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Abstract. K-core decomposition is a popular method that segments a
network revealing the underlying hierarchy. We explore the propensity
of this decomposition method for structural discrimination among net-
works by extracting features from each level of the hierarchy. We propose
a novel algorithm for Network Comparison using k-core Decomposition
(NCKD). The method is effective, efficient and scalable, with computa-
tional complexity of O(|E|), where E is the set of edges in the network.
The low computational complexity of the method makes it attractive for
scalable network comparison.

NCKD algorithm decomposes networks and extracts features from
the resulting shells. Jensen-Shannon distance between extracted fea-
tures quantifies structural differences between networks. We establish
that probability distributions of coreness and intra/inter-shell edges are
capable of characterizing different genres of networks and capturing finer
structural differences between networks of the same genre. We experi-
ment with synthetic and real-life networks up to eight million edges on a
single PC. Comparison with two recent state-of-the-art network compar-
ison methods affirms that NCKD outperforms in terms of effectiveness
and scalability.

Keywords: Network comparison · K-core decomposition · Graph
analytics · Social networks · Jensen-Shannon distance

1 Introduction

Complex networks have attracted immense attention because of their ability to
model social relations, power grids, transportation links, biological processes etc.
[7]. One of the challenging tasks in network analytics is to assess and quantify
similarity between two networks. Applications of network comparison include
construction of phylogenetic trees and function prediction in biological networks,
studying evolution in social networks, analysing semantic structure in natural
languages, detecting code theft by comparing two executable objects etc. [7,9].
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Similarity between two networks is a function of similarities between their
orders, sizes, and topological features. While similarities in orders and sizes are
trivial to assess, capturing topological and structural similarities is the core
challenge in the task of network1 comparison. Comparison of two networks essen-
tially entails analogizing structural properties such as nature of hierarchy, clus-
tering tendency, neighborhood characterization, correlation between topologi-
cal attributes etc. Networks may be compared either at a local or global level
depending upon the application. For example, construction of a phylogenetic
tree using biological networks involves clustering organisms with similar bio-
logical evolution. This task demands a global comparison of networks. On the
other hand, comparison of two metabolic networks for the purpose of discovering
causal factors for functional differences calls for local level comparison.

Extraction of global features like diameter, average clustering coefficient,
characteristic path length, betweenness centrality etc. for comparison purpose is
unattractive because of high computational complexity even for medium-sized
graphs. Computation of local features, on the other hand, involves examining
configuration and properties of small subgraphs, conferring scale independence
to the comparison method. Hence, it is tempting to adopt local properties for
structural comparison of massive networks. Earlier approaches for network com-
parison pursued this trend and deployed local features including degree, clus-
tering coefficient, degree centrality, triad census, graphlet distribution etc. [10].
Lamentably, these approaches fail to capture underlying structural hierarchy
prevailing in real-life networks.

Therefore, it is desirable to devise methods that summarize network structure
both locally and globally. Since hierarchical k-core decomposition promotes the
local feature degree to the global feature coreness, we explore k-core decomposi-
tion as a tool to quantify the structural similarity between two networks. K-core
decomposition has been recognized as an important technique for understanding
complex networks by decomposing them in hierarchy [2,12,24]. We posit that
hierarchical segmentation using k-core decomposition method has potential to
reveal structural differences between networks at all levels of hierarchy.

1.1 Motivation

Motivational factors for using hierarchical k-core decomposition approach for
scalable network comparison are listed below.

i. Real-life networks exhibit structural hierarchy and comparing analogous sig-
nals at all levels of hierarchies has potential to reveal the structural disparity
between networks.

ii. The proposed algorithm is particularly appealing for comparing large and
sparse graph since k-core decomposition method has computational com-
plexity of O(|E|), E being the set of edges [4].

iii. Massive networks that cannot fit in main memory can be decomposed using
distributed k-core decomposition [22].

1 We use terms network/graph, node/vertex, and edge/link interchangeably.
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1.2 Contributions

In this paper, we propose a novel and scalable method for Network Comparison
using k-core Decomposition (NCKD). According to Faust [10], network compar-
ison studies are designed to answer two questions. First, does a pair of networks
exhibit common structural tendencies?, and second, which structural features
distinguish among different relations between nodes? We demonstrate that node
distribution in shells of the network is an effective and efficient implement to
answer the first question. Augmenting node distribution in shells with edge dis-
tribution boosts its power to cogently answer the second question. Research
contributions of the paper are listed below:

i. A novel algorithm (NCKD) that uses k-core decomposition to quantify net-
work similarity through network signatures generated using probability dis-
tribution of nodes and edges in shells respectively (Sect. 4).

ii. Comparison of NCKD with two state-of-the-art network comparison algo-
rithms (Sect. 5.2).

iii. Extensive experimentation to demonstrate effectiveness, scalability and
robustness of NCKD (Sects. 5.3 and 5.4).

2 Related Work

Several decent algorithms for network comparison, that quantify similarity
between networks, have been proposed in recent years. A related but differ-
ent problem is network alignment, addressed in bio-informatics, where the goal
is to map nodes of one network to the nodes of another. Our focus is on recent
representative network comparison algorithms followed by a brief overview of
applications of k-core decomposition.

2.1 Network Comparison

Popular approaches for comparing networks include (i) graph isomorphism, (ii)
graph edit distance, (iii) iterative methods, and (iv) feature extraction [6].

Graph isomorphism, a theoretically sound approach, has been traditionally
employed to establish exact matching between two graphs [15]. Approximate
matching is commonly obtained by graph edit distance, which essentially is an
error-tolerant method [11]. Iterative methods compute the pairwise similarity
between nodes by capturing similarity/dissimilarity of their neighborhoods [21].
These three approaches lead to algorithms with high computational complexity
and are hence non-scalable [18]. This deters their applicability to large networks.

Feature extraction approach has recently found favour with the community
interested in analyzing massive graphs. The strategy involves constructing fea-
tures from the compared graphs and computing distance between them to quan-
tify differences. Banerjee [3] used eigenvalues of normalized graph Laplacian
spectra to capture global topological properties for computing pairwise networks
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similarity. Recently, Lu et al. [18] compared complex networks using the heat
content estimated by lazy random walk.

Macindoe et al. [19] considered all induced subgraphs of a parametrized
radius centered on each vertex and computed three socially relevant structural
features, Leadership, Bonding, and Diversity (L,B,D), driven by social theories
for each subgraph. Earth mover’s distance between LBD distributions of net-
works quantifies their similarity. Netsimile [6] algorithm composes network sig-
nature from moments of distributions of selected local topological properties of
the network. The pairwise similarity score of networks is computed using Can-
berra distance between their signatures. Scale-independent nature of selected
properties renders a computational complexity of O(N), where N is the order
of the graph.

These algorithms make use of either local or global features, each of which
is individually ineffective and non-scalable for network discrimination. NCKD
algorithm plugs the gap as it is scalable and exploits local feature while taking
into account the global hierarchical structure of the network.

2.2 K-Core Decomposition

Seidman [24] introduced k-core decomposition for characterizing network struc-
ture.The k-core of a network is a maximal subgraph in which every node is
connected to at least k other nodes. Batagelj et al. [4] present an O(|E)| algo-
rithm for k-core decomposition of a graph G with |E| edges. Analysis of the
k-core structure of a graph has been effectively used in identification of social
cores and influential nodes in social networks, acceleration of community detec-
tion, evaluation of co-operation in communities, and as a visualization tool to
highlight the topological and hierarchical structure of graphs [2,12,23]. Recently
proposed k-truss decomposition method also presents a hierarchical view of the
network yielding the largest subgraph in which every edge is contained in at least
(k-2) triangles within it [25]. The method is effective for focusing on smaller and
cohesive areas, which are subgraphs of k-core. However higher computational
complexity of order O(|E|1.5) for k-truss decomposition is a discouraging factor.
Hence, we chose to use k-core decomposition method for network comparison.

To the best of authors’ knowledge, NCKD is first-ever application of k-core
decomposition for scalable network comparison using single PC.

3 Preliminaries and Notation

We introduce formal notation and definitions used in the paper. Let G be a
simple, undirected graph G = (V, E), where V is the set of vertices and E is the
set of edges. An edge eij ∈ E if it connects vertices vi and vj ; vi, vj ∈ V. The
order of G is |V| and its size is |E|. The degree of a vertex v is denoted by ρ(v).
The k-core decomposition algorithm iteratively prunes vertices of degree less
than k resulting in a hierarchy of nested k-core sub-graphs, within which each
node is connected to at least k other nodes. Formal definitions as adapted from
[2] follow.
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Definition 3.1. A subgraph, G′
k = (V ′

k, E ′
k) of G = (V, E), induced by the set

V ′
k ⊆ V is a k-core (core of order k) of G if ∀v ∈ V ′

k: ρ(v) ≥ k, (k ≥ 0) and G′
k

is a maximal connected subgraph with this property. �
Definition 3.2. Coreness ζ(v) of vertex v is k if it belongs to a k-core but not
to any (k+1)-core. Coreness of a graph G = (V, E) is max{ζ(v)∀v ∈ V}. �
Definition 3.3. A k-shell (Sk) of G = (V, E) is the set of all vertices with core-
ness k, i.e., Sk = {v|v ∈ V ∧ ζ(v) = k}. �
The k-core decomposition reflects the structure of a network by faithfully cap-
turing the inherent hierarchy as nested cores. The lower bound on number of
nodes in a k-core is (k+1) and a loose upper bound is |V|. The lower bound
on the number of edges is

(k+1
2

)
, while a loose upper bound is |E| [5]. If both

endpoints of an edge have the same coreness, the edge is termed as an intra-shell
edge, otherwise it is an inter-shell edge.

Example 3.1. Figure 1 shows graph G with |V| = 32 and |E| = 47. Dashed
circles, marked k = i, demarcate the cores. Nodes within a dashed circle and
having same color denote shell Sk. Shell S4, the highest order shell induces the
4-core of G. Subgraph induced by S3 ∪ S4 is the 3-core of G. �

Fig. 1. K-core decomposition of G. Nodes with same color constitute a shell. (Color
figure online)

4 Characterizing Networks Using K-Core Decomposition

Adaptation of k-core decomposition for designing a similarity measure is non-
trivial because two networks with the same hierarchical structure can have vastly
different topology. The challenge is to identify and extract suitable features of
the decomposed graph for effective and scalable network discrimination. We
hypothesize that differences in the node/edge distribution of shells in the decom-
posed graph are effective discriminators for the overall structure of underly-
ing networks. We first explain a simple and effective network feature i.e. node



292 R. Saxena et al.

distribution followed by the statement of its limitation, and reasoning behind
inclusion of edges arrangements.

4.1 Coreness Distribution

Distribution of nodes within shells captures the spread of nodes and reflects the
underlying structure [24]. It is synonymous with the distribution of coreness of
nodes in the decomposed graph.

Consider a graph G = (V, E) with coreness k and shells {S0, . . . ,Sk}. Let X
be a discrete random variable denoting coreness of a node in G and defined on
the sample space Λ = {0, . . . , k}. We define probability mass function for X as
p(x) = p(X = x) = |Sx|

|V| , where |Sx| is the cardinality of shell Sx. It is clear that
∑k

x=0 |Sx| = |V|. Here, p(x) denotes the probability that a node has coreness
value x. Alternatively, p(x) is the probability of an arbitrary node lying in shell
Sx. Following example explains computation of probability distribution (p) of
nodes (coreness) in the shell.

Example 4.1. Graph G in Fig. 1 has 32 nodes and 5 shells. Probability distri-
bution (p) of nodes in G, is given by p = 〈0/32, 17/32, 4/32, 6/32, 5/32〉.

We studied probability distribution of coreness for several synthetic and real-
life networks (Table 1) to test its propensity for network comparison. We show
the plot of coreness distribution of six metabolic and five co-author networks in
Figs. 2a and b. The striking similarity between the coreness probability distrib-
utions of graphs belonging to the same genre strongly indicates its utility as a
discriminating network feature. Preliminary experimentation (not reported due
to space constraint) however quickly revealed the inadequacy of this feature to
effectively capture structural differences arising in the real world networks.

(a) Metabolic Networks (b) Co-authors Networks

Fig. 2. Plots for probability distribution of coreness for two genres of real-life networks.

This insufficiency arises because the arrangement of edges in a graph, which
is the cause of topological variations, is completely ignored by the coreness dis-
tribution. Extreme topologies of star and chain with n nodes having identical
hierarchical structure and probability distribution of coreness, present a very
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clear example to substantiate the argument. Since coreness is inadequate to cap-
ture finer structural differences between networks, it is myopic to depend on it
as a sole distinguishing feature.

4.2 Edges Distribution

Theoretically, a graph of order n with coreness k and coreness distribution p is
a random sample from the family Fk,p,n of graphs [14]. Graph G in question is
one realization from this family. All graphs in Fk,p,n will have similar coreness
distribution, even though they may be topologically different. This is unaccept-
able in both theory and practice. Rewiring and swapping lemmas stated in [5]
reinforce this argument.

According to the rewiring lemma, two adjacent nodes in a shell can discon-
nect and connect independently to nodes with higher coreness, and vice versa
without changing the coreness distribution of the graph. The swapping lemma
allows non-adjacent nodes in the same shell to swap end-nodes without alter-
ing the coreness distribution of the graph. It is reasonable to conclude that
coreness distribution is inadequate to capture finer structural differences between
networks. For better discrimination between the members of Fk,p,n family, we
incorporate arrangements of edges influencing the network structure in addition
to nodes distribution.

Let G be a graph with coreness k. Then, El denotes the lower triangular
matrix representing the arrangement of edges of G. El

ij is the count of inter-
shell links between shells Si and Sj . El

ii is the count of intra-shell links in shell
Si. Clearly

∑
i

∑
j El

ij = |E|, (0 ≤ i ≤ k, 0 ≤ j ≤ i). Example 4.2 clarifies the
idea of intra- and inter-shells links using matrix representation used in [5].

Example 4.2. The count of intra- and inter-shell edges in G of Fig. 1 is shown
below in the lower triangular matrix (El). Shell S2 has one intra-shell link indi-
cated by El

22 = 1. It also has six inter-shell links with S1 indicated by El
21 = 6.

E
l
=

⎛
⎜⎜⎜⎝

0
0 4
0 6 1
0 5 2 9
0 1 5 4 10

⎞
⎟⎟⎟⎠

We vectorize matrix El to a vector V of size (k+1)(k+2)
2 such that V =

[El
00, E

l
10, E

l
11, E

l
20, . . . , E

l
kk]. Index r in V for El

ij is obtained by using the fol-
lowing rule.

r ←− j +
i ∗ (i + 1)

2
(1)

Clearly, the vectorization expresses isomorphism between V and El. Let R be a
discrete random variable defined on sample space Λ′ =

(
0, 1, . . . , (k+1)(k+2)

2 − 1
)

denoting linkage count within and between shells in the graph. When R = r,
it denotes linkage between shells Si and Sj , with the mapping defined by Eq. 1.
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The probability mass function u(r) of random variable R is defined as u(r) =

p(R = r) = El
ij

|E| . Here u(r) denotes the probability that an arbitrary edge in G
connects a node in Si to a node in Sj . It is easy to show that u corresponds
to probability distribution of intra-shell and inter-shell links. Following example
shows the edge probability distribution u for the lower triangular matrix given
in Example 4.2.

Example 4.3. Given 47 edges in G, probability distribution of edges (u) is com-
puted as: 〈 0/47, 0/47, 4/47, 0/47, 6/47, 1/47, 0/47, 5/47, 2/47, 9/47, 0/47,
1/47, 5/47, 4/47, 10/47 〉. �

If the number of nodes and edges in two graphs with identical coreness dis-
tribution are same, structural differences between them arise due to rewiring of
edges. To examine the sensitivity of El towards rewiring, we focus on the cases
that do not alter the coreness of the involved nodes post-rewiring. There are two
possibilities for rewiring of a node. It can either connect to a node in the same
shell or to a node in a higher shell. Rewiring of a node in a lower shell can be
considered as the former situation from the viewpoint of the node in the lower
shell. We explain these cases below.

(a) Inter-shell (b) Intra-shell

Fig. 3. Example for edge rewiring. Si, Sj , Sk are the shells.

R1. Rewiring an inter-shell edge: Consider nodes u, v,w ∈ V, located in distinct
shells Si, Sj , Sk respectively, s.t. i = j = k and i < j, k. Let edges (u, v) ∈ E and
(u,w) /∈ E Then R1 leads to

E := E \ (u, v) ∪ (u,w) (2)

Figure 3(a) exhibits this case. Since node u lies in shell Si, it has at least
i links with nodes in higher shells. After deleting edge (u, v) and adding edge
(u,w), link count of u in higher shell remains same. Consequently, coreness of u
remains unchanged. Coreness of v and w remains unchanged since links to lower
shells do not impact coreness (by Definition 3.1). Consequently, post-rewiring
coreness distribution remains unchanged. In the edge distribution matrix, two
entries change as follows: El

ik is incremented and El
ij is decremented by 1. Hence

altered structure of the graph is captured by the edge distribution.

R2. Rewiring an intra-shell edge: Consider nodes u, v, u′, v′ ∈ V s.t. u, v ∈ Si,
u′ ∈ Sj , v′ ∈ Sk and i = j = k, i < j, k. Let edges (u, v) ∈ E , (u, u′) /∈ E ,
(v, v′) /∈ E . Then R2 leads to
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E := E \ (u, v) ∪ (u, u′) ∪ (v, v′) (3)

Figure 3(b) exhibits this case. Following similar arguments as in R1, intra-shell
rewiring does not alter coreness distribution, but is reflected in edge distribution.

4.3 NCKD Algorithm

The proposed algorithm for Network Comparison using k-core Decomposition
(NCKD) uses probability distribution of nodes as well as intra-shell/inter-shell
edges. The problem of pair-wise network comparison reduces to computing the
statistical distance between probability distributions representing signatures of
the networks. We use Jensen-Shannon Distance (JSD) as it is a popular metric
for comparing probability distributions due to its property of non-negativity,
identity, symmetry, and boundedness [17]. Equation 4 gives JSD between two
probability distributions p and q, with respective weights w1 and w2 (w1, w2 ≥
0 and w1 + w2 = 1).

JSD(p, q) = [H(w1 ∗ p + w2 ∗ q) − w1 ∗ H(p) − w2 ∗ H(q)]
1
2 (4)

Here, H is the Shannon entropy function. Equipped with a tool to capture finer
distinctions of graph topologies, we quantify the structural difference (distance)
between two networks as average of differences (distance) between the (i) distri-
bution of coreness and (ii) distribution of edges.

Let p and q respectively denote the probability distributions of coreness of
graphs G1 and G2. Further, u and v denote the edge probability distributions
of graphs G1 and G2. Applying JSD on these distributions and averaging the
result gives the net distance between two networks. Equation 5 formally defines
distance between networks.

D(G1,G2) = avg(JSD(p, q), JSD(u, v)) (5)

Algorithm 1. Algorithm NCKD
Input : Graphs G1and G2

Output: Distance between G1and G2

Begin
Decompose G1and G2 into cores
p ← Prob. dist. of coreness of nodes in G1

q ← Prob. dist. of coreness of nodes in G2

u ← Prob. dist. of intra and inter-shell links in G1

v ← Prob. dist. of intra and inter-shell links in G2

D(G1, G2) ← avg(JSD(p, q), JSD(u, v)) //Jensen-Shannon Distance
End

Algorithm 1 summarizes the steps for NCKD. Please note that in all exper-
iments reported in paper, we assign equal weights to the distributions while
computing JSD. We are conscious that weights can be constructively manipu-
lated to capture preference for one graph over other during the comparison.
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5 Experiments

The experimental study is designed to assess and compare effectiveness, scalabil-
ity and robustness of NCKD algorithm against two recent network comparison
algorithms Netsimile [6] and LBD [19]. We implemented NCKD algorithm in
Python (64 bits, v 2.7.3) and executed on Intel Core i5-3201M CPU @2.50 GHz
with 8 GB RAM, running UBUNTU 12.04.

5.1 About Datasets

We performed experiments with both synthetic and real-life datasets (Table 1).
Synthetic datasets allow controlled variation of data characteristics and hence
enable close scrutiny of algorithmic behaviour. Real-life datasets expose the
strengths and weakness of the algorithm in practical scenarios.

Synthetic datasets were generated using igraph package of R. Erdös-Rényi
(E), Forest-Fire (F), Watts-Strogatz (W), and Barabási-Albert (B) models were
used for analysis. Order (number of nodes) of the network in thousands (K) is
included in nomenclature. Since each network is one probabilistic realization of
the model parameters, we generated multiple networks with same parameters.
Thus, B10K-n meant nth realization of Barabási-Albert network of order 10K.
Three real-life genres include (i) Co-author (CA), (ii) Autonomous Systems (A),
and (iii) Metabolic (M) networks. Large datasets used for scalability experiment
are described in Sect. 5.4.

5.2 Effectiveness of NCKD

We compute effectiveness of NCKD by comparing D(G1,G2) (Eq. 5) with dis-
tance measures defined in two state-of-the-art algorithms LBD and Netsimile.
We compute pairwise distances for networks given in Table 1, using distance
measures used in three algorithms. LBD algorithm was unable to generate net-
work signatures for large graphs even after running for more than 24 h. We,
therefore, restrict experiment to 14/32 graphs that LBD algorithm was able to
process in reasonable time (<4 h) and cluster the networks using hierarchical
agglomerative clustering2. We compute purity, precision, recall, accuracy, and
Normalized Mutual Information (NMI) measures [20] to assess the quality of
clustering (Table 2).

It is clear from Table 2 that resultant clustering of 14 small networks by
NCKD is better than those delivered by Netsimile and LBD algorithms. Tim-
ings (averaged over 3 runs) for generating network signatures (Table 3) for small
networks show that NCKD is also faster. We dropped LBD algorithm for fur-
ther experimentation since it was patently non-scalable and the clustering, as
evidenced by NMI, was also poorer in quality.

2 hclust and cutree functions of stats package in R were used for agglomerative clus-
tering and to cut dendrogram by specifying known number of classes.
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Table 1. Characteristics of synthetic and real-life networks used; D: Diameter, C:
Connected components, GCC: Global clustering coefficient, α: Parameter for power
law distribution

Networks Nodes Edges D C GCC α Remarks

Synthetic networks using generative models

Erdos Reyni [8] E10K-1 9827 19823 15 7 0.0004 11.47 Generator G(n,m=2n)

E10K-2 9807 19772 14 9 0.0005 11.58 m: number of edges

E1K-1 983 2010 10 3 0.0030 13.568 n: number of nodes

E1K-2 984 2022 10 3 0.0037 10.61

Forest Fire [16] F10K-1 10000 58901 6 1 0.0598 3.06 4 ambassador vertices

F10K-2 10000 58823 6 1 0.0588 3.105 20% backward burning probability

F1K-1 1000 5873 5 1 0.0894 3.05 30% forward burning probability

F1K-2 1000 5717 5 1 0.0899 3.111

Watts Strogatz [26] W20K-1 20000 80000 8 1 0.0714 8.30 Lattice dimension=1

W20K-2 20000 80000 8 1 0.0694 8.25 Degree= 4

W2K-1 2000 8000 7 1 0.0757 8.19 Rewiring probability= 0.3

W2K-2 2000 8000 7 1 0.0731 8.22

Barabasi Albert [1] B10K-1 10000 9999 2 1 0 1.33 Non-assortative version

B10K-2 10000 9999 3 1 0 1.33 added 4 edges/iteration

B1K-1 1000 999 3 1 0 2

B1K-2 1000 999 2 1 0 2

Real-life networks

Co-author [16] CA-1 18772 396159 14 290 0.3180 1.71 Papers submitted to arXiv during

CA-2 23133 186935 15 567 0.2643 2.21 period January 1993 to April 2003

CA-3 5242 28979 17 355 0.6298 2.23 Astro Physics, Condensed Matter

CA-4 12008 237009 13 278 0.6595 1.74 General Relativity, High Energy

CA-5 9877 51970 18 429 0.2840 2.36 Physics (HEP) and HEP Theory

Autonomous [16] A-1 10670 22002 10 1 0.0093 2.17 Oregon route-views for period

A-2 10729 21999 12 1 0.0085 2.19 March 31 to May 26, 2001

A-3 10790 22469 10 1 0.0094 2.20

A-4 10859 22747 10 1 0.0097 2.206

A-5 10886 22493 10 1 0.0089 2.19

Metabolic [13] M-1 1268 3011 14 1 0 2.17 Three types of Organisms

M-2 490 1163 11 1 0 2.18 Archaea (M-1, M-2),

M-3 993 2368 12 2 0 2.21 Bacteria (M-3, M-4)

M-4 409 880 9 7 0 2.35 and Eukaryotes (M-5, M-6)

M-5 665 1514 14 3 0 2.25

M-6 1511 3833 14 1 0 2.37

Next, we execute Netsimile and NCKD on all networks mentioned in Table 1.
Figures 4a and b show the dendrograms generated from pairwise distances com-
puted by two algorithms. It is evident that NCKD algorithm performs better
grouping than Netsimile. Cluster quality metrics of 32 networks (Table 2) for
two algorithms vindicate the visual observation. Comparison of execution time
of two algorithms reveals that NCKD is several orders faster than Netsimile (See
Large synthetic and real-life networks in Table 3). The swift execution of NCKD
indicates its scalability.
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Table 2. Quality metrics for hierarchical clustering of 14 small networks and all 32
networks.

Datasets Algorithm Purity Precision Recall Accuracy NMI

Small networks (14) NCKD 1.0 1.0 1.0 1.0 1.0

LBD 0.8571 0.8182 0.9474 0.9451 0.8921

NetSimile 0.8947 0.625 0.5263 0.8352 0.8213

All networks (32) NCKD 0.875 0.688 0.8983 0.9395 0.9161

Netsimile 0.656 0.382 0.5763 0.8387 0.6885

Table 3. Signature generation time (in seconds) for NCKD, Netsimile and LBD on
selected networks from Table 1. A - indicates that the algorithm did not complete even
after running for 24 h.

Algorithm → NCKD Netsimile LBD

Networks ↓
Small M-2 0.015 0.783 120.615

F1K-1 0.018 0.899 1825.11

CA-5 0.076 6.711 6583.153

Large synthetic B10K-1 0.0202 111.534 −
E10K-1 0.0503 4.817 −
W20K-1 0.097 25.353 −
F10K-1 0.077 13.643 −

Large real-life M-6 0.013 0.821 −
A-5 0.065 30.676 −
CA-1 0.245 198.789 −

(a) NCKD (b) Netsimile

Fig. 4. Dendrogram for networks described in Table 4. Networks belonging to same
genre have same color. (Color figure online)
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In order to capture finer distinctions between networks of the same genre, we
selected eleven metabolic networks in two sub-categories (six Archaea (A) and
five Eukaryotes (E)) whose order ranges from 490 to 1511 and size ranges from
1148 to 3807 [13]. We performed hierarchical agglomerative clustering of these
networks from distance matrices generated by NCKD and NetSimile (Fig. 5).
Algorithm NCKD is able to identify one pure group of Eukaryotes, which Net-
simile missed. The clustering quality metrics for metabolic networks shown in
Table 4 confirm the effectiveness of NCKD over Netsimile.

(a) NCKD (b) Netsimile

Fig. 5. Metabolic networks in two sub-categories - A: Archaea, and E: Eukaryote.

Table 4. Quality metrics for dendrograms shown in Fig. 5

N/w type → Metabolic networks

Algorithm ↓ Purity Precision Recall Accuracy NMI

NCKD 0.8182 0.6129 0.76 0.6727 0.4393

Netsimile 0.5455 0.40 0.40 0.4545 0.0073

5.3 Handling of Missing Data

We compare effectiveness of NCKD and Netsimile towards missing data. For this
experiment, we compared networks with themselves after applying random edge
deletion systematically. For network G, we created G

′
x1

, G
′
x2

· · · G′
xk

variations by
deleting xi% of edges from it. Intuitively, both algorithms should yield similarity
score (SS) of 1 while comparing G with G

′
0, with the score falling as deleted

edges increase. Fall in SS is expected to be different for different graphs due to
structural differences. In order to beat the effect of randomness, reported results
are averaged over three runs.

Three real-life networks (A-1, DC-1, CA-1) and one synthetic network (E10K-
1) were perturbed by deleting edges from 0 % to 20 % (in steps of 2) and com-
pared using two algorithms. Similarity scores obtained by NCKD and Netsimile
are plotted in Figs. 6a and b. Netsimile registered a fall of maximum 10 % for the
real-life datasets even after deleting 20 % edges while NCKD revealed significant
differences in networks. This observation indicates superior ability of NCKD to
suitably react to missing data.
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(a) Variation in SS - NCKD (b) Variation in SS - Netsimile

Fig. 6. Comparison of robustness towards missing data - NCKD vs. Netsimile.

Fig. 7. Feature generation time of
NCKD for synthetic networks

Large networks Nodes Edges Runtime
(106) (106) (seconds)

Amazon product 0.33 0.93 0.799
Road n/w of Texas 1.38 1.92 1.528
Road n/w of California 1.96 2.77 3.4824
Youtube OSN 1.13 2.99 3.532
Web graph of Berkeley 0.69 7.796 10.889
and Stanford

Fig. 8. Feature generation time of NCKD for
massive real-life networks. n/w: Network

5.4 Scalability w.r.t Large Datasets

Networks generated from different models allow convenient variations in the
order of graphs to examine scalability of NCKD. We generated 10 graphs for
each generative model (description in Table 1) with varying number of nodes
100K to 1000K in steps of 100K, and edges proportionally depending on the
model. Netsimile was unable to process graphs of order >100K even after run-
ning for more than 24 h. Hence, it was dropped for scalability analysis. NCKD
was executed five times for each graph to average out the timing observations.
Figure 7 shows approximately sublinear growth in timings for each model. The
increase in timings for the models varies with the number of edges in the corre-
sponding networks. Edges increase fastest in FF model and slowest in BA model,
which is faithfully reflected by the timings for two models.

Figure 8 shows execution timings of NCKD for five real-life large datasets
downloaded from SNAP3, which strengthens the claim of scalability. Since k-
core decomposition algorithm is O(E), time increases linearly with edges.

6 Conclusion

Each large-scale network is unique at the microscopic level. However, at differ-
ent levels of resolutions, commonalities emerge among different pairs of graphs.
3 http://snap.stanford.edu/data.

http://snap.stanford.edu/data
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Discovery of these commonalities and their quantification is the goal of the
proposed algorithm NCKD (Network Comparison using k-core Decomposition),
which is intuitive, effective and scalable. The algorithm decomposes the graph
into cores, analyses shells and constructs node and edge related probability distri-
butions, which serve as network signatures. Jensen-Shannon distance is applied
on these signatures to find distance between networks. We establish that node
and edge distributions adequately discriminate networks.

Extensive experimentation and comparison of NCKD with Netsimile and
LBD algorithms establish its superiority in terms of effectiveness and scalability.
Execution timings for large synthetic and real-life networks affirm its scalability.
We also demonstrate that NCKD is sensitive to the underlying topological struc-
ture of the graph, but needs to be improved to take cognizance of size and order
of the network. The agenda for future is to overcome its deficiency to clearly
segregate networks of the same genre by including more shell features.
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