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Abstract. Current scientific applications must analyze enormous
amounts of array data using complex mathematical data processing
methods. This paper describes a distributed query processing framework
for large-scale scientific data analysis that captures array-based compu-
tations using SQL-like queries and optimizes and evaluates these com-
putations using state-of-the-art parallel processing algorithms. Instead
of providing a library of concrete distributed algorithms that implement
certain matrix operations efficiently, we generalize these algorithms by
making them parametric in such a way that the same efficient imple-
mentations that apply to the concrete algorithms can also apply to their
generic counterparts. By specifying matrix operations as generic alge-
braic operators, we are able to perform inter-operator optimizations,
such as fusing matrix transpose with matrix multiplication, resulting
to new instantiations of the generic algebraic operators, without having
to introduce new efficient algorithms on the fly. We evaluate the effec-
tiveness of our framework by measuring the performance improvement
of matrix factorization when evaluated with inter-operator optimization.

1 Introduction

In recent years, it has become easier and cheaper than ever to collect data but
harder to turn these data into value. In computational science, the explosion in
scientific data generated by experiments and simulations has created a major
challenge for many scientific projects. For data scientists who need to analyze
vast volumes of data, data-intensive processing is fast becoming a necessity. They
need algorithms capable of scaling to petabytes and faster tools that are more
sophisticated, more reliable, and easier to use.

As datasets grow larger, new frameworks in distributed Big Data analytics
have become essential tools to large-scale machine learning and scientific dis-
coveries. Among these frameworks, the Map-Reduce programming model [3] has
emerged as a generic, scalable, and cost effective solution for Big Data process-
ing on clusters of commodity hardware. The Map-Reduce paradigm is a scale-out
solution that brings computations to the data, rather than data to the computa-
tions. This is a drastic departure from high-performance computing models, which
make a clear distinction between processing and storage nodes. Currently, most
programmers prefer to use a higher-level declarative language to code their Map-
Reduce applications, such as Apache Hive [11] and PigLatin [18], instead of cod-
ing them directly in an algorithmic language, such as Java. For instance, Hive is
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used for over 90 % of Facebook Map-Reduce jobs. Most Map-Reduce query lan-
guages though provide a limited syntax for operating on data collections, in the
form of simple relational joins and group-bys. They cannot express complex data
analysis tasks, such as PageRank, data clustering, and matrix factorization, using
SQL-like syntax exclusively. Because of these limitations, these languages enable
users to plug-in custom scripts into their queries for those jobs that cannot be
declaratively coded in their query language. This nullifies the benefits of using
a declarative query language and may result in platform-dependent, suboptimal,
error-prone, and hard-to-maintain code. Furthermore, some of these languages are
inappropriate for complex scientific and graph analysis applications, because they
do not directly support iteration in declarative form and are not able to handle
complex scientific data. But there are some recent query systems, such as Apache
MRQL [17], which are powerful enough to express complex data analysis tasks.

In the past, large-scale data processing was mainly done in the realm of
scientific computing. In recent years, the volume of data generated by scientists
through experiments and simulations has been steadily increasing at an unprece-
dented rate. For example, the Large Hadron Collider at CERN and astronomy’s
Pan-STARRS5 array of celestial telescopes are capable of generating several
petabytes of data per day, which need to be made available and analyzed by
scientists on worldwide grids of computers. Data-intensive scientific comput-
ing shares some of the key ingredients of cloud computing. Just like in cloud
computing, scientific computing is driven to use the most efficient computing
techniques available, including high-performance computing and low-level data
management. Since most of the data generated by scientists are in array form,
current scientific applications must analyze enormous amounts of array data
using complex mathematical data processing methods. Scientists are typically
comfortable with numerical analysis tools, such as MatLab, but are not familiar
with the intricacies of Big Data analysis and distributed computing. A declar-
ative distributive query language capable of expressing complex mathematical
operations on arrays could help them develop their data analysis applications
without any prior knowledge of distributed computing.

The goal of this paper is to support large-scale scientific data analysis by
(1) extending an existing distributed query language, namely Apache MRQL
[17], with array operations that can capture most array-based computations in
declarative form and (2) by developing a query processing framework that can
optimize and evaluate these computations using state-of-the-art parallel process-
ing algorithms. Other proposed systems [1,8,20,22] focus on storage structures
and indexing techniques for arrays, such as chunking and tiling, to achieve bet-
ter performance on certain parallel array computations. Although such storage
layouts may speed up the processing of individual array operations, they pro-
duce results in a certain layout that may need to be restructured before it is
used for the next matrix operation. Furthermore, such schemes do not address
inter-operation optimization, which is the focus of our work. Our approach is
to accept any kind of array representation and storage but at the same time
be able to recognize certain array operations in a query and translate them into
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efficient parallel array processing algorithms. For example, matrix multiplication
X × Y between two sparse matrices X and Y can be implemented efficiently in
a distributed environment using a 2D mesh of processors [7,23] by distributing
the data to worker nodes in the form of a grid of partitions, where each par-
tition contains only those rows from X and those columns from Y needed to
compute a single grid partition of the resulting matrix. If a query language were
to adopt a certain matrix representation and provide a fixed number of matrix
operations in the form of predefined operators or library functions, then the task
of recognizing these operations and mapping them to efficient algorithms would
have become easy. Such an approach though does not leave many opportuni-
ties of inter-operator optimization, such as fusing matrix transpose with matrix
multiplication, because the resulting fused operation would have been a new
operation that requires the introduction of a new efficient algorithm on the fly.
Instead of looking at concrete algorithms that implement specific mathematical
operations, our objective is to generalize these algorithms by making them para-
metric in such a way that the same efficient implementations that apply to the
concrete algorithms can also apply to their generic counterparts.

The most effective method of making an algorithm parametric is to make it
higher-order by abstracting parts of its computations into its functional para-
meters. Such a higher-order operation must capture the essence of the concrete
algorithm it generalizes by facilitating an equivalent data distribution and by
supporting a similar parallel processing method. To generate such a higher-order
operation from a query, a query evaluator must be able to recognize certain syn-
tactic patterns in the query, in their most generic form, that can be mapped to
this operation. This task can become more feasible if it is done at the algebraic
operation level, rather than at the syntactic level. That is, instead of intro-
ducing source-to-source transformations to match parts of a query with certain
generic syntactic patterns that correspond to a generic operation, our approach
is to translate queries into algebraic forms and then normalize and rewrite these
forms into these algorithms using algebraic rewrite rules. We believe that this
approach will be very effective when applied, not only to mathematical opera-
tions, but also to a wide spectrum of queries whose functionality is in essence
equivalent to these mathematical operations.

The contribution of this work can be summarized as follows:

– We introduce a new higher-order operator, called GroupByJoin, that gen-
eralizes many algorithms that correlate two data sources using an equi-join
followed by a group-by with aggregation (Sect. 5).

– We provide an efficient implementation of GroupByJoin in Map-Reduce based
on an algorithm that generalizes the SUMMA parallel algorithm for matrix
multiplication (Sect. 6).

– We have extended the query optimization framework in MRQL to generate
physical plans that use this operator. This is accomplished with algebraic
rewrite rules that recognize certain patterns in the algebraic terms derived
from MRQL queries that are equivalent to a GroupByJoin operation. We
show how these rewrite rules can be used, in conjunction with the existing
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algebraic optimization rules in MRQL, to minimize the number of Map-Reduce
operations for queries that contain consecutive matrix operations (Sect. 7).

– We report on a prototype implementation of our framework using MRQL run-
ning on top of Hadoop Map-Reduce. We show the effectiveness of our method
through experiments on two queries, a simple query that combines matrix
multiplication with matrix transpose, and the very complex query for matrix
factorization, that is both iterative and contains many matrix operations in
every iteration (Sect. 8).

2 Related Work

One of the major drawbacks of the Map-Reduce model is that, to simplify relia-
bility and fault tolerance, it does not preserve data in memory between the map
and reduce tasks of a Map-Reduce job or across consecutive jobs, which imposes
a high overhead to complex workflows and graph algorithms, such as PageRank
and matrix factorization, which require repetitive Map-Reduce jobs. To achieve
better performance for such complex workflows, it is crucial to minimize the
required number of Map-Reduce jobs, mostly because of the high overhead of
dumping the intermediate results between consecutive Map-Reduce jobs to the
HDFS. As an alternative solution, some recent systems for cloud computing use
distributed memory for inter-node communication, such as the main memory
Map-Reduce (M3R [21]), Apache Spark [19], Apache Flink [6], and distributed
GraphLab [15]. Another alternative framework to the Map-Reduce model is the
Bulk Synchronous Parallelism (BSP) programming model [23]. The best known
implementations of the BSP model for data analysis on the cloud are Google’s
Pregel [16] and Apache Hama [10].

Most other array-processing systems use special storage techniques, such as
regular tiling, to achieve better performance on certain array computations.
SciDB [22] is a large-scale data management system for scientific analysis based
on an array data model with implicit ordering. The SciDB storage manager
decomposes arrays into a number of equal sized and potentially overlapping
chunks, in a way that allows parallel and pipeline processing of array data. Like
SciDB, ArrayStore [20] stores arrays into chunks, which are typically the size of a
storage block. One of their most effective storage method is a two-level chunking
strategy with regular chunks and regular tiles. SystemML [8] is an array-based
declarative language to express large-scale machine learning algorithms, imple-
mented on top of Hadoop. It supports many array operations, such as matrix
multiplication, and provides alternative implementations to each of them. Sci-
Hadoop [1] is a Hadoop plugin that allows scientists to specify logical queries
over arrays stored in the NetCDF file format. Their chunking strategy, which is
called the Baseline partitioning strategy, subdivides the logical input into a set
of partitions (sub-arrays), one for each physical block of the input file. Finally,
MLlib, which is part of MLbase [13], is a machine learning library built on top
of Spark and includes algorithms for fast matrix manipulation.
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3 Background: The MRQL Query Language

Apache MRQL [17] is a query processing and optimization system for large-
scale, distributed data analysis. MRQL was originally developed by the author
[4,5], but is now an Apache incubating project with many developers and users
worldwide. MRQL (the Map-Reduce Query Language) is an SQL-like query
language for large-scale data analysis on computer clusters. The MRQL query
processing system can evaluate MRQL queries in four modes: in Map-Reduce
mode using Apache Hadoop [9], in BSP mode (Bulk Synchronous Parallel model)
using Apache Hama [10], in Spark mode using Apache Spark [19], and in Flink
mode using Apache Flink (previously known as Stratosphere) [6]. The MRQL
query language is powerful enough to express most common data analysis tasks
over many forms of raw in-situ data, such as XML and JSON documents, binary
files, and CSV documents. MRQL is more powerful than other current high-
level Map-Reduce languages, such as Hive [11] and PigLatin [18], since it can
operate on more complex data and supports more powerful query constructs,
thus eliminating the need for using explicit procedural code. With MRQL, users
are able to express complex data analysis tasks, such as PageRank, k-means
clustering, matrix factorization, etc., using SQL-like queries exclusively, while
the MRQL query processing system is able to compile these queries to efficient
Java code.

For example, the following MRQL query that calculates the k-means clus-
tering algorithm (Lloyd’s algorithm), by deriving k new centroids from the old
(the stopping condition has been omitted):

repeat centroids = ...
step select < X: avg(s.X), Y: avg(s.Y) >

from s in Points
group by k: (select c from c in centroids

order by distance (c, s ))[0]

where Points is the input data set of points on a plane, centroids is the current
set of centroids (k cluster centers), and distance is a function that calculates the
distance between two points. The initial value of centroids (the ... value) can be a
bag of k random points. The select-query in the group-by part assigns the closest
centroid to a point s (where [0] returns the first tuple of an ordered list). The
select-query in the repeat step clusters the data points by their closest centroid,
and, for each cluster, a new centroid is calculated from the average values of its
points.

4 Our Framework

One of the objectives of our work is to accept any kind of array representation
but at the same time be able to recognize certain array operations in a query and
translate them into efficient parallel array processing algorithms. Sparse vectors
and matrices can be captured as regular collections in MRQL. For example,
a sparse matrix M can be represented as a collection of triples, (v, i, j), for
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v = Mij . Then, the matrix multiplication between two sparse matrices X and
Y can be expressed as follows in MRQL:

select ( sum(z), i , j )
from (x, i ,k) in X, (y,k, j ) in Y, z = x∗y
group by i , j

that is, we retrieve the values Xik ∈ X and Ykj ∈ Y for all i, j, k, and we set
z = Xik ∗Ykj . The group-by operation in MRQL lifts each non-group-by variable
defined in the from-part of the query from some type T to a bag of T , indicating
that each such variable must now contain multiple values, one for each group.
Consequently, after we group by the indexes i and j, the variable z will be lifted
to a bag of numerical values Xik ∗ Ykj , for all k. Hence, sum(z) in the query
header will sum up all these values, deriving

∑
k Xik ∗ Ykj for the ij element of

the resulting matrix.

Fig. 1. Matrix multiplication: each partition P requires N/n rows from X and M/m
columns from Y

Matrix multiplication is an important operation, used frequently in scientific
computations and machine learning. Suppose that X is an N ∗ K matrix and
Y is an K ∗ M matrix. If the previous matrix multiplication query for X × Y
is evaluated naively using an equi-join followed by a group-by, the intermediate
result of the join would have been of size N ∗ K ∗ M , which would have to be
shuffled to cluster nodes for the group-by operation. Instead, one may use the
SUMMA algorithm for matrix multiplication [7], which has been adapted for
the BSP distributed model [23] and later for Map-Reduce [2]. This algorithm
distributes the data as a grid of m ∗n partitions, so that each partition contains
N/n full rows from X and M/m full columns from Y (Fig. 1). That is, the
X elements are replicated m times and the Y elements are replicated n times.
Then, each partition is assigned to a single node in a cluster, which must have
enough free memory to multiply the associated submatrices of size N/n ∗K and
K ∗ M/m. The goal of this method is to minimize replication (m and n) so that
the memory of each worker node in the cluster is fully utilized by performing
the submatrix multiplication in memory. When implemented using Map-Reduce,
this algorithm requires only one Map-Reduce job: the map task replicates and
distributes the data to reducers, while each reducer multiplies its submatrices in
memory using a hash join.
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How can such algorithm be incorporated into the evaluation engine of a
query language? One solution is to provide a library of predefined functions for
various matrix operations, using their most efficient implementation. But such
an approach does not leave any opportunities for inter-operation optimization.
Consider, for example, Matrix Factorization using Gradient Descent [12], used
in machine learning applications, such as for recommender systems. The goal of
this computation is to split a matrix R of dimension n × m into two low-rank
matrices P and Q of dimensions n×k and k×m, for small k, such that the error
between the predicted and the original rating matrix R − P × QT is below some
threshold, where P × QT is the matrix multiplication of P with the transpose
of Q and ‘−’ is cell-wise subtraction. Matrix factorization can be done using an
iterative algorithm that repeatedly applies the following rules to minimize the
error matrix E:

E ← R − P × QT

P ← P + γ(2E × QT − λP )
Q ← Q + γ(2E × PT − λQ)

where γ is the learning rate and λ is the normalization factor used in avoid-
ing overfitting. But matrix transpose and cell-wise operations can be fused with
matrix multiplication, because they both correspond to a map operation, which
can be incorporated into the map stage of the Map-Reduce operation that imple-
ments matrix multiplication, thus avoiding the extra map stage all together. That
is, instead of defining matrix operations as opaque library functions, we can
express them using sufficiently generic algebraic operations (i.e., higher-order
functions) and use algebraic rewrite rules to fuse them, thus minimizing the
number of processing stages and eliminating intermediate results. That way, in
addition to offering more opportunities for optimization, application developers
will not be forced to represent their data matrices in the single fixed representa-
tion used by the underlying implementation of the concrete matrix algorithms.
Instead, they will be free to use any representation, thus focusing only on the
computation logic. In addition, by generalizing these algorithms, one can opti-
mize a wider spectrum of queries that resemble matrix multiplication, such as
calculating the shortest distance between all pairs of nodes in a graph G:

repeat S = G
step select (x,z,min(d))

from (x,y,d1) in S, (y,z,d2) in S, z = d1+d2
group by x, z

(assuming for simplicity that (x, x, 0) ∈ G for every node x).

5 The GroupByJoin Operation

In this section, we generalize matrix multiplication using an algebraic operation,
called a Group-By Join. Let X and Y be bags of types {α} and {β}, respectively,
for arbitrary types α and β. The generic MRQL query
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select h( k, reduce(acc,zero ,z) )
from x in X, y in Y, z = (x,y)
where jx(x) = jy(y)
group by k: ( gx(x), gy(y) )

which generalizes matrix multiplication, returns a value of type {δ}, where

– jx is the left join key function of type α → κ,
– jy is the right join key function of type β → κ,
– gx is the left group-by function of type α → κ1,
– gy is the right group-by function of type β → κ2,
– h is the head function of type ((κ1, κ2), γ) → δ.
– reduce(acc,zero,s) reduces the elements of a bag s of type {(α, β)} into a value

of type γ, using an accumulator acc of type ((α, β), γ) → γ and a zero value of
type γ. That is, reduce(acc, zero, {z1, z2, . . . , zn}) = acc(z1, acc(z2, . . . , acc(zn,
zero))).

To preserve bag semantics, we must have acc(x, acc(y, s)) = acc(y, acc(x, s)), for
all x, y, and s.

The previous generic query is captured by the higher-order physical opera-
tion:

GroupByJoin( jx, jy, gx, gy, acc, zero, h, X, Y )

which generalizes the SUMMA algorithm by distributing X and Y into a
grid of n ∗ m partitions based on their group-by and join key functions.

For example, matrix multiplication, which corresponds to the MRQL query

select ( sum(z), i , j )
from (x, i ,k) in X, (y,k, j ) in Y, z = x∗y
group by i , j

is captured by the operation:
GroupByJoin( λ(x,i,k). k, λ(y,k,j). k, λ(x,i,k). i, λ(y,k,j). j, λ((x,y),c). c+x*y, 0, λ((i,j),c).

(c,i,j), X, Y )

6 The Implementation of GroupByJoin in Map-Reduce

The GroupByJoin operation distributes the data to worker nodes in the form of a
n ∗ m grid of partitions, where each partition contains only those rows from X
and those columns from Y needed to compute a single partition of the resulting
matrix.

Figure 2 shows the pseudo-code for the implementation of GroupByJoin in
Map-Reduce, where flush(H) is:

for each (key,value) in H
emit h(key, value)

clear H
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Fig. 2. Map-Reduce pseudo-code for GroupByJoin( jx, jy, gx, gy, acc, zero, h, X, Y )

which applies the function h to each key-value pair in the key-value map H and
emits the results to the output. Similar to a regular reduce-side join on Map-
Reduce [14], our group-by join uses two mappers, mapLeft and mapRight, for each
of the inputs, X and Y, respectively. Both mappers emit pairs of key-values. A
mapper value takes the form (tag,data), where data is the input data and tag is
the source number 1 or 2, to specify the input source (X or Y). A mapper key
is a triple (partition,joinkey,tag), where partition is one of the n ∗ m partitions, and
joinkey is the join key value, jx(x) or jy(y). The partition number of a partition (i, j)
in the grid of n∗m partitions is equal to i∗m+j. The two mappers replicate the
X values m times and the Y values n times (associated with different partition
numbers). A value x ∈ X is sent to all the row partitions (gx(x) mod n, ∗) and
a value y ∈ Y is sent to all the column partitions (∗, gy(y) mod m). Hadoop
Map-Reduce supports custom partitioning, grouping, and sorting functions that
control the shuffling of the map results to the reducers. In our Hadoop Map-
Reduce implementation,

– the partition function returns the partition value of the mapper key,
– the grouping function returns the pair (partition,joinkey), and
– the sorting is based on partition (major order), joinkey (minor order), and tag

(sub-minor order).
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That is, each partition will contain multiple reduce groups, one for each join
key. For each partition p and for each different join key value v, the grouping
values in the reducer method, reduce, will contain all the tuples from x ∈ X and
y ∈ Y that are shuffled to this partition and satisfy jx(x)= jy(y)= v. For matrix
multiplication, when X is an N ∗ K matrix and Y is an K ∗ M matrix, the
size of values will be N/n + M/m (one column from the X horizontal partition
and one row from the Y vertical partition), while the size of hash table H will
be (N ∗ M)/(n ∗ m). The number of partitions may be larger than the num-
ber of worker nodes (the reducers). That is, each reducer may receive multiple
partitions, and each partition may contain multiple groupings. Each grouping
is handled separately by the reduce method, and the results of processing each
partition is emitted by flush(H) at the end of each partition (when the partition
number changes). The result of processing each partition are stored in the hash
table H, of maximum size (N ∗ M)/(n ∗ m). That is, we must select n and m to
be the minimum values so that H can fit in memory. That is, if there is available
memory to fit T tuples, then (N ∗ M)/(n ∗ m) = T . Our goal is to minimize
data replication, which is equal to N ∗ K ∗ m + K ∗ M ∗ n. That is, we want
to minimize N/n + M/m (if we divide by the constants K and n ∗ m). This
is possible, when N/n = M/m =

√
T . Internally though, done implicitly by

Hadoop Map-Reduce, each reducer node sorts and groups its entire partition
(which contains N ∗ K/n + K ∗ M/m tuples) before reduction, which is done
with external sorting at each reducer.

7 Translating Queries to GroupByJoin Operations

Based on the discussion in the Introduction, it would be hard to use source-to-
source transformations to put queries, such as matrix multiplication and shortest
distance, into an algebraic form, such as GroupByJoin, because query syntax
may take many different equivalent forms, which have to be recognized by these
source-to-source transformations. Instead, our approach is to translate queries
into their default algebraic forms and then normalize and rewrite these forms
using algebraic rules.

The MRQL algebra used in this section has already been described in our
previous work [4]. The most important algebraic operation in the MRQL algebra
is cMap (also known as concat-map or flatten-map in functional programming
languages), which generalizes the select, project, join, and unnest operators of
the nested relational algebra. Given two arbitrary types α and β, the operation
cMap(f,X) maps a bag X of type {α} to a bag of type {β} by applying the
function f of type α → {β} to each element of X, yielding one bag for each
element, and then by merging these bags to form a single bag of type {β}. Using
a set former notation on bags, it is expressed as follows:

cMap(f,X) = { z |x ∈ X, z ∈ f(x) } (1)

Given an arbitrary type κ that supports value equality (=), an arbitrary type α,
and a bag X of type {(κ, α)}, the operation groupBy(X) groups the elements of
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the bag X by their first component and returns a bag of type {(κ, {α})}, where
the first component of each tuple is a unique group-by key and the second is the
group (a bag) that contains all values that correspond to this key. For exam-
ple, groupBy({(1,“A”), (2,“B”), (1,“C”)}) returns {(1,{“A”,“C”}), (2,{“B”})}.
Although any join X �	jx(x)=jy(y) Y can be expressed as a nested cMap, to
facilitate the creation of physical plans for joins, the MRQL algebra provides a
special join operator:

join(jx, jy, h,X, Y )
= {h(x, y) |x ∈ X, y ∈ Y, jx(x) = jy(y) }
= cMap(λx. cMap(λy. if jx(x) = jy(y) then {h(x, y)} else { }, Y ), X)

where an anonymous function λx. e specifies a unary function (a lambda abstrac-
tion) f such that f(x) = e. This operation joins two bags, X of type {α}
and Y of type {β}, using the join functions, jx of type α → κ and jy of type
β → κ, and combines the joining values using the function h of type (α, β) → γ,
deriving a bag of type {γ}. Finally, aggregations are captured by the operation
reduce(acc, zero,X), which reduces the elements of a bag X of type {α} into a
value of type β, using an accumulator acc of type (α, β) → β and a zero value
zero of type β. For example, reduce(λ(x, s). x + s, 0, {1, 2, 3} ) = 6.

The algebraic terms derived from MRQL queries can be normalized using
rewrite rules, such as:

cMap(f, cMap(g, S)) → cMap(λx. cMap(f, g(x)), S) (2)

that fuses two cascaded cMaps into a nested cMap, thus avoiding the construc-
tion of the intermediate bag. This rule can be proven directly from the cMap
definition in Eq. (1):

cMap(f, cMap(g, S))
= { z |w ∈ { y |x ∈ S, y ∈ g(x) }, z ∈ f(w) }
= { z |x ∈ S, y ∈ g(x), z ∈ f(y) }
= { z |x ∈ S, z ∈ {w | y ∈ g(x), w ∈ f(y) } }
= cMap(λx. cMap(f, g(x)), S)

In addition, a cMap can be fused with a join resulting to a join:

join( jx, jy, h, X, cMap(λy. {f(y)}, Y ) )
→ join( jx, λy. jy(f(y)), λ(x, y). h(x, f(y)), X, Y ) (3)

cMap(λv. {f(v)}, join( jx, jy, h, X, Y ))
→ join( jx, jy, λ(x, y). f(h(x, y)), X, Y )) (4)

In our framework, GroupByJoin operations are derived from algebraic forms
with the help of the following rule:

cMap( λ(k,s). { h(k,reduce(acc,zero,s)) },
groupBy( join( jx, jy,

λ(x,y). ( (gx(x),gy(y)), (x,y) ),
X, Y ) ) )

→ GroupByJoin( jx, jy, gx, gy, acc, zero, h, X, Y )



A Query Processing Framework for Array-Based Computations 251

which rewrites an equi-join followed by a group-by to a GroupByJoin. For exam-
ple, the MRQL query that captures matrix multiplication X × Y :

select ( sum(z), i , j )
from (x, i ,k) in X, (y,k, j ) in Y, z = x∗y
group by i , j

is translated into the following algebraic form:
cMap( λ((i,j),s). {( reduce(λ(v,c). c+v, 0, s), i, j )},

groupBy( join( λ(x,i,k). k, λ(y,k,j). k,
λ((x,i,k),(y,l,j)). ( (i,j), x*y ),
X, Y ) ) )

while the MRQL query that captures matrix transpose Y T :

select (y, j , i ) from (y, i , j ) in Y

is translated into the following algebraic form:

cMap( λ(y,i,j). {(y,j,i)}, Y )

Hence, using Eq. 3, the two cMaps in the composition X × Y T are fused into:
cMap( λ((i,j),s). {( reduce(λ(v,c). c+v, 0, s), i, j )},

groupBy( join( λ(x,i,k). k, λ(y,j,k). k,
λ((x,i,k),(y,j,l)). ( (i,j), x*y ),
X, Y ) ) )

which is translated to the following algebraic operation:
GroupByJoin( λ(x,i,k). k, λ(y,j,k). k, λ(x,i,k). i, λ(y,j,l). j, λ((x,y),c). c+x*y, 0, λ((i,j),c).

(c,i,j), X, Y )

that combines matrix multiplication with matrix transpose.

8 Performance Evaluation

The platform used for our evaluations is a small cluster of 9 nodes, built on
the Chameleon cloud computing infrastructure, www.chameleoncloud.org. This
cluster consists of nine m1.medium instances running Linux, each one with 4 GB
RAM and 2 VCPUs at 2.3 GHz. For our experiments, we used Hadoop 2.6.0
(Yarn) and MRQL 0.9.6. The cluster frontend was used exclusively as a NameN-
ode/ResourceManager, while the rest 8 compute nodes were used as DataN-
odes/NodeManagers. For our experiments, we used all the available 16 VCPUs
of the compute nodes for Map-Reduce tasks.

We have experimentally validated the effectiveness of our methods using two
MRQL queries: Matrix factorization using gradient descent, shown in Fig. 3, and
the simple query: multiply(Pmatrix,transpose(Qmatrix)), where multiply and transpose

are also given in Fig. 3. Given a matrix R, our matrix factorization query in
Fig. 3 calculates the error matrix E = R − P × QT and the factor matrices P
and Q, so that R is approximately equal to P × QT . For our experiments, we
set this query to iterate 10 times and used the learning rate a = 0.002 and the
normalization factor b = 0.02. The matrix to be factorized, Rmatrix, was an n×m

www.chameleoncloud.org
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Fig. 3. Matrix factorization using gradient descent in MRQL
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A Query Processing Framework for Array-Based Computations 253

sparse matrix with random integer values between 1 and 5 (resembling the 5-star
rating in Netflix) in which only the 10 % of the elements were provided (the rest
were zero). The size of m was always kept equal to 10 ∗ n, while n ∗ m was equal
to 100000 + i ∗ 50000 elements, for i ∈ [0, 9]. That is, n ∗ m took the following
values: 100*1000, 122*1220, 141*1410, 158*1580, 173*1730, 187*1870, 200*2000,
212*2120, 223*2230, 234*2340. The initial factor matrices, Pmatrix and Qmatrix,
had sizes n ∗ k and m ∗ k, respectively, where k = 10 for all experiments (a low
rank), and were initialized with random values between 1 and 5.

For both MRQL queries, we perform our evaluations in two modes: with and
without inter-operation optimization. With inter-operation optimization means
that matrix operations were defined using macros so that compositions of oper-
ations are fused into one operation, thus avoiding the creation of intermediate
results (which Hadoop Map-Reduce must store in the HDFS). Without inter-
operation optimization means that the matrix operations were defined as opaque
functions, which have to be evaluated as is, thus offering no opportunities for
optimization. The results for the simple query multiply(Pmatrix,transpose(Qmatrix))

are shown in Fig. 4A. The results look very similar for different data sizes (100K
through 145K tuples) because all matrices (including the intermediate results)
are split into 16 files (one for each compute node in the HDFS) and each file can
fit into one HDFS block (64MBs) regardless of its size. We can see in Fig. 4A
that there is improvement even for just two operations: matrix multiplication
and transpose. With inter-operation optimization, these two operations are fused
into a single one, a GroupByJoin, which runs in about the same time as matrix
multiplication alone. The results for matrix factorization are shown in Fig. 4B.
Here, the improvement is even more substantial (the optimized query takes about
half the time of the non-optimized one) since the results of all these optimizations
are aggregated and repeated at each iteration step.

9 Conclusion

We have presented a general framework for optimizing SQL-like queries that
capture array-based computations on sparse arrays. In contrast to related work,
we do not provide a library of predefined array operations. Instead, we are let-
ting programmers express their array operations using normal SQL-like syntax,
but, at the same time, we provide an optimization framework that translates
these queries into efficient distributed array operations. That way, we are able
to achieve inter-operation optimization that would be infeasible if these opera-
tions were expressed as black boxes.
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