresses these crucial points to
provide semantically rich reciprocal recommendations. Activity-related, spatial,
and social data together with friendship information is collected to create multi-
dimensional user models. Each dimension is represented as unique preference
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 3–10, 2016.
DOI: 10.1007/978-3-319-44406-2 1



4 F. Wenzel and W. Kießling

database query, which guarantees fast and intuitive modeling and direct evalua-
tion on corresponding datasets. We integrate the world’s fastest in-memory ana-
lytical database EXASolution, which provides an efficient Skyline feature1 based
on our previous work. Query results of all users serve as input for a reciprocal
recommendation process that determines similarity between the recommenda-
tion subject and each potential partner by applying similarity measures to each
dimension, resulting in a similarity vector per comparison. The recommendation
result is computed as Pareto-optimum of these vectors. A real-life scenario based
on data of Europe’s largest outdoor community Outdooractive2 showcases our
approach in action. Benchmarks illustrate the scalability of the process.

The remainder of this paper is organized as follows: Sect. 2 presents a moti-
vating use case. Section 3 describes the basic framework for user preferences.
Dimensions of information-rich user models are explained in Sect. 4, details of
the recommendation process are presented in Sect. 5. Benchmark results are
evaluated in Sect. 6, concluded by a summary and outlook in Sect. 7.

2 Use Case Scenario

To illustrate the recommendation approach, we follow a use case scenario based
on anonymized data of over 125,000 members of the Outdooractive community.
The individual stages of the recommendation process are depicted in Fig. 1.

Fig. 1. Phases of the recommendation process

Given user Paul, we want to find users that join him on his next hiking adven-
ture. Three dimensions of his user profile are of interest: preferences towards
activities, current hometown, and demographic data. Most of this information
can be either extracted directly or via preference elicitation in phase P1. Prefer-
ences considering activities include aspects such as difficulty, duration, or rating

1 http://www.exasol.com/en/in-memory-database/overview/.
2 http://www.outdooractive.com/en/.

http://www.exasol.com/en/in-memory-database/overview/
http://www.outdooractive.com/en/
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of outdoor tours. The current hometown can be used to determine Points of Inter-
est (POI) that are nearby. Demographic information helps to identify other users
of similar age or gender. Since this information is also known for all other users,
these preferences can be evaluated on specific database relations provided by the
platform in phase P2. Resulting item sets can be used to compute user-to-user
similarity, one dimension at a time, leading to similarity values for homophily
(activities), propinquity (hometown), and social aspects (demographic informa-
tion) in phase P3. Paul is looking for users of highest similarity in all these
dimensions, but oftentimes there is no such perfect match. With the presented
approach, Paul is able to retrieve best-matching users as Pareto-optimum of
similarity vectors in phase P4. This way, he is guaranteed to get data-adaptive
recommendations: the addition of new outdoor activities to the platform has a
direct effect on the result of preference evaluation and might in turn lead to
different recommendations.

3 Preference Framework

OSN profiles hold valuable information stored in numerical, categorical, and
spatial attributes. To use it to full capacity, it has to be included into user models
in phase P1. These in turn should be directly evaluable on datasets in phase P2.
Towards this end, we follow the constructor-based framework of [2] which defines
soft constraint preferences P = (A,<P ) as strict partial orders on the domain of
an attribute set A. Given a term x <P y, which means “I like y more than x”, the
framework defines a Best Matches Only (BMO) query semantics by retrieving
matches from an input relation R via a preference selection operator σ[P ](R):

σ[P ](R) := {t ∈ R | ¬∃ t′ ∈ R : t[A] <P t′[A]} (1)

The framework holds a taxonomy of base preference constructors operating on
single attributes. All constructors are sub-constructors of a SCORE preference
that minimizes a scoring function f(x) so that x <P y ⇔ f(x) > f(y). To form
classes of equivalent attribute values, a so-called d-parameter is applicable which
extends f(x) to fd(x) = � f(x)

d �. Furthermore, complex constructors exist to
combine base or complex preferences. Equal importance is expressed via Pareto,
ordered importance via Prioritization.

To ensure scalability to large OSN datasets, we use the commercial EXA-
Solution in-memory analytical database, based on a distributed and a parallel
shared-nothing architecture. The system supports preferences via a Skyline fea-
ture, which is based on our previous work [2] and implements a distributed and
parallel BNL-style algorithm [3]. The system provides a PREFERRING clause in
addition to the SQL standard. A base preference is defined as numerical expres-
sion that has to be minimized or maximized as stated by keywords HIGH or
LOW. Alternatively, Boolean expressions can be used for categorical domains.
Complex preferences combine preference terms via keywords PLUS or PRIOR TO
standing for Pareto or Prioritization. Preferences of single users such as Paul
can now be modeled in the form of preference queries. These queries in turn can
be evaluated to obtain preferred items of each dimension from specific datasets.
Retrieved item sets finally serve as input for the recommendation process.
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4 User Modeling

We focus on Paul whose profile contains an activity-related, a spatial, and a
social dimension. First, each dimension d is expressed as preference Pd, next
database relations Rd are assigned, and finally σ[Pd](Rd) is evaluated to obtain
a set of preferred items Id. This covers phase P1 and P2 of Fig. 1. We assume
w.l.o.g. that we obtain preferences either explicitly through user input or implic-
itly via elicitation or mining. As second step, we identify underlying datasets.
Outdooractive as outdoor and tourism provider curates 3 database relations:

– activity (id INTEGER, category VARCHAR, tag VARCHAR, condition INTEGER, tech-
nique INTEGER, experience INTEGER, landscape INTEGER)

– poi (id INTEGER, category INTEGER, geom GEOMETRY)
– user (id INTEGER, age INTEGER, sex VARCHAR)

Preference selections σ[Pd](Rd) are computed via EXASolution to return sets Id
in a data-adaptive fashion. This is a major advantage over static user comparisons.
In case Paul favors difficult activities whereas a candidate prefers easy ones, a sta-
tic comparison determines a low similarity. If the database only contains activities
of medium difficulty then a data-adaptive approach could still detect high simi-
larity. This also holds for user profiles without common attributes. If Paul prefers
a high rating and a candidate certain tour tags, an edit distance would determine
low similarity whereas item sets Id might show a major overlap. Subsequent sub-
sections describe preference queries for each user dimension.

4.1 Activity Dimension

Activity-related preferences are a strong motive for friendship [8]. The activity
relation holds category and tag as categorical attributes. Paul’s categorical pref-
erence are described by Boolean expressions. Values satisfying the IN condition
are preferred. Numerical attributes range from 1 to the optimum 6. For these
attributes, the syntax defines scoring functions that are minimized or maximized.

SELECT DISTINCT id
FROM activity
PREFERRING
(category IN ('hiking ','climbing ')
PLUS
(LOW CASE WHEN landscape >4 THEN 0 ELSE
ABS(landscape -5) END))

PRIOR TO
(tag IN ('family -friendly ','round tour'));

Paul prefers values for landscape that are 5 or above, else the distance to [5, 6] is
minimized. The PLUS keyword indicates equal importance of the first two prefer-
ences, leading to Pareto evaluation. For intermediate results that are indifferent
to this complex preference, the third base preference is evaluated as decisive
factor as indicated by PRIOR TO. We denote the activity-related preference of a
user ua as P act

ua
which leads to preferred items Iactua

as result of σ[P act
ua

](activity).



Preference-Driven Reciprocal User Recommendations in OSN 7

4.2 Spatial Dimension

Spatial preferences indicate preferred locations of a user, such as POI which are a
base for propinquity [4]. EXASolution provides a spatial function ST DISTANCE
that computes the distance between the spatial attribute geom of a POI and
Paul’s hometown. The division by 5000 and CEIL function implement the d-
parameter that forms equivalence classes of 5000 m. Within an equivalence class,
locations with certain categories are preferred over others, again indicated by
PRIOR TO and a Boolean expression. We denote the spatial preference of a user
ua as P spat

ua
which leads to preferred items Ispatua

as result of σ[P spat
ua

](poi).

SELECT DISTINCT id
FROM poi
PREFERRING
(LOW (CEIL(ST_DISTANCE(geom , ST_SETSRID(
'POINT (695633.9 7104204.1) ' ,3857))/5000)))
PRIOR TO
(category IN ('hut','entertainment '));

4.3 Social Dimension

Demographic information is the base for status homophily, a concept predict-
ing similarity for users with high overlap in dimensions such as age or sex [4].
Paul prefers users around his age and of opposite sex. The age preference is
constructed with a CASE statement that assigns an optimal zero value to users
holding the same age or an age that is up to 10 % lower. Equal importance is
again expressed by PLUS. We denote the social preference of a user ua as P soc

ua

which leads to preferred items Isocua
as result of preference selection σ[P soc

ua
](user).

SELECT DISTINCT id
FROM user
PREFERRING
(LOW CASE WHEN age >=22 AND age <=24
THEN 0 ELSE LEAST ((CEIL(ABS(22-age )/2)),
(CEIL(ABS(24-age )/2))) END)
PLUS (sex IN ('FEMALE '));

5 Recommendation Process

Given activity-related, spatial, and social preferences we obtain item sets Iactua
,

Ispatua
, and Isocua

for a user ua, together with the set Ifrua
of friends of ua. User

models are compared one dimension at a time to determine the similarity of two
users ua and ub, resulting in a vector sua,ub

with functions fi for each dimension:

sua,ub
:= (f1(Iactua

, Iactub
), f2(Ispatua

, Ispatub
), f3(Isocua

, Isocub
), f4(Ifrua

, Ifrub
)) (2)
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Similarity functions fi are normalized to return values in the range [0;1] with
1 as optimum. We refer to previous work published in [7] and select the Ratio
Model of [6] as similarity measure. Starting with ua, a vector sua,ui

is calculated
for each candidate ui, resulting is a relation similarity (uid INTEGER, actsim
DOUBLE, spatsim DOUBLE, socsim DOUBLE, friendsim DOUBLE) in phase P3 of the
overall process according to the following assignment:

actsim = sua,ui
[1] spatsim = sua,ui

[2]
socsim = sua,ui

[3] friendsim = sua,ui
[4]

For phase P4 of Fig. 1, best-matching users for ua are retrieved via a Best Match-
ing User (BMU) query as skyline of dominating similarity vectors:

SELECT DISTINCT uid
FROM similarity
PREFERRING
HIGH actsim PLUS HIGH spatsim PLUS
HIGH socsim PLUS HIGH friendsim;

This process is inherently reciprocal since each dimension of the similarity vector
holds a comparison of items of both the user being the subject of recommenda-
tion and the candidate user being the object. Both item sets are retrieved by
preference queries. The process of Fig. 1 can be formalized as Algorithm 1 which
in turn can be implemented as single User Defined Function (UDF).

Algorithm 1. Best-Matching User Algorithm (BMU)
input: set of users U , target user ut ∈ U
output: set R ⊆ U of best-matching users for ut

BMUAlgorithm(ut, U)

Phase 1: single user models
for (ui ∈ U): determine P act

ui
, P spat

ui
, P soc

ui
;

Phase 2: single user BMO-set calculation
for (ui ∈ U): calculate Iact

ui
:= σ[P act

ui
](activity),

Ispat
ui

:= σ[P spat
ui

](poi), Isoc
ui

:= σ[P soc
ui

](user);

Phase 3: similarity vector calculation
for (ui ∈ U \ ut):

sut,ui := (f1(I
act
ut

, Iact
ui

), f2(I
spat
ut

, Ispat
ui

), f3(I
soc
ut

, Isoc
ui

), f4(I
fr
ut

, Ifr
ui

));
S := S ∪ sut,ui

Phase 4: BMU retrieval
return σ[PBMU ](S);
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6 Benchmarks

An anonymized set of Outdooractive profiles is used to determine activity-related,
spatial, and social preferences. Runtime is evaluated via an EXASolution cluster
consisting of 8 nodes, each with 4 CPUs with 2 cores at 2 GHz and 16 GB of
RAM. Corresponding database relations hold the following number of entries:
activity holds 14,200,000 tuples, poi 592,000 tuples, and user 140,000 tuples.

� Activity-related preferences: Runtime is listed in Table 1. It grows linearly
from 1,000 to 100,000 queries and increases with the number of nodes. The first
observation indicates scalability. Increasing runtime with number of nodes occurs
due to the distributed architecture of EXASolution. If preferences exhibit low
selectivity then a significant communication overhead occurs. 10,000 preference
queries can be computed within seconds, 100,000 queries in less than 5 min.

Table 1. Activity-related preferences

Queries 1 node (sec) 4 nodes (sec) 8 nodes (sec)

1,000 4.99 13.37 12.58

10,000 12.31 22.53 29.09

100,000 264.08 344.96 412.66

� Social preferences: Runtime is listed in Table 2. Scalability is given with
increasing number of queries, however, runtime increases with number of nodes.
10,000 queries can be computed within seconds, 100,000 in under 10 min.

Table 2. Social preferences

Queries 1 node (sec) 4 nodes (sec) 8 nodes (sec)

1,000 19.51 21.38 22.34

10,000 19.21 26.96 34.66

100,000 593.17 675.85 804.74

� Spatial preferences: Runtime is listed in Table 3. For this query type, the addi-
tion of nodes does in fact have a positive effect. Since spatial queries include
expensive distance calculations, runtime is higher compared to other dimensions.

Table 3. Spatial preferences

Queries 1 node (sec) 4 nodes (sec) 8 nodes (sec)

1,000 101.57 43.61 31.86

10,000 870.31 324.45 242.59

100,000 9385.35 3584.27 2707.40

Table 4 lists the evaluation of user models. A single model contains 3 pref-
erence queries. For this scenario, the addition of nodes has a major impact on
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query runtime. With 8 nodes, 100,000 user models can be computed in about
100 min, the same computation takes twice as long for a single node.

Table 4. Computation of user sets of different size

User 1 node (sec) 4 nodes (sec) 8 nodes (sec)

1,000 85.74 47.11 39.50

10,000 736.74 361.09 322.16

100,000 12468.10 6142.08 5954.21

Due to brevity, the total runtime of the recommendation process is going to
be evaluated in subsequent publications with Algorithm1 implemented as UDF.

7 Conclusion

We presented a preference-driven recommendation approach that permits a fast
and intuitive creation of user models for a plurality of dimensions of OSN profiles.
These information-rich models are vital for real-life interactions. As user models
consist of preference queries, they can be directly evaluated on a database. This
is the base for a data-adaptive and reciprocal recommendation process that
incorporates preference dimensions of the recommendation subject and those
of candidates. First benchmarks indicate scalability for large datasets. We are
aware that this short paper left many interesting questions unanswered. How
do we get from profiles to preference queries? How does the system perform
against established recommendation techniques? The answers will require further
research efforts and user studies and are part of an ongoing research agenda.
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Abstract. In this paper, we introduce a community detection app-
roach from heterogeneous multi-relational network which incorporate the
multiple types of objects and relationships, derived from a bibliographic
networks. The proposed approach performs firstly by constructing the
relation context family (RCF) to represent the different objects and rela-
tions in the multi-relational bibliographic networks using the Relational
Concept Analysis (RCA) methods; and secondly by exploring such RCF
for community detection. Experiments performed on a dataset of acad-
emic publications from the Computer Science domain enhance the effec-
tiveness of our proposal and open promising issues.

Keywords: Multi-relational bibliographic networks · Community
detection · RCA

1 Context and Motivation

The primary focus of this work is to extract emergent academic community struc-
ture from the bibliographic through the analysis of the different relationships
among themulti-relational bibliographic data.Although research attention onhet-
erogeneous networks representation and efficient topological algorithm design, a
much more fundamental issue concerning the exploration of the heterogeneous
organization infrastructure and communities detection have not been skilfully
addressed. Indeed, A wide range of approaches have been proposed in the liter-
ature for communities detection in heterogeneous networks. However, they have
deeply focused on topological properties of these networks, ignoring the embedded
semantic information. To overcome this limitation, in recent years, Formal Con-
cept Analysis (FCA) techniques are used for a conceptual clustering. Using FCA
aims to extract communities preserving knowledge shared in each community. In
such FCA based approaches, the inputs are bipartite graphs and the output is a
Galois hierarchy that reveals communities semantically defined with their shared
knowledge or common attributes. Vertices are designed as lattice extents and edges
are labeled by lattice intents (i.e., shared knowledge). However, a Galois hierarchy
is not a satisfactory scheme since an exponential number of communities may be
obtained. Therefore, reduction methods should be introduced. In fact, only very
few researches have actually focused on this difficulty [4].The authors in [5] used the
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 11–18, 2016.
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iceberg method as well as the stability method as a Galois lattice reduction meth-
ods. Authors in [3] identify concepts with frequent intents above a set threshold.
The main limit of this purpose, that some important concepts may be overlooked.
Brandes et al. [1] combine both the iceberg and stability methods, it’s argued that
this approach yields good results for extracting pertinent communities based on
concepts. As it’s described in the survey conducted by Planti and Crampes [4], dis-
covering communities based on FCA techniques is the most accurate, because it
extracts communities using their precise semantics. Nonetheless, they fall short of
giving simple and practical results. Therefore, a new research challenge consists on
detecting communities from heterogeneous multi-relational networks. In order to
discover communities with a well defined set of properties, we first need to extract
the corresponding relations among multiple existing relations. In this paper, we
introduce a query navigation approach based on the use of the RCA techniques [6]
designed within a multiple academic databases for hidden relationships (or links)
detection. This will have significant impact, it can help foster new collaborative
teams, help with expertise discovery and in the long term, guide research teams
reorganization consistency with collaboration patterns.

The paper is organized as follows. In the next section, we describe our com-
munity detection approach. Section 3 presents our experimental results, while
Sect. 4 summarizes our contributions.

2 Proposed Community Detection Approach

In this section, we present our community detection approach which aims to
model and to extract academic community structure from multi-relational bib-
liographic data. In order to achieve these goals, the proposed approach relies on
two main stages: the multi-relational bibliographic hypergraph modelling stage;
and the query navigation for communities discovering stage. We firstly proceed
by describing the preliminary concepts of our proposal.

A. Preliminary Concepts

• Formal context: is a triplet K = (O,A, I), where O represents a finite set
of objects, A is a finite set of items (or attributes) and I is a binary (incidence)
relation (i.e., I ⊆ O × A). Each couple (o, a) ∈ I expresses that the object

authors 
conferences 

topics 

contibutions a1  

a3  a2  

c1  

t1  

ar1  
c2  

t2  ar2  

cr1  cr1  
countries 

Fig. 1. An example of a multi-relational bibliographic hypergraph.
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o ∈ O contains the item a ∈ A.O is called one-valued context. A worth of interest
link between the power-sets P(A) and P(O) associated respectively to the set
of items A and the set of objects O [2].
• Formal concept: A pair c = (O, A) ∈ O × A, of mutually corresponding
subsets, i.e., O = ψ(A) and A = φ(O), is called a formal concept, where O is
called extent of c and A is called its intent .
• A partial order: on formal concepts, w.r.t. set inclusion [2], is defined as: ∀
c1 = (O1, A1) and c2 = (O2, A2) two formal concepts, c1 ≤ c2 if O2 ⊆ O1, or
equivalently A1 ⊆ A2.
• Galois concept lattice: Given a context K, the set of formal concepts C
is a complete lattice LC = (C, ≤), called Galois (concept) lattice, when C is
considered with set inclusion between concepts intents (or extents) [2].
• Relational Context Family (RCF): is a pair (K, R) where K = {Ki}i=1,...,n

is a set of (object-attribute) contexts Ki = (Oi, Ai, Ii) and {rj,l}j,l∈{1,...,n } is
a set of relational (object-object) contexts rj,l ⊆ Oj × Ol, where Oj (called
the domain of rj,l) and Ol (called the range of rj,l) are the object sets of the
contexts Kj and Kl, respectively. Oj is called the domain of rj,l (dom(rj,l)) and
Ol is called the range of rj,l (ran(rj,l)) [6].

A function rel is associated with a RCF which maps a context K = (O,A, I)
∈ K to the set of all relations r ∈ R starting at its object set K : rel(K) = {r
∈ R, where dom(r) = O}. Hence, given a relation r and a quantifier f chosen
within the set F = {∀, ∃, ∀∃, ≥, ≥f , ≤, ≤f}. k maps an object set from ran(r) to
an object set from dom(r) as k : F×R×∪i=1,...,n P(Oi) → ∪i=1,...,n P(Oi) [6].
Scaling a context along a relation consists in integrating the relation to the
context in the form of one-valued attributes using a scaling operator. A context is
scaled upon all the relevant relations originating from the context by augmenting
K with all the resulting relational attributes. Thus, an object owns an attribute
depending on the relationship between its link set and the extent of the concept,
i.e., the instances of a relation r, say rk(oi, oj), where oi ∈ Oi and oj ∈ Oj ,
are called links. The evolution of each context Ki ∈ K from the input RCF
yields a sequence Kp

i whose zero member K0
i = (Op

i , Ap
i , Ip

i ) is the input context
Ki itself. From there on, each subsequent member is the complete relational
expansion of the previous one upon the relations r from rel(Ki). This yields a
global sequence of context sets Kp and the corresponding sequence of lattice sets,
called the Concept Lattice Family (CLF). Thus, the concept lattice family is a
set of lattices that correspond to the formal contexts, after enriching them with
relational attributes.

In this work, we consider the exists scaling. Hence, let rij ⊆ Oi × Oj be
a relational context. The exists scaled relation r∃

ij is defined as r∃
ij ⊆ Oi ×

B(Oj , A, I), such that for an object oi and a concept c:(oi, c) ∈ r∃
ij ⇔ ∃x, x ∈

o′
i ∩ Extent(c).

B. Multi-relational Bibliographic Hypergraph Model
Three concepts are involved in our model: object context, relation context, and
concept lattice family. As illustrated in Fig. 1, a set of authors {a1, a2, . . . , an},
locates in a given country {cr1, cr2, . . . , crp}, work closely with each other, under
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Fig. 2. Top. The objects contexts. Bottom. The relations contexts.

Fig. 3. Country and Conference lattices.

different topics {t1, t2, . . . , tk}; some of them share scientific contributions (con-
tributions {ar1, ar2, . . . , arm} within a set of conferences {c1, c2, . . . , cl}). To
generally describe such collaboration data, we define an object context as a
set of objects or entities of the same type, e.g., an author context is a set of
authors and define a relation context as the interactions among objects con-
texts, e.g., (author, topic) relation, (country, conference) relation., etc. We use a
relational concept family to describe the relations contexts and the objects
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contexts constructed from a multi-relational bibliographic hypergraph. Figure 1
depicts the data schema of the handled multi-relational bibliographic hyper-
graph. The relational concept family is made of 5 objects contexts: KAuthors,
KCountries, KConferences, KTopics, KContributions; and 5 relations contexts:
rLocates, rHolds, rHas, rDiscusses and rAddressed−By. We report in Fig. 2 (Top)
these 5 objects contexts and in Fig. 2 (Bottom) the 5 related relations contexts.

The overall process of RCA follows a multi-FCA method [6] which allows
to build a set of lattices called Concept Lattice Family (CLF ). It’s an itera-
tive process which generates at each step a set of concept lattices. First, the
process constructs concept lattices using the objects contexts only. Then, in
the following steps, it concatenates objects contexts with the relations contexts
based on the existential scaling operator that produce scaled relations. Hence,
the exists scaled relation translates the links between objects into conventional
FCA attributes and extracts a collection of lattices whose concepts are linked
by relations. Figure 3 depicts an example of Country and Conference lattices of
the generated CLF.

C. Query Navigation for Communities Discovering
The second stage of the proposed approach aims to extract a set of academic
communities by performing the following three steps:

• Step 1: users’ relational query submission: the aim of this step is to
transform the submitted user query to a Relational Query RQ which is composed
of several Simple Queries (SQ). Hence, for a context K = (A,O,I), a simple query
denoted by SQ = {oq}, is a set of objects satisfying the query (or the answer set)
with oq ⊂ O.

Definition 1 (Relational Query). A Relational Query RQ = {rq0, rq1, . . . ,
rqm} on a relational context family(K,R) is a triplet RQ= (q′

s, rst, q′
t) with:

- q′
s and q′

t, source query and target query respectively, are a set of SQ.
- rst is the relation between q′

s and q′
t. It leads one-to-one mapping between q′

s

and q′
t.

• Step 2: concept Lattice Family Exploration: to explore the concept lattice
family, we have to construct a query path QP which allows to know the path
that we have to follow and specify the source and the target lattices.

Definition 2 (Query Path). Let QP = {qp0, qp1, . . . , qpn} and qpi is a pair
((qs, Ls), (qt, Lt)) where Ls and Lt ⊂ CLF , the source and target lattices
respectively. The Query Path QP is the inverse order of the relational query. It
means qp0 = rqm and qpn = rq0; with qs0 = q′

tm and qt0 = q′
sm

• Step 3: community detection: in order to detect academic communities,
we propose a new method called Quering Navigation that leads to navigate
between Galois Lattices based on the extracted query path QP . It takes as
input the query path QP = qpk with qp = ((qps, Ls),(qpt, Lt)) and outputs the
identified community as an answer to the user query Q. Query Navigation
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starts by handling all concepts C of the source lattice Ls, in order to extract the
corresponding concepts (Ci) of the initial query path qp0. Query Navigation
proceeds by identifying the concept extent of the lattice Ls and then extracts
the concepts that contains an extent related to the query qps. The result of the
initial phase is a set of concepts Ci that respond to the query qps. The second
phase of Query Navigation, consists in generating iteratively a set of concepts
containing the set of concepts (Ci) extracted in the initial phase. It consists
on handling the corresponding concept intent of the lattice Lt, for extracting
the set of concepts (Ci+1) containing the Ci. If there is no more query path to
be explored, Query Navigation extracts the extent of the last selected concept
(Ck). This set of Ck extent represents the set of individuals that constitutes the
academic community returned to the user.

3 Experimental Evaluation

We collect data from two bibliographic databases. We use the well known data-
base DBLP and we access on AMiner database for taking keywords, institutions
and research topics in order to complete our conceptual hypergraph model. We
keep only four research topics (Data Mining, Computer Network, Artificial Intel-
ligence, Human Computer, Computer Graphics) and we pick only a few represen-
tative conferences for the five areas (11 conferences). The built dataset contains
914 contributions and 336 authors since 2010. The Query Navigation algorithm
is developed in JAVA and tested on a Windows 7 with Intel core i5 2.4 GHz and
8 GB of Ram.

Baseline Model: for enhancing the effectiveness of our approach, we have
selected the most popular baseline communities structure which suggests com-
munities as a set of authors belonging to the same affiliation. To carry out our
experiments, we consider two simple queries (Q3 and Q4) and two relational
queries (Q1 and Q2). We study whether our approach is able to capture the hid-
den relations between authors and if it can responds to different type of queries:

Q1: 4 entities, i.e., Authors, Countries, Conferences and Topics; and 3 relations,
i.e., Locates, Holds and Has.
Q2: 3 entities, i.e., Authors, Countries and Conferences; and 2 relations, i.e.,
Locates and Holds.
Q3: 2 entities, i.e., Authors and Countries; and 1 relation, i.e., Locates.
Q4: 2 entities, i.e., Authors and Topics; and 1 relation, i.e., Discusses.

Furthermore, we consider two different ground truths [8]. The first ground truth
GT1: each explicit authors’ topic in the dataset is a ground truth community,
it contains authors nodes which share the same topic. The second ground truth
GT2: each explicit author conference is a ground truth community, it contains
authors nodes which participate in the same conference.
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Effectiveness of our approach: the performance is assessed by the measures of
Recall, Precision and Fβ measure, computed over all vertices [7]. These measures
attempt to estimate whether the prediction of this vertices in the same commu-
nity was correct. Given a set of algorithmic communities C and the ground truth
communities S, precision indicates how many vertices are actually in the same
ground truth community (Precision = |T∩S|

|T | ). The Recall indicates how many
vertices are predicted to be in the same community in a retrieved community
(Recall = |T∩S|

|S| ), and Fβ measure is the harmonic mean of Precision and Recall
(Fβ measure = β × Precision×Recall

Precision+Recall where β ∈ {1,2}).

Fig. 4. Average score of the Precision, Recall, F1 measure and F2 measure of our
approach vs. those of the baseline (B).

Thus, according to the sketched histograms in Fig. 4, we can point out that
our approach outperforms the baseline. In fact, as expected, the Recall values of
the baseline are much lower than those achieved by our approach among the two
ground truths (GT1 and GT2). As we show, the average Recall achieves 83.87 %
and 65,02 % comparing with the baseline which has 28,31 % and 14,58 % in term
of Recall vs. an exceeding about 55.5 % and 50.4 % over the query Q4 among
the two ground truths respectively. Indeed, in term of F2 measure our approach
(67,61 %, 65,7 %) outperforms considerably the baseline (23,44 %, 16,5 %) over
the query Q4 among GT1 and GT2 respectively, in this case we can say that the
baseline have only a small number of communities detected fairly well and not
many detected communities reflect to the ground truth communities.

However, the percentage of Precision for the baseline outperforms slightly
our approach according to Q1, Q2 and Q3. Whereas, for Q4, our approach has
an average of 68,57 % showing a drop of 28,31 % vs. an exceeding about 40.2 %
against the baseline. A significant observation shows that the relational query
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Q1 have better Recall (55,68 %) than that of the simple query Q3 and that of
the relational query Q2 (44,85 %). We can conclude that the relational query
improves the community structure and leads to extract relevant communities.
Hence, considering four different queries, our approach outperforms the baseline
in terms of Recall, F1 measure and F2 measure often by a large margin in the
Recall score.

4 Conclusion

In this paper, we have presented a novel approach for academic communities dis-
covering from heterogeneous multi-relational bibliographic networks. Our app-
roach takes into account the different entities and relationships expressed in
a bibliographic hypergraph. Indeed, we made use of the RCA techniques to
model and explore heterogeneous multi-relational bibliographic network via a
new introduced method, called: Query Navigation, for academic communities
detection. As part of our future work, we plan to address a more diversified set
of queries by the integration of other quantifier such as ∀ quantifier.
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Abstract. As everyone can enrich or rather impoverish crowd-sourcing
contents, it is a crucial need to continuously improve automatic qual-
ity contents assessment tools. Structural-based analysis methods devel-
oped for such quality prediction purposes generally handle a limited or
manually fixed number of families of nodes and relations. This lack of
genericity prevents existing algorithms for being adaptable to platforms
evolutions. In this work, we propose a generic and adaptable algorithm,
called HSQ, generalising various state-of-the-art models and allowing the
consideration of graphs defined by an arbitrary number of nodes seman-
tics. Evaluations performed over the two representative crowd-sourcing
platforms Wikipedia and Stack Exchange state that the consideration of
additional nodes semantics and relations improve the performances of
state-of-the-art approaches.

Keywords: Link-analysis · Heterogeneous graphs · Quality

1 Introduction

Scientific literature has demonstrated strong correlations between users author-
ity and contents quality on collaborative platforms [6,8,12,21]. Statistically,
authoritative users are more likely to produce high quality content than
others. Many state-of-the-art link analysis approaches exploit this mutual rein-
forcement principle between quality and authority for a quality assessment
task [3,11,14,17,21]. However, most of them suffer from two major limitations.
First, the lack of genericity of the formulations restricts them to a particular
platform, making the solutions hardly transposable from one portal to another.
Second, the lack of adaptability of the formulations prevents the algorithms
from anticipating changes in the underlying graph. Thus, additional semantics
of nodes or relations are most of the cases impossible to handle. These two
limitations, shared by many structural-based algorithms, constitute the main
motivations of our work. Our contributions are as follows:

– We propose a generic formulation of collaborative platforms using heteroge-
neous graphs and an unsupervised algorithm, HSQ (Heterogeneous Struc-
tural Quality), handling an unpredefined number of semantics of nodes and
relations;

c© Springer International Publishing Switzerland 2016
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– We demonstrate the genericity of the proposal by instanciating three different
and recent state-of-the-art algorithms and show how to easily integrate new
semantics of nodes and relations;

– We conduct empirical studies on two real data sets from the Wikipedia and
Stack Exchange portals that demonstrate a significant interest of considering
additional entities and relations for the quality assessment task in crowd-
sourcing platforms.

2 Related Work

A first family of models for the quality assessment task on collaborative platforms
exploit contents signals. Textual indices, numbers of citations or content length
are some examples of content features used by content-based quality models. For
example, on Wikipedia, it has been shown that the number of words per article [4]
and the lifespan of the edits [1] are good quality predictors. However, content-
based signals are too specific to a specific platform. Our work falls in the second
family of approaches exploiting structural signals from the relations between the
entities. Many works has empirically demonstrated correlations between users
authority and contents quality, justifiying the wide range of PageRank [16] and
HITS [13] based methods developped in the literature. On Wikipedia, a study of
Dalip et al. [7] shows that structural features represent the most important family
of predictors in a quality prediction task. More particularly, non considering
such features leads to the greatest loss in terms of model quality. Hu et al. [10]
propose to identify high quality articles on Wikipedia by exploiting this mutual
dependency over a bipartite graph associating the articles to their contributors.
Still on Wikipedia, a previous work [8] shows the interest of considering a co-
edit relation between authors and reviewers to identify high quality articles. The
study postulates that authoritative users get used to collaborate to produce high
quality articles. Zhang et al. [20] apply the PageRank algorithm to on-line forums
to identify authoritative users. Campbell et al. [5] and more recently Jurczyk et
al. [12] make use of the HITS algorithm over a users-interaction graph to show
a positive correlation between authority and quality. Recent analysis on Stack
Overflow [15] and Quora [2,18] underlines the cyclic relation between content
quality and producers authority.

If this mutual reinforcement principle has been extensively exploited for sim-
ple graphs considering a few types of nodes and relations, it seems that no
formulation has been proposed for more complex graphs and in particular for
heterogeneous graphs.

3 Approach Description

Notations. Let G = (H,V) be an heterogeneous graph defined over m families
of nodes H = {Ui}1≤i≤m, and a set of binary relations V ⊆ H×H. We denote by
ni the number of entities in the family Ui. Let (Ui,Uj) ∈ V be a pair of families.
We note Vij the relation defined over Ui × Uj and Aij the associated adjacency
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matrix. We denote by qi ∈ [0, 1]ni the quality scores vector of the entities in the
family Ui.

Model. Firstly, for each pair of families (Ui,Uj) ∈ V, we suppose a pair of influ-
ence functions (fij , gji) to model the reinforcement principle. Informally, the
quality of the nodes in Ui influences the nodes quality in Uj and conversely, the
nodes quality in Uj influences back the nodes quality in Ui. This cyclic relation is
illustrated in Fig. 1(a). More formally, we impose xj = fij(yi) and yi = gij(xj),
with xi ∈ [0, 1]ni and yi ∈ [0, 1]ni being two vectors of partial quality scores.
Note that if (Ui,Uj) /∈ V, we assume fij = gij = 0. Secondly, by considering
linear aggregations of the different influences (see example in Fig. 1(b)), we have
xi =

∑m
j=1 fji(yj) and yi =

∑m
j=1 gij(xj). In this work, we consider the case

where influence functions are directly expressed by the adjacency matrices corre-
sponding to each relation. Formally, ∀Vij ∈ V, fij = AT

ij and gij = Aij . Finally,

by benoting x(t)
i and y(t)

i the partial quality scores at the tth iteration of a label
propagation process, the proposed quality model is expressed as follow:

Ui Uj

fij

gji

Uj Ul

Ui

Uk

fil

fjl

fkl
(a) (b)

∑

Fig. 1. (a) Reinforcement principle between two families Ui and Uj such that (Ui,Uj) ∈
V. (b) Linear aggregation of incoming influence functions for family Ul.

x(t)
i =

m∑

j=1
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Ajkx
(t−1)
k and y(t)

i =
m∑

j=1

Aij

m∑

k=1

AT
kjy

(t−1)
k (1)

The quality qi for each family Ui ∈ V is computed as an aggregation function Ai

of the partial quality scores xi and yi, formally qi = Ai(xi,yi). In this work, Ai

is the average function ∀i ∈ {1, ...,m}.

Computation. The proposed algorithm, HSQ (Heterogeneous Structural Qual-
ity), is an iterative label propagation procedure propagating the adjusted scores
through the relations Vij . Main steps are the following. (1) Initialization. For
each Ui ∈ H, set x(0)

i and y(0)
i to random vectors. (2) Propagation. For each

Ui ∈ H, update scores x(t)
i and y(t)

i with Eq. (1). (3) Normalization. Set
||x(t)

i || = 1 and ||y(t)
i || = 1. (4) Return Ai(xi,yi).

Steps (2) and (3) are repeated until a convergence step is reached. Conver-
gence of the algorithm for the trivial case m = 1 is demonstrated in [9]. For the

general case m ≥ 1, we stop the propagation when
m∑

i=1

||x(t)
i −x(t−1)

i ||2 + ||y(t)
i −

y(t−1)
i ||2 ≤ ε. The algorithm returns a vector of scores qi ∈ R

ni for each family
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of nodes Ui ∈ H. These scores should be ranked independently for each family
in decreasing order of (predicted) quality.

Instances and Competitors. Wiki platforms are modelled with heterogeneous
graphs using two families of nodes, the set of users and the set of articles (see
Fig. 2(a)). Question and Answering websites are modelled with four families of
nodes : users, answers, questions and comments (see Fig. 2(b)).

V11

V12

V22

Users Articles

U1 U2

Users Answers Questions

V13

V12 V23

V22

U1 U2 U3 U4

V11 V44V33

V34

V14

V24

Comments(a) (b)

Fig. 2. (a) Wiki platform instance (m = 2). (b) Stack Exchange instance (m = 4).

On Wiki, the Basic model [10] constitutes a particular instance of the pro-
posal, considering a bipartite graph (m = 2). Inter-user and inter-document
relations are not considered, i.e., V11 = V22 = ∅. HSQ completes the previous
model by considering collaborations V11 between users. Corresponding adjency
matrix is such that A11(i, j) is the number of articles users i et j have co-edited.
The degree of collaboration of the users is captured.

On Q&A websites, the HITS approach [11] and NCR model [21] are also
particular instances of our model. In [11], a simple graph (m = 1) is considered,
with U1 being the set of users. Authors assumes that A11(i, j) = 1 if user j has
answered at least once to a question formulated by user i. In [21], a graph with
three families of nodes (m = 3) is considered, with U1, U2 and U3 being the set
of users, answers and questions respectively. HSQ completes the NCR model
by considering an additional set of entities U4 (the comments) and an inter-user
relation V11. Adjency matrix associated to the inter-user relation is such that
A11(i, j) is the number of answers i has provided before j to common questions.
The reactivity of the users is captured.

4 Experiments

4.1 Datasets Description

Wikipedia.1 A subset of roughly 23 000 articles was used. These articles were
generated by 110 000 users and have been reviewed by the Editorial Team Assess-
ment of the WikiProject. Each article is thus labelled according to the WikiPro-
ject quality grading scheme and belongs to one of the six class FA � A � GA �
B � C � S. We assigned to each article i a numerical label yi that respects
1 https://en.wikipedia.org/wiki.

https://en.wikipedia.org/wiki
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the user preferences. From yi = 0 (class S, Stub Articles, i.e., very bad quality
articles with no meaningful content) to yi = 5 (class FA, Featured Articles, i.e.,
complete and professional articles). This scale is used as the ground truth in
our evaluation. Recall we aim to rank articles by decreasing order of predicted
quality. The repartition of the articles per class is summarized in Table 1.

Table 1. Statistics for the Wikipedia dataset.

Class FA A GA B C S

Label (yi) 5 4 3 2 1 0

Number of articles 245 51 346 1 012 1 946 18 823

Stack Exchange.2 The public dump of the Stack Exchange platform was used
for evaluation. From October 2008 to September 2014, roughly 1 million of users,
over 109 differents subplatforms, have generated more than 1.5 millions of ques-
tions, 2.5 millions of answers and 6.5 millions of comments. Numerical answers
up votes, ranging from −65 to 2 182 for very popular answers are converted into
integers. A first scale, noted bs, is a binary scale where all negative answers,
i.e., answers with score in ] − ∞, 0], constitute negative examples (yi = 0) while
all answers with positive scores constitute positive examples (yi = 1). A second
scale, used for ranking evaluation, noted rs, is detailed in Table 2. Excepted for
answers judged as bad quality (with negative scores), classes are balanced. Note
that using bs, we evaluate the capacity of the models to identify positive answers.
Using rs, the capacity of the models to rank answers in decreasing order of qual-
ity is evaluated.

Table 2. Answers scores discretization for the Stack Exchange dataset.

Class A B C D E

Scores interval ] − ∞,−1] {0} {1} {2, 3} ]3,∞[

Number of answers 52 540 542 562 629 443 629 443 651 825

Label yi 0 1 2 3 4

4.2 Evaluation Metrics

The ranking over the articles and the answers is evaluated with the Nor-
malized Discount Cumulative Gain at k (NDCG@k) [19]. Let σ be the per-
mutation ordering the documents by decreasing order of predicted quality.
The DCG@k is defined as DCG(σ, k) =

∑k
i=1

2
yσ(i)−1
log(1+i) , where yj is the label

of document j. To compare different rankings, the normalized DCG is used,

2 http://blog.stackoverflow.com/2009/06/stack-overflow-creative-commons-data-
dump/.

http://blog.stackoverflow.com/2009/06/stack-overflow-creative-commons-data-dump/
http://blog.stackoverflow.com/2009/06/stack-overflow-creative-commons-data-dump/
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NDCG(σ, k) = DCG(σ,k)
DCG(σ∗,k) , where σ∗ is the optimal ranking. On Wikipedia, σ∗

places all Features Articles on top, then all articles belonging to class A, and so
on. On Stack Exchange, the degree of relevance of an answer is given by scale bs

or rs. The average NDCG@k is reported over all the questions. We also evaluate
the precision of the solutions. On Wikipedia, we report the fraction of positive
predictions per class. On Stack Exchange, the average fraction of positive answers
beyond the first k answers over all the questions is reported.

4.3 Experiment Results

Results on the Wikipedia and Stack Exchange datasets are summarized in
Tables 3 and 4 respectively. In both cases, user parameter ε is fixed to 10−4.

Table 3. Evaluations of the two solutions on the Wikipedia dataset.

Model FA A GA B C S

N
D

C
G Basic 73.77 75.14 80.76 81.87 84.11 93.11

HSQ 74.39 75.75 81.54 81.19 83.16 93.80

P
re

c
. Basic 62.45 0 8.67 39.03 34.53 94.17

HSQ 64.9 0 17.92 29.55 30.27 93.16

Table 4. Evaluations of the three solutions on the Stack Exchange dataset using the
NDCG metric on scales bs and rs and the Precision metric on scale bs.

Model k=2 k=3 k=4 k=5 k=10 k=20

N
D
C
G

HITS
bs 88.38 88.89 90.13 92.47 95.01 95.39
rs 67.27 71.26 75.64 80.29 85.21 85.98

NCR
bs 89.22 89.64 90.81 93 95.37 95.72
rs 69.33 73.07 77.26 81.26 86.21 86.91

HSQ
bs 89.38 89.92 91.15 93.27 95.5 95.82
rs 69.49 74.47 77.85 82.08 86.41 87.05

P
re
c.

HITS 81.41 80.38 79.14 77.85 49.92 26.63
NCR 82.52 81.28 79.89 78.31 50.00 26.65
HSQ 82.83 81.85 80.55 78.77 50.10 26.66

On Wikipedia, regarding classes FA and GA, experiments are very conclusive.
Proposed solution clearly outperforms Basic [10], suggesting a non-negligible
benefit (+2% and +9% for FA and GA articles resp.) of considering the strength
of collaborations to identify high quality articles. Interestingly, the co-edit rela-
tion integrated in HSQ is not helpful for discriminating mid or poor quality
articles (classes B, C, and S. On Stack Exchange, the interest of the proposition
is immediate. For both metrics, proposed solution outperforms competitors. We
conclude that both users reactivity and users engagement bring discriminating
informations to identify authoritative users and, therefore, high quality answers.
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5 Conclusions

In the scientific litterature, structural-based analysis approaches for quality pre-
diction purpose rely on graphs considering a few number of families of nodes
and relations. Moreover, most of them suffer from a common lack of genericity
and adaptability. To tackle these limitations, an unsupervised structural based
algorithm, HSQ, was proposed. Base on a heterogeneous graph representation
of the data, the proposal enables the reformulation of various state-of-the-art
methods. By instanciating HSQ over the two major collaborative platforms
Wikipedia and Stack Exchange, we have shown the genericity of the proposed
solution. Experiment results have suggested that considering additional entities
and interactions in the model was beneficial. In future work, we plan to study
different influence functions in order to give different strengths for each family
of entities.
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Abstract. To support decision making in our business and personal
lives, we propose an integrated model of stock prices and a novel method
based on it for analyzing the relationships of listed companies. In our inte-
grated model, the stock price of a listed company consists of three factors:
market-index, sector-index and pure-price. By utilizing this model, we
can relax the affections of the market and sectors, and analyze the rela-
tionship between companies on the basis of their business performance by
comparing their pure-prices. Experiments using a newly collected data
set validated the proposed integrated model and methods.

Keywords: Relationship mining · Investment information analysis ·
Decision making support · Stock price analysis

1 Introduction

Modern companies connect and cooperate with each other, so analyzing relation-
ships between organizations is an important and continuing topic for decision
making support [8]. In this paper, we focus on relationships affecting company
performance and propose a method for analyzing relationships between compa-
nies that uses stock prices and news articles. The stock price is one of the most
important factors reflecting company performance. Generally, a rising stock price
is correlated with good performance. We may identify the relationships between
companies by checking similarities between the transitions in their stock prices.

Intuitively, it is possible to compare the stock prices of two companies to
estimate their relationship in terms of business performance. If the trends of
their stock prices are similar to each other, their business performance may
be related. We calculate the relatedness of two companies on the basis of the
sequences of their stock prices. There are two challenges when using stock prices
to analyze the relationship between two companies.

1. Can we apply the raw data of stock prices to relationship mining? The answer
is “no” because the stock price of a listed company may be affected by the
market environment and other factors. The first challenge is to break the
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Funding.
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stock price into usable components. We separate a company’s stock price
into three parts: market-index, sector-index, and pure-price (Sect. 3).

2. Should we use the stock price data for a company from the time when it
became listed on a stock exchange? The answer is “no”. One reason is that
using much data requires complex calculation. Another reason is the relation-
ships between companies are dynamic and change often. The second challenge
is to select an appropriate data range of stock prices for further analysis
(Sect. 4.4).

The major contributions of this paper can be summarized as follows.

– We propose an integrated model to extract the pure-price of a company
by relaxing the affections of the market and the sector to which it belongs
(Sect. 3).

– We propose a method to enable the relationships to be analyzed by comparing
the value trends, not the absolute values (Sect. 4).

– We propose a method for selecting the sub-sequences of pure-prices for com-
parison by using news articles (Sect. 4.4).

2 Related Work

Various groups have studied companies’ relationships. Jin et al. [5] proposed
a method for discovering relationships between companies from the Web sites.
They also proposed a method for building networks of companies. Only the text
information on the Web sites is used to study lawsuit and partner relationships.
We do not limit the kinds of relationships and study relationships on the basis
of company business performance.

Michael et al. [3] showed that the result of a football game affects the stock
prices of the football teams’ sponsors. While they find the sponsor relationships
manually, we find relationships automatically by utilizing the stock prices.

Many studies have investigated the relationship between stock prices and the
text data such as that in news articles or SNS messages. Tetlock [7] studied how
the pessimism from the Wall Street Journal columns affecting the value of the
Dow Jones Industrial Average. Bollen et al. [2] investigated how the collective
mood states reflect in Twitter postings correlated with the Dow Jones Indus-
trial Average. These studies revealed that text data is an important information
source for analyzing the stock price. In our study, we use the news articles as
additional information to help identify appropriate data scopes of stock prices
for comparison.

3 Integrated Model of Stock Prices

To avoid comparing two stock prices including affections of these companies’
markets and the business sectors they belong to, we propose an integrated model
of stock prices. We also propose a method that uses this model to relax the stock
prices.
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We separate the stock price of a company into three parts: market-index,
sector-index, and pure-price. The market-index is the stock market index, the
sector-index is the industry’s stock index, and the pure-price reflects the com-
pany’s business performance. The model integrating the three parts is based on
seasonal adjustment [1]. The integrated model of stock prices is given by

Xt = Ct × It × Mt (1)

where, Xt is a stock price, Ct is a pure-price, It is a sector-index and Mt is a
market-index as of market closing on date t. It is the business sector stock index,
and Mt is the market stock index (TOPIX, Tokyo Stock Exchange (TSE) 2nd
stock index, etc.). The business sectors are determined by TSE. The pure-price
is calculated using the integrated model.

4 Method for Analyzing Relationships Between
Companies

4.1 Overview

Figure 1 shows the process flow of our method. We collect news articles and
stock data in advance and store them in two databases.The user inputs either
the target company name or company code for which the user wants to find
related companies. The output is a ranked list of companies related to the target
company.

To analyze the relationship between two given companies, at first, we normal-
ize their pure-prices in order to estimate their relationship with change trends
but not price values. We then automatically select the sub-sequences of normal-
ized pure-prices by analyzing the news articles related to these companies. Next,
we compare the sub-sequences to estimate whether the two companies related
to each other.

Fig. 1. Process flow
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4.2 Data Collection

The stock price data download site1 we use to obtain stock price data offers
stock price indexes (TOPIX, business sector stock price index, etc.), and listed
company’s stock prices from 2007 to date. Our target companies were handled
in Yahoo! Finance2 and their stock price data did not have missing values. We
used news articles published on or after September 14, 2010, so we used stock
price data from 2010 to 2015.

The news source, ZAIKEI SHINBUN3, is a Japanese online news site that
offers categorized articles. We used news articles in “company and industry”
category as they directly affecting stock prices. We used news articles from
September 14, 2010 to December 30, 2015, the last day of the TSE in 2015.
Companies for which there was not complete stock data for the selected period
by news articles were excluded.

A news article was judged to be related to a company if the company’s name
was mentioned in it. We utilized the company names used in Yahoo! Finance.

4.3 Pure-Prices Normalization

The percentage change in stock price from one day to the next is an important
index for analyzing stock prices. It is the percentage increase or decrease in price
from the previous day’s closing price to the current day’s one. In this, we reveal
the transition of stock prices from the previous day by change rates to investigate
one from the dates of news articles.

Since calculation of the change rate requires stock price data for the previous
day, the change rate for the day when the stock is first traded is 0. The equation
for calculating the change rate is

δd =

⎧
⎨

⎩

0, d = 1
cpd − cpd−1

cpd−1
× 100, d > 1

(2)

where, cpd−1 is the previous day’s closing price, and cpd the current day’s one.
In some cases, the absolute value of δd is very large due to stock splits or

reverse stock splits. We treat value changes following stock splits or reverse stock
splits as outliers. We convert outliers to the average value of the price the day
before and the day after the split. All change rates are divided by the highest
absolute value of the change rate for the two companies being compared, and
the result is normalized from −1 to 1.

4.4 Sub-sequence Selection

To overcome the huge computational complexity and handle the dynamic
changes in company relationships, we compare stock prices with selected com-
parison ranges, i.e., we select sub-sequences of stock prices.
1 http://k-db.com/.
2 http://finance.yahoo.co.jp/.
3 http://www.zaikei.co.jp/.

http://k-db.com/
http://finance.yahoo.co.jp/
http://www.zaikei.co.jp/
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Company relationships change dynamically, and we should consider current
relationships in decision making to look toward the future benefits. News articles
are essential factors in determining whether stock prices increase or decrease [7],
and it is highly possible that stock prices change a lot. Accordingly, we select
the sub-sequence for comparison as the period from the date of the latest news
article about an input company to December 30, 2015. Using this sub-sequence,
we compare the pure-prices of the two companies being compared and calculate
their relatedness score.

Our oldest news articles available were dated September 14, 2010. The cur-
rent date is represented by tc and the date of the news article being reported
is represented by τ . If the comparison period [τ, tc] is long enough (i.e., many
pure-prices are available for comparison), the relatedness score is calculated by
comparing the pure-prices in this period. If the period is short (i.e., few pure
prices are available for comparison), the relatedness score is bipolar, i.e., either
extremely large or extremely small. The relatedness score thus cannot be calcu-
lated if the sub-sequence is less than a certain length. In this study, we arbitrarily
set the minimum length of the period [τ, tc] is 304. In other words, the following
equation holds:

(tc − τ) + 1 ≥ 30 (3)

4.5 Relatedness Score

Various methods are available for encoding time series data into strings and
for evaluating correlation between time series data. We use three methods for
estimating the relatedness of two companies by comparing their pure-prices in a
certain duration, which is decided by considering news articles.

– Hamming distance: First, we encode the time series of pure-price into strings.k,
the number of characters, is a parameter determined experimentally5. Then,
we measure the difference between two strings. We decide the replacement
cost on the basis of dictionary order. Relatedness score rh(A,B) is calculated
using

rh(A,B) =
dh(A,B)
len(A)

(4)

where, dh(A,B) shows the Hamming distance between sub-sequences A, B
and len(X) shows the length of a string X. In this paper, we use len(X) in
the same definition. The closer rh(A,B) is to 0, The higher the relatedness
score.

– SAX (Symbolic Aggregate approXimation) [6]: We use the length of a sub-
sequence as w frames since the news event occurred and deal with daily pure-
prices like data after piecewise aggregate approximation (PAA). Relatedness
score rs(Q,C) is calculated using

rs(Q,C) =
dm(Q,C)
len(Q)

(5)

4 Future work includes determining a suitable minimum value.
5 Future work includes considering a method for determining a suitable value of k.
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where, dm(Q,C) shows the distance between sub-sequences Q, C by SAX. The
closer rs(Q,C) is to 0, The higher the score.

– Partial correlation coefficient: We evaluate the correlation between two pure-
prices after removing the effect of the time variable. Relatedness score
rp(X,Y, T ) is calculated using

rp(X,Y, T ) =
pcor(X,Y, T )
lendata(X)

(6)

where, pcor(X,Y, T ) shows partial correlation coefficient between sub-
sequences X, Y by removing the effect of the time data T. The closer
rp(X,Y, T ) is to 1, The higher the relatedness score.lendata(X) represents
the number of X elements.

5 Evaluation

We experimentally evaluated our integrated model of stock prices and our meth-
ods for analyzing relationships between companies. We calculated the value of
nDCG(Normalized Discounted Cumulative Gain) [4] by comparing the related-
ness ranking made by human participants with the one made using our methods.
The four participants evaluated the relationships between each input company
and the companies on the merged list using a five-grade mechanism, where 1
and 5 denote the minimally and highly related, respectively. We first compared
the nDCG values of three methods for evaluating relatedness scores. Next we
compared the nDCG value of the ranking made using the pure-prices with one
made using the stock prices.

5.1 Data Sets

Ten companies we used were selected on the basis of their market capitalization
on January 18, 2016 with up to two companies per business sector. We did not
consider companies that did not have a complete set of stock prices from the date
of the latest news article to December 30, 2015. The ten companies are JT(2914),
Seven & i HOLDGS.(3382), Takeda Pharmaceutical Company Limited(4502),
Toyota Motor Corporation(7203), Honda(7267), Canon(7751), Mitsubishi UFJ
Financial Group(8411), Mizuho Financial Group(8411), Nippon Telegraph and
Telephone Corporation(9432) and NTT docomo(9437). We used news articles
from ZAIKEI SHINBUN from September 14, 2010 to December 30, 2015.

5.2 Parameter Tuning

We conducted an experiment for setting parameter k in the Hamming distance.
In this experiment, we tested from k = 10 to k = 102 by 10 from the viewpoint
of the computational complexity. As the input company, we used Toyota Motor
Corporation. We calculated nDCG@30 for each k and selected the k with the
highest nDCG@30, i.e., k = 80, to use in our evaluation.



Analyzing Relationships of Listed Companies 33

5.3 Experimental Results

We first ran the three methods mentioned in Sect. 4.5 and obtain the top 15
companies ranked by each method. Then, we merged these result companies
into one list and used them as the ranking targets for calculating the nDCG for
each method.

Evaluation of Integrated Model. We compared the relatedness estimations
with the pure-price and stock price for each company. The results are shown in
Fig. 2. Figure 2 indicates that the partial correlation coefficient was more suitable
than the two encoding methods in pure-price.This also indicates that pure-prices
are more suitable than stock prices for estimating the relatedness between com-
panies with large i.

Table 1 shows the nDCG@i(i = 5, 10, 15) average values for the values plotted
in Fig. 2. For each method, the nDCG value for the pure-prices was larger than
that for the stock prices. These results demonstrate that our integrated model
of stock prices is effective.

Evaluation for Different Comparison Ranges. We also compared the results
when we used two different ranges of stock prices for relatedness estimation.

Fig. 2. Experimental results: nDCG@i

Table 1. Average values of nDCG@i(i = 5, 10, 15)

Hamming distance SAX Partial correlation coefficient

Pure-prices 0.865 0.857 0.903

Stock Prices 0.844 0.837 0.838
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One comparison range was automatically determined by using news articles as
described in Sect. 4.4. The other one was simply the range for all available data over
the entail duration from September 14, 2010. We used the partial correlation coef-
ficient method, which achieved the best nDCG score in the experiment described
above, for relatedness estimation. The results are shown in Table 2. Table 2 shows
that the nDCG@i values obtained by using news articles were larger than ones for
the entire periods. These results show that using news articles not only reduces the
computational complexity but also produces more accurate rankings of companies.

Table 2. nDCG@i (Two different comparison ranges)

5 10 15

Period based on news article 0.947 0.899 0.862

Entire period 0.867 0.799 0.798

6 Conclusion

We have proposed an integrated model of stock prices and a novel method based
on it for analyzing relationships between pairs of companies. An experimental
evaluation using ten companies demonstrated that relaxing stock prices by using
our integrated model and selecting sub-sequences by utilizing news articles are
effective approaches.

Future work includes conducting a large-scale crowdsourcing experiment for
further evaluation to improve our method. We are also planning to study ways
of detecting implicit relationship between companies.
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Abstract. In the Internet of Things (IoT), data can be generated by
all kinds of smart things. In such context, enabling machines to process
and understand such data is critical. Semantic Web technologies, such
as Linked Data, provide an effective and machine-understandable way
to represent IoT data for further processing. It is a challenging issue to
match Linked Data streams semantically based on text similarity as text
similarity computation is time consuming. In this paper, we present a
hashing-based approximate approach to efficiently match Linked Data
streams with users’ needs. We use the Resource Description Framework
(RDF) to represent IoT data and adopt triple patterns as user queries
to describe users’ data needs. We then apply locality-sensitive hashing
techniques to transform semantic data into numerical values to support
efficient matching between data and user queries. We design a modified
k nearest neighbors (kNN) algorithm to speedup the matching process.
The experimentalresults show that our approach is up to five times faster
than the traditional methods and can achieve high precisions and recalls.

Keywords: Internet of Things · Linked Data · Semantic matching ·
kNN classification

1 Introduction

The Semantic Web was first described by Berners-Lee et al. in 2001 [1]. It is
considered as an evolution of the existing Web. Before Semantic Web, Web
information was mainly produced for, and consumed by, humans. Most informa-
tion on the World Wide Web was linked by hypertext. In this way information
was presented in a convenient way for humans to access. Meanwhile, information
available on the Web has been exploding as time goes on. People are creating
photos, articles, videos, and many other kinds of information. Such information
needs to be processed automatically. The Semantic Web was designed to make
up for this situation.

c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 37–51, 2016.
DOI: 10.1007/978-3-319-44406-2 5
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The Semantic Web stores information in a designed format so that the infor-
mation is given well-defined meanings. However, the Semantic Web is not only
about putting data on the Web. It is about links that make data easy for peo-
ple/machines to explore and study [1]. Linked Data is such a technology that
describes information, data and knowledge on the Semantic Web. The Resource
Description Framework (RDF) is one of the most popular languages used to
represent Linked Data.

In many domains, scientists have growing needs of integrating information
and data. For example, computer science researchers would need integration of
hardware knowledge and software knowledge in order to design systems. Envi-
ronment scientists are looking for integration of hydrology, climatology, ecology
and so on [2]. The Semantic Web is able to fulfill these needs as it provides “a
common framework that allows data to be shared and reused across application,
enterprise, and community boundaries” [3].

Furthermore, the Internet of Things (IoT) makes it possible to connect physi-
cal things to the Internet. Thus people are able to access remote sensing data and
control the physical world from a distance [4]. Data that has been collected from
IoT could be in various formats. IoT data could also be in large amount, which
makes it difficult and costly for people to process manually [5]. This calls for the
use of Semantic Web technologies to process data generated in the coming IoT
era. One promising application scenario of Linked Data techniques is smart city.
Figure 1 shows the structure of a smart city model based on Linked Data. In this
system, data and information are collected via various kinds of devices, such as
mobile phones, cars, cameras, sensors and so on. Sensing data is transformed to
Linked Data streams in order to be processed automatically by machines. Then
Linked Data streams are processed by the matching engine. Matching engine
is the core component of the system. It combines different functionalities such
as data processing, semantic query processing, matching algorithms, and so on.
Further descripton of this scenario can be found in [6].

With the help of this smart city system, all the terminal devices are con-
nected. Information about things and environments around the city, including
temperature, humidity, traffic status, air pollution, and other information, is sent

Fig. 1. Smart city model
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to the matching engine in the format of Linked Data. In the meantime, queries
coming from individuals, companies, devices or any other systems are sent to
the matching engine as well. With a set of matching procedures, information
that is best matched to the user queries will be returned to corresponding query
senders.

However, in the Semantic Web, Linked Data in the RDF format cannot allow
us to explore deeper into the semantic relations between different entries of data.
The reason of this situation is that data in format of string does not support
semantic matching efficiently. In IoT, we envision that data consumers are not
likely to have complete knowledge and therefore supporting semantics-based
matching is required in order to deliver relevant data to assorted consumers.
In addition, semantic data is difficult to process due to the fact that different
words might have similar underlying meanings. For instance, “master student”
has a similar meaning with “PhD candidate” as they both refer to higher educa-
tion students. However, they are completely different phrases in terms of texts.
Machines could hardly find out their relationship efficiently based on the texts.

To address such problem, in this paper we adopt Locality Sensitive Hashing
(LSH) techniques [7] to map semantic data into hashing values. LSH makes
it possible to map different semantic data entries into a space based on their
linguistic relations. In the same space, a word or phrase is closer to those that
are more linguistic related to them. Using LSH, we are able to calculate semantic
similarities of each pair of words/phrases based on their numerical values only. In
other words, information can be semantically matched to specific queries based
on their semantic hashing mappings. Specifically, in this work, we propose an
approximate matching method, which modifies the naive k nearest neighbors
(kNN) approach in order to make the matching process more efficient.

The main contributions of this paper are as follows. Firstly, we adapt the
existing Locality Sensitive Hashing techniques to transform Linked Data streams
and user queries into numerical values. We then develop a novel index con-
struction approach for fast semantic matching based on the naive kNN classifi-
cation approach. Finally, we conduct extensive experiments using a real-world
dataset from DBPedia. The results show that our proposed system can dissemi-
nate Linked Data at a faster speed compared with the straightforward matching
approach with thousands of registered queries.

The rest of this paper is organized as follows. In Sect. 2, we review the related
work. We present some background knowledge, the framework and the techni-
cal details of our approach in Sect. 3. In Sect. 4, we report the results of our
experimental study. Finally, we present some concluding remarks in Sect. 5.

2 Related Work

A large body of work has been done in the area of RDF based stream process-
ing, such as Streaming SPARQL [8], Continuous Query Evaluation over Linked
Streams [9], Sparkwave pattern [10], and EP-SPARQL language [11]. However,
their focus is on exact matching over Linked Data streams, but not semantic



40 Y. Qin et al.

matching. Further, they do not support large-scale query evaluation but focus
on the evaluation of a single query or a small number of parallel queries over the
streaming Linked Data.

Recent work on data summaries on Linked Data such as the work in [12]
transforms RDF triples into a numerical space. Then data summaries are built
upon numerical data instead of strings as summarizing numbers is more effi-
cient than summarizing strings. In order to transform triples into numbers, hash
functions are applied on the individual components (s, p, o) of triples. Thus a
derived triple of numbers can be considered as a 3D point. Data summaries are
designed mainly for indexing various Linked Data sources and used for identi-
fying relevant sources for a given query. However, the data summaries approach
does not support approximate matching. This is because in the data summaries
approach, the hash functions are not locality sensitive. Other existing work intro-
duced in [6,13] focuses on exact pattern matching, but not semantic matching.

The work in [7] presents an algorithm based on LSH to improve the per-
formance of event detection system. It mainly focuses on first story detection
(also known as new event detection). An algorithm based on LSH is developed
to speed up the event detection process in order to efficiently detect new stories
from Twitter posts. The challenge is that there are too many posts on Twitter
which are not actual events. The focus in that work is processing Tweets, which
is different from Linked Data and the Twitter event detection approach cannot
be directly applied in matching over Linked Data streams.

3 Approximate Semantic Matching

In this section, we first briefly provide some necessary background knowledge on
user queries and word vector representation. We then describe our approximate
semantic matching approach in detail.

3.1 Preliminaries

User Queries. Similar to [14,15], triple patterns are adopted as the basic units of
user queries in our system. A triple pattern is an expression of the form (s, p,
o) where s and p are URIs or variables, and o is a URI, a literal or a variable.
The eight possible triple patterns are: 1) (#s, #p, #o), 2) (?s, #p, #o), 3)
(#s, ?p, #o), 4) (#s, #p, ?o), 5) (?s, ?p, #o), 6) (?s, #p, ?o), 7) (#s,
?p, ?o), and 8) (?s, ?p, ?o). Here, ? denotes a variable while # denotes a
constant.

Words Vector Representation. Mikolov et al. proposed an efficient method to
achieve vector representations for English words [16]. They proposed two new
models for machine learning of word representations. More specific, they used
numerical values (vectors) to represent words and compare semantic relations.
The cosine similarity between two words can be approximated by the cosine sim-
ilarity between their corresponding vectors. Such vector representations preserve
the locality of words in the original text space and hence belong to the category
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of LSH techniques [7]. Based on the reported results, the accuracy of predicting
semantic similarities between words based on vector representations could reach
up to 70 % [17].

3.2 System Overview

Figure 2 shows the structure overview of the system. Linked Data collected from
the real world will be sent to the system. Then the data will be hashed using LSH
techniques. Meanwhile, users can send queries to the system. These queries are
also hashed into numerical values. The core component of the system, Matching
Engine, matches Linked Data streams against the queries and returns results to
users.

Fig. 2. System overview

3.3 Linked Data Processing

In the following, we focus on how to efficiently process Linked Data and support
the semantic matching procedure.

Extract Last Terms. Each triple in the Linked Data streams contains either
URI (like “http://example.org/example#John”) or prefix (like “xmlns : name”).
The prefix components are used to identify the resource, but they are not rele-
vant to the major semantic meaning of the triple. In order to closely reflect the
semantic meaning of the triple, we need to remove these prefix parts to get the
last terms. Figure 3 shows an example of this procedure.

Fig. 3. Extract last terms of triples

http://example.org/example#John
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In real world applications, to describe complex information, people need to
deliver more information in a single triple. The triple in Fig. 3 is such an example.
It has a phrase “ChineseRiver” as the last term. In this case, the last term is a
composition of multiple words. The two words of the phrase in this example can
be split up and the result is shown in Fig. 4. Below are some rules to extract and
split the last terms:

Fig. 4. Split up complex last terms

– For those properties consisting of hash symbol “#”, truncate the string by
“#”, then leave parts after hash “#”.

– For those properties that do not consist of hash symbols, separate the whole
string by slash “/”, then leave the substring after the very last slash.

– After removing the URI prefixes, if the last term consists of underline symbol
“ ”, separate the last term by underline symbols and return all the separate
words.

– If the last term does not consist of underline symbols, check whether it contains
capital letters. If so, separate each word starting with a capital letter.

– Apply any other known rules to split the last terms.

Hashing Semantic Data. Once we extract and split the last terms, we can
hash these terms into numerical values using existing LSH techniques. Trans-
forming Linked Data into numerical values has two main benefits:

– Numerical values can achieve faster speed in the comparing process than
strings.

– Using numerical values to represent Linked Data provides convenience to com-
pare the similarity between different words approximately and directly.

We choose the Google News dataset in the word2vec project [18] from Google
as our LSH foundation. In this dataset, part of Google News data (about 100
billion words) [18] is selected and trained to build an LSH model for mappings
between words and vectors. The final LSH model contains vectors for 3 million
words, and each word is represented by a 300-dimensional vector. This means
we can hash a single word to a 300-dimensional vector.

For phrases and compositions of words, according to [17], we simply use the
addition of their vectors as their vector representations. For instance, we will
have the vector for “ChineseRiver” to be the sum of two vectors of “Chinese”
and “River”:

“V(ChineseRiver) = V(Chinese) + V(River)”
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An example of hashing triples is shown in Fig. 5. In this figure, the triple
contains only the last terms without prefixes. Each word of the triple could
be represented as a 300-dimensional vector, so finally the whole triple can be
represented by a 900-dimensional vector.

Fig. 5. Hashing example

3.4 Index Construction

Next, we build an index for user queries, which are triple patterns. Since a
triple pattern also contains subject, predicate, object, matching a triple pattern
to a query is actually comparing these three parts. In this work, all these parts
have been transformed to numerical values. As in the Google word2vec project,
where we obtain the Google News dataset, the measurement for testing similarity
between two words is cosine similarity, we need to build the index based on cosine
similarity.

Basically, the larger the cosine similarity is, the smaller the cosine distance
is, and the two words are more related [19]. Here we are building a query index
that is actually a kNN pre-trained data classification model for a given query
set. To build the model, we need to classify all the data entries (queries) in this
query set. The query index is built with a threshold θ, which defines the smallest
value of cosine similarity that two queries in one classification should have, and
a set of queries. Algorithm 1 shows the pseudocode of this step.

In order to improve the performance of our system, we select the representa-
tives of queries in each class of queries. For each class, we simply take the first
query as its representative. After processing with this algorithm, we successfully
build an index of queries. In our system, this index contains vectors of the query
patterns, class labels of all query patterns, and a representative query set.

3.5 Matching Data to Queries

Note that, the naive matching algorithm has a large timing cost since it has to
compare the incoming triple with all user queries. If we use the naive matching
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Algorithm 1. Pseudocode of Classifying Queries
Input: a set of queries Q, threshold of cosine similarity θ
Output: Classification result U, and representative queries RQ

U ← ∅
RQ ← ∅
for all q ∈ Q do

for all rq ∈ RQ do
if cosine(q, rq) > θ then

q.label ← rq.label
end if

end for
if q.label = null then

q.label ← new label
RQ ← RQ ∪ {q}

end if
U ← U ∪ {q}

end for

method, we will find out all semantically matched results (under some given
threshold θ) because the naive method will compare the triple against all the
user queries in a brute force way. The problem is that the matching process is
inefficient. To improve the performance of our system, we propose to adapt the
kNN approach, which aims to find out the most semantically matched queries
at a higher speed. The tradeoff is to sacrify some matching quality, such as with
slightly lower recall and F1 scores (detailed definitions of these terms will be
provided in Sect. 4).

In our adapted kNN approach, once we have built the kNN classification
model (the query index), we are able to complete the “Matching Engine” shown
in the system overview (Fig. 2) by implementing semantic matching logic on top
of this model. The main idea is that, when we receive a newly incoming triple in
the Linked Data stream, the system will identify k nearest classes to that triple.
To obtain these k nearest classes, we first compute cosine similarity between
the triple and each representative query in RQ, and then select k classes whose
representative queries achieve top k cosine similarities. Then the triple will be
matched against all the queries inside these k classes to find out all the queries
that semantically match this triple. Since we only compare with k nearest classes
of queries, not all queries in all classes, the matching process can be significantly
accelerated and completed with high matching quality.

An example of this matching process is shown in Fig. 6. Q is the collection of
the queries. Suppose in order to build the query index, these queries are classified
into four classifications: C1, C2, C3 and C4. There is one representative query,
drawn in yellow and circled, in each class.

When a triple t arrives at the system, the system computes the cosine sim-
ilarities between t and all representative queries in RQ. Then we obtain top k
(suppose k = 2) representative queries as the results. Assuming in this case,
C1 and C3 are the two classes whose representative queries achieve best cosine
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Fig. 6. Modified kNN classification method

similarity. We match triple t with all the queries in C1 and C3 by computing
cosine similarity of each query and t. If the cosine similarity of a query q and
t is greater than threshold θ, q will be a semantically matched query. After all
queries in C1 and C3 are examined, we will obtain the final matching results.
The core matching logic is shown in the following equation:

ResultkNN = ∀q ∈ C1 ∪ C3 ∧ cosine(q, t) > θ

To sum up, our approximate semantic matching consists of two main steps:
classification and matching. The classification step has a time complexity of
O(d × |RQ|2), where |RQ| is the number of classes and d is the number of
dimensions of a word vector. Meanwhile, the matching step has a time complexity
of O(k × d × |Q|/|RQ|), where k is the parameter for matching and |Q|/|RQ| is
the average number of queries in a class.

4 Performance Evaluation

The experiments have been conducted using real-world data, which is a set of
events extracted from DBpedia, provided by the authors of the work in [20].
We used these events in RDF format to form a Linked Data stream so as to
simulate the sensing data streaming process in the smart city scenario. The
event set contains resources of type dbpedia-owl:Event. Each event is a triple of
the form <eventURI, rdf:type, dbpedia-owl:Event>. Examples of various
event types that can be found in the event set are: “Football Match”, “Race”,
“Music Festival”, “Space Mission”, “Election”, “10th-Century BC Conflicts”,
“Academic Conferences”, “Aviation Accidents and Incidents in 2001”, etc. The
experimental machine was running Windows 7, with Intel’s Core i5 CPU and
8 GB RAM.

To the best of our knowledge, this is the first attempt to support semantic
matching over Linked Data streams. To evaluate the performance of our system,
a set of experiments were conducted to evaluate time, recall and F1 score by
comparing with the naive matching approach:
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– Evaluate the speed performance by comparing times with the naive matching
approach (the average time required for processing every 300 triples).

– Evaluate the accuracy performance by comparing recall and F1 score with
naive kNN approach.

– There are three parameters in these experiments: k, Threshold and Query
Number.

In the following, we briefly introduce the two measurements used in our
experiments, namely recall and F1 score:

– Recall is the percentage of the number of matched queries in our system
divided by the number of all matched queries in the naive matching approach.
Recall can be calculated using:

Recall =
Numbermatched queries

Numbernaive matched queries
(1)

– F1 score is also a measurement of matching accuracy, which can be calculated
by using:

F1 = 2 · recall · precision

recall + precision
(2)

In this work, the precision is always 100 % since our system matches triples
and queries in the same way as the naive approach does (note that our system
only selects queries that have cosine(q, t) > θ in the top k classes, and the naive
method also returns all the queries that have cosine(q, t) > θ). Therefore, any
matched query of our results must be a matched query in the naive method’s
matching results as well.

In each experiment, we changed one parameter and kept the other two at their
default values, so we had three group of experiments. Note that the time used in
our system consists of two parts. The first part is the classification time, and
the second part is the time used to find all matched queries during the matching
process on top of the classification model, which we call the matching time.

4.1 Experimental Results—Parameter: k

The results with change of k are illustrated in Figs. 7 and 8. In this set of exper-
iments, we set the number of queries as 1,500, and threshold as 0.6. We set
the default threshold to 0.6 as this value can best balance matching speed and
matching quality. We tested k in the range of [1, 5]. From the results we can
observe that the classification time does not change too much while the match-
ing time has an obvious increasing trend. Our approach is about 4 times faster
than the naive approach when k = 1 and is about 3 times faster when k = 5. In
terms of Recall and F1 score, both of them increase gradually when increasing
the value of k. In most cases, Recall and F1 score are higher than 85 %. This
indicates that our approach can achieve high matching quality.
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Fig. 7. Experiment: Time—k

Fig. 8. Experiment: Recall & F1 Score — k

4.2 Experimental Results—Parameter: Threshold

The results with change of threshold are illustrated in Figs. 9 and 10. In this
set of experiments, we set the number of queries as 1,500, and k = 3, because
when the query number is 1,500, we can observe the normal performance gain
that our approach can achieve and when k = 3, our approach shows a good
balance between matching speed and matching quality. Meanwhile, the threshold
increases from 0.5 to 0.8. From the results we can see that in terms of the time
cost, our approach outperforms the naive approach by several times. When the
threshold is 0.5, the matching time cost is high due to the formation of large
query classes under low similarity threshold. This is also confirmed by the larger
proportion of matching time cost obtained when threshold is 0.5 or 0.6. When
threshold is larger, such as at 0.8, it is expected that the average size of each class
is small. Therefore, we observe small matching cost compared with classification
time. In terms of matching quality, both recall and F1 score are higher than
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Fig. 9. Experiment: Time — Threshold

Fig. 10. Experiment: Recall & F1 Score — Threshold

85 % in most cases. This demonstrates that our approach is very robust under
different similarity thresholds.

4.3 Experimental Results—Parameter: Query Number

The results with change of query number are illustrated in Figs. 11 and 12. In
this set of experiments we set preconditions as: k = 3, Threshold = 0.6. The
query number is ranging from 500 to 3,000. The total matching time costs of
both approaches are increasing approximately in a linear manner against the
increasing number of queries to be matched. But the total time cost of the naive
approach is observed to increase at a faster rate. Meanwhile, the matching quality
is also improved with more queries. This should be because better classification
results can be obtained with more queries. But after the number increases to
and above 1,500, the matching quality stays quite stable.
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Fig. 11. Experiment: Time — Query Number

Fig. 12. Experiment: Recall & F1 Score — Query Number

4.4 Discussion

By conducting the above three sets of experiments, we can summarize the effects
that the three parameters have on the system performance. Table 1 shows the
effects that each parameter has on the performance. In this table, “Positive”
means it either accelerates the matching speed or improves the recall ratio and
F1 score. “Negative” means the opposite way of “Positive”. “N/A” means that
this parameter does not affect the corresponding performance feature.

To sum up, our system has obvious advantage in the matching speed than the
naive approach. Increasing the three parameters (i.e., k, threshold, query number)
will normally cause highermatching time cost of the system.Meanwhile, increasing
k has a positive effect on the recall ratio and F1 score. Through all the experiments,
we demonstrate that our system has enhanced the matching speed significantly.
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Table 1. ParameterŚ effects on performance

Performance k Threshold Query Number

Classification Time N/A Negative N/A

Matching Time Negative Positive Negative

Total Time Negative Negative Negative

Recall & F1 Score Positive N/A Negative

In the meantime, the recall ratio and F1 score are greater than 85 % for most of
the time. This indicates that our approach can achieve very high matching quality.

5 Conclusion

The Semantic Web is more and more popular in the big data era. Using machines
to read, understand, and process semantic data can provide significant benefits.
In this work, we have focused on enabling semantic matching during Linked Data
streams processing. Locality-sensitive hashing techniques have been adapted to
support semantic matching with high quality and better acceleration in the
matching process. A set of experiments have been conducted. The results show
that our matching system can speedup the matching process significantly with
high matching quality.

In the future, we are going to extend our work from the following aspects.
First, we plan to further speedup the matching process. One possible solution
is to adopt more advanced classification methods to achieve better classification
results, which may reduce the average number of candidate queries for matching
a given RDF triple with high quality. Second, we plan to develop a new type of
query language to support query generation in semantic matching. It is interest-
ing to see how we can generate appropriate and fewest queries to reflect users’
information needs possibly described in plain text in the semantic matching
scenarios.

Acknowledgments. Authors would like to thank Zheng Jing for the implementation
of the matching system and thank anonymous reviewers for their valuable comments.
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Abstract. Accessing legacy data as virtual RDF stores is a key issue in
the building of the Web of Data. In recent years, the MongoDB database
has become a popular actor in the NoSQL market, making it a signifi-
cant potential contributor to the Web of Linked Data. Therefore, in this
paper we address the question of how to access arbitrary MongoDB doc-
uments with SPARQL. We propose a two-step method to (i) translate
a SPARQL query into a pivot abstract query under MongoDB-to-RDF
mappings represented in the xR2RML language, then (ii) translate the
pivot query into a concrete MongoDB query. We elaborate on the discrep-
ancy between the expressiveness of SPARQL and the MongoDB query
language, and we show that we can always come up with a rewriting that
shall produce all correct answers.

Keywords: SPARQL access to legacy data · MongoDB · Virtual RDF
store · Linked data · xR2RML

1 Introduction

The Web-scale data integration progressively becomes a reality, giving birth to
the Web of Linked Data through the open publication and interlinking of data
sets on the Web. It results from the extensive works achieved during the last
years, aimed to expose legacy data as RDF and develop SPARQL interfaces to
various types of databases.

At the same time, the success of NoSQL databases is no longer questioned
today. Initially driven by major Web companies in a pragmatic effort to cope
with large distributed data sets, they are now adopted in a variety of domains
such as media, finance, transportation, biomedical research and many others1.
Consequently, harnessing the data available from NoSQL databases to feed the
Web of Data, and more generally achieving RDF-based data integration over
NoSQL systems, are timely questions. In recent years, MongoDB2 has become a
very popular actor in the NoSQL market3. Beyond dealing with large distributed

1
Informally attested by the manifold domains of customers claimed by major NoSQL actors.

2
https://www.mongodb.org/.

3
http://db-engines.com/en/system/MongoDB.
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data sets, its popularity suggests that it is also increasingly adopted as a general-
purpose database. Arguably, it is likely that many MongoDB instances host
valuable data about all sorts of topics, that could benefit a large community at
the condition of being made accessible as Linked Open Data. Hence the research
question we address herein: How to access arbitrary MongoDB documents with
SPARQL?

Exposing legacy data as RDF has been the object of much research during
the last years, usually following two approaches: either by materialization, i.e.
translation of all legacy data into an RDF graph at once, or based on on-the-fly
translation of SPARQL queries into the target query language. The materializa-
tion is often difficult in practice for big datasets, and costly when data freshness
is at stake. Several methods have been proposed to achieve SPARQL access to
relational data, either in the context of RDB-backed RDF stores [8,11,21] or
using arbitrary relational schemas [4,17,18,23]. R2RML [9], the W3C RDB-to-
RDF mapping language recommendation is now a well-accepted standard and
several SPARQL-to-SQL rewriting approaches hinge upon it [17,19,23]. Other
solutions intend to map XML [2,3] or CSV4 data to RDF. RML [10] tackles the
mapping of heterogeneous data formats such as CSV/TSV, XML and JSON.
xR2RML [14] is an extension of R2RML and RML addressing the mapping
of an extensible scope of databases to RDF. Regarding MongoDB specifically,
Tomaszuk proposed a solution to use MongoDB as an RDF triple store [22].
The translation of SPARQL queries that he proposed is closely tied to the data
schema and does not fit with arbitrary documents. MongoGraph5 is an exten-
sion of the AllegroGraph triple store to query arbitrary MongoDB documents
with SPARQL. Similarly to the Direct Mapping [1] the approach comes up with
an ad-hoc ontology (e.g. each JSON field name is turned into a predicate) and
hardly supports the reuse of existing ontologies. More in line with our work,
Botoeva et al. recently proposed a generalization of the OBDA principles to
MongoDB [6]. They describe a two-step rewriting process of SPARQL queries
into the MongoDB aggregate query language. In the last section we analyse in
further details the relationship between their approach and ours.

In this paper we propose a method to query arbitrary MongoDB docu-
ments using SPARQL. We rely on xR2RML for the mapping of MongoDB
documents to RDF, allowing for the use of classes and predicates from exist-
ing (domain) ontologies. In Sect. 2 we shortly describe the xR2RML mapping
language. Section 3 defines a database-independent abstract query language,
and summarizes a generic method to rewrite SPARQL queries into this lan-
guage under xR2RML mappings. Then Sect. 4 presents our method to translate
abstract queries into MongoDB queries. Finally in Sect. 5 we conclude by empha-
sizing some technical issues and highlighting perspectives.

4
http://www.w3.org/2013/csvw/wiki.

5
http://franz.com/agraph/support/documentation/4.7/mongo-interface.html.

http://www.w3.org/2013/csvw/wiki
http://franz.com/agraph/support/documentation/4.7/mongo-interface.html
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2 The xR2RML Mapping Language

The xR2RML mapping language [14] is designed to map an extensible scope of
relational and non-relational databases to RDF. It is independent of any query
language or data model. It is backward compatible with R2RML and it relies
on RML for the handling of various data formats. It can translate data with
mixed embedded formats and generate RDF collections and containers. Below
we shortly describe the main xR2RML features and propose a running example.

An xR2RML mapping defines a logical source (xrr:logicalSource) as the
result of executing a query (xrr:query) against an input database. An optional
iterator (rml:iterator) can be applied to each query result. Data from the
logical source is mapped to RDF terms (literal, IRI, blank node) by term maps.
There exists four types of term maps: a subject map generates the subject of
RDF triples, and multiple predicate and object maps produce the predicate and
object terms. An optional graph map is used to name a target graph. Listing 1.2
depicts the <#TmLeader> xR2RML mapping.

Term maps extract data from query results by evaluating xR2RML refer-
ences. The syntax of xR2RML references depends on the target database: a
column name in case of a relational database, an XPath expression in case
of a XML database, or a JSONPath6 expression in case of NoSQL document
stores like MongoDB or CouchDB. xR2RML references are used with property
xrr:reference that contains a single xR2RML reference, and rr:template
that may contain several references in a template string. In the running example
below, the subject map uses a template to build IRI terms by concatenating
http://example.org/project/ with the value of JSON field "code". When the
evaluation of an xR2RML reference produces several RDF terms, by default
the xR2RML processor creates one triple for each term. Alternatively, it can
group them in an RDF collection (rdf:List) or container (rdf:Seq, rdf:Bag
and rdf:Alt) of terms optionally qualified with a language tag or data type.

Like R2RML, xR2RML allows to model cross-references by means of ref-
erencing object maps. A referencing object map uses values produced by the
subject map of a mapping (the parent) as the objects of triples produced by
another mapping (the child). Properties rr:child and rr:parent specify the
join condition between documents of both mappings.

Running Example. To illustrate the description of our method, we define a
running example that we shall use throughout this paper. This short example is
specifically tailored to address the issues related to the SPARQL-to-MongoDB
translation, it does not illustrate advanced xR2RML features, but more detailed
use cases are provided in [7,14]. Let us consider a MongoDB database with
one collection "projects" (Listing 1.1), that lists the projects held in a com-
pany. Each project is described by a name, a code and a set of teams. Each
team is an array of members given by their name, and we assume that the
last member is always the team leader. The xR2RML mapping graph in List-
ing 1.2 has one mapping: <#TmLeader>. The logical source is the MongoDB
6

http://goessner.net/articles/JsonPath/.

http://example.org/project/
http://goessner.net/articles/JsonPath/
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{ "project ":" Finance & Billing", "code ":" fin",

"teams ":[

[ {"name ":"P. Russo"}, {"name ":"F. Underwood "}],

[ {"name ":"R. Danton"}, {"name ":"E. Meetchum "} ]] },

{ "project ":" Customer Relation", "code ":" crm",

"teams ":[

[ {"name ":"R. Posner"}, {"name ":"H. Dunbar "}]] }

Listing 1.1. MongoDB collection "projects" containing two documents

<#TmLeader >

xrrxrrxrr:logicalSourcelogicalSourcelogicalSource [xrrxrrxrr:queryqueryquery "db.projects.find ({})"];

rrrrrr:subjectMapsubjectMapsubjectMap [rrrrrr:templatetemplatetemplate

"http :// example.org/project /{$.code }".];

rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [

rrrrrr:predicatepredicatepredicate ex:teamLeader;

rrrrrr:objectMapobjectMapobjectMap [ xrrxrrxrr:referencereferencereference

"$.teams [0 ,1][(@.length - 1)]. name" ] ].

Listing 1.2. xR2RML example mapping graph

query "db.projects.find({})" that simply retrieves all documents from col-
lection "projects". The mapping associates projects (subject) to team leaders
(object) with predicate ex:teamLeader. This is done by means of a JSONPath
expression that selects the last member of each team using the calculated array
index "[(@.length - 1)]".

3 Translating SPARQL Queries into Abstract Queries
Under xR2RML Mappings

Various methods have been defined to translate SPARQL queries into another
query language, that are generally tailored to the expressiveness of the target
query language. Notably, the rich expressiveness of SQL and XQuery makes it
possible to define semantics-preserving SPARQL rewriting methods [2,8]. By
contrast, NoSQL databases typically trade off expressiveness for scalability and
fast retrieval of denormalised data. For instance, many of them hardly support
joins. Therefore, to envisage the translation of SPARQL queries in the general
case, we propose a two-step method. Firstly, a SPARQL query is rewritten into
a pivot abstract query under xR2RML mappings, independently of any target
database (illustrated by step 1 in Fig. 1). Secondly, the pivot query is translated
into concrete database queries based on the specific target database capabilities
and constraints. In this paper we focus on the application of the second step to
the specific case of MongoDB. The rest of this section summarizes the first step
to provide the reader with appropriate background. A complete description is
provided in [16].
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Fig. 1. Overview of the SPARQL-to-MongoDB query translation process

<AbsQuery > ::=

<Query > | <Query > FILTERFILTERFILTER <filter > | <AtomicQuery >

<Query > ::=

<AbsQuery > INNERINNERINNER JOINJOINJOIN <AbsQuery > ONONON {v1 ,...vn} |

<AbsQuery > ASASAS child INNERINNERINNER JOINJOINJOIN <AbsQuery > ASASAS parent

ONONON child/<Ref > = parent/<Ref > |

<AbsQuery > LEFTLEFTLEFT OUTEROUTEROUTER JOINJOINJOIN <AbsQuery > ONONON {v1 ,...vn}|

<AbsQuery > UNIONUNIONUNION <AbsQuery >

<AtomicQuery > ::= {FromFromFrom , ProjectProjectProject , WhereWhereWhere}

Listing 1.3. Grammar of the Abstract Pivot Query Language

The grammar of our pivot query language is depicted in Listing 1.3. Oper-
ators inner join on, left outer join on and union are entailed by the
dependencies between graph patterns of the SPARQL query, and SPARQL filters
involving variables shared by several triple patterns result in a filter operator.
The computation of these operators shall be delegated to the target database
if it supports them (i.e. if the target query language has equivalent operators
like SQL), or to the query processing engine otherwise (e.g. MongoDB cannot
process joins). Each SPARQL triple pattern tp is translated into a union of
atomic abstract queries (<AtomicQuery>), under the set of xR2RML mappings
likely to generate triples matching tp. Components of an atomic abstract query
are as follows:

– From is the mapping’s logical source, i.e. the database query string
(xrr:query) and its optional iterator (rml:iterator).

– Project is the set of xR2RML references that must be projected, i.e. returned
as part of the query results. In SQL, projecting an xR2RML reference simply
means that the column name shall appear in the select clause. As to Mon-
goDB, this amounts to projecting the JSON fields mentioned in the JSON-
Path reference.

– Where is a conjunction of abstract conditions entailed by matching each term
of triple pattern tp with its corresponding term map in an xR2RML map-
ping: the subject of tp is matched with the subject map of the mapping, the
predicate with the predicate map and the object with the object map. Three
types of condition may be created:
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(i) a SPARQL variable in the triple pattern is turned into a not-null condition
on the xR2RML reference corresponding to that variable in the term map,
denoted by isNotNull(<xR2RML reference>);

(ii) A constant triple pattern term (IRI or literal) is turned into an equality
condition on the xR2RML reference corresponding to that RDF term in
the term map, denoted by equals(<xR2RML reference>, value);

(iii) A SPARQL filter condition f about a SPARQL variable is turned into a
filter condition, denoted by sparqlFilter(<xR2RML reference>, f).

Finally, an abstract query is optimized using classical query optimization
techniques such as the self-join elimination, self-union elimination or projection
pushing. In [16] we show that, during the optimization phase, a new type of
abstract condition may come up, isNull(<xR2RML reference>), in addition to
logical operators Or() and And() to combine conditions.

Running Example. We consider the following SPARQL query that aims to
retrieve projects in which “H. Dunbar” is a team leader.

SELECT ?proj WHERE {?proj ex:teamLeader "H. Dunbar".}
The triple pattern, denoted by tp, is translated into the atomic abstract query

{From, Project, Where}. From is the query in the logical source of mapping
<#TmLeader>, i.e."db.projects.find({})". The detail of calculating Project is
out of the scope of this paper; let us just note that, since the values of variable
?proj (the subject of tp) shall be retrieved, only the subject map reference is pro-
jected, i.e. the JSONPath expression “$.code”. The Where part is calculated as
follows:

– tp’s subject, variable ?proj, is matched with <#TmLeader>’s subject map;
this entails condition C1: isNotNull($.code).

– tp’s object, "H. Dunbar", is matched with <#TmLeader>’s object map;
this entails condition C2: equals($.teams[0,1][(@.length-1)].name, "H.
Dunbar").

Thus, the SPARQL query is rewritten into the atomic abstract query below:

{ FromFromFrom: {"db.projects.find ({})"} ,

ProjectProjectProject: {$.code ASASAS ?proj},

WhereWhereWhere: {isNotNull($.code),
equals($.teams [0 ,1][(@.length -1)]. name , "H. Dunbar ") }}

The JSON documents needed to answer this abstract query shall verify condition
C1 ∧C2. In the next section, we elaborate on the method that allows to rewrite
such conditions into concrete MongoDB queries.

4 Translating an Abstract Query into MongoDB Queries

In this section we briefly describe the MongoDB query language, then we define
rules to transform an atomic abstract query into an abstract representation of a
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AND(<exp1>, <exp2>, ...) → $and$and$and:[<exp1>,<exp2 >,...]

OR(<exp1>, <exp2>, ...) → $or$or$or:[<exp1>,<exp2 >,...]

WHERE(<JavaScript exp >) → $where$where$where:"<JavaScript exp >"

ELEMMATCH(<exp1>,<exp2 >...) → $elemMatch$elemMatch$elemMatch :{<exp1>,<exp2 >...}

FIELD(p1) ... FIELD(pn) → "p1. ... .pn":

SLICE(<exp >, <number >) → <exp >:{$slice$slice$slice:<number >}

COND(equals(v)) → $eq$eq$eq:v

COND(isNotNull) → $exists$exists$exists:truetruetrue , $ne$ne$ne:nullnullnull

COND(isNull) → $eq$eq$eq:nullnullnull

NOT_EXISTS(<exp >) → <exp >:{$exists$exists$exists:falsefalsefalse}

COMPARE(<exp >, <op>, <v>) → <exp >:{<op >:<v>}

NOT_SUPPORTED → ∅
CONDJS(equals(v)) → == v

CONDJS(isNotNull) → != nullnullnull

Listing 1.4. Abstract MongoDB query representation and translation to a concrete
query string

MongoDB query (step 2 in Fig. 1). Finally, we define additional rules to optimize
and rewrite an abstract representation of a MongoDB query into a union of
executable MongoDB queries (step 3 in Fig. 1).

4.1 The MongoDB Query Language

MongoDB provides a JSON-based declarative query language consisting of two
major mechanisms. The find query retrieves documents matching a set of con-
ditions. It takes a query and a projection parameters, and returns a cursor to
the matching documents. Optional modifiers amend the query to impose limits
and sort orders. Alternatively, the aggregate query allows for the definition of
processing pipelines: each document of a collection passes through the stages of
the pipeline, that allows for richer aggregate computations. As a first approach,
this work considers the find query method, hereafter called the MongoDB query
language. As an illustration let us consider the following query:

db.projects.find(

{"teams .0":{ $elemMatch :{" age ":{ $gt :30}}}} , {"code ":1})

It retrieves documents from collection “projects”, whose first team (array
"teams" at index 0) has at least one member (operator $elemMatch) over 30
years old (operator $gt). The projection parameter, {"code":1}, states that
only the "code" field of each matching document must be returned.

The MongoDB documentation7 provides a rich description of the query lan-
guage, that however lacks formal semantics. Recently, attempts were made to
clarify this semantics while underlining some limitations and ambiguities: [5]
focuses mainly on the aggregate query and ignores some of the operators we

7
https://docs.mongodb.org/manual/tutorial/query-documents/.

https://docs.mongodb.org/manual/tutorial/query-documents/
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use in our translation, such as $where, $elemMatch, $regex and $size. On the
other hand, [13] describes the find query, yet some restrictions on the opera-
tor $where are not formalized. Hence, in [15] we specified the grammar of the
subset of the query language that we consider. We also defined an abstract rep-
resentation of MongoDB queries, that allows for handy manipulation during the
query construction and optimization phases. Listing 1.4 details the constructs of
this representation and their equivalent concrete query string. In the compare
clause definition, <op> stands for one of the MongoDB comparison operators:
$eq, $ne, $lt, $lte, $gt, $gte, $size and $regex. The not supported clause
helps keep track of parts of the abstract query that cannot be translated into an
equivalent MongoDB query element; it shall be used when rewriting the abstract
query into a concrete query (Sect. 4.3).

4.2 Query Translation Rules

Section 3 introduced a method that rewrites a SPARQL query into an abstract
query in which operators inner join, left outer join and union relate atomic
abstract queries of the form {From, Project, Where}. The latter are created by
matching each triple pattern with candidate xR2RML mappings. The Where
part consists of isNotNull, equals and sparqlFilter abstract conditions about
xR2RML references (JSONPath expressions in the case of MongoDB).

MongoDB does not support joins, while unions and nested queries are sup-
ported under strong restrictions, and comparisons are limited (e.g. a JSON field
can be compared to a literal but not to another field of the same document). Con-
sequently, operators inner join, left outer join, and to some extend union
and filter, shall be computed by the query processing engine. Conversely, the
abstract conditions of atomic queries can be translated into MongoDB queries8.

Given the subset of the MongoDB query language considered, the recursive
function trans in Fig. 2 translates an abstract condition on a JSONPath expres-
sion into a MongoDB find query using the formalism defined in Listing 1.4. It
consists of a set of rules applicable to a certain pattern. The JSONPath expres-
sion in argument is checked against each pattern in the order of the rules (0 to
9) until a match is found. We use the following notations:

– <JP>: denotes a possibly empty JSONPath expression.
– <JP:F>: denotes a non-empty JSONPath sequence of field names and array

indexes, e.g. .p.q.r, .p[10]["r"].
– <bool expr>: is a JavaScript expression that evaluates to a boolean.
– <num expr>: is a JavaScript expression that evaluates to a positive integer.

Rule R0 is the entry point of the translation process (JSONPath expressions
start with a ‘$’ character). Rule R1 is the termination point: when the JSONPath
expression has been fully parsed, the last created clause is the condition clause
cond, producing e.g. "$eq:value" for an equality condition, or "$exists:true,

8 In the current state of this work we do not consider SPARQL filter conditions.
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R0 trans($, <cond>) → ∅
trans($<JP>, <cond>) → trans(<JP>, <cond>)

R1 trans(∅, <cond>) → COND(<cond>)

R2 Field alternative (a) or array index alternative (b)
(a) trans(<JP:F>["p","q",...]<JP>, <cond>) →

OR(trans(<JP:F>.p<JP>, <cond>), trans(<JP:F>.q<JP>, <cond>), ...)
(b) trans(<JP:F>[i,j,...]<JP>, <cond>) →

OR(trans(<JP:F>.i<JP>, <cond>), trans(<JP:F>.j<JP>, <cond>), ...)

R3 Heading field alternative (a) or heading array index alternative (b)
(a) trans(["p","q",...]<JP>, <cond>) →

OR(trans(.p<JP>, <cond>), trans(.q<JP>, <cond>), ...)
(b) trans([i,j,...]<JP>, <cond>) →

OR(trans(.i<JP>, <cond>), trans(.j<JP>, <cond>), ...)

R4 JavaScript filter on array elements, e.g., $.p[?(@.q)].r
trans([?(<bool expr>)]<JP>, <cond>) →
ELEMMATCH(trans(<JP>, <cond>), transJS(<bool expr>))

R5 Array slice: n last elements (a) or n first elements (b)
(a) trans(<JP:F>[-<start>:]<JP>, <cond>) →

trans(<JP:F>.*<JP>, <cond>) SLICE(<JP:F>, -<start>)
(b) trans(<JP:F>[:<end>]<JP>, <cond>) →

trans(<JP:F>.*<JP>, <cond>) SLICE(<JP:F>, <end>)
trans(<JP:F>[0:<end>]<JP>, <cond>) →
trans(<JP:F>.*<JP>, <cond>) SLICE(<JP:F>, <end>)

R6 Calculated array index, e.g., $.p[(@.length - 1)].q

(a) trans(<JP1>[(<num expr>)]<JP2>, <cond>) → NOT SUPPORTED
if <JP1> contains a wildcard or a JavaScript filter expression

(b) trans(<JP:F>[(<num expr>)], <cond>) → AND(
EXISTS(<JP:F>),
WHERE(‘this<JP:F>[replaceAt(“this<JP:F>”, <num expr>)] CONDJS(<cond>’)))

(c) trans(<JP:F1>[(<num expr>)]<JP:F2>, <cond>) → AND(
EXISTS(<JP:F1>),
WHERE(‘this<JP:F1>[replaceAt(“this<JP:F1>”, <num expr>)]<JP:F2>

CONDJS(<cond>’)))

R7 Heading wildcard
(a) trans(.*<JP>, <cond>) → ELEMMATCH(trans(<JP>, <cond>))
(b) trans([*]<JP>, <cond>) → ELEMMATCH(trans(<JP>, <cond>))

R8 Heading field name or array index
(a) trans(.p<JP>, <cond>) → FIELD(p) trans(<JP>, <cond>)
(b) trans([“p”]<JP>, <cond>) → FIELD(p) trans(<JP>, <cond>)
(c) trans([i]<JP>, <cond>) → FIELD(i) trans(<JP>, <cond>)

R9 No other rule matched, expression <JP> is not supported
trans(<JP>, <cond>) → NOT SUPPORTED

Fig. 2. Translation of a condition on a JSONPath expression into an abstract Mon-
goDB query (function trans)

$ne:null" for a not-null condition. Rules R2 to R8 deal with the different types
of JSONPath expressions. In case no rule matches, the translation fails and
rule R9 creates the not supported clause, that shall be dealt with later on.
Rule R4 deals with the translation of JavaScript filters on JSON arrays, where
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character ‘@’ stands for each array element. It delegates their processing to
function transJS (described in [15]). For instance, the filter "[?(@.age>30)]" is
translated into the MongoDB sub-query "age":{$gt:30}.

Due to the space constraints, we do not go through the comprehensive justi-
fication of each rule in Fig. 2, however the interested reader is referred to [15].

Running Example. The Where part of the abstract query presented in Sect. 3
comprises two conditions:
C1: isNotNull($.code), and
C2: equals($.teams[0,1][(@.length - 1)].name, "H. Dunbar").
Here are the rules applied at each step of the translation of C1 and C2.
M1 ← trans(C1) = trans($.code, isNotNull):

R0: M1 ← trans(.code, isNotNull)

R8 then R1: M1 ← field(code) cond(isNotNull)

M2 ← trans(C2) =

trans($.teams[0,1][(@.length-1)].name, equals("H. Dunbar"))

R0: M2 ← trans(.teams[0,1][(@.length-1)].name, equals("H. Dunbar"))

R2 splits the alternative "[0,1]" into two members of an or clause:

M2 ← or( trans(teams.0.[(@.length-1)].name, equals("H. Dunbar")),

trans(teams.1.[(@.length-1)].name, equals("H. Dunbar"))).

R6(c) processes the calculated array index "(@.length-1)" in each OR member:
M2 ← or(and(exists(.teams.0),

where(‘this.teams[0][this.teams[0].length-1)].name=="H. Dunbar"’)),

and(exists(.teams.1),

where(‘this.teams[1][this.teams[1].length-1)].name=="H. Dunbar"’)))

4.3 Rewriting of the Abstract MongoDB Query Representation
into a Concrete MongoDB Query

Rules R0 to R9 translate a condition on a JSONPath expression into an abstract
MongoDB query. Yet, several potential issues hinder the rewriting into a con-
crete query: (i) a not supported clause may indicate that a part of the JSON-
Path expression could not be translated into an equivalent MongoDB operator;
(ii) a where clause may be nested beneath a sequence of and and/or or clauses
although the MongoDB $where operator is valid only in the top-level query; (iii)
unnecessary complexity such as nested ors, nested ands, etc., may hamper per-
formances. Those issues are addressed by two sets of rewriting rules, O1 to O5
and W1 to W6. They require the addition of the union clause to those in List-
ing 1.4. union is semantically equivalent to the or clause but, whereas ors are
processed by the MongoDB database, unions shall be computed by the query
processing engine.
Query Optimization. Rules O1 to O5 in Fig. 3 perform several query opti-
mizations. Rules O1 to O4 address issue (iii) by flattening nested or, and and
union clauses, and merging sibling wheres. Rule O5 addresses issue (i) by
removing the clauses of type not supported while still making sure that the
query returns all the correct answers:



62 F. Michel et al.

O1 Flatten nested AND, OR and UNION clauses:
and(c1,... cn, and(d1,... dm,)) → and(c1,... cn, d1,... dm)
or(c1,... cn, or(d1,... dm,)) → or(c1,... cn, d1,... dm)
union(c1,... cn, union(d1,... dm,)) → union(c1,... cn, d1,... dm)

O2 Merge ELEMMATCH with nested AND clauses:
elemmatch(c1,... cn, and(d1,... dm,)) → elemmatch(c1,... cn, d1,... dm)

O3 Group sibling WHERE clauses:
or(..., where("w1"), where("w2")) → or(..., where("(w1) ‖ (w2)"))
and (..., where("w1”), where("w2")) → and(..., where("(w1) && (w2)"))
union(..., where("w1"), where("w2")) → union(..., where("(w1) ‖ (w2)"))

O4 Replace AND, OR or UNION clauses of one term with the term itself.

O5 Remove NOT SUPPORTED clauses:
(a) and(c1,... cn, not supported) → and(c1,... cn)
(b) elemmatch(c1,... cn, not supported) → elemmatch(c1,... cn)
(c) or(c1,... cn, not supported) → not supported
(d) union(c1,... cn, not supported) → not supported
(e) field(...)... field(...) not supported → not supported

Fig. 3. Optimization of an abstract MongoDB query

– O5(a): If a not supported clause occurs in an and clause, it is simply
removed. Let C1, ...Cn be any clauses and N be a not supported clause.
Since C1∧...∧Cn ⊇ C1∧...∧Cn∧N , the rewriting widens the condition. Hence,
all matching documents are returned. However, non-matching documents may
be returned too, that shall be ruled out later on.

– O5(b): A logical and implicitly applies to members of an elemmatch clause.
Therefore, removing the not supported has the same effect as in O5(a).

– O5(c) and (d): A not supported is managed differently in an or or union
clause. Since C1 ∨ ... ∨ Cn ⊆ C1 ∨ ...∨Cn ∨N , removing N would return a
subset of the matching documents. Instead, we replace the whole or or union
clause with a not supported clause. This way, the not supported issue is
raised up to the parent clause and shall be managed at the next iteration. Iter-
atively, the not supported clause is raised up until it is eventually removed
(cases and and elemmatch above), or it ends up in the top-level query. The
latter is the worst case in which the query shall retrieve all documents.

– O5(e): Similarly to O5(c), a sequence of fields followed by a not supported
clause must be replaced with a not supported clause to raise up the issue
to the parent clause.

Pulling Up WHERE Clauses. By construction, rule R6 ensures that where
clauses cannot be nested in an elemmatch, but they may show in and and or
clauses. Besides, rules O1 to O4 flatten nested or and and clauses, and merge
sibling where clauses. Therefore, a where clause may be either in the top-level
query (in this case the query is executable) or it may show in one of the following
patterns (where W stands for a where clause):
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W1 or(c1,...cn, w) → union(or(c1,...cn), w)
W2 or(c1,...cn, and(d1,...dm, w)) → union(or(c1,...cn), and(d1,...dm, w))
W3 and(c1,...cn, w) → (c1,...cn, w)

if the AND clause is a top-level query object or under a UNION clause.

W4 and(c1,...cn, or(d1,...dm, w)) →
union(and(c1,...cn, or(d1,...dm)), and(c1,...cn, w))

W5 and(c1,...cn, union(d1,...dm)) →
union(and(c1,...cn, d1),... and(c1,...cn, dm))

W6 or(c1,...cn, union(d1,...dm)) → union(or(c1,...cn), d1, ...dm))

Fig. 4. Pulling up WHERE clauses to the top-level query

OR(...,W,...), AND(...,W,...), OR(..., AND(...,W,...), ...), AND(..., OR(...,W,...), ...).
In such patterns, rules W1 to W6 (Fig. 4) address issue (ii) by “pulling up”
where clauses into the top-level query. Here is an insight into the approach:

– Since OR(C, W) is not a valid MongoDB query, it is replaced with query
UNION(C, W) which has the same semantics: C and W are evaluated sepa-
rately against the database, and the union is computed later on by the query
processing engine.

– AND(C,OR(D,W)) is rewritten into OR(AND(C,D), AND(C,W)) and the or is
replaced with a union: UNION(AND(C,D), AND(C,W)). Since an logical and
implicitly applies to the top-level terms, we can finally rewrite the query into
UNION((C,D), (C,W)) which is valid since W now shows in a top-level query.

Rewriting rules W1 to W6 are a generalization of these examples. They ensure
that a query containing a nested where can always be rewritten into a union of
queries wherein the where shows only in a top-level query. Hence we formulate
Theorem 1, for which a proof is provided in [15].

Theorem 1. Let C be an equality or not-null condition on a JSONPath expres-
sion. Let Q = (Q1 ... Qn) be the abstract MongoDB query produced by trans(C).
Rewritability: It is always possible to rewrite Q into a query Q

′
= union(Q

′
1,

.., Q
′
m) such that ∀i ∈ [1,m] Q

′
i is a valid MongoDB query, i.e. Q

′
i does not

contain any not supported clause, and a where clause only shows at the
top-level of Q

′
i.

Completeness: Q
′
retrieves all the documents matching condition C. If Q con-

tains at least one not supported clause, then Q
′
may retrieve additional doc-

uments that do not match condition C.

Running Example. For the sake of readability, below we denote the JavaScript
conditions in M1 and M2 as follows: JScond0 stands for

this.teams[0][this.teams[0].length-1)].name=="H. Dunbar", and JScond1 for

this.teams[1][this.teams[1].length-1)].name=="H. Dunbar".
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In Sect. 4.2 we have translated conditions C1 and C2 into abstract MongoDB
queries M1 and M2. The MongoDB documents needed to answer the SPARQL
query shall be retrieved by the query and(m1, m2) =

and(field(code) cond(isNotNull), or(

and(exists(.teams.0), where(‘JScond0’))

and(exists(.teams.1), where(‘JScond1’))))

Applying subsequently rules W2 and O4 replaces the inner or with a union:

and(field(code) cond(isNotNull), union(

and( exists(.teams.0), where(‘JScond0’))

and( exists(.teams.1), where(‘JScond1’))))

Rule W5 pulls up the union clause:

union(

and(field(code) cond(isNotNull), and(exists(.teams.0), where(‘JScond0’))),

and(field(code) cond(isNotNull), and(exists(.teams.1), where(‘JScond1’))))

Finally, O1 merges the nested ands and W3 removes the resulting top-level and:

union(

(field(code) cond(isNotNull), exists(.teams.0), where(‘JScond0’)),

(field(code) cond(isNotNull), exists(.teams.1), where(‘JScond1’)))

The abstract query can now be rewritten into a union of two valid queries:

{"code":{ $exists:true, $ne:null }, "teams.0":{ $exists:true },

$where:‘this.teams[0][this.teams[0].length-1)].name == "H. Dunbar"’}
{"code":{ $exists:true, $ne:null }, "teams.1":{ $exists:true },

$where:‘this.teams[1][this.teams[1].length-1)].name == "H. Dunbar"’}
The first query retrieves the document below, whereas the second query returns
no document.

{ "project ":" Customer Relation", "code ":" crm",

"teams ":[ [ {"name ":"R. Posner"}, {"name ":"H. Dunbar "}]]}

Finally, the application of triples map <#TmLeader> to the query result produces
one RDF triple that matches the triple pattern tp:

<http://example.org/project/crm> ex:teamLeader "H. Dunbar".

5 Discussion, Conclusion and Perspectives

In this document we proposed a method to access arbitrary MongoDB documents
with SPARQL. This relies on custom mappings described in the xR2RML map-
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ping language which allows for the reuse of existing domain ontologies. First, we
introduced a method to rewrite a SPARQL query into a pivot abstract query
independent of any target database, under xR2RML mappings. Then, we devised
a set of rules to translate this pivot query into an abstract representation of a
MongoDB query, and we showed that the latter can always be rewritten into a
union of concrete MongoDB queries that shall return all the documents required
to answer the SPARQL query.

Due to the limited expressiveness of the MongoDB find queries, some JSON-
Path expressions cannot be translated into equivalent MongoDB queries. Conse-
quently, the query translation method cannot guarantee that query semantics be
preserved. Yet, we ensure that rewritten queries retrieve all matching documents,
possibly with additional non-matching ones. The RDF triples thus extracted are
subsequently filtered by evaluating the original SPARQL query. This preserves
semantics at the cost of an extra SPARQL query evaluation.

In a recent work, Botoeva et al. proposed a generalization of the OBDA
principles to support MongoDB [6]. Both approaches have similarities and dis-
crepancies that we outline below. Botoeva et al. derive a set of type constraints
(literal, object, array) from the mapping assertions, called the MongoDB data-
base schema. Then, a relational view over the database is defined with respect
to that schema, notably by flattening array fields. A SPARQL query is rewrit-
ten into a relational algebra (RA) query, and RA expressions over the relational
view are translated into MongoDB aggregate queries. Similarly, we translate
a SPARQL query into an abstract representation (that is not the relational
algebra) under xR2RML mappings. The mappings are quite similar in both
approaches although xR2RML is slightly more flexible: class names (in triples
?x rdf:type A) and predicates can be built from database values whereas they
are fixed in [6], and xR2RML allows to turn an array field into an RDF collection
or container. To deal with the tree form of JSON documents we use JSONPath
expressions. This avoids the definition of a relational view over the database, but
this also comes with additional complexity in the translation process. Finally,
[6] produces MongoDB aggregate queries, with the advantage that a SPARQL
1.0 query may be translated into a single target query, thus delegating all the
processing to MongoDB. Yet, in practice, some aggregate queries may be very
inefficient, hence the need to decompose RA queries into sub-queries, as under-
lined by the authors. Our approach produces find queries that are less expressive
but whose performance is easier to anticipate, thus putting a higher burden on
the query processing engine (joins, some unions and filtering). In the future, it
would be interesting to characterise mappings with respect to the type of query
that shall perform best (single vs. multiple separate queries, find vs. aggregate).
A lead may be to involve query plan optimization logics such as the bind join [12]
and the join reordering methods applied in the context of distributed SPARQL
query engines [20].

More generally, the NoSQL trend pragmatically gave up on properties such
as consistency and rich query features, as a trade-off to high throughput, high
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availability and horizontal elasticity. Therefore, it is likely that the hurdles we
encountered with MongoDB shall occur with other NoSQL databases.

Implementation and Evaluation. To validate our approach we have devel-
oped a prototype implementation9 available under the Apache 2 open source
licence. Further developments on query optimization are on-going, and in the
short-term we intend to run performance evaluations. Besides, we are work-
ing on two real-life use cases. Firstly, in the context of the Zoomathia research
project10, we proposed to represent a taxonomic reference, designed to support
studies in Conservation Biology, as a SKOS thesaurus [7]. It is stored in a Mon-
goDB database, and we are in the process of testing the SPARQL access to
that thesaurus using our prototype. Secondly, we are having discussions with
researchers in the fields of ecology and agronomy. They intend to explore the
added value of Semantic Web technologies using a large MongoDB database of
phenotype information. This context would be a significant and realistic use case
of our method and prototype.
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Abstract. In the Linked Data field, data publishers frequently materialize
linksets between two different datasets using link discovery tools. To create a
linkset, such tools typically execute linkage rules that retrieve data from the
underlying datasets and apply matching predicates to create the links, in an often
complex process. Also, such tools do not support linkset maintenance, when the
datasets are updated. A simple, but costly strategy to maintain linksets
up-to-date would be to fully re-materialize them from time to time. This paper
presents an alternative strategy, called incremental, for maintaining linksets,
based on idea that one should re-compute only the links that involve the updated
resources. The paper discusses in detail the incremental strategy, outlines an
implementation and describes an experiment to compare the performance of the
incremental strategy with the full re-materialization of linksets.

Keywords: RDF views � Linksets � SPARQL update � Linked data

1 Introduction

The Linked Data initiative defines best practices for publishing and interlinking data on
the Web using RDF triples to represent the data (Berners-Lee 2006). Briefly, a dataset
is simply a set of RDF triples. A link is an RDF triple of the form (s,p,o), where s and
o are resources defined in two distinct datasets. A linkset is a set of links. SPARQL is the
standard query language used to query RDF datasets. A SPARQL-based view is a view
defined by a SPARQL query.

Link discovery tools help create and materialize linksets by matching resources
retrieved from two datasets. The first step to configure a link discovery tool typically
defines what amounts to SPARQL-based views that specify sets of resources with useful
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properties. We refer to such views as catalogue views since they act as a catalogue of
resources. The second step defines a set of linkage rules that specify conditions that
resources must fulfill to be matched.

When a dataset is updated, the maintenance of a linkset requires attention since the
resources may no longer meet the graph template used in the corresponding catalogue
view. A trivial case is when a resource used in a link is removed from the original
dataset; in this case, the link becomes invalid and must also be removed. The work in
(Casanova et al. 2014) specified an incremental strategy to keep linksets updated,
similar to the incremental strategies for relational view maintenance.

This paper extends the work reported in (Casanova et al. 2014) in three directions:
(1) it presents in detail an incremental strategy to maintain materialized linksets; (2) it
outlines an implementation of the proposed incremental strategy; (3) it describes
experiments to measure the performance of the proposed incremental strategy and
compare it with a re-materialization strategy.

The paper is organized as follows. Section 2 reviews related work. Section 3
contains basic definitions and a simple example. Section 4 details the incremental
strategy to maintain linksets. Section 5 outlines a tool that implements the proposed
incremental strategy and describes experiments conducted to assess the effectiveness of
the incremental strategy. Finally, Sect. 6 contains the conclusions and discusses
directions for future research.

2 Related Work

Several tools were developed to help solve the problem of finding links between
different datasets. The LInk Discovery Framework for MEtric Spaces (LIMES) pro-
poses algorithms that work efficiently with large knowledge bases (Ngomo and Auer
2011). The LIMES developers started with the idea of filtering obvious non-match
instances to reduce the number of comparisons and improve matching time. The Silk
Linking Framework (Volz et al. 2009b) offers a second example.

The Web of Data – Link Maintenance Protocol (WOD-LMP) (Volz et al. 2009a) is
a protocol that helps link maintenance. It covers three use cases: (1) Link Transfer to
Target – the source sends notifications to the target when a link is created or deleted;
(2) Request of Target Change List – the source requests to the target a list of changes in
a specified time range; (3) Subscription of Target Changes – the source sends the links
notifications and the target stores this information to further notify the source about
changes in the pointed resources.

DSNotify (Popitsch and Haslhofer 2011) is a general-purpose change detection
framework that notifies linked datasets about events (create, remove, move, update) in
their remote resources. To deal with these changes, DSNotify uses its own OWL Lite
vocabulary, called DSNotify Eventset Vocabulary, which allows a detailed description
(what, how, when and why) about the events.

We note that LIMES and Silk, although popular link discovery tools, do not
support linkset maintenance, whereas WOD-LMP and DSNotify deal with change
notification, but not with the actual linkset maintenance, as addressed in this paper.
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The work reported in this paper is also related to strategies for materialized view
maintenance. In the context of relational databases, a strategy for view maintenance is
called incremental if only part of the view is modified to reflect the updates in the
database (Gupta et al. 1993; Staud and Jarke 1996).

This strategy was adapted to maintain RDF views over relational databases (Vidal
et al. 2013). In all such contexts, incremental view maintenance generally outperforms
full view re-computation. However, we cannot directly adopt the familiar strategies
proposed for incremental maintenance over relational datasets, since complex SPARQL

updates pose new challenges, when compared with SQL updates.
The work reported in this paper is also closely related to strategies designed to

maintain RDF mirrors1, slices (Ibáñez et al. 2014) and views (Hung et al. 2004; Vidal
et al. 2015; Endris et al. 2015) over RDF datasets, since the main part of our strategy is
to compute the resources that affect the catalogue views used in the linksets. However,
there is no work in the literature that deals with complex SPARQL-based views. Also, the
proprietary systems that support the incremental maintenance of views, such as Ora-
cle RDF Store, can only deal with small inserts.

Furthermore, we cannot consider that a linkset is a regular RDF view computed
from two datasets, since they are materialized using complex linkage rules, which
typically involve similarity measures that cannot be expressed with a SPARQL query.
Hence, even if there was a solution for the maintenance of SPARQL-based views in the
literature, we still would not be able to direct use it.

As already mentioned in the introduction, the work reported in this paper differs
from previous work by the authors (Casanova et al. 2014) in three aspects. First, it
presents in detail the incremental strategy to keep linksets updated, which includes a
normalization process for views defined by SPARQL queries and a discussion on how to
synthesize queries that compute sets of affected resources. Second, it briefly outlines an
implementation of the proposed strategy. Lastly, based on the implementation, it
describes experiments to measure the performance of the incremental strategy when
compared with a full re-materialization strategy, a question neglected in the literature.

3 Catalogue Views and Linkset Views

3.1 Basic Definitions and Notation

To make the paper self-contained, we introduce an abstract notation to define catalogue
views and linkset views, based on a minimum set of simple SPARQL 1.1 constructs
(Harris and Seaborne 2013). The abstract notation is convenient since it highlights the
aspects involved in the construction of materialized views and linksets.

Catalogue views and linkset views depend on the notion of a simple construct
query, which intuitively defines the catalogue of resources. A SPARQL query F is a
simple construct query, or a simple query, iff

1 https://github.com/dbpedia/dbpedia-live-mirror.
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• The CONSTRUCT clause of F has exactly one template of the form “?x rdf:type C” and
a list of templates of the form “?x Pk ?pk”, where C is a class and Pk is a property,
for k = 1,…,n. We say that VF = {C,P1,…,Pn} is the vocabulary of F;

• F contains a single FROM clause, specifying the dataset used to evaluate F;
• The WHERE clause of F contains the pattern of the values that will be mapped to the

resources and properties of the CONSTRUCT clause; the WHERE clause is such that it
does not contain negations or the MINUS operator (Sect. 4.2 will discuss the reasons
for restricting the WHERE clause).

A catalogue view definition is a pair v = (V,F), where F is a simple construct query,
called the view mapping, and V is the vocabulary of F, called the view vocabulary.
Whenever possible, we will simply refer to F as the view definition.

Assume that a dataset contains a single set of RDF triples. Let T be the dataset
specified in the FROM clause of F and σT(t) be the state of T at time t. When evaluated
against σT(t), the simple query F returns a set of triples, which we denote F[σT(t)].

A materialization of F at time t is the process of computing F[σT(t)] and storing it
as part of a dataset. We could naturally expand the abstract notation for a simple view
to indicate the dataset and provide a name for the materialization of the view.

A linkset view definition is a quintuple l = (p,F,G,π,μ), where

• p is the link property
• F and G are simple queries whose vocabularies have the same cardinality n and

whose FROM clauses specify the datasets over which l is evaluated
• π is a permutation of (1,…,n), called the alignment of l
• μ is a 2n-relation, called the match predicate of l

Let VF = {C,P1,…,Pn} and VG = {D,Q1,…,Qn} be the vocabularies of F and G,
respectively. Intuitively, π indicates that, for each k = 1,…,n, the match predicate will
compare values of Pk with values of Qm, where m = π(k). The notion of alignment
could be generalized to permit more sophisticated alignments and mappings.

Let T be the dataset specified in the FROM clause of F and U be the dataset specified
in the FROM clause of G. We say that l is evaluated over T and U and that l is from T to
U. Let σT(t) and σU(t) be the states of T and U at time t. The linkset view definition
l induces a set of triples, denoted l[σT(t),σU(t)], as follows:

(s,p,o) 2 l[σT(t),σU(t)] iff there are triples
(s, rdf:type, C), (s, P1, s1), …, (s, Pn, sn) 2 F[T] and
(o, rdf:type, D), (o, Q1, o1), …,(o, Qn, on) 2 G[U] such that
(s1, …, sn, om1, …, omn) 2 μ, where π (k), for each k = 1,…,n

Again, a materialization of l is the process of computing the set l[σT(t),σU(t)] and
storing it as part of a dataset. Also, we could expand the abstract notation to indicate the
dataset and provide a name for the materialization of a linkset view definition.

3.2 Running Example

To illustrate catalogue views and linkset views, consider the dataset called Internet
Movie Database (IMDb), which contains triples about movies, actors, etc. Suppose that
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IMDb has a fictitious endpoint <http://imdb.org/sparql>, with default graph <http://
imdb.org/data>, and uses the ontology in Fig. 1. Also consider the DBpedia dataset,
which contains triples extracted from Wikipedia pages. It uses the endpoint <http://
dbpedia.org/sparql> with default graph <http://dbpedia.org> and the ontology partially
presented in Fig. 1.

Suppose that a user wants to link the directors in IMDb with those in DBpedia by
comparing their names and birth dates. For that purpose, s/he uses two catalogue views,
M and D, respectively over IMDb and DBpedia. Suppose that M is:

and that D is:

Lastly, the user creates the linkset view definition f = (owl:sameAs,M,D,π,μ) to
materialize owl:sameAs links indicating that a director in M and a director in D are the
same real-world object. As the match predicate, the user may choose the Levenshtein

Fig. 1. Simplified fragments of IMDb and DBpedia Ontologies.
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distance (Levenshtein 1966) with threshold <2 to compare the names of the directors
and assume that the birthdates match only if they are equal. Then, for example, if views
M and D respectively have two resources u and v with names “Tim Burton” and “Tim
Button” and the same birthdate, then the linkset will have a triple (u, owl:sameAs, v),
since the names have a Levenshtein distance of 1 (replace “t” by “r”), which satisfies
the accepted threshold.

4 Incremental Maintenance of Linkset Views

4.1 Overview

Consider the materialized linkset maintenance problem, defined as follows: “Given two
datasets, T and U, and a materialized linkset L from T to U, maintain L when updates on
T or U occur”.

A possible solution is to incrementally maintain L, that is, update L based on the
updates on T or U. However, L does not contain the triples capturing the property
values that generated the links. Hence, it is obviously impossible to detect when an
update u on T or U affects L by just looking at the links in L. Thus, to incrementally
maintain L, we propose a strategy that overcomes this lack of information by capturing
the changes that must be applied to L using the information about the updates and the
mappings of the catologue views adopted to define L.

Let V be a collection of catalogue views over T. Let u be an update on T and σT(t0)
and σT(t1) be the states of T before and after u (the discussion is symmetric for updates
on U). In the first process required by our incremental strategy, we need to capture the
changes that affect each view v in V following four main steps:

(1) Compute the set R+ of resources in v affected by the inserted triples of u.
(2) Compute the set R¯ of resources in v that are affected by the deleted triples of u.
(3) For s in R¯ [ R+, retrieve the (new) property values of s from σT(t1), denoted P.
(4) Associate R¯ and P with the update timestamp tu.

Let F be a catalogue view and F 2 V. Let F[R¯(tu)] be a collection of deleted
resources of F associated with a given update timestamp tu. Let F[P(tu)] be a collection
of new property values of F associated with a given update timestamp tu. Let t1 be the
current timestamp. Let R¯[t0,t1] be the set of accumulated deleted resources, where r 2
R¯[t0,t1] iff r 2 F[R¯(tu)] and t0 < r(tu) < t1 . Let P[t0,t1] be the set of accumulated
property values, where p 2 P[ti,tj] iff p 2 F[P(tu)] and ti < p(tu) < tj .

Suppose that L is a materialized linkset specified by the linkset view definition
l = (p,F,G,π,μ), where G is a catalogue view over U and G[σU(t)] denote the set of
triples that G returns when execute over state σU(t) of U. In the second process of the
incremental strategy, we incrementally update L following two main steps:

(1) Delete from L all links whose subject or object occurs in R¯[t0,t1].
(2) Try to match P[t0,t1] with the property values of a resource in σU(t1); if a match is

found, add a link to L.
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4.2 Normalization of View Mappings

Recall from Sect. 3.1 that the WHERE clause of a simple query F does not contain
negations or the MINUS operator. In this section, we show how to transform the triple
patterns of the WHERE clause of F into a normalized form, which simplifies the dis-
cussion in Sect. 4.3.

Table 1 summarizes the allowed types of property paths in triple patterns (column
2) and the corresponding normalized form (column 3). Briefly, the Normalization
Process iteratively runs through the triple patterns of the WHERE clause and replaces
their complex property paths by simpler ones until all paths are predicate paths, that is,
paths of length one. Note that a property path generates one or more simpler triple
patterns in a single group graph pattern, in the case of Inverse Paths, Sequence Paths,
Fixed Length Path and One or More Path expressions. But a property path generates
two simpler triple patterns in different group graph patterns with an UNION clause, in
the case of Alternative Path, Zero or More Path and Zero or One Path. Additionally, a
triple pattern marked with “(√)” needs no further processing to avoid a loop in the
process. The original triple patterns are replaced by the normalized triple patterns in
F. The output of the Normalization Process is a normalized view F’ and a list of
predicate triple patterns, denoted LP, that is, triple patterns with predicate paths or
predicate variables. Table 2 illustrates how the normalization works.

Table 1. Property path normalization.
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4.3 Computing Affected Resources and New Property Values

We first summarize the notation to be used in what follows:

• T and U are datasets and u is an update on T
• σT(ti) is the state of T at time ti, i = 0,1
• F and G are catalogue view definitions over T and U, respectively
• σF(ti) = F[σT(ti)] is the state of the view defined by view F at time ti, i = 0,1
• l = (p,F,G,π,μ) is a linkset view definition over v and w
• σl(ti) = l[σT(ti),σU(ti)] is the state of l at ti, i = 0,1
• D�

X t0; t1ð Þ¼ X t0ð Þ�X t1ð Þ andDþ
X t0; t1ð Þ¼ X t1ð Þ�X t0ð Þ

where X is either T, U, F, G or l
A deletion resources set query of F for u, denoted Fu¯, is any query that computes a

set of resources that contains the set of resources visible through F and affected by the
deletions in u. Likewise, an insertion resources set query of F for u, denoted Fu

+, is any
query that computes a set of resources that contains the set of resources visible through
F and affected by the insertions in u. More precisely, we define:

• A deletion resources set query of F for u, denoted Fu¯, is a SPARQL query such
that, for any states σT(t0) and σT(t1) of T such that σT(t0) and σT(t1) are the states
before and after u, we have {r / 9p9o((r,p,o) 2 Δv¯(t0,t1) } � Fu¯[(σT(t0)]

• An insertion resources set query of F for u, denoted Fu
+, is a SPARQL query such

that, for any states σT(t0) and σT(t1) of T such that σT(t0) and σT(t1) are the states
before and after u, we have {r / 9p9o((r,p,o) 2 Δv

+(t0,t1) } � Fu
+[(σT(t0)]

Recall from Sect. 3.1 that we restrict view mappings to use the types of property
paths in the second column of Table 1 and not to contain negations or the MINUS

operator. This restriction has one important consequence, stated as follows.
A view mapping F over a dataset T is monotonic iff, for any two states σT(t) and

σT(u), if σT(t) � σT(u) then F[σT(t)] � F[σT(u)].

Table 2. Example of the normalization process.
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Proposition 1: Assume that F is a view mapping whose WHERE clause uses the types of
property paths listed in Table 1 and does not contain negations or the MINUS operator.
Then, F is monotonic.

Monotonicity permits us to consider only deletions when constructing deletion
resources set queries of F for u and, likewise, only insertions when constructing
insertion resources set queries. Intuitively, if F were not monotonic, an insertion into
σT(t0) might propagate to a deletion from F[σT(t0)] and, likewise, a deletion from σT(t0)
might propagate to an insertion into F[σT(t0)].

Canonical Deletion and Insertion Resources Set. Let WF be the WHERE clause and gF
be the graph in the FROM clause of F. Assume that F has already been normalized and
let LF be the set of predicate triple patterns that occur in WF. Suppose that we mate-
rialize the set of deleted triples specified in the update u in state σT(t0) into a named
graph g¯.

Assume that the predicate triple patterns in LP are “ak bk ck”, for k = 1,…,n. Table 3
shows the template that generates the canonical deletion resources set query for F and
u, denoted CFu¯. Recall that the variable ?x identifies the resource of the catalogue
view as defined in Sect. 3.1. Note that the results of CFu¯ are inserted into another
named graph, denoted R¯, in which each resource is associated with the view identi-
fication and the timestamp of the update, denoted tu. The template for the canonical
insertion resources set query for F and u, denoted CFu

+, is similarly defined, except that
g¯ is replaced by g+, a named graph for the set of inserted triples u+, and R¯ is replaced
by R+, a named graph with the results of CFu

+. We again resort to an example to
illustrate the process of constructing CFu¯. Table 3 recalls the definition of view
M from Sect. 3.2, shows an update example, the query to populate g¯ represented by
the named graph <http://imdb.org/deletions> and finally the synthesized query CMu¯.

Note that, if CMu¯ is executed before u is applied, the graph <http://imdb.org/data>
has the necessary data to match the triple

Indeed, returning to the general discussion, let σT(t0) and σT(t1) be the states of
T before and after an update u is applied. We say that CFu¯[σT(t0)], the result of
executing CFu¯ in state σT(t0), is the set of affected resources computed by CFu¯ in
state σT(t0). Likewise, we say that CFu

+[σT(t1)], the result of executing CFu
+ in state

σT(t1), is the set of affected resources computed by CFu
+ in state σT(t1). After CFu¯

[σT(t0)] is computed, u can actually be applied and the triples in the named graph g¯
can be cleared. However, CFu

+ has to be executed after u is applied, otherwise the state
of T would not have the necessary data to match the triples in g+.

To summarize, the process of computing the affected resources R¯ and R+ follows
four main steps: (1) intercept u and populate g+ and g; (2) execute Fu¯, populating R¯;
(3) execute u; (4) execute Fu

+, populating R+.
We stress that CFu¯ and CFu

+ are just a possible solution. Note that they can be
synthesized at design time, right after the normalization, since the template will not
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change, only the data deleted or inserted. Furthermore, CFu¯ is correct in the following
sense (a similar result holds for CFu

+).

Proposition 2: Let F be a view mapping and u be an update over a dataset T. Let CFu¯
be the canonical deletion resources set query for F. Then, for any states σT(t0) and
σT(t1) of T such that σT(t0) and σT(t1) are the states before and after u,

New Property Values. After computing the graphs of the affected resources, we
proceed to compute the named graph with the new property values, denoted P. Let WF

be the WHERE clause, CF be the CONSTRUCT clause and gF be the graph in the FROM clause
of F. Table 4 shows the template and an example of the query to compute P.

Table 3. Example of the computation of affected resources.
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Table 4. Computing the new property values.

Table 5. Example of the linkset update process.
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4.4 Updating a Materialized Linkset

Finally, the linkset can be updated according to the set of resources that were affected
after the last timestamp maintenance. Let L be a materialized linkset, we first need to
delete all links involving a resource in R¯[t0,t1] according to the template of Table 5.
Additionally, Table 5 shows an example of the linkset update process supposing that
L was materialized in a named graph <http://linkset/directors>.

Then, the matching process is re-executed, using the triples in P[t0,t1], instead of
the whole view, and the new links are finally added to the materialized linkset.

We conclude this section with an observation about how the canonical queries are
synthesized. We note that P also considers the resources in the deleted set R¯ when
computing the new property values. This is necessary since CFu¯ computes a superset
R¯ of the set of resources affected by deletions. That is, there might be a resource r 2
R¯ that forced the deletion of a link of the form (r,p,o) from L, but r might not actually
be affected by the deletions. Therefore, the algorithm has to recompute all such links.
However, the problem of detecting the exact set of resources affected by deletions (or
insertions) is NP-Complete, which is proved by a transformation from Subgraph Iso-
morphism. Thus, synthesizing a deletion resources set query that returns the exact set of
resources affected by a set of deletions is infeasible, unless P = NP.

5 Implementation and Evaluation

5.1 Architecture

The Linkset Maintainer tool implements the strategy detailed in Sect. 4. The tool was
developed in the Java 7 programming language, using the Eclipse Luna IDE, JBoss
Application Server 7 and ARQ API as the SPARQL Processor.

Figure 2 summarizes the architecture of the tool. At initialization time, for each
view F over a dataset T, the View Controller normalizes F and, at run time, it computes
the set of affected resources and new property values of F with respect to updates
submitted to T, as already discussed in Sects. 4.2 and 4.3. At initialization time, the
Linkset Controller for a linkset l over views F and G registers itself with the View
Controllers for F and G and computes the initial state of l. At run time, it retrieves the
sets of deleted resources and the sets of new property values of F and G, computes the
accumulated set of deleted resources and the accumulated set of property values and
incrementally maintains the linkset according to timestamp of the last maintenance, as
discussed in Sect. 4.4.

The current implementation of the Linkset Controller uses Silk as the link discovery
tool, since it provides an API that enables the matching process to be executed pro-
grammatically. The user only specifies the linkage rules and the tool automatically does
the rest. The user may adopt other discovery tool, but s/he will have to manually
manage the tool.
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5.2 Evaluation Setup

In order to compare the performance of the incremental strategy with the full
re-computation of linksets, we selected two datasets: an IMDb dump, with 44,855,096
triples, and the DBpedia endpoint, which at the time of the experiments had
883,644,235 triples. All experiments were executed on a computer with an Intel Core i5
1,7 GHz processor and 4 GB RAM, running OS X Yosemite 10.10.2.

We defined views about movie directors for each dataset. The view
“IMDb_Director” has 41,929 resources and “DBpedia_Director” has 9,937 resources.
Then, we materialized an owl:sameAs linkset of directors, using these views, by
comparing their names and birth dates. The resulting linkset had 4,565 links. We
performed updates on the IMDb dataset that affected view “IMDb_Director”. All
updates were similar to the following, except that they differ on the LIMIT clause to get
an exact number of affected resources:

5.3 Experiments

We first compared the full rematerialization and the incremental strategy for the
directors linkset in the presence of the updates described in Sect. 5.2. Figure 3 shows
the runtime of the updates, varying the number of affected resources. For each update,
the runtime of the incremental strategy includes the time to compute the deleted
resources and new property values, execute the update, and update the linkset. Like-
wise, the runtime of the full rematerialization includes the time to execute the update
and rematerialize the linkset.

Since the queries to compute the new property values depend on the affected
resources, after some point, it may become disadvantageous to use the incremental
strategy. In the case of the directors linkset, this point was around 32 K resources,
which is 78 % of the total number of resources of view “IMDb_Director”, which has
41 K resources. However, if the number of affected resources is small, incremental
maintenance is far better than full rematerialization, as expected.

Fig. 2. Linkset view maintainer architecture.
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We run a second experiment to assess, in a real-world situation, the percentage of
resources, visible through views, that are affected by updates on a dataset. We based the
experiments on the DBpedia changesets, that is, sets of changed triples extracted from
Wikipedia, which are organized by year, month, day and hour and separated by the
type of the update (added, removed, reinserted and cleared). For this second experi-
ment, we defined two views over DBpedia about actors (49,308 resources) and
actresses (7,309 resources), in addition to the directors’ view. We then analyzed the
number of view resources affected by the changesets from an entire day (April 28,
2015). We computed the number of updated resources by changeset and how many of
these resources were visible through any of the views. Table 6 summarizes the results.

Considering each changeset as a single update, Table 6 shows an average of 99
resources per changeset, of which only 2 % were visible through any of the views.
Furthermore, the max number of affected resources in a single changeset was only 44.
Therefore, this second experiment provides evidence that the number of affected
resources tends to be small in real-world situations.

6 Conclusions

We first detailed an incremental strategy to keep linksets updated. We focused on how
to compute the sets of affected resources that are visible through a view. Then, we
showed how to keep the linksets updated based on such sets.

We presented the Linkset Maintainer, a tool that implements the incremental
strategy. The tool was designed for an environment where it is possible to intercept the
updates submitted to a dataset. However, the tool can be adapted to an environment

Fig. 3. Maintenance performance of linkset directors.

Table 6. Analysis of DBpedia changesets.

Total Sets Avg Max

Updated resources 551,236 5,568 99 975
View resources 13,199 5,568 2 44
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where only the dataset changesets are available. In special, it is possible to adapt the
strategy to compute the canonical deletion and insertion resources set, a crucial step of
the process.

Based on the tool, we conducted experiments to measure the performance of both
the incremental and the rematerialization strategies. The experiments demonstrated that
the incremental strategy far outperforms full rematerialization, when the number of
affected resources is relatively small, as expected. The results also showed that the
runtime of the incremental strategy is negligible, when only a few resources are
affected. We also analyzed DBpedia changesets from one day and concluded that, in
the experiments, just a small percentage of the resources visible through the views were
affected by updates. This experiment collected evidence that suggests that the incre-
mental maintenance of materialized linksets will be efficient in practice, given that the
number of resources that affects a view remains small.

As future work, we plan to continue the development of the tool to improve
performance and to provide a better user interface to help the definition of views and
linksets. Finally, we plan to make the tool freely available.
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Abstract. Recently, reverse rank queries have attracted significant
research interest. They have real-life applicability, such as in marketing
analysis and product placement. Reverse k-ranks queries return users
(preferences) who favor a given product more than other people. This
helps manufacturers find potential buyers even for an unpopular prod-
uct. Similar to the cable television industry, which often bundles chan-
nels, manufacturers are also willing to offer several products for sale as
one combined product for marketing purposes.

Unfortunately, current reverse rank queries, including Reverse k-ranks
queries, only consider one product. To address this limitation, we pro-
pose the aggregate reverse rank queries to find matching user preferences
for a set of products. To resolve this query more efficiently, we pro-
pose the concept of pre-processing the preference set and determining
its upper and lower bounds. Combining these bounds with the query
set, we proposed and implemented the tree pruning method (TPM) and
double-tree method (DTM). The theoretical analysis and experimental
results demonstrated the efficacy of the proposed methods.

Keywords: Similarity search · Aggregate reverse rank queries ·
Tree-based method

1 Introduction

Top-k and reverse k-rank queries are two different kinds of view-models. The
top-k query is a user view-model that helps consumers by obtaining the best k
products that match a user’s preference. On the other hand, the reverse k-rank
query [18] supports manufacturers by discovering potential consumers through
retrieving the most appropriate user preferences. Therefore, it is a manufacturer
view-model and can be used as a tool for identifying customers and estimating
product marketing.

Figure 1 shows an example of a reverse 1-rank query. Five different cell phones
(p1–p5) are scored on “smart” and “ratings” in a table (Fig. 1(a)). The prefer-
ences of two users Tom and Jerry are in another table (Fig. 1(b)) and consist of
the weights for all attributes. The score of a cell phone based on user preference
is determined from the inner product of the cell phone attributes vector and user
preference vector. Without loss of generality, we assumed that minimum values
are preferable. The results of the reverse 1-rank query are given in the last cells
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 87–101, 2016.
DOI: 10.1007/978-3-319-44406-2 8
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Fig. 1. The example of reverse 1-rank queries.

of Fig. 1(b). For example, Tom believes that p1 is the third-best phone, while
Jerry thinks that p1 is the fifth-best. To manufacturers, Tom is more likely to
buy p1 than Jerry; hence, the reverse 1-rank query returns Tom as the result.

Motivation. Manufacturers use “product bundling” for marketing purposes.
Product bundling is offering several products for sale as one combined product.
It is a common feature in many imperfectly competitive product markets. For
example, Microsoft Co., Ltd. includes a word processor, spreadsheet, presenta-
tion program, and other useful software into a single Office Suite. The cable
television industry often bundles various channels into a single tier to expand
the channel market. Manufacturers of video games are also willing to group a
popular game with other games of the same theme in the hope of obtaining more
benefits by selling them together.

Because product bundling is an important business approach, helping man-
ufacturers target buyers for their bundled products is important. Unfortunately,
the reverse k-rank query and other kinds of reverse ranking queries are all
designed for just one product. To address this limitation, we propose a new
query definition that finds k customers with the smallest aggregate rank values,
where the rank of a product set is defined as the sum of each product’s rank.
We call this approach aggregate reverse rank queries (AR-k queries).

Fig. 2. The example of aggregate reverse 1-rank queries.
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Figure 2 shows an example of an AR-1 query. There are three groups of
bundled products: {p1, p2}, {p2, p3}, and {p4, p5}. The aggregate rank of {p1, p2}
is 5 according to Tom’s preferences and 6 according to Jerry’s. Thus, the AR-1
query returns Tom as the result because Tom prefers this bundle the most.

Contribution. This paper makes the following contributions:

– To the best of our knowledge, we are the first to address the “one product”
limitation of reverse k-rank queries. We propose a new AR-k query that returns
the k user preferences that best match a set of products.

– We propose the concept of pre-processing preferences to determine possible
upper and lower bounds. This process can be done before the AR-k query is
issued to enhance its efficiency and is implemented with the proposed tree-
pruning method (TPM) and double-tree method (DTM).

– Along with the theoretical analysis, we also performed experiments on both
real and synthetic data. The experimental results validated the efficiency of
the proposed methods.

The rest of this paper is organized as follows: Sect. 2 summarizes related work.
Section 3 states the definitions. In Sect. 4, we present the method of bounding
the query set. Sections 5 and 6 propose two solutions (TPM and DTM) of AR-k.
Experimental results are shown in Sect. 7 and Sect. 8 concludes the paper.

2 Related Work

Ranking is an important property for evaluating the position of a product. Many
variants of rank-aware queries have been widely researched.

Ranking Query (Top-k Query). The most basic approach is the top-k query.
When given a user preference, the top-k query returns k products with minimal
ranking scores found by a score function. One possible approach to the top-
k problem is the onion technique [1]. This algorithm pre-computes and stores
convex hulls of data points in layers like an onion. [4] is an important investiga-
tion that describes and classifies top-k query processing techniques in relational
databases.

Reverse Rank Query (RRQ). Reverse top-k queries [10,12] have been pro-
posed to evaluate the impact of a potential product on the market based on the
preferences of users who treat it as a top-k product. For an efficient reverse top-k
process, Vlachou et al. [13] proposed a branch-and-bound algorithm (BBR) using
boundary-based registration and a tree base. Vlachou et al. [11,14] have reported
various applications of reverse top-k queries. However, in order to answer the
reverse query for some less-popular objects, [18] proposed the reverse k-rank
query to find the top-k user preferences with the highest rank for a given object
among all users.

Other Reverse Queries. Other related research on reverse queries is listed
below. Given a data point, queries are performed to find result sets contain-
ing this data point. In contrast to the nearest-neighbor search, Korn and
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Muthukrishnan [5] proposed the reverse nearest-neighbour (RNN) query. Besides
the nearest neighbor, Yao et al. [17] proposed the reverse furthest neighbor
(RFN) query to find points where the query point is deemed as the furthest
neighbor. For reverse k nearest neighbor (RKNN), Yang et al. [15] analyzed and
compared notable algorithms from [2,7–9,16]. RKNN differs from RRQ because
it evaluates the relative Lp distance between two points in one Euclidean space.
However, RRQ focuses on the absolute ranking among all objects, and scores
are found via the inner product function. In addition, RKNN treat the user
preference and product as the same kind of point in the same space, while RRQ
has two data sets of different data spaces. The reverse skyline query uses the
advantages of products to find potential customers based on the dominance of
competitors’ products [3,6]. The preference of each user is described as a data
point representing the desirable product. But in RRQ, the preference is described
as a weight vector.

3 Problem Statement

The assumption of the product database, preference database and the score
function between them are same with the related research [10,13,18]. Let there
be a product data set P and preference data set W . Each p ∈ P is a d-dimensional
vector that contains d non-negative scoring attributes. p is represented as a point
p = (p[1], p[2], ..., p[d]), where p[i] is the attribute value of p in the ith dimension.
The preference w ∈ W is also a d-dimensional weighting vector, and w[i] is a non-
negative weight that evaluates p[i], where

∑d
i=1 w[i] = 1. The score is defined as

the inner product of p and w, which is expressed by f(w, p) =
∑d

i=1 w[i] · p[i].
Given a query q, which is in the same space as, but not necessarily an element
of P , the reverse k-rank query [18] is defined as follows.

Definition 1 (rank(w, q)). Given a point set P , weighting vector w, and query
q, the rank of q by w is rank(w, q) = |S|, where S ⊆ P and ∀pi ∈ S, f(w, pi) <
f(w, q) ∧ ∀pj ∈ (P − S), f(w, pj) ≥ f(w, q).

Definition 2 (reverse k-ranks query). Given a point set P , weighting vector set
W , positive integer k, and query q, the reverse k-rank query returns the set S,
S ⊆ W , |S| = k, such that ∀wi ∈ S,∀wj ∈ (W − S), rank(wi, q) ≤ rank(wj , q)
holds.

To deal with a query having more than one query point, we propose the AR-k
query, which is formally defined as follows.

Definition 3 (aggregate reverse rank query, AR-k). Given a point set P , weight-
ing vector set W , positive integer k, and query point set Q, the AR-k query
returns the set S, S ⊆ W , |S| = k, such that ∀wi ∈ S,∀wj ∈ (W − S),
ARank(wi, Q) ≤ ARank(wj , Q) holds.

Three aggregate evaluation functions were considered for ARank:
• Sum: ARank(w,Q) =

∑
qi∈Q rank(w, qi).
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• Maximum: ARank(w,Q) = Maxqi∈Q{rank(w, qi)}.
• Minimum: ARank(w,Q) = Minqi∈Q{rank(w, qi)}.

There are many other possible definitions for ARank(w,Q). We considered the
above because they are the most likely to be used in real applications. Suppose
that there is a set of products offered by a manufacturer and we want to help
them find the most potential buyers. Then, the above three evaluating functions
correspond to the following requests:
Sum: find buyers who more strongly believe that this product set is better than
other people. Maximum/Minimum: find buyers who more strongly believe
that the best/worst product in this set is better than other people.

The rest of this paper only focuses on Sum AR-k because Maximum and
Minimum can be solved simply by using the technique of the existing reverse
k-rank query. From a technical point of view, for maximum score, let q′ be
the query of Q such that f(w, q′) = maxqi∈Q{f(w, qi)} with respect to w, then
the rank of q′, rank(w, q′), is also equal to Maxqi∈Q{rank(w, qi)}. Thus, we
can process Maximum AR-k simply by applying the reverse k-rank query to q′.
Minimum can be solved in a similar manner.

4 Bounding the Query Set in Advance

A naive solution to an AR-k query is to sum up the ranks for q ∈ Q one by
one against each w ∈ W and p ∈ P . This is inefficient, especially when Q is
large. Our idea is to bound the query set Q with respect to W . In this section,
we introduce a sophisticated method of bounding Q with two points Q.up and
Q.low from a subset of W . Denoted by Wt = {w(i)

t }d1, this subset is the set of
top-weighting vectors for all dimensions, as defined in the following,

Definition 4 (top-weighting vector). Given a set of weighting vector W , let ei
be the direction vector for dimension i such that ei[i] = 1 and ei[j] = 0, i �= j
and let cos(a, b) = a · b/(|a||b|) be the cosine similarity between vectors a and b.
The top-weighting vector for dimension i is defined by w

(i)
t where w

(i)
t ∈ W and

∀w ∈ W, cos(w(i)
t , ei) ≥ cos(w, ei).

Wt can be found before the query set Q is issued, so it can be considered as
cost less in terms of query processing. Because Wt contains the border of the
weighting vector in all dimensions, we can use it to find the upper border and
lower border points set of Q.

Definition 5 (upper and lower border query sets Qu and Ql). Given a
d-dimensional query points set Q,

Qu = {qi|qi ∈ Q ∧ ∀qj ∈ Q, ∃w(i)
t ∈ Wt, f(w(i)

t , qi) ≥ f(w(i)
t , qj)} and

Ql = {qi|qi ∈ Q ∧ ∀qj ∈ Q, ∃w(i)
t ∈ Wt, f(w(i)

t , qi) ≤ f(w(i)
t , qj)}.
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By the definition, for each w
(i)
t there is a corresponding qi ∈ Qu (Ql) such

that qi’s score with respect to w
(i)
t is the largest (smallest) among Q. Different

w
(i)
t may correspond to a same qi and vice versa. Generally, it is easy to find the

minimum bounding rectangle (MBR) of a point set X, and let its upper-right
and lower-left corners be MBR(X).up and MBR(X).low, respectively. We show
below that Q.up = MBR(Qu).up and Q.low = MBR(Ql).low bound the query
set Q for the AR-k query.

Figure 3 shows the geometric view for the example of Q.low and Q.up where
Q = {q1, q2, q3}. w

(1)
t = w5 and w

(2)
t = w1 are the top-weighting vectors in

dimensions 1 and 2, respectively. Each w
(i)
t is also a normal vector of the hyper-

planes H(w(i)
t ). For Q.up, in 2-dimensional space, the hyper-planes H(w(1)

t ) are
the dashed lines l1 which are perpendicular to w

(1)
t . By sweeping l1 parallelly

from far infinity toward the original point (0, 0), q1 is the first point that is
touched. Hence, q1’s score with respect to w is equal to maxq∈Qf(w(1)

t , q), and
q1 is included in Qu. In the same manner, l2 touches q3 first, so q3 ∈ Qu.
Q.up = MBR(Qu).up upper-bounds the scores for Qu. Similarly, sweeping the
perpendicular dashed lines l3 and l4 from (0, 0) toward infinity both touch q2,
hence Ql = {q2} and Q.low = q2.

Fig. 3. A 2-dimensional example. w
(1)
t = w5, w

(2)
t = w1 and Qu = {q1, q3}, Ql = {q2},

Q.low = MBR(Ql).low = q2, Q.up = MBR(Qu).up

Theorem 1 (Correctness of Q.up and Q.low). Given top-weighting vectors set
Wt, the d-dimensional query point set Q, Q.up and Q.low. For w ∈ W and
q ∈ Q, f(w,Q.low) ≤ f(w, q) ≤ f(w,Q.up) always holds.

Proof. By contradiction. For Q.up, assume that ∃q ∈ Q, q /∈ Qu holds so that
f(w, q) ≥ f(w,Q.up). Therefore, ∃q[i] > Q.up[i], i ∈ [1, d], so there must exist a
w

(j)
t ∈ Wt, j ∈ [1, d] that makes f(w(j)

t , q) the maximum value, and q should in
Qu. This leads to the contradiction.1 A similar contradiction occurs with Q.low.
1 The geometric view is that there exists a hyper-plane H(w

(j)
t ) that first touches q

rather than others.
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We can use the rank of Q.low to infer the bounds of the aggregate rank of Q.

Lemma 1 (Aggregate rank bounds of Q for w): Given a set of query points
Q and a weighting vector w, the lower bound of ARank(w,Q) is |Q| ×
rank(w,Q.low), and the upper bound of ARank(w,Q) is |Q| × rank(w,Q.up).

Proof. ∀qi ∈ Q, ∀w[i] ≥ 0, it holds that f(w, qi) ≥ f(w,Q.low)
hence rank(w, qi) ≥ rank(w,Q.low). By definition, ARank(w,Q) =∑

qi∈Q rank(w, qi) ≥ |Q| × rank(w,Q.low). Similarly, |Q| × rank(w,Q.up) is
the upper bound of ARank(w,Q).

Having Wt, the time cost of finding Q.low and Q.up is reduced from O(|Q|×
|W |) to only O(|Q| × d), where d is the dimension of data. Considering that
|Q| × d is much smaller than the size of the data set, the overhead of finding
Q.low and Q.up is very small.

5 Tree-Pruning Method (TPM)

To enhance efficiency, our first approach, which is the tree pruning method
(TPM), indexes the data set P with the R-tree to group similar points and
uses the bounds of MBRs (i.e., the R-tree entries) to reduce computing costs.

Fig. 4. The partitioned space of BelowQ, InQ and AboveQ based on Q.low and Q.up
with a single wi in 2d space of data set P .

First, we introduce how TPM filters P with Q.low and Q.up. Figure 4 shows
the geometric view for an example of two-dimensional data. The two dashed
lines cross the boundaries (Q.low and Q.up), and they are perpendicular to the
weighting vector wi. The space is partitioned into three parts, which are marked
as BelowQ, InQ, and AboveQ in Fig. 4. For example, e2 is in BelowQ and e5 is
in AboveQ. MBRs in BelowQ and AboveQ can be filtered by checking the upper
and lower boundaries. Formally, the pruning rules are as follows.
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– Rule 1. (MBR in BelowQ) If f(w, ep.up) < f(w,Q.low), count the number of
points in ep because ∀p ∈ ep,∀q ∈ Q, f(w, q) > f(w, p) holds.

– Rule 2. (MBR in AboveQ) If f(w, ep.low) > f(w,Q.up), then discard ep
because ∀p ∈ ep,∀q ∈ Q, f(w, q) < f(w, p) holds.

– Rule 3. (MBR in InQ) If f(w, ei.low) > f(w,Q.low) and f(w, ei.up) <
f(w,Q.up), then add ei to candidate for further examination.

Algorithm 1. ARank-P
Input: P,w,Q,minRank
Output: include: rnk; discard: -1;
1: rnk ⇐ 0, Cand ⇐ ∅
2: heapP.enqueue(RtreeP.Root())
3: while heapP.isNotEmpty() do
4: ep ⇐ heapP.dequeue()
5: for each ei ∈ ep do
6: if f(w, ei.low) < f(w,Q.up) then
7: if ei in BelowQ then
8: rnk ⇐ rnk + ei.size() × |Q| //Rule 1
9: if rnk ≥ minRank then

10: return -1
11: else if ei in InQ then
12: Cand ⇐ Cand ∪ ei //Rule 3
13: else
14: if ei is a data point then
15: Cand ⇐ Cand ∪ ei
16: else
17: heapP.enqueue(ei)
18: Refine Cand by processing the MBRs and points in Cand with each q.
19: if rnk ≤ minRank then
20: return rnk
21: else
22: return -1

ARank-P Algorithm. Given P , w, Q, and the positive integer minRank,
the ARank algorithm checks whether the aggregate rank of Q is smaller than
the given minRank. It also returns the value of the aggregate rank when
ARank(w,Q) < minRank. As shown by Algorithm 1, ARank uses the R-tree
to prune similar points in a group (MBR). In this algorithm, the counter rnk is
used to count the aggregate rank of Q (Line 1). Then, the algorithm recursively
checks the MBRs in the R-tree of P from the root (Line 2). If ei belongs to
BelowQ, the counter rnk is increased by ei.size() × |Q| (Lines 7–8) based on
Lemma 1. When rnk becomes greater than minRank, the algorithm returns −1
to terminate (Lines 9–10). If ei in InQ, we add ei into the candidate set Cand
for refinement (Lines 11–12). In other situations, when a leaf node of entries is
encountered, the point is added into Cand for refinement (Lines 14–15). Other-
wise, ei is added to the queue (Line 17). After traversal of RtreeP, refinement
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Algorithm 2. Tree-Pruning Method (TPM)
Input: P,W,Q
Output: result set heap
1: initialize heap with first k weighting vectors and aggregate ranks of |Q|
2: minRank ⇐ heap’s last rank.
3: for each w ∈ W− {first k element in W} do
4: rnk ⇐ ARank-P(P,w,Q,minRank)
5: if rnk �= −1 then
6: heap.insert(w, rnk)
7: minRank ⇐ last rank of heap.
8: return heap

is performed where the Cand set is checked for each q ∈ Q and rnk is updated
(Line 18). Note that Cand contains both the MBR and single p in the space
part of InQ. The refinement also considers the upper and lower bounds of the
MBR to filter each q. Finally, rnk is the aggregate rank if rnk < minRank or
−1 is returned, which indicates that the current w is not a result.

TPM Algorithm. The TPM algorithm first initializes heap with the first k
weighting vectors and their aggregate ranks of Q (Line 1). Then, for the other
weighting vectors, the ARank-P Algorithm is called to check the aggregate rank
of the query set Q (Line 4). If the current w can make the rank of Q better than
the last rank in heap, this w is inserted into heap with its rank. Then, heap
automatically updates itself by removing the last element and inserting a new
w and aggregate rank while keeping the sorted order of rank (Line 6). Then,
minRank is updated by the last rank in the updated heap (Line 7). Eventually,
the algorithm returns heap as the result of the aggregate reverse k-rank query.

6 Double-Tree Method (DTM)

TPM uses an R-tree to manage similar p and avoid computing with MBRs.
However, TPM is limited in that it evaluates each w one by one, and its efficiency
declines when the W set is large. This limitation inspired us to remove redundant
computing by grouping similar w. We propose the double-tree method (DTM),
which also indexes W set in an R-tree. The R-trees for P and W are denoted as
RtreeP and RtreeW , respectively. Figure 5 shows the three parts of BelowQ,
InQ and AboveQ, which are separated by the bounds of the MBR ew in RtreeW
and Q.up (Q.low). Based on the MBR features in RtreeP and RtreeW , we can
obtain the score bounds of a single data point on the MBR ew of RtreeW .

Lemma 2 (Score bound of p): Given an MBR with the weighting vector ew
in RtreeW and p ∈ P , the score f(w, p) is lower-bounded by f(ew.low, p) and
upper-bounded by f(ew.up, p).

Proof. For w ∈ ew, ∀w[i] ≥ ew.low[i] holds, so
∑d

i=1 ew.low[i] · p[i] ≤ ∑d
i=1 w[i] ·

p[i] hence f(w, p) ≥ f(ew.low, p). Similarly, f(w, p) ≤ f(ew.up, p).
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Fig. 5. The space part of BelowQ, InQ and AboveQ based on Q.low and Q.up with a
MBR ew in 2d space of data set P .

The score bounds of the MBR ep of RtreeP based on ew of RtreeW can also
be inferred from the following lemma.

Lemma 3 (Score bound of MBR): Given the MBR ew of RtreeW and MBR ep
of RtreeP , the score of every p ∈ ep is lower-bounded by f(ew.low, ep.low) and
upper-bounded by f(ew.up, ep.up).

Proof. For p ∈ ep, ∀i, p[i] ≤ ep.low[i] holds based on the proof in Lemma2,
so

∑d
i=1 ew.low[i] · ep.low[i] ≤ ∑d

i=1 ew[i].low · p[i] ≤ ∑d
i=1 w[i] · p[i]. Hence,

f(w, p) ≥ f(ew.low, ep.low). Similarly, f(w, p) ≤ f(ew.up, ep.up) holds.

Based on the above lemmas, we can build the bounds of the aggregate rank
for Q on the MBR ew.

Theorem 2 (Aggregate rank bounds of Q for ew): Given the set of query points
Q and the MBR of the weighting vector ew, the lower bound of rank for every
w ∈ ew is |Q| × rank(ew.low,Q.low), and the upper bound of ARank(w,Q) is
|Q| × rank(ew.up,Q.up).

Proof. This is similar to the proof for Lemma 1.

The ARank-P algorithm checks the rank of Q with the single w. This time,
we propose using ARank-WP to check a group of w, ew. For ew, Algorithm 3
helps check these w ∈ ew with Q and minRank. The algorithm returns 1 if all
w ∈ ew make the Q rank in minRank and returns −1 if none of w ∈ ew makes
Q rank better than minRank. The algorithm returns 0 if it needs to check the
child entries of ew.

Unlike the TPM algorithm in Sect. 5, DTM uses two R-trees to index the P
and W . Hence, it can prune both the weighting vectors and points. Algorithm4
starts from the root of RtreeW and calls Algorithm 3 to check the aggregate
rank of Q on ew (Line 9). If flag is 0, all child MBRs are added to heapW for
the next loop (Lines 10–11). If flag is 1, this means that every w in ew makes
Q rank better than minRank. Thus, we can call Algorithm 1 to compute the
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Algorithm 3. ARank-WP
Input: P, ew, Q,minRank
Output: include: 1; discard: -1; uncertain : 0;
1: rnk ⇐ 0, Cand ⇐ ∅
2: heapP.enqueue(RtreeP.root())
3: while heapP.isNotEmpty() do
4: ep ⇐ heapP.dequeue()
5: for each ei ∈ ep do
6: if f(ew.low, ei.low) < f(ew.up,Q.up) then
7: if ei in BelowQ then
8: rnk ⇐ rnk + ei.size() × |Q|
9: if rnk ≥ minRank then

10: return -1
11: else if ei in InQ then
12: Cand ⇐ Cand ∪ ei
13: else
14: if ei is a data point then
15: Cand ⇐ Cand ∪ ei
16: else
17: heapP.enqueue(ei)
18: Refine Cand and process the MBRs and points in Cand with each q.
19: if rnk ≤ minRank then
20: return 1
21: else
22: return 0

Algorithm 4. Double-tree method (DTM)
Input: P,W,Q
Output: result set heap
1: initialize heap with the first k weighting vectors and the aggregate ranks of |Q|
2: minRank ⇐ heap’s last rank.
3: heapW.enqueue(RtreeW.root())
4: while heapW.isNotEmpty() do
5: ew ⇐ heapW.dequeue()
6: if ew is a single weighting vector then
7: call the function ARank-P and update minRank.
8: else
9: flag ⇐ ARank-WP(P, ew, Q,minRank)

10: if flag = 0 then
11: heapW.enqueue(all subMBR ∈ ew)
12: else
13: if flag = 1 then
14: for each w ∈ ew do
15: call the function ARank-P and update minRank.
16: return heap
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rank of each w in ew and update heap and minRank (Lines 14–15). When the
leaf node of a single w is being checked, Algorithm 1 is called just like in TPM
(Lines 6–7). When the algorithm terminates, heap is returned as the result of
the aggregate reverse rank query.

Table 1 summarizes the comparison of space and time complexities for NA
(naive) and the proposed TPM and DTM. NA has the highest cost in terms of
time complexity because O(|P | · |W |). However, it requires no extra index and
only needs O(k) space complexity. The proposed TPM and DTM algorithms
need space to store the R-tree but have lower computation costs.

Table 1. Time complexity, space complexity for algorithms NA, TPM and DTM.

Algorithm Index Time complexity Space complexity

NA None O(|P | · |W |) O(k)

TPM RtreeP O(|W | · log |P |) O(log |P |)
DTM RtreeP, RtreeW O(log |W | · log |P |) O(log |P | + log |W |)

7 Experiment

We present the experimental evaluation of the naive, TPM, and DTM algorithms
for AR-k. All algorithms were implemented in C++, and the experiments were
run on a Mac with 2.6 GHz Intel Core i7, 16 GB RAM. The page size was 4K.

Data Set. Both synthetic and real data were employed for the data set P .
The synthetic data sets were uniform (UN), clustered (CL) and anti-correlated
(AC) with an attribute value range of [0, 1) that were generated as in [13,18].
We also performed comparison experiments on two real data sets: HOUSE and
NBA2. HOUSE contains 201760 six-dimensional tuples and represents the annual
payments of American families (gas, electricity, water, heating, insurance, and
property tax) in 2013. NBA is a 20960-tuple data set of box scores of players
in the NBA from 1949 to 2009. We extracted the NBA statistics for points,
rebounds, assists, blocks, and steals to form a 5-d vector that represents a player.
For data set W , we also had the UN and CL data sets, which were generated in
the same manner as the data sets of P . We generated Q by using clustered data.

Experimental Results for Synthetic Data. Figure 6 shows the experimental
results for the synthetic data sets (UN, CL, AC) with varying dimensions d (2–5),
where both data sets P and W contained 100 K tuples. Q had five query points,
and we wanted to find the five best preferences (k = 5) for this Q. Figures 6a–c
show that TPM and DTM were at least 10 times faster than NA in terms of
CPU time. DTM performed the best because it skipped checking each p and
w and was stable for all dimensional cases. Tree-based methods perform less
querying for CL data than other data distributions because it is easier to index
clustered data with the R-tree. Figures 6d–f show that DTM had less I/O usage
2 NBA: http://www.databasebasketball.com/; HOUSE: https://usa.ipums.org/usa/.

http://www.databasebasketball.com/
https://usa.ipums.org/usa/
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Fig. 6. Comparison results of CPU time (a, b and c), I/O cost (d, e, f) and Pairwise
computations (g, h and i) on synthetic data, |P | = |W | = 100K, all with |Q| = 5, k = 10.

than TPM for all kinds of data. Figures 6g–i show pairwise computations with
p and w for calculating the scores. DTM needed fewer computations because it
can prune both points and weighting vectors with double R-trees.

Experimental Results for Real Data. Figure 7a shows the performance with
the HOUSE data set and different k (10–50). DTM again performed the best.
We found that the major dimensions of HOUSE were similar to an exponential
distribution. The NBA data set was used to solve another practical query: who
likes a team more than others? We selected five, ten, and fifteen players from the
same team as Q and then generated the data set W as various user preferences.
As expected, DTM found the answer the fastest. Figure 7c shows the I/O cost of
the two proposed tree-base algorithms (TPM and DTM). DTM required less I/O
usage.
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Fig. 7. Real data, HOUSE and NBA, W :UN, |W | = 100K, k = 10.

Fig. 8. Scalability on varying |P |,|W | (k = 5, |Q| = 5, d = 4); varying k (|P | = |W | =
100K, |Q| = 5); varying |Q| (|P | = |W | = 100K, k = 5).

Scalability. Figure 8a shows the scalable property for varying |P | and |W |.
The CPU cost of DTM increased slightly with increasing |P | and |W | because
most pairwise computations were filtered by R-treeW and R-treeP. According to
Figs. 8b and c, all of the algorithms were insensitive to k and |Q| because both
were far smaller in value than the cardinality of |P | and |W |.

8 Conclusion

Reverse rank queries have become important tools in marketing analyzing. How-
ever, related research on reverse rank queries has only focused on one product.
We propose the aggregate reverse rank query to address the situation of multiple
query products for applying to the product bundling. We devised the TPM and
DTM methods for efficient querying. TPM is a tree-based pruning method that
prunes unnecessary products with the help of an R-tree. DTM uses two R-trees
to manage products and user preferences and prune both of them. We compared
the methods through experiments on both synthetic data and real data and the
results show that DTM is the most efficient one.

As future work, we first plan to investigate approaches for other ARank
functions, such as evaluating the aggregate rank by the harmonic average of
each rank. We also want to consider approximate solutions for AR-k queries.
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Abstract. In a follow-up news article, description of previous news
events may be abbreviated or summarized. This feature makes news arti-
cle difficult to understand if the reader has no knowledge about the pre-
vious events. In such a case, providing concrete and detailed descriptions
is helpful. In this paper, we propose a five element, who, what, whom,
when, and where (5W) model and extraction method with completion
functionality. With this model, a news event is represented using these
5Ws. To discover abstract and concrete descriptions of a given event,
we propose the novel concept of abstractiveness based on this model.
The abstractiveness of an event description is defined based on the dif-
ficulty of imagining and identifying that event. Currently, we estimate
the abstractiveness of an event by considering the abstract levels and
comprehensivity of its 5Ws to identify that event. We also propose a
method for estimating the abstractiveness of an event and analyzing the
abstract-concrete relationships between news events based on the 5W
model. The experimental results indicate that our model, concept, and
method are effective for extracting a concrete event description.

Keywords: News event analysis · Abstractiveness · Understanding
support · Relationship analysis

1 Introduction

News is an important information source for personal and business activities.
Supporting readers’ news understanding is an important challenge. Many meth-
ods for supporting such understanding, for example, suggesting a related article,
have been proposed [1–3].

In some news articles that are follow-up reports of a certain topic, the back-
ground and previous information may be briefly introduced in a short descrip-
tion. In such a case, it is not easy to understand if readers have any knowledge
about that topic. An example is shown as follows.

c© Springer International Publishing Switzerland 2016
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“The Park Geun-hye administration is drawing flak for its poor response to
the Middle East respiratory syndrome outbreak, despite rising public concerns
of the surging number of confirmed or suspected patients.”1

This sentence states that President Park’s handling of MERS is a “poor
response”. If readers have not read about this topic previously, they would not
understand what “poor response” means. In addition, since there is no concrete
and detailed information about the handling of MERS, it is not easy to know
the actions of President Park regarding MERS and why the reporters claimed
these actions are “poor responses”. It is difficult to understand what actually
happened.

We define an event as a certain entity’s action and represent that event by
using five elements: Who, What, Whom, When, and Where (5Ws). We propose
a 5W model and extraction method based on these elements to support readers’
understanding by clarifying what happened and investigated ways to discover
abstract and concrete descriptions of a given event. We thus propose the concept
of abstractiveness. The abstractiveness of an event description is defined based
on the difficulty of imagining and identifying that event. We also propose a
method for estimating the abstractiveness level of an event and analyzing the
abstract-concrete relationship between events.

The major contributions of this paper are summarized as follows.

1. We propose the 5W model to represent news event. We model an event into
five elements of Who, What, Whom, When, and Where. We also propose an
element-extraction method based on dependency parsing and completing each
element. We complement Who and Whom elements by applying co-reference
resolution and Where and When elements by applying clustering methods
based on latent Dirichlet allocation (LDA) (Sect. 3).

2. The novel concept of abstractiveness and its estimating method are proposed.
The method is used to analyze the abstract-concrete relationship between two
events. With this method, we first estimate whether events denote the same
concrete event by comparing the 5Ws of their descriptions. Then, we compare
their abstractivenss levels to analyze their relationship. The experimental
results show that this method is effective for estimating the abstractiveness
of an event (Sect. 4).

2 Related Work

Many systems and methods have been proposed for supporting readers’ news
understanding. A typical method is recommending news article to support under-
standing. NewsCube analyzes and provides multiple aspects of news events to
support news understanding [1]. Kiritoshi et al. [3,4] proposed a method for sup-
porting news understanding by gathering diverse information for a news event.

1 http://www.koreaherald.com/view.php?ud=20150603001128.

http://www.koreaherald.com/view.php?ud=20150603001128
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Mihalcea et al. [5] presented an automatic keyword annotation system called
Wikify!, which automatically extracts keywords and links them to relevant pages
in Wikipedia or another encyclopedia. Wikify helps readers understand the enti-
ties mentioned in news articles. Like Wikify!, NewsStand answers the question,
“Where did a certain event happen?” or “What is happening at a certain loca-
tion?” by associating news articles with a particular location [2]. Their research
is similar to ours in that the extraction target is not an article but an event
and involves estimation of geolocation by using words in article as clues. Event
extraction is part of an information extraction task on the Web and widely
adapted for various domains [6]. Radinsky et al. [7] analyzed the causal relation-
ship among events by using event extraction to clarify what caused an event.
They expanded property exemplification of events theory [10], which represents
an event with objects such as actors, instruments, actions, time, and location.
We assume our concept of event abstractiveness is represented by elements con-
structing an event. Therefore, we represent an event with our 5W model to
estimate the abstract-concrete relationships among events.

Tanaka et al. [8] proposed a method for estimating the concrete level of a
Web page by estimating the term concreteness. Concreteness levels of terms are
estimated using the Medical Research Council Psycolinguistic Database2 on the
basis of concreteness and image-ability defined by Allan et al. [11]. Whereas they
try to estimate document concreteness by using the concreteness levels of terms,
our purpose was to estimate event abstractiveness.

3 5W Model

We represent an event description by using the 5Ws: Who,Whom, What, When,
and Where for analyzing the abstractiveness of an event description. Our 5W
model is represented on the basis of our assumption that an event is represented
by an entity conducting a certain action, the action, target entity of the action,
and spatiotemporal information.

Given an occurrence as a sentence, we decompose the sentence into the asso-
ciate subject, object, verb, time, and location as Who, Whom, What, When,
and Where elements, respectively. Basically, we decompose these elements by
using dependency parsing, i.e., we obtain a word dependency relation through
predicates such as the subject (nsubj ) or direct object (dobj ). For example, the
sentence “Fumio arranging Seoul visit to settle ’comfort women’ row.” is parsed
as 〈Fumio, nsubj, arranging〉 and 〈arrangin, dobj, visit〉. We use this relation
to obtain the subject and object relationship through the verb.

The element What is represented using the verb of the target sentence and is
not abbreviated. On the other hand, the other elements (Who, Whom, Where,
and When) may be abbreviated because we may infer them with the context and
surrounding text. Hereafter, we explain how to complete these elements when
they are abbreviated.

2 http://www.psych.rl.ac.uk.

http://www.psych.rl.ac.uk
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Completion of Elements Who and Whom: Elements Who and Whom are
completed by applying co-reference resolution methods. Currently, we use the
Standford Core NLP [12] tool. Additionally, we use Accurate Online Disam-
biguation of Entities (AIDA) [9] to disambiguate.

Completion of Elements When and Where: When temporal (When)
and/or location (Where) information are abbreviated, based on the assumption
that descriptions with the same context will share the same spatiotemporal infor-
mation, we complete the elements When and Where with a clustering method
on the basis of the topic distribution obtained from LDA [13].

Please note that if the time and location information have been mentioned
before and there is no change, writers do not describe them again and again and
readers can infer them from the context. However, sometimes, the spatiotemo-
pral information is not mentioned just because it is an abstract description. In
our 5W model, to represent an event, if the spatiotemporal information is not
mentioned, we first try to use the context to complete it. If we cannot detect
the spatiotemporal information, no values will be assigned to When and Where
elements.

The details of our method for extracting and completing the elements When
and Where are described in Algorithm 1. With element extraction, if a sen-
tence has temporal expression and location terms, we extract them as When
and Where elements (line 5). If we cannot find sptaiotemporal information of
the event from the sentence, we try to infer them by using the context infor-
mation (lines 6–18). Context means a cluster containing sentences that describe
the same topics. The idea is simple, the events described in the same cluster
(context) share sptatiotemporal information (line 3 in Algorithm1). For cluster-
ing, we apply LDA to sentences as documents then cluster sentences by using
the obtained topic distribution. By estimating the number of topics for LDA,
we calculate perplexity [13] with 5-fold cross-validation and use the lowest topic
number.

Given the topic distributions of each sentence, sentences are clustered by
spectral clustering [15] based on topic distribution. The reason we use spectral
clustering is that we use the Jensen-Shannon divergence for calculating proba-
bilistic distribution distance. Since we have to determine the number of clusters
for using spectral clustering, we use the number of topics as that of clusters
calculated before.

However, if we cannot find explicit spatiotemporal information from the clus-
ter, we try to represent the elements When and Where with ranges.

In lines 19–21, we infer geolocation as including all geolocations in an article.
To find the common place to include each location, we use Geonames3 to obtain
administrative districts (e.g. city and country) and create a tree structure. For
including all locations in an article, we find the common place by using the
lowest common ancestor (LCA) [16], described in line 20, of all location nodes.
For example, if we obtain two locations such as New York City and Albany in
an article, we obtain New York State as the LCA.
3 http://www.geonames.org.

http://www.geonames.org
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Algorithm 1. Estimating When and Where element
1 Input: Sentence set S, published date tp, sentence cluster label set L
2 Output: Event set E
3 C ← Clustering(S)
4 for sentence cluster Sc ∈ C do
5 Ec ← {ei|ei ← EventExtraction(si), si ∈ Sc}
6 for ei ∈ Ec do

7 if eWhere
i is None or eWhen

i is null then
8 for ej ∈ Ec do

9 if eWhere
i is null and eWhere

j is not null then

10 eWhere
i ← eWhere

j

11 if eWhen
i is null and eWhen

j then

12 eWhen
i ← eWhen

j

13 if eWhere
i is not null and eWhen

i is not null then
14 break

15 if eWhere
i is null then

16 eWhere
i ← LowestCommonAncestor({location|location ∈ sk, sk ∈

S})

17 if eWhen
i is null then

18 begin ← min{time|time ∈ sk, sk ∈ S}, end ← tp

19 eWhen
i ← (begin, end)

On the other hand, by inferring the largest period as possible, the beginning
of the period is determined as the oldest date written in the article, and the
published date of the article is adopted for the end of the period (line 23).

The distance between sentences s1 and s2 is calculated by normalizing each
sentence topic distribution θs1 and θs2 and using the Jensen-Shannon divergence
as follows.

Dist(s1, s2) = DJS(θs1 ||θs2) (1)

DJS(θs1 ||θs2) =
1
2
DKL(θs1 ||M) +

1
2
DKL(θs2 ||M)

M =
1
2
(θs1 + θs2)

DKL(θs1 ||θs2) =
∑

t∈Topic

θs1(t)log
θs1(t)
θs2(t)

4 Analysis of Relationship Among Events

This section describes the methods of abstractiveness estimation and relationship
classification to analyze abstractiveness-concreteness relationship.



Abstract-Concrete Relationship Analysis of News Events 107

4.1 Estimate of Abstractiveness

We define the abstractiveness of an event description as the difficulties to imag-
ine and identify that event. Currently, we infer the abstractiveness of an event
description by following two aspects, (1) ambiguity of the 5W elements and (2)
sufficiency level of the 5W elements to identify.

(1) Ambiguity of 5W elements: The ambiguity of an element is estimated
based on the range of meaning. In other words, estimating how many meanings
each element have.

For example, for the When element, the following sentence mentions events
from the 1990s to the present.

“Congress has not approved major gun-control legislation since the 1990s.”4

Hence, the more widely a period is described for the event, the higher abstrac-
tiveness the element has.

(2) Sufficiency level of 5W elements to identify: The sufficiency level of
the 5W elements denotes whether there are a sufficient amount of elements to
identify that event. Note that the 5Ws have strong co-relationships with each
other, and we do not need all elements to identify an event in many cases. For
example, if we know the subject (Who) and exact time (When), it is possible to
infer the location (Where) in many cases.

In other words, the 5Ws are dependent on each other, and we can refer to one
element by using the others. Hence, we calculate the abstractiveness of an event
by estimating how many events have elements and how much abstractiveness
those elements have.

Abstractiveness of Who and Whom

– “Japan Foreign Minister arranging Seoul visit to settle ‘comfort women’ row.”
– “Japan Foreign Minister Kishida says arranging visit to South Korea.”5

The above sentences describe the same event. However, the subjects are different,
i.e., “Japan Foreign Minister” and “Japan Foreign Minister Kishida”. If only
focusing on the subject, referencing the name is more concrete.

We consider the ambiguity of the Who or Whom from the above example.
There have been many “Japan Foreign Ministers” in Japan, but “Japan Foreign
Minister Kishida” is attached to only one person. We use a semantic class for
representing with such relationships. For example, “Kishida” is considered an
instance of the “Japan Foreign Minister” class. We estimate the abstractiveness
of the subject and object by using this “instance-of” relationship obtained from
ontology.

To obtain the “instance-of” relationship, we use the knowledge-base system
called YAGO [14] developed from online knowledge resources (e.g. Wikipedia

4 http://www.reuters.com/article/us-usa-obama-guns-idUSKBN0UM0AU20160108.
5 http://uk.reuters.com/article/uk-japan-southkorea-idUKKBN0U801M20151225.

http://www.reuters.com/article/us-usa-obama-guns-idUSKBN0UM0AU20160108
http://uk.reuters.com/article/uk-japan-southkorea-idUKKBN0U801M20151225
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and WordNet). YAGO contains knowledge of more than 10 million entities and
contains more than 120 million facts that represent relationships between enti-
ties. Moreover, classes have a hierarchical structure (e.g. the highest class of
all named entities is “Entity”.) We assume all subjects and objects are named
entities and regard the element (Who or Whom) at the “Entity” class as the
highest abstractiveness level (level 1). For example, let c be the element Who;
thus, abstWho(c) = 1 if and only if class(c) is “Entity”

The function abstDepth to estimate abstractiveness is non-linearly decreased
by the depth of elements. For example, the abstractiveness between “Govern-
ment minister” and “Shinzo Abe” is different from that between “Person” and
“Government minister”, even if they have the same hierarchy in YAGO. We
define the abstractiveness of the depth function as non-linear by introducing λ,
which is the constant term for decreasing regularization.

The difference in depth between “Government minister” and “Shinzo Abe”
is the same as that between “Person” and “Government minister”. However, the
difference in the abstractiveness of the latter pair should be greater than that of
the former.

abstDepth(c, λ) = exp (−depth(c) − 1
λ

), (2)

where the depth function returns the depth of element c in a hierarchical struc-
ture. The abstractiveness of the Who and Whom elements is represented using
this function as follows:

abstWho(c) = abstDepth(c, λWho) (3)
abstWhom(c) = abstDepth(c, λWhom) (4)

The constant term λ is defined respectively as λWho and λWhom because we
assume that each element has a different rate of decrease. We assign a value to
both terms as abst = 0.5 when the subject or object is the country class, as
mentioned above.

Abstractiveness of What Element. The abstractiveness of the What ele-
ment is calculated using the hierarchical structure of the semantics frame and
ambiguity of frames to which the verb belongs.

A semantic frame, composed of the lexical database called Framenet6, repre-
sents the semantic role in sentences with entities as participants. In Framenet,
the concept of the verb is called frame, the entity evoking the frame is called
frame entity, and the word belonging to a concept is called lexical unit. For exam-
ple, the lexical unit “cook” has the “Cooking creation” or “Heating Instrument”
concept, and this is called a frame. Usually, a lexical unit belongs to several

6 https://framenet.icsi.berkeley.edu/fndrupal/.

https://framenet.icsi.berkeley.edu/fndrupal/
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frames. For example, “Cooking creation” inherits from the “Intentionally cre-
ate” frame. There is a hierarchical relationship among certain frames; therefore,
we use this hierarchical structure for calculating the abstractiveness level of a
verb. Figure 1 shows the hierarchical structure of a frame.

Fig. 1. Example of frame hierarchical structure

We define the abstractiveness of the What element with the depth of the
hierarchical structure and number of frames as

DepthFv
=

1
|Fv|

∑

fi∈Fv

abstDepth(depth(fi), λWhat),

where v is the target verb for calculating abstractiveness, Fv is the frame set
including v as a lexical unit, fi is a member of Fv, depth(fi) represents the
function that returns the depth of fi, and abstDepth is the abstractiveness of the
depth function defined in Eq. (2). This formula is used to calculate the mean
abstractiveness as the depth of frames in Fv.

To consider semantic ambiguity, we also append expression 1− exp(− |Fv|−1
β )

to the abstractiveness of What abstWhat(v) to ensure that the abstractiveness is
0 when v belongs only to one frame and 1 when v belongs to the largest number
of frames. β is a constant term adjusting as abstractiveness is 0.5 when v belongs
to the average number of frames. The abstractiveness of the What element is
defined by the depth of hierarchical structure and the semantic ambiguity as
follows.

abstWhat(v) = α(1 − exp(−|Fv| − 1
β

)) + (1 − α)DepthFv
, (5)

where α is a constant term. For simplicity, we set α = 0.5 to be the average
among hierarchical structures and depth abstractiveness.
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Abstractiveness of Where Element. We estimate the abstractiveness of
Where by using GeoNames, which contains geo-information. It has over one
million place names and has an administrative district class such as city or
country.

We also construct a hierarchical structure by obtaining hierarchical relation-
ships (e.g. “White House” located in “Washington”) from GeoNames. We design
the abstractiveness of location to be; the deeper the location depth, the less
abstractiveness. For example, since “Country” is lower than “Earth” or “Con-
tinent” in this hierarchical structure, it has less abstractiveness than “Earth”
or “Continent”. Figure 2 shows an example of the hierarchical structure for a
location obtained from GeoNames.

Fig. 2. Example of hierarchical structure in GeoNames

As mentioned in Sect. 4.1, there is a complemented location. The location or
date information obtained by this complement should be higher in abstractive-
ness than those from explicit descriptions.

Therefore, the longer the distance Dist(si, sj), the higher the abstractiveness
we assign. The Dist(si, sj) is the distance between sentences si and sj from which
events ei and ej are extracted, respectively, ej is in the same cluster as ei and
ej , referenced by ei to estimate the Where element (Sect. 4.1).

The abstractiveness of Where abstWhere is defined as follows.

abstWhere(s1, s2, l) = Dist(s1, s2)(abstDepth(l, λWhere) − 1) − abstDepth(l, λWhere),

(6)

where λwhere is defined as a constant term. We assign a value to constraint
λWhere as abstWhere = 0.5 when l is at the prefecture depth.

Abstractiveness of When Element. The abstractiveness of the When ele-
ment is calculated by analyzing time duration. For example, “Mar, 2016” has
much more abstractiveness than “on Mar 01, 2016”. Currently, we count the
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number of days. Let t be the time span, then we define the abstractiveness of
When abstWhen as

abstWhen(s1, s2, t, λWhen) = exp (− t − 1
λWhen

)(1 + Dist(s1, s2)) − 1, (7)

where Dist(si, sj) is the distance between sentences si and sj from which event
ei and ej are extracted, respectively, ej is the same cluster as ei and ej referenced
by ei to estimate the When element (Sect. 4.1). Moreover, λWhen is a constant
term that needs to adjust the increase in abstractiveness. We assign a value to
λWhen as abstWhen = 0.5 when t is 1 month.

Abstractiveness of Event. As mentioned above, the 5Ws are closely related.
Hence, if a certain element cannot be obtained, that element can be estimated
from other elements if they have sufficiently low abstractiveness. We also have
to consider the difference in the abstractiveness of every element for identifying
what event occurred.

To simplify representation, we assume that; the higher abstractiveness of an
event, the higher each included element is by formulation as the linear sum of
each element. Therefore, we define the abstractiveness of an event as follows.

abstEvent(ei) =
1

|E|
∑

c∈5W

wcabstc(ei,c). (8)

The weights represent each element’s contribution to the abstractiveness
of the event, denoted as w = (wWho, wWhat, wWhom, wWhere, wWhen). The
weights are assigned a value to represent the importance of each element
to estimate abstractiveness. We assign them a higher value in the order
of Who, When, Where, Whom, and What. Let the 5W set be 5W =
{Who,What,Whom,Where,When}, and an event ei represented by the 5Ws
as ei = (eWho

i , eWhat
i , eWhom

i , eWhere
i , eWhen

i ).

4.2 Relationship Analysis

Two event descriptions having an abstract-concrete relationship should share
the same context and represent the same event. It is meaningless to estimate the
relationship of descriptions on different events.

As mentioned above, we calculate the abstractiveness of events indepen-
dently. However, the range of event abstractiveness strongly depends on the
topic domain. Therefore, we compare two events based on abstractiveness only
if they share context and denote the same concrete event.

Two descriptions sharing a context and denoting the same concrete event are
classified using a support vector machine (SVM) through feature extraction to
find event context.
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The relationship is represented by the hierarchical structure of elements. For
example, if an element ec

i in event ei is an ancestor of an element ec
j in event

ej on the hierarchical structure, we consider that ec
j is semantically a subset

of ec
i . Then we represent this relationship as ec

j ⊆ ec
i and construct a binary

set Ri,j = {δc
i,j |δc

i,j = {0, 1}, c ∈ 5W} to represent features of the relationship
between events ei and ej . δc

i,j is defined as follows.

δc
i,j =

{
1, if ec

i ⊆ ec
j or ec

j ⊆ ec
i

0, otherwise.
(9)

For the When element, we assume a time span ti is a subset of tj if ti
is completely included in tj (e.g. “Mar 1, 2015” is included in “Mar, 2015”).
Furthermore, for the Who and Whom elements, even though the hierarchical
structure based on “instance-of” relationship represents only the generalization
of an entity, this structure cannot represent the relation between named entities
(e.g. “belong to” relationship such as President Obama belongs to the Demo-
cratic Party). For this reason, we use the linking relationship obtained from
YAGO and assume the subject or object entity ci is a subset of cj , represented
as ci ⊆ cj and δci,cj = 1, if c1 is linked from c2.

In addition, we estimate the relationship between events by considering the
distance. The distance is represented as sentence and document distances, which
are sources of each event and calculated as Dist(d1, d2),Dist(s1, s2) by LDA and
the Jensen-Shannon divergence.

5 Experiments

5.1 Evaluation of Events Classification

In this section, we discuss the evaluation of what features are effective for clas-
sification and whether it is feasible to estimate the abstractiveness of an event
description.

A data set was constructed from three topics for evaluation. We selected each
topic composed randomly of ten articles. We chose the news topics continuously
reported as follows.

– Volkswagen scandal about CO2 emissions
– US Presidential election 2016
– Political topics about Shinzo Abe

All the articles were scraped from only The New York Times7 to circumvent
the effect of different forms of writing.

We created event pairs by selecting 10 query events and 30 relationship can-
didate events for each query. As a result, we obtained a total of 300 event pairs.
Table 1 lists the events and source article topics. The details of this procedure
are as follows.
7 http://www.nytimes.com.

http://www.nytimes.com
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Table 1. Example of events

Event News topics Who What Whom Where When

1 Volkswagen scandal Volkswagen halt sales U.S 2015-09-20 - 2015-09-20

2 US Presidential Election Donald Trump created pool Iowa 2015-06-01 - 2015-09-30

3 Japan Political Topic Shinzo Abe told Parliament Japan 2015-01-19 - 2015-01-25

1. Obtain ten articles per topic.
2. Extract events from each article.
3. Choose ten query events from all extracted events
4. Randomly choose a candidate event having a containing a relationship

between the subject and query event to form a pair between query and can-
didate events.

We labeled all 300 event pairs manually. As a result, there were 72 out of
the 300 pairs having abstract-concrete relationships. We define a query event
and candidate event as having an abstract-concrete relation if one event is a
concrete example of the other or very similar to the other. Table 2 lists the
average Area Under the ROC Curves (AUCs) of a feature combinations by 5-fold
cross validation using these labeled data. In Table 2, d-dist and s-dist respectively
represent the distance of documents and sentences calculated by the Jensen-
Shannon distance of topic distribution. 5Ws represent the binary relationship
feature of each element. From the results in Table 2, the combination that has
the highest AUC is (Who, Whom, When, document distance).

The Receiver Operating Characteristic (ROC) curves are illustrated in Fig. 3,
which were calculated using 70 % of the data set as a training set and rest as
the test set. The figure illustrates that this combination’s true positive rate is
significantly higher than those of other combinations around the false positive
rate of 0.1, indicated with red dashed line.

Table 2. Relation Classification result

Feature combination AUC Standard deviation

Who, Whom, When, d-dist 0.680430 0.072135

What, When, d-dist 0.663564 0.069450

Who, What, When, d-dist 0.660500 0.062955

What, Whom, When, d-dist 0.660500 0.062955

Who, What, Whom, When, d-dist 0.653965 0.076205

When, s-dist 0.652335 0.107128

Whom, When, s-dist 0.634689 0.122228

Whom, s-dist 0.626186 0.088462

Who, s-dist 0.626186 0.088462

Who, When, s-dist 0.625353 0.131786
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Fig. 3. ROC curves of top 5 feature combinations (Color figure online)

The results of the top 5 combinations show that they mutually include When
and document-distance features, suggesting that these two features are very
effective for classification.

Next, we investigated a misclassified event pair. During the investigation,
the false positive rate was higher than the false negative rate. This was due to
the use of the element-complete functionality of our estimation method. The
following sentences were misclassified.

1. “And when he indulged in the pandering to Iowa institutions that is typical
of political supplicants here, he did so in his exaggerated, almost comic style
– as if he were playing the role of presidential candidate.”

2. “But other said they think Trump should be focusing on the next contests.”

They were extracted from the news article, “Trump Calls for Iowa Election
Do-over”, and “Ted Cruz Wins Republican Caucuses in Iowa”. The misclassified
events extracted from each sentence are listed in Table 3.

Table 3. Misclassified events

Event Who What Whom Where When

1 Donald Trump did None Iowa 2016-02-01 - 2016-02-01

2 Donald Trump focusing None Iowa 2016-02-01 - 2016-02-01

As shown in Table 3, our event-extraction method yielded results in which
these two events had the same Who, Whom, Where, and When elements.
Hence, SVM-classified the two events as having an abstract-concrete relationship.
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The subject of the two events was Donald Trump, but the subject of the source
sentence started with “They Think”. Therefore, these events were labeled as
having no abstract-concrete relationship.

5.2 Evaluation of Events Abstractiveness

We constructed an event data set for evaluating abstractiveness. We treating 31
events including a query event as one set in the data set mentioned in Sect. 5.1.
This event data set was scored on a 6-point scale, where 0 and 5 denote the
lowest and highest abstractiveness level, respectively.

For the event-abstractiveness evaluation, we used the word count score
method as the baseline. The word count score is the number of words in a sen-
tence from an extracted event; the smaller words, the lower the event abstractive-
ness. The ranking results are listed in Table 4. nDCG (Normalized Discounted
Cumulative Gain) [17] is the evaluation method. We calculated the average of
nDCG for the top k and denoted this measure as nDCG@k. Our proposed
method exhibited higher values of nDCG@10 and nDCG@15. However, the word
count method was better at nDCG@5, due to, we believe, the difference among
news topics. Table 5 lists the results of each topic. Our proposed method exhib-
ited the highest nDCG for the news topic of the US presidential election. On the
other hand, it exhibited the lowest nDCG for Volkswagen scandal.

Table 4. Experimental results of abstractiveness ranking

Data set nDCG@ 5 nDCG@10 nDCG@15

Baseline Proposed Baseline Proposed Baseline Proposed

0 0.777416 0.670639 0.749571 0.645485 0.764630 0.722483

1 0.361862 0.543290 0.353669 0.555646 0.393572 0.591406

2 0.500233 0.804516 0.556167 0.795289 0.602773 0.737972

3 0.540533 0.448647 0.558714 0.538196 0.541825 0.637689

4 0.431555 0.411875 0.475255 0.510520 0.538099 0.552380

5 0.851829 0.486527 0.763066 0.582364 0.783946 0.635375

6 0.658663 0.661857 0.704356 0.625359 0.763631 0.618023

7 0.460658 0.519607 0.577883 0.615285 0.658203 0.664889

8 0.451236 0.445189 0.539381 0.500821 0.552930 0.567032

9 0.473012 0.412977 0.662608 0.566966 0.685796 0.583734

Ave 0.5507 0.546512 0.594067 0.599211 0.628541 0.635072

The news topics Volkswagen scandal and political topics about Shinzo Abe
mention many past events. In many cases, our method failed to estimate theWhen
element.On the other hand, for the topic ofUSpresident election, these eventswere
reported in real time and it was easy to estimate the time information.
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Table 5. Evaluation of abstractiveness ranking for each news topic

Topic nDCG@ 5 nDCG@10 nDCG@15

Baseline Proposed Baseline Proposed Baseline Proposed

US Presidental Election 0.297349 0.663529 0.444528 0.666567 0.506401 0.639824

Political topics about Shinzo Abe 0.797380 0.591886 0.677343 0.581203 0.626547 0.569199

Volkswagen scandal 0.159954 0.317679 0.308995 0.319780 0.473534 0.358939

6 Conclusion

We proposed the 5W model for news events and an event-extraction method
with completion functionality. We also proposed the concept of abstractiveness
and an abstract/concrete relationship analysis method on the basis of the 5W
model. The experimental results indicate that the element When and document
distance features are more effective for analyzing abstract-concrete relationships.
Compared with base line methods, our proposed method exhibited better nDCG
values for ranking event descriptions based on their abstractiveness. In the near
future, we plan to carry out further experiments to improve our method. We
also plan to develop an application system to support news understanding.
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Abstract. Inclusion dependencies (INDs) within and across databases
are an important relationship for many applications in data integration,
schema (re-)design, integrity checking, or query optimization. Existing
techniques for detecting all INDs need to generate IND candidates and
test their validity in the given data instance. However, the major dis-
advantage of this approach is the exponentially growing number of data
accesses in terms of the number of SQL queries as well as I/O operations.
We introduce Mind2, a new approach for detecting n-ary INDs (n > 1)
without any candidate generation. Mind2 implements a new character-
ization of the maximum INDs we developed in this paper. This charac-
terization is based on set operations defined on certain metadata that
Mind2 generates by accessing the database only 2 × the number of valid
unary INDs. Thus, Mind2 eliminates the exponential number of data
accesses needed by existing approaches. Furthermore, the experiments
show that Mind2 is significantly more scalable than hypergraph-based
approaches.

Keywords: Mind2 · Inclusion dependency · Data integration · Data
profiling

1 Introduction

Inclusion dependencies (INDs) present an important part of metadata about
relationships between attributes in relational datasets [2]. An IND states that all
tuples of some attribute-combination in one relation are contained in the tuples
of some other attribute-combination in the same or a different relation. This
makes INDs important for many tasks, such as data integration [17], integrity
checking [3], query optimization [4], or schema (re-)design [10].

However, in many real-life databases knowledge about INDs is often
unknown, or is lost, or does not correspond any more to the dataset structure.
Furthermore, a lot of production databases are constantly changing over time
so that metadata quickly become out-of-date. Thus, there is a high demand for
effective and scalable approaches for mining valid INDs from a given dataset.

The problem of n-ary IND discovery (n > 1) is NP-hard [5]. Existing algo-
rithms in related work for exhaustively discovering all INDs in a dataset can
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 118–133, 2016.
DOI: 10.1007/978-3-319-44406-2 10
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be divided into two approaches: levelwise-based approaches such as Mind [13]
and hypergraph-based approaches as Find2 [6,7] and Zigzag [14]. But what all
these algorithms have in common is that they apply the projection invariance
of INDs [2,11]: a n-ary valid IND implies sets of k-ary valid INDs (1 ≤ k ≤ n).
Thus, the number of all valid INDs implied by a n-ary valid IND is 2n.

For discovering a single valid IND σ of size n, the levelwise approach [12] has
to discover 2n −1 implied INDs before even considering σ. This means for Mind
that it has to execute 2n SQL queries for validation. Experiments conducted
by [6,14] show that levelwise algorithms do not scale beyond a maximum IND
size of 8.

Attempting to reduce the exponential number of database accesses needed
by the Apriori-based approach, Find2 and Zigzag transform the IND discovery
problem into a discovery problem in a hypergraph whose nodes are all valid unary
INDs, respectively. Find2 maps the IND discovery problem to the hyperclique
discovery problem while Zigzag maps it to the minimal traversal discovery
problem. Both problems are polynomial in the number of edges, and therefore
exponential in the number of nodes in the hypergraph because the number of
edges in a hypergraph of n nodes is bounded by 2n. In principle, both algorithms
first discover unary and binary INDs by enumeration and validation. Then opti-
mistically assume that all high-arity INDs constructed from validated unary and
binary INDs (or in general, from validated INDs in the previous iteration) are
likely to be valid. That assumption makes both algorithms extremely sensitive
to an overestimation of valid unary and binary INDs. A high number of such
small INDs can cause many invalid larger IND candidates to be generated and
validated against the database. Furthermore, hypergraph-based algorithms have
high complexity, and are scalable only for sparse hypergraphs [6,8].

Research Question. The research question we address in this paper is how we
can find all n-ary valid INDs (n > 1) between two relations without generating
candidates and testing them against the database.

Contributions. We answer the research question by developing Mind2 (short
for Maximum INclusion Dependency Discovery), a novel approach for mining
all maximum INDs without any candidate generation, where a maximum IND
is a valid IND that is not implied by any other valid IND.

Having the set of all valid unary INDs, denoted by Iu, discovered, Mind2

computes the unary IND coordinates Cu for every valid unary IND u ∈ Iu. Unary
IND coordinates is a new concept we introduce in this paper (see Definition 4).
To compute all unary IND coordinates Mind2 executes only 2×|Iu| simple SQL
select queries with an order by clause. After computing all unary IND coordinates
Mind2 does not access the database any more because Mind2 computes the set
of all maximum INDs, denoted by IM , by only applying set operations on the
unary IND coordinates (see Sect. 3). We compare the performance of Mind2 with
that of Find2 using real and synthetic datasets. They experiments show that
Mind2 is much more faster than Find2. Furthermore, they show that Mind2’s
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scalability, on contrast to Find2’s scalability, is not influenced by a high number
of small valid INDs.

2 Preliminaries

Let A be a finite set of attributes. For A1, . . . , An ∈ A and for a symbol R,
R[A1, . . . , An] is called a relational schema over A1, . . . , An and R is the relation
name. An instance of R, identified by r, is a finite set of tuples over R. A tuple
over R is an element from dom(A1)×· · ·×dom(An), where dom(Ai) defines the
set of the possible values of attribute Ai (1 ≤ i ≤ n). The number of attributes in
R is |R| and the number of tuples in r is |r|. We refer to a tuple in r as ri, where
i (1 ≤ i ≤ |r|) is the tuple-ID in r. IDR indicates the set of all tuple-IDs in r. For
an attribute sequence X = [Ai1 , . . . , Aim ], we define πX(R) as the projection of
R on X. Accordingly, ri[X] = πX(ri) indicates the projection of the tuple ri on
X. Furthermore, we identify the selection of a tuple ri from r with σIDR=i(R).
That is, {ri} is the result of σIDR=i(R). Accordingly, σIDR<i(R) identifies the
set of all tuples in r with an ID less than i. Thus, σIDR<i(R) = {rk ∈ r | k < i}.

Definition 1. (IND). Let R[A1, . . . , A|R|] and S[B1, . . . , B|S|] be two relational
schemata. For n ≥ 1, let X be a sequence of n attributes from R and Y a
sequence of n attributes from S. An inclusion dependency (IND) over R and
S is an assertion of the form R[X] ⊆ S[Y ] where n is the size of the IND. For
n = 1 the IND is called a unary IND (uIND).

Let r and s be instances of R and S, respectively. An IND R[X] ⊆ S[Y ] is
valid according to r and s if and only if ∀ri ∈ r,∃sj ∈ s such that ri[X] = sj [Y ].

In particular, INDs are a prerequisite for foreign keys, which are a necessity
for suggesting join paths, data linkage, and data normalization.

3 Principles of Mind2

We consider two relational schemata R[A1, . . . , A|R|] and S[B1, . . . , B|S|] with
corresponding instances r and s. To formulate the basic ideas of detecting all
maximum INDs between R and S, we identify the set of all unary INDs with Σu

and the set of all INDs with Σ. Furthermore, we introduce the following sets.
The set of all valid unary INDs between R and S according to r and s

Iu = {u ∈ Σu | u is valid according to r and s}

The set of all valid INDs between R and S according to r and s

I = {I ∈ Σ | I is valid according to r and s}

We represent every IND σ = R[X] ⊆ S[Y ] with X = [Ai1 , . . . , Ain ] and
Y = [Bi1 , . . . , Bin ] as a set of all unary INDs implied by it. In other words, we
present σ as the set {Ai1 ⊆ Bi1 , . . . , Ain ⊆ Bin}. Furthermore, we identify the
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set of all attributes occurring on the left hand side of σ with LHS(σ) and the set
of all attributes occurring on the right hand side of σ with RHS(σ). Thus, we
have LHS(σ) = {Ai1 , . . . , Ain} and RHS(σ) = {Bi1 , . . . , Bin}. Representing an
IND as a set allows us to characterize the computation of the set of all maximum
INDs IM as set operations.

Based on the set presentation, we introduce the concept of a maximum IND.

Definition 2 (Maximum IND). Let I ∈ I be a valid IND between R and S. I
is a maximum IND if and only if there is no I ′ ∈ I such that I ⊂ I ′ holds. We
denote the set of all maximum INDs between R and S with IM .

Having IM discovered, we can derive the set of all valid INDs I as

I = {I | ∃M ∈ IM : I ⊆ M}
The set IM can be considered as a concise representation of the set I. Thus, our
goal in this work is to directly compute IM without any intermediate IND sets.

Table 1. Running Example

R

IDR A1 A2 A3 A4 A5

1 a b c d e
2 f g i j k

S

IDS B1 B2 B3 B4 B5

1 a b c d ⊥
2 ⊥ ⊥ c d ⊥
3 ⊥ ⊥ c d e
4 f g i ⊥ ⊥
5 f g ⊥ j k

Example 1. According to the two relations presented in Table 1, we have

Iu = {ui = Ai ⊆ Bi | 1 ≤ i ≤ 5}
I = {{u1, u2}, {u1, u3}, {u2, u3}, {u1, u2, u3}, {u1, u4}, {u2, u4}, {u1, u2,
u4}, {u4, u5}} ∪ Iu

IM = {{u1, u2, u3}, {u1, u2, u4}, {u4, u5}}
E.g. σ = {u1, u5} 
∈ I (i.e. not valid) because r1[LHS(σ)] = r1[{A1, A5}] =
{(a, e)} 
⊆ πRHS(σ)(S).

The first principle of computing IM is formulated as follows.

Principle 1. For every tuple pair ri ∈ r and si ∈ s, we compute M ij , the
maximum IND between σIDR=i(R) and σIDS=j(S) according to ri and sj (1 ≤
i ≤ |r| and 1 ≤ j ≤ |s|). To characterize the set M ij we introduce two new
concepts: attribute value-positions and unary valid IND coordinates.

Definition 3 (Attribute Value-Positions). The value positions of an attribute
A ∈ U , U ∈ {R,S}, is the set PA = π{IDU ,A}(U)
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Definition 4 (Unary IND Coordinates). The coordinates of a valid unary IND
u ∈ Iu is the set Cu = {(i, j) | ∃(i, v) ∈ PLHS(u) and ∃(j, v′) ∈ PRHS(u) : v = v′}

The coordinates of a valid unary IND u ∈ Iu is the set of all tuple-ID pairs
(i, j) where the value of attribute LHS(u) in the tuple ri ∈ r is identical with
the value of attribute RHS(u) in the tuple si ∈ s. In other words, (i, j) ∈ Cu if
and only if ri[LHS(u)] = sj [RHS(u)].

Having the coordinates of all unary INDs generated, we can compute the
maximum IND M ij between any tuple pair (ri, sj) without any database access
based on the following lemma.

Lemma 1. M ij consists of all unary INDs u ∈ Iu with (i, j) ∈ Cu. In other
words, M ij = {u ∈ Iu | (i, j) ∈ Cu}.
Proof. Let M ij = {u1, . . . , un} be the set of all valid uINDs with (i, j) ∈ Cuk

where 1 ≤ k ≤ n. Based on Definition 4, there is (i, vk) ∈ PLHS(uk) and (j, v′
k) ∈

PRHS(uk) with vk = v′
k for every k ∈ {1, . . . , n}. This means that (v1, . . . , vn) =

(v′
1, . . . , v

′
n). In other words, ri[LHS(M ij)] = sj [RHS(M ij)]. Based on Defin-

ition 1, M ij is a valid IND between σIDR=i(R) and σIDS=j(S) according to ri

and sj .
We now have to show that M ij is maximum. We assume that M ij is not

maximum. This means based on Definition 2 that there is a valid IND M ij
1 with

M ij ⊂ M ij
1 . Thus, M ij

1 contains some u′ ∈ Iu with (i, j) 
∈ Cu′ . This means
that the value of attribute LHS(u′) in ri is different from the value of attribute
RHS(u′) in sj . Thus, ri[LHS(M ij

1 )] 
= sj [RHS(M ij
1 )] which means that M ij

1 is
not valid. Thus, our assumption is wrong. ��

Table 2. The coordinates of all valid uINDs between R and S in Table 1

i PAi PBi CAi⊆Bi

1 {(1, a), (2, f)} {(1, a), (2,⊥), (3,⊥), (4, f), (5, f)} {(1, 1), (2, 4), (2, 5)}
2 {(1, b), (2, g)} {(1, b), (2,⊥), (3,⊥), (4, g), (5, g)} {(1, 1), (2, 4), (2, 5)}
3 {(1, c), (2, i)} {(1, c), (2, c), (3, c), (4, i), (5,⊥)} {(1, 1), (1, 2), (1, 3), (2, 4)}
4 {(1, d), (2, j)} {(1, d), (2, d), (3, d), (4,⊥), (5, j)} {(1, 1), (1, 2), (1, 3), (2, 5)}
5 {(1, e), (2, k)} {(1,⊥), (2,⊥), (3, e), (4,⊥), (5, k)} {(1, 3), (2, 5)}

Example 2. Based on our running example, the second column in Table 2 lists
the value positions PAi

of R’s attributes while the value positions PBi
of S’s

attributes are listed in the third column. The last column in this table shows
the coordinates of all valid unary INDs between R and S (see Example 1). E.g.
for A5 ⊆ B5, we have (1, e) ∈ PA5 and (3, e) ∈ PB5 . Therefore, CA5⊆B5 contains
the pair (1, 3). Also, (2, 5) ∈ CA5⊆B5 because (2, k) ∈ PA5 and (5, k) ∈ PB5 .
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The maximum INDs M ij between ri and sj (1 ≤ i ≤ 2 and 1 ≤ j ≤ 5) are

M1,1 = {u1, u2, u3, u4}, M1,2 = {u3, u4}, M1,3 = {u3, u4, u5}, M1,4 = M1,5 = ∅
M2,1 = M2,2 = M2,3 = ∅, M2,4 = {u1, u2, u3}, M2,5 = {u1, u2, u4, u5}

E.g. let us explain the content of the maximum IND M1,2 between r1 and
s2. We have (1, 2) ∈ Cu3 . Therefore, u3 ∈ M1,2. Also, u4 ∈ M1,2 because
(1, 2) ∈ Cu4 . But u1, u2, u5 
∈ M1,2 because (1, 2) 
∈ Cu1 , (1, 2) 
∈ Cu2 , and
(1, 2) 
∈ Cu5 .

In the next step, we compute the set of all maximum INDs between every tuple
ri ∈ r and the relation s based on the following principle, respectively.

Principle 2. For every tuple ri ∈ r, we compute Ii
M , the set of all maximum

INDs between σIDR=i(R) and S according to ri and s. To characterize the set
Ii

M , we introduce the following operator.

Definition 5 (φ-operator). φ : 2Σ → 2Σ , φ(S) = {σ | �σ′ ∈ S : σ ⊂ σ′}
Operator φ takes a set of INDs and returns each IND that is not included in any
other IND in this set. Thus, we conclude: φ(S) ⊆ S for any S ∈ 2Σ .

Lemma 2. Ii
M = φ(Ii), where Ii is the set of all non-empty M ij (1 ≤ j ≤ |s|).

Proof. Every M ij ∈ Ii is a valid (but not necessary a maximum) IND between
σIDR=i(R) and S. But what we want to have is all maximum INDs from Ii.
Based on Definition 5, φ-operator solves this task. Thus, Ii

M = φ(Ii) is the set
of all maximum INDs between σIDR=i(R) and S. ��
Example 3. Based on Example 2, we have

I1 = {M1,1,M1,2,M1,3}, I1
M = φ(I1) = {M1,1,M1,3}

I2 = {M2,4,M2,5}, I2
M = φ(I2) = {M2,4,M2,5}

We can now compute IM , the set of all maximum INDs between R and S,
from the sets Ii

M (1 ≤ i ≤ |r|) based on Principle 3.

Principle 3. To explain the main idea behind Principle 3, let us consider the
two relations in Table 1. What are the maximum INDs between them if we
know I1

M and I2
M computed in Example 3? First, the intersection between any

two INDs M1 ∈ I1
M and M2 ∈ I2

M is a valid IND between R and S. E.g.,
M1,1 ∩ M2,4 = {u1, u2, u3} is a valid IND between R and S. Second, after
computing the intersection between each pair (M1,M2) ∈ I1

M × I2
M , taking

all maximum sets from the result gives us the set of all maximum INDs (see
Example 4). We generalize these two ideas as follows.

Definition 6 (ψ-operator). ψ : 2Σ × 2Σ → 2Σ , ψ(S1,S2) = {σ | ∃(σ1, σ2) ∈
S1 × S2 : σ = σ1 ∩ σ2 and σ 
= ∅}
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In words, for two sets S1 and S2 of INDs the ψ-operator takes every tuple (σ1, σ2)
from S1 × S2 and computes the intersection between σ1 and σ2. To characterize
the computation of the set IM , we define the ρ-operator.

Definition 7 (ρ-operator). Let IM be the set of all Ii
M (1 ≤ i ≤ |r|).

ρ(IM) =

{
S if |IM| = 1 and S ∈ IM
φ(ψ(S, ρ(IM \ {S}))) if |IM| > 1 and S ∈ IM

Now, we can compute IM as follows.

Lemma 3. IM = ρ(IM)

Proof. We prove the lemma by induction on the number of tuples i in r.
Basis Step: For i = 1, we have IM = {I1

M}. Thus, ρ({I1
M}) = I1

M = IM

based on the construction of the set I1
M .

Induction Assumption: For 1 ≤ i < |r|, let I ′
M be the set of all Ii

M and I ′
M

be the set of all maximum INDs between σIDR<|r|(R) and S. We assume

I ′
M = ρ(I ′

M) (1)

Inductive Step: Let I |r|
M be the set of all maximum INDs between σIDR=|r|(R)

and S. Thus, IM = I ′
M ∪ I |r|

M . Based on assumption (1), we have to show

IM = ρ(IM) = φ(ψ(I |r|
M , ρ(I ′

M))) = φ(ψ(I |r|
M , I ′

M ))

Every set in ψ(I |r|
M , I ′

M ) is a valid IND between R and S because the inter-
section of two valid INDs is a valid IND. We assume that there is a valid IND I
with

I 
∈ ψ(I |r|
M , I ′

M ) (2)

Because I is a valid IND, there is I1 ∈ I |r|
M with I ⊆ I1 and I2 ∈ I ′

M with
I ⊆ I2. Thus, I ⊆ I1 ∩ I2, but I1 ∩ I2 ∈ ψ(I |r|

M , I ′
M ). This means that assumption

(2) is wrong. Consequently, ψ(I |r|
M , I ′

M ) contains all valid INDs between S and
R. Based on Definition 5, φ(ψ(I |r|

M , I ′
M )) is the set of all maximum INDs in

ψ(I |r|
M , I ′

M ). Thus, IM = φ(ψ(I |r|
M , I ′

M )). ��
Example 4. Based on Example 3, we have IM = {I1

M , I2
M}. Accordingly,

ψ(IM) = {M1,1 ∩ M2,4,M1,1 ∩ M2,5,M1,3 ∩ M2,4,M1,3 ∩ M2,5}
ψ(IM) = {{u1, u2, u3}, {u1, u2, u4}, {u3}, {u4, u5}}
IM = ρ(IM) = φ(ψ(IM)) = {{u1, u2, u3}, {u1, u2, u4}, {u4, u5}}

(compare with Example 1).

In the following section, we formulate Mind2 algorithmically. We also present
its data structures. This formulation is the basis of our implementation of Mind2.
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4 Mind2

Overall Mind2. Mind2 consists of three major components. Algorithm 1 as the
first component, is responsible for computing the unary IND coordinates Cu of
each valid unary IND u ∈ Iu based on Definition 4. It also stores each generated
set Cu in a separate file in an external repository Repo on a hard drive.

Then Algorithm 2 reads the generated coordinates at once and computes the
set of all maximum INDs IM incrementally according to the ascending order of
the tuple-IDs i ∈ IDR in the left relation r. In other words, it computes the
ρ-operator (see Definition 7) iteratively. Before the iteration in which the set Ii

M

(the set of all maximum INDs between σIDR=i(R) and S) can be generated,
Algorithm 2 computes all maximum INDs between σIDR<i(R) and S and stores
them in IM . In other words, before the computation of Ii

M starts, the set IM

contains the maximum INDs between the tuples {rk ∈ r | 1 ≤ k < i} and
s. Having Ii

M generated, Algorithm 2 replaces the current content of the set
IM with the result of the composite operation φ(ψ(IM , Ii

M )). This procedure
continues until all tuple-IDs i ∈ IDR have been processed. At the end and based
on Lemma 3, the set IM contains all maximum INDs between R and S. At the
beginning, we initialize IM with {Iu} because {{Iu}} is an upper bound of IM .

The third component of Mind2 is Algorithm 3 called by Algorithm 2 to com-
pute the sets Ii

M (1 ≤ i ≤ |r|). It computes them based on Lemmas 1 and 2.
Below, we explain these components in details.

Input : Iu,Repo
Output : Cu for every u ∈ Iu

1 foreach u ∈ Iu do
2 i2jsMap ← createMap(Int, Set)
3 A ← LHS(u); B ← RHS(u)
4 CurA ← createCursor(A)

5 CurB ← createCursor(B)

6 (i, v) ← CurA.next()
7 (j, v′) ← CurB .next()

8 while CurA.hasNext() and CurB .hasNext()
do

9 if v = v′ then
10 IDA ← {}; IDB ← {}
11 (k, w) ← CurA.current()
12 while v = w do
13 IDA = IDA ∪ {k};

(k, w) ← CurA.next()

14 (k, w) ← CurB .current()
15 while v = w do
16 IDB = IDB ∪ {k};

(k, w) ← CurB .next()

17 if IDA �= ∅ and IDB �= ∅ then
18 foreach i ∈ IDA do
19 i2jsMap.put(i, IDB)

20 else if v > v′ then

21 (j, v′) ← CurB .next()
22 else
23 (i, v) ← CurA.next()

24 writer ← createWriter(u,Repo)
25 IDA ← i2jsMap.keys(); sort(IDA)

26 foreach i ∈ IDA do
27 PB ← i2jsMap.get(i); sort(IDB)

28 writer.write(u, i, IDB)

Algorithm 1. genCoordinates

A1 ⊆ B1 1, [1]
2, [4, 5]

A2 ⊆ B2 1, [1]
2, [4, 5]

A3 ⊆ B3 1, [1, 2, 3]
2, [4]

A4 ⊆ B4 1, [1, 2, 3]
2, [5]

A5 ⊆ B5 1, [3]
2, [5]

Fig. 1. The output of Algorithm 1 for
the set of all valid unary INDs between
R and S in the running example
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Generating unary IND Coordinates. To compute the unary IND coordi-
nates of a u ∈ Iu, Algorithm 1 opens two cursors at once (lines 3–5): one for
reading the sorted value positions of the attribute A = LHS(u) and the other
for reading the sorted value positions of the attribute B = RHS(u) (see Def-
inition 3 for the value positions of an attribute). The value positions of every
attribute are sorted according to its values in the corresponding relation. In
other words, for any (i1, v1), (i2, v2) ∈ PA (∈ PB): the tuple (i1, v1) will be read
by the corresponding cursor before the tuple (i2, v2) if the value v1 occurs before
the value v2 in the sort sequence. Otherwise, (i2, v2) will be read before (i1, v1).

In the main while-loop (lines 8–23), Algorithm 1 moves the two cursors in such
a way so that it can associate every tuple-ID i ∈ IDR with the set of all tuple-
IDs j ∈ IDS for which both attributes A and B have the same value. In other
words, the tuple-ID i is associated with the set {j | ∃(j, v) ∈ PB : (i, v) ∈ PA}.
It saves this association temporary in the hash map i2jsMap (lines 17–19).

After finishing the reading of value positions of PA and PB , respectively,
Algorithm 1 creates a file for the current unary IND u in the for -loop (lines 1–
28) and saves every pair (i, {j | ∃(j, v) ∈ PB : (i, v) ∈ PA}) in a line in this file.
The lines (records) are sorted in ascending order by the left tuple-IDs i ∈ IDR

and in every line the IDs j ∈ {j | ∃(j, v) ∈ PB : (i, v) ∈ PA} are also sorted
in ascending order (lines 24–28). This policy of organizing the value positions is
required by Algorithm2.

Mind2 needs only 2 × |Iu| database accesses because every cursor needs
a simple SQL select statement with an order by clause for reading the value
position of an attribute.

Example 5. Based on the attribute value positions listed in Table 2, Fig. 1 illus-
trates the output of the Algorithm refalgo:coordinatesGen. Every row in this
figure represents a file containing the coordinates of an unary IND.

Generating Maximum INDs between R and S. Algorithm 2, as implemen-
tation of Principle 3 (see Sect. 3), generates the set of all maximum INDs IM

by computing the ρ-operator (see Definition 7) incrementally. It opens all files of
the unary INDs coordinates generated by Algorithm1 and reads them at once
(lines 3–4). Every u ∈ Iu is associated with a sequential file reader for reading
its coordinates Cu. The file readers are managed by a priority queue. For any
two readers fr, fr′, reader fr has a higher priority than fr′ in the queue if and
only if the tuple-ID i in the file entry (u, i, L) is smaller than the tuple-ID i′ in
(u′, i′, L′) where (u, i, L) is the entry that fr can currently read and (u′, i′, L′) is
the entry that fr′ can currently read. Managing the readers in this way allows
Algorithm 2 to collect all unary INDs u ∈ Iu that have the same tuple-ID i
(i ∈ IDR) in their coordinates (lines 7–18).

In every pass through the main while-loop (lines 6–29) the algorithm collects
the elements (u,L) in the set L where all unary INDs u in these elements have
the same tuple-ID i ∈ IDR. Every list L in (u,L) is (based on its construction
by Algorithm 1) the list of all tuple-IDs j ∈ IDS , where the values of attribute
RHS(u) in these tuples and the value of LHS(u) in tuple i are identical.
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Input : Iu, Repo
Output : IM

1 Queue ←createPriorityQueue()
2 foreach u ∈ Iu do
3 fr ← createFileReader(u, Repo)
4 Queue.add(fr)

5 IM ← {Iu}
6 while Queue �= ∅ do

7 L ← ∅; Readers ← ∅
8 fr ← Queue.pull()
9 Readers ← Readers ∪ {fr}

(u, i, L) ← fr.current()
10 L ← L ∪ {(u, L)}
11 while Queue �= ∅ do
12 fr′ ← Queue.peek()

13 (u′, i′, L′) ← fr′.current()
14 if i �= i′ then break
15 fr ← Queue.pull()
16 Readers ← Readers ∪ {fr}
17 (u, i, L) ← fr.current()
18 L ← L ∪ {(u, L)}
19 I∗

M ← genSubMaxINDs(L, IM)
20 IM ← φ(ψ(IM , I∗

M ))

21 foreach u ∈ Iu : {u} ∈ IM do
22 IM ← IM \ {{u}}
23 if IM = ∅ then
24 IM ← Iu; break

25 activeU ← ∪M∈IM
M

26 foreach fr ∈ Readers do
27 if fr.hasNext() and
28 fr.u ∈ activeU then
29 fr.next();

Queue.add(fr)

Algorithm 2. genMaxINDs

Input : L, I∗−1
M

Output : I∗
M

1 Queue ←createPriorityQueue()
2 foreach (u, L) ∈ L do
3 lr ← createListReader(u, L)
4 Queue.add(lr)

5 UB ← ∅
6 while Queue �= ∅ do

7 Readers ← ∅
8 lr ← Queue.pull()
9 Readers ← Readers ∪ {lr}

(u, j) ← lr.current()

10 M∗j ← {u}
11 while Queue �= ∅ do
12 lr′ ← Queue.peek()

13 (u′, j′) ← lr′.current()
14 if j �= j′ then break
15 lr ← Queue.pull()
16 Readers ← Readers ∪ {lr}

(u, j) ← lr.current()

17 M∗j ← M∗j ∪ {u}

18 if ∃M ∈ I∗−1
M : M ⊆ M∗j then

19 UB ← UB ∪ {M}
20 if UB = I∗−1

M then

21 I∗
M ← I∗−1

M ; break

22 I∗
M ← I∗

M ∪ {M∗j}
23 foreach lr ∈ Readers do
24 if lr.hasNext() then
25 lr.next(); Queue.add(lr)

26 I∗
M ← φ(I∗

M )

Algorithm 3. genSub-
MaxINDs

After creating the set L in the current pass of the main while-loop for a
certain i, Algorithm 2 calls Algorithm 3 to compute the maximum INDs between
σIDR=i(R) and S (line 19). We donate this set with I∗

M where the symbol ∗ is
a placeholder for any i ∈ IDR.

After computing maximum INDs I∗
M between σIDR=i(R) and S, the set of

all maximum INDs IM will be updated by applying the composite operation
φ(ψ(IM , I∗

M )) in line 20 (see Definition 5 for φ-operator and Definition 6 for ψ-
operator). The set IM is initialized with the set {Iu} (line 5). If the updated set
IM contains only the unary INDs, the algorithm breaks the main while-loop and
returns the set of all unary INDs as the maximum INDs (line 23–24). Otherwise,
Algorithm 2 will update the queue only with readers of those unary INDs u which
are contained at least in one set of IM (lines 25–29).

Generating maximum INDs between σIDR=i(R) and S. Based on Principle
1 and Principle 2, Algorithm3 computes the set of all maximum INDs between
σIDR=i(R) and S from the set L while it exploits the set I∗−1

M to improve the
performance. The set L generated by Algorithm 2 (lines 7–18) contains the ele-
ments (u,L): all unary INDs in these elements have the same left tuple-ID i in
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their coordinates while every list L in (u,L) is the sorted list of all tuple-IDs
j ∈ IDS in the coordinates (i, j) ∈ Cu. The algorithm reads all the lists in the set
L at once and uses a priority queue to manage the list readers in the same way
in which Algorithm 2 manages the file readers of the unary INDs coordinates.

In the main while-loop we collect all unary INDs u in the set M∗j that have
the same tuple-ID j in their coordinates (lines 7–17). The symbol ∗ in M∗j

is a placeholder for the corresponding i. Thus, based on the properties of the
elements (u,L) of the set L, the set M∗j contains all unary INDs u that have
(i, j) in their coordinates Cu. This means, according to Lemma 1, M∗j is the
maximum IND between σIDR=i(R) and σIDS=j(S).

Every computed set M∗j is collected in the set I∗
M (line 22). This means,

updating I∗
M by applying the φ-operator on it gives us, according to Lemma 2,

the maximum INDs between σIDR=i(R) and S (line 26).
The objective of the input set I∗−1

M is to improve the performance of comput-
ing I∗

M . The set I∗−1
M is the set of all maximum INDs between σIDR<i(R) and

S. For every generated set M∗j Algorithm 3 checks if there is a set M in I∗−1
M

such that M is a subset of M∗j (lines 18–19). If such a set exists, it is added to
the set UB. If the set UB contains all sets from I∗−1

M , then the algorithm breaks
the execution and returns I∗−1

M as the maximum INDs between σIDR=i(R) and
S (lines 20–21). This rule does not have any affect on the correctness of Algo-
rithm2. This is because the result of the composite operation φ(ψ(IM , I∗

M )) in
Algorithm 2 is the set IM itself if every set in I∗

M is a superset of a set in IM .

5 Experiments

The main aim of our experiments is to compare the scalability of Mind2 with
that of Find2. This is our focus because Find2 is developed to reduce the number
of IND candidates required by Apriori-based approaches. Although Zigzag is
also designed to handle long INDs, we limited our experiments to Find2. That
is because, as discussed in Sects. 1 and 6, Find2 and Zigzag approach the IND
discovery problem from similar directions and have many properties in common.

The number of rows varies between 500,000 and 16,000,000 rows in these
experiments. The other important variable that has a big impact on the scala-
bility of discovering the n-ray INDs between two relations is the number of the
unary INDs. The number of unary INDs in the experiments varies between 8
and 19 unary INDs in the corresponding table pairs.

Experimental Conditions. We performed the experiments on Windows 7
Enterprise system with an Intel Core i5-3470 (Quad Core, 3.20 GHz CPU) and
8 GB RAM. We used Oracle 11g as the database server installed on the same
machine. We implemented both algorithms in 64-bit Java 7. We implemented
Find2 based on [6]. For Mind2, we set the minimum Java heap size to 4 GB
and the maximum to 6 GB. While for Find2, we set the Java stack size to 4 GB.
Find2 validates IND candidates by applying the SQL query proposed in [15].

Experiment Groups 1. The purpose of these experiments is to compare the
scalability of Mind2 with that of Find2 by using a real-word dataset called
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MusicBrainz1. MusicBrainz is an open music encyclopedia that collects
music metadata and makes them available to the public. MusicBrainz con-
tains 27 GB of data. It contains 206 tables (relations) with 1,165 non-empty
columns (attributes). We found a total of 24,881 valid unary INDs by applying
S-indd [18]. We detected pairs of tables where there is at least one valid n-ary
IND with size greater than 2 between the tables of every pair. The number of
tuples varies between 500,000 and 1,000,500 tuples. The results of these exper-
iments are presented in Table 3. The acronym “TP.” stands for table pair. The
left part of Table 3 shows some statistics about detected INDs: the number of
valid unary INDs (|Iu|), the number of detected maximum INDs (|IM |), the size
of the longest maximum INDs (nmax) accompanied by their number ((x Nr.)),
and the size of shortest maximum INDs (nmin) accompanied by their number ((x
Nr.)). The right part of Table 3 shows the needed time (in minutes) by Mind2

and Find2 for detecting the valid INDs, respectively. The acronym “o.o.M.”
refers to out of memory exception. In most of these experiments, Mind2 outper-
forms Find2 significantly. Furthermore, they show that Mind2’s scalability, on
the contrary to that of Find2, is robust and not sensitive to the high number
of small valid INDs. The reason why Find2 terminates with an out of memory
exception is the complexity of hypergraphs created by Find2. If one of these
hypergraphs is not sparse (irreducible), then the hyperclique-finding subroutine
presented in [6] attempts to simplify the corresponding hypergraph by removing
hyperedges from it. The removing of hyperedges performed by this subroutine
of Find2 is not defined deterministically. This behavior causes a lot of recur-
sive calls and consumes a huge amount of memory. Find2 needed less time than
Mind2 only for the table pair 5 and 7, respectively. This is because the created
hypergraphs for these table pairs are sparse, respectively.

Table 3. Comparing Mind2’s runtime with Find2’s runtime using MusicBrainz data-
base (o.o.M. = out of memory, m = minutes)

TP. |Iu| |IM | nmax (x Nr.) nmin (x Nr.)

1 19 75 5 (x 2) 2 (x 4)

2 17 25 3 (x 13) 2 (x 12)

3 15 28 3 (x 17) 2 (x 11)

4 15 56 3 (x 56) -

5 14 28 3 (x 20) 2 (x 8)

6 13 23 3 (x 6) 2 (x 17)

7 12 26 3 (x 19) 2 (x 7)

8 12 11 3 (x 11) -

TP. Mind2 Find2

1 184 m o.o.M. after 250 m

2 4 m o.o.M. after 40 m

3 2 m o.o.M. after 33 m

4 1.5 m o.o.M. after 322 m

5 15 m 4 m

6 15 m o.o.M. after 33 m

7 22 m 6 m

8 11 m 30 m

Experiment Groups 2. The purpose of these experiments is to compare
Mind2’s performance with the performance of the best case for Find2. The
best case for Find2 (also for Zigzag) is when Find2 needs to build only the
1 https://musicbrainz.org.

https://musicbrainz.org
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Table 4. Results of the experiments in groups 2 and 3 (# = number of, m = minutes)

DB |IM | nmax (x Nr.)

1 1 9 (x 1)

2 1 10 (x 1)

3 8 8 (x 8)

4 9 9 (x 9)

#DB-Accesses Runtime

DB Find2 Mind2 Find2 Mind2

1 37 18 57 m 11 m

2 46 20 100 m 12 m

3 509 18 263 m 9.5 m

4 1021 20 906 m 11.5 m

2-hypergraph and then finds only one clique representing a valid IND. This hap-
pens for example when the database contains only one valid IND σ of size n > 2.
In this case, Find2 needs n × (n − 1)/2 database access to enumerate the valid
binary INDs and one access to validate the clique. To demonstrate this case,
we generated two synthetic databases DB 1 and DB 2. Both databases contain
16,000,000 tuples. DB 1 contains one valid maximum IND in size 9. While DB
2 contains one valid maximum IND in size 10. The results of these experiments
are presented in Table 4 (rows 1 and 2 in each part of Table 4). Find2’s runtime
is dominated by the runtime of the required SQL queries for enumerating the
valid binary INDs. Therefore, Mind2 is up to 8x faster than Find2.

Experiment Groups 3. The purpose of these experiments is to show that
in some cases Find2 needs the same exponential number of database accesses
as needed by the Apriori approach. Let σ = {u1, . . . , un} be an invalid n-ary
IND with the property that every (n − 1)-ary IND contained in σ is a valid
IND. In this case, Find2 builds n − 2 k-hypergraphs (2 ≤ k ≤ n − 1) where
every k-hypergraph has

(
n
k

)
edges and contains only the same clique, namely

{u1, . . . , un}. Thus, Find2 needs
(
n
2

)
+ · · ·+(

n
n−1

)
+(n−1) = 2n −3 SQL queries

to discover the n valid (n−1)-ary INDs contained in σ. To illustrate this case, we
also generated two synthetic databases DB 3 and DB 4, where every database
has 10,000,000 tuples in average. DB 3 contains 8 valid INDs in size 8. While DB
4 contains 9 valid INDs in size 9. Table 4 (rows 3 and 4 in each part of this table)
presents the results of these experiments. The Find2’s runtime is dominated by
the exponential number of the database accesses needed for the validation of the
IND candidates. Therefore, Mind2 is much more (up to 82x) faster than Find2.

6 Related Work

Kantola et al. [5] give an upper bound for the complexity of the IND-detecting
problem and proof of its NP-completeness. Casanova et al. [3] formulate the
simple axiomatization for INDs and prove that the decision problem for INDs
is PSPACE-complete. Köhler and Link [9] investigated INDs and NOT NULL
constraints under simple and partial semantics from theoretical point of view.

N-ary INDs. Find2 proposed by Koeller and Rundensteiner [6,7] begins by
exhaustively validating unary and binary INDs, forming a 2-uniform hyper-
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graph using unary INDs as nodes and binary INDs as edges. Then the algorithm
proceeds in stages enumerated by a k = 2, 3, . . . . In every stage k, all hyper-
cliques are detected by HYPERCLIQUE algorithm [6] in the k-hypergraph,
where every hyperclique represents an IND candidate. Then IND candidates
are checked for validity in the database. Each invalid IND corresponding to
hyperclique in the k-hypergraph is broken into (k + 1)-ary INDs contained
in it. Then the (k + 1)-ary INDs form the edges of a (k + 1)-hypergraph.
Edges corresponding to invalid (k + 1)-ary INDs are removed from the (k + 1)-
hypergraph. The process is repeated for increasing k until no new cliques are
found. DeMarchi and Petit [14] developed Zigzag algorithm based on borders
of theories [12]. Initially and for a k specified by the user, Zigzag initializes the
positive border and the negative border by applying an adaptation of the level-
wise algorithm Mind until the level k is reached. Furthermore, Zigzag intro-
duces the optimistic positive border computed by finding minimal hypergraph
traversals in a hypergraph generated from the negative border. The algorithm
iteratively updates the three borders as long as the optimistic positive border
contains INDs that are not contained in the positive border. Every updating
process combines a pessimistic bottom-up with an optimistic top-down search.
In the bottom-up search Zigzag validates IND candidates against the database.
While in the top-down approach it estimates the distance between invalid INDs
and the positive border by counting the number of tuples that do not satisfy
these invalid INDs. Mind proposed by Marchi et al. [13] applies the level-wise
approach to generate IND candidates. Mind generates all (k + 1)-IND can-
didates from the valid k-INDs and the valid unary INDs. It is based on the
view that the validity of σ1 = R[A1, . . . , Ak] ⊆ S[B1, . . . , Bk] and the valid-
ity of σ2 = R[Ak+1] ⊆ S[Bk+1] are necessary but not sufficient conditions for
σ = R[A1, . . . , Ak, Ak+1] ⊆ S[B1, . . . , Bk, Bk+1] to be valid. That is, if σ1 or σ2

is invalid, then it is impossible for σ to be valid. In this case, σ is pruned and
no testing for its validity is necessary. In the other case, if both of σ1 and σ2

are valid, then σ has a chance to be valid and therefore becomes a candidate of
size k + 1. This candidate is then validated against the database. After all the
(k + 1)-ary IND candidates are generated and tested, the algorithm generates
and tests (k + 2)-ary IND candidates.

Unary INDs. Shaabani and Meinel developed S-indd [18], a scalable algo-
rithm for discovering unary INDs in large datasets. S-indd introduces the con-
cept of attribute clustering. Deriving unary INDs from the attribute clustering
eliminates the redundant intersection operations resulting from deriving them
from the inverted index applied in [13]. Furthermore, Shaabani and Meinel
have shown that Spider [1] is a special case of S-indd and that S-indd is
much more scalable than Spider. Spider [1] is presented by Bauckmann et
al. The algorithm first sorts the distinct values in all columns and then uses
a parallel merge-sort like algorithm to compute all unary INDs simultaneously.
Papenbrock et al. presented Binder [19]. Binder applies a divide and conquer
technique for discovering unary INDs. The main goal of Binder’s approach
was to improve Spider’s performance. Binder takes a further step to generate
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all n-ary INDs by applying string concatenations and the same Apriori strat-
egy applied by Mind [13]. This approach results in an exponential number of
I/O-operations and exponentially increases the original data size.

Foreign Key Discovery. Zhang et al. [20] applied approximation techniques for
profiling foreign keys. Memari et al. [16] proposed algorithms for profiling foreign
keys under the different semantics for NULL markers of the SQL Standard.

7 Conclusion and Future Work

We developed Mind2, a new approach for mining maximum inclusion depen-
dency between two relations. Mind2 is based on a new characterization of max-
imum INDs. We achieved this characterization by only defining set operations
on unary IND coordinates, a new concept we also introduced in this paper.
Applying these set operations on unary IND coordinates enables discovering
maximum INDs without any candidate generation, which has a big impact on a
scalable discovery of long n-ary INDs. This work is the main milestone for our
further works: as Mind2’s performance is quadratically bounded by the number
of tuples, we work in a distributed version of Mind2 in order to parallelize both
the computation of unary IND coordinates and the computation of maximum
INDs.
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Abstract. Databases commonly use multi-column indices for composite
keys that concatenate attribute values for fast entity retrieval. For real-
world applications, such concatenated composite keys contribute signifi-
cantly to the overall space consumption, which is particularly expensive
for main memory-resident databases. We present an integer-based hash
representation of the actual values for the purpose of reducing the overall
memory footprint of a system while maintaining the level of performance.
We analyzed the performance impact as well as the memory footprint
reduction of hash-based indices in SAP HANA in a real-world enterprise
database setting. For a live production SAP ERP system, the introduc-
tion of hash-based primary key indices alone reduces the entire memory
footprint by 10% with comparable performance.

Keywords: In-memory databases · Hash indices · Footprint reduction ·
Enterprise systems

1 Composite Keys in Enterprise Applications

Today’s trends in hardware development render in-memory databases as a viable
platform for enterprise applications. In-memory databases use compression tech-
niques for the purpose of reducing the required main memory. We analyzed the
primary keys of a large enterprise resource planning (ERP) installation of a Global
20001 company. We found that most tables’ primary keys contain multiple columns
as shown in Fig. 1(a). To achieve fast data retrieval on these tables, multi-column
indices are used. Looking at the memory breakdown shown in Fig. 1(b), we see that
composite keys account for nearly 30 % of the entire memory footprint.

In SAP HANA, these multi-column indices are stored as a simple concatena-
tion of the primary key values (hereafter called value-based indices). Although
various forms of compression are applied to these indices, they introduce addi-
tional data stored in DRAM and therefore further add to the memory footprint.
1 Global 2000: http://www.forbes.com/global2000/.
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mary keys for tables with more than 100,000
rows. In the most recent SAP ERP version, all
of the larger tables have a primary key with at
least two attributes.
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indices alone are responsible for over 400 GB.

Fig. 1. Statistics for a live production SAP ERP system of a Global 2000 company:
(a) overview of primary key lengths and (b) break down of memory consumption.

In this paper, we evaluate whether we can reduce the size of composite keys
by storing a hash-based integer representation of the composite values instead of
the actual values concatenated while maintaining the same level of performance.

2 Production Enterprise System: SAP ERP
and Columnar In-Memory Databases

An Enterprise Resource Planning (ERP) application is the central management
software for large companies. We had the opportunity to analyze a live pro-
duction system of an SAP ERP system of a Global 2000 company. This system
stores over 10 billion records in 23,886 tables with a total main memory footprint
of about 1.3 TB. 90 % of these tables have multi-column primary keys, empha-
sizing the impact a change of the primary key type could have. While analyzing
a single instance does not cover the whole ERP market, we consider this system
representative since SAP ERP systems have a share of 25 % of the global ERP
market and are used by more than half of the Fortune 500 companies.

The ERP system runs on a columnar in-memory database optimized for
OLxP workloads: SAP HANA. In-memory database systems like SAP HANA [5]
and HYRISE [9] use a main/delta architecture to store database relations. Inserts
and updates are handled by a comparatively small and write-optimized partition,
called delta partition. The delta partition is frequently merged with the main
partition [5,9]. The main partition is read-only, compressed, and read-optimized
towards analytical workloads. This allows for fast analytical queries while still
supporting sufficient transactional performance.

Each column is dictionary-encoded consisting of an attribute vector and a
dictionary. The dictionary stores all distinct values in a sorted manner while the
attribute vector contains bit-packed valueIDs for each record. These valueIDs
reference the actual, uncompressed values stored in the dictionary by their offset.
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3 Related Work

Database index structures have been optimized in many ways. The general goal
is to increase lookup performance while minimizing the additional storage needed
for these indices. But with changing trends in hardware, there is the need to fur-
ther optimize these index structures for their target systems. In-memory data-
bases require new and optimized in-memory indexing structures since traditional
indexing strategies become inefficient on modern hardware [1].

Tree-Based Indices. Leis et al. [12] introduced the DRAM-optimized adaptive
radix trees (ART). By adaptively choosing efficient data structures used in ART,
they were able to achieve high space efficiency while surpassing the performance
of traditional tree-based index structures.

Athanassoulis and Ailamaki [3] introduced a method of reducing memory
requirements of tree-based index structures by employing probabilistic data struc-
tures (Bloom filters). By trading accuracy for size, they were able to reduce the
footprint of tree-based indices by up to 4× for real-world scenarios while keeping
the performance on par with traditional tree indexing. Their motivation was the
trend of solid-state disks emerging as a viable alternative to traditional hard disk
drives.

Hash-Based Indices. An alternative to tree-based structures is a hash-based data
structure that is typically employed in two types: (1) hash tables with fixed size
and no reorganization of data and (2) hash tables with variable size and dynamic
reorganization. An example for the former is chained bucket hashing [8]. Dynamic
structures include extensible hashing [4], linear hashing [10,13] and modified
linear hashing [11]. Ross presented a method of hash probing for typical database
workloads using SIMD instructions [16].

With the usage of in-memory databases with column stores, the problem of
efficiently accessing disk blocks is replaced by accessing the main memory and
therefore the problem of minimizing cache misses [14]. Sidirourgos and Kersten
introduced column imprints as a cache conscious secondary indexing structure
for column stores [17]. For each column, a histogram of a few equal-height bins
is created. For every cache line of data, a bit vector is created with each bit
corresponding to a bin of the histogram. A bit is set if the cache line contains at
least one value in the corresponding bin. The authors have shown significantly
improved query speed with a storage overhead of only 12 %.

Composite Keys. Faust et al. [6] introduced the composite group-key as an alter-
native indexing method for composite keys. They utilize the existing dictionary
compression by concatenating the compressed values (i.e., valueIDs) of the pri-
mary key column’s dictionaries and storing them in an additional data structure
named key-identifier list. This structure contains integer values with 8, 16, 32,
or 64 bits per key and is stored alongside a bit-packed position list to retrieve
the record’s position. Because they are storing an integer representation of the
primary key attributes, the size of this index is significantly smaller than the
size of the previously introduced index types that store the key attributes in an
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uncompressed format. Tests have shown that the composite group-key’s perfor-
mance is on par with established indexing methods while decreasing the storage
requirements.

The default method of storing composite keys in SAP HANA is adding an
additional column to the table that contains the concatenated values of all pri-
mary key columns. For each entry, a compressed (using Golomb or Simple9 com-
pression [2]) position list is stored for fast record retrieval. This allows database
operations to only use a single column instead of having to scan every column of
the composite primary key, but adds significantly to the overall size of the table,
because the primary key values are basically stored twice. The additional key
column consists of a sorted dictionary containing the key values, the attribute
vector and the position list. For key lookups, the primary key values are concate-
nated into a single search string that is used in a binary search on the composite
key column’s dictionary. The position list is used to find the records’ positions in
constant time. Because this is the current default method of indexing composite
primary keys in HANA, we compare the performance and storage requirements
of this index type with hash-based indices introduced in the next section.

4 Hash-Based Unique Index

Hash-based indices hash the attributes of a composite-key to obtain a single,
fixed-length representation.

4.1 Index Structure

The index is modeled as a dictionary-compressed column, and therefore contains
a main and a delta partition. For the main partition, the sorted dictionary DM

stores hashed keys and is extended with an inverted index IM to provide a
mapping to row identifier. For this work, we assume that the inverted index
establishes a one-to-one mapping of dictionary entries to position lists, hence, no
additional logic is needed to support variable length position lists. Per definition,
storing primary key values means there are 100 % unique values in the dictionary
what makes traditional dictionary encoding pointless. To reduce the dictionary
size, delta encoding is used. The inverted index has the same length like DM and
is bit-packed. The attribute vector is a bit-packed list of offsets in DHash. The
hash index dictionary of the delta partition is unsorted and again each entry is
extended by a position list. Figure 2 shows the schematic process to create the
inverted hash-based index.

4.2 Lookup Algorithm

The index allows efficient point queries, i.e. the lookup of a key. For a primary
key lookup, the predicate has to be translated into its hash representation for
comparison with the values in the hash dictionary. This is achieved by concate-
nating the values of the primary key columns and applying the hash function to
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Fig. 2. Schematic overview of the hash-based multi-attribute index on the main parti-
tion (delta encoding not shown).

Algorithm 1. Lookup of key with n attributes
h ← crc32(concat(k0, ..., kn−1))
matchM ← IM [DM [(h,min)..(h,max)]]
matchD ← ID[DD[(h,min)..(h,max)]]
MVCCverify(matchM ),MV CCverify(matchD)
results ← []
for P in (M,D) do

for rowID in matchP do
equal ← True
for i ← 0...(n − 1) do

equal ← equal & DP i[AVi[rowID]] == ki
end for
if equal then

results ← [results.rowID]
end if

end for
end for
return results

it. The resulting hash value is used in a binary search to find matching hashes
in the hash dictionaries of the main partition as well as the delta partition. The
position of the matching rows is extracted from the inverted index. Because of
possible hash collisions, the actual values of all matching tuples have to be com-
pared to find the tuples matching all predicates. The lookup algorithm, including
the handling of collisions is shown in Algorithm 1.

4.3 Insert Algorithm

A frequent operation accessing the index is the lookup of a non-existing key for
uniqueness constraints, when a new tuple is about to be inserted. The lookup
has to be performed first to find rows that would potentially cause uniqueness
violations (see Sect. 4.2). For every matching hash that was found, the actual
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Algorithm 2. Insertion of key with n attributes
h ← crc32(concat(k0, ..., kn−1)
collisionsD, collisionsM ← []
if (h,min) in DM then

collisionsM ← IM [DM [(h,min)..(h,max)]]
end if
if (h,min) in DD then

collisionsD ← ID[DD[(h,min)..(h,max)]]
end if
MVCCverify(collisionsM )
MVCCverify(collisionsD)
for P in (M,D) do

for c in collisionsP do
equal ← True
for i ← 0...(n − 1) do

equal ← equal & & DP i[AVi[c]] == ki
end for
if equal then

abort: unique violation
end if

end for
end for
count ← |collisionsM | + |collisionsD| #all collisions refer to different keys
InsertDelta(h, count)

attribute values are compared to ensure the uniqueness constraint. If the actual
values are different, the hash is inserted into the hash dictionary with an 8-
byte collision counter. If the values match, the new record will not be inserted,
because of a violation of uniqueness for the primary key. The insert algorithm
with verification is detailed in Algorithm 2.

4.4 Limitations

Because the used hash is an integer representation of the whole primary key and
does not store the actual attribute values, it is not possible to use hash-based
indices for range queries or partial key lookups. SAP HANA automatically cre-
ates single-column indices on all attributes of the primary key that are hence
used to answer non-full primary key selects. For the value-based index in con-
trast, range selects and partial key lookups can often be executed directly on
the index via binary substring searches (depending on the selected attributes).
Consequently, depending on the query filters on multiple columns have to be
evaluated for the case of a hash-based primary key while a single access to the
value-based index is sufficient for many typical OLTP queries. Further, for par-
titioned tables hash-based primary keys are only beneficial if the complete key
is included in the partitioning criteria.
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4.5 Hash Function

The hash function for the index ought to be fast and provide well-distributed
hashes for continuously ascending keys. We use CRC32(C) as the hashing func-
tion for several reasons. First, cryptographic properties are not needed. Also,
other hashing alternatives yield fewer collisions, but the number of expected
collisions is limited anyway by SAP HANA’s partition size limit of 231 rows
per partition. Second, recent Intel CPUs implement the CRC32 instruction in
hardware (see Sect. 4.6) with a latency of only three CPU cycles.

Cyclic Redundancy Check (CRC) is a code commonly used for error-detection
in digital networks or storage devices to detect unintentional changes in data. A
message is encoded by appending a fixed-length check value. The check value is
the remainder of the division of a given message by a specified polynomial. The
receiver of a message can check its integrity by performing the same division
and comparing the check values. The length of the remainder determines the
name of the CRC. A CRC with a check value of n bits is called an n-bit CRC or
CRCn. We use CRC32, i.e., the remainder has a length of 32 bits. For hash-based
indices, we do not use CRC-32 to check data integrity. We use the check value
as a shorter (32 bits) integer representation of the primary key values.

The message used as dividend in the polynomial division is the concatena-
tion of the primary key values. To concatenate the key, we create a prefix-free
encoding, by prefixing each key attribute with its length. The concatenated string
follows the form ‘‘<len(key1)>,key1;<len(key2)>,key2;". Since single partitions
do not grow larger than two billion records, a hash length of 32 bits is sufficient.

4.6 CRC32: Hardware-Assisted Hashing

With the SSE4.2 instruction set, Intel added support for hardware-assisted
CRC32C to their processors. Traditional CRC32, used for example in ZIP and
Ethernet, uses the polynomial 0x04C11DB7 as divisor while CRC32C, which is
supported by SSE4.2, uses the Castagnoli polynomial 0x1EDC6F41. The SSE4.2
instruction uses a precalculated, built-in lookup table for the Castagnoli polyno-
mial and is therefore limited to this specific polynomial while software implemen-
tations can choose the polynomial best suited for their use case. Using different
polynomials results in different checksums, i.e. different hashes for the same key.

The CRC32 instruction expects two parameters: a destination operand and
a source operand. It uses the fixed polynomial (Castagnoli) to accumulate the
CRC32 value for the source operand (i.e., the concatenated key values) and stores
the result in the destination operand. The source operand can be a register
or a memory location while the destination operand must be a register. This
instruction can operate on a maximum data size of 64 bits and is implemented
with a latency of three CPU cycles and a throughput of a single CPU cycle.
To incrementally accumulate a CRC32 value, the result of the previous CRC32
operation is used to execute the CRC32 instruction again with new input.
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The hardware implementation is 2–3× faster than highly optimized software
implementations and its performance can be further increased by parallelizing
the CRC computations [7]. These capabilities emphasize the viability of CRC32
for the use case of hash-based indices.

4.7 Collision Handling

By definition, any function that maps an unlimited range to a fixed range is
prone to collisions. Collisions occur when a hash function creates the same hash
for different values. Using CRC32, there are 232 possible hash values. Although
this is sufficient for the SAP HANA’s maximum of two billion records that can
be stored per partition, hash collisions are inevitable and have to be dealt with.

SAP HANA appends an 8-byte counter to the hashes before adding them to
the dictionary. The value of this counter is unique and thereby ensures that all
values in the dictionary are unique even if hashes for different values match. If a
collision occurs while inserting a new record, the insert algorithm compares the
actual values to enforce uniqueness, as described in Sect. 4.3. Collisions also have
to be expected during key queries. As a consequence, lookups need to verify the
actual key components against the predicate, as outlined in Sect. 4.2.

4.8 Column Merge

When merging the content of the delta partition into the main partition, a
new main dictionary for the primary key is created. This dictionary contains
all distinct hashed key values from the delta dictionary as well as from the old
main dictionary. Since any insert into the table has to check for uniqueness in
the main partition as well as in the delta partition, primary keys are ensured to
be unique and thus the dictionaries can be directly merged. When a hash value
of the delta partition already exists in the main partition, the collision counters
are simply added and the inverted position list is updated.

4.9 Memory Footprint

Per dictionary entry, a 4-byte hash value is stored along with an 8-byte collision
counter to resolve hash collisions. As mentioned earlier, the dictionary containing
the hash values is compressed using delta encoding. Since there are only unique
values stored in the dictionary, traditional dictionary encoding would have a
negative effect on compression. Instead of storing the full values or compressing
single values, delta encoding stores only the difference of consecutive values. As
a rule of thumb, after compressing the hash-index’s dictionary, the average size
per entry is 8–10 bytes.
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5 Evaluation

We evaluate the potential memory footprint reductions of the hash-based index
both on tables of the analyzed live production enterprise system and on a syn-
thetic table of the TPC-C benchmark.
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Fig. 3. Space consumption of composite keys.

We evaluated three tables to cover a broad range of use cases for hash-based
indices (an overview of the primary keys is shown in Table 1). The tables BSEG
and SKA1 are both table copies of the live production SAP ERP system. BSEG
is a transactional table storing accounting documents and is the central part of
the financial module. SKA1 is a master data table storing the chart of accounts
of the general ledger module. Since it is a master data table, it is considerably
smaller than the BSEG table. The third table is TPC-C’s largest transactional
table ORDERLINE, which we created with a scaling factor of 2,000.

The benchmarks have been executed on the same system with a varying
number of benchmark processes. Each benchmark process runs 16 threads (8
for the insert benchmarks) that share the same database connection. SELECT
queries solely project the first attribute of the primary key in order to exclude
time required for tuple materialization. The benchmark system was a four-socket
server equipped with Intel Xeon E7-4880 v2 CPUs and 2 TB of DRAM running
SAP HANA SPS 11, revision 111. Error bars denote the standard error.

5.1 Main Memory Footprint

We measured the space consumption of all multi-column indices of the analyzed
live production enterprise system. Figure 3(a) shows a box plot of the bytes per
indexed entry. For the 1,736 tables with more than 100,000 entries, the average
size of an indexed key is about 24 bytes.
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Table 1. Overview of the primary keys and their characteristics of benchmarked tables.

Primary key attributes

BSEG 70 M

tuples

MANDT

varchar(3)

BUKRS varchar(4) BELNR

varchar(10)

GJAHR

varchar(4)

BUZEI

varchar(3)

Distinct

values:

Distinct values: Distinct values: Distinct values: Distinct values:

1 476 7,777,105 31 999

ORDERLINE

600 M tuples

OL W ID integer OL D ID integer OL O ID integer OL NUMBER

integer

-

Distinct

values:

Distinct values: Distinct values: Distinct values:

2,000 10 3,000 15

SKA1 67,618

tuples

MANDT

varchar(3)

KTOPL varchar(4) SAKNR

varchar(10)

- -

Distinct

values:

Distinct values: Distinct values:

1 54 53,598

The size of value-based indices in large (>100,000 entries) tables in our ana-
lyzed system amounts to 386 GB. If we conservatively assume a size of 10 bytes
per entry for the hash-based index (see Sect. 4.9), the memory footprint of all
composite primary key indices can be reduced by up to 36 % (or 148 GB).
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The potential space savings depend on the characteristics of the primary key.
Larger keys (i.e., longer concatenations of attribute values) result in larger sav-
ings when compressed to 10-byte hashes than smaller keys. Further, with increas-
ing share of primary key columns compared to the total number of columns, the
potential space savings of the whole table increase as well. Figure 3(b) illustrates
the high impact, the size of the primary key has on memory savings.

Figure 4 shows a breakdown of the memory used by the three benchmarked
tables. As discussed, the total memory savings by using the hash-based index
depend on both the number of attributes of the primary key and on the data
types of the attributes. For the BSEG table with five varchar attributes, the
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footprint reduction for the whole table is around ∼10 % due to a 3× smaller
dictionary. The reduction of the ORDERLINE table with four integer attributes
is smaller with ∼1 % for the whole table. To assess hash-based indices for SAP
ERP systems it is important to know that the majority of primary key attributes
are of type varchar. After analyzing the number of primary key attributes in
all large tables of our ERP system (depicted in Fig. 1(a)), we saw that most of
these large tables have primary keys with four or more attributes. By using the
hash index instead of the value-based index we estimate a footprint reduction of
the whole ERP system by 10 %.

5.2 Lookup Performance

We analyzed the latency for three kinds of select queries, all of which are typical
for OLTP workloads. We discard OLxP and OLAP queries, because they are
usually not accessing primary key indices.

Full Primary Key Selects. A full primary key select describes a lookup query
that filters on all attributes of the composite primary key and therefore returns
a single record or an empty result set. Our benchmark script executed 10,000
queries per thread and measured the end-to-end latency from sending the query
till receiving the data records. The results are shown in Fig. 5. For full primary
key selects, we saw a latency increase between 5–15 % for hash-based indices.

Partial Key Selects. Partial key queries describe SELECT statements that
select on a true subset of the primary key attributes. These queries are very com-
mon in real-world applications and in particular in ERP systems. We modified
the full primary key queries to not select on the last attribute of the primary
key (e.g., ORDERLINE.OL NUMBER).

As mentioned in Sect. 4.4, hash-based indices are not accessed for queries
selecting anything but the complete primary key. For those queries, the single-
column indices created on each primary key attribute are accessed instead. The
query latencies are shown in Fig. 5. Depending on the size of the table, the
hash-based index in on par with the value-based index (SKA1 table) or is clearly
outperformed by up to two orders of magnitude (ORDERLINE table).

Range Queries. As a third reading access pattern, we evaluated range queries.
Similar to partial key selects, range queries select on a subset of the primary key
attributes but additionally execute a range selection (e.g., ORDERLINE.OL NUMBER
> 10 AND ORDERLINE.OL NUMBER < 20). We select all rows with BSEG.BELNR
and ORDERLINE.OL NUMBER in a specified range. The size of the ranges was set
to return 100 tuples on average.

As mentioned before, hash-based indices cannot be used for range queries.
That means, that we are again testing the performance of the additional single
columns indices compared to direct binary searches on the dictionary of the
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Fig. 5. Latency comparison of full and partial primary key selections.

value-based index. Similar to the partial select, the performance is depending
on the size of the table with decreasing performance for increasingly large tables
(see Fig. 6).
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5.3 Insert Performance

We measured the insert latency on the following three synthetic tables.

SYNTH3: a table with three attributes (varchar and two integers), all are part
of the primary key.
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SYNTH8: a table with eight attributes (three varchars and 5 integers), all are
part of the primary key.

SYNTH100: a table with 100 attributes (30 integers, remainder varchars) of
which eight are primary key columns (similar to SYNTH8).

All three tables contain 100 M tuples at the beginning of each test run. The
results are shown in Fig. 7. The graphs show that the hash-based index is on par
performance-wise with the value-based index for a variety of insert scenarios.
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Fig. 7. Comparison for INSERT operations on synthetic tables (100 M tuples) with
varying widths.

5.4 Applicability on Enterprise Workloads

The analysis of enterprise system workload by Krueger et al. [9] has shown a
trend towards read-dominated workloads. Contrary to benchmarks like TCP-C,
OLAP as well as OLTP workloads in modern enterprise applications consist of
mostly read queries. Further, applications optimized for a column-based archi-
tecture and without materialized aggregates as in SAP’s simplified Financials
(sFIN) applications emphasize that trend [15]. The analysis of the sFIN work-
load, which is illustrated in Fig. 8, has shown that over 98 % of the application’s
total execution time is spent on read queries. 14 % of the total time are spent
on primary key selects while the remaining 84 % are more complex select queries
like joins and aggregations. Insert statements only account for 1.3 % of the total
execution time.

We estimate the overall impact of hash indices based on the analyses in Sect. 5
to be rather low from a performance perspective. With the exception of range
queries, the hash-based indices perform on par with the value-based indices for
OLTP-like queries. Since the share of range queries on the (partial) primary key
is rather low, the performance drop is neglectable. With an increasing share of
complex and computation-intensive OLxP and OLAP queries in future systems,
the performance of the primary key will have a decreasing impact. Especially
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Fig. 8. Workload analysis: accumulated execution time of query types in a live pro-
duction SAP ERP system.

since query run times are often bound to the calculation of aggregates rather
than bound to the selection.

From a main memory footprint perspective, hash-based indices provide a
clear advantage over value-based indices for the current system with the domi-
nance of varchar columns. In case many of the current varchar columns will be
converted to numeric columns (their actual value domain) in the future, which
is also advisable for query performance and compression, the potential foot-
print reduction by introducing hash-based indices will be significantly smaller
(compare table ORDERLINE with integer attributes in Fig. 4). In that case, the
composite group-key is a viable alternative (see Sect. 3).

6 Conclusion

Hash-based primary key indices can be used to reduce the main memory footprint
of an enterprise application while maintaining the level of performance for typical
OLTP query patterns. We saw that footprint reductions and performance of
hash-based indices depend on the characteristics of the tables they are applied to
and the workload of the application. For recent enterprise systems optimized for
column-based architectures, we expect a comparable performance when using
hash-based indices over value-based indices while decreasing the entire main
memory footprint by 10 %.
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Abstract. The proliferation in Web 2.0 applications has increased the
volume, velocity, and variety of data sources which have exceeded the lim-
itations and expected use cases of traditional relational DBMSs. Cloud
serving NoSQL data stores address these concerns and provide replica-
tion mechanisms to ensure fault tolerance, high availability, and improved
scalability. In this paper, we empirically explore the impact of replica-
tion on the performance of Cassandra and MongoDB NoSQL datastores.
We evaluate the impact of replication in comparison to non-replicated
clusters of equal size hosted on a private cloud environment. Our bench-
marking experiments are conducted for read and write heavy workloads
subject to different access distributions and tunable consistency levels.
Our results demonstrate that replication must be taken into considera-
tion in empirical and modelling studies in order to achieve an accurate
evaluation of the performance of these datastores.

1 Introduction

The volume, velocity and variety of data produced and consumed by organi-
zations in recent years has outgrown the capabilities of traditional relational
DBMSs, due to the explosion of the web generated content [10]. New data stores
have been designed to accommodate this emerging landscape; some of which
have even been designed to work exclusively in the cloud. A main feature of
these cloud data stores is horizontal scalability and high availability. Horizontal
scalability is achieved through linear expansion of the data store as the work-
load increases. High availability is achieved through replicating the data across
different machines and data centers.

NoSQL data stores use eventual consistency protocols to ensure that repli-
cated data in some time in the future will be consistent [1]. Each data store pro-
vides consistency guarantees to (1) control how the data is distributed between
the nodes of the cluster, (2) define how read and write requests are handled,
(3) determine when different copies of the data are updated, and (4) specify
the accepted level of consistency of the data. The replication factor (RF) is the
number of times a data item is duplicated across the cluster, which in most data
store architectures reflects the number of physical nodes that hold a copy of the
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 152–166, 2016.
DOI: 10.1007/978-3-319-44406-2 12
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data item. The defined consistency level specifies how many of the replicas/nodes
must respond to a request for the request to be considered valid.

Replication strategies and consistency levels impact the performance of the
data store. Lower consistency levels provide lower latencies while stricter consis-
tencies incur the overhead of inter-node communication and data passing. The
performance comparison of replication and consistency guarantees is complicated
by the different protocols implemented in NoSQL data stores. In this paper, we
consider multi-master (Cassandra) and master-slave (MongoDB) replication and
their corresponding consistency protocols.

There has been an increased interest in the benchmarking and performance
of NoSQL data stores. However, the majority of the benchmarking studies in
industry and academia do not consider the effect of replication in their studies.
Further, different data access patterns are not investigated, as most depend on
the uniform access of data and the disabling of consistency guarantees within
their configurations. In contrast, this paper aims to fill a gap in the performance
and benchmarking literature by presenting a benchmarking study in which we
evaluate the impact of replication and consistency guarantees on the performance
of Cassandra [2] and MongoDB [3]. This paper contributes the following.

• We illustrate the impact of replication on the performance of Cassandra and
MongoDB NoSQL data stores using various cluster sizes in comparison to
non-replicated clusters of equal sizes. Specifically, we analyze the impact of
read and write heavy workloads under different levels of tunable consistency
on the underlying optimizations and design decisions for each datastore.

• We provide insight into each data store’s suitability to different industry appli-
cations by experimenting with three different data and access distributions,
each simulating a different real-world use case.

• Our results demonstrate that replication and consistency levels have a direct
impact on the performance of Cassandra and MongoDB. Therefore replication
must be taken into consideration in empirical and modelling studies in order
to achieve an accurate evaluation of the performance of these datastores.

This rest of this paper is organized as follows. Related work is presented in
Sect. 2. Section 3 details the data stores benchmarked in this study. The experi-
mental setup is described in Sect. 4. Benchmarking results are detailed in Sect. 5
and discussed in Sect. 6. Conclusions and future work are presented in Sect. 7.

2 Related Work

The development of the Yahoo! Cloud Serving Benchmark tool (YCSB) [4] has
led to numerous benchmarking studies of NoSQL datastores. Cooper et al. [4]
benchmarked HBase, Cassandra, PNUTS and sharded MySQL to illustrate the
performance and scalability trade-offs of each system. Pirzadeh et al. [20] eval-
uated range query dominant workloads on Cassandra, HBase, and Voldemort.
Rabl et al. [22] compared Redis, Cassandra and VoltDB in their ability to scale to
support application performance management tools. The work in [21] compares
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Voldemort and Cassandra for scalability, performance and focusing on failover
characteristics under different throughputs.

Dede et al. [6] evaluated the use of Cassandra for Hadoop, discussing various
features of Cassandra, such as replication and data partitioning which affect
Hadoop’s performance. The work evaluated different replication factors with a
single consistency level on clusters of up to 8 nodes. The previous benchmarking
studies evaluated NoSQL datastores with non-replicated or limited replication
data configurations and thus evaluating the impact of replication and different
consistency levels on performance was beyond their scope. In contrast to this
work, most studies assumed uniform access and data distribution which does
not accurately stress the datastore.

Industrial benchmarking studies [5,7,16,17,23], configured the data stores
with constant replication factors with no comparisons to baseline configurations
or assessment of different access and consistency levels. Some studies tackled a
very narrow problem domain (i.e., [7,17]) by highly optimizing their studies for
specific use cases or for specific data stores as in [23]. Similarly, performance
modelling studies either considered configurations with no replication or repli-
cation with uniform distributions and access as in [8,18,19].

In this paper, we present a benchmarking study that examines the impact of
replication, tuneable consistency levels and data and access distributions on the
performance of two popular NoSQL datastores: Casandra and MongoDB. We
investigate their performance using different replication factors selected based
on the architecture of the data store using uniform, Zipfian and latest data and
access distributions. We evaluate the impact of these configurations by com-
paring to non-replicated clusters of equal size with uniform data and access
distributions.

To evaluate the effect of different consistency levels on performance we
employ three different levels of consistency: (1) ONE: which indicates that only
one node at most needs to reply to a request, (2) QUORUM: a specific number
of nodes must reply before the request is considered valid, and (3) ALL: all nodes
holding a copy of the data item must reply before a request is returned to the
client. Each data store implements different replication strategies and thus these
consistency levels may not be directly defined within the configuration parame-
ters of the data store. For such cases, we have configured the data store to the
closest possible configuration that produces the same level of consistency. In the
following, we summarize the properties of Cassandra and MongoDB focusing on
their replication strategies and consistency configurations.

3 Systems Under Investigation

3.1 Cassandra

Cassandra is a distributed extensible record data store, developed at Face-
book [11] for storing large amounts of unstructured data on commodity servers.
Cassandra’s architecture is a peer-to-peer distribution model [10] with no sin-
gle point of failure thus supporting high availability and horizontal scalability.
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Fig. 1. The (a) Cassandra and (b) MongoDB architectures.

Data is distributed evenly across the cluster to guarantee load balancing. Cas-
sandra offers tunable consistency settings for reads and writes, which provide the
flexibility to make tradeoffs between latency and consistency [11]. For each read
and write request, users choose one of the predefined consistency levels: ZERO,
ONE, QUORUM, ALL or ANY. In this study, we investigated ONE, QUORUM
and ALL.

Cassandra automatically replicates records throughout a cluster based on a
user specified replication-factor which determines which nodes are responsible
for which data ranges. Client applications can contact any node, which acts as a
coordinator and forwards requests to the appropriate replica node(s) that store
the data. This mechanism is illustrated in Fig. 1(a). A write request is sent to
all replica nodes; however the consistency level determines the number of nodes
required to respond for the transaction to be considered complete. For a read
request, the coordinator contacts the number of replica nodes specified by the
consistency level. Cassandra is optimized for large volumes of writes as each
write request is treated like an in-memory operation, while all I/O is executed
as a background process. In contrast, read requests require in-memory and I/O
operations in addition to consistency checks between data returned from the
replicas. Keeping the consistency level low makes read operations faster as fewer
replicas are checked before returning the call.

For this study, Cassandra version 1.2.16 (the latest 1.X release available before
commencing this study) was used based on the supported YCSB (see Sect. 4)
Cassandra client driver with most of the default configurations. Hinted-handoff
(a mechanism to ensure consistency of the cluster in the event of a network parti-
tion [10]) was disabled on all nodes within the cluster to avoid the hints building
up rapidly within the cluster when a node fails. The tokens representing the data
range for each node in each independent cluster configuration was pre-calculated
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and saved in separate copies of Cassandra configuration files. Finally, the RPC
server type was changed to hsha to reduce the amount of memory used by each
Cassandra node; this is ideal for scaling to large clusters. Justifications for these
configurations and other Java JVM setting can be found in [9].

3.2 MongoDB

MongoDB is a document-oriented NoSQL data store that facilitates horizontal
scalability by auto-partitioning data across multiple servers known as sharding.
MongoDB’s sharded architecture is represented in Fig. 1(b). Each shard exists
as a replica set providing redundancy and high availability. Replica sets consist
of multiple Mongo Daemon (mongod) instances, including an arbiter node1, a
master node acting as the primary, and multiple slaves acting as secondaries
which maintain the same data set. If the master node crashes, the arbiter node
elects a new master from the set of remaining slaves.

All write operations must be directed to a single primary instance. By default,
clients send all read requests to the master; however, a read preference is config-
urable at the client level on a per-connection basis, which makes it possible to
send read requests to slave nodes instead [15]. Varying read preferences offer dif-
ferent levels of consistency guarantees. Balancing is the automatic process used to
distribute the data of a sharded collection evenly across a sharded cluster which
takes place within the mongos App server (required in sharded clusters) [14].

In this study, we used MongoDB version 2.6.1 with all standard factory set-
tings, with the exception that journaling (i.e., logging) was disabled since the
overhead of maintaining logs to aid crash recovery was considered unnecessary
in this work. We setup only one configuration server which resided on the same
host as a single App server. Clients interacted with this App server exclusively.
It has been shown that having only one configuration server is adequate for
development environments [13]. In addition, we have observed that having both
servers reside on the same host did not prove to be a bottleneck.

MongoDB replication operates by way of an oplog, to which the master node
logs all changes to its data sets. Slave nodes then replicate the master’s oplog,
applying those operations to their data sets. This replication process is asyn-
chronous, therefore slave nodes may not always reflect the most up to date data.
Varying write concerns can be issued per write operation to determine the num-
ber of nodes that should process a write operation before returning to the client
successfully. This allows for fine grained tunable consistency settings, including
quorum and fully consistent writes [12].

MongoDB offers different write concerns for varying tunable consistency set-
tings, of which NORMAL, QUORUM, and ALL write concerns where explored.
MongoDB allows for concurrent reads on a collection, but enforces a single
threaded locking mechanism on all write operations to ensure atomicity. In addi-
tion, all write operations need to be appended to the oplog on disk, which involves

1 An arbiter node does not replicate data and only exists to break ties when electing
a new primary if necessary.
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greater overhead. In contrast, regardless of the requested read concern no addi-
tional consistency checks are performed between replicas on read operations.

4 Experimental Setup

YCSB Configuration. The Yahoo Cloud Serving Benchmark (YCSB) [4]
was developed to support benchmarking cloud NoSQL data stores. We use the
YCSB benchmark to execute our benchmarking experiments on Cassandra and
MongoDB. However, for the purpose of this work, we have extended its func-
tionality as described below.

Central to the YCSB tool is the YCSB Client, which when executed in load
mode inserts a user specified number of randomly generated records of size 1 Kb
into a specific data store with a specified distribution. In run mode, the chosen
distribution determines the likelihood of certain records being read or updated.
We use the following data and access distributions in the experiments, each
simulating a different industry application use case [4]:

• uniform: items are chosen uniformly, this represents applications where the
number of items associated with an event are variable, e.g., blog posts.

• Zipfian: items are chosen according to popularity irrespective of insertion
time, this represents social media applications where popular users have many
connections, regardless of the duration of their membership.

• latest : similar to the Zipfian distribution except items are chosen according
to latest insertion time, this represents applications where recency matters,
e.g., news is popular at its time of release.

In this study, one read-heavy and one write-heavy workload is used to stress
the data stores. The read-heavy workload (referred to as G) is one of the default
workloads provided within the YCSB Core Package; i.e., workload B compris-
ing a 95/5% breakdown of read/write operations. The write-heavy workload
(referred to as H) was custom designed to consist of a 95/5% breakdown of
write/read operations. After preliminary tests, we configured the YCSB client
to a fixed eight threads per CPU core, similar to [4]. For the Cassandra and
MongoDB, which are not single threaded and can make use of all available CPU
cores, a total of sixty-four threads were used. In order to accurately evaluate the
effect of replication on data store performance, we did not increase the workload
as the cluster size increased.

For MongoDB, the YCSB Client does not support write concerns or read
preferences, therefore we extended the YCSB Client to facilitate this. A listing
of these extensions are given in [9]. For all experiments the primary preferred read
preference was used to favor queries hitting the master, however if the master
was unavailable, requests would be routed to a replicated slave. For Cassandra,
the configuration for the maximum number of concurrent reads and writes was
increased to match the same number of threads used by the YCSB Client, i.e.,
sixty-four threads.
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Further, we included an additional warm-up stage to the YCSB code base
to improve results and comparative analysis by using the open-source2 warm-
up extension developed for the studies in [16,17]. Averages of the time for the
data store to stabilize at or above the overall average throughput of a given
experiment can be found in [9]. These warm-up times where subsequently passed
as an additional configuration parameter to the YCSB Client for run phases only.

Table 1. Virtual machine specifications and settings.

Setting Value

OS Ubuntu 12.04

Word Length 64-bit

RAM 6 GB

Hard Disk 20 GB

CPU Speed 2.90 GHz

Cores 8

Ethernet gigabit

Additional Kernel Settings atime disabled

All experiments conducted in this study where carried out on a cluster of Vir-
tual Machines (VM) hosted on a private cloud infrastructure within the same
data center. Each VM had the same specifications and kernel settings as indi-
cated in Table 1. A total of 14 VM nodes where provisioned for this study. One
node was designated for the YCSB Client, and one additional node was reserved
for MongoDB configuration and App servers which are required in sharded archi-
tectures to run on separate servers from the rest of the cluster. The remaining 12
nodes operated as standard cluster nodes which had both data stores installed
but only one running at any given time. To ensure all nodes could interact effec-
tively, each node was bound to a fixed IP address and each node was aware of
the IP addresses of the other nodes.

Data Store Configuration. Each data store was configured and optimized for
increased throughput, low latency, and where possible to avoid costly disk-bound
operations. Each data store node hosted enough data to utilize a minimum of
80% RAM. MongoDB was configured to have a constant replication factor of
two replicas per shard, meeting the minimum recommended production settings.
The number of shards were incremented from one shard with two replicas up to
4 shards each with two replicas, in order to directly explore the write-scalability
of MongoDB. This corresponds to cluster sizes of three nodes up to 12 nodes.
Cassandra, due to its multi-master architecture, was evaluated on 3 to 12 node
clusters, in which the replication factor was increased with the increase in cluster
2 Available at https://github.com/thumbtack-technology/ycsb.

https://github.com/thumbtack-technology/ycsb
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size from two to 8. For both datastores experiments were also conducted on one
node clusters with no replication.

To accurately evaluate the impact of replication on datastore performance,
we conducted base line experiments for comparison. These base line experiments
consisted of maintaining the same cluster sizes, with no replication, using the
uniform distribution only. We limited ourselves to the uniform distribution as it
has been used in previous benchmarking experiments and performance modelling
papers to evaluate different scenarios. Each set of experiments was repeated a
minimum of three times. For each experiment: there is a warm-up phase, and
the main run phase for 10 minutes and a final cool down phase. To ensure all
experiments and their iterations start with the same initial state, at the end of
each iteration the entire cluster is torn down and a new cluster is reconfigured
and loaded with data.

5 Experimental Results

In this Section, we report the results of our benchmarking experiments. For
each data store we present results of replicated clusters for each workload under
different consistency levels and compare with the corresponding non-replicated
baseline clusters of equal size. Confidence intervals were calculated for all results
and can be found in [9], however there were too tight to appear in the graphs.
In addition, due to space limitations results for read and write latencies are
available in [9].

5.1 Cassandra

Throughput. From Fig. 2, the effect of replication on the performance of Cas-
sandra is very clear, as the trends of throughput for replicated clusters are
directly opposite to those for non-replicated clusters. On a single non-replicated
node, throughputs are 45.7% higher for the write-dominated workload (H) than
the read-dominated workload (G). This is expected due to Cassandra’s write
optimized architecture. Further, the throughput on non-replicated clusters for
workload H consistently outperforms workload G by an average of 33.1% per
cluster size. In contrast, for replicated cluster sizes greater than one, we observe
an average of 39.6%, 37.9%, and 30.3% decrease in throughput for the write-
heavy workload (H) compared to workload G, across all cluster sizes and con-
sistency levels for uniform, Zipfian, and latest distributions respectively. This
corresponds to a 19.5%, 38.6%, and 49.7% decrease on average across all clus-
ter sizes and distributions for ONE, QUORUM, and ALL consistency levels
respectively.

Performance is most affected by the strictest consistency level ALL. This
suggests that Cassandra is scalable at the cost of maintaining a lower level
of consistency. However, stronger consistency levels tend to reduce scalability
as the cluster size and replication factor increase. The QUORUM consistency
level demonstrates a promising sweet spot in the consistency versus throughput
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Fig. 2. Cassandra: overall throughputs per consistency level for all workloads and dis-
tributions: (a) ONE (b) QUORUM (c) ALL.

tradeoff battle. Moreover, stricter consistencies have a much greater impact on
write-heavy workloads than on read-heavy workloads.

Access Distributions. For workload G, we observe that the uniform distrib-
ution on average outperforms the Zipfian and latest distributions by 4.2% and
0.8% respectively. Given that the YCSB client selects a node at random for
forwarding requests, this is likely to impact relative performance between distri-
butions, favoring the uniform distribution due to a stronger correlation in their
random number generators. In addition, the uniform distribution will spread the
requests more evenly throughout the cluster. However, for workload H the latest
distribution on average outperforms the uniform and Zipfian distributions by
7.1% and 9.7% respectively. Zipfian’s poorer performance could be related to
high disk access due to one key being frequently updated.

Impact of Replication. From Table 2, when comparing replicated clusters to
non-replicated clusters of equal size, we observe a consistent ordering of perfor-
mance metrics for both workloads based on the consistency level. For workload
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Table 2. Cassandra: the difference (%) In overall throughput between replicated and
non-replicated clusters per workload.

Workload G Workload H

cluster size 3 6 9 12 3 6 9 12

replication factor 2 4 6 8 2 4 6 8

Uniform ONE 1.5 31.5 38.3 27.8 61.3 90.5 87.5 68.3

QRM 8.6 46.4 49.6 36.8 70.5 105 114.2 129.6

ALL 9.9 61.4 76 84.9 77.0 131.1 143.2 135.8

Zipfian ONE 3.6 37.4 40.2 34 61.1 93.8 88.4 71.8

QRM 7.1 49.2 51 42.2 68.8 115 120.6 110.7

ALL 15.2 67.1 86.1 91.1 81.0 123.8 139 136.2

Latest ONE 2.8 45.6 47.2 35.9 50.7 76.6 80 64.8

QRM 6.3 53.2 56.7 43.6 68.3 106.6 107.3 87.1

ALL 2.7 55.5 67.4 65.7 76.7 127 137.4 122.2

G, we see an average of 28.8%, 55.1% and 94.4% decrease in throughput for
consistency levels ONE, QUORUM and ALL, respectively for all distributions,
cluster sizes and replication factors compared to non-replicated clusters of equal
size. For workload H, there is an average decrease of 74.6%, 104%, and 120.7%
in throughput for consistency levels ONE, QUORUM and ALL respectively com-
pared to non-replicated clusters of equal size. As the cluster size and replication
factor increase more nodes are required to confirm each operation resulting in
additional overhead and reduced performance. This trend is a reflection of Cas-
sandra’s architecture favoring availability and network partition tolerance over
consistency. We note that the impact of replication on the write-heavy workload
is more evident due to the overhead of updating data within the cluster.

5.2 MongoDB

Throughput. The effect of MongoDB’s contrasting consistency checks for reads
and writes is evident from Fig. 3 in which the throughput of the read-heavy
workload (G) has on average an 89% higher level of throughput than the write-
heavy workload (H). This corresponds to 94.8,%, 84,%, and 87.2,% increases
for uniform, Zipfian, and latest distributions respectively, on average across all
consistency levels and cluster sizes. When broken down by consistency level, we
can observe a 89.5, %, 87.1,%, and 89.5,% increase for ONE, QUORUM, and
ALL consistency levels respectively. Figure 3 illustrates how this trend varies as
the cluster size increases. For both workloads we observe a performance drop
from cluster sizes 1 to 3. This is due to an additional replication factor of two
being applied to the single shard in the 3 node cluster. The master node now
needs to save data to an oplog on disk and manage two additional servers. As
the cluster size increases above 3 nodes more shards distribute the load of reads
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Fig. 3. MongoDB: overall throughputs per consistency level for all workloads and dis-
tributions: (a) ONE (b) QUORUM (c) ALL.

and writes and thus there is an increase in throughput following the trend of the
baseline non-replicated clusters of equal size.

For all subsequent cluster sizes (6+), the average decrease in throughput is
only 13.6% and 40.3% for workload G and H respectively in comparison to
the non-replicated clusters. This suggests that replication has a lesser effect on
performance for read-heavy workloads once the overhead of maintaining a small
number of shards have been overcome. When comparing based on the consistency
levels, we observe higher throughputs for a consistency level of ONE on average
across all distributions and cluster sizes, with slight degradations for QUORUM
and ALL consistency levels.

Access Distributions. The latest distribution outperforms the Zipfian and
uniform distributions for both workloads. For workload G, the latest distribu-
tion has a 15% and 17.9% increase in throughput on average across all cluster
sizes and consistency levels compared to the Zipfian and uniform distributions
respectively. For workload H, the latest distribution has a 10.9% and 27.9%
increase in throughput on average across all cluster sizes and consistency levels
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compared to Zipfian and uniform distributions respectively. This is expected as
MongoDB stores all data on disk and reads data into RAM on a need to basis.
The latest and Zipfian distributions would outperform the uniform distribution
as accessed data would be in main memory after a short number of operations.
Further, the warm-up stage added to the YCSB Client gives an added advantage
to the latest and Zipfian distributions in this regard.

Impact of Replication. The impact of replication is more evident for write-
heavy workloads due to the effect of consistency checks performed on writes.
Table 3 shows the difference in percentages between replicated and non-replicated
clusters of equal size for all experiments. From Table 3, the impact of replication
on the performance of workload H in comparison to workload G, especially for
cluster sizes 6+, is evident in the large differences between the throughput of
workload H and that of the baseline non-replicated clusters of equal size. The
effect of the access skew is clear when comparing to the baseline non-replicating
clusters, as shown in Table 3. For the read-heavy workload, when comparing to
the baseline non-replicated clusters of equal size, the Zipfian and latest distribu-
tions mitigate the overhead of replication due to the availability of data in main
memory. This is not the case for the uniform distribution where the impact of
replication is evident. When considering the write-heavy workloads, the increase
in disk access on multiple replicas leads to the increased impact of replication,
irrespective of access distribution, consistency level or cluster size.

Table 3. MongoDB: the difference (%) In overall throughput between replicated and
non-replicated clusters per workload.

Workload G Workload H

cluster size 3 6 9 12 3 6 9 12

replication factor 2 2 2 2 2 2 2 2

Uniform ONE 94.1 20.4 22.5 6.2 120.4 54.1 49.6 12.9

QRM 95.4 23.7 25.4 6.7 99 64.8 49 15.3

ALL 113.6 31.5 27.1 10.5 107.2 71.4 54 15.5

Zipfian ONE 93.6 28.2 9.3 1.7 78.4 24.9 21 14.6

QRM 101.5 23.4 14.5 4.0 89 41 29 15.7

ALL 102.5 30.1 15.5 2.5 97.8 43 24.3 16.2

Latest ONE 73.8 7.8 5.6 2.5 83.6 25.1 7.1 1.7

QRM 74 14 5.7 1 37.4 30.7 15.6 4.5

ALL 77.6 19.4 6.0 1.6 76.7 127 137.4 122.2
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6 Discussion

Throughput. For the read-heavy workload (G), MongoDB (averaging 21230
ops/sec) is only marginally better than Cassandra (which averages 20184
ops/sec) by 5.1%. For workload H which is write dominated, the greatest differ-
ence is that Cassandra outperforms MongoDB by 72.5%. This stark contrast is
a clear indication of Cassandra’s write optimized architecture.

For the read-heavy workload (G), MongoDB demonstrates better perfor-
mance with the latest distribution, whereas Cassandra performs best with the
uniform distribution. MongoDB outperforms Cassandra on all distributions,
except for the uniform distribution in which Cassandra has better throughputs
than MongoDB. Cassandra’s better performance on read-heavy workloads with
a uniform distribution is likely a result of a strong correlation between how
the YCSB Client selects a node randomly for routing requests, spreading the
requests more evenly across the cluster. Whereas the latest distribution would
force the same set of nodes to constantly handle operations, causing a backlog of
read-repairs to build up. When accessed with the latest distribution, MongoDB
is only 1.1 times more performant than Cassandra.

For the write-heavy workload (H), the latest distribution once again outper-
forms all other distributions on average across all cluster sizes and consistency
levels, followed by Zipfian, except for Cassandra which performs second best
with the uniform distribution. When all data stores are accessed with the latest
distribution, Cassandra is 2 times better than MongoDB. The reason we observe
larger contrasts in relative performance compared to workload G, is because Cas-
sandra is write optimized delaying consistency checks for read time. In contrast,
MongoDB performs consistency checks at write time.

Replication. To assess the impact replication on data store performance, we
compare two different replication strategies, i.e., the multi-master model used by
Cassandra, and the replica set model used by MongoDB. We can observe that
apart from the exception of consistency level ONE on workload G, for cluster
sizes 6+, MongoDB’s replica set replication model has less of an impact on
throughput performance than Cassandra’s multi-master replication model when
compared to non-replicated clusters of equal size. Cassandra’s replication model
accounts for a 41.1%, and 98% throughput degradation for all consistency levels
and distributions, averaged across all replicated clusters sizes for workload G and
H respectively. In contrast, MongoDB’s replication model only accounts for 33%
and 52% degradation in throughput for workload G and H respectively. This
suggests that MongoDB’s master-slave replication architecture has less of an
effect on cluster performance than Cassandra’s multi-master architecture. This
is a result of each master and slave being responsible for a single data partition
leading to reduced access contention compared to the multi-master model used
by Cassandra in which each node contains more than one unique partition on a
single server.
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Performance Summary. Write-heavy workloads on non-replicated Cassan-
dra clusters are able to exploit Cassandras write-optimized architecture. In con-
trast, replication has a noticeable impact on the performance of write-heavy
workloads in comparison to read-heavy workloads. Cassandra is scalable at the
cost of maintaining a lower level of consistency, we observed 65% and 75%
degradations in performance between consistency levels ONE and ALL for read-
heavy and write-heavy workload respectively. Stricter consistency levels have a
greater impact (9%) on write-heavy workloads than on read-heavy workloads.
Read-heavy workloads perform best when data access is random or close to
random. For write-heavy workloads, memory resident datasets provide better
performance (as represented by Zipfian and lastest distributions).

MongoDBs architecture is highly read-optimized, with read-heavy workloads
outperforming write-heavy workloads on average by 90% across all cluster sizes,
distributions and consistency levels. An interesting observation is that replica-
tion has minimal impact on performance relative to non-replicated clusters of
equal size once the overhead of maintaining a small number of shards have been
overcome. In addition, stricter consistency levels have on average a 5% impact
on performance for both workloads. MongoDB performance is best when the
entire or majority of the working data set can be kept in RAM as it would be
for latest and Zipfian distributions.

7 Conclusions and Future Work

This study benchmarked replication in Cassandra and MongoDB NoSQL data
stores, focusing on the effect of replication on performance compared to non-
replicated clusters of equal size. To increase the applicability of this study to
real-world use cases, a range of different data access distributions (uniform,
Zipfian, and latest) were explored along with three tunable consistency levels:
ONE, QUORUM, and ALL, and two different workloads: one read-heavy and
one write-heavy. Our experiments have shown that master-slave type replication
models, as exhibited by MongoDB tend to reduce the impact of replication com-
pared to multi-master replication models exhibited by Cassandra. These results
demonstrate that replication must be taken into consideration in empirical and
modelling studies in order to achieve an accurate evaluation of the performance
of these datastores. For future work, we plan to conduct a similar benchmark-
ing study on the Amazon EC2 cloud, extending experiments to include larger
data sets and cluster sizes while making use of solid-state disks to better reflect
industry standard deployments.

References

1. Bailis, P., Venkataraman, S., Franklin, M.J., Hellerstein, J.M., Stoica, I.: Proba-
bilistically bounded staleness for practical partial quorums. Proc. VLDB Endow.
5(8), 776–787 (2012)

2. Cassandra. http://cassandra.apache.org/

http://cassandra.apache.org/


166 G. Haughian et al.

3. Chodorow, K.: MongoDB: The Definitive Guide. O’Reilly Media Inc, Sebastopol
(2013)

4. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM symposium on
Cloud computing, pp. 143–154. ACM (2010)

5. Datastax Coperation. Benchmarking top NoSQL databases. A performance com-
parison for architects and IT managers (2013)

6. Dede, E., Sendir, B., Kuzlu, P., Hartog, J., Govindaraju, M.: An evaluation of cas-
sandra for hadoop. In: IEEE Sixth International Conference on Cloud Computing
(CLOUD), pp. 494–501. IEEE (2013)

7. Diomin and Grigorchuk. Benchmarking Couchbase server for interactive applica-
tions (2013). http://www.altoros.com/

8. Gandini, A., Gribaudo, M., Knottenbelt, W.J., Osman, R., Piazzolla, P.: Perfor-
mance analysis of nosql databases. In: 11th European Performance Engineering
Workshop (EPEW) (2014)

9. Haughian, G.: Benchmarking Replication in NoSQL Data Stores. Master’s thesis,
Imperial College London, UK (2014)

10. Hewitt, E.: Cassandra: The Definitive Guide. O’Reilly Media Inc., Sebastopol
(2010)

11. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

12. MongoDB Inc., MongoDB manual: Replication. http://docs.mongodb.org/
manual/replication/

13. MongoDB Inc., MongoDB manual: Sharded cluster config servers. http://docs.
mongodb.org/manual/core/sharded-cluster-config-servers/

14. MongoDB Inc., MongoDB manual: Sharded collection balancer. http://docs.
mongodb.org/manual/core/sharding-balancing/

15. MongoDB Inc., MongoDB manual: Sharding. http://docs.mongodb.org/manual/
sharding/

16. Nelubin and Engber. NoSQL failover characteristics: Aerospike, Cassandra, Couch-
base, MongoDB (2013). http://www.thumbtack.net/

17. Nelubin and Engber. Ultra-high performance NoSQL benchmarking (2013). http://
www.thumbtack.net/

18. Osman, R., Harrison, P.G.: Approximating closed fork-join queueing networks
using product-form stochastic petri-nets. J. Syst. Softw. 110, 264–278 (2015)

19. Osman, R., Piazzolla, P.: Modelling replication in NoSQL datastores. In: Nor-
man, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 194–209. Springer,
Heidelberg (2014)

20. Pirzadeh, P., Tatemura, J., Hacigumus, H.: Performance evaluation of range queries
in key value stores. In: IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), pp. 1092–1101. IEEE (2011)

21. Pokluda, A., Sun, W.: Benchmarking failover characteristics of large-scale data
storage applications: Cassandra and Voldemort

22. Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.-A.,
Mankovskii, S.: Solving big data challenges for enterprise application performance
management. Proc. VLDB Endowment 5(12), 1724–1735 (2012)

23. Rogers, A.: VOLTDB in-memory database achieves best-in-class results, running in
the cloud, on the YCSB benchmark, May 2014. http://tinyurl.com/VoltDB-YCSB.
Last Accessed June 2016

http://www.altoros.com/
http://docs.mongodb.org/manual/replication/
http://docs.mongodb.org/manual/replication/
http://docs.mongodb.org/manual/core/sharded-cluster-config-servers/
http://docs.mongodb.org/manual/core/sharded-cluster-config-servers/
http://docs.mongodb.org/manual/core/sharding-balancing/
http://docs.mongodb.org/manual/core/sharding-balancing/
http://docs.mongodb.org/manual/sharding/
http://docs.mongodb.org/manual/sharding/
http://www.thumbtack.net/
http://www.thumbtack.net/
http://www.thumbtack.net/
http://tinyurl.com/VoltDB-YCSB


τJSchema: A Framework for Managing Temporal
JSON-Based NoSQL Databases

Safa Brahmia1(✉), Zouhaier Brahmia1, Fabio Grandi2, and Rafik Bouaziz1

1 University of Sfax, Sfax, Tunisia
safa.brahmia@gmail.com,

{zouhaier.brahmia,raf.bouaziz}@fsegs.rnu.tn
2 University of Bologna, Bologna, Italy

fabio.grandi@unibo.it

Abstract. Although NoSQL databases are claimed to be schemaless, several
NoSQL database vendors have chosen JSON as agile data representation format
and provide a JSON-based API or query facility to simplify the life of application
developers. Whereas many applications require the management of temporal data,
the JSON Schema language lacks explicit support for time-varying data. In this
paper, for a systematic approach to the management of temporal data in NoSQL
databases, we propose a framework called Temporal JSON Schema (τJSchema),
inspired by the τXSchema framework defined for XML data. τJSchema allows
defining a temporal JSON schema from a conventional JSON schema and a set
of temporal logical and physical characteristics. Our framework guarantees
logical and physical data independence for temporal schemas and provides a low-
impact solution since it requires neither modifications of existing JSON docu‐
ments, nor extensions to the JSON format, the JSON Schema language, and all
related tools and languages.

Keywords: NoSQL databases · Document-oriented NoSQL databases · JSON ·
JSON schema · Temporal database · τXSchema · Conventional schema · Logical
annotations · Physical annotations · Temporal schema · Temporal NoSQL
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1 Introduction

NoSQL (Not Only SQL) databases [1–4] refer to nontraditional databases that usually
do not require fixed schema, avoid join operations and typically scale horizontally. They
emerged mainly to avoid some limitations of relational DBMSs related to scalability
and storage performances when storing and analyzing large volumes of data or managing
databases that are growing very fast. They are also considered as a very efficient support
for managing big data [5–7] and running web applications in cloud computing environ‐
ments [3, 8, 9]. Currently, more than 235 NoSQL database systems [4] are proposed as
commercial or open source products. They could be classified in four main classes: (i)
key-value NoSQL databases (e.g., DynamoDB, Riak, Redis) which store data as key-
value pairs; (ii) column-oriented NoSQL databases (e.g., HBase, Cassandra, Hypert‐
able) which store data tables as sections of columns rather than rows, like in relational
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databases; (iii) document-oriented NoSQL databases (e.g., MongoDB, Couchbase
Sever, Elasticsearch) which store data as documents (e.g., in JSON or BSON format);
(iv) graph-oriented NoSQL databases (e.g., Neo4j, InfoGrid, HyperGraphDB) which
store data as directed graphs.

Furthermore, time has been always omnipresent in database applications [10, 11]. It
allows timestamping data values when there is a need to track all changes on data and
to have a complete history of the modeled reality. For that reason, dealing with temporal
aspects of data has been since the 1980s one of the topics which interests several
researchers of the database community. A lot of work has been and continues to be done
on temporal databases [12–14]. Many temporal data models, query languages, and
prototype systems have been proposed. Two times are used for managing temporal data:
transaction time (i.e., the time when a datum is currently stored in the database) and
valid time (i.e., the time when a datum was, is or will be valid in the real world). Data
that are managed along both time dimensions are called bitemporal. Conventional data
which are managed in a non-temporal manner (i.e., with destructive deletions and
updates) are called snapshot.

Since modern computer science applications (e.g., social networks and collabo‐
rative web information systems) are changing very fast, NoSQL databases that are
used by these applications (in addition to GUI, application source code and other
components of such applications) must also evolve over time to reflect changes that
rapidly occur in the real world. Therefore, also several NoSQL-based applications
(e.g., e-commerce, e-government, and e-health applications) require keeping track of
data evolution and versioning with respect to time and, thus, have to deal with time-
varying NoSQL documents.

Unfortunately, although a continued interest in temporal and evolution aspects is
exhibited by the research community [15–18], existing NoSQL data models and query
languages but also state-of-the-art NoSQL DBMSs, APIs, and tools do not provide any
built-in support for managing temporal data. In particular, the JSON format [19] and the
JSON Schema language [20] lack explicit support for time-varying JSON documents,
at both schema and instance levels, in document-oriented NoSQL databases. Although
NoSQL databases are often claimed to be schemaless, several NoSQL database vendors
have chosen JSON as agile data representation format and provide a JSON-based API
or query facility to simplify the work of application developers. Thus, NoSQL Database
Administrators (NSDBAs) relying on JSON must proceed in ad hoc manners when they
need, for example, to specify a JSON schema for time-varying JSON data instances or
to deal with temporal evolution of the JSON schema itself. In the rest of the paper, we
define as NSDBA the person in charge of the maintenance of NoSQL databases.

According to what is presented in previous paragraphs, we think that if we would
like to handle NoSQL database evolution over time in an efficient manner and to allow
executing temporal queries on time-varying NoSQL instances, a built-in temporal
support in NoSQL DBMSs is required. For that purpose, we propose in this paper a
framework, called τJSchema (Temporal JSON Schema), for managing temporal JSON
documents, through the use of a temporal JSON Schema extension. In fact, we want to
introduce with τJSchema a principled and systematic approach to the temporal extension
of JSON, similar to what Snodgrass and colleagues did to the XML language with
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τXSchema [21–23]. τXSchema is a framework (including a data model and a suite of
tools) for managing temporal XML documents, well known in the database research
community and, in particular, in the field of temporal XML [24]. Moreover, in our
previous work [25–27], with the aim of completing the framework, we augmented
τXSchema by defining necessary schema change operations acting on conventional
schema, temporal schema, and logical and physical annotations (extensions which we
plan to apply to τJSchema too).

Being defined as a τXSchema-like framework, τJSchema facilitates the creation of
a temporal JSON schema from a conventional (i.e., non-temporal) JSON schema spec‐
ification and a set of temporal logical and physical characteristics (or annotations).
Temporal logical characteristics identify which components of a JSON document can
vary over time; temporal physical characteristics specify how the time-varying aspects
are represented in the document. By using temporal schema and characteristics to intro‐
duce temporal aspects in the conventional NoSQL setting, our framework (i) guarantees
logical and physical data independence [28] for temporal schemas and (ii) provides a
low-cost solution since it requires neither modifications of existing JSON documents
already stored and used by applications, nor extensions to the JSON format, to the JSON
Schema language, and to the JSON-based NoSQL systems (DBMSs and tools).

The rest of the paper is organized as follows. Section 2 motivates the need for an
efficient management of time-varying JSON documents. Section 3 describes the
τJSchema framework that we propose for extending NoSQL databases to capture
temporal aspects: the architecture of τJSchema is presented and details on all its compo‐
nents and support tools are given. Section 4 provides a summary of the paper and some
remarks about our future work.

2 Motivation

In this section, we present a motivating example that shows the limitation of the JSON
Schema language [20] for explicitly supporting time-varying JSON data instances.
Then, we provide the desiderata for a temporal JSON Schema extension which could
accommodate time-varying instances in a systematic way.

2.1 Running Example

We assume to deal with a JSON-based NoSQL databases for managing data on Youtube
channels. An example of a JSON document stored in such a database is presented in
Fig. 1. It provides information of one Youtube channel having the name “Big Data
videos” and created by the user “Safa” (owner). The number of subscriptions in such a
channel is equal to 60,000. It contains two videos, one titled “Big Data Technologies”
and the other is titled “Big Data Phenomenon”; the URL, and the number of likes,
dislikes, and shares corresponding to each video are also maintained. Assume that infor‐
mation about this Youtube channel was added on November 10, 2015. Notice that we
aim at providing a simple and intuitive example, even if it would not be the most signif‐
icant to justify the choice of JSON.
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{ "YouTubeChannels": [  { "channelName": "Big Data videos", 
"owner": "Safa", 
"subscribedNumber": "60000", 
"videos":  [ { "videoName": "Big Data Technologies", 

"URL": "https://www.youtube.com/watch?v=BDT", 
     "likeNumber": "100", 

"dislikeNumber": "5", 
"shareNumber": "300" },

{  "videoName": "Big Data Phenomenon", 
"URL": "https://www.youtube.com/watch?v=BDPP", 
"likeNumber": "50", 
"dislikeNumber": "2", 
"shareNumber": "100" } ] } ] }

Fig. 1. The “youtubeChannels.json” document on November 10, 2015

Suppose that on January 20, 2016, the owner modified the name of her Youtube
channel from “Big Data videos” to “Big Data channel”, the owner name from “Safa” to
“S. Brahmia”, and the name of the first video from “Big Data Technologies” to “Big
Data Management: Current Approaches and Future Trends”. Thus, the corresponding
JSON document was revised to that shown in Fig. 2.

{ "YouTubeChannels":  [  {    "channelName": "Big Data channel",
"owner": "S. Brahmia",
"subscribedNumber": "60000",
"videos":  [  {   "videoName": "Big Data Management: Current Approaches and Future

Trends",
"URL": "https://www.youtube.com/watch?v=BDT",
"likeNumber": "100",
"dislikeNumber": "5",
"shareNumber": "300" },

{  "videoName": "Big Data Phenomenon",
"URL": "https://www.youtube.com/watch?v=BDPP",
"likeNumber": "50",
"dislikeNumber": "2",
"shareNumber": "100"} ] } ] }

Fig. 2. The “youtubeChannels.json” document on January 20, 2016

In many JSON-based NoSQL database applications, bookkeeping of the whole
history of JSON document changes is a fundamental requirement, since such a history
allows recovering past document versions, tracking changes over time, and evaluating
temporal queries. A τJSchema time-varying JSON document records the evolution of a
conventional JSON document over time by storing all versions of the document in a way
similar to that originally proposed for τXSchema [21].

Let us assume that the administrator of the Youtube database would like to keep
track of the changes performed on our JSON document by storing both versions of
Fig. 1 and of Fig. 2 in a single (temporal) JSON document. The result is the time-varying
JSON document shown in Fig. 3, capturing the history of the specified information
concerning Youtube channels.
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{ "YouTubeChannels": [ { "versionedChannelName":  [ { "versionChannelName":{  
"channelNameValidityStartTime":"2015-11-10",
"channelNameValidityEndTime":"2016-01-19",
"channelName":"Big Data videos" }},

{ "versionChannelName":{
"channelNameValidityStartTime":"2016-01-20",
"channelNameValidityEndTime":"now",
"channelName":"Big Data channel" }}],

"versionedOwner": [ { "versionOwner":{ "ownerValidityStartTime":"2015-11-10",
"ownerValidityEndTime":"2016-01-19",
"owner":"Safa" } },

{ "versionOwner": { "ownerValidityStartTime":"2016-01-20",
"ownerValidityEndTime":"now",
"owner":"S. Brahmia" } } ],

"subscribedNumber": "60000",
"videos": [ { "versionedVideoName": [ { “versionVideoName”: {

"videoNameValidityStartTime":"2015-11-10",
"videoNameValidityEndTime":"2016-01-19",
"videoName":"Big Data Technologies" } },

{ “versionVideoName”: { 
"videoNameValidityStartTime":"2016-01-20",
"videoNameValidityEndTime":"now",
"videoName":"Big Data Management: Current

Approaches and Future Trends" } } ],
"URL": "https://www.youtube.com/watch?v=BDT",
"likeNumber": "100",
"dislikeNumber": "5",
"shareNumber": "300" },
{ "versionedVideoName": [ { “versionVideoName”: { 

"videoNameValidityStartTime":"2015-11-10",
"videoNameValidityEndTime":"now",
"videoName":"Big Data Phenomenon" } } ],

"URL": "https://www.youtube.com/watch?v=BDPP",
"likeNumber": "50",
"dislikeNumber": "2",
"shareNumber": "100" } ] } ] }

Fig. 3. The time-varying document of Youtube channel versions

In this example, we use valid-time to capture the history of such information. In order
to timestamp the properties which can evolve over time, we use the following properties:
channelNameValidityStartTime and channelNameValidityEndTime, for recording
channel name evolution, ownerValidityStartTime and ownerValidityEndTime, for
recording owner name evolution, and videoNameValidityStartTime and videoName‐
ValidityEndTime, for recording the video name history. The domain of channelName‐
ValidityEndTime, ownerValidityEndTime or videoNameValidityEndTime includes the
value “now” [29]; the entity version that has “now” as the value of its validity end time
property represents the current entity version until some change occurs.

Besides, the document presented in Fig. 4 represents the conventional (i.e., non-
temporal) JSON schema for the JSON document presented in both Figs. 1 and 2. The
conventional JSON schema is the schema for an individual version, which allows
updating and querying individual JSON document versions.
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{  "$schema": "http://json-schema.org/draft-04/schema#",
"id": "http://jsonschema.net",
"type": "object",
"properties":

{ "YouTubeChannels": { "id": "http://jsonschema.net/YouTubeChannels",
"type": "array",
"items": { "type": "object",

"properties": { "channelName": {  "type": "string"  },
"owner": {  "type": "string"  },
"subscribedNumber": {  "type": "string"  },
"videos": { "type": "array",

"items": {"type": "object",
"properties": {

"videoName":{"type":"string"},
"URL": {"type": "string" },
"likeNumber":{"type":"string"}
"dislikeNumber":{"type":"string"}
"shareNumber":{"type":"string"} 

} } } },
"required": [ "channelName", "owner",  "subscribedNumber",  "videos" ] },

"required": [  "0"  ] } },
"required": [  "YouTubeChannels"  ] }

Fig. 4. The “youtubeChannels.schema.json” JSON Schema document (the conventional schema)

The problem is that the time-varying JSON document (see Fig. 3) does not conform
to the conventional JSON schema (see Fig. 4). Thus, to resolve this problem, we need
a different JSON schema that can describe the structure of the time-varying JSON docu‐
ment. This new schema should specify, for example, timestamps associated to proper‐
ties, time dimensions involved, and how the properties vary over time. This example
will be continued in the Subsect. 3.2, in order to show how these problems can be solved
in our proposed τJSchema framework.

2.2 Desiderata

There are several goals that can be fulfilled when augmenting the JSON Schema
language to support time-varying data instances. Our approach aims at satisfying the
following requirements:

• making easy the management of time for NSDBAs;
• supporting both transaction time and valid time in NoSQL databases;
• supporting temporal versioning of JSON Schema instances;
• keeping compatibility with existing JSON format and JSON Schema specifications,

and editors, without requiring any changes to these models, languages, and tools;
• supporting existing applications that are already using JSON documents and JSON

schema files;
• providing JSON data independence so that changes at the logical level are isolated

from those performed at the physical level, and vice versa;
• proposing a variety of physical representations for time-varying JSON Schema

instances.
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Notice that similar goals have been fulfilled for XML with τXSchema and, thus, by
defining τJSchema we aim at transferring their fulfillment to JSON.

3 The τJSchema Framework

In this section, we present our τJSchema framework for handling temporal JSON docu‐
ments and provide an illustrative example of its use.

3.1 Architecture

In this subsection, we describe the overall architecture of τJSchema and the tools used
for managing both τJSchema schema and τJSchema instances. Since τJSchema is a
τXSchema-like framework, we were inspired by the τXSchema architecture and tools
while defining the architecture and tools of τJSchema.

The τJSchema framework allows a NSDBA to create a temporal JSON schema for
temporal JSON data instances from a conventional JSON schema, temporal logical
characteristics, and temporal physical characteristics. Since it is a τXSchema-like
framework, τJSchema use the following principles: (i) separation between the conven‐
tional schema and the temporal schema, and between the conventional instances and the
temporal instances; (ii) use of logical and physical characteristics to specify temporal
logical and temporal physical aspects, respectively, at schema level.

Fig. 5. The τJSchema architecture.
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Figure 5 illustrates the architecture of τJSchema. Notice that only the components
that are presented in the figure as rectangular boxes with one continuous line border
(i.e., boxes 1, 2, 3, and 4) are specific to an individual time-varying JSON document and
need to be supplied by a NSDBA. The framework is based on the JSON Schema
language [20].

The NSDBA starts by creating the conventional JSON schema (box 1), which is a
traditional JSON Schema document that models a given real world entity, without any
temporal aspect. To each conventional JSON schema corresponds a set of conventional
(i.e., non-temporal) JSON documents or JSON Schema instances (box 2). Any change
to the conventional JSON schema is propagated to its corresponding instances.

After that, the NSDBA augments the conventional schema with temporal logical and
temporal physical characteristics, which allow him/her to express, in an explicit way,
all requirements dealing with the representation and the management of temporal aspects
associated to the components of the conventional schema, as described below.

Temporal logical characteristics [23] allow the NSDBA to specify (i) whether a
conventional schema component varies over valid time and/or transaction time, (ii)
whether its lifetime is described as a continuous state or a single event, (iii) whether the
component may appear at certain times (and not at others), and (iv) whether its content
changes. If no logical characteristics are provided, the default logical characteristic is
that anything can change. However, once the conventional schema is annotated, compo‐
nents that are not described as time-varying are static and, thus, they must have the same
value across every conventional JSON document instance (box 2).

Temporal physical characteristics [23] allow the NSDBA to specify the timestamp
representation options chosen, such as where the timestamps are placed and their kind
(i.e., valid time or transaction time) and the kind of representation adopted. The location
of timestamps is largely independent of which components vary over time. Timestamps
can be located either on time-varying components (as specified by the logical charac‐
teristics) or somewhere above such components. Two JSON documents with the same
logical characteristics will look very different if we change locations of their physical
timestamps. Changing an aspect of even one timestamp can make a big difference in the
representation. τJSchema supplies a default set of physical characteristics, which is to
timestamp the root property with valid and transaction times. However, explicitly
defining them can lead to more compact representations [23].

Although the two sets of temporal characteristics are orthogonal and can evolve
independently, they are stored together in a single JSON document associated to the
conventional schema which is a standard JSON document named the temporal charac‐
teristics document. The schema for the logical and physical characteristics is given by
TCSchema (box 5) which is JSON Schema document [20].

Finally, the NSDBA finishes by annotating the conventional schema and asks the
system to save his/her work. Consequently, the system creates the temporal JSON
schema (box 6) providing the linking information between the conventional schema and
its corresponding logical and physical characteristics. The temporal schema is a standard
JSON document, which ties the conventional schema, the logical characteristics, and
the physical characteristics together. In the τJSchema framework, the temporal JSON
schema is the logical equivalent of the conventional JSON schema in a non-temporal
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environment. This document associates a series of conventional schema definitions with
temporal characteristics, along with the time span during which the association was in
effect. The schema for the temporal JSON schema document is given by TSSchema (box
7) which is JSON Schema document.

After creating the temporal schema, the system creates a temporal JSON document
(box 8) in order to link each conventional JSON document (box 2), which is valid to a
conventional JSON schema (box 1), to its corresponding temporal JSON schema (box
6), and more precisely to its corresponding logical and physical characteristics (which
are referenced by the temporal JSON schema). A temporal document is a standard JSON
document that maintains the evolution of a non-temporal JSON document over time, by
keeping track of all the versions (or temporal slices) of the document with their corre‐
sponding timestamps and by specifying the temporal schema associated to these
versions. This document associates a series of conventional JSON documents with
logical and physical characteristics, along with the time span during which the associ‐
ation was in effect. Therefore, the temporal JSON document facilitates the support of
temporal queries involving past JSON document versions or dealing with changes
between JSON document versions. The schema for the temporal document is the JSON
Schema document TDSchema (box 9).

Notice that, whereas TCSchema (box 5), TSSchema (box 7), and TDSchema (box
9) have been developed in this work, JSON Schema (box 0) corresponds to the existing
language endorsed by the Internet Engineering Task Force (IETF) [20] for specifying
the structure of JSON documents.

Similarly to what happens in the τXSchema framework, the temporal JSON schema
(box 6) is processed by the temporal JSON schema validator tool in order to ensure
that the logical and physical characteristics are (i) valid with respect to TCSchema, and
(ii) consistent with the conventional schema. The temporal JSON schema validator tool
reports whether the temporal JSON schema document is valid or invalid.

Once all the characteristics are found to be consistent, the JSON schema mapper
tool generates the representational JSON schema (box 11) from the temporal JSON
schema (i.e., from the conventional JSON schema plus the logical and physical char‐
acteristics); it is the result of transforming the conventional schema according to the
requirements expressed through the different temporal characteristics. The representa‐
tional JSON schema becomes the schema for temporal JSON data instances (box 10).
These temporal instances could be obtained in four ways: (i) automatically from the
temporal JSON document (box 8) (i.e., from non-temporal JSON instances (box 2) and
the temporal JSON schema (box 6)), using the JSON instances squasher tool (such an
operation is called “squash” in the original τXSchema approach); (ii) automatically from
instances stored in a JSON-based NoSQL database, that is as the result of a “temporal
query” or a “temporal view”; (iii) automatically from a third-party tool; (iv) manually:
temporal JSON instances are directly added by the NSDBA to the τJSchema repository.

Moreover, temporal JSON instances are validated against the representational JSON
schema through the temporal JSON instances validator tool, which reports whether
the temporal JSON instances (box 10) are valid or invalid.

The four mentioned tools (i.e., Temporal JSON Schema Validator, Temporal JSON
Instances Validator, JSON Schema Mapper, and JSON Instances Squasher) are currently
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under development. For example, the temporal JSON instances validator tool is being
implemented as a temporal extension of an existing conventional JSON instances vali‐
dator [30] based on the coding of the corresponding τXSchema tool.

3.2 Running Example Reprise

In order to show the functioning of the proposed approach, we continue in the following
our motivating example of the Subsect. 2.1. In particular, we will show how management
of temporal JSON document versions is dealt with in the τJSchema approach.

On November 10, 2015, the NSDBA creates a conventional JSON schema (box 1),
named “youtubeChannels_V1.schema.json” (as in Fig. 4), and a conventional JSON
document (box 2), named “youtubeChannels_V1.json” (as in Fig. 1), which is valid with
respect to this schema. We assume that the NSDBA defines also a set of temporal logical
and physical characteristics, associated to that conventional JSON schema; they are
stored in a temporal characteristics document (boxes 3 and 4) titled “youtubeChannel‐
sTemporalCharacteristics_V1.json” as shown in Fig. 6.

{  "temporalCharacteristicSet":  {  "logical":  [  {  "target":"YouTubeChannels/channelName",
"validTime": { "kind":"state",

"content":"varying",
"existence":"constant" } },

{  "target":"YouTubeChannels/owner",
"validTime": {  "kind":"state",

"content":"constant",
"existence":"constant" } },

{  "target":"YouTubeChannels/videos/videoName",
"validTime": {  "kind":"state",

"content":"varying",
"existence":"constant" } } ],

"physical": [ {  "target":"YouTubeChannels/0/videos/0/videoName",
"dataInclusion":"expandedVersion",
"stampKind": {  "timeDimension":"validTime",

"stampBounds":"extent" } } ] } }

Fig. 6. The temporal characteristics document on November 10, 2015

After that, the system generates the temporal JSON schema (box 6) in Fig. 7, which
ties “youtubeChannels_V1.schema.json” and “youtubeChannelsTemporalCharacteris‐
tics_V1.json” together; this temporal schema is saved in a JSON file titled “youtube‐
ChannelsTemporalSchema.json”. Consequently, the system uses the temporal JSON
schema of Fig. 7 and the conventional JSON document in Fig. 1 to create a temporal
JSON document (box 8) as in Fig. 8, which lists both versions (i.e., temporal “slices”)
of the conventional JSON documents with their associated timestamps. The squashed
version (box 10) of this temporal document, which could be generated by the JSON
Instances Squasher, is provided in Fig. 9.
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{ "temporalSchema": { "convetionalSchema": { “scliceSequence”: [ {  “slice”: { 
"location":"youtubeChannels_V1.schema.json",
"begin":"2015-11-10" } } ] },

"temporalCharasteristicSet": {  “scliceSequence”: [ {  “slice”:{  
"location":"youtubeChannelsTemporalCharacteristics_V1.json",
"begin":"2015-11-10" } } ] } } }

Fig. 7. The temporal JSON schema on November 10, 2015

{  "temporalRoot":  { "temporalSchemaLocation":"youtubeChannelsTemporalSchema.json" },
"sliceSequence": [ {  “slice”: {  "location":"youtubeChannels_V1.json",

"begin":"2015-11-10" } } ] }

Fig. 8. The temporal JSON document on November 10, 2015

{  "YouTubeChannels":  [  {  "channelName_RepItem":  [ .{  "channelName_Version":  {  
"timestamp_ValidExtent":  {  

"begin":"2015-11-10",
"end":"now" },

"channelName":"Big Data videos" } } ],
"owner_RepItem": [ {  "owner_Version":  {  

"timestamp_ValidExtent":  {  
"begin":"2015-11-10",
"end":"now" },

"owner":"Safa" } } ],
"subscribedNumber": "60000",
"videos": [ {  "videoName_RepItem": [ {  "videoName_Version": {  

"timestamp_ValidExtent": {  
"begin":"2015-11-10",
"end":"now"},

"videoName":"Big Data Technologies" } } ],
"URL": "https://www.youtube.com/watch?v=BDT",
"likeNumber": "100",
"dislikeNumber": "5",
"shareNumber": "300" },

{  "videoName_RepItem": [ {  "videoName_Version": {  
"timestamp_ValidExtent": {  

"begin":"2015-11-10",
"end":"now", },

"videoName":"Big Data Phenomenon" } } ],
"URL": "https://www.youtube.com/watch?v=BDPP",
"likeNumber": "50",
"dislikeNumber": "2",
"shareNumber": "100" } ] } ] }

Fig. 9. The squashed document correponding to the temporal document on November 10, 2015.

On January 20, 2016, the NSDBA updates the conventional JSON document
“youtubeChannels_V1.json” as presented in the subsection 2.1 to produce a new
conventional JSON document named “youtubeChannels_V2.json” (as in Fig. 2).
Since the conventional JSON schema (i.e., youtubeChannels_V1.schema.json) and
the temporal characteristics document (i.e., youtubeChannelsTemporalCharacteris‐
tics_V1.json) are not changed, the temporal JSON schema (i.e., youtubeChannel‐
sTemporalSchema.json) is consequently not updated. However, the system updates
the temporal JSON document, in order to include the new slice of the new
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conventional JSON document, as shown in Fig. 10. The squashed version of the
updated temporal JSON document is provided in Fig. 11.

{  "temporalRoot": {  "temporalSchemaLocation":"youtubeChannelsTemporalSchema.json" },
"sliceSequence": [  {  “slice”: {  "location":"youtubeChannels_V1.json",

"begin":"2015-11-10" } },
{  “slice”: {  "location":"youtubeChannels_V2.json",

"begin":"2016-01-20" } } ] }

Fig. 10. The temporal document on January 20, 2016

{  "YouTubeChannels": [ {  "channelName_RepItem": [ { "channelName_Version": {  
"timestamp_ValidExtent": {  

"begin":"2015-11-10",
"end":"2016-01-19" },

"channelName":"Big Data videos" } },
{  "channelName_Version": {  

"timestamp_ValidExtent": {  
"begin":"2016-01-20",
"end":"now" },

"channelName":"Big Data videos" } } ],
"owner_RepItem": [ {  "owner_Version": {  

"timestamp_ValidExtent": {  
"begin":"2015-11-10",
"end":"2016-01-19"}

"owner":"Safa"} },
{  "ownerVersion":" {  

"timestamp_ValidExtent": {  
"begin":"2016-01-20",
"end":"now" },

"owner":"S. Brahmia" } } ],
"subscribedNumber": "60000",
"videos": [ {  "videoName_RepItem": [ {  "videoName_Version": {  

"timestamp_ValidExtent": {  
"begin":"2015-11-10",
"end":"2016-01-19", },

"videoName":"Big Data Technologies" } },
{  "videoName_Version": {  

"timestamp_ValidExtent": {  
"begin":"2016-01-20",
"end":"now" },

"videoName":"Big Data Management: 
Current Approaches and Future 
Trends"} } ],

"URL": "https://www.youtube.com/watch?v=BDT",
"likeNumber": "100",
"dislikeNumber": "5",
"shareNumber": "300" },

{  "videoName_RepItem": [ {  "videoName_Version": {  
"timestamp_ValidExtent": {  

"begin":"2015-11-10",
"end":"now"},

"videoName":"Big Data Phenomenon" } } ],
"URL": "https://www.youtube.com/watch?v=BDPP",
"likeNumber": "50",
"dislikeNumber": "2",
"shareNumber": "100" } ] } ] }

Fig. 11. The squashed document corresponding to the temporal document on January 20, 2016
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Obviously, each one of the squashed documents (see Figs. 9 and 11) must conform
to a particular schema, which is the representational JSON schema (box 11) that is
generated by the JSON Schema Mapper from the temporal JSON schema shown in
Fig. 7.

4 Conclusion and Future Work

In this paper, we proposed τJSchema, a τXSchema-like framework, which allows
creating a temporal JSON schema from a conventional JSON schema and a set of
temporal logical and temporal physical characteristics. It ensures logical and physical
data independence, since it separates conventional schema, logical characteristics, and
physical characteristics, allowing them to be changed independently and safely. Further‐
more, the adoption of τJSchema provides a low-impact solution, since it requires neither
modifications of existing JSON documents, nor extensions to JSON format, JSON
Schema language, and available tools that are based on JSON/JSON Schema.

Currently, we are extending τJSchema to also support JSON schema versioning
[27, 31], since (i) JSON schemata are also evolving over time to reflect changes in
real-world applications, and (ii) keeping a full history of both JSON schema and
instance changes is required by several NoSQL database applications [18]. More‐
over, in the next future, we plan to develop a system prototype (as a temporal stratum
on top of an existing JSON-based NoSQL DBMS, like MongoDB) showing the feasi‐
bility of our approach, and to study manipulation of temporal JSON data instances in
the τJSchema framework, by proposing an extension of the JSONiq query language
[32] to temporal and versioning aspects.
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Abstract. A lot of multimedia data are being created nowadays, which
can only be searched by content since no searching metadata are avail-
able for them. To make the content search efficient, similarity indexing
structures based on the metric-space model can be used. In our work, we
focus on a scenario where the similarity search is used in the context of
stream processing. In particular, there is a potentially infinite sequence
(stream) of query objects, and a query needs to be executed for each
of them. The goal is to maximize the throughput of processed queries
while maintaining an acceptable delay. We propose an approach based
on dynamic reordering of the incoming queries combined with caching of
recent results. We were able to achieve up to 3.7 times higher throughput
compared to the base case when no reordering and caching is used.

Keywords: Stream processing · Similarity search

1 Introduction

Current digital media explosion results in huge amounts of unstructured data
that lack any searchable metadata. In order to make such data findable, the
content-based search must be applied that treats the data by similarity rather
than exact match of their attributes. Such search then usually uses k-nearest-
neighbors queries (kNN ), which retrieve the k objects that are the most similar
to a given query object.

To make things even more complex, some applications need to deal with a
continuous stream of arriving data that are to be searched. For example, consider
a text search-engine crawler that gathers images from the web and needs to
annotate them by textual descriptions according to the image content, a spam
filter that compares the incoming emails to some learned spam knowledge base
so that spam messages can be detected, or a news notification system that needs
to compare the newly published articles to the profiles of all the subscribed users
to find out who should be notified.

All these applications require to process each and every data item that
appeared in the stream by some form of content-based searching. Luckily, the
data in such applications need not be processed immediately but some small
delay is acceptable. The most important thing is the number of processed images
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 185–200, 2016.
DOI: 10.1007/978-3-319-44406-2 14
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in a given time, i.e. the throughput of such an application. The individual query
search time can be improved by applying some similarity indexing technique, for
which there are efficient algorithms based on the metric model of similarity [14].
As opposed to interactive applications focusing on the single query optimiza-
tion, in our scenario, we can afford a slight delay of the single query processing
if the overall throughput of the system is improved. Performance of such stream
processing applications is studied in [7,8].

In our work, we exploit the fact that the order of the processed queries may
have a significant impact on the processing time. We propose a novel approach
based on dynamic reordering of the incoming queries combined with caching
mechanism used to lower the I/O costs. The solution is based on the assumption
that to evaluate two similar queries, similar data of the index need to be accessed.
According to our experiments, the proposed technique results in significantly
higher throughput.

The rest of the paper is organized as follows. First, we present some related
work on caching and stream data throughput improvements. In Sect. 3 we for-
mally define our problem. Components and the overall architecture of our tech-
nique is presented in Sect. 4. Section 5 presents the basic query ordering technique
that is further enhanced in Sect. 6 so that the approach can deal with too high
delays. Experimental evaluation of our approach can be found in Sect. 7. Finally,
the paper is concluded in Sect. 8.

2 Related Work

The usage of a caching mechanism in similarity search has been proposed in
several papers to reduce the amount of disk accesses. In [3], the authors deal
with kNN queries to search for similar images in the metric space. They build
their approach on the assumption that there exists a set of popular images
which are queried by users significantly more often than the other images. They
propose an approach where the result sets of individual kNN queries are stored
in a cache, and they are reused to produce approximate results of subsequent
queries. Unlike traditional caching, the proposed cache can manage not only
exact hits, but also approximate ones that are solved by similarity with respect
to the result sets of past queries present in the cache.

The concept of caching in similarity search is used also in [10] where it is
applied to contextual advertising systems. For a kNN query q, if there is a cache
miss, a larger set of objects than are actually needed is retrieved from the disk
and stored in the cache. When a similar query to the cached query q comes to
the system, the cached values of q are explored to obtain results for the new
query. In this way, an approximate answer is returned.

These two approaches use the cache to speedup the processing of a query for
the price of reduced accuracy. On the other hand, our proposed approach does
not compromise the accuracy, and the result for each query is exactly the same
as it would be without the cache.

Another way to improve the throughput of a stream of kNN queries, is to
reorder the queries. In [12], the authors optimize nearest neighbor search for
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videos when each video is represented by a sequence of high-dimensional feature
vectors. Given a query video containing n feature vectors, a search for each
vector is performed, and the overall similarity is computed at last. The authors
make use of the fact that nearby feature vectors in a video are similar, and
they propose dynamic query ordering for advanced optimization of both I/O
and CPU costs. They make an observation that the overlapped candidates of
a previous query may help to further reduce the candidate sets of subsequent
queries. The algorithm aims at progressively finding a query order such that the
common candidates among queries are fully utilized to maximally reduce the
total number of candidates.

The aforementioned techniques assume the existence of sequences of similar
queries in the stream. In our approach, we use no such assumption, on the
contrary, we reorder the queries so that we obtain the desired sequences.

A slightly different problem is dealt with in [13]. The stream of queries is
given as a line segment in a space, and the task is to perform a continuous
nearest neighbor search; that is to retrieve a nearest neighbor for every point
on the line segment. The result contains a set of (point, interval) tuples such
that the point is the nearest neighbor of all points in the corresponding interval.
The proposed technique uses a single database traversal to identify all the split
points which form the result set. A motivating use case is to find all nearest gas
stations during a route between two places.

Another task in similarity search for streams is a classification problem when
a set of classes are assigned to each data item of the stream. Usually, the class
labels are predicted based on some training data which are correctly labeled.
The challenge in the stream processing is to deal with a high rate of incoming
data items and with the concept drift, i.e., the applications have to adapt to new
trends (new classes may emerge; some classes may disappear; the definition of
the classes may change in time). In [15], there is a proposal of a new indexing
structure called Ensemble-tree (E-tree) which is a height balanced tree consisting
of R-tree like structure storing the decision rules and a table structure storing
classifier-level information. Other approaches to the stream classification can
be found in [4,6,11]. We do not address the problem of classification itself in
our work; we focus rather on improving the efficiency of a particular type of
classification (kNN classification).

3 Problem Definition

Suppose there is a domain of complex objects D (e.g., images) and a large data-
base containing such objects. Let s = (q1, q2, . . .) be a stream, i.e., a potentially
infinite sequence of query objects of the same type, where qi ∈ D for each i. All
the objects are indexed in the metric space which is a universal model of similar-
ity [14]. There is defined a total distance function d : D ×D → R. The distance
between two objects corresponds to the level of their dissimilarity (d(p, p) = 0,
d(o, p) ≥ 0).

For each query object qi in the stream s, a k-nearest neighbors query
NN(qi, k) is executed which returns k nearest objects from the database to
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the query object. The goal is to achieve as high throughput as possible, i.e., to
process a given set of queries as fast as possible.

It is allowed to locally change the order of the processed queries. More pre-
cisely, we define a buffer B containing at maximum N query objects. A query
object of the stream is added to the buffer only if it is not full, i.e., it contains
less then N queries. As a next query to be processed, a query object from the
buffer is selected.

Using the local reordering described above, some queries may be a subject to
starvation, i.e., they never get selected from the buffer for processing. Therefore,
we introduce a constraint on the maximum delay (MD) and update the retrieval
method as follows. As soon as an object is stored to the buffer, it is assigned a
timestamp. Whenever an object is about to be selected from the buffer and there
exists an object whose timestamp is older than the allowed maximum delay, the
object with the oldest timestamp in the buffer has to be processed.

Formally, a buffer B = {(q1, t1), . . . , (qh, th)} where {q1, . . . , qh} ⊆ D; |B| ≤
N ; ti is the entrance time of qi to the buffer. We define two functions for the
buffer.

push(q, t) inserts the query q to the buffer and assigns it the timestamp t.
pop(timeLimit) = (q, t) removes the pair (q, t) ∈ B from the buffer and

returns it on the output. If there exists a pair (p, u) ∈ B such that u ≤
timeLimit, then the following has to hold: t = min({v|(r, v) ∈ B}).

The generic processing of the stream of queries is performed as follows. The
buffer is filled with first N queries of the stream. Then there is a cycle in which
a query is popped from the buffer, it is processed, and another query is pushed
into the buffer. It means that there are always N queries in the buffer before a
query is popped. The pseudocode can be seen in Algorithm1.

Algorithm 1. Generic algorithm
function processStream((q1, q2, . . .), N,MD)

B ← new Buffer()
i ← 1
while i ≤ N do

B.push(qi, now())
i++

loop
process(B.pop(now() − MD))
B.push(qi, now())
i++

To measure the throughput, we define the function processingT ime((q1,
q2, . . .), N,m) = T where T is the time since the algorithm was launched until
m queries have been processed, i.e., until i = N + m + 1 in Algorithm 1. By
repeatedly calling pop, a permutation (qi1 , qi2 , . . .) of the original stream is con-
tinuously generated. The ultimate goal is to specify the function pop so that T
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is minimized. Note that pop can access only the queries which are in the buffer,
and it cannot foresee any future ones.

4 Architecture

In this section, we describe the architecture of the whole system used for process-
ing a stream of similarity search queries. There are two main parts: the metric
index and the buffer of waiting queries. The schema is shown in Fig. 1.

Fig. 1. Architecture

The buffer is used to temporarily store the incoming query objects which
are waiting for processing. The metric index takes care of the query evaluation.
It contains a disk where the database of objects is stored and a main memory
cache used for storing recently loaded data from the disk.

Whenever there is a spare space in the buffer, the next query of the stream
is loaded. When the metric index is ready for processing another query, a query
is picked from the buffer according to a chosen strategy. During processing of
the query, the metric index looks into the cache to possibly use any intermediate
results obtained from evaluating recent queries. If the data are not in the cache,
they are loaded from the disk.

We consider a generic metric index which uses data partitioning P =
{p1, . . . , pn} where pi ⊆ D. When evaluating a query, it needs to access a subset
of the partitions Q ⊆ P . The partitions are typically stored on a disk [14].

The cache system is based on storing intermediate results of recent queries
so that they can be reused by the metric index when processing similar queries.
The cache is used to lower down the number of disk accesses when retrieving
data partitions. The loaded partitions are kept in the cache so that they can
be reused by later queries which access the same partitions. The cache is a set
of partitions cache = {p1, . . . , pm} ⊆ P . The size of the cache is limited by the
number of objects within the cached partitions:

∑

p∈cache

|p| ≤ cacheLimit. To

measure the utility of the cache, we define the function

cacheUtility(q, cache) =
|I(q) ∩ cache|

|I(q)| (1)
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where cache represents the content of the cache and I(q) ⊆ P is the set of
partitions accessed during the evaluation of q.

To keep track of the content of the cache, we define the function
updateCache(q, cache) returning the content of the cache after processing the
query q where cache represents the content of the cache before executing q. In
our implementation, we use the least recently used policy. In particular, the par-
titions with the oldest last access time are discarded and replaced with the new
partitions of the last query while obeying cacheLimit.

The queryT ime(q, cacheUtility) represents the time to process the given
query q using the given cache utility. The desired property of the function is
that it should be decreasing with increasing cache utility. (The validity of the
assumption is verified experimentally in Sect. 7.2.)

cu1 ≤ cu2 ⇔ queryT ime(q, cu1) ≥ queryT ime(q, cu2) (2)

where cu1, cu2 are cache utility.
Let us get back to the processingT ime function which is introduced in Sect. 3

to specify the function more precisely with the use of the cache.

processingT ime((q1, . . .),N,m) =
m∑

j=1

(queryT ime(qij , cuj)) + bt where (3)

cuj = cacheUtility(qij , cachej−1)
cache0 = {}
cachej = updateCache(qij , cachej−1) for 1 ≤ j ≤ m

(qi1 , . . . , qim) is the sequence of queries generated by the pop function. cachej
for 1 ≤ j ≤ m represents the state of the cache right after qij has been processed.
bt is the overall time needed for the buffer management (push and pop calls).

Let us denote sequenceT ime((qi1 , . . . , qim)) =
m∑

j=1

(queryT ime(qij , cuj)). It

is likely that sequenceT ime(s) 	 bt since the evaluation of a query is a costly
operation. Therefore we will focus on minimization of sequenceT ime in the next
section.

5 Query Ordering

In this section, we discuss the optimal query ordering so that the minimal
processing time is achieved, i.e., the throughput is maximized.

According to Formula 2 showing the dependency of the query time on the
cache utility, we can suppose that the key to a good ordering of the queries is to
maximize the cache utility. As for metric indexes, the following formula typically
holds [14]:

d(q1, q2) ≈ 0 → I(q1) ≈ I(q2) (4)
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That is, if the queries q1, q2 are close to each other, the sets of accessed partitions
are approximately the same. In other words, if q1 is processed, the I(q1) is stored
in the cache, and subsequently q2 is processed, then the cache utility is likely to
be very high. The idea is to find such a sequence of queries where the neighboring
ones are similar.

Let us start by defining a function returning the number of pairs of similar
subsequent queries.

similarCount((q1, . . . , qm)) = |{i|d(qi−1, qi) ≈ 0 ∧ 2 ≤ i ≤ m}| (5)

Our assumption is that by maximizing similarCount, we can achieve high
cache utility and thus low processing time.

Let the function overallCacheUtility return the fraction of all the partitions
retrieved from the cache out of all the requested partitions for a given sequence
of queries.

overallCacheUtility((q1, . . . , qm), initialCache) =

m∑

i=1

|I(qi) ∩ cachei−1|
m∑

i=1

I(qi)
(6)

where cache0 = initialCache and cachei is the content of the cache after process-
ing qi for 1 ≤ i ≤ m − 1.

Let r and s be sequences of queries of the same lengths; we assume the
following to hold

similarCount(r) ≤ similarCount(s) ⇒ (7)
overallCacheUtility(r, {}) ≤ overallCacheUtility(s, {}) ⇒

sequenceT ime(r) ≥ sequenceT ime(s)

Let us define the function returning the indexes of the queries which are not
similar to the previous query in the given sequence s = (q1, . . . , qm).

dissimilar(s) = (x1, . . . , xh) (8)

so that xi is in the tuple iff xi = 1 ∨ d(qxi
, qxi−1) �≈ 0. The function returns the

elements of the tuple in the ascending order, i.e., xi−1 < xi for each i.
Now, the number of similar pairs can be computed by summing the number

of queries between the dissimilar pairs:

similarCount(s) =
h∑

i=1

(xi − 1 − xi−1) + (m − xh) (9)

where x0 = 0.
Let us denote simSeqi = xi − 1 − xi−1. Then

similarCount(s) =
h∑

i=1

simSeqi + (m − xh) (10)
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Each simSeqi represents the number of subsequent pairs of similar queries. To
achieve high similarCount, we propose a greedy algorithm which for each i tries
to maximize simSeqi.

First, the algorithm selects a highly populated region of query objects in the
buffer. Subsequently, it processes all the queries in this region. By operating in
dense regions, there is an increased chance of finding a long sequence of similar
queries, hence achieving large simSeqi.

A challenge is to efficiently search for dense regions. To achieve this, we cluster
all the queries in the buffer based on their mutual distances in the metric space,
i.e., any two queries in the same cluster should be close to each other. Therefore
the task to find dense regions is reduced to searching for clusters containing
large number of queries. The clustering has to be done on the fly as soon as a
query enters the buffer and it is required not to impose a significant overhead
so that it does not actually slow down the whole process. Formally, the cluster
C = {(q1, t1) . . . , (qm, tm)} ⊆ B where d(qi, qj) ≈ 0 for each i, j. It is reasonable
to adapt the clustering technique to the used indexing mechanism. In our case,
an adequate clustering technique is a pivot based approach [9]. Specifically, there
is a set of reference objects (pivots). To assign a query to a cluster, the distances
of the query object to all the pivots are computed. The pivots are then sorted
by the distances and the obtained pivot permutation determines the cluster.

The pseudocode can be seen in Algorithm 2. The pop function is called repeat-
edly according to Algorithm 1. Its functionality depends on a state which keeps
a reference to the content of the buffer and to the currently processed cluster. If
there are no more query objects in currentCluster, it finds the most populated
cluster of query objects in the buffer and sets it as currentCluster. Then a query
object is taken from currentCluster and returned to be processed.

Algorithm 2. Greedy algorithm
var buffer, currentCluster
function pop

if empty(currentCluster) then
currentCluster ← getMostPopulatedCluster(buffer)

query ← currentCluster.getNext()()
removeFromBuffer(buffer, query)
return query

6 Delay Limit

In the definition of the problem, we have defined a limit for the maximum delay.
Using the strategy for query ordering as stated above, there can be clusters which
do not ever get to be processed. This is the case of clusters with low number
of queries that are never selected as the cluster with the highest population. In
this section, we show how to modify the query ordering so that the delay limit
is obeyed.
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To remind the delay limit, whenever a query is about to be picked from the
buffer and there exists a query whose timestamp is older than the allowed delay,
the query with the oldest timestamp in the buffer has to be processed.

Since a timed out query may be dissimilar to the previous queries, it is
probable that the cache utility will be zero. The situation can be observed in
Fig. 2b. The processing of the cluster A is interrupted by the timed out query
in the cluster B. The question is how to proceed after processing the timed out
query. Basically, there are two options. The first one is not to cache the results
of the timed out query and continue with the processing of the cluster A. The
second option is to cache the results of the timed out query and continue with
the processing of the cluster B. According to the proposed greedy algorithm,
we should select the option which maximizes the number of consecutive queries
having small distances between them (maximizing simSeqi, see Formula 10).

The option can be selected based on the number of query objects in the cur-
rently processed cluster and in the cluster containing the timed out query. Using
the approach presented in the previous section, the cluster with the bigger num-
ber of queries should be chosen. However, selecting always the most populated
cluster does not guarantee the sequence of nearby queries is maximized because
processing of the queries may be interrupted by a timed out query from another
cluster as we have seen in Fig. 2b. Therefore it is needed to consider also the
timeouts which may occur during processing of a cluster.

The key question is how many queries in the selected cluster can be processed
without any interruption, i.e., without encountering any dissimilar query object
(xi in Formula 8). The interruption happens in two situations: all the queries
in the currently processed cluster are finished or there is a timeout outside the
selected cluster. Therefore the number of subsequent similar queries is the min-
imum of the number of the queries in the cluster and the number of the queries
which can be processed until the first timeout occurring in a different cluster.

To implement the greedy algorithm, we compute the time after which the
processing of a given cluster would be interrupted. The algorithm selects the
cluster with the largest time before an interruption. Using this approach, we
can prioritize small clusters with early timeouts over large clusters with late
timeouts.

Let Bt be the content of the buffer at time t and the cluster

C = {(q1, t1), . . . , (qm, tm)} ⊆ Bt

For the sake of simplicity, let us suppose the query times are constant after
processing the first query in the cluster since the cache utility is constant, i.e.,
queryT ime(qi, cacheUtility) = c for 2 ≤ i ≤ m, and queryT ime(q1, 0) = d.
Then

clusterT ime(C) = sequenceT ime((q1, . . . , qm)) = c · (|C| − 1) + d (11)

is the time needed to process the cluster C.
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Now we derive the time after which there is a timeout outside the cluster C.
Let MD be the maximum delay limit.

earliestT imeout(Bt, C) = max{0,min{MD − (t − e)|(q, e) ∈ Bt ∧ (q, e) �∈ C}}
(12)

is the earliest time after which there is a timeout outside the cluster C. Note
that all the computations are related to the state of the buffer at the time t since
we cannot predict what queries will enter the buffer after t.

When put together, the time after which the processing of the cluster C is
interrupted is min{clusterT ime(C), earliestT imeout(Bt, C)}. The greedy algo-
rithm selects the cluster which maximizes the interruption time.

The pseudocode can be found in Algorithm3. If there exists a query object
exceeding the delay limit, the oldest query in the buffer is chosen to be processed.
The currentCluster and timedOutCluster are compared regarding the time
until an interruption. If currentCluster has a larger time, the results of the
timed out query are not cached since its cluster will not be processed in the
next round and it would be useless. If there is no timeout and if currentCluster
does not contain any more queries, a new cluster maximizing the time until
interruption is selected from all the clusters in the buffer. Then a next query is
taken from currentCluster; it is removed from the buffer, and processed. The
pop function returns also the information whether the caching should be used
during processing of the returned query. The individual situations are illustrated
in Fig. 2.

(a) Another query in the cluster
is processed.

(b) 2 is a timed out query; 3 can
be either in the previous (A) or
in the timed out cluster (B).

(c) A cluster is completely pro-
cessed and a query in a new
one is selected.

Fig. 2. Algorithm illustration; the numbers indicate the order of processed queries

Since Algorithm 3 can disable caching for a particular query, we have to
slightly modify the definition of similarCount so that it skips the queries for
which the caching was disabled.

similarCount((q1, . . . , qm)) = |{i|d(qprevCached(i), qi) ≈ 0 ∧ 2 ≤ i ≤ m}| (13)

where prevCached(i) = max{h|h < i ∧ (caching(qh) ∨ h = 1)} and caching(q)
is true iff the caching was enabled when processing q.

Note that in case of a timed out query, we choose the next currentCluster
from only two clusters, so it is in compliance with the greedy approach.
Processing of the timed out query outside currentCluster generates an item
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Algorithm 3. Full greedy algorithm considering the delay limit
var buffer, currentCluster
function pop(timeLimit)

caching ← true
if existsTimeout(buffer, timeLimit) then

query ← getOldestQuery(buffer)
timedoutCluster ← getClusterByQuery(query)
currentCluster ← findClusterWithLargestTimeUntilInterruption()

[currentCluster, timedOutCluster]
if timedOutCluster �= currentCluster then

caching ← false

else
if isEmpty(currentCluster) then

currentCluster ← findClusterWithLargestTimeUntilInterruption()
buffer.getClusters()

query ← currentCluster.getNext()

removeFromBuffer(buffer, query)
return query, caching

in dissimilar (Formula 8) since d(qi, qi−1) �≈ 0. We either cache the results of
the processing and proceed with processing the cluster of the timed out query,
hence using the cached values, or the results are not cached and we get back
to the original currentCluster and use the already cached values. If a different
cluster was selected, there would be dissimilar(s) = (. . . , i, i + 1, . . .) where i
corresponds to the timed out query and i + 1 corresponds to the first query
of the new cluster. This would violate the greedy algorithm since there would
be a zero-length sequence of similar items (simSeqk = 0 in Formula 10 for the
corresponding k).

Since the greedy algorithm always chooses just one cluster which maximizes
the cache utility at that moment, it can be very efficient. On the other hand, the
best global ordering of the queries may be missed that way, and algorithms which
compute the best ordering of all the queries in the buffer could be considered.
However, they are likely to be slower and since there are new queries continuously
added to the buffer, the computed ordering is only relevant for the actual state
of the buffer.

7 Experiments

In this section, we experimentally validate the hypotheses presented above.

7.1 Experiment Setup

We use the M-Index [9] technique to index the metric-space data. It employs
practically all known principles of metric space partitioning, pruning, and filter-
ing, thus reaching high search performance. The actual data are partitioned into
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buckets which are stored as separate files on a disk and read into the main mem-
ory during query evaluations. To partition the data, M-Index uses a set of pivots.
To insert an object into the index, the pivots are sorted based on the distance
to the object. In this way, a pivot permutation is obtained which identifies the
bucket to insert the object. During a similarity search, mutual distances between
the query object and the pivots are used to reduce the set of buckets which need
to be accessed. The M-Index supports (among others) executing approximate
kNN queries. One of the stop conditions of a query evaluation is given by the
maximum number of accessed objects (the size of a candidate set). Such a stop
condition is used in our experiments.

We use the Profimedia dataset of images [2] in the experiments. We cre-
ated three different subsets of the images and extracted their visual-feature
descriptors. The generated datasets are: 1 million Caffe descriptors [5] (4096
dimensional vectors), 1 million MPEG-7 descriptors [2] and 10 million MPEG-7
descriptors. Separately, we created streams of images represented by correspond-
ing descriptors. During each experiment, the image descriptors of the stream are
continuously sent to the buffer and processed by an approximate 10-NN query.

As the streamed queries enter the buffer, they are clustered using the piv-
ots of the M-Index as described in Sect. 5. The clustering does not introduce a
significant overhead since the same set of pivots is used also during the query
evaluation and the computed distances can be reused.

The tested applications are implemented using Java programming language
with the use of the MESSIF library [1] providing an implementation of the M-
Index. The experiments were run on Intel Xeon 2.00 GHz with 8 GB RAM. The
descriptors of the datasets are stored on a HDD.

7.2 Cache Utility

Figure 3a shows results of our experiments exploring the impact of the cache
utility on the query time. We ran approximate 10-NN queries for each dataset
and we were continuously changing the percentage of accessed buckets stored in
the cache. The M-Index used candidate sets of size 10,000. The x-axis shows the
percentage of the cached values; the y-axis represents the percentage of the time
to process the query compared to the situation when the cache is not used. It
can be observed that the processing time can be improved dramatically if the
cache is filled with appropriate values, thus the assumption in Formula 2 is valid.

7.3 Buffer Size

In this group of experiments, we explore the impact of the size of the buffer. The
experiments were conducted for all three datasets of descriptors. No maximal
delay constraint was used. The maximum size of the cache was set to 90,000
descriptors for the 10 mil. MPEG-7 dataset (i.e., 0.9 % of the database); up to
40,000 descriptors were stored for the 1 mil. MPEG-7 and Caffe datasets (i.e., 4 %
of the database). The size of the M-Index candidate set was 2,000 for the 10 mil.
MPEG-7 dataset, and 1,000 for the others. With a growing size of the buffer, also
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Fig. 3. Cache utility experiments

the cache utility and the throughput grow since the processed clusters are more
populated and the cached values are reused more times, i.e., similarCount is
higher, see Figs. 3b and 4a. The throughput speedup was computed as the ratio
of the number of processed queries using a given buffer size and the number of
processed queries without the usage of the proposed optimizations. The increase
in the median delay of the processed queries (the time spent in the buffer)
is shown in Fig. 4b. It was also measured there are just minor overhead costs
connected with the buffer management (query clustering and reordering).
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Fig. 4. Buffer size analysis; every experiment ran 30 min

7.4 Greedy Algorithm

In this section we evaluate four different approaches to processing a stream
of kNN queries, and we experimentally prove Formula 7, i.e., by greedily
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maximizing the number of similar pairs of queries, we achieve high cache utility
and low processing time.

The first approach is the base (B) algorithm when the queries are processed
by the M-Index one by one without any stream optimizations. The second one
is the densest first (DF) algorithm. The queries are clustered, and the greedy
algorithm always selects the most populated cluster. In case of a timeout, the
timed out query is processed and the processing returns back to the previous clus-
ter. In the third approach called densest first with timeouts (DFT), the greedy
algorithm again chooses the most populated cluster. But after a timed out query
is processed, it decides between the previous cluster and the cluster containing
the timed out query. It picks the more populated one of them to continue with
the processing. In the fourth approach, the full (F) greedy algorithm is used.
Specifically, it maximizes the sequences of similar queries by computing the time
until interruption for individual clusters (Algorithm3).

In the first group of experiments, we used the dataset of 1 mil. Caffe descrip-
tors. The approaches using the cache (DF, DFT, F) stored up to 40,000 descrip-
tors in the cache (4 % of the DB) and used a buffer of size 8,000. The delay limit
was set to 15 min, and 100,000 queries were processed for each approach. The
size of the candidate set of the M-Index was set to 1,000 for each approximate
kNN query.

See Fig. 5a for the results. The buffer-based approaches were able to process
the queries much faster than the base algorithm. The individual optimizations
pay off as expected, and the best results are obtained using the full greedy
algorithm when the processing time was reduced 3.69 times compared to the
base approach. The impact of individual optimizations can be observed also
in the number of timed out queries: DF with 13408 timeouts vs F with 1491
timeouts. The cache utility of the full greedy algorithm was 0.62; its median
delay (the time since a query enters the buffer until it is processed) was 128 s.
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Fig. 5. Processing times of 100,000 queries

We have repeated the experiment for the dataset of 1 mil. MPEG-7 descrip-
tors with the same settings. That is, the buffer 8,000, up to 40,000 descriptors
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in the cache, 15 min delay limit, and 100,000 queries processed with 1,000 candi-
date objects used for each query. The results are presented in Fig. 5b. We were
able to reduce the processing time 3.72 times compared to the base approach.
The cache utility of the full greedy algorithm was 0.66; its median delay was
79 s, and there were 169 timed out queries.

In Fig. 5c, we can see a comparison of processing times when the 10 mil.
dataset of MPEG-7 descriptors is used. We used a buffer of size 10,000; up to
90,000 descriptors were stored in the cache (0.9 % of the DB); 100,000 queries
were processed. The timeout limit was set to 30 min. Up to 2,000 candidate
objects were used for each approximate query. The full greedy algorithm clearly
outperforms the base approach as the processing was 2 times faster. The median
delay of the full greedy algorithm was 548 s (9 min); the cache utility was 0.38;
there were 2,838 timeouts.

Through the previous experiments, we verified the validity of our approach.
That is, by finding long sequences of similar pairs of queries, we achieve high
cache utility, and thus low processing time.

8 Conclusion

We have presented a novel approach to enhance the throughput of similarity
search queries while obeying a given delay limit and processing every data item
in the stream of queries. The technique is based on dynamic reordering of the
incoming queries combined with appropriate caching strategy for partitions of
the indexing structure. We have proposed three variants of the reordering by
applying greedy heuristic approach to identify long sequences of similar queries.
Two of the variants deal with starvation of the buffered queries by employing
timeouts with different strategies of processing continuation. Our experimental
evaluation proved our expectations and the most sophisticated technique was
able to achieve up to 3.7 times higher throughput compared to the base case
when no reordering is used.
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Abstract. Music recommendation and streaming services have grown expo-
nentially with the introduction of smartphones. Despite the large number of
systems, they all currently face a lot of issues. One issue is a cold start where a
user who is new to the system can’t be made recommendations until the system
learns their tastes. They also lack context awareness to make truly personalised
recommendations to the user. This paper introduces a new recommendation and
streaming application, individual Personalised Music (iPMusic), for Android
which is specifically designed to address the issues. We examine the effec-
tiveness of iPMusic based on real world users’ feedback which shows positive
results.

Keywords: Music retrieval � Mobile computing � Recommendation system �
Music streaming

1 Introduction

With the continual evolution of personal media players from Sony Walkman’s, to
portable CD players, MP3 players and eventually the Apple iPod it is clear that indi-
viduals like to listen to music wherever they are. This is becoming an area that smart-
phones are largely moving into to help cope with the huge demand for music. The
amount of music being released has also been growing at ever larger rates with multiple
services such as Google Play Music and Deezer having in excess of 30 million songs [1].
With such huge libraries of music it is possible for users to become lost and struggle to
find new music that they like. As new songs are released users may not be informed so it
becomes problematic for them.

To help the users, recommendation systems have been created making use of
content-based and collaborative algorithms. There are however issues with these cur-
rent recommendation algorithms, those used by Spotify [2] and Google Music [3]
require the user to first of all listen to music before any recommendation can be made to
them. The issue with this is if a new user joins then no recommendation can be made to
them. Similarly if a new song is added until users listen to it and rate it, collaborative
methods would rate the song lowly so it is unlikely to be recommended. A hybrid
approach was put forward by Wang et al. [4] that makes use of the user’s context such
as location and listening history and combines this with content based methods to
overcome the issue of not providing recommendations to new users. By taking the
user’s location into account it creates a more personalised recommendation compared
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to Spotify or Google Music but this can be further improved so that every recom-
mendation is unique to that individual user. This provides an interesting challenge for
developers to solve as the system needs to be able to cope with new users being added
and to provide them with personalised recommendations from the beginning but also
when a new song is added it is considered fairly when making recommendations.

The motivation for this work has been to provide users with an easy way to
discover new music. We have developed an algorithm that will provide unique per-
sonalised recommendations based on the users’ Twitter posts as well as their listening
history. The system will pull song lyrics and other fields to generate a list of similar
songs when creating the recommendation. Collaborative methods have been developed
to find similar users in the system and to enhance the recommendation based on what
similar users like. This hybrid approach combining information from a variety of
sources will produce a more accurate and personalised recommendation to the user on
the individual Personalised Music (iPMusic) App. It will then be possible for the user
to stream the songs in the app or to play the music video through YouTube. At the time
of writing, we are unaware of any music service that can produce recommendations
without any prior knowledge of personal listening history.

The rest of the paper is organised into the following sections; in Sect. 2, we discuss
the problem in more detail and related work that has already been carried out. Section 3
introduces the proposed system and real world usage scenarios. In Sect. 4, we describe
the architecture and introduce the main components in more detail. In Sect. 5, we
discuss the current implementation of the system and evaluate the findings from user
feedback. We conclude in Sect. 6.

2 Problem Description and Related Work

The current issue with the music industry is there is a huge quantity of songs available
to the user. The largest library of music is provided by Apple Music [1] which has in
excess of 43 million songs. Work carried out by Nathan et al. [5] suggested that the
average song length is 226 s which means to listen to 43 million songs would take 308
years. This is not possible and many users wouldn’t like all of the music available to
them so the music services have begun to provide the user with recommendations.
Despite that when making recommendations they face an issue known as the cold start.
The cold start issue is where a new user is added to the system so has no known tastes
meaning a recommendation can’t be made to them. So many current services require
the user to start searching and playing music that they like before any recommendations
can be made to them. A further weakness is that recommendations usually do not
include any user context so are not truly personalised to the user. Another issue is when
a new song is added the user may not be made aware of this. This is because col-
laborative methods take into account song ratings and how frequently they have been
played, meaning a new song would have nothing for both most likely resulting in it not
being recommended to the user.

Su et al. [6] propose a prototype music recommendation system that is designed to
make use of the user’s context and context information mining to offer recommen-
dations that will suit the listener in their current situation. This would provide a
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personalised recommendation in a way no other system can by making inferences from
patterns detected by the context miner. Despite providing better recommendations than
existing systems there is still the major issue of a cold start that has not been addressed.
Due to the nature of the algorithm a context log is required which describes multiple
conditions about the user at different times of the day which would need to be collected
prior to making a recommendation.

Narayanan et al. [7] presented a collaborative method making use of K-Nearest
Neighbourhood (K-NN). This method allows predicting what one user will like based
on another user who is similar to him. Although not directly solving any of the issues
we are looking to overcome, the idea can be used to further enhance the accuracy of the
recommendations as proven by Narayanan et al. work.

Adomavicius et al. [8] presented many approaches to recommendation systems
detailing any advantages or limitations. The main issue highlighted is the cold start
issue and their solution to solve it is using a hybrid approach of collaborative and
content-based methods. However they discuss different hybrid approaches such as
using the two methods separately and carrying forward the recommendation that is the
most accurate. This approach can therefore remove any personalisation of the rec-
ommendation if just content-based methods are used.

Wheal et al. [9] developed CSRecommender which provides recommendations for
different cloud based services that are currently available. Wheal’s approach uses a
hybrid recommender making use of collaborative methods taking into account the user
and similar users and combining this with a content-based method that finds a similar
service. By making use of both approaches it allows for an accurate recommendation to
be made to the user. Despite recommending cloud services a similar approach can be
taken to make song recommendations.

Twitter Music [10] is a system that pulls music from iTunes, Spotify, Rdio and
Vine and then presents the best new music that is trending on Twitter. The recom-
mendations being made by the service are not personalised and are instead based on the
entirety of Twitter users. This is a reliable method to find what the most popular music
is and is the only system to alleviate the cold start issue for a new user. However if a
new song has been released and it doesn’t trend on Twitter then it won’t be recom-
mended so it faces the same issue as the other systems.

This research work addresses the aforementioned issues by creating a hybrid
approach that will take into account the majority of above methods in a unique rec-
ommendation algorithm. By using context information collected from Twitter com-
bined with a K-NN approach the cold start issue can be addressed whilst offering a high
level of personalisation.

3 System Overview

The system is based on a client server architecture which both communicate with one
another as well as external sources which is shown in Fig. 1. It is possible for multiple
clients using the iPMusic App to connect to the Server simultaneously and each will be
handled by their own thread.
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There are two phases that occur on the Server, initially a setup phase runs before
users can connect and make requests. The setup phase crawls Lyric Wikia and Last.FM
to create an up to date index for the initial library of music. Once the information has
been collected the Server exits the setup phase and allows connections from the
iPMusic App. The Server now remains in this stage so it is necessary for it to detect
new music being added to the system and to obtain the information for new items and
to correctly add them to the index.

From the users’ point of view, they will start off by downloading iPMusic from the
Google Play Store. Once downloaded and installed they can create an account which
will then allow them full access to the Application. They will have the ability to see
what music is in the current charts, to get a list of recommendations, search for a song
and to display their favourite music to play back at any time. The following real world
scenarios are an indication of how the system can be used:

• A new user may be wanting to discover new music so use the “Play me something”
button. This would present the user with a list of uniquely generated recommen-
dations and the ability to play any of these back. On playing a song and the user
providing a rating it further improves the accuracy of future recommendations.

• The system has the capability to generate a unique and personalised recommen-
dation created just-in-time so users may be wishing to take advantage of this feature
that is not offered by other systems at such a personalised level.

• Although not the primary purpose, the search feature in the app not only searches
song titles, artists and album names but also the lyrics. Therefore meaning if the
user knows the lyrics of a song but is unsure what it is called then they can find out
via the app.

4 System Architecture and Design

An overview of how all of the components on the server and client side will com-
municate is detailed below in Fig. 2.

Fig. 1. Overview of the system
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4.1 Server Side

Last.FM Crawler. The purpose of the Last.FM crawler on the server side is to
maintain an up to date list of all the music files in the system. When reading the tag
fields from an .mp3 file it is possible some information is missing or it is wrong due to
being entered incorrectly. Last.FM provides an API to access their different services
and the crawler will make use of track.getInfo which returns the metadata for any given
track. In doing this it will allow the recommendations being made to be more accurate
since the tracks will contain more details such as release dates and album that may
otherwise be missing.

Lyric Crawler. The main part of the recommendation algorithm is based on the song
lyrics so it is necessary to find all of the song lyrics for the tracks in the system.
LyricWikia provides lyrics for 1,798,797 different songs, so it is likely that any song
searched for produces a result. So the purpose of the lyric crawler is to obtain the lyrics
for every song in iPMusic. It is possible a song has no lyrics such as instrumental but it
will remain in the system as the song title and album names could still hold relevance to
a recommendation. When searching for song lyrics the sitemap will be queried for the
current song and if there is a match the crawler will connect to the matching URL.
Once connected to the web page the content will be parsed by Jsoup and the lyrics will
get extracted and stored in the index. The process is highlighted in Algorithm 4.1.1.

Tweet Collector. Twitter has over 320 million monthly users so there is a high proba-
bility that the user will have a Twitter account. To get a more personalised

Fig. 2. Block diagram of server and client
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recommendation their Tweets can be collected and indexed. The Twitter API provides an
easy way to retrieve the Tweets of an individual user given their username and a time
based context. This means it is possible to restrict the Tweets to only those that are from
the past day as this would more accurately reflect the user’s current state of mind. If
however the user has not posted any Tweets in the past day then the system will revert
back to any Tweets within the past week or month if necessary. When the Tweets are
indexed the words are kept in their raw form since stemming the words can totally change
the meaning when then being compared to song lyrics. Any numbers in the Tweets will
also be indexed as they can be related to song titles or lyrics. If a user does not have a
Twitter account then this stage is not possible so there is the extension of integrating
iPMusic with Facebook at a later stage which would follow the same process.

Song Analyser. When making a recommendation based on a user’s listening history it
is necessary to know what songs are similar to those that they have listened to. The
Song Analyser determines the similarity between all songs in iPMusic so the most
similar songs can be taken into account when producing the recommendation.

A song is made up of the 5 following unique fields; Lyrics, Artist, Album, Title and
Release Year. By using different weightings for each field it can be determined how
similar one song is to another. The weightings used by the Song Analyser are shown
below. These weightings were determined following the use of experimental weight-
ings until the yielded results were liked by a set of users.

• 55 % - Lyric Similarity
• 20 % - Artist or Album matching
• 20 % - Title Similarity
• 5 % - Same release year

The process to generate a list of similar songs starts by using cosine similarity to
compare the similarity of the song lyrics which is then multiplied by the weighting of
55 %. If the Artist or Album match then the score is increased by 20 %. The titles of the
song being compared against is split into individual terms and the similarity of the two
titles is calculated by seeing howmany times the individual terms appear in the other title.
For every match a counter is incremented and this can then be converted to a percentage
for the overall similarity which is then multiplied by a weighting of 20 %. The remaining
5 %comes from the year that the songswere released as it may have some relevance to the
recommendation. The formula to calculate similarity is shown in Eq. 2. The list of similar
songs is then sorted into descending order and stored in the index.

Cosine SimilarityðA;BÞ ¼ A � B
Aj j Bj j ð1Þ

Song Similarity whereby LS is Lyric Similarity and TS Title Similarity

Son Similarity ¼ LS� 0:55ð Þþ if Album or Artist Match; 0:2; 0ð Þ
þ TS� 0:2ð Þþ if ðYearsMatch; 0:05; 0Þ ð2Þ
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Indexer. With all of the data gathered by the above methods it is necessary to index
the data so it can be quickly queried and provides results to the user in the shortest
amount of time. The index will be made up of the following fields:

• The Song and Artist ID’s will allow for fast identification of songs without the need
for searching for titles and artists and finding a match. Instead the system will be
able to go the nth Artist and to that artists nth Song therefore greatly increasing the
speed and efficiency of the system.

• The Song Title, Artist and Album names the Term Frequency (TF) and Inverse
Document Frequency (IDF) will be calculated using Eqs. 3 and 4 respectively.
From this the TF-IDF can be calculated for each term in the fields and this will be
stored as a posting in the Inverted File Index.

TF ¼ Number of times t appears in a document
Total number of terms in the document

ð3Þ

IDF ¼ log
Total number of documents

Number of documents with term t
ð4Þ

• The Release Date too but this can be in a variety of different formats such as an
English date of DD/MM/YYYY compared to American format of MM/DD/YYYY.
The date may need to be changed so that all of the formats are the same allowing for
quicker comparisons when creating a recommendation.

• The Lyrics will be stored using TF-IDF but also the document vectors will be kept
which will allow for getting the cosine similarity between two songs.

• The file location will indicate where the song is stored on the iPMusic Server so that
the song can be quickly streamed to the smartphone. This allows for scalability as it
is possible for songs to be stored in more than one location.

• The Similar Songs List will be generated by the Song Analyser and is stored in
descending order to quickly find the most similar song.

Recommendation Engine. The recommendation engine goes through the following
series of stages each of which are explained further below.

• K-Nearest Neighbour – 25 %
• Twitter – 25 %
• Similar Songs – 50 %

If the user’s listening history is not empty the first stage is to use a collaborative
approach using K-Nearest Neighbour. A user is considered a nearest neighbour based
on the similarity between the users listening history and the neighbours taking into
account their ratings as well as play count. Since nearest neighbours will have similar
interests in music it can be assumed that if neighbour N likes song A then user U will
also like song A so a recommendation can be made based upon this.
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Get vector for User U 
wwhile there are Users to compare Uc ddo
 Get vector for Uc 
Calculate Cosine Similarity for U and Uc (Equation 1) 

 Set counter and matches to 0 
while there are songs S in Uc Listening History ddo
if S is in U listening history tthen

   Increment matches 
if ratings for songs U and Uc are above 3 tthen

    Increment counter
end if

end if
end while

 Calculate rating similarity from counter / matches
if rating similarity > cosine similarity tthen

  Add user to nearest neighbour list 
end if

end while
Sort the nearest neighbour list 
for the top 5 nearest neighbours ddo
While there are Songs S in listening history ddo
if S rating is 5 tthen

   Add S to recommendation with score of 25 
else if S rating is 4 tthen

   Add S to recommendation with score of 20 
else if S rating is 3 tthen

   Add S to recommendation with score of 15 
end if

end while
end for

Algorithm 4.1.1 K-Nearest Neighbour 

The next step is to find songs similar to those that the user has already listened to. In
the index the list of similar songs can be used to identify those that are similar to what the
user has already listened to. This however creates an issue of how to handle the score if
two or more songs have a similar song in common. If the scores were to be added then the
results would be skewed and songs that aren’t that similar could get higher scores than
those that are. Or if the average was taken any outliers would bring the score down. So a
method was designed to combine the scores without skewing the results as shown in
Algorithm 4.1.2 by removing any scores outside the standard deviation of the average.

wwhile there are songs S in listening history ddo
for the top 10 similar songs SS ddo

  Add SS to recommendation list 
Add variance to list of variances in recommendation list using equation 5 
Keep running total of variance squared and sum of variances for 
recommendation 

end for
end while
while there are recommendations R ddo
 Calculate standard deviation from equation 6 
Remove any variances below average minus standard deviation 

 Set score to average variances 
 Add weighting onto score from equation 7 
end while

Algorithm 4.1.2 Similar Songs 
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Following this the top terms from the users Tweets will be searched for amongst the
song lyrics. Any songs that match the search query are then added to the list of song
recommendations with a score determined by their TF-IDF score. The maximum score
a song can get from this stage is 25, so the TF-IDF scores are normalised to range from
0–100 %. As previously mentioned each stage carries a different weighting towards the
final score and for this stage it is 25 %. This was determined through testing of different
weightings until the recommendation best reflected the test users taste. With the nor-
malised score now as a percentage the final score can be calculated by multiplying it by
the weighting of 25 %.

Variance ¼ Similar Song Score� Average Song Score ð5Þ

Standard Deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Variances2

Number of Variances

s
ð6Þ

Weighting ¼ 100�Maximum Score
Maximum number of occurrences

� Number of occurrences ð7Þ

The final stage of the algorithm is optional and can restrict the songs to only those
that have been released within the user’s lifetime. The likelihood of the songs being
restricted is calculated from the percentage of songs that have been released during the
user’s lifetime compared to those that have not. This means that the more music a user
listens to that has been released during their lifetime the higher the likelihood of the
restriction being put in place, if the majority of the music listened to is not in their
lifetime there is a small likelihood of the restriction being in place.

Following all of these stages a recommendation can be made to the user and the top
10 are presented to the user for them to then pick which to listen to. If however the user
has never listened to anything on the system then two of the stages are used to stop the
cold start issue.

The K-NN approach is used again but instead focuses on the user’s age. There is a
high chance that if one user is the same age as another then they will like similar music.
With the nearest 5 neighbours found all of their highest rated songs are added to the
recommendation list.

The next stage using the same approach as before with Twitter. If the user does not
have a Twitter account then this stage is skipped and the recommendations are given
straight to the user. A future addition will be the integration of Facebook as well as
other social networking platforms to further enhance the level of personalisation.

This hybrid approach combining K-NN with the content based methods using
Twitter alleviates the cold start issue that other systems suffer from. As the system
grows and the number of songs listened to increases the algorithm will be able to
provide more accurate recommendations. If however there are no other users in the
system and the user does not have Twitter then the algorithm would not work. So it will
be necessary to populate the system with some default users that fit certain categories.

Searcher. The searcher will provide a fast way to search the index file and return back
the most relevant results. The recommendation algorithm will make use of the searcher
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when searching lyrics and titles for Twitter keywords and will return back the most
relevant results. Similarly if the user submits a search from the iPMusic App then the
lyrics, artist, title and album will all be queried returning back the most relevant results.
The relevancy of a result is calculated from multiplying the term frequency with inverse
document frequency from the inverted index to get the TF-IDF weight w. The Vector
Space Model is then used to rank the results whereby q is the term being queried in two
documents. Equation 8 - Vector Space Model whereby N is the number of results, wi,j

is the weight given to the ith word in document j and wi,q the ith word in document q

Result ¼
PN

i¼1 wi;jwi;qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 w

2
i;j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 w

2
i;q

q ð8Þ

User Handler. The last component of the server is the user handler and its purpose is
to service all of the requests coming from the iPMusic App. The requests will be sent
over a TCP socket which then need to be handed to the correct part of the server. As
there will be multiple users it will be necessary to first login and once logged in the user
can request recommendations or search for songs. The server will then send back to the
user the list of recommendations or search results.

4.2 iPMusic Client

YouTube Searcher. The purpose of the YouTube Searcher is to try and identify the
correct music video for the song currently being played. This will then allow the user to
watch the music video rather than just listening to the song. The searcher will use the
YouTube API to create a query made up of the song name and the artist. This is likely
to return the correct video but it is impossible to guarantee it.

Last.FM Searcher. When playing music, album art should be displayed which Last.
FM hosts for the majority of songs. So the Searcher will be used to get find the album
art and display it on the app when playing a song. The album art is then cached locally
on the device so that it can be used again without downloading the image.

Streamer. The Streamer is responsible for downloading the songs from the server onto
the client so that they can be played back. When a user requests a song to be played that
song will be downloaded as well as the songs preceding and following it. This allows
the user to either fast forward or rewind songs without having to wait for those songs to
be downloaded. Prior to end of the current song being played the next song will be
requested and downloaded ensuring it is ready to play with continuous playback.

Playback. The playback component is responsible for displaying the information
provided by the Songs MP3 tags, the album art from Last.FM and playing the Songs
MP3 file. It also needs to handle playing and pausing of songs as well as fast for-
warding and rewinding tracks.
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Recommendation Request. The recommendation request will ask the Server to pro-
duce a recommendation via the Server Handler, the response will contain a list of rec-
ommendations whichwill then be downloaded and stored on the client. Thesewill then be
displayed in panels on the iPMusic client so the user can select what to listen to first.

Search Request. The search request component will get the users search term from the
input box and pass this onto the Server Handler. The rest of the component works in the
same way as a recommendation request with Search Result in place of Recommendation.

Server Handler. The server handler will be responsible for communicating with the
server. It will use TCP sockets to either send or receive messages. Like the user handler
any messages will need to be given to the correct component such as Search Request so
that it is handled correctly.

5 Implementation and Evaluation

At the time of writing, iPMusic has been released on the Google Play Store as a closed
Alpha. Android was the platform of choice as following its introduction 8 years ago [11],
it is estimated to have a 46.7 % [12] share of 6,931,000,000 [13] active mobile phones,
the largest of any platform. The Server and Android Client have both been written in Java
and make use of the following open source Java API’s (Application Program Interface):
Apache Lucene, Jaudiotagger, Jsoup, Twitter4 J and lastly YouTube. All of these API’s
provide services required by either the Server or the Android Application. A library of
1,200 songs has been imported into iPMusic and a small number of seed users have been
created. The android app interface is shown below in Fig. 3.

Prior to being released as an Alpha on the Google Play Store internal testing was
carried out by a selected group of users and by drawing comparisons between Last.FM
[14] and iPMusic. This testing was very positive with the majority of recommendations
being made being accurate and providing new recommendations to the user. When
comparing the recommendations to Last.FM suggested songs there were some matches

Fig. 3. Welcome screen, recommendations, playback, lyrics
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between the two. There are a few cases where the song and artist both matched from
both systems but in more cases they both suggested songs from the same artists.
A small sample is shown in Table 1. This highlights the fact that the recommendation
engine works successfully. However due to the limited library compared to Last.FM a
lot of songs suggested by Last.FM are not in the system so this is not a totally fair
comparison.

To further test the recommendation system users were asked to test the system and
rank each song recommended to them and then whether or not the system provides
something new and if they like the system or not.

For the first test each user requested N recommendations and would then listen to
each of the songs being recommended to them and rank it out of 5 (1 dislike, 5 really
like). This data was collected by the server and a sample from the data is displayed in
Table 2.

The recommendation test results show that for most users the number of useful
results started off low and as the system gained a better understanding of their tastes the
recommendations being made to them improved. Despite that for user 4 the average

Table 1. Bold indicates matches of song or artist between both systems, Red shows songs not in
our system.

Song listened to iPMusic recommendation Last.FM recommendation

I Will Be –

Leona Lewis
Better In Time – Leona
Lewis

The Best You Never Had –

Leona Lewis
Whatever It Takes – Leona
Lewis
Come In With The Rain
Taylor Swift
Here I Am – Leona Lewis

Here I Am – Leona Lewis
Yesterday – Leona Lewis
I Still Believe – Mariah Carey
Beautiful – Christina Aguilera

Easy Lover –
Phil Collins

If Leaving Me is Easy –

Phil Collins
Two Hearts – Phil Collins
Wannabe – Spice Girls
When You’re Gone – Avril
Lavigne

Two Hearts – Phil Collins
Something Happened On The Way to
Heaven – Phil Collins
Invisible Touch - Genesis
Land Of Confusion - Genesis

Table 2. Sample recommendation test results

User ID Number of recommendations Average recommendation rating Average rating

3 6 2, 2.4, 3.5, 4, 4, 3.5 3.23
4 5 0.8, 1.2, 1.3, 2.4, 3 1.74
8 5 3.6, 3.8, 4.3, 4.1, 4.5 4.06
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rating was 1.74 which is really low, this could be down to the fact the library of music
was limited so there were few songs the user liked.

The average recommendation rating from 70 users is 3.4 which means the majority
of the songs being recommended are liked by the users. 45 % of the ratings ranged
between 3 and 4 which is the highest percentage for any score, and was closely
followed by 33 % of the ratings being between 4 and 5. This shows positive results as
the majority of the songs are highly rated by the users. Figure 4 shows a further
breakdown of the scores and shows one area for improvement which is the fact that no
user rated all 10 recommendations as 5 stars.

However further analysis of the results also show positive findings. iPMusic was
designed to use the listening history of its’ users when making recommendations and as
a result the accuracy should increase over time. This is proven in Fig. 5 which shows
that initially the songs being recommended are not as relevant as those suggested later
during the users experiences. These results also show that the issues concerned with a
cold start have been addressed since the average rating for the initial recommendations
is 3.1. This is a satisfactory score showing that the users like the songs being rec-
ommended even when they are new to the system, if this score was lower, it would
suggest the cold start issues had not been addressed.

Fig. 4. Recommendation results

Fig. 5. Relationship between ratings and the number of recommendations
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Following on to the next question, the user was asked whether the system provides
something new. 60 % said that the system provided something new and one of the
positive comments was “The integration with Twitter provides me more personalised
recommendations than I get from Spotify, if the library could be increased substantially
then it would be a great system.” However 40 % believed that the system does not offer
anything new. However a couple of the related comments stated these users did not
have Twitter meaning the system couldn’t personalise the recommendations so would
be similar to how Spotify or Google Music make recommendations.

The final results show that the 80 % of the users that have tested the system liked
using it despite the shortcomings from the client being in the Alpha stage of devel-
opment. One user stated “The app is really simple to use and the real time recom-
mendations come really quickly.”

6 Conclusion

The music recommendation system is unique compared to the other music streaming
services as it alleviates the cold start issue and provides much more personalised
recommendations. With the ever growing amount of music and increasing number of
individuals with smartphones there will be a greater need for advanced recommen-
dation algorithms and this satisfies that demand.

The system has become very complex and many improvements can still be made to
further improve the recommendations. The immediate goal is to integrate the system
with Facebook in addition to Twitter which will provide more contextual information
about the user. With a better profile built up about each user the K-Nearest Neighbour
algorithm can find better matches further increasing the accuracy of the recommen-
dations. Other immediate goals are to fix any remaining issues within the Android
Client and to ensure maximum compatibility across devices.

With a unique approach to identifying similar songs and making recommendations,
the project has the potential to become a marketable solution if music licencing laws
are taken into account. If the system was migrated to iOS it would provide an easy way
for any smartphone user to discover and to listen to new music.
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Abstract. In this paper, we propose a score fusion method using a
mixture copula that can consider complex dependencies between mul-
tiple relevance scores in order to improve the effectiveness of informa-
tion retrieval. The combination of multiple relevance scores has been
shown to be effective in comparison with a single score. Widely used
score fusion methods are linear combination and learning to rank. Lin-
ear combination cannot capture the non-linear dependency of multiple
scores. Learning to rank yields output that makes it difficult to under-
stand the models. These problems can be solved by using a copula, which
is a statistical framework, because it can capture the non-linear depen-
dency and also provide an interpretable reason for the model. Although
some studies apply copulas to score fusion and demonstrate the effective-
ness, their methods employ a unimodal copula, thus making it difficult
to capture complex dependencies. Therefore, we introduce a new score
fusion method that uses a mixture copula to handle the complicated
dependencies of scores; then, we evaluate the accuracy of our proposed
method. Experiments on ClueWeb’09, a large-scale document set, show
that in some cases, our proposed method significantly outperforms linear
combination and others existing methods that use a unimodal copula.

Keywords: Copulas · Information retrieval · Dependencies between
relevance scores

1 Introduction

Given a user query, search systems calculate the relevance scores of documents
with respect to the query and return a list of documents ranked by relevance.
In order to improve search accuracy, many IR models that calculate relevance
scores have been proposed [3,22,27,30,32–38]. Owing to the diverse and complex
nature of the information needs of users, it is difficult to determine an appropriate
IR model that always yields the most accurate search results. In order to address
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this challenge, many studies have combined multiple relevance scores obtained
from multiple IR models [11,18,20].

Relevance scores can be combined using various approaches, such as function-
based methods [2,9,10,41,43], learning to rank [6,7,21,28], and score fusion
methods using a copula [15]. Linear combination, which is one of the repre-
sentative function-based methods, cannot capture the non-linear dependency
between relevance scores. In addition, the output of learning to rank is complex
with respect to understanding the model. These problems can be solved with
a copula, which is a statistical framework used for analyzing complex multi-
dimensional dependencies [15]. A copula is a model that represents the relation-
ship between a multidimensional distribution and the marginal distributions. By
applying a copula to a score fusion method, we can build a model that captures
the non-linear dependency and is easy to understand intuitively.

Existing score fusion methods using a copula [15] cannot capture complex
dependencies easily because these methods employ a unimodal copula that is
assumed to model a unimodal distribution. For example, Fig. 1 shows a distri-
bution of two relevance scores. In the figure, each point denotes a document;
the vertical axis represents the relevance scores x from an IR model X, and the
horizontal axis represents the relevance scores y from a model Y . The set of doc-
uments exhibits some correlations locally around (x, y) = (0.3, 0.5), (0.8, 0.1),
and (0.8, 0.8). From Fig. 1(a), the contour plot of the distribution estimated by
using a unimodal copula cannot capture these correlations.

In this paper, we propose a score fusion method using a mixture copula
that consists of multiple unimodal copulas. Mixture copulas can capture com-
plex dependencies; therefore, they can estimate multimodal distribution accu-
rately. Figure 1(b) shows that the distribution estimated by a mixture copula
can capture complex dependencies between multiple relevance scores. Further,
we evaluate the effectiveness of our proposed method by demonstrating that the
consideration of complex dependencies can improve search accuracy.

Section 2 provides a basic introduction to copulas, and Sect. 3 reviews related
work. Section 4 describes a score fusion method using a mixture copula, and
Sect. 5 presents the evaluation method and results for the proposed method. In
Sect. 6, the conclusion is stated, and plans for future work are described.

2 Copulas

Before applying copulas to an IR model, we provide a basic introduction of
copulas that have been used in other research fields such as finance. For more
detail, refer to the book by Nelsen [25].

2.1 Definitions and Properties

Copulas are models that describe the relationship between a multivariate dis-
tribution and the marginal distributions. Let X be a k-dimensional random
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(a) Distribution using a Unimodal Copula (b) Distribution using a Mixture Copula

Fig. 1. Examples of complex distribution

vector X = (x1, x2, ..., xk). Further, let a function Fk(x) be a marginal cumu-
lative distribution function for an element xk of the random vector X, where
Fk(x) = P [Xk ≥ x]. Then, we can map X to a k-dimensional unit cube [0, 1]k as
U = (u1, u2, ..., uk) = (F1(x1), F2(x2), ..., Fk(xk)). A k-dimensional copula C is
described as a joint cumulative distribution function of the normalized random
vector U . Most importantly, it has been proved that there exists a copula C that
satisfies F (x1, x2, ..., xk) = C(F1(x1), F2(x2), ..., Fk(xk)) in any k-dimensional
joint cumulative distribution function F (x1, x2, ..., xk) [25]. This general fact
indicates the high applicability of copulas. In addition, copulas facilitate our
analysis of the structure of joint distribution because we separately estimate each
marginal distribution Fk(.) and the dependency structure between the marginal
distributions.

2.2 Copulas and Dependency of Relevance Scores

Let us introduce the constraint for copulas, assuming that the dependency
between relevance scores is for extreme conditions such as independent, com-
pletely positive correlation, and completely negative correlation.

When the dependency between relevance scores is independent, the copulas
are described as independent copulas Cindep.

Cindep(U) = exp(−
∑k

i=1
− log ui)

Thus, independent copulas are equivalent to the product of all elements of U .
It must be noted that while independence is frequently assumed in IR theory, it
is a naive assumption.

When the dependency between relevance scores is a completely positive cor-
relation, the copulas can be represented by the formula below.

CcoMono(U) = min{u1, u2, ..., uk}
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When the dependency between relevance scores is a completely negative cor-
relation, the copulas can be represented by the formula below.

CcounterMono(U) = max{
k∑

i=1

ui + 1 − k, 0}

Copulas have parameters that provide an interpretable reason for the depen-
dency structure of marginal distributions. Therefore, we can understand joint
distribution clearly. The parameters can be estimated by using maximum likeli-
hood estimation or the Monte Carlo method [8].

2.3 Typical Families of Copulas

Families of copulas are of various types, such as elliptical copulas, Archimedean
copulas and empirical copulas.

– Elliptical Copulas
An elliptical copula is a copula derived from standard distribution, such as
Gaussian distribution and t distribution. Equation (1) shows the formula for
a Gaussian copula.

CGaussian(U) = ΦΣ(Φ−1(u1), ..., Φ−1(uk)) (1)

where ΦΣ denotes a cumulative distribution function of standard normal dis-
tribution, and Φ−1 denotes its inverse function. A Gaussian copula requires
a parameter Σ ∈ Rk×k, which shows the observed covariance matrix.

– Archimedean Copulas
Let φ be a continuous, strictly decreasing function from I to [0,∞] such that
φ(1) = 0. Then,

Cφ(U) = φ−1(φ(u1) + φ(u2) + ... + φ(uk)), U ∈ (0, 1]k

This formula represents a k-dimensional Archimedean copula, where φ is a
generator of Cφ. For φ(t) = t−θ−1

θ , (−logt)θ,−log eθt−1
eθ−1

, the copulas are called
Clayton copulas, Gumbel copulas and Frank copulas, respectively. Further,
Clayton, Gumbel and Frank copulas are defined by Eqs. (2), (3) and (4),
respectively, and their corresponding contour plots are shown in Figs. 2(a),
(b) and (c), respectively.

CClayton(U) = (1 + θ(
k∑

i=1

1
θ
(u−θ

i − 1)))
−1
θ (2)

CGumbel(U) = exp(−(
k∑

i=1

(−log(ui))θ)
1
θ ) (3)

CFrank(U) =
1
θ
log(1 +

∏k
i=1(exp(−θ ui) − 1)
exp((−θ) − 1)k−1

) (4)
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As seen in Fig. 2, different copulas have different features. For example, in
Fig. 2(a), we assume that for a Clayton copula, the dependency of the lower
region is strong whereas the dependency of the upper region is independent.
The use of a Clayton copula is effective if the dependency of relevance scores
is strong in cases where relevance scores is low.

– Empirical Copulas
An empirical copula refers to a copula that is derived from an empirical
joint distribution whose marginal distributions are estimated by empirical
distribution. Thus, an empirical copula is a nonparametric joint distribution
that is based on observations, without assuming any specific distribution.
A k-dimensional empirical copula Ĉ(U) is described as Eq. (5)

Ĉ(U) =
1
N

N∑

n=1

k∏

i=1

1{tni ≤ ui} (5)

where N denotes the number of observations to estimate the empirical copula,
and tni represents a score of the i-axis of the nth observation. The probability
of a k-dimensional joint cumulative distribution derived from an empirical
copula is calculated by dividing the number of training data, such that (tn1 ≤
u1, t

n
2 ≤ u2, ..., t

n
k ≤ uk) by the number of all training data N .
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Fig. 2. Contour plots of 2-dimension joint distribution using different copulas

We need to select an appropriate model from the various types of copulas.
A model of copulas can be selected based on certain criteria such as tail depen-
dence coefficient and rank correlation coefficient [17]. The tail dependence coeffi-
cient is an indicator of the dependence structure at the end points of the proba-
bility, i.e., for probability around 0 or 1. If we use the tail dependence coefficient
for the selection of a model, it implies that we focus on the dependency between
high relevance (or low relevance). The rank correlation coefficient is an indica-
tor of the dependence structure in the entire distribution. If we select a model
based on the rank correlation coefficient, it implies that we focus on the average
dependency in the overall distribution.



A Score Fusion Method Using a Mixture Copula 221

2.4 Mixture Copula

A mixture copula is a copula that is composed of several copulas. By using a
mixture copula, we can build a multimodal joint distribution that enables us to
capture a complex dependency.

A mixture copula is described as the weighted sum of k copulas as shown in
Eq. (6).

Cmix(U) =
k∑

i=1

piCi(U) (6)

In order to construct a mixture copula, each copula Ci and its weight pi should
be estimated. These parameters can be estimated by using approaches based on
clustering [12,40]. Thus, we can construct a mixture copula by performing the
following steps: (1) the training data to estimate the mixture copula is split into
k clusters, (2) the data in each cluster is fit to a unimodal copula. The number
of clusters k is determined in advance. One of the methods to decide the value
of k is the usage of an information criterion such as AIC (Akaike Information
Criterion) [5].

3 Related Work

3.1 IR Models

Many IR models that calculate the relevance scores of a document have been
proposed [3,22,36–38]. BM25, one of the classical probability models [30,32], has
demonstrated high effectiveness [33]. Ponte and Croft proposed a probabilistic
language model [27] which is developed in a mathematical framework, while
vector space models [34,35] and classical probability models have been proposed
as heuristic approaches.

3.2 Fusion of IR Models

Although many IR models exist, it is difficult to determine an appropriate model
because the information needs of a user are diverse and complex. In order to
address this challenge, various studies have focused on the fusion of multiple
relevance scores calculated by several IR models. For example, some meta search
engines have attempted to improve the accuracy by combining the results from
multiple engines. These studies are known as score fusion of relevance scores
[1,11,18,20,24].

The retrieval of structured documents such as XML posed a challenge in
combining the structure information with the relevance scores of a document
with respect to a query. Robertson et al. explain the difficulty in combination
of document’s structure information [31]. In the case of information retrieval
for children, it is important to consider the credibility and readability of the
document, as well as the relevance scores for a query [13].



222 T. Komatsuda et al.

3.3 Fusion of Relevance Scores

Advances of Score Fusion. Although score fusion is often achieved by obtain-
ing the sums or products of results from individual systems [18], probabilistic
approaches also exist [11,20]. Aslam and Montague proposed a probabilistic
model based on ranking [1]. They improve their model by incorporating a major-
ity method [24]. Further, they attempted to make the model robust against
outliers by normalizing the scores [23].

Linear Combination. Vogt et al. introduced linear combination in informa-
tion retrieval [41]. The suitability of linear combination has been demonstrated
[2,9,10,43]. Gerani et al. applied nonlinear transformation to relevance scores
before applying linear combination [19]. Gerani et al. showed that their method
outperformed standard linear combination. This result demonstrates the need
for a model that can capture complex and nonlinear dependency.

Learning to Rank. Learning to rank is a ranking model that uses machine
learning and enables easy unification to obtain one score from a large number of
document features [6,7,21,28]. This approach extracts the features of relevant
documents from a set of documents that are labeled as either relevant or irrel-
evant. The disadvantage of this approach is the difficulty in understanding the
resulting model.

Copulas. In general, copulas are widely used in quantitative finance and in
portfolio management [4,17]. Some recent studies have applied copulas in other
research fields [26,29,39]. Vrac et al. applied a mixture copula to a global climate
dataset and showed that a mixture copula can group the climate of the world
correctly in terms of meteorology [42].

Eickhoff et al. applied copulas to score fusion and their proposed method
outperformed the baselines as a result of combining two relevant features in
some cases [15]. They verified the effectiveness of the approach when the number
of relevant features was increased from 2 to 136. The result showed that their
proposed method is more effective than linear combination as the number of
relevant criteria increases [14]. In addition, they applied copulas to language
models in which independence is frequently assumed. Their proposed method
showed that it has competitive performance when compared with naive language
models and some learning to rank methods [16].

Although the approaches proposed by Eickhoff et al. have demonstrated the
effectiveness of copulas, their methods cannot estimate a joint distribution cor-
rectly when the distribution is complex, as shown in Fig. 1(a), because the com-
plexity of the dependency makes it difficult to estimate the joint distribution
precisely. One of the solutions to the problem is the use of multiple copulas to
estimate a multimodal distribution.
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4 Proposed Approach

We propose a score fusion method that uses a mixture copula. We use mixture
copulas to precisely estimate a joint distribution of relevant documents which has
some strong correlations locally as shown in Fig. 1(b). In Fig. 1(b), for example,
the distribution is accurately captured by three copulas, although its right two
areas have strong correlations locally.

In our method, first, a mixture copula is estimated; then, models of score
fusion are constructed by using the mixture copula. As we mentioned in Sect. 2.4,
a mixture copula is composed of multiple unimodal copulas. During the process,
clustering is useful in estimating a mixture copula [12,40]. We use a clustering
approach in our method.

The process for constructing the proposed model is described below;

1. Apply a clustering algorithm to relevant documents.
2. In each cluster, estimate a joint distribution using a unimodal copula.
3. Combine the unimodal copulas estimated in the previous step and construct

a mixture copula.
4. Create a score fusion method by using the estimated mixture distribution.

Figure 3(a) shows the process for constructing a model by using our method,
and Fig. 3(b) shows the process that uses the method of Eickhoff et al. [15].
Our proposed method begins with the clustering of relevant documents and
estimates joint distribution of relevant documents in individual clusters using
unimodal copulas, whereas Eickhoff et al. estimate a joint distribution of relevant
documents using one unimodal copula.

Fig. 3. Processes for constructing a model using copulas

4.1 Clustering Relevant Documents

A group-average agglomerative clustering method is used as a clustering algo-
rithm. The group-average agglomerative clustering method merges two clusters
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whose distance is the closest until the number of clusters reaches k determined
in advance. The distance between two clusters is defined as the average of dis-
tances between all pairs of documents except for pairs from the same cluster.
Although we employ a group-average agglomerative clustering method, any clus-
tering algorithms can be used in our method.

4.2 Estimating Joint Distribution in Individual Clusters

In individual clusters, joint distributions are obtained by performing the follow-
ing two steps: (1) estimating the marginal distributions, and (2) estimating the
dependency structure between the marginal distributions by using a copula.

We infer a marginal distribution by using a marginal distribution function.
Equation (7) shows a Gaussian cumulative distribution function as an example
of a marginal distribution function:

F̂ (x) =
1√
2πσ

∫ x

−∞
exp(− (t − m)2

2σ2
) dt (7)

where m denotes the mean of the distribution and σ represents the variance
of the distribution. A cumulative distribution function is used because copulas
require a random vector whose component is a cumulative score.

Next, we estimate the dependency between the marginal distributions by
using copulas. The best copula is determined by comparing the performance
of each copula. As mentioned in Sect. 2, although we must select an appropri-
ate copula from various copulas, this challenge will be addressed in the future.
In order to estimate the parameters of a copula, we use maximum likelihood
estimation.

4.3 Constructing a Mixture Copula

Individual unimodal copulas are mixed by applying Eq. (6). The weight pi of a
mixture copula is considered to be the probability that indicates how much each
document contributes to the ith cluster. Therefore, we set weight pi as the ratio
between the number of relevant documents assigned to the ith cluster and the
total number of relevant documents.

4.4 A Model for Score Fusion

A method to apply copulas to a score fusion method in an effective manner is
unknown. Thus, we propose two models and evaluate their effectiveness.

The first model is a cumulative joint distribution function estimated by a
mixture copula, which is in Eq. (6). In comparison with a unimodal copula, a
mixture copula can be precisely fitted to data when the dependency structure is
complex. We evaluate its effect on accuracy improvement when estimating joint
distribution more precisely.
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The second model is the product of the likelihood of a normalized random
vector U and a cumulative score derived from a mixture copula Cmix(U), as
shown in Eq. (8).

Cmix−prod = Cmix(U)
k∏

i=1

ui (8)

The likelihood of U is calculated based on an assumption that individual com-
ponents of U occur independently. This assumption is very naive. In order to
consider the dependency of the components, we multiply the likelihood by the
mixture copula Cmix(U) for which the correlation among individual components
is considered. Eickhoff et al. multiplied the likelihood by a single copula; however,
we use a mixture copula instead of a single copula.

5 Evaluation

We evaluate the effectiveness of our models proposed in Sect. 4.4 when combining
the relevance scores of two IR models.

5.1 Setup for Evaluation

– Dataset
The dataset that we use is the Category B of ClueWeb’091, excluding
Wikipedia documents. ClueWeb’09 is a dataset used for the Web Track in
TREC 2009-2012. Category B, a subset of ClueWeb’09, contains approxi-
mately 44 million English documents.

– Queries
We used 45 out of 50 queries for ad-hoc tasks of the Web Track in TREC2011.
We omitted five queries: four queries that do not have relevant documents in
the dataset and one query that includes a numeric term.

– Measures for Evaluation
The evaluation measures that we use are: Precision (P@k) and normalized
Discounted Cumulative Gain (nDCG@k) in the top-k documents; Interpo-
lated Precision (IP@i), where i is recall level; and Mean Average Interpolated
Precision (MAIP). Further, we set k = 5, 10, 15, 20 and i = 0.0, 0.1,..., 0.5.
P@k is the ratio between the number of relevant documents in the top-k
documents and the total number of top-k documents; it is defined as:

P@k =
|A ∩ B|

|A| (9)

where A is a set of top-k documents, and B is a set of relevant documents.

1 http://lemurproject.org/clueweb09/.

http://lemurproject.org/clueweb09/.
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Equation (10) shows nDCG@k where iDCG@k is the maximum score of
DCG@k, defined as Eq. (11). In Eq. (11), reli denotes a binary variable for
the ith document, such that when the ith document is relevant, reli equal to
1; otherwise, reli is equal to 0. nDCG increases as relevant documents are
ranked higher.

nDCG@k =
DCG@k

iDCG@k
(10)

DCG@k =
k∑

i=1

2reli − 1
log2(i + 1)

(11)

IP@k is defined as shown in Eq. (12) where R@r is the value of Recall in the
top r documents.

IP@i = max
r

{P@r|R@r ≥ i} (12)

MAIP is the average of 11 points of Interpolated Precision, as defined in
Eq. (13).

MAIP =

∑
i∈{0,0.1,...,1} IP@i

11
(13)

– Cross Validation
Some baselines and our proposed models have parameters that are estimated
with training data. We trained the models with a part of the dataset and tested
them with the other parts of the dataset. In our experiment, we divided the
dataset into 5 parts of training data, then used each parts of training data for a
test set. The accuracy of the models is calculated by the average of 5 test results.

– Target Models for Combination
We combine two IR models: BM25 [33] and a query likelihood model [27].
Dirichlet smoothing is applied to the query likelihood model. BM25 parame-
ters b, k, and smoothing parameter μ are set to 0.75, 1.2 and 110, respectively.
During evaluation, we change the variations of marginal distributions, copulas,
and the number of clusters for a mixture copula for as shown in Table 1. In our
experiments, a cluster containing only one document is omitted as an outlier.
The selection of an appropriate model is a task that will be considered in future
work.

Table 1. Model parameters for evaluation

Values used in the experiment

Marginal distributions Gaussian and empirical distribution

Copulas Clayton, Gumbel, Frank, Gaussian and empirical copula

The number of clusters 2–10
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5.2 Baselines

We prepare five baselines for comparison with the performance of the two models
shown in Eqs. (6) and (8). The component xi of a random vector X denotes a
normalized relevance score, and the component ui of a random vector U denotes
a score to which a cumulative distribution function Fi(.) maps the xi.

Linear combination:

LIN(X) =

k∑

i=1

λixi (14)

Harmonic mean:

HM(X) =
k · ∏k

j=1 xj

∑k
i=1

∏k
j=1 xj

xi

(15)

If random vector X contains at least one component whose score is low, the
final score obtained by combination using harmonic mean tends to be low. For
example, HM((0.5, 0.5)) = 0.5, whereas HM((0.9, 0.1)) = 0.18.

An independent copula is given by:

Cindep(U) =
k∏

i=1

ui (16)

An independent copula denotes the product of U indicating a cumulative score of
joint distribution based on the assumption that individual components U occur
independently.

A joint distribution using a single copula is given by:

Cmono(U) = C(U) (17)

The product of a likelihood of U and a score of the cumulative distribution
is given by:

Cmono−prod = Cmono(U)
k∏

i=1

ui (18)

5.3 Statistical Testing

We test the statistical significances by using a Wilcoxon signed-rank test at two
significance levels-0.01 and 0.05.

The three major observations are: (1) The models using a copula perform
significantly better than the models using linear combination, which has shown
high performance so far. (2) The models that consider dependency perform
significantly better than the models that ignore dependency. (3) The models
that use a mixture copula perform significantly better than the models that use
a single copula.

In order to clearly demonstrate these three observations, we compare (1)
LIN with Cindep, Cmono, Cmono−prod, Cmix, Cmix−prod, and Cmix−prod, and
(2) Cindep with Cmono, Cmono−prod, Cmix, and Cmix−prod, and (3) Cmono,
Cmono−prod with Cmix, Cmix−prod.
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5.4 Results

In order to determine the best combination of a marginal distribution, a copula,
and the number of clusters, we compared the performance of the proposed models
for each combination of parameters in Table 1.

We conducted preliminary experiments to determine the best marginal dis-
tribution models, copulas, and cluster sizes. Due to the page limitation, we only
show the summary of the best combinations in Table 2.

Next, we compare our models with baselines. Table 3 shows the results of
the performance. In Table 3, The symbols ∗, †, ‡, and § indicate statistically sig-
nificant improvements over LIN , Cindep, Cmono, and Cmono−prod, respectively.
A single symbol indicates statistically significant improvements at the 0.01-level
and a double symbol indicates statistically significant improvements at the 0.05-
level. A cumulative function of a joint distribution estimated by a mixture copula
Cmix gains of 10 % and 15 % over linear combination with respect to P@5 and
nDCG@5, respectively. In particular, in terms of nDCG@5, Cmix shows a sta-
tistically significant improvement over LIN , Cindep, Cmono, and Cmono−prod.
Among Cindep, Cmono, and Cmix, the performance of Cmix is the best, and the
performance of Cmono exceeds that of Cindep. This result indicates that a mul-
tidimensional cumulative distribution function can retrieve more relevant docu-
ments in the top-5 results when considering the dependency between marginal
distributions.

Table 2. Best combination for methods with a copula

Model Marginal distribution Copulas Number of clusters

Cmono Empirical distribution Empirical copulas -

Cmono−prod Empirical distribution Empirical copulas -

Cmix Gaussian distribution Clayton copulas 3

Cmix−prod Gaussiandistribution Clayton copulas 6

However, in terms of P@k(≥ 10), we do not observe a tendency that the per-
formance of Cmix surpasses that of Cmono. Cmix is effective for the top-5 results,
whereas Cmix−prod is relatively effective when retrieving 20 % of relevant doc-
uments. In terms of IP@i(= 0.1, 0.2), Cmix−prod outperforms the other models
and shows a 5 % improvement over LIN , Cindep, and Cmono−prod, Cmix is the
worst model. From these discussions, we conclude that (1) the performance of
Cmix tends to deteriorate when retrieving 10 or more documents, whereas it is
effective in the top-5 results. (2) Cmix−prod is effective when retrieving 20 % of
relevant documents.
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Table 3. Evaluation results

LIN HM Cindep Cmono Cmono−prod Cmix Cmix−prod

IP@0.0 0.4326 0.4228 0.4392 0.4367 0.4388 0.4603 0.4609

IP@0.1 0.2779 0.198 0.2799 0.2756 0.2797 0.2725 0.294

IP@0.2 0.2032 0.1196 0.2049 0.198 0.2019 0.1708 0.2207

IP@0.3 0.0846 0.056 0.0852 0.0874 0.089 0.0471 0.0814

IP@0.4 0.0366 0.0216 0.0382 0.0404 0.0398 0.0186 0.0306

IP@0.5 0.0141 0.0068 0.0146 0.0149 0.0156 0.0077 0.0111

MAIP 0.0963 0.0751 0.0974 0.0966 0.0976 0.0892 0.1003

P@5 0.236 0.236 0.212 0.228 0.228 0.26† 0.24†

P@10 0.232 0.2 0.206 0.226† 0.226† 0.218 0.224†

P@15 0.2187 0.1893 0.2027 0.2147† 0.2133 0.204 0.2227††

P@20 0.219 0.18 0.205 0.22† 0.219 0.196 0.22

nDCG@5 0.1616 0.1595 0.1529 0.1613 0.1615 0.1873∗†‡‡§§ 0.1685

nDCG@10 0.161 0.1472 0.1537 0.1613 0.1604 0.166 0.1644†

nDCG@15 0.1574 0.1442 0.1505 0.1576 0.1561 0.1595† 0.1634††

nDCG@20 0.1638 0.1426 0.1583 0.1661† 0.1663 0.1612 0.1711†

6 Conclusion

In this paper, we proposed a score fusion method that uses a mixture copula.
Copulas, a family of robust statistical methods, can unify multidimensional rel-
evance scores into a single score, capturing the non-linear dependency among
relevance scores. In addition, copulas can provide an interpretable reason for the
final result by decomposing a joint distribution into individual marginal distri-
butions and their dependency structure. In the existing score fusion methods
that use a copula, it is difficult to capture complex dependencies because these
methods employ a unimodal copula, which is expected to be used for a unimodal
joint distribution. In contrast, our proposed method can capture complex depen-
dencies by using a mixture copula, which can accurately model a multimodal
distribution.

We used more than 44 million documents in ClueWeb’09, to compare our
method with linear combination and existing score fusion methods that use a
copula. For nDCG with the top-5 documents, the proposed method showed a
15 % improvement in effectiveness when compared with linear combination.

In future work, the following challenges must be addressed: (1) In order to
construct a mixture copula automatically, we must determine a method to find
the appropriate number of copulas. For example, an information criterion such
as AIC can be adopted; and (2) We must determine a method to choose the
best family of copulas that precisely fits the documents by using certain criteria
such as tail dependence correlation and rank correlation coefficient.
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Abstract. This paper tackles the problem of pinpointing relevant infor-
mation in a social network for Personalized Information Retrieval (PIR).
We start from the premise that user profiles must be filtered so that they
outperform non profile based queries. The formal Profile Query Expan-
sion Constraint is then defined. We fix a specific integration of profile and
a probabilistic matching framework that fits into the constraint defined.
Experiments are conducted on the Bibsonomy corpus. Our findings show
that even simple profile adaptation using query is effective for Personal-
ized Information Retrieval.

Keywords: Social network · Probabilistic retrieval · Profile selection ·
Axiomatic IR

1 Introduction

Personalized Information Retrieval (IR) systems aim at returning personalized
results. Personalizing IR relies on modeling User’s profiles (interests, behavior,
history, etc.). Such profile may be used for query expansion, or for re-ranking. The
query expansion-based integration keeps the benefit for all the experimental and
theoretical results from the IR domain. A new field of IR has emerged with [7]:
the axiomatic characterization of IR models. Such works define the expected
behaviors of systems using “axioms”.

This paper first defines an axiom (i.e. a heuristic constraint) that is supposed
to be validated by a personalized IR system using a social bookmarking system,
and second evaluates the impact of the constraint on the IR system. Section 2
presents related works. The Sect. 3 defines the proposed axiom, called PQEC
(Personalized Query Expansion Constraint). Section 4 focuses on the personal-
ized frameworks proposed, before presenting several query expansions in Sect. 5.
The experiments on the Bibsonomy corpus are presented and discussed in Sect. 6,
before concluding.

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-44406-2 17
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2 State of the Art

Personalized IR may consider user’s model (called user’s profile) based on user’s
query logs [6], posts [11], tags and bookmarking [1]. Several works improve per-
sonalized document ranking by using both the user’s information and other social
information. Such search function, for bookmarking systems, is based on user’s
tag profiles which are derived from their bookmarks [3,12]. [1] selects terms
related to the user query terms. Similarly, [4] defines a query expansion that
exploits relationships between users, documents, and tags. [3,12] considers both
the matching score between a query and the social annotations of the document,
and the matching between the user’s profile and the document. Other works per-
sonalize a user search using other users from the social network. For example,
selecting users that have an explicit [9,11] or implicit [3,12] relationships with
the query issuer. [11] proposes a collaborative personalized search model based
on topic models to disambiguate the query. [3] integrates other users from the
social network that have annotated the document.

These approaches use the whole user profile, decreasing the effectiveness of
the search. Query expansions tackle this problem by selecting the terms to extend
user query. Our proposal benefits of both query expansion-like approaches [1,4]
and social retrieval [3], and we defend the idea that social networks are beneficial
to personalized retrieval by: (i) adapting the user profile using social neighbors
that are constrained by the query, and (ii) selecting a part of a user profile
adapted to a query.

Our approach also focuses on defining axioms (heuristics), i.e. expected
behaviors of personalized IR systems. Such axioms serve as a basis to (a) explain
the role of the different elements that are used by an IR system, (b) compare
approaches from the theoretical basis and (c) propose new approaches based on
these axioms. For instance, Fang, Tao and Zhai defined in 2004 [7] the first steps
of this field of IR, with constraints related to the roles of term frequency, inverse
document frequency, and document length. Many works followed, like heuristics
for semantic models for IR [8], or for Pseudo Relevance Feedback [5]. To the best
of our knowledge, no axiomatization work did focus on personalization of IR.

3 Profile Query Expansion Constraint

We propose here: a) to show that, in social bookmarking networks, integrating a
part of a user activity (i.e. his bookmarks) may help to personalize results, and b)
to define a first axiomatic expression that respects the findings of (a).

3.1 Empirical Study

We studied a set of 200 users from the Bibsonomy corpus, according to the
evaluation framework described in Sect. 6.1. We compute that, when a query is
generated for a given user using a term from his profile, 100 % of the relevant
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documents are tagged by at least one other term of the user profile. This empir-
ical result enforces the fact that at least a part of a user profile is relevant to be
used when processing personalized IR.

We study then the topics of queries. We generated a Latent Dirichlet Allo-
cation model [2] for the whole set of users of the corpus (see Sect. 6.1), with the
number of topics chosen to be 100. Using a threshold of 0.1 when assigning a
topic to a user, we find out that 77 % of the users have more than one center
of interest. If we assume that a query deals with one topic, as in [11], it is then
clear that we have to filter terms of the profile to expand the query. All these
elements reinforce our initial idea that focusing on an adequate subset of the user
profile may help to focus on relevant documents.

3.2 Notations

Here are the notation used in the remaining of the paper. G: The tagging social
network; G is a graph: G =<< D,U,W >,R >. D: the set of documents d ∈ D.
U : the set of users of the network, with u ∈ U . W : the set of tags (words) assigned
by users to documents. R: the tags assigned by the users to the documents (R ⊂
D×U×W ). c(w, d): the count of word w in document d. RSV (d, q): the Retrieval
Status Value of a document d for a query q. Profile(u): the profile of a user u
by all the tags he used. Profile(u) = {w|w ∈ W,d ∈ D,Ru(d, u, w)}. Ru: term-
term relationship for user u. (w,w′) ∈ Ru means that w and w′ are related for
the user u. Profile(u, q): the profile of a user u filtered for the query q. Ru−local:
term-term relationship for user u based on u’s tagging. RSV (d, q, u): the RSV
of a document d for a query q and for u. usn ⊂ U : the social neighborhood of u.
Ru−social: term-term relationship for u considering usn.

3.3 Profile Query Expansion Constraint (PQEC)

This constraint assumes that the integration of “adequate” terms (related to
the query, and satisfying the term-term relationship Ru) from a user profile is
needed:

Profile Query Expansion Constraint (PQEC): Assume that a query q =
{w}, a document d from a corpus C so that c(w, d) > 0, and a user u with a
profile Profile(u). If ∃w′ ∈ Profile(u) so that Ru(w,w′), then for any d′ ∈ D
so that c(w, d′) �= 0 and c(w′, d′) = 0 then RSV (d, qu) ≥ RSV (d′, qu), with
qu = q ∪ {w′}.

This constraint heavily relies on the personalized term-term relationship Ru

that obviously influences the overall results: if Ru does not link properly terms
according to the user u, then ensuring the constraint will impact negatively the
quality of the system. In the following, we will focus on social inputs to define
the Ru relationship. Our concern differs from semantic term constraints of [8], as
we consider that the data that we have about the user is of primary importance.
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4 Personalized Information Retrieval

4.1 Classical Framework

Our proposal computes a Retrieval Status Value (RSV) of a document d for
a query q submitted by a user u as: RSV (d, q, u) ∝ RSV (d, qu) with qu the
expanded query using terms coming from u’s profile: qu = q ∪ {w′|w′ ∈ W,∃w ∈
q;Ru(w,w′)}. Each document d (tagged using a social tagging system) contains
2 facets: the actual content of the document, noted σd, and the user’s tags
that describe d, noted τd. We combine linearly these facets in the expression
RSV (d, q), as in [3], using probabilities P (q|σd) and P (q|τd) that rely on the
classical IR language models with Dirichlet priors:

RSV (d, q) = λ.P (q|σd) + (1 − λ).P (q|τd) (1)

4.2 Adapted Framework to Ensure PQEC

A simple way to modify the classical framework to ensure PQEC is to split the
retrieval in four steps:

1. Evaluate RSV (d, q), i.e. without personalization, leading to a results list Linit

of couples < doc, rsv >. Assign the larger score for the documents of Linit to
Topscoreinit;

2. Evaluate RSV (d, qu \ q), i.e. the RSV of d for the expanded query qu without
the initial query, leading to a results list Lexp of couples < doc, rsv >;

3. Fuse Linit and Lexp respecting: (a) for any d in Linit and Lexp, the final RSV
of d is the sum of its scores in both lists and of Topscoreinit; (b) for any d in
Linit and not in Lexp, its final RSV is its score in Linit;

4. Rank the result according to the final scores of documents

The documents that match the profile expansion are ranked before the docu-
ments that match only the query in the result list, thus PQEC is ensured.

5 Personalized Query Expansion Terms

We propose several variations of usn, the social neighborhood of a user u,
depending on adaptations of the social neighborhood of u and of the profiles
of the users in u’s neighborhood, according to the query q. We define sev-
eral Ru(w,w′) (cf. Sect. 3.3) to assess the usefulness of the constraint. Our
personalized query expansion may also use others users u′ in the social net-
work: we will study in Sect. 6 the impact of PQEC on several categories of
neighbors u’, and on the filtering of u’s profiles added to the query. In the
following, Profile(u, q) is the personalized profile of u asking q. We have:
Profile(u, q) = {w′|w′ ∈ W,∃w ∈ q;Ru(w,w′)}. We define two relationships,
namely Ru−local and Ru−social, that depict two personalized profiles of u.
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5.1 Local Tagging Expansion Using Ru−local

Assuming a query asked by a user u. The first simple element proposed is to
add terms from u’s profile to the query, relying only on u’s tagging behavior.
We select the tags from u’s profile that were used jointly with a query term q
by u to tag one document. The idea is then to be able to expand the query
with terms that are related to one query term according to u. More formally,
the relation Ru is then expressed as its variant Ru−local: Ru−local(w,w′) ⇔ ∃d ∈
D,R(d, u, w) ∧ R(d, u, w′). Such approach cannot be used when a user u does
not: (i) use a query term in his profile, and (ii) tag documents with multiple
tags, and this is mandatory for this local expansion. We propose then a second
way to support a query expansion.

5.2 Social Tagging Neighborhoods Using Ru−social

When considering other users than u for the social tagging network, we need
to define which users are considered experts to support the query expansion.
Such neighbors set is noted usn. These experts are chosen according to their
familiarity with the query, and/or their similarity with the user u. In Sect. 6.2,
we define several neighborhoods. We consider here a simple definition of the
profiles of u′ ∈ usn. These profiles are built the same way as the profile of u using
Ru′−local, i.e. they are filtered to keep the terms of Profile(u′) that co-occur
with at least one query term in one document tagged by u′. Finally the profile
of u is computed using the following expression of Ru−social: Ru−social(w,w′) ⇔
∃u′ ∈ usn, Ru′−local(w,w′)

6 Experimental Evaluation

6.1 Bibsonomy Dataset and Evaluation Protocol

We consider here explicit annotations of documents provided by a user from a
tagging social network, namely Bibsonomy1, which is a social tagging network
dedicated for users to share their documents (using text tags) with other users
of the network. It contains tags assigned by identified users to scientific articles
(DOI) and Web pages (URL). From the full original corpus, we considered only
the Web pages that still exist in September 2015, leading to a set of 308’906
documents. 241’706 document d are tagged by 4’911 users u, with 1,5 million
occurrences of 59’886 unique tags w. On average, each user used 263 tags and
each document has 6 tags.

On this dataset, we use the evaluation protocol of [3], which selects randomly
one user u, and one random tag t used by u, as a query. All the tagging made by
u using t on documents are then removed from the dataset. Then, the documents
d initially tagged by u are marked relevant. We created 200 single term queries
using this protocol.

1 http://www.bibsonomy.org.

http://www.bibsonomy.org


240 P. Mulhem et al.

Classical measures evaluate the quality of the retrieval: MAP , P@5, P@10.
Two other measures detail the configurations studied: (a) PQEC@10 measures
the level of validation of PQEC on the top-10 results the frameworks: it is the
ratio of the top-10 documents that do not contain a user u tag and that are
ranked before a document that is tagged by a tag used by u. A strict validation
of PQEC (i.e. PQEC@10 = 1.0) is expected to lead to better results; and (b) the
Profoverlap values that describes the amount of overlap between the extended
query and the user u profile. Such value is in [0, 1]. All statistical significance
tests are paired bilateral Student t-tests.

6.2 Tested Configurations

All the experiments are based on language models with Dirichlet priors using
the default parameters of Terrier 4.0 [10] (english stoplist, Porter stemmer, μ =
2500). Similarly to [3], we fix λ = 0.5 for the documents matching in Eq. (1).
We tested four groups of configurations: baselines (without query expansion, or
with the full user profile expansion), very dense, dense and sparse neighborhoods.
They simulate different topologies of users networks.

Baselines - Our approach is compared to two baselines: (1) general profile
retrieval, where the user profile is represented by all his tags in Profile(u, q) =
Profile(u), and (2) a non-personalized retrieval, where the initial query only is
used.

The results are presented in Table 1 (runs a, b and c). Using the full user
profile (runs a and b) clearly outperforms the run c without any profile. The
MAP differences between a and b are not significant (p = 0.101), but they are
significant between runs a and c (p = 7.95E-09), as well as between b and c (p
= 1.32E-10). Moreover, the adaptation described in Sect. 4.2 outperforms the
classical framework. We notice also that the run b has a relatively low value for
PQEC@10: most of the time in the classical framework the constraint PQEC
does not hold.

Very dense neighborhoods - Here, all the user set U is used as a neighbor-
hood, so usn = U . We also study the fact that we filter, or not: (a) the users
from usn according to the fact that they are related to the query (i.e. they tagged
one document with one query term). When filtering these users, we obtain an
average of 152 neighbors for u; (b) the profiles of the users u′ from usn. When
they are not filtered we use the Profile(u′, q) = Profile(u′), when they are
filtered the used profiles for u′ are filtered according to Sect. 5.2.

These results are presented in Table 1 (runs d to i). The runs f and h (resp.
g and i) have exactly the same values for MAP , P@5 and P@10, because the
filtered usn already generates the full user profile (as Profoverlap = 1.0). Here
again the adapted frameworks outperform their respective classical ones. The
filtered profiles from the neighbors outperform the unfiltered ones: choosing the
“right” terms of the neighbors profiles has a positive impact. The best results are
obtained with an average of 30 % terms of the user’s profile, which fits wells to
the fact that users have more than 2 topics on average (as seen in Subsect. 3.1).
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Here again we do not conclude that there are statistically significant differences
between MAP of adapted d or classical e runs (p = 0.099), we notice however
that adapted filtered run d has significant MAP differences (with p < 0.001) with
all the other runs in Table 1, where the classical filtered run e has no significant
difference between runs f (and h) with a p value of 0.304.

Table 1. Retrieval performances for all the runs.

Run Framework usn Profile(u′, q) PQEC@10 Profoverlap MAP P@5 P@10

a adapted ∅ Profile(u) 1.0 1.0 0.4950 0.1860 0.1260

b classical ∅ Profile(u) 0.0521 ” 0.4639 0.1570 0.0970

c classical ∅ ∅ / 0.0 0.2934 0.1010 0.0585

d adapted filtered filtered 1.0 0.3086 0.5528 0.2060 0.1285

e classical filtered filtered 0.0646 ” 0.5205 0.1790 0.1095

f adapted filtered unfiltered 1.0 1.0 0.4950 0.1860 0.1260

g classical filtered unfiltered 0.0521 ” 0.4639 0.1570 0.0970

h adapted unfiltered unfiltered 1.0 1.0 0.4950 0.1860 0.1260

i classical unfiltered unfiltered 0.0521 ” 0.4639 0.1570 0.0970

k adapted filtered filtered 1.0 0.2508 0.4015 0.1590 0.0925

l classical filtered filtered 0.0608 ” 0.3946 0.1380 0.0810

m adapted filtered unfiltered 1.0 0.6770 0.4779 0.1770 0.1195

n classical filtered unfiltered 0.0410 ” 0.4497 0.1590 0.0925

o adapted unfiltered unfiltered 1.0 0.8695 0.4413 0.1820 0.1065

p classical unfiltered unfiltered 0.0224 ” 0.4269 0.1560 0.0880

q adapted filtered filtered 1.0 0.2286 0.3923 0.1500 0.0930

r classical filtered filtered 0.1020 ” 0.3799 0.1310 0.0760

s adapted filtered unfiltered 1.0 0.6300 0.3559 0.1480 0.1030

t classical filtered unfiltered 0.0757 ” 0.3708 0.1330 0.0795

v adapted unfiltered unfiltered 1.0 0.8150 0.3960 0.1680 0.1015

w classical unfiltered unfiltered 0.0804 ” 0.3755 0.1350 0.0790

Dense neighborhoods - We consider a relatively dense subset of U for usn.
The social neighborhood of u is composed of users u′ that share at least one
tag with u’ profile: {u′|Profile(u′) ∩ Profile(u) �= ∅}. Here, each user has on
average 872 neighbors. We filter these users according to the fact that they are
related to the query or not; and we investigate the impact of filtering or not
the profiles of these users. The filtering of users according to the query gives
neighborhoods of 40 users in average.

The results are presented in Table 1 (runs k to p). Again, the adapted frame-
works outperform the classical ones. We notice that the best results for MAP
and P@10 are obtained when the profiles of the neighbors are not filtered
(run m), with queries expansions containing 68 % of the user’s profile, on aver-
age. For the runs o and p, increasing the overlap with the user’s profile does not
help, except for the P@5 value, slightly higher for the run o than the run m.
For the best dense neighbors run of Table 1, m, the difference in MAP is not
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statistically significant with its classical counterpart n (p = 0.177), neither with
the two unfiltered runs o (p = 0.115) and p (with p = 0.065). This is explained
by some instability of the neighbors selected.

Sparse neighborhoods - The last set of configurations studied mimics sparse
neighborhoods for a user u (inspired from [3]): the social network of u is com-
posed of users u′ that tagged at least one document that u tagged, whatever
the tags are: {u′|∃w ∈ W,∃d ∈ D,R(u′, d, w) ∧ R(u, d,W )}. Compared to other
neighborhoods, the neighbors are here expected to be more similar to u, because
they focused on the same document. There are 56 neighbors, on average. More-
over the filtering of users according to the query (as described before) leads to
sets of 10 neighbors on average.

The results in Table 1 (runs q to w) show that, unlike the others neighbor-
hoods, the best configuration is obtained by unfiltered neighbors and profiles,
and the adapted framework. Another difference with previous results is that one
adapted run, namely s, underperforms its respective classical run. This is due
to an inadequate filtering of the neighbors, and then, applying subsequently the
adapted framework degrades the quality of the results. The differences in MAP
are small, this explains why we could not find statistically significant differences
for the MAP values between these runs.

6.3 Discussion

The first point that we get from these experiments is that our frameworks that
validate the PQEC constraint are consistently better than the classical frame-
work (though without statistically significant differences taken one against one,
but the repetitive outperformance is clear). Our adapted framework is very sim-
ple and should certainly be extended to tackles more clearly queries with multiple
terms, but the current proposal already shows its interest on the quality of the
results. The second point is that filtering the neighbors according to the query,
using a very large set of potential users (i.e., very dense neighborhoods) seems to
lead to better results than filtering a priori users (i.e. dense or sparse neighbor-
hoods). Processing very dense neighbors necessitates, for each query, to process
the whole set of users. However, if users’ profiles are represented as documents
in a classical IR system, retrieving users that match a query is fast.

7 Conclusion

This paper proposes a probabilistic framework that exploits the profile of a user
u asking a query q, in order to improve the search results. The profile is filtered
regarding the query. We investigated two parameters that help in selecting the
relevant parts of u’s profile: one that exploits the query to select a useful subset
of social neighbors of u, and one that uses sub-profiles of neighbors of u according
to q. The main conclusion drawn from our experiments on the Bibsonomy corpus
is that adapting the set of all users to the query and filtering u’s profile according
to the query improves the results. Short term extensions of this work will study
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the use of real friendship relations as social neighbors. Other future works will
focus on users u with empty profiles that do not benefit from the proposed profile
adaptations. We will then explore how social neighbors may be used to consider
terms that do not belong to the initial profile of u.
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References

1. Biancalana, C., Gasparetti, F., Micarelli, A., Sansonetti, G.: Social semantic query
expansion. ACM Trans. Intell. Syst. Technol. 4(4), 60:1–60:43 (2013)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. JMLR 3, 993–1022
(2003)

3. Bouadjenek, M.R., Hacid, H., Bouzeghoub, M.: Sopra: a new social personalized
ranking function for improving web search. In: SIGIR Conference, pp. 861–864
(2013)

4. Bouadjenek, M.R., Hacid, H., Bouzeghoub, M., Daigremont, J.: Personalized social
query expansion using social bookmarking systems. In: SIGIR Conference, pp.
1113–1114 (2011)

5. Clinchant, S., Gaussier, E.: Information-based models for ad hoc ir. In: SIGIR
Conference, pp. 234–241 (2010)

6. Dou, Z., Song, R., Wen, J.R.: A large-scale evaluation and analysis of personalized
search strategies. In: Conference on World Wide Web, pp. 581–590 (2007)

7. Fang, H., Tao, T., Zhai, C.: A formal study of information retrieval heuristics. In:
SIGIR Conference, pp. 49–56 (2004)

8. Fang, H., Zhai, C.: Semantic term matching in axiomatic approaches to information
retrieval. In: SIGIR Conference, pp. 115–122 (2006)

9. Khodaei, A., Sohangir, S., Shahabi, C.: Personalization of web search using social
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Abstract. The assumption that users’ profiles can be exploited by employing
their implicit feedback for query expansion through a conceptual search to index
documents has been proven in previous research. Several successful approaches
leading to an improvement in the accuracy of personalised search results have
been proposed. This paper extends existing approaches and combines the
keyword-based and semantic-based features in order to provide further evidence
of relevance-focused search application for Personalised Ranking Model (PRM).
A description of the hybridisation of these approaches is provided and various
issues arising in the context of computing the similarity between users’ profiles
are discussed. As compared to any traditional search system, the superiority of
our approach lies in pushing significantly relevant documents to the top of the
ranked lists. The results were empirically confirmed through human subjects
who conducted several real-life Web searches.

Keywords: User profile � Keyword-based features � Semantic-based features

1 Introduction

The use of Implicit Feedback (IF) is proven to improve the performance of retrieval
systems [4], allowing relevant documents matching both the user’s inputted keywords
(i.e. queries) and particular needs to be retrieved. We build upon these ideas to con-
struct users’ interest profiles which are used to infer relevant documents. Ranking
functions are then crafted based on both the relevance and interest scores of these
documents leading to the generation of a relevance-focused personalised search. Query
expansion technique is employed through WordNet1 ontology to integrate terms which
are not directly expressed in the users’ queries.

The requirements for personalised search models include a learning process to
extract users’ information (i.e. interaction activities) meeting their individual infor-
mation needs. We employ users’ clicked documents to build and maintain their interest
profiles. The rank algorithm takes into account the learned patterns together with the
active users’ profiles [10] to develop a PRM based on which search results are ranked
to represent the users’ interests [10]. The main argument is that IR can be employed by
the PRM to provide ranked lists of the documents based on individual user’s interests.

1 https://wordnet.princeton.edu.
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It is thus investigated whether users’ interests can be identified through implicit
interactions in digital web documents. The main challenge addressed is how query
keywords and their related concepts can be used to identify users’ individual interests
(i.e. relevant documents); and how acquired feedback is preserved over time in order to
include representation of both the users’ interests and modelling.

2 Related Work

Personalised searches differ in the type of data and approaches used to build the user
profile [10] both of which play a major role in personalised search approaches. A recent
study [13] uses spreading mechanism through ontology to provide inherent relation-
ships between terms/concepts appearing in their respective bag-of-word representation
in order to extend the semantic similarity concept between two entities. However, it is
still an open research question whether a mechanism could be devised to control and
correct the integration of ontology terms in the query expansion. This would match the
users’ information needs thereby guaranteeing that recall is improved during the phase
without degrading precision as a result of this process. A technical report by William
[14] presented the idea of indexing material at the sentence and phrase level to support
improved information access so that the content of an individual sentence or phrase
could be located in response to a specific description of need. To identify appropriate
concepts within annotated audio text, Khan [5] has also presented an automatic dis-
ambiguation algorithm which could prune as many irrelevant concepts as possible
while at the same time retaining the largest possible number of relevant concepts.
While these studies provide the techniques adopted to improve the performance of
Information Retrieval (IR) systems in terms of precision or recall or both, they do not
however detail the effects of such integration with regards to different levels of key-
word mixtures of the terms in both queries and ontology during the matching process.
Following on from [1], this paper presents such effects.

3 Relevance-Focused Search

This section outlines our two models representing users’ interests and preferences in a
formal way, such that both approaches can be checked for validity to form customised
views of a relevance-focused search application for personalised search.

3.1 Keyword-Based Features

Users’ profiles are often defined by storing the content of documents clicked after being
collected over time [10]. Given a set of users’ Web search logs, any search documents
clicked are archived for each user whose representations are determined based on these
documents. For our purpose, a feature can be considered as an attribute of text content
(i.e. document or query content) which is used to make decisions related to it. Thus, to
determine a relevant document means to extract its important features that can
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determine factors which are important to a user searching for such a document. These
features are then used to craft the ranking predictors which are often combined together
to improve the retrieval process.

Assuming there is a set m of users represented by U ¼ fu1; u2; . . .umg and a set n of
documents represented by D ¼ fd1; d2; . . .dng; a profile for user u 2 U can be repre-
sented as an ordered pair of n-dimensional vectors using Eq. 1 [10].

uðnÞ ¼ hðd1; suðd1ÞÞ; ðd2; suðd2ÞÞ; . . .ðdn; suðdnÞÞi ð1Þ

where each dj2 D and su is the function for user u which assigns interest scores (i.e.
interest score) to documents.

Since each document dj 2 D can represent an HTML document in the context
where the focus is to capture the implicit feedback related to the document clicked,
Eq. 1 might be used to represent the user’s profile. Each document dj can then be
represented as an attribute vector of k-dimensional features where k is the total number
of features extracted [10]; and the feature weight associated with the document is
represented by its corresponding dimension in a feature vector which is given by:
dj ¼ hfwjðf1Þ; fwjðf2Þ; . . .; fwjðfkÞi, where fwjðfpÞ is the weight of the pth feature in
dj 2 D; for 1� p� k. Since the features extracted are the textual content of pages
represented in Bag-of-Words (BOW), i.e. a set of pairs, denoted as fti;wig, where ti is a
term describing the content of the page (i.e. document) such that ti 2 dj; and wi is its
weight found by using the normalised tf � idf term values [9], each document can thus
be represented by sets of term-score pairs (e.g., sport (cricket; 0:54); (baseball; 0:39);
(soccer; 0:45)2) leading to the user profile represented as a feature vector using the
terms of documents as features.

Given a user profile UP containing v interest vectors for a user uk, an overall
interest vector is often determined by combining all interest vectors for that user [9].
Assuming Ti is the set terms in the ith(i 2 ½1; v�) interest vector, the set of terms of the
overall interest vector T can be found as T ¼ [ v

i¼1Ti. For every term t 2 T ; its overall
interest vector can be calculated as suðtÞ ¼

Pv
i¼1 siðtÞ � wi; where siðtÞ is the score

(relevance score) of t in the ith interest vector (siðtÞ ¼ 0, if t 62 Ti) and wi is the actual
weight of the ith interest vector.

3.2 Semantic-Based Features

The spreading approach can be adopted [13] in order to perform the automatic query
expansion [13] by appending terms that are conceptually related to the original set of
terms in documents. We build on this earlier work and provide a conclusive empirical
analysis when related terms are considered and the degree of their contribution to
improve the performance of IR systems. Although there are many overlaps between the
current research and the latter approach aimed at providing semantic similarities
through ontologies, in terms of classification technique employed to create users’

2 Figures based on a different experiment and given here solely for illustrative purposes.
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profiles to describe the contents of Web documents clicked, this project applies both
term weight (i.e. term frequency factor) and dwell weight3 directly as a dimensional
feature to enrich the users’ models [1, 2]. For instance, not only was it shown in these
surveys that the performance of the PRM improved, but it was also demonstrated that it
could be used as a complementary feature for the system to rely on when the keyword
feature proves unsuccessful in identifying the relevance of documents.

Given ontology O and term ti; spreading process might employ the ontology O to
spread document dj; to determine the terms that are related to ti; so that any terms
related to the original terms of the document can be included. Denoting these terms as
RelOðtiÞ; the results of spreading the document dj; is an expanded document d̂j such
that the set of terms d̂j ¼ ft1; . . .; tn; t11; . . .; tmng and dj�d̂j where 8tij

�
tij 2 RelOðtiÞ

and a path exists from ti to tj:
This spreading process is an iterative process; and the terms from the previous

iterations that are related to the original terms are joined to the document at the end of
the iteration. The spreading process terminates when there are no related terms to
spread the document with, or simply when 8ti 2 dj

�
RelOðtiÞ ¼ h.

3.3 Cosine Similarity Measure

For the purpose of this work, in order to compute the vector similarities determining the
user’s interest in a particular document, the cosine similarity measure is adopted [9] as
the technique to represent the user model.

Given a user profile UP ¼ suk ðdjÞ and a document dj ¼ ft1; . . .; tn; t11; . . .; tmng for
a given search (document containing a set of texts where each ti is a k-dimensional
vector in the space of content features), the binary cosine similarity [9] denoted as
SimðUP; djÞ can be determined using Eq. 2. Such similarity between the two sets of
texts clearly indicates the relevance of the document in the keyword-based approach
which can be applied to the respective vectors.

SimðUP; djÞ ¼
UP\ dj
�� ��
UPj j � dj

�� �� ð2Þ

where UP\ dj
�� �� represents the number of keywords in both UP and dj; and UPj j and

dj
�� �� are respectively the number of keywords in UP and dj:

3.4 Semantic Similarity Measure

Similarity can be determined to be equal to the inverse of distance in its simplest form
or some other mathematical function based on ontological distance. Semantic similarity
can thus be inversely proportional to the distance between concepts whereby the closer
two concepts are in the ontological representation; the higher the similarity score

3 This dual technique was thoroughly explained previously and authors do not claim this contribution
in the current paper.
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between them is [6]. Any similarity between two concepts can then be determined by
taking the cosine angle between the two corresponding vectors [8]. Mathematically,
semantic similarity is determined here by employing a fuzzy ontology value [7],
whereby increasing distance between two consecutive terms is inversely proportional
to an increase in semantic similarity. Here it is important to recall that words which
have been integrated are not directly related to the keyword queries, thus, it is not
feasible to apply the cosine similarity measure directly. The application of fuzzy
ontology values as shown in Eq. 4 [2] addresses this problem. Thus, based upon this
similarity measure (i.e. fuzzy ontology values) a set of relevant documents are
obtained. However, expanded documents are still those documents matching the users’
queries at first place as demonstrated elsewhere; therefore, after constructing the
semantic document vectors in this way, the normal binary cosine similarity measures
are applied to refine the ranking function.

Given a user profile with a set of texts UP ¼ suk ðdjÞ and a document d̂j ¼
ft1; . . .; tn; t11; . . .; tmng for search (expanded document containing a set of texts where
each tij is a k-dimensional vector in the space of content features); cosine similarity
denoted as SimðUP; d̂jÞ which is determined following Eq. 2 can be applied to repre-
sent the user’s interests.

Fjk ¼ cjk
X2 ð3Þ

where cjk is the distance between keywords tij and tik or the frequency of the
keywords/concepts appearing consecutively in the keyword list, and X is the total
number of tmn terms (i.e. keywords) in that document.

3.5 Query Processing and Ranking

Users’ queries expressed in keywords to represent their information needs can be
considered as short documents. Thus, for each user uk; a BOW representation for each
query issued by the user in a particular session must also be created and compared with
its set of corresponding documents. This comparison is based on the similarity between
both the query and the targeted documents. Thus, Eq. 4 is applied to calculate the
cosine similarity measure between the query vector, the vectors of the matching doc-
uments and the vectors of the matching user profile respectively.

Simðqi; djÞ ¼
q\UP\ dj
�� ��

qj j � UPj j � dj
�� �� ð4Þ

where q\UP\ dj
�� �� represent the number of keywords in q; UP and dj; and qj j, UPj j

and dj
�� �� are respectively the number of keywords in q; UP and dj:
The highest similarity values are used to establish our relevance-focused search

application. They are provided by Eq. 4 when considering the keyword-based features as
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well as the semantic-based features when the document is integratedwith ontology terms.
Thus they represent the most similar documents between the query, the user profile and
the available documents.

3.6 Search Result Personalisation

The personalisation of search results to a large degree lies in merging the models that
provide them. A description of the linear combination adopted in the current research
can be found in [2]. Here, as outlined in the following section, the aim is to test the
system’ models on a deeper level and to investigate their real world problems as closely
as possible. A set of the experiments performed by using human subjects (i.e.
729 query keywords4) while conducting real-life Web searches is thus presented to
validate each model individually. Such evaluation enabled us not only to obtain the
system’s performance based on each model, but also to evaluate real collections based
on different terms integration with different terms of query keywords.

4 Evaluation

The experimental results are presented in this subsection. For simplicity, the proposed
personalised search approach is referred to as experimental system while the search
approach which is not personalised is referred to as Baseline. There are two main sets
of experiments: (1) Implicit Feedback vs. No-Feedback. Its relative experimental
results are presented in Table 1 and visualised in Fig. 1. (2) Keyword-Based vs.
Semantic-Based. Its relative experimental results are shown in Fig. 2.

4.1 Experimental Set up

Assuming a given user uk 2 U clicked the document dj after issuing a query containing
the word t, then the document dj is considered useful and relevant to t for user uk, and
documents that are not retrieved, are judged as non-relevant by the user [12]. To
evaluate the search accuracy of the two models, sets of documents dj 2 D containing
the word t selected by uk were checked whether they are highly ranked in the ranked
list generated by the personalised search solution.

Implicit Feedback vs. No-Feedback. In this experiment, it was investigated how a
sample of real data collected during interaction between users and the system can affect
the performance of the personalised search. This includes investigating how useful the
acquired feedback is when preserved over time in the form of user profiles [11] to
include the representation of their interests. If the experimental system generates
accurate ranked lists in terms of higher precision in the lower ranks, then it can be
considered to perform better.

4 A detail description of this data set can be found in [2].
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A system’s performance is often assessed in terms of search results and by its
ability to push relevant documents to the lower ranks. Thus, to compare the perfor-
mances of two systems - here, experimental and baseline systems - ranked lists of
search results obtained by the user need to be considered for both systems. The one that
is better able to push relevant documents to the top of the ranked lists of search results
is the more efficient. Table 1 gives the overall precision obtained at rank 5 and 10 of
both systems. It is important to recall that precision is obtained by dividing the number
of relevant documents - for each user - among the top 5/10 documents by 5 or 10
accordingly. Here, results to the first page (i.e. 10 documents) are considered.

From Table 1, the overall averages of the precision at rank 5 and at rank 10 for the
experimental system when employing the semantic-based approach, clearly indicate
that out of 5 documents, the system can rank more than 4 documents based on their
relevancy to the query (0.94*5 = 4.70 and 0.85*5 = 4.25). While the performance of
the system is more or less constant at rank 5 by employing the keyword-based

Table 1. Average of Precision at Rank 5 and Rank 10

Precision Baseline Experimental system
Keyword-based P(paired

t-test)
Semantic-based P(paired

t-test)

System @
Rank 5

0.79 0.83 0.006 % 0.94 0.005

System @
Rank 10

0.56 0.75 0.50 % 0.85 0.78 %

Fig. 1. System performance
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approach, it is poorer at rank 10, since out of 5 documents, it can only rank 3.75
(0.75*5 = 3.75) documents. The worst performance can be observed from the baseline,
as its overall averages of the precision at rank 5 and at rank 10 indicate that having 5
documents, the system is able to rank, based on their relevancy to the query, less than 4
documents (0.79*5 = 3.95) and less than 3 documents (0.56*5 = 2.80) respectively.

Overall, the experiments showed that the personalised system outperforms the
baseline with a statistically significant (paired t-test) difference between them.

Keyword-Based vs. Semantic-Based. The goal of this experiment was to use the
same idea with the same data set to study whether the semantic-based approach is
superior to relying on the keyword-based approach with regards to a personalised
search. Here, it should be recalled that in the semantic-based approach, the spreading
mechanism was used to incorporate the concept terms into the documents, however, the
same statistics were used in both models. Therefore, the semantic-based approach is the
expansion of the keyword-based approach with the integration of content semantics
expressed in ontology terms so that an enriched user model (i.e. user profile) is gen-
erated. This experiment will test the effects of combinations of keywords from the
ontology terms with the keywords from the query to enrich the user model, so that the
effect of mixing different keywords to generate ranked lists can be investigated.

Each of the participant collections was thus indexed individually into document
vector files. Figure 2 shows a representation of the distribution of document indices
(here, the values of interest vector - denoted as suðtÞ) according to different combi-
nations of the query keywords5 with its related concepts6 mixtures. Here, kxny means x
keyword(s) and y concept(s) or ontology terms are employed in the user model. For
example, k2n2 and k2n3 are respectively the keywords employed in the iterations in
which two and three ontology terms are integrated into the user model for the second
keyword of the query. The threshold interest vector values are the values represented
by kxnh, meaning that only keyword-based is employed and no ontology terms have
yet been added to the documents.

As can be seen from Fig. 2, the semantic-based layout showed the best results when
a document is integrated with 3 and 4 keywords (at kxn3 and kxn4) regardless of the
original number of terms (i.e. keywords) contained in the query. The presentation given
here is related to only one query, but statistical evidence (ANOVA p value = 6.80 %)
indicated that out of 729 keyword queries, this observation is consistent across more
than 650 keyword queries.

However, expanding the document with 1 or 2, 5 and 7 keyword(s) showed some
slight improvements for most documents. On the other hand, integrating the document
with 6 and 8 keywords showed worse performance (represented by kxn6 and kxn8 in
Fig. 2), which might be due to the inclusion of keywords not related to the original
term meaning.

5 According to [3], on the average, a query contains 2.21 terms.
6 It was demonstrated in [13] that the computation process of terms' weight during document
expansion turns monotonic after the third iteration. In current work, this computation turns
monotonic after the document is expanded with the eighth term concept.
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Overall, employing keyword-based features alone showed poorer performance than
employing semantic-based features if the spreading or query expansion integrates 3 or
to 4 keywords into the document.

5 Conclusions

Derived from several existing techniques, this paper has presented an effective per-
sonalised search model that exploits users’ profiles by employing their implicit feed-
back for query expansion through a conceptual search to index documents. Empirical
validation confirmed the reliability of our system. A combination of the keyword-based
and semantic-based features to provide further evidence of relevance-focused search
application for each individual user was validated by using human subjects conducting
real-life Web searches. The findings of the experiments demonstrated that, compared to
any traditional search system, our approach can push significantly higher number of
relevant documents to the top of the ranked lists.

A series of two different web search experiments was performed using different
keywords from real users. For each search session, a list of personalised webpage
re-ranking over the search results returned by Google was generated. Both the evalu-
ation metric parameters of precision and recall were adopted to measure the ranking
quality of the personalised search engine in order to determine the relevance of the
results according to their order of relevance.

Acknowledgement. This research was supported by the Ministry of Manpower in Oman which
has granted the funding for the survey of this research.

Fig. 2. Comparisons of mixtures of query keywords with ontology terms
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Abstract. People share various processes in daily lives on-line in nat-
ural language form (e.g., cooking recipes, “how-to guides” in eHow).
We refer to them as personal process descriptions. Previously, we pro-
posed Personal Process Description Graph (PPDG) to concretely rep-
resent the personal process descriptions as graphs, along with query
processing techniques that conduct exact as well as similarity search
over PPDGs. However, both techniques fail if no single personal process
description satisfies all constraints of a query. In this paper, we propose a
new approach based on our previous query techniques to query personal
process descriptions by aggregation - composing fragments from different
PPDGs to produce an answer. We formally define the PPDG Aggregated
Search. A general framework is presented to perform aggregated searches
over PPDGs. Comprehensive experiments demonstrate the efficiency and
scalability of our techniques.

1 Introduction

People are engaged in all kinds of processes all the time, such as cooking a
dish, or filing a tax return. Although the area of business process management
(BPM) has produced solutions for modelling, automating and managing many
of the business organizational workflows, still significant portion of the processes
that people experience daily exist outside the realm of these technologies.

These experiences are often shared on the Web, in the form of how-to guides
or step-by-step instructions. Although these are primarily describing a workflow,
without the formal modelling expertise, they are written in natural language.
To distinguish these texts from the conventional organizational workflow models,
we refer to them as personal process descriptions. Many examples of personal
process descriptions are found in cooking recipes, how-to guides or Q&A forums.

The natural language texts are not precise enough to be useful in utilizing
the process information presented in them. For example, the state-of-the-art
for search technologies over the existing personal process descriptions are still
keyword/phrase-based and users would have to manually investigate the results.

In our previous work [11], we proposed a simple query language designed
to perform exact-match search over the personal process descriptions. The lan-
guage is supported by a graph-based, light-weight process model called PPDG
c© Springer International Publishing Switzerland 2016
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(Personal Process Description Graph) which concretely represents the personal
process description texts. We further extended our query technique to return
similar process descriptions to a query input in [4]. Using these techniques, we
can perform a process-aware search over PPDGs such as showing dependencies
between data and actions.

However, when there is no single PPDG in the repository that satisfies all
constraints in a query, these techniques cannot produce an answer. To overcome
this limitation, we present a new approach to querying PPDGs, which can still
produce an answer when a single PPDG cannot satisfy all query constraints.
This technique, Query By Aggregation, involves decomposing a query into sub-
queries, matching multiple fragments over different PPDGs. The answer to a
query is then generated by composing these fragments according to ranking
criteria. This approach allows the user not only to better utilise existing process
information in the PPDG repository, but also to discover and reuse process
fragments to compose his/her own processes. We summarise our contributions
below:

– We formally define the PPDG Aggregated Search.
– We present a general framework to perform an aggregated search over PPDGs,

including: (i) a query decomposition technique to break down the query into
two categories of subqueries - constant query and anonymous query, (ii) a tri-
level index scheme based on our previous search techniques [4,11] to reduce the
search cost, and (iii) a ranking method to aggregate the matched fragments
to obtain the closest query answers.

– We perform comprehensive experiments to demonstrate the efficiency and
scalability of our techniques.

Due to the space limits, we do not include all the technical details and exper-
imental results in the paper. See our technical report [5] for the further details.

2 Querying PPDG by Aggregated Search

Aggregated search is the task of searching and assembling information from a
variety of sources, placing it into a single interface [6]. Our approach to PPDG
aggregated search is based on the notion of graph aggregation problem [7], and
aggregated search problem in BPMN1 models [9]. In both of them, the answer
of a query graph can be represented as aggregation of fragments from different
processes which are stored in the process repositories. In our work, we define
aggregated search based on PPDG as follows.

Definition 1 (PPDG Aggregated Search). Given a PPDG query q and a
set of PPDGs P = {P1, P2, . . . , Pn}, the problem of PPDG aggregated search
is to find a subset S = {P ′

1, P
′
2, . . . , P

′
m} of P(m ≤ n) and join their fragments

fP ′
1
, fP ′

2
, . . . , fP ′

m
to obtain a set of ranked PPDGs R = {R1, R2, . . . , Rk} , where

each R matches the query q. That is, for each R ∈ R, R = fP ′
1

�� fP ′
2

�� . . . ��
fP ′

l
| l ≤ m where f is a fragment (subgraph) of P ∈ S.

1 Business Process Model and Notation, www.bpmn.org.

www.bpmn.org
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We take the PPDG query shown in Fig. 1 as an example. It describes a user
query where the user wants to know what to do before booking the academic
dress online and what needs to be done between getting the dress and attending
ceremony. The prefix symbol “@” in the node label indicates an anonymous
node2 (i.e. “@D” for an anonymous data node, “@V” for an anonymous action
node).

Fig. 1. Example of PPDG query Fig. 2. Answer of PPDG aggregated
query

Assume that the PPDG repository consists of two personal processes shown
in Fig. 3. Both of these two processes fail to match the said query if we matched
it with each PPDG separately. There is no information about getting dress or
attending ceremony in the process on the left of Fig. 3. Similarly, the process on
the right of Fig. 3 does not mention booking dress online.

In the aggregated search approach, we decompose the original query into
subqueries, match them individually against the PPDGs in the repository, and
aggregate the results to form the answers. The answer of the said query over the
two sample PPDGs is shown in Fig. 2.

Fig. 3. Two PPDGs to query

2 An anonymous node denotes an unnamed node in the query.
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3 PPDG Query Decomposition

We can decompose a PPDG query into a set of subqueries which are classified
into two categories as follows.

– A series of constant queries Qc: where each query has two constant (i.e., explicitly
named) nodes connected by a direct flow edge.

– A series of anonymous queries Qa: where each query has (i) an anonymous node
(i.e., unnamed node), or (ii) two constant nodes connected by a path edge.

Unlike traditional graph, PPDG is a directed graph with two types of nodes and
edges, so it is not straightforward to deploy the general decomposition methods to solve
our problem. We fully decompose PPDG into atomic fragments, because the size of
most personal processes are not very big. The detail of the descriptions and algorithm
can be found in our technical report [5].

4 PPDG Query Processing

After query decomposition, we use the two series of queries to find matched PPDG
fragments and aggregate them to obtain the results. The framework of the aggregated
search processing is presented as follows:

– Constant Query : We use each constant query in Qc to perform similarity search
on PPDGs to get the constant fragments with corresponding PPDGs,

– Anonymous Query : We use anonymous queries in Qa based on the results in
Constant Query phase to find the matched fragments,

– Aggregating : We rank and aggregate fragments to obtain the answers ordered by
ranking score.

The experiments of our own proposed search techniques to process graph query over
PPDGs showed that the main cost of the query processing is on matching the nodes
between the query and PPDGs. Therefore, we first designed an indexing technique
to speed up the node matching process as part of the framework. Then we use the
index to obtain the matched fragments of constant queries and anonymous queries,
and assemble the fragments to obtain the query answer.

4.1 Indexing PPDGs

The PPDG index based on the definition of label similarity in [4] has three levels
“word(L1)-word set(L2)-PPDG(L3)”. All the PPDGs entries are stored in L3. The
word sets from each PPDG are extracted and stored in L2. Each word set entry points
to the PPDG that it originates from. We cluster those word sets which have common
words by choosing one of them as the center. The similarity between each word set and
the center is more than a given correlation radius η. All the word sets in one cluster can
be merged to construct a new word set entry in L2, which points to multiple PPDGs.
L1 is an inverted index. When a word is given, we can use the inverted index to find
the corresponding word set entry in L2.
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4.2 Processing Constant Queries

To process constant queries, we launch our similarity query search proposed in [4]
for each constant query to obtain the similar fragments. There is a small cost to do
one similarity search. Since there are many constant queries generated for aggregated
search, the total cost could be quite high. Therefore, we use the index built in Sect. 4.1
to reduce the query processing time.

Algorithm 1. Constant Queries Search (Qc, P)
Input : a series of Constant Queries Qc, a set P of PPDGs
Output: Qc filled with matched fragments

1 for each q ∈ Qc do
2 n = q.naction;
3 Get word set of n and obtain all matched PPDG graphs Pm by index;
4 if q.type is “C” then
5 n′ = q.n′

action;
6 Get word set of n′, and obtain all matched PPDG graphs P ′

m by index;
7 P ′′

m = Pm ∩ P ′
m;

8 for each P ∈ P ′′
m do

9 f ← matched fragment;
10 score = similarity score between q and f ;
11 q.results ← {f, score, P};

12 else
13 n′ = q.ndata;
14 for each connected data node nd in each P ∈ Pm do
15 if nd matches n′ then
16 f ← matched fragment;
17 score = similarity score between q and f ;
18 q.results ← {f, score, P};

19 return Qc;

Algorithm 1 illustrates the details of how to use the PPDG index to process the
similarity search of the constant queries. We match each query q in the constant query
set Qc to process the similarity search over PPDG. For each query result, we record
the fragment f , the similarity score between f and q, and the corresponding PPDG
P , which comprise a result tuple {f, score, P}. For each constant query q, we put its
key node naction into n, and get the word set of n to obtain the matched PPDGs Pm

by index in Lines 2-3. Then we check the type of q in Line 4. If the second node n′

is an action node, we use the similar method to get its matched PPDGs P ′
m by index

in Lines 5-6. The two matched PPDGs Pm and P ′
m are joined to obtain a new PPDG

set P ′′
m containing both action nodes n and n′. We get matched fragment from each

P ∈ P ′′
m and put the result tuple into q.results from Line 8 to 11. If the second node

n′ is data node, we check each connected data node in P ∈ Pm to obtain the matched
fragment from Line 13 to 18. Note that the edge direction must be matched when
matching data node in Line 15. The fragment results are also put into q.results in
Line 18. After traversing all constant queries, the result is returned in Line 19.
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4.3 Processing Anonymous Queries

Each anonymous query has at least one known action node, so we can use the same
similarity matching technique in Sect. 4.2 to obtain the PPDGs set containing the node,
and then find the matched anonymous node or path. According to the decomposition
technique in Sect. 3, an anonymous query contains at least one constant node, which
exists in a constant query, and we have already processed the constant node in Sect. 4.2.
These results can be stored in a map M . Then we search M first when the constant
node in an anonymous query is given. If we cannot find the matched node in M , the
normal index lookup is invoked to find the related PPDGs. The algorithm of constant
queries can be adjusted to process anonymous queries. For details, please refer to [5].

4.4 Aggregating Fragments

After obtaining all matched fragments, we need to assemble them to obtain the required
PPDGs. There are many ways to combine the fragments, therefore, we need to rank
the possible aggregated results efficiently and recommend the user a list of aggregated
PPDGs in an descending order by “score”. In this section, we explain how to calculate
such a score.

When we decompose the aggregated query into subqueries, the position of each
query is kept, so we can assemble the aggregated result from each query tuple accord-
ing to the position of the query. When we process the constant query or the anonymous
query, we store the similarity score between the query and the fragment result. Intu-
itively, we could choose fragments with the highest score from each query tuple, and
aggregate them to obtain the query result. Then the similarity score (SS) of a result
R is calculated as SS(R) =

∏
q.score(f), where q.score(f) represents the similarity

score of a selected fragment f in R.
There may be some fragments coming from the same PPDG. The fragments from

the same PPDG are preferred because intuitively they would form more coherent PPDG
when put together, so we give the case a higher rank. For each possible aggregated
result, we count the number n of fragments originated from each related PPDG. Then
the similarity score of a result R can be adjusted as follows, which is called adjusted
similarity score ASS(R) =

∏
(
∏n

i=1 q.score(fi) × Cn−1), where C (C ≥ 1) represents
a weighting factor for a scoring fragment and n is the number of fragments which
come from the same PPDG containing f . Note that if the factor C is set to 1, ASS
degenerates into SS.

5 Experiments

Now we present the results of a performance study to evaluate the efficiency and
scalability of our proposed techniques. Two algorithms are evaluated. We use techniques
proposed in [4] as Baseline, and the index based algorithms in this paper as INDEX.

Datasets. We have evaluated our aggregated search techniques on both synthetic and
real datasets. The synthetic datasets are generated by randomization techniques as
same as [4]. We select 100 process graphs and get their subgraphs to make 100 queries
in our experiment. Some nodes in each query are randomly set as anonymous nodes.
The average processing time of the 100 queries on each dataset represents the perfor-
mance of our query processing mechanism. The factor C is set to 2 in all experiments.
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The real dataset consists of 42 PPDGs about PhD programs collected from the Web
and manually created by the authors. The dataset includes personal process descrip-
tions on processes such as research degree admission, scholarship applications, and
attending graduation ceremony. In this dataset, the queries are chosen manually.

Performance Tuning. The performance of our techniques is effected by the index.
Especially, The correlation radius η between the data and the center of clusters in
the index impacts the processing time of our algorithm. As expected, Fig. 4 shows the
processing time drops when η increases, because the wordsets with similarity η are
clustered in one index entry. On the other hand, if the η drops, the index degenerates.
When η is equal to 0.2, there is no significant improvement between the algorithm
INDEX and the algorithm Baseline. We notice that the performance of INDEX does
not change much when η increases from 0.6 to 0.8, therefore, we use 0.6 as the default
setting of η in the experiment.

Real vs Synthetic. We evaluate the performance of our techniques over the real and
synthetic data. Due to the limited quantity of real process graphs, we magnify the
result on the real data by 200 times in Fig. 5. It is shown that our techniques give the
similar performance on both datasets, and the index is very effective and reduces the
processing time.
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Aggregate Output. Finding a way to systematically measure the quality of possible
aggregates for a given query is still an open research issue [6] and is one of our immediate
future work plans. In this paper, we evaluate the average output size of our techniques
compared with similarity search techniques in [4]. It is clear that the output size of the
two approaches increases when the number of process graphs (p) rises as demonstrated
in Fig. 6. The figure also shows regardless of the parameter changes, the aggregate
approach outputs about three times more results than similarity approach.

We also study the scalability of our algorithms with regards to the different exper-
iment setting [5], which show that the indexing technique is effective and reduces the
processing time.

6 Related Work

In the domain of Business Process Management (BPM), queries are processed over
BPMN (Business Process Modelling Notation) or equivalent notations. The main pur-
pose of query processing is to extract actions (i.e., control flows). For example, the
BPMN-Q is a visual language to query repositories of process models [1]. It processes
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the queries by matching a process model graph, converted from BPMN, to a query
graph [8]. In [3], the authors describe the problem of retrieving process models in the
repository that most closely resemble a given process model but they have focused on
developing the similarity metrics rather than efficient implementation of algorithms. In
the graph querying domain, subgraph similarity search is to retrieve the data graphs
that approximately contain the query. For example, Grafil [12] defines graph similarity
as the number of missing edges in a maximum common subgraph. One of the closely
related work to ours is Cooking Graphs [10]. A cooking graph describes a cooking
process with cooking actions and relevant ingredients information. However, cooking
graphs are tailored to recipes. None of the above business process querying or graph
querying approaches addresses aggregated search on graphs. A similar work presented
in [2], however, they do not address querying of both control and data flow. Due to
the structure of PPDG and flexible attribute of personal processes, two approaches
of aggregated graph search proposed in [7,9] are not suitable for applying directly to
query PPDG repositories.

7 Conclusion

In this paper, we have investigated aggregated search over Personal Process Description
Graph (PPDG). We formally define the PPDG aggregated search and propose a novel
approach based on our previous query techniques to query personal process descriptions
by aggregation. A comprehensive experimental study over both real and synthetic
datasets demonstrates the efficiency and scalability of our techniques.
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Abstract. Gender prediction has evoked great research interests due
to its potential applications like personalized search, targeted advertise-
ment and recommendation. Most of the existing studies rely on the con-
tent texts to build feature vector. However, there is a large number of
lurkers in social media who do not post any message. It is unable to
extract stylistic or syntactic features for these users as they do not have
content information. In this paper, we present a novel framework to infer
lurkers’ gender by their interest tags. This task is extremely challenging
due to the fact that each user only has a few (usually less than 10) and
diverse tags. In order to solve this problem, we first select a few tags and
classify them into conceptual classes according to social and psycholin-
guistic characteristics. Then we enlarge the conceptual class using an
association mining based method. Finally, we use the conceptual class to
condense the users feature space. We conduct experiments on a real data
set extracted from Sina Weibo. Experimental results demonstrate that
our proposed approach is quite effective in predicting lurkers’ genders.

Keywords: Lurker’s gender prediction · Interest tags · The conceptual
class

1 Introduction

Gender classification has received considerable attention in recent years [3,5,8,
16,18,24]. Almost all existing methods use the content texts for classification.
However, there is a large number of users in social media who register only for
browsing, i.e., they do not have contents. For instance, a sample of 1.0 million
users from Sina Weibo in China shows that about 7.4 % users do not post any
message. We call this group of users the lurkers. In this work, we study the
problem of inferring lurkers’ gender in Sina Weibo. This problem is important
because advertisement targeting or media audience analysis need to understand
the full user population. Clearly, the group of lurkers cannot be ignored if its
large population is taken into consideration.

Existing approaches on gender classification rely heavily on the lexical
[3,4,19,20], syntactic [16], or stylistic features [5,7–9]. Without the content
information, we are unable to extract the above mentioned features. Fortu-
nately, the users in Sina Weibo have other information besides their posts.
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-44406-2 20
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For example, about 56 % of users give their interest tags in their profile. Hence
we aim to predict the gender of lurkers by their interest tags. This task is quite
challenging since there are only a few tags for each user. Sina Weibo allows
users to use at most ten tags and 63.37 % of the users have less than six tags
indeed. Furthermore, the tags are often diverse. For instance, one user may use
“Ferrari” and “Michael Schumacher”while the other chooses “Mclaren” and
“Lewis Hamilton” as tags although both of them are male autofans. All these
make the user’s tag space very sparse and the classification task difficult. To deal
with this problem, we propose a novel method to condense the tag feature space
by the use of conceptual class. Specifically, we first select a few tags and classify
them into conceptual classes according to social and psycholinguistic character-
istics. Then we enlarge the conceptual class using an association mining based
method. Finally, we add the conceptual class to each user’s feature space.

The most related work to ours is the work of Bergsma and Durme [3], which
also applied the conceptual classes to gender classification. However, their two
conceptual classes are gender based and built on the top of syntactic analysis on
the texts. At least 40 tweets are required for each user in their experiment. Since
we do not have contents for lurkers, many of the words in their conceptual classes,
for instance, wife and ex-boyfriend, are unlikely to appear as tags of a user.
Finally, we expand the conceptual class using association mining rather than the
mutual information method used in [3]. The computation of mutual information
needs the class label information while association mining is independent of any
class. This means that we can explore the tremendous unlabeled data in social
media. We conduct experiments on a real data set from Sina Weibo. The results
demonstrate the effectiveness of our proposed approach, both on the expansion
of conceptual class and on the improvement of the classification.

The contributions of this paper are as follows:

1. We introduce an important problem to the field, i.e., inferring the lurkers’
gender who do not have any content texts.

2. We propose a novel framework for gender classification which only uses the
interest tags in Sina Weibo.

3. We design a conceptual class based method to effectively condense the sparse
tag space, and then show on the concept level that users’ interests are cate-
gorized by their gender.

2 Related Work

We review the literature in gender detection in this section, organized by the
data source and the feature set.

Data Source. Gender classification has been investigated in the contexts of
various media. Early work focused on blogs [9,16,21], emails [5], telephone con-
versations [8] and chat texts [19], and online reviews [18]. Recently, more interests
are paid to the interactive social media like Facebook [11], YouTube [7,24], and
twitter [2–4,14,17,20,23]. Different media have their own characteristics. In this
work, we perform our study on Sina Weibo, which has distinct tag features.
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Feature set. Almost all existing studies for gender classification use the content
information. Among which, the word or character n-grams are the most widely
used features [3–5,7,19]. There are also a number of stylistic features extracted
from the content, including ratio of punctuation, capital letters, unique words
[7], slang words [9], word or sentence length [7,9], conceptual class [3], and the
POS sequence [16]. While previous studies show that the performance of gender
classification can be enhanced by using the above features, a main hinder is that
they mainly exist in the content texts. This means that they are not applicable to
the special group of users in our study. Several studies extract features from the
users profile such as first name [14], full name [4], description [4], and the screen
name or user name [3,4]. All these methods are combined with the word based
n-grams. The only exception is the one used in [2], which uses the first name, the
screen name and profile color to construct feature space without borrowing any
information from the content. Their evaluations show that the accuracy results
obtained with first names are higher than those with colors and user names.
There is no first name in Sina Weibo. Instead, we use the interest tags to infer
the users’ gender.

3 A Conceptual Class Based Method

3.1 Data Source and Tag Feature Vector

Our data is collected from Sina Weibo, one of the largest micro-blogging services
in China. Each user in Sina Weibo has a profile, which has several fields, such
as userid, screen name, gender, tags, description, the number ofbreak followers,
followees, and messages. We start from a public domain dataset (see http://
www.nlpir.org/?action-viewnews-itemid-232) containing the profile information
of 1 million users. From which we randomly collect 1000 certificated celebrities
(500 female and 500 male) who have at least 1 tag for our experiments. The data
are randomly split into two parts: 70 % for training and the rest 30 % for test.
We extract the interest tags from each user’s profile. The total number of tags
in the training set is 81407.

While each tag is treated as a word in content texts when building the tag
feature vector, the interest tags as a whole are significantly different from the
microblogs. For example, the expressions in microblogs are often casual. There
are a lot of emoticons, internet slangs, abbreviations in microblogs. Hence many
stylistic features can be extracted from the texts. In contrast, people tend to
use normal expressions for their interest tags and there are very few stylistic
features. Futhermore, a long feature vector can be built by the aggregation of
the multiple microblogs (if she has). This contradicts to the short tag feature
vector.

http://www.nlpir.org/?action-viewnews-itemid-232
http://www.nlpir.org/?action-viewnews-itemid-232
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Overall, the tag vector for each user is very short and the tag space is sparse.
As a result, a number of users in test data may not appear in the tag space.
Tag expansion is a possible way to deal with the problem. In the literature, a
number of methods have been proposed for tag expansion such as association rule
mining [10], neighbor voting [12], and bipartite graphs [22]. However, some of the
methods need extra information like documents [13,22]. This makes them not
applicable to our task. Although the association mining approach is effective
for tag expansion in our work, it can not be directly used either. The reason
is that the interest tags in Sina Weibo follow a power lower distribution. Our
experiment shows that several tags have very high frequency but more than
99.4 % tags have a support value smaller than 0.001. The setting of minimum
support becomes very difficult. If it is set high, only a few items can be found;
and if low, too many items will bring combination explosion. Hence we develop
a novel expansion method based on the conceptual class.

3.2 Building the Initial Conceptual Class

We first select about 1000 the most frequent tags from the data set. Then we
classify them into conceptual classes based on the social and psycho-linguistic
theory or observations.

1. Females pay more attentions to the family, and males pay more attentions to
social and political affairs [15].

2. Females often define their jobs with gender information like “office lady” or
“radio hostess”, and males prefer to merely tell their jobs like “founder” or
“CEO”.

3. Females are the main consumers of the fashion, beauty and cosmetic products.
4. Males are more likely to become fans of cars, high technology, basket ball and

football, and games than females.
5. There are some gender-reference tags for both male and female such as

“material girl” and “diamond geezers”.

We also add a few classes which are traditionally regarded as gender related
such as sentiment and police law. Finally we define 27 conceptual classes (CCs)
in total. The detailed categories will be given in the experimental part.

3.3 Expanding Conceptual Class

Since there are tremendous unlabeled data in social media, we can explore the
unlabeled data to effectively expand our conceptual classes. In our case, we use
all the tags in the raw data set as the unlabeled data U. Note that the tags in
each user is treated as a transaction, and then an Apriori algorithm [1] is used
to mine the frequent itemsets. The algorithm is shown in Algorithm 1.
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Algorithm 1. Expanding Conceptual Class (ECC)

Input: The unlabeled data U, the initial conceptual class CC built in Sect. 4.1
Parameters: the maximum and minimum support threshold α, δ, the number
of top ranked tags with high confidence K
Output: the expanded conceptual class CC
Steps:

1. Extract from U the tag vectors U ′ containing at least one tag in CC
2. Mine frequent itemsets FI from U ′, where FI = {x|x.supp > δ, x is a tag}
3. For each tag x, x /∈ CC
4. x.conf = 0
5. For each tag y, y ∈ CC
6. if (x, y) ∈ FI and x.supp < α
7. then x.conf += Pr(x|y)
8. if x.conf > β
9. then CC = CC

⋃{x}
We first use the tags in a conceptual class to filter the unrelated tag vectors,

and then mine the frequent itemset meeting the minimum support threshold.
For those tags not in the conceptual class, we sum their conditional probability
with all tags already in the conceptual class. And the tags with a high confidence
are merged into the conceptual class.

The maximum (δ) and minimum (α) support is set to 0.50 and 0.05 in our
experiments. The rationale for the threshold of δ is similar to the widely used
term frequency - inverse document frequency (tf idf) statistic in information
retrieval: if a word appears in a lot of documents, then it will be a common
word and contributes little to the classification. In our case, if a tag is used
by more than half of the total users, we then discard it as it is too general.
The setting of α is determined after several trials. We try 0.01, 0.03, 0.05, 0.08
and 0.10. We find that 0.05 is the most appropriate value in our experiments.
As for the confidence threshold β, we need manually check to decide a proper
value for β. This is because it is hard to set one universal value for different
conceptual classes. The other reason is that this process is actually very trivial
for an annotator to filter. Hence we let this procedure to be manually done. This
approach has also been adopted in the previous work [3].

Finally, we use the expanded conceptual class to condense the tag space for
both the training and test data. We do this by treating each conceptual class as
a pseudo word. For each tag in the class, if it appears in a vector, we then add
one count for the pseudo word of the class. The rationale is to use the conceptual
class to represent every tag it contains.

4 Experimental Evaluation

All our experiments use the libsvm classifier [6] with default parameter settings.
We report the classification accuracy as the evaluation metric.
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4.1 Effects of Minimum Support

We compare the number of tags in several expanded conceptual classes under
different minimum supports. The results are listed in Table 1.

Table 1. The number of tags in expanded conceptual classes under different minimum
supports

δ = 1 % δ = 3 % δ = 5 % δ = 8 % δ = 10%

Basketball 1546 131 106 65 61

Beauty 2141 103 71 28 6

Car 2536 354 116 53 34

On one hand, when δ is set to a small value like 1 %, a great number of tags
are added to the conceptual class. For example, there are 2536 tags in the Car
conceptual class. This not only adds many noises into the conceptual class but
also results extra efforts for checking. On the other hand, when δ is set to a big
value, only a few tags can be founded. Hence we decide to use a value of 5 % in
the following experiments.

4.2 Effects of Class Expansion

We compare the number of tags between the original and the expanded concep-
tual classes. The results are listed in Table 2.

Table 2. The comparison of the number of tags in conceptual classes

Class Ori Exp Class Ori Exp Class Ori Exp

family 29 85 beauty 48 83 fasion 25 73

cosmetic 23 111 sentiment 42 45 luxury 23 50

gender(F) 77 77 job(F) 17 47 hobby(F) 63 69

gender(M) 43 43 job(M) 53 53 hobby(M) 41 46

sports(F) 12 15 sports(M) 58 78 politics 13 35

game 26 52 basketball 8 20 football 7 18

social 32 171 science 8 8 culture 17 54

car 79 152 comic 14 22 e-business 19 121

technology 37 83 police-law 6 69 pets 11 17

Most of the conceptual classes are enlarged a lot. For example, the number
of tags in Social class is augmented from 32 to 171. There are several classes
unexpanded, including Science, job(F), gender(F), and gender(M). The initial
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tags in these three classes are already very detailed and thus it is difficult to
find counterparts for them. We further give sample conceptual classes in Fig. 1.
We can see that tags in the expanded classes are highly correlated with those in
the initial class. This shows that with the help of the conceptual class, the tag
expansion is restricted in a narrow field and thus capable of finding very similar
or related tags.

Fig. 1. Sample of expanded conceptual classes

4.3 Effects of Conceptual Class on Gender Classification

We show the effects conceptual class on gender classification in Table 3. For
comparison, we use the character n-gram (n=1..3) in users’ screenname and
their tags as the baselines.

We can see that 1-gram is the best among the n-grams, both for the screen-
name and tags. We also find that, while the tag vector performs worse than tag
1-gram, its performance is greatly improved and beats tag 1-gram after using
conceptual class. This clearly demonstrate that the proposed approach is very
effective to enhance the performance of gender classification.
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Table 3. Effects of conceptual class on gender classification

Screenname Tag Tag vector using SVM

char 1-gram 63.67 char 1-gram 68.33 no conceptual class 65.33

char 2-gram 30.33 char 2-gram 65.33 original conceptual class 70.67

char 3-gram 30.33 char 3-gram 63.67 expanded conceptual class 71.33

5 Conclusion

We study a new problem of inferring the gender of lurkers by their interest tags
and present a novel framework to solve this problem. We first initialize a set of
conceptual classes. We then expand these classes by applying association rule
mining on the unlabeled data. Finally, we use the conceptual class to condense
the tag vector in this class. The results demonstrate that our expansion approach
is very effective in finding similar tags. More importantly, the conceptual class
can significantly improve the classification accuracy. We hope this study will
inspire the research interests in user profiling of lurkers.
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Abstract. We propose a method for generating and evaluating faceted
queries over ontology-enhanced distributed graph databases. A user, who
only vaguely knows the domain ontology, starts with a set of keywords.
Then, an initial faceted query is automatically generated and the user
is guided in interactive modification and refinement of successively cre-
ated faceted queries. We provide the theoretical foundation for this way
of faceted query construction and translation into first order monadic
positive existential queries.

1 Introduction

In recent years, there is an increasing interest in developing database systems
enriched with ontologies. The terminological component of the ontology can
be used as a global schema providing an integrated global view over a set of
local databases. A crucial issue is then a query language and a query paradigm.
A standard way for querying graph databases (including RDF repositories) is
SPARQL [13]. However, it is not a suitable language for end-users. Moreover, in
order to formulate structural queries (e.g., in SPARQL or SQL), users have to
know both the structure of the underlying ontology and the query language. In
order to gain knowledge about the ontology, there is a need to query metadata.
Only then, the metadata can be used to formulate queries concerning data. It
can be expected that in order to progressively improve queries, the process of
querying data and metadata can be iterative, can make a lot of trouble and be
time consuming.

To avoid the aforementioned inconveniences, another query paradigms have
been proposed, such as keyword search [10,17], and faceted search [14]. Keyword
search is the most popular in information retrieval systems, but lately we observe
also a widespread application of keyword search paradigm to structured and
semistructured data sources [3]. Faceted search has emerged as a foundation
for interactive information browsing and retrieval and has become increasingly
prevalent in online information access systems, particularly for e-commerce and
site search [14]. Especially significant in the faceted search is implementation
of the browsing paradigm, allowing for exploring and expressing information
needs in interactive and iterative ways [7,16]. Most importantly, the browsing
and exploring concerns both the data and metadata.
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 275–286, 2016.
DOI: 10.1007/978-3-319-44406-2 21
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In this paper, we follow both the keyword and the faceted search paradigms
proposing a method of creating faceted queries starting from a keyword query.
As a keyword query we assume a partially ordered set consisting of keywords
being ontology concepts (unary predicates) and constants. The partial ordering
is induced by the order of keywords in the query. The response to a keyword
query is a subgraph of the ontology graph covering the given set of keywords
and preserving partial ordering of keywords in the keyword query. The subgraph
is used to generate an initial faceted query, which is presented to the user in a
form of a faceted interface. A user can interactively modify and refine the faceted
query browsing and exploring the ontology by means of the faceted interface. The
final faceted query is translated into a first order (FO) query which is evaluated
in local databases storing the extensional component of the ontology (in a form
of graph databases).

Besides providing a global schema, an ontology is used for: (a) guiding the
creation of faceted queries, (b) supporting translation of faceted queries into FO
queries, (c) query rewriting, (d) dealing with labeled nulls, (e) deciding about
query propagation, and to (f) control consistency [11]. It can be shown, that a
faceted query is equivalent to a FO monadic positive existential query in a tree-
shaped form. This allows for very efficient execution with polynomial combined
complexity (considering the size of ontology rules, sizes of local graph databases
and size of queries) [1,11].

Related work: The faceted search has been surveyed in [5,14]. This paradigm
was used for querying documents, databases and semantic data, e.g., [4,7,12,18].
Our work mostly relates to the results reported in [16] and [1]. In [16], the
authors focused on browsing-oriented semantic faceted search supporting users
in addressing their imprecise (fuzzy) needs. To this order, an extended facet tree
has been proposed, which compactly captures both facets and facet values. In
this case, faceted queries are equivalent to a subclass of FO conjunctive queries.
Our formalization of faceted queries is rooted in [1], where faceted queries are
equivalent to a subclass of FO positive existential queries. In [11], we proposed
a way of answering faceted queries in a multiagent system. We discussed, how
local agents consult with each other while evaluating queries, and we have shown
that it is enough to propagate only boolean queries during this cooperation.
The efficiency of query execution can be increased by asynchronous and parallel
processing.

Contribution: The main novelties of the paper are: (1) we propose a method
of generating faceted queries starting from a keyword query, and (2) we define
semantics of faceted queries by translating them into FO faceted queries (FOFQ).

Paper outline: The paper is organized as follows. In Sect. 2, we review pre-
liminaries and define the class of ontology under interest. A motivating running
example and architecture of the system are presented in Sect. 3. In Sect. 4, we
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propose the way of defining faceted queries. Formal syntax and semantics of
faceted queries are studied and illustrated in Sect. 5. In Sect. 6, we summarize
the paper.

2 Preliminaries

Let UP, BP and Const be countably infinite sets of, respectively, unary predicates
(denoted by A, B, C), binary predicates (denoted by R, S, T ) and constants
(denoted by a, b, c). In BP we distinguish type (to denote the relation “type of”)
and = (to denote equality relation between constants). In Const we distinguish
a subset LabNull of labeled nulls. For constants, which are not in LabNull, the
Unique Name Assumption (UNA) holds, i.e., different constants in Const\LabNull
represent different values (nodes). For labeled nulls the UNA is not required, i.e.,
different labeled nulls may represent the same value (node) [6].

A graph database is a finite edge-labeled and directed graph G = (N , E),
where N ⊆ Const ∪ UP is a finite set of nodes, and E ⊆ N × BP × N is a finite
set of labeled edges (or facts) , such that: if (n1, R, n2) ∈ E and R ∈ BP\{type},
then n1, n2 ∈ Const, if (n1, type, n2) ∈ E then n1 ∈ Const, and n2 ∈ UP. In
first order (FO) logic, we use the following notation: A(n) for (n, type, A) ∈ E ;
n1 = n2 for (n1,=, n2) ∈ E , and R(n1, n2), for (n1, R, n2) ∈ E .

Let Σ = ΣE ∪ ΣI be a finite subset of UP ∪ BP. An ontology with signature
Σ is a triple O = (Σ,R,G), where R and G are, respectively, a finite set of
rules and a finite database graph, over Σ and Const. The pair (Σ,R) is called
the terminological component (or a TBox) of the ontology, while G is called the
assertional component (or the ABox) of the ontology [2]. Predicates occurring
in G are referred to as extensional predicates, and are denoted by ΣE . The set
ΣI = Σ \ ΣE of predicates which are not in G are called intentional predicates.
In practice, an ontology conforms to one of OWL 2 profiles [9]. In this paper, we
restrict ourselves to rules of categories (1)–(11) listed in Table 1, last category,
(12), is the category of integrity constraints [8].

A FO formula is a monadic positive existential query (MPEQ), if it has
exactly one free variable and is constructed only out of: (a) atoms of the form
A(v), R(v1, v2) and v = a; (b) conjunction (∧), disjunction (∨), and existential
quantification (∃). A query Q(x), where x is a tuple of free variables (empty for
boolean queries), is satisfiable in O = (Σ,R,G), denoted O |= Q(x) if there is a
tuple a (empty for boolean queries) from Const, such that G ∪ R |= Q(a), where
G ∪R denotes all facts deduced from G using rules from R. Then a is an answer
to Q(x) with respect to O (the empty tuple a denotes TRUE).

3 Running Example and Architecture

Let O = (Σ,R,G), where: (1) G = G1 ∪ G2 ∪ G3 (Fig. 1); (2) rules in R are of
categories listed in Table 1, some of them are given in Table 2; (3) Σ = ΣE ∪ ΣI

is clear from the context.
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Table 1. Categories of ontology rules

Rule Name Representation

1 B(x) → A(x) subtype (subsumption) sub(B, A)

2 R(x, y) → A(x) domain dom(R, A)

3 R(x, y) → B(y) range rng(R, B)

4 R(x, a) → A(x) specialization (by a constant) spec1(R, a, A)

5 R(x, y) ∧ B(y) → A(x) specialization (by a type) spec2(R, B, A)

6 S(x, z) ∧ T (z, y) → R(x, y) chain chain(S, T, R)

7 B(x) ∧ C(x) → A(x) conjunction conj(B, C, A)

8 B(x) ∧ R(x, y) → A(y) range (conditional) rngc(B, R, A)

9 S(y, x) → R(x, y) inversion inv(S, R)

10 A(x) ∧ B(y1) ∧ B(y2)∧
R(x, y1) ∧ R(x, y2) →
y1 = y2

functionality func(A, R, B)

11 A(x1) ∧ A(x2) ∧ B(y)∧
R(x1, y) ∧ R(x2, y) →
x1 = x2

key (functionality of
inversion)

key(A, R, B)

12 A(x) → ∃y R(x, y) existence exists(A, R)

A system providing data access based on faceted queries over ontologies
(DAFO) (Fig. 2) belongs to a class of Ontology-Based Data Access (OBDA)
systems [15], and follows so called single ontology approach. Data in different
local DAFO databases complement each other, can overlap but do not contra-
dict one another. The union of all local databases is a consistent database.

A user interacts with the system using a faceted query interface (FQ Inter-
face) (step 1) and is guided by an ontology O = (Σ,R,G), stored in part in the
global schema, Sch = (Σ,R), and partly in local databases, DBi, 1 ≤ i ≤ k. As
a result of the interaction, a faceted query is created. The query is translated
into FOFQ query Q, and rewritten into Q′ (step 2).

Table 2. Sample rules in O conforming to categories from Table 1

org(x, ACM) → ACMConf(x)

authorOf(x, y) → Author(x) ∧ Paper(y)

atConf(x, y) ∧ ACMConf(y) → ACMPaper(x)

authorOf(x, y) ∧ ACMPaper(y) → ACMAuthor(x)

atConf(x, y) ∧ cyear(y, z) → pyear(x, z)

authorOf(x, y) → writtenBy(y, x)

Paper(x1) ∧ Paper(x2) ∧ String(y) ∧ title(x1, y) ∧ title(x2, y) → x1 = x2

Author(x) → ∃y authorOf(x, y)
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Fig. 1. A sample graph database consisting of three graphs

Fig. 2. Architecture of DAFO system

Then, Q′ is sent to all server agents (step 3). An agent do some local data-
base specific rewritings and evaluations (step 4), propagates (if necessary) some
boolean requests to partner agents (step 5), and gathers local answers (step 6).
Finally, answers obtained from server agents are collected by the manager agent
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and returned to the user (step 7). Each server agent Si has its local database
DBi = (Σi,Ri,Gi), where Σi ⊆ Σ, and Ri ⊆ R, 1 ≤ i ≤ k.

4 Defining Faceted Queries

In the process of defining queries in DAFO, a user starts from specifying a
keyword query, which is understood as an ordered set of keywords. In response,
a faceted interface and a first approximation of the expected faceted query, are
generated. The user can interactively refine the query using information provided
by the interface. Finally, the resulting faceted query is translated into a first order
faceted query (FOFQ), which is a monadic PEQ.

Keyword Queries. A keyword query KQ over an ontology O is a partially
ordered (by means of the preceding relation ≺) set KQ = (K0,K1, . . . ,Kq),
q ≥ 0, of keywords, where K0 ∈ UP, Ki ∈ UP ∪ Const, 1 ≤ i ≤ q. For example,
the following keyword query asks about ACM authors who presented a paper in
2014 at a DEXA conference.

KQ = (ACMAuthor, Paper, 2014,DEXAConf). (1)

A keyword K subsumes a keyword K ′ in O, denoted O |= K ′ � K, iff: (1)
if K and K ′ are constants, then K = K ′; (2) if K ′,K ∈ UP, then: (a) K = K ′,
or (b) O |= sub(K ′,K) (rule (1) Table 1), or (c) there is A ∈ UP such that
O |= K ′ � A and O |= A � K.

A sequence s = (K1, R1,K2, . . . , Rm−1,Km) is a path in O from K1 to
Km, denoted s ∈ pathO(K1,Km), if: (1) m = 1; (2) if Ki ∈ UP then Ki is a
domain of Ri, and a range of Ri−1; (3) if Ki = ai ∈ Const, then ∃xRi(ai, x) and
∃xRi−1(x, ai) are satisfied in O.

We assume, that if s ∈ pathO(K1,Km), then also s ∈ pathO(K ′
1,K

′
m), for

each K ′
1 and K ′

m, such that K1 and Km subsume K ′
1 and K ′

m, respectively, in
O. A sequence s preserves the ordering Ki ≺ Kj if Ki precedes Kj in s, and
violates this ordering if Kj precedes Ki in s.

Definition 1. The answer to KQ in O is a set PSet of paths in O such that:

– any path starts with K0 and ends with some K ∈ KQ,
– any path preserves ordering of keywords induced by KQ.

Example 1. For the keyword query (1), PSet can have five paths:
s1 = (ACMAuthor), s2 = (ACMAuthor, authorOf, Paper),
s3 = (ACMAuthor, authorOf, Paper, atConf,DEXAConf),
s4 = (ACMAuthor, authorOf, Paper, pyear, 2014),
s5 = (ACMAuthor, authorOf, Paper, atConf,Conf, cyear, 2014).
s5 violates the preceding 2014 ≺ DEXAConf , and is removed from PSet.
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From a given PSet, a set TSet representing PSet is created. Each path from
PSet, longer than 1, is represented by a set of triples, and a path with length 1,
with itself:

TSet = ∪{tset(s) | s ∈ PSet′},

tset(s) = {A| s = (A)}∪{(A,R,B) | (A,R,B) ∈ s}∪{(A,R, a) | (A,R, a) ∈ s}.

For example, TSet = {ACMAuthor, (ACMAuthor, authorOf, Paper),
(Paper, atConf,DEXAConf), (Paper, pyear, 2014), . . . }.

Creating Faceted Interface and Faceted Queries. Now, we discuss the
way of creating faceted interfaces (FIs) and faceted queries (FQs) from a set
TSet of triples representing the answer to a keyword query KQ. A FQ arises
from a FI by selecting among alternatives offered by the FI.

Algorithm 1 specifies creation of FI (the upper part (FI)) and a selection
procedure constituting a FQ (the bottom part (FQ)). In result, both FI and FQ
are represented by the labeled tree T defined as the output of the algorithm.

A labeled tree in Fig. 3 represents a FI, and its underlined (selected) elements
represent a FQ. The selection is done either by default (e.g., ∨) or is determined
by the content of the underlying keyword query.

{∨, ∧}{Author ,ACMAuthor})

{∨, ∧}{Paper ,ACMPaper ,DEXAPaper})

(authorOf, {∨, ∧}{any, p1, p2, . . . })

{∨, ∧}{Conf ,ACMConf ,DEXAConf } ε

(atConf, {∨, ∧}{any, c1, c2, . . . }) (pyear, {∨, ∧}{any, 2013, 2014})

Fig. 3. FI and initial FQ generated by Algorithm 1 for the keyword query KQ (1)

In Fig. 4, there is the interface implemented in DAFO system. First, a key-
word query is defined. Next, a FI and a FQ are generated as the answer to the
keyword query. The query can be interactively modified by a user. For example,
the labeled tree viewed in Fig. 4, represents the faceted query presented in Fig. 3
after some modifications (refinement).

The textual form of FQ in Fig. 4 is:

Γ = T1[B1 ∧ B2/T2[B3/T3 ∧ B4]], (2)

where: T1 = {ACMAuthor}, B1 = (univ,∧{NY,LA}), B2 = (authorOf, {any}),
T2 = {Paper}, B3 = (atConf, {any}), T3 = ∨{ACMConf ,DEXAConf }, B4 =
(pyear, {2014}).
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Algorithm 1. Creating a faceted interface and a faceted query
Input: O – an ontology, TSet – a set of triples being an answer to a keyword query
KQ = (K0, K1, . . . , Kq)
Output: A labeled tree T = (r, V, E, λV , λE) representing a faceted interface (FI part)
and a faceted query (FQ part), corresponding to TSet and O, where:

– V – a set of nodes, r ∈ V – a distinguished root node,
– E ⊆ V × V – a set of ordered edges,
– λV – node labeling function,
– λE – edge labeling function.

(FI) Labeling functions for creating faceted interface:

1. λV (r) = {∨, ∧}{A | O |= K0 � A} – the set of all supertypes of K0;
2. Let e = (v1, v2) ∈ E, (A, R, Bi) ∈ TSet, 1 ≤ i ≤ k, λV (v1) = {∨, ∧}X, and A ∈ X,

then
– λV (v2) = {∨, ∧}{B | O |= rng(R, B)} – the set of all ranges of R;
– λE(e) = (R, {∨, ∧}{any}∪X), where X = {a | O |= ∃x(A(x)∧R(x, a))} – the

set of all possible values of R.
3. Let e = (v1, v2) ∈ E, (A, R, ai) ∈ TSet, 1 ≤ i ≤ k, λV (v1) = {∨, ∧}X, and A ∈ X,

then
– λV (v2) = ε;
– λE(e) = (R, {∨, ∧}{any}∪X), where X = {a | O |= ∃x(A(x)∧R(x, a))} – the

set of all possible values of R.

(FQ) Labeling functions for creating faceted query (selections in faceted interface):

1. λV (r) = ∨{K0};
2. Let e = (v1, v2) ∈ E, (A, R, Bi) ∈ TSet, 1 ≤ i ≤ k, λV (v1) = ∨X, and A ∈ X,

then
– λV (v2) = ∨{B1, . . . , Bk};
– λE(e) = (R, ∨{any}).

3. Let e = (v1, v2) ∈ E, (A, R, ai) ∈ TSet, 1 ≤ i ≤ k, λV (v1) = ∨X, and A ∈ X, then
– λV (v2) = ε;
– λE(e) = (R, ∨{a1, . . . , ak}).

Intuitively, ∨{ACMConf ,DAXAConf } denotes conferences, classified either
as ACM or DEXA conferences; (atConf, {any}) denotes papers which have
been presented at any conference; (univ,∧{NY,LA}) denotes authors repre-
senting both universities, i.e., NY and LA university.

5 Formal Syntax and Semantics of Faceted Queries

Complex faceted queries, like (2), are built of simple faceted queries defined by
Definition 3, which in turn refer to simple faceted interfaces.

Definition 2. Simple faceted interfaces over an ontology O are:
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Fig. 4. A sample graphical form of a faceted query in DAFO

1. F = (type, {∨,∧}X), where X ⊆ UP – a simple type-based faceted interface,
2. F = (R, ({∨,∧}{any} ∪ X), where R ∈ BP, and X ⊆ {a | O |= ∃xR(x, a)} –

a simple BP -based faceted interface.

Definition 3. Simple faceted queries over simple faceted interfaces are:

1. ◦L, where L ⊆ X – over F = (type, {∨,∧}X), ◦ ∈ {∨,∧} denotes disjunctive
(∨) and conjunctive (∧) query;

2. (R, {any}) and (R, ◦L), where L ⊆ X – over F = (R, ({∨,∧}{any} ∪ X).

Definition 4. Let T and B be simple type- and BP -based FQs, respectively. A
(complex) FQ is an expression conforming to the syntax:

Γ :: = T | T [Δ]
Δ :: = B | B/Γ | Δ ∧ Δ

Note, that the FQ Γ in (2) conforms to the above definition. A FQ in a tree
form generated by means of Algorithm 1, can be translated into a FQ in the
textual form defined by the grammar given in Definition 4. The translation is
specified in Definition 5.

Definition 5. Let T = r((v1, T1), . . . , (vk, Tk)) be a tree form of FQ, where Ti

is a subtree with a root vi. Translation τ(T ) is defined recursively as follows:

τ(T ) = λV (r)[κ(e1, T1) ∧ · · · ∧ κ(ek, Tk)], where ei = (r, vi),

κ(e, T ) =
{

λE(e) if λV (T ) = ε ,
λE(e)/τ(T ) otherwise.

In order to define semantics, the faceted queries will be represented by means
of atomic faceted queries.

Definition 6. An atomic faceted query is an unary predicate A ∈ UP, a pair
(R, any), and a pair (R, a), where R ∈ BP.
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Any simple faceted query can be translated into a disjunction or a conjunction
of atomic faceted queries. For example:

– tr(∨{ACMConf,DAXAConf}) = ACMConf ∨ DAXAConf ,
– tr((atConf, {any})) = (atConf, any),
– tr((univ,∧{NY,LA})) = (univ,NY ) ∧ (univ, LA).

Definition 7. Let t and b be atomic type- and BP -based FQs, respectively. A
(complex) FQ in the atomic normal form is defined by the grammar (◦ ∈ {∨,∧}):

α :: = t | t[β] | α ◦ α | (α)
β :: = b | b/α | β ◦ β | (β)

The translation tr(Γ ) of (2) into the atomic normal form results in:

σ = t1[b1 ∧ b2 ∧ b3/t2[b4/(t3 ∨ t4) ∧ b5]], (3)

where: t1 = ACMAuthor , b1 = (univ,NY ), b2 = (univ, LA), b3 =
(authorOf, any), t2 = Paper, b4 = (atConf, any), t3 = ACMConf , t4 =
DEXAConf , b5 = (pyear, 2014),.

Semantics for FQs is defined by means of the semantic function �α�x that
assigns to a FQ in the atomic normal form a first order monadic positive exis-
tential query, referred to as FOFQ. x is then the only free variable in FOFQ.

Definition 8. The semantic function �α�x for FQs conforming to the grammar
given in Definition 7, is as follows (◦ ∈ {∨,∧}):

Fig. 5. Syntactic tree of FOFQ �σ�x, where σ is defined in (3)

�t�x = t(x)
�t[b]�x = �t�x ∧ ∃y(�b�x,y)
�t[b/α]�x = �t�x ∧ ∃y(�b/α�x,y)
�t[β1 ◦ β2�x = �t[β1] ◦ t[β2]�x
�t[(β)]�x = (�t[β]�x)
�α1 ◦ α2�x = ◦(�α1�x, �α2�x)
�(α)�x = (�α�x)

�(R, any)�x,y = R(x, y)
�(R, a)�x,y = R(x, y) ∧ y = a
�b/α�x,y = �b�x,y ∧ �α�y
�β1 ◦ β2�x,y = ◦(�β1�x,y, �β2�x,y)
�(β)�x,y = (�β�x,y)
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In general, a FQ σ in atomic normal form, can be expressed as a FOFQ �σ�x
of the form A(x) ∧ ϕ(x), where ϕ(x) is referred to as the qualifier of the query.
For σ in (3), �σ�x = ACMAuthor(x) ∧ ϕ(x), with the syntactic tree presented
in Fig. 5.

In [11], we proposed a method for evaluating FOFQs in a multiagent system.
Then a set of server agents (see Fig. 2) cooperate in answering the query.

6 Summary and Conclusions

We proposed a method of creating and evaluating faceted queries in an ontology-
enhanced database. The ontology under consideration belongs to the class deter-
mined by OWL 2 RL profile, and serves many purposes (mainly, as the global
schema, to query rewriting and to decide about query propagation). A user for-
mulates a request starting from a keyword query which is used to generate an
initial faceted query. The faceted query can be next modified and refined in inter-
active and iterative way. Finally, the query is translated into a first ordered query
and answered by cooperating local agents. The main issue for future work con-
cerns the way of presenting and browsing the information content in the process
of faceted query creation. In particular, there is a need for: (1) creating hier-
archies of value clusters, (2) inventing a way of presenting objects represented
by null values, (3) adopting a method of compact representation of complex
structures or complex contents. We are also planning to verify our approach in
real-world applications. This research has been supported by Polish Ministry of
Science and Higher Education under grant 04/45/DSPB/0149.
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Abstract. The Semantic Web contributes to the elicitation of knowl-
edge from data, and leverages implicit knowledge through reasoning algo-
rithms. The dynamic aspect of the Web pushes actual batch reasoning
solutions, providing the best scalability so far, to upgrade towards incre-
mental reasoning. This paradigm enables reasoners to handle new data
as they arrive. In this paper we introduce Slider-p, an efficient incre-
mental reasoner. It is designed to handle streaming expanding data with
a growing background knowledge base. Directed reasoning implemented
in Slider-p allows to influence the order of inferred triples. This feature,
novel in the state of the art at the best of our knowledge, enables the
adaptation of Slider-p’s behavior to answer at best queries as the rea-
soning process is not over. It natively supports ρdf and RDFS, and its
architecture allows to extend it to more complex fragments with a min-
imal effort. Our experimentations show that it is able to influence the
order of the inferred triples, prioritizing the inference of selected kinds
of triples.

Keywords: Incremental reasoning · Rule-based reasoning · Directed
inference

1 Introduction

Reasoning is inherently a complex process, and while a large body of work in
the area of reasoning algorithms and systems work and scale well in confined
environment [5,6,11], the distributed and dynamic nature of Web creates new
challenges for reasoning. This calls for new techniques to replace batch processing
– where the arrival of new data re-initiates the reasoning process form scratch
– to incremental reasoning [1]. This allows to handle new data as soon as they
arrive, without re-inferring the previously inferred knowledge. In this paper, we
consider reasoning in a forward chaining mode, with materialisation.

Several solutions have been proposed to optimise the incremental material-
isation of ontologies. [4] proposes a technique to maintain the classification of
ontologies as they evolve, and provides encouraging results. However, it is not a
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 287–294, 2016.
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viable solution in case of static hierarchy of ontologies – i.e., if the hierarchy is
not affected by modification. Moreover, it is not adapted for ontologies with a
high number of nominals. [8] handles both addition and deletion in the setting of
incremental classification and is generic to the fragment used for the inference. It
is however limited to the classification on the TBox, and dedicated to a specific
ruleset.

The major drawbacks that state-of-the art approaches suffer from is the
inability to deal with complex ontologies and the fact they are not tailored
to deal with large amount of dynamic RDF data and particularly large A-Boxes.

To overcome these drawbacks, we introduced Slider [3], an efficient reasoner
to perform incremental reasoning. It is a parallel solution, generic face to the
inference rules used. It limits the impact of duplicates generation and its data
structures are optimised for both performance and space consumption. Finally,
Slider allows to prioritize some triples based on their kind during the inference.
Its core features that stand it apart from the previous approaches are as follows.

Parallel and Scalable Execution: We implement a parallel and scalable
method to perform incremental reasoning. Each inference rule is mapped to
an independent module. These modules receive triples according to defined rules
and distribute infered triples to other modules for further processing.

Fragment’s Customization: Slider natively supports both RDFS and ρdf [9]
fragments, and its architecture allows it to be extended to any other fragment.

Duplicates Limitation: Reasoning could result in a massive amount of dupli-
cate data that causes decrease in performance. To avoid such situation we use
a vertical partitioning approach along-with multiple indexing (on predicates,
subjects and objects) technique.

Dedicated Data Structures: To enhance scalability, the triplestore has been
designed to minimize the space needed for the triples storage and to allow fast
triples retrieval thanks to the vertical partitioning. The triples elements (subject,
predicate and object) are stored as integers and a dictionary allows to retrieve
original values.

In this paper, we present Slider-p, an extension of Slider [3] that allows rules
prioritization. Incremental reasoning aims to be executed in a continuous process,
updating the materialisation of the knowledge base as new data are sent to the
system. In this case, it is impossible to guarantee that any implicit knowledge
contained in the knowledge base has been inferred when a punctual query occurs.
Slider-p proposes an inference mode, to prioritize the kinds of knowledge inferred
first, in order to maximize the probability to answer correctly the query.

The rest of the paper is organized as follows: Sect. 2 describes the system
architecture. Section 3 presents the directed inference principle that allows to
prioritize rules. Section 4 presents the experimental results of a large evalua-
tion campaign including batch, incremental and directed inference over standard
datasets. Finally Sect. 5 concludes.
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2 System Architecture

Figure 1 shows the high-level architecture of the system with three inference
rules R1, R2 and R3. Incoming triples are send to both the triplestore and the
buffer of certain rule modules – where each module accepts the triples accord-
ing to rules’ predicates. Once a buffer exceeds its predifined size or timeout, it
initiates a new instance of a rule module that applies its rule on buffered triples
using also relevant triples stored in the triplestore. Newly created instances are
managed by the thread pool for load distribution and scalability of the system.
The distributor collects inferred data to be used as an input, and identifies the
modules that require the resulted data for their inference process based on a
rules dependency graph – thus ensuring completeness. For instance, the result of
R1 is used by R2, R3 and R1 itself. Distributors and buffers play an important
role in the architecture. Buffers orchestrate the load distribution of triples and
the creation of rule modules instances when required.

Fig. 1. Global architecture of Slider

A more detailed description of the architecture can be found in [3].

3 Directed Inference

The classic method for reasoning aims to explicit all the implicit triples from the
knowledge base as fast as possible. This method is not sufficient in a continuous
reasoning system. Reasoning is a complex process and, as new data constantly
arrive, it is not conceivable to wait for the end of the process to answer a punctual
request.

To address this issue, we propose directed inference. It has been implemented
in Slider-p. Its goal is to infer first the triples used by a future punctual query,
to maximize the probability to answer correctly this query. The execution of the
rules inferring target triples are prioritized. To do so, a smaller buffer size and a
smaller timeout are assigned to these rules, leading to a more frequent execution
of them.
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More practically, a hierarchy is defined between rules of the fragment, based
on a level assigned to each rule. The following steps are used to associate a level
to all the fragment’s rules, using the rules dependency graph:

1. The rules that directly infer the targeted triples have level 1;
2. the rules parent of the rules with the highest level l have level l+1;
3. repeat step 2 until there is no rule without a level parent of a rule with a

level;
4. the remaining rules with no level have the highest level assigned plus one.

Rules with level 1 are the most important ones, and rules with the biggest
level are the less important ones. Figure 2 shows an example of hierarchy to
prioritize the triples with type as predicate on ρdf. The rules prp-dom, prp-rng
and cax-sco can infer triples with predicate type. Their level is set to 1. The
rules parents of the rules of level 1 are scm-sco and prp-spo1. Their level is
set to 2. There are no rules without level parent of a rule with the level 2. The
remaining rules, scm-spo, scm-dom2 and scm-rng2, get level 3.

Fig. 2. Rules dependency graph with level to prioritize type triples on ρdf

Once a level is assigned to each rule, the Eq. 1 is used to compute the size of
the buffer for a rule with a level i > 1. BufferSize1 determines the size of the
buffer for a rule with the level 1, i is the level of the rule, and α is a coefficient.
The timeout is calculated similarly with Eq. 2.

BufferSizei = �α BufferSize1 log(i) + BufferSize1� (1)

Timeouti = �α Timeout1 log(i) + Timeout1� (2)

The coefficient α allows to tune the importance of the prioritization. The
bigger it is, the higher the difference of buffer size and timeout between two
levels is important.
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4 Experimentations

Our experimental settings use four ontologies, listed in Table 1. The first one
is generated using the Berlin SPARQL Benchmark (BSBM) [2] to generate a 5
million triples ontology. This ontology shows Slider-p ability to handle high rates
of data by producing smaller set of inferred triples during reasoning process. The
second ontology is made of a chain of a thousand subClassOf relations. This
ontologies is easy to generate but provides the utmost practical interest due to
its complexity. The chain of n rules produce O(n2) unique triples, however com-
monly used iterative rules schemes produce O(n3) triples [11]. The last category
of ontologies contains real-world ontologies: one based on Wikipedia, and the
other based on WordNet [10].

These ontologies are representative of synthetic data (issued from BSBM
benchmark generator tool), extensive closure computation [7] (chained subsomp-
tions), and ontologies of practical interest (Wordnet and Wikipedia).

We ran our experimentations on a standalone machine under Linux Ubuntu
12.04, with an AMD processor with 4 1.4 GHz cores, and 16 GB RAM.

Table 1. Ontologies used for the experimentations, with number of triples before
inference, and after inference on ρdf and RDFS

Ontology Input Inferred with ρdf Inferred with RDFS

BSBM5M 5000000 43212 1449107

wikipedia 458369 191574 555653

wordnet 473589 0 634692

subClassOf1000 2000 498501 499505

4.1 Incremental Performances

In this section we compete the incremental reasoning and the batch reasoning,
using Slider-p. The inference is done on each ontology (i) incrementally by 10 %
step of the total ontology by using the previously inferred knowledge and (ii)
by restarting each time the inference process from the beginning, as in batch
reasoning. We consider the ontologies BSBM5M, SubClassOf1000, Wikipedia
and Wordnet in these experimentations. For these experimentations, all the rules
have level 1.

Figures 3 and 4 show the results of this experimentation. The shown inference
times are the average for the four used ontologies. For each step, the sum of the
inference times is also shown for the incremental reasoning.

The use of incremental reasoning is always interesting, and its performances
are linear through the addition of new triples. The sum of the inference times for
incremental reasoning is higher than for batch reasoning, but follows the same
evolution as batch reasoning.
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Fig. 3. Inference time comparison between batch and incremental reasoning, on ρdf
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Fig. 4. Inference time comparison between batch and incremental reasoning, on RDFS

These results shows that incremental reasoning allows to update inferred
knowledge faster than with batch reasoning –which has to restart the process
from the beginning– while having a total cost similar to the cost of the batch
processing.

4.2 Directed Inference

This section describes the experimentations conducted to validate the prioriti-
zation of the knowledge inferred during the reasoning process. We compare the
number of triples inferred per time unit without prioritization, then prioritizing
the triples with predicate type and finally prioritizing the triples with predi-
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cate subClassOf. We used the Wikipedia ontology for this experimentation: the
inference on this ontology only generates triples with type or subClassOf. The
experimentations have been executed for both ρdf and RDFS, with α set to 50.

The results of this experimentation are shown in Fig. 5. Without prioritiza-
tion, the two kinds of triples are generated uniformly during the reasoning. With
prioritization, prioritized triples are inferred first in all our experimentations.
Certain cases enhance the performance of the reasoner, e.g., the prioritization of
subClassOf triples on RDFS improves the inference time by about 600 %.
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Fig. 5. Amount of triples inferred through time on ρdf and RDFS depending on the
prioritized triple kind

5 Conclusion and future work

In the frame of reasoning on evolving triples, few proposals enable to continu-
ously infer new knowledge as new explicit triple are sent to the reasoner. Most
of the solutions limit the amount of data in the knowledge base by eliminating
former triples. Instead of firing a full inference at a regular interval of time,
we propose Slider-p, a reasoner that handles triples flows at the very core of
its architecture. Its source code is available here: http://juleschevalier.github.
io/slider. We evaluate Slider-p against 4 ontologies: an ontology generated from

http://juleschevalier.github.io/slider
http://juleschevalier.github.io/slider
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BSBM, a specific one to the worst-case reasoning on subsumption relationship,
and finally real field ontologies. Our experimentations on the incremental per-
formances show that this paradigm is faster than batch reasoning, and has the
same cost. We also proved experimentally that the directed inference allows to
select a kind of knowledge to be inferred in priority. For our future endeavours,
we will focus on two main aspects of Slider-p. First, we will implement more
complex inference rules, to implement reasoning over more complex fragments.
Second, we will implement a just-in-time optimisation of the rules execution’s
scheduling.
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Abstract. Finding the best matching job offers for a candidate profile
or, the best candidates profiles for a particular job offer, respectively
constitutes the most common and most relevant type of queries in the
Human Resources (HR) sector. This technically requires to investigate
top-k queries on top of knowledge bases and relational databases. We
propose in this paper a top-k query algorithm on relational databases
able to produce effective and efficient results. The approach is to con-
sider the partial order of matching relations between jobs and candidates
profiles together with an efficient design of the data involved. In partic-
ular, the focus on a single relation, the matching relation, is crucial to
achieve the expectations.

1 Introduction

A profile describes a set of skills either, a person posses detailed in a curricula
vitae (CV) or, a job advertisement details via the job description. In this line,
profile matching concerns to measure how well a given profile matches a requested
profile. Although, profile matching is not only concerned to the HR sector but
a wide range of other application areas: real state domain, matching system
configurations to requirements specifications, image similarity, etc.

With respect to querying knowledge bases in the HR domain, the commonly
investigated approach is to find the best k (with k ≥ 1) matches for a given
profile, either a CV or a job offer [1]. This constitutes what is commonly known
as top-k queries. Top-k queries have been thoroughly investigated in the field of
databases, usually in the context of the relational data model [2,7]. The study
of such queries in the context of knowledge bases has also been researched [6].

Top-k queries in relational databases are in general addressed by associating
weights or aggregates acting as ranking the part of data relevant to the user’s
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needs, a potential join of the relevant relations involved and, a ranking (or sort-
ing) of the tuples that constitutes the expected result set. Computing all these
steps in a query is a high resource consuming process, depending on the design
and the nature of data. The contribution of this paper takes benefits of the
data structure supporting subsumption hierarchy as in rings and spiders known
from network databases and reviewed in object-oriented databases. We make
use of these structures, known for excellent performance in supporting queries
that exploit hierarchical data structuring, in order to minimize the selection of
tuples and the join of relations as well as eliminating the weighting and sorting
of tuples on the query, by means of pre-weighting on the partial order of concepts
of knowledge bases and pre-ordering of tuples via the matching measures.

The research in this paper is in line with a previous work [3] where we
addressed techniques on improving profile matching and the novel idea of blow-
up operators in knowledge bases (KB) in the HR sector. The starting point of this
research is based on [4] where Popov and Jebelean exploited the representation
of taxonomies by defining an asymmetric matching measure based on filters in
KB. This has been further investigated in [5] by extending the ontology hierarchy
with cross relations in the form of weighted directed edges.

The paper is organized as follows: In Sect. 2 we cover some aspects of our
theory on profile matching introduced in [3] relevant to this work. Our contribu-
tion on data organization for top-k queries is introduced in Sect. 3. In Sect. 3.1
we introduce a relational database schema to implement top-k queries and in
Sect. 3.2 we show an algorithm implementing our approach of top-k queries.

2 Preliminaries

We present in this section basic concepts from [3] that are fundamental to the
representation of profile matching in the HR domain.

Concepts Ci in a TBox of a KB define a lattice (L,≤) and we refer to concepts
Ci in L to denote concepts Ci in a given KB. Thus, the terms TBox and lattice
are used as synonyms from now on.

A filter in a lattice (L,≤) is a non-empty subset F ⊆ L such that for all
C,C ′ with C ≤ C ′ whenever C ∈ F holds, then also C ′ ∈ F holds.

If P ⊆ I is a profile, P defines in a natural way a filter F of the lattice L of
concepts. Therefore, for determining matching relations we can concentrate on
filters F in a lattice.

If (L,≤) is a lattice, and F ⊆ P(L) denote the set of filters in this lattice.
A matching measure is a function μ : F × F → [0, 1] such that μ(F1,F2) =
m(F1 ∩F2)/m(F2) with F1,F2 ∈ F. If w is a weight associated to every concept
C ∈ L then, a matching measure μ is defined by weights w(C) = m({C}) ∈ [0, 1]
such that

μ(F1,F2) =
∑

C∈F1∩F2

w(C) ·
(

∑

C∈F2

w(C)

)−1

(1)



Top-k Matching Queries for Filter-Based Profile Matching 297

Fig. 1. A lattice, its filters and the matching measures

Example 1. A lattice with four elements: L = {C1, C2, C3, C4} defines up to five
filters F = {F1,F2,F3,F4,F5}, as shown in Fig. 1(a) and (b) respectively.

If we give some weights to the elements of L, for instance w(C1) = 1
10 , w(C2) =

2
5 , w(C3) = 3

10 , and w(C4) = 1
2 and calculate the matching measure μ(Fi,Fj)

and μ(Fj ,Fi) (for 1 ≤ i, j ≤ 5) with the Formula in (1), we obtain the result
shown in Fig. 1(c).

Note that in general, the matching measures are not symmetric. If μ(Fg,Fr)
expresses how well a given filter Fg matches a required filter Fr, then μ(Fr,Fg)
measures the excess of skills in the given filter Fg that are not required in Fr.
And clearly, μ(Fi,Fj) = μ(Fj ,Fi) = 1, when i = j for 1 ≤ i, j ≤ 5.

Example 2. Take for instance, Fr = F3 as a required profile and two given filters
Fg1 = F3 and Fg2 = F4. They are both equally and highly qualified for the
requirements in Fr given their matching measures: μ(Fg1 ,Fr) = μ(Fg2 ,Fr) = 1.
Although, if we consider the measures μ(Fr,Fg1) = 1 and μ(Fr,Fg2) = 1

2 ,
F3 matches better than F4 as C2 is not part of the required skill set.

3 Internal Structure of Profile Matching

In a modeled selection process where there is a set of profiles P, i.e., job and
applicants profiles, defined by filters in a lattice L, we denote by ϕ the conditions
to be met by profiles in order to be selected, then Pϕ denotes the set of profiles
in P satisfying ϕ and Pr ∈ P is a required profile driving the selection by holding
the conditions ϕ.

Note that, when referring to matching measures we refer to Formula (1) that
includes weighting on the elements of the lattice L, as shown in Example 1.

Definition 1. For all P ∈ Pϕ and P ′ ∈ (P−Pϕ), select λ profiles, where λ ≥ k,
out of the set of profiles Pϕ such that P is selected and P ′ is not selected if
μ(P, Pr) > μ(P ′, Pr) and no subset of Pϕ satisfy this property.

In order to obtain the best-k matching profiles (either job or applicant pro-
files) we first need to query for filters representing those profiles.
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Consider Fr being a filter representing the required profile Pr, a requested job
profile for instance. Then, consider l being a number of filters in F (Fg1 , . . . ,Fgl

)
representing candidates profiles matching Pr in a certain degree, satisfying ϕ
such that, their matching measures are above a threshold ti ∈ [0, 1] this is,
μ(Fgx

,Fr) ≥ ti for x = 1, . . . , l.
Then, every Fgx

represents a finite number j of profiles (Pg1 , . . . , Pgj
), can-

didates profiles matching Pr, where μ(Pgy
, Pr) ≥ ti for y = 1, . . . , j and j ≤ k.

The relation between filters in L and the number of related profiles rep-
resented by filters is defined by a function ν : N → N where ν(x) = j

and
∑l

x=1 ν(x) = λ. Then any Fgl+1 is not selected as the matching value
μ(Fgl+1 ,Fr) < ti.

As for the second part of the definition, each filter F ∈ F is uniquely deter-
mined by its minimal elements such that, we can write F = {C1, . . . Cr}. Then,
every profile represented by a filter is also uniquely determined by the elements
in F . Therefore, for any profile P

′′
in a subset of Pϕ the matching value is

μ(P
′′
, P ) < ti then P

′′
does not satisfy the property.

Note that we used λ instead of k in function ν(x) as we consider the profiles
λ − k in Pϕ need to be consider as well, as they satisfy μ(Fgx

,Fr) ≥ ti. In other
words, we choose to select all profiles with the same matching measure right
above the threshold rather than cutting off exactly on k.

Example 3. Assume to have a job offer A and four candidates profiles
{B,C,D,E} that meet the requirements in A, where the five profiles are repre-
sented by the filters in Example 1 such that:

Filters representing Profiles Matching Measures

F4 represents {A, B} μ(B, A) = 1

F2 represents {C} μ(C, A) = 0.63

F3 represents {D, E} μ(D, A) = μ(E, A) = 0.5

If we choose k = 3 with ti = 0.5 the final output is {B,C,D,E} with λ = 4,
providing all profiles represented by F3.

In order to obtain the best l filters satisfying ϕ, we first need to know the
minimum matching value representing l filters. Thus, we start by selecting any
ti. If less than l solutions are found, we decrease ti (ti−1). If more than l solutions
are found, we increase ti (ti+1). The search stops when the l filters satisfying
μ(Fgx

,Fr) ≥ ti for x = 1, . . . , l are found.
With the optimum ti, we query for the related k profiles where μ(Pg, Pr) ≥ ti.

This assumes to be given the matching measures between all filters in L and
ultimately, between all profiles represented by filters.

As exposed in Example 1, matching measures between filters define a matrix
as depicted in Fig. 1(c). In theory, also matching measures between profiles
should do it. Although, we focus on filters in order to achieve a faster and more
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efficient search of profiles as the number of filters is assumed to be smaller than
the number of profiles (l ≤ k).

Definition 2. A Matrix M is a structure of matching measures μφ between
filters in F where columns represent the required filters Fr and rows represent
the given filters Fg.

Obtaining the k solutions in M involves referring either to one column or
to one row. The process is analogous although, the perspective is different.
While reading the measures from the columns provides the so called fitness
between profiles μ(Pg, Pr), the measures read from rows are the inverted measure
μ(Pr, Pg) denoted as overqualification. This should be considered as emphasized
in Example 2 where the requirements maybe subject to a second ranking with
respect to the inverted measure.

If we focus on columns, when querying for a particular Fr, there would be
Fgx

(x = 1, . . . , l) where μ(Fgx
,Fr) ≥ ti. We assume all elements are in total

order according to the ≤ relation of μ(Fgx
,Fr). The advantage is that when

searching for any given l and ti we only need to point to the right element in the
column and search for the next consecutive l − 1 elements in descending order
of μ. The process is analogous if searching on rows.

We explain next how we organize profiles. We first assume an identification
label ρi representing the number i of rows and, σi representing the number i of
columns in M where i > 0.

Definition 3. Given a required filter Fr, for every element μi in column σi in
M representing μ(Fgx

,Fr) there is a profile record

(μi, n
>
i , n=

i , n<
i ,next,prev, p)

describing the matching profiles Pg where:

n>
i denotes the number of profiles Pg where μ(Pg, Pr) > μi,

n=
i denotes the number of profiles Pg where μ(Pg, Pr) = μi,

n<
i denotes the number of profiles Pg where μ(Pg, Pr) < μi,

next is a reference to the next matching value in σi where μ(Fg(x+1) ,Fr) ≥ μi,
prev is a reference to the next matching value in σi where μ(Fg(x−1) ,Fr) ≤ μi,
p is a reference to a linked-list of filters matching Fr.

The numbers n>
i , n=

i , n<
i are significantly important when determining the

number of profiles represented by a filter without actually querying for them,
i.e., if (n>

i + n=
i ) ≥ k for a given μi we get all profiles needed.

References Next and Prev make possible to track the following greater or
smaller matching value by following the references. Every profile record contains
additionally a reference p to the related profiles in a σi column where they are
organized in a transitive closure structure, ordered by the ≤ elements of μ.

Example 4. Figure 2 shows a representation of profile records corresponding to
F4 (filter representing profile A) from Example 3. Note that only the relation to
filters and profiles of μ = 0.5 are shown in here in order to simplify the graph.
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Fig. 2. Linked list of matching measures

Organizing data in this rings and spiders structure known from network data-
bases leads to a better performance on the search for the top-k elements. Start-
ing by fetching a column σi and together with n>

i , n=
i , n<

i calculate the profile
records needed to get the k matching profiles. Then, following the ordered linked-
list structure of filters, and profiles afterward, until the k(λ) elements are found.
The definition of profile records on rows ρi of M is analogous to Definition 3.

The following section shows an implementation of M, profile records and
linked-list of profiles in a relational database schema. In Sect. 3.2 we show an
algorithm that implements our definition of top-k queries.

3.1 Implementation of Top-K Profile Matching

Our implementation approach of top-k queries as described in Sect. 3 is designed
on a relational database schema for the storage and maintenance of filters, pro-
files and matching measures of an instance of L. The relational schema is com-
posed of 9 relations although, we present only two relations: ProfileRecords and
MatchingProfiles that describe profile records as in Definition 3 and the linked-
lists of matching profiles, respectively. Figure 3 shows an example of the relations
representing the elements involved in Example 3. For every RequiredFilter in Pro-
fileRecords there is a number of matching measure, that represent the number
of elements per column σi in M. The attribute NextID in ProfileRecords is a
reference to another tuple (ID) in the relation defining the ≤ relation of elements
of Fitness. Attributes GreaterFitness, EqualFitness and LesserFitness represent,
respectively, the elements n>

i , n=
i , n<

i from profile records as in Definition 3.

ID Required
Filter

Fitness Greater
Fitness

Equal
Fitness

Lesser
Fitness

Next
ID

1 F4 1 0 1 3 2
2 F4 0.63 1 1 2 3
3 F4 0.50 2 2 0 4
4 F4 0.13 4 0 0 null

(a) Relation ProfileRecords

ID Required
Filter

Required
Profile

Given
Filter

Given
Profile

Fitness Next
ID

1 F4 A F4 B 1 null
2 F4 A F2 C 0.63 null
3 F4 A F3 D 0.5 4
4 F4 A F3 E 0.5 null

(b) Relation MatchingProfiles

Fig. 3. Example of relations ProfileRecords and MatchingProfiles

In turns, for every RequiredFilter(Fr) in ProfileRecords there is a finite num-
ber of GivenFilters in MatchingProfiles that match the requirements in Fr. The
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attribute NextID is a reference to another tuple (ID) in the relation defining the
≤ relation of elements of Fitness. Note that a value of null represents the end
of the list for the GivenFilter.

3.2 Querying the Top-K Candidate Profiles

Filters in a lattice L represent the properties of profiles via the hierarchical
dependency of concepts in L. Thus, for every required profile Pr in P there
is a required filter Fr ∈ L representing the profile. Then retrieving the top-
k candidate profiles for a required filter from our relational schema is mainly
performed by querying on relations ProfileRecords and MatchingProfiles.

Algorithm. Top-k
Input:

required filter: Fr, number of matching profiles: k, matching threshold: μ
Output:

matching profiles: Pg1 , . . . , Pgk , measures: μ1, . . . , μk

Begin
1 CREATE relation Results = (GivenProfile, Fitness, NextID)
2 (fitness, count, nextid) := π(3,5,7)

(
σ (2=Fr,

max(Fitness))

(ProfileRecords)
)

3 WHILE (count < k) OR (fitness ≥ μ) DO
4 Results ← π(5,6,7)

(
σ(6=fitness,

2=Fr)

(MatchingProfiles)
)

5 next := Results.NextID
6 WHILE (next IS NOT NULL) DO
7 Results ← π5,6,7

(
σ(2=Fr)(MatchingProfiles) ��

1=3
Results

)

8 END WHILE
9 (fitness, total, nextid) := π(3,5,7)

(
σ(1=nextid) (ProfileRecords)

)

10 count := count + total
11 END WHILE
12 RETURN (π1,2(Results))
End

The algorithm Top-k returns an ordered list of top-k profiles matching a
given filter. We use relational algebra notation thus, σ, π and �	 are the selection,
projection and natural join operators, respectively. Numeric subscripts are used
to denote relation attributes. For instance, π1(MatchingProfiles) is the projection
of attribute ID of relation MatchingProfiles.

The algorithm accepts as inputs: the required filter Fr, the number k of
matching profiles and the minimum matching value μ to search for. The outputs
are: the k matching profiles Pg1 , . . . , Pgk

and their matching measures μ1, . . . , μk.
With Fr, the algorithm fetches the tuple with the greatest value of Fitness

in ProfileRecords (line 2) and follows the references on NextID (line 9) until the
k tuples are reached or μ(Fg,Fr) < ti (line 3). Then, for every Fg in Match-
ingProfiles, the algorithm queries on the linked-list of profiles (lines 6–8) and
appends them in the temporary relation Results (line 7). Note that by using
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“fitness ≥ μ” in line 3, we include the λ − k elements as in Definition 1. The
algorithm finishes by returning the elements of GivenProfile and Fitness on the
tuples of Results.

An implementation of B-Tree indexes on elements of Fitness (ProfileRecords
and MatchingProfiles) in order to access the sorted elements, as well as indexes
on RequiredFilter (ProfileRecords and MatchingProfiles) for random access is
expected to improve performance. The implementation of a parallel processing
on the search of matching profiles given the required profile records by calculating
(n>

i + n=
i ) is another point of improvement.

Note that over-qualification has not been considered in Sects. 3.1 and 3.2.
Although, it has been thought as an analogous process shown with Fitness.
Additionally, a couple of straightforward algorithms to update profile changes
and in consequence, matching values, linked-list of profiles and in particular the
elements n>

i , n=
i , n<

i in profile records have been considered.

4 Conclusion

We presented in this paper an algorithm to address top-k queries where we use
a transitive closure structure on top of relational databases for implementation.
The identification of missing requirements on profiles, essential on selecting the
best candidates, has still to be consider. This implies an investigation of gap
queries on grounds of matching measures that is the focus of our future research.
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Abstract. Following the principles of Linked Data (LD), data providers
are producing thousands of interlinked datasets in multiple domains
including life science, government, social networking, media and pub-
lications. Federated query engines allow data consumers to query sev-
eral datasets through a federation of SPARQL endpoints. However, data
providers just receive subqueries resulting from the decomposition of the
original federated query. Consequently, they do not know how their data
are crossed with other datasets of the federation. In this paper, we pro-
pose FETA, a Federated quEry TrAcking system for LD. We consider that
data providers collaborate by sharing their query logs. Then, from a fed-
erated log, FETA infers Basic Graph Patterns (BGPs) containing joined
triple patterns, executed among endpoints. We experimented FETA with
logs produced by FedBench queries executed with Anapsid and FedX
federated query engines. Experiments show that FETA is able to infer
BGPs of joined triple patterns with a good precision and recall.

Keywords: Linked data · Federated query processing · Log analysis ·
Usage control

1 Introduction

Linked Data (LD) interlinks massive amounts of data across the Web in multiple
domains like life science, government, social networking, media and publications.
Federated query engines [1–3,5,9,11] allow data consumers to execute SPARQL
queries over a decentralized federation of SPARQL endpoints maintained by LD
providers. But, data providers are not aware of users’ federated queries; they
just observe subqueries they receive. Thus, they do not know when and which
datasets are joined together in a single query. Consequently, the federation does
not hold enough meta-information to ensure services, such as, efficient material-
ization to improve joins, activation of query optimization techniques, discover-
ing data providers partnership, etc. Knowing how provided datasets are queried
together is essential for tuning endpoints, justify return of investment or better
organize collaboration among providers.
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A simple solution for this problem is to consider that data consumers publish
their federated queries. However, public federated queries cannot be considered
as representative of real data usage because they may represent a small portion of
really executed queries. Only logs give evidences about real execution of queries.

Thus, in this paper, we address the following problem: if data providers share
their logs, can they infer the Basic Graph Patterns (BGP) of federated queries
executed over their federation? Many works have focused on web log mining [6,7],
but none has addressed reversing BGPs from a federated query log.

The main challenge is the concurrent execution of federated queries. If we
find a function f , to reverse BGPs from isolated traces of one federated query,
is f able to reverse the same BGP from traces of concurrent federated queries?

We propose FETA to implement f , a Federated quEry TrAcking system that
computes BGPs from a federated log. Based on subqueries contained in the
log, FETA deduces triple patterns and joins among triple patterns with a good
precision and recall. Our main contributions are:

1. the definition of the problem of reversing BGPs from a federated log,
2. the FETA algorithm to reverse BGPs from federated logs,
3. an experimental study using federated queries of the benchmark FedBench1.

From execution traces of these queries, FETA deduces BGPs under two sce-
narios, queries executed in isolation and in concurrence.

The paper is organized as follows. Section 2 introduces a motivating example
and our problem statement. Section 3 presents FETA and its heuristics. Section 4
reports our experimental study. Section 5 presents related work. Finally, conclu-
sions and future work are outlined in Sect. 6.

2 Motivating Example and Problem Statement

In Fig. 1, two data consumers, C1 and C2, execute concurrently federated
queries CD3 and CD4 of FedBench. They use Anapsid or FedX federated
query engines to query a federation of SPARQL endpoints composed of LMDB,
DBpedia InstanceTypes (IT), DBpedia InfoBox (IB) and NYTimes (NYT). Data
providers hosting these endpoints receive only subqueries corresponding to the
execution of physical plans of CD3 and CD4. For example, CD3 can be decom-
posed into {tp@IT

1 .(tp2.tp3)@IB .(tp4.tp5)@NY T }, and NYT just observes tp4 and
tp5: it does not know these triple patterns are joined with tp1 from IT and
(tp2, tp3) from IB. So, NYT does not know the real usage of data it provides.

More formally, we consider that an execution of a federated query FQi pro-
duces a partially ordered sequence of subqueries SQi represented by E(FQi) =
[SQ1, ..., SQn]. Subqueries are processed by endpoints of the federation at given
times represented by timestamps. We suppose that endpoints’ clocks are syn-
chronized, i.e., timestamps of logs can be compared safely. Timestamps of sub-
queries in a federated log are partially ordered because two endpoints can receive

1 http://fedbench.fluidops.net/.

http://fedbench.fluidops.net/
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Fig. 1. Concurrent execution of FedBench queries CD3, CD4 over a federation of end-
points.

queries at same time. Query execution with a particular federated query engine,
qei, is represented by Eqei(FQi). In addition, we represent a concurrent exe-
cution of n federated queries by E(FQ1 ‖ ... ‖ FQn)) = [SQ1, ..., SQn]. This
work addresses the following research question: if data providers share their logs,
can they rebuild the BGPs annotated with the sources that evaluated each triple
pattern? From the previous example, we aim to extract two BGPs: one cor-
responding to CD3 {tp@IT

1 .(tp2.tp3)@IB .(tp4.tp5)@NY T } and another to CD4
{(tp1.tp2.tp3)@LMDB .(tp4.tp5)@NY T }. Next definitions formalize this problem.

Definition 1 (BGPs’ reversing). Given a federated log corresponding to the
execution of one federated query E(FQi), find a function f(E(FQi)) producing
a set of BGPs {BGP1, ..., BGPn}, where each triple pattern is annotated with
endpoints that evaluated it, such that f(E(FQi)) approximates (≈) the BGPs
existing in the original federated query. Thus, if we consider that BGP (FQi)
returns the set of BGPs of FQi then f(E(FQi)) ≈ BGP (FQi).

In our motivating example, if C1 and C2 have different IP addresses, then it
is straightforward to apply the reversing function separately on each execution
trace. However, in the worst case, if they share the same IP address, we expect
that f(E(CD3 ‖ CD4)) ≈ f(E(CD3) ∪ f(E(CD4) as defined next.

Definition 2 (Resistance to Concurrency). The reversing function f
should guarantee that BGPs obtained from execution traces of isolated federated
queries, approximate (≈) results from execution traces of concurrent federated
queries: f(E(FQ1)) ∪ ... ∪ (f(E(FQn)) ≈ f(E(FQ1 ‖ ... ‖ FQn)).

3 FETA, a Reversing Function

Finding a reversing function f requires to join IRIs, literals or variables from
different SPARQL subqueries. We propose FETA as a system of heuristics to
implement the reversing function f . Figures 2a, b present two endpoints, each
providing some triples. Figure 2d has the federated log corresponding to the
execution of queries Q1 = SELECT ?z ?y WHERE {?z p1 o1 . ?z p2 ?y} and
Q2 = SELECT ?x ?y WHERE {?x p1 ?y}. Figure 2c shows reversing results
according to different gap values described below. Depending on the gap, on
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verifications made, and concurrent traces, reversed BGPs are different. In the
example of Fig. 2c, if the gap has no limit, we obtain the BGP of Line 1, if the
gap is 1, only sq3 and sq4 can be analyzed together (cf. Line 2). As the join on
?y gives no results, a join is discarded. If the gap is 2, then the reversed BGPs
are the expected ones (cf. Line 3).

Fig. 2. Motivating example.

We assume pairwise disjoint infinite sets B, L, I (blank nodes, literals, and
IRIs respectively). We also assume an infinite set S of variables. A mapping μ is
a partial, non surjective and non injective, function that maps variables to RDF
terms μ : S → BLI. A set of mappings is represented by Ω. See [8] for more
explanations. Next, we present the input and output of FETA.

Given: a federation of endpoints Φ, a federated input log Q = {〈q, t, ep, ip〉},
a federated output log A = {〈{μ}, t, ep, ip〉}, and a user-defined gap,

Find G = {〈g, ip〉}, the set of connected graphs corresponding to the BGPs
of the federated queries processed by Φ, such that:

– g = 〈V,E〉 is an undirected connected graph where V = {tp} is an unordered
set of distinct triple patterns, (annotated with the endpoints that processed tp
and T the set of timestamps given by the endpoints), and E is an unordered
set of edges representing the joins between triple patterns.

– ip is the IP address of the client query engine that sent g.

3.1 FETA Algorithms

FETA has 4 main phases. From input logs and a predefined gap, a graph of
subqueries G is constructed in the first phase. Then, this graph is reduced and
transformed into a graph of triple patterns G, where, from a big set of subqueries,
frequently only one triple pattern is obtained. In a third phase, joins between
triple patterns executed through nested-loops are identified. Finally, symmetric
hash joins, possibly made at the federated query engine, are identified. Next
sections present these algorithms at high level of abstraction.
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Graph Construction. This phase executes two main functions, (a) LogPrepa-
ration and (b) CommonJoinCondition. This module builds G = {g}, a set of
graphs, where g = 〈V ′, E′, ip〉 is an undirected connected graph, with differ-
ent semantics than G. In G, nodes are queries and arcs are labeled with the
number of common variables between each pair of queries. LogPreparation, pre-
pares and cleans the input log. ASK queries are suppressed and identical sub-
queries or differing only in their offset values are aggregated in one single query.
Timestamp of such aggregated query becomes an interval. CommonJoinCon-
dition, incrementally constructs G, by joining queries depending on the given
gap and having common projected variables or triple patterns with common
IRI or literal on their subjects or objects. In general, subqueries are joined on
their common projected variables. However, we consider also IRIs and literals,
even if they can produce some false positives. In our example, with an infi-
nite gap, two graphs are constructed as shown in Fig. 3: G = {g1, g2}, where
g1 = 〈{sq1, sq3, sq4}, {(sq1, sq3), (sq1, sq4), (sq3, sq4)}〉 and g2 = 〈{sq2}〉. To sim-
plify, all annotations to sqi are omitted.

Fig. 3. Deduced graphs in G after
GraphConstruction, for an infinite
gap.

Fig. 4. Deduced graphs in G after
GraphReduction, for an infinite gap.

Graph Reduction. The graph of queries is transformed into a graph of pat-
terns. This heuristic aggregates triple patterns, produced from mappings of the
outer dataset towards the inner dataset, into one big aggregated pattern (that we
call inner pattern). This pattern, for instance, has the form of 〈injected values,-
predicate, object〉, if mappings of the outer dataset are injected into the subject.
Graph reduction significantly reduces the size of each g ∈ G, because nested-
loops can be executed with hundreds of subqueries. Figure 4, illustrates G after
the graph reduction phase, for our motivating example.

Fig. 5. Deduced graphs in G after NestedLoopDetection, for an infinite gap.



308 G. Nassopoulos et al.

Algorithm 1. NestedLoopDetection(G,A, gap)
input : G, A, gap
output: G

1 foreach g ∈ G do
2 foreach tpi ∈ g do

3 foreach (tpj ∈ g) ∨ (tpj ∈ g′ : g′ ∈ G, g′ �= g) do

4 if (tmax
tpj

− tmin
tpi

) ≤ gap ∧ (µ−1(tpj, A) ∈ var(tpi)) then

5 dp ←Association(tpi, tpj)

6 G ←Update(G, tpj , dp,
′ nestedLoop′)

Nested-Loop Detection. This heuristic analyzes existing graphs in G to iden-
tify nested-loops. From n subqueries, it obtains two joined triple patterns by
nested-loop. To do this, Algorithm 1, Lines 3–6, associates the pattern that
pushes the outer dataset (that we call outer pattern) towards the inner pattern.
This association is made by searching for a matching, between the injected values
of the inner pattern and the variable mappings of the outer, with the function
of inverse mapping that we propose below.

Definition 3 (Inverse mapping). We define the inverse mapping as a par-
tial, non surjective and non injective, function μ−1 : BLI → S where μ−1 =
{(val, s) | val ∈ BLI, s ∈ S} such that (s, val) ∈ μ. B is considered for general-
ization reasons even if blank nodes cannot be used for joins between datasets.

NestedLoopDetection is the most challenging heuristic of FETA because
μ−1 may return more than one variable, when the same value was returned
for more than one variable. This depends on the similarity of concurrent feder-
ated queries and the considered gap. Thus, some times, identifying the vari-
able that appears in the original query is uncertain. Figure 5, illustrates G
after NestedLoopDetection for our motivating example with an infinite gap.
We observe that graphs g1 and g2 are merged.
Symmetric Hash Detection. This heuristic verifies that (i) edges of g ∈ G
that were not produced by an exclusive group or a nested-loop, are on same
ontologically concepts for their common projected variables, and (ii) their join
has a not null result set. From this, symmetric hash joins are identified, otherwise
joins are removed. Symmetric hash detection produces false positives as it infers
all possible joins that may be made at the query engine. If a star-shape set of
triple patterns exists, all possible combinations of joins will be deduced instead
of the subset of joins chosen by the query engine. Consequently, FETA privileges
recall to the detriment of precision. For our example, this phase has no impact.

3.2 Time Complexity of FETA

The computational complexity of the global algorithm of FETA is, in the worst
case, O(N2 + N ∗ M + M2), where N is the number of queries of G, and M is
the number of triple patterns of G. The overload produced by FETA is high but
we underline that the size of the log corresponds to a sliding window of time and
that the log analysis can be made as a batch processing.
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4 Experiments

To the best of our knowledge, a public set of real federated queries executed over
the LD does not exists, thus we evaluated FETA using the queries and the setup
of FedBench [10]. We used the collections of Cross Domain (CD) and Life Science
(LS), each one has 7 federated queries. We setup 19 SPARQL endpoints using
Virtuoso OpenLink2 6.1.7. We executed federated queries with Anapsid 2.7 and
FedX 3.0. We configured Anapsid to use Star Shape Grouping Multi-Endpoints
(SSGM) heuristic and we disabled the cache for FedX. We captured http requests
and answers from endpoints with justniffer 0.5.123. FETA is implemented in Java
1.7 and is available at https://github.com/coumbaya/feta.

The goals of the experiments are : (i) to evaluate the precision and recall
of FETA with federated queries executed in isolation and (ii) to evaluate the
precision and recall of FETA with federated queries executed concurrently under
a worst case scenario, i.e., when BGPs of different federated queries cannot be
distinguished as they share the same IP address. All results are available at:
https://github.com/coumbaya/feta/blob/master/experiments with fedbench.md.

To analyze traces of federated queries in isolation, we executed CD and LS col-
lections. We captured 28 sequences of subqueries used as input for FETA one by one.
In average, we obtained 94,64 % of precision and 94,64 % of recall of triple patterns
deduction. We obtained 79,40 % of precision and 87,80 % of recall for joins deduction.
Deducing sets of joined triple patterns, i.e., BGPs, is more challenging. From Anapsid
traces, BGPs deduced correspond to CD and LS queries, except for Union queries, i.e.,
CD1, LS1 and LS2. These queries have two BGPs but a join is possible between them
locally at the query engine, and FETA deduces a symmetric hash join. All other prob-
lems of deduction come from NestedLoopDetection. False triple patterns are deduced
from FedX traces that decreases precision. This is because µ−1 may return more than
one variable and more than one triple pattern may be deduced. But as right triple
patterns are in general well deduced, recall is good. FETA succeeds in deducing 11 out
of 14 exact BGPs from Anapsid traces, and 7 out of 14 from FedX traces. It finds
18/28 exact BGPs, i.e., 64 %. If we include Union queries where all triple patterns are
deduced, FETA finds (18+3)/28 BGPs, i.e., 75 % BGPs of FedBench.

Fig. 6. Recall of joins from ANAPSID
MX traces, by gap.

Fig. 7. Recall of joins from FedX MX
traces, by gap.

2 http://virtuoso.openlinksw.com/.
3 http://justniffer.sourceforge.net/.

https://github.com/coumbaya/feta
https://github.com/coumbaya/feta/blob/master/experiments_with_fedbench.md
http://virtuoso.openlinksw.com/
http://justniffer.sourceforge.net/
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Fig. 8. Average of precision of joins, for
four mixes by gap.

Fig. 9. Average of recall of joins, for
four mixes by gap.

To analyze traces of concurrent federated queries, we implemented a tool that
shuffles logs of queries executed in isolation to produce different sequences of E(FQ1 ‖
... ‖ FQn). These traces vary in (i) the order of queries, (ii) the number of subqueries,
of the same federated query, appearing continuously (blocks of 1 to 16 subqueries),
and (iii) the delay between each subquery (1 to 16 units of time). In our experiments,
gap varies from 1 % to 100% of the total time of each mix. We measured precision
and recall of deductions made by FETA, from traces of federated queries in isolation
against our mixes of traces of concurrent queries.

If FETA can distinguish triple patterns of concurrent federated queries, precision
and recall by join are perfect when the gap is big enough. We analyzed a set of chosen
queries having distinguishable triple patterns that we named MX: CD3, CD4, CD5,
CD6, LS2 and LS3. We produced 4 different mixes of traces of these queries (M1, ...,M4)
that were analyzed by FETA under 6 different gaps (1 %, 10%, etc.) producing 6 groups
of deductions. We obtained 100% of precision of joins from traces of Anapsid and FedX
since the smallest gap. Figures 6 and 7 show recall of joins from Anapsid and FedX
traces respectively. We get 100 % of recall with a gap of 50 % from traces of both query
engines.

If triple patterns of concurrent queries are the same or syntactically similar, it is
hard for FETA to obtain good precision and recall of joins. We produced four different
and concurrent mixes by queries’ collection (4 for CD and 4 for LS). We analyzed them
by query engine and by gap. Figure 8 shows the average of precision of joins, each bar
concerns 4 mixes. We can see that for FETA it is easier to analyze traces from Anapsid
than from FedX. Moreover, CD queries are more distinguishable than LS ones. That is
because triple patterns of LS queries vary less than those of CD queries, thus it is less
evident to separate LS queries from their mixed traces. Furthermore, the bigger the gap
the smaller the precision. That is because more false joins are detected thus reducing
precision. Figure 9 shows the average of recall of joins. In general, recall of LS is bigger
than recall of CD because LS queries generate lots of symmetric hash joins including
the good ones. Unlike precision, the bigger the gap, the bigger the recall because more
joins are detected thus the possibility of finding the good ones is bigger.

5 Related Work

Extracting information from logs is traditionally a data mining process [4]. As a log of
subqueries is in fact a log of accessed resources, data log mining algorithms could be
used to solve our problem, where each item is an accessed predicate or triple pattern.
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Sequential pattern mining [7] focuses on discovering frequent subsequences (totally
or partially ordered) from an ordered sequence of events. An event is a collection of
unordered items, an item is a literal, and a set of items composes an alphabet. In our
context, we focus on sequential pattern mining algorithms able to operate on non-
transactional logs such as WINEPI or MINEPI [6]. WINEPI decomposes a temporal
sequence in overlapping windows of a user-defined size n and counts the frequency of
episodes in all windows. Episodes can be of size 1 to n. MINEPI instead, looks for
minimal occurrences of episodes. It identifies in a sequence, the set of time intervals of
minimal occurrences of episodes according to the maximum user-defined window size.
The number of minimal occurrences of an episode is called support. The minimum
frequency (for WINEPI), the minimal support (for MINEPI) and the maximum window
size (for both), are thresholds defined by the user. The difference of these approaches,
is that WINEPI can be interpreted as the probability of encountering an episode from
randomly chosen windows, while MINEPI counts exact occurrences of episodes.

We think that searching for BGPs in a federated log is not like searching for frequent
episodes in a temporal log. First, the alphabet of events in a federated log can be propor-
tional to the cardinality of data in the federation. A nested-loop operator can generate
thousands of different subqueries as we observed with FedX. Managing huge alphabets
is challenging for sequential pattern algorithms. FETA uses heuristics to reduce the
alphabet by deducing hidden variables. Second, frequency of events in a federated log
is related to the selectivity of operations and can confuse sequential pattern algorithms.
Suppose, two queries Q1 : {?x p1 o1 . ?x p2 ?y} and Q2 : {?x p1 ?y . ?y p3 ?z}. The
federated query engine executes the joins with a nested-loop. So, ?x p1 o1 and ?x p1 ?y
will appear once in the log, while patterns with IRIs p2 ?y and IRIs p3 ?z will appear
many times according to the selectivity of the triple patterns on p1. Searching for fre-
quent episodes will raise up episodes with p2 and p3 but joins were between p1, p2 and
p1, p3.

Limitations of sequential pattern mining algorithms have been pointed out in
process mining [12]. Process mining algorithms recompute workflow models from logs.
However, queries are not workflows and federated logs are not process logs. In a process
log, events corresponds to identified tasks which is not the case in our context. The
number of different subqueries can be proportional to the cardinality of the federated
datasets. Moreover, in a federated log, a subquery cannot be the cause of another; in
general, join ordering is decided according to the selectivity of subgoals in the original
query.

6 Conclusions and Future Work

Federated query tracking allows data providers to know how their datasets are used. In
this paper we proposed FETA, a federated query tracking approach that reverses fed-
erated Basic Graph Patterns (BGPs) from a shared log maintained by data providers.
FETA links and unlinks variables from subqueries of the federated log by applying a
set of heuristics to decrypt behavior of physical join operators.

Even in a worst case scenario, FETA extracts BGPs that contain original BGPs of
federated queries executed with Anapsid and FedX. Extracted BGPs, annotated with
endpoints, give valuable information to data providers about which triples are joined,
when and by whom.

We think FETA opens several interesting perspectives. First, heuristics can be
improved in many ways by better using semantics of predicates and answers. Sec-
ond, we can improve FETA to make it agnostic to the federated query engine.
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Third, FETA can be used to generate a transactional log of BGPs from a temporal
log of subqueries. Analyzing frequency of BPGs in a transactional log allows to dis-
criminate false positive deductions of FETA.
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Abstract. Energy consumption has become a first-class optimization goal in
design and implementation of data-intensive computing systems. This is partic‐
ularly true in the design of database management system (DBMS), which was
found to be the major consumer of energy in the software stack of modern data
centers. Among all database components, the storage system is the most power-
hungry element. In this paper, we present our research on designing a power-
aware data storage system. To tackle the limitations of the previous work, we
introduce a DPM optimization model to minimize power consumption of the disk-
based storage system while satisfying given performance requirements. It dynam‐
ically determines the state of disks and plans for inter-disk fragment migration to
achieve desirable balance between power consumption and query response time.
We evaluate our proposed idea by running simulations using several synthetic
workloads based on popular TPC benchmarks.

1 Introduction

Data centers, criticized as the SUVs of the IT world, consume massive and growing
amount of energy. A recent report shows that, in 2013, data centers in the Unites States
consumed an estimated 91 billion kilowatt-hours (kWh) of electricity (which costed
roughly 7.5 billion US dollars) and are on-track to reach 140 billion kWhs by 2020 [1].
In a typical data center, Database Management System (DBMS) is the largest power
consumer among all software modules deployed. And, among all components of a data‐
base server, storage system is the most energy hunger constituent. Disk storage system
is estimated to consume 25–35 % of total energy consumption in a data center [2].
Another report [3] shows that power consumed by storage in large online transaction
processing (OLTP) systems is more than 70 % of the total power of all IT equipment.
Power consumption rate of storage systems will grow even larger in the next years - an
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annual growth of 60 % has been reported in [4]. Given this strong demand for energy
reduction in storage systems, we tackle the problem of designing a power-aware data‐
base disk storage system in this paper. Note that the use of SSD drives simplifies the
problem since they are highly energy efficient compared to HDDs, but, as of today, SSDs
are still not in a position to replace all magnetic disks in large-scale database systems,
especially those handling today’s big data applications. In previous work, Dynamic
Power Management (DPM) algorithms are normally used to save energy in disk storage
systems. Such algorithms make real-time decisions on when to transition magnetic disks
to lower-power modes with the price of longer response time to data access requests.
Many modern hard disks have two power states: active and stand-by. Disks in stand-by
mode stop rotation completely thus consume significantly less energy than in active
state. However, it incurs a remarkable energy and time cost to spin up to active mode
in order to serve a request. Figure 1 shows the detailed specifications related to the power
and transition time among different states of a typical multi-mode disk (model Ultra-
star 7k6000 from IBM) [5]. In order to amortize the aforementioned penalty cost of disk
state change, effective DPM techniques extended the idle period of disks by either
controlling the I/O intervals [6–10] or migrating data among disks [11–16]. The first set
of works usually considers single-disk systems and utilizes energy-efficient caching or
pre-fetching techniques to prolong the idle periods in the I/O trace. The second set of
works basically consolidates the most frequently accessed data (called “hot” data in
literature) on subset of disks to allow “cold” disks sleep longer. Therefore, they perform
corresponding inter-disk data migration in order to achieve the hot data consolidation
goal.

Fig. 1. Power modes and their power consumption of the IBM Ultra-Star 7k6000

As the major limitation, work of this type cannot efficiently handle the dynamic I/O
traces where arrival rate of data requests changes significantly with respect to time.
Furthermore, they do not provide efficient disk state configuration or inter-disk data
migration. In this paper, we tackle the limitations of the previous work. The best known
algorithm that tries to handle dynamic environment is named Block Exchange (BLEX)
presented in [15]. However, we believe BLEX, again, does not efficiently adapt to
dynamicity in the workload. The reason is that it maintains some data in stand-by disks
and therefore, it incurs significant penalties related to spinning stand-by disks up and
down in order to adapt to dynamic changes in data request arrival rates. We address this
issue by introducing an optimization model that integrates the Model Predictive Control
(MPC) strategy to accommodate dynamic scenarios by enabling optimization actions in
an online fashion. Our experimental results clearly show that our proposed model
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outperforms the BLEX algorithm significantly in terms of both energy savings and
response time.

Our contributions and roadmap are summarized as follows: (1) We introduce an
integrated DPM optimization model extended with MPC strategy that dynamically
determines state (power mode) adjustment and efficient fragment migration to achieve
the optimal tradeoff between power consumption and the query response time; (2) We
conduct experimental simulations using extensive set of synthetic workloads based on
popular TPC benchmarks to evaluate our solution in terms of power saving and response
time compared with those of the BLEX algorithm. Our proposed DPM optimization
model outperforms the BLEX algorithm significantly in terms of both energy savings
and response time in data access. The remainder of this paper is organized as follows:
Sect. 2 provides a survey on the related work in the literature; Sect. 3 illustrates the
proposed DPM optimization model in detail; Sect. 4 discusses our experimental evalu‐
ation; and Sect. 5 concludes the paper.

2 Related Work

DPM algorithms are the most popular techniques to achieve energy savings in disk
storage systems. Intuitively, the core idea of an effective DPM algorithm is to prolong
the idling period of disks in order to allow them sleep longer in the lower-power mode
and thus, boost power saving opportunity. We classify algorithmic techniques extending
disks idleness period into three different categories: (1) the first approach taken in DPM
algorithms is data packing that consolidates the frequently accessed data (hot fragments)
into fewer disks (hot disks) in order to help other disks stay in idle mode longer. An
efficient algorithm named Block Exchange (BLEX) is introduced in [15] that dynami‐
cally achieves load consolidation and performs block exchange between disks. To the
best of our knowledge, BLEX is the most effective algorithm in literature that tries to
handle the dynamic I/O traces. Therefore, we will frequently make comparisons to
BLEX in describing our solutions in the remainder of this paper. Our experiments will
also use BLEX as the baseline. Other similar proposals that exploit data packing are
found in [12–14, 16]. They assume RAID layouts which is not the focus of our work;
(2) the second approach to extend disk inactivity period is to manage I/O intervals via
power-aware caching and prefetching algorithms. The main idea is to deploy energy-
aware policy in cache data management algorithm (or in prefetching techniques) to
redirect some I/O requests to cache in order to change I/O intervals towards longer idle
times. Work presented in [6, 7, 10] tackles this method to achieve energy conservation;
(3) the third class of research works extending disk idleness period tackle energy
proportionality in data parallel computing clusters whose files systems maintain a set of
replicas for each data block. Papers in [21–23] are classified under this category for
energy savings in data parallel clusters. Some other miscellaneous research proposals
along with more details on the aforementioned related work are provided in our more
thorough survey over the literature in [20].

Dynamic Power-Aware Disk Storage Management in Database Servers 317



3 Proposed DPM Optimization Model

In this section, we show the design of a DPM optimization model towards balance
between energy consumption and performance impact. It is well-known that the arrival
rate of data requests changes significantly in respect to time in I/O traces of database
servers. This is particularly true in scientific database servers and OLTP servers. The
SSDS SkyServer is a famous scientific database server that clearly shows significant
changes in the server traffic rate [24]. Also, [17] shows workload changes in an OLTP
trace that demonstrates notable arrival rate changes in respect to time. The major problem
of previous contributions is that they cannot efficiently adapt to dynamic I/O workloads.
We solve this issue by integrating Model Predictive Control (MPC) strategy in an opti‐
mization model to enable optimization actions in an online fashion. Section 3.4 describes
in detail how our optimization model integrates the MPC technique in order to capture
the dynamic changes in data access frequency. Given such significant arrival rate
changes in dynamic I/O workloads, we partition the planning horizon into multiple
periods where the arrival rate in each period can be modeled by a constant. We formulate
a model as a (nonlinear) mixed integer program (shown in Sect. 3.1) where the objective
function is the overall cost from all energy consumption elements in the storage system
during one epoch. At the beginning of each epoch, based on the observed I/O and the
predicted workload for the epoch, the model configures the optimal disk state setting
and corresponding inter-disk fragment migration that minimize the energy consumption
(aforementioned objective function) during the epoch while maintaining query response
time quality. In order to avoid the disk overloading problem, the model performs load
balancing between the overloaded disk (s) and other active disks at the beginning of
each epoch. In addition to the MPC strategy implemented in our model, another
advantage of the DPM model is that we explicitly include fixed charge penalty on disk
status change to avoid excessive spin up and down operations (with expensive response
time and energy costs), while it is rather considered subjectively in BLEX.

The length of the epoch should be short enough to capture changing arrival rates and
also long enough to accommodate disks transition cost and data migration periods, and
to impose tolerable number of on/off actions on disks in order to not damage their lifetime
services. Considering arrival rate change patterns existing in database I/O traces, we

Table 1. DPM model parameters

Name Description Name Description
Index of disks, i = 1,…,I Energy to spin down disk i
Type of fragmentation, j = 1,…,J Energy to spin up disk i
Hotness level/popularity of

fragment type j in period t
power consumption of disk i at k

spinning state in period t
State of disk Response time penalty parameter
Storage capacity of disk i Disk maximum no. of fragments
Migration cost of fragment type j Maximum fragment popularity
Block size of fragment type j Maximum no. of blocks in a disk
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verified different epoch length values to determine an efficient value that fulfills the
above requirements. Based on our sensitivity analysis in [20], the energy saving ratio is
insensitive to the epoch lengths larger than 30 min. Therefore, we determined the epoch
length to be 30-min long since it captures arrival rate changes effectively while
exploiting energy savings. Table 1 introduces the main parameters and indices used in
the model development. Table 2 introduces the list of decisions variables used in our
DPM optimization model including binary, integer, and continuous variables.

Table 2. Decision variables

Name Type and description
Integer- Quantity of j type fragment on disk i in period t
Integer- Quantity of j type fragments migrated from i1 to i2 at

the end of period t
Binary- Equals to 1 if disk i is in state k in period t
Binary-Equals to 1 if disk i should be spun up in period t
Binary- Equals to 1 if disk i should be spun down in period t
Continuous- Response time of disk i
Continuous- Response time penalty of disk i

3.1 Formulation of DPM Optimization for Multi-state Disks

Our objective is to minimize the energy consumption within each epoch period. The
total energy consumption during an epoch consists of four elements. The first part is the
basement energy that relates to disk state (rotation speed) and number of disks spinning
in each state. It is independent of the migration operations. The second part is the energy
consumed during the migration time which strictly depends on the total fragment size
of migration. And, the rest of energy consumption includes energy costs for disk spin-
up and spin-down operations. The objective function is shown in the following equation:

(1)

The physical and logical constraints are as follows: (1) Fragments stored in a disk
can never exceed the disk capacity; (2) Disks during an epoch period must stay in a
certain state; (3) During any epoch , there must be at least one active disk serving the
data requests; (4) Any fragment can only migrate once in a certain epoch ; (5) A disk
in stand-by mode is not considered as source or destination for data migration; (6) There
is a limit for data migration (H) that represents the data transfer limit for any disk within
an epoch. The migration limit by default is set to half of the epoch. The following equa‐
tions represent the aforementioned constraints respectively:
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(2)

(3)

(4)

(5)

(6)

Also, the migration equation that links  and  is:

(7)

And, in order to determine the binary indicating variables related to spin up and down
of disks, the following equations are used in the model:

(8)

(9)

3.2 Two-State Optimization Model

It is easy to obtain the model formulation for two-state disk (active and stand-by) storage
by setting two values for parameter  (  or ) in the general formulation provided in the
previous section for multi-mode disk. The equations related to two-mode optimization
model are provided in detail in [20]. The general DPM optimization model assumes 10
levels of popularity (hotness) for data fragments based on the observed data request
arrival rate. We believe that having 10 levels is sufficient to accurately classify data
blocks based on the hotness level (if more resolution would be needed, the model can
certainly have more levels that indeed reduce the MPC computational time). An impor‐
tant feature of two-state model is that the least and the second least popular data stay in
original disks. This will help to minimize the migration cost.
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3.3 Response Time Modeling

The expected response time of a disk is a function of its spinning state and the total
arrival rate. Thus, if we consider the state of disk constant, the response time of the disk
is a convex function with respect to its hotness level with increasing first derivative
order. We modeled this function by using Piecewise linear (PWL) functions for our
optimization model since they are widely used to approximate any arbitrary function
(specially convex functions) with high accuracy. The input of PWL function is relative
hotness of a disk. The relative hotness of a disk is calculated by following equation:

(10)

where ,  is the popularity (arrival rate) of fragment type j, 
is maximum number of fragments in a disk and  is upper bound for popularity. We
define  as the number of linear functions to approximate the response time. It is well
known that PWL functions can represent arbitrary functions to any accuracy by simply
increasing the number of segments ( ) to the point of desired accuracy. Therefore, we
verified different  values for approximation of the response time convex function. We
decided to use 9-piece-linear function shown in Fig. 2 for two-state disk storage system
since it approximates the convex function with high accuracy.
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Fig. 2. 9 PWL function of response time model

3.4 Model Predictive Control (MPC)

The presented optimization model is rather static while our real system works in a
dynamic online enviroment. Thus, we extend the model to accommodate dynamic
scenarios by using Model Predictive Control (MPC) techniques to solve this issue. MPC,
also known as receding horizon control (RHC) or rolling horizon control, is a form of
control strategy to integrate optimization. Specifically, the current control action is
obtained in an online fashion where, at each sampling instant, a finite horizon optimi‐
zation problem (which is (1)–(10)) is solved and its optimal solution in the first stage is
applied as the current control decision while remaining solutions will be disregarded.
Such procedure repeats along the whole control process. Therefore, all controllable vari‐
ables (such as disk status and response time) for the first period are implemented in MPC.

Dynamic Power-Aware Disk Storage Management in Database Servers 321



It has been observed that MPC is a very effective control strategy with reasonable
computational overhead [18]. The prediction information on workload arrival rate is
provided to the MPC optimization model. This plays a key role in developing an accurate
underlying mixed integer program model since any mis-prediction on data request
arrival rates could cause the model to produce a solution with a less desired quality.
However, as observed in many other applications of MPC, since only the first stage
solution will be implemented and remaining parts will be ignored, MPC is robust to poor
predictions and has a strong adjustment capability [26].

3.5 Solving Strategy

Our initial attempt to find solutions to the two-state model is to implement and solve the
model in the well-known Cplex solver. The solver is installed on a server which is
connected to the server running the widely used disk simulator, Disksim [19], which is
utilized as an accurate and reliable simulation platform by many related works. In other
words, the model solution is integrated in the storage system simulated in Disksim.
Technical details regarding the experimental simulations are provided in Sect. 4.

4 Empirical Evaluation

We conducted simulations under extensive set of dynamic I/O workloads to validate our
proposed method. We have compared our results in terms of energy saving ratio and
average response time with those of the BLEX algorithm. The simulated disk storage
system in Disksim consists of an array of 15 conventional hard disks; each disk is
configured as in independent unit of storage. The hard disk model used in simulations
is IBM Ultrastar 7K6000 [5] whose main specifications are provided in [20].

4.1 Synthetic Workload Generator

We developed a workload generator written in C to synthesize I/O workloads for disks
based on popular database TPC benchmarks. We follow the well-known  model in
generating a workload of a series of random data read operations (  of all read oper‐
ations is against  of the data) [25]. It is well known that database tuple access pattern
is highly skewed and can be described as an 80/20 or even a 90/10 model [20]. Zipf
probability distribution is used in the generator to produce  model. The default 
model used in simulations is set to 80/20. We have used Gamma distributions in our
workload generator to reflect the dynamic behavior of database I/O disk trace. Given
the data correlations among database tuples in queries, the access frequency change
pattern of each data fragment type is represented by a Gamma distribution.

4.2 Experimental Platform

Our model is integrated in the disk simulator as well as BLEX, as the comparison target.
We enhanced Disksim with a multi-speed disk power model where the power
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consumption rate is proportional to disk rotation speed. Also, it is augmented with extra
features such as dynamic disk spin up (and down), disk state adjustment and inter-disk
data migration during the simulation. The predicted access frequency (hotness level) for
each fragment type for the next  epochs is provided to the model along with the observed
fragment type frequencies in the previous epoch. The prediction is performed by the
prediction and autoregressive modeling methods in MATLAB. In particular, based on
the observed data access frequency, autoregressive modeling tool develops an identified
model. Then, the prediction method forecasts fragments access frequency for  epochs
ahead based on the identified model and the observed fragments frequency.

4.3 Simulation Results and Comparisons

In this section, we describe our experimental results in terms of energy saving and
average response time under extensive set of dynamic traces.

Energy Saving Results. Figure 3(a) shows energy saving for various I/O traces with
different mean arrival rates. Figure 3(a) clearly shows that the DPM optimization model
significantly outperforms the BLEX algorithm by saving energy up to 60 %. The
proposed model outperforms BLEX with the difference of minimum 16 % and up to
23 % in energy savings. Based on the results, it saves 19 % more energy on average than
BLEX. Figure 3(b) shows the total power consumption of the disk storage system for
each power saving method compared to that of no power saving (NPS) method applied,
where all disks constantly run in active mode. Such results are shown for several I/O
traces. We can conclude that DPM optimization model is dominant in power saving.

(a) Energy Saving Results      (b) Total Power Consumption        (c) Average Response Time 
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Fig. 3 Experimental results under dynamic I/O traces with different mean arrival rates

Average Response Time Results. It is important to measure the response time effected
by power saving schemes to ensure high quality of service for queries. Figure 3(c) shows
the average response time for DPM model and BLEX algorithm under several workloads
with various mean arrival rates. Note that the computational time to obtain the solution
for both power saving schemes is up to a second, which is apparently ignorable
comparing to the epoch length (30 min), and thus it is excluded from the response time
computations above. The results show that optimization model provides significantly
better response time than BLEX. The reason, in addition to response time consideration
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in its optimal power-performance tradeoff, is that it takes into account the predicted
information on data access frequency for the next epoch in its solutions.

5 Conclusion

Power consumption has increased greatly in data centers, and DBMS is the major energy
consumer. Disk storage systems are the most power-hungry components among all in
DBMS. Thus, we present our proposals in this paper on designing a power-aware disk
storage system that improves on the limitations of previous contributions. We introduced
a DPM optimization model extended with the MPC strategy that can be adapted to any
multi-speed disk storage system. We developed the two-state DPM optimization model
for two-mode disk storage systems since most of the modern disks in the market run in
two modes. We evaluated our proposed method by experimental simulations using
extensive set of synthetic I/O traces based on popular TPC benchmarks.
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Abstract. Data center occupies a decisive position in business of data
management and data analysis. To improve the efficiency of data retrieval
in a data center, we propose a distributed multi-dimensional index-
ing framework for switch-centric data centers with tree-like topologies.
Taking Fat-Tree as a representative, which is a typical switch-centric
data center topology, we design FR-Index, a two-layer indexing schema
fully taking advantage of the Fat-Tree topology and R-tree indexing
technology. In the lower layer, each server indexes the local data with
R-tree, while in the upper layer the distributed global index depicting an
overview of the whole data set. To improve the efficiency of query process-
ing, we also provide special techniques to reduce the dimensionality of
the index. Experiments on Amazon’s EC2 show that our proposed index-
ing schema is scalable, efficient and lightweight, which can significantly
promote the efficiency of query processing.

1 Introduction

An attractive challenge for large scale distributed storage systems is how to
retrieve specified data from massive data set efficiently. Empirically, designing
appropriate and effective index is a typical solution for this challenge. [8–10]
designed a distributed indexing scheme. Each of them deploys a P2P network
on the distributed server cluster as an overlay for data mapping and routing
queries. However, running P2P networks must consume some extra overhead.

In recent years, as a kind of infrastructure, Data Centers are playing increas-
ingly vital role in cloud services. A new challenge is to construct efficient indexing
systems for storage systems deployed on data centers. Servers and switches in a
data center is connected by a well-designed data center network (DCN), which
may be helpful for indexing. Gao et al. [3–5,7] have done some network-aware
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indexing techniques. Those works presented excellent proposals, yet they have
not discussed the multi-dimensional indexing in switch-centric DCN’s.

This paper will present our well-designed proposal for constructing distrib-
uted multi-dimensional indexing framework on switch-centric DCN’s. Taking
Fat-Tree [1] as a representative, we design FR-Index, a two-layer indexing sys-
tem fully taking advantage of the Fat-Tree topology and R-tree indexing tech-
nology. In the lower layer, each server indexes the local data with R-tree. In
the upper layer, the distributed global index depicts an overview of the whole
data set.

To improve the efficiency of query processing, we also provide special tech-
niques to reduce the dimensionality of the FR-Index. Efficient query processing
method is also put forward based on this indexing system. Finally, we conduct
experiments on Amazon’s EC2 to evaluate the performance of FR-Index.

2 Related Works

As a subclass of switch-centric DCN’s, tree-like DCN’s connect devices by links
similar to a multi-rooted tree. Most tree-like DCN’s tend to divide lower layer
switches and servers into some substructures, like pod in Fat-Tree. A k-pod Fat-
Tree consists of three layer of k-port switches. In each pod, the k/2 aggregation
layer switches and the k/2 edge layer switches interconnect as a complete bipar-
tite graph. Every switch in aggregation layer connects to k/2 switches in core
layer. Every switch in the edge layer connects to k/2 servers. Thus, a k-pod
Fat-Tree can support connecting k3/4 servers. [1] designs different IP addressing
rules for switches and servers. For pod switches, the form 10.pod.swi.1 acts as
their IP addresses, where pod ∈ [0, k − 1] denotes the pod number, and swi
denotes the position of the switch in the pod (in [0, k − 1], starting from left to
right, bottom to top). The address of a server is 10.pod.swi.ID where pod and
swi follows the address of the edge switch which the server connects, and ID
(in [2, k/2 + 1], starting from left to right) denotes the server’s position in that
subnet. Figure 1 illustrates a Fat-Tree topology with 4 pods and examples of the
addressing scheme.

Pod
0

Pod
1

Pod
2

Pod
3

Switch

Server

Core
Layer
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Layer

Edge
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Fig. 1. A Fat-Tree topology with 4 pods
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3 FR-Index

All servers in the data center participate in constructing index and maintaining
the consequent FR-Index. Besides servers in the data center, we set an individual
server as a historical data collector (called collector for short) of FR-Index. The
collector will collect some historical data as the basis of some decisions we made.

An FR-Index system is composed of a set of index instances denoted by
I={I1, I2, · · · , Iw}. An index instance Ii indexes an “indexing space” denoted
by Ii.space, which is composed of several selected dimensions of the data set. The
FR-Index collector generates Ii.space and informs all servers of Ii.space. Each
server builds a local R-tree to index its local data on the dimensions contained
by Ii.space. Then each server publishes a portion of local R-tree index nodes to
different servers based on our proposed mapping schema to compose the global
index. So, we get a distributed global index and each server maintains a portion
of the global index. An index instance Ii can be regarded as a combination of
all local indexes and the distributed global index which are built on Ii.space.

Suppose that a data set is composed of d attributes. Every element in the data
set can be regarded as an object in a d-dimensional space which can be denoted
by D={D0, · · · ,Dd−1}. Thus, each Ii.space is a subset of D. Additionally, a
multi-dimensional query is denoted as Q(Ctr), where Ctr={ctr1, · · · , ctru} is
a set of query criteria on u dimensions. We take a set Qd={qd1, · · · , qdu} to
represent the u dimensions. Obviously, Qd is a subset of D.

3.1 Selecting Indexing Dimensions

In most cases, a query would not be related to too many dimensions of the data,
which means that for a query Q(Ctr), the cardinality of the corresponding Qd
wouldn’t be too large. Thus, it is necessary to reduce the dimensions of the
proposed multi-dimensional index. However, a single index which is built on a
few dimensions might not facilitate processing all queries. Hence, we build a set
of index instances I, as mentioned above. To better manage the indexing system,
we set each |Ii.space| as a fixed value in an FR-Index. For example, we will show
how to determine a set of indexing spaces with 3 dimensions for an FR-Index.

The FR-Index collector collects query samples by requesting servers for their
logs. An optional sampling method is stratified random sampling. For example,
we can send log requests to all servers or to servers in some randomly selected
pods. The sample quantity can be customized or self-tuned. The collector then
analyses those query samples to make decisions about indexing spaces:

1. The collector traverses all query samples and extracts each query’s Qd. A
histogram is maintained to record the occurrence frequency Pi of every dif-
ferent Qdi. Then, all different Qd’s are sorted by the occurrence frequency in
descending order, denoted as a collection D={Qd1, Qd2, · · · , Qdm}.

2. The collector selects the first x sets in D by calculating an integer x which
satisfies

∑x
j=1 Pj � Pthr, where Pthr ∈ [0, 1] is a threshold to control the

performance of FR-Index. Usually, a higher Pthr might incur more index
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instances accompanied by more maintaining costs and higher query process-
ing efficiency, while a lower Pthr may lead to opposite results. Now D is
pruned into Dp={Qd1, Qd2, · · · , Qdx}. We regard that Dp depicts the fea-
ture of Pthr × 100 percent of all historical queries as well as all subsequent
queries.

3. Based on Dp, the collector finds a collection Dans={Dc1,Dc2, · · · ,Dcy} which
has the following three properties:
(a) ∀i ∈ {1, 2, · · · , y}, Dci ⊆ D and |Dci| = 3.
(b) ∀j ∈ {1, 2, · · · , x}, if |Qdj | < 3, ∃i ∈ {1, 2, · · · , y}, such that Qdj ⊆ Dci.
(c) ∀j ∈ {1, 2, · · · , x}, if |Qdj | � 3, ∃i ∈ {1, 2, · · · , y}, such that Dci ⊆ Qdj .

Each set in Dans will become an 3-dimensional indexing space on which an
index instance will be built. All of these index instances constitute an FR-Index
system. Since Dp depicts the feature of 100Pthr percent of all historical queries,
properties (b)(c) of Dans guarantee that our FR-Index can efficiently facilitate
processing 100Pthr percent of all subsequent queries.

3.2 Partitioning Indexing Space

The information of a selected indexing space will be sent to all servers by the
FR-Index collector. Once a server received the information, it will build a local R-
tree index on the dimensions contained by the indexing space. To better illustrate
our proposal, we will take one index instance as an example to show that how
our system works, since we build different index instances independently.

As we mentioned above, a server needs to maintain a portion of the global
index. A new challenge is to determine the range of the global index that a server
should be responsible for. In the following discussion, we denote this range as
Potential Indexing Range (PIR). As a tree-like data center network, the hierar-
chical structure of Fat-Tree offers us a convenient and efficient way to partition
the indexing space such that we can generate PIR for every server.

In the whole data center, all multi-dimensional data forms a data boundary
denoted as B=(B0, B1, B2, · · · , Bd−1), which is a d-dimensional rectangle as the
bounding box of the spatial data objects. Here each Bi is a closed bounded inter-
val [li, ui] describing the range which is covered by the data objects along dimen-
sion Di. Suppose that we had chosen an indexing space Ij .space=(D0,D1,D2).
Since B′=(B0, B1, B2) is the “meaningful” subspace of Ij .space for our work,
we will consider that Ij .space=B′=(B0, B1, B2) in the following discussion.

In a k-pod Fat-Tree, we code a serverSt by t = (k/2)2pod+(k/2)swi+(ID−2),
where pod, swi and ID are parameters in the IP address of this server.

Intuitively, we partition the indexing space into k (the number of pods) parts
along the first dimension, then k/2 (the number of edge switches in each pod)
parts along the second dimension, then k/2 (the number of servers connect-
ing with each edge server)parts along the third dimension. Now, we gain k3/4
equal-sized partitions of the indexing space and map each partition to a server.
Therefore, for server St, its PIR denoted by pirt can be expressed by Eq. (1).
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3.3 Publishing in FR-Index

To build the global index, a server, say, St, adaptively selects a set of R-tree
nodes, INt={In1

t , · · · , Inn
t }, from its local index and publishes them into the

global index. The index nodes in INt should cover all data stored in St. Each
Ini

t in INt will be published as a format (ipt,mbri), where ipt is the IP address
of St and mbri is the bounding box of Ini

t, which represents a hypercube.
Wang et al. [8] proposed a novel mapping schema to regulate the publishing

process and the consequent query processing. We will transplant this schema to
our system to determine the servers which will store a published R-tree node as
a portion of the global index.

For an R-tree node Ini
t to be published, we take its center Ini

t.c and radius
Ini

t.r of its bounding box as the criteria for mapping. We first map the node
to the server whose PIR contains Ini

t.c, say Sx. Then Sx compares Ini
t.r with

a predefined threshold, say rmax. If Ini
t.r > rmax, then the node will be sent to

each server whose PIR intersects with mbri. Otherwise, the node will be stored
by Sx only. The impact of rmax’s value will be discussed in Sect. 4.

4 Query Processing

Suppose that we have deployed an FR-Index which is composed of several 3-
dimensional index instances on the data center. Given a multi-dimensional query
Q(Ctr) where Ctr={ctr1, · · · , ctru}, generally, ctrj is a key or range criterion
along qdj (1 � j � u). Considering that u � 3, we first prune Ctr into an
indexing space Ii.space, where Ii.space ⊆ Qd such that Q(Ctr) is converted to
Q(Ctr′). (If u < 3, we expand Ctr to match an indexing space Ii.space where
Qd ⊆ Ii.space.) Then we take advantage of the index instance Ii to process
Q(Ctr′) and retrieve a result set. At last, we prune the result set according to
criteria in the set Ctr/Ctr′. Furthermore, we call Q(Ctr′) a point query if the
elements in Ctr′ are all key criteria. Otherwise, we call Q(Ctr′) a range query.

A point query Q(Ctr′) is denoted as Q(key). We first forward it to the
server Sinit whose potential indexing range pirinit contains key. Sinit generates
a hypersphere at the point key with radius rmax (the threshold we defined in
Sect. 3.3). This hypersphere is defined as the search space of Q(key), denoted
by key.searchspace. Sinit forwards Q(key) to servers whose potential indexing
ranges overlap with key.searchspace. Then, Sinit and those servers search the
global index buffered in their memory to find those published R-tree nodes whose
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bounding box contains key. The servers which publish those R-tree nodes will
get Q(key) and search on the local indexes to get the query results. At last, the
query results will be pruned according to criteria in the set Ctr/key.

A range query is denoted as Q(range), where range={[a1, b1], · · · , [au′ , bu′ ]}.

We define range.c=(a1+b1
2 , · · · , au′+bu′

2 ) and range.r= 1
2

√∑u′
i=1(bi − ai)2. The

search space for Q(range) is a hypersphere with the center at range.c and its
radius is range.r + rmax. The following processing is similar with point query
processing. [8] has proved that for Q(key) or Q(range), if we search the search
space we generated, we can guarantee the completeness of the results.

Up to now, we can discuss the impact of rmax on the FR-Index system.
According to Sect. 3.3, a smaller rmax incurs more index node replicas, which
increases the maintenance cost. In the other hand, according to the query
processing strategy, a larger rmax means that we must search more servers
to retrieve complete results for a query, which reduces the efficiency of query
processing.

5 Index Updating

In our proposal, each server chooses some index nodes from local R-tree index
and publishes them into global index. A high-level R-tree node may incur less
update costs, but it generates more false positives. Besides, its bounding box may
overlap with more servers’ potential indexing ranges, which increases storage
cost and query processing complexity. Therefore, it is crucial to choose “proper”
index nodes to publish. At the first time we construct FR-Index, we have no
knowledge about the query pattern and the data updating pattern. Therefore,
in an h-level local R-tree, we publish the index nodes in the h − 1 level (the h
level nodes is the leaf nodes). After running the system for a period of time, by
analysing the query pattern and node updating pattern, we adopt a cost model
which is similar with the model in our former work [3] to choose some local index
nodes with lower cost to update some published index nodes with higher cost.

Another updating requirement for our system is to update the index instances
we have constructed. We propose a simple and efficient strategy to deal with this
requirement. Each server stores a histogram to maintain the accessing status for
every index instance. The FR-Index collector will request the histograms from
the servers and adopt Least Recently Used algorithm to delete obsolete index
instances and add new index instances.

6 Performance Evaluation

We evaluate our proposed indexing framework on Amazon’s EC2 platform. We
organize EC2 computing units into a simulative data center with the Fat-Tree
topology. Experimental data set is YearPredictionMSD [2], achieved from UCI
Machine Learning Repository [6]. We conduct several experiments to evaluate
our proposal. Table 1 lists some common experiment settings.
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Table 1. Common experiment settings

Configuration Items Setting

Size of Data Center 4-pod(16 servers) or 6-pod(54 servers)

Number of Stored Data Items 20 k, 40 k, 60 k, 80 k or 100 k on each server

Indexed Dimensions 2nd, 3rd and 4th attributes of the dataset

Query Criteria 2nd, 3rd, 4th, 5th and 6th attributes of the dataset

Number of Queries 1 k, 2 k, 3 k, 4 k or 5 k

rmax larger than the radius of 70% of published index nodes

Fig. 2. Size of global index and local index

Evaluation for Index Construction: We randomly placed some data items
on each server. Then, we build a 3-dimensional FR-Index instance on the data
center. Figure 2 shows that the size of the global index is almost 10x smaller than
that of local indexes under the same setting, which indicates that FR-Index is
lightweight. Moreover, this advantage can retain when the data center or data
capacity becomes larger, which verifies that FR-Index is scalable.

Fig. 3. TSR in query processing

Evaluation for Query Processing: We place 20,000 data items on each server
randomly. Then a 3-dimensional FR-Index instance is built to facilitate query
processing. We set two query processing strategies: (1) Strategy designed in
Sect. 4 with the assistance of the FR-Index instance. (2) Broadcast queries to all
servers and each server searches locally. Suppose that it costs T1 time with the
first strategy and T2 time with the second one to process the same set of queries.
We define (T2 − T1)/T2 as time saving ratio of our proposal.

Figure 3(a) and (b) show time saving ratio (TSR, for short) in point/range
query processing respectively. In the 4-pod data center, due to the extra cost
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Fig. 4. FR-Index VS RT-CAN

for query forwarding and storage accessing, FR-Index behaves not very well.
However, in the 6-pod data center, our proposal can reduce the time cost for
query processing by nearly 20 %, which verifies the time-saving advantage of
FR-Index will enhance with the increasing of the scale of the data center.

Comparison with RT-CAN: RT-CAN is the most relevant work to our pro-
posal we have learned about. We follow [8] to implement the RT-CAN and make
two comparisons between RT-CAN and FR-Index: (1) Suppose that it costs T1

time to construct an FR-Index instance and T2 time to construct an RT-CAN
index. Figure 4(a) shows the value of T1:T2 under different configurations. (2) We
place 20,000 data items on each server randomly and build an FR-Index instance
and a RT-CAN index on the same indexing space. Then we adopt each of them
to process queries. Suppose that FR-Index costs T3 time and RT-CAN costs
T4 time to process the same set of queries. Figure 4(b)(c) respectively show the
value of T3:T4 under different configurations. Figure 4 indicates that FR-Index
saves 18 %–30 % of time cost for index constructing and 18 %–28 % of time cost
for query processing than RT-CAN. Additionally, the performance difference
between RT-CAN and FR-Index becomes larger with the increasing of the scale
of the data center. It verifies that the FR-Index behaves better on the data center
with tree-like switch-centric topology than RT-CAN.

7 Conclusion

This paper presents a distributed multi-dimensional indexing framework for data
center with tree-like switch-centric data center network. We design a two-layer
multi-dimensional indexing system FR-Index. Query processing and index updat-
ing strategies are also proposed based on FR-Index. Additionally, we design some
tuning techniques for performance improvement. We evaluate the performance of
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FR-Index on Amazon EC2 platform with real data set and compare FR-Index with
RT-CAN. Experiments validate that our proposal is scalable, efficient and light-
weight, which can behaves better on switch-centric data center.
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Abstract. Service-Oriented Computing (SOC) has been widely used
for building distributed and enterprise-wide software applications. One
major problem in this kind of applications is their growth; as size and
complexity of applications increase, the probability of duplicity of code
increases, among other refactoring issues. This paper proposes an unsu-
pervised learning approach to assist software developers in detecting
refactoring opportunities in service-oriented applications. The approach
gathers non-refactored Web Service Description Language (WSDL) doc-
uments and applies clustering and visualization techniques to deliver a
list of refactoring suggestions to start working on the refactoring process.
We evaluated our approach using two real-life case-studies by using inter-
nal validity criteria for the clustering quality.

Keywords: Service-oriented applications · Web services · Unsupervised
machine learning · Web service description language · Service under-
standability · Software visualization

1 Introduction

Nowadays, Web services are in the cutting-edge of the Service-Oriented Comput-
ing (SOC) paradigm. Encouraged by the rapid advances in distributed system
technologies, most organizations capitalize on SOC by discovering and reusing
services already accessible over the Internet. As a consequence, software develop-
ers take advantage of platform neutrality and self-descriptiveness of Web services
to build distributed applications in heterogeneous contexts [4]. To successfully
evolve in distributed applications, refactoring is a commonly used engineering
practice viewed as a prerequisite to adding new functionality or features to soft-
ware systems. In this context, WSDL documents are at the heart of refactoring
processes, since these files must be transformed and adapted, preserving the
specified API description. Refactoring WSDL documents forces developers to
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invest time and effort into discovering refactoring opportunities, while browsing
the whole body of WSDL documents, as well as their dependencies. Although
software evolution has been widely addressed in object-oriented software devel-
opment, refactoring has yet to be explored in the web services domain [20].

In this context, we claim that it is necessary to further simplify the process of
refactoring service-oriented applications by reducing the set of WSDL documents
and the number of operations without neglecting functional and non-functional
requirements. This paper proposes VizSOC, an unsupervised learning approach
to assist developers in detecting opportunities, as an initial step towards the
process of refactoring SOC applications. To address this issue, the approach uti-
lizes different clustering algorithms, namely K-Means [13], Partitioning Around
Medoids (PAM) [8], X-Means [16] and COBWEB [5], which allow developers to
alleviate the task of discovering refactoring opportunities in WSDL documents.
Nonetheless, clustering might yield numerous clusters and relationships that
could burden developers’ understanding. In this context, software visualization
might help software developers enhance software comprehension, maintenance
and evolution [19].

To evaluate our approach, we have utilized two datasets of WSDL documents.
The first dataset belongs to a large Argentinean government agency and contains
32 WSDL documents that represent 261,688 lines of code and 39 operations. The
second dataset is a medium-size system taken from the literature and consists
of 211 non-refactored WSDL documents, representing 44,627 lines of code and
252 operations. To measure the quality of clustering algorithms internal valida-
tion indexes (such as intra-cluster diameters and inter-cluster distances) were
calculated.

The paper is organized as follows. Section 2 discusses related works in the
research field. Section 3 presents the VizSOC approach and provides a detailed
account of the assistance process. Section 4 describes the experiments performed
to validate our approach. Finally, in Sect. 5 we present our conclusions.

2 Related Work

Several researchworkshave exploredclustering to reduce efforts in thedevelopment
of service-oriented applications. For instance, Sabou et al. proposedClusterMapas
a visualization technique to support analysis, comparison, and search of Web Ser-
vices [18].Kuhnet al. used semantichierarchical clustering togroup source artifacts
that use similar vocabulary to improve softwaremaintenance [9]. Liu et al. created a
searchenginethatreducessearchspace for servicediscoverybyusingtree-traversing
ant algorithm [11]. Along this line, Ma et al. aimed to eliminate Web services irrel-
evant with respect to a query during the discovery process by using K-Means [12].
Elgazzar et al. proposed to cluster Web services based on function similarity prior
to retrieving the relevant Web services for a user query in the context of Web ser-
vice engines. The approach uses K-Means and Normalized Google Distance as a
featureless distance measure between words [3].

Unlike our approach, Fokaefs et al.’s approach used a WSDL documents clus-
tering to study the evolution of the files in the software lifecycle of service-oriented
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applications. In that case, the approach first recognizes changes in WSDL docu-
ments; then, it analyzes changes thatoccur in subsequentversionsof theWSDLs [6].
Dong et al. proposed an approach that uses hierarchical agglomerative clustering,
underlying the Woogle search engine for Web services. By using this approach, tra-
ditional keyword-based search is outperformed by exploiting the underlying struc-
ture and semantics of the Web services [2]. Kumara et al. proposes an approach to
help developers search Web services by visualizing the Web service data on a spher-
ical surface [10]. Most of the aforementioned approaches have updated clustering
techniques to optimize service search engines; instead, our work proposes to clus-
ter similar operations by comparing Web service interfaces, as a step towards the
detection of refactoring opportunities in service-oriented applications.

3 Proposed Approach

In this paper, we propose an approach based on the application of Web min-
ing and machine learning techniques to WSDL documents for the detection of
software refactoring opportunities. This approach can aid software developers in
refactoring service-oriented applications and increase their quality in terms of
maintainability, performance and flexibility, among others. Figure 1 gives a gen-
eral overview of the proposed approach named VizSOC, which consist of three
main modules: Web mining module, Clustering module and Visualization mod-
ule. The first module receives the list of non-refactored WSDL documents and
applies a series of operations so as to the clustering techniques can work properly
on these files. The operations performed in this module are splitting combined
words, stemming, stop words removal and vector space model representation.
The second module is in charge of performing clustering techniques selected
by the user. By means of the VizSOC user interface, the user can select and
configure a clustering technique from the following set: PAM, K-Means, COB-
WEB and X-Means. Finally, the third module displays the clustered Web service
operations by applying a suitable software visualization technique named Hier-
archical Edge Bundles. Afterwards, the list of clusters (i.e., refactoring oppor-
tunities or suggestions) are presented to the software developer who will be
responsible for conducting the manual refactoring on the WSDL documents.

3.1 A Motivating Example

The first stage of VizSOC is the Web mining module, in which a set of WSDL
documents belonging to a service-oriented application is given as input. VizSOC
mines three types of features of a WSDL document, namely operations, messages
and input/output parameters. Then, the splitting of compound words is carried
out, along with stop-word removal and stemming. These filtering techniques have
been selectedbased on their proven effectiveness in supervisedmachine learning [1];
moreover, using these techniques allows the approach to detect refactoring oppor-
tunities as effectively as expert developersmight.The lastWebmining step is to use
the Vector Space Model (VSM) to represent mined WSDL features as a vector of
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Fig. 1. Overview of the approach

terms. For example, let us suppose there are three operations of a WSDL document
represented as follows:

O1=(getPersonByID, id, int, nameAndsurname, string, dateOfbirth, string)
O2=(getPersonByWIN, win, string, nameAndsurname, string, dateOfbirth,

string)
O3=(getWINByID, id, int, nameAndsurname, string, win, string)
The first operation obtains a person by her ID (datatype integer); the result

is in the form of name and surname, (datatype string) and date of birthday
(datatype string). The second operation retrieves a person given a WIN (Work
Identification Number, datatype string due to formatting issues); the result is
also in the form of name and surname, (datatype string) and date of birthday
(datatype string). The third operation obtains a person by her WIN (datatype
string); the result is in the form of name and surname, (datatype string), date
of birthday (datatype string) and WIN (datatype string). Once the operations
vectors are built, the process of building the T vector takes place. T vector
represents the list of all the different terms (i.e., features) in the operations
vectors. Following our example, T vector is built as follows:

T=(getPersonByID, id, int, nameAndsurname, string, dateOfbirth, string,
getPersonByWIN, win, getWINByID).

For the sake of simplicity, in the example we disregarded the use of splitting
of compound word, stop-word, and stemming. Then, our approach represents
each operation as a numerical vector whose size is the length of T and each
position means the weight for each term operation. The approach to determine
the weight is to assign the number of times that each element of T appears in
Oi. Then each operation is represented as follows:
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O1 = (1, 1, 1, 1, 2, 1, 0, 0, 0)

O2 = (0, 0, 0, 1, 3, 1, 1, 1, 0)

O3 = (0, 1, 1, 0, 1, 0, 0, 1, 1)

The aforedescribed representations of the WSDL documents will be given as
input to different interchangeable clustering algorithms, namely K-Means, Par-
titioning Around Medoids, X-Means, and COBWEB in the clustering module.
These algorithms are utilized to group similar features of the WSDL documents
and facilitate the refactoring process.

In the last stage, the visualization module, VizSOC displays clustering visual-
ization techniques with a list of refactoring suggestions, which represents similar
operations that should be grouped in a single WSDL document. This visualiza-
tion is suitable for helping software developer to better comprehend the con-
text of the application and identify the refactoring opportunities [19]. Out of
the set of clustering visualization techniques, we chose Hierarchical Edge Bun-
dles (HEB) since it is a new and attractive technique and reduces considerably
efforts to interpret results and analyze visualized data [7]. HEB is a flexible and
generic technique for the visualization of compound (di)graphs, which is based
on the principle of visually bundling adjacency edges together. HEB technique
has remarkable features that lead us to select it as our visualization approach
to visualize clustering of Web Services. Firstly, HEB is a flexible and generic
method that can be used in conjunction with existing tree visualization tech-
niques to enable users to choose the tree visualization that they prefer and to
facilitate integration into existing tools. Secondly, HEB reduces visual clutter
when tackling large numbers of adjacency edges. Thirdly, HEB provides an intu-
itive and continuous way to control the strength of bundling. For instance, low
bundling strength mainly provides low-level, node-to-node connectivity informa-
tion, whereas high bundling strength provides high-level information determined
by implicit visualization of adjacency edges between parent nodes, which are the
result of explicit adjacency edges between their respective child nodes.

4 Experimental Evaluation

The first case-study was carried out in a system belonging to a large Argentinean
government agency [17]. On average, the system contains 32 non-refactored
WSDL documents that represent 261,688 lines of code and 39 operations. The
second case-study was carried out in a medium-size system taken from the
dataset described in [14]. The system dataset consists of 211 non-refactored
WSDL documents, representing 44,627 lines of code and 252 operations. We set
the k values for the K-Means and PAM, which are the algorithms that require
specification of the k value beforehand. These values were obtained by calculat-
ing the silhouette coefficient with an iteration value set to 10,000. The selected
k value (X axis) is the one that maximizes the silhouette coefficient (Y axis). In
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our context, K is 6 (silhouette coefficient=0.31) in case-study 1 and 101 (silhou-
ette coefficient=0.25) in case-study 2 in the context of K-Means, whereas k is 11
(silhouette coefficient=0.32) in case-study 1 and 51 (silhouette coefficient=0.26)
in case-study 2 in the context of PAM.

To measure the quality of the clustering algorithms, internal validity criteria
were utilized. Internal validity criteria compare different sets of clusters without
reference to external knowledge about the given data and/or similarities. For
instance, six intra-cluster distances and three inter-cluster diameters are used
to obtain measures of cluster compactness and separation [15]. Inter-cluster dis-
tances are Single Linkage Distance (SLD), Complete Linkage Distance (CLD),
Average Linkage Distance (ALD), Centroid Linkage Distance (CeLD), Average
of Centroids Linkage (ACL) and Hausdorff Metric (HM); whereas intra-cluster
diameters are Complete Diameter (CD), Average Diameter (AD) and Centroid
Diameter (CeD). All these metrics were calculated by using the Euclidean dis-
tance. The criterion to assess the clustering techniques was defined as follows:
the higher the intra-cluster diameter and the lower the inter-cluster distance are,
the better the clustering algorithm performs.

After carrying out the experiments, Table 1 summarizes the results in terms
of the internal validity metrics. We calculated the inter-cluster distances (rows
1 to 6) and the intra-cluster diameters (rows 8 to 10) of each clustering
algorithm for the two case-studies. Each cell value in Table 1 represents the
arithmetic mean of each algorithm for each of the aforementioned metrics. In all
the experiments, the average scores of the metrics are reported for 1,000 differ-
ent runs of each algorithm. The results show that COBWEB minimizes most of
the intra-cluster diameters and maximizes most of the inter-cluster distances. In
case-study 1, COBWEB maximized all the inter-cluster distances and minimized
all the intra-cluster diameters; whereas, in case-study 2, COBWEB maximized
83.33 % of the inter-cluster distances and minimized 33.33 % of the intra-cluster
diameters. In this case, K-Means minimized 66.66 % the intra-cluster diameters,
but maximized 0 % of the inter-cluster distances.

Table 1. Results in terms of internal validity criteria.

Metric K-Means PAM X-Means COBWEB

case 1 case 2 case 1 case 2 case 1 case 2 case 1 case 2

SLD 20.622 11.090 21.814 12.294 18.580 11.342 24.063 12.869

CLD 25.189 11.920 23.877 14.592 22.918 13.283 25.857 14.464

ALD 22.695 11.524 22.721 13.510 20.646 12.422 24.838 13.719

CeLD 17.832 10.540 21.558 12.395 16.494 10.645 23.853 12.891

ACL 19.861 11.134 22.273 13.057 18.282 11.704 24.515 13.415

HM 23.525 11.526 22.798 13.382 21.105 12.397 24.788 13.504

CD 15.370 4.660 6.042 6.433 14.197 7.025 5.359 4.960

AD 13.405 4.137 4.933 4.858 12.259 5.748 4.338 4.126

CeD 7.717 2.364 3.089 3.036 7.073 3.664 2.743 2.450
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5 Conclusions

We presented an unsupervised learning approach to assist software developers
in detecting refactoring opportunities as an initial step towards the process of
refactoring service-oriented applications. The approach constitutes a software
aid to improve the maintainability of service-oriented applications by following
the list of refactoring suggestions. The software visualization techniques applied
in clustering results allowed software developers to ease the identification of
refactoring opportunities; moreover, an encouraging scenario to customize views,
parameters and inputs of the clustering techniques was also provided.

The approach was evaluated by means of two real world case-studies. We
measured the performance of different clustering algorithms by utilizing inter-
nal validity criteria. Experimental results showed that COBWEB seems to be
the most suitable clustering technique to detect refactoring opportunities. We
implemented this approach as part of a framework that includes various clus-
tering techniques, and also, a component to detect Web service discoverability
anti-patterns. Furthermore, the flexibility of our approach allows for easily incor-
porating a new clustering technique to detect refactoring opportunities.

There are some limitations in our approach that should be mentioned. Firstly,
the performance of the clustering techniques may be affected by the chosen
value of k ; therefore, instead of using a single predefined k, we are planning to
incorporate an approach to optimally initialize the k value. Secondly, we are
planning to improve the detection process by incorporating expert feedback on
refactoring suggestions. Finally, more WSDL features will be considered to enrich
the assistance by exploiting the structure of these documents.
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Dpto. de Informática e Ingenieŕıa de Sistemas, Facultad de Ciencias,
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Abstract. As more and more collections of data are becoming available
on the web to everyone, non expert users demand easy ways to retrieve
data from these collections. One solution is the so called Visual Query
Systems (VQS) where queries are represented visually and users do not
have to understand query languages such as SQL or XQuery. In 1996,
a paper by Catarci reviewed the Visual Query Systems available until
that year. In this paper, we review VQSs from 1997 until now and try
to determine whether they have been the solution for non expert users.
The short answer is no because very few systems have in fact been used
in real environments or as commercial tools. We have also gathered basic
features of VQSs such as the visual representation adopted to present the
reality of interest or the visual representation adopted to express queries.

1 Introduction

In recent years, and mainly because of the arrival of the web, more and more
collections of data are becoming available to everyone in fields ranging from
biology to economy or geography. One of the consequences of this fact is that
end users, but not experts in Computer Science, demand easy ways to retrieve
data from these collections.

Beginning in 1975 with Query By Example (QBE) [39] there have been many
proposals in this direction, that is, to facilitate the work of the final user. In [8],
the authors reviewed the so-called Visual Query Systems (VQS) from 1975 to
1996 defined as “systems for querying databases that use a visual representation
to depict the domain of interest and express related requests”.

In this paper, we extend the review from 1997 to date, concentrating our
efforts on visual queries to structured information, for example, queries to under-
lying relational or XML databases. We do not consider the typical search on
semistructured documents such as web pages through search engines like Google.
Although they are also a good solution for end-users, in this survey we do not
take into account natural language interfaces for database query formulation.

The main goal of this survey is to answer the following question: To what
extent have the VQS been the solution for novel users for querying databases?

The author would like to thank Rafael Bello for making the initial collection
of papers for this review.
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To answer this question, we have studied two features: web availability of and
validation undergone by the systems. The first feature indicates that the system
was designed to be reached easily by novel users simply by means of a web
browser, without the burden of installation and with universal availability. The
second feature indicates the widespread use of VQSs in practice. Thus, the more
systems commercially available, the greater the extension reached by VQSs.

The short answer to the question is that, as far as we know, there is only one
system commercially available and designed for the web: Polaris [34].

Moreover, we have included two basic features extracted from the paper [8]:
the visual representation adopted to present the reality of interest and the visual
representation adopted to express queries. With respect to web features, we have
also considered relevant whether the prototype deals with data formatted for the
web, that is, XML data or RDF data.

The rest of the paper is organized as follows. In Sect. 2 we state the method
followed for elaborating the survey and we briefly describe the values of the
relevant features included in the paper. Finally, in Sect. 3, we have drawn several
conclusions about the VQSs.

2 Statement of the Method

A survey about a particular object must determine the relevant features of the
object with respect to a particular purpose. Once the features have been deter-
mined, the next step is to find the possible values of these features. Finally, we
have to determine the best combinations of the pairs (feature, value) for the
particular purpose.

Usually, we can extract the relevant features and their possible values from
published papers about the object, by assuming features in their entirety or
by adapting them to new perspectives appearing after the papers have been
published. Moreover, we can add features detected by ourselves which were not
previously included in any paper.

The survey develops through several steps, which are usually interspersed.
In the first step, a complete search of sources determines the candidate papers
that deal with the object. In the second step, the relevant features of the object
with respect to the particular purpose are determined.

Our object in this survey are the visual query systems with the purpose of
facilitating querying databases to non expert in Computer Science users.

The survey [8] reviews up to 80 references from 1975 until 1996 used for query-
ing traditional databases. For this survey, we have searched for papers related
with VQS from 1997 to date and we have found 194 candidate papers. Next,
we have discarded papers about query languages but without visual part (122)
and papers about natural language query languages (8) because they deserve a
separate survey. In the remaining 64 works, we have determined sets of ‘similar
papers’ and we have discarded all but one paper in each set. A set of similar
papers is composed of several papers built on different aspects of the same idea
for a VQS. They also include preliminary versions of the VQS which were later
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on subsumed by more complete journal publications. We have found 30 similar
papers. So, we have discarded 122 + 8 + 30 papers, that is, 160 papers. As a
result, the number of papers reviewed in this survey is 34.

As for relevant features, we have extracted the following from the survey of
Catarci [8]: Visual representation adopted to present the reality of interest and
visual representation adopted to express queries. The values of these features
have been determined from the work [8] and from other papers, such as [11],
where the faceted option appeared. For answering the question of this paper, we
have added the following features: Web orientation and validation.

Let us explain briefly each of the features as well as their values.

2.1 Visual Representation Adopted to Present the Reality of
Interest

This feature has been borrowed from the work of Catarci [8]. The reality of
interest is modeled by a designer by means of a data metamodel as, for example,
the entity/relationship metamodel or a graph data metamodel. As a result of
the modelization process, a data model is obtained and it is presented to the
user so that (s)he formulates queries on it.

The ways the data model is presented to the user are briefly described next
and a more detailed explanation of some of the papers is given in [20].

Diagram-based. Data metamodels come with an associated typical represen-
tation for their elements. For example, in the entity/relationship metamodel,
there are many representations available and one of them consists of drawing
rectangles for the entity types, diamonds for the relationship types and ovals for
the attributes. In the diagram-based option, the user has available a diagram-
matical representation of the data model elaborated with the typical graphical
representation for the elements of the metamodel.

Icon-based. Unlike the diagram-based approach, in this representation there
are only iconic representations of some elements of the data model, but the user
does not have available the complete data model. According to Catarci [8], ‘these
VQS are mainly addressed to users who are not familiar with the concepts of
data models and may find it difficult to interpret even an E-R diagram’. The
aim of the icons is to represent a certain concept by means of its metaphorical
power. The problem of these systems is how to construct them in such a way
that they express a meaning which is understandable without ambiguity to the
users.

Form-based. The typical forms of web pages serve for presenting the extensional
database. This occurs in papers such as [34].

Faceted. The data are modeled as faceted classifications which organize a set
of items into multiple, independent taxonomies. Each classification is known as
a facet and the collection of classification data is faceted metadata. The specific
category labels within a facet are facet values. For example, the set of items can
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be architectural works. For these items, the facets are the architect, the location
or the materials. The facet values for materials are stone, steel, etc.

Unknown. As the data model always exists, this option refers to the case where
the data model is unknown. For example, the data model may be presented in a
paper in textual form but there is no explanation about the way it is presented
to the user. For example, paper [26] hides the database and tries to guess the
paths for the query from the entities chosen by the user.

2.2 Visual Representation Adopted to Express the Queries

This feature has been borrowed from the work of Catarci [8] and we have adapted
it to the object of the survey by adding the Faceted value.

The ways the queries are formulated are briefly described next and a more
detailed explanation of some of the papers is given in [20].

Diagram-based. The diagram-based option means that the query is expressed
on a diagrammatic representation of the data model.

Icon-based. The icon-based option includes two cases. In the first case, the sys-
tem offers icons for representing the elements involved in the query. For building
a query, the user drags and drops the appropriate icons into a canvas. The
second case is the same as in [8], where the icons ‘denote both the entities of the
real world and the available functions of the system’.

Form-based. Another way to facilitate the query is the form option where the
user composes the query by completing options of different elements of a form.
The drawback is that the query logic of the end-user does not always fit into a
form.

Faceted. We have added as a new value ‘Faceted’ for describing a system which
includes data and metadata in the same page. There, the user specifies the query
by clicking on the appropriate links. We have found this situation only in one
paper [11].

2.3 Web Orientation

For the web orientation, we have selected two features which are not mutually
orthogonal. The first feature is whether the prototype is working on the web or
has been conceived to be used in local mode. For the first situation, the value is
Available on the web and this means that the final user can query the database
by means of a prototype which is working on the web. The two values are: There
is no web orientation and Available on the web. The second feature indicates
whether the user can query data formatted for the web and the values are: Data
not formatted for the web, Query XML data, Query RDF data. The values are
not orthogonal. So, a paper can have the two values. This is the case, for example,
of paper [7].
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2.4 Validation

The validation of an idea can be done from several points of view. Regarding
query systems, there are, at least, two dimensions: usability and performance.

For example, paper [10] focuses on performance and explains query rewriting
techniques that improve the query evaluation performance so that the query
execution time is reduced. However, in this paper we concentrate on the usability
dimension, that is, the experiments made with users in order to determine the
ease of use of the proposed prototype. For this feature, the list of values is: Only
prototype, Prototype tested with users, Prototype tested in a real environment,
Commercial tool.

Next, we describe briefly each value of this feature. The option only prototype
means that a prototype has been built but no test has been made with users.
The value prototype tested with users means that several experiments have been
carried out in order to determine the usability of the prototype. The value pro-
totype tested in a real environment means that it has been used for real tasks
in a particular setting, for example in a department of a university. Finally, the
option commercial tool means that the VQS has been fully implemented, offered
to the public and is in real use in diverse installations.

Table 1. Visual query systems (1997–2003)

Cite Database Query Web Validation

[2] Unknown Icon No Only prototype

[31] Unknown Form No Tested with users

[5] Diagram Diagram No Only prototype

[9] Diagram Diagram No Tested with users

[21] Diagram Diagram No Only prototype

[32] Diagram Diagram No Only prototype

[24] Icon Icon No Only prototype

[3] Diagram Diagram No Tested with users

[12] Unknown Form Query XML data No

[13] Icon Icon Available on the web Tested with users

[28] Diagram Diagram No Only prototype

[33] Icon Icon No Tested with users

[27] Diagram Form Query XML data Only prototype

[25] Icon Icon No Tested with users

[23] Unknown Icon No Only prototype

[4] Unknown Icon Query XML data Only prototype

[26] Form Form No Tested with users

[1] Unknown Form Query XML data Only prototype

[14] Unknown Form Query XML data Only prototype
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3 Discussion

The arrival of the web brought with it more facilities for users to query data-
bases. As a consequence, users expect to access easily through the web databases
situated anywhere in the world.

For expert users, one solution is to express queries in query languages such
as SQL or XQuery. However, for novice users whose main concern is to extract
data from the database but not the query languages themselves, learning SQL
or XQuery is a huge task that is very far from their main concern.

One solution for novice users is to hide the complexity of query languages
behind a visual scenery where it is supposed that the complexity is softened with
the aid of visual metaphors. This is the idea of Visual Query Systems (VQS)
defined in [8] as “systems for querying databases that use a visual representation
to depict the domain of interest and express related requests”.

In this paper, we have reviewed basic features of Visual Query Systems, such
as the representation of databases and the representation of queries. We have
also considered the feature of accessing data formatted for the web. Finally, we
have reviewed two features we consider relevant to determine whether the VQSs
ease querying for novel users: web availability and validation. Next, we discuss
the results for each of these features.

Table 2. Visual query systems (2004–2015)

Cite Database Query Web Validation

[7] Diagram Icon Available on the web;
Query XML data

Only prototype

[22] Diagram Diagram Query XML data Tested with users

[15] Unknown Icon Query RDF data No

[29] Diagram Diagram No Tested in a real environment

[16] Unknown Form Query XML data Tested in a real environment

[36] Unknown Form No Tested in a real environment

[30] Diagram Icon Query XML data Only prototype

[34] Form Form Available on the web Commercial tool

[11] Diagram Faceted Available on the web Only prototype

[17] Unknown Diagram Query RDF data Only prototype

[37] Diagram Icon No No

[6] Diagram Diagram Available on the web Tested with users

[18] Unknown Diagram No Tested with users

[35] Diagram Icon No Tested with users

[38] Unknown Icon No No

[10] Diagram Diagram Query XML data Only prototype
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The majority of papers offer a diagrammatic representation of the database,
only four papers an iconic one [2,13,25,33] and one paper with form representa-
tion [34]. For several reasons, there are many papers whose database representa-
tion is unknown. For example, paper [26] hides the database and tries to guess
the paths for the query from the entities chosen by the user.

With respect to the query representation, the distribution is more balanced
between the icon (12 papers), the diagram (11 papers) and the form (8 papers) rep-
resentation. A special form of query, the faceted one, appears only in one paper [11].

Regarding the data format, there are 9 papers [1,4,7,10,12,16,22,27,30] out
of 34 which query XML data and only two papers which query RDF data [15,17].
The rest of the papers do not query web data.

The rest of the features we have identified deal with the main question we
have formulated in this paper, that is, to what extent have the VQS been the
solution for novel users for querying databases?

For answering this question with respect to the web availability, we can dis-
tinguish two periods. From 1997 to 2003 (see Table 1), when the web usage was
beginning to spread, there was only one paper oriented to the web [13]. This was
very understandable because of the time needed for reorienting the research into
the new web setting. In the period 2004 to 2015, only papers [6,7,11,34] pro-
pose a web implementation (see Table 2). Although the number of web oriented
papers in this period is greater than in the 1997–2003 period, the low number
of papers indicates that web orientation has scarcely been taken into account.

For the validation feature, we have found a great number of papers which
have only a prototype or have been tested with users in reduced experiments.
Only three prototypes have been tested in real environments [16,29,36] and we
have found only one commercial tool [34]. So, few papers go beyond testing the
prototype with a few users.

As a conclusion of these two features, very few papers are web oriented
and also very few papers offer a prototype which has been tested in a real
environment. In fact, the combination of both features is only found in paper [34].
Then, although the visual query systems seem to be a great idea for easing the
query process for novice users, the reality is that very few papers describe real
implementations.

So, the answer to the main question of the paper is that, for the moment,
VQSs have not been a widely accepted solution for novel users. From this obser-
vation a new, more general question arises: Is there any solution for easing the
specification of queries?

If the answer is no, novel users have to learn by themselves query languages
or they have to ask computer experts for the specification of queries. In the
latter case, no new research would be needed in this field. If the answer is ‘we
do not know’, then new research is required in order to find simple visual query
languages which help novice users.

We strongly believe that the idea of VQSs is a good one and that the research
should continue in this direction. Recent papers such as [19] also support the
idea that a solution for naive users is not available but is necessary in this world
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in which the use of databases is democratized. The paper proposes as a solution
visual systems in which the user writes examples of queries and the system
extracts and specifies the desired query in the corresponding query language.
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Abstract. Query rewriting in heterogeneous environments assumes
mappings that are complete. In reality and especially in the Big Data era
it is rarely the case that such complete sets of mappings exist between
sources, and the presence of partial mappings is the norm rather than
the exception. So, practically, existing rewriting algorithms fail in the
majority of cases. The solution is to approximate original queries with
others that can be answered by existing mappings. Approximate queries
bear some similarity to original ones in terms of structure and seman-
tics. In this paper we investigate the notion of such query similarity and
we introduce the use of query similarity functions to this end. We also
present a methodology for the construction of such functions. We employ
exemplary similarity functions created with the proposed methodology
into recent algorithms for approximate query answering and show experi-
mental results for the influence of the similarity function to the efficiency
of the algorithms.

1 Introduction

In data exchange [1], integration [2], and sharing [3], schema mappings (often
Local-As-View (LAV) [2]) are used to alleviate heterogeneity across pairs of
autonomous sources. In data exchange, mappings are used for instance genera-
tion of a target schema based on those of the source schema. In data integration
and sharing, mappings are used to translate or rewrite queries over a source
schema to new queries that can be evaluated over the constructs (schemas and
attributes) of a target schema.

Here, we focus on the query rewriting problem. Classical rewriting algorithms,
like Inverse Rules [4], Bucket [5] and MiniCon [6] have addressed the issue of
computing complete or maximally-contained rewritings efficiently. Yet, a com-
mon assumption in all is that the available mappings should provide at least one
combination that fully rewrites the query. If the input query refers to a relation
or to an attribute that does not participate in any of the input mappings, then
the rewriting fails (no output is produced).

This becomes an insurmountable problem in the new era of Big Data man-
agement, where data may be sought across many autonomous and heterogeneous
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sources that store huge amounts of data. In many practical settings, there is a
necessity to query such heterogeneous data sources that do not hold complete
mappings among them. In fact, mappings are inherently incomplete. The size of
the data prohibits manual resolution of incomplete mappings. Therefore query
answering using classical rewriting is not possible. It is necessary to produce
approximate answers to posed queries. ITo achieve this, we need to approxi-
mate the original query with a version that can be rewritten on the target data
source. The approximated version of the original query can then be rewritten on
the target data source schema and answered. Therefore, to perform approximate
query answering it is necessary (a) to create one or more approximate query ver-
sions, i.e. versions of the original query that are similar, and, furthermore (b)
to compare such versions with respect to their similarity to the original query.
These are two tasks that are orthogonal to each other. In other work [7] we have
proposed solutions for task (a). In this work we deal with task (b), by reflecting
on the notion of query similarity, and how the latter can be qualitatively and
quantitatively measured.

Motivating Example. Consider a travel web-site iTravel.com offering services
similar to the ones found in web-sites like Expedia or Travelocity. Like these web-
sites, a user can go to iTravel.com and enter (a) the origin; (b) the destination; and
(c) the dates of the vacation; and the system can generate candidate vacation
packages that include the flight(s) and hotel room(s) for the duration of the
vacation. Conceptually, one can think of this as a single query over iTravel.com

database, as illustrated in Fig. 1(a).

Fig. 1. Querying the iTravel.com

Consider a user looking for vacation packages between the 1st and 9th of
November, flying out of New York to the city of Hana, Hawaii (Fig. 1(b)) Web-
sites like iTravel.com usually act as brokers. They do not store the latest information
for flight and hotel prices (or availability). Instead, they often access the airline
and hotel databases (at query-time) to get the latest data. Figures 1(c) and
(d) show three such databases along with their corresponding mappings to the
iTravel.com schema (expressed as LAV mappings).
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Fig. 2. Approximate queries for the iTravel.com

The query in Fig. 1(b) cannot be rewritten using the above mappings. Identi-
fiers like vacid and hid are internal to the iTravel.com database and cannot be mapped
to the attributes of the individual sources. As well, the join on these identifiers is
also not covered by any combination of mappings. Therefore, classical rewriting
fails. Yet, the individual sources provide us with enough information to recon-
struct vacation packages since all the important attributes, like the dates, origin
and destination of flights, and the check-in and check-out dates, are present
in the sources. The two queries in Fig. 2 can be computed by approximating
(removing the join with VacPackage) the query in Fig. 1(b). The first query identi-
fies flight/hotel combinations where the user gets to stay in a hotel, while in the
second the user gets to stay in an inn.

Challenge: Given an input query and a set of mappings there are multiple
possible approximations and not all approximations are equally good. How can
we determine which are the best query approximations?

2 Query Similarity

Approximate query answering aims to produce a query answer that meets the
requirements of the information requested by the original query Qorig in the best
possible way. The latter can be roughly interpreted in two ways.

– Structural similarity: The structure of the returned answers is similar to
that returned by Qorig.

– Semantic similarity: The content of the returned answers, (i.e. the answer
tuples), is similar to the content of the ideal answers to Qorig.

The second approach is very hard to define and impossible to predetermine,
whereas we could coarsely define and invent guidelines in order to predetermine
the first one.

Essentially, the ideal answers to Qorig are tuples that contain the exact data
that the user who poses Qorig has in mind with respect to the answering data-
base. Therefore, it would be necessary to compare the ideal dataset that answers
Qorig with the actual dataset that is retrieved from a database. However, in an
environment of federated big databases, the autonomy and the size of sources
may make this impossible.
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Even so, assuming that the ideal answer is accessible, the comparison with
the actual answer would require huge human effort in order to be determinis-
tic: In order to decide if an approximation is the most similar to Qorig all the
approximations have to be constructed, rewritten and answered; the answers to
all the approximations should be compared in order to decide which one is best.
Otherwise, a comparison based on statistics and on probabilistic models [8,9]
could be possible, but details for such metadata are practically never available.

Oppositely to the similarity of raw data that are returned as query answers,
the similarity of the structure of the answers is more approachable, but also of
great usefulness. Approximations of Qorig can be employed in order to retrieve
data from schemas that are partially mapped on the schema of Qorig; thus,
a priori knowledge of which approximate version is most similar to Qorig can
lead to answers that are structurally compatible with the schema of Qorig, and,
therefore, understandable by the user who posed Qorig, or, even further, easier
for her to store locally1. Furthermore, the schema itself constitutes, actually,
metadata; therefore, structural similarity, which entails schema similarity, leads
to metadata similarity. Overall, structural similarity can be a good indication
of semantic similarity. Since schemas and mappings are available at query time,
it is possible to define the structural similarity and also define guidelines for
the comparison of approximations. Therefore, the following discussion is on the
definition of structural query similarity. We focus on the structural similarity of
SQL and conjunctive queries.

3 Related Work

Query similarity has been explored in several works in the recent past. Some of
these works deal with keyword matching in the database environment [10,11] or
with the processing of imprecise queries [12–14]. The work in [15] talks about
attribute similarity but focuses on numeric data and on conclusions about sim-
ilarity that can be deduced from the workload. Furthermore, in [16] queries are
classified according to their structural similarity; yet, the authors focus on features
that differentiate queries with respect to optimization plans. The only work rele-
vant to ours is that of [17], where overall semantic similarity of queries is explored.
Yet, our focus is on query versions that are produced through the use of mappings,
and we are interested in the effect of the mappings in query similarity.

There has been a great and growing interest in the past few years on how
to execute, specifically, a query workload in a way that it is approximate with
respect to its actual execution, and, therefore, gain in response time. Some of
the work is on approximate query processing. The recent work in [18] as well as
the works in [19,20] explore querying large data by accessing only a bounded
amount of it, based on formalized access constraints. These works give theoretical
results on the classes of queries for which bounded evaluation is possible. Other
works focus on how to pre-treat the data in order to create synopses: histograms

1 The problem of storing approximate answers to the database on which Qorig is posed,
is related to database versioning and is out of the scope of this paper.
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(e.g. [21]), wavelets (e.g. [22] and sampling (e.g. [23]); or to perform execution
which terminates based on cost constraints and returns intermediate results (e.g.
[24]). Our work is orthogonal to such approaches, in that we do not try to achieve
approximation through alteration of the data, but through alteration of the query
workload.

Another type of work is on approximate query answering, in which a query
that is more suitable in some sense is executed in the place of the original one. In
[25] a datalog program is approximated with a union of conjunctive queries, and
in [18] the same example is followed with the creation of approximate versions of
classes of FO queries. In a similar spirit, the works in [26,27] deal with tractable
queries for conjunctive queries and the work in [28] deals with subgraph isomor-
phism for graph queries. Our work is on the same lines of these works, but we
focus on the approximation of queries based on specific views that are available
in order to perform such approximation, so that the approximated versions are
used to query data on heterogeneous sources. Actually, our work proposed here
on query similarity is applied in our previous work on relaxing queries that are
exchanged in a heterogeneous environment of federated sources that hold large
data collections [7].

3.1 Similarity of SQL Queries

Users usually pose their queries in SQL form. The similarity of two SQL queries is
confined by the semantic similarity of their elements (namely, ‘select’ attributes
and ‘where’ conditions). The definition of query similarity should be based on
a qualitative study about the semantic relativeness of query versions revealed
by their structure. Furthermore, the definition itself should describe a measure
that quantifies query similarity. Moreover, such a query similarity measure may
be different depending on the application or even the query in hand. In the
following we discuss a methodology for the construction of a query similarity
measure. Coarsely, the methodology includes two steps: (a) the qualification
and (b) the quantification of query similarity. In step (a) the qualitative role of
query characteristics in query similarity is assessed, and in (b) the qualitative
results of step (a) are quantified and correlated.

A. Query Similarity Qualification. The assessment of the qualitative charac-
teristics of query similarity appoints a role to each query element and prioritizes
their importance to the overall query semantics; these can then be used to deter-
mine the correlation and interpret similarity of atomic elements to a compound
overall query similarity. Let us assume that Qapprx is an approximate version of
the original query Qorig.

Definition 1. A query Qorig is a set of elements Qorig = {E1, · · · , Em}.
An approximate version of it, Qapprx, is another set of elements Qapprx =
{E′

1, · · · , E′
n}. There is a function sat(Ei, E

′
j) : QorigxQapprx → {0, 1} that

shows if an element Ei ∈ Qorig is satisfied, i.e. represented by an element
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E′
j ∈ Qapprx. A query similarity measure Msim of Qorig and Qapprx is a function

of sat, i.e. Msim(Qorig, Qapprx) = f(sat(.)).

The above defines a query as a set of elements. Two versions of a query are
compared based on their set of elements, and the similarity of this pair of queries
is confined by the similarity of their elements. Hence, a query similarity measure
should be in the same spirit as such measures in the field of schema matching
(e.g. [29]) and matching taxonomies (e.g. [30]). The function sat decides for
the similarity of two elements; it takes as input two query elements Ei, E

′
j ,

one of each of the two query versions, and returns a boolean (or equivalenty,
binary) value that shows if Ei is satisfied, i.e. semantically represented by E′

j . The
function sat can be defined in more detail and have characteristics according to
the application in hand. For example, sat can be commutative, i.e. sat(Ei, E

′
j) =

sat(E′
j , Ei), which means that if an element of one query version is represented by

an element of the other, the opposite holds, too; this may hold for an application
where the semantics of the data in the two databases are considered known, and
it may not hold for applications with data semantics that can be considered
unknown (e.g. one local database and one web database). Another example is
that sat can be a function that measures the similarity of two elements, e.g.
it outputs values in the range [0, 1]; binary output is suitable for applications
with a certain knowledge of data semantics, whereas an output within a range
is suitable of applications with uncertain data semantics.

Proposition 1. Adopting a conservative point of view, elements in Qorig, i.e.
‘select’ attributes or ‘where’ conditions that are missing from Qapprx, or addi-
tional elements, i.e. ‘select’ attributes or ‘where’ conditions in Qapprx that do
not exist in Qorig, are considered to decrease query similarity.

The above proposition states, intuitively, that any deviation in the structure
of Qapprx from the structure Qorig decreases their similarity. Therefore miss-
ing or additional query elements decrease similarity. Key attributes are highly
important in a relational schema since their values uniquely prescribe the values
of other attributes. The role of keys in queries is as important as in the schema
itself, no matter if such an attribute appears in a ‘select’ or ‘where’ clause. Thus,
deficient approximations of key attributes may result in severe semantic devi-
ations from the original query. Second, ‘select’ attributes represent the exact
information that the user requires. Thus, their lack in the approximate query is
decisively irreparable. Third, even though the lack of join conditions is a nega-
tive factor for query similarity, it results in an approximate query version that
retrieves a superset of the data that would be retrieved by a query with all the
original joins. Furthermore, the lack of value constraints has the same effect in
the query as the lack of joins. However, the lack of joins probably results in much
bigger supersets of retrieved data than the lack of value constraints. Finally, the
introduction of new value constraints and joins on non-key attributes is consid-
ered a deficiency.

The above are facts that play a role in the estimation of query similarity.
These facts, summarised in Table 1, are assessed by the sat(.) function. Such an
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Table 1. Summary of facts assessed by the sat(.) function.

Query element Fact assessed by sat(.)

key attributes key attributes are represented, no matter their position in the query

‘select’ attributes ’select’ attributes are represented

joined attributes joined attributes are represented

value conditions value conditions are represented by some attribute constraints

additional elements existence of new value constraints

existence of new joined non-key attributes

existence of new joined key and foreign key attributes

assessment should quantify the similarity of pairs of query elements, based on
some qualitative ordering of the importance of these facts. Of course the ordering
of the fact importance is application-specific. A generic rationale would indicate
that the most important elements of a query are the attributes that are keys or
‘select’ attributes. Joins are very important; yet their lack results in supersets
of answers that the peer might be able to refine. Finally, additional conditions
in approximate versions result in rewriting that are classically contained in the
rewriting of the original query, therefore, they may be considered as the least
important to query similarity. Moreover, the lack of representation of keys or
conditions (joins and value constraints) results in answers that are not sound,
whereas the lack of representation of ‘select’ attributes and additional condi-
tions results in answers that are not complete. Again, the importance of answer
soundness over completeness or the opposite is application-specific: For example,
in a medical application, soundness may be more important than completeness,
whereas in an application of web crawling, as in the motivating example, the
opposite may hold.

B. Query Similarity Quantification. The qualitative characteristics of query
similarity are the guidelines along which a measure for the quantification of query
similarity should be constructed. For Qorig and a Qapprx, this measure quantifies
(a) the importance of each query element of Qorig being represented by one or
more elements of Qapprx, (b) the semantic correlation of the elements of Qorig,
and (c) the deviation of Qapprx from Qorig with respect to additional restrictions
(if any) of the first that are not present in the latter2. We make the following
proposition:

Proposition 2. A query similarity measure should: (a) be monotone to the rep-
resentation of the elements of Qorig in Qapprx, (b) decrease with the presence of
additional elements in Qapprx, and (c) be directional, i.e. the similarity of Qorig

with Qapprx can be different from the similarity of Qapprx with Qorig

2 Intuitively, Qapprx deviates from Qorig only by additional constraints and not by
additional ’select’ attributes.
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The above suggests that the representation of individual elements of Qorig

in Qapprx is cumulative and, therefore, the representation of one element cannot
cancel or diminish the representation of another. Also, whatever additional in
Qapprx can only play a negative role to the similarity of the original and the
approximate query; if this was otherwise, it means that an additional element
E′ in Qapprx would represent some existing element E in Qorig; in such a case E
would not be characterised as additional. Furthermore, because of the negative
role in similarity of additional elements, a similarity measure is directional, since
elements are characterised as additional with respect to which is the posed query
Qorig. Beyond this, the function sat may also be directional.

In accordance to the above, Table 2 shows three exemplary similarity measures.
In function Msim1 Ei’s are elements of Qorig, E′

i’s and E′
j ’s are elements of Qapprx,

and
∑

wi = 1. The weights wis and wjs emphasize the importance of individ-
ual elements and add to the ordering of the importance of elements represented
by the output of sat. In functions Msim2 and Msim3 Si are the ‘select’ attributes,
Ci are any type of constraints (so ‘where’ conditions), and Cj are additional con-
straints. The function Msim1 assumes no correlation of similarities of individual
elements, expressed as a total summation, whereas Msim2 assumes such a correla-
tion, expressed as the multiplication of the summation of ‘select’ attributes and the
summation of constraints; finally, Msim3 focuses more on the correlation of con-
straints, rather than any other elements. In Sect. 4 we show experimentally how
these three different functions influence the efficiency of algorithms that seek for
the best approximate query version and what similarity values the output. In [31]
we elaborate more on specific variations of query similarity measures.

Table 2. Exemplary similarity functions.

Msim1(Qorig, Qapprx) =
∑

wi·sat(Ei,E
′
i)−
∑

wj ·sat(E′
j ,E

′
j)∑

wi·sat(Ei,Ei,)

Msim2(Qorig, Qapprx) =
(
∑

wi·sat(Si,S
′
i))·(

∑
wi·sat(Ci,C

′
i))−

∑
wj ·sat(C′

j ,C
′
j)∑

wi·sat(Si,Si,)·
∑

wi·sat(Ci,Ci,)

Msim3(Qorig, Qapprx) =
(
∑

wi·sat(Si,S
′
i))·(Πwi·sat(Ci,C

′
i))−

∑
wj ·sat(C′

j ,C
′
j)∑

wi·sat(Si,Si,)·Πwi·sat(Ci,Ci,)

3.2 Similarity of Conjunctive Queries

Even though the user forms QSQL
orig , the existing rewriting algorithms [4–6] deal

with the conjunctive form of this query, Qconj
orig , and, therefore, an approximate

query version should be in this form in order to be rewritten. In general, Qconj
orig

contains elements (these are always constraints) that are not apparent in QSQL
orig

but are implied by the query elements in the latter.

Example 1. Assume that there are three additional relations: Hotels(name,
room#, rate, lowestprice),HotelLocation(locname, lowestprice, location),Season
Prices(season, lowestprice)

QSQL
orig requests names and locations for the hotels with the lowest price in

spring:
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QSQL
orig : SELECT H. name, HL. location

FROM Hotels H, HotelLocation HL, SeasonPrices SP

WHERE H.lowestprice = HL.lowestprice

AND HL.lowestprice = SP.lowestprice

AND SP.season = ”spring”

Qconj
orig (name, location):-Hotels (name, room#, rate, lowestprice) HotelLocation

(locname, lowestprice, location) SeasonPrices(season, lowestprice)
Qconj

orig implies an additional join H.LowestPrice = SP.LowestPrice that is not appar-
ent in QSQL

orig . The rewriting algorithms considers for elimination both explicit
and implicit constraints with respect to QSQL

orig . ��
There are two ways to define the similarity of the conjunctive to the SQL

form of Qorig concerning the query elements that are constraints3: (a) implicit
constraints appearing only in Qconj

orig are considered associative to the explicit ones
(i.e. those that appear in QSQL

orig ); in this case, the role of implicit constraints in
similarity should be supportive to that of explicit constraints in a seamless way;
(b) both implicit and explicit constraints are considered of equal value to the
query similarity; in this case the initial influence to similarity of the explicit
constraints has to be disseminated to all of the implicit and explicit constraints,
appearing in Qconj

orig . The dissemination can be performed either in a absolute way:
add similarity value to the implicit constraints, or in a relative way: disperse the
value of explicit constraints to the all of the constraints, such that the total
is constant. Both ways diminish the influence of the explicit constraints to the
overall query similarity.

We propose following the first approach, since, in general, it adheres better
to the user preferences: Specifically, the user, who defines the initial role and
influence of the query elements, is not aware of the implicit query constraints;
therefore, it is better to treat them as auxiliary to the explicit constraints, rather
than equal to the latter in ignorance of the user. Practically, this means that
whenever the approximate query answering algorithm needs to eliminate an
implicit constraint, it has to determine the explicit constraints of Qorig to which
this implicit one is auxiliary.

3.3 Lower Bounds for Query Similarity

A similarity measure that is defined along Proposition 2 guarantees a low limit
for the similarity of the rewritten approximate query, QapprxR

to the original
query. Formally:

Proposition 3. If Qapprx is α similar to Qorig, then the respective QapprxR
is

at least α similar to Qorig.

3 Query elements that correspond to ’select’ attributes have a 1-1- correspondence
in both QSQL

orig and Qconj
orig . In the conjunctive form, these are called distinguished

variables.
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Intuitively, QapprxR
requests information constrained at least by the conditions

of the respective Qapprx
4. Additional constraints in QapprxR

are complementary,
meaning that they do not annul existing constraints in Qapprx (and therefore in
Qorig). Thus, when they are rewritten they (a) do not decrease the similarity
of Qorig with Qapprx and, furthermore (b) they may even narrow the answer
towards the constraints of Qorig that are missing from Qapprx. Thus, the simi-
larity of Qapprx to Qorig denotes that the approximately requested information
is at least as similar to the originally requested information as the similarity
measure denotes.

The following example exhibits the above proposition.

Example 2. Assume that there are three views which can be used for the rewrit-
ing of Qconj

orig of Example 1:
V1(name, location):- Hotels(name, room#, rate, lowestprice) HotelLocation (name,

lowestprice, location)

V2(name):- Hotels(name, room#, rate, lowestprice) SeasonPrices (‘spring’, lowestprice)

V3(location):- HotelLocation (locname, lowestprice, location) SeasonPrices (‘spring’,

lowestprice) V1, V2 and V3 rewrite the following approximate versions:
Qapprx1(name, location):-Hotels (name, room#, rate, lowestprice) HotelLocation (loc-

name, lowestprice, location)

Qapprx2(name, location):-Hotels (name, room#, rate, lowestprice1) HotelLocation (loc-

name, lowestprice2, location) SeasonPrices (‘spring’, lowestprice1)

Qapprx3(name, location):-Hotels (name, room#, rate, lowestprice1) HotelLocation (loc-

name, lowestprice2, location) SeasonPrices (‘spring’, lowestprice2)

Qapprx1 misses a relation, while Qapprx2 and Qapprx3 miss a join. The follow-
ing are the rewritten versions of the three approximate queries using the above
views, respectively:
Qapprx1R(name, location):- V1(name, location)

Qapprx2R(name, location):- V2(name) V3(location)

Qapprx3R(name, location):- V2(name) V3(location)

Qapprx1 is rewritten such that the all requested information is also requested via
the rewriting Qapprx1R. Let us expand Qapprx1R:
Qapprx1R(name, location):-Hotels(name, room#, rate, lowestprice) HotelLocation

(name, lowestprice, location)

Qapprx2R and Qapprx3R, however, are rewritten such that more information is
requested and this additional information is part of the information that was
requested by Qorig and was lost because of the eliminations of the approxima-
tion. The expansion of both rewritten queries is:
Qapprx2/3R

(name, location):- Hotels(name, room#, rate, lowestprice1) Season-

Prices(‘spring’, lowestprice1) HotelLocation (locname, lowestprice2, location) Season-

Prices(‘spring’, lowestprice2)

Both Qapprx2R and Qapprx3R request names of hotels with the lowest price
in spring and locations of hotels with the lowest price in spring. Since the
‘spring’ constraint is associated with both the name an the location of the hotel,
4 Actually, this is guaranteed by the classical query rewriting methodology, which

creates contained rewritten versions.
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Qapprx2R and Qapprx3R are more similar to Qorig than Qapprx2 and Qapprx3,
respectively. Moreover, since there is only one lowest price for every season (see
key constraints), Qapprx2R and Qapprx3R manage to recover the full information
requested by Qorig. ��

Fig. 3. Quantification of query similarity Fig. 4. Influence of Msim on the effi-
ciency of approximate query answering

4 Experiments

We present an experimental evaluation of the discussed query similarity mea-
sures, employing the exemplary functions Msim1 , Msim3 and Msim3 , presented in
Sect. 3.1. We use these three measures in algorithms that search for approximate
query versions, in order to approximately answer original query versions that
cannot be classically rewritten on remote data sources. Specifically, we employ
two algorithms we have already proposed in [7], which take as an input Qorig

and a set of views V that can serve as mappings with remote data sources. The
algorithms create series of Qapprx that are compared with Qorig based on the
similarity function Msim1,2,3 and pick for rewriting and answering the Qapprx

that is most similar to Qorig. One algorithm, Exh, is exhaustive, i.e. it may
search the whole search space of solutions, and the other, Prun, prunes the
search space of solutions according to some heuristics.

The experiments are performed on synthetic data, following the example of
works presented in the field of query rewriting using views [6,32,33]. Synthetic
data give the opportunity to control the form/size of Qorig and the set of views V;
therefore, it enables the case-study of a big variety of query-views combinations,
that cannot be found in real datasets. The parameters are plenty. In short, in the
presented experiments, the following parameter values are used. Number of: rela-
tions = 10, views = 10, view subgoals = 4, query subgoals = 5, repeated query
subgoals = 5, query constants = 1, view distinguished variables = 2, view joins =
3, view constants = 3, view comparisons = 3, distinguished variables = 20.

Figure 3 shows that the average dissimilarity of Qorig and Qapprx increases
significantly for Msim2 with the increase in the number of available views,
whereas for Msim1 and Msim2 the dissimilarity increases for some number of
views and decreases as this number becomes bigger. This shows that tightening
the correlation of distinguished variables and constraints maybe too strict and
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the increase in available mappings may not really help to find, or to find early
the best Qapprx. Oppositely, it is shown that keeping looser correlations between
elements and even focusing only on the correlation of constraints we can find
more or find earlier Qapprxs that are quite similar to Qorig.

Figure 4 shows the effect of the similarity function on the efficiency of the
algorithms. Algorithms Exh and Prun are compared with a baseline, i.e. the
straightforward algorithm that produces all possible Qapprx and compares them
with Qorig. For both, Exh and Prun, employing Msim3 , which focuses on the
correlation of constraints, results in much faster execution. This is natural, since
the solutions can be fast rejected or pruned. Also, employing Msim2 is better
than Msim1 , since it also requires tighter correlations of query elements, which,
again, results in early solution rejection and pruning.

5 Conclusions

In this paper we discuss the notion of query similarity with the prospect of using
it in answering approximate versions of originally posed queries in an environ-
ment of big heterogeneous data sources. We focus on the similarity of SQL and
conjunctive queries, as these forms are necessary for the expression and classi-
cal rewriting, respectively, of posed queries. We present a methodology for the
creation of query similarity functions, based on qualitative and quantitative char-
acteristics of query similarity. We give examples of query similarity functions and
we present experiments with the employment of such functions in approximate
query answering.
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Abstract. The paper provides a contribution in computing consistent
answers to logic queries in a P2P environment. Each peer joining a P2P
system imports data from its neighbors by using a set of mapping rules,
i.e. a set of semantic correspondences to a set of peers belonging to
the same environment. By using mapping rules, as soon as it enters the
system, a peer can participate and access all data available in its neigh-
borhood, and through its neighborhood it becomes accessible to all the
other peers in the system. The declarative semantics of a P2P system
is defined in terms of minimal weak models. Under this semantics each
peer uses its mapping rules to import minimal sets of mapping atoms
allowing to satisfy its local integrity constraints. The contribution of
the present paper consists in extending the classical notion of consistent
answer by allowing the presence of partially defined atoms, i.e. atoms
with “unknown” values due to the presence of tuples in different mini-
mal weak models which disagree on the value of one or more attributes.
The basic proposal is the following: in the presence of alternative mini-
mal weak models the choice is to extracts the minimal consistent portion
of the information they all hold, i.e. the information on which the mini-
mal weak models agree. Therefore, true information is that “supported”’
by all minimal weak models, i.e. the set of atoms which maximizes the
information shared by the minimal weak models.

1 Introduction

A flurry of research, in the social, academic and commercial communities, is
devoted to the different topics related to the management of Peer-to-peer (P2P)
systems. Each peer, joining a P2P systems relies on the peers belonging to the
same environment and can both provide or import data. More specifically, each
peer joining a P2P system exhibits a set of mapping rules, i.e. a set of semantic
correspondences to a set of peers which are already part of the system (neigh-
bors). Thus, in a P2P system the entry of a new source, peer, is extremely simple
as it just requires the definition of the mapping rules. By using mapping rules, as
soon as it enters the system, a peer can participate and access all data available
in its neighborhood, and through its neighborhood it becomes accessible to all
the other peers in the system.

c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 368–376, 2016.
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This paper aims to provide a contribution to the specific topic related to
the integration of information and the computation of queries in an open ended
network of distributed peers [1–7,10].

Many approaches investigate the data integration problem in a P2P system
by considering each peer as initially consistent, therefore the introduction of
inconsistency is just relied to the operation of importing data from other peers.
These approaches assume that for each peer it is preferable to import as much
knowledge as possible.

This paper, stems from the work in [9] in which a different perspective is
proposed. Intuitively, the basic idea, yet very simple, is the following: a peer
can be initially inconsistent. In the case of inconsistent database the informa-
tion provided by the neighbors can be used in order to restore consistency, that
is to only integrate the missing portion of a correct, but incomplete database.
Specifically, in [9] the semantics of a P2P system is defined in terms of minimal
weak models. Under this semantics an inconsistent peer, in the interaction with
different peers, uses its mapping rules to import minimal sets of mapping atoms
allowing to satisfy its local integrity constraints, that is minimal sets of atoms
allowing the peer to enrich its knowledge so that restoring inconsistency anom-
alies This behavior results to be useful in real world P2P systems in which peers
often use the available import mechanisms to extract knowledge from the rest
of the system only if this knowledge is strictly needed to repair an inconsistent
local database. The proposal in [9] follows the classical approach, that is in the
presence of more alternative minimal weak models a deterministic consistent
semantic is given by selecting as true information that present in all minimal
weak models, i.e. the set of atoms belonging to the intersection of minimal weak
models.

Example 1. Consider a P2P system consisting of the following two peers

– The peer P2 stores information about vendors of devices and contains the
facts vendor(dan, laptop), whose meaning is ‘Dan is a vendor of laptops’,
and vendor(bob, laptop), whose meaning is ‘Bob is a vendor of laptops’.

– The peer P1 contains the fact order(laptop), stating that there exists the
order of a laptop, the standard rule available(Y ) ← supplier(X,Y ), stating
that a device Y is available if there is a supplier X of Y , and the constraint
← order(X), not available(X), stating that there cannot exist the order of
a device which is not available. Moreover, it also exhibits the mapping rule
supplier(X,Y ) ↽ vendor(X,Y ), used to import tuples from the relation
vendor of P2 into the relation supplier of P1.

The local database of P1 is inconsistent because the ordered device laptop is
not available (there is no supplier of laptops). The peer P1 has to import some
supplier of laptops in order to make its database consistent. Then, the mapping
rule supplier(X,Y ) ↽ vendor(X,Y ) will be used to import one supplier from
the corresponding facts of P2: supplier(dan, laptop) or supplier(bob, laptop). P1

will not import both facts because just one of them is sufficient to satisfy the
local integrity constraint ← order(X), not available(X).
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We observe that if P1 does not contain any fact its database is consistent
and no fact is imported from P2. ��

In this paper we extend the work in [8,9] by proposing a more flexible seman-
tics that selects as true information that “supported” by all repaired databases,
i.e. the set of atoms which maximizes the information shared by the minimal
weak models.

Example 2. Consider the P2P system presented in Example 1 and suppose to
be interested in supplier. As previously stated, in order to restore consistency,
either the fact supplier(dan, laptop) or supplier(bob, laptop) have to be imported.
Considering the standard semantics the set of true atoms does not contain any
vendor, whereas, intuitively, it also contains supplier(⊥, laptop), stating that it
is true that laptop is provided even thought the name of the supplier is unknown.
In fact laptop is provided by dan or by bob, thus we don’t know “exactly” who
is the supplier providing laptop. ��
The paper extends the classical notion of consistent answer by allowing the
presence of partially defined atoms, i.e. atoms with “unknown” values due to
the presence of tuples in different minimal weak models which disagree on the
value of one or more attributes. In other words, the paper proposes an alternative
semantics that, in the presence of alternative minimal weak models, extracts the
maximal consistent portion of the information they all hold, i.e. the information
on which the minimal weak models agree.

2 Background

We assume that there are finite sets of predicate symbols, constants and vari-
ables. A term is either a constant or a variable. An atom is of the form
p(t1, . . . , tn) where p is a predicate symbol and t1, . . . , tn are terms. A literal
is either an atom A or its negation not A. A rule is of the form H ← B,
where H is an atom (head of the rule) and B is a conjunction of literals (body
of the rule). A program P is a finite set of rules. P is said to be positive if
it is negation free. The definition of a predicate p consists of all rules hav-
ing p in the head. A ground rule with empty body is a fact. A rule with
empty head is a constraint. It is assumed that programs are safe, i.e. variables
appearing in the head or in negated body literals are range restricted as they
appear in some positive body literal. The ground instantiation of a program
P, denoted by ground(P) is built by replacing variables with constants in all
possible ways. An interpretation is a set of ground atoms. The truth value of
ground atoms, literals and rules with respect to an interpretation M is as fol-
lows: valM (A) = A ∈ M , valM (not A) = not valM (A), valM (L1, . . . , Ln) =
min{valM (L1), . . . , valM (Ln)} and valM (A ← L1, . . . , Ln) = valM (A) ≥
valM (L1, . . . , Ln), where A is an atom, L1, . . . , Ln are literals and true > false.
An interpretation M is a model for a program P, if all rules in ground(P) are
true w.r.t. M . A model M is said to be minimal if there is no model N such that
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N ⊂ M . We denote the set of minimal models of a program P with MM(P).
Given an interpretation M and a predicate symbol g, M [g] denotes the set of
g-tuples in M . The semantics of a positive program P is given by its unique
minimal model which can be computed by applying the immediate consequence
operator TP until the fixpoint is reached (T∞P (∅) ). The semantics of a program
with negation P is given by the set of its stable models, denoted as SM(P). An
interpretation M is a stable model (or answer set) of P if M is the unique mini-
mal model of the positive program PM , where PM is obtained from ground(P)
by (i) removing all rules r such that there exists a negative literal not A in
the body of r and A is in M and (ii) removing all negative literals from the
remaining rules [11]. It is well known that stable models are minimal models
(i.e. SM(P) ⊆ MM(P)) and that for negation free programs, minimal and
stable model semantics coincide (i.e. SM(P) = MM(P)).

3 P2P Systems: Syntax and Semantics

3.1 Syntax

A (peer) predicate symbol is a pair i : p, where i is a peer identifier and p is a
predicate symbol. A (peer) atom is of the form i : A, where i is a peer identifier
and A is a standard atom. A (peer) literal is a peer atom i : A or its negation
not i : A. A conjunction i : A1, . . . , i : Am, not i : Am+1, . . . , not i : An, φ, where
φ is a conjunction of built-in atoms1, will be also denoted as i : B, with B equals
to A1, . . . , Am, not Am+1, . . . , not An, φ.

A (peer) rule can be of one of the following three types:

1. standard rule. It is of the form i : H ← i : B, where i : H is an atom and
i : B is a conjunction of atoms and built-in atoms.

2. integrity constraint. It is of the form ← i : B, where i : B is a conjunction
of literals and built-in atoms.

3. mapping rule. It is of the form i : H ↽ j : B, where i : H is an atom, j : B
is a conjunction of atoms and built-in atoms and i �= j.

In the previous rules i : H is called head, while i : B (resp. j : B) is called body.
Negation is allowed just in the body of integrity constraints. The definition of
a predicate i : p consists of the set of rules in whose head the predicate symbol
i : p occurs. A predicate can be of three different kinds: base predicate, derived
predicate and mapping predicate. A base predicate is defined by a set of ground
facts; a derived predicate is defined by a set of standard rules and a mapping
predicate is defined by a set of mapping rules.

An atom i : p(X) is a base atom (resp. derived atom, mapping atom) if
i : p is a base predicate (resp. standard predicate, mapping predicate). Given
an interpretation M , M [D] (resp. M [LP], M [MP]) denotes the subset of base
atoms (resp. derived atoms, mapping atoms) in M .
1 A built-in atom is of the form XθY , where X and Y are terms and θ is a comparison

predicate.
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Definition 1. P2P System. A peer Pi is a tuple 〈Di,LPi,MPi, ICi〉, where (i)
Di is a set of facts (local database); (ii) LPi is a set of standard rules; (iii) MPi is
a set of mapping rules and (iv) ICi is a set of constraints over predicates defined
by Di, LPi and MPi. A P2P system PS is a set of peers {P1, . . . ,Pn}. ��
Without loss of generality, we assume that every mapping predicate is defined by
only one mapping rule of the form i :p(X) ↽ j :q(X). The definition of a mapping
predicate i : p consisting of n rules of the form i : p(X) ↽ Bk, with k ∈ [1..n],
can be rewritten into 2 ∗ n rules of the form i : pk(X) ↽ Bk and i : p(X) ←
i : pk(X), with k ∈ [1..n]. Given a P2P system PS = {P1, . . . ,Pn}, where
Pi = 〈Di,LPi,MPi, ICi〉, D,LP,MP and IC denote, respectively, the global
sets of ground facts, standard rules, mapping rules and integrity constraints,
i.e. D =

⋃
i∈[1..n] Di, LP =

⋃
i∈[1..n] LPi, MP =

⋃
i∈[1..n] MPi and IC =

⋃
i∈[1..n] ICi. In the rest of this paper, with a little abuse of notation, PS will be

also denoted both with the tuple 〈D,LP,MP , IC〉 and the set D∪LP∪MP∪IC;
moreover whenever the peer is understood, the peer identifier will be omitted.

3.2 The Minimal Weak Model Semantics

This section reviews the Minimal Weak Model semantics for P2P systems [8]
which is based on a special interpretation of mapping rules. The semantics pre-
sented in this paper stems from the observations that in real world P2P systems
often the peers use the available import mechanisms to extract knowledge from
the rest of the system only if this knowledge is strictly needed to repair an
inconsistent local database. In more formal terms, each peer uses its mapping
rules to import minimal sets of mapping atoms allowing to satisfy local integrity
constraints.

In this paper we refer to a particular interpretation of mapping rules. Intu-
itively, a mapping rule H ↽ B states that if the body conjunction B is true in
the source peer the atom H can be imported in the target peer, that is H is true
in the target peer only if it implies (directly or even indirectly) the satisfaction
of some constraints that otherwise would be violated. The following example
should make the meaning of mapping rules crystal clear.

Example 3. Consider the P2P system presented in Example 1.
As we observed, the local database of P1 is inconsistent because the ordered

device laptop is not available. The peer P1 has to import some supplier of
laptops in order to make its database consistent. Then, the mapping rule
supplier(X,Y ) ↽ vendor(X,Y ) will be used to import one supplier from the
corresponding facts of P2: supplier(dan, laptop) or supplier(bob, laptop). P1 will
not import both facts because just one of them is sufficient to satisfy the local
integrity constraint ← order(X), not available(X).

We observe that if P1 does not contain any fact its database is consistent
and no fact is imported from P2. ��

Before formally presenting the minimal weak model semantics, we introduce
some notation. Given a mapping rule r = A ↽ B, with St(r) we denote the
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corresponding logic rule A ← B. Analogously, given a set of mapping rules MP,
St(MP)= {St(r) | r ∈ MP} and given a P2P system PS = D∪LP ∪MP ∪IC,
St(PS) = D ∪ LP ∪ St(MP) ∪ IC. Informally, the idea is that for a ground
mapping rule A ↽ B, the atom A could be inferred only if the body B is true.
Formally, given an interpretation M , a ground standard rule C ← D and a
ground mapping rule A ↽ B, valM (C ← D) = valM (C) ≥ valM (D), whereas
valM (A ↽ B) = valM (A) ≤ valM (B).

Definition 2. Weak Model. Given a P2P system PS = D ∪ LP ∪ MP ∪ IC,
an interpretation M is a weak model for PS if {M} = MM(St(PSM )), where
PSM is the program obtained from ground(PS) by removing all mapping rules
whose head is false w.r.t. M . ��
We shall denote with M [D] (resp. M [LP], M [MP]) the set of ground atoms of
M which are defined in D (resp. LP, MP).

Definition 3. Minimal Weak Model. Given two weak models M and N , we
say that M is preferable to N , and we write M � N , if M [MP] ⊆ N [MP].
Moreover, if M � N and N �� M we write M � N . A weak model M is said to
be minimal if there is no weak model N such that N � M . ��
The set of weak models for a P2P system, PS, will be denoted by WM(PS),
whereas the set of minimal weak models will be denoted by MWM(PS). We
say that a P2P system PS is consistent if MWM(PS) �= ∅; otherwise it is
inconsistent.

Proposition 1. For any P2P system PS, � defines a partial order on the set
of weak models of PS. ��
We observe that, if each peer of a P2P system is locally consistent then no
mapping atom is inferred. Clearly not always a minimal weak model exists. This
happens when there is at least a peer which is locally inconsistent and there is
no way to import mapping atoms that could repair its local database so that its
consistency can be restored.

Example 4. Consider our running example (Example 1). The weak models of the
system are: M1 = {vendor(dan, laptop), vendor(bob, laptop),
order(laptop), supplier (dan, laptop), available(laptop)}, M2 = {vendor(dan,
laptop), vendor(bob, laptop), order(laptop), supplier(bob, laptop), available
(laptop)}, and M3 = {vendor(dan, laptop), vendor(bob, laptop), order(laptop),
supplier(dan, laptop), supplier(bob, laptop), available(laptop)}, whereas the min-
imalweakmodels areM1 andM2 because they containminimal subsets ofmapping
atoms (resp. {supplier(dan, laptop)} and {supplier(bob, laptop)}). ��
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4 Generalized Minimal Weak Model

In this section we extend the semantics of a P2P system by introducing a deter-
ministic model, the Generalized Minimal Weak Model, allowing the presence of
partially defined atoms, i.e. atoms having the special constant ⊥ as a value for
one or more attribute, due to the presence of tuples which disagree on the values
of those attributes in different minimal weak models. In other words, while in the
previous section we have assigned to every ground atom a truth value which can
be true or false in different minimal weak models, in this section we extract the
maximal consistent portion of information from the set of minimal weak models
that is the portion of the information on which the minimal weak models agree.

We introduce the truth value undefined for atoms that are not true
nor false w.r.t. the Generalized Minimal Weak Model. We assume that
true≥undefined≥false.

We first introduce a binary relationship for comparing two ground atoms or
two sets of ground atoms.

Definition 4. Given two ground atoms A = p(t1, ..., tn) and B = p(u1, ..., un),
we say that A supports B (written A � B) if ∀i either ti = ui or ti =⊥. Given
two sets of ground atoms S1 and S2, S1 supports S2 (written S1 � S2) if ∀B ∈ S2,
∃A ∈ S1 s.t. A � B and ∀A ∈ S1, ∃B ∈ S2 s.t. A � B. ��
Example 5. The set {p(a,⊥), p(⊥, b)} supports the set {p(a, d), p(c, b)}. ��

Thus, given two ground atoms, A supports B if each term in A is equal or less
specific that the correspondent term in B. Note that the relation � is transitive
(if A � B and B � C, then A � C) and antisymmetric (if A � B and B � A,
then A = B). We define the truth value of an atom w.r.t. a set S.

Definition 5. Given a set S and an atom A,

– A is true in S iff there is B ∈ S s.t. A � B.
– A is undefined in S iff there is B ∈ S s.t. B � A and it is not true in S.
– A is false in S iff it is not true nor false in S.

Definition 6. Given a class of sets of ground atoms S and a set of ground atoms
T we say that:

– T generalizes S (written T � S) if for each Si ∈ S is T � Si;
– T is the minimal generalization of S if T � S and there is no set U s.t. U �= T ,

T � U and U � S. ��
Example 6. The minimal generalization of the class of sets {{p(a, b)}, {p(a, d),
p(c, b)}} is {p(a,⊥), p(⊥, b)}; whereas the minimal generalization of the class of
sets {{p(a, b)}, {p(a, b), p(c, b)}} is {p(a, b), p(⊥, b)}. ��
Given a P2P system PS and its set of minimal weak models MWM(PS),
the Generalized Minimal Weak Model of PS, denoted as GMWM(PS), is the
minimal generalization of MWM(PS).
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Example 7. Let us consider the P2P system PS presented in Example 1. Its min-
imal weak models are: M1 = {vendor(dan, laptop), vendor(bob, laptop), order
(laptop), supplier(dan, laptop), available(laptop)} and, M2 = {vendor(dan,
laptop), vendor(bob, laptop), order(laptop), supplier(bob, laptop), available(lap
top)}. The Generalized Minimal Weak Model is: M = {vendor(dan,
laptop), vendor(bob, laptop), order(laptop), supplier(⊥, laptop), available(lap
top)} ��

The following proposition shows that the Generalized Minimal Weak Model
of a P2P system is a superset of the insersection of its Minimal Weak Models.

Proposition 2. GivenaP2PsystemPS,⋂M∈MWM(PS) M ⊆ GMWM(PS).��

5 Discussion

Complexity Results. We consider now the computational complexity of cal-
culating minimal weak models and answers to queries.

Proposition 3. Given a P2P system PS, checking if there exists a minimal
weak model for PS is a NP-complete problem. ��
As a P2P system may admit more than one minimal weak model, the answer
to a query is given by considering brave or cautious reasoning (also known as
possible and certain semantics).

Definition 7. Given a P2P system PS = {P1, . . . ,Pn} and a ground peer
atom A, then A is true under (i) brave reasoning if A ∈ ⋃

M∈MWM(PS) M ,
(ii) cautious reasoning if A ∈ ⋂

M∈MWM(PS) M . ��

Theorem 1. Let PS be a consistent P2P system, then: i) Deciding whether
an atom A is true in some minimal weak model of PS is in Σp

2. (ii) Deciding
whether an atom A is true in every minimal weak model of PS is in Πp

2 and
coNP-hard. ��
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Abstract. A user sometimes prefers to not be restricted when querying for
information. Querying information within a range of search often provides a
different perspective to user as opposed to a rigid search. To compute skyline
within a given range would be easy on traditional dataset. The challenge is when
the dataset being queried consists of both atomic values as well as continuous
range of values. For a set of objects with uncertain dimension, a skyline with a
range query ½qj : q0j� on that uncertain dimension returns objects which are not
dominated by any other objects in the range query. A method is proposed to
determine objects and answer skyline query that satisfy the range query. The
correctness of the method is proven through comparisons between two naïve
methods that strictly reject and loosely accept objects that intersect with the
range query.

Keywords: Probabilistic skyline � Uncertain dimension � Range query

1 Introduction

Skyline queries retrieved a set of objects that are not dominated by any other objects in
a dataset. An object v is said to dominate another object w if and only if v has a lower
value than w in at least one dimension, and v has a lower value or equal to w in every
other dimensions. Accordingly, a range skyline query is computing skyline on objects
that are within a specified range query. To compute skyline objects in a range query, it
is preferable to find objects that are not dominated by any other objects. In principle, an
object v is preferable if, within the range query, v is better than another object w on at
least one dimension and v is not worse than w on every other dimension. It is quite
straightforward to report skyline that is within a range query when dealing with a set of
objects that are all points. Only points that fall within the range query will be con-
sidered for skyline computations. Consider the apartments example in Fig. 1, where a
tenant desired to rent apartments within the rent range 5–9. Hence, the skyline in this
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scenario would be points e, k, and l, as they are the most desirable apartments in the
specified rent range.

Motivation. The apartment rental database that supports uncertain dimensions con-
tains listing on apartments for rent. Each apartment is associated with its rental price
(can be fixed or within some range) and the commute length. To limit his search, a
potential tenant may query for apartments that are within a rent budget of $250 and
$440. Thus, can skyline be efficiently reported straightforwardly using existing skyline
algorithms when dealing with a set of objects with uncertain dimension, which can be
points or line segments, and the objects with line segments intersect the range query? It
is very obvious that every object that does not lie within the range query can definitely
be filtered out, and every object that clearly falls within the range query will be
accepted for further skyline computation. Nevertheless, how does one determine to
accept or reject objects that intersect with the boundary of a range query? Figure 2
illustrates the above discussion.

To the best of our knowledge, this is the first work that tackles the problem of range
skyline query on uncertain dimension. A method that implements a threshold to filter
objects and computing skyline query based on a range query is proposed. First, objects
that do not fall within the range query or objects that intersect with the range query but
have the probability to occur within the range query that is less than t, where t is a
user-defined threshold value, will be filtered out. Then, skyline query will be computed
on the remaining objects with regards to the range query.

The rest of the paper is organized as follows. Section 2 reviewed the evolution of
skylines. Then, the preliminaries of this paper and the problem of range skyline query
are formerly defined in Sect. 3. The proposed approach is discussed in Sect. 3 as well,
followed by an empirical study in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Works

The evolution of skylines in the context of databases can be seen from the first work by
Borzsonyi et al. [1]. Then, Chomicki et al. [2] introduced presorting into the algorithm
in [1] to build a more effective algorithm, in which then Godfrey et al. [3] have further
improved it. Kossmann et al. [6] then introduced an algorithm based on the nearest

Fig. 1. Example of query interval. Fig. 2. Example of query interval on uncer-
tain dimension.
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neighbor search using R-tree. Later on, Papadias et al. [8] proposed an algorithm that is
based on the sorted R-tree to enhance the algorithm in [6]. Pei et al. [9] then pioneered
the concept of probabilistic skyline on uncertain data, in which each object is repre-
sented by a set of instances and is part of the skyline answer with a certain probability.
Inspired by this work, Qi and Atallah [10], Lian and Chen [7], and Zhang et al. [14]
then proposed a variant of algorithm in the same area. On the other hand, Khalefa et al.
[5] introduced the concept of probabilistic skyline on uncertain data, where the objects
are of continuous range instead of having multiple instances, which was then has
inspired the work by Saad et al. [12]. Papadias et al. [8] coined the term constrained
skyline query where the query would returned the most interesting points in the data
space defined by the constraints. Jiang and Pei [4], Rahul and Janardan [11], and Wang
et al. [13] then proposed a variant of algorithm tackling different issues involving range
queries as well. The works in [4, 8, 11, 13] focused on implementing a suitable data
structure to efficiently search and report skyline points that lie within the range query,
and the datasets involved are considered as points only. Following [12], this work
focuses on datasets with uncertain dimensions, while investigating on how to compute
skyline on objects when they intersect with the range query.

3 Preliminaries and Proposed Method

In this section, the concept of uncertain dimensions is briefly described, followed by
the introduction on the issue of computing range skyline query on uncertain
dimensions.

Definition 1 (Uncertain Dimension). Given a dataset of n-dimensional space
D ¼ ðD1;D2; . . .;DnÞ. A dimension is said to be an uncertain dimension, denoted
U0ðDiÞ where 1 � i � n, if there exists at least two objects in D with different forms
(i.e. points and continuous range) in that dimension.

Let v = ðv.D1,v.D2,. . .,v.DnÞ and w ¼ ð w:D1 : w:D
0
1

� �
;w:D2; . . .;w:DnÞ, where

½w:D1 : w:D
0
1� is an interval representing continuous range in dimension D1 and

w:D1\w:D
0
1, be two objects in D, such that v;wf g2D. Here, the uncertain dimension

would be U0ðDiÞ since both objects v and w are represented in different forms in D1.
For ease of description and without loss of generality, this work assumes that the

dataset has only one uncertain dimension, namely the first dimension, and as such the
dataset D has the form ðU0ðD1Þ;D2; . . .;DnÞ. Given the nature of the uncertain
dimension, the results of skyline query executed on this kind of dataset are bound to be
probabilistic, since each object with continuous range is now associated with a prob-
ability value of it being a query answer. This issue has been solved in [12]. Subse-
quently, when range query is introduced into skyline query, the aim is to determine and
compute skyline on objects that satisfy a given range query.

Definition 2 (Range Query). A range query ½qj : q0
j� indicates a range that is being

queried on jth dimension, where qj\q
0
j.
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Definition 3 (Satisfy). Given a dataset of n-dimensional space D ¼ ðU0ðD1Þ;
D2; . . .;DnÞ, with two different sets of objects in it, fA; Ig 2 D, where A ¼
ðD1;D2; . . .;DnÞ and I ¼ ð D1 : D0

1

� �
;D2; . . .;DnÞ, and a range query ½q1 : q0

1�. An

object v 2 A is said to satisfy the given range query if q1 � v:D1 � q
0
1, while an object

w 2 I is said to satisfy the given range query if q1 �w:D1\w:D
0
1 � q

0
1. Object w that

intersects with the range query but has endpoints out of the range query is said to
satisfy the query range if P q1\D1ðwÞ\q

0
1

� �� t, where P is a probability function,
D1ðwÞ represents object w in D1, and t is a user-defined threshold value.

Note that since object w in D1 is a continuous range modeled as a uniform prob-
ability density function pdf f ðxÞ defined on the real range w:D1 : w:D

0
1

� �
; then

P w:D1\D1ðwÞ\w:D
0
1

� � ¼ Rw:D0
1

w:D1

f xð Þdx ¼ 1. Based on these definitions, it can be

shown that range queries on uncertain dimension can be answered effectively. Having a
set of objects that does not involve any uncertain dimension would be straightforward
to report skyline objects that lie within the range query.

Definition 4 (Range Skyline Query). Given a range query ½qj : q0
j�. An object v is a

skyline object only if there does not exist an object k that dominates v. Hence, v is said
to dominate k with respect to the range query, denoted by v �½qj:q0j� k, if

(1) 9Dj; v:Dj 2 ½qj : q0
j�\k:Dj 2 ½qj : q0

j� and (2) 8Di;i6¼j; v:Di � k:Di.
On the contrary, having a range query on uncertain dimension would be challenging

as there will be objects with continuous range, denoted by ½w:Dj : w:D
0
j� where w 2 I,

that can intersect the range query, and therefore, the concept of w:Dj 2 ½qj : q0
j� as

previously defined is not applicable in this case.

Definition 5 (Range Skyline Query on Uncertain Dimension). Given a range ½qj : q0
j�

queried on an uncertain dimension Dj. An object w is a skyline object if there does not
exist an object l that dominates w. Hence, w is said to dominate l with respect to the
range query, denoted by w �½qj:q0j� l, if (1) 9Dj;Pðqj\Dj wð Þ\q

0
jÞ� t,

(2) PðDjðwÞ\½qj : q0j�DjðlÞÞ� t, and (3) 8Di;i6¼j;w:Di � l:Di.

Problem Definition. Let S be a set of objects in D, where D ¼ ðU0ðD1Þ;D2; . . .;DnÞ,
and a range ½q1 : q0

1� queried on the uncertain dimension U0ðD1Þ. Answer skyline query
on S with respect to the range query ½q1 : q0

1� in such a way that the skyline objects
satisfy the range query ½q1 : q0

1�.

For the purpose of this paper, this work assumes that the range query posed by a
user is on a single uncertain dimension.

3.1 Range Query on Uncertain Dimension

Let S be a set of objects in a n-dimensional space with uncertain dimension,
D ¼ ðU0ðD1Þ;D2; . . .;DnÞ. To answer range query on uncertain dimension, an
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algorithm that filters S is needed, in such a way that all objects reported satisfy the
range query ½q1 : q0

1�. There are several cases where two sets of objects A and I, such
that A[ I ¼ S, can lie within or intersect with the range query ½q1 : q0

1�. The easiest and
simplest case is when object v 2 A lies entirely inside the range query ½q1 : q0

1� (as
illustrated in Fig. 3), such that q1 � v:D1 � q

0
1, and it can definitely be reported as

object that satisfies the range query ½q1 : q0
1�. The same can be said for object w 2 I that

lies entirely inside the range query ½q1 : q0
1� (as illustrated in Fig. 3), in such a way that

q1 �w:D1\w:D
0
1 � q

0
1.

The next case is when object w has one endpoint inside the range query ½q1 : q0
1� (as

illustrated in Fig. 4), where w:D1\q1\w:D
0
1 � q

0
1 or q1 �w:D1\q

0
1\w:D

0
1. And

lastly, when object w intersects the range query ½q1 : q0
1� but does not have an endpoint

inside the range query ½q1 : q0
1� (as illustrated in Fig. 5), in which

w:D1\q1\q
0
1\w:D

0
1. In the latter two cases, it remains to decide whether those

objects should be reported as objects that satisfy the range query ½q1 : q0
1� and be

included in skyline computation at a later stage. Definition 3 can be used to find object
w that satisfies the range query ½q1 : q0

1� by having the probability of D1ðwÞ being
between the range query ½q1 : q0

1� above a threshold t value. Without loss of generality,
t is set to 50 %, yet changing t to a higher and lower value would mean a result set that
is the most matched and the least match, respectively, to the range query.

Example 1. If ½w:D1 : w:D
0
1� intersects with the range query ½q1 : q0

1� and has an
endpoint within the range query ½q1 : q0

1�, such that w:D1\q1\w:D
0
1 � q

0
1, to deter-

mine if w will be reported as object that satisfies the range query ½q1 : q0
1�, then the

probability of D1ðwÞ;
R w:D0

1
q1

f xð Þdx, shall be more than t. When ½w:D1 : w:D
0
1� intersects

with the range query ½q1 : q0
1� yet with both its endpoints being outside of the range

query ½q1 : q0
1�, then the probability of D1ðwÞ being within the range query ½q1 : q0

1� is
computed as

R q01
q1

f xð Þdx. The threshold t value is important as it is impossible to

determine that for objects with continuous range, they will always satisfy the range
query ½q1 : q0

1� and the same t value will be used when computing skyline on uncertain
dimension.

3.2 Range Skyline Query on Uncertain Dimension

Let S0 be a set of objects in a n-dimensional space with uncertain dimension,
D ¼ ðU0ðD1Þ;D2; . . .;DnÞ, that satisfies the range query ½q1 : q0

1�. Since S0 contains an
uncertain dimension, S0 contains two different sets of objects in it, A ¼
ðD1;D2; � � � ;DnÞ and I ¼ ð D1 : D

0
1

� �
;D2; . . .;DnÞ. For two objects v 2 A and w 2 I

that satisfy the range query q1 : q
0
1

� �
, four cases may arise when computing skyline.

Note that the basic skyline computation on uncertain dimension follows the compu-
tation proposed in [12].

Computing Range Skyline Query on Uncertain Dimension 381



Case 1. When the interval ½w:D1 : w:D
0
1� intersects with the range query q1 : q

0
1

� �
,

w:D1\v:D1 �w:D
0
1, and v:Dj � w:Dj, ð2� j� nÞ. Then the probability of w to be a

skyline object will be affected by v in D1 as well as the range query q1 : q
0
1

� �
, while

v will always be a skyline object.

Example 2. Object w in D1 intersects with the range query q1 : q
0
1

� �
in such a way

w:D1\q1\w:D
0
1 � q

0
1. Then the probability of D1ðwÞ to not be dominated by D1ðvÞ

with respect to the range query q1 : q
0
1

� �
can be represented as PðD1ðwÞÞ ¼

Pfw 2 ½q1 : ðv� eÞ�g, where e is the continuity correction value [12]. A continuity
correction is needed in this case in order for a continuous distribution to be used to
approximate a discrete distribution. The continuity correction requires adding or sub-
tracting 0.5 from the value of object v as needed [15].

Case 2. When the interval ½w:D1 : w:D
0
1� intersects with range query q1 : q

0
1

� �
,

w:D1 � v:D1\w:D
0
1, and w:Dj � v:Dj, ð2� j� nÞ. Then the probability of w to be a

skyline object will be affected by the range query q1 : q
0
1

� �
, while the probability of v to

be a skyline object will be affected by w in D1.

Example 3. Object w in D1 intersects with the range query q1 : q
0
1

� �
in such a way

w:D1\q1\w:D
0
1 � q

0
1. Then the probability of D1ðwÞ to be a skyline object with

respect to the range query q1 : q
0
1

� �
can be represented as PðD1ðwÞÞ ¼

Pfw 2 ½q1 : w:D0
1�g, while the probability of D1ðvÞ to not be dominated by D1ðwÞ with

respect to the range query q1 : q
0
1

� �
can be represented as PðD1ðvÞÞ ¼

P w 2 w:D1 : q1½ �f gþPfw 2 ½ vþ eð Þ : w:D0
1�g.

Case 3. When the interval ½w:D1 : w:D
0
1� falls within the range query q1 : q

0
1

� �
,

w:D1\v:D1 �w:D
0
1, and v:Dj � w:Dj, ð2� j� nÞ. Then the probability of w to be a

skyline object will be affected by v in D1, while v will always be a skyline object.

Example 4. Object w in D1 falls within the range query q1 : q
0
1

� �
in such a way

q1 �w:D1\w:D
0
1 � q

0
1. Then the probability of D1ðwÞ to not be dominated by D1ðvÞ

with respect to the range query q1 : q
0
1

� �
can be represented as PðD1ðwÞÞ ¼

Pfw 2 ½w:D1 : ðv� eÞ�g.

Fig. 4. Intersecting objects
have one endpoint within
the query interval.

Fig. 5. Both endpoints of an
intersecting object lie outside
of the query interval.

Fig. 3. Objects that definitely
satisfy the query interval.
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Case 4. When the interval ½w:D1 : w:D
0
1� falls within the range query q1 : q

0
1

� �
,

w:D1 � v:D1\w:D1, and w:Dj � v:Dj, ð2� j� nÞ. Then the probability of v to be a
skyline object will be affected by w in D1, while w will always be a skyline object.

Example 5. Object w in D1 falls within the range query q1 : q
0
1

� �
in such a way

q1 �w:D1\w:D
0
1 � q

0
1. Then the probability of D1ðvÞ to not be dominated by D1ðwÞ

with respect to the range query q1 : q
0
1

� �
can be represented as

PðD1ðvÞÞ ¼ Pfw 2 ½ vþ eð Þ : w:D0
1�g.

Hence, according to Definition 5, since in all of these cases it is assumed that both
objects v and w satisfied the range query q1 : q

0
1

� �
(which fulfilled the first condition in

Definition 5) and either v or w dominates the other object in every Di, ð2� i� nÞ (the
third condition in Definition 5), then the second condition in Definition 5 requires
PðD1ðwÞ �½q1:q01� D1ðvÞÞ� t, or PðD1ðvÞ �½q1:q01� D1ðwÞÞ� t, where t is a threshold

value. Algorithm 1 gives a method to retrieve objects that satisfy the range query
½q1 : q0

1� and compute skyline with a probability above a given threshold value.
On the other hand, for two objects v 2 I and w 2 I that satisfy the range query

q1 : q
0
1

� �
, several cases may arise when computing skyline. However, due to space

limitation, this scenario is briefly discussed and detailed implementations have been
omitted from this paper.

Example 6. Objectwwith interval ½w:D1 : w:D
0
1� and vwith interval ½w:D1 : w:D

0
1� inD1

falls within the range query q1 : q
0
1

� �
in such a way w:D1\q1\q

0
1\w:D

0
1 and q1\

v:D1\q
0
1\v:D

0
1, respectively, while w and v overlapped in such a way that w:D1\v:D1

and w:D
0
1\v:D

0
1, and w:Dj � v:Dj, ð2� j� nÞ. Then the probability of D1 wð Þ to be a

skyline object with respect to the range query q1 : q
0
1

� �
can be represented asP D1 wð Þð Þ ¼

P w 2 q1 : q
0
1

� �� �
, while the probability of D1 vð Þ to not be dominated by D1 wð Þ with
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respect to the range query q1 : q
0
1

� �
can be represented as P D1 vð Þð Þ ¼ 1

2 P v 2fð
v:D1 : q

0
1

� �g � P w 2 v:D1 : q
0
1

� �� �ÞþP w 2 w:D1 : q1½ �f gþPfw 2 ½q0
1 : w:D

0
1�g.

4 Empirical Study

To study the correctness of the proposed method, denoted as SkyQUD-T, which is
adopted from SkyQUD algorithm [12], a comparison on the set of skyline objects
reported is conducted. Due to the lack of previous work, the following two naïve
methods are considered as a basis of comparison: the SkyQUD algorithm, yet instead
(1) utilizing the concept of strictly rejecting any object that intersects the boundary of
range query, denoted as SkyQUD-SR, and (2) utilizing the concept of loosely accepting
any object that intersects the boundary of range query, denoted as SkyQUD-LA. For
both of these two methods, the definition of satisfy differs from the term defined in
Definition 3. In SkyQUD-SR, only objects that directly fall within the boundaries of a
given range query are considered as objects that satisfy the range query. Meanwhile, in
SkyQUD-LA all objects that fall within the boundaries of a given range query as well as
objects that intersect with the boundaries of the range query are considered as objects
that satisfy the range query.

The comparison is performed on a synthetic dataset that has been generated for
100,000 objects on two dimensions, with 50,000 objects generated as points and
continuous ranges, respectively, in the uncertain dimension. The size of the continuous
range is randomly generated. Each dimension represents a uniform random variable
from 1 to 10,000, and the first dimension is set as uncertain dimension. The threshold
t is set to 50 %. For the purpose of this paper, it is assumed that the given range query
is on the uncertain dimension.

Figure 6(a) and (b) present the result of range skyline query on uncertain dimen-
sion when the range query ½q1 : q0

1� is set to [0 : 11000]. This means the range query
encompasses the whole dataset, which is the same as computing skyline query on the
dataset without any range query. Thus, all three methods yielded the same results.
Figure 7(a) exhibits objects for all three methods that satisfy the boundaries set by a

(a) Objects that satisfy the range query. (b) Skyline on the range query.

Fig. 6. Range query ½0 : 11000�.
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given range query [250 : 440], while Fig. 7(b) demonstrates that given a range query
½q1 : q0

1�, skyline objects reported with respect to the range query by SkyQUD-T are
reported by SkyQUD-SR and SkyQUD-LA as well. In Fig. 7(b), the cases discussed in
previous section are illustrated, where continuous range objects intersect the range
query and their endpoints either lie within or outside of the query boundaries.

Table 1 exhibits a detailed analysis on the behavior of all three methods with
several different range queries. The objects that satisfy a given query are divided into
two different sets, where A represents a set of objects with atomic values, while
I represents a set of objects with continuous range of values. It can be seen that the
number of objects reported in I is equal for all three methods since it is quite
straightforward to filter out atomic values that do not satisfy the range query. On the
other hand, the number of objects reported in A differs for all three methods as each
method has a different definition on objects that satisfy a given range query. From the
analysis, clearly SkyQUD-SR would have the lowest number of objects that satisfies a
given range query as the method strictly rejects objects that do not fall precisely within
the range query, while SkyQUD-LA would have the highest number of objects that
satisfies a given range query since the method would simply accept all objects that fall
within or intersect the range query. However, these facts do not always equate to a less
number of skyline objects reported by SkyQUD-SR or more skyline objects reported by

(a) Objects that satisfy the range query. (b) Skyline on the range query.

Fig. 7. Range query ½250 : 440�.

Table 1. Behaviour of SkyQUD-T, SkyQUD-LA, and SkyQUD-SR on different range queries.

A I A I A I

1 [0:11000] 50000 50000 50000 50000 50000 50000 114629 114629 114629 0.264 0.264 0.264 12 12 12

2 [1000:1001] 3 0 3 9071 3 0 2 10791 2 0.662 1.177 0.662 2 1 2

3 [250:440] 1003 57 1003 4226 1003 9 1346 6293 1235 0.667 0.725 0.658 6 3 6

4 [2000:5000] 14984 17221 14984 35645 14984 4547 40634 59894 22639 0.778 6.63 0.632 4 4 10

5 [3186:4233] 5202 2222 5202 28469 5202 544 10452 39250 8098 0.838 3.355 0.648 5 2 10

6 [2:2.5] 2 0 2 18 2 0 1 31 1 0.659 0.667 0.659 1 4 1

7 [98:5418] 26620 29161 26620 39572 26620 14323 66364 77197 50359 0.586 0.799 0.581 11 8 12

8 [888:10545] 45525 49242 45525 49629 45525 41540 138894 139584 122188 2.508 3.131 0.386 11 8 17

9 [4645:4705] 315 2 315 25292 315 0 535 40816 532 0.707 27.227 0.657 9 2 9

10 [87:487] 2095 204 2095 4704 2095 69 2852 8665 2634 0.667 0.931 0.651 9 8 8

SkyQUD-SR SkyQUD-T SkyQUD-LA SkyQUD-SR

Number of skyline objects reported
Before skyline computation After skyline computation

Range QueryQuery ID

SkyQUD-T SkyQUD-LA

Number of objects that satisfies the range query Number of pairwise comparisons

SkyQUD-T SkyQUD-LA SkyQUD-SR
SkyQUD-T SkyQUD-LA SkyQUD-SR

Processing time (sec.)
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SkyQUD-LA, since all three methods would have a different set of objects that satisfies
a given range query. The IDs of skyline objects reported in previous table is reported in
Table 2 to certify that all skyline objects reported by SkyQUD-T will always be
reported either by SkyQUD-LA or SkyQUD-SR, or both. SkyQUD-T will never report
a skyline object that has not been reported by either of the other two methods. The
underlined IDs in SkyQUD-T indicate that the IDs are reported as well by at least
SkyQUD-LA or SkyQUD-SR. Figure 8(a) and (b) exhibit the effect of increasing the
value of threshold t in terms of number of pairwise comparisons and processing time,
respectively. The figures show that the performance of the algorithm increases with the
increase of threshold. With a larger threshold, the algorithm filters more objects earlier,
and hence exhibits a better processing time.

Table 2. IDs of skyline objects reported by each method.

1 [0:11000]

2 [1000:1001]

3 [250:440]

4 [2000:5000]

5 [3186:4233]

6 [2:2.5]

7 [98:5418]

8 [888:10545]

9 [4645:4705]

10 [87:487]
53070, 77989, 81604, 88025, 94445, 

94685, 96720, 96932

50281, 54482, 74737, 75146, 77989,
80037, 81111, 81604, 94445, 96081,

96720, 99674

55943, 64055, 64399, 75146, 75960,
78212, 80581, 81111, 96081, 21764,

40520

55943, 64399, 75146, 81111, 96081,
7122, 21764, 40520

52940, 55943, 56221, 63598, 63384, 
64055, 64399, 75146, 75960, 78212,
80581, 81111, 90187, 93668, 96081,

21764, 40520

64205, 67006, 68465, 78945, 80670,
81651, 83322, 83819, 89168

19170, 46628
64205, 67006, 68465, 78945, 80670,

81651, 83322, 83819, 89168

51934, 63907, 75146, 78365, 78499, 
81111, 86180, 92086, 92133, 96081

50881, 61418, 75146, 77895, 83537 75146, 46628
50881, 54533, 61418, 69184, 75146,
77895, 81131, 83537, 88464, 97219

94992 94992, 16101, 21083, 46746 94992

54680, 68292, 69232, 75146, 75917,
77989, 78393, 81111, 82110, 90537,

96081, 34783

72201, 79716 21764 72201, 79716

71638, 76824, 81465, 87192, 93588,
95580

71638, 34783, 47593
71638, 76824, 81465, 87192, 93588,

95580

53070, 77989, 81604, 88025, 94685,
96720, 96932, 34783, 48262

53070, 77989, 81604, 94685, 96720,
96932, 34783, 48262

74737, 75146, 77989, 80037, 81111,
81604, 94445, 96081, 96720, 99674,

34783

75146, 77989, 81111, 81604, 96081,
96720, 34783, 48262

75146, 81111, 92086, 96081 75146, 81111, 92086, 96081

54680, 68292, 69232, 75146, 75917,
77989, 78393, 81111, 82110, 90537,

96081, 34783

54680, 68292, 69232, 75146, 75917,
77989, 78393, 81111, 82110, 90537,

96081, 34783

Query 
ID

Range 
Query

Object ID
SkyQUD-T SkyQUD-LA SkyQUD-SR

(a) Number of pairwise comparisons (b) Processing time

Fig. 8. Effects of threshold.
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5 Conclusion

The issue of computing skyline on uncertain dimension within a given range query is
investigated. A method that incorporated a threshold value is proposed in order to filter
out objects that intersect with the range query yet having a probability of them being
within the range query less than the threshold value. The method is then compared with
two naïve methods (1) strictly rejecting, and (2) loosely accepting objects that intersect
with the given range query. The skyline objects reported by these two methods are then
compared to the skyline objects reported by the proposed method.
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Abstract. A number of insertions, updates and deletions eventually
deteriorate the structural efficiency of database storage, and then cause
performance degradation. This phenomenon is called “aging.” In real-
world database systems, aging often exhibits strong locality because of
the inherent skewness of data access; specifically speaking, the cost of
I/O operations is not uniform throughout the storage space. Potentially
query execution cost is influenced by the aging. However, conventional
query optimizers do not consider the aging locality; thus they cannot
accurately estimate the cost of query execution plans at times. In this
paper, we propose a novel method of cost estimation that has the key
capability of accurately determining aging phenomena, even though such
phenomena are non-uniformly incurred. Our experiment on PostgreSQL
and TPC-H data sets showed that the proposed method can accurately
estimate the query execution cost even if it is influenced by the aging.

Keywords: Database systems · Query optimizer · Database aging

1 Introduction

The structural efficiency of database storage is fundamental to the query execu-
tion performance in database systems. Insertions, updates and deletions can scat-
ter densely packed records and disturb the physical ordering of records. Repeated
execution of these operations eventually deteriorates the structural efficiency and
then causes performance degradation. This phenomenon is called “aging”. Aging
can greatly affect the I/O cost of query execution, and its influence is different
for each candidate plan owing to the difference of I/O strategies. The progress
of aging phenomenon can cause errors in cost estimation. Thus query optimizers
may choose non-optimal plans because they are unaware of aging phenomenon.
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The difficulty of aging-aware cost estimation is that aging often has strong
locality due to the skewness of data access by user activities. Actual cost of query
executions can differ even when queries are the same except for access ranges.
While the significance of aging on database performance has been recognized
from the early history of database systems, awareness of aging locality in query
optimization has been remained largely unexplored to the best of our knowledge.

In this paper, we propose a novel method of cost estimation for query opti-
mization that has the key capability of figuring out the aging phenomenon accu-
rately even though this occurs non-uniformly. Our experiments showed that the
proposed method yields good cost estimation and helps the choice of optimal
query plans. The rest of this paper is organized as follows. We describe the
proposed method in Sect. 2. We then present the evaluation of the proposed
method in Sect. 3. We summarize related work in Sect. 4 and conclude the paper
in Sect. 5.

2 Aging Locality Aware Cost Estimation

2.1 Influence of Aging and Its Locality on Query Optimization

While initially loaded databases can enjoy good efficiency, repeated execution
of insertions, updates and deletions eventually disturb the physical ordering of
a table, spatially scatter records across a table, and then degrade performance.
This phenomenon is called aging. As described in the previous section, databases
in production are inherently in aged states for most of their lifetimes.

In terms of query optimization, this performance degradation due to aging
means the increase of the I/O cost. This cost increase has two aspects: temporal
and spatial variation. Both can lead to wrong choices of query execution plans in
different ways. The temporal variation of the I/O cost is caused by the progress of
aging and can change the optimal query execution plan for a certain query. The
spatial variation of the I/O cost is caused by aging locality. Even if queries are
the same except for access ranges, as seen in prepared statements, the optimal
query execution plans can be different in the presence of spatial variation of the
I/O cost.

In situations with aging locality, a conventional optimizer cannot reflect the
spatial variation of the I/O cost in the cost estimation, which can result in
choosing non-optimal query execution plans. In order to choose the optimal
query execution plan on aged databases, cost models should be aware of aging
locality. In the next subsection, we present I/O cost models with aging locality
and provide a method to measure the increase of the I/O cost for the presented
models.

2.2 I/O Cost Models with Aging Locality

First, we model the I/O access cost for only one table. We define S(x) as a
window function of the access range, and D(x) as the distribution density of
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data, where x can be the value of an indexing key or an address in a table space.
If the cost C(x) of accessing a record pointed by x is given, the I/O cost for a
single table access can be described as follows:

Γ =
∫

S(x)D(x)C(x)dx (1)

S(x) is equal to 1 if x is in an accessed range; otherwise, it is 0. D(x) denotes
the number of records for x. When the table is initialized or reorganized, C(x)
should be nearly a constant; as the table ages, C(x) changes its shape according
to the increase of the I/O cost. Note that we do not consider a composite primary
key in this paper; this will be left for future work.

For join queries, we combine these functions to estimate the I/O cost. For
example, a nested loop join query picks up matching records in table t1 one
by one. For each record in table t1, scans records in table t2 that satisfy join
conditions. Thus, its I/O cost can be described with the join cardinality jt12(x)
between tables t1 and t2 as follows:

ΓNLJ =
∫

St1(x)Dt1(x)Ct1(x)dx +
∫

jt12(x){St1(x)Dt1(x)}Ct2(x)dx (2)

On the other hand, the I/O cost of hash join queries are rather simple:

ΓHJ =
∫

St1(x)Dt1(x)Ct1(x)dx +
∫

St2(x)Dt2(x)Ct2(x)dx (3)

In order to calculate a value of the I/O cost of a requested query, C(x) must
be available before query requests. In this paper, we focus on two fundamental
access methods; full-table scan and index scan. We employed a measurement-
based approach with performance test queries to approximate C(x) for each
access method. For the full-table scan, regardless of the actual C(x), the average
of the I/O cost increase is enough for cost estimation, so its performance test
query is just a simple full-table scan. For the index scan, the x-space is divided
equally into N parts, and performance test queries are given as index scan queries
of each part. By measuring the execution time of these performance test queries
beforehand, approximate values of C(x) can be provided for our cost models.

The purpose of this paper is showing that aging locality aware cost model-
ing can improve the accuracy of cost estimation. This approach requires non-
negligible amount of workload. We would like to further investigate efficient
calculation of C(x) in future.

3 Experiment

In order to validate the potential benefits of the proposed cost estimation, we
performed intensive experiments by using an open-source database system and
an industry-standard benchmark data set.
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Table 1. Experimental setup

Server model Dell PowerEdge R720xd

Processor 2x Intel Xeon E5-2690 v2

Main memory 64 GB DRAM

Storage devices 1x 900 GB HDD dedicate for database

1x 900 GB HDD dedicate for operating system

Operating system CentOS release 5.8 (64 bit)

Database system PostgreSQL 9.4.0 (buffer size 128 MB)

Data set and schema TPC-H, dbgen 2.17.0

3.1 Experimental Setup

Table 1 summarizes the laboratory environment that we built. PostgreSQL was
configured with default configuration parameters unless specially noted.

First, we generated an initial data set by executing dbgen with a scale factor
100 and loaded the data set into the PostgreSQL database. After loading the
data set, we executed the VACUUM command because this is well-known as a
best practice to obtain the maximum performance. Following this, we performed
a measurement; we executed a query and measured execution information, such
as the taken execution time and deployed query execution plan. Note that, every
time we started execution of a query, we cleaned up Linux disk buffer and Post-
greSQL database buffer to measure cold-start performance by preventing some
data from being cached there.

After we completed a measurement in the initial status, we iterated a bulk
update on the database and took another measurement on the updated data-
base. We performed the bulk update by executing refresh functions generated by
dbgen. Logically, the database size does not change even as we update the data-
base. To ensure fair measurement, we also ran the VACUUM command every
time we completed a refresh function. By iterating database refreshing and per-
formance measurement, we observed how query execution behavior would change
as we incrementally updated the database.

SELECT SUM(l_extendedprice) FROM lineitem

WHERE l_orderkey < x AND l_orderkey > y 1

SELECT SUM(l_extendedprice) FROM lineitem

WHERE l_partkey < x AND l_partkey > y 2

Fig. 1. Test queries (Example)
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SELECT SUM(l_extendedprice) FROM lineitem, part

WHERE p_partkey < x AND l_orderkey > a AND l_orderkey < b

AND l_partkey = p_partkey (A)

Fig. 2. Validation queries

3.2 Cost Estimation Accuracy

This section presents the experimental results that validate the benefits of the
proposed cost estimation.

We performed a measurement for the initial (non-aged) status and the
refreshed (aged) status in the same database for each table and each access
method. The refreshed status meant that the refresh function (updating the
10 % of the storage space) had been performed four times. For each measure-
ment, we first performed each test query (example is depicted in Fig. 1) to
measure aging degrees throughout the database. For example, regarding the
test queries (1)–(2), we performed the query for different combinations of x
and y so that the series of query executions would eventually cover the whole
database space. Specifically, we divided the key space described by l orderkey
into ten pieces. In the first query trial for the test query (1), we set (x,
y) to (min(l orderkey),min(l orderkey) × 9/10 + max(l orderkey) × 1/10). As
well, in the second query trial, we set (x, y) to (min(l orderkey) × 9/10 +
max(l orderkey)×1/10),min(l orderkey)×8/10+max(l orderkey)×2/10). And
we execute the same query with different (x, y) until we could cover the whole
key space to obtain aging degrees over the space.

Based on the measured aging degrees, we estimated the query cost for the
validation query (depicted in Fig. 2) in accordance with the estimation method
introduced in Sect. 2. We also actually performed the validation query and com-
pared the estimated cost and actual execution time to investigate how accurately
the proposed method could estimate the query execution costs.

For comparison, we also measured the estimated cost reported by the
EXPLAIN command in PostgreSQL to execute the validation query. This esti-
mated cost is an internal value that is used for query optimization in PostgreSQL.

Figure 3(a) and (b) present aging degrees that we measured over the key space
described by l orderkey for the initial status and aged status, respectively, of the
same database. As is clearly illustrated, access cost were uniformly distributed
with the initial status, but in the aged status, access cost in the first 10 % region
dramatically increased. In other words, aging phenomena were incurred in this
region.

Figure 4(a) shows how query optimization was performed for query (A) with
x = 1000 in the aged status. Aging was incurred in a limited portion in the
database. To investigate the aging locality, we set a = 60, 000, 000 and b =
120, 000, 000 so that the query could fall in the non-aged region and we set
a = 0 and b = 60, 000, 000 so that it could go into the aged region. The graph
summarized the EXPLAIN cost and actual execution time for two different query
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(a) Non-aged (b) Aged

Fig. 3. Aging degrees of l orderkey

(a) PostgreSQL optimizer (b) Proposed method

Fig. 4. Compare estimated cost with execution time about query (A) (selectivity of
part table is 0.005 %)

execution plans; nested-loop join and hash join. In both regions, PostgreSQL
estimated much smaller cost for nested loop join rather than hash join. In terms
of the actual execution time, however, hash join outperformed nested loop join
for the non-aged region but vice versa for the aged-region. This experiment
confirmed that the current implementation in PostgreSQL cannot accurately
estimate aging phenomena that were incurred in the database storage.

In contrast, Fig. 4(b) presents the estimated cost with the proposed method
for the same query configuration. As is clearly shown, the proposed method
successfully obtained a lower cost for hash join in the non-aged region but for
nested loop join in the aged region.

4 Related Work

4.1 Aging and Database Reorganization

Performance degradation due to aging phenomenon has been a big headache for
database administrators. Besides a mathematical analysis of performance degra-
dation [1], database reorganization has been studied as a practical solution. In
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the ‘70s, the size of the database was generally small. Off-line reorganization
was an reasonable approach [2], and arbitration between performance degrada-
tion and reorganization cost was the main concern at that time [3,4].

As the size of databases in operation grew rapidly, online reorganization
became mainstream. Online reorganization technologies are largely placed into
two categories: replicating a database and writing back the result afterwards
[5], and incrementally reorganizing a database in place avoiding conflict with
running queries by users [6]. Starting from the ‘80s, online reorganization has
remained an active field of research [7,8] to the present.

However, despite intensive studies on database reorganization, these
approaches still require too many resources to be executed frequently enough
for keeping databases from being aged. In realistic situations, a certain level of
aging phenomenon is unavoidable. In this paper, we propose a novel method
of aging-aware cost estimation for query optimization. The proposed method
can accurately estimate the cost of query execution even in the existence of
non-uniform aging phenomenon, while conventional methods cannot.

4.2 Query Optimization

A query optimizer is a key component of database systems that converts an
incoming query into an optimal query execution plan [9]. It has been studied
intensively and extensively [10,11], such as parallelization of query optimization
for utilizing the increasing number of CPU cores [12], caching results for future
query optimization [13], and so on. In recent years, query optimization for emerg-
ing parallel query engine has been actively studied, such as using intermediate
results for query optimization [14]. I/O cost modeling is a centerpiece of cost-
based optimization. Storage systems were mostly based on magnetic disks before
the 2000s [15], but in recent years Flash-based SSDs have increased its adoption
rapidly in enterprise systems, and revisiting the I/O cost modeling has gained
momentum [16]. In this paper, we focus on I/O cost modeling in the presence of
non-uniform aging phenomenon.

5 Conclusion

We proposed a novel technology of query cost estimation that has the key capa-
bility of figuring out aging phenomena accurately even though the aging phenom-
ena are non-uniformly incurred on the storage space. Our experiments confirmed
that the proposed technology can improve the accuracy of query cost estimation
as aging is incurred in the database.

As a first step, this paper has focused on a careful but fundamental inves-
tigation of our purposed approach. Many open problems still remain. First, we
would like to extend our technical investigation toward database queries of higher
complexity. Second, we would like to extend our experiments by using different
real-world data sets and queries in order to validate the benefits for a wide spec-
trum of applications. Finally, we also plan to work on implementation of the
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proposed framework into PostgreSQL so as to share our knowledge among the
community.
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Abstract. Data graphs are convenient for supporting keyword search
that takes into account available semantic structure and not just textual
relevance. However, the problem of constructing data graphs that facili-
tate both efficiency and effectiveness of the underlying system has hardly
been addressed. A conceptual model for this task is proposed. Principles
for constructing good data graphs are explained. A transformation for
generating data graphs from XML is developed.

Keywords: Data-graph construction · Keyword search · XML

1 Introduction

Considerable research has been done on effective algorithms for keyword search
over data graphs (e.g., [3,4,7,10–12,14,17]). Usually, a data graph is obtained
from RDB, XML or RDF by a rather simplistic transformation. In the case of
RDB [3,6,12], tuples are nodes and foreign keys are edges. When the source is
XML [11,13], elements are nodes, and the edges reflect the document hierarchy
and IDREF(S) attributes.

In many cases, the source data suffers from certain anomalies and some
papers (e.g., [13,15]) take necessary steps to fix those problems. For example,
when citations are represented by XML elements, they should be converted to
IDREF(S) attributes. As another example, instead of repeating the details of an
author in each one of her papers, there should be a single element representing
all the information about that author and all of her papers should reference that
element. These are examples of necessary transformations on the source data. If
they are not done, existing algorithms for keyword search over data graphs will
not be able to generate meaningful answers.

Once a source data is ameliorated, it should be transformed into a graph. The
literature hardly discusses how it should be done. In [3,14], the source is an RDB
and the naive approach mentioned earlier is used (i.e., tuples are nodes and for-
eign keys are edges). In [11,20], the source data is XML and the simplistic trans-
formation described at the beginning of this section is applied. In [2,5,12,16,18],
they do not mention any details about the construction of data graphs. The lack
of a thoughtful discussion in any of those papers is rather surprising, because the
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actual details of constructing a data graph have a profound effect on both the effi-
ciency and the quality of keyword search, regardless of the specific algorithms and
techniques that are used for generating answers and ranking them.

Construction of effective data graphs is not a simple task, since the following
considerations should be taken into account. For efficiency, a data graph should
be as small as possible. It does not matter much if nodes have large textual
contents, but the number of nodes and edges is an important factor. However,
lumping together various entities into a single node is not a good strategy for
increasing efficiency, because answers to queries would lose their coherence.

The structure of a data graph should reflect succinctly the semantics of the
data, or else answers (which are subtrees) would tend to be large, implying that
finding them would take longer and grasping their meaning quickly would not
be easy.

An effective engine for keyword search over data graphs must also use
information-retrieval techniques. Those tend to perform better on large chunks
of text, which is another reason against nodes with little content.

In this paper, we address the problem of how to construct data graphs in
light of the above considerations. In Sect. 4, we develop a transformation for
constructing data graphs from XML. In the full version of this paper [9], we also
present a transformation for RDB. In addition, we show there that the format
of the source data (i.e., RDB or XML) has a significant impact on the quality
of the generated data graph. Moreover, XML is a better starting point than
RDB. This is somewhat surprising given the extensive research that was done
on designing relational database schemes.

As a conceptual guideline for constructing a good data graph, we use the OCP
model [1], which was developed for supporting a graphical display of answers so
that their meaning is easily understood. In Sect. 3, we explain why the OCP
model is also useful as a general-purpose basis for constructing data graphs in a
way that takes into account all the issues mentioned earlier.

In summary, our contributions are as follows. First, we enunciate the prin-
ciples that should guide the construction of data graphs. Second, we develop
transformations for doing so when the source data is XML or RDB (the latter
is done in the full version [9]). These transformations are more elaborate than
the simplistic approach that is usually applied. Third, the full version [9] shows
how the format of the source data impacts the quality of the generated graphs.
Moreover, it also explains why XML is a better starting point than RDB.

Our contributions are valid independently of a wide range of issues that are
not addressed in this paper, such as the algorithm for generating answers and the
method for ranking them. We only assume that an answer is a non-redundant
subtree that includes all the keywords of the query. However, our results still
hold even if answers are subgraphs, as sometimes done.
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2 Preliminaries

2.1 The OCP Model

The object-connector-property (OCP) model for data graphs was developed in
[1] to facilitate an effective GUI for presenting subtrees. (As explained in the
next section, those subtrees are answers to keyword search over data graphs.)
In the OCP model, objects are entities and connectors are relationships. We
distinguish between two kinds of connectors: explicit and implicit. Objects and
explicit connectors can have any number of properties. Two special properties
are type and name.

Parts (a) and (b) of Fig. 1 show an object and a snippet of a data graph,
respectively. An object is depicted as a rectangle with straight corners. The top
line of the rectangle shows the name and type of the object. The former appears
first (e.g., Ukraine) and the latter is inside parentheses (e.g., country). The
other properties appear as pairs consisting of the property’s name and value,
as shown in Fig. 1(a). Observe that properties can be nested; for example, the
property percentage is nested inside ethnicgroup. Nesting is indicated in the
figure by indentation.

An implicit connector is shown as a directed edge between two objects. Its
meaning should be clear from the context. In Fig. 1(b), the implicit connector
from Ukraine to Odeska means that the latter is a province in the former.

An explicit connector is depicted as a rectangle with rounded corners. It has
at most one incoming edge from an object and any positive number of outgoing
edges to some objects. An explicit connector has a type, but no name, and may
also possess other properties. Figure 1(b) shows an explicit connector of type
border from Ukraine to Russia that has the property length whose value is
1576 km.

2.2 Answers to Keyword Search

We consider keyword search over a directed data graph G. (A data graph must
be directed, because relationships among entities are not always symmetric.)
A directed subtree t of G has a unique node r, called the root, such that there is
exactly one directed path from r to each node of t.

A query Q over a data graph G is a set of keywords, namely, Q = {k1, . . . , kn}.
An answer to Q is a directed subtree t of G that contains all the keywords of Q
and is nonredundant, in the sense that no proper subtree of t also contains all
of them.

For example, consider Fig. 2, which shows a snippet of the data graph created
from the XML version of the Mondial dataset,1 according to the transformation
of Sect. 4. To save space, only the name (but not the type) of each object is shown.
The dashed edges should be ignored for the moment. The subtree in Fig. 3(a)
is an answer to the query {Dnepr, Russia, Ukraine}. There are additional

1 http://www.dbis.informatik.uni-goettingen.de/Mondial/.

http://www.dbis.informatik.uni-goettingen.de/Mondial/
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Ukraine (country)

area : 603, 500km2

government : republic
ethnicgroups : Ukrainian
percentage : 73

(a)

Ukraine (country)

Odeska (province)border
length : 1576km

Russia (country)

(b)

Fig. 1. An object and a tiny snippet
of a data graph (not all properties are
shown)

RussiaUkraine

located

Don

border

border

Dnepr

located

Fig. 2. A tiny portion of Mondial

answers to this query, but all of them have more than three nodes and at least
one explicit connector.

For the query {Dnepr, Don}, there is no answer (with only solid edges) saying
that Dnepr and Don are rivers in Russia, although the data graph stores this
fact. The reason is that the connectors (in the data graph of Fig. 2) have a
symmetric semantics, but the solid edges representing them are in only one
direction. The only exception is the connector border, which is already built
into the graph in both directions (between Russia and Ukraine). In order not to
miss answers, we add opposite edges when symmetric connectors do not already
exist in both directions. Those are shown as dashed arrows. Now, there are
quite a few answers to the query {Dnepr, Don} and Fig. 3(b)–(d) shows three of
them. The first two of those say that Dnepr and Don are rivers in Russia. These
two answers have the same meaning, because the relationship between a river
and a country is represented twice: by an implicit connector and by the explicit
connector located. The answer in Fig. 3(d) has a different meaning, namely,
Dnepr and Don are rivers in Ukraine and Russia, respectively, and there is a
border between these two countries.

To generate relevant answers early on, weights are assigned to the nodes and
edges of a data graph. Existing algorithms (e.g., [3,7,8,10] enumerate answers
in an order that is likely to be correlated with the desired one. Developing an
effective weighting scheme is highly important, but beyond the scope of this
paper.
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Dnepr

Russia Ukraine

(a)

Russia

Denpr Don

(b)

Russia

Denpr located Don

(c)

Ukraine

Dnepr border

Russia

Don

(d)

Fig. 3. Answers to queries

3 Advantages of the OCP Model

In this section, we discuss some of the advantages of the OCP model. In a naive
approach of building a data graph, there is only one type of nodes (i.e., no
distinction between objects and connectors). Moreover, sometimes there is even
a separate node for each property. This approach suffers from three drawbacks.
First, from the implementation’s point of view, this is inefficient in both time
and space. That is, even if there is not much data, the number of nodes and
edges is likely to be large. As a result, searching a data graph for answers would
take longer (than the alternative described later in this section). In addition, if
all the processing is done in main memory, the size of the data graph is more
likely to become a limiting factor.

The second drawback of the naive approach is from the user’s point of view.
A meaningful answer is likely to have quite a few nodes; hence, displaying it
graphically in an easily understood manner is rather hard. Another problem is
the following. The definition of an answer is intended to avoid redundant parts
in order to cut down the search space. However, sometimes an answer must be
augmented to make it clear to the user. For example, an answer cannot consist
of just some property that contains the keywords of the query, without showing
the context.

The third drawback pertains to ranking, which must take into account textual
relevance (as well as some other factors). In the naive approach, many nodes have
only a small amount of text, making it hard to determine their relevance to a
given query.

In comparison to the naive approach, the OCP model dictates fat nodes. That
is, an object or an explicit connector is represented by a node that contains all
of its properties. Consequently, we get the following advantages. First, a data
graph is not unduly large, which improves efficiency. Second, relevance is easier
to determine, because all the text pertaining to an object or an explicit connector
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is in the same node. Third, the GUI of [1] is effective, because it does not clutter
the screen with too many nodes or unnecessary stuff. In particular, the default
presentation of an answer is condensed and only shows: types and names of
objects; types of explicit connectors; and properties that match some keywords
of the query. The user can optionally choose an expanded view in order to see
all the properties of the displayed nodes, when additional information about
the answer is needed. Since all the properties are stored in the nodes that are
already shown, this can be done without any delay. Furthermore, the GUI of
[1] visualizes the conceptual distinction between objects and connectors, which
makes it much easier to quickly grasp the meaning of an answer.

4 Constructing Data Graphs

An XML document is a rooted hierarchy of elements. Each element can have
any number of attributes. Three special types of attributes are ID, IDREF and
IDREFS. An attribute of the first type has a value that uniquely identifies its
element. The last two types serve as references to other elements. For an attribute
defined (in the DTD) as IDREF, the value is a single ID (of the referenced
element); and if an attribute is defined as IDREFS, its value is a set of IDs. In
our terminology, a reference attribute is one defined as either IDREF or IDREFS.
An attribute is plain if it is neither ID, IDREF nor IDREFS.

In XML lingo, an element has a name that appears in its tag (e.g., <city>).
To avoid confusion, we call it the type of the element, because it corresponds to
the notion of a type in the OCP model

In this section, we describe how to transform an XML document to a data
graph. We assume that the document has a DTD and use it in the transfor-
mation. As we shall see, the DTD provides information that is essential to con-
structing the data graph. Conceivably, this information can also be gleaned from
the document itself. However, if the document does not conform to a reasonable
DTD, the resulting data graph (similarly to the document itself) is likely to be
poorly designed. By only assuming that there is a DTD (as opposed to an XML
schema), we make our transformation much more applicable to real-world XML
documents.

In XML documents, redundancies commonly occur due to reference
attributes. For example, a course may have an IDREF attribute teacher that
points to an element of type teacher. Converting the attribute teacher to an
explicit (rather than implicit) connector is redundant, because the type of the
referenced element makes it clear what is the semantic meaning of the connector.

Formally, consider an attribute A that is defined as IDREF. A DTD does
not impose any restriction on the type E of an element that can be referenced
by the value of A. In a given XML document, A (i.e., its name) and E could
be the same (e.g., teacher). If so, we say that A is an insignificantly named
reference attribute. In the constructed data graph, the reference described by A
can be represented by an implicit connector. If the opposite holds, namely, A and
E are different, then we say that A is a significantly named reference attribute.
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In this case, the constructed data graph should retain A as the type of an explicit
connector.

If attribute A is defined as IDREFS, then it is insignificantly named if all the
IDs (in the value of A) are to elements of a type that has the same name as A;
otherwise, it is significantly named.

Whether a reference attribute is significantly named depends on the given
XML document (and not just on the DTD). It may change after some future
updates. As a general rule, we propose the following. It is safe to assume that a
reference attribute A is significantly named if there is no element of the DTD,
such that its type is the same as A. In any other case, it is best to get some
human confirmation before deciding that a reference attribute is insignificantly
named.

Let E1 and E2 be element types. We say that E2 is a child element type of
E1 if the DTD has a rule for E1 with E2 on its right side. In this case, E1 is a
parent element type of E2.

Rudimentary rules for transforming an XML document to a data graph were
given in [19]. However, they are applicable only to simple cases. Next, we describe
a complete transformation that consists of two stages. We assume that prior
to these two stages, both the DTD and the XML document are examined to
determine for each reference attribute whether it is significantly named or not.

In the first stage, we analyze the DTD and classify element types as either
objects, connectors or properties. This also induces a classification over the ele-
ments themselves. That is, when a type E is classified as an object, then so is
every element of type E (and similarly when E is classified as a connector or a
property). In the second stage, the classification is used to construct the data
graph from the given XML document. The first stage starts by classifying all
the element types E that satisfy one of the following base rules.

1. If E does not have any child element type and all of its attributes are plain,
then E is a property.

2. If E has an ID attribute or a significantly named reference attribute, then it
is an object.

3. If E has neither any child element type nor an ID attribute, but it does have
some reference attributes and all of them are insignificantly named, then E
is a connector.

As an example, consider the DTD of Fig. 4. Base Rule 2 implies that the
element types country, province, river and confluence are objects, because
the first three have an ID attribute and the fourth has a significantly named
IDREFS attribute (i.e., rivers). No base rule applies to economy. By Base Rule
1, all the other element types are properties.

Next, we find all the element types that should be classified as properties by
applying the following recursive rule. If (according to the DTD rules) element
type E only has plain attributes and all of its child element types are already
classified as properties, then so is E. It is easy to show that a repeated application
of this recursive rule terminates with a unique result.
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Fig. 4. DTD snippet of Mondial Fig. 5. XML snippet of Mondial

Continuing with the above example, a single application of the recursive rule
shows that economy is a property, because all of its child elements have already
been classified as such by Base Rule 1.

Now, we apply the following generalization of Base Rule 3. If E does not
have an ID attribute, all of its child element types are classified as properties,
and it has some reference attributes and all of them are insignificantly named,
then E is a connector.

We end the first stage by classifying all the remaining element types as
objects, and then the following observations hold. First, if an element type is
classified as a property, then so are all of its descendants. Second, the classifica-
tion (when combined with the construction of the data graph that is described
below) ensures that a connector is always between two objects. Third, if an ele-
ment type is classified as a connector, then it has some reference attributes and
all of them are insignificantly named.

In the second stage, we transform the XML document to a data graph. At
first, we handle PCDATA as follows. If an element e (of the document) includes
PCDATA as well as either sub-elements or attributes, then we should create a
new attribute having an appropriate name (e.g., text) and make the PCDATA
its value. This is not needed if e has neither sub-elements nor attributes, because
in this case, e becomes (in the data graph constructed below) a non-nested
property, such that the element type of e is the name of that property and the
PCDATA is its value.

Now we construct the data graph as follows. For each element e, such that
e is not classified as a property, we generate a node ne. This node is either an
object or a connector (and hence an explicit one) according to the classification
of e. The type of ne is the same as that of e. If ne is an object, we should choose
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one of its properties (which will be created by the rules below) as its name. As
usual, we prefer a property (e.g., title) that describes the meaning of ne, even if
it is not a unique identifier. For each ne, we create properties and add additional
edges and nodes by applying the following six construction rules.

1. Every plain attribute of e is a property of ne.
2. For each child p of e, such that p is classified as a property, the subtree (of the

given document) that is rooted at p becomes a property of ne. Note that this
property is nested if p has either plain attributes or descendants of its own.
Also observe that element types and attribute names appearing in p become
names of properties nested in ne.

3. For each child o of e, such that o is classified as an object (hence, so is e), we
add an edge from ne to no (which is the node created for o).

4. For each child c of e, such that c is classified as a connector, we add an edge
from ne to nc. Observe that if such a c exists, then e is classified as an object
and nc is the node of the explicit connector corresponding to c.

5. For each reference attribute R of e, we create new connectors or add edges to
existing ones, according to the following two cases. First, if R is insignificantly
named, then for each object o that (the value of) R refers to, we add an edge
from ne to o. Note that this edge is an implicit connector if ne is an object;
otherwise, it is part of the explicit connector ne.
The second case applies when R is significantly named. In this case, the
classification rules imply that ne is an object. We first create a node nr,
such that its only incoming edge is from ne. This node represents an explicit
connector that gets the name of attribute R as its type and has no properties.
In addition, for each object o that (the value of) R refers to, we add an edge
from nr to o.

Figure 6 shows the data graph created from the XML document of Fig. 5 with
the DTD of Fig. 4.

We divide the original edges (i.e., those created by the above transformation)
into two kinds. The hierarchical edges are those created by Construction Rule 3.
They are implicit connectors that reflect the parent-child relationship between
XML elements. The reference edges are the ones introduced by Construction

(confluence)

lng :45◦43′N
lat : 4◦49′E

rivers

Rhône (river)

length : 813km

Saône (river)

length : 473km

Rhône Alpes (province)

area : 43698
France (country)

code : F
population : 58M
economy :

gdp : $37, 728
inflation: 1.7%

Fig. 6. A data graph constructed from the Mondial XML
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Rule 5 (i.e., due to reference attributes). Construction Rule 4 creates edges due
to the element hierarchy, but they enter nodes of explicit connectors; hence, we
also refer to them as reference edges.

As explained in Sect. 2.2, we add opposite edges. However, our experience
indicates that even if it is done just for the reference edges (i.e., no opposite
edges are added for the hierarchical ones), we generally do not miss meaningful
answers to queries. Furthermore, as we argue in the full version [9], a strategy
that works well is to assign higher weights to opposite edges than to original ones.
In this way, relevant answers are likely to be generated first without having too
many duplicates early on.

5 Conclusions

We showed that the OCP model is an effective conceptual basis for constructing
data graphs. Using it, we developed transformations for generating data graphs
from XML and RDB (the latter is done in the full version of this paper [9]).
These transformations are quite elaborate and provide much better results than
the ad hoc methods that have been used in the literature thus far. In particular,
the produced data graphs are better in terms of both efficiency (i.e., answers are
generated more quickly) and effectiveness (i.e., the most relevant answers are
produced early on).

It should be emphasized that the presented transformations are based on the
principle of creating fat nodes (as explained in Sect. 3) and avoiding redundancies
(e.g., due to insignificantly named references). Thus, they are applicable and
useful (in most if not) all cases, regardless of how answers are generated or
ranked.

In the full version of this paper [9], we show that XML is the preferred starting
point for constructing data graphs. However, we need to better understand how
to create XML documents that yield the best possible data graphs. Toward this
end, we plan to develop appropriate design rules for XML documents.

An interesting topic for future work is to how to construct data graphs from
XML documents without DTDs.
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Abstract. Previous studies in Information Retrieval literature have shown that
users’ search history can be leveraged to improve current search results. However
sometimes we have little to no search history available. In such cases, it would
be helpful to obtain data similar to search history data. One way of doing this is
by simulating previous search interactions. In the present study, we focus on
generating simulated “related queries” that can serve as an additional source of
information about the current search [1]. Assuming that users reformulate their
queries by leveraging some of the terms and key phrases they find in ranked
documents during their search, we proposed simple models for generating such
related queries.

Keywords: Query reformulation · Simulation · Session history · Relevance
feedback · Data fusion · Session search

1 Introduction

In this paper, we consider and address the problem of generating data similar to search
history data in the absence of actual search history. This is an important problem to
address as some recent studies have shown that we can leverage users’ session search
history to improve their current search results. One way of obtaining data similar to
search history data is by simulating previous search interactions. Our current study
focuses solely on “related queries” such as the ones leveraged by Bah and Carterette [1].
For the sake of succinctness, we intentionally leave out other possible exploitable
resources such as clicks and dwell times for future work. We hypothesize that users
reformulate their queries by leveraging some of the terms and key phrases they find in
ranked documents during their search process. Our study is thus focused on generating
“related queries” by leveraging the most significant key-phrases from documents in our
simulated interactions.

More specifically, our problem formulation is as follows: suppose we have a real
user who provides one single query and nothing else. Can we generate data that can be
considered to be similar to search history data, and that leads to results similar to the
ones we obtain when we leverage real users’ search history?

Our contributions consist in addressing the following: Can we improve search effec‐
tiveness by leveraging simulated queries, and how does such a method compare to
leveraging real search history? What are the effects of concatenating the simulated
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queries with the original user query and/or aggregating the resulting rankings with the
ranking of the user’s original query? And should we explore deeper layers in our model?

2 Related Work

The present work is partially motivated by the assertion of Keskustalo et al. [13] that IR
test collections should “model processes where the searcher may try out several queries
for one topic.” In subsequent studies, Baskaya et al. proposed a simulation of query
reformulation technique based on query modification, with the aim of modeling how
words are selected to form an initial simulated query or subsequent queries [2, 4]. In a
different study, Baskaya et al. model scenarios in which the user involved in a search
process based on relevance feedback can make mistakes by providing erroneous feed‐
back [3]. Other work (such as that by Verberne et al. [17]) sets the goal of a simulated
user to collect as much gain (Cumulative Gain [10]) as possible in a five minute search
session. Cartette et al. [5] proposed to generate query reformulations by leveraging
individual terms from previous queries’ rankings.

Our work is also motivated by recent studies that leverage users’ search history.
Researchers proposed to tackle the problem using a relevance feedback model that takes
advantage of query changes in a session [19], or by modeling sessions as Markov Deci‐
sion Processes [9], or by diversifying results while maintaining cohesion with the current
query [15], or using query aggregation [8], or using anchor texts for query expansion
proposed by Kruschwitz [14]. Other approaches include the work of Jiang et al. [11],
who combine Sequential Dependence Model features in both current queries and
previous queries in the session for one system.

Our ultimate objective is to obtain data similar to, and as effective as search history
data, in the absence of real search history data, and unlike the work of Baskaya et al., it
is based on the assumption that users base their reformulations on terms and key phrases
they find in ranked documents. Our goal is to obtain, through simulation, (partial) search
history data similar to the ones that lead to results as good as the results we can obtain
when we leverage real users’ search history.

3 Methodology

3.1 A Simple Model for Generating Search History Data

Our task is to generate simulated search history data that can be utilized as a substi‐
tute for real search history. Our assumption is that a user’s next query reformulations
are inspired and informed by the information she gets from reading the top-ranked
documents from the current ranking. This implies that at each phase of our query
reformulation simulation, there is a document retrieval step first, followed by the
proper generation of simulated queries. There are two phases in our model, as
depicted in Fig. 1: “layer 1” and “layer 2”. Layer 1 begins with a real user query and
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a ranked list of results, which are used to generate simulated possible “next” queries.
In layer 2, each of these simulated queries are used to retrieve documents, which in
turn are used to generate a second set of simulated possible next queries.

Fig. 1. A somewhat simple model for generating search history data: The elliptical shapes with
large dashes represent the generated simulated queries

3.2 A Somewhat More Complex Model

Our second model is more complex. It starts the same as the previous model, using a
user query and ranked results to generate simulated queries. In addition, the user query
is submitted to the general web to obtain a ranking of URLs with snippets. Rather than
use the simulated queries to retrieve documents at layer 2, we extract key phrases from
the snippets of the web results to use for document retrieval. Then, as in the original
model, a second set of simulated queries are generated from these retrieved documents.
Thus the models differ only in the source of queries used to rank documents at layer 2
(Fig. 2).
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Fig. 2. A somewhat more complex model for simulating session search data: The elliptical shapes
with large dashes represent the generated simulated queries. The elliptical shapes with dashes
represent the key phrases generated in the new steps (they can also be used as simulated queries)

4 Implementations of the Methods

To implement our models, we need a retrieval engine and methods for generating simu‐
lated queries from ranked results. Below we describe three different implementations of
each of the two models.

4.1 Layer 1 Simulated Query Reformulations

At layer 1, models 1 and 2 are identical. For the search engine, we use either Indri [16],
which uses Dirichlet-smoothed language model scoring to rank full-text documents, or
Yahoo! BOSS [18], which returns a SERP with URLs, titles, and snippets. When we
use Indri, we extract key phrases from each of the top-10 full-text documents using
JTopia [12], then concatenate the top key phrases from each document to form a simu‐
lated query. When we use BOSS, we select either titles or snippets from the top-10
ranked URLs to be used as simulated queries.
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4.2 Layer 2 Simulated Query Reformulations

After layer 1, we have 10 simulated queries from one of three possible implementa‐
tions. At layer 2, the models diverge. For model 1, we essentially repeat layer for
each of the top-4 of the 10 simulated queries: the simulated query is submitted to the
same search engine, and a new round of simulated queries are generated in the same
way. The only difference is that for the BOSS results, we use fewer ranked docu‐
ments (5 instead of 10).

Model 2 differs by using the original user query a second time, submitting it to Yahoo!
BOSS (and only Yahoo! BOSS, not Indri) to obtain snippets of top-ranked documents from
the general web. We use JTopia to extract key phrases from those snippets, and then, unlike
model 1 (which uses simulated queries resulting from layer 1), we submit those key
phrases to our engine of choice. Simulated queries are generated from the resulting ranked
documents in the same way as in layer 1.

For each of the implementations of layer 1 and layer 2 simulations, we also experi‐
ment with a variant in which each simulated query is concatenated with the original
query. In this way we guarantee that the simulated query contains the user’s original
query, potentially helping to mitigate cases where the simulated query does not contain
any of the original query terms.

Additionally, we experiment on the effects of aggregating the ranking resulting from
the user’s query with the rankings resulting from simulated queries.

5 Experiment and Results

5.1 Dataset and Evaluation Measure

We use the Session track 2013 dataset [6]. It contains several user sessions which contain
one or more interactions. Each interaction consists of a query related to a given infor‐
mation need, a ranked list of results from a search engine, user clicks on the results, and
the time spent by the user reading the clicked document. Finally, there is a “current
query”, the last query in the search session. The 2013 data consists of 87 sessions.

For the effectiveness measure, we adopted the official primary measure used by the
TREC Session track organizers, namely nDCG@10. nDCG is a graded relevance
measure that rewards documents with high relevance grades and discounts the gains of
documents that are ranked at lower positions [10].

5.2 Effectiveness of Simulated Queries: Leveraging Simulated Queries

We leverage our generated simulated queries by applying the CombCAT rank fusion
method introduced by Bah and Carterette [1]. For each query formulation, each top-k
ranked document is placed into different bins such that documents that appeared in n
different rankings are put in the same bin, labeled categoryn. Documents are then
reranked in decreasing number of rankings they appeared in. Each simulated query was
submitted to Indri for document retrieval. We compare to the baseline of simply submit‐
ting the original user query to the Indri retrieval engine.
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5.3 Results

Can We Improve Effectiveness at All by Simulating Queries and Leveraging
Them? The results in Table 1 show that by applying layer 1 simulations alone, we are
able to improve the results over the baseline. The highest improvements occur when we
leverage Q1X + QNSnip (41.24 % improvement over the baseline) and QNSnip (40.71 %
improvement over the baseline). It is to be noted that although using JTopia alone leads
to a significant decrease in effectiveness, using it in addition to user query leads to
relatively large improvement (19.53 %, 19.79 % and 19.97 % improvements respectively
for Q2x + Jtopia, Q3x + Jtopia and Q4x + Jtopia).

Table 1. Results for layer 1 of both models on Session track 2013 dataset. Q0x, Q1x, Q2x, Q3x
and Q4x respectively denote incorporating the real user query ranking 0, 1, 2, 3 and 4 times in the
set of rankings that are being aggregated. QN denotes the concatenation of the real user query to
the simulated query.

Q0X Q1X Q2X Q3X Q4X
Resources nDCG %∆ nDCG %∆ nDCG %∆ nDCG %∆ nDCG %∆
Baseline 0.1147 0.00 %
Jtopia 0.0746 −34.96 % 0.0810 −29.38 % 0.1371 19.53 % 0.1374 19.79 % 0.1376 19.97 %
QNJTopia 0.1007 −12.21 % 0.1017 −11.33 % 0.1207 5.23 % 0.1216 6.02 % 0.1204 4.97 %
Titles 0.1465 27.72 % 0.1520 32.52 % 0.1504 31.12 % 0.1474 28.51 % 0.1468 27.99 %
QNTitles 0.1420 23.80 % 0.1331 16.04 % 0.1349 17.61 % 0.1330 15.95 % 0.1338 16.65 %
Snip 0.1407 22.67 % 0.1596 39.15 % 0.1533 33.65 % 0.1473 28.42 % 0.1459 27.20 %
QNSnip 0.1614 40.71 % 0.1620 41.24 % 0.1573 37.14 % 0.1565 36.44 % 0.1577 37.49 %

We would also like to compare to a stronger baseline that uses real search history.
These results are given in Table 2. We can see that using layer 1 alone is not competitive
with using real session history, nor is the first model with both layers. However, using
the second model with both layers gives a substantial improvement over using real
session data in all cases but the QNSnip method. This suggests that the second model
is more than good enough to substitute real session history in the absence of no/little
real session history data.

Table 2. Comparing layer1 to “simpler L1 + L2” as well as “complex L1 + L2”

Resources L1 nDCG Simpler L1 + L2
nDCG %∆

Complex L1 + L2
nDCG %∆

Real search history
nDCG %∆

Titles 0.1465 0.1085 −25.94 % 0.1893 29.22 % 0.1598 9.08 %
QNTitles 0.1420 0.1265 −10.92 % 0.1907 34.30 % 0.1722 21.27 %
Snip 0.1407 0.1323 −5.97 % 0.1850 31.49 % 0.1715 21.89 %
QNSnip 0.1614 0.1326 −17.84 % 0.1914 18.59 % 0.1963 21.62 %

When We Aggregate the Ranking Resulting From the User’s Query with the
Rankings Resulting From Simulated Queries, Does It Affect the Results? The
results in Table 1 suggest that there is generally a positive impact when we aggregate
the ranking resulting from the user’s query (userQ) with the rankings resulting from
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leveraging layer 1 simulated queries, as can be seen by comparing results across rows.
However the results start degrading when we start over-representing the userQ rankings.

For instance, in the case of Snip, leveraging Snip + Q1x leads to a performance
increase of 13.43 % over leveraging Snip only (from 0.1407 to 0.1596). This means that
including the ranking resulting from the actual user query (only once) helps improve the
result by 13.43 % over the effectiveness of simply leveraging Snip. But, including those
results two times (Snip + Q2x), three times (Snip + Q3x), or four times as much voting
rights as the simulated query (Snip) leads to 8.96 %, 4.69 %, or 3.70 % increases over
using Snip only.

We conclude that we obtain better results by aggregating the ranking resulting from
the user’s query with the rankings resulting from leveraging layer 1 simulated queries
once, but in most cases only once (except notably for JTopia and QNJTopia).

Does Concatenating the Simulated Queries with the Original Query Impact the
Results? Comparing the QN variants in Table 1 clearly suggests that, in general,
concatenating the original query to the simulated query improves the results. For
instance, when we go from using Snip to using QNSnip, the results improve from 0.1407
to 0.1614 (14.71 % improvement). Results improve by 34.99 % from JTopia to
QNJTopia. It is worth noting that when leveraging Titles, the nDCG went down from
0.1465 to 0.1420. But that negative change is negligible (3.07 % decrease) compared to
the 14.71 % and 34.99 % increase.

Is There Any Added Value in Going Down to Layer 2 and Deeper? Table 2 shows
that, for our first model, layer 2 provides no benefit and in fact hurts effectiveness. This
was somewhat foreseeable, in that the queries generated in layer 2 are drifting further
away from the original intent.

The second model, however, benefits greatly from the addition of the second layer.
Using layer 1 results as strong baselines for the purpose of comparison, the increases in
effectiveness from layer 1 to “Complex L1 + L2” are in fact 29.22 %, 34.30 %, 31.49 %
and 18.59 % respectively for Titles, QNTitles, Snip, QNSnip.

6 Conclusions

In this paper, we address the problem of simulating a user who is reformulating queries
based on terms and key phrases s/he encountered during the search process, in order to
obtain data similar to search history data that studies leverage for improved effective‐
ness. In the current study, we assumed a real user provides one single query and nothing
else prior to that event, and proposed ways to simulate and generate such data that can
be considered to be similar to search history data given that they provide results similar
to the ones we obtain when we leverage real users’ search history.
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Abstract. The symbolic aggregate approximation method (SAX) of time series
is a widely-known dimensionality reduction technique of time series data. SAX
assumes that normalized time series have a high-Gaussian distribution. Based on
this assumption SAX uses statistical lookup tables to determine the locations of
the breakpoints on which SAX is based. In a previous work, we showed how
this assumption oversimplifies the problem, which may result in high classifi-
cation errors. We proposed an alternative approach, based on the genetic
algorithms, to determine the locations of the breakpoints. We also showed how
this alternative approach boosts the performance of the original SAX. However,
the method we presented has the same drawback that existed in the original
SAX; it was only able to determine the locations of the breakpoints but not the
corresponding alphabet size, which had to be input by the user in the original
SAX. In the method we previously presented we had to run the optimization
process as many times as the range of the alphabet size. Besides, performing the
optimization process in two steps can cause overfitting. The novelty of the
present work is twofold; first, we extend a version of the genetic algorithms that
uses chromosomes of different lengths. Second, we apply this new version of
variable-chromosome-length genetic algorithm to the problem at hand to
simultaneously determine the number of the breakpoints, together with their
locations, so that the optimization process is run only once. This speeds up the
training stage and also avoids overfitting. The experiments we conducted on a
variety of datasets give promising results.

Keywords: Discretization � Time series � Variable-chromosome-length genetic
algorithm

1 Introduction

A time series S ¼ hs1 ¼ hv1; t1i; s2 ¼ hv2; t2i; . . .; sn ¼ hvn; tnii of length n is a
chronological collection of observations vn measured at timestamps tn. Time series data
mining handles several tasks, the most important of which are query-by-content,
clustering, and classification. Executing these tasks requires performing another fun-
damental task in data mining which is the similarity search. A similarity search
problem consists of a database D, a query or a pattern q, and a tolerance e that
determines the proximity of the data objects to qualify as answers to that query.
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Sequential scanning compares every single time series in D against q to answer the
similarity search problem. This is not an efficient approach given that time series
databases can be very large.

Data transformation techniques transform the time series from the original
high-dimension space into a low-dimension space so that they can be managed more
efficiently. Representation Methods apply appropriate transformations to the time series
to reduce their dimension. The query is then processed in those low-dimension spaces.

There are several representation methods in the literature, the most popular are:
Piecewise Aggregate Approximation (PAA) [1, 2] and Adaptive Piecewise Constant
Approximation (APCA) [3].

The Symbolic Aggregate approXimation method (SAX) [4] stands out as probably
the most powerful representation method for time series discretization. The main
advantage of SAX is that the similarity measure it utilizes, called MINDIST, uses
statistical lookup tables. SAX is based on an assumption that normalized time series
have “highly Gaussian distribution” (quoting from [4]), so by determining the locations
of the breakpoints that correspond to a particular alphabet size, one can obtain
equal-sized areas under the Gaussian curve. SAX is applied in four steps: in the first step
the time series are normalized. In the second step the dimensionality of the normalized
time series is reduced using PAA [1, 2]. In the third step the PAA representation
resulting from the second step is discretized by determining the number and locations of
the breakpoints. The number of the breakpoints nrBreakPoints is related to the alphabet
size aphabetSize (chosen by the user); i.e. nrBreakPoints ¼ aphabetSize� 1. As for
their locations, they are determined, as mentioned above, by using Gaussian lookup
tables. The interval between two successive breakpoints is assigned to a symbol of the
alphabet, and each segment of PAA that lies within that interval is discretized by that
symbol. The last step of SAX is using the following similarity measure:

MINDIST Ŝ; R̂
� � �

ffiffiffiffi
n
N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

dist ŝi; r̂ið Þð Þ2
vuut ð1Þ

Where n is the length of the original time series, N is the number of segments, Ŝ and
R̂ are the symbolic representations of the two time series S and R, respectively, and
where the function distðÞ is implemented by using the appropriate lookup table.

There are other versions and extensions of SAX [5, 6]. These versions use it to
index massive datasets, or they compute MINDIST differently. However, the version of
SAX that we presented earlier is the basis of all these versions and extensions and it is
actually the most widely-known one.

In this paper we determine the locations of the breakpoints by using a version of the
genetic algorithms that uses chromosomes of variable lengths. This enables us to
simultaneously determine the number of the breakpoints, together with their location, so
that the optimization process is run only once, and the side effects resulting from
overfitting, which happens when optimization is processed in two steps, can be avoided.

The paper is organized as follows; in Sect. 2 we present the new method to dis-
cretize the time series, we test it in Sect. 3. We conclude with Sect. 4.
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2 Discretizing Time Series Using
Variable-Chromosome-Length Genetic Algorithms

At the very heart of SAX, as we saw in Sect. 1, is the assumption that normalized time
series have a highly Gaussian distribution. This is an intrinsic part of SAX on which the
locations of the breakpoints are determined. This, in turn, allows SAX to use
pre-computed distances, which is the main advantage of SAX over other methods.

However, the assumption that normalized time series follow a Gaussian distribution
oversimplifies the problem as it does not take into account the dataset to which SAX is
applied. The direct result of this assumption is the poor performance of SAX on certain
datasets as we showed in [7]. That was the motivation behind the alternative method we
presented in [7], which does not assume any particular distribution of the time series.
Instead, the method we presented formulates the problem of determining the locations
of the breakpoints as an optimization problem. This approach, as we showed in [7],
substantially boosts the performance of the original SAX.

However, the method we presented in [7] has a drawback that also exists in the
original SAX; it can only optimize the locations of the breakpoints for a given value of
the alphabet size, but it cannot determine the optimal alphabet size for a given dataset.
In other words, during the training stage the optimization process should be run for
each value of the alphabet size for a given dataset to determine the optimal value of the
objective function for all these runs, which is then used in the testing stage. As we can
easily see, this approach is time consuming. Another adverse consequence is that such
an approach – finding the optimal alphabet size first and then determining the locations
of the breakpoint – may result, as we showed for a similar problem in [8], in overfitting.

The optimization process should handle the above mentioned problem in one step. In
other words, its outcome should yield the optimal alphabet size for a particular dataset
together with the locations of the breakpoints that correspond to that alphabet size.

To solve this problem we propose a variant of the genetic algorithms called
variable-chromosome-length genetic algorithm (VCL-GA). But before we present
VCL-GA we start by giving a brief outline of the genetic algorithm.

2.1 The Genetic Algorithm (GA)

GA is the most popular bio-inspired optimization algorithm. GA belongs to a larger
family of bio-inspired optimization algorithms which is the Evolutionary Algorithms.
In the following we present a description of the simple, classical GA. GA starts with a
collection of individuals, also called chromosomes. Each chromosome represents a
possible solution to the problem at hand. This collection of randomly chosen chro-
mosomes constitutes a population whose size popSize is chosen by the algorithm
designer. This step is called initialization. A candidate solution is represented as a
vector whose length is equal to the number of parameters of the problem. This
dimension is denoted by nbp. The fitness function of each chromosome is evaluated in
order to determine the chromosomes that are fit enough to survive and possibly produce
offspring. This step is called selection. The percentage of chromosomes selected for
mating is denoted by sRate. Crossover is the next step in which the offspring of two
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parents are produced to enrich the population with fitter chromosomes. Mutation,
which is a random alteration of a certain percentage mRate of chromosomes, is the
other mechanism that enables GA to explore the search space. Now that a new gen-
eration is formed, the fitness function of the offspring is calculated and the above
procedures repeat for a number of generations nGen or until a stopping criterion
terminates the algorithm. □

2.2 Variable-Chromosome-Length Genetic Algorithm (VCL-GA)

Whereas a large number of optimization problems can be modeled by a definite number
of parameters, and consequently apply a genetic algorithm with a predefined
chromosome-length, there is a category of applications where the number of parameters
is not known a priori. These problems require a representation which is not based on
fixed length of chromosomes, and also a fitness function that is independent of the
number of parameters in each chromosome.

Chromosomes with variable length were introduced in [9] as a variant of classifier
systems. Later, this concept was used to solve different optimization problems where
the number of parameters is not fixed. In [10] the authors apply genetic algorithms with
variable chromosome lengths to structural topology optimization. Their approach was
based on a progressive refinement strategy, where GA starts with a short chromosome
and first finds an optimum solution in the simple design space. The optimum solutions
are then transferred to the next stages with longer chromosomes. This is the main
difference between this method and ours, where there is no possibility of a “gradual”
refinement by adding more complexity as, in our problem, the optimal solution for each
alphabet size is independent of that for another alphabet size.

In [11] the authors presented a genetic planner method that uses chromosomes of
variable length. The method they presented applies a particular genetic scheme
(complex fitness function, multi-population, population reset, weak memetism, tour-
nament selection and elitist genetic operators).

2.3 VCL-GA for Discretizing Time Series

In this section we present our version of VCL-GA which is designed to solve the
problem of determining the locations of the breakpoints, together with the corre-
sponding alphabet size, which give the minimum classification error according to first
nearest-neighbor (1NN) rule using leaving-one-out cross validation. This means that
every data object is compared to the other data objects in the dataset. If the 1NN does
not belong to the same class, the error counter is incremented by 1.

In order for the optimization process to converge, the value of the alphabet size
should be constrained by two values: upperAlphaSize and lowerAlphaSize. Also, the
value of the breakpoints is constrained by upperVal and lowerVal.

We implemented the method based on the locations of the breakpoints, which
implicitly encodes for the alphabet size, taking into account that nrBreakPoints ¼
aphabetSize� 1 (see Sect. 1).
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The algorithm starts by initializing a population whose size is popSize. Each
chromosome is a vector of chromLength real different values pari, i 2 1; 2; . . .;f
chromLengthg and where chromLength is an integer chosen randomly between
upperAlphaSize� 1 and lowerAlphaSize� 1. The values pari encode the locations of
the breakpoints. Although pari are, theoretically, not constrained, but given that the
locations of the breakpoints using the original SAX for aphabetSize = 20 (the maxi-
mum value of the alphabet size in the original SAX) are constrained between �1:64
and þ 1:64, we constrained pari in our experiments between �2 and þ 2.

Another feature of our VCL-GA that is different from the classical (fixed-
chromosome length) GA is crossover (recombination). Classical GA applies different
recombination schemes. In the single-point crossover (SPX) scheme (which we adopt
in this paper, for its simplicity), the two chromosomes are split at one common locus, or
crossover point, and the segments at that crossover point are swapped.

In VCL-GA the split locus is not necessarily the same for the two chromosomes. As
a result, the two resulting offspring chromosomes may have different
chromosome-length from the parent chromosomes. One of the consequences of this is
that the algorithm should check that the length of the offspring chromosomes is always
larger or equal to lowerVal and smaller or equal to upperVal.

Formally, let chromi ¼ hpari1; pari2; . . .; parimi, chrom j ¼ hpar j1; par j2; . . .; par jni,
where m 6¼ n in the general case and where lowerAlphaSize� 1�m; n�
upperAlphaSize� 1, be the two mating parent chromosomes. The crossover operation
uses two crossover points: cp1, cp2; two real numbers sampled from a uniform dis-
tribution, which split the first parent chromosome into two segments: chromi

left ¼
hpari1; pari2; . . .; paripi and chromi

right ¼ hparipþ 1; par
i
pþ 2; . . .; par

i
mi, where p� cp1 �

pþ 1, and the second parent chromosome into: chrom j
left ¼ hpar j1; par j2; . . .; par jqi and

chrom j
right ¼ hpar jqþ 1; par

j
qþ 2; . . .; par

j
ni, where q� cp2 � qþ 1. The resulting off-

spring are: offspring1 ¼ hpari1; pari2; . . .; parip; par jqþ 1; par
j
qþ 2; . . .; par

j
ni. The second

offspring is:offspring2 ¼ hpar j1; par j2; . . .; par jq; paripþ 1; par
i
pþ 2; . . .; par

i
mi. As we can

see, the first possible consequence of this crossover scheme is that the length of the
resulting offspring may be smaller than lowerAlphaSize � 1 or larger than
upperAlphaSize� 1. There are several scenarios that can applied to guarantee that the
lengths of the resulting offspring satisfy this constraint, but we opted for a very simple
scenario, which is to choose other crossover points cp1, cp2 if the ones chosen result in
offspring lengths that violate this constraint.

Our problem also has another constraint; for any chromosome chrom ¼ hpar1;
par2; . . .; parri we have: k\l ) park\parl; 8 0� k; l� r. Given that the parameters
par are all of the same nature, we simply sort the components of the offspring chro-
mosomes to satisfy this latter condition.

3 Experiments

We conducted experiments on 20 datasets chosen at random from the UCR time series
archive [12]. Each dataset consists of a training set and a testing set.
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The length of the time series on which we conducted our experiments varies between
24 (ItalyPowerDemand) and 1024 (MALLAT). The size of the training sets varied
between 16 (DiatomSizeReduction) and 300 (synthetic_control). The size of the testing
sets varied between 28 (Coffee) and 2345 (MALLAT). The number of classes varied
between 2 (ItalyPowerDemand), (Coffee), (ECG200), (SonyAIBORobotSurfaceII)
(TwoLeadECG), (ToeSegmentation2), (SonyAIBORobotSurface), (ECGFive-Days),
(Wine), and 8 (MALLAT).

The purpose of our experiments is to compare our method (that we refer to from
now on as VCL-GA-SAX), which uses VCL-GA to obtain the locations of the
breakpoints, together with the corresponding alphabet size, which yield the minimum
classification error, with the classical SAX which, as indicated in previous sections,
determines the locations of the breakpoints from lookup tables.

In fact, VCL-GA, because it does not presume any distribution of the time series,
does not require normalization of the time series to be applied, and can be applied to
normalized as well as non- normalized time series. This is another advantage
VCL-GA-SAX has over classical SAX. However, in our experiments we normalize the
time series so that SAX can be applied to them.

The range of the alphabet size on which the two methods were tested is
3; 4; . . .; 20f g, because SAX is defined on this range. However, because VCL-GA-SAX

does not require predefined lookup tables, it can practically be applied to any value of
the alphabet size.

The experimental protocol was as follows: during the training stage VCL-GA-SAX
is trained on the training set by performing an optimization process to obtain the
locations of the breakpoints and the corresponding alphabet size, which yield the
minimum classification error. In the testing stage the locations of the breakpoints and
the corresponding alphabet size are used to perform a classification task.

As for SAX, its application also includes two stages; in the training stage we obtain
the alphabet size that yields the minimum classification error. Then in the testing stage
we apply SAX to the corresponding dataset using the alphabet size obtained in the
training stage to obtain the classification error of the testing dataset.

VCL-GA uses the following control parameters: the number of generations nGen is
set to 100. The population size popSize is set to 24. The mutation rate mRate is set to
0.2 and the selection rate sRate is set to 0.5. As for the number of parameters nbp it is
variable, which is the main feature of our algorithm.

In addition to nGen, we also used another stopping criterion,which is the classification
error, which is set to 0. VCL-GA terminates and exists as soon as one of these stopping
criteria is met. Table 1 summarizes the control parameters we used in the experiments.

Table 1. The control parameters of VCL-GA

Population size 24

Number of generations 100

Mutation rate 0.2

Selection rate 0.5

Number of parameters variable
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In Table 2 we present a comparison of the classification errors between SAX and
VCL-GA-SAX for the 20 datasets tested. The best result (the minimum classification
error) for each dataset is shown in bold-underlined printing in yellow-shaded cells.

As we can see from the results, of all the 20 datasets tested VCL-GA-SAX out-
performed SAX 17 times, whereas SAX outperformed VCL-GA-SAX for 3 datasets
only (SonyAIBORobotSurfaceII), (Symbols), and (ECG200).

For some datasets (Coffee) and (OliveOil) the difference in performance was
spectacular. We believe the reason for this is that the assumption of Gaussianity is
completely erroneous for these datasets.

4 Conclusion

In this work we applied a version of the genetic algorithms that uses chromosomes of
variable length to determine the locations of the breakpoints and the corresponding
alphabet size of the SAX representation method of time series discretization. The main
advantage of using chromosomes of variable lengths is that the locations of the

Table 2. The classification errors of SAX and VCL-GA-SAX

Datasets SAX VCL-GA-SAX
classification 

error
alphabet 

size
classification 

error
alphabet 

size

CBF 0.076 17 0.026 10

synthetic_control 0.023 15 0.007 13

Beef 0.433 18 0.333 13

Symbols 0.103 18 0.109 7

Coffee 0.286 19 0.000 18,19

SonyAIBORobotSurfaceII 0.144 11 0.175 14

DiatomSizeReduction 0.082 20 0.036 17

ECGFiveDays 0.150 14 0.075 9

Gun_Point 0.147 18 0.060 20

ItalyPowerDemand 0.192 19 0.066 20

ECG200 0.120 12 0.130 13

OliveOil 0.833 3 20 0.367 17

SonyAIBORobotSurface 0.298 14,17 0.186 5

TwoLeadECG 0.309 20 0.225 3

Trace 0.370 18 0.120 13

FaceFour 0.144 11 0.125 3

MALLAT 0.143 18 0.078 16

ArrowHead 0.246 18 0.229 17

ToeSegmentation2 0.146 19,20 0.138 3

Wine 0.500 3 20 0.389 15
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breakpoints and the corresponding alphabet size are all determined in one optimization
process. This avoids overfitting problems and speeds up the training stage because we
do not need to train the algorithm for each value of the alphabet size. Comparing our
new method to SAX shows how the new method outperforms SAX for the great
majority of datasets.

In the future we intend to apply VCL-GA to several problems in bioinformatics
where the number of parameters is variable, yet the solutions presented in the literature
attempt to circumvent this fact in different ways. We believe these problems are par-
ticularly adapted to VCL-GA.
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Abstract. Temporal aggregation is an important query operation in
temporal databases. Although the general forms of temporal aggrega-
tion have been well researched, some new applications such as online
calendaring systems call for new temporal aggregation. In this paper, we
study the issue of approximate temporal aggregation with nearby coa-
lescing, which we call NSTA. NSTA improves instant temporal aggrega-
tion by coalescing nearby (not necessarily adjacent) intervals to produce
more compact and concise aggregate results. We introduce the term of
coalescibility and based on it we develop efficient algorithms to compute
coalesced aggregates. We evaluate the proposed methods experimentally
and verify the feasibility.

Keywords: Temporal aggregation · Temporal coalescing · Interval-
valued timestamp · Coalescibility

1 Introduction

Temporal aggregation is an important query operation in temporal databases. In
temporal databases, tuples are typically stamped with time intervals that capture
the valid time of the information or facts. When aggregating temporal relations,
tuples are grouped according to their timestamp values. There are basically two
types of temporal aggregation: instant temporal aggregation and span temporal
aggregation [2,5]. Instant temporal aggregation (ITA) computes aggregates on each
time instant and consecutive time instants with identical aggregate values are coa-
lesced into so-called constant intervals, i.e., tuples over maximal time intervals dur-
ing which the aggregate results are constant. ITA works at the smallest time granu-
larity and produces a result tuple whenever an argument tuple starts or ends. Thus
the result relation is often larger than the argument relation, up to 2n − 1 tuples,
where n is the size of the argument relation [6]. Span temporal aggregation (STA)
on the other hand allows an application to control the result size by specifying the
time intervals, such as year, month, or day, for which to report a result tuple. For
each of these intervals a result tuple is produced by aggregating over all argument
tuples that overlap that interval.
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 426–433, 2016.
DOI: 10.1007/978-3-319-44406-2 36
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Table 1. A sample temporal relation and its aggregates

(a)Activities Relation
Name Content Time

r1 Jim A [1, 9]
r2 Wang A [14, 17]
r3 Tom F [7, 12]
r4 Susan G [19, 21]
r5 Abe A [15, 19]
r6 Steve D [3, 5]

(b)ITA

Time COUNT

[1, 3] 1
[3, 5] 2
[5, 7] 1
[7, 9] 2

[9, 12] 1
[14, 16] 1

[16, 17] 2
[17, 19] 2

[19, 21] 1

(c) NSTA

Time COUNT

[1, 3] 1
[3, 5] 2
[5, 7] 1
[7, 9] 2

[9,16] 1

[16,19] 2

[19, 21] 1

Nowadays a handful of new applications motivate more flexible aggregation
operation. Consider an online calendaring system such as Google Calendar1,
where a temporal relation stores scheduled activities for individuals or groups.
The information about an activity includes name, content, and the scheduled
period of time. Table 1(a) shows a sample temporal relation of six activities.
Suppose we want to create a new activity for a group of people. We must find
a time interval so that all members can participate. We first compute the count
aggregate for each occupied timespan as shown in Table 1(b). The result relation
contains all information about occupied time intervals, for example, 1 people in
[1, 3] and 2 in [3, 5] are occupied. Based on the count aggregate, we then derive
free time intervals from outside of the occupied parts. For example, [12, 14] is
free at this time.

It is often important to take into account more constraints and/or preferences
when we a new activity is scheduled. First, the length of free time is crucial. For
instance there must be at least 60 min left for the new activity. In addition,
some people may prefer morning to afternoon, or think Friday is better than
Monday. In practice, when a completely free time interval is not available, a
time interval with a few occupied members should be considered as a feasible
choice. For example, a query for free time intervals of 10 members may accept
results with just 1 or 2 members not completely free.

All these entail a new form of approximate temporal aggregation that returns
more compact results. In [9] the authors introduced parsimonious temporal
aggregation (PTA) that aimed to reduce the ITA result by merging similar and
temporally adjacent tuples until a user-specified size or error bound is satisfied.
Tuples are adjacent only if they are not separated by a temporal gap.

In the calendaring application, however, the required free time must meet
length constraint, which implies a temporal gap can be ignored when it is shorter
than the length constraint. This is the case of Table 1(c), where [9, 16] is the
coalesced result from [9, 12] and [14, 16] in Table 1(b) although there is a gap

1 https://calendar.google.com/.
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between them. This relaxation is reasonable also because timestamps in real-
world are not always exact.

In this paper, we study a new form of temporal aggregation, called NSTA
(NS stands for the magnetic poles), where nearby time intervals (not necessarily
adjacent or overlapping) are coalesced to obtain more compact and concise result
whenever possible. We formally define the term of coalescibility and based on it
we develop algorithms for efficient query precessing.

The rest of paper is organized as follows. In Sect. 2, we define the problem
and proposes the main techniques. Section 3 introduces the experimental results.
Section 4 concludes the paper and points out some future directions.

2 Nearby Coalescing

Conventionally, two intervals are candidates for temporal coalescing if they are
adjacent to or overlapping with each other. In Allen’s term [1], two intervals can
be coalesced only if one interval meets or extends another one. For example, in
Fig. 1, since interval b extends a, and c meets a, both pairs can be coalesced.
However neither a,d nor a,e are coalescible because a is before d and e.

Fig. 1. α-Nearby coalescing

2.1 α-Coalescibility

In this work, we relax the constraint by allowing a user specified threshold to
control the coalescibility. Consider a set of N real-valued time intervals I. Each
interval is associated with a weight wi (i = 1, 2, · · · , N), which can be any
numeric attribute of a time interval, such as revenue or number of overlapped
intervals.

Definition 1 (α-nearby, α-coalescible, α-coalesced). Given α ≥ 0 and
two intervals s = [s−, s+] ∈ I, t = [t−, t+] ∈ I where s− < t−, s+ < t+.
We say s and t are α-nearby if t− − s+ ≤ α. If the weights associated with
α-nearby intervals are identical, the intervals are α-coalescible. [s−, t+] is called
α-coalesced from s and t. α is called nearby threshold.
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In Fig. 1, a and d are α-nearby but a and e are not. α-coalescible a and d are
coalesced to a + d as shown in Fig. 1. Notice that the adjacent or overlapping
intervals, such as a and b or a and c also α-nearby. If α = 0, it becomes the exact
case where only adjacent or overlapping intervals are considered near enough to
coalesce.

In this work, two nearby intervals can be coalesced even when there is a small
gap between them, just like the N/S magnetic poles. For this reason, temporal
aggregation with nearby coalescing is named as NSTA.

2.2 Nearby Coalescing

Coalescing is a fundamental operation in many temporal databases. The basic
strategies for coalescing are run-time (lazy) coalescing and update (eager) coa-
lescing. The lazy strategy defers coalescing to query evaluation. The eager
strategy performs coalescing whenever data update occurs. When new data is
inserted, or data is modified or deleted, the tuples are coalesced. Note that
update coalescing does not completely obviate the need to coalesce during query
evaluation. Value-equivalent intermediate and temporary results may still need
to be coalesced.

In [8], a third strategy, called partial coalescing where each temporal relation
is split into two parts: an uncoalesced base relation, and a derived relation that
records the covered endpoints. An covered endpoint is a time that starts (ends)
an interval and is met by (meets) or is contained within the interval of some
value-equivalent tuple. Which endpoints are covered or uncovered depends on
some query-time information such as the reference time (which is bound to now
in the evaluation of the query), the granularity at which the interval is evaluated,
and the interpretation of the incomplete information.

In our work, coalescing depends on the user-specified nearby threshold, a
covered relation is not helpful so much. To implement nearby coalescing, we
adopt the run-time strategy. The input to our algorithm is a (sorted) list of
intervals, returned from a temporal aggregate query. An interval is a triple <
B,E,W > with a lower bound B, upper bound E and an associated weight W .
If x is an interval, then x, x.B, x.E and x.W are the lower, upper bounds and
weight respectively.

The algorithm uses a working variable t to track the intermediate result in
the process of nearby coalescing. A new interval is coalesced by updating t.E,
the upper bound of t. The algorithm works as follows. The input is a list of
uncoalesced intervals sorted in ascending order of the lower bound. Each input
interval is checked if it is the α-coalescible. The algorithm checks if it is near
enough to coalesced part. If so and if its weights equals to t.W , it is coalesced.
Otherwise, current coalescing finishes and a new coalescing begins.

2.3 Segment B+ Tree for NSTA

A segment B+ tree uses a B+ tree as a base tree for elementary intervals. All
endpoints form a ordered list stored at leaves. Intervals are indexed in this way.



430 K. Cheng

Algorithm 1. Nearby coalescing
Input: A nearby threshold α; a sorted list of intervals S = {s1, s2, · · · , sm}
Output: A list of coalesced intervals T

1: T ← ∅
2: t ← s1 � t is a working variable for intermediate coalescing result
3: i ← 2
4: while i <= |S| do
5: if si.B > t.E + α ∨ si.W �= t.W then � not α-coalescible
6: T ← T ∪ {t}
7: t ← si
8: else if si.E > t.E ∧ si.W = t.W then � coalesce
9: t.E ← si.E

10: end if
11: i ← i + 1
12: end while
13: return T

(1) If the interval is identical to an elementary interval, it is recorded in a leaf node,
with a key-pointer pair where the key equals to the interval’s start point; (2) If the
interval contains a few adjacent elementary intervals but these elementary inter-
vals belong to a single leaf node, we record each part in the leaf node in different
key-point pairs. (3) If the interval contain more elementary intervals that belong
to different leaf nodes, one or more parent nodes will record joint part from several
leaf nodes. A even larger interval will need more parent nodes or even grandparent
nodes and so on. For each elementary interval r, a reference count is used to record
the number of intervals overlapping r.

Fig. 2. Structure of a segment B+ tree
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Let p1, p2, · · · , pm be the sorted list of distinct interval endpoints. The ele-
mentary intervals are, from left to right, [p1 : p2], [p2 : p3], · · · , [pm−1 : pm]. In
our segment B+ tree, an interval has a record of the following form:

< pi, refi >

where pi is the lower bound of elementary interval [pi, pi+1] and refi is its ref-
erence of it, i.e. how many indexed intervals contain this elementary interval.
When ref = 0, we call it a free interval. Figure 2 illustrates the segment B+ tree
structure where a set of 6 intervals: {r1, r2, · · · , r6} are indexed. The endpoints
induce all elementary intervals: {s1, s2, · · · , s10} each element is associated with
a reference count. r1 consists of {s1, s2, s3, s4} that are recorded in two leaf nodes
and a parent node is needed.

Let T be a segment B+ tree built for a set of intervals. A range query that
reports all intersecting intervals the can be processed as follows. Suppose [x−, x+]
is the query range. We begin by searching with x− and x+ in T and stopping at
a node where two search paths will split. This node is called splitNode. We then
traverse the subtree rooted at the splitNode and report intervals recorded at the
visited nodes. In this process, traversing a subtree is most costly, in worst case
the whole tree should be read.

3 Experimental Evaluation

To evaluate the performance of our approach, we implement the following tech-
niques in addition to our Segment B+ Tree (SG-Tree). Interval-Spatial
Transformation (IST). Using D-order index to support spatial range query.
For integer interval bounds [lower, upper], the is equivalent to a composite index
on the attributes (upper, lower). IST with MAX aggregate (IST-MAX).
For max query (Problem 2), we make use of the DBMS’s aggregation capabil-
ity to reduce computation cost. Intervals with identical lower bound are grouped
together. For each group only the maximal upper bound is reported. Relational
Interval Tree (RI-Tree). An external memory dynamic interval management
technique using relational storage structure [4]. The basic idea is to manage the
data objects by common relational indexes rather than to access raw disk blocks
directly.

We generate time intervals from the domain of [0, 220 − 1]. First, we preserve
a set of free intervals. Every 100 consecutive time instants, with a probability
of 0.25 we decide if free intervals will be generated. If so, an interval of random
length is inserted to the free interval table. With the free interval table, we then
generate activity intervals without intersecting any free interval. Similar to the
process of free interval generation, for each 100 consecutive time instants, we
randomly generate 10 activity intervals. The synthesized dataset includes 5, 592
free intervals and 64, 651 activity intervals.

To evaluate the performance of the proposed method, we perform a series of
range queries. The query experiments have been performed with query intervals
following a uniform distribution with selectivity σ = {0.01, 0.02, 0.03, · · · , 0.50}.
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(a) Total (b) DB Ratios

(c) IST (d) IST-MAX

(e) RI-Tree (f) SG-Tree

Fig. 3. Approximate temporal count queries

For each σ, a query interval [B,E] is generated randomly as follows: B ∈ [2, 300]
and E = B + σN where N = 220 − 1.

The running cost includes two parts: query processing (Tq) and coalescing
(Tc). Figure 3(a)–(b) show the running time results. In terms of overall running
time (Tq + Tc), the result in Fig. 3(a) tells us that IST-MAX outperforms other
approaches. To understand the cost result, in Fig. 3(b) we give another result
Tq/(Tq + Tc), which tells us the ratio of query processing by database system.
From this viewpoint, our segment B+ tree is the most efficient. The details
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of time cost for each approach under evaluation are given in Fig. 3(c)–(f). The
lower part is query processing cost. TI-Tree most heavily utilizes DBMS process-
ing capability but its total cost is highest. SG-Tree on the contrary is the most
efficient in terms of query processing. However, SG-Tree is based on elemen-
tary intervals, which is nearly twice of the original intervals. This increases the
coalescing cost.

4 Conclusion

Temporal aggregation is a fundamental query in temporal databases. Instant
temporal aggregation is one basic form of temporal aggregation but the main
problem is that the result size is much larger than base relation. In this paper, we
improved the ITA temporal aggregation by introducing near coalescing so that
nearby intervals, not necessarily being adjacent, have chance to be coalesced. We
developed segment B+ tree to implement the proposed scheme. Experimental
results showed the performance improvement to some extent although coalescing
cost is still high. Some details and related work have been omitted due to the
space limit. More details will be presented in a separate paper.
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Abstract. Accurate estimating travel times in road networks is a com-
plex task because travel times depends on factors such as the weather. In
this paper, we present a generic model for integrating weather data with
GPS data to improve the accuracy of the estimated travel times. First,
we present a data model for storing and map-matching GPS data, and
integrating this data with detailed weather data. The model is generic
in the sense that it can be used anywhere GPS data and weather data
is available. Next, we analyze the correlation between travel time and
the weather classes dry , fog , rain, and snow along with winds impact on
travel time. Using a data set of 1.6 billion GPS records collected from
10,560 vehicles, over a 5 year period from all of Denmark, we show that
snow can increase the travel time up to 27 % and strong headwind can
increase the travel time with up to 19 % (compared to dry calm weather).
This clearly shows that accurate travel time estimation requires knowl-
edge about the weather.

Keywords: Data model · Data integration · Spatiotemporal · GPS ·
Travel time

1 Introduction

Estimating travel times in road networks is of great importance for a wide range
of applications such as road-network monitoring, driving directions, and traffic
planning. When a user requests the travel time from A to B, it is expected that
the duration of the trip to be as accurate as possible. Travel time is complex
to estimate because it is affected by several factors such as rush hours, road
construction, accidents and weather conditions.

Until now the work of determining weather’s impact on travel time has mainly
been focusing on analyzing single or few selected road segments and the data
foundation is often limited to few months of data. In this paper, we determine the
weather’s impact on a country-size road network using 1.6 billion GPS positions
collected from 10,560 vehicles over a 5 year period. We present a generic model
for integrating large scale GPS data with weather information for country-size
road networks. We present a model for storing and preparing data for performing
c© Springer International Publishing Switzerland 2016
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Fig. 1. Average speed by weather Fig. 2. Wind direction identifiers
(Color figure online)

a broad variation of analysis with regards to weather impact. The GPS data is
map-matched to the road-network of Denmark (∼1.8 million edges). Using this
data model we analyze in details how the weather conditions dry , fog , rain, and
snow impacts the travel-time on the entire road network. The analysis includes
(a) determining the correlation between weather conditions and travel time Fig. 1
and (b) the impact of head-, tail-, and crosswind on travel time, show by Fig. 2

The contribution of this paper is twofold. First, we present a generic data
model for storing large GPS data sets and integrate this with detailed weather
information. Second, to the best of our knowledge, we present the first detailed,
nation-size study on how weather impacts travel times. One such analysis can
be seen by Fig. 1, showing the average speed on a motorway on Monday through
Friday depending on weather conditions. Here it can be seen that the speed
varies across they day and snow is in general ∼10 km/h slower than dry , fog ,
and rain.

The paper is organized as follows. Section 2 describes the data foundation
and Sect. 3 presents in details the model integrating GPS and weather data.
A thorough analysis of weather’s impact on travel time is presented in Sect. 4.
Section 5 lists related work and Sect. 6 concludes the paper.

2 Data Foundation

This section describes the GPS, map, and weather data sources integrated to
be able to analyze weather’s impact on travel-time. First the data model is
presented, next, the concrete data sources used are introduced.

The positions of vehicles are tracked using GPS data. A GPS record, r, is a
6-tuple defined as follows.

r = 〈vid, lat, lon, time, speed, course〉

The tuple contains a unique vehicle id, vid, the position as latitude, lat,
and longitude, lon, a timestamp, time, a vehicle speed, speed, and a compass
direction, course. The set R denotes all GPS records.
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The map foundation is a directed, weighted graph G = 〈V,E,W 〉 where V
is a set of vertices and E ⊆ V × V is a set of edges. Each v ∈ V is defined
by two attributes v = 〈lat, lon〉 that denote the latitude and longitude. For
each edge e ∈ E we define two attribute e = 〈course,road-category〉 where
course is the compass direction defined by the straight-line between the two ver-
tices that defines e. The road-category is the road category, e.g., motorway. The
weight w ∈ W is an array of four speed values describing average speed for four
time intervals Monday through Friday. These are free-flow (20:00–06:00), morn-
ing peak (7:30–8:15), afternoon peak (15:00–16:30), and non-peak (6:00–7:30,
8:15–15:00, and 16:30–20:00).

A set of weather observations O are reported from a set of stationary weather
stations s. A weather station is defined by a three tuple s = 〈sid, lat, lon〉
where sid is a unique station ID, and lat and lon are the latitude and longi-
tude of the weather station. A weather observation is defined as o = 〈weather-
class, time, speed, course, temperature, sid〉 where weather-class is the type of
weather, e.g., rain or snow, time is the timestamp when the weather observation
is recorded, speed is the mean wind speed in m/s, course is the wind direction,
temperature is the temperature, and finally sid is the weather station ID.

Each GPS record is map-matched to an edge in the road-network G and a
weather observation in O, see Sect. 3. A matched GPS record is called a point
p = 〈r, e, o〉 where r ∈ R, e ∈ E, and o ∈ O. The map foundation is Open-
StreetMap (OSM) [12], from Geofabrik [9]. Four road categories, extracted from
the OpenStreetMap Highway tag [13] and four categories, motorway , secondary ,
tertiary , and residential are selected for analysis. Historic weather data is inte-
grated from National Oceanic and Atmospheric Administration (NOAA) [2,5].

3 Method

In this section, we describe how data is prepared to produce the results in Sect. 4.
The data foundation presented in Sect. 2 is referenced in this section.

To determine the weather’s impact on travel time we match each GPS record
to the weather class at the nearest weather station at the time the GPS record
was recorded. The work presented here is a generalization and an extension to
existing work [4].

Each point p is matched against all weather stations S within 200 km radius.
If a weather observation is present for a station, ordered and processed by the
distance between p and S, the weather observation o at the station S is assigned
to the observation attribute of the p point. To study the effects of the wind, we
define three wind attack classes, that is tailwind, crosswind, and headwind. The
three classes are defined by an angle β describing the accepted offset from direct
tail-, cross-, or head-, illustrated by Fig. 2, showing the angles βt, βc, and βh

for tail-, cross, and headwind respectively. The yellow arrow illustrates a vehicle
and its driving direction. The mean wind speed will be classified into four groups
of 1–5 m/s, 6–10 m/s, 11–15 m/s, and 16- m/s, describing calm, light, moderate,
and heavy wind conditions.
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4 Results

We first examine the weather impact on the entire road network and then on an
individual street level. Next, we study the effect of the wind speed and direction.

4.1 Weather Class Analysis

Figure 3 shows the distribution of GPS reports from vehicles within eight weather
classes. Due to the uneven distribution of weather only the top four classes as
selected for analysis, that is dry , fog , rain, and snow . From Fig. 4 it can be seen
that snow is typically present from November through March, while fog is fairly
even distributed over the year. Dry and rain is varying across the seasons.

Road Categories and Weather. The average speeds on all roads in an entire
road network is a good indicator of the weather’s impact in general. Figure 5a
shows the average speed on the four road categories in non-peak intervals,
depending on different weather classes. It can be seen that dry , fog , and rain
are very comparable and the speed only varies approximately 2 % on all road
categories. Snow has an impact of up to 8 % on motorway , secondary , and ter-
tiary . On residential roads there is no measurable impact of snow . The effects
are similar when looking at morning peak, Fig. 5b, and afternoon peak (Fig. 5c)
where dry , fog , and rain are comparable, and snow leads to lower speeds in
morning traffic.

Road Stretch Analysis. While aggregated analysis are good at providing an
overview of the weather’s impact, more detailed analysis can give a deeper insight
on individual roads. We study the weather’s impact on four different motorway
stretches, labeled M1 through M4, two rural stretches, labeled R1 to R2 and
four urban stretches, labeled U1 through U4.

Figure 6 shows heat maps of the routes in the morning traffic, where D is Dry ,
F is Fog , R is Rain, and S is Snow . Dry speeds are the baseline speeds and the
cells are colored by their relative difference to dry speed, that is the percentage

Fig. 3. Weather distribution Fig. 4. Monthly weather distribution
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Fig. 5. Average speed on road categories in different intervals

D F F % R R % S S %
M1 111 107 -3.8 111 -0.3 103 -7.5
M2 86 90 5.1 88 2.3 86 0.4
M3 85 95 11.4 89 4.5 75 -12.3
M4 101 99 -1.9 100 -0.6 88 -13.2
R1 82 81 -0.9 82 0.1 70 -13.8
R2 77 77 0.4 77 0.7 66 -14.2
U1 48 44 -7.9 48 -0.6 44 -6.9
U2 38 38 0.4 37 -0.3 35 -6.4
U3 45 46 0.6 45 -1.1 43 -5.3
U4 46 47 1.9 45 -1.1 44 -4.9

(a) Non-peak

D F F % R R % S S %
M1 110 106 -3.5 109 -0.7 98 -10.2
M2 60 91 50.3 58 -3.6 55 -9.5
M3 75 93 23.9 77 1.9 57 -23.7
M4 87 77 -11.3 86 -0.9 71 -18.2
R1 80 81 1.7 80 -0.4 67 -16.7
R2 70 76 9.2 71 2.5 50 -28.1
U1 35 46 32.1 32 -8.4 30 -12.2
U2 32 33 1.5 31 -3.4 27 -15.2
U3 37 44 20.3 34 -6.0 30 -17.0
U4 39 45 15.7 38 -4.2 33 -15.5

(b) Morning Peak

D F F % R R % S S %
M1 111 106 -4.2 110 -0.6 102 -8.1
M2 96 100 4.7 94 -1.9 94 -2.1
M3 92 95 2.8 88 -3.9 83 -9.7
M4 102 99 -3.4 100 -2.1 86 -16.2
R1 80 78 -2.4 81 0.9 68 -14.6
R2 78 76 -2.3 77 -1.5 69 -11.6
U1 47 47 0.6 47 -0.2 45 -5.1
U2 33 34 1.9 34 0.8 30 -8.7
U3 40 44 11.9 38 -4.1 37 -6.2
U4 39 46 16.1 39 -1.1 37 -6.8

(c) Afternoon Peak

Fig. 6. Weather impact on road stretches (Color figure online)

for each weather class. Yellow/red indicates slower speeds and dark green/blue
indicates faster speeds than dry weather. Figure 6a shows only limited impact
by rain for all routes. Fog shows a significant impact for three routes, M2, M3,
and U1, while only limited impact for the remaining seven routes. Only snow
causes a significant reduction in speed by up to 13.8 % for the M1, M3, M4,
R1, and R2. The urban roads are only slightly affected by snow . Morning peak
speeds, Fig. 6b, shows that fog is often faster than dry weather. For the weather
condition snow the speed is reduced with up to 27 %. Afternoon peak speeds,
Fig. 6c, also shows tendencies to faster speed at fog similar to non-peak, with
relative speed differences of up to 16 %.

When comparing road stretches it is interesting that afternoon peak is more
closely related to non-peak intervals than morning peak. This is likely due to
that morning peak traffic is a shorter and more compressed period compared to
the afternoon peak traffic.

4.2 Wind Analysis

To analyze the impact of wind we will study the wind impact on motorway
segments as vehicles tend to have relative stable speeds on these segments.

Figure 7a shows the effect of tailwind on motorway stretches. The figure shows
that the speed is slightly affected by the angle of accepting winds used. A narrow
angle means only very direct tailwind is accepted, while a broad angle means
accepting more crosswind. Accepting a wider angle only yields a decreased speed
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Fig. 7. Wind direction impact

Fig. 8. Wind speed and direction impact

of 1 km/h, except for very strong winds where speeds decreases by 2 km/h going
from a β of 10 to 90◦. Figure 7b shows the impact of increasing the angle for
accepting crosswinds. It can be seen that for winds of 11–15 and 16- m/s there
is an impact when increasing β, thus accepting evenly more tail- and headwind.
It can be seen that a wider angle yields faster speeds for 16- m/s winds, which
indicates tailwind has a stronger effect than headwind. Figure 7c shows accepting
more crosswind has a little impact in speed, mainly at 16- m/s, though speed is
only varying 1 km/h.

Based on the analysis of the wind attack angle, we decide on an angle (β)
of 45◦. Comparing Fig. 7a through Fig. 7c it can be seen, that for wind speeds
≤10 m/s there is no significant difference between tail-, cross-, and headwind,
while stronger winds of 11–15 and 16- m/s indicates faster speeds of tailwind
than crosswind and faster speeds of crosswind than headwind.

Two road segments have been selected for performing detail analysis of the
wind impact, along with an aggregated analysis on all motorway segments, Fig. 8.
In general it can be seen, that vehicle speeds decreases at cross- and headwind
when wind speed increases. Figure 8b shows though that this road stretch is not
impacted by low wind speeds while wind speeds of 11 m/s or stronger. Tailwind
results in slightly increased speeds.
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5 Related Work

The field of analyzing weather impact on vehicle speeds have been studied
for years. Most existing work, [1,3,6–8,10,11,14–17,19], utilizes induction loop
detectors to obtain traffic data. The works study the impact of weather on travel
time, traffic flow, and traffic levels. In general, they find that rain has a varying
impact on travel time while snow can have a larger impact. As the studies are
limited to induction loop detectors, the studies are mainly on single or few road
segments. Most of the work utilizes data for shorter periods, weeks or months,
while some has data for multiple years.

In contradiction to using loop detectors, [18] uses an Automated Number
Plate Recognition (ANPR) system for obtaining similar results for London,
showing that temperatures below 0◦C implies delays and the intensity of rain
and snow can impact speeds.

GPS data has been utilized by [21] where 8,000 taxis provide 800,000 records
over a 4 months period in Hongzhou, China. They propose a prediction frame-
work and while doing so they analyze weather impact. Another work, [20], utilizes
10M GPS records over 2 months from 1,570 taxis in Nagoya City, Japan.

Existing work for analyzing weather impact on road networks often suffer
from at least one of two factors. Firstly, most related work only utilizes data for
shorter periods, e.g., few months, making the analysis suffering from seasonal
variations. Secondly, existing studies only performs analysis on reduced sam-
ples of a road networks, either due to fixed measuring stations (loop detectors,
ANPR) or spatially limited extent of GPS data.

6 Conclusion

This paper presents a large-scale nation-wide study of how weather impacts the
speed in road networks. 1.6 billion GPS data is collected from 10,560 vehicles over
five years from 2010 through 2014 across all of Denmark. The data is integrated
with OpenStreetMap and detailed weather information from NOAA.

A generic data model is presented which has global scope and is applicable
if a set of GPS data and a road network graph is present.

Using the weather classes dry , fog , rain, and snow we show that snow has the
greatest impact, primarily on motorway , secondary , and tertiary roads with a
reduction in speed of up to 27 %. Residential roads show only little to no impact
on snow . For the other weather classes (dry , fog , and rain) there are only smaller
differences across all road categories. Similarly we show that wind can reduce
speeds with up to 19 %. Wind direction only impacts the vehicle speed at strong
wind speeds.

In conclusion, to compute or predict the average speed accurately it is neces-
sary to take into consideration, the factors weather conditions and wind speed.
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Abstract. In XML Schema, the type definition mechanism is responsible for
defining types as well as passing contextual information, which may cause some
design problems such as artificial types. This paper proposes a new kind of
XML schema called Type Dependencies (TD) schema to realize the separation
of those two tasks. A TD schema includes two parts, a set of type dependencies
which is responsible for passing contextual information and a complete com-
petition grammar which is only responsible for defining types. It can help users
to design better schemas more easily, since there are no problems related to
Element Declarations Consistent (EDC) rule and artificial types in TD schemas.
Furthermore, the expressiveness of TD schemas is more powerful than XML
Schema and it also satisfies the semantic concept of 1-pass preorder typing,
which make it more suitable for streaming data.

Keywords: XML � Schema language � Type � Streaming data

XML Schema specifies how to formally describe the constraints on the structure and
content of an XML document, above and beyond the basic syntax imposed by XML
itself. Although XML Schema is successful in that it has been widely adopted and
largely achieves what it set out to, it has been the subject of a great deal of criticism due
to its complexity. There are two problems which make the design of schemas more
difficult and are hard to be settled by design skills. One is the Element Declarations
Consistent (EDC) rule in the XML Schema specification. Simply put, this semantic
constraint requires that elements with the same name in the same content model must
have the same type. The purpose of this restriction is to facilitate a simple one-pass
top-down validation algorithm [1]. But it is difficult to understand the effect of this
constraint for non-expert users. More importantly, this constraint limits the expres-
siveness of XSD, making it cannot fully meet the needs of streaming data. The other
one is called artificial types [5], which purpose is to pass the contextual information to
other elements. However, it makes the elements with the same children may have the
different types, and it is also difficult to understand for normal users.

In fact, all the above two problems can be traced back to its theoretical model, that
is the regular tree grammar(RTG), or more precisely, single-type tree grammar
(STTG)–a subset of RTG. The above two problems are caused by the same reason,
which is the two tasks, defining types and passing contextual information, are under-
taken by the one type definition mechanism. A good idea for avoiding those problems
and making design of schema easier is to separate the task of passing contextual
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information from the type definition mechanism. To solve it, we propose a new kind of
semantic constraints for XML, namely Type Dependencies (TD), to express the rela-
tionships between types. Based on the concept of type dependencies, we propose a new
kind of XML schema called Type Dependencies schema to realize the separation of the
two tasks. There are two major benefits: Firstly, there are no problems related to EDC
rule and artificial types in TD schemas, so it is convenient for users to design better
schemas. Secondly, the TD schema has more powerful expressiveness than XML
Schema and it also satisfies the 1-pass preorder typing [2], which make it more suitable
for streaming data.

1 Motivation

In this paper we will use the XML tree shown in Fig. 1 as the running example.

The considered XML tree describes the information of items related to a bookstore.
This example is a microcosm of the complexity in practical applications. The elements
item, num and details all has more than one types. Non-expert users may design an
XSD schema for this case, however, this kind of XML trees cannot be handled by
Schema. The schema represented by regular tree grammar for this example is shown in
Fig. 2. Let us consider the following problems involved in this example:

1. The grammar is in conflict with the EDC rule since the element item in the content
models of OfflineBranch and OnlineBranch has different types. For example, the
content model of OfflineBranch has three types related to item: OfflineBook, Off-
lineMagazine, OfflineDVD. Therefore, XML Schema cannot be used in this case.

2. The elements branch or item have the same children structures but may have
different types, therefore, the types of elements branch or item are all artificial types.

Fig. 1. An XML tree for the bookstore

446 J. Liu and H. Liao



3. Verification process will generate backtrackings for the num elements, therefore,
this XML tree cannot be verified by using the streaming fashion since there must be
no backtrackings in the verification process for streaming data, that is the constraint
of 1-pass preorder typing.

2 Type Dependencies

We first present the definitions of the XML trees and the regular tree grammars. Let E
denote a finite set of labels of element nodes, A denote a finite set of labels of attribute
nodes and $text denote the label of text nodes, where E \A = f;g and $text 62 E [A.

Definition 1 XML Trees. Formally, we define an XML tree as a 5-tuple
\V ; label; parent; value; num[ , denoted by T , where V denotes the set of all
nodes in T , label is a mapping from V to E[A[f$ textg, parent is a mapping from V
to V [?, which returns the parent of a node in T . value is a mapping from V to Strings,
which returns an attribute value for attribute nodes, a text for text nodes and an empty
string for element nodes. num is a mapping from V to NUM, which assigns a unique
positive integer to each node in the order of preorder traversal.

Definition 2 Regular Tree Grammars. A regular tree grammar, denoted by G, can be
defined as a 4-tuple\N ; T ;S;P[ , whereN is a finite set of non-terminals appeared
in P, T �$ text[E [A is a finite set of terminals appeared in P, S 2 N is the start
symbol and the production with symbol S in its left part is called start production,P is a
finite set of productions and each production in P is an expression of form n ! t½c�,
where n�N , t 2 T and c is a regular expression defined on N [ �, called content
model.

Fig. 2. The schema for bookstore

Simplify the Design of XML Schemas by Type Dependencies 447



Definition 3 Valid XML Trees. Let T ¼ \V ; label; parent; value; num[ be an
XML tree and G ¼ \N ; T ;S;P[ be a regular tree grammar. If there is a mapping I
from each node v in T to a certain non-terminal in G, such that: When v is the root of T ,
IðvÞ is the start symbol S of G; For each node v in T and the children (if any) of v,
denoted by v1; v2; � � � ; vn and let vi � viþ 1ð1� i\nÞ, then there always exist a pro-
duction n ! t½c�, such that I vð Þ = n, label vð Þ ¼ t and the I v1ð ÞI v2ð Þ � � � I vnð Þ 2 LðcÞ.
Especially, if v has no any children, then � 2 LðcÞ; then we say that T is valid to G,
mapping I is an interpretation of T to G and the set of all valid XML document trees to
G is called the regular tree language defined by G, which is denoted by LðGÞ.
Definition 4 Types. Let G ¼ \N ; T ;P; s[ be a regular tree grammar, let T ¼
\V ; label; parent; value; num[ be an XML document tree in LðGÞ, and let I be an
interpretation of T on G. Given an element node on T , denoted by v, the type of node v
is defined as I vð Þ. Given an element label l 2 E, if there is a production p in P, such
that p:t ¼ l, then the non-terminal p:n is said to be a type of label l. Let types lð Þ denote
the set of all types of l on G, and let k types lð Þ k be the number of types in types lð Þ.
Definition 5 Prefix Path Patterns. The syntax of the prefix path pattern is defined as
follows:

All prefix path patterns / are begin with the label of root node. / and == are called
children axis and descendant axis respectively. The expressions before and after axes
and called step, r is a regular expression defined on $ text[E [A[ �, which is called
predicate. Let V 0�V is a set of nodes in XML tree T , if the string which is composed by
the labels of nodes in V 0 according to the document order is matched to r, then rðV 0Þ
returns TRUE, else it returns FALSE. The formal semantics for prefix path pattern is
defined as follows:

The predicate in a prefix path pattern is used to filter nodes. Especially, if a predicate
r is �, then for any element node, r leftsibilingsðvð ÞÞ ¼ TRUE if and only if
leftsibilings vð Þ ¼ ;. For example, the prefix path pattern of nodes named details and
under the online node is:

bookstore=online=branch branch�½ �=item name item�½ �=details num½ � /d
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Definition 6 Reachable Nodes and Reachable Types. Let T be an XML document
tree, / be a prefix path pattern and let v be a node on T . The nodes in S /½ �v are said to
be the reachable nodes of / on T , where S is the semantic function for prefix path
pattern defined above, and the set of all reachable nodes of / on T is said to be the
reachable node set of / on T , denoted by / Tð Þ. Let G be a regular tree grammar, T be
an XML document tree in L Gð Þ, I be an interpretation of T on G and let v be a node in
T . I vð Þ is said to be a reachable type of / on G if v 2 / Tð Þ, and the set of all reachable
types of / on G is said to be the reachable type set of / on G, denoted by / Gð Þ.
Definition 7 Nearest Nodes. Given a prefix path pattern / and an XML document tree
T , v0 is the nearest node of v in / Tð Þ if there is no other node v00 in / Tð Þ such that
v0 � v00 � v, where v is a node on T and v0 is a node in / Tð Þ. Especially, if there is no
node which satisfies the above definition in / Tð Þ, then we let ? denote the nearest
node of v in / Tð Þ. Given a set of prefix path patterns U ¼ f/1;/2; � � � ;/ng, the nodes
v/1

; v/2
; � � � ; v/n

are said to be the nearest node set of v on U if v/n
is the nearest node of

v in /nðTÞ, and v/i�1
is the nearest node of v/i

in /i�1ðTÞ, where 1\i� n. In particular,
if v/i

¼ ?, then v/i�1
¼ ?.

Definition 8 Type Dependencies. Let G ¼ \N ; T ;P; s[ be a regular tree gram-
mar, and let U1 and U2 denote two sets of prefix path patterns. A type dependency on G
is an expression defined as U1 ! U2.
Let D be a set of type dependencies on G, U1 ! U2 is an XML type dependency in D.
An XML document tree, denoted by T , satisfies U1 ! U2 if T 2 LðGÞ and for any two
nodes in /j Tð Þ, denoted by vj and v0jðnþ 1� j� nþmÞ, if there are two node sets
Vj ¼ fv/1

; v/2
; � � � ; v/n

g and V 0
j ¼ fv0/1

; v0/2
; � � � ; v0/n

g, such that Vj and V 0
j are the

nearest node sets of vj and v
0
j on U1 respectively and any node in Vj or V 0

j is not ?, then

if I vj
� � 6¼ Iðv0jÞ, then for any v/i

and v0/i
, we have I v/i

� � 6¼ Iðv0/i
Þ, where 1� i� n.

Furthermore, we say that U1 ! U2 is a n-ary type dependency if the number of prefix
path patterns in U1 is n. For example, in the schema of Fig. 2, there is a type
dependency /1;/2 ! /3, where /1 : bookstore= � offline�½ �;

/2 : bookstore= � offline�½ �=branch branch�½ �=item name item�½ �=num=�
/3 : bookstore= � offline�½ �=branch branch�½ �=item name item�½ �=details num½ �:
Definition 9 Instance Constraints. Let G ¼ \N ; T ;S;P[ be a regular tree gram-
mar,U1 ¼ /1;/2; � � � ;/nf g and U2 ¼ /nþ 1;/nþ 2; � � � ;/nþm

� �
are two prefix path

patternsets,U1 ! U2 isa typedependencyonG, an instanceconstraintofG isanexpression
as follows:n1; n2; � � � ; nn ! nnþ 1; nnþ 2; � � � ; nm, where n1; n2; � � � ; nn0nnþ 1; nnþ 1;
� � � ; nm are thenon-terminals inN .AnXMLdocument treeT satisfy the instanceconstraint
if and only if for any node vi in /iðTÞðnþ 1� i�mÞ, if types of the nearest nodes
v1; v2; � � � ; vn of vi on/1ðTÞ;/2ðTÞ; � � � ;/nðTÞ are n1; n2; � � � ; nn0 , then the type of v is ni.
For example, the type dependency showed in Definition 8 has the following instance
constraints:

Offline, Isbn ! OfflineBookDetails, Offline, Issn ! OfflineMagazineDetails
Offline, Isrn ! OfflineDVDDetails, Online, Isbn ! OnlineBookDetails
Online, Issn ! OnlineMagazineDetails, Online, Isrn ! OnlineDVDDetails
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3 Type Dependencies Schema

In this section, we will introduce the type dependencies schema. Firstly, we will give
the definition of complete competition grammars, which are only response for type
definitions and there is no type dependencies in complete competition grammars.

Definition 10 Single-types and Multi-types. Given a regular tree grammar
G ¼ \N ; T ;P; s[ , the label l in E is said to be a single-type label on G if k
types lð Þ k¼ 1 or l is said to be a multi-type label on G if k types lð Þ k [ 1.

Definition 11 Prefixes. Let G ¼ \N ; T ;P; s[ be a regular tree grammar, let c be
the content model of a production p in P, and let n be a non-terminal in N p:c

� �
. For

any non-terminal string, denoted by xn0y, if xn0y 2 LðcÞ and n ¼ n, then x is said to be
a prefix of n on c, where x and y are non-terminal strings on N [ � and n0 is a
non-terminal in N . The prefix set of n on c is the set of all prefixes of n on c, and the
prefix expression of n on c is a regular expression on N [ � which defines the prefix set
of n on c.

Definition 12 Competition. Let G ¼ \N ; T ;P; s[ be a regular tree grammar, let c
be a content model of a production p in P, let J ¼ fn1; n2; � � � ; nn n	 2ð Þg be a set of
non-terminals such that J�N p:c

� � ^ J�types lð Þ, where l is a multi-type label, and
let q1; q2; � � � ; qn be the prefix expressions of n1; n2; � � � ; nn. If \ n

i¼1Lðtot qi
� �Þ 6¼ ;,

then non-terminals n1; n2; � � � ; nn are said to be competitive non-terminals on c, the set
J is said to be a competition set on c, the regular expression r such that LðrÞ ¼
\ n

i¼1Lðtot qi
� �Þ is said to be the competition prefix expression of J , and the terminal

strings in L rð Þ are said to be the competition prefixes of J on c, where tot is a mapping
from non-terminals to terminals.

Definition 13 Complete Competition. Let G ¼ \N ; T ;P; s[ be a regular tree
grammar, c be a content model of a production p in P, let J ¼ fn1; n2; � � � ; nn n	 2ð Þg
be a set of non-terminals such that J�N p:c

� � ^ J�types lð Þ, where l is a multi-type
label, and let q1; q2; � � � ; qn be the prefix expressions of n1; n2; � � � ; nn. If
\ n

i¼1L qi
� � 6¼ ;, then the non-terminals n1; n2; � � � ; nn are said to be complete com-

petition non-terminals on c, the set J is said to be a complete competition set on c, the
regular expression r0 such that Lðr0 Þ ¼ \ n

i¼1L qið Þ is said to be the complete com-
petition prefix expression of J , and the terminal strings in L r0ð Þ are said to be the
complete competition prefixes of J on c. For example, let J = {OfflineBook, Off-
lineMagazine, OfflineDVD}, then J is a complete competition set and the complete
competition prefix expression of J is name item*. Similarly, let J 0 = {OnlineBook,
OnlineMagazine, OnlineDVD}, then J 0 is a complete competition set and the complete
competition prefix expression of J 0 is name item*.

Definition 14 Complete Competition Grammars. Given a competition grammar,
denoted by G ¼ \N ; T ;P; s[ , G is said to be a complete competition grammar if for
any competition set on G, denoted by J , J is a complete competition set, and the
complete competition prefix of J is also the prefix of J , and if non-terminal n 2 J ,
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then every non-terminal n0 2 N such that p0:t ¼ p:t is also in set J , where p, p0 are
productions in P and, p0:n ¼ n0. The schema in Fig. 2 is not a complete competition
grammar since the complete competition sets {OfflineBook, OfflineMagazine, Off-
lineDVD} and {OnlineBook, OnlineMagazine, OnlineDVD} are not equal. The fol-
lowing schema is a complete competition grammar.

Definition 15 Type dependencies schemas. A type dependencies schema, denoted by
F , is a triple\G;DS; inst[ , where G is a complete competition grammar, DS is a set
of 1-ary XML type dependencies, and inst is a mapping from DS to instance con-
straints, which returns the instance constraint set for each XML type dependency in
DS, and for any XML tree T in LðGÞ, if v is node with multi-type label on T , then DS
implies a type dependency, denoted by U ! /, such that v is a reachable node on T , V
is the nearest node set of v on U and ? 62 V . Given an XML tree T , T is said to be valid
to F if T is valid to G and for each XML type dependency in DS, denoted by U ! /,
T satisfies all instance constraint set in instðU ! /Þ. For example, a TD schema is
showed in Fig. 4. There are following features in this schema:

Fig. 4. A type dependency schema for bookstore

Fig. 3. A complete competition grammar for bookstore
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1. This schema separates the task of passing contextual information from the type
definition mechanism. Type dependencies are response for passing contextual
information and a complete competition grammar is response for type definitions.

2. There are no EDC rule and artificial types in TD schemas, so users can pay more
attention to the design of the schema itself and avoid mistakes

3. There are no backtrackings in the verification process, therefore this schema is
suitable for streaming data.

The TD schema is more powerful than XML Schema. In fact, the expressiveness of
TD schemas is beyond the restrained competition grammar which is the maximal
subset of regular tree grammar for streaming data.

Theorem 1. A forward determined grammar is equivalent to a constrained type
dependencies schema.

4 Related Works

Murata et al. [1] investigate the problem of the expressiveness for XML schema
languages by using the tree grammars. Murata also point that XML Schema only
capture the class of single-type tree grammars. In paper [2], the author gives two
conditions for processing streaming data: a single pass scan and constant memory.
Martens et al. [4, 5] shows that restrained competition tree grammar is the largest class
of XML schemas for streaming data. Martens turns out that a regular tree grammar
admits 1-pass preorder typing if and only if it is restrained competition. Gelade et al. [6]
defined a pattern-based specification language equivalent in expressive power to the
XML Schema.

A number of XML functional dependencies have been proposed to enrich the
semantics of XML for developing a normalization theory for XML. Arenas [7]
investigates the problem of the normalization of XML documents. In a contextual of
DTD, XML functional dependencies are defined based on paths, and tree tuples are
used to simulate the tuples in relational databases. Vincent [8] investigates the
path-based XML functional dependencies with closest attribute value. Unlike the
definitions based on paths, sub-graph is used in paper [9] for locating the data item in
XFDs and increase the flexibility of the XFD’s definition with the help of the graph
structure of XML schema.

5 Conclusion

This paper proposes a new XML schema language called Type Dependencies schema
to realize the separation of the tasks of the defining types and passing contextual
information which are mixed in XML Schema. It is convenient for users to design
better schema, since there are no problems related to EDC rule and artificial types in a
TD schema. Furthermore, TD schema has powerful expressiveness, making it more
suitable for streaming data than XML Schema.
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Abstract. Probabilistic relational databases play an important role on
uncertain data management. Informally, a probabilistic database is a
probability distribution over a set of deterministic databases (namely,
possible worlds). The existing initialization methods that transform the
possible worlds representation into our chosen representation, make the
formulae of tuples very long. An efficient initialization method is pro-
posed by providing an equation that can generate simplified formulae of
tuples. The experimental study shows that the proposed method greatly
simplifies the formulae of tuples without additional time cost. The sub-
sequent queries benefit from the simplified formulae of tuples.

Keywords: Probabilistic relational databases · Formulae ·
Simplification

1 Introduction

Modern applications need to process uncertain data that are retrieved from
diverse and autonomous sources [3], such as data cleaning [4], sensor networks
[12]. Informally, a probabilistic database is a probability distribution over a set
of deterministic databases (namely, possible worlds) [11].

Uncertain data in real world are usually represented as possible worlds. How-
ever, multiple data sets can lead to considerable large number of possible worlds
of probabilistic relational databases. Therefore, probabilistic relational data-
bases need some more concise uncertain data representation formalism [5]. The
variable-based formalism [9] is a very general and very powerful representation
mechanism [13] that can represent rich correlations between probabilistic data.
In this formalism, each tuple is annotated with a propositional formula composed
of independent variables.

In this paper, we consider the initialization problem for probabilistic rela-
tional databases that is to transform the probability distribution of possible
worlds of uncertain data into the variable-based representation formalism. The
existing initialization methods make the formulae of tuples very long and com-
plicated. The lengthy formulae lead to the waste of storage and significant over-
head in subsequent query processing. Therefore, the formulae simplification is
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 454–462, 2016.
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very important for efficient uncertain data management. However, the formulae
simplification is a NP problem. This paper presents an efficient initialization
method for the variable-based representation. Our main contributions in this
article are summarized as follows.

(1) We propose a new initialization method to generate simplified formulae of
tuples without additional time cost.

(2) We prove the correctness of the proposed initialization method by showing
that it generates an equivalent formula as the existing initialization method.

(3) We conduct an extensive experimental study to evaluate our initialization
method in different configurations, showing its efficiency and scalability.

The remainder of this article is organized as follows. Section 2 discusses the
related work. We present in Sect. 3 the necessary preliminaries on the probabilis-
tic databases. Section 4 describes our proposed initialization method for proba-
bilistic relational databases. In Sect. 5, we report the performance evaluation of
our initialization method. Section 6 concludes this paper.

2 Related Work

There are significant amounts of work on representation formalism for uncertain
data, e.g., [9]. In general, these studies can be divided into two categories, one
is based on simple correlation model [5], which associates existence probabilities
with individual tuples and assumes that the tuples are mutually independent
or exclusive; the other is based on a richer representation formalism which can
express complex correlations between tuples [9]. Many application domains nat-
urally produce correlated data. Furthermore, dependencies among tuples arises
naturally during query evaluation even when one assumes that the base data
tuples are independent [10]. Several formalisms can express complex correlations
between tuples, lineage-based [2], possible worlds decompositions [6], U-relations
[6], the variable-based representation [8,9]. The lineage-based representation for-
malism can represent the rich correlations among answering tuples of queries,
however, the base tuples are assumed to be independent. MayBMS system [1]
successively adopted possible worlds decompositions [6] and U-relations [6] to
store probabilistic data. Only several operations can be processed efficiently in
the possible worlds decompositions representation. U-relations is a succinct and
complete representation system for large sets of possible worlds [1]. However,
besides the succinctness and completeness, the variable-based representation can
also accelerate the processing of query processing by lots of optimization strate-
gies for Boolean logic expressions processing [7]. Therefore, the variable-based
representation is a very general and very powerful representation mechanism [13].
To the best of our knowledge, this paper is the first to study the initialization
problem for the variable-based representation.
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3 Preliminary

3.1 Data Model

Definition 1. A probabilistic database in the variable-based representation is a
quadruple D = 〈D, E, P, f〉 such that

(i) D: D is a traditional relational database.
(ii) E: E = {e1, . . . , em} is a finite set of independent Boolean variables.
(iii) f: ∀t ∈ D, f(t) is a propositional formula of variables from E.
(iv) P: P is a function that defines a discrete probability distribution for each

random variable ei in E, in other words, P (ei) + P (¬ei) = 1. [9].

A possible world is a pair of form 〈Ej , wi〉, where Ej is an evaluation of
E, and wi is a set of tuples from D such that t ∈ wi iff Ej � f(t).1 P (wi) =∑

Ej⇒wi
P (Ej) and

∑
wi∈W P (wi) = 1, where Ej ⇒ wi represents that Ej leads

to the possible world wi. The truth value of f(t) determines the presence of t
in the actual world, and its probability is defined by the probabilities of the
composed variables.

We briefly introduce the only existing initialization method for variable-based
representation (referred to as Naive [14]) by the following example.

Example 1. Assume a set of tuples {t1, t2, t3, t4} are mutually correlated, and
their possible worlds are listed in Table 1. By the Naive initialization method,
first, a set of tuples T = {t1, t2, t3, t4} are inserted into D, then a new set of
variables {e1, e2, e3, e4} is generated to express the set of possible worlds, as
shown in Column f in Table 1. The formula of each tuple is the disjunction of
formulae of possible worlds where this tuple exist, as shown in Table 2.

Table 1. The set of tuples

wi T P (wi) f

w1 {t1, t2, t4} 0.2 e1

w2 {t2, t3} 0.2 ¬e1 ∧ e2

w3 {t2, t3, t4} 0.2 ¬e1 ∧ ¬e2 ∧ e3

w4 {t1} 0.2 ¬e1 ∧ ¬e2 ∧ ¬e3 ∧ e4

w5 {t1, t4} 0.2 ¬e1 ∧ ¬e2 ∧ ¬e3 ∧ ¬e4

The formulae of tuples generated by Naive method are very long and compli-
cated. On one hand, the long and complicated formulae lead to waste of storage,
on the other hand, large time cost of processing formulae will happen when
evaluating the subsequent queries. Therefore, formulae simplification is a very
1 In this paper, A � B means that A makes B true.
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Table 2. The formulae of tuples

RID f

t1 f(w1) ∨ f(w4) ∨ f(w5) = e1 ∨ (¬e1 ∧ ¬e2 ∧ ¬e3 ∧ e4) ∨ (¬e1 ∧ ¬e2 ∧ ¬e3 ∧ ¬e4)
t2 f(w1) ∨ f(w2) ∨ f(w3) = e1 ∨ (¬e1 ∧ e2) ∨ (¬e1 ∧ ¬e2 ∧ e3)

t3 f(w2) ∨ f(w3) = (¬e1 ∧ e2) ∨ (¬e1 ∧ ¬e2 ∧ e3)

t4 f(w1) ∨ f(w3) ∨ f(w5) = e1 ∨ (¬e1 ∧ ¬e2 ∧ e3) ∨ (¬e1 ∧ ¬e2 ∧ ¬e3 ∧ ¬e4)

important problem here. Since the formulae of possible worlds are very regular,
and the formulae of tuples are the disjunction of formulae of possible worlds
that contain the tuple, therefore, in fact, formulae of tuples are also regular.
Although simplifying an arbitrary formula is a NP-hard problem, simplification
of the regular formulae is tractable.

4 The Optimal Initialization Method

This section introduces a theorem to generate simplified formulae of tuples.
If f = ¬ei1 ∧ ¬ei2 . . . ∧ ¬e(in−1) ∧ ein , then f¬ = ¬ei1 ∧ ¬ei2 . . . ∧ ¬e(in−1).
If f(im) = ¬ei1 ∧ ¬ei2 . . . ∧ ¬e(im−1) ∧ eim , and m < n, then f−im(in) =

¬ei(m+1) ∧ . . . ∧ ¬e(in−1) ∧ ein .
Assume that F (start, I = {i1, . . . , im}, n) = ∨j∈[1,m]f(ij), where start,

ij (j ∈ [1, m]) and n are natural numbers, and m < n, when ij = start,
f(ij) = estart; when start < ij < n, f(ij) = ¬estart ∧ . . . ∧ ¬e(ij−1) ∧ eij ; when
ij = n, f(ij) = ¬estart ∧ . . . ∧ ¬e(ij−1). Then the formulae of tuples can be rep-
resented as F (start, I = {i1, . . . , im}, n), where I can be considered as the set of
order number of possible worlds that contain the tuple, start can be considered
as the start number of newly generated variable, and n can be considered as the
number of possible worlds.

For example, in Example 1, f(t1) = f(w1) ∨ f(w4) ∨ f(w5), then f(t1) =
F (1, {1, 4, 5}, 5).

Theorem 1. When m ≥ 2, we have the following simplification equation for
F (start, I = {i1, . . . , im}, n):

(1) When m = 2, and i1 
= (n−1), F (start, I, n) = f¬(i1)∧ (ei1 ∨f−i1(i2))
(2) When m = 2, and i1 = (n − 1), F (start, I, n) = f¬(i1)
(3) When m > 2, F (start, I = {i1, . . . , im}, n) = f¬(i1)∧(ei1∨F ((i1+1), I =

{i2, . . . , im}, n))

Proof. When |I| = 2, and i1 
= (n − 1), F (start, {i1, . . . , im}, n) = f(i1) ∨ f(i2).
f(i1) = ¬estart ∧ . . . ∧ ¬e(i1−1) ∧ ei1 = f¬(i1) ∧ ei1
f(i2) = f¬(i1) ∧ ¬ei1 ∧ f−i1(i2)
f(i1) ∨ f(i2) = f¬(i1) ∧ (ei1 ∨ (¬ei1 ∧ f−i1(i2))) = f¬(i1) ∧ (ei1 ∨ f−i1(i2))
When m = 2, and i1 = (n − 1), F (start, {i1, . . . , im}, n) = f(i1) ∨ f(i2).
f(i1) = ¬estart ∧ . . . ∧ ¬e(n−2) ∧ e(n−1), f(i2) = ¬estart ∧ . . . ∧ ¬e(n−1)
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f(i1) ∨ f(i2) = f¬(i1) ∧ (e(n−1) ∨ ¬e(n−1)) = f¬(i1)
When m > 2, F (start, {i1, . . . , im}, n) = f(i1) ∨ . . . ∨ f(im).
f(wij ) = ¬estart ∧ . . . ∧ ¬e(ij−1) ∧ eij
f¬(i1) = ¬estart ∧ . . . ∧ ¬e(i1−1) is the common part of the formulae of

f(i1) and f(i2), and also is the common part of f(i1) with all other f in
F (start, {i1, . . . , im}, n). Thus, f¬(i1) can be extracted. Then, the formula trans-
formed to be: F (start, {i1, . . . , im}, n) = f¬(i1) ∧ (ei1 ∨ (¬ei1 ∧ f−i1(i2)) ∨ . . . ∨
(¬ei1 ∧ f−i1(im)))

where f−i1(ij) is the formula of f(ij) with eliminating the common part with
f(i1), that is, f−i1(ij) = ¬e(i1+1) ∧ . . .¬eij−1 ∧ eij

After extract ¬ei1 from each (¬ei1 ∧ f−i1(ij)), ei1 ∨ (¬ei1 ∧ f−i1(ij)) = ei1 ∨
f−i1(ij). Obviously,

F (start, {i1, . . . , im}, n) = f¬(i1) ∧ (ei1 ∨ f−i1(i2) ∨ . . . ∨ f−i1(im))
where f−i1(i2) ∨ . . . ∨ f−i1(in)) can be considered as a new F ((i1 +

1), {i2, . . . , im}, n) = ∨j∈[2,m]f
′(ij), where start is e(i1+1), and f ′(ij) =

¬e(i1+1) ∧ . . . ∧ ¬e(ij−1) ∧ eij
Therefore, there is rule (3),
F (start, {i1, . . . , im}, n) = f¬(i1) ∧ (ei1 ∨ F ((i1 + 1), {i2, . . . , im}, n))

Based on Theorem 1, in the simplified formula of F (start, {i1, . . . , im}, n),
each variable appears at most once.

4.1 The Algorithm of the Optimal Initialization Method

Algorithm 1 describes the procedure of transforming the input uncertain data
into the variable-based representation introduced in Definition 1. For each set
of possible worlds, the formula of each tuple is generated by the simplification
equation introduce in Theorem 1, after obtaining the set of order numbers of
possible worlds that contain the tuple.

The complexity of generating the simplified formula of each tuple is O(|W |),
which is much smaller than that of the existing formulae simplification method,

Input: (W,P) the set of possible worlds and probability distribution
1 insert a set of tuples T = {t|t ∈ w,w ∈ W}
2 start ← the max no. of variable in database
3 create a new set of (|W | − 1) variables {estart, . . . , e(start+|W |−2)}
4 P (estart) = P (w1)
5 foreach i = start, . . . , (start + |W | − 2) do
6 P (ei) = P (wi)/(P (¬estart) · . . . · P (¬e(start+|W |−2)))
7 end
8 foreach t ∈ T do
9 I = {i|t ∈ wi}

10 f(t) = F (start, I, |W |)
11 end

Algorithm 1. Data(W,P)
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which is O(2|W |) (the number of variables in formulae of tuples is (|W | − 1)).
Thus, for a data set with |T | tuples and |W | possible worlds, the time complexity
of Algorithm 1 is O(|T | · |W |).
Example 2. The formulae of tuples in Table 2 are simplified as shown in Table 3.
The formula of each tuple can be generated by the simplification equation for
F (start, {i1, . . . , im}, n) in Theorem 1 as follows:

f(t1) = F (1, {2, 4, 5}, 5) = f¬(w2) ∧ (e2 ∨ F (3, {4, 5}, 5)) = ¬e1 ∧ (e2 ∨
F (3, {4, 5}, 5)) = ¬e1 ∧ (e2 ∨ ¬e3)

Table 3. The simplified formulae of tuples

t f

t1 e1 ∨ (¬e2 ∧ ¬e3)
t2 e1 ∨ e2 ∨ e3

t3 ¬e1 ∧ (e2 ∨ e3)

t4 e1 ∨ ¬e2 ∧ (e3 ∨ ¬e4)

5 Experiments

In this section, we compare the time cost, variable redundancy reduction ratio
of formulae and time cost of computing tuple existence probability of the ini-
tialization methods. Let Naive be the existing method, and SimpleTrans be
the method proposed in this paper. Let n(Naive) be the number of variables
appear in the formulae of tuples generated by naive method, where duplicate
variables are counted as different variables. The duplicate reduce ratio is com-
puted as (n(Naive)-n(SimpleTrans))/n(naive). The goal of the experiment is to
show SimpleTrans can considerably reduce the duplicate of the formulae without
additional time cost. The time cost of tuple existence probability computation
is also evaluated to show its effect on the performance of subsequent queries.

All of the algorithms are implemented in Java, and all of our experiments
are conducted on a Pentium 2.5 GHz PC with 3G memory, on Windows XP.

5.1 Correlated Parameters and Data Sets

Since the specific data set can affect the result. Therefore, we generate 1000
samples for each data set and report the average result of the 1000 samples.
The more the number of all possible worlds, the more common variables exist
among formulae of possible worlds, then the more redundancy variables exist in
the formulae of tuples by Naive method. Thus, we generate the following data
sets by varying |W | (the number of possible worlds).
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Fig. 1. Comparison of Naive and SimpleTrans methods when varying |W |

Synthetic dataset 1. First, generate 1000 tuples, afterwards, generate |W |
possible worlds over these tuples. We must ensure that there are no empty or
duplicate possible worlds. |W | varies from 20 to 200.

Synthetic dataset 2. This data set is used for comparing the time cost of prob-
ability computation of formulae of tuples generated by Naive and SimpleTrans
methods. Since in the formulae of tuples generated by SimpleTrans method, there
are no duplicate variables, we choose the tuples whose formulae have duplicate
variables generated by Naive method. The number of duplicate variables varies
from 10 to 20.

5.2 Result and Analysis

Figure 1a shows that the storage space of Naive method increases from 528 K to
18448 K rapidly as |W | increases, while that of SimpleTrans method increases
from 160 K to 1088 K slowly. Figure 1b shows that the time cost of Naive method
is larger than that of SimpleTrans, and the difference between them increases
as |W | increases. Since the formulae of tuples are the disjunction of formulae of
possible worlds that contain the tuple in Naive method, the number of variables
in formulae of tuples increases as |W | increases in Naive method. While the
number of variable in formulae of tuples by SimpleTrans method is the maximum
order number of possible worlds that contain the tuple, thus, it increases slowly
as |W | increases. The larger storage size leads to more time cost during data
insert operation. Furthermore, the difference between the storage size of Naive
and SimpleTrans increases, thus, the difference between their time cost increases.

Figure 2 shows that when the number of duplicate variables in formulae of
tuples increases from 11 to 20, the time cost of computing probability after
Naive initialization method almost increases exponentially, while the time cost
after SimpleTrans nearly stays still. If each variable appears only once in its for-
mula, then the time complexity of computing probability of the formula is O(n),
where n is the number of variables in the formula. However, for each duplicate
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Fig. 2. Time cost of tuple existential probability computation

variable in the formula, two possible assignments need to be enumerated. There-
fore, the more the duplicate variables, the more time needed in the probability
computation. Since there are no duplicate variables in the formulae of tuples
after SimpleTrans method, its time cost of probability computation nearly stays
still.

6 Conclusion

This paper proposed an optimal initialization method that transforms uncertain
data represented by the set of possible worlds into the variable-based represen-
tation. The optimal initialization method generates formulae of tuples without
duplicate variables without additional time cost. Subsequent queries can bene-
fit from the simplified formulae of tuples by reducing time cost of probability
computation of formulae of tuples. The experiments show the efficiency of the
optimal initialization method.
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