
More Efficient Algorithms for Mining
High-Utility Itemsets with Multiple Minimum

Utility Thresholds

Wensheng Gan1, Jerry Chun-Wei Lin1(B), Philippe Fournier-Viger2,
and Han-Chieh Chao1,3

1 School of Computer Science and Technology,
Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China

wsgan001@gmail.com, jerrylin@ieee.org, hcc@ndhu.edu.tw
2 School of Natural Sciences and Humanities,

Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
philfv@hitsz.edu.cn

3 Department of Computer Science and Information Engineering,

National Dong Hwa University, Hualien, Taiwan

Abstract. Mining high-utility itemsets (HUIs) is a popular data min-
ing task, which consists of discovering sets of items that yield a high
profit in a transaction database. Although HUI mining has numerous
applications, a key limitation is that a single minimum utility thresh-
old (minutil) is used to assess the utility of all items. This simplifying
assumption is unrealistic since in real-life all items do not have the same
unit profit, and thus do not have an equal chance of generating a high
profit. As a result, if the minutil threshold is set high, patterns con-
taining items having a low unit profit are often missed, while if minutil
is set low, the number of patterns becomes unmanageable. To address
this issue, this paper presents an efficient tree-based algorithm named
HIMU for mining HUIs using multiple minimum utility thresholds.
A novel tree structure called multiple item utility Set-enumeration
(MIU)-tree and the global and conditional downward closure (GDC and
CDC) properties of HUIs in the MIU-tree are proposed. Moreover, a ver-
tical compact utility-list structure is adopted to store the information
required for discovering HUIs without performing additional database
scans and generating candidates. An extensive experimental study on
real-world and synthetic datasets show that this greatly improves the
efficiency of the algorithm in terms of runtime and scalability.

Keywords: High-utility itemsets · Rare item problem ·
Set-enumeration tree · SDC property · Pruning strategies

1 Introduction

Knowledge Discovery in Database (KDD) is the process of finding mean-
ingful, unexpected, and useful information in large amounts of data [2,3].
Two fundamental tasks in KDD are frequent itemset mining (FIM) and
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 71–87, 2016.
DOI: 10.1007/978-3-319-44403-1 5

72 W. Gan et al.

association rule mining (ARM) [2,3], which have numerous applications, in many
domains. In contrast with traditional FIM and ARM, high-utility itemset mining
(HUIM) [5,6,10,11,13,14,16] considers that items may have different unit prof-
its and that purchase quantities may be non binary, to measure how “useful” an
item or itemset is. The “utility” of an itemset in HUIM represents its importance
to users in real-life applications (e.g., weight, cost, risk, or unit profit). The goal
of HUIM is to identify itemsets in transactions that may be frequent or rare, but
yield a high profit. HUIM is a key data analysis task, and has been widely uti-
lized to discover valuable knowledge in several domains. Many approaches have
been developed to mine high-utility itemsets such as Two-Phase [11], IHUP [5],
UP-growth [13], UP-growth+ [14], HUI-Miner [10], and FHM [8], and so on.

However, an important limitation of previous studies is that they rely on a
single minimum utility threshold to discover the complete set of HUIs. Using a
single threshold value to assess the utility of all items in a database is inadequate
since each item is different and thus items should not all be treated the same.
Traditional high-utility itemset mining algorithms only let the user specify one
minutil threshold to assess the utility of all patterns. Using a single threshold
implies that all patterns in the database should have an equal chance of having
a utility higher than the minutil threshold. But this assumption is unrealistic
in practical applications [9] since each item generally has a distinct nature, fre-
quency, or importance, and thus different items may tend to exhibit a lower or a
higher utility. Hence, using a single fixed threshold, it is difficult to fairly measure
the utility of items or itemsets. For example, in a retail store, it may be desirable
to view the itemset {diamond} as a HUI if it brings more than 5,000$/week, but
to view the itemset {bread, milk} as a HUI if its profit is greater than 100$/week.
Using traditional HUI mining algorithms, if the minutil threshold is set high,
useful patterns having a low utility are missed, and if it is set low, the number of
HUIs becomes unmanageable. Thus, assessing the utility of items using a single
threshold is inadequate as it does not take the inherent nature of each item (i.e.,
utility, item importance) into account. It is a non-trivial task and an important
challenge to design efficient algorithms that solve this issue.

Mining association rules and frequent itemsets using multiple minimum
support thresholds has been extensively studied [7,12,15], but the proposed
approaches cannot be directly used in HUIM since HUIM considers non binary
purchase quantities, and the unit profits of items. Up to now, few works have
addressed the problem of mining HUIs with multiple minimum utility thresh-
olds. To the best of our knowledge, HUI-MMU and the improved HUI-MMUTID

algorithms [9] are the only algorithms designed to address this issue. However,
a drawback of these algorithms it that they use a level-wise candidate generation-
and-test approach to mine HUIs, which may perform poorly on databases con-
taining long transactions or when minimum utility thresholds are set low. In
this paper, to improve the efficiency of HUIM with multiple thresholds, an effi-
cient tree-based algorithm named mining High-utility Itemsets with Multiple
minimum Utility thresholds (abbreviated as HIMU) is developed. The contri-
butions of this work are fourfold:

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 73

– A fast algorithm named HIMU is proposed to reveal useful and meaningful
High-utility Itemsets by considering Multiple minimum Utility thresholds. The
user can assign a minimum utility threshold to each item based on its real-life
utility. This is more flexible and realistic than using a single minutil threshold.

– In contrast with previous Apriori-based algorithms, the proposed HIMU algo-
rithm avoids repeatedly scanning the database and generating candidates,
thanks to a novel sorted Set-enumeration tree structure named MIU-tree, and
the use of a compact utility-list structure that allows obtaining information
about an itemset by combining utility-lists of its prefix itemsets.

– Moreover, two novel global and conditional sorted downward closure (GDC
and CDC) properties guarantee the global and partial anti-monotonicity for
mining HUIs in the MIU-tree. Thus, HIMU can easily discover HUIs while
pruning a huge number of unpromising itemsets, and only two database scans
are performed by HIMU, which is more efficient than previous algorithms.

– Extensive experiments on two real-world datasets show that the proposed
algorithms efficiently discover HUIs and outperform the state-of-the-art HUI-
MMU and HUI-MMUTID algorithms. In addition, the improved algorithm
outperforms the baseline algorithm, in terms of runtime and scalability.

2 Related Works

High-utility itemset mining (HUIM) considers the internal transaction utilities
(purchase quantities) and external utilities (unit profits) of items to discover the
profitable itemsets in quantitative databases. HUIM was introduced by Chan
et al. [6]. Yao et al. then defined a strict unified framework for HUIM [16].
Since the downward closure property of ARM does not hold in HUIM, Liu
et al. designed the TWU model [11] and a transaction-weighted downward clo-
sure (TWDC) property, to greatly reduce the number of unpromising candidates
when mining HUIs using a level-wise approach. Several tree-based approaches
for HUIM such as IHUP [5], UP-growth [13] and UP-growth+ [14] have been
proposed. These pattern-growth approaches, however, generate and keep a huge
number of candidates in memory to then obtain the actual HUIs. To address the
above limitations of traditional HUIM, the HUI-Miner algorithm was proposed
to directly mine HUIs while avoiding performing multiple database scans and
generating candidates based on a designed utility-list structure [10]. The FHM
algorithm was further proposed to enhance the performance of HUI-Miner using
co-occurrences of pair of items [8].

Besides traditional HUIM, several variations of HUIM have been developed.
The development of algorithms for HUIM is an active research topic, but most of
them consider a single minutil threshold. In the field of FIM, several algorithms
have been designed to address the “rare item problem such as MSApriori [7],
CFP-growth [15], and CFP-growth++ [12]. The key idea of these works is to
extract frequent patterns involving rare items using the “multiple minimum sup-
ports framework” [7,12,15]. This framework allows the user to specify multiple
minimum support thresholds to take into account the nature of each item in

74 W. Gan et al.

Table 1. An example database

TID Transaction

T1 a:1, c:2, d :3

T2 a:2, d :1, e:2

T3 b:3, c:5

T4 a:1, c:3, d :1, e:2

T5 b:1, d :3, e:2

T6 b:2, d :2

T7 b:3, c:2, d :1, e:1

T8 a:2, c:3

T9 c:2, d :2, e:1

T10 a:2, c:2, d :1

Table 2. Derived HUIs

Itemset MIU Utility Itemset MIU Utility

(b) 65 108 (de) 50 96

(d) 50 126 (acd) 50 76

(ad) 50 90 (bde) 50 93

(bc) 53 79 (cde) 50 55

(bd) 50 126 (bcde) 50 50

(cd) 50 83

terms of frequency in the database. However, these approaches cannot be directly
used in HUIM since HUIM requires to consider the purchase quantities and unit
profits of items. There is only one paper that has considered the constraint of
multiple minimum utility thresholds for mining HUIs [9].

3 Preliminaries and Problem Statement

Let I = {i1, i2, . . . , im} be a finite set of m distinct items appearing in a transac-
tional database D = {T1, T2, . . . , Tn}, where each transaction Tq ∈ D is a subset
of I, and has a unique identifier called its TID. A unit profit pr(ij) is assigned to
each item ij ∈ I, which represents its importance (e.g. profit, interest, risk). Unit
profits are stored in a profit-table ptable = {pr(i1), pr(i2), . . . , pr(im)}. An item-
set X ⊆ I with k distinct items {i1, i2, . . . , ik} is of length k and is referred to as a
k -itemset. An itemset X is said to be contained in a transaction Tq if X ⊆ Tq. For
an itemset X, let the notation TIDs(X) denotes the TIDs of transactions in D
containing X. For example, Table 1 shows a transactional database containing 10
transactions, and will be used as running example. Assume that the profit-table
is defined as in the ptable = {pr(a) : 6, pr(b) : 12, pr(c) : 1, pr(d) : 9, pr(e) : 3}.

Definition 1. The minimum utility threshold of an item ij in a database D is
denoted as mu(ij). A structure called MMU-table indicates the minimum utility
thresholds of each item in D, and is defined as:

MMU -table = {mu(i1),mu(i2), . . . , mu(im)}. (1)

Assume that the minimum utility thresholds of items in the running exam-
ple are defined as: MMU -table = {mu(a),mu(b),mu(c),mu(d),mu(e)} =
{56, 65, 53, 50, 70}. To avoid the “rare item problem”, we consider the small-
est utility threshold among items in an itemset as its minimum utility threshold,
as defined below.

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 75

Definition 2. The minimum utility threshold of a k -itemset X = {i1, i2, . . . , ik}
in D is denoted as MIU(X), and defined as the smallest mu value for items in
X, that is:

MIU(X) = min{mu(ij)|ij ∈ X, 1 ≤ j ≤ k}. (2)

For example, MIU(a) = min{mu(a)} = 56, MIU(ac) = min{mu(a),
mu(c)} = min{56, 53} = 53, and MIU(ace) = min{mu(a),mu(c),mu(e)} = 53.

Definition 3. The utility of an item ij in a transaction Tq is defined as:

u(ij , Tq) = q(ij , Tq) × pr(ij). (3)

Definition 4. The utility of an itemset X in a transaction Tq is defined as:

u(X,Tq) =
∑

ij∈X∧X⊆Tq

u(ij , Tq). (4)

Definition 5. The utility of an itemset X in a database D is defined as:

u(X) =
∑

X⊆Tq∧Tq∈D

u(X,Tq). (5)

Definition 6. The transaction utility of a transaction Tq is defined as:

tu(Tq) =
∑

ij∈Tq

u(ij , Tq). (6)

Definition 7. The transaction-weighted utility of an itemset X is denoted as
TWU(X), and defined as:

TWU(X) =
∑

X⊆Tq∧Tq∈D

tu(Tq). (7)

Definition 8. An itemset X ⊆ I is a high transaction-weighted utilization item-
set (HTWUI) if its TWU value is no less than the minimum utility threshold [14].
To adapt this definition, we assume that this threshold is MIU (X).

HTWUI ← {X|TWU(X) ≥ MIU(X)}. (8)

Definition 9. An itemset X in a database D is a high-utility itemset (HUI) if
and only if its utility is no less than its minimum utility threshold:

HUI ← {X|u(X) ≥ MIU(X)}. (9)

For the running example, the complete set of HUIs when considering multiple
minimum utility thresholds is shown in Table 2.

Definition 10. Given a transactional database D and a MMU-table, which
defines the minimum utility thresholds of each item in D. The problem of min-
ing high-utility itemsets in D with multiple minimum utility thresholds (HUIM-
MMU) is to find each itemset X having a utility no less than its threshold
MIU(X).

76 W. Gan et al.

4 Proposed HIMU Algorithm for Mining HUIs

4.1 Search Space of HIMU and the Proposed MIU-Tree

Definition 11 (Total Order ≺ on Items). The proposed MIU-tree structure
relies on a total order ≺ on items. Assume that this order is the ascending order
of minimum utility thresholds of items.

Definition 12 (Set-Enumeration Tree with Multiple Minimum Item
Utilities, MIU-Tree). The designed MIU-tree structure is a sorted set-
enumeration tree where the total order ≺ on items is the ascending order of
minimum utility thresholds of items.

Definition 13. The extensions (descendant nodes) of an itemset (tree node) X
can be obtained by appending an item y to X such that y is greater than all
items already in X according to the total order ≺.

For example, the proposed MIU-tree used by the HIMU algorithm for the
running example is shown in Fig. 1 (left). Based on the designed MIU-tree, the
following lemmas can be obtained.

Lemma 1. The complete search space of the proposed HIMU algorithm for the
HUIM-MMU framework can be represented by a MIU-tree where items are sorted
according to the ascending order of the mu values on items.

MIU(d) < MIU(c) < MIU(a) < MIU(b) < MIU(e)

ea b

{ }

cd

dca dcb

dcab dcae dcbe

dce

dc da db de

dbe cab cae

dabe cabe

dcabe

ca cb ce ab ae be

abecbedab dae

ea b

{ }

cd

dca dcb

dcab dcae dcbe

dce

dc da db de

dbe cab cae

dabe cabe

dcabe

ca cb ce ab ae be

abecbedab dae

unvisited nodes

visited and pruned nodes

visited nodes

Fig. 1. The MIU-tree representation of the search space.

The traditional TWDC property of the TWU model does not hold in the
proposed HUIM-MMU framework. For example, consider items (b), (c), (d) and
(e) (MIU(b) : 65, MIU(c) : 53, MIU(d) : 50 and MIU(e) : 70). The TWU
of an itemset (bce) is calculated as TWU(bce) = 50, which is less than the
minimum utility values of its subsets MIU (b), MIU (c) and MIU (e). Hence,

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 77

(bce) is not a HTWUI, and thus the itemset (bcde) and its supersets would
be discarded according to the TWDC property. But it can be observed that
TWU(bcde) = 50, which is equal to MIU(bcde) = 50. But as shown in Table 2,
it can be seen that itemset (bcde) is actually a HUI. It is thus incorrect to
discard the supersets of (bce) based on the TWDC property since (bcde) would
not be generated. Therefore, if a k-itemset Xk is a HTWUI (i.e., TWU(Xk) ≥
MIU(Xk)), we cannot ensure that any subset Xk−1 of Xk is also a HTWUI
(because MIU(Xk−1) ≥ MIU(Xk)). Thus, using this property to prune the
search space may fail to discover the complete set of HUIs. To address this
limitation, the Sorted Downward Closure (SDC) property was proposed in [9].

Theorem 1 (Sorted Downward Closure Property, SDC Property).
Assume that items in itemsets are sorted by ascending order of mu values.
Given any itemset Xk = {i1, i2, . . . , ik} of length k, and another itemset
Xk−1 = {i1, i2, . . . , ik−1} such that Xk−1 ⊆ Xk. If Xk is a HTWUI then Xk−1

is also a HTWUI [9].

Proof. Since Xk−1 ⊆ Xk, the following relationships hold:

(1) By Definition 2, we have that MIU(Xk−1) = min{mu(i1),mu(i2), . . . ,
mu(ik−1)}, and MIU(Xk) = min{mu(i1),mu(i2), . . . , mu(ik)}. Since
{i1, i2, . . . , ik} is sorted according to the total order ≺, MIU(Xk) =
MIU(Xk−1) = mu(i1).

(2) Thus, TWU(Xk) =
∑

Xk⊆Tq∧Tq∈D tu(Tq) ≤ ∑
Xk−1⊆Tq∧Tq∈D tu(Tq) =

TWU(Xk−1). Therefore, if Xk is a HTWUI (i.e., TWU(Xk) ≥ mu(i1)),
any subset Xk−1 of Xk is also a HTWUI.

Although the sorted downward closure (SDC) property guarantees the anti-
monotonicity for HTWUIs, some HUIs would still be missed if items that are
HTWUIs are determined using their MIU (X) values. To address this problem,
the concept of least minimum utility value (LMU) was developed to guarantee
deriving all HUIs when using multiple minimum utility thresholds [9].

Definition 14 (Least Minimum Utility Value, LMU). The least minimum
utility value (LMU) is defined as the smallest value in the MMU-table, that is:

LMU = min{mu(i1),mu(i2), . . . , mu(im)}, (10)

where m is the total number of items in the database.

For example, the LMU of the given example is calculated as:
min{mu(a),mu(b),mu(c),mu(d),mu(e)} = min{56, 65, 53, 50, 70} = 50.

4.2 Proposed Conditional Downward Closure (CDC) and Global
Downward Closure (GDC) Properties

Lemma 2. The MIU value of a node/pattern in the MIU-tree is equal to that
of any of its child nodes (extension nodes).

78 W. Gan et al.

Proof. Assume that Xk−1 is a node representing an itemset X in the MIU-
tree, and that Xk is any of its child nodes (extensions). By definition, we
have that MIU(Xk−1) = min{mu(i1),mu(i2), . . . , mu(ik−1)}, and MIU(Xk) =
min{mu(i1),mu(i2), . . . , mu(ik)}. Since {i1, i2, . . . , ik} is sorted by ascending
order of mu values, it can be proven that: MIU(Xk) = MIU(Xk−1) = mu(i1).
Thus, the MIU value of a node in the MIU-tree is always equal to the MIU of
any of its child nodes.

Lemma 3. The support of a node in the MIU-tree is no less than the support
of any of its child nodes (extension nodes).

Proof. Since the Set-enumeration MIU-tree is a prefix tree, the relationship of
the support of Xk and Xk−1 can be proven to be sup(Xk) ≤ sup(Xk−1).

Theorem 2 (HUIs ⊆ HTWUIs). Assume that 1-itemsets having a TWU
lower than LMU are discarded and that the total order ≺ is applied. We have
that HUIs ⊆ HTWUIs, which indicates that if an itemset is not a HTWUI, then
it is not a HUI. Moreover, none of its extensions are HTWUIs or HUIs.

Proof. Let Xk be an itemset such that Xk−1 is a subset of Xk.

(1) We have that TWU(X1) ≤ LMU and MIU (Xk) ≥ LMU .
(2) Since items are sorted by ascending order of mu values, TWU(Xk−1) ≥

TWU(Xk) and MIU(Xk−1) = MIU(Xk) = min{mu(i1),mu(i2), . . . ,
mu(im)} = mu(i1).

(3) u(X) =
∑

X⊆Tq∧Tq∈D u(X,Tq) ≤ ∑
X⊆Tq∧Tq∈D tu(Tq) = TWU(X).

Thus, if Xk−1 is not a HTWUI and TWU(Xk−1) < mu(i1), none of its supersets
are HUIs.

Lemma 4. The TWU of any node in the Set-enumeration MIU-tree is no less
than the sum of all the actual utilities of any one of its descendant nodes, but
not the MIU of its descendant nodes.

Proof. Let Xk−1 be a node in the MIU-tree, and Xk be a children (extension)
of Xk−1. According to Theorem 1 and Lemma 1, we can get TWU(Xk−1) ≥
TWU(Xk) and the relationship between MIU values. Thus, the lemma holds.

Theorem 3 (Global Downward Closure Property, GDC Property). In
the designed MIU-tree, if the TWU of a tree node X is less than the LMU , X is
not a HUI, and all its supersets (not only its child nodes, but all nodes containing
X) are also not considered as HUIs.

Proof. According to Lemma 2 and Theorem 2, this theorem holds.

This theorem ensures that by discarding itemsets with a TWU less than
LMU , and their extensions, no HUIs are missed. Thus, the designed global down-
ward closure (GDC) property and the LMU guarantee the completeness and
correctness of the proposed HIMU algorithm, when pruning the search space.

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 79

In the past, a structure named utility-list was proposed to keep information
from transactions in memory to directly mine HUIs [10]. The utility-list struc-
ture is efficient and is thus adopted in the proposed HIMU algorithm to store
the required information about itemsets, as shown in Fig. 2. The reader can refer
to [8,10] for details about the utility-list structure, and the iu and ru values
stored in utility-lists.

(b)

tid iu ru

3 12 0

5 36 6

6 24 0

7 36 3

(e)

tid iu ru

2 6 0

4 6 0

5 6 0

7 3 0

9 3 0

(a)

tid iu ru

1 6 0

2 12 6

4 6 6

8 12 0

10 12 0

(c)

tid iu ru

1 2 6

3 5 12

4 3 12

7 2 39

8 3 12

9 2 3

10 2 12

(d)

tid iu ru

1 9 8

2 9 18

4 27 15

5 18 42

6 18 24

7 9 41

9 18 5

10 9 14

Fig. 2. Constructed utility-lists of 1-itemsets in the running example.

Definition 15. For an itemset X, X.IU and X.RU are respectively the sum of
iu values and the sum of ru values in the utility-list of X, that is:

X.IU =
∑

X⊆Tq∧Tq∈D

X.iu(Tq);X.RU =
∑

X⊆Tq∧Tq∈D

X.ru(Tq).

Strategy 1. When traversing the MIU-tree using a depth-first search, if the
TWU of a node X based on its utility-list is less than the LMU, then none of
the supersets of node X (note that here supersets contains not only descendant
nodes of X, but also other nodes having X as subset) are HUIs.

Theorem 4 (Conditional Downward Closure Property, CDC Property).
For any node X in the MIU-tree, the sum of X.IU and X.RU in the utility-list
of X is no less than the utility of any one of its descendant nodes (extensions).
Thus this sum is anti-monotonic and allows pruning itemsets in the MIU-tree.

Proof. Let Xk−1 be a (k -1)-itemset, and Xk be a (k)-itemset that is an extension
of Xk−1. Assume that Xk is a children of Xk−1 in the MIU-tree, meaning that
Xk−1 is a prefix of Xk. Let the set of items in Xk but not in Xk−1 be denoted
as (Xk−Xk−1) = (Xk\Xk−1), and the set of all the items appearing after Xk

in transaction T is denoted as T/Xk. For any transaction Xk ⊆ Tq:

∵ Xk−1 ⊂ Xk ⊆ Tq ⇒ (Xk \ Xk−1) ⊆ (Tq \ Xk−1).

∴ In each Tq, X
k.iu =Xk−1.iu + (Xk \ Xk−1).iu =Xk−1.iu +

∑
z∈(Xk\Xk−1) z.iu

∴ Xk.iu ≤ Xk−1.iu +
∑

z∈(Tq/Xk−1) z.iu = Xk−1.iu + Xk−1.ru

∴ In each Tq, X
k.iu ≤ Xk−1.iu + Xk−1.ru

∵ Xk−1 ⊂ Xk ⇒ Xk.tids ⊆ Xk−1.tids

∴ in D, Xk.IU=
∑

Tq∈Xk.tids Xk.iu ≤∑Tq∈Xk.tids(X
k−1.iu + Xk−1.ru)

80 W. Gan et al.

≤∑Tq∈Xk−1.tids(X
k−1.iu + Xk−1.ru) = Xk−1.IU + Xk−1.RU

∴ in D, Xk.IU ≤ Xk−1.IU + Xk−1.RU

Thus, the sum of the utilities of Xk in D is no greater than (Xk−1.IU +
Xk−1.RU) of Xk−1 in D.

Strategy 2. When traversing the MIU-tree using a depth-first search, if the sum
of X.IU and X.RU in the utility-list of an itemset X is less than MIU(X), then
none of the descendant nodes (extensions) of node X is a HUI since the actual
utilities of these extensions will be less than MIU(X).

In the running example, assume that the node (e) has TWU(e) < LMU .
Then the visited nodes, pruned nodes, and the skipped nodes are respectively
shown in Fig. 1 (right) when applying the Strategy 1. And the Strategy 2 is
used as a conditional strategy to prune all extensions of an unpromising node
early.

4.3 Estimated Utility Co-occurrence Pruning Strategy

In this section, we extend the Estimated Utility Co-occurrence Pruning (EUCP)
strategy [8], in the proposed algorithm, to provide an additional way of pruning
unpromising itemsets early with multiple minimum utility thresholds.

Theorem 5. Without loss of generality, assume that items in itemsets are
sorted by ascending order of mu values. If an itemset X contains a 2-itemset
X that is not a HTWUI, then any k-itemset Xk (k ≥ 3) that is a (transitive)
extension of X is not a HTWUI or HUI.

Proof. Let X be a 2-itemset and Xk be a k -itemset (k ≥ 3) that is a (transi-
tive) extension of X. According to the GDC property and because TWU(Xk) ≤
TWU(Xk−1), if a 2-itemset is not a HTWUI, then any k -itemset (k ≥ 3), which
is an extension of X is not a HTWUI or HUI.

As mentioned above, not all supersets of a non HTWUI should be pruned
but only those having a MIU value greater than the MIU value of this non
HTWUI (w.r.t. the extensions of this non HTWUI having higher MIU values).
Thus, using the proposed GDC property with the designed total order ≺, the
completeness and correctness of the enhanced algorithm named HIMUEUCP

is preserved by extending the EUCP strategy. Note that the TWU values of
all 2-itemsets are stored in a structure called estimated utility co-occurrence
structure (EUCS) [8].

Strategy 3 (EUCP Strategy). When traversing the MIU-tree using a depth-
first search, if the TWU value of a 2-itemset X is less than the MIU value of X
according to the EUCS, then X is not a HTWUI; and any k-itemset which is an
extension of X will not be a HTWUI or HUI, and they can be pruned directly.

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 81

4.4 Procedure of the HIMU Algorithm and the Enhanced
Algorithm

Note that the proposed enhanced HIMUEUCP algorithm is similar to the baseline
HIMU algorithm. The difference is that the EUCS needs to be constructed
initially during the second database scan. Moreover, the mining procedure for
deriving HUIs is modified to verify pruning Strategy 3 for each generated itemset.
Due to the page limitation, only the details of the HIMUEUCP algorithm are
provided.

Input: D ; ptable; MMU-table = {mu(i1), mu(i2), . . . , mu(im)}.
Output: The set of complete high-utility itemsets (HUIs).

1 i.UL ← ∅, D.UL ← ∅, EUCS ← ∅;
2 calculate the LMU in the MMU-table;
3 scan D to calculate the TWU(i) value of each item i ∈ I;
4 find I∗ ← {i ∈ I|TWU(i) ≥ LMU}, w.r.t. HTWUI1;
5 sort I∗ according to the designed total order ≺ (ascending order of mu values);
6 scan D to construct the utility-list i.UL of each item i ∈ I∗ and build the EUCS ;
7 call HUI-Search(φ, I∗,MMU-table, EUCS);
8 return HUIs;

Algorithm 1. The HIMUEUCP algorithm

Input: X, extensionsOfX, MMU-table, EUCS.
Output: The complete set of HUIs.

1 for each itemset Xa ∈ extensionsOfX do
2 obtain the Xa.IU and Xa.RU values from the built Xa.UL;
3 if Xa.IU ≥ MIU(Xa) then
4 HUIs ← HUIs ∪ Xa;

5 if (Xa.IU + Xa.RU ≥ MIU(Xa)) then
6 extensionsOfXa ← ∅;
7 for each itemset Xb ∈ extensionsOfX such that Xb after Xa do
8 if ∃TWU(a, b) ∈ EUCS ∧ TWU(a, b) ≥ MIU(Xa) then
9 Xab ← Xa ∪ Xb;

10 Xab.UL ← construct(X, Xa, Xb);
11 if Xab.UL �= ∅ then
12 extensionsOfXa ← extensionsOfXa ∪ Xab.UL;

13 call HUI-Search(Xa , extensionsOfXa ,MIU(Xa), EUCS);

14 return HUIs

Algorithm 2. The HUI-Search Procedure

As shown in Algorithm 1, the HIMUEUCP algorithm first sets i.UL, D.UL
and EUCS to the empty set (Line 1), and calculates the LMU in the MMU-
table (Line 2). Then, it scans the database to calculate the TWU(i) value of
each item i ∈ I (Line 3), and then find the potential 1-itemsets which may be

82 W. Gan et al.

HUIs such that TWU(i) ≥ LMU(I∗ ⊆ HTWUI1) (Line 4). After sorting I∗ by
≺ (ascending order of mu values), the algorithm scans D again to construct the
utility-list of each item i ∈ I∗ and build the EUCS (Lines 5 to 6). It is important
to notice that only the designed order ≺ can guarantee the completeness of
HIMU, as previously explained. The utility-list of each item i ∈ I∗ is recursively
processed by the depth-first search HUI-Search procedure (Line 7). This latter
procedure (cf. Algorithm 2), checks if each 1-extension Xa of an itemset X is a
HUI (Lines 2 to 4). Two conditions are then checked to determine whether its
child nodes should be considered by the depth-first search (Lines 5 to 12). If
an itemset is regarded as a potential HUI, the Construct(X,Xa,Xb) procedure
(see [10] for details) is applied to construct the utility-lists of all 1-extensions
of Xa (w.r.t. extensionsOfXa) (Lines 9 to 12). Notice that each extension Xab

is a 1-extension of itemset Xa, and is added to the set extensionsOfXa for the
later depth-first search (Line 13). The HUI-Search procedure then is recursively
called to mine HUIs (Line 13).

5 Experimental Evaluation

The performance of the proposed HIMU and HIMUEUCP algorithms was evalu-
ated on two real-world datasets, foodmart [4] and mushroom [1]. The foodmart
dataset contains customer transactions from an anonymous chain store, and is
provided with Microsoft SQL Server. It contains 21,556 transactions and 1,559
distinct items. The mushroom dataset is dense. It has 8,124 transactions and
120 distinct items, and an average transaction length of 23 items. The foodmart
dataset contains real utility values, while a simulation model [13] was developed
to generate the quantities and profit values of items in transactions for the mush-
room dataset, by choosing random values respectively in the [1, 5] and [1, 1000]
intervals.

The performance of the designed algorithms was also compared with the
state-of-the-art HUI-MMU and HUI-MMUTID algorithms [9]. To perform a fair
comparison, all algorithms were implemented in Java and executed on a com-
puter having an Intel Core2 Duo 2.8 GHz processor and 4GB of main memory,
running the 64 bit Microsoft Windows 7 operating system. Moreover, a method
to automatically set the mu value of each item was adopted, described in the
HUI-MMU algorithm [9]: mu(ij) = max[β × pr(ij), GLMU], where β is a con-
stant used to set the mu values of items as a function of their unit profit values.
To ensure randomness and diversity in the experiments, β was set in the [1, 100]
interval for the foodmart dataset, and in the [1000, 10000] for mushroom. The
parameter GLMU is a user-specified global least minimum utility value, and
pr(ij) is the external utility of an item pr(ij). Note that if β is set to zero, then
a single minimum utility value GLMU will be used for all items, and this will
be equivalent to traditional HUIM.

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 83

5.1 Execution Time

In the conducted experiments, the parameter β was randomly set to a fixed num-
ber of items. Figure 3 shows the runtime of the algorithms under various GLMU
with a fixed β within an interval, and under various β with a fixed GLMU
for different datasets. In Fig. 3, it can be seen that the HIMU and the improved
HIMUEUCP algorithms perform well compared to the HUI-MMU, HUI-MMUTID

algorithms under various GLMU with a fixed β, and under various β with a
fixed GLMU . Moreover, the two MIU-tree-based algorithms are generally up to
almost one or two orders of magnitude faster than the level-wise HUI-MMU and
HUI-MMUTID algorithms. HIMUEUCP is faster than the HIMU algorithm on
mushroom but not on foodmart, by adopting the EUCP strategy, which is used
to avoid join operations for forming the utility-lists of unpromising itemsets. This
indicates that the generate-and-test approach has worse performance than the
proposed depth-first search approach that utilizes the vertical utility-list struc-
ture and additional pruning strategies. The gap between the previous approaches
and the proposed MIU-tree-based algorithms becomes large when GLMU and β
are decreased. As shown in Fig. 3(a) and (c), HIMUEUCP performs slightly worse
than HIMU. The reason is that for the very sparse foodmart dataset, with an
average transaction length of 4.4, many unpromising candidates can be directly
pruned by the redefined HTWUI and SDC properties, and it is unnecessary to
apply the EUCP strategy for pruning unpromising itemsets, and thus construct
the EUCS. Furthermore, when β is increased, the HIMU and HIMUEUCP algo-
rithms take less time to find the HUIs. The reason is that when β is set to large
values, the actual minimum utility threshold of each item is also set to larger

Fig. 3. Runtime performance.

84 W. Gan et al.

values based on the presented equation. Hence, fewer HUIs and HTWUIs are
pruned by the pruning conditions, and the execution time becomes smaller. In
summary, the two proposed algorithms considerably outperform the state-of-
the-art HUI-MMU and HUI-MMUTID algorithms.

5.2 Effect of Pruning Strategies

We also evaluated the effectiveness of the EUCP strategy for pruning unpromis-
ing itemsets. The number of itemsets (nodes) visited by the HIMU and
HIMUEUCP algorithms are named N2 and N3, respectively. Moreover, the num-
ber of itemsets generated by combining pairs for determining HTWUIs in HUI-
MMU and HUI-MMUTID is denoted as N1. Results are shown in Fig. 4. It can
be observed that relationship N3 ≤ N2 holds for all datasets no matter how
GLMU is set, for a fixed β or under various β with a fixed GLMU . Especially,
the node reduction obtained by adopting the EUCP strategy in the enhanced
algorithm is huge, as shown in N3 ≤ N2. Besides, N1 is less than N3 and N2 for
foodmart, but larger on mushroom. It indicates that the search space (in terms
of visited nodes in the Set-enumeration MIU-tree) of HIMU may be huge if the
effective EUCP pruning strategy is not applied for pruning the search space.

Fig. 4. Number of visited nodes (patterns).

5.3 Memory Consumption

We also assessed the memory consumption of the compared algorithms. Mem-
ory measurements were done using the standard Java API. Note that the peak

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 85

memory consumption of each algorithm was recorded for all datasets. Results
are shown in Fig. 5. In this figure, it can be clearly seen that the proposed HIMU
algorithms require less memory than the state-of-the-art HUI-MMU and HUI-
MMUTID algorithms for various parameters on the two datasets, and by up to
3,000 times on mushroom. Moreover, the HIMU and HIMUEUCP algorithms
require nearly constant memory under various parameter values for the two
datasets. The memory usage of the level-wise algorithms dramatically increases
when GLMU or β are decreased, while the memory usage of the proposed algo-
rithms remain stable. The reason is the same as above. This result is reason-
able since the two MIU-tree-based algorithms can quickly traverse the MIU-tree
without generating candidates and easily prune unpromising itemsets using the
sum of utilities and remaining utilities. Furthermore, the utility-list structure
is adopted as a vertical compact structure to store information about itemsets.
Thus, less memory is consumed.

5.4 Scalability Analysis

Figure 6 compares the scalability of the algorithms on synthetic data
T10I4N4KD|X|K where the transaction count (K) was varied from 100K to
500K, GLMU = 1, 000, 000 and β was varied from 1000 to 10000. It can be
seen that the designed algorithms scale well with respect to dataset size and
that HIMUEUCP scales better than HIMU. When the dataset size is increased,
HIMUEUCP becomes increasingly faster than the other algorithms thanks to the
EUCP strategy. HIMUEUCP consumes more memory than HIMU but less than
the two level-wise algorithms because it uses the additional EUCS to store TWU
values of all 2-itemsets (see Fig. 6(b)). From Fig. 6(c), it can also be seen that

Fig. 5. Memory performance.

86 W. Gan et al.

Fig. 6. Scalability of the compared algorithms.

the number of nodes N3 remains much smaller than N2. Thus, by utilizing the
EUCP strategy, the actual search space of the HIMUEUCP algorithm is reduced
compared to the baseline HIMU algorithm, and it can be concluded that the
improved algorithm is acceptable and efficient.

6 Conclusion

In this paper, a novel algorithm named HIMU was presented to discover high-
utility itemsets with multiple minimum utility thresholds. A compact Multiple
Itemset Utility Set-enumeration tree (MIU-tree) was designed for mining HUIs
without candidate generation. Besides, the global and conditional downward clo-
sure (GDC and CDC) properties were proposed to guarantee the global and
partial anti-monotonicity for mining HUIs. Pruning conditions are also incor-
porated in the proposed algorithms to reduce the search space, and an efficient
compact utility-list structure is used to obtain information about any itemset
from its prefix itemsets in the designed MIU-tree. An experimental evaluation
against the state-of-the-art HUI-MMU and HUI-MMUTID algorithms on two
real-world datasets shows that the two proposed algorithms are highly efficient
and scalable.

Acknowledgment. This research was partially supported by the National Natural
Science Foundation of China (NSFC) under Grant No. 61503092, and by the Tencent
Project under grant CCF-TencentRAGR20140114.

References

1. Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data/
2. Agrawal, R., Imielinski, T., Swami, A.: Database mining: a performance perspec-

tive. IEEE Trans. Knowl. Data Eng. 5(6), 914–925 (1993)
3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large

databases. In: The International Conference on Very Large Data Bases, pp. 487–
499 (1994)

4. Microsoft. Example database foodmart of Microsoft analysis services. http://www.
Almaden.ibm.com/cs/quest/syndata.html

http://fimi.ua.ac.be/data/
http://www.Almaden.ibm.com/cs/quest/syndata.html
http://www.Almaden.ibm.com/cs/quest/syndata.html

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 87

5. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Le, Y.K.: Efficient tree structures for
high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data
Eng. 21(12), 1708–1721 (2009)

6. Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: The International
Conference on Data Mining, pp. 19–26 (2003)

7. Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum sup-
ports. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 337–341 (1999)

8. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility
itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T.,
Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502,
pp. 83–92. Springer, Heidelberg (2014)

9. Lin, J.C.W., Gan, W., Fournier-Viger, P., Hong, T.P.: Mining high-utility itemsets
with multiple minimum utility thresholds. In: ACM International Conference on
Computer Science & Software Engineering, pp. 9–17 (2015)

10. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In:
ACM International Conference on Information and Knowledge Management, pp.
55–64 (2012)

11. Liu, Y., Liao, W., Choudhary, A.K.: A two-phase algorithm for fast discovery of
high utility itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS
(LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005)

12. Kiran, R.U., Reddy, P.K.: Novel techniques to reduce search space in multiple min-
imum supports-based frequent pattern mining algorithms. In: ACM International
Conference on Extending Database Technology, pp. 11–20 (2011)

13. Tseng, V.S., Wu, C.W., Shie, B.E., Yu, P.S.: UP-growth: an efficient algorithm
for high utility itemset mining. In: ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 253–262 (2010)

14. Tseng, V.S., Shie, B.E., Wu, C.W., Yu, P.S.: Efficient algorithms for mining high
utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng.
25(8), 1772–1786 (2013)

15. Hu, Y.H., Chen, Y.L.: Mining association rules with multiple minimum supports:
a new mining algorithm and a support tuning mechanism. Decis. Support Syst.
42(1), 1–24 (2006)

16. Yao, H., Hamilton, J., Butz, C.J.: A foundational approach to mining itemset
utilities from databases. In: SIAM International Conference on Data Mining, pp.
211–225 (2004)

	More Efficient Algorithms for Mining High-Utility Itemsets with Multiple Minimum Utility Thresholds
	1 Introduction
	2 Related Works
	3 Preliminaries and Problem Statement
	4 Proposed HIMU Algorithm for Mining HUIs
	4.1 Search Space of HIMU and the Proposed MIU-Tree
	4.2 Proposed Conditional Downward Closure (CDC) and Global Downward Closure (GDC) Properties
	4.3 Estimated Utility Co-occurrence Pruning Strategy
	4.4 Procedure of the HIMU Algorithm and the Enhanced Algorithm

	5 Experimental Evaluation
	5.1 Execution Time
	5.2 Effect of Pruning Strategies
	5.3 Memory Consumption
	5.4 Scalability Analysis

	6 Conclusion
	References

