
Sven Hartmann · Hui Ma (Eds.)

 123

LN
CS

 9
82

7

27th International Conference, DEXA 2016
Porto, Portugal, September 5–8, 2016
Proceedings, Part I

Database and Expert
Systems Applications

Lecture Notes in Computer Science 9827

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Sven Hartmann • Hui Ma (Eds.)

Database and Expert
Systems Applications
27th International Conference, DEXA 2016
Porto, Portugal, September 5–8, 2016
Proceedings, Part I

123

Editors
Sven Hartmann
Clausthal University of Technology
Clausthal-Zellerfeld
Germany

Hui Ma
Victoria University of Wellington
Wellington
New Zealand

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-44402-4 ISBN 978-3-319-44403-1 (eBook)
DOI 10.1007/978-3-319-44403-1

Library of Congress Control Number: 2016947400

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the papers presented at the 27th International Conference on
Database and Expert Systems Applications (DEXA 2016), which was held in Porto,
Portugal, during September 5–8, 2016. On behalf of the Program Committee, we
commend these papers to you and hope you find them useful.

Database, information, and knowledge systems have always been a core subject of
computer science. The ever-increasing need to distribute, exchange, and integrate data,
information, and knowledge has added further importance to this subject. Advances in
the field will help facilitate new avenues of communication, to proliferate interdisci-
plinary discovery, and to drive innovation and commercial opportunity.

DEXA is an international conference series which showcases state-of-the-art
research activities in database, information, and knowledge systems. The conference
and its associated workshops provide a premier annual forum to present original
research results and to examine advanced applications in the field. The goal is to bring
together developers, scientists, and users to extensively discuss requirements, chal-
lenges, and solutions in database, information, and knowledge systems.

DEXA 2016 solicited original contributions dealing with any aspect of database,
information, and knowledge systems. Suggested topics included but were not limited to:

– Acquisition, Modeling, Management and Processing of Knowledge
– Authenticity, Privacy, Security, and Trust
– Availability, Reliability and Fault Tolerance
– Big Data Management and Analytics
– Consistency, Integrity, Quality of Data
– Constraint Modeling and Processing
– Cloud Computing and Database-as-a-Service
– Database Federation and Integration, Interoperability, Multi-Databases
– Data and Information Networks
– Data and Information Semantics
– Data Integration, Metadata Management, and Interoperability
– Data Structures and Data Management Algorithms
– Database and Information System Architecture and Performance
– Data Streams, and Sensor Data
– Data Warehousing
– Decision Support Systems and Their Applications
– Dependability, Reliability and Fault Tolerance
– Digital Libraries, and Multimedia Databases
– Distributed, Parallel, P2P, Grid, and Cloud Databases
– Graph Databases
– Incomplete and Uncertain Data
– Information Retrieval

– Information and Database Systems and Their Applications
– Mobile, Pervasive, and Ubiquitous Data
– Modeling, Automation and Optimization of Processes
– NoSQL and NewSQL Databases
– Object, Object-Relational, and Deductive Databases
– Provenance of Data and Information
– Semantic Web and Ontologies
– Social Networks, Social Web, Graph, and Personal Information Management
– Statistical and Scientific Databases
– Temporal, Spatial, and High-Dimensional Databases
– Query Processing and Transaction Management
– User Interfaces to Databases and Information Systems
– Visual Data Analytics, Data Mining, and Knowledge Discovery
– WWW and Databases, Web Services
– Workflow Management and Databases
– XML and Semi-structured Data

Following the call for papers, which yielded 137 submissions, there was a rigorous
review process that saw each paper reviewed by three to five international experts.
The 39 papers judged best by the Program Committee were accepted for long pre-
sentation. A further 29 papers were accepted for short presentation.

As is the tradition of DEXA, all accepted papers are published by Springer. Authors
of selected papers presented at the conference were invited to submit extended versions
of their papers for publication in the Springer journal Transactions on Large-Scale
Data- and Knowledge-Centered Systems (TLDKS).

We wish to thank all authors who submitted papers and all conference participants
for the fruitful discussions. We are grateful to Bruno Buchberger and Gottfried Vossen,
who accepted to present keynote talks at the conference.

The success of DEXA 2016 is a result of the collegial teamwork from many indi-
viduals. We like to thank the members of the Program Committee and external reviewers
for their timely expertise in carefully reviewing the submissions. We are grateful to our
general chairs, Abdelkader Hameurlain, Fernando Lopes, and Roland R. Wagner, to our
publication chair, Vladimir Marik, and to our workshop chairs, A Min Tjoa, Zita Vale,
and Roland R. Wagner.

We wish to express our deep appreciation to Gabriela Wagner of the DEXA con-
ference organization office. Without her outstanding work and excellent support, this
volume would not have seen the light of day.

Finally, we would like to thank GECAD (Research Group on Intelligent Engi-
neering and Computing for Advanced Innovation and Development) at ISEP (Instituto
Superior de Engenharia do Porto) for being our hosts for the wonderful days in Porto.

July 2016 Sven Hartmann
Hui Ma

VI Preface

Organization

General Chairs

Abdelkader Hameurlain IRIT, Paul Sabatier University Toulouse, France
Fernando Lopes LNEG - National Research Institute, Portugal
Roland R. Wagner Johannes Kepler University Linz, Austria

Program Committee Chairs

Hui Ma Victoria University of Wellington, New Zealand
Sven Hartmann Clausthal University of Technology, Germany

Publication Chair

Vladimir Marik Czech Technical University, Czech Republic

Program Committee

Afsarmanesh, Hamideh University of Amsterdam, The Netherlands
Albertoni, Riccardo Italian National Council of Research, Italy
Anane, Rachid Coventry University, UK
Appice, Annalisa Università degli Studi di Bari, Italy
Atay, Mustafa Winston-Salem State University, USA
Bakiras, Spiridon Michigan Technological University, USA
Bao, Zhifeng National University of Singapore, Singapore
Bellatreche, Ladjel ENSMA, France
Bennani, Nadia INSA Lyon, France
Benyoucef, Morad University of Ottawa, Canada
Berrut, Catherine Grenoble University, France
Biswas, Debmalya Swisscom, Switzerland
Bouguettaya, Athman RMIT, Australia
Boussaid, Omar University of Lyon, France
Bressan, Stephane National University of Singapore, Singapore
Camarinha-Matos, Luis M. Universidade Nova de Lisboa, Portugal
Catania, Barbara DISI, University of Genoa, Italy
Ceci, Michelangelo University of Bari, Italy
Chen, Cindy University of Massachusetts Lowell, USA
Chen, Phoebe La Trobe University, Australia
Chen, Shu-Ching Florida International University, USA
Chevalier, Max IRIT - SIG, Université de Toulouse, France
Choi, Byron Hong Kong Baptist University, Hong Kong, SAR China

Christiansen, Henning Roskilde University, Denmark
Chun, Soon Ae City University of New York, USA
Cuzzocrea, Alfredo University of Trieste, Italy
Dahl, Deborah Conversational Technologies, USA
Darmont, Jérôme Université de Lyon (ERIC Lyon 2), France
de vrieze, cecilia Bournemouth University, UK, Switzerland
Decker, Hendrik Ludwig-Maximilians-Universität München, Spain
Deng, Zhi-Hong Peking University, China
Deufemia, Vincenzo Università degli Studi di Salerno, Italy
Dibie-Barthélemy, Juliette AgroParisTech, France
Ding, Ying Indiana University, USA
Dobbie, Gill University of Auckland, New Zealand
Dou, Dejing University of Oregon, USA
du Mouza, Cedric CNAM, France
Eder, Johann University of Klagenfurt, Austria
El-Beltagy, Samhaa Nile University, Egypt
Embury, Suzanne The University of Manchester, UK
Endres, Markus University of Augsburg, Germany
Fazzinga, Bettina ICAR-CNR, Italy
Fegaras, Leonidas The University of Texas at Arlington, USA
Felea, Victor Al. I. Cuza University of Iasi, Romania
Ferilli, Stefano University of Bari, Italy
Ferrarotti, Flavio Software Competence Center Hagenberg, Austria
Fomichov, Vladimir National Research University Higher School

of Economics, Moscow, Russian Federation
Frasincar, Flavius Erasmus University Rotterdam, The Netherlands
Freudenthaler, Bernhard Software Competence Center Hagenberg, Austria
Fukuda, Hiroaki Shibaura Institute of Technology, Japan
Furnell, Steven Plymouth University, UK
Garfield, Joy University of Worcester, UK
Gergatsoulis, Manolis Ionian University, Greece
Grabot, Bernard LGP-ENIT, France
Grandi, Fabio University of Bologna, Italy
Gravino, Carmine University of Salerno, Italy
Groppe, Sven Lübeck University, Germany
Grosky, William University of Michigan, USA
Grzymala-Busse, Jerzy University of Kansas, USA
Guerra, Francesco Università degli Studi Di Modena e Reggio Emilia, Italy
Guzzo, Antonella University of Calabria, Italy
Hameurlain, Abdelkader Paul Sabatier University, France
Hamidah, Ibrahim Universiti Putra Malaysia, Malaysia
Hara, Takahiro Osaka University, Japan
Hartmann, Sven TU Clausthal, Germany
Hsu, Wynne National University of Singapore, Singapore
Hua, Yu Huazhong University of Science and Technology, China
Huang, Jimmy York University, Canada

VIII Organization

Huptych, Michal Czech Technical University in Prague, Czech Republic
Hwang, San-Yih National Sun Yat-Sen University, Taiwan
Härder, Theo TU Kaiserslautern, Germany
Iacob, Ionut Emil Georgia Southern University, USA
Ilarri, Sergio University of Zaragoza, Spain
Imine, Abdessamad Inria Grand Nancy, France
Ishihara, Yasunori Osaka University, Japan
Jin, Peiquan University of Science and Technology of China, China
Kao, Anne Boeing, USA
Karagiannis, Dimitris University of Vienna, Austria
Katzenbeisser, Stefan Technische Universität Darmstadt, Germany
Kim, Sang-Wook Hanyang University, Republic of Korea
Kleiner, Carsten University of Applied Sciences and Arts Hannover,

Germany
Koehler, Henning Massey University, New Zealand
Kosch, Harald University of Passau, Germany
Krátký, Michal Technical University of Ostrava, Czech Republic
Kremen, Petr Czech Technical University in Prague, Czech Republic
Küng, Josef University of Linz, Austria
Lammari, Nadira CNAM, France
Lamperti, Gianfranco University of Brescia, Italy
Laurent, Anne LIRMM, University of Montpellier 2, France
Léger, Alain FT R&D Orange Labs Rennes, France
Lhotska, Lenka Czech Technical University, Czech Republic
Liang, Wenxin Dalian University of Technology, China
Ling, Tok Wang National University of Singapore, Singapore
Link, Sebastian The University of Auckland, New Zealand
Liu, Chuan-Ming National Taipei University of Technology, Taiwan
Liu, Hong-Cheu University of South Australia, Australia
Liu, Rui HP Enterprise, USA
Lloret Gazo, Jorge University of Zaragoza, Spain
Loucopoulos, Peri Harokopio University of Athens, Greece
Lumini, Alessandra University of Bologna, Italy
Ma, Hui Victoria University of Wellington, New Zealand
Ma, Qiang Kyoto University, Japan
Maag, Stephane TELECOM SudParis, France
Masciari, Elio ICAR-CNR, Università della Calabria, Italy
May, Norman SAP SE, Germany
Medjahed, Brahim University of Michigan - Dearborn, USA
Mishra, Harekrishna Institute of Rural Management Anand, India
Moench, Lars University of Hagen, Germany
Mokadem, Riad IRIT, Paul Sabatier University, France
Moon, Yang-Sae Kangwon National University, Republic of Korea
Morvan, Franck IRIT, Paul Sabatier University, France
Munoz-Escoi, Francesc Universitat Politecnica de Valencia, Spain
Navas-Delgado, Ismael University of Málaga, Spain

Organization IX

Ng, Wilfred Hong Kong University of Science and Technology,
Hong Kong, SAR China

Ozsoyoglu, Gultekin Case Western Reserve University, USA
Pallis, George University of Cyprus, Cyprus
Paprzycki, Marcin Polish Academy of Sciences,

Warsaw Management Academy, Poland
Pastor Lopez, Oscar Universidad Politecnica de Valencia, Spain
Pivert, Olivier Ecole Nationale Supérieure des Sciences Appliquées

et de Technologie, France
Pizzuti, Clara ICAR-CNR, Italy
Poncelet, Pascal LIRMM, France
Pourabbas, Elaheh National Research Council, Italy
Qin, Jianbin University of New South Wales, Australia
Rabitti, Fausto ISTI, CNR Pisa, Italy
Raibulet, Claudia Università degli Studi di Milano-Bicocca, Italy
Ramos, Isidro Technical University of Valencia, Spain
Rao, Praveen University of Missouri-Kansas City, USA
Resende, Rodolfo F. Federal University of Minas Gerais, Brazil
Roncancio, Claudia Grenoble University/LIG, France
Ruckhaus, Edna Universidad Simon Bolivar, Venezuela
Ruffolo, Massimo ICAR-CNR, Italy
Sacco, Giovanni Maria University of Turin, Italy
Saltenis, Simonas Aalborg University, Denmark
Sansone, Carlo Università di Napoli Federico II, Italy
Sarda, N.L. I.I.T. Bombay, India
Savonnet, Marinette University of Burgundy, France
Sawczuk da Silva,

Alexandre
Victoria University of Wellington, New Zealand

Scheuermann, Peter Northwestern University, USA
Schewe, Klaus-Dieter Software Competence Center Hagenberg, Austria
Schweighofer, Erich University of Vienna, Austria
Sedes, Florence IRIT, Paul Sabatier University, Toulouse, France
Selmaoui, Nazha University of New Caledonia, New Caledonia
Siarry, Patrick Université Paris 12 (LiSSi), France
Skaf-Molli, Hala Nantes University, France
Srinivasan, Bala Monash University, Australia
Sunderraman, Raj Georgia State University, USA
Taniar, David Monash University, Australia
Teisseire, Maguelonne Irstea - TETIS, France
Tessaris, Sergio Free University of Bozen-Bolzano, Italy
Teste, Olivier IRIT, University of Toulouse, France
Teufel, Stephanie University of Fribourg, Switzerland
Teuhola, Jukka University of Turku, Finland
Thevenin, Jean-Marc University of Toulouse 1 Capitole, France
Torra, Vicenc University of Skövde, Sweden
Truta, Traian Marius Northern Kentucky University, USA

X Organization

Tzouramanis, Theodoros University of the Aegean, Greece
Vaira, Lucia University of Salento, Italy
Vidyasankar,

Krishnamurthy
Memorial University of Newfoundland, Canada

Vieira, Marco University of Coimbra, Portugal
Wang, Guangtao NTU, Singapore
Wang, Junhu Griffith University, Australia
Wang, Qing The Australian National University, Australia
Wang, Wendy Hui Stevens Institute of Technology, USA
Wijsen, Jef Université de Mons, Belgium
Wu, Huayu Institute for Infocomm Research, A*STAR, Singapore
Yang, Ming Hour Chung Yuan Christian University, Taiwan
Yang, Xiaochun Northeastern University, China
Yin, Hongzhi The University of Queensland, Australia
Yokota, Haruo Tokyo Institute of Technology, Japan
Zhao, Yanchang RDataMining.com, Australia
Zhu, Qiang The University of Michigan, USA
Zhu, Yan Southwest Jiaotong University, China

External Reviewers

Liliana Ibanescu UMR MIA-Paris, INRA, France
Paola Podestà Italian National Council of Research, Italy
Luke Lake Department of Human Services, Australia
Roberto Corizzo University of Bari, Italy
Pasqua Fabiana Lanotte University of Bari, Italy
Corrado Loglisci University of Bari, Italy
Gianvito Pio University of Bari, Italy
Weiqing Wang The University of Queensland, Australia
Stephen Carden Georgia Southern University, USA
Arpita Chatterjee Georgia Southern University, USA
Tharanga

Wickramarachchi
Georgia Southern University, USA

Hastimal Jangid University of Missouri-Kansas City, USA
Loredana Caruccio University of Salerno, Italy
Giuseppe Polese University of Salerno, Italy
Valentina Indelli Pisano University of Salerno, Italy
Virginie Thion University of Rennes 1/IRISA, France
Grégory Smits University of Rennes 1/IRISA, France
Hélène Jaudoin University of Rennes 1/IRISA, France
Yves Denneulin Grenoble INP, France
Ermelinda Oro ICAR-CNR, Italy
Harekrishna Misra Institute of Rural Management Anand, India
Vijay Ingalalli LIRMM, France

Organization XI

Gang Qian University of Central Oklahoma, USA
Lubomir Stanchev California Polytechnic State University, USA
Xianying (Steven) Liu IBM Almaden Research Center, USA
Alok Watve Broadway Technology, USA
Xin Shuai Thomson Reuters, USA
María del Carmen

Rodríguez-Hernández
University of Zaragoza, Spain

Óscar Urra University of Zaragoza, Spain
Samira Pouyanfar Florida International University, USA
Hsin-Yu Ha Florida International University, USA
Miroslav Blaško Czech Technical University in Prague, Czech Republic
Bogdan Kostov Czech Technical University in Prague, Czech Republic
Yosuke Watanabe Nagoya University, Japan
Atsushi Keyaki Tokyo Institute of Technology, Japan
Miika Hannula The University of Auckland, New Zealand
Dominik Bork University of Vienna, Austria
Michael Walch University of Vienna, Austria
Nikolaos Tantouris University of Vienna, Austria
Jingjie Ni Hewlett-Packard Enterprise Company, USA
Prajwol Sangat Monash University, Australia
Xiaotian Hao HKUST, Hong Kong, SAR China
Ji Cheng HKUST, Hong Kong, SAR China
Yiling Dai Kyoto University, Japan
Arnaud Castelltort University of Montpellier, France
Sabin Kafle University of Oregon, USA
Shih-Wen George Ke Chung Yuan Christian University, Taiwan
Yi-Hung Wu Chung Yuan Christian University, Taiwan
Jorge Martinez-Gil Software Competence Center Hagenberg, Austria
Loredana Tec Software Competence Center Hagenberg, Austria
Senen Gonzalez University of Chile, Chile
Nicolas Travers CNAM, France
Fayçal Hamdi CNAM, France
Camelia Constantin University of Pierre et Marie Curie - Paris 6, France
Daichi Amagata Osaka University, Japan
Masumi Shirakawa Osaka University, Japan
Eleftherios Kalogeros Ionian University, Greece
Stéphane Jean LIAS/ISAE-ENSMA, France
Selma Khouri LIAS/ISAE-ENSMA, France
Soumia Benkrid ESI, Algiers, Algeria
Andrea Esuli ISTI-CNR, Italy
Giuseppe Amato ISTI-CNR, Italy
Imen Megdiche IRIT, France
Fotini Michailidou University of the Aegean, Greece
Christos Kalyvas University of the Aegean, Greece

XII Organization

Eirini Molla University of the Aegean, Greece
Sajib Mistry RMIT University, Australia
Tooba Aamir RMIT University, Australia
Azadeh Ghari Neiat RMIT University, Australia
Rahma Jlassi RMIT University, Australia

Organization XIII

Keynotes

From Natural Language to Automated
Reasoning

Bruno Buchberger

We outline the possible interaction between knowledge mining, natural language
processing, sentiment analysis, data base systems, ontology technology, algorithm
synthesis, and automated reasoning for enhancing the sophistication of web-based
knowledge processing.

We focus, in particular, on the transition from parsed natural language texts to
formal texts in the frame of logical systems and the potential impact of automating this
transition on methods for finding hidden knowledge in big (or small) data and the
automated composition of algorithms (cooperation plans for networks of application
software).

Simple cooperation apps like IFTTT and the new version of SIRI demonstrate the
power of (automatically) combining clusters of existing applications under the control
of expressions of desires in natural language.

In the Theorema Working Group of the speaker quite powerful algorithm synthesis
methods have been developed that can generate algorithms for relatively difficult
mathematical problems. These methods are based on automated reasoning and start
from formal problem specifications in the frame of predicate logic. We ask ourselves
how the deep reasoning used in mathematical algorithm synthesis could be combined
with recent advances in natural language processing for reaching a new level of
intelligence in the communication between humans and the web for every-day and
business applications.

The talk is expository and tries to draw a big picture of how we could and should
proceed in this area but will also explain some technical details and demonstrate some
surprising results in the formal reasoning aspect of the overall approach.

The Price of Data

Gottfried Vossen1,2

1 ERCIS, University of Münster, Münster, Germany
vossen@wi.uni-muenster.de

2 The University of Waikato Management School, Hamilton, New Zealand
vossen@waikato.ac.nz

Abstract. As data is becoming a commodity similar to electricity, as individuals
become more and more transparent thanks to the comprehensive data traces they
leave, and as data gets increasingly connected across company boundaries, the
question arises of whether a price tag should be attached to data and, if so, what
it should say. In this talk, the price of data is studied from a variety of angles and
applications areas, including telecommunication, social networks, advertising,
and automation; the issues discussed include aspects such as fair pricing, data
quality, data ownership, and ethics. Special attention is paid to data market-
places, where nowadays everybody can trade data, although the currency in
which buyers are requested to pay may no longer be what they expect.

The term “Big Data” will always be remembered as the big buzzword of 2013 and,
somewhat surprisingly, of several years thereafter. According to Bernard Marr1, “the
basic idea behind the phrase ‘Big Data’ is that everything we do is increasingly leaving
a digital trace (or data), which we (and others) can use and analyze. Big Data therefore
refers to that data being collected and our ability to make use of it.” In earlier times, it
was not unusual to leave analog traces, like purchase receipts from the grocery store,
and neither was the idea to somehow monetize these traces. The owner of the grocery
store would know his regular customers, and would try to keep old ones and attract new
ones by offering them discount coupons or other incentives. With digital traces,
business along such lines has exploded, become possible at a world-wide scale, and has
reached nuances of everyday life that nobody would ever have thought of. So it is time
to ask whether that data comes with a price tag and, if so, what it says.

This talk looks at the price of data from a variety of angles and application areas for
which pricing is relevant. In telecommunication, for example, prices for making phone
calls as well as for data (e.g., surfing the Web) have come down enormously over the
last 20 years, due to increasingly cheaper technology as well as more and more
competition. Search engines have made it popular to make money through advertising,
where participants bid on keywords that may occur in search queries, and social
networks generate revenue from letting companies have access to their user profiles and
all the data that these contain. So what is the value of a user profile?

1 http://www.datasciencecentral.com/profile/BernardMarr.

http://www.datasciencecentral.com/profile/BernardMarr

Data marketplaces [2, 4, 5, 9], on the other hand, are an emerging species of digital
platform that revisits traditional marketplaces and their mechanisms. In a data mar-
ketplace, producers of data provide query answers to consumers in exchange for
payment. In general, a data marketplace integrates public Web data with other data
sources, and it allows for data extraction, data transformation and data loading, and it
comprises meta data repositories describing data and algorithms. In addition, it consists
of technology for ‘uploading’ and optimizing operators with user-defined-functionality,
as well as trading and billing components. In return, the ‘vendor’ of this functionality
receives a monetary contribution from a buyer. Essentially, everybody can trade data
nowadays, and the roles of sellers and buyers may be swapped over time and be
exchangeable. For a seller, the interesting issue is the question of how valuable some
data may be for a customer (or what the competition is charging for the same or similar
data); if that could be figured out, the seller could adapt the price he is asking
accordingly.

From a more technical perspective, the pricing problem can be tackled from the
point of view of data quality, and here it is possible to establish a notion of fair pricing.
[6, 8] cast this problem into a universal-relation setting and study the impact of
quantifiable data quality; they follow [1] who argue that relational views can be
interpreted as versions of the ‘information good’ data and hence study the issue of
pricing for competing data sources that provide essentially the same data but in dif-
ferent quality.

Fair pricing has been addressed in depth by [7], by demonstrating how the quality
of relational data products can be adapted to match a buyer’s willingness to pay by
employing a Name Your Own Price (NYOP) model. Under that model, data providers
can discriminate customers so that they realize the maximum price a customer is
willing to pay, and data customers receive a product that is tailored to their own data
quality needs and budgets. To balance customer preferences and vendor interests, a
model is developed which translates fair pricing into a Multiple-Choice Knapsack
optimization problem, thereby making it amenable to an algorithmic solution. The
concept of trading data quality for a discount was previously suggested in [10, 11] and
applied to both relational as well as XML data.

A final aspect to be mentioned in this context is that of data used in automation.
Following [3], automation has become pervasive in recent years and has lead to the
danger that people lose their specific abilities when supported or even replaced by
machines, robots, or generally automated devices. Carr explains this, for example, with
auto-pilots in airplanes: Often pilots are so reliant on an auto-pilot that they do not want
to accept the fact the a decision the device has just made is wrong, and he gives
examples where this has ended in disaster more than once. Hence the danger is that we
overestimate the truth in data, that we trust it too much, so that, as a consequence, the
quest for its price becomes obsolete.

The Price of Data XIX

References

[1] Balazinska, M., et al.: A discussion on pricing relational data. In: Tannen, V., et al. (eds) In
Search of Elegance in the Theory and Practice of Computation. LNCS, vol. 8000, pp. 167–
173. Springer, Heidelberg (2013)

[2] Balazinska, M., et al.: Data markets in the cloud: an opportunity for the database com-
munity. In: PVLDB 4.12, pp. 1482–1485 (2011)

[3] Carr, N.: The Glass Cage — Automation and Us. W.W. Norton & Company (2014)
[4] Muschalle, A., et al.: Pricing approaches for data markets. In: Proceedings of 6th BIRTE

Workshop 2012. Istanbul, Turkey, pp. 129–144
[5] Schomm, F., et al.: Marketplaces for data: an initial survey. In: SIGMOD Record 42.1,

pp. 15–26 (2013). http://doi.acm.org/10.1145/2481528.2481532
[6] Stahl, F., et al.: Fair knapsack pricing for data marketplaces. In: Proceedings of 20th East-

European Conference on Advances in Databases and Information Systems (ADBIS).
LNCS. Springer (2016)

[7] Stahl, F.: High-quality web information provisioning and quality-based data pricing. PhD
thesis. University of Münster (2015)

[8] Stahl, F., et al.: Data quality scores for pricing on data marketplaces. In: Proceedings 8th
ACIIDS Conference. Da Nang, Vietnam, pp. 214–225 (2016)

[9] Stahl, F., et al.: Data marketplaces: an emerging species. In: Haav, H., et al. (eds.) Data-
bases and Information Systems VIII - Selected Papers from the Eleventh International
Baltic Conference, DB&IS 2014, 8–11 June 2014, Tallinn, Estonia. Frontiers in Artificial
Intelligence and Applications, vol. 270, pp. 145–158. IOS Press (2014). http://dx.doi.org/
10.3233/978-1-61499-458-9-145

[10] Tang, R., et al.: Get a sample for a discount. In: Decker, H., et al. (eds.) Database and
Expert Systems Applications. LNCS, vol. 8644, pp. 20–34. Springer International Pub-
lishing, Switzerland (2014)

[11] Tang, R., et al.: What you pay for is what you get. In: Decker, H., et al. (eds.) Database and
Expert Systems Applications. LNCS, vol. 8056, pp. 395–409. Springer, Berlin (2013)

XX G. Vossen

http://doi.acm.org/10.1145/2481528.2481532
http://dx.doi.org/10.3233/978-1-61499-458-9-145
http://dx.doi.org/10.3233/978-1-61499-458-9-145

Contents – Part I

Temporal, Spatial, and High Dimensional Databases

Target-Oriented Keyword Search over Temporal Databases 3
Xianyan Jia, Wynne Hsu, and Mong Li Lee

General Purpose Index-Based Method for Efficient MaxRS Query 20
Xiaoling Zhou, Wei Wang, and Jianliang Xu

An Efficient Method for Identifying MaxRS Location in Mobile Ad Hoc
Networks . 37

Yuki Nakayama, Daichi Amagata, and Takahiro Hara

Data Mining

Discovering Periodic-Frequent Patterns in Transactional Databases
Using All-Confidence and Periodic-All-Confidence 55

J.N. Venkatesh, R. Uday Kiran, P. Krishna Reddy,
and Masaru Kitsuregawa

More Efficient Algorithms for Mining High-Utility Itemsets with Multiple
Minimum Utility Thresholds. 71

Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger,
and Han-Chieh Chao

Mining Minimal High-Utility Itemsets . 88
Philippe Fournier-Viger, Jerry Chun-Wei Lin, Cheng-Wei Wu,
Vincent S. Tseng, and Usef Faghihi

Authenticity, Privacy, Security, and Trust

Automated k-Anonymization and l-Diversity for Shared Data Privacy 105
Anne V.D.M. Kayem, C.T. Vester, and Christoph Meinel

Context-Based Risk-Adaptive Security Model and Conflict Management 121
Mahsa Teimourikia, Guido Marilli, and Mariagrazia Fugini

Modeling Information Diffusion via Reputation Estimation. 136
Bao-Thien Hoang, Kamel Chelghoum, and Imed Kacem

http://dx.doi.org/10.1007/978-3-319-44403-1_1
http://dx.doi.org/10.1007/978-3-319-44403-1_2
http://dx.doi.org/10.1007/978-3-319-44403-1_3
http://dx.doi.org/10.1007/978-3-319-44403-1_3
http://dx.doi.org/10.1007/978-3-319-44403-1_4
http://dx.doi.org/10.1007/978-3-319-44403-1_4
http://dx.doi.org/10.1007/978-3-319-44403-1_5
http://dx.doi.org/10.1007/978-3-319-44403-1_5
http://dx.doi.org/10.1007/978-3-319-44403-1_6
http://dx.doi.org/10.1007/978-3-319-44403-1_7
http://dx.doi.org/10.1007/978-3-319-44403-1_8
http://dx.doi.org/10.1007/978-3-319-44403-1_9

Data Clustering

Mining Arbitrary Shaped Clusters and Outputting a High Quality
Dendrogram . 153

Hao Huang, Song Wang, Shuangke Wu, Yunjun Gao, Wei Lu,
Qinming He, and Shi Ying

Hierarchically Clustered LSH for Hierarchical Outliers Detection 169
Konstantinos Georgoulas and Yannis Kotidis

Incorporating Clustering into Set Similarity Join Algorithms: The SjClust
Framework. 185

Leonardo Andrade Ribeiro, Alfredo Cuzzocrea,
Karen Aline Alves Bezerra, and Ben Hur Bahia do Nascimento

Distributed and Big Data Processing

“Overloaded!” — A Model-Based Approach to Database Stress Testing 207
Jorge Augusto Meira, Eduardo Cunha de Almeida, Dongsun Kim,
Edson Ramiro Lucas Filho, and Yves Le Traon

A Cost Model for DBaaS Storage . 223
Djillali Boukhelef, Jalil Boukhobza, and Kamel Boukhalfa

A Query Processing Framework for Array-Based Computations 240
Leonidas Fegaras

Decision Support Systems, and Learning

Creative Expert System: Result of Inference and Machine Learning
Integration . 257

Bartlomiej Sniezynski, Grzegorz Legien, Dorota Wilk-Kołodziejczyk,
Stanislawa Kluska-Nawarecka, Edward Nawarecki,
and Krzysztof Jaśkowiec

A Reverse Nearest Neighbor Based Active Semi-supervised Learning
Method for Multivariate Time Series Classification 272

Yifei Li, Guoliang He, Xuewen Xia, and Yuanxiang Li

Leveraging Structural Hierarchy for Scalable Network Comparison 287
Rakhi Saxena, Sharanjit Kaur, Debasis Dash, and Vasudha Bhatnagar

Data Streams

Incremental Stream Processing of Nested-Relational Queries 305
Leonidas Fegaras

XXII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-44403-1_10
http://dx.doi.org/10.1007/978-3-319-44403-1_10
http://dx.doi.org/10.1007/978-3-319-44403-1_11
http://dx.doi.org/10.1007/978-3-319-44403-1_12
http://dx.doi.org/10.1007/978-3-319-44403-1_12
http://dx.doi.org/10.1007/978-3-319-44403-1_13
http://dx.doi.org/10.1007/978-3-319-44403-1_14
http://dx.doi.org/10.1007/978-3-319-44403-1_15
http://dx.doi.org/10.1007/978-3-319-44403-1_16
http://dx.doi.org/10.1007/978-3-319-44403-1_16
http://dx.doi.org/10.1007/978-3-319-44403-1_17
http://dx.doi.org/10.1007/978-3-319-44403-1_17
http://dx.doi.org/10.1007/978-3-319-44403-1_18
http://dx.doi.org/10.1007/978-3-319-44403-1_19

Incremental Continuous Query Processing over Streams and Relations with
Isolation Guarantees . 321

Salman Ahmed Shaikh, Dong Chao, Kazuya Nishimura,
and Hiroyuki Kitagawa

An Improved Method of Keyword Search over Relational Data Streams
by Aggressive Candidate Network Consolidation . 336

Savong Bou, Toshiyuki Amagasa, and Hiroyuki Kitagawa

Data Integration, and Interoperability

Evolutionary Database Design: Enhancing Data Abstraction Through
Database Modularization to Achieve Graceful Schema Evolution 355

Gustavo Bartz Guedes, Gisele Busichia Baioco,
and Regina Lúcia de Oliveira Moraes

Summary Generation for Temporal Extractions . 370
Yafang Wang, Zhaochun Ren, Martin Theobald, Maximilian Dylla,
and Gerard de Melo

SuMGra: Querying Multigraphs via Efficient Indexing. 387
Vijay Ingalalli, Dino Ienco, and Pascal Poncelet

Semantic Web, and Data Semantics

Re-constructing Hidden Semantic Data Models by Querying SPARQL
Endpoints. 405

María Jesús García-Godoy, Esteban López-Camacho,
Ismael Navas-Delgado, and José F. Aldana-Montes

A New Formal Approach to Semantic Parsing of Instructions and to File
Manager Design . 416

Alexander A. Razorenov and Vladimir A. Fomichov

Ontology-Based Deep Restricted Boltzmann Machine 431
Hao Wang, Dejing Dou, and Daniel Lowd

Author Index . 447

Contents – Part I XXIII

http://dx.doi.org/10.1007/978-3-319-44403-1_20
http://dx.doi.org/10.1007/978-3-319-44403-1_20
http://dx.doi.org/10.1007/978-3-319-44403-1_21
http://dx.doi.org/10.1007/978-3-319-44403-1_21
http://dx.doi.org/10.1007/978-3-319-44403-1_22
http://dx.doi.org/10.1007/978-3-319-44403-1_22
http://dx.doi.org/10.1007/978-3-319-44403-1_23
http://dx.doi.org/10.1007/978-3-319-44403-1_24
http://dx.doi.org/10.1007/978-3-319-44403-1_25
http://dx.doi.org/10.1007/978-3-319-44403-1_25
http://dx.doi.org/10.1007/978-3-319-44403-1_26
http://dx.doi.org/10.1007/978-3-319-44403-1_26
http://dx.doi.org/10.1007/978-3-319-44403-1_27

Contents – Part II

Social Networks, and Network Analysis

A Preference-Driven Database Approach to Reciprocal User
Recommendations in Online Social Networks . 3

Florian Wenzel and Werner Kießling

Community Detection in Multi-relational Bibliographic Networks 11
Soumaya Guesmi, Chiraz Trabelsi, and Chiraz Latiri

Quality Prediction in Collaborative Platforms: A Generic Approach
by Heterogeneous Graphs. 19

Baptiste de La Robertie, Yoann Pitarch, and Olivier Teste

Analyzing Relationships of Listed Companies with Stock Prices and News
Articles . 27

Satoshi Baba and Qiang Ma

Linked Data

Approximate Semantic Matching over Linked Data Streams 37
Yongrui Qin, Lina Yao, and Quan Z. Sheng

A Mapping-Based Method to Query MongoDB Documents with SPARQL. . . 52
Franck Michel, Catherine Faron-Zucker, and Johan Montagnat

Incremental Maintenance of Materialized SPARQL-Based Linkset Views. . . . 68
Elisa S. Menendez, Marco A. Casanova, Vânia M.P. Vidal,
Bernardo P. Nunes, Giseli Rabello Lopes, and Luiz A.P. Paes Leme

Data Analysis

Aggregate Reverse Rank Queries . 87
Yuyang Dong, Hanxiong Chen, Kazutaka Furuse,
and Hiroyuki Kitagawa

Abstract-Concrete Relationship Analysis of News Events Based on a 5W
Representation Model . 102

Shintaro Horie, Keisuke Kiritoshi, and Qiang Ma

Detecting Maximum Inclusion Dependencies without Candidate Generation . . . 118
Nuhad Shaabani and Christoph Meinel

http://dx.doi.org/10.1007/978-3-319-44406-2_1
http://dx.doi.org/10.1007/978-3-319-44406-2_1
http://dx.doi.org/10.1007/978-3-319-44406-2_2
http://dx.doi.org/10.1007/978-3-319-44406-2_3
http://dx.doi.org/10.1007/978-3-319-44406-2_3
http://dx.doi.org/10.1007/978-3-319-44406-2_4
http://dx.doi.org/10.1007/978-3-319-44406-2_4
http://dx.doi.org/10.1007/978-3-319-44406-2_5
http://dx.doi.org/10.1007/978-3-319-44406-2_6
http://dx.doi.org/10.1007/978-3-319-44406-2_7
http://dx.doi.org/10.1007/978-3-319-44406-2_8
http://dx.doi.org/10.1007/978-3-319-44406-2_9
http://dx.doi.org/10.1007/978-3-319-44406-2_9
http://dx.doi.org/10.1007/978-3-319-44406-2_10

NoSQL, NewSQL

Footprint Reduction and Uniqueness Enforcement with Hash Indices
in SAP HANA . 137

Martin Faust, Martin Boissier, Marvin Keller, David Schwalb,
Holger Bischoff, Katrin Eisenreich, Franz Färber, and Hasso Plattner

Benchmarking Replication in Cassandra and MongoDB NoSQL Datastores . . . 152
Gerard Haughian, Rasha Osman, and William J. Knottenbelt

sJSchema: A Framework for Managing Temporal JSON-Based NoSQL
Databases. 167

Safa Brahmia, Zouhaier Brahmia, Fabio Grandi, and Rafik Bouaziz

Multimedia Data

Enhancing Similarity Search Throughput by Dynamic Query Reordering 185
Filip Nalepa, Michal Batko, and Pavel Zezula

Creating a Music Recommendation and Streaming Application for Android . . . 201
Elliot Jenkins and Yanyan Yang

A Score Fusion Method Using a Mixture Copula . 216
Takuya Komatsuda, Atsushi Keyaki, and Jun Miyazaki

Personal Information Management

Axiomatic Term-Based Personalized Query Expansion Using Bookmarking
System . 235

Philippe Mulhem, Nawal Ould Amer, and Mathias Géry

A Relevance-Focused Search Application for Personalised Ranking Model. . . 244
Al Sharji Safiya, Martin Beer, and Elizabeth Uruchurtu

Aggregated Search over Personal Process Description Graph 254
Jing Ouyang Hsu, Hye-young Paik, Liming Zhan, and Anne H.H. Ngu

Inferring Lurkers’ Gender by Their Interest Tags . 263
Peisong Zhu, Tieyun Qian, Zhenni You, and Xuhui Li

Semantic Web and Ontologies

Data Access Based on Faceted Queries over Ontologies. 275
Tadeusz Pankowski and Grażyna Brzykcy

XXVI Contents – Part II

http://dx.doi.org/10.1007/978-3-319-44406-2_11
http://dx.doi.org/10.1007/978-3-319-44406-2_11
http://dx.doi.org/10.1007/978-3-319-44406-2_12
http://dx.doi.org/10.1007/978-3-319-44406-2_13
http://dx.doi.org/10.1007/978-3-319-44406-2_13
http://dx.doi.org/10.1007/978-3-319-44406-2_14
http://dx.doi.org/10.1007/978-3-319-44406-2_15
http://dx.doi.org/10.1007/978-3-319-44406-2_16
http://dx.doi.org/10.1007/978-3-319-44406-2_17
http://dx.doi.org/10.1007/978-3-319-44406-2_17
http://dx.doi.org/10.1007/978-3-319-44406-2_18
http://dx.doi.org/10.1007/978-3-319-44406-2_19
http://dx.doi.org/10.1007/978-3-319-44406-2_20
http://dx.doi.org/10.1007/978-3-319-44406-2_21

Incremental and Directed Rule-Based Inference on RDFS 287
Jules Chevalier, Julien Subercaze, Christophe Gravier,
and Frédérique Laforest

Top-k Matching Queries for Filter-Based Profile Matching in Knowledge
Bases. 295

Alejandra Lorena Paoletti, Jorge Martinez-Gil,
and Klaus-Dieter Schewe

FETA: Federated QuEry TrAcking for Linked Data 303
Georges Nassopoulos, Patricia Serrano-Alvarado, Pascal Molli,
and Emmanuel Desmontils

Database and Information System Architectures

Dynamic Power-Aware Disk Storage Management in Database Servers 315
Peyman Behzadnia, Wei Yuan, Bo Zeng, Yi-Cheng Tu,
and Xiaorui Wang

FR-Index: A Multi-dimensional Indexing Framework for Switch-Centric
Data Centers. 326

Yatao Zhang, Jialiang Cao, Xiaofeng Gao, and Guihai Chen

Unsupervised Learning for Detecting Refactoring Opportunities
in Service-Oriented Applications . 335

Guillermo Rodríguez, Álvaro Soria, Alfredo Teyseyre, Luis Berdun,
and Marcelo Campo

A Survey on Visual Query Systems in the Web Era 343
Jorge Lloret-Gazo

Query Answering and Optimization

Query Similarity for Approximate Query Answering 355
Verena Kantere

Generalized Maximal Consistent Answers in P2P Deductive Databases 368
Luciano Caroprese and Ester Zumpano

Computing Range Skyline Query on Uncertain Dimension. 377
Nurul Husna Mohd Saad, Hamidah Ibrahim, Fatimah Sidi,
Razali Yaakob, and Ali Amer Alwan

Aging Locality Awareness in Cost Estimation for Database Query
Optimization. 389

Chihiro Kato, Yuto Hayamizu, Kazuo Goda, and Masaru Kitsuregawa

Contents – Part II XXVII

http://dx.doi.org/10.1007/978-3-319-44406-2_22
http://dx.doi.org/10.1007/978-3-319-44406-2_23
http://dx.doi.org/10.1007/978-3-319-44406-2_23
http://dx.doi.org/10.1007/978-3-319-44406-2_24
http://dx.doi.org/10.1007/978-3-319-44406-2_25
http://dx.doi.org/10.1007/978-3-319-44406-2_26
http://dx.doi.org/10.1007/978-3-319-44406-2_26
http://dx.doi.org/10.1007/978-3-319-44406-2_27
http://dx.doi.org/10.1007/978-3-319-44406-2_27
http://dx.doi.org/10.1007/978-3-319-44406-2_28
http://dx.doi.org/10.1007/978-3-319-44406-2_29
http://dx.doi.org/10.1007/978-3-319-44406-2_30
http://dx.doi.org/10.1007/978-3-319-44406-2_31
http://dx.doi.org/10.1007/978-3-319-44406-2_32
http://dx.doi.org/10.1007/978-3-319-44406-2_32

Information Retrieval, and Keyword Search

Constructing Data Graphs for Keyword Search . 399
Konstantin Golenberg and Yehoshua Sagiv

Generating Pseudo Search History Data in the Absence of Real Search
History . 410

Ashraf Bah and Ben Carterette

Variable-Chromosome-Length Genetic Algorithm for Time Series
Discretization . 418

Muhammad Marwan Muhammad Fuad

Approximate Temporal Aggregation with Nearby Coalescing 426
Kai Cheng

Data Modelling, and Uncertainty

A Data Model for Determining Weather’s Impact on Travel Time. 437
Ove Andersen and Kristian Torp

Simplify the Design of XML Schemas by Type Dependencies 445
Jia Liu and Husheng Liao

An Efficient Initialization Method for Probabilistic Relational Databases 454
Hong Zhu, Caicai Zhang, and Zhongsheng Cao

Author Index . 463

XXVIII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-44406-2_33
http://dx.doi.org/10.1007/978-3-319-44406-2_34
http://dx.doi.org/10.1007/978-3-319-44406-2_34
http://dx.doi.org/10.1007/978-3-319-44406-2_35
http://dx.doi.org/10.1007/978-3-319-44406-2_35
http://dx.doi.org/10.1007/978-3-319-44406-2_36
http://dx.doi.org/10.1007/978-3-319-44406-2_37
http://dx.doi.org/10.1007/978-3-319-44406-2_38
http://dx.doi.org/10.1007/978-3-319-44406-2_39

Temporal, Spatial, and High
Dimensional Databases

Target-Oriented Keyword Search over Temporal
Databases

Xianyan Jia(B), Wynne Hsu, and Mong Li Lee

School of Computing, National University of Singapore, Singapore, Singapore
{jiaxiany,whsu,leeml}@comp.nus.edu.sg

Abstract. Keyword search in relational databases has gained popular-
ity due to its ease of use. However, existing methods do not handle
keyword search in temporal databases. In this paper, we extend key-
word queries to allow temporal information to be associated with key-
words, as well as support temporal relationships between two keywords.
We design a target-oriented search over an augmented data graph to
efficiently evaluate such temporal keyword queries. Experiments on 3
datasets demonstrate the efficiency of the proposed approach to answer
complex temporal keyword queries.

1 Introduction

Temporal data has become prevalent in many applications such as finance, busi-
ness, bank, and health care. While SQL:2011 provides the efficient querying
of data on their temporal characteristics, it requires users to write complicated
SQL queries [13]. Keyword queries provide a simple and user-friendly query inter-
face to access relational databases [1,8,12]. However, existing relational keyword
search techniques assume that keywords are not associated to time constraints
and there is no relationship among keywords in the queries.

Figure 1 shows a relational database with two snapshot relations (Patient
and Doctor) and two temporal relations (Visit and Symptom). The Visit rela-
tion records the date at which a patient sees a doctor, while the Symptom relation
gives the start and end dates where a patient experiences various symptoms. For
example, the first two tuples (id s1 and s2) in the Symptom relation depict that
a patient p1 complained of fever and headache in the same consultation visit.
These two different symptoms occurred over different periods of time. On the
other hand, tuples with id s5 and s7 show that the same patient p2 visited the
doctor on different occasions for his cough.

If a user wants to find patients who have fever on 1 January 2015 in this data-
base, s/he can issue a keyword query such as {Patient, fever, 01/01/2015}.
However, this query will return additional answers such as patient p2 who is born
on 1 January 2015 but has fever on 9 March 2015. In order to retrieve answers
that match the user’s intention, we need to associate the time information to the
appropriate keywords. Here, we use square brackets to indicate this association.
Hence, the query {Patient, fever[01/01/2015]} refers to the patients who

c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-44403-1 1

4 X. Jia et al.

Fig. 1. Example clinic database

have fever on 1 January 2015 while the query {Patient[01/01/2015], fever}
refers to the patients who are born on 1 January 2015 and have fever at some
point in time.

We further extend the time information to support queries with intervals.
For example, the query {Patient, fever [01/01/2015 - 01/31/2015]} will
return patient p1 who has fever in the month of January 2015. Besides associating
a keyword with time information, we also support queries with temporal rela-
tionships between keywords. The work in [2] identified 13 temporal relationships
between two time intervals including OVERLAP, BEFORE which form the set of
reserved words in our temporal keyword queries. For example, query {Patient,
fever BEFORE cough} will return patient p1 who has fever before cough.

A naive approach to handle temporal keyword queries is to use the traditional
inverted list to retrieve all tuples containing the keywords and then filter them
based on time constraints. However, this leads to many wasted computations to
obtain candidate answers which eventually do not satisfy the time constraints.
In this work, we address the problem of keyword search in temporal databases by
providing support for complex queries with time-associated keywords and pre-
defined temporal relationships between keywords. We design a target-oriented
search algorithm to evaluate such queries. We augment selected nodes in the
data graph with time boundaries to enable time-aware pruning during the search
process. We also incorporate overlapping interval partitioning into the keyword
inverted lists to filter nodes that do not satisfy the time constraints. Experiment
results show that the proposed approach is efficient and effective in pruning

Target-Oriented Keyword Search over Temporal Databases 5

invalid answers early. To the best of our knowledge, this is the first attempt to
support keyword search over temporal databases.

The rest of the paper is organized as follows. Section 2 summarizes the related
works. Section 3 gives the preliminaries. Section 4 presents our proposed solution
ATQ. Section 5 contains performance study and we conclude in Sect. 6.

2 Related Work

Relational keyword search can be classified into schema graph approach [1,11,
15,18,19] and data graph approach [5,8,9,12,14]. The schema graph approach
models the database schema as a directed graph where each node is a relation
and edges are key-foreign key reference between two relations. The work in [11]
proposes a breadth-first traversal on the schema graph to generate a set of can-
didate networks and limit the maximum number of joins allowed. [10,15] focus
on finding top-k answers and use AND/OR-semantics. [19] returns answers that
are semantically meaningful by identifying the query context and interpreting
search target.

In the data graph approach, the database is modeled as a graph where
nodes represent tuples and edges represents key-foreign key. [5] uses backward
expansion search algorithm to find Steiner trees that contain all the keywords.
[12] improves the search efficiency of [5] with bidirectional search technique.
[8] employs a dynamic programming technique to identify the top-k minimal
Steiner trees. [9] uses a bi-level index to quickly compute the shortest distances.
All these works do not handle queries with time intervals and they regard dates
as standard keywords for matching.

While there are some works [6,16] that provide support for simple temporal
keyword queries on XML, their evaluation is based on the hierarchical structure
of XML trees and is not applicable to the general graph model of relational data.
Further, complex temporal queries involving relationship between two keywords
and associating time constraints to different keywords are not considered.

3 Preliminaries

Temporal databases are known to support two time dimensions: the transaction
time and the valid time [17]. Here, we focus on the valid time where the attribute
value holds.

We model a temporal database D as a data graph, G = (V,E), where V is
the set of nodes and E is the set of edges. A node corresponds to a tuple in
D, and an edge (u, v) ∈ E, represents a key-foreign key constraint between two
tuples. Each node is labeled with tuple id. Figure 2(a) shows the data graph of
our example database in Fig. 1, while Fig. 2(b) shows the corresponding schema
graph where each node is a relation and an edge denotes the key-foreign key
constraint between two relations.

6 X. Jia et al.

Fig. 2. Data graph and schema graph of clinic database in Fig. 1

We represent a temporal keyword query as {head : body} where

1. head is a set of keywords indicating the search target. The search target is the
user’s search intention when issuing a query. Here, we give users the option
to explicitly indicate his search target in the head of the query. If the user
does not specify any search target, we would use existing methods to identify
them [3,4,19], and rewrite the query into the above temporal keyword query
format where head is the search targets identified.

2. body is a set of keywords indicating the query condition. Some of these key-
words may be constrained by time intervals, and the user may specify tem-
poral relationships among the keywords.

Table 1 gives the syntax of temporal keyword query in Backus-Naur Form
(BNF). Based on the grammar, we can formulate a variety of temporal keywords
queries as shown in Table 2. Queries C1 to C4 are similar to standard keyword
queries, except that the search target is explicitly specified at the head of the
query to facilitate the efficient retrieval of relevant answers. Queries C5 to C9

involve time information and temporal relationships between keywords which
are not handled by existing keyword queries.

An answer to a temporal keyword query Q over a data graph G is a subgraph
which contains nodes that match all the keywords in Q. Figure 3 shows the
possible answers to the query C2 which finds patients who have fever and cough.

Table 1. Syntax of temporal keyword query in BNF

<query> ::= {<head> : <body>}
<head> ::= ε | <search list>

<search list> ::= <relation> | <value> | <relation>, <search list> | <value>,

<search list>

<body> ::= <cond> | <cond>, <body>

<cond> ::= <term> | <term><temporal relation><term>

<term> ::= <keyword> | <time associated keyword>

<keyword> ::= <relation> | <value>

<time associated keyword> ::= keyword [<time>] | keyword [<time>, <time>]

<temporal relation> ::= BEFORE | AFTER | EQUAL | MEET | MET BY | START |
STARTED BY | OVERLAP | OVERLAPPED BY |
CONTAIN | DURING | FINISH | FINISHED BY

Target-Oriented Keyword Search over Temporal Databases 7

Table 2. Temporal keyword queries for clinic database

Query Meaning

C1{Patient : fever } Find patients who have fever

C2{Patient : fever, cough} Find patients who have fever and cough

C3{Patient, male : fever, cough} Find male patients who have fever and cough

C4{Doctor, Patient : fever, cough } Find doctors and patients pairs with fever

and cough

C5{Patient : fever BEFORE cough } Find patients who have fever before cough

C6{Patient : fever[1/1/2015, 31/1/2015],

cough[1/1/2015, 31/1/2015] }
Find patients who have fever and cough in

January 2015

C7{Patient : fever[1/1/2015, 31/1/2015] BEFORE

cough[1/1/2015, 31/1/2015] }
Find patients who have fever before cough in

January 2015

C8{Doctor, Patient : Visit[1/1/2015, 31/1/2015] } Find doctors and patients pairs with

consultation visits in January 2015

C9{Doctor, Patient : Visit[1/1/2015, 31/1/2015],

fever[1/1/2015, 31/1/2015]}
Find doctors and patients pairs with

consultation visits for fever in January

2015

Nodes that match the keywords in the query body are highlighted and patients
p1, p2, and p3 are retrieved.

Note that the placement of a keyword in the query head or query body may
lead to different answers. For example, Fig. 4 shows the possible answers to the
query {Patient: male, fever, cough} which include male patients who have
fever and cough (Fig. 4(a) and (b)) as well as female patients who have seen male
doctors for fever and cough (Fig. 4(c)). However, if the keyword “male” is in the
head of the query as in query C3, the answers will consist of only Fig. 4(a) and
(b). This allows user to clearly indicate his search intention.

Fig. 3. Candidate answers for query C2 = {Patient: fever, cough}

Fig. 4. Possible answers for query {Patient: male, fever, cough}

8 X. Jia et al.

We parse a temporal keyword query into the following 3 sets:

a. Khead is a set of <k, t> pairs where k is a keyword that occurs in the query
head and t is the time information associated with k.

b. Kbody is a set of <k, t> pairs where k is a keyword that occurs in query body
and t is the time information associated with k.

c. TR is a set of (p1, tr, p2) where p1 ∈ Kbody and p2 ∈ Kbody and tr is the
temporal relationship between p1 and p2.

Consider query C5. We have Khead = {< Patient, >}, Kbody = {< fever, >,
< cough, >} and TR = {(< fever, >, BEFORE, < cough, >)}. For query C6, we
have Khead = {< Patient, >}, Kbody = {< fever, [1/1/2015, 31/1/2015] >,
< cough, [1/1/2015, 31/1/2015] >} and TR = ∅. These information will be uti-
lized in the proposed target-oriented search algorithm described in the next
section.

4 Proposed Solution

We design a target-oriented search algorithm to answer keyword queries over a
temporal database modelled as a data graph. Existing data graph keyword search
techniques such as BANKS [5] and Bidirectional [12] regard time constraints as
keywords to be matched and will return answers that may not satisfy users’
search intention. A naive approach to process temporal keyword queries is to
extend these methods by first ignoring the time constraints to retrieve all the
possible matches and then using the time constraints to filter out invalid answers.
This is computationally inefficient.

The proposed algorithm, called ATQ, utilizes the following two strategies to
prune the search space:

1. Target-oriented search. Since our query allows users to specify their search
intention, we make use of the schema graph to direct the search to the relevant
nodes.

2. Time-aware pruning. Given that our query contains temporal constraints, we
augment nodes in the data graph with time boundaries to quickly determine
if a subtree can satisfy the time constraints. Subtrees that cannot satisfy the
time constraints will not be explored.

4.1 Target-Oriented Search

The ATQ algorithm begins by finding matching nodes for the keywords in Khead

and Kbody. Since our keywords may be associated with time information, it is not
efficient to use the standard keyword inverted list to retrieve all the tuples that
contain the keyword, and then filter them based on time constraints. Instead, we
group the tuples in the inverted list according to their relations, and index these
tuples with the state-of-the-art Overlap Interval Partitioning [7]. This allows us
to quickly retrieve only those tuples that overlap with the time interval associated
with the keyword.

Having found these matching nodes, we construct answers to the query by
connecting them. The work in [5] uses Dijkstra’s algorithm to find the connecting

Target-Oriented Keyword Search over Temporal Databases 9

paths between all pairs of matching nodes. This leads to overwhelming number
of answers, many of which are complex and do not satisfy the user’s search
intention. The Occam’s razor principle states that the simplest answer is always
favored and this translates to the shortest path that connects the matching
nodes. Here, we utilize the schema graph to find the shortest path between the
relations corresponding to the matching nodes.

Figure 2(b) shows the schema graph of the clinic database in Fig. 1. Each
node is a relation and an edge denotes the key-foreign key constraint between
two relations. For example, in query C5 = {Patient: fever BEFORE cough},
the keyword Patient in Khead corresponds to the Patient relation, while the
keywords fever and cough in Kbody correspond to the Symptom relation. Based
on the schema graph, the shortest path between these relations is via the Visit
relation. As such, when we traverse the data graph to construct query answers,
we do not need to visit nodes that correspond to the Doctor relation as they are
not part of the shortest path.

With this, our target-oriented search comprises of two phases. The first phase
aims to construct a partial answer by starting from a node that matches a
keyword in Kbody to find a connected component involving nodes that match
all the keywords in Khead. The second phase completes the search process by
finding nodes that match the remaining keywords in Kbody as well as satisfy the
temporal constraints, if any.

Consider the query C5 and the data graph in Fig. 2(a). We start with s1, a
matching node for the keyword fever, and visit the node v1, followed by p1. Note
that we do not need to visit d1 as it corresponds to the Doctor relation which
does not lie on the shortest path from Symptom to Patient (see Fig. 2(b)). At
this point, we have found a partial answer, that is, patient p1 with fever. Next,
we complete the search by checking if p1 has a cough which occurs after fever. We
traverse the data graph from p1 to the V isit nodes v1 and v2. The node v1 does
not have any neighbour nodes that match the keyword cough, whereas v2 has the
matching node s3. Comparing the time intervals of s1 and s3, since they satisfy
the temporal relationship BEFORE, we return this subtree (s1 − v1 − p1 − v2 − s3)
as an answer to the query.

4.2 Time-Aware Pruning

In general, a node may have a large number of neighbours. Here, we want to use
the temporal constraints in a query to prune subtrees that will not contribute to
the query answer. We allow nodes in the data graph to be augmented with time
boundaries. In selecting which relations whose nodes need to be augmented with
time boundaries, we focus on relations which have a key-foreign key constraint.
Given two such relations R1 and R2 where R2 contains the foreign key, we
estimate the pruning power obtained by augmenting the nodes of R2 as |R2|/|R1|.
For our example clinic application, suppose the Patient relation has 100 tuples
and the Visit relation has 5000 tuples, then it will be useful to augment Visit
nodes with time boundaries to direct the search since each patient will have an
average of 50 visits.

10 X. Jia et al.

Let u be a node in the data graph, Su be the set of nodes in the subtree rooted
at u, and Su[R] be the set of nodes in Su that belong to the relation R. Sup-
pose min(Su[R]) and max(Su[R]) are the earliest and latest time of the nodes
in Su[R]. Then we associate u with the triplet <R,min(Su[R]),max(Su[R])>
to indicate the time boundary of a subset of nodes for R. We use this informa-
tion to eliminate subtrees whose time boundaries are outside the query’s time
constraints.

Fig. 5. Augmented data graph with time boundary

Figure 5 shows a data graph where the Visit nodes of a new patient p6 are
augmented with the time boundaries of the Symptom nodes. For Visit node v8,
it has two Symptom nodes s17 and s18 spanning the periods [3/1/2015, 5/1/2015]
and [7/1/2015, 10/1/2015] respectively. Thus, the time boundary covered by
node v8 is [3/1/2015, 10/1/2015]. A partial answer for the query C5 = {Patient:
fever BEFORE cough} over this data graph is s18 − v8 − p6, indicating that
patient p6 has fever from 7/1/2015 to 10/1/2015.

Recall that the BEFORE relation in Allen’s Algebra [2] requires that the start
time of the second interval must be greater than the end time of the first interval.
Hence, when we try to check if p6’s fever is BEFORE cough, we do not need to
check all p6’s Visit nodes. Instead, only cough that occurs after 10/1/2015 up to
the current date (currentDate) can contribute to the query answer. Our time-
aware pruning strategy determines a valid range [10/1/2015, currentDate] and
checks if this range overlaps with the time boundaries of p6’s Visit nodes. In
this example, we only need to traverse v9 and v10 since their time boundaries
overlap with the valid range.

On the other hand, suppose cough is associated with a time inter-
val as in query C7 = {Patient : fever[1/1/2015, 31/1/2015] BEFORE
cough[1/1/2015, 31/1/2015]}. Then the valid range for cough should be
[10/1/2015, 31/1/2015]. In this case, only the time boundary of v9 overlaps
with this valid range.

Table 3 shows the valid ranges corresponding to all possible temporal rela-
tionships when we are given the interval of a partial answer I1 = [s1, e1] and the
interval I2 = [s2, e2] of a time-associated keyword. A dash entry (′−′) indicates
that there is no valid range, and the partial answer can be pruned in this case.

Target-Oriented Keyword Search over Temporal Databases 11

Table 3. Computation of valid range

4.3 Algorithms

We incorporate the target oriented search strategy and time-aware pruning strat-
egy into our ATQ (Answering Temporal Query) algorithm. Details are given in
Algorithm 1.

We first parse an input query into three sets: Khead, Kbody and TR (Line 1).
For each tuple < k, t > in the set Khead, we retrieve the set of relations corre-
sponding to the nodes that match k (Lines 2–3). For each tuple <k, t> in the set
Kbody, we retrieve the set of nodes that match k and satisfy its associated time
constraint t (Lines 4–5). We select the set Vkmin

that has the least number of
matched nodes for a keyword in Kbody to start the search (Line 6). For example,
in query C4, the nodes that match the keyword fever are {s1, s6, s10}, and the
nodes that match cough are {s3, s5, s7, s9}. We start the search with the smaller
set as it enables us to narrow the search space quickly.

Fig. 6. Construction of a partial answer tree for query C4

12 X. Jia et al.

For each node v ∈ Vkmin
, we search from v along the shortest path based on

the schema graph to connect nodes that can match the keywords in Khead (Lines
7–25). We maintain two stacks: NodeStack keeps the traversed nodes in G, and
Partial stores the subtrees of partial answers built during the search process. We
also maintain a MatchList to keep track of the keywords in Khead that we have
found so far. In our example, suppose we start with node s1. We first add it to
NodeStack, and a partial tree is created with s1 as shown in Fig. 6(a). Since s1’s
relation does not match any keyword in Khead, we get its relevant neighbor v1
in the shortest path {Symptom − V isit − Patient}, add v1 to NodeStack and
connect v1 to the partial answer tree (see Fig. 6(b)).

When a node v matches some keyword in Khead, we add v to MatchList
(Lines 14–15). If not, we call function getRelevantNeighbours() to find the set
of nodes to traverse next (Lines 26–39). From Fig. 6(b), we see that v1 does not
match any keyword in Khead. Hence, we obtain v1’s relevant neighbor p1. Since
p1’s relation matches Patient, we add p1 to the MatchList and connect p1’s node
to the partial answer tree. At this point, MatchList has not satisfied Khead as
we still need to match Doctor. Hence, the algorithm continues with the next
relevant neighbor of v1. This time, d1 is found and is added to the MatchList.
The partial answer tree obtained is shown in Fig. 6(c).

When MatchList satisfies Khead, we check if the partial answer treev satisfies
Kbody (Lines 16–17). If so, treev is an answer to the query and we add it into the
result set Results (Lines 18). Otherwise, we get the set of lowest common ances-
tors (LCA) for the nodes in MatchList (Lines 20). In our example, since p1’s
relation matches the keyword Patient in Khead and d1’s relation matches the
keyword Doctor in Khead, we add p1 and d1 to MatchList. Although MatchList
satisfies Khead, the partial answer tree does not satisfy Kbody. As such, we obtain
the LCA of the nodes in MatchList, that is, {v1, v2} in this case.

For each node in the LCA set, we call Algorithm reverseSearch to find
nodes that match the remaining keywords in Kbody (Lines 21–23). This algorithm
returns a tree that is an answer to the query and is added to the result set (Line
24). Algorithm reverseSearch (see Algorithm 2) takes as input a partial answer
tree and tries to construct the complete answer by finding nodes that match the
remaining keywords in Kbody. It also uses a stack NodeStack to keep track of the
nodes to be processed and calls function getRelevantNeighbours() to find the
set of nodes to traverse next (Lines 5–6). For each node u to be traversed, if u
matches a keyword in Kbody, we check that u satisfies the time constraints and
connect u to the answer tree (Lines 7–10). When tree matches all the keywords
in Kbody, we have an answer (Lines 11–12). If u does not match a keyword
in Kbody, we perform time-aware pruning by calling the function hasOverlap()
(Lines 14–17). This function computes the valid range and checks if this range
overlaps with the time boundary of node u (Lines 19–26).

Continuing with our example in Fig. 6, we try to match the remaining key-
word cough in Kbody. The relevant neighbor of v1 is s2. However, s2 does not
match the keyword cough. We proceed to the next node v2 in the LCA set. The
relevant neighbors of v2 are {s3, s4}. Since s3 matches the keyword cough, s3 is

Target-Oriented Keyword Search over Temporal Databases 13

Algorithm 1. ATQ Algorithm
input : query Q, data graph G, schema graph H
output: Result set Results

1 Parse query Q to get Khead, Kbody, and TR
2 foreach tuple 〈k, t〉 in Khead do
3 Rk ← the set of relations corresponding to the nodes that match k

4 foreach tuple 〈k, t〉 in Kbody do
5 Vk ← the set of nodes in G that match k and satisfy the time constraint t

6 Let kmin be the keyword in Kbody with the least number of matched nodes,
7 foreach v ∈ Vkmin do
8 Initialize NodeStack, Partial to empty stacks;
9 treev ← create a tree with root v

10 push(v, NodeStack); push(treev, Partial)
11 MatchList← ∅
12 while NodeStack is not empty do
13 u ← pop(NodeStack); treev ← pop(Partial)
14 if u’s relation matches some keyword in Khead then
15 add u to MatchList
16 if MatchList satisfy Khead then
17 if treev satisfy Kbody then
18 add treev to Results

19 else
20 W ← getLCA(MatchList)
21 foreach w ∈ W do
22 let tree′

v be a copy of treev
23 tree ← reverseSearch(tree′

v, w, Kbody , TR)
24 add tree to Results

25 MatchList← ∅
26 R =

⋃
k∈Khead

Rk

27 N = getRelevantNeighbours(u, R, H)
28 foreach node n in N do
29 let tree′

v be a copy of treev
30 connect n to tree′

v

31 push(n, NodeStack)
32 push(tree′

v, Partial)

33 Function getRelevantNeighbours(u, R, H)
34 N ← ∅
35 Let Nu be the set of nodes that are one hop away from u
36 foreach v in Nu do
37 if relation(v) is on the shortest path from relation(u) to some relation

in R in the schema graph H then
38 N ← N

⋃ {v}
39 return N

14 X. Jia et al.

Algorithm 2. reverseSearch (tree, v, Kbody, TR)
input : partial answer tree, LCA node v, Kbody, temporal relationship TR
output: result tree

1 Initialize NodeStack to an empty stack
2 push(v, NodeStack)
3 while NodeStack is not empty do
4 u ← pop(NodeStack)
5 Let R be the set of relations that correspond to the remaining keywords in

Kbody that has not been matched in tree
6 N = getRelevantNeighbours(u, R, H)
7 foreach node u in N do
8 if u matches keyword in Kbody then
9 if u satisfies the time constraints then

10 connect u to tree
11 if tree matches all the keywords in Kbody then
12 return tree

13 else
14 Let I be the interval constrained by tree
15 if hasOverlap(I, u, Kbody, TR) then
16 connect u to tree;
17 push(u, NodeStack)

18 return ∅
19 Function hasOverlap(I, u, Kbody, TR)
20 foreach 〈k, t〉 ∈ Kbody do
21 Let TRk ⊂ TR be the set of temporal relationships involving k
22 foreach tr ∈ TRk do
23 range ← getValidRange(I, tr, t)
24 if range overlap Boundary[u] then
25 return true

26 return false

connected to the partial tree as shown in Fig. 6(d). We return this tree as an
answer to query C4 since it contains all the keywords in Kbody.

5 Performance Study

We evaluate the performance of ATQ and compare it with BANKS [5] and
Bidirectional [12]. All the algorithms are implemented in Java and experiments
are carried out on a 1.4 GHz Intel Core i5 CPU with 4 GB RAM. Each experiment
is repeated 10 times and we report the average results. We use the following
datasets in our experiments.

Target-Oriented Keyword Search over Temporal Databases 15

1. Clinic dataset1. It contains information about patient consultations with doc-
tors. We use 565 records from the real world dataset as seeds whereby we
generate 50 visits per day from 2006 to 2016, and randomly choose a patient
and a doctor for each generated visit. For each visit, we randomly assign
up to 5 symptoms. The start date of each symptom varies between 1 to 14
days before the visit date. The end date of each symptom is set to be the
visit date.

2. Employee dataset2. This dataset contains the job histories of employees, as
well as the departments where the employees have worked in from 1985 to
2003.

3. ACMDL dataset3. This publication dataset is contains information about
authors, proceedings, editors and publishers from 1969 to 2011.

Table 4 shows the schema of these datasets and the number of tuples in each rela-
tion. We design two sets of queries for each dataset. The first set does not involve
any time constraint, while the second set contains keywords associated with time
information and temporal relationships. Queries for the Clinic dataset is shown
in Table 2, while queries for the Employee and ACMDL are listed in Tables 5 and
6 respectively.

Table 4. Dataset schemas and number of tuples for each relation

Clinic # of tuples

Doctor(did, dname, gender) 149

Patient(pid, pname, gender, birthday, ethnicity, postalCode) 1,033

Visit(vid, date, pid, did) 182,600

Symptom(sid, sname, startDate, endDate, vid) 430,470

Employee # of tuples

Department(dept no, dept name) 9

Employees(emp no, fname, lname, gender, hire date) 300,024

Dept emp(deid, emp no, dept no, from date, to date) 331,603

Title(tid, title, emp no, from date, to date) 443,308

ACMDL # of tuples

Publisher(publisherid, code, name) 40

Proceeding(procid, title, date, area, publisherid) 4,176

Editor(editorid, fname, lname) 20,008

Edit(editorid, procid) 20,712

Paper(paperid, procid, date, ptitle) 248,185

Author(authorid, fname, lname) 257,694

Write(authorid, paperid) 550,000

1 This dataset is not available due to patient confidentiality.
2 https://dev.mysql.com/doc/employee/en/.
3 http://dl.acm.org/.

https://dev.mysql.com/doc/employee/en/
http://dl.acm.org/

16 X. Jia et al.

Table 5. Temporal keywords queries for Employee dataset

Query Intended meaning

E1 {Employee: Engineer} Find employees who are engineers.

E2 {Employee: Engineer, Manager} Find employees who have been engineer and

manager before.

E3 {Employee, Female: Engineer, Manager} Find female employees who have been engineer

and manager before.

E4 {Employee, Department: Engineer} Find employees who are engineers and their

departments.

E5 {Employee: Engineer BEFORE Manager} Find employees who are engineers before

coming managers.

E6 {Employee: Manager[1/1/1990, 1/1/2000],

Engineer[1/1/1990, 1/1/2000]}
Find employees who have been engineer and

manager from 1990 to 2000

E7 {Employee: Manager[1/1/1990, 1/1/2000]

BEFORE Engineer[1/1/1990, 1/1/2000] }
Find employees who are engineers before

becoming managers from 1990 to 2000

E8 {Employee, Department:

Engineer[1/1/1990,1/1/2000]}
Find employees and departments where these

employees are engineers from 1990 to 2000

E9 {Employee, Department:

Manager[1/1/1990,1/1/2000],

Engineer[1/1/1990,1/1/2000]}

Find employees who have been engineer and

manager from 1990 to 2000 and their

departments

Table 6. Temporal keywords queries for ACMDL dataset

Query Intended meaning

A1 {Author: Integration} Find authors who has published papers on

“Integration”

A2 {Author: Integration, Cleaning} Find authors who has published papers on

“Integration” and “Cleaning”

A3 {Proceeding, SIGMOD: Integration} Find papers published in the “SIGMOD”

proceeding that are on “Integration”

A4 {Publisher, Proceeding: Data, Integration} Find publishers and proceedings pair where the

proceedings contain papers on “Data

Integration”

A5 {Author: Media BEFORE AI} Find authors who have published papers in

“Media” proceedings prior to publishing

papers in “AI” proceedings

A6 {Author: Media[01/01/2000, 01/01/2008],

AI[01/01/2000, 01/01/2008]}
Find authors who have published papers in

both “Media” and “AI” proceedings from

2000 to 2008

A7 {Author: Media[01/01/2000, 01/01/2008]

BEFORE AI[01/01/2000,01/01/2008]}
Find authors who have published papers in

“Media” proceedings before publishing

papers in “AI” proceedings from 2000 to

2008

A8 {Proceeding, Publisher:

Integration[1/1/2000, 1/1/2008]}
Find the publishers and proceedings that have

included papers on “Integration”from 2000

to 2008

A9 {Proceeding, Publisher:

Integration[1/1/2000, 1/1/2008],

Data[1/1/2000, 1/1/2008]}

Find the publishers and proceedings that have

included papers on “Data Integration”from

2000 to 2008

Target-Oriented Keyword Search over Temporal Databases 17

5.1 Experiments on Queries Without Time Constraints

We first evaluate the performance of our approach using queries that do not
involve time information. These queries correspond to C1 to C4 in Table 2, E1

to E4 in Table 5, and A1 to A4 in Table 6. We compare the runtime of ATQ
with BANKS [5] and Bidirectional [12]. Since both BANKS and Bidirectional
do not handle keywords that match relation names, we modify these algorithms
to consider all the nodes of the queried relation as matching nodes. For fair
comparison, we report the time taken by these methods to return the first 20
answers.

Figure 7 shows the results for the 3 datasets. We observe that ATQ out-
performs Bidirectional and BANKS for all the queries, with BANKS being the
slowest. This indicates the advantage of our target-oriented search strategy. For
the Clinic dataset, we see that the runtimes of ATQ for queries C2 and C3

are lower than C1 although these queries have more keywords than C1. This is
because ATQ will make use of the keyword with the least number of matching
nodes to generate a small set of partial answers. This reduces the time needed
to check if these partial answers are valid during the reverseSearch process to
obtain the complete answers. On the other hand, the runtime of ATQ for query
C4 increases compared to C2 and C3. This is because C4 has an additional search
target relation in the head of the query, leading to a larger number of matching
nodes, thus the time needed to find the partial answers is longer. We observe
similar trends for the queries on the Employee and ACMDL datasets.

5.2 Experiments on Queries with Time Constraints

Next, we evaluate the performance of our approach to process keyword queries
that involve time. These queries correspond to C5 to C9 in Table 2, E5 to E9 in
Table 5, and A5 to A9 in Table 6. We extend existing methods BANKS and Bidi-
rectional to handle temporal keyword queries by ignoring the time intervals and
temporal relationships in these queries and processing the keywords to obtain
candidate answers. Answers that do not satisfy the time constraints are filtered
by a post-processing step.

At the same time, we implemented ATQ−, a variant of the ATQ algorithm
which does not utilize the augmented data graph (time boundaries in the nodes)
and the overlapping time interval in the inverted lists for the keywords. Instead,
ATQ− also has a post-processing step to filter invalid answers.

Figure 8 shows the results for the 3 datasets. We observe that both ATQ
and ATQ− outperform BANKS and Bidirectional for all the queries by a large
margin. Further, we see that time-aware pruning strategy enables ATQ to be
faster than ATQ−. In particular, for query C7, we observe that ATQ is very much
faster than ATQ−. This is because the combination of time interval constraints
and temporal relationships leads to a narrow valid range that allows more invalid
partial answers can be pruned.

18 X. Jia et al.

Fig. 7. Simple queries Fig. 8. Queries with time constraints

6 Conclusion

In this paper, we have examined how keyword queries can be expressed and
supported over temporal databases. We introduced a new representation for
users to specify their search target, associate keywords with time constraints and
indicate temporal relationships between keywords. This enables flexible querying
of complex temporal relationships in the databases. We have designed an efficient
ATQ algorithm that incorporates a target-oriented search process and time-
aware pruning to retrieve answers to these queries. Experimental results on 3
datasets showed that the proposed approach outperforms current state-of-the-
art keyword search methods. Future work includes a time-aware ranking scheme
and extending temporal keyword queries to handle uncertainty.

Target-Oriented Keyword Search over Temporal Databases 19

References

1. Agrawal, S., Chaudhuri, S., Das, G.: DBXPlorer: a system for keyword-based search
over relational databases. In: IEEE ICDE (2002)

2. Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26,
832–843 (1983)

3. Bergamaschi, S., Domnori, E., Guerra, F., Trillo Lado, R., Velegrakis, Y.: Keyword
search over relational databases: a metadata approach. In: ACM SIGMOD (2011)

4. Bergamaschi, S., Guerra, F., Interlandi, M., Trillo-Lado, R., Velegrakis, Y.: Quest:
a keyword search system for relational data based on semantic and machine learn-
ing techniques. VLDB J. 6, 1222–1225 (2013)

5. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using banks. In: IEEE ICDE (2002)

6. Bin-Thalab, R., El-Tazi, N., El-Sharkawi, M.: TMIX: temporal model for indexing
XML documents. In: International Conference on Computer Systems and Appli-
cations (2013)

7. Dignös, A., Böhlen, M., Gamper, J.: Overlap interval partition join. In: ACM
SIGMOD (2014)

8. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost
connected trees in database. In: IEEE ICDE (2007)

9. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs.
In: ACM SIGMOD (2007)

10. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style keyword search
over relational databases. In: VLDB (2003)

11. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational data-
bases. In: VLDB (2002)

12. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R.,
Karambelkar, H.: Bidirectional expansion for keyword search on graph databases.
In: VLDB (2005)

13. Kulkarni, K., Michels, J.: Temporal features in SQL:2011. SIGMOD Rec. 41, 34–43
(2012)

14. Li, G., Ooi, B., Feng, J., Wang, J., Zhou, L.: EASE: efficient and adaptive keyword
search on unstructured, semi-structured and structured data. In: ACM SIGMOD
(2008)

15. Luo, Y., Lin, X., Wang, W., Zhou, X.: SPARK: top-k keyword query in relational
databases. In: ACM SIGMOD (2007)

16. Manica, E., Dorneles, C., Galante, R.: Supporting temporal queries on XML key-
word search engines. J. Inf. Data Manag. 1(3), 471 (2010)

17. Özsoyoğlu, G., Snodgrass, R.: Temporal and real-time databases: a survey. IEEE
Trans. Knowl. Data Eng. 7(4), 513–532 (1995)

18. Sandeep, T., Guy, M.: SQAK: doing more with keywords. In: ACM SIGMOD
(2008)

19. Zeng, Z., Bao, Z., Le, T., Lee, M., Ling, T.: ExpressQ: identifying keyword context
and search target in relational keyword queries. In: CIKM (2014)

General Purpose Index-Based Method
for Efficient MaxRS Query

Xiaoling Zhou1(B), Wei Wang1, and Jianliang Xu2

1 University of New South Wales, Sydney, Australia
{xiaolingz, weiw}@cse.unsw.edu.au

2 Hong Kong Baptist University, Hong Kong, China
xujl@comp.hkbu.edu.hk

Abstract. The Maximizing Range Sum problem is widely applied in
facility locating, spatial data mining, and clustering problems. The cur-
rent most efficient method solves it in time O(n log n) for a particular
given rectangle size. This is inefficient in cases where the queries are fre-
quently called with different parameters. Thus, in this paper, we propose
an index-based method that solves the maxRS query in time O(log n) for
any given query. Besides, our method can be used to solve the k-enclosing
problem in time O(1) for any given k value if indexes are sorted accord-
ing to the optimizing criteria, or O((n − k)2k + n log n) without using
any index, which is comparative to the current most efficient work.

Keywords: Maximizing range sum · Index construction · Query
processing

1 Introduction

In this paper, we study the Maximizing Range Sum (maxRS) problem [1–5],
which is also known as the Maximum-enclosing Rectangle Problem in computa-
tional geometry. Given a set of n points P , each with a positive weight w(p),
the maxRS problem finds the placement of an axis-parallel rectangle r of given
size α × β that maximizes the weight sum of points covered by r. The maxRS
problem is well-motivated in recent work [3–5], and is generally applied in facility
location problems [14] for finding the best facility location with maximum num-
ber of potential clients, spatial data mining for extracting interesting locations
from log data [19], and point enclosing problems.

However, existing work targeted at finding efficient algorithms to answer the
query given a particular rectangle size, and they need query time superlinear in
n. Currently, the best method solves the exact maxRS problem in time O(n log n)
[2] based on the plane-sweep algorithm [1], and the best algorithm for the 1 − ε
approximate version of the problem works in time O(n log 1

ε + n log log n) via
grid sampling. This is undesirable in cases where the maxRS queries are asked
frequently with different parameters. For example, in computational geometry,
maxRS serves as a subroutine and is called many times with different rectangle
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 20–36, 2016.
DOI: 10.1007/978-3-319-44403-1 2

General Purpose Index-Based Method for Efficient MaxRS Query 21

Table 1. Comparison of algorithms in terms of space-time tradeoffs

Algorithm Query Space Comment

[2] O(n log n) Θ(n) Exact

[4] O(n log log n) O(n) (1 − ε) approximate with
≥ 1 − 1

n
probability

This paper O(log n) Θ(n · λ) = O(n3) Exact

This paper O(log n) Θ(log n · λ) = O(n2 log n) (1 − ε) approximate guaranteed

Notes: (1) λ is the maximum size of any k-line, and (2) assume ε is a constant.

sizes in point enclosing problems [16]; and in real life applications, a web service
that answers queries like finding the location in a city with most number of
tourist attractions within a given reachable area, will be enquired by tons of
users with different parameters.

Therefore, in this paper, we propose new solutions to this problem that
answer queries much more efficient than previous methods, by making use of
a special precomputed index. The idea of using precomputed index to acceler-
ate query processing is a common one in databases, and our study expands the
spectrum of space-time tradeoff to the maxRS problem. In addition, our method
immediately gives comparable or superior results to other related problems com-
pared with existing solutions.

The main idea of our method is to try to precompute and store as few as
possible the maxRS results for a limited number of rectangle sizes, and yet still
be able to answer any arbitrary query in an efficient manner. Based on the index,
we answer the maxRS query in O(log n) time, which compares favorably with
existing bond O(n log n). Besides, our method solves the k-enclosing rectangle
problem in constant time if the index is sorted according to the optimizing
criteria, or O((n − k)2k + n log n) without using index, which is comparative
to the best time bound achieved so far [11] for general k values. We solve the
k-enclosing problem for all possible k values in time O(n3 log n), while the direct
adaption of existing method [11] takes time O(n4). On top of the above, our
index can be used to answer maximum point enclosing problems with O(log n)
query time. Details are presented in Sect. 6.

We highlight our main contributions in the following:

– We design an index structure that supports very fast maxRS queries. The
index is based on novel concepts of changing points and k-lines. The method
provides the possibility of efficient batch query, and space-time tradeoff for
the maxRS problem (Sect. 3).

– We design a query processing technique achieves time O(log n) by nontrivially
adapting the idea of Fractional Cascading based on a tree structure (Sect. 4).

– We present applications of our method on other problems, and the superiority
of our method compared with existing works (Sect. 6).

– We perform experiments on synthetic as well as real datasets to show the
feasibility and efficiency of our methods compared with the state-of-the-art
methods (Sect. 7).

22 X. Zhou et al.

2 Related Work

The MaxRS Problem. Nandy et al. [2] proposed an O(n log n) time algo-
rithm to solve the maxRS problem using the plane-sweeping technique [1] with
interval trees. Choi et al. [3] proposed an external memory solution following
the distribution sweep paradigm [7], and the work was further extended in [5]
by providing solutions to the AllMaxRS problem, which retrieves all the loca-
tions of rectangles achieving the maximum total covered weight. Recognized the
need for further speedup, Tao et al. [4] studied the approximate MaxRS prob-
lem, and obtained a (1 − ε)-approximate answer with high confidence in time
O(n log 1

ε + n log log n) via grid sampling. Instead of finding a rectangle with
maximum cover weight, Das et al. [6] retrieved the highest density axis-parallel
rectangle r where density was defined as the ratio between the covered weight
of r and its area.

All the above works solved the exact or approximate maxRS problem for a
fixed query rectangle size only, required at least query time superlinear in n,
and they did not consider using an index. Our work is the first that builds a
special index to speed up the query processing time to O(log n), hence provides a
different solution exploiting the space-time tradeoff and is beneficial to frequent
queries.

k-Enclosing Problem. Driven by the wide application in pattern recogni-
tion [13], facility locating [14], and VLSI chip design [18], the problem of find-
ing the axis-aligned rectangle, square, or circle that encloses k of n points in
R2 and is optimal on some particular criteria (area, perimeter, or diameter
etc.) has been long studied in a large number of works [8–12,15,16]. Aggarwal
et al. [8] obtained the smallest k-enclosing rectangle or square in time
O(nk2 log n) and space O(nk) based on higher-order Voronoi diagrams in 1991.
The complexity was improved several times by subsequent works [9–11]. The
work in [10] improved the time complexity to O(nk2 +n log n) using space O(n)
based on the idea of testing sets of the O(k) nearest neighbors to each point.
Segal et al. [11] solved the problem in time O(n + k(n − k)2) using O(n) space,
which performed better than previous methods on large k values, and they also
proposed solution on d (> 2) dimensions that takes time O(dn+dk(n−k)2(d−1))
and space O(dn).

Datta et al. [9] solved the smallest k-enclosing square problem in O(n log n+
n log2 k) time and O(n) space. The bound was then improved to O(n + (n −
k) log2(n − k)) using O(n) space by Mahapatra et al. [16], which searched the
target square by means of prune and search technique and adopted the maxRS
problem as a subroutine to guide the search. Das et al. [17] addressed the gener-
alized version of above problem, where the desired rectangle may be of arbitrary
orientation, and their method runs in O(n2 log n+kn(n−k)(n−k+log k)) time
using O(n) space.

General Purpose Index-Based Method for Efficient MaxRS Query 23

3 The New Index

We formally define the problem.

Definition 1. Let P be a set of n points1 in 2D Euclidean space R2, and each
point p ∈ P carries a positive value w(p) as its weight. Given non-negative
values α and β, the goal of the maximizing range sum (maxRS) problem is to
place a α × β rectangle r in R2 to maximize the covered weight of r, defined as:
covered-weight(r) =

∑
p∈P∩r w(p).

Note that the rectangles can be placed at any position. We denote maxRS(α, β)
as the maximum total weight that can be achieved given query (α, β).

In this paper, we deal with points with equal weights, a.k.a., the max-
enclosing problem. Our method can be easily extended to handle general
weighted cases (See Sect. 6).

Notations. We introduce some notations used in the rest of the paper. Let
P = { p1, p2, . . . , pn } denotes the given n data points. pi.x (resp. pi.y) denotes
the x-coordinate (resp. y-coordinate) of point pi. We can sort P into P x by the
x-coordinates of the points, and obtain P y analogously. For a pair of different
points pi and pj (i �= j), we can obtain an x-interval a = |pi.x − pj .x|. We have
O(n2) distinct x-intervals, and they are collectively denoted as list A. We obtain
list B of all distinct y-intervals analogously. Given an x-interval ai, and the two
points pl and pr (l, r ∈ [1, n]) in P that form this x-interval (w.l.o.g., assume
pl.x < pr.x), we denote the list of points pj ∈ P such that pl.x ≤ pj .x ≤ pr.x
sorted according to y-coordinate as Sai

. Note that pl and pr are included in Sai
.

More notations will be introduced at their first use in the rest of the paper.

3.1 A Näıve Solution

A näıve idea is to index the maxRS values for all possible queries. While there are
infinite number of possible queries, Lemma 1 divides them into O(n4) equivalent
classes, and this immediately leads to a näıve index and query processing method.

Lemma 1. Given a query (α, β), let a∗ be the largest value in A such that
a∗ ≤ α, and define b∗ analogously. Then maxRS(α, β) = maxRS(a∗, b∗).

The index is essentially an O(n2) × O(n2) matrix, which stores the precom-
puted maxRS values for every (ai, bj) ∈ A × B. An example dataset and its
näıve index matrix is shown in Fig. 1(a), (b). We call the matrix cell (a∗, b∗)
as the target cell of the query. The values of a∗ and b∗ can be obtained using
binary search in A and B, respectively. Therefore, the index size is O(n4), and
the query time is O(log n).

3.2 Index the Changing Points into k-Lines

The näıve index contains many redundant values. Our important observation is
that maxRS values in the matrix follow certain pattern and can be exploited to
further reduce the index size.
1 W.l.o.g., we assume that no two points have the same x (or y) coordinate.

24 X. Zhou et al.

Definition 2 (Changing Point). A changing point (CP) in the matrix is a
cell M [i, j] such that (1) M [i−1, j] = M [i, j −1] = M [i−1, j −1] if any of them
exists, and (2) M [i, j] > M [i − 1, j].

We highlight all the CPs in the example dataset in Fig. 1(b).
We observe that all the CPs with same maxRS value k collectively form a

skyline, which we call k-line. There are n number of k-lines, and they divide
the maxRS matrix into n separate regions, as demonstrated as shaded regions
of different colors in Fig. 1(c). Our new index just stores these n k-lines (each is
organized as a list of CPs sorted on the x-axis). This gives us an index of size
O(n · λ), where λ is the maximum size of any k-line.

Lemma 2. λ is at most O(n2).

The proof is based on the observation that each CP in Lk has distinct x(or y)
intervals, and the size of A and B are bounded by O(n2). Thus, the index size
is upper bounded by O(n3). Note that in real practice, λ is demonstrated to
be consistently linear in n in our empirical evaluation, which leads to cn2 index
space, where c is a constant. Hence, the index size is significantly smaller than
the näıve index.

Fig. 1. Index (Color figure online)

This new index poses challenges on query processing, as the cell of (a∗, b∗)
for the query may not be a CP, hence is not stored in the index; this renders
the previous O(log n) query algorithm inapplicable. Nevertheless, we devise a
novel O(log n) query processing method and introduce it in Sect. 4. The detailed
construction of index is presented in Sect. 5.

4 Query Processing

Next, we introduce our query processing algorithm for the new index based on
k-lines. We start with an algorithm with O(log2 n) complexity and then further
improve it to O(log n) by adapting the Fractional Cascading (FC) technique.

General Purpose Index-Based Method for Efficient MaxRS Query 25

4.1 Dominance Relationship

We first introduce a few notations and useful Lemmas.
Given a query Q with search parameters (α, β), we can map it into a two

dimensional point (α, β) (called query point). Note that every changing point
is also a valid query point, and the same mapping applies. A k-line can be
mapped into a polyline with axis-parallel segments by connecting two adjacent
changing points, q1 and q2 (q1.x < q2.x), via inserting another point (q2.x, q1.y)
in between (refer to blue lines in Fig. 1(c)). In the rest of this section, we will
abuse the notation of k-line and Lk to denote the polyline it maps to. Given
a k-line (Lk), it divides the first quadrant into two disjoint regions, the one on
the lower-left side of it (called LOW (Lk)) and the other on the upper-right side
(called HIGH(Lk)). Points on Lk is included in HIGH(Lk).

We can define a dominance relationship between any two query/matrix
points as follows.

Definition 3 ((Point) Dominance). Let q1 and q2 be two points. q1 domi-
nates q2, denoted as q1 ≺ q2, if and only if q1.x ≤ q2.x∧q1.y ≤ q2.y and q1 �= q2.

Lemma 3. If q1 ≺ q2, then maxRS(q1) ≤ maxRS(q2).

We can generalize the dominance to be between a k-line and a point Q.

Definition 4. ((Line-Point) Dominance). Given a k-line and a point q, q
has to be either in LOW (Lk), or in HIGH(Lk). We say q dominates Lk, denoted
as q ≺ Lk for the former case, and Lk ≺ q for the latter case.

Unlike the point dominance where it is possible that two points do not dominate
each other, a k-line and a point always fall into one of the two dominance orders.
We also have the following Lemma.

Lemma 4. A query point Q ∈ HIGH(Lk) if and only if there is a changing
point q in Lk such that q dominates Q.

4.2 The O(log2 n) Query Processing Method

Given a query (α, β), we only need to find its target cell with parameters (a∗, b∗).
Note that after mapping queries and matrix cells to points, the region defined
by the axes and two adjacent k-lines has the same maxRS values. Therefore,
we only need to determine which region the target cell falls into. This can be
performed by a standard outer binary search on the n disjoint regions formed
by the k-lines. Technically, this requires us to determine the largest k-line that
dominates the target point (a∗, b∗). This step can be performed by another inner
binary search among the CPs of a k-line, thanks to Lemmas 4 and 5. The inner
binary search takes time O(log λ) = O(log n), and hence the total query cost is
O(log2 n).

In the interest of space, in the following, we focus on the inner binary search
step to determine the line-point dominance.

26 X. Zhou et al.

Algorithm 1. DominanceCheck(Li, Q, low , high)
Input : Li is a i-th sky-line; Q is the query point.
Output: 0 if Q is found in Li; 1 if Li dominates Q; -1 if Li does not dominate Q.

1 while high ≥ low do
2 mid ← �(low + high)/2�; q ← Li[mid] ;
3 if q = Q then return 0 ;
4 else if q ≺ Q then return 1 ;
5 else if Q ≺ q then return -1 ;
6 else
7 if q.x ≥ Q.x and q.y ≤ Q.y then
8 high ← mid − 1 ;
9 else /* must be q.x ≤ Q.x and q.y ≥ Q.y */

10 low ← mid + 1 ;

11 return -1 /* No dominating point found ⇒ Q ≺ Li */

The pseudocode of sub-routine to determine the dominance relationship
between the current Li and the query point Q is given in Algorithm 1. Ini-
tially, low and high, the index values into Li, are set to 1 and |Li|, respectively.
At each binary search iteration, we take the middle point q in the current search
scope, and check the dominance relationship between q and Q. There are four
cases:

1. q = Q (Line 3): the query point is a CP in Li, hence we return 0. The outer
binary search will terminate immediately.

2. q dominates Q (Line 4), hence Li dominates Q, and we return 1. The outer
binary search will continue to search among Ljs, where j ∈ [i + 1, n].

3. Q dominates q (Line 5), hence Q dominates Li, and we return -1. The outer
binary search will continue to search among Ljs, where j ∈ [1, i − 1].

4. q and Q do not dominate each other (Lines 7–10). We need to investigate
this further by considering another changing point in Li. This is handled
by moving q towards Q for continuing the binary search. Intuitively, this
abandons the half part of Li that no point inside there could dominate/is
dominated by Q.

Finally, if we exit the while loop, it means no changing points in Li can dominate
Q and vice versa, we know that Q dominates Li in this case due to Lemma 4.

The correctness of the algorithm is provided by the following Lemma.

Lemma 5. Algorithm 1 correctly determines the line-point dominance relation-
ship between Li and Q.

An Example of Algorithm 1. Using the same example as Fig. 1, we assume
the algorithm input is Q(2, 5) and L3. We have L3 = {(3, 6), (4, 4), (6, 3)}. The
search starts with the middle entry q(4, 4) in L3. We cannot decide the dominance
relationship between Q and q since q.x > Q.x∧q.y < Q.y, but we know the right

General Purpose Index-Based Method for Efficient MaxRS Query 27

half of L3 must not contain point dominates or is dominated by Q, as all the
points q′ on right of q have q′.x > q.x > Q.x and q′.y < q.y < Q.y. Therefore, we
search the left half of L3 and find Q dominates entry (3, 6), so −1 is returned.

4.3 The O(logn) Query Processing Algorithm

In this section, we further improve the previous query processing algorithm to
achieve O(log n) complexity by adapting our problem to use the Fractional Cas-
cading (FC) technique. FC can reduce binary searches on multiple sorted lists
into one by judiciously sampling elements from other lists to one single list. A
typical case is to find the smallest number in all the lists no smaller than a query
number.

FC cannot be directly applied due to two major technical challenges. One
is that our inner search is based on dominance checking, which is essentially
2D, while traditional FC essentially works in 1D lists as the lists need to be
sorted. We overcome this by reducing our problem to 1D thanks to the following
Lemma.

Lemma 6. Given Q and Lk, Q ∈ HIGH(Lk) (i.e. maxRS(Q) ≥ k) if and
only if q dominates Q, where q is the CP in Lk with the largest x-coordinate yet
q.x ≤ Q.x.

We call such q the anchor point of Q in Lk. Then, for each Lk, the goal is
to find the anchor point of Q from Lk, so that we can resolve the dominance
relationship between Q and Lk.

The second challenge is that by applying FC directly, the total query cost
will be O(log n + n), even worse than O(log2 n). We overcome this by observing
that we only need to check log n (rather than n) k-lines (i.e., lists). In addition,
though the set of log n lists inspected will be different for different Q, the visiting
order between any two lists is fixed due to the binary search procedure (e.g., the
middle list is always inspected before one of the two quadrant lists). Therefore,
we can construct a binary tree that reflects the binary search process on the k
lists, and apply FC technique bottom up for every parent-child list pairs. We
prove later that the total space is still linear in the total size of the lists.

We show the data structure created for the example dataset (Fig. 1) in Fig. 2
and explain it below:

1. Construct a binary tree following the order of binary search on n values. Each
node with key value i (inside the node) is logically associated with list Li.

2. Each node actually stores a list Ui, constructed as a result of applying FC
recursively in the subtree rooted at it. For a leaf node v, Ui = Li. For an
internal node representing Li, Ui = Li ∪ even(Uleft)∪ even(Uright), where Uleft

and Uright are the U list for the left and right child node of v, respectively.

Additionally, we store three pointers [t1, t2, t3] for each entry e in Ui (See the
blue values shown in Fig. 2(a) above each element e), where t1, t2, t3 point to
the position of the anchor point of e in Li, Uleft, and Uright, respectively.

28 X. Zhou et al.

Fig. 2. Query processing based on FC

Query Processing. We answer a query Q by top-down traversing the tree
nodes and processing their associated Ui lists. We first search the anchor point
of Q in Uroot using standard binary search. Then according to the dominance
relationship between Q and Lroot, we search Uleft or Uright following the pointers
in Uroot, until we determine maxRS(Q) or reach a leaf. In other words, the use
of Algorithm 1 is now replaced with a constant cost operation (of point-wise
dominance checking), thanks to FC.

An Example. Let Q be (2, 5) and we use the data structure in Fig. 2. Anchor
value of Q is 2, and binary search in the root node (i.e., U4) results in ∅, indicating
no point in U4 dominates Q, hence Q ∈ LOW (L4). We need to continue to search
query’s anchor point in the left child node (i.e., U2); this can be done by following
the pointer stored in U4[1] (the last entry we searched in the parent) to go to
U2[2] directly. Since we only sampled even entry of U2 in U4, even though U2[2]
is not the anchor point of Q, we still need to check if the previous entry U2[1]
is. The answer is true, and as U2[1] dominates Q, we get Q ∈ HIGH(L2) based
on Lemma 6. The next step is to search Q’s anchor point in U3 by following
pointer to U3 attached with U2[1], and we get ∅. This indicates no dominate
point of Q in U3, so Q ∈ LOW (L3). Now, we can decide maxRS(Q) = 2, and
the search stops.

Analysis of Space Complexity. We have n Lk lists. Denote the length of
each list Lk as lk, and the total CP lists size is S =

∑n
k=1 lk. Let leaf node has

level 1, and the level of the root is h. Denote Si (resp. Wi) as the total size of L

(resp. U) lists associated in tree level i. Then we have
∑h

i=1 Si =
∑n

k=1 lk = S,
and Wi = Si +

Wi−1
2 . Thus, the total size of all U lists is

∑h
i=1 Wi = S1 +(12S1 +

S2)+ · · ·+(1
2h−1 S1+ 1

2h−2 S2+ · · ·+Sh)) < 2(S1+S2+ · · ·+Sh) = 2S. Therefore,
the total space of Ui and Li lists is linear in total number of CPs.

Analysis of Time Complexity. The size of Uroot list is Wh = 1
2h−1 S1 +

1
2h−2 S2 + · · · + Sh < S. The binary search in Uroot has cost O(log S) = O(log n).
We inspect at most log n non-root nodes in the tree, and each with constant cost
O(1). Therefore, the total search cost is O(log n + log n) = O(log n).

General Purpose Index-Based Method for Efficient MaxRS Query 29

5 Index Construction

In this section, we introduce the index construction and complexity analysis.
If we directly apply existing method in [2] to compute the index, for each

combination of (ai, bi), we initiate a query taking O(n log n) to find its maxRS
value, and finally obtain all the CPs in time O(n5 log n). Whereas in the next sub-
section, we present an algorithm that constructs the index in time O(n3 log n).

5.1 Main Idea

Given a CP in cell M [i, j], it means there exists a rectangle r of size ai × bj that
contains M [i, j] number of points from P . We refer such a rectangle r as the
rectangle represented by this CP. Then we have the following lemma:

Lemma 7. The rectangle represented by each changing point must touch points
from P on all its four edges.2

Lemma 7 narrows down our search space into O(n4) rectangles to find all the
CPs. An implied property of CP is that among all the rectangles containing k
points from P , the rectangle represented by a CP in Lk is the one that cannot
be dominated3 by any other rectangles. This can be clearly observed from the
matrix in Fig. 1(c). Thus, instead of generating all the O(n4) rectangles whose
four edges touch points in P , we find Lk (k ∈ [2 . . . n])4 in the following way: for
each possible rectangle width ai, we find the rectangle rmin with minimum height
(i.e. min bi) such that the pair of points (pl, pr) which forms interval ai lies on
the left and right vertical edges of rmin respectively, and rmin contains exactly
k points. Then rmin is a candidate CP in Lk. After all the ai are processed, we
get O(n2) rmin in Lk, and eliminate the ones that are dominated by others, we
get all the CPs in Lk.

In this idea, we generate O(n3) candidate rectangles. The total construction
cost is closely related to the cost of finding rmin for each ai and k value. We
introduce the structure to find rmin next.

Y-coordinate Distance Arrays. Given ai, recall that points in Sai
are sorted

according to y-coordinates, we assume the size of Sai
is |Sai

|, and denote Sai
=

{p1, p2, . . . , p|Sai
|}. We construct |Sai

|−1 number of y-coordinate distance arrays
over points in Sai

as the following:

– D2 : {|p1.y − p2.y|, |p2.y − p3.y|, |p3.y − p4.y|, · · · , |p|Sai
|−1.y − p|Sai

|.y|}
– D3 : {|p1.y − p3.y|, |p2.y − p4.y|, · · · , |p|Sai

|−2.y − p|Sai
|.y|}

– · · ·
– D|Sai

| : {|p1.y − p|Sai
|.y|}

2 The proof is obvious and omitted due to space limitation.
3 R1 is dominated by R2 if both the width and height of R1 are larger than or equal

to that of R2, the dominance relationship is formally defined in Definition 3.
4 L1 contains the only point (0, 0).

30 X. Zhou et al.

Assume the two points forming ai are pl and pr (l < r) in Sai
, then for each

value k ∈ [2, |Sai
|], we find the height of the minimum rectangle that contains

k points by calling RMQDk
(r − k + 1, l) on Dk. The index of Dk starts from

1. Now the construction cost depends on the cost of answering Range Minimum
Queries on Dk.

Update Distance Arrays. While techniques for answering RMQ on 1D array
have been extensively studied in current literatures, and the most efficient ones
achieve O(1) query time with linear auxiliary index space, they work mainly on
static underlying arrays. If adapted to our dynamic distance arrays Dk, which
change along with ai, the cost of updating the auxiliary index structure for RMQ
outweighs the cost saved by using it.

Another challenge is that after processing interval ai, and move to the next
closest one, say ai+1, such that Sai

and Sai+1 differ by only 1 point pj , then for
each Dk, the number of distance values affected by pj is O(k). For example, if
p3 is removed from D3, the entries being affected are |p1.y − p3.y|, |p2.y − p4.y|,
and |p3.y −p5.y|. Thus, the total number of entries need to be updated in all Dk

(k ∈ [2 . . . |Sai
|]) is O(n2) for each ai, and totally O(n4) for all ai (i ∈ [1 . . . |A|]).

To overcome the above challenges, we devise a tree-based structure that
supports RMQ in time O(log n) as well as updating of each Dk in O(log n)
according to the following observation.

Lemma 8. When a point p is removed from list Sai
, the O(k) entries that have

to be updated in Dk are continuous, and the updated results are identical to a
continuous part of entries in Dk+1.

Left-Complete Binary Tree. We maintain a left-complete binary tree Tk over
each list Dk in the sense that the left subtree of each internal node is complete.
The leaves of Tk store the elements of Dk, and internal nodes correspond to ranges
of consecutive elements of the list. Each internal node v stores a pointer to a leaf
μ in the subtree rooted at v with minimum distance value. At any time, the size
of the data structure is linear in the number of elements present in the list. The
key value of each node is set as the following: (1) Leaf node’s key is the index
of the element in Dk it stores. (2) The ith internal node in level l has key value
2l ∗ (i − 1) + 2(l−1) + 0.5 (l starts from 0, i starts from 1, and leaf has level 0).

When a point is removed from Sai
, and O(k) continuous entries in the range

Dk[l . . . r] need to be updated, we firstly search l and r in Tk and Tk+1 simul-
taneously. Denote the path of searching l (resp. r) in Tk as FLTk

(resp. FRTk
),

and the forest contained between FLTk
and FRTk

as Fk. Updating Dk[l . . . r] is
achieved by moving Fk+1 to the corresponding position of Fk. The above tree
structure and node key settings guarantee all the key values appear in FLTk+1

and FRTk+1 also appear in FLTk
and FRTk

. Thus the moving can be done
by simply adjusting pointers of nodes in FLTk

, FRTk
, and root nodes in for-

est Fk+1. After the moving step, a bottom-up traversing of paths FLTk
and

FRTk
is performed to update the min pointers in each node. Therefore, for each

General Purpose Index-Based Method for Efficient MaxRS Query 31

ai, although we need to update O(n2) distance values, the total update cost is
O(n log n). The RMQ can be solved in O(log n) time as usual.

5.2 The Complete Algorithm

Algorithm 2 shows our index construction method.

1. We initialize n number of empty sorted lists (Line 1). Each list Lk stores
the currently generated candidate rectangles containing k points. When a
new rectangle R needs to be inserted into Lk(Lines 13–14), we check if R is
dominated by existing entries in Lk. If not, we insert R into Lk, and remove
all elements in Lk that are dominated by R. Here, a rectangle R is represented
by a pair of value (a, b), where a refers to width and b refers to height.

2. At the beginning, we build the n−1 y-coordinate distance arrays for all points
in P , and the auxiliary trees for fast RMQ and range update (Lines 4–7).

3. For each x-interval ai, and for each k ∈ [2 . . . |Sai
|], we query bmin =

RMQTk
(r − k + 1, l)5 on tree Tk to find the minimum height of rectangle

containing k points, l and r are the indexes of the two points in Sai
that

form the x-interval ai. Then we add (ai, bmin) as a candidate rectangle to Lk

(Lines 10–14). For each ai, after all the possible k values are processed, the
auxiliary trees are updated as described in Sect. 5.1 (Lines 15–16).

Total Cost Analysis. There are totally O(n3) rectangles generated, each
takes O(1), and checking whether it is dominated by existing candidates takes
O(log n), so in total it is O(n3 log n) time, and O(n3) space to store rectan-
gles. The first construction of y-coordinate distance arrays and auxiliary trees
costs O(n2) in time and O(n2) in space. For each change of x-interval ai, O(n2)
distance values are updated from all trees, which costs only O(n log n) in time
as analyzed before. There are O(n2) x-intervals, so total tree update cost is
O(n3 log n).

Therefore, our index can be constructed in O(n3 log n) time, and O(n3) space.

6 Other Problems

In this section, we present the applications and advantages of our method for
solving other classic computational geometry problems.

General Weighted maxRS Problem and Approximate Version. If points
in P have different weights, the only difference with analysis in previous sections
is that the number of different maxRS values cannot be bounded by O(n). In
this case, the number of CPs is upper bounded by O(n4). The construction can
be done in O(n4) by simply finding all the rectangles whose four edges touch

5 In the pseudocode of Algorithm 2 Line 12, we make the optimization by calling
RMQTk(1, |Tk|) rather than RMQTk(r − k + 1, l). We omit the proof here.

32 X. Zhou et al.

Algorithm 2. ConstructIndex(list P)
Input : data point list P
Output: The list of changing points Lk for each k ∈ [2, n]

1 Lk ← ∅, ∀k ∈ [2, n] ;
2 P y ← P sorted in decreasing order of y-coordinates ;
3 P x ← P sorted in increasing order of x-coordinates ;
4 for k ← 2 to n do
5 Dk ← { |py

i .y − py
i+k−1.y| | i ∈ [0, n − k + 1] }; /* build dist arrays */;

6 Tk ← the binary tree constructed from Dk ;
7 T ′

k ← a copy of Tk ;

8 for i ← 0 to n − 2 do
9 for j ← n − 1 downto i + 1 do

10 ai ← px
j .x − px

i .x; /* Process each of the O(n2) x-intervals */;
11 for k ← 2 to j − i + 1 do
12 (bmin, py

c , py
d) ← RMQ(1, |Tk|) ;

13 if (py
c , py

d) covers (px
i , px

j) then
14 Lk.addresult(ai, bmin); /* add result and remove dominance

*/;

15 for k ← 2 to j − i + 1 do
16 updatetree(Tk, px

j); /* update entries affacted by px
j in Tk */;

17 for k ← 2 to n − i + 1 do
18 updatetree(T ′

k, px
i) ;

19 Tk ← T ′
k; /* restore Tk */;

20 return { Lk | k ∈ [2, n] };

points and finally get all the CPs. Despite the increase of indexing cost, the
query time remains the same as O(log n).

To answer 1 − ε approximate maxRS queries with 100 % guarantee, the only
change is to include only the i-lines in the index, where i = { 1, c, c2, . . . }, where
c = 1

1−ε . When c is a constant, this reduces the index size down to O(n2 log n)
with the same O(log n) query time complexity (See Table 1).

k-Enclosing Problem. K-enclosing rectangle problem [8–11], is the problem
of finding the minimum axis-parallel rectangle that contains exact or at least k
points from P , in terms of measurement like rectangle area or perimeter.

The most efficient existing method [11] solves this problem in O(n + k(n −
k)2) = O(n3) when k = n

2 . Using our index, we solve the problem in O(1) if
each Lk is sorted according the query measurement, or O(n) by linear scan Lk if
Lk is not sorted. Both cases are way better than existing time bounds achieved.
Even without index, our method can be modified to answer k-enclosing problem
in time O((n − k)2k + n log n) = O(n3) when k = n

2 , which meets the bound of
the best existing method.

General Purpose Index-Based Method for Efficient MaxRS Query 33

Furthermore, our method addresses k-enclosing problem for all possible val-
ues of k in time O(n3 log n) including both indexing and query time. While
existing method takes O(n4) in total in order to give answer for all possible
values of k.

Maximum Point Enclosing Problem. Maximum point enclosing problem
can be seen as the inverse problem of k-enclosing problem. It aims at finding the
maximum number of points a rectangle can enclose, and the rectangle measure-
ment (area or perimeter) is no larger than given query value Q.

Existing method [2] can be adapted to solve the above problem in O(n3 log n)
time by trying for each possible width ai (O(n2) number of possibilities), together
with the largest height bi computed so that the rectangle size is within given
query parameter, finding the maxRS value of (ai, bi) in time O(n log n), and the
global maximum maxRS value is the final answer.

Whereas our method solves the problem in O(log2 n) by a nested binary
search procedure6 similar as the one presented in Sect. 4 if Lk lists are sorted
on query measurement, or O(n log n) if Lk lists are not sorted. Even if indexing
time is considered, we take O(n3 log n) total time, but be able to answer any
given query parameter efficiently, while existing method sloves each query using
O(n3 log n) time.

7 Experiment

In this section, we perform empirical experiments to confirm our theoretical
analysis of algorithms’ performance and demonstrate the substantial query per-
formance improvement by our proposed method in practice.

Experiment Setting. We perform experiments on both synthetic and real
datasets. The synthetic dataset contains 10,000 points generated with uniform
distribution. The ranges of x and y coordinates are both set to [0, 105]. The real
dataset is drawn from the publicly available NorthEast (NE) dataset7, which
contains 20,000 postal addresses in New York, Philadelphia and Boston.

We compare our method with the plane-sweep algorithm [2] (denoted as
PS), as it is the most efficient one for the exact maxRS problem; our index-
based algorithm is denoted as Index. Both methods are implemented in C++,
and experiments are conducted on a PC with Intel Core i7 CPU 2.7 GHz with
8 GB of memory.

Varying Query Rectangle Size. We test the performance of both meth-
ods on various query rectangle sizes. The five groups of rectangle size ranges
are [02, 102], [102, 1002], [1002, 10002], [10002, 100002], and [100002, 1000002].

6 Based on the property that ∀q ∈ Lk, there exists q′ ∈ Lk−1 such that q′ dominates q.
7 www.rtreeportal.org.

www.rtreeportal.org

34 X. Zhou et al.

We produce 1,000 queries with sizes generated uniformly from each group. We
show the total query time for each group in Fig. 3.

It can be seen that our method is around 5 orders of magnitude faster than
existing method PS. This demonstrates the substantial advantage of our index-
based method to efficiently support batch query workloads. When query range
increases, the running time of PS remains steadily due to the nature of plane-
sweeping, while our method takes slightly more time when query size is in middle
range. This is because the size of k-lines with k around n/2 tends to be larger
than other values — as can be seen in Fig. 1(c).

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

10 100 1000 10000 100000

T
ot

al
 Q

ue
ry

 T
im

e
(s

)

Query Range

Index
PS

(a) NE

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

10 100 1000 10000 100000

T
ot

al
 Q

ue
ry

 T
im

e
(s

)

Query Range

Index
PS

(b) Random

Fig. 3. Vary query range

Vary Dataset Size. We start with a synthetic dataset with 2000 points, and
increase its size till 5x, and measure the ratio between PS’s total query time
over that of Index’s. The result is plotted in Fig. 4(a). Clearly, our method has
better scalability than PS as the time ratio raises up quickly when the data size
increases. This is expected as our query time increases only logarithmically with
n, while PS’s increases superlinearly.

2.0*104

4.0*104

6.0*104

8.0*104

1.0*105

1.2*105

1x 2x 3x 4x 5x

T
im

e
R

at
io

Data Size

PS/Index

(a) Vary Data Size

n CPNum CPNum/n2 size

m c c
m2 0.4KB

10m 97c 0.97 · c
m2 35KB

100m 7597c 0.75 · c
m2 2.7MB

1000m 731026c 0.73 · c
m2 314MB

(b) Index Size

Fig. 4. Other experiments

Index Size. We start with an initial dataset size of m = 10 which results
in total number of changing points c = 36. Then we increase the dataset till
1000 fold and show the increase of CPs in Fig. 4(b). As mentioned in Sect. 3.2,
although our current bound on our index size is O(n3), we conjecture that it
could be O(n2). Hence, we also show in the third column the ratio of index size
over square of data size. The result strongly suggests that the conjecture may
be true. We show the actual index size in the last column.

General Purpose Index-Based Method for Efficient MaxRS Query 35

8 Conclusion

In this paper, we study the maximizing range sum problem. Existing methods
for both exact and approximate query processing require Ω(n log log n) time.
We propose a novel method based on indexing changing points, which results in
an index of size Θ(nλ) = O(n3). The index enables us to devise a non-trivial
query processing algorithm with O(log n) complexity. Our method provides new
space-time tradeoff for the maxRS and related problems. Experiments on real
and synthetic datasets verify the efficiency of our method.

Acknowledgements. This work was partially done when X. Zhou and W. Wang
visited Hong Kong Baptist University. W. Wang was supported by ARC DP
130103401 and 130103405. J. Xu was supported by HK-RGC grants 12201615 and
HKBU12202414.

References

1. Imai, H., Asano, T.: Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane. J. Algorithms 4(4), 310–323
(1983)

2. Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and
minimum object enclosing rectangles and cuboids. Math. Appl. 29(8), 45–61 (1995)

3. Choi, D.W., Chung, C.W., Tao, Y.: A scalable algorithm for maximizing range
sum in spatial databases. Proc. VLDB Endow. 5(11), 1088–1099 (2012)

4. Tao, Y., Hu, X., Choi, D.W., Chung, C.W.: Approximate MaxRS in spatial data-
bases. PVLDB 6(13), 1546–1557 (2013)

5. Choi, D.W., Chung, C.W., Tao, Y.: Maximizing range sum in external memory.
ACM Trans. Database Syst. 39(3), 21:1–21:44 (2014)

6. Das, A.S., Gupta, P., Srinathan, K., Kothapalli, K.: Finding maximum density
axes parallel regions for weighted point sets. In: CCCG (2011)

7. Goodrich, M.T., Tsay, J.-J., Vengroff, D.E., Vitter, J.S.: External-memory com-
putational geometry (preliminary version). In: FOCS, pp. 714–723 (1993)

8. Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum diam-
eter and related problems. J. Algorithms 12, 38–56 (1991)

9. Datta, A., Lenhof, H.E., Schwarz, C., Smid, M.: Static and dynamic algorithms
for k -point clustering problems. J. Algorithms 19, 474–503 (1995)

10. Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal poly-
topes. Discrete Comput. Geom. 11, 321–350 (1994)

11. Segal, M., Kedem, K.: Enclosing k points in the smallest axis parallel rectangle.
Inf. Process. Lett. 65, 95–99 (1998)

12. Matouek, J.: On geometric optimization with few violated constraints. Discrete
Comput. Geom. 14, 365–384 (1995)

13. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)
14. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B.,

Sacristán, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.)
ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001)

15. Efrat, A., Sharir, M., Ziv, A.: Computing the smallest k -enclosing circle and related
problems. Comput. Geom. Theory App. 4(3), 119–136 (1994)

36 X. Zhou et al.

16. Mahapatra, P.R.S., Karmakar, A., Das, S., Goswami, P.P.: k -enclosing axis-parallel
square. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.)
ICCSA 2011, Part III. LNCS, vol. 6784, pp. 84–93. Springer, Heidelberg (2011)

17. Das, S., Goswami, P.P., Nandy, S.C.: Smallest k -point enclosing rectangle and
square of arbitrary orientation. Inf. Process. Lett. 94, 259–266 (2005)

18. Mukherjee, M., Chakraborty, K.: A polynomial time optimization algorithm for a
rectilinear partitioning problem with applications in VLSI design automation. Inf.
Process. Lett. 83, 41–48 (2002)

19. Tiwari, S., Kaushik, H.: Extracting region of interest (ROI) details using LBS
infrastructure and web databases. In: MDM 2012, pp. 376–379 (2012)

An Efficient Method for Identifying MaxRS
Location in Mobile Ad Hoc Networks

Yuki Nakayama(B), Daichi Amagata, and Takahiro Hara

Department of Multimedia Engineering, Graduate School of Information Science
and Technology, Osaka University, Yamadaoka 1-5, Suita-shi, Osaka, Japan

nakayama.yuki@ist.osaka-u.ac.jp

Abstract. In this paper, we address the problem of MaxRS (Maximiz-
ing Range Sum) query processing in mobile ad hoc networks (MANETs).
We assume a MANET consisting of nodes which hold data items with
scores and location information. A query originating node issues a
MaxRS query with a size of a rectangle. Then, it retrieves the loca-
tion of the rectangle which maximizes the sum of the scores of all data
items covered by the rectangle (MaxRS location). We can employ MaxRS
queries to enhance rescue operations in disaster sites, which is a typical
example of MANETs. In this example, we can find a dense location where
many victims exist in a disaster site. In a naive approach to processing
MaxRS queries, each node forwards its entire dataset to the query orig-
inating node, and this node locally computes the result. This approach
is inefficient because the network bandwidth is limited in MANETs. We
therefore propose a communication-efficient method which retrieves the
MaxRS location in two phases. Phase 1 plays the important role of prun-
ing data items not necessary to identify the MaxRS location, and enables
the retrieval of only necessary data items in phase 2. Simulation experi-
ments demonstrate the efficiency of our approach.

Keywords: Mobile ad hoc networks · MaxRS query · Location data

1 Introduction

Due to advances in wireless technology enabling peer-to-peer communication,
such as IEEE802.11, Bluetooth, and Wi-Fi Direct, mobile ad hoc networks
(MANETs) have been receiving much research attention [9,11]. MANETs need
no fixed communication infrastructures, hence we can employ a MANET in an
environment where we cannot utilize the Internet, e.g., disaster sites [2].

In such a disaster site, we assume that rescue workers perform rescue opera-
tions by constructing a MANET consisting of wireless nodes. During the rescue
operations, they store victim information on their holding nodes. An important
requirement of the above application is to enhance the rescue operations; for
example, it would be useful to find the location where help is needed most.
MaxRS queries [6] achieve this. A MaxRS query requires a size of a rectangle,
and it retrieves the location of a rectangle which maximizes the sum of the scores
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 37–51, 2016.
DOI: 10.1007/978-3-319-44403-1 3

38 Y. Nakayama et al.

Fig. 1. An example of a MaxRS query

of all data items covered by the rectangle. In the above scenario, the locations
and damaged scores of victims correspond to the locations and the scores of data
items, respectively. We can intuitively see that a MaxRS query can find a location
where many injured victims exist. We describe a concrete example below.

Example 1.1. In Fig. 1, the exterior rectangle denotes a network region, the
dashed and solid rectangles denote rectangles whose size is specified by the query
originator (a × b), and the black points denote the locations of data items with
scores. For simplicity, let us assume that the scores of all data items are 1. In this
example, the solid rectangle covers the maximum number of data items among
all rectangles; hence, it is one of the answers to this query.

Consider another application of MaxRS queries in MANETs.

Example 1.2. We consider a mobile sensor network, which is a kind of MANET.
Let us assume that each sensor node records its location every 1 s. If we execute
a MaxRS query on the set of location data items held by sensor nodes, we can
find the location where sensor nodes exist densely. As mobile sensor network
applications require to collect the sensor readings on various locations, detecting
such dense-node locations is valuable.

Although, as illustrated above, there are practical applications, MaxRS query
processing has not been addressed in MANETs. Motivated by this, we tackle
the problem of MaxRS query processing in MANETs. This problem has sev-
eral challenges. A simple method for processing MaxRS queries is to collect all
data items in a given network. This is because local aggregation is infeasible
to obtain the exact result. However, this method is inefficient, since MANETs
require communication-efficiency [2,9], to avoid packet losses and communication
delay. Therefore, in this paper, we propose a communication-efficient method for
MaxRS query processing in MANETs. Our proposed method processes MaxRS
queries in two phases. In phase 1, a query originating node limits a search region
which could be the answer to the MaxRS query. Then, in phase 2, it retrieves the
data items whose locations are on the region and calculates the MaxRS location.
By reducing unnecessary data forwarding, our proposed method avoids packet
losses and communication delay, resulting in efficient retrieval of the MaxRS
location.

An Efficient Method for Identifying MaxRS Location in MANETs 39

Contribution. We summarize our contributions as follows.

– We address the problem of MaxRS query processing in MANETs. To the best
of our knowledge, this is the first work to address this problem.

– We propose an efficient method for processing MaxRS queries in MANETs.
Phase 1 limits the search region and prunes data items not necessary to identify
the MaxRS location. Phase 2 retrieves the data items that have not been
pruned in phase 1.

– Through simulation experiments, we show that our method reduces traffic
while keeping accuracy, and is more efficient than the naive method.

Organization. In Sect. 2, we define the problem and describe the naive method.
Section 3 describes our proposed method, and we show our experimental results
in Sect. 4. We review related works in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Preliminaries

We first introduce our assuming environment, and then formally define MaxRS
queries in Sect. 2.1. We describe a naive method for MaxRS query processing in
Sect. 2.2.

2.1 Problem Definition

Network Model. A MANET consists of n nodes which communicate with each
other by the identical communication range. Each node is aware of the network
region where all the nodes can move, and has its own dataset Oi. Each data item
o ∈ Oi has 2-dimensional location information (o.x, o.y), and a score (o.score)
calculated by a certain scoring function, with o.score > 0. Note that we assume
no data replications, and we argue that the location information on o (o.x, o.y)
is independent of the location of the node holding o.

Definition 1 (MaxRS Problem) [6]. Given an infinite set of points in the
network region P , O = ∪Oi, and a rectangle of a given size, this problem is
to find the location p ∈ P that maximizes

∑
o∈OR(p)

o.score. R(p) is a rectangle
whose center and size are p and the given size, respectively. OR(p) is the set of
data items covered by R(p).

We can see that solving the above problem is impractical, since P is an
infinite set. As [10] argues, however, this problem can be solved by transforming
another problem, which is defined below.

Definition 2 (Rectangle Intersection Problem (RI Problem)) [10].
Given a network region and a set of rectangles R, this problem is to find the region
which intersects with the maximum number of rectangles in the network region.

Literature [10] shows that the result of a MaxRS problem is obtained from
the region returned by the RI problem, if the scores of given data items are 1.
We illustrate this in Fig. 2.

40 Y. Nakayama et al.

(a) MaxR problem (b) RI problem

(∀o.score ∈ O = 1)

Fig. 2. An example of MaxRS problem transformation

Example 2.1. In Fig. 2(a), the black points denote the locations of data items,
and the white point is an answer to the MaxRS problem (the size of the rectangle
is a×b). Then, we consider the RI problem where the center locations of the given
rectangles are the black points, and their sizes are a× b (Fig. 2(b)). The answer to
the RI problem in Fig. 2(b) is the shaded region. Figure 2(b) shows that the white
point, an answer of the MaxRS problem, exists in the shaded region.

By solving the RI problem, we can obtain an answer to the MaxRS problem.
Algorithms for the RI problem have been proposed in [8,10], and their time
complexity is O(n log n), where n is the number of rectangles. We here remove
the assumption that the scores of all data items are 1, and introduce the following
definition.

Definition 3 (Region Score). Given O and a rectangle of a given size, we
obtain a set of rectangles, R, whose centers and sizes are locations of the data
items and the given size, respectively. Let the score of a rectangle in R be o.score
when the center of the rectangle is the location of the data item o. Then, the score
of a region is the sum of the scores of the rectangles on the region.

We can find the region with the largest score, utilizing the algorithms of
[8,10], by considering the region score [6,7]. We are now ready to define MaxRS
queries below.

Definition 4 (MaxRS Queries). Given a dataset O and a rectangle of a given
size, a MaxRS query retrieves the region with the largest score in the network
region.

In this paper, we address the problem of processing MaxRS queries as defined
above. Note that we do not use node locations but data locations for MaxRS
query processing. In addition, we do not deal with rotation of a rectangle [4],
and focus on the usual case, as well as [1,6,7,12].

2.2 Naive Method

In this section, we describe a naive method for MaxRS query processing. In
a nutshell, this method retrieves all data items in a given network, and then
calculates an answer to the MaxRS query. The details of the naive method are
described below.

An Efficient Method for Identifying MaxRS Location in MANETs 41

First, a query originating node Norg floods a data request message (DReq)
over the entire network. A DReq consists of source node ID, parent node ID, and
hop count from the query originating node. Each node Ni, which receives a DReq
for the first time, sets the source node of the DReq as its parent node. Then, Ni

broadcasts a DReq with an incremented hop count, its ID as the source node ID,
and its parent’s ID as the parent node ID. An ACK message (ACKreq) is also
sent to its parent node. An ACKreq consists of source node ID and destination
node ID. In addition, Ni sets a waiting time WT to receive data items from its
children nodes, as follows:

WT = Delaymax · HOPmax − HOPcount

HOPmax

Note that Delaymax is the maximum time for waiting, HOPmax is the maxi-
mum hop count in the network, and HOPcount is the hop count from the query
originating node. Each node Nj , which receives a DReq whose parent node ID is
its ID or receives an ACKreq, sets the source node of the DReq or the ACKreq

as its child node. We can see that a tree topology is constructed in this DReq
flooding procedure. We explain the data reply procedure below.

If a node Ni has no children nodes, Ni sends a data reply message (DRep)
with its own data items Oi to its parent node. A DRep consists of source node ID,
destination node ID, and data items. Each node Nj , which has received DReps
from all its children nodes or whose WT has expired, sends to its parent node a
DRep with its own data items Oj and the data items received from its children
nodes. Each node which receives a DRep sends an ACK message (ACKrep) to
the source node of the DRep. If nodes receive an ACKrep, they consider that
their parent nodes have received their forwarded data items, and thus no longer
send the data items. If not, they re-send the data items to their parent nodes. In
this way, Norg retrieves all the data items in the network. It then calculates an
answer to the MaxRS query, based on the retrieved data items and the specified
rectangle, using the algorithm proposed in [8].

This method retrieves all data items in a given network, and thus is inefficient
when the number of data items in the network is large, resulting in large traffic,
packet losses, and communication delay.

3 Proposed Method

3.1 Overview

First, we describe the overview of the proposed method. To reduce traffic, it is
desirable to retrieve the data items on a limited region which includes the exact
MaxRS location. To this end, we employ two-phase query processing. In phase
1, Norg divides the network region into specified cells, and collects cell scores
from all the nodes. A cell score is the sum of the scores of the data items on
the cell. Based on the collected cell scores, Norg finds a region which could be
an answer to the query. In phase 2, Norg retrieves the data items on this region.

42 Y. Nakayama et al.

Norg then calculates an answer to the query based on the retrieved data items.
This approach obtains a correct answer without retrieving all data items in the
network region. We describe the detail of the proposed method in the following
sections.

3.2 Phase 1: Finding a Region Which Could Be a Query Answer

In phase 1, Norg finds a region which could be an answer to the MaxRS query.
To find the region, Norg divides the network region into rectangular cells of the
same size; the width and length of the cells are C.width = a

k and C.length = b
l

(k, l ∈ N), respectively (a and b are respectively the width and length of the
rectangle specified by Norg). Then, Norg attaches the width and length of the
cells to a query, and floods the query over the entire network to share the division
of the network region with all nodes. While flooding the query, a tree topology
is constructed, with Norg as the root; that is, each node sets its parent node, its
children nodes, and its WT as in the naive method.

Query receiving nodes, as well as Norg, divide the network region into cells
specified by the width and length in the query. Figure 3 shows an example of
such a division of the network region. In this figure, the network region is divided
into 25 cells (c00 – c44). Then, the query receiving nodes prepare an array which
can store all cell scores, and add the scores of their own data items to the
corresponding cell scores (i.e., array elements). Specifically, they add the score
of each data item to the score of the cell on which the data item is. Note that
the scores of cells containing no data items are 0.

We describe a reply procedure in phase 1 below. Each leaf node attaches
the array to a reply message (Repphase1) and sends it to its parent node. A
Repphase1 consists of source node ID, destination node ID, and an array. Each
node Ni which receives a Repphase1 sends an ACK message (ACKrep1) to the
source node of the Repphase1. An ACKrep1 is processed in the same way as an
ACKrep of the naive method. Additionally, Ni merges the array in the Repphase1
with its prepared array. Recall that the division of the network region is shared
with all nodes; thus, all nodes know which element of the array has stored each
cell score. When nodes have received Repphase1s from all of their children nodes
or their WT has expired, they send a Repphase1 with their array to their parent
nodes. We explain this procedure below.

Example 3.1. Figure 4 shows an example of the reply procedure in phase 1.
The network region is divided as shown in Fig. 3, each Repphase1 thus includes
an array which can store the scores of 25 cells. In Fig. 4, the table on the left
shows the data items held by each node, and the balloons show the components
of the Repphase1 array. Although, for simplicity, Fig. 4 represents the locations of
data items using cell IDs, these locations are in fact represented by 2-dimensional
values such as latitude and longitude. Leaf node N1 holds the data items D1,
D2, and D3, and they are on c00, c00, and c01, respectively. N1 thus conducts the
following assignments to an array: c00 = 10 + 10 = 20, c01 = 10, and the other
cell scores are 0. N1 then sends a Repphase1 including the array to its parent node

An Efficient Method for Identifying MaxRS Location in MANETs 43

Fig. 3. An example of a
network region division

Fig. 4. An example of a reply procedure in phase 1

N2. Leaf node N3 sends a Repphase1 to its parent node N4, similarly to N1. When
N4 receives the Repphase1 from N3, N4 merges the cell scores of N3 with its own
cell scores. When N2 receives the Repphase1 from N1, N2 merges the cell scores
of N1 with its own cell scores. That is, N2 sets c00 = 20, c01 = 10 + 10 = 20,
and c11 = 10. Then, N2 sends a Repphase1 with the updated array to its parent
node N4. When N4 receives the Repphase1 from N2, N4 merges the cell scores of
N2 with its cell scores: N4 sets c00 = 20, c01 = 30, c11 = 70, c12 = 10, c13 = 50,
c20 = 50, c21 = 70. N4 then sends a Repphase1 with the cell scores to its parent
node since N4 has received a Repphase1 from all its children nodes.

In phase 1, Norg retrieves all cell scores in the entire network. Norg next
determines the set of cells which cover the locations of the data items necessary
to find an exact answer to the MaxRS query, which we call data request cell set.
We first define the relevant notations, and then explain how the data request
cell set is determined.

Let cij represent an arbitrary cell, and ci(j+1) and c(i+1)j represent the cell
to the right of cij and the cell above cij , respectively. We define the region of
C as the union of the regions of all the cells in C, where C is a set of arbitrary
cells. In addition, we define score(C) =

∑
∀cij∈C cij .score, where cij .score is

the cell score of cij . Also, Ckl
ij = ∪j≤x<j+k ∪i≤y<i+l cyx, hence score(Ckl

ij) =∑
j≤x<j+k

∑
i≤y<i+l cyx.score. Finally, Call represents the set of all cells in the

network region, and let τ∗ be the score of a MaxRS location.
We are now ready to explain how the data request cell set is determined. Since

the size of the specified rectangle is equal to the size of the region of Ckl
ij due to

a = C.width×k and b = C.length× l, we can see τ∗ ≥ maxcij∈Call
{score(Ckl

ij)}.
This means that maxcij∈Call

{score(Ckl
ij)}(= τlb) is the lower bound score of a

MaxRS location. We next consider where the rectangle answering to the MaxRS
query could exist. The rectangle could overlap the cells in C

(k+1)(l+1)
ij as shown

in Fig. 5. In this case, the score of the rectangle could be score(C(k+1)(l+1)
ij) (the

region of C
(k+1)(l+1)
ij is the shaded region in Fig. 5). If score(C(k+1)(l+1)

ij) ≥ τlb,

the data items on C
(k+1)(l+1)
ij are necessary to calculate an exact answer to the

44 Y. Nakayama et al.

Fig. 5. An example of a rectangle over-
lapping cells in C

(k+1)(l+1)
ij

Fig. 6. An example of cell scores

MaxRS query. On the other hand, the data items on cyx, where all of C
(k+1)(l+1)
ij

that includes cyx satisfy score(C(k+1)(l+1)
ij) < τlb, are not necessary, since an

answer to the MaxRS query is not on cyx.
Norg therefore calculates the score(Ckl

ij) of each cell cij ∈ Call, and obtains

τlb. Then, Norg calculates the score(C(k+1)(l+1)
ij) of each cell cij ∈ Call. If

score(C(k+1)(l+1)
ij) ≥ τlb, Norg sets the cells in C

(k+1)(l+1)
ij as elements of the

data request cell set. In this manner, the data request cell set is determined.
Below, we illustrate an example of this procedure in the case where k = l = 1.

Example 3.2. Figure 6 shows an example of the cell scores retrieved by Norg.
The values enclosed with a rectangle in a cell denote the scores of the respec-
tive cells, e.g., the scores of c00 and c01 are 100 and 80, respectively. τlb is
maxcij∈Call

{score(C11
ij)} = 300 at c11. Norg calculates the score(C22

ij) of each
cell cij ∈ Call. For example, score(C22

03) is 80 (the sum of the scores of c03, c04,
c13, and c14). After this calculation, Norg can see that the cell sets C22

ij , where
score(C22

ij) ≥ τlb, are {c00, c01, c10, c11}, {c01, c02, c11, c12}, {c10, c11, c20, c21}, and
{c11, c12, c21, c22}. Therefore, the data request cell set is {c00, c01, c02, c10, c11, c12,
c20, c21, c22}, and the region of the cell set is the shaded region in Fig. 6.

3.3 Phase 2: Retrieving Data Items in a Limited Region

In phase 2, Norg attaches the cell IDs in the data request cell set to a data
request message (DReq), and floods the DReq over the entire network in the
same manner as in phase 1. Let SDReq be the region covered by the data request
cell set. In the DReq flooding procedure, all nodes obtain SDReq.

If each leaf node has data items on SDReq, it sends a data reply message
(DRep) with these data items to its parent node. If not, it sends a DRep with
no data items to its parent node. Each node which receives a DRep sends an
ACK message to the source node of the DRep. This ACK message is processed in
the same manner as in the naive method’s reply procedure. Each node Nj , which
has received data items from all its children nodes or whose WT has expired,
sends to its parent node a DRep with the received data items and its own data
items on SDReq. Besides, if Nj does not receive the query in phase 1, Nj does not
know the information on the division of the network region, and therefore sends

An Efficient Method for Identifying MaxRS Location in MANETs 45

Fig. 7. An example of a reply procedure in phase 2

all its data items to its parent node. If the parent node has received the query in
phase 1, it knows SDReq, hence it can know the data items not on SDReq. These
data items are no longer sent. We illustrate an example of this reply procedure
below.

Example 3.3. Figure 7 shows an example of the reply procedure in phase 2.
Leaf nodes N1 and N3 send a DRep to their parent nodes. N1 holds a data item
on SDReq, D1, and thus N1 sends D1 to its parent node N2. On the other hand,
N3 sends a DRep with no data items to its parent node N4, since N3 does not
have data items on SDReq. When N4 receives a DRep from its child node N3, N4

sends its data items on SDReq, D10, D11, D12, to its parent node N2. When N2

receives DReps from all its children nodes (N1 and N4), N2 sends the received
data items D1, D10, D11, and D12, and its own data items D4, D5, and D6 to
its parent node.

In this way, Norg retrieves data items on SDReq. Norg then calculates an
answer to the MaxRS query, based on the retrieved data items.

4 Experiments

In this section, we show the experimental results of our method. We used a
network simulator, Qualnet 6.11. The algorithm proposed in [8] was implemented
in C++, and all experiments were conducted on a PC with 3.6 GHz Intel Core
i7 CPU and 16 GB RAM.

4.1 Simulation Environment

We specify the network region 600 [m] × 600 [m] and deploy 80 nodes in the
region. Nodes move according to the random waypoint model [3] with the move-
ment speed chosen from [0, 1.0] [m/s] and the pause time set at 30 [s]. Nodes
1 http://www.scalable-networks.com.

http://www.scalable-networks.com

46 Y. Nakayama et al.

transmit messages using IEEE802.11b, where the bandwidth is 11 Mbps, and
the transmission power is selected so that the communication range is about
100 [m]. Each node holds d data items, and each data item consists of data ID,
2-dimensional coordinate (x, y), and a score. We use cluster distribution and
uniform distribution for the coordinates of the data items. In the cluster distrib-
ution, we draw 4 clusters whose centers are (150, 150), (150, 450), (450 150), and
(450, 450). The coordinates of data items (x, y) follow normal distribution whose
mean is the center coordinates of a given cluster. In the uniform distribution,
the coordinates of data items (x, y) follow uniform distribution whose range is
[0, 600]. The scores of data items follow uniform distribution of [1, 1000], or
correlated distribution with their coordinates. In the correlated distribution, the
scores of data items are calculated by the following equation, which is based on
the probability density function of pareto distribution:

o.score =
MaxScore

2
· pqp

w(p+1)
+ 20z, where w =

2Distance

Distancemax
+ 1

MaxScore is the maximum value of each cluster, which is determined by uni-
form distribution whose range is [200,1000]. Distance is the distance between
a location of a data item and the center of the cluster to which the data item
belongs. Distancemax is the maximum value of Distance. Besides, z follows nor-
mal distribution, while p and q are parameters of pareto distribution and we set
p = 2 and q = 1. Note that the scores of data items are discrete integer values.
Generated data items are randomly distributed to each node, thus the locations
of the data items held by the node are not related to the location of the node.
In our experiment, a query originating node specifies a square with sides of L
[m] as the rectangle in a MaxRS query.

We compared our method with the naive method introduced in Sect. 2.2. We
set HOPmax = 9 in all methods. We also set the Delaymax of each method
based on accuracy in a preliminary experiment. The naive method (NAIVE) set
Delaymax = 28 [s] and the proposed method (TWOPHASE) set Delaymax = 8
[s] in phase 1 and Delaymax = 20 [s] in phase 2. Moreover, TWOPHASE(HALF),
whose Delaymaxs are half of TWOPHASE, set Delaymax = 4 [s] in phase 1 and
Delaymax = 10 [s] in phase 2.

In the above simulation environment, we generated 50 queries, with randomly
chosen query originators, and measured the average of the following criteria.

– Traffic: is the total volume of messages sent during a query processing. Table 1
shows the size of messages in the respective methods. Here, D is the number
of data items in a given message, AllCell is the number of cells in the network,
and ReqCell is the number of cells in the data request cell set.

– Accuracy: is the ratio of the number of retrieved data items on an answer
rectangle for a given MaxRS query to the total number of all data items on
the rectangle.

– Search time: is the time required for the query originating node to obtain an
answer to its MaxRS query.

An Efficient Method for Identifying MaxRS Location in MANETs 47

Table 1. Size of messages

Method Type Size [B]

Naive method Data request message 16

Data reply message 24 + 16 × D

Proposed method Query message 24

Reply message in phase 1 16 + 4 × AllCell

Data request message 24 + 4 × ReqCell

Data reply message 24 + 16 × D

Ack message to reply message in phase 1 12

Both methods Ack message to query or data request message 12

Ack message to data reply message 16

Fig. 8. Impact of k

4.2 Results

Impact of k. First, we investigated the impact of parameters k and l, which are
related to the size of cells (Sect. 3.2), and Fig. 8 shows the result. For simplicity,
we set k = l since the number of the potential combination of these values is
infinite. In this investigation, we used both cluster distribution and correlated
distribution, and set d = 80 and L = 60.

In Fig. 8(a), we can see that traffic increases as k becomes large. When k is
large, the number of cells is large due to C.width = a

k and C.length = b
l , and this

in turn results in large sized reply messages in phase 1. As we see in Fig. 8(b),
accuracy is high when k is between 1 and 5. However, accuracy decreases at
k = 6. This is because the size of reply messages in phase 1 is so large, and thus
more packet losses occur, and the probability of finding the correct region which
could be a MaxRS location decreases. In Fig. 8(c), search time is reduced as k
becomes large. When k is large, the number of forwarded data items is small
because the limited region is small. This results in fewer packet losses, thus more
nodes forward data items before their WT s expire.

Based on the highest accuracy in this result, we set k = l = 2 in the following
investigations.

48 Y. Nakayama et al.

Fig. 9. Impact of a dataset.

Impact of Datasets. We investigated the impact of datasets, and Fig. 9 shows
the result. In this investigation, we set d = 80 and L = 60. In Fig. 9, LC and
LU mean that locations of data items follow the cluster distribution and uniform
distribution, respectively, while SC and SU mean that scores of data items follow
the correlated distribution and uniform distribution, respectively. In addition,
LC + SC denotes the dataset generated by LC and SC .

As can be seen in Fig. 9(a), our method outperforms the naive method in
terms of traffic except for the case of LU + SU . Traffic of our method is in
particular small when the score distribution is SC , because our method effi-
ciently limits the search region in phase 1, and fewer data items are forwarded
in phase 2. In contrast, traffic of our method is larger than that of the naive
method in the case of LU + SU . If the score distribution is uniform, phase 1
of our method is not helpful to limit the search region. In Fig. 9(b), we can
see that accuracy of our method is higher than that of the naive method. These
results show that our method retrieves only necessary data items, demonstrating
communication-efficiency. In Fig. 9(c), location distribution and score distribu-
tion have no significant effect on search time in the naive method. On the other
hand, search time of our method is smallest in LU +SC . The number of necessary
data items is also smallest in this case, and thus fewer packet losses occur.

Impact of the Number of Data Items. We investigated the impact of the
number of data items held by each node, and Fig. 10 shows the result. In this
investigation, we used LC + SC and L = 60.

Figures 10(a) and (b) show that traffic increases and accuracy decreases as
d becomes large in all methods. When d is large, the number of forwarded data
items is large, which leads to more packet losses and lower accuracy. When d is
large, traffic of TWOPHASE is smaller than that of the naive method, and yet
TWOPHASE keeps high accuracy. This shows that our approach, which involves
retrieval of data items on a limited region, is efficient for finding the MaxRS
location. Accuracy of TWOPHASE(HALF) is lower than that of TWOPHASE
because more packet losses occur due to the shorter Delaymax. As Fig. 10(c)
shows, in all methods, search time increases as d becomes large, and finally
reaches Delaymax in the naive method or the sum of Delaymax in phase 1 and
Delaymax in phase 2 in our method, respectively. This is because, when d is

An Efficient Method for Identifying MaxRS Location in MANETs 49

Fig. 10. Impact of d

Fig. 11. Impact of L

large, the number of packet losses increases, and thus the probability that nodes
cannot receive data items from their children nodes increases. As a consequence,
more nodes wait until their WT s expire.

Impact of the Side Length of the Square. We investigated the impact of
the side length of the square, and Fig. 11 shows the result. In this investigation,
we used LC + SC and d = 80.

In Fig. 11(a), traffic of the naive method is constant regardless of L, whereas
traffic of our method is affected by L. This is because the naive method retrieves
all the data items in the network, whereas in our method, the message size in
phase 1 becomes large when L is small, and this results in increased traffic. In
Figs. 11(b) and (c), we can see that both accuracy and search time of the naive
method are, like traffic, unaffected by L, while our method outperforms the naive
method in terms of accuracy in most cases.

5 Related Work

Although several efforts have been conducted on query processing in MANETs,
all have assumed queries with totally different semantics from MaxRS queries,
such as top-k [2], kNN [9], and reverse kNN [11]. Therefore, we focus on works
dealing with MaxRS queries in different environments.

Numerous works have tackled the MaxRS problem in centralized database
systems [1,4,6–8,10,12]. The works in [8,10] have proposed in-memory algo-
rithms based on the plane-sweep algorithm, while the works in [6,7] have pro-

50 Y. Nakayama et al.

posed external-memory algorithms, to obtain an exact MaxRS location. On the
other hand, an approximate algorithm for the MaxRS problem has been pro-
posed in [12]. A literature [4] has proposed an algorithm for the MaxRS problem
with rotation of the specified rectangle. MaxRS monitoring in data stream envi-
ronments has been investigated in [1]. All these works, however, have proposed
algorithms to reduce the time complexities and I/O complexities in centralized
database systems. Since MANETs are decentralized systems, it is hard to apply
these algorithms simply.

Several works have addressed the problem of region retrieval (as in a MaxRS
query) in wireless sensor networks [5,13]. The work in [13] has proposed an
energy-efficient method to process max regional aggregate (MaxRA) queries,
which retrieve the region that maximizes the aggregate value (e.g., sum and
average) of sensor readings in a region of a given size; a MaxRS query is thus
a kind of MaxRA query. In addition, an approximation approach which selects
certain regions and sensors has been proposed. It is hard to apply the approach
since the approach assumes that nodes’ locations are equal to the data locations
held by the nodes (it is general in wireless sensor networks). Region-based queries
have also been proposed in [5], where the query retrieves the region satisfying
the condition that the aggregate value of sensor readings in the region of a given
size falls within a given interval. By clustering sensor nodes, this work achieves
energy-efficient query processing.

6 Conclusion

In this paper, we addressed the problem of identifying a MaxRS location in
MANETs. To efficiently find a MaxRS location, we employ two phase query
processing. Phase 1 retrieves not data items but the aggregate scores of data
items in order to limit the search region which could contain a correct MaxRS
location. Phase 2 then retrieves only the necessary data items on this search
region. Our approach achieves fewer packet losses and high accuracy due to low
traffic, which is demonstrated by our experimental results.

When the number of data items is large, however, our method retrieves a
large number of data items; and in addition, the performance of our method is
affected by the distribution of scores of data items. As a part of future work, we
plan to design a method which can further reduce traffic and is less affected by
the distribution of scores of data items.

Acknowledgement. This research is partially supported by the Grant-in-Aid for Sci-
entific Research (A) (26240013) of the Ministry of Education, Culture, Sports, Science
and Technology, Japan, and JST, Strategic International Collaborative Research Pro-
gram, SICORP.

An Efficient Method for Identifying MaxRS Location in MANETs 51

References

1. Amagata, D., Hara, T.: Monitoring MaxRS in spatial data streams. In: EDBT, pp.
329–340 (2016)

2. Amagata, D., Sasaki, Y., Hara, T., Nishio, S.: CTR: an efficient cluster-based top-k
query routing in MANETs. In: MoMM, pp. 225–234 (2014)

3. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wirel. Commun. Mob. Comput. 2(5), 483–502 (2002)

4. Chen, Z., Liu, Y., Wong, R.C.W., Xiong, J., Cheng, X., Chen, P.: Rotating MaxRS
queries. Inf. Sci. 305, 110–129 (2015)

5. Choi, D.W., Chung, C.W.: REQUEST+: a framework for efficient processing of
region-based queries in sensor networks. Inf. Sci. 248, 151–167 (2013)

6. Choi, D.W., Chung, C.W., Tao, Y.: A scalable algorithm for maximizing range
sum in spatial databases. PVLDB 5(11), 1088–1099 (2012)

7. Choi, D.W., Chung, C.W., Tao, Y.: Maximizing range sum in external memory.
ACM TODS 39(3), 21:1–21:44 (2014)

8. Imai, H., Asano, T.: Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane. J. Algorithms 4(4), 310–323
(1983)

9. Komai, Y., Sasaki, Y., Hara, T., Nishio, S.: kNN query processing methods in
mobile ad hoc networks. IEEE TMC 13(5), 1090–1103 (2014)

10. Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and
minimum object enclosing rectangles and cuboids. Comput. Math. Appl. 29(8),
45–61 (1995)

11. Nghiem, T.P., Maulana, K., Nguyen, K., Green, D., Waluyo, A.B., Taniar, D.:
Peer-to-peer bichromatic reverse nearest neighbours in mobile ad-hoc networks.
J. Parallel Distrib. Comput. 74(11), 3128–3140 (2014)

12. Tao, Y., Hu, X., Choi, D.W., Chung, C.W.: Approximate MaxRS in spatial data-
bases. PVLDB 6(13), 1546–1557 (2013)

13. Zhuang, Y., Chen, L.: Max regional aggregate over sensor networks. In: ICDE, pp.
1295–1298 (2009)

Data Mining

Discovering Periodic-Frequent Patterns
in Transactional Databases Using All-Confidence

and Periodic-All-Confidence

J.N. Venkatesh1(B), R. Uday Kiran2, P. Krishna Reddy1,
and Masaru Kitsuregawa2,3

1 Kohli Center on Intelligent Systems (KCIS),
International Institute of Information Technology Hyderabad, Hyderabad, India

jn.venkatesh@research.iiit.ac.in,pkreddy@iiit.ac.in
2 Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

{uday rage,kitsure}@tkl.iis.u-tokyo.ac.jp
3 National Institute of Informatics, Tokyo, Japan

Abstract. Periodic-frequent pattern mining involves finding all fre-
quent patterns that have occurred at regular intervals in a transactional
database. The basic model considers a pattern as periodic-frequent, if it
satisfies the user-specified minimum support (minSup) and maximum
periodicity (maxPer) constraints. The usage of a single minSup and
maxPer for an entire database leads to the rare-item problem. When
confronted with this problem in real-world applications, researchers have
tried to address it using the item-specific minSup and maxPer con-
straints. It was observed that this extended model still generates a sig-
nificant number of uninteresting patterns, and moreover, suffers from
the issue of specifying item-specific minSup and maxPer constraints.
This paper proposes a novel model to address the rare-item problem in
periodic-frequent pattern mining. The proposed model considers a pat-
tern as interesting if its support and periodicity are close to that of its
individual items. The all-confidence is used as an interestingness measure
to filter out uninteresting patterns in support dimension. In addition, a
new interestingness measure, called periodic-all-confidence, is being pro-
posed to filter out uninteresting patterns in periodicity dimension. We
have proposed a model by combining both measures and proposed a
pattern-growth approach to resolve the rare-item problem and extract
interesting periodic-frequent patterns. Experimental results show that
the proposed model is efficient.

Keywords: Data mining · Rare-item problem · Periodic patterns

1 Introduction

Periodic-frequent pattern mining is an important model in data mining. It
involves finding all frequent patterns that are occurring at regular intervals
in a transactional database. The periodic-frequent patterns provide useful
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 55–70, 2016.
DOI: 10.1007/978-3-319-44403-1 4

56 J.N. Venkatesh et al.

Table 1. Running example: a trans-
actional database

tid Items

1 a, b

2 a, b, d

3 c, d, g

4 c, e, f

5 a, b

6 h

tid Items

7 a, b, c, e

8 c, d

9 c, d

10 a, b, e, f

11 c, d, g

12 a, e, f
Fig. 1. Statistics on different damage types
in FAA data set.

information in many real-world applications. Examples include finding regulari-
ties in body sensor networks [14], intrusion detection in computer networks [8],
and finding minor events in twitter data [7].

The basic model of periodic-frequent patterns [13] is as follows. Let I be the
set of items, and X ⊆ I be a pattern (or an itemset). A pattern containing
β number of items is called a β-pattern. A transaction, tk = (tid, Y) is a
tuple, where tid ∈ R represents the transaction-id (or timestamp) at which the
pattern Y has occurred. A transactional database TDB over I is a set of
transactions, TDB = {t1, · · · , tm}, m = |TDB|, where |TDB| can be defined as
the number of transactions in TDB. For a transaction tk = (tid, Y), k ≥1, such
that X ⊆ Y , it is said that X occurs in tk and such transaction-id is denoted
as tidX . Let TIDX = {tidXj , · · · , tidXk }, j, k ∈ [1,m] and j ≤ k, be an ordered
set of transaction-ids where X has occurred in TDB. In this paper, we call
this list of transaction-ids of X as tid-list of X. The number of transactions
containing X in TDB is defined as the support of X and denoted as sup(X).
That is, sup(X) = |TIDX |. Let tidXq and tidXr , j ≤ q < r ≤ k, be the two
consecutive transaction-ids in TIDX . The time difference (or an inter-arrival
time) between tidXr and tidXq is defined as a period of X, say pXa . That is,
pXa = tidXr − tidXq . Let PX = (pX1 , pX2 , · · · , pXr) be the set of all periods for a
pattern X. The periodicity of X denoted as per(X) = max(pX1 , pX2 , · · · , pXr).
The pattern X is a frequent pattern if sup(X) ≥ minSup, where minSup
refers to the user-specified minimum support constraint. The frequent pattern
X is said to be periodic-frequent if per(X) ≤ maxPer, where maxPer refers
to the user-specified maximum periodicity constraint. The problem definition
of periodic-frequent pattern mining involves discovering all patterns in TDB
that satisfy the user-specified minSup and maxPer constraints.

Example 1. Table 1 shows the transactional database with the set of items I =
{a, b, c, d, e, f, g, h}. The set of items ‘a’ and ‘b,’ i.e., ‘ab’ is a pattern. This pattern
contains only two items. Therefore, this is a 2-pattern. In the first transaction,
t1 = {1 : ab}, 1 denotes the transaction-id at which the pattern ‘ab’ has appeared
in the database. In the entire database, this pattern appears at the transaction-
ids of 1, 2, 5, 7 and 10. Therefore, TIDab = {1, 2, 5, 7, 10}. The support of ‘ab,’ i.e.,
sup(ab) = |TIDab| = |1, 2, 5, 7, 10| = 5. If the user-specified minSup = 5, then

Discovering Periodic-Frequent Patterns in Transactional Databases 57

‘ab’ is a frequent pattern as sup(ab) ≥ minSup. The periods for this pattern are:
pab1 = 1 (= 1−tidini), pab2 = 1 (= 2−1), pab3 = 3 (= 5−2), pab4 = 2 (= 7−5), pab5 =
3 (10−7) and pab6 = 2 (= tidfin−10), where tidini = 0 represents the transaction-
id of initial transaction and tidfin = 12 represents the transaction-id of final
transaction in the database. Therefore, P ab = (1, 1, 3, 2, 3, 2). The periodicity
of ‘ab,’ i.e., per(ab) = max(1, 1, 3, 2, 3, 2) = 3. If the user-defined maxPer = 3,
then the frequent pattern ‘ab’ is a periodic-frequent pattern because per(ab) ≤
maxPer.

The support and periodicity are two dimensions to determine the interest-
ingness of a periodic-frequent pattern. The constraints, minSup and maxPer,
determine the interestingness of a pattern with respect to these two dimensions.
Since only a single minSup and maxPer is used for the whole database, the
model works efficiently in the databases in which all the items have uniform
support and similar periodicity. However, this is often not the case as items are
non-uniformly distributed in many real-world databases. That is, some items
appear very frequently in the data, while others rarely appear. Moreover, rare
items typically have longer periods (or inter-arrival times) as compared with the
periods of the frequent items.

Example 2. Consider a case of accident database in which reports related to
the completely destroyed vehicles do not appear as frequently as the reports
related to the minor damages to a vehicle. As a result, former type of accidents
generally have less frequency and longer inter-arrival times as compared against
the latter type of accidents. The same can be observed from Figs. 1(a) and (b),
which respectively show the frequency and median of inter-arrival times of
three different damage types reported in the Federal Aviation Administration
(FAA) database [1]. For a domain expert, any information pertaining to destroyed
aircrafts may be found useful as it includes materialistic and/or human loss.

Henceforth, finding periodic-frequent patterns with a single minSup and
maxPer leads to the following problems:

– If the minSup is set too high and/or the maxPer is set too short, we will
miss the interesting periodic-frequent patterns involving rare items.

– In order to find the interesting periodic-frequent patterns involving rare items,
we have to set a low minSup and a long maxPer. However, this may result in
combinatorial explosion producing too many patterns, because frequent items
can combine with one another in all possible ways and many of them will be
meaningless.

This dilemma is known as the rare-item problem [15] (refer Example 3). In this
paper, we make an effort to address this problem in periodic-frequent pattern
mining.

Example 3. Consider the rare items ‘e’ and ‘f ’ in Table 1. If we set a high
minSup and a short maxPer, say minSup = 5 and maxPer = 3, we will miss
the periodic-frequent patterns containing these rare items. In order to discover

58 J.N. Venkatesh et al.

the periodic-frequent patterns containing these rare items, we have to set a low
minSup and a long maxPer, say minSup = 2 and maxPer = 6. All periodic-
frequent patterns discovered at these threshold values are shown in the column
titled I in Table 2. It can be observed from this table that setting a low minSup
and a long maxPer has not only resulted in finding ‘ef ’ as a periodic-frequent
pattern, but also resulted in generating the uninteresting patterns ‘ce’ and ‘cd’
as periodic-frequent patterns. The pattern ‘ce’ is uninteresting (with respect to
support dimension), because the rare item ‘e’ is randomly occurring with a fre-
quent item ‘c’ in very few transactions. The pattern ‘cd’ is uninteresting (with
respect to periodicity dimension), because it contains the frequent items ‘c’ and
‘d’ appearing together at very long inter-arrival times (or periodicity).

Table 2. Periodic-frequent patterns discovered from Table 1. The terms Pat, s, allConf,
p and perAllConf refer to pattern, support, all-confidence, periodicity and periodic-all-
confidence, respectively. The columns titled I, II and III represent the periodic-frequent
patterns generated using basic model, extending all-confidence to the basic model and
the proposed model, respectively.

Pat s allConf p perAllConf I II III

a 6 1 3 1 � � �
b 5 1 3 1 � � �
c 6 1 3 1 � � �
d 5 1 5 1 � � �
e 4 1 4 1 � � �

Pat s allConf p perAllConf I II III

f 3 1 6 1 � � �
ab 5 0.833 3 1 � � �
ef 3 0.75 6 1.5 � � �
ce 2 0.4 5 1.67 � × ×
cd 4 0.8 5 1.67 � � ×

In this paper, we propose a novel model to extract the interesting periodic-
frequent patterns by addressing the rare-item problem. We consider a pattern
as interesting if it satisfies the following two conditions: (i) if the support of a
pattern is close to the support of its individual items, and (ii) if the periodicity of
a pattern is close to the periodicity of its individual items. For this, we employ
two measures. To filter out patterns based on support and resolve rare-item
problem in support dimension, we employ all-confidence [9]. Similarly, to filter
out patterns based on periodicity and resolve rare-item problem in periodicity
dimension, we propose a new measure called periodic-all-confidence. These two
measures facilitate us to achieve the objective of generating interesting periodic-
frequent patterns involving rare items without causing the generation of too
many uninteresting patterns. A pattern-growth algorithm, Extended Periodic-
Frequent pattern-growth (EPF-growth), has also been proposed to extract all
interesting periodic-frequent patterns. Experimental results demonstrate that
the proposed model can discover useful information and is efficient as compared
to the existing approaches.

The rest of the paper is organized as follows. Section 2 describes the related
work of finding periodic-frequent patterns in a transactional database. Section 3
introduces the extended model of periodic-frequent patterns. Section 4 describes
the EPF-growth algorithm. Section 5 reports on the experimental results. Finally,
Sect. 6 concludes the paper with future research directions.

Discovering Periodic-Frequent Patterns in Transactional Databases 59

2 Related Work

The problem of finding periodic patterns has been widely studied in time series
data [3,17]. These studies consider time series data as a symbolic sequence, and
therefore, do not take into account the actual temporal information of the items
within the data. Ozden et al. [10] have enhanced the transactional database by
a time attribute that describes the time when a transaction has appeared and
investigated the periodic behavior of the patterns to discover cyclic association
rules. In this study, a database needs to be fragmented into non-overlapping
subsets with respect to time. Henceforth, the drawback of this study is that
patterns (or association rules) that span multiple windows cannot be discovered.

Tanbeer et al. [13] have proposed a simplified periodic-frequent model, which
does not require data fragmentation. This model implicitly assumes all items
occur uniformly in the data, and henceforth, suffer from rare-item problem.

Kiran et al. [6] have tried to address the rare-item problem by finding
periodic-frequent patterns using multiple minSup and maxPer values. In that
model, every item in the database is specified with the minimum item support
(minIS) and the maximum item periodicity (maxIP). Next, the minSup and
maxPer of a pattern X are specified as follows:

minSup(X) = min(minIS(ij)|∀ij ∈ X) (1)
maxPer(X) = max(maxIP (ij)|∀ij ∈ X) (2)

where, minIS(ij) and maxIP (ij) represent the minimum item support and max-
imum item periodicity of an item ij ∈ X. A pattern-growth algorithm, MCPF-
growth has been discussed to find the patterns. The periodic-frequent patterns
discovered by that model do not satisfy the anti-monotonic property. That is, all
non-empty subsets of a periodic-frequent pattern may not be periodic-frequent
patterns. Henceforth, MCPF-growth is computationally expensive or impracti-
cable in very large real-world databases.

Surana et al. [11] have proposed an alternative model to address the rare-item
problem. In that model, the minSup and maxPer of a pattern are specified as:

minSup(X) = max(minIS(ij)|∀ij ∈ X) (3)
maxPer(X) = min(maxIP (ij)|∀ij ∈ X) (4)

A pattern-growth algorithm, MaxCPF-growth has been discussed to find the
patterns. The periodic-frequent patterns discovered by that model satisfy the
anti-monotonic property. Therefore, MaxCPF-growth is computationally inex-
pensive than MCPF-growth [6], and practicable in very large real-world data-
bases.

The limitations of these two approaches and the proposed model are discussed
in next section.

60 J.N. Venkatesh et al.

3 Extended Model of Periodic-Frequent Patterns

3.1 Limitations of Existing Approaches

An open problem that is common to above two studies [6,11] is the methodology
to specify items’ minIS and maxIP values. Kiran et al. [6] have described the
following methodology to address this problem:

minIS(ij) = max(γ × S(ij), LS)
and (5)

maxIP (ij) = max(β × S(ij) + Permax, P ermin)

where i ∈ I and S(i) is the support of the item i. In Eq. 5, LS is the user-specified
lowest minimum item support allowed and γ ∈ [0, 1] is a parameter that controls
how the minIS values for items should be related to their supports. In Eq. 5,
Permax and Permin are the user-specified maximum and minimum periodicities
such that Permax ≥ Permin and β ∈ [−1, 0] is a user-specified constant.

Although Eq. 5 facilitates every item to have different minIS and maxIP
values, it suffers from the following limitations: (i) This methodology requires
several input parameters from the user. (ii) Equation 5 determines the maxIP
of an item by taking into account only its support. As a result, this equation
implicitly assumes that all items having the same support will also have similar
periodicities in a transactional database. However, this is seldom the case as
items with similar support can have different periodicities. We have observed
that employing this methodology to specify items’ maxIP values in the transac-
tional databases, where items can have similar support but different periodicities
can still lead to the rare-item problem.

Example 4. Consider a hypothetical transactional database containing 100
transactions. Let ‘x’ and ‘y’ be two items in the database having the same
support (say, sup(x) = sup(y) = 40), but different periodicities (say, per(x) =
11 and per(y) = 30). Since Eq. 5 determines the maxIP values by taking into
account only the support of the items, both ‘x’ and ‘y’ will be assigned a com-
mon maxIP value although their actual periodicity is different from one another.
This can result either in missing interesting patterns or generating too many pat-
terns. For instance, if we set β = −0.5, Permin = 10 and Permax = 50, then
maxIP (x) = maxIP (y) = 20. In this case, we miss the periodic-frequent pat-
terns containing ‘y’ because per(y) �≤ maxIP (y). In order to find the periodic-
frequent patterns containing both ‘x’ and ‘y’ items, we have to set a high β value.
When β is set at −0.375, we derive maxIP (x) = maxIP (y) = 35. In this case,
we find periodic-frequent patterns containing ‘y’ because per(y) ≤ maxIP (y).
However, we may also witness too many patterns containing the item ‘x’ because
its maxIP value is three times higher than its periodicity.

We now describe the proposed model that do not suffer from this problem.

Discovering Periodic-Frequent Patterns in Transactional Databases 61

3.2 Proposed Model

To address the rare-item problem, we need an approach that extracts interesting
periodic-frequent patterns involving both frequent and rare items yet filtering out
uninteresting patterns. After conducting the initial investigation on the nature of
interesting patterns found in various databases, we have made a key observation
that most of the interesting periodic-frequent patterns discovered in a database
have their support and periodicity close to that of its individual items. The
following example illustrates our observation.

Example 5. In a supermarket, cheap and perishable goods (e.g., bread and but-
ter) are purchased more frequently and periodically than the costly and durable
goods (e.g., bed and pillow). Among all the possible combinations of the above
four items, we normally consider {bread, butter} and {bed, pillow} as interesting
patterns, because only these two patterns generally have support and periodicity
close to the support and periodicity of its individual items. All other uninterest-
ing patterns, {bread, bed}, {bread, pillow}, {butter, bed} and {butter, pillow},
generally have support and periodicity relatively far away from the support and
periodicity of its individual items as compared against the above two patterns.

Henceforth, in this paper we consider a pattern as interesting if its support
and periodicity are close to the support and periodicity of its individual items. In
this context, we need two measures to determine the interestingness of a pattern
with respect to both support and periodicity dimensions.

In the literature, researchers have discussed several measures to address the
rare-item problem in support dimension [12,16]. Each measure has a selection
bias that justifies the significance of a knowledge pattern. As a result, there
exists no universally acceptable best measure to judge the interestingness of a
pattern for any given database. In this paper, we use all-confidence to address
the rare-item problem in frequency dimension. The reasons for choosing this
measure over other measures are as follows: (i) The all-confidence assesses the
interestingness of a pattern by determining how close is its support with respect
to the support of all of its items in a database. (ii) The all-confidence satisfies
the anti-monotonic property [9]. This property plays a key role in the practicable
ability of our model. (iii) The all-confidence satisfies the null-invariance property
[5]. This property facilitate us to discover genuine interesting patterns without
being influenced by the item co-absence in the database.

Continuing with the basic model of periodic-frequent patterns (discussed in
Sect. 1), the proposed model is as follows.

Definition 1. (All-confidence of X) The all-confidence of X, denoted as
allConf(X), is the ratio of support of X to the maximal support of an item
ij ∈ X. That is, allConf(X) = sup(X)

max(sup(ij)|∀ij∈X) .

For a pattern X, allConf(X) ∈ (0, 1]. As per the all-confidence measure, a
pattern is interesting in support dimension if its support is close to the support of
all of its items. The parameter minAllConf indicates the user-specified minimum
all-confidence threshold value. Based on minSup and minAllConf thresholds, all
the interesting patterns involving rare items in support dimension are extracted.

62 J.N. Venkatesh et al.

The usage of all-confidence alone is insufficient to completely address the
rare-item problem in periodic-frequent pattern mining. The reason is this mea-
sure does not take into account the periodicity dimension of a pattern.

Example 6. The column titled II in Table 2 shows the periodic-frequent patterns
discovered when all-confidence is used along with support and periodicity mea-
sures. The minSup, minAllConf and maxPer values used to find these patterns
are 2, 0.6 and 6, respectively. It can be observed from the discovered periodic-
frequent patterns that though all-confidence is able to prune the uninteresting
pattern ‘ce,’ it has failed to prune another uninteresting pattern ‘cd’ from the list
of periodic-frequent patterns generated by the basic model. Henceforth, the rare-
item problem has to be addressed with respect to both support and periodicity
dimensions.

As there exists no measure in the literature that determines the interesting-
ness of a pattern with respect to the periodicities of all of its items, we propose a
new measure, periodic-all-confidence , to extract interesting patterns in peri-
odicity dimension involving rare items, which is defined as follows.

Definition 2. (Periodic-all-confidence of X) The periodic-all-confidence of
X, denoted as perAllConf(X), is the ratio of periodicity of X to the minimal
periodicity of an item ij ∈ X. That is, perAllConf(X) = per(X)

min(per(ij)|∀ij∈X) .

For a pattern X, perConf(X) ∈ [1,∞). As per the periodic-all-confidence
measure, a pattern is interesting in periodicity dimension, if the periodicity of
a pattern is close to the periodicity of all of its items. The parameter max-
PerAllConf indicates the maximum periodic-all-confidence threshold set by the
user. Based on maxPer and maxPerAllConf thresholds, the interesting patterns
involving rare items in periodicity dimension are extracted.

Henceforth, the periodic-frequent pattern is defined as follows.

Definition 3. (Periodic-frequent pattern X) The pattern X is said to be
periodic-frequent if sup(X) ≥ minSup, allConf(X) ≥ minAllConf , per(X) ≤
maxPer and perAllConf(X) ≤ maxPerAllConf . The terms minSup, minAll-
Conf, maxPer and maxPerAllConf, respectively represent the user-specified min-
imum support, minimum all-confidence, maximum periodicity and maximum
periodic-all-confidence.

Example 7. If the user-specified minSup = 2, minAllConf = 0.6, maxPer = 6
and maxPerAllConf = 1.5, then the pattern ‘ab’ is said to be a periodic-
frequent pattern, because sup(ab) ≥ minSup, allConf(ab) ≥ minAllConf ,
per(ab) ≤ maxPer and perAllConf(ab) ≤ maxPerAllConf .

Example 8. The column titled III in Table 2 shows the complete set of periodic-
frequent patterns discovered from Table 1. It can be observed that the proposed
model has not only discovered the periodic-frequent patterns containing rare
items but also pruned the uninteresting patterns ‘cd’ and ‘ce.’ This clearly
demonstrates that the proposed model discovers periodic-frequent patterns con-
taining rare items without generating too many uninteresting patterns.

Discovering Periodic-Frequent Patterns in Transactional Databases 63

Property 1. If X ⊂ Y , then TIDX ⊇ TIDY . Therefore, sup(X) ≥ sup(Y) and
allConf(X) ≥ allConf(Y).

Property 2. If X ⊂ Y , then per(X) ≤ per(Y). Therefore, perAllConf(X) ≤
perAllConf(Y) as per(X)

min(per(ij)∀ij∈X) ≤ per(Y)
min(per(ij)∀ij∈Y) .

The discovered periodic-frequent patterns satisfy the anti-monotonic property.
The correctness is straightforward to prove from Properties 1 and 2.

Definition 4. Problem Definition: Given the database (TDB) and the user-
specified minimum support (minSup), minimum all-confidence (minAllConf),
maximum periodicity (maxPer) and maximum periodic-all-confidence (maxPer-
AllConf), the problem of finding periodic-frequent patterns involve discovering
all patterns that satisfy the minSup, minAllConf, maxPer and maxPerAllConf
thresholds. Please note, the support and periodicity of a pattern can also be
expressed in percentage of |TDB|.

4 Proposed Algorithm

Tanbeer et al. [13] have proposed Periodic-Frequent pattern-growth (PF-growth)
to discover periodic-frequent patterns using support and periodicity measures.
Unfortunately, this algorithm cannot be directly used for finding the periodic-
frequent patterns with our model. The reason is PF-growth does not determine
the interestingness of a pattern using all-confidence and periodic-all-confidence
measures. In this paper, we extend PF-growth to determine the interesting-
ness of a pattern using these two measures. We call the proposed algorithm as
Extended Periodic-Frequent pattern-growth (EPF-growth). The proposed algo-
rithm involves two steps: (i) construction of Extended Periodic-Frequent pattern-
tree (EPF-tree), (ii) recursively mining EPF-tree to discover periodic-frequent
patterns. Before we describe these two steps, we explain the structure of EPF-
tree.

4.1 Structure of EPF-Tree

The structure of EPF-tree consists of a prefix-tree and a EPF-list. The EPF-
list consists of three fields: item name (i), support (s) and periodicity (p). The
structure of prefix-tree in EPF-tree is similar to that of the prefix-tree in FP-tree
[4]. However, to obtain both support and periodicity of the patterns, the nodes
in EPF-tree explicitly maintain the occurrence information for each transaction
by maintaining an occurrence transaction-id list, called tid-list, only at the last
node of every transaction. Complete details on prefix-tree are available in [13].

4.2 Construction of EPF-Tree

Since the periodic-frequent patterns generated by the proposed model satisfy
the anti-monotonic property, periodic-frequent items (or 1-patterns) play a key

64 J.N. Venkatesh et al.

Fig. 2. Construction of EPF-list for
Table 1. (a) After scanning the first transac-
tion (b) After scanning the second transac-
tion (c) After scanning the last transaction
(d) Updated EPF-list (e) Final EPF-list
with sorted list of periodic-frequent items

Fig. 3. Construction of EPF-tree for
Table 1. (a) After scanning first transac-
tion (b) After scanning second transac-
tion (c) After scanning every transaction

role in efficient discovery of higher order periodic-frequent patterns. Periodic-
frequent items are discovered by populating the EPF-list (lines 1 to 13 in
Algorithm 1). Figures 2(a), (b), (c), (d) and (e) show the steps involved in finding
periodic-frequent items from EPF-list. The user-specified minSup, minAllConf ,
maxPer and maxPerAllConf values are 2, 0.6, 6 and 1.5, respectively.

Algorithm 1. Construction of EPF-tree(TDB: Transactional database,
minSup: minimum support, minAllConf : minimum all-confidence, maxPer:
maximum periodicity, maxPerAllConf : maximum periodic-all-confidence)
1: Let idl be a temporary array that records the tid of the last appearance of each item

in the TDB. Let t = {tidcur, X} denote the current transaction with tidcur and X
representing the transaction-id of the current transaction and pattern, respectively.

2: for each transaction t ∈ TDB do
3: if an item i occurs for the first time then
4: Insert i into the EPF-list with supi = 1, peri = tidcur and idi

l = 1.
5: else
6: supi = supi + 1.
7: if (tidcur − idi

l) > peri then
8: peri = tidcur − idi

l.
9: for each item i in EPF-list do

10: if (|TDB| − idi
l) > peri then

11: peri = |TDB| − idi
l.

12: Remove items from the EPF-list that do not satisfy minSup and maxPer.
13: Sort the remaining items in EPF-list in descending order of their support. Let this

sorted list of items be EPF .
14: Create a root node in EPF-tree, T , and label it “null.”
15: for each transaction tr ∈ TDB do
16: Sort the items in t in EPF order. Let this list of sorted periodic-frequent

items in t be [p|P], where p is the first item and P is the remaining list. Call
insert tree([p|P], tidcur, T), which is the same as in [4].

Discovering Periodic-Frequent Patterns in Transactional Databases 65

After finding periodic-frequent items, prefix-tree is constructed by perform-
ing another scan on the database (lines 14 to 16 in Algorithm1). The construc-
tion of prefix-tree in EPF-tree is similar to the construction of prefix-tree in
FP-tree [4]. However, it has to be noted that leaf nodes in EPF-tree maintain
the transaction-ids of the transactions. Figures 3(a), (b) and (c) show the con-
struction of EPF-tree after scanning first, second and every transaction in the
transactional database, respectively. In EPF-tree, an item header table is built
so that each item points to its occurrences in the tree via a chain of node-links,
to facilitate tree traversal. For simplicity, we do not show these node-links in
trees, however, they are maintained as in FP-tree.

4.3 Mining EPF-Tree

Algorithm 2 describes the procedure for mining periodic-frequent patterns from
EPF-tree. The EPF-tree is mined by calling EPF-growth as (EPF-tree, null).
This algorithm resembles FP-growth. However, the key difference is that once
the pattern-growth is achieved for a suffix 1-pattern (or item), it is completely
pruned from the EPF-tree by pushing its tid-list to respective parent nodes.

Table 3 summarizes the working of this algorithm. First, we consider item ‘f ,’
which is the bottom-most item in the EPF-list, as a suffix pattern. This item
appears in three branches of the EPF-tree (refer Fig. 3(c)). The paths formed
by these branches are {cef : 4}, {abef : 10} and {aef : 12} (format of these
branches is {nodes : time-stamps}). Therefore, considering ‘f ’ as a suffix item,
its corresponding three prefix paths are {ce : 4}, {abe : 10} and {ae : 12}, which
form its conditional pattern base (refer Fig. 4(a)). Its conditional EPF-tree con-
tains only a single path, 〈e : 4, 10, 12〉; ‘a,’ ‘b’ and ‘c’ are not included because
their all-confidence and periodic-all-confidence do not satisfy the minAllConf
and maxPerAllConf respectively. Figure 4(b) shows the conditional EPF-tree of
‘f .’ The single path generates the pattern {ef : 3, 0.75, 6, 1.5} (format is {pattern:
support, all-confidence, periodicity, periodic-all-confidence}). The same process
of creating prefix-tree and its corresponding conditional tree is repeated for fur-
ther extensions of ‘ef .’ Next, ‘f ’ is pruned from the original EPF-tree and its
tid-lists are pushed to its parent nodes, as shown in Fig. 4(c). All the above
processes are once again repeated until EPF-list = ∅.

5 Experimental Results

In this section, we show that the proposed model discovers interesting patterns
pertaining to both frequent and rare items by pruning uninteresting patterns.
We also evaluate the proposed model against the existing models of periodic-
frequent patterns [6,11,13].

The algorithms, PF-growth, MCPF-growth, MaxCPF-growth and EPF-
growth are written in C++ and run with Fedora 22 on a 2.66 GHz machine
with 8 GB of memory. We have conducted experiments using both synthetic
(T10I4D100K) and real-world (Retail and FAA-accidents) databases. The
T10I4D100K data-base is generated using the IBM data generator [2]. This

66 J.N. Venkatesh et al.

Algorithm 2. EPF-growth(Tree, α)
1: for each ai in the header of Tree do
2: Generate pattern β = ai ∪ α. Construct an array TIDβ , which represents the

set of transaction-ids at which β has appeared in TDB. Next, compute from
TIDβ , sup(β), allConf(β), per(β) and perAllConf(β) and compare them with
minSup, minAllConf , maxPer and maxPerAllConf , respectively.

3: if sup(β) ≥ minSup, allConf(β) ≥ minAllConf , per(β) ≤ maxPer and
perAllConf(β) ≤ maxPerAllConf then

4: Output β as a periodic-frequent pattern as {β: sup, allConf, per, perAllConf}.
5: Traverse Tree using the node-links of β, and construct β’s conditional pattern

base and β’s conditional EPF-tree Treeβ .
6: if Treeβ �= ∅ then
7: call EPF-growth(Treeβ , β);
8: Remove ai from the Tree and push ai’s tid-list to its parent nodes.

database contains 878 items with 100,000 transactions. The Retail database
contains the market basket data from a Belgian retail store. This database con-
tains 16,471 items with 88,162 transactions. The FAA-accidents database is
constructed from the accidents data recorded by FAA from 1-January-1978 to
31-December-2014. This database contains 9,290 items with 98,864 transactions.

5.1 Patterns Generated by the Proposed Model

Figure 5 shows the number of patterns generated at different minAllConf and
maxPerAllConf values. The minSup and maxPer are set at 0.01% and 40%.
The following observations can be drawn: (i) The increase in minAllConf results
in decrease of periodic-frequent patterns. The reason is that as minAllConf
increases, the support threshold value of a pattern increases. (ii) The increase
in maxPerAllConf results in increase of patterns. The reason is that as max-
PerAllConf increases, the periodicity threshold value of a pattern increases.

Table 4 shows some of the interesting patterns discovered in FAA database.
The minSup, minAllConf , maxPer and maxPerConf values used are 0.01%,
0.01, 40% and 9, respectively. It can be observed from their support values that

Table 3. Mining EPF-tree by creating conditional (sub -) pattern bases

Item sup per Cond. Pattern Base Cond. EPF-tree Per. Freq. Patterns

f 3 6 {ce : 4}, {abe : 10}, 〈e : 4, 10, 12〉 {ef : 3, 0.75, 6, 1.5}
{ae : 12}

e 4 4 {c : 4}, {abc : 7}, − −
{ab : 10}, {a : 12}

d 5 5 {ab : 2}, {c : 3, 8, 9, 11} − −
b 5 3 {a : 1, 2, 5, 10}, {ac : 7} 〈a : 1, 2, 5, 7, 10〉 {ab: 5, 0.833, 3, 1}
c 6 3 {a : 7} − −

Discovering Periodic-Frequent Patterns in Transactional Databases 67

Fig. 4. Mining of EPF-tree for Table 1. (a) Prefix-tree of suffix item ‘f,’ i.e., PTf (b)
Conditional tree of suffix item ‘f,’ i.e., CTf (c) EPF-tree after pruning item ‘f.’

Fig. 5. Periodic-frequent patterns discovered in various databases

our model has discovered interesting patterns involving both frequent and rare
items effectively. Please note that the periodicity (per) is expressed in days.

Table 4. Some of the interesting patterns discovered in FAA-accidents database

S. No. Patterns sup allConf per perAllConf

1 {Ultralight Vehicles, Destroyed} 18 0.12 4904 8.01

2 {Starting engines, Destroyed} 13 0.06 4756 7.77

3 {General Operating Rules, Commercial 10,399 0.15 32 6.4
Pilot, Minor}

5.2 Comparison of Proposed Model Against the Existing Models

For MCPF-growth and MaxCPF-growth, we use Eq. 5 to specify items’ minIS
and maxIP values. Setting the α and β values in this equation has been a
non-trivial task as the patterns discovered by these algorithms can be dif-
ferent from the patterns discovered by EPF-growth. After conducting several
experiments, we have empirically set the following values for MCPF-growth
and MaxCPF-growth algorithms, such that both algorithms discover almost all
periodic-frequent patterns discovered by EPF-growth.

68 J.N. Venkatesh et al.

Figure 6 shows the number of periodic-frequent patterns generated at differ-
ent minSup values (Y -axis is plotted on logscale). For EPF-growth, we have
fixed minAllConf = 0.01, maxPer = 40% and maxPerAllConf = 9 and vary
minSup values. For MCPF-growth and MaxCPF-growth, we have set γ = 0.01,
LS = minSup, β = −0.4, Permax = 40% and Permin = 10%. For PF-growth,
we have set maxPer = 40% and vary minSup values.

Fig. 6. Periodic-frequent patterns generated at different minSup values

Figure 7 shows the number of periodic-frequent patterns generated at dif-
ferent maxPer values (Y -axis is plotted on logscale). For EPF-growth, we have
fixed minSup = 0.01%, minAllConf = 0.01 and maxPerAllConf = 9 and vary
maxPer values. For MCPF-growth and MaxCPF-growth, we have set γ = 0.01,
LS = 0.01%, β = −0.4, Permax = maxPer and Permin = 10%. For PF-growth,
we have set minSup = 0.01% and vary maxPer values.

Fig. 7. Periodic-frequent patterns generated at different maxPer values

From Figs. 6 and 7, it can be observed that the proposed model has generated
lesser number of periodic-frequent patterns than the other models, because the
existing models have suffered from the rare-item problem.

Figure 8 shows the runtime taken by various models at different maxPer
values (Y -axis is plotted on logscale). It can be observed that, in all the data-
bases the proposed model takes lesser runtime to find periodic-frequent patterns
than PF-growth and MCPF-growth. But the proposed model takes slightly more
runtime than MaxCPF-growth. So the proposed model is not adding any signifi-
cant overhead in mining periodic frequent patterns. Similar observations can be
drawn when minSup is varied. Due to space restrictions, we are not reporting it.

Discovering Periodic-Frequent Patterns in Transactional Databases 69

Fig. 8. Runtime requirements of various models at different maxPer values

6 Conclusions and Future Work

This paper introduces a model to address the rare item problem in both sup-
port and periodicity dimensions. A new interestingness measure, periodic-all-
confidence, is proposed to address the problem in periodicity dimension. An
efficient pattern-growth algorithm has been proposed to discover all periodic-
frequent patterns in a database. Experimental results demonstrate that the pro-
posed model is efficient. As a part of future work, we would like to study the
change in periodic behavior of rare items due to noise.

References

1. Faa accidents dataset. http://www.asias.faa.gov/pls/apex/f?p=100:1:0::NO
2. Agrawal, R., Srikant, R.: Quest Synthetic Data Generator. IBM Almaden Research

Center
3. Han, J., Gong, W., Yin, Y.: Mining segment-wise periodic patterns in time-related

databases. In: KDD, pp. 214–218 (1998)
4. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate

generation: a frequent-pattern tree approach. DMKD 8(1), 53–87 (2004)
5. Kim, S., Barsky, M., Han, J.: Efficient mining of top correlated patterns

based on null-invariant measures. In: Gunopulos, D., Hofmann, T., Malerba, D.,
Vazirgiannis, M. (eds.) ECML PKDD 2011, Part II. LNCS, vol. 6912, pp. 177–192.
Springer, Heidelberg (2011)

6. Uday Kiran, R., Krishna Reddy, P.: Towards efficient mining of periodic-
frequent patterns in transactional databases. In: Bringas, P.G., Hameurlain, A.,
Quirchmayr, G. (eds.) DEXA 2010, Part II. LNCS, vol. 6262, pp. 194–208.
Springer, Heidelberg (2010)

7. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering recurring pat-
terns in time series. In: EDBT, pp. 97–108 (2015)

8. Ma, S., Hellerstein, J.: Mining partially periodic event patterns with unknown
periods. In: ICDE, pp. 205–214 (2001)

9. Omiecinski, E.R.: Alternative interest measures for mining associations in data-
bases. IEEE Trans. Knowl. Data Eng. 15(1), 57–69 (2003)

10. Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association rules. In: ICDE,
pp. 412–421 (1998)

http://www.asias.faa.gov/pls/apex/f?p=100:1:0::NO

70 J.N. Venkatesh et al.

11. Surana, A., Kiran, R.U., Reddy, P.K.: An efficient approach to mine periodic-
frequent patterns in transactional databases. In: Cao, L., Huang, J.Z., Bailey, J.,
Koh, Y.S., Luo, J. (eds.) PAKDD Workshops 2011. LNCS, vol. 7104, pp. 254–266.
Springer, Heidelberg (2012)

12. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure
for association patterns. In: KDD, pp. 32–41 (2002)

13. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-
frequent patterns in transactional databases. In: Theeramunkong, T.,
Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476,
pp. 242–253. Springer, Heidelberg (2009)

14. Tanbeer, S.K., Hassan, M.M., Alrubaian, M., Jeong, B.-S.: Mining regularities
in body sensor network data. In: Di Fatta, G., Fortino, G., Li, W., Pathan, M.,
Stahl, F., Guerrieri, A. (eds.) IDCS 2015. LNCS, vol. 9258, pp. 88–99. Springer,
Heidelberg (2015)

15. Weiss, G.M.: Mining with rarity: a unifying framework. SIGKDD Explor. 6(1),
7–19 (2004)

16. Wu, T., Chen, Y., Han, J.: Re-examination of interestingnessmeasures in pattern
mining: a unified framework. DMKD 21(3), 371–397 (2010)

17. Yang, R., Wang, W., Yu, P.: Infominer+: mining partial periodic patterns with
gap penalties. In: ICDM, pp. 725–728 (2002)

More Efficient Algorithms for Mining
High-Utility Itemsets with Multiple Minimum

Utility Thresholds

Wensheng Gan1, Jerry Chun-Wei Lin1(B), Philippe Fournier-Viger2,
and Han-Chieh Chao1,3

1 School of Computer Science and Technology,
Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China

wsgan001@gmail.com, jerrylin@ieee.org, hcc@ndhu.edu.tw
2 School of Natural Sciences and Humanities,

Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
philfv@hitsz.edu.cn

3 Department of Computer Science and Information Engineering,

National Dong Hwa University, Hualien, Taiwan

Abstract. Mining high-utility itemsets (HUIs) is a popular data min-
ing task, which consists of discovering sets of items that yield a high
profit in a transaction database. Although HUI mining has numerous
applications, a key limitation is that a single minimum utility thresh-
old (minutil) is used to assess the utility of all items. This simplifying
assumption is unrealistic since in real-life all items do not have the same
unit profit, and thus do not have an equal chance of generating a high
profit. As a result, if the minutil threshold is set high, patterns con-
taining items having a low unit profit are often missed, while if minutil
is set low, the number of patterns becomes unmanageable. To address
this issue, this paper presents an efficient tree-based algorithm named
HIMU for mining HUIs using multiple minimum utility thresholds.
A novel tree structure called multiple item utility Set-enumeration
(MIU)-tree and the global and conditional downward closure (GDC and
CDC) properties of HUIs in the MIU-tree are proposed. Moreover, a ver-
tical compact utility-list structure is adopted to store the information
required for discovering HUIs without performing additional database
scans and generating candidates. An extensive experimental study on
real-world and synthetic datasets show that this greatly improves the
efficiency of the algorithm in terms of runtime and scalability.

Keywords: High-utility itemsets · Rare item problem ·
Set-enumeration tree · SDC property · Pruning strategies

1 Introduction

Knowledge Discovery in Database (KDD) is the process of finding mean-
ingful, unexpected, and useful information in large amounts of data [2,3].
Two fundamental tasks in KDD are frequent itemset mining (FIM) and
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 71–87, 2016.
DOI: 10.1007/978-3-319-44403-1 5

72 W. Gan et al.

association rule mining (ARM) [2,3], which have numerous applications, in many
domains. In contrast with traditional FIM and ARM, high-utility itemset mining
(HUIM) [5,6,10,11,13,14,16] considers that items may have different unit prof-
its and that purchase quantities may be non binary, to measure how “useful” an
item or itemset is. The “utility” of an itemset in HUIM represents its importance
to users in real-life applications (e.g., weight, cost, risk, or unit profit). The goal
of HUIM is to identify itemsets in transactions that may be frequent or rare, but
yield a high profit. HUIM is a key data analysis task, and has been widely uti-
lized to discover valuable knowledge in several domains. Many approaches have
been developed to mine high-utility itemsets such as Two-Phase [11], IHUP [5],
UP-growth [13], UP-growth+ [14], HUI-Miner [10], and FHM [8], and so on.

However, an important limitation of previous studies is that they rely on a
single minimum utility threshold to discover the complete set of HUIs. Using a
single threshold value to assess the utility of all items in a database is inadequate
since each item is different and thus items should not all be treated the same.
Traditional high-utility itemset mining algorithms only let the user specify one
minutil threshold to assess the utility of all patterns. Using a single threshold
implies that all patterns in the database should have an equal chance of having
a utility higher than the minutil threshold. But this assumption is unrealistic
in practical applications [9] since each item generally has a distinct nature, fre-
quency, or importance, and thus different items may tend to exhibit a lower or a
higher utility. Hence, using a single fixed threshold, it is difficult to fairly measure
the utility of items or itemsets. For example, in a retail store, it may be desirable
to view the itemset {diamond} as a HUI if it brings more than 5,000$/week, but
to view the itemset {bread, milk} as a HUI if its profit is greater than 100$/week.
Using traditional HUI mining algorithms, if the minutil threshold is set high,
useful patterns having a low utility are missed, and if it is set low, the number of
HUIs becomes unmanageable. Thus, assessing the utility of items using a single
threshold is inadequate as it does not take the inherent nature of each item (i.e.,
utility, item importance) into account. It is a non-trivial task and an important
challenge to design efficient algorithms that solve this issue.

Mining association rules and frequent itemsets using multiple minimum
support thresholds has been extensively studied [7,12,15], but the proposed
approaches cannot be directly used in HUIM since HUIM considers non binary
purchase quantities, and the unit profits of items. Up to now, few works have
addressed the problem of mining HUIs with multiple minimum utility thresh-
olds. To the best of our knowledge, HUI-MMU and the improved HUI-MMUTID

algorithms [9] are the only algorithms designed to address this issue. However,
a drawback of these algorithms it that they use a level-wise candidate generation-
and-test approach to mine HUIs, which may perform poorly on databases con-
taining long transactions or when minimum utility thresholds are set low. In
this paper, to improve the efficiency of HUIM with multiple thresholds, an effi-
cient tree-based algorithm named mining High-utility Itemsets with Multiple
minimum Utility thresholds (abbreviated as HIMU) is developed. The contri-
butions of this work are fourfold:

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 73

– A fast algorithm named HIMU is proposed to reveal useful and meaningful
High-utility Itemsets by considering Multiple minimum Utility thresholds. The
user can assign a minimum utility threshold to each item based on its real-life
utility. This is more flexible and realistic than using a single minutil threshold.

– In contrast with previous Apriori-based algorithms, the proposed HIMU algo-
rithm avoids repeatedly scanning the database and generating candidates,
thanks to a novel sorted Set-enumeration tree structure named MIU-tree, and
the use of a compact utility-list structure that allows obtaining information
about an itemset by combining utility-lists of its prefix itemsets.

– Moreover, two novel global and conditional sorted downward closure (GDC
and CDC) properties guarantee the global and partial anti-monotonicity for
mining HUIs in the MIU-tree. Thus, HIMU can easily discover HUIs while
pruning a huge number of unpromising itemsets, and only two database scans
are performed by HIMU, which is more efficient than previous algorithms.

– Extensive experiments on two real-world datasets show that the proposed
algorithms efficiently discover HUIs and outperform the state-of-the-art HUI-
MMU and HUI-MMUTID algorithms. In addition, the improved algorithm
outperforms the baseline algorithm, in terms of runtime and scalability.

2 Related Works

High-utility itemset mining (HUIM) considers the internal transaction utilities
(purchase quantities) and external utilities (unit profits) of items to discover the
profitable itemsets in quantitative databases. HUIM was introduced by Chan
et al. [6]. Yao et al. then defined a strict unified framework for HUIM [16].
Since the downward closure property of ARM does not hold in HUIM, Liu
et al. designed the TWU model [11] and a transaction-weighted downward clo-
sure (TWDC) property, to greatly reduce the number of unpromising candidates
when mining HUIs using a level-wise approach. Several tree-based approaches
for HUIM such as IHUP [5], UP-growth [13] and UP-growth+ [14] have been
proposed. These pattern-growth approaches, however, generate and keep a huge
number of candidates in memory to then obtain the actual HUIs. To address the
above limitations of traditional HUIM, the HUI-Miner algorithm was proposed
to directly mine HUIs while avoiding performing multiple database scans and
generating candidates based on a designed utility-list structure [10]. The FHM
algorithm was further proposed to enhance the performance of HUI-Miner using
co-occurrences of pair of items [8].

Besides traditional HUIM, several variations of HUIM have been developed.
The development of algorithms for HUIM is an active research topic, but most of
them consider a single minutil threshold. In the field of FIM, several algorithms
have been designed to address the “rare item problem such as MSApriori [7],
CFP-growth [15], and CFP-growth++ [12]. The key idea of these works is to
extract frequent patterns involving rare items using the “multiple minimum sup-
ports framework” [7,12,15]. This framework allows the user to specify multiple
minimum support thresholds to take into account the nature of each item in

74 W. Gan et al.

Table 1. An example database

TID Transaction

T1 a:1, c:2, d :3

T2 a:2, d :1, e:2

T3 b:3, c:5

T4 a:1, c:3, d :1, e:2

T5 b:1, d :3, e:2

T6 b:2, d :2

T7 b:3, c:2, d :1, e:1

T8 a:2, c:3

T9 c:2, d :2, e:1

T10 a:2, c:2, d :1

Table 2. Derived HUIs

Itemset MIU Utility Itemset MIU Utility

(b) 65 108 (de) 50 96

(d) 50 126 (acd) 50 76

(ad) 50 90 (bde) 50 93

(bc) 53 79 (cde) 50 55

(bd) 50 126 (bcde) 50 50

(cd) 50 83

terms of frequency in the database. However, these approaches cannot be directly
used in HUIM since HUIM requires to consider the purchase quantities and unit
profits of items. There is only one paper that has considered the constraint of
multiple minimum utility thresholds for mining HUIs [9].

3 Preliminaries and Problem Statement

Let I = {i1, i2, . . . , im} be a finite set of m distinct items appearing in a transac-
tional database D = {T1, T2, . . . , Tn}, where each transaction Tq ∈ D is a subset
of I, and has a unique identifier called its TID. A unit profit pr(ij) is assigned to
each item ij ∈ I, which represents its importance (e.g. profit, interest, risk). Unit
profits are stored in a profit-table ptable = {pr(i1), pr(i2), . . . , pr(im)}. An item-
set X ⊆ I with k distinct items {i1, i2, . . . , ik} is of length k and is referred to as a
k -itemset. An itemset X is said to be contained in a transaction Tq if X ⊆ Tq. For
an itemset X, let the notation TIDs(X) denotes the TIDs of transactions in D
containing X. For example, Table 1 shows a transactional database containing 10
transactions, and will be used as running example. Assume that the profit-table
is defined as in the ptable = {pr(a) : 6, pr(b) : 12, pr(c) : 1, pr(d) : 9, pr(e) : 3}.

Definition 1. The minimum utility threshold of an item ij in a database D is
denoted as mu(ij). A structure called MMU-table indicates the minimum utility
thresholds of each item in D, and is defined as:

MMU -table = {mu(i1),mu(i2), . . . ,mu(im)}. (1)

Assume that the minimum utility thresholds of items in the running exam-
ple are defined as: MMU -table = {mu(a),mu(b),mu(c),mu(d),mu(e)} =
{56, 65, 53, 50, 70}. To avoid the “rare item problem”, we consider the small-
est utility threshold among items in an itemset as its minimum utility threshold,
as defined below.

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 75

Definition 2. The minimum utility threshold of a k -itemset X = {i1, i2, . . . , ik}
in D is denoted as MIU(X), and defined as the smallest mu value for items in
X, that is:

MIU(X) = min{mu(ij)|ij ∈ X, 1 ≤ j ≤ k}. (2)

For example, MIU(a) = min{mu(a)} = 56, MIU(ac) = min{mu(a),
mu(c)} = min{56, 53} = 53, and MIU(ace) = min{mu(a),mu(c),mu(e)} = 53.

Definition 3. The utility of an item ij in a transaction Tq is defined as:

u(ij , Tq) = q(ij , Tq) × pr(ij). (3)

Definition 4. The utility of an itemset X in a transaction Tq is defined as:

u(X,Tq) =
∑

ij∈X∧X⊆Tq

u(ij , Tq). (4)

Definition 5. The utility of an itemset X in a database D is defined as:

u(X) =
∑

X⊆Tq∧Tq∈D

u(X,Tq). (5)

Definition 6. The transaction utility of a transaction Tq is defined as:

tu(Tq) =
∑

ij∈Tq

u(ij , Tq). (6)

Definition 7. The transaction-weighted utility of an itemset X is denoted as
TWU(X), and defined as:

TWU(X) =
∑

X⊆Tq∧Tq∈D

tu(Tq). (7)

Definition 8. An itemset X ⊆ I is a high transaction-weighted utilization item-
set (HTWUI) if its TWU value is no less than the minimum utility threshold [14].
To adapt this definition, we assume that this threshold is MIU (X).

HTWUI ← {X|TWU(X) ≥ MIU(X)}. (8)

Definition 9. An itemset X in a database D is a high-utility itemset (HUI) if
and only if its utility is no less than its minimum utility threshold:

HUI ← {X|u(X) ≥ MIU(X)}. (9)

For the running example, the complete set of HUIs when considering multiple
minimum utility thresholds is shown in Table 2.

Definition 10. Given a transactional database D and a MMU-table, which
defines the minimum utility thresholds of each item in D. The problem of min-
ing high-utility itemsets in D with multiple minimum utility thresholds (HUIM-
MMU) is to find each itemset X having a utility no less than its threshold
MIU(X).

76 W. Gan et al.

4 Proposed HIMU Algorithm for Mining HUIs

4.1 Search Space of HIMU and the Proposed MIU-Tree

Definition 11 (Total Order ≺ on Items). The proposed MIU-tree structure
relies on a total order ≺ on items. Assume that this order is the ascending order
of minimum utility thresholds of items.

Definition 12 (Set-Enumeration Tree with Multiple Minimum Item
Utilities, MIU-Tree). The designed MIU-tree structure is a sorted set-
enumeration tree where the total order ≺ on items is the ascending order of
minimum utility thresholds of items.

Definition 13. The extensions (descendant nodes) of an itemset (tree node) X
can be obtained by appending an item y to X such that y is greater than all
items already in X according to the total order ≺.

For example, the proposed MIU-tree used by the HIMU algorithm for the
running example is shown in Fig. 1 (left). Based on the designed MIU-tree, the
following lemmas can be obtained.

Lemma 1. The complete search space of the proposed HIMU algorithm for the
HUIM-MMU framework can be represented by a MIU-tree where items are sorted
according to the ascending order of the mu values on items.

MIU(d) < MIU(c) < MIU(a) < MIU(b) < MIU(e)

ea b

{ }

cd

dca dcb

dcab dcae dcbe

dce

dc da db de

dbe cab cae

dabe cabe

dcabe

ca cb ce ab ae be

abecbedab dae

ea b

{ }

cd

dca dcb

dcab dcae dcbe

dce

dc da db de

dbe cab cae

dabe cabe

dcabe

ca cb ce ab ae be

abecbedab dae

unvisited nodes

visited and pruned nodes

visited nodes

Fig. 1. The MIU-tree representation of the search space.

The traditional TWDC property of the TWU model does not hold in the
proposed HUIM-MMU framework. For example, consider items (b), (c), (d) and
(e) (MIU(b) : 65, MIU(c) : 53, MIU(d) : 50 and MIU(e) : 70). The TWU
of an itemset (bce) is calculated as TWU(bce) = 50, which is less than the
minimum utility values of its subsets MIU (b), MIU (c) and MIU (e). Hence,

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 77

(bce) is not a HTWUI, and thus the itemset (bcde) and its supersets would
be discarded according to the TWDC property. But it can be observed that
TWU(bcde) = 50, which is equal to MIU(bcde) = 50. But as shown in Table 2,
it can be seen that itemset (bcde) is actually a HUI. It is thus incorrect to
discard the supersets of (bce) based on the TWDC property since (bcde) would
not be generated. Therefore, if a k-itemset Xk is a HTWUI (i.e., TWU(Xk) ≥
MIU(Xk)), we cannot ensure that any subset Xk−1 of Xk is also a HTWUI
(because MIU(Xk−1) ≥ MIU(Xk)). Thus, using this property to prune the
search space may fail to discover the complete set of HUIs. To address this
limitation, the Sorted Downward Closure (SDC) property was proposed in [9].

Theorem 1 (Sorted Downward Closure Property, SDC Property).
Assume that items in itemsets are sorted by ascending order of mu values.
Given any itemset Xk = {i1, i2, . . . , ik} of length k, and another itemset
Xk−1 = {i1, i2, . . . , ik−1} such that Xk−1 ⊆ Xk. If Xk is a HTWUI then Xk−1

is also a HTWUI [9].

Proof. Since Xk−1 ⊆ Xk, the following relationships hold:

(1) By Definition 2, we have that MIU(Xk−1) = min{mu(i1),mu(i2), . . . ,
mu(ik−1)}, and MIU(Xk) = min{mu(i1),mu(i2), . . . ,mu(ik)}. Since
{i1, i2, . . . , ik} is sorted according to the total order ≺, MIU(Xk) =
MIU(Xk−1) = mu(i1).

(2) Thus, TWU(Xk) =
∑

Xk⊆Tq∧Tq∈D tu(Tq) ≤ ∑
Xk−1⊆Tq∧Tq∈D tu(Tq) =

TWU(Xk−1). Therefore, if Xk is a HTWUI (i.e., TWU(Xk) ≥ mu(i1)),
any subset Xk−1 of Xk is also a HTWUI.

Although the sorted downward closure (SDC) property guarantees the anti-
monotonicity for HTWUIs, some HUIs would still be missed if items that are
HTWUIs are determined using their MIU (X) values. To address this problem,
the concept of least minimum utility value (LMU) was developed to guarantee
deriving all HUIs when using multiple minimum utility thresholds [9].

Definition 14 (Least Minimum Utility Value, LMU). The least minimum
utility value (LMU) is defined as the smallest value in the MMU-table, that is:

LMU = min{mu(i1),mu(i2), . . . , mu(im)}, (10)

where m is the total number of items in the database.

For example, the LMU of the given example is calculated as:
min{mu(a),mu(b),mu(c),mu(d),mu(e)} = min{56, 65, 53, 50, 70} = 50.

4.2 Proposed Conditional Downward Closure (CDC) and Global
Downward Closure (GDC) Properties

Lemma 2. The MIU value of a node/pattern in the MIU-tree is equal to that
of any of its child nodes (extension nodes).

78 W. Gan et al.

Proof. Assume that Xk−1 is a node representing an itemset X in the MIU-
tree, and that Xk is any of its child nodes (extensions). By definition, we
have that MIU(Xk−1) = min{mu(i1),mu(i2), . . . ,mu(ik−1)}, and MIU(Xk) =
min{mu(i1),mu(i2), . . . ,mu(ik)}. Since {i1, i2, . . . , ik} is sorted by ascending
order of mu values, it can be proven that: MIU(Xk) = MIU(Xk−1) = mu(i1).
Thus, the MIU value of a node in the MIU-tree is always equal to the MIU of
any of its child nodes.

Lemma 3. The support of a node in the MIU-tree is no less than the support
of any of its child nodes (extension nodes).

Proof. Since the Set-enumeration MIU-tree is a prefix tree, the relationship of
the support of Xk and Xk−1 can be proven to be sup(Xk) ≤ sup(Xk−1).

Theorem 2 (HUIs ⊆ HTWUIs). Assume that 1-itemsets having a TWU
lower than LMU are discarded and that the total order ≺ is applied. We have
that HUIs ⊆ HTWUIs, which indicates that if an itemset is not a HTWUI, then
it is not a HUI. Moreover, none of its extensions are HTWUIs or HUIs.

Proof. Let Xk be an itemset such that Xk−1 is a subset of Xk.

(1) We have that TWU(X1) ≤ LMU and MIU (Xk) ≥ LMU .
(2) Since items are sorted by ascending order of mu values, TWU(Xk−1) ≥

TWU(Xk) and MIU(Xk−1) = MIU(Xk) = min{mu(i1),mu(i2), . . . ,
mu(im)} = mu(i1).

(3) u(X) =
∑

X⊆Tq∧Tq∈D u(X,Tq) ≤ ∑
X⊆Tq∧Tq∈D tu(Tq) = TWU(X).

Thus, if Xk−1 is not a HTWUI and TWU(Xk−1) < mu(i1), none of its supersets
are HUIs.

Lemma 4. The TWU of any node in the Set-enumeration MIU-tree is no less
than the sum of all the actual utilities of any one of its descendant nodes, but
not the MIU of its descendant nodes.

Proof. Let Xk−1 be a node in the MIU-tree, and Xk be a children (extension)
of Xk−1. According to Theorem 1 and Lemma 1, we can get TWU(Xk−1) ≥
TWU(Xk) and the relationship between MIU values. Thus, the lemma holds.

Theorem 3 (Global Downward Closure Property, GDC Property). In
the designed MIU-tree, if the TWU of a tree node X is less than the LMU , X is
not a HUI, and all its supersets (not only its child nodes, but all nodes containing
X) are also not considered as HUIs.

Proof. According to Lemma 2 and Theorem 2, this theorem holds.

This theorem ensures that by discarding itemsets with a TWU less than
LMU , and their extensions, no HUIs are missed. Thus, the designed global down-
ward closure (GDC) property and the LMU guarantee the completeness and
correctness of the proposed HIMU algorithm, when pruning the search space.

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 79

In the past, a structure named utility-list was proposed to keep information
from transactions in memory to directly mine HUIs [10]. The utility-list struc-
ture is efficient and is thus adopted in the proposed HIMU algorithm to store
the required information about itemsets, as shown in Fig. 2. The reader can refer
to [8,10] for details about the utility-list structure, and the iu and ru values
stored in utility-lists.

(b)

tid iu ru

3 12 0

5 36 6

6 24 0

7 36 3

(e)

tid iu ru

2 6 0

4 6 0

5 6 0

7 3 0

9 3 0

(a)

tid iu ru

1 6 0

2 12 6

4 6 6

8 12 0

10 12 0

(c)

tid iu ru

1 2 6

3 5 12

4 3 12

7 2 39

8 3 12

9 2 3

10 2 12

(d)

tid iu ru

1 9 8

2 9 18

4 27 15

5 18 42

6 18 24

7 9 41

9 18 5

10 9 14

Fig. 2. Constructed utility-lists of 1-itemsets in the running example.

Definition 15. For an itemset X, X.IU and X.RU are respectively the sum of
iu values and the sum of ru values in the utility-list of X, that is:

X.IU =
∑

X⊆Tq∧Tq∈D

X.iu(Tq);X.RU =
∑

X⊆Tq∧Tq∈D

X.ru(Tq).

Strategy 1. When traversing the MIU-tree using a depth-first search, if the
TWU of a node X based on its utility-list is less than the LMU, then none of
the supersets of node X (note that here supersets contains not only descendant
nodes of X, but also other nodes having X as subset) are HUIs.

Theorem 4 (Conditional Downward Closure Property, CDC Property).
For any node X in the MIU-tree, the sum of X.IU and X.RU in the utility-list
of X is no less than the utility of any one of its descendant nodes (extensions).
Thus this sum is anti-monotonic and allows pruning itemsets in the MIU-tree.

Proof. Let Xk−1 be a (k -1)-itemset, and Xk be a (k)-itemset that is an extension
of Xk−1. Assume that Xk is a children of Xk−1 in the MIU-tree, meaning that
Xk−1 is a prefix of Xk. Let the set of items in Xk but not in Xk−1 be denoted
as (Xk−Xk−1) = (Xk\Xk−1), and the set of all the items appearing after Xk

in transaction T is denoted as T/Xk. For any transaction Xk ⊆ Tq:

∵ Xk−1 ⊂ Xk ⊆ Tq ⇒ (Xk \ Xk−1) ⊆ (Tq \ Xk−1).

∴ In each Tq, X
k.iu =Xk−1.iu + (Xk \ Xk−1).iu =Xk−1.iu +

∑
z∈(Xk\Xk−1) z.iu

∴ Xk.iu ≤ Xk−1.iu +
∑

z∈(Tq/Xk−1) z.iu = Xk−1.iu + Xk−1.ru

∴ In each Tq, X
k.iu ≤ Xk−1.iu + Xk−1.ru

∵ Xk−1 ⊂ Xk ⇒ Xk.tids ⊆ Xk−1.tids

∴ in D, Xk.IU=
∑

Tq∈Xk.tids Xk.iu ≤∑Tq∈Xk.tids(X
k−1.iu + Xk−1.ru)

80 W. Gan et al.

≤∑Tq∈Xk−1.tids(X
k−1.iu + Xk−1.ru) = Xk−1.IU + Xk−1.RU

∴ in D, Xk.IU ≤ Xk−1.IU + Xk−1.RU

Thus, the sum of the utilities of Xk in D is no greater than (Xk−1.IU +
Xk−1.RU) of Xk−1 in D.

Strategy 2. When traversing the MIU-tree using a depth-first search, if the sum
of X.IU and X.RU in the utility-list of an itemset X is less than MIU(X), then
none of the descendant nodes (extensions) of node X is a HUI since the actual
utilities of these extensions will be less than MIU(X).

In the running example, assume that the node (e) has TWU(e) < LMU .
Then the visited nodes, pruned nodes, and the skipped nodes are respectively
shown in Fig. 1 (right) when applying the Strategy 1. And the Strategy 2 is
used as a conditional strategy to prune all extensions of an unpromising node
early.

4.3 Estimated Utility Co-occurrence Pruning Strategy

In this section, we extend the Estimated Utility Co-occurrence Pruning (EUCP)
strategy [8], in the proposed algorithm, to provide an additional way of pruning
unpromising itemsets early with multiple minimum utility thresholds.

Theorem 5. Without loss of generality, assume that items in itemsets are
sorted by ascending order of mu values. If an itemset X contains a 2-itemset
X that is not a HTWUI, then any k-itemset Xk (k ≥ 3) that is a (transitive)
extension of X is not a HTWUI or HUI.

Proof. Let X be a 2-itemset and Xk be a k -itemset (k ≥ 3) that is a (transi-
tive) extension of X. According to the GDC property and because TWU(Xk) ≤
TWU(Xk−1), if a 2-itemset is not a HTWUI, then any k -itemset (k ≥ 3), which
is an extension of X is not a HTWUI or HUI.

As mentioned above, not all supersets of a non HTWUI should be pruned
but only those having a MIU value greater than the MIU value of this non
HTWUI (w.r.t. the extensions of this non HTWUI having higher MIU values).
Thus, using the proposed GDC property with the designed total order ≺, the
completeness and correctness of the enhanced algorithm named HIMUEUCP

is preserved by extending the EUCP strategy. Note that the TWU values of
all 2-itemsets are stored in a structure called estimated utility co-occurrence
structure (EUCS) [8].

Strategy 3 (EUCP Strategy). When traversing the MIU-tree using a depth-
first search, if the TWU value of a 2-itemset X is less than the MIU value of X
according to the EUCS, then X is not a HTWUI; and any k-itemset which is an
extension of X will not be a HTWUI or HUI, and they can be pruned directly.

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 81

4.4 Procedure of the HIMU Algorithm and the Enhanced
Algorithm

Note that the proposed enhanced HIMUEUCP algorithm is similar to the baseline
HIMU algorithm. The difference is that the EUCS needs to be constructed
initially during the second database scan. Moreover, the mining procedure for
deriving HUIs is modified to verify pruning Strategy 3 for each generated itemset.
Due to the page limitation, only the details of the HIMUEUCP algorithm are
provided.

Input: D ; ptable; MMU-table = {mu(i1), mu(i2), . . . , mu(im)}.
Output: The set of complete high-utility itemsets (HUIs).

1 i.UL ← ∅, D.UL ← ∅, EUCS ← ∅;
2 calculate the LMU in the MMU-table;
3 scan D to calculate the TWU(i) value of each item i ∈ I;
4 find I∗ ← {i ∈ I|TWU(i) ≥ LMU}, w.r.t. HTWUI1;
5 sort I∗ according to the designed total order ≺ (ascending order of mu values);
6 scan D to construct the utility-list i.UL of each item i ∈ I∗ and build the EUCS ;
7 call HUI-Search(φ, I∗,MMU-table, EUCS);
8 return HUIs;

Algorithm 1. The HIMUEUCP algorithm

Input: X, extensionsOfX, MMU-table, EUCS.
Output: The complete set of HUIs.

1 for each itemset Xa ∈ extensionsOfX do
2 obtain the Xa.IU and Xa.RU values from the built Xa.UL;
3 if Xa.IU ≥ MIU(Xa) then
4 HUIs ← HUIs ∪ Xa;

5 if (Xa.IU + Xa.RU ≥ MIU(Xa)) then
6 extensionsOfXa ← ∅;
7 for each itemset Xb ∈ extensionsOfX such that Xb after Xa do
8 if ∃TWU(a, b) ∈ EUCS ∧ TWU(a, b) ≥ MIU(Xa) then
9 Xab ← Xa ∪ Xb;

10 Xab.UL ← construct(X, Xa, Xb);
11 if Xab.UL �= ∅ then
12 extensionsOfXa ← extensionsOfXa ∪ Xab.UL;

13 call HUI-Search(Xa , extensionsOfXa ,MIU(Xa), EUCS);

14 return HUIs

Algorithm 2. The HUI-Search Procedure

As shown in Algorithm 1, the HIMUEUCP algorithm first sets i.UL, D.UL
and EUCS to the empty set (Line 1), and calculates the LMU in the MMU-
table (Line 2). Then, it scans the database to calculate the TWU(i) value of
each item i ∈ I (Line 3), and then find the potential 1-itemsets which may be

82 W. Gan et al.

HUIs such that TWU(i) ≥ LMU(I∗ ⊆ HTWUI1) (Line 4). After sorting I∗ by
≺ (ascending order of mu values), the algorithm scans D again to construct the
utility-list of each item i ∈ I∗ and build the EUCS (Lines 5 to 6). It is important
to notice that only the designed order ≺ can guarantee the completeness of
HIMU, as previously explained. The utility-list of each item i ∈ I∗ is recursively
processed by the depth-first search HUI-Search procedure (Line 7). This latter
procedure (cf. Algorithm 2), checks if each 1-extension Xa of an itemset X is a
HUI (Lines 2 to 4). Two conditions are then checked to determine whether its
child nodes should be considered by the depth-first search (Lines 5 to 12). If
an itemset is regarded as a potential HUI, the Construct(X,Xa,Xb) procedure
(see [10] for details) is applied to construct the utility-lists of all 1-extensions
of Xa (w.r.t. extensionsOfXa) (Lines 9 to 12). Notice that each extension Xab

is a 1-extension of itemset Xa, and is added to the set extensionsOfXa for the
later depth-first search (Line 13). The HUI-Search procedure then is recursively
called to mine HUIs (Line 13).

5 Experimental Evaluation

The performance of the proposed HIMU and HIMUEUCP algorithms was evalu-
ated on two real-world datasets, foodmart [4] and mushroom [1]. The foodmart
dataset contains customer transactions from an anonymous chain store, and is
provided with Microsoft SQL Server. It contains 21,556 transactions and 1,559
distinct items. The mushroom dataset is dense. It has 8,124 transactions and
120 distinct items, and an average transaction length of 23 items. The foodmart
dataset contains real utility values, while a simulation model [13] was developed
to generate the quantities and profit values of items in transactions for the mush-
room dataset, by choosing random values respectively in the [1, 5] and [1, 1000]
intervals.

The performance of the designed algorithms was also compared with the
state-of-the-art HUI-MMU and HUI-MMUTID algorithms [9]. To perform a fair
comparison, all algorithms were implemented in Java and executed on a com-
puter having an Intel Core2 Duo 2.8 GHz processor and 4GB of main memory,
running the 64 bit Microsoft Windows 7 operating system. Moreover, a method
to automatically set the mu value of each item was adopted, described in the
HUI-MMU algorithm [9]: mu(ij) = max[β × pr(ij), GLMU], where β is a con-
stant used to set the mu values of items as a function of their unit profit values.
To ensure randomness and diversity in the experiments, β was set in the [1, 100]
interval for the foodmart dataset, and in the [1000, 10000] for mushroom. The
parameter GLMU is a user-specified global least minimum utility value, and
pr(ij) is the external utility of an item pr(ij). Note that if β is set to zero, then
a single minimum utility value GLMU will be used for all items, and this will
be equivalent to traditional HUIM.

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 83

5.1 Execution Time

In the conducted experiments, the parameter β was randomly set to a fixed num-
ber of items. Figure 3 shows the runtime of the algorithms under various GLMU
with a fixed β within an interval, and under various β with a fixed GLMU
for different datasets. In Fig. 3, it can be seen that the HIMU and the improved
HIMUEUCP algorithms perform well compared to the HUI-MMU, HUI-MMUTID

algorithms under various GLMU with a fixed β, and under various β with a
fixed GLMU . Moreover, the two MIU-tree-based algorithms are generally up to
almost one or two orders of magnitude faster than the level-wise HUI-MMU and
HUI-MMUTID algorithms. HIMUEUCP is faster than the HIMU algorithm on
mushroom but not on foodmart, by adopting the EUCP strategy, which is used
to avoid join operations for forming the utility-lists of unpromising itemsets. This
indicates that the generate-and-test approach has worse performance than the
proposed depth-first search approach that utilizes the vertical utility-list struc-
ture and additional pruning strategies. The gap between the previous approaches
and the proposed MIU-tree-based algorithms becomes large when GLMU and β
are decreased. As shown in Fig. 3(a) and (c), HIMUEUCP performs slightly worse
than HIMU. The reason is that for the very sparse foodmart dataset, with an
average transaction length of 4.4, many unpromising candidates can be directly
pruned by the redefined HTWUI and SDC properties, and it is unnecessary to
apply the EUCP strategy for pruning unpromising itemsets, and thus construct
the EUCS. Furthermore, when β is increased, the HIMU and HIMUEUCP algo-
rithms take less time to find the HUIs. The reason is that when β is set to large
values, the actual minimum utility threshold of each item is also set to larger

Fig. 3. Runtime performance.

84 W. Gan et al.

values based on the presented equation. Hence, fewer HUIs and HTWUIs are
pruned by the pruning conditions, and the execution time becomes smaller. In
summary, the two proposed algorithms considerably outperform the state-of-
the-art HUI-MMU and HUI-MMUTID algorithms.

5.2 Effect of Pruning Strategies

We also evaluated the effectiveness of the EUCP strategy for pruning unpromis-
ing itemsets. The number of itemsets (nodes) visited by the HIMU and
HIMUEUCP algorithms are named N2 and N3, respectively. Moreover, the num-
ber of itemsets generated by combining pairs for determining HTWUIs in HUI-
MMU and HUI-MMUTID is denoted as N1. Results are shown in Fig. 4. It can
be observed that relationship N3 ≤ N2 holds for all datasets no matter how
GLMU is set, for a fixed β or under various β with a fixed GLMU . Especially,
the node reduction obtained by adopting the EUCP strategy in the enhanced
algorithm is huge, as shown in N3 ≤ N2. Besides, N1 is less than N3 and N2 for
foodmart, but larger on mushroom. It indicates that the search space (in terms
of visited nodes in the Set-enumeration MIU-tree) of HIMU may be huge if the
effective EUCP pruning strategy is not applied for pruning the search space.

Fig. 4. Number of visited nodes (patterns).

5.3 Memory Consumption

We also assessed the memory consumption of the compared algorithms. Mem-
ory measurements were done using the standard Java API. Note that the peak

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 85

memory consumption of each algorithm was recorded for all datasets. Results
are shown in Fig. 5. In this figure, it can be clearly seen that the proposed HIMU
algorithms require less memory than the state-of-the-art HUI-MMU and HUI-
MMUTID algorithms for various parameters on the two datasets, and by up to
3,000 times on mushroom. Moreover, the HIMU and HIMUEUCP algorithms
require nearly constant memory under various parameter values for the two
datasets. The memory usage of the level-wise algorithms dramatically increases
when GLMU or β are decreased, while the memory usage of the proposed algo-
rithms remain stable. The reason is the same as above. This result is reason-
able since the two MIU-tree-based algorithms can quickly traverse the MIU-tree
without generating candidates and easily prune unpromising itemsets using the
sum of utilities and remaining utilities. Furthermore, the utility-list structure
is adopted as a vertical compact structure to store information about itemsets.
Thus, less memory is consumed.

5.4 Scalability Analysis

Figure 6 compares the scalability of the algorithms on synthetic data
T10I4N4KD|X|K where the transaction count (K) was varied from 100K to
500K, GLMU = 1, 000, 000 and β was varied from 1000 to 10000. It can be
seen that the designed algorithms scale well with respect to dataset size and
that HIMUEUCP scales better than HIMU. When the dataset size is increased,
HIMUEUCP becomes increasingly faster than the other algorithms thanks to the
EUCP strategy. HIMUEUCP consumes more memory than HIMU but less than
the two level-wise algorithms because it uses the additional EUCS to store TWU
values of all 2-itemsets (see Fig. 6(b)). From Fig. 6(c), it can also be seen that

Fig. 5. Memory performance.

86 W. Gan et al.

Fig. 6. Scalability of the compared algorithms.

the number of nodes N3 remains much smaller than N2. Thus, by utilizing the
EUCP strategy, the actual search space of the HIMUEUCP algorithm is reduced
compared to the baseline HIMU algorithm, and it can be concluded that the
improved algorithm is acceptable and efficient.

6 Conclusion

In this paper, a novel algorithm named HIMU was presented to discover high-
utility itemsets with multiple minimum utility thresholds. A compact Multiple
Itemset Utility Set-enumeration tree (MIU-tree) was designed for mining HUIs
without candidate generation. Besides, the global and conditional downward clo-
sure (GDC and CDC) properties were proposed to guarantee the global and
partial anti-monotonicity for mining HUIs. Pruning conditions are also incor-
porated in the proposed algorithms to reduce the search space, and an efficient
compact utility-list structure is used to obtain information about any itemset
from its prefix itemsets in the designed MIU-tree. An experimental evaluation
against the state-of-the-art HUI-MMU and HUI-MMUTID algorithms on two
real-world datasets shows that the two proposed algorithms are highly efficient
and scalable.

Acknowledgment. This research was partially supported by the National Natural
Science Foundation of China (NSFC) under Grant No. 61503092, and by the Tencent
Project under grant CCF-TencentRAGR20140114.

References

1. Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data/
2. Agrawal, R., Imielinski, T., Swami, A.: Database mining: a performance perspec-

tive. IEEE Trans. Knowl. Data Eng. 5(6), 914–925 (1993)
3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large

databases. In: The International Conference on Very Large Data Bases, pp. 487–
499 (1994)

4. Microsoft. Example database foodmart of Microsoft analysis services. http://www.
Almaden.ibm.com/cs/quest/syndata.html

http://fimi.ua.ac.be/data/
http://www.Almaden.ibm.com/cs/quest/syndata.html
http://www.Almaden.ibm.com/cs/quest/syndata.html

Efficient Algorithms for Mining High-Utility Itemsets with MMUs 87

5. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Le, Y.K.: Efficient tree structures for
high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data
Eng. 21(12), 1708–1721 (2009)

6. Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: The International
Conference on Data Mining, pp. 19–26 (2003)

7. Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum sup-
ports. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 337–341 (1999)

8. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility
itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T.,
Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502,
pp. 83–92. Springer, Heidelberg (2014)

9. Lin, J.C.W., Gan, W., Fournier-Viger, P., Hong, T.P.: Mining high-utility itemsets
with multiple minimum utility thresholds. In: ACM International Conference on
Computer Science & Software Engineering, pp. 9–17 (2015)

10. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In:
ACM International Conference on Information and Knowledge Management, pp.
55–64 (2012)

11. Liu, Y., Liao, W., Choudhary, A.K.: A two-phase algorithm for fast discovery of
high utility itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS
(LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005)

12. Kiran, R.U., Reddy, P.K.: Novel techniques to reduce search space in multiple min-
imum supports-based frequent pattern mining algorithms. In: ACM International
Conference on Extending Database Technology, pp. 11–20 (2011)

13. Tseng, V.S., Wu, C.W., Shie, B.E., Yu, P.S.: UP-growth: an efficient algorithm
for high utility itemset mining. In: ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 253–262 (2010)

14. Tseng, V.S., Shie, B.E., Wu, C.W., Yu, P.S.: Efficient algorithms for mining high
utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng.
25(8), 1772–1786 (2013)

15. Hu, Y.H., Chen, Y.L.: Mining association rules with multiple minimum supports:
a new mining algorithm and a support tuning mechanism. Decis. Support Syst.
42(1), 1–24 (2006)

16. Yao, H., Hamilton, J., Butz, C.J.: A foundational approach to mining itemset
utilities from databases. In: SIAM International Conference on Data Mining, pp.
211–225 (2004)

Mining Minimal High-Utility Itemsets

Philippe Fournier-Viger1(B), Jerry Chun-Wei Lin2, Cheng-Wei Wu3,
Vincent S. Tseng3, and Usef Faghihi4

1 School of Natural Sciences and Humanities,
Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China

philfv@hitsz.edu.cn
2 School of Computer Science and Technology, Shenzhen Graduate School,
Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China

jerrylin@ieee.org
3 Department of Computer Science, National Chiao Tung University,

Hsinchu, Taiwan
silvemoonfox@gmail.com, vtseng@cs.nctu.edu.tw

4 Department of Computer Science and Mathematics,
University of Indianapolis, Indianapolis, USA

faghihiu@indy.edu

Abstract. Mining high-utility itemsets (HUIs) is a key data mining
task. It consists of discovering groups of items that yield a high profit
in transaction databases. A major drawback of traditional high-utility
itemset mining algorithms is that they can return a large number of
HUIs. Analyzing a large result set can be very time-consuming for users.
To address this issue, concise representations of high-utility itemsets have
been proposed such as closed HUIs, maximal HUIs and generators of
HUIs. In this paper, we explore a novel representation called the minimal
high utility itemsets (MinHUIs), defined as the smallest sets of items
that generate a high profit, study its properties, and design an efficient
algorithm named MinFHM to discover it. An extensive experimental
study with real-life datasets shows that mining MinHUIs can be much
faster than mining other concise representations or all HUIs, and that it
can greatly reduce the size of the result set presented to the user.

Keywords: Utility mining · High-utility itemsets · Minimal itemsets

1 Introduction

High-utility itemset mining (HUIM) is an emerging data mining task, which con-
sists of discovering sets of items that have a high utility (yield a high profit) in
customer transaction databases [2,5,8–13,15]. HUIM can be viewed as a general-
ization of Frequent Itemset Mining (FIM) [1,3,4,17], where weights are assigned
to each item to represent their importance (e.g. unit profit), and purchase quan-
tities of items in transactions are not restricted to binary values. HUIM has
applications in many domains such as customer purchase behavior analysis, web-
site click stream analysis, and biomedicine [2,12,15]. HUIM is widely considered
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 88–101, 2016.
DOI: 10.1007/978-3-319-44403-1 6

Mining Minimal High-Utility Itemsets 89

as more difficult than FIM because the utility measure used in HUIM is neither
anti-monotonic nor monotonic, unlike the support measure used in FIM [1]. In
other words, the utility of an itemset can be lower, equal or higher than the util-
ity of any of its supersets. Hence, techniques for pruning the search space in FIM
cannot be directly applied in HUIM. Although HUIM has attracted lots of atten-
tion in recent years, an important limitation of traditional high-utility itemset
mining algorithms [2,5,8–13,15] is that they can generate a very large amount
of HUIs. This can make HUI mining algorithms run out of storage space or even
fail to terminate. Moreover, it is very time-consuming for a user to analyze a
very large set of HUIs [6,16]. To address this issue, it was proposed to mine con-
cise representations of all HUIs rather than the whole set of HUIs. Three main
representations have been proposed in previous work. Maximal HUIs are the
HUIs that are not included in other HUIs. For a retailer, it answers the question
of finding the largest sets of items that yield a high profit. Closed HUIs [16] are
the HUIs that are not included in another HUIs having the same support. For
a retailer, it answers the question of finding the largest groups of items yielding
a high profit, which are common to groups of customers. Finally, Generators of
HUIs [6] answer the question of finding the smallest sets of items common to
groups of customers having bought a same high-utility itemset.

In this paper, we investigate a novel representation of HUIs named the min-
imal high-utility itemsets (MinHUIs), defined as the smallest HUIs (HUIs that
are not included in another HUI). This representation addresses the problem
that HUIM algorithms often find very long HUIs containing many items. But
these HUIs often represent rare cases, as in real-life, few customers exactly buy
the same large set of items. For marketing purpose, a retailer may be more inter-
ested in finding the smallest sets of items that generate a high profit, since it is
easier to co-promote a small set of items targeted at many customers rather than
a large set of items targeted at few customers. The proposed representation is
the opposite of maximal HUIs. It aims at discovering the smallest sets of items
that generate a high profit in a database rather than the largest ones. Because
this representation has been unexplored, it remains an important challenge to
explore the properties of this representation and define an efficient algorithm for
mining this representation. In this paper, we address this challenge. We propose
a novel algorithm named MinFHM to discover this representation efficiently.
MinFHM extends FHM, a state-of-the-art algorithm for HUI mining by using a
novel pruning property, and several optimizations to mine MinHUIs efficiently.
We compare the performance of MinFHM with FHM on several real-life datasets.
Results show that mining minimal HUIs is almost two orders of magnitude faster
than mining all HUIs, or other concise representations of HUIs and that it can
greatly reduce the result set presented to the user. The rest of this paper is
organized as follows. Sections 2, 3, 4, 5 and 6 respectively present related work,
minimal high-utility itemsets, the MinFHM algorithm, the experimental evalu-
ation and the conclusion.

90 P. Fournier-Viger et al.

2 Related Work

The problem of HUIM is defined as follows [5,12,13,15]. Consider a set of items
(symbols) denoted as I. A transaction database is a set of transactions D =
{T0, T1, ..., Tn} such that for each transaction Tc, Tc ⊆ I and Tc has a unique
identifier c called its Tid. Each item i ∈ I is associated with a positive number
p(i), called its external utility, representing its importance (e.g. unit profit).
Moreover, for each transaction Tc such that i ∈ Tc, a positive number q(i, Tc)
is called the internal utility of i, which represents the purchase quantity of i in
transaction Tc. For example, Table 1 shows a transaction database containing five
transactions (T0, T1...T4), which will be used as running example. Transaction
T3 indicates that items a, c, and e appear in this transaction with an internal
utility of respectively 2, 6, and 2. Table 2 indicates that the external utilities of
these items are respectively 5, 1, and 3.

Table 1. A transaction database

TID Transaction

T0 (a, 1), (b, 5), (c, 1), (d, 3), (e, 1)

T1 (b, 4), (c, 3), (d, 3), (e, 1)

T2 (a, 1), (c, 1), (d, 1)

T3 (a, 2), (c, 6), (e, 2)

T4 (b, 2), (c, 2), (e, 1)

Table 2. External utility values

Item a b c d e

Unit profit 5 2 1 2 3

The utility of an item i in a transaction Tc is denoted as u(i, Tc) and defined
as p(i) × q(i, Tc). The utility of an itemset X (a group of items X ⊆ I) in a
transaction Tc is denoted as u(X,Tc) and defined as u(X,Tc) =

∑
i∈X u(i, Tc).

The utility of an itemset X (in all transactions of a transaction database) is
denoted as u(X) and defined as u(X) =

∑
Tc∈g(X) u(X,Tc), where g(X) is the

set of transactions containing X. The problem of high-utility itemset mining is
to discover all high-utility itemsets. An itemset X is a high-utility itemset if its
utility u(X) is no less than a user-specified minimum utility threshold minutil
given by the user. For instance, the utility of the itemset {a, c} is u({a, c}) =
u(a)+u(c) = u(a, T0)+u(a, T2)+u(a, T3)+u(c, T0)+u(c, T2)+u(c, T3) = 5+5+
10 + 1 + 1 + 6 = 28. If minutil = 25, the set of HUIs is {a, c} : 28, {a, c, e} : 31,
{a, b, c, d, e} : 25, {b, c} : 28, {b, c, d} : 34, {b, c, d, e} : 40, {b, c, e} : 37, {b, d} : 30,
{b, d, e} : 36, {b, e} : 31 and {c, e} : 27, where each HUI is annotated with its
utility. A major challenge in HUIM is that the utility measure is not monotonic
or anti-monotonic, and thus that pruning techniques developed in FIM cannot be
directly used in FIM to prune the search space. Many HUIM algorithms such as
Two-Phase [13], IHUP [2], BAHUI [11], PB [8], and UPGrowth+ [15] overcome
this challenge by using a measure called the Transaction-Weighted Utilization
(TWU) measure, which provides an upper-bound on the utility of itemsets and is
anti-monotonic [2,13,15]. The aforementioned algorithms first identify candidate
high utility itemsets by calculating their TWUs. Then, in a second phase, they

Mining Minimal High-Utility Itemsets 91

scan the database to calculate the exact utility of all candidates found in the
first phase to eliminate low utility itemsets. The TWU measure is defined as
follows. The transaction utility (TU) of a transaction Tc is the sum of the utilities
of all the items in Tc. i.e. TU(Tc) =

∑
x∈Tc

u(x, Tc). The transaction-weighted
utilization (TWU) of an itemset X is defined as the sum of the transaction
utilities of transactions containing X, i.e. TWU(X) =

∑
Tc∈g(X) TU(Tc). For

instance, the TUs of T0, T1, T2, T3 and T4 are respectively 25, 20, 8, 22 and 9.
The TWU of single items a, b, c, d, e are respectively 55, 54, 84, 53 and 76.
TWU({c, d}) = TU(T0) + TU(T1) + TU(T2) = 25 + 20 + 8 = 53. The TWU has
the following useful property for pruning the search space [13].

Property 1 (Pruning search space using the TWU). Let X be an itemset, if
TWU(X) < minutil, then X and its supersets are low utility [13].

Recently, algorithms were proposed to mine HUIs directly using a single
phase [5,9,12], and were shown to outperform previous algorithms. FHM is to
our knowledge the fastest algorithm for mining HUIs [5]. It performs a depth-
first search to explore the search space of HUIs, and introduces an additional
optimization named EUCP [5] to prune the search space using information about
co-occurrences. FHM assign a structure named utility-list [5,9,12] to each item-
set. Utility-lists allow calculating the utility of an itemset quickly by making
join operations with utility-lists of shorter patterns. Utility-lists are defined as
follows. Let � be any total order on items from I. The utility-list of an itemset X
in a database D is a set of tuples such that there is a tuple (tid, iutil, rutil) for
each transaction Ttid containing X. The iutil element of a tuple is the util-
ity of X in Ttid. i.e., u(X,Ttid). The rutil element of a tuple is defined as∑

i∈Ttid∧i�x∀x∈X u(i, Ttid). For instance, assume that � is the alphabetical order.
The utility-list of {a} is {(T0, 5, 20), (T2, 5, 3), (T3, 10, 12)}. The utility-list of
{d} is {(T0, 6, 3), (T1, 6, 3), (T2, 2, 0)}. The utility-list of {a, d} is {(T0, 11, 3),
(T2, 7, 0)}. To discover HUIs, FHM performs a single database scan to cre-
ate utility-lists of patterns containing single items. Then, longer patterns are
obtained by performing the join operation of utility-lists of shorter patterns (see
[5,12] for details). Calculating the utility of an itemset using its utility-list and
pruning the search space is done as follows.

Property 2 (Calculating utility of an itemset using its utility-list). The utility of
an itemset is the sum of iutil values in its utility-list.

Property 3 (Pruning search space using utility-lists). Let X be an itemset. Let
the extensions of X be the itemsets that can be obtained by appending an item
y to X such that y � i, ∀i ∈ X. If the sum of iutil and rutil values in ul(X) is
less than minutil, X and its extensions are low utility.

FHM is very efficient. However, it can generate a huge amount of HUIs. This
can make the algorithm run out of storage space, and fail to terminate. Fur-
thermore, it is very inconvenient for a user to analyze a large set of HUIs. To
discover small and representative subsets of all HUIs, concise representations

92 P. Fournier-Viger et al.

of HUIs have been proposed such as closed HUIs [16], maximal HUIs [14], and
generators of HUIs [6], defined as follows. The support of an itemset X in a
database D is denoted as sup(X) and defined as |g(X)|, the number of trans-
actions containing X. A HUI X is a closed HUI (CHUI) [16] iff there exists no
HUI Y such that X ⊂ Y and sup(X) = sup(Y). A HUI X is a maximal HUI
(MaxHUI) [14] iff there exists no HUI Y , such that X ⊂ Y . An itemset X is a
generator of high-utility itemsets (GHUI) iff (1) there exists no itemset Y ⊂ X,
such that sup(X) = sup(Y), and (2) there exists an itemset Z such that X ⊆ Z
and u(Z) ≥ minutil [6].

3 The Minimal High Utility Itemsets

CHUIs, MaxHUIs and GHUIs are designed to provide answers to different ques-
tions that retailers may have about customer transactions, as outlined in the
introduction. A drawback of the representations of CHUIs and MaxHUIs is that
they tend to find very long HUIs, containing many items. A problem with these
representations is thus that these HUIs often represent rare cases, as generally
few customers exactly buy a same large set of items. For marketing purpose, a
retailer may be more interested in finding the smallest sets of items generating
a high profit, since it is easier to co-promote a small set of items targeted at
a many customers rather than a large set of items targeted at few customers.
The representation of GHUIs [6] partially addresses this issue by finding the
smallest itemsets common to groups of customers having bought a set of items
generating a high profit. However, no research has yet considered mining only
the smallest HUIs. To address this research gap, we thereafter propose the novel
concise representation of minimal high-utility itemsets (MinHUIs).

Definition 1 (Minimal HUIs). An itemset X is a minimal high-utility itemset
(MinHUI) iff u(X) ≥ minutil and there does not exist an itemset Y ⊂ X such
that u(Y) ≥ minutil.

This proposed representation is the opposite of maximal HUIs, i.e. it consists
of the smallest sets of items that generate a high profit rather than the largest. To
better show the relationship between the proposed MinHUIs, and the previously
proposed CHUIs, MinHUIs and GHUIs, Fig. 1 presents an illustration of these
various types of patterns, for the running example. In this figure, all equivalence
classes containing at least a HUI are represented. An equivalence class is a set of
itemsets supported by the same set of transactions, ordered by the subset rela-
tion. For example, {{a, e}, {a, c, e}} is the equivalence class of itemsets appearing
in transactions T0 and T2. An alternative and equivalent definition of GHUIs and
CHUIs is the following. For each equivalence class containing a HUI, the CHUI is
the largest itemset (the one having no superset in that equivalence class), while
GHUI(s) are the smallest itemsets (those having no subset in that same equiva-
lence class). Note that in the illustration equivalence classes are represented as
Hasse diagrams and that low-utility itemsets that are not GHUIs in each equiv-
alence class are not shown. As it can be seen in this example, MaxHUIs can be
very long and thus offer few useful information to the user. For example, the only

Mining Minimal High-Utility Itemsets 93

MaxHUI found in the running example is {a, b, c, d, e}, and it represents the very
specific case of a single customer (T0). CHUIs are interesting but they also tend
to contain very large itemsets. For example, CHUIs include {a, b, c, d, e} in the
example. GHUIs find the smallest itemsets common to a set of customers. How-
ever, a drawback of GHUIs is that some of these itemsets are low-utility such as
{e} in the example. To address these issues, the proposed MinHUIs are defined
as the smallest high-utility itemsets. These itemsets are interesting as they tend
to have a high support (represent many customers) as shown in this example,
and are all HUIs. MinHUIs in this example are: {b, c}, {b, d}, {b, e}, {a, c} and
{c, e}. Formally, the relationship between these various sets of HUIs are the fol-
lowing: MinHUIs ⊆ HUIs ⊆ 2I , MaxHUIs ⊆ CHUIs ⊆ HUIs ⊆ 2I , and
GHUIs ⊆ 2I .

Fig. 1. HUIs and their equivalence classes (represented using Hasse diagrams)

A problem with previous representations is that the number of discovered
patterns can still be very large since the number of HUIs, CHUIs, GHUIs and
MaxHUIs increases when the minutil threshold is decreased. It is interesting to
note that this is not necessarily the case for MinHUIs (Property 4).

Property 4 (Influence of minutil on MinHUI count). If minutil is lowered,
the number of MinHUIs may increase, decrease or stay the same. Moreover, if
minutil = 1, the set of MinHUIs is equal to I.

The above property is demonstrated using the running example. For
minutil = 20, there is 3 MinHUIs: {a}, {b}, and {c, e}. For minutil = 25,
there are 5 MinHUIs: {b, c}, {b, d}, {b, e}, {a, c}, and {c, e}. For minutil = 30,
there are 3 MinHUIs: {b, d}, {b, e}, and {a, c, e}. Another interesting property
of MinHUIs is used for pruning the search space in the proposed MinFHM
algorithm.

Property 5 (pruning property of minimal high-utility itemsets). If an itemset X
is a MinHUI, then supersets of X are not MinHUIs.

94 P. Fournier-Viger et al.

4 The MinFHM Algorithm

This section presents the proposed MinFHM algorithm. It first describes the
main procedure, which is inspired by the FHM [5] algorithm. This procedure
is designed to mine all HUIs. Then, it explains how that procedure is adapted
to find only MinHUIs. The resulting algorithm is called MinFHM. The main
procedure of MinFHM (Algorithm 1) takes as input a transaction database with
utility values and the minutil threshold. The algorithm first scans the database
to calculate the TWU of each item. Then, the algorithm identifies the set I∗

of all items having a TWU no less than minutil (other items are ignored since
they cannot be part of a high-utility itemsets by Property 3). The TWU values
of items are then used to establish a total order � on items, which is the order
of ascending TWU values (as suggested in [12]). A second database scan is
then performed. During this database scan, items in transactions are reordered
according to the total order �, the utility-list of each item i ∈ I∗ is built and a
structure named EUCS (Estimated Utility Co-Occurrence Structure) is built [5].
This latter structure is defined as a set of triples of the form (a, b, c) ∈ I∗×I∗×R.
A triple (a,b,c) indicates that TWU({a, b}) = c. The EUCS can be implemented
as a triangular matrix or as a hash map of hash maps where only tuples of the
form (a, b, c) such that c �= 0 are kept. In our implementation, we have used this
latter representation as it is more memory efficient. Building the EUCS is very
fast (it is performed with a single database scan) and occupies a small amount
of memory, bounded by |I∗| × |I∗|, although in practice the size is much smaller
because a limited number of pairs of items co-occurs in transactions (cf. Sect. 5).
After the construction of the EUCS, the depth-first search exploration of itemsets
starts by calling the recursive procedure Search with the empty itemset ∅, the
set of single items I∗, minutil and the EUCS structure.

Algorithm 1. The MinFHM algorithm
input : D: a transaction database, minutil: a user-specified threshold
output: the set of high-utility itemsets

1 Scan D to calculate the TWU of single items;
2 I∗ ← each item i such that TWU(i) ≥ minutil;
3 Let � be the total order of TWU ascending values on I∗;
4 Scan D to build the utility-list of each item i ∈ I∗ and build the EUCS;
5 Output each item i ∈ I∗ such that SUM({i}.utilitylist.iutils) ≥ minutil;
6 Search (∅, I∗, minutil, EUCS);

The Search procedure (Algorithm 2) takes as input (1) an itemset P , (2) exten-
sions of P having the form Pz meaning that Pz was previously obtained by
appending an item z to P , (3) minutil and (4) the EUCS. The search procedure
operates as follows. For each extension Px of P , if the sum of the iutil values
of the utility-list of Px is no less than minutil, then Px is a high-utility itemset

Mining Minimal High-Utility Itemsets 95

and it is output (cf. Property 4). Then, if the sum of iutil and rutil values in the
utility-list of Px are no less than minutil, it means that extensions of Px should
be explored. This is performed by merging Px with all extensions Py of P such
that y � x to form extensions of the form Pxy containing |Px| + 1 items. The
utility-list of Pxy is then constructed as in HUI-Miner by calling the Construct
procedure (cf. Algorithm 3) to join the utility-lists of P , Px and Py. This latter
procedure is the same as in HUI-Miner [12] and is thus not detailed here. Then,
a recursive call to the Search procedure with Pxy is done to calculate its util-
ity and explore its extension(s). Since the Search procedure starts from single
items, it recursively explores the search space of itemsets by appending single
items and it only prunes the search space based on Property 5. It can be easily
seen based on Property 1, 2 and 3 that this procedure is correct and complete
to discover all high-utility itemsets.

Algorithm 2. The Search procedure
input : P : an itemset, ExtensionsOfP: a set of extensions of P , , minutil: a

user-specified threshold, EUCS: the EUCS
output: the set of high-utility itemsets

1 foreach itemset Px ∈ ExtensionsOfP do
2 if SUM(Px.utilitylist.iutils)+SUM(Px.utilitylist.rutils) ≥ minutil then
3 ExtensionsOfPx ← ∅;
4 foreach itemset Py ∈ ExtensionsOfP such that y � x do
5 if ∃(x, y, c) ∈ EUCS such that c ≥ minutil) then
6 Pxy ← Px ∪ Py;
7 Pxy.utilitylist ← Construct (P, Px, Py);
8 ExtensionsOfPx ← ExtensionsOfPx ∪ {Pxy};
9 if SUM(Pxy.utilitylist.iutils) ≥ minutil then output Px;

10 end

11 end
12 Search (Px, ExtensionsOfPx, minutil);

13 end

14 end

We now explain how the search procedure is modified to mine only MinHUIs,
rather than all HUIs. The first modification is to the main MinFHM procedure
(Algorithm 1). During the first database scan, the utility of each single item is
now calculated. Then, each item x that is a high-utility itemset is directly output.
The reason is that each such item x is a MinHUI, since no smaller itemset can
be a HUI. Thereafter, each such item x is removed from the set I (and thus will
not be inserted in I∗). Thus, no superset of x will be explored by the Search
procedure, and item x will be ignored in TWU and remaining utility calculations,
afterward. The reason for removing item x from I is that if x is a HUI, then
all supersets of x are not MinHUIs according to Property 5. By applying the
previous modification, the algorithm will correctly output MinHUIs that are

96 P. Fournier-Viger et al.

single items. To find MinHUIs having more than one item, modifications are
made to the Search procedure (Algorithm 2) as follows. A new structure called
the MinHUI-store is introduced. At any time, this structure stores the itemsets,
which are currently considered to be MinHUIs. When a new HUI Pxy is found,
the modified algorithm checks if there exists an itemset Y in the MinHUI-store
such that Y ⊂ Pxy. If there exists such an itemset Y , then Pxy is not a MinHUI.
Thus, Pxy is not output. Moreover, by Property 5, supersets of Pxy are also not
MinHUIs. Thus, Pxy is not added to the set ExtensionsOfPx, to ensure that
extension of Pxy will not be considered by the search procedure. If there does
not exist an itemset Y such that Y ⊂ Pxy, then Pxy is assumed to be a MinHUI.
The itemset Pxy is thus inserted into the MinHUI-store. Then, the modified
algorithm removes each itemset Z in the MinHUI-store such that Pxy ⊂ Z,
because each such itemset Z is no longer a MinHUI, after the discovery of Pxy.
When the algorithm terminates, all MinHUIs in the left-store are output. The
union of these itemsets with the single items that are MinHUIs (which have been
previously output), are the full set of MinHUIs. By the definition and properties
presented in this paper, it can easily be seen that this algorithm is correct and
complete for mining MinHUIs.

Algorithm 3. The Construct procedure
input : P : an itemset, Px: the extension of P with an item x, Py: the

extension of P with an item y
output: the utility-list of Pxy

1 UtilityListOfPxy ← ∅;
2 foreach tuple ex ∈ Px.utilitylist do
3 if ∃ey ∈ Py.utilitylist and ex.tid = exy.tid then
4 if P.utilitylist 	= ∅ then
5 Search element e ∈ P.utilitylist such that e.tid = ex.tid.;
6 exy ← (ex.tid, ex.iutil + ey.iutil − e.iutil, ey.rutil);

7 end
8 else
9 exy ← (ex.tid, ex.iutil + ey.iutil, ey.rutil);

10 end
11 UtilityListOfPxy ← UtilityListOfPxy ∪ {exy};

12 end

13 end
14 return UtilityListPxy ;

To further optimize the MinFHM algorithm, it is important to implement the
MinHUI-store structure efficiently. In our implementation, it is implemented as a
list of lists of itemsets. More specifically, the MinHUI-store structure stores item-
sets having the same size in the same list of itemsets. This allows to efficiently
check if an itemset Pxy has proper supersets (subsets) in the MinHUI-store, by
only comparing Pxy with larger (smaller) itemsets. Furthermore, to be able to

Mining Minimal High-Utility Itemsets 97

quickly compare two itemsets, items in itemsets are lexicographically ordered.
Another optimization is that it is not necessary to check if a HUI containing two
items has a subset in the MinHUI-Store, since MinHUIs of size 1 are not used to
generate larger itemsets. Thus, HUI of two items found by the search procedure
can be directly assumed to be MinHUIs. Finally, the LA-Prune optimization [9]
is also incorporated. Moreover, for each MinHUI {x, y} of size 2 that is found,
the corresponding tuple in the EUCS can be replaced by (x, y, 0) to help prune
the search space.

5 Experimental Study

We assessed the performance of MinFHM on a computer with a third generation
64 bit Core i5 processor running Windows 7 and 5 GB of free RAM. We compared
the performance of the proposed MinFHM algorithm with FHM [5], CHUD [16],
and GHUI-Miner [6], which are respectively the state-of-the-art algorithms for
mining HUIs, CHUIs and GHUIs. All memory measurements were done using the
Java API. The experiment was carried on four real-life datasets commonly used
in the HUIM literature: mushroom, retail, kosarak and foodmart. These datasets
have varied characteristics and represent the main types of data typically encoun-
tered in real-life scenarios (dense, sparse and long transactions). Let |I|, |D| and
A represents the number of transactions, distinct items and average transaction
length. mushroom is a dense dataset (|I| = 16,470, |D| = 88,162, A = 23). kosarak
is a dataset that contains many long transactions (|I| = 41,270, |D| = 990,000,
A = 8.09). retail is a sparse dataset with many different items (|I| = 16,470, |D|
= 88,162, A = 10,30). foodmart is a sparse dataset (|I| = 1,559, |D| = 4,141,
A = 4.4). foodmart contains real external and internal utility values. For the
other datasets, external utilities for items are generated between 1 and 1,000 by
using a log-normal distribution and quantities of items are generated randomly
between 1 and 5, as the settings of [2,12,15]. The source code of all algorithms
and datasets can be downloaded as part of the SPMF open-source data mining
library [7] at http://www.philippe-fournier-viger.com/spmf/. Algorithms were
run on each dataset, while decreasing the minutil threshold until they became
too long to execute, ran out of memory or a clear trend was observed. Figure 2
shows the execution times of MinFHM, FHM, CHUD, and GHUI-Miner. Figure 3
compares the number of MinHUIs, HUIs, CHUIs and GHUIs, respectively gen-
erated by these algorithms.

It can first be observed that mining MinHUIs using MinFHM is faster than
mining HUIs, CHUIs and GHUIs, using FHM, CHUD and GHUI-Miner. On
mushroom, MinFHM is up to 824, 44, and 71 times, faster than FHM, CHUD
and GHUI-Miner. On foodmart, MinFHM is up to 80, 52, and 75 times faster
than FHM, CHUD and GHUI-Miner. On retail, MinFHM is up to 6, 62, and 63
times faster than FHM, CHUD and GHUI-Miner. On kosarak, MinFHM is up
to 1.8, 15, and 16 times faster than FHM, CHUD and GHUI-Miner. The reason

http://www.philippe-fournier-viger.com/spmf/

98 P. Fournier-Viger et al.

Fig. 2. Execution times

Fig. 3. Number of patterns found

for the excellent performance of MinFHM is that it prunes a large part of the
search space by not exploring the transitive extensions1 of MinHUIs.

1 Recall that for an itemset X, the extensions of X are the itemsets that can be
obtained by appending an item y to X such that y � i, ∀i ∈ X.

Mining Minimal High-Utility Itemsets 99

A second observation is that MinFHM scales well when minutil is decreased.
For example, on mushroom, the runtime of MinFHM does not vary much and
remains less than 1 s, while the runtime of FHM increases rapidly as minutil
is decreased, taking more than 10 min to terminate. MinFHM shows a similar
behavior on foodmart dataset, where the runtime of MinFHM is very stable
while the runtimes of other algorithms increase considerably when minutil is
decreased. On the retail, the runtime of MinFHM increases by a lesser amount
compared to the other algorithms when minutil is decreased. Finally, on the
Kosarak, the increase is comparable to the other algorithms. The reason why the
runtime of MinFHM is generally very stable is that when minutil is decreased,
the number of MinHUIs generally increases less rapidly than the number of
HUIs, CHUIs and GHUIs (see Fig. 3). As mentioned in Property 4, MinHUIs
have the nice property that their number may increase or decrease, as minutil
is decreased, while the numbers of HUIs, CHUIs and GHUIs cannot decrease,
and generally increase very quickly.

It is also interesting to observe that the number of MinHUIs never exceeded
1,300 patterns, while other algorithms generated up to millions of patterns. For
example, on the dense mushroom dataset and minutil = 3, 000, 000, 38 MinHUIs,
3,538,181 HUIs, 10,311 CHUIs, and 27,640 GHUIs, are found. The number of
MinHUIs is thus respectively, 931,000, 271, and 727 times less than the number
of HUIs, CHUIs and GHUIs. It can thus be concluded that HUIs, CHUIs and
GHUIs, generally depend on a very small set of MinHUIs, and that finding these
MinHUIs provides a very compact and informative set of results to the user.

6 Conclusion

This paper has studied a novel representation of high-utility itemsets named Min-
imal High-Utility Itemsets (MinHUIs), its properties, and presented an efficient
algorithm named MinFHM to discover MinHUIs. MinFHM includes numerous
optimizations to discover MinHUIs efficiently. An extensive experimental study
on real-life datasets shows that mining minimal HUIs is almost two orders of
magnitude faster than mining HUIs, CHUIs or GHUIs and that it can greatly
reduce the result set presented to the user. The source code of all algorithms
and datasets can be downloaded as part of the SPMF open-source data mining
library [7] at http://www.philippe-fournier-viger.com/spmf/.

For future work, an interesting possibility is to use MinHUIs as a negative
border in HUI stream mining and incremental HUI mining, and also to explore
the properties of MinHUIs for associative classifiers [18], and the discovery of
minimal high-utility sequential patterns [19,20]. Lastly, another possibility is to
design a faster algorithm for mining MinHUIs based on EFIM [21], a recently-
proposed algorithm that was shown to outperform FHM for the traditional prob-
lem of HUI mining.

http://www.philippe-fournier-viger.com/spmf/

100 P. Fournier-Viger et al.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of International Conference on Very Large Databases,
pp. 487–499 (1994)

2. Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K.: Efficient tree structures for
high-utility pattern mining in incremental databases. IEEE Trans. Knowl. Data
Eng. 21(12), 1708–1721 (2009)

3. Deng, Z.: DiffNodesets: an efficient structure for fast mining frequent itemsets.
Appl. Soft Comput. 41, 214–223 (2016)

4. Deng, Z., Lv, S.-H.: PrePost+: an efficient N-lists-based algorithm for mining
frequent itemsets via Children-Parent Equivalence pruning. Expert Syst. Appl.
42(13), 5424–5432 (2015)

5. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility
itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T.,
Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502,
pp. 83–92. Springer, Heidelberg (2014)

6. Fournier-Viger, P., Wu, C.-W., Tseng, V.S.: Novel concise representations of high
utility itemsets using generator patterns. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA
2014. LNCS, vol. 8933, pp. 30–43. Springer, Heidelberg (2014)

7. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.:
SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. (JMLR)
15, 3389–3393 (2014)

8. Lan, G.C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing app-
roach for mining high utility itemsets. Knowl. Inf. Syst. 38(1), 85–107 (2014)

9. Krishnamoorthy, S.: Pruning strategies for mining high utility itemsets. Expert
Syst. Appl. 42(5), 2371–2381 (2015)

10. Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Isolated items discarding strategy for discov-
ering high utility itemsets. Data Knowl. Eng. 64(1), 198–217 (2008)

11. Song, W., Liu, Y., Li, J.: BAHUI: fast and memory efficient mining of high utility
itemsets based on bitmap. Int. J. Data Wareh. 10(1), 1–15 (2014)

12. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In:
Proceedings of 22nd ACM International Conference on Information and Knowledge
Management, pp. 55–64 (2012)

13. Liu, Y., Liao, W., Choudhary, A.K.: A two-phase algorithm for fast discovery of
high utility itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS
(LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005)

14. Shie, B.-E., Yu, P.S., Tseng, V.S.: Efficient algorithms for mining maximal high
utility itemsets from data streams with different models. Expert Syst. Appl. 39(17),
12947–12960 (2012)

15. Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining
high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng.
25(8), 1772–1786 (2013)

16. Tseng, V., Wu, C., Fournier-Viger, P., Yu, P.: Efficient algorithms for mining the
concise and lossless representation of closed+ high utility itemsets. IEEE Trans.
Knowl. Data Eng. 27(3), 726–739 (2015)

17. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: efficient mining algorithms for
frequent/closed/maximal itemsets. In: Proceedings of ICDM 2004 Workshop on
Frequent Itemset Mining Implementations, CEUR (2004)

Mining Minimal High-Utility Itemsets 101

18. Nguyen, D., Vo, B., Le, B.: CCAR: an efficient method for mining class association
rules with itemset constraints. Eng. Appl. Artif. Intell. 37, 115–124 (2015)

19. Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm for mining high utility
sequential patterns. In: Proceedings of 18th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 660–668 (2012)

20. Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.W., Tseng, V.S.: Efficient mining
of high utility sequential rules. In: Proceedings of 11th International Conference
on Machine Learning and Data Mining, pp. 1–15 (2015)

21. Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.-W., Tseng, V.S.: EFIM:
a highly efficient algorithm for high-utility itemset mining. In: Sidorov, G.,
Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS, vol. 9413, pp. 530–546. Springer,
Heidelberg (2015)

Authenticity, Privacy, Security,
and Trust

Automated k-Anonymization and l-Diversity
for Shared Data Privacy

Anne V.D.M. Kayem1,2(B), C.T. Vester1, and Christoph Meinel2

1 Department of Computer Science, University of Cape Town,
Rondebosch, Cape Town 7701, South Africa

akayem@cs.uct.ac.za

http://infosec.cs.uct.ac.za/
2 Hasso-Plattner-Institute, Potsdam, Germany

http://hpi.de/meinel/lehrstuhl.html

Abstract. Analyzing data is a cost-intensive process, particularly for
organizations lacking the necessary in-house human and computational
capital. Data analytics outsourcing offers a cost-effective solution, but
data sensitivity and query response time requirements, make data
protection a necessary pre-processing step. For performance and pri-
vacy reasons, anonymization is preferred over encryption. Yet, manual
anonymization is time-intensive and error-prone. Automated anonymiza-
tion is a better alternative but requires satisfying the conflicting objec-
tives of utility and privacy. In this paper, we present an automated
anonymization scheme that extends the standard k-anonymization and
l-diversity algorithms to satisfy the dual objectives of data utility and
privacy. We use a multi-objective optimization scheme that employs a
weighting mechanism, to minimise information loss and maximize pri-
vacy. Our results show that automating l-diversity results in an added
average information loss of 7% over automated k-anonymization, but in
a diversity of between 9–14 % in comparison to 10–30 % in k-anonymised
datasets. The lesson that emerges is that automated l-diversity offers bet-
ter privacy than k-anonymization and with negligible information loss.

Keywords: Automated data anonymization · Multi-objective
optimization · k-anonymity · l-diversity · Data outsourcing

1 Introduction

A common challenge faced by law enforcement agencies in developing world
regions is that of analyzing large volumes of crime data [7,27]. Recent statistics
from the United Nations (UN) and World Bank (WB) [28] estimate that violent
crime cost Guatemala an estimated $2.4 billion or 7.3 % of her Gross Domestic
Product (GDP) in 2007, and the Mexican government estimated the costs of
violence in 2007 at $9.6 billion, primarily from lost investment, local business
and jobs. The UN and WB also estimated that, in 2007, Jamaica and Haiti could
have increased their GDP by 5.4 % merely by bringing down their crime levels
to that of Costa Rica [28]. In South Africa for instance, it is estimated that
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 105–120, 2016.
DOI: 10.1007/978-3-319-44403-1 7

106 A.V.D.M. Kayem et al.

more than a million of the approximately 2 million crimes reported annually, are
never resolved [17,31]. Surveys indicate that corruption and police ineffective-
ness fuel fears of disclosure and the general belief that most offenses go unre-
solved [17]. Challenges faced by the law enforcement authorities include limited
“in-house” computational processing power which makes handling large volumes
of crime data challenging and perhaps more importantly, the lack of data analyt-
ics expertise which is essential in identifying relevant data for crime resolution.
Outsourcing the data to a third-party Data Analytics Service Provider (DASP)
offers a cost effective management solution to the data analytics problem but
the sensitivity of the data makes pre-processing to protect the data a necessary
step before the data is transferred to the DASP.

Existing solutions based on encrypting the data before it is transferred to the
DASP are time-intensive in terms of query response time which is undesirable
when performance as well as data protection are a concern [4,9,11,12,18,30,33].
Data protection alternatives such as anonymization, are a better solution
from the performance perspective. Manual anonymization is however, a time-
consuming and error-prone procedure that can result in inadvertent disclosures
of information. A further concern with manual anonymization is the challenge of
preventing new releases of anonymized datasets from being adversarially com-
bined with historical data to provoke linking and inferential attacks.

In this paper, we present an automated anonymization scheme that extends
the standard k-anonymization and l-diversity algorithms to satisfy the dual
objectives of data utility and privacy. The automated scheme employs a multi-
objective optimization approach that uses a weighting mechanism to maximize
information utility (minimize information loss) and diversity to maximise pri-
vacy by circumventing linking and inference attacks. This is handled via a two
pronged approach where in the first step we maximize information utility under
a modified k-anonymity algorithm in a manner that ensures security against
linking attacks. In the second step, we extend the k-anonymity algorithm based
on the concepts of l-diversity to provide protection against inference attacks.
Our results indicate that l-diverse datasets incur an average information loss
of 7 % over k-anonymised datasets, but offer better privacy (protection against
linking and inference attacks) with a diversity of between 9–14 % in compari-
son to 10–30 % in k-anonymised datasets. The lesson that emerges is that in
automated anonymization, augmenting k-anonymization with l-diversity offers
better privacy and at a negligible cost to utility.

The outline of the paper is as follows. In Sect. 2 we provide an overview of the
literature on privacy preserving data publishing. We proceed in Sect. 3 with a
specification of our proposed multi-objective scheme to support k-anonymization
and l-diversity in automated data anonymization. In Sect. 4, we present results
from experiments conducted on a prototype implementation platform [27]. We
offer conclusions and suggestions for future work in Sect. 5.

2 Related Work

Privacy preserving data publishing combines efficient protection with availabil-
ity in data analytics [6,16,19,22,25,32,36]. There are two tenets to privacy

Automated k-Anonymization and l-Diversity 107

preserving data publishing. The first is to anonymize and then mine the data
[2,3,6,16] and the second, to mine and then anonymize the released query results
[1–3]. The second approach is better suited to users without the adequate in-
house human-capital and computational resources. For this reason, we focus on
privacy preserving data publishing schemes where the onus is to anonymize and
then share.

Anonymization algorithms can be classified into two main groups namely,
syntactic and probabilistic models [10]. Syntactic models have a well defined
data output format, such that for small data sets privacy traits can often be con-
firmed by visually inspecting the data. Privacy violation adversarial models are
constructed based on generally available information and generalizations drawn
from the syntactic and semantic meaning of the underlying data. k-anonymity
[1,6,19], l-diversity [25], and t-closeness [22] algorithms as well as their variants
are classified under this category.

On the other hand, probabilistic privacy models employ data perturbations
based primarily on noise additions to distort the data [10,34]. Perturbation
approaches have been critiqued for being vulnerable to inferential attacks based
on adversarial knowledge of the the true underlying distributions of the data
[24]. Dwork et al. [15] proposed addressing this caveat with the notion of differ-
ential privacy. Differential privacy basically requires that the adversary learns
no more from a published data set when one record (or individual) is present
in, or removed from, the data set [34]. Attempts have also been made to com-
bine attributes from both syntactic and probabilistic models to form hybrid
anonymization approaches. Examples include probabilistic k-anonymity [2], and
differential privacy with t-closeness [10]. However, automating these approaches
for application on mixed data (categorical and numerical) in ways that minimize
information loss and maximize privacy is a challenging problem [16,20].

Since crime data includes a mix of numerical and categorical data, we have
opted to focus on syntactic anonymization models, specifically k-Anonymity
and l-Diversity. For reasons, centered around high processing costs, we decided
against considering the t-closeness scheme. Recall that one of the constraints
we mentioned, is the limitation on computational processing power that the
organizations face. Work on k-Anonymity was pioneered by Sweeney [29] as an
approach to sharing data in plain text without revealing private or sensitive
information about individuals. The principle behind k-anonymity is to use the
notion of bucketization to create k sets of data (equivalence classes) such that for
every tuple there exist at least k − 1 tuples that have the same quasi-identifier1

values. Sweeney’s work [29] triggered a plethora of schemes such as [13,14,21,23]
aimed at performance improvement and circumventing inferential attacks.

Various l-diversity schemes have been proposed to address this drawback by
considering that sensitive attributes are the main reason behind disclosures of
information used to provoke inferential attacks [8,23,26]. l-diversity requires in
addition, that the most frequent sensitive attribute occurences in an equivalence

1 Quasi-identifiers: Attributes which independently or combined can be used to
uniquely identify an individual.

108 A.V.D.M. Kayem et al.

class (EC) should not appear more than 1
l times in the EC. So, at least l distinct

sensitive values must exist in each EC. As in k-anonymity schemes, efficiently
obtaining usable but privacy preserving data sets is provably NP-Hard [35] and
so, optimization heuristics have been proposed to improve on the basic l-diversity
scheme [13,14,26,35]. We note that l-diversity has the drawback of being depen-
dent on the distribution of sensitive attributes in the data set and so, sensitive
attribute values with high probability mass functions (that is some values have
a very high frequency and others a very low frequency of occurrence) are prone
to provoking high information loss in the anonymized data set. In addition l-
diversity only considers the frequency of specific values within independent ECs
and not in the dataset as a whole which can result in inadvertent inferential
disclosure. t-closeness addresses this caveat but requires a high degree of compu-
tational resources. Other issues are centered on the semantics of generalizations
and the effect these generalizations have on enabling information disclosures
[13,22,25].

In the following section, we propose augmented k-anonymity and l-diversity
schemes to support automated data anonymization. The idea is to use the notion
of Pareto optimality [5] that has the nice quality of considering that no optimal
solution exists for a given problem but rather that the solution space consists
of a set of optimal points [5]. This quality, is useful in designing an automated
anonymization scheme in that it allows the scheme select the best optimal with
respect to data utility and privacy at some given instant and to consider his-
torical data releases. As mentioned before, automated data anonymization is
a cost-effective and privacy preserving pre-processing step for data that is out-
sourced to DASPs. Application examples emerge for law enforcement authorities
in developing world countries and organizations lacking the “in-house” computa-
tional processing power as well as the data analytics expertise. We now describe
our proposed solution in the next section.

3 Multi-Objective Data Anonymization (MOA)

In this section we describe our multi-objective optimization scheme that is geared
at supporting automated data anonymization via the k-anonymization and
l-diversity algorithms. We begin by providing some basic notation to support
our subsequent discussions.

3.1 Information Loss Notation

Let A be the attribute space (columns in a data table) such that a ∈ A represents
a specific attribute (column in the data table) in A and d represents a tuple that
contains all the attributes in A.

We denote T (a) as the generalization tree for numerical attributes and K(a)
is the generalization tree for categorical attributes. Furthermore, T (a)max and
T (a)min denote the upper and lower limits respectively for numerical attribute
generalizations while td,i(a)max and td,i(a)min represent the upper and lower

Automated k-Anonymization and l-Diversity 109

limits of the generalization of an attribute a in tuple d during the ith iteration
of the anonymization algorithm.

Finally, K(a)total is the total number of leaf nodes generated for K(a) and
P is the number of nodes created by K(a). k(a)p is a sub-tree of K(a) rooted at
a node p ∈ P and k(a)p,total is the number of leaf nodes in k(a)p.

3.2 Information Loss and Severity Weighting

Once the data has been processed and generalized, the next step is to find a suit-
able balance between information loss and privacy. Minimizing information loss
is useful in ensuring data usability while maximizing privacy ensures adequate
data protection from adversarial access. In line with our goal of multi-objective
optimization, we employ a piece-wise function to handle information loss on both
categorical and numerical data.

ILd,i(a) =

⎧
⎪⎨

⎪⎩

k(a)p,total − 1
P−1 if categorical

td,i(a)max − td,i(a)min

T (a)max − T (a)min
if numerical

(1)

where the Information Loss Metric is given by:

LMi(a) =
∑

d∈D

∑

a∈A

ILd,i(a) (2)

To minimize information loss, we employ a weighting scheme for the loss met-
ric which enables authorized end users to prioritize specific attributes during
anonymisation. By this we mean that the data owner can decide to specify the
Quasi-Identifiers (QIDs) that should contain more information without nega-
tively impacting on data privacy. The weighting scheme acts as a sort of utility
function that can be adjusted dynamically to allow the data owner decide what
levels of privacy to sacrifice in favor of query result accuracy without negatively
impacting on the overall privacy of the data. The weighted information loss
metric (ILweight,i) at the ith iteration of the algorithm is computed as follows.

ILweight,i =
∑

d∈D

∑

a∈A

wa × ILd,i(a) (3)

where wa is the weight assigned to attribute a ∈ A by the data owner. Finally, to
facilitate automated anonymization we use a sensitive attribute severity weight-
ing S(c) where c ∈ SA. SA is the list of sensitive attributes and S(·) maps the
sensitive attribute category to its weight.

Example 1. In Table 1, SA denotes the list of offences (sensitive attribute) and
S(·) maps the crime category to its weight, which in this case is simply the
guideline sentence duration (in time - months, years...) for a given crime. So,
S(Theft) = 5 indicates a sentence of 5 years. We note that following this scale,
the risk of privacy loss for a tuple containing “Robbery” is higher than for a
tuple with “Disorderly Conduct”.

110 A.V.D.M. Kayem et al.

Table 1. Crime severity weightings

Crime Severity

Embezzlement 3

Disorderly conduct 3

Theft 5

Drunken driving 5

Robbery 7

We now describe our automated anonymization schemes, namely CG-Kanon
and CG-Diverse that are extensions of the k-anonymization and l-diversity algo-
rithms respectively.

3.3 CG-Kanon Scheme

Our proposed CG-Kanon scheme uses the severity weighting and bucketization,
to hide tuples with highly sensitive values in larger ECs while tuples of lower
sensitivity are classified in smaller ECs. For instance, a tuple concerning a “Rob-
bery” should be classified in a 20-anonymity EC while “theft” could be placed
in a lower level EC say, 5-anonymity. This idea of hiding more sensitive values in
larger ECs does not affect the absolute level of k-anonymity for different sensi-
tive attribute categories. It is instead a relative statement regarding the level of
k-anonymity required for different sensitive attributes in the anonymized dataset.
The severity weighting is converted to a severity penalty which is used by the
CG-Kanon scheme. To do this, we compute an absolute required minimum level
of k-anonymity (kmin) for the dataset and use kmin to guarantee a global min-
imum level of k-anonymity that all ECs must adhere to in the dataset. We
compute kmin as follows:

kmin = max (kcons,min (SD(·))) (4)

where kcons is a fixed minimum level of k and SD(·) is the set of all severities
for the dataset D. The definition of kmin shows that the global minimum level
of k-anonymity is fixed at kcons or at the lowest level of attribute sensitivity in
the dataset when min (SD(·)) > kcons. If kcons = 5 and min (SD(·)) = 3 then
kmin = 5. However if min (SD(·)) = 7 then kmin = 7 instead. The CG-Kanon
scheme uses kmin as the k-anonymity baseline when deciding on appropriate
ECs for tuples based on sensitivity.

Once kmin has been computed, we compute the severity penalty for each clas-
sification since the CG-Kanon scheme requires this information to optimize the
information loss and privacy cost-benefit trade-off. The severity penalty deter-
mines the level of loss of privacy for a single tuple d ∈ D(·) and is computed as
follows.

SPd,i =
Sd(c)
|ed,i| (5)

Automated k-Anonymization and l-Diversity 111

where D(·) is the dataset, Sd(c) is the severity weight of sensitive attribute c ∈ d,
and E is the set of ECs such that |ed,i| is the size of the EC that a tuple d is
classified in during the ith iteration of the CG-Kanon scheme.

Example 2. From the severity penalty computation, highly sensitive attributes
in small ECs result in high penalties and vice versa. So, if a “murder” report with
a severity weighting of 25 were located in a 5-anonymity EC, a penalty of 25

5 = 5
is generated. An incident of “theft” with a severity weighting of 5 generates
a severity penalty of 1, indicating that this information is comparatively less
sensitive. The CG-Kanon scheme uses the severity penalty as a criterion besides,
information utility, to determine tuple placement in ECs to minimize the overall
sensitive information exposure risk.

Finally, the CG-Kanon scheme must compute the aggregate severity penalty,
SPtot,i, for the entire dataset, to determine whether the obtained anonymized
dataset satisfies at least the threshold goals of privacy and utility. SPtot,i is
computed as follows:

SPtot,i =
∑

d∈D

SPd,i (6)

and expresses the total severity penalty for the dataset as the summation of the
severity penalties of the individual tuples. The SPtot,i is then feed into a fitness
function to decide whether each tuple in D satisfies both objectives. We express
the fitness function as follows:

FFCG−Kanon
i =

1
max (SPtot,i, LMCG,i)

(7)

So, the result for FFCG−Kanon
i at iteration i is the inverse of the maximum

of SPtot,i and LMCG,i. Recall that a high SPtot,i indicates a strong risk of
privacy exposure, while a high LMCG,i indicates a high level of information
loss. Therefore, it is desirable that the fitness function generates results that
iteratively converge towards a high value for FFCG−Kanon

i , expressed by low
values of SPtot,i and LMCG,i respectively.

The main drawback here is that, depending on tuple distribution, the diver-
sity of the sensitive attributes in large ECs can be quite low and this negatively
impacts on privacy. As well, a large proportion of tuples are suppressed to sat-
isfy the minimum level of k-anonymity which results in high information loss.
We addressed this by limiting the size of ECs to a pre-defined threshold size
and as we discuss in Sect. 4, found that this reduces the number of suppres-
sions to satisfy kmin-anonymity. We still have the caveat of inferential attacks
and so augment our CG-Kanon scheme with the CG-Diverse scheme (l-diversity
algorithm inspired) to help circumvent these attacks.

3.4 CG-Diverse Scheme

Instead of using SPtot,i to classify tuples into ECs, the CG-Diverse scheme com-
putes the average severity, ASD, for D as well as the EC average severity weight-
ing ASe. The ASD is computed for D and is used to start the anonymization

112 A.V.D.M. Kayem et al.

process to ensure that the target level of l-diversity in D is such that l = ASD.
We compute ASD as follows:

ASD =
∑

d∈D Sd(c)
|D| (8)

A high ASD implies a higher level of diversity in the entire dataset. As a stop-
ping criterion for deciding when an acceptable level of kmin and ASD has been
satisfied by all the ECs, we bound the l-diversity range with the severity weight-
ing scale and use ASD to compute the fitness of the dataset with respect to
privacy and utility. We employ the following modified fitness function, expressed
as follows:

FFCG−Diverse
i =

1
max (ASD,i, LMCG,i)

(9)

However, as mentioned before suppressing the ECs that fail to meet the required
levels of ASD and kmin would result in a high level of information loss. Therefore,
we alleviate this problem by identifying ECs with a lower average severity (but
adequate relative diversity) to avoid high suppression rates. This is achieved by
assessing the privacy of individual ECs that do not meet the global ASD-diversity
requirement. To this end the EC average severity weighting ASe is computed as
follows:

ASe =
∑

d∈D Sd(c)
|e| (10)

The ASe of an EC is compared to the relative diversity le, and if ASe > le the
tuples in the EC are generalized to the highest possible level to avoid suppression.
Alternatively, when the diversity is higher than ASe no changes are made. We
note that this procedure is computationally inexpensive since it simply requires
comparing ASe with the actual observed diversity of the EC.

Example 3. Table 2 shows the average severity measures calculated for a given
sample dataset. The ASe = 5 is calculated as follows: 5+3+7+5+5

5 using the crime
severity weightings given in Table 1. By considering Table 1, and Eqs. (8) and
(10), the l-diversity range can be restricted to between 3–25, depending on the
underlying dataset. Yet requiring ECs to satisfy the global level of ASD-diversity
might be too restrictive. We alleviate this issue by moving tuples between ECs
to minimise the information loss due to suppression. For instance, in Table 2 we
observe that in the 5-anonymity EC, “Robbery” has a severity of 7 which implies
an inference risk. CG-diverse handles such cases by using the ASe to move the
tuple to the more appropriate 7-anonymity EC as highlighted in Table 2.

We are now ready to discuss our experimental platform, results and analysis.

4 Results and Analysis

We demonstrate the feasibility of our proposed automated data anonymization
scheme with results from experiments conducted on a prototype crime data col-
lection application [27]. A host server with an Ubuntu server 12.04 operating

Automated k-Anonymization and l-Diversity 113

Table 2. Average severity versus diversity

Age Crime Diversity ASD ASe

(Equivalence Class) (Dataset) (Equivalence Class)

18 - 22 Theft 4 11 5.0
18 - 22 Embezzlement 4 11 5.0
18 - 22 Robbery 4 11 5.0
18 - 22 Drunken Driving 4 11 5.0
18 - 22 Theft 4 11 5.0

18 - 87 Rape 8 11 7.0
18 - 87 Vandalism 8 11 7.0
18 - 87 Robbery 8 11 7.0
18 - 87 Assault 8 11 7.0
18 - 87 Murder 8 11 7.0

system running on a 64 bit machine with 8 GB RAM and a processor speed of
3.2 GHz (Intel Xeon E3-1230 Quad Core) was used. The algorithms were imple-
mented in Java 1.7.0 65 while Python 2.7.3 was used to run the web server. A
PostgreSQL 9.1 database management system and a Postfix email server were
used to store the dataset, both plain and anonymized. Our dataset consisted
of 10000 records because this is a reasonable bound for daily average crime
report rates per police station [17]. The attributes considered included “Age”,
“Suburb”, “Crime” and “Reporter”. Sensitive attributes such as “Names” and
“Date of Birth” were removed during pre-processing. Quasi-identifiers which
more closely match the k-anonymity requirement for CG-Kanon were gener-
ated before the anonymization process. This was done by generalizing attributes
to the highest node in the generalization hierarchy (tree) for ECs that do not
meet the k-anonymity requirement. We qualitatively assessed the anonymized
data produced by the CG-Kanon and the CG-Diverse algorithms, by consider-
ing aspects such as information loss, classification accuracy and the impact of
the weighting scheme on linking and inference attacks. Throughout the discus-
sion of the results we refer to an anonymization based on the weightings of the
quasi-identifiers (QIDs) used during the anonymization. This will be denoted as
AwAge

: SwSuburb
: RwReporter

. For example where equal weights were assigned
to the QIDs this will be denoted as an A1 : S1 : R1 anonymization, similarly
where we use A10 : S5 : R1 weights of 10, 5, and 1 were used for the Age,
Suburb, Reporter attributes respectively (Fig. 1). kconstant was set to 5 for all
results on CG-Kanon anonymization. Our minimum crime severity level for the
data was set to 3 and in this case, kmin = 5. For CG-Diverse, we set our lowest
diversity level to 3 for all anonymization runs as a standard minimum privacy
level. Since on average, the lower severity crimes were located in such ECs,
this was acceptable. All algorithms were allowed to run for 30 min after which
the algorithm was stopped. Pre-experiment sampling revealed that running for
shorter periods, say 15 min resulted in high severity penalties and information
loss for larger ECs, with only between 3–6 % of tuples meeting the minimum
anonymity level. Running for much longer resulted in better success rates, but

114 A.V.D.M. Kayem et al.

at the price of time. Once stopped the anonymized data was checked for compli-
ance with the desired level of privacy. Tuples not satisfying the privacy criteria
on termination were processed further according to the respective CG-Kanon
and CG-Diverse algorithms (Fig. 1). Figure 2 shows the CG-Kanon algorithm
classifying data using ECs only with no severity weighting support. We note
that the crimes are clustered around smaller sized ECs which is good for protec-
tion against inference attacks, but bad for information loss. When the severity
penalty is applied, we note as shown in Fig. 3 that more severe crimes are clas-
sified in larger ECs but this has the caveat of introducing inferential disclosure.
For instance, from Fig. 3 one can see directly that more severe crime has a higher
frequency with “Murder” being as high as 31 %. We address this with the CG-
Diverse scheme. As shown in Figs. 4 and 5, based on the A1 : S1 : R1 weighting
and an average severity level of 11, the global diversity and average severity of
each EC is evaluated before suppressing the QIDs. When compared to Figs. 2
and 3, we note that the average diversity in CG-Kanon varies between 10 % and
30 % while that of CG-Diverse is much lower at 9 % to 14 % and consequently
lowers inferential risk.The desired lower frequency (i.e. higher diversity) for more

Fig. 1. Classification accuracy of CG-Kanon and CG-Diverse

Fig. 2. Severity impact on dataset (no severity weighting)

Automated k-Anonymization and l-Diversity 115

Fig. 3. Impact of severity weighting on privacy

Fig. 4. Sensitive attributes frequency for CG-Kanon using A1:S1:R1

severe crimes is evident in CG-diverse whereas in CG-Kanon there is no such cor-
relation. More severe crimes (Rape and Murder) in this case actually have lower
average diversity and consequently less risk of inferential exposure. In addition
we see the deviation from the mean frequency for more severe crimes is lower
as severity increases. So not only does the average diversity increase as crime
severity increases but the variance decreases as well. This gives us more certainty
that more severe crimes will be less vulnerable to inference attacks. Finally, we
note that l-diversity guarantees at least k-anonymity where k = l. The lowest
diversity of 3 may appear weak from the privacy perspective when compared
to the global diversity of 11 but it is unlikely, practically speaking, that severe
crime (sensitive data) will be included in such lower diversity ECs. For instance,
if we revisit our earlier results for CG-Kanon where the most serious crime
(“Murder”) was in an EC of size 90 and still only achieved a 3-diversity. Figures 6
and 7 show the aggregated information losses for different weighting schemes
after termination of the algorithm. We selected three weighting schemes to mon-

116 A.V.D.M. Kayem et al.

Fig. 5. Sensitive attributes frequency for CG-Diverse using A1:S1:R1

Fig. 6. Information loss for CG-Kanon

itor how the algorithms perform when attributes with varying granularity are
weighted differently. For instance the A10 : S5 : R1 scheme overweights the
Age attribute which is highly granular and under weighs the Reporter attribute,
while A1 : S5 : R10 test the opposite scenario and A1 : S1 : R1 is equivalent
to having no weighting scheme. The marginal increase in information loss for
CG-diverse relative to CG-Kanon seems quite acceptable given the improved
privacy provided by CG-Diverse. For our results the information loss across the
three weighting schemes was on average 7 % higher for CG-diverse. However, this
reduced data utility is acceptable given our desire for better anonymized data
privacy. One further insight relates to the number of parameters that are used
for the fitness function in selecting QIDs. We see from Figs. 8 and 9 that informa-
tion loss for CG-diverse is a much lower proportion of its starting value than for
CG-Kanon. This is attributed to the fact that CG-Kanon searches for solutions
that minimize both the information loss and the severity penalty, in addition to
satisfying k-anonymity. While CG-diverse only minimizes information loss and
endeavours to meet the diversity requirement. The additional parameter (sever-
ity penalty) for CG-Kanon increases the search space and reduces the efficiency

Automated k-Anonymization and l-Diversity 117

Fig. 7. Information loss for CG-Diverse

Fig. 8. Information loss reduction versus time (CG-Kanon)

Fig. 9. Information loss reduction versus time (CG-Diverse)

of the algorithm. For instance, at termination the reduction in the initial infor-
mation loss for A10 : S5 : R1 in CG-diverse (Fig. 9) was 74 % compared to 55 %
for CG-Kanon (Fig. 8).

5 Conclusions

We presented two algorithms namely, CG-Kanon and CG-diverse that aug-
ment the standard k-anonymity and l-diverse algorithms to facilitate automatic
classification and anonymization of data. In particular, we considered crime data

118 A.V.D.M. Kayem et al.

because it contains a large volume of sensitive data and is vulnerable to linking
and inferential attacks. To match privacy with utility, we used a random sam-
pling approach without replacement so, historical released reports were excluded
from being selected in subsequent releases. The sampling approach also offers
the advantage of reduced computational complexity and therefore runtime for
our algorithms which is a plus for use in computationally constrained environ-
ments. To reduce information loss, we also used a fitness function to improve
classification accuracy, and privacy. Our results demonstrate that CG-diverse
incurs an average information loss of 7 % over CG-Kanon, but with a diversity
of between 9–14 % in comparison to 10–30 % CG-Kanon. So, we can conclude
that, since CG-Diverse offers anonymity levels that are at least equal to CG-
Kanon’s, the percentage of information loss incurred does not significantly affect
query response accuracy and in addition, provides stronger privacy guarantees
than CG-Kanon.

Possible avenues for future work include evaluating CG-Kanon and CG-
Diverse on de facto anonymization benchmarks such as the Adult’s census
dataset from the UC Irvine machine learning repository. Additionally, eval-
uations of robustness to other known attacks against k-anonymization and
l-diversity will be useful for practical purposes. Finally, we should also consider
parametrizing the t-closeness model for better performance under constrained
conditions as an interesting candidate for overcoming the drawbacks of CG-
Kanon and CG-Diverse.

Acknowledgements. The authors gratefully acknowledge funding for this research
provided by the National Research Foundation (NRF) of South Africa, and the Hasso-
Plattner-Institute (HPI). In addition, the authors are grateful for the anonymous
reviews.

References

1. Aggarwal, C.C.: On k -anonymity and the curse of dimensionality. In: Proceedings
of the 31st International Conference on Very Large Data Bases, VLDB 2005, pp.
901–909. VLDB Endowment (2005)

2. Aggarwal, C.C.: On unifying privacy and uncertain data models. In: Proceedings
of the 2008 IEEE 24th International Conference on Data Engineering, ICDE 2008,
pp. 386–395. IEEE Computer Society, Washington, DC (2008)

3. Aggarwal, C.C., Yu, P.S.: Privacy-Preserving Data Mining: Models and Algo-
rithms, 1st edn. Springer, New York (2008)

4. Arasu, A., Eguro, K., Kaushik, R., Ramamurthy, R.: Querying encrypted data. In:
Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data, SIGMOD 2014, pp. 1259–1261. ACM, New York (2014)

5. Aytug, H., Koehler, G.J.: New stopping criterion for genetic algorithms. Eur. J.
Oper. Res. 126(3), 662–674 (2000)

6. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k -anonymization. In:
21st International Conference on Data Engineering (ICDE 2005), pp. 217–228,
April 2005

Automated k-Anonymization and l-Diversity 119

7. Burke, M., Kayem, A.: K-anonymity for privacy preserving crime data publishing in
resource constrained environments. In: 28th International Conference on Advanced
Information Networking and Applications Workshops, AINA 2014 Workshops, Vic-
toria, BC, Canada, 13–16 May 2014, pp. 833–840 (2014)

8. Ciriani, V., Vimercati, S.D.C., Foresti, S., Samarati, P.: k-anonymous data mining:
a survey. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining:
Models and Algorithms, pp. 105–136. Springer, Boston (2008)

9. Ciriani, V., De Capitani Di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Combining fragmentation and encryption to protect privacy in data
storage. ACM Trans. Inf. Syst. Secur. 13(3), 22:1–22:33 (2010)

10. Clifton, C., Tassa, T.: On syntactic anonymity and differential privacy. Trans. Data
Priv. 6(2), 161–183 (2013)

11. De Capitani Di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM Trans. Database
Syst. 35(2), 12:1–12:46 (2010)

12. De Capitani Di Vimercati S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Shuffle index: efficient and private access to outsourced data. ACM Trans. Storage
11(4), 19:1–19:55 (2015)

13. Dewri, R., Ray, I., Ray, I., Whitley, D.: Exploring privacy versus data quality trade-
offs in anonymization techniques using multi-objective optimization. J. Comput.
Secur. 19(5), 935–974 (2011)

14. Dewri, R., Whitley, D., Ray, I., Ray, I.: A multi-objective approach to data sharing
with privacy constraints and preference based objectives. In: Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, GECCO 2009,
pp. 1499–1506. ACM, New York (2009)

15. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

16. Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anonymization with
low information loss. In: Proceedings of the 33rd International Conference on Very
Large Data Bases, VLDB 2007, pp. 758–769. VLDB Endowment (2007)

17. Gould, C., Burger, J., Newham, G.: The saps crime statistics: what they tell us and
what they don’t. SA Crime Quaterly (2012). https://www.issafrica.org/uploads/
1crimestats.pdf

18. Hang, I., Kerschbaum, F., Damiani, E.: ENKI: access control for encrypted query
processing. In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2015, pp. 183–196. ACM, New York (2015)

19. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2002, pp. 279–288. ACM, New York (2002)

20. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, pp. 193–204. ACM, New York (2011)

21. Last, M., Tassa, T., Zhmudyak, A., Shmueli, E.: Improving accuracy of classifi-
cation models induced from anonymized datasets. Inf. Sci. 256, 138–161 (2014).
Business Intelligence in Risk Management

22. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering,
pp. 106–115, April 2007

23. Lin, J.L., Wei, M.C.: Genetic algorithm-based clustering approach for k-
anonymization. Expert Syst. Appl. 36(6), 9784–9792 (2009)

https://www.issafrica.org/uploads/1crimestats.pdf
https://www.issafrica.org/uploads/1crimestats.pdf

120 A.V.D.M. Kayem et al.

24. Liu, K., Giannella, C., Kargupta, H.: A survey of attack techniques on privacy-
preserving data perturbation methods. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-
Preserving Data Mining: Models and Algorithms, pp. 359–381. Springer, Boston
(2008)

25. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 1–52 (2007)

26. Nergiz, M.E., Tamersoy, A., Saygin, Y.: Instant anonymization. ACM Trans. Data-
base Syst. 36(1), 2:1–2:33 (2011)

27. Sakpere, A.B., Kayem, A., Ndlovu, T.: A usable and secure crime reporting system
for technology resource constrained context. In: 29th IEEE International Confer-
ence on Advanced Information Networking and Applications Workshops, AINA
2015 Workshops, Gwangju, South Korea, 24–27 March 2015, pp. 424–429 (2015)

28. Seckan, B.: Violent crime in the developing world: research roundup. Journalist’s
Resource: Research on today’s New topics (2012). http://journalistsresource.
org/studies/international/development/crime-violence-developing-world-research-
roundup

29. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertainty
Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)

30. Wang, F., Kohler, M., Schaad, A.: Initial encryption of large searchable data sets
using hadoop. In: Proceedings of the 20th ACM Symposium on Access Control
Models and Technologies, SACMAT 2015, pp. 165–168. ACM, New York (2015)

31. Website: South Africa’s police: something very rotten. In: The Economist: Middle
East and Africa (2012). http://www.economist.com/node/21557385

32. Wicker, S.B.: The loss of location privacy in the cellular age. Commun. ACM 55(8),
60–68 (2012)

33. Wong, W.K., Kao, B., Cheung, D.W.L., Li, R., Yiu, S.M.: Secure query processing
with data interoperability in a cloud database environment. In: Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data, SIGMOD
2014, pp. 1395–1406. ACM, New York (2014)

34. Xiao, Q., Reiter, M.K., Zhang, Y.: Mitigating storage side channels using statistical
privacy mechanisms. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS 2015, pp. 1582–1594. ACM, New
York (2015)

35. Xiao, X., Yi, K., Tao, Y.: The hardness and approximation algorithms for l-
diversity. In: Proceedings of the 13th International Conference on Extending Data-
base Technology, EDBT 2010, pp. 135–146. ACM, New York (2010)

36. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W.C.: Utility-based anonymiza-
tion using local recoding. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 785–790.
ACM, New York (2006)

http://journalistsresource.org/studies/international/development/crime-violence-developing-world-research-roundup
http://journalistsresource.org/studies/international/development/crime-violence-developing-world-research-roundup
http://journalistsresource.org/studies/international/development/crime-violence-developing-world-research-roundup
http://www.economist.com/node/21557385

Context-Based Risk-Adaptive Security Model
and Conflict Management

Mahsa Teimourikia(B), Guido Marilli, and Mariagrazia Fugini

Politecnico di Milano, Via Ponzio 34/35, 20133 Milan, Italy
{mahsa.teimourikia,mariagrazia.fugini}@polimi.it,

guido.marilli@mail.polimi.it

Abstract. In dynamic and risk-prone environments, security rules
should be flexible enough to permit the treatment of risks, and to man-
age privileges on resources based on the situation at hand. For this pur-
pose, we define safety-centric contexts based on risk description that is
provided by the safety management system. This paper presents a risk-
adaptive access control model that adopts hierarchies of contexts and
security domains to make adaptations to risks at different levels of criti-
cality. Since various risks may arise simultaneously, two or more security
domains might be applicable at the same time incorporating various
security rules which might lead to conflicts. Therefore, an approach to
analyze conflicts is essential. In this work, we propose a conflict analy-
sis algorithm based on set theory and we illustrate its usage with the
proposed risk-adaptive access control model.

Keywords: Attribute-Based Access Control · Security · XACML ·
Conflict analysis · Context-awareness · Safety management

1 Introduction

Today, Access Control (AC) paradigms are moving from traditional models
such as Role-Based Access Control (RBAC) to Attribute-Based Access Control
(ABAC) [6], which offers a fine-grained AC over resources by considering relevant
attributes for users, resources and the environment, and hence, it enables design-
ing of more expressive security rules. On one hand, access control models are also
being applied on physical and virtual resources [3,4,10], specially in smart work
environments where the “things” (i.e., machinery and tools) are interconnected
to form the Internet of Things (IoT). On the other hand, in a risk-prone envi-
ronment such as construction and process industries, security policies should be
flexible enough to permit the treatment of risks when necessary, and to manage
privileges on physical and virtual resources for various authorized users based
on the situation at hand.

Context-awareness in security is concerned with adaptation of security rules
at run time to the situation at hand. In smart environments, various monitoring
data are available to recognize the situational factors, facilitating incorporation
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 121–135, 2016.
DOI: 10.1007/978-3-319-44403-1 8

122 M. Teimourikia et al.

of context-awareness into access control of physical resources. In these environ-
ments, security rules should be managed adaptively based on the risks that arise
on the fly [3].

Previously, we presented a risk-adaptive AC model based on ABAC where
we adopted Access Control Domains (ACDs) that include set of security rules
defined for specific risk situations [3]. In the proposed approach, we assumed
dealing with only one risk at a time to avoid unpredictable conflicts that may
arise if more than one ACD be applicable simultaneously. We adopt XACML
that enables usage of combination algorithms at rule and policy levels to avoid
conflicts. However, in our case this is not enough and still unpredictable results
may arise. Since we consider the ACDs to be predefined, we propose a con-
flict analysis algorithm to detect conflicting rules at design time and assist the
security administrators to resolve them.

Furthermore, in order to avoid repetition of the security rules in the ACDs
there is a need to consider hierarchies of ACDs where child ACDs inherit the
security rules defined in their parents. In addition, it should be taken into con-
sideration that when there is a case of an emergency or a crisis, there is not
enough time to reason about the situation at hand and an approach should be
considered for managing the emergency situations at run-time.

This paper, presents our approach to resolve mentioned problems. We define
safety-centric contexts based on the risk description. We also propose an app-
roach for calculating the level of criticality of the contexts to form hierarchies of
contexts, each related to an ACD that deals with risks with different types and
at different levels of criticality. Furthermore, to manage the emergency situations
that are time-critical, we consider a “break-glass” security rules that apply when
one or more of the contexts’ criticality levels indicate an “emergency”.

The paper is organized as follows: Sect. 2 reviews the state of the art. In
Sect. 3 we introduce the preliminary concepts. Section 4 illustrates a scenario
that puts in evidence a typical case of policy conflict. Section 5 shows the archi-
tecture of the Risk-Adaptive Access Control System (ACS). Section 6 presents
our solution for conflict analysis and its resolution at run-time based on the
proposed architectural framework. Section 7 gives some details about how we
implemented our solution. And finally, Sect. 8 contains concluding remarks and
ideas for future work.

2 Related Work

Access Control (AC) Systems are the first line of defense in the overall security
of a system. AC applied to physical and virtual resources mainly protects the
access points. Traditional AC models such as Mandatory Access Control (MAC),
Discretionary Access Control (DAC) and Role-Based Access Control (RBAC),
focus on defining user rights precisely to avoid any violations of the defined
security rules [8]. However, traditional access control models demonstrate limited
capabilities for adaptations to dynamic changes because of considering static
security rules that determine the authorization decisions [8].

Context-Based Risk-Adaptive Security Model and Conflict Management 123

Risk-Adaptive Access Control is an emerging topic in the current research
[1,14] which mainly concerns with balancing the risk of granting or denying
access to resources. While the research has mostly focused on security risks
management in access control models [1,2], there are limited works on consider-
ing adaptations based on safety risks. In [14], authors propose a criticality-aware
ACS based on RBAC, where, according to the critical state of the environment,
privileges of users can be dynamically altered by changing the user roles and
the Access Control Lists (ACL) associated to the resources. Due to the adoption
of RBAC, in the dynamic authorization process, they do not consider relevant
attributes such as the location of the person or physical devices but they limit
their proposal to the clearance of users.

ABAC has a potential to enable fine-grained access control in IoT appli-
cations because of its ability in accommodating changes to various attributes
of users and resources to promote fine-grained and dynamic AC [6]. In [3], we
described our approach, based on ABAC, to manage the dynamic changes to the
security-related attributes of users and resources to dynamically authorize their
privileges based on risks that are detected in the environment. In this work, we
extend [3] to introduce the use of hierarchies of contexts and ACDs. Contexts in
our view are safety-centric and represent a situation based on risks detected in
the environment and their level of criticality. With the valuable data gathered
in IoT environments, risks concerning the safety of people at various levels of
criticality can be identified [5]. To manage risks, different approaches employ
break-glass policies in AC [12]. However, more flexible and fine-grained AC can
be applied having various, yet finite and manageable sets of security policies
(defined as access control domains) for different contexts.

However, during dynamic adaptations of security policies, conflicts may arise.
Conflict analysis has attracted great amount of research during current years
[9,13,15]. Approaches that adopt translation of rules into first-order logic usu-
ally exhibit low performance. In this paper we propose an approach based on
set theory in XACML 3.0 and we show that we can achieve an acceptable per-
formance.

3 Preliminary Definitions

In this section, we define preliminary concepts that will be used throughout this
paper. Risks related to safety in industrial environments refer to the threats
that might endanger the health or life of the workers, which we simply refer
to as “risks” from now on. As a policy language we adopt XACML, which its
components are described in Table 1.

Table 2 lists the four main rule/policy combining algorithms in XACML,
namely: deny overrides; permit overrides; first applicable; only one applicable.

Moreover, Table 3, summarizes the basic definitions regarding the proposed
AC model. These include: Subject S, Object O, Environment EN, Privilege P,
Access Control Domain ACD, Security Rule RU, Monitoring Device MD, Hazard
H, Risk R, and Consequence.

124 M. Teimourikia et al.

Table 1. XACML Components

XACML component Description

Policy set It’s a set of policies, characterized by a target and a combining

algorithm

Policy It’s a set of rules, that apply to a certain target. Its result is computed

basing on the chosen combining algorithm

Rule It’s contained in a policy and is composed by a target, condition and an

effect

Target Describes a set (or range) of values for the various categories’

attributes, under which the policy/rule is applicable

Condition It’s an expression in a rule that evaluates to true or false and along

with the target determines the effect of the rule/policy

Effect It’s the outcome of a rule/policy. The possible allowed values are

usually permit and deny

Combining Algorithm It’s the procedure according to which the results of the policies/rules

are combined

Attribute Characteristic of a subject, resource, action or environment. Each

category usually has a set of attributes

Table 2. Combining Algorithms

Algorithm Description

Deny-overrides If any evaluation returns deny, then the result must be deny, even if other

evaluations have returned permit

Permit-overrides If any evaluation returns permit, then the result must be permit, even if

other evaluations have returned deny

First applicable Rules are evaluated in their listing order

Only-one-applicable For all of policies in the policy set, if no policy applies, then the result is

NotApplicable. If more than one policy applies, then the result is

Indeterminate. If only one policy applies, then the result is the result of

evaluating that policy

ABAC is the basis of the AC model, where S, O, and EN and their attributes,
SA, OA, and ENA respectively, are evaluated by the AC system for a fine-grained
authorization, considering the applied RU. We distinguish two types of attributes
(ATTR = SA∪OA∪ENA): (1) security related ATTRsec, (e.g., security level,
role) that are defined by the security administrator; and (2) IoT-based attributes
that are dynamically gathered from the ambient using various sensors and mon-
itoring devices ATTRcontext, like location, and time, that are dynamically set
when the relevant data is received. EN is considered to be a Smart Work Envi-
ronment (SWE), where, the calculated context defines the global safety-centric
situation that identifies the risk type and its level of criticality that affects the
whole or parts of the environment including the subjects and objects inside it.
To adopt XACML, RU is mapped to the Rule component, and ACD is mapped
to the Policy component in XACML.

Context-Based Risk-Adaptive Security Model and Conflict Management 125

Table 3. Definitions & Notations

Notation Definition

S Finite set of entities both needing authorization to access resources (e.g.,
safety teams) and needing protection against risks (e.g., workers)

O Finite set of physical resources or “things” (objects), e.g., tools, machinery,
devices, that subjects can access or act on

EN Finite set of environment sections

P Finite set of privileges that are actions which subjects can perform on objects

ACD Finite set of access control domains that contain security rules designed for
different contexts

RU Finite set of security rules

MD Finite set of monitoring devices that sense data from S, O, and/or EN, e.g.,
sensors, cameras, wearable sensors, etc.

H Finite set of hazards acknowledged via events in the environment; hazards
might turn into risks

R Finite set of risks identified in EN and endowed with attributes such as
Type, Probability, Source, Location, and Consequence

C Finite set of consequences which originate from each ri ∈ R, endowed with
attributes such as: Type, Intensity, Probability

4 A Motivating Scenario

In this section, we introduce a motivating scenario to illustrate a use-case in which
conflicts may arise. In our approach under “safe” conditions acdsafe applies. If we
enter into a risk state with a particular intensity, the related acdi ∈ ACDcontext

applies that contain security rules previously designed based on the organizations
policies and protocols for management of that specific risk which usually relax
some otherwise restricted security rules. Considering the possibility of dealing
with more than one risk simultaneously, security rules should allow management
of all the risks that are present. Therefore, when there are conflicts, rules per-
mitting the execution of preventive or corrective strategies for risk management
should prevail. While, in some cases we might want to restrict some permissions
for safety reasons, e.g., a machinery is detected to be faulty and we want to restrict
access to that machinery to avoid eventual risks. Hence, we cannot always have
the assumption of Permit-Overrides when combining several ACDs.

In what follows we make an example for clarifying the issue. Assuming to
have following ACDs, defined for two different risk situations:

acd1 :Context = ShortCircuit

ru1 : IF {req.o.Type == “FireSprinkler” ∧ req.p == “TurnOn”}
THEN {effect == Deny}

acd1.ru1 indicates that if anyone tries to activate the fire sprinkler system when
there is a risk of electrical short circuit, the effect must be deny (water on a
electrical short circuit may cause electric shock).

126 M. Teimourikia et al.

acd2 :Context = Fire

ru1 : IF {req.s.ActiveRole == “RiskManager” ∧ req.o.Type == “FireSprinkler”

∧ req.p == “TurnOn”}
THEN {effect == Permit}

while, acd2.ru1 indicates that in case of fire, the risk manager should be per-
mitted to turn on the fire sprinkler system if necessary. Therefore, if electrical
short circuit and fire risks are detected simultaneously, ACS have to consider
both security rules at the same time. In this case, if the fire sprinkler system
starts, the short circuit could intensify the fire and cause electric shock so the
proper XACML combining algorithm should be deny-overrides. In conclusion,
the hypothesis that the in case of multiple risks the most permissive security
rule should prevail is not always correct.

Another interesting case happens if the XACML combining algorithm is
First-applicable. Considering the particular nature of our system, the order of
applicability of the ACDs is not predictable and therefore, it is possible that the
ACDs would be analyzed in two possible orders (acd1, acd2 or acd2, acd1). In
this way, AC system behaves unpredictably. In critical systems concerning with
security and safety, the unpredictability of behavior and results is by no means
desirable.

In the following sections, we introduce our proposed risk-adaptive AC system
followed with the conflict analysis method for tackling the problems mentioned
in this scenario.

5 Risk-Adaptive Access Control System (ACS)

In this section, the architecture of the ACS is presented. Its novelty lies in con-
sidering hierarchies of contexts and access control domains to manage different
risks at different levels of criticality; while adopting break-glass policies in case
of a crisis.

5.1 Risk-Adaptive AC Architecture

In this section we shortly describe the architecture of the adaptive AC system.
While MD monitor ATTRdynamic, data streams are sent to the Safety Manage-
ment System (SMS), which, in a MAPE loop [3]: (1) monitors the meaningful
parameters and identifies the hazards Hc ⊆ H if there are any; (2) analyzes
Hc ⊆ H and performs risk assessment to provide the description of the risk and
its consequences; (3) plans the preventive strategies; (4) executes the strategies
that can be automatically executed by the SMS (e.g., turn on alarms), and sup-
ports the execution of human-operated strategies (e.g., evacuation of an area).

Hazard hi ∈ Hc may lead to a set of risks Rc ⊆ R, each with the following
attributes that constitute the “risk description”: Type as a unique name iden-
tifying the kind of the risk (e.g., fire); Source as the entity in the EN (device,
machine, etc.) causing the risk; and Location refers to the eni ∈ EN affected

Context-Based Risk-Adaptive Security Model and Conflict Management 127

by the risk. To simplify, we consider risks to be independent, as the dependency
between risks can complicate the risk assessment procedure since dependent risks
may have effects on one another.

Each ri ∈ Rc is connected to a set of consequences Cri ⊆ C. In the analysis
phase, the SMS also calculates the following attributes for each risk’s consequence:
Type, that is a unique name identifying the kind of the consequence, e.g., damage
to the infrastructure, injury, death, etc.; and Probability, namely the degree of
uncertainty related to the occurrence of such consequence. In the planning phase
performed by the SMS, the AC system receives the risk description and uses it to
identify the “context”. We consider a safety-centric approach to model the context,
considering different attributes of a risk and its consequences.

5.2 Hierarchical Contexts and Access Control Domains

Figure 1 shows how contexts are mapped to the ACDs considering their hierar-
chies. Contexts are defined in a hierarchy where the safe context (contextsafe)
defines the state of the environment that is considered as safe, namely with
no risks. Contextrisk = {context1, . . . , contexti}, refer to a risk-prone state of
the environment, where different risks and consequences are present. Context
level contexti.level is considered to represent the criticality of the contexti that
allows prioritizing its importance. For instance, context1 representing a risk of
fire with context1.level = 19 is considered with a higher priority than context2
corresponding to the risk of injury, with context2.level = 5, hence deserving
different priority of actions to face the potential risks. Finally, the emergency
context (contextemergency) is associated with the highest level of criticality and
has the highest priority over all the other contexts. To define safety-centric con-
texts we consider the risk description rdi ∈ RD:

rdi = {ri.T ype, ri.P robability, ri.Source, ri.Location, ri.Cri} (1)

where ri ∈ Rc, and ri.Cri represents the set of consequences identified for ri and
cj ∈ ri.Cri = {cj .T ype, cj .P robability}. We define the context that represents
the type of the risk ri.T ype in the environment. The context level is defined
based on risk impact value that is defined by safety experts considering rdi and
the organization’s specific regulations. Context level illustrates the hierarchy of
the contexts with respect to its criticality and is used for defining the priority
of security rules in case conflicts were detected between them. Receiving the
risk description from the SMS triggers the process of setting the context and
calculating its level.

ECA Rules for Dynamically Selecting the Access Control Domains:
To set the Context that best describes the safety status of the environment we
consider a rule-based approach. Event-Condition-Action (ECA) rules have been
commonly used for modeling context-aware behavior because of their flexibility
and expressiveness. Moreover, adopting ECA rules enables management of con-
texts based on protocols and overall safety objectives of different organizations.

128 M. Teimourikia et al.

Fig. 1. Hierarchical levels of ACD.

Table 4. Notations for formal representations of ECA rules

Notation Representation

ON Operator catching an event

IF Logical conditional operator for checking the conditions
represented in the risk description

→ Logical then operator representing the action which is
setting the proper contexts

∧ Logical AND operator

∨ Logical OR operator

∼ Logical NOT operator

> Greater than

< Less than

== Equivalent to

= Set to

++ Increment operator

ADD (param, set) Operator for adding a value (param) to a set

REMOVE (param, set) Operator for removing a value (param) to a set

ISIN (param, set) A Boolean operator that checks if a value (param) exists in
a set

We introduce formal notations for representation of ECA rules. Later on we intro-
duce our XML implementation used for implementing and adopting them in appli-
cations. Table 4 lists the formal notations defined for representing ECA rules.

Calculating Context Level of Criticality: Security rules are usually defined
based on organization regulations and unique needs, and they need to be
reviewed and managed by hierarchies of security administrators and managers to

Context-Based Risk-Adaptive Security Model and Conflict Management 129

guarantee their compliance with specific policies of the organization. Therefore,
usually security rules are predefined as dynamic generation of them at run-time
can be very time consuming and in addition can pose security risks or do not
achieve compliance with existing regulations. To this end, considering that we
would have predefined security rules, it is also required to have a limited num-
ber of ACDs for feasibility and manageability. This number should indicate a
right balance between fine-grained context-awareness and manageability of the
security rules. In this work, number of required ACDs has a close relationship
with the criticality levels that are considered for contexts, as they indicate the
hierarchies required in the ACDs.

To calculate the level of criticality of contexts we refer to common and stan-
dard techniques adopted in risk management. Among various techniques used
for analyzing and prioritizing risks, calculation of risk impact that leads to the
calculation of risk exposure is the most commonly used. Based on the required
levels of granularity the likelihood (probability) of the risk is categorized at dif-
ferent levels. For example, low, medium and high can be used for three levels
of granularity which is a very rough estimate of the risk likelihood. Another
example is to consider five or even ten levels of granularity starting from a very
low likelihood and going up to catastrophic levels. In this work, we select the
five-level granularity for both the risk likelihood and its impact to enable the
manageability of the corresponding ACDs. Table 5, shows these levels, in addi-
tion to the numeric values considered to represent them.

On the other hand, the risk impact is an estimate representing the severity
of the consequences of the risk [11]. Risk impact is calculated by risk experts
and risk managers, considering the costs that the risk consequences have for the
specific organization. Various consequences may be considered to have differ-
ent costs. For example, one organization may consider reputation damage more
important than the financial damage and hence attribute a higher cost to it. For
the calculation of risk impact various techniques are introduced in the literature
[11], however, reviewing and introducing them is out of the scope of this paper.
We consider the risk impact as given, and similar to the risk probability we
consider five levels of granularity for its value.

Having the risk probability and the risk impact and considering the numerical
values assigned to them (see Table 5) risk exposure and hence the context’s
criticality level is calculated as follows:

contexti.level = RiskExposure(ri) = ri.P robability × ri.Impact (2)

where ri ∈ Rc and the contexti corresponds to the ri.T ype. Table 5, shows the
calculations of context levels for different risk probabilities and impacts. The
contexts levels are color coded where the diagonal values show the medium levels
of criticality for the given risk, the top triangle indicates high levels of criticality
and the down triangle corresponds to low levels of criticality.

To define the safe and emergency contexts, we define two thresholds based
on the views and protocols of the organization, namely: Tsafe which represents a
threshold on context level below which is considered safe; and Temergency that is
a threshold on context level above which is considered an emergency situation.

130 M. Teimourikia et al.

Table 5. Qualitative and quantitative scales for calculating context levels

Probability
Impact

V eryLow = 1 Low = 2 Medium = 3 High = 4 V eryHigh = 5

V eryHigh = 5 5 10 15 20 25
High = 4 4 8 12 16 20
Medium = 3 3 6 9 12 15
Low = 2 2 4 6 8 10
V eryLow = 1 1 2 3 4 5

All other Context Level values in between Tsafe and Temergency are considered as
the levels indicating the criticality of each risk type as the context. As an example
we can define Tsafe = 2 and Temergency = 20 and hence contexti.level ≤ 2
will correspond to the acdsafe; and contexti.level ≥ 2 will correspond to the
acdemergency.

Mapping Contexts to ACDs: Contexts are mapped into different hierar-
chies of ACDs that are sets including the security rules applied to control access
to objects under safety-related circumstances. As depicted in Fig. 1, we define
a hierarchy of acdi ∈ ACD. The acdGeneral ∈ ACD defines a set of security
rules that is commonly applied regardless of the context. This allows avoiding to
repeat the common, shared security rules in different ACDs. The acdsafe ∈ ACD
includes a set of security rules that are applied in a safe context. Moreover,
ACDContext = {acdc1,l1, . . . , acdcn,lm} as context-specific ACDs are defined
where ci represents a context in Contextrisk = {context1, . . . , contexti}. There-
fore acdci,lj ∈ ACDContext includes a set of security rules that are applied in
contexti with level of criticality of contexti.level = lj . When a acdci,lj with criti-
cality level of lj is applied, all the context-specific ACDs with the lower levels for
the same context will also apply. Moreover, if a context is considered as an “emer-
gency context” then neither the acdGeneral nor the other acdci,lj ∈ ACDContext

would apply and only the acdemergency will be considered that includes a set of
break glass security rules that apply in an emergency situation. In the following
an example is shown for clarifications.

An Example: Considering a process industry where a risk description is
received from SMS which indicates that there is a medium probability of risk of
fire, with the risk source of gas pipes, in the warehouse. The consequences are
estimated to be injury, with high probability, and damage to infrastructures and
resources with high probability. According to the organization protocols, and
experts risk analysis based on the risk description, the risk impact is considered
high. Also the thresholds are defined as: Tsafe = 2 and Temergency = 20. The
contexti = Fire and its level is calculated according to (1) and Table 5 which is
equal to 12. Since contexti.level > Tsafe we are not in the safe context and sim-
ilarly as contexti.level < Temergency, we are not in emergency context either. If
the calculation of contexti.level indicates a safe or an emergency context we set

Context-Based Risk-Adaptive Security Model and Conflict Management 131

the context accordingly. In the next step the context should be specified using
ECA rules:

ON : ri.Type == “Fire”

IF : contexti.level ≤ Temergency ∧ contexti.level ≥ Tsafe

→ ADD({“Fire”, contexti.level}, ContextList).

The above mentioned ECA rule specifies that on the event that there is a risk of
fire, on the condition that the context level is in between the safe and emergency
thresholds, the pair of the context and its level are added to the list of active
contexts.

6 Conflict Analysis of XACML 3.0 Rules

As shown previously, when there are several contexts active at the same time,
conflicts may arise with the combination of different security rules in the corre-
sponding ACDs. For conflict analysis we adopt an innovative approach based on
set theory. A policy (that maps to our concept of ACD) in XACML 3.0, includes
multiple rules (which maps to RU). Each rule in XACML 3.0 has a target and
a condition elements. The main idea of this approach is that if the intersection
of the targets and conditions of the existing security rules are not empty, then
there is a possible conflict between them when their effects are not the same.
More formally, considering RU , A, S, and O as the sets of security rules, actions,
subjects, and objects respectively. If, for instance, we have two policies (or policy
sets) that contain two rules ru1 ∈ RU and ru2 ∈ RU , where ru1 permits a set
of actions A1 ⊂ A to set of subjects S1 ⊂ S on objects O1 ⊂ O and ru2 denies
A2 ⊂ A for subjects S2 ⊂ S on objects O2 ⊂ O, then there is a conflict if and
only if S1 ∩ S2 	= ∅, A1 ∩ A2 	= ∅ and O1 ∩ O2 	= ∅.

A target in XACML 3.0 includes set of AnyOff (i.e., disjunction) and AllOff
(i.e., conjunction) XML elements. Therefore, the target is represented as follows
in our set theory approach:

TC = (

AllOf
︷ ︸︸ ︷
M1 ∧ M2 ∧ . . .Mn) ∨ (

AllOf
︷ ︸︸ ︷

M
′
1 ∧ M

′
2 ∧ . . .M

′
n) ∨ . . . ∨ (

AllOf
︷ ︸︸ ︷

M
′′
1 ∧ M

′′
2 ∧ . . .M

′′
n) (3)

where Mi represent the conditional statements in the target to which we refer
as match elements. XACML 3.0 rule conditions include set of Apply elements
and it is defined as follows:

Apply = <AS,D, V, F, S,R> (4)

where AS is the set of apply elements contained in this element; D represents
the XACML AttributeDesignator ; V is the AttributeValue; F is the Function; S
represents the AttributeSelector ; and R is the AttributeReference. And therefore,
the rule condition is defined as follows:

RC = {Apply1, Apply2, . . . , Applyn} (5)

132 M. Teimourikia et al.

To check whether two XACML 3.0 rules ru1 and ru2 have a conflict we check the
intersection of their targets TC1 and TC2. If TC1 ∩TC2 	= ∅ and the conditions
of these rules RC1 ∩ RC2 	= ∅ and the effects of the rules are not the same
(effectru1 	= effectru2) then the rules are considered to have conflicts.

7 Implementation

In this section we shortly describe the implementation details of the proposed
risk-adaptive ACS and the conflict analysis algorithm. The ACS is developed
employing open source technologies offered by WSO2. More precisely, Balana (an
implementation of XACML 3.0) and WSO2 Identity Server, which implement
XACML 3.0’s data-flow model are used. To be able to use these frameworks
for our purposes some modifications have taken place that is described in what
follows.

7.1 Customization of the Policy Editor

WSO2 Identity Server is modified to adapt its PAP’s (Policy Administration
Point) user interface, to enable customization of XACML security rules, policies
and policy sets based on our specific requirements. In the original WSO2 PAP
Basic Policy Editor user interface, it was not possible to specify a target/condi-
tion on a different resource attribute than its identifier. Moreover, we needed to
add contexts as the attribute of the Environment and to set it as the target of
XACML Policy for defining context-specific ACDs. With the mentioned modifi-
cations we are able to build XACML policy language to define ACDs based on
any attribute of Subjects, Objects and the Environment.

7.2 ECA Rules Implementation

ECA rules are implemented via the following XML schema shown in Listing 1.4.
We adopted similar notations to XACML policies for ECA rules for expressive-
ness, clarity and simplification of usage.

<metarule> :− <when> < i f> <then>

<when> :− <when anyof>
<when anyof> :− <when a l l o f>+

<when a l l o f> :− <r i s k>+

<r i s k> :− name ,<r i s k pa ramet e r s>
<r i s k pa ramet e r s> :− <r i sk paramete r>+

< i f> :− < i f a n y o f>
< i f a n y o f> :− < i f a l l o f>+

< i f a l l o f> :− <cond i t i on>+

<cond i t i on> :− name ,<cond i t i on paramete r s>
<cond i t i on paramete r s> :− <cond i t i on parameter>+

<cond i t i on parameter> :− value , type

Context-Based Risk-Adaptive Security Model and Conflict Management 133

<then> :− <a c t i on s>
<a c t i on s> :− <ac t i on>+

<ac t i on> :− <ac t i on paramete r s>
<ac t i on paramete r s> :− <act ion parameter>+

<act ion parameter> :− actionType , name , value , type
type :− “variable”|“immediate”

Listing 1.1. Meta-rule XML structure

7.3 Managing Multiple Contexts in XACML 3.0

According to the proposed risk-adaptive AC system, when a new risk is detected
and the system is in its “safe” state (i.e., safe context is active), then the string
that identifies the context will be assigned to the environment context attribute
(eni.Context where eni ∈ EN). Otherwise, if the system is already in a risk
state, the new risk-specific context will be appended to eni.Context, according
to the following notation:

eni.context == “context1#level&context2#level& . . .&contextn#level”

where context is the unique name of the context and level is the context’s level of
criticality. Thanks to this kind of notation, we can keep the environment’s context
attribute as a simple data type. When needed, we can read all the contexts that are
activated, by simply splitting the string. This does not affect the efficiency much as
this string does not get very long for each section of the environment assuming that
no more that some limited number of risks happen at a time. When a context is no
longer active (which is detected by the SMS [3]), the context in the eni.Context
string is removed. If there are no more active risk-specific contexts left, the PDP
considers general and safe ACDs.

7.4 Performance Analysis

In this Section the results of experiments on the proposed conflict analyzer are
illustrated. The performance analysis is conducted using a notebook running
Windows 10 with 8 GB of RAM and an Intel Core i5-4210U dual core processor
(3M Cache, up to 2.70 GHz). Since the main objective is to be able to analyze
ACDs we have only considered XACML policies and their rules and we did not
consider policy sets in this analysis. To run the experiment two well-known policy
packages: Continue-a and Synthetic-360 are used. We ran our software on each
of these policy packages ten times; the results are shown in Table 6. As shown in
Table 6, a positive correlation exists between the number of conflicts detected and
the analysis time. By analyzing the policies which compose our test packages, we
noticed that Synthetic-360’s rules contain a noticeably higher number of match
elements and this obviously increases the time necessary to perform the analysis.
Considering that XACML 3.0 language has a much more complicated structure

134 M. Teimourikia et al.

than XACML 2.0, we started to compare the results obtained with the ones
presented in [7] which concludes that we have been able to maintain the same
order of magnitude for the processing time (although our analyzer is not able to
analyze policy sets).

Table 6. Sample policy analysis results

Datasets #Policies #Rules Average analysis time (s) Conflicts detected

Continue-a 266 298 1.07 10483

Synthetic-360 72 360 162.15 26810

8 Concluding Remarks and Future Works

In this paper we have presented our risk-adaptive ACS, based on the ABAC par-
adigm and XACML 3.0 policy language. For each category of entity involved in
the system (subject, object and environment), two types of attributes are consid-
ered: security related and context specific, where the values of the latter depend
on the data received from the monitoring devices and is updated when there
is a change. We have realized a hierarchical structure of safety-centric contexts,
which lets us manage security rules specified for various risks of different levels
of criticality using hierarchies of ACDs. To define the contexts ECA rules are
considered that using the risk description and applying the predefined conditions
identify the context.

Considering that the dynamic combination of the ACDs may pose unpre-
dictable results, at this point, we have adopted a conflict analysis algorithm
based on set theory to detect the potential conflicts at design time so that the
security administrators can elaborate on resolving them. The conflict analysis
approach is implemented on top of Balana, and performance analysis shows that
we can achieve an acceptable response time. To be able to response in a timely
manner to emergency situations we have enabled the possibility to adopt Break-
Glass security rules. Finally, when the environment is in a safe state the AC
system roles back to security rules that are normally applied (the safe ACD).

One of the challenges regarding the security rules and the ECA rules adopted
in this work is to automatically check their consistency. Moreover, to evaluate
real-time efficiency of the proposed approach use-cases and scenarios should be
considered and tested on the implemented AC system. As future works, authors
will consider mentioned issues.

References

1. Al-Zewairi, M., Alqatawna, J., Atoum, J.: Risk adaptive hybrid RFID access con-
trol system. Secur. Commun. Netw. 8(18), 3826–3835 (2015)

Context-Based Risk-Adaptive Security Model and Conflict Management 135

2. Fall, D., Okuda, T., Kadobayashi, Y., Yamaguchi, S.: Risk adaptive authorization
mechanism (RAdAM) for cloud computing. J. Inf. Process. 24(2), 371–380 (2016)

3. Fugini, M., Teimourikia, M., Hadjichristofi, G.: A web-based cooperative tool for
risk management with adaptive security. Future Gener. Comput. Syst. 54, 409–422
(2016)

4. Gusmeroli, S., Piccione, S., Rotondi, D.: A capability-based security approach to
manage access control in the internet of things. Math. Comput. Model. 58(5),
1189–1205 (2013)

5. Hoyos, C.G., Zimolong, B.: Occupational Safety and Accident Prevention: Behav-
ioral Strategies and Methods. Elsevier, Amsterdam (2014)

6. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. Computer
2, 85–88 (2015)

7. Jebbaoui, H., Mourad, A., Otrok, H., Haraty, R.: Semantics-based approach for
detecting flaws, conflicts and redundancies in XACML policies. Comput. Electr.
Eng. 44, 91–103 (2015)

8. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg
(2012)

9. Neri, M.A., Guarnieri, M., Magri, E., Mutti, S., Paraboschi, S.: Conflict detection
in security policies using semantic web technology. In: 2012 IEEE First AESS
European Conference on Satellite Telecommunications (ESTEL), pp. 1–6. IEEE
(2012)

10. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and
privacy in distributed internet of things. Comput. Netw. 57(10), 2266–2279 (2013)

11. Sage, A.P., Haimes, Y.Y.: Risk Modeling, Assessment, and Management. Wiley,
Hoboken (2015)

12. Schefer-Wenzl, S., Bukvova, H., Strembeck, M.: A review of delegation and
break-glass models for flexible access control management. In: Abramowicz, W.,
Kokkinaki, A. (eds.) BIS 2014 Workshops. LNBIP, vol. 183, pp. 93–104. Springer,
Heidelberg (2014)

13. Shamoon, I., Rajpoot, Q., Shibli, A.: Policy conflict management using XACML.
In: 2012 8th International Conference on Computing and Networking Technology
(ICCNT), pp. 287–291. IEEE (2012)

14. Venkatasubramanian, K.K., Mukherjee, T., Gupta, S.K.: CAAC – an adaptive and
proactive access control approach for emergencies in smart infrastructures. ACM
Trans. Auton. Adapt. Syst. (TAAS) 8(4), 20 (2014)

15. Yan, D., Huang, J., Tian, Y., Zhao, Y., Yang, F.: Policy conflict detection in
composite web services with RBAC. In: 2014 IEEE International Conference on
Web Services (ICWS), pp. 534–541. IEEE (2014)

Modeling Information Diffusion
via Reputation Estimation

Bao-Thien Hoang(B), Kamel Chelghoum, and Imed Kacem

LCOMS EA7306, University of Lorraine, Metz 57000, France
{bao-thien.hoang,kamel.chelghoum,imed.kacem}@univ-lorraine.fr

Abstract. We tackle the problem of predicting information diffusion in
social networks. In this problem, we are given social data and would like
to infer the diffusion process in the near future. Although this problem
has been extensively studied, the challenge of how to effectively combine
user activities, network structures and diffused information in social data
remains largely open. In addition, no prior work judged the effect of user
reputation on the diffusion process. Availability of such reputation score
is really important for a user to decide whether he might share informa-
tion. In this paper, we first devise a novel method for estimating user
reputation. Our approach integrates network structure with user fea-
tures, link features and the content of items shared by the users, then
measures the strength of each of these factors. Based on this estimation
approach, we develop a model predicting the tendency of a new informa-
tion item as well as the number of participants of this diffusion process.
We conduct several experiments on a snapshot of Twitter which show
that our proposed model outperforms other baselines.

Keywords: Predictive model · Information diffusion · Reputation
estimation

1 Introduction

Online social networks (OSNs) have become one of the most important media
for users to exchange ideas and share interesting information. We could observe
plenty of diffusion actions of users (i.e., the action that a user expresses when
receiving an information item shared by his/her friends such as “re-shares”,
“likes”, “comments”, “re-tweets”, “taggings”, etc.) in this social media, and the
number of diffusion actions could in turn reflects the distinction of the associated
information item, in terms of its novelty, popularity and importance. It has been
reported that the size of information cascades fits power-law [7], which means
that of all the information items posted everyday, only a tiny proportion of them
will attract a large number of users to actively participate in propagating them.
Therefore, predicting the propensity of a new content item before the outbreak
actually happens would give us a great benefit. In addition, the ability to predict

This work has been supported by the ANR INFORSN project.

c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 136–150, 2016.
DOI: 10.1007/978-3-319-44403-1 9

Modeling Information Diffusion via Reputation Estimation 137

prospective users that may participate in the diffusion process of an information
item is also desirable and valuable in many cases. For example, full understanding
of social network and prediction of potential customers allows a mobile phone
company to choose a better marketing strategy for their new products.

In addition, to the best of our knowledge, no prior prediction models focus
on analyzing all impact factors of user reputation. Generally, the reputation of
a user n refers to a unique global trust value that reflects the experiences of all
users in the network with user n. It has been shown that the availability of such
reputation scores is crucial for many applications, for instance, item ranking, or
recommending users to follows. Thus, in the context of the information diffusion
problem, that score can be leveraged to evaluate the attractiveness of the item
to the user. Specifically, the reputation score of a user can represent his/her
ability of diffusing a “good” content item such that another random user not
necessarily connected to him/her would give a diffusion action to the item shared
by him/her.

Challenges. In this paper, we target at devising a diffusion model that (i)
analyzes all factors (including user reputation factor) that affect the diffusion
action of users, (ii) predicts the trend of a content item in the near future, e.g.,
determine whether it becomes a phenomenon, and (iii) predicts (the number of)
participants of the diffusion process of this item.

The proposed problem is challenging from at least three points of view. First,
the impacts affecting a user’s diffusion action originate from different sources: his
profile, his relationships, his action logs, and shared items. But the question is
how all features interact to generate the decision of user. Second, only diffusion
actions are observable, while the underlying influences that trigger the actions
are implicit. Consequently, using only the performed diffusion actions, correctly
quantifying the weights of these impacts is also challenging. Third, estimating
user reputation score from social data is generally difficult because social net-
works are complex in the sense there can be multiple factors affecting user action
such as user profile, user interest, shared items, social influence, etc. As a result,
computing the reputation score is as hard as evaluating the weights of factors of
a diffusion action.

Moreover, in much prior work on user reputation or influence in social net-
works, one common approach is to construct an influence graph among users
based on how information propagates, then apply methods such as plain PageR-
ank [4] to identify influential users in the network. This leads to the influential
users are usually the ones having a high number of neighbors. Recently, Yang
et al. [26] introduced a method of estimating user reputation from social data by
combining biased social data (i.e., the observable or raw data) with aggregated
data from an unbiased context (e.g., specific data from LinkedIn Today module).
Specifically, they presented a Z-Model using only biased data, and thus, could
be used in our problem. However, our experiments (Sect. 3) show that all of these
approaches do not well perform when applied to the prediction model.

138 B.-T. Hoang et al.

Contributions. This paper describes our approach to address the above chal-
lenges. Our contributions are summarized as follows:

– We propose a novel way to estimate user reputation scores using social data.
Our techniques is built upon the combination of the network structure, user
and link features, the learned PageRank scores, the sharing levels of users and
the attractiveness of the shared items.

– Based on the reputation estimation approach, we devise a model that predicts
the tendency of a new information and the perspective users of this diffusion
process.

– We compare our predictive model with other baselines by conducting empir-
ical analysis on a snapshot of Twitter. The experimental results show the
effectiveness of our approach in terms of prediction quality.

Outline. The rest of this paper is organized as follows. Section 2 defines the
notations used throughout the paper, presents the way to estimate user reputa-
tion, and describes our predictive model. In Section 3, we present our empirical
analysis on a real dataset crawled from Twitter. We review related work in
Sect. 4, and conclude our work in Sect. 5.

2 Methodology

2.1 Problem Setting

We consider here a social network of size N modeled as a directed graph G =
(V,E) where V = {1, 2, 3, . . . , N} is the set of nodes representing users and
E ⊆ V × V is the set of directed edges between users.

Diffusion Action. When a user sees information diffused (or shared1) by other
ones, he/she may respond positively to the broadcasted content through re-
diffusing the item or may just ignore it. More formally, given two nodes n and
s, a diffusion action, defined as a tuple (s, n, t), indicates that node n responds
positively to the content item diffused by another node s at timestamp t. We
refer to the moment at which a node responds positively to some information as
its activation and that node is called active. Conversely, a node that responds
negatively is called inactive.

Item Features. A diffused item may contain some information in its own post
or incorporate links to full information of the post. Thus the terms, “information
item”, “content item” or simply “item”, used interchangeably henceforth refer
to the main content of the post that the item links to or consists of. We denote
the set of topics as K = {k1, k2, . . . , k|K|}. To characterize the content quality of
item i, we use a vector hi ∈ R

L where L is the size of the content feature space.
1 We use these terms “diffuse” and “share” interchangeably henceforth.

Modeling Information Diffusion via Reputation Estimation 139

(For example, if information is textual, vector hi may be a tf-idf vector [15].)
We also represent the proximity level of content of item i to various topics as
a vector qi ∈ R

|K| where the k-th entry, denoted qik, is the proximity level on
topic k.

User Reputation. The reputation of user n refers to a unique global trust value
that reflects the experiences of all users in the network with user n. In other
words, in the context of information diffusion, it represents his/her ability of
propagating “good” information. We study here the user reputation for different
content topics. More precisely, given a topic k, we define the reputation μnk of
user n as the propensity of a random user v, who is not necessarily connected
to n but interested in topic k, to diffuse a typical (or random) content item on
that topic diffused by n. In our approach, all nodes in the network participate
in computing these values.

Node and Edge Features. Nodes and edges in the network have rich auxiliary
information with a set of features. We assume each node n has a feature vector xn

describing the node (e.g., age, gender, hometown), and each edge (n, v) also has
a corresponding feature vector wnv describing the interaction attributes (e.g.,
the number of messages n and v exchanged, or the similarity of the profiles). Like
item features, node and edge features could be related to various topics. Hence,
we represent here these features as a distribution of preferences overs |K| topics.

2.2 Proposed Model

In this section, we present our proposed model for estimating user reputation
and predicting information diffusion.

Diffusion Model. Let ysn(t) be a binary value indicating whether at timestamp
t user n would be active to any content item diffused by user s. We assume
this value follows the Bernoulli distribution with activation probability psn(t)
modeled as a function of node n’s interest vector ηn(t), node s’s reputation
score μs(t), and feature vector wsn(t) of edge (s, n):

psn(t) = σ(αT
snwsn(t) +

∑

k∈K
ηnk(t)μsk(t) + b) (1)

where σ(x) = 1/(1+e−x) is a logistic function, αsn ∈ R
q is a q-dimension vector

of regression coefficients, with q the size of the edge feature vector wsn, ηnk is
the user interest for different topics k, μsk represents the reputation score of
node s on topic k, and b is a global bias term [22]. Parameters αsn, ηnk, μnk (for
all k) and b will be learned from data. We sometimes omit (t) in the notations
for the sake of simplicity.

140 B.-T. Hoang et al.

User Interest Model. Each user may express different levels of interest and
expertise for various topics. We represent the interest distribution of a user n,
ηn = (ηn1, ηn2, . . . , ηn|K|)T , through a linear form of the user feature vector xn:

ηn = θnxn (2)

where θn is a |K| × |xn| weighting matrix to be learned from data. For a topic
k, the k-th entry ηnk is ηnk = θT

nkxn where θnk ∈ R
l is the k-th row of θn, l is

the size of the user feature space.

User Reputation Model. Like user interest, the reputation of a user s is
viewed as the distribution of sharing and interest preferences over the top-
ics. It is hence modeled as a |K|-dimension latent vector, namely, μs =
(μs1, μs2, . . . , μs|K|)T , where μsk represents the reputation of user s on topic
k and is defined through a linear regression of three factors: s’s interest μsk on
topic k, the level of sharing ψsk on topic k, and the PageRank score [4] φsk:

μsk = γskηsk + κskψsk + ρskφsk (3)

where γsk, κsk, ρsk are coefficients to be learned s.t. γsk + κsk + ρsk = 1.

Sharing Level ψsk is defined by:

ψsk =
1

|Is|
∑

i∈Is

ζik (4)

where Is is the set of items that s has diffused, ζik is the attractiveness of item
i on topic k, determined as a function of the proximity qik of the content item i
to topic k and the average reputation score of the sharers:

ζik = qik
1

|Si|
∑

s∈Si

μsk (5)

Here Si is a set of users diffusing item i.

PageRank Score. PageRank [4] and its variants like Personalized PageRank
[14] and Random Walks with Restarts (RWR) [24] are popular methods for
ranking nodes on graphs and evaluating node reputation. The simple idea of
the RWR approach would be to start a random walk at node s and compute
the proximity of each other node to s by setting up the random walk stochastic
transition vector so that the walk may jump back to s and thus restarts the
walk. The stationary distribution of such random walk determines the node score
expressing the ranking of proximity between s and other nodes in the graph. Note
that, the original RWR method only considers the network structure. We here
use RWR but combine with other factors such as link feature.

Modeling Information Diffusion via Reputation Estimation 141

Let us consider a random walk originating from s. We build a transition
matrix A = (Anv) demonstrating the probability the walk will traverse an edge
(n, v) given that it is currently at node n as follows:

Anv =

{
anv∑
u anu

if (n, v) ∈ E

0 otherwise
(6)

where anv represents the strength of the interaction (n, v): anv = αT
nvwnv.

To address RWR, we incorporate the restart probability λ into the transition
matrix A, i.e., the random walk jumps back to the seed node s with probability
λ and thus “restarts”. Accordingly, the transition matrix of the random walk
becomes P = (Pnv) where

Pnv = (1 − λ)Anv + λ1{v=s}. (7)

Here 1{v=s} is an indicator function. The PageRank score vector φ = (φn) is
then defined by the stationary distribution of the RWR. More precisely, that is
the solution of the eigenvector equation φT = φT P. And thus, we obtain the
PageRank score φnk of node n on topic k as follows:

φnk = φT
k Pnk =

∑

j

φjkPjnk. (8)

2.3 Parameter Learning

When representing all parameters as ω = {α,β, γ, κ, ρ}, our goal is to find ω
that maximizes the likelihood of observation data. In this section, we present
the way of learning these parameters.

Learning Framework. The probability of observing the outcome at time t is:

Pr(t) =
∏

ysn(t)∈Y

(psn(t))ysn(t)(1 − psn(t))1−ysn(t) (9)

where Y is the training data consisting of all users’ actions.
When considering all timestamps t ∈ [0, τ] in data Y , the likelihood of observ-

ing all diffusion actions is:

L(ω|Y) =
∏

c∈C

∏

t1(c)≤t≤t2(c)

Pr(t) (10)

Using natural logarithm of Eq. (10), the problem of modeling how information
propagates corresponds to finding a parameter

ω∗ = argmaxω log L(ω|Y). (11)

142 B.-T. Hoang et al.

Interaction Dataset #Tw/Rt #Articles

Retweeting
Whole dataset 14.8M 789K
Training set 12.6M 656K
Testing set 2.1M 124K

Mention
Whole dataset 2.5M 140K
Training set 2.2M 119K
Testing set 304K 19K

Fig. 1. Dataset statistics.

Learning Algorithm. The problem tackled here is a logistic regression and
non-convex problem, but we can solve it by using coordinate ascent (CA) app-
roach. Due to space limitation, we omit this algorithm here.

3 Experiments

We conducted several experiments to evaluate the performance of our proposed
model. In this section, we first describe the dataset, then present the experimen-
tal setup and performance analysis.

3.1 Dataset

We conduct experiments on a snapshot of Twitter containing a large coverage
of all tweets involving French articles and media (such as Le Monde, L’Équipe,
TF1, BFMTV, etc.). The dataset was crawled from May 1st to October 31st,
2014 with 1M users and 14.8M tweets related to 789K articles. We also crawled
the content of the articles retrieved from the URLs in the tweets. The average
lifetime of a diffusion process in the dataset is about 45 h.

We build two networks on the users from the structure of interaction via
(i) retweeting, and (ii) mention (@-messages). In the former network, we create
a link from u to v if v retweets at least one post diffused by u. In the latter
network, if a tweet of user u mentions user v (i.e., including “@v”) in at least
one tweet, we include a directed edge from u to v.

For each network, we generate a duplicated dataset from the original dataset.
Then we split each dataset into a training set and a testing set with the ratio
5:1 by timestamp. In particular, considering each month as a timestamp, the
training set is composed of all data between May 2014 and Sep. 2014 and is used
for estimating the weighting parameters. The testing set contains data in the
following month, Oct. 2014, and is used for evaluating the model. In the testing
set, we excluded all data of the last 2 days of Oct. 2014 because the diffusion
process of this data may not have been finished or could not provide a valid
grouthtruth for our evaluation. Figure 1 describes the statistics of our datasets.

3.2 Experimental Setup

Topic Classification. Before the evaluation, we first executed some pre-
processing on the text of articles and tweets such as removing stop words and

Modeling Information Diffusion via Reputation Estimation 143

low-frequency words, stemming words. We extracted and classified the content
of articles into 24 topics.

Parameter Settings. The restart probability λ controls for how “far” the walk
wanders from a seed node s before it restarts and jumps back to s. A low value
of λ allows the walk to discover new nodes at a high distance from the seed node,
while high value gives very short and local random walk. The appropriate value
λ depends on the characteristics of the graph. Generally, in social networks, more
than half of all edges at the time of creation close a triangle, i.e., a user usually
connects to a friend of his friend [19]. In our graphs, more than 90 % of pairs
of interacting nodes have a distance of at most 3 hops just before they become
friends. According to [2], we set empirically λ = 0.25.

User Features. Each user n has the following features:

– The total number of items (original tweets and retweets) shared by user, the
mention count and hashtag count related to the user.

– The topical interest on topic k at timestamp t: that is the fraction between
the number of items on that topic n shared at timestamp t and the number
of items on topic k that n received at timestamp t.

– The willingness of diffusion at timestamp t: that is the fraction between the
number of items of all topics that n shared at timestamp t and the number of
items of all topics n received at timestamp t.

Note that, for each mentioned feature computation, we assume that if the
denominator is zero then the value of that feature is zero.

Link Features. We annotate each edge (n, u) with the following features:

– Information-based influence on topic k at timestamp t: This feature indicates
the influence of content of item on the diffusion decision of user n. It is defined
by the number of items on topic k shared by u and diffused by n at timestamp
t, divided by the number of items on that topic shared by u at timestamp t.

– Relation-based influence: Users may not be excited about topic k but diffuse
information shared by their friends. That action is purely originated from
the social, emotional or friendship relations among them. We evaluate the
influence of user n on user u at timestamp t as the ratio between the number
of items that n has reposted from u at timestamp t and the number of items
shared by u at timestamp t.

– Crow-effect influence on topic k is the fraction between the number of friends
of n sharing items on k and total number of friends of n.

– The number of common friends between n and u.
– Link age: as recommended in [1], this feature is computed by the average of

1/(τ − tnu)β , where τ is the time cutoff Sep. 30th, tnu is the time of edge
creation, and β = {0.1, 0.3, 0.5}.

144 B.-T. Hoang et al.

Evaluation Metrics. To judge the performance of the proposed method, we
use three evaluation metrics: F1-score, Mean Average Precision (MAP) and Area
Under the ROC Curve (AUC). The algorithms are implemented in R.

3.3 Estimating User Reputation

Our first task is estimating user reputation score using the training data, then
evaluating the estimated scores with the real influence of user in the testing
data. We empirically define a test sharer as (i) the one who shares at least 500
items (including tweets or retweets) in the retweeting-based network, and (ii)
the one who are mentioned in at least 200 items in the mention-based network.
That results in 423 users and 258 users respectively in two testing sets. We also
randomly select other 577 users who diffuse more than 100 items from the testing
set of the retweeting-based network, and 442 users who are mentioned in at least
50 items from the testing set of the mention-based network. The computation
of evaluation metrics is based on these selected users. We repeat the random
selection 20 times, then report the average over these independent runs.

Baselines. We compare our reputation estimation method, denoted by FEP,
to the following baselines:

– PageRank (PR) [4] and Plain Random Walks with Restarts (RWR)
[24]. These unsupervised methods can be viewed as simplified forms of our
reputation model because the user interest, link features, and the sharing levels
are ignored in the computation of reputation score. These baselines are used
to prove the need of making use of those additional dimensions for evaluating
the reputation score.

– Feature-Based Reputation Model (FR) [26]. Yang et al. [26] explored
the unbiased reputation scores of sharer by combining biased social response
data with aggregated data from an unbiased context. Specially, they presented
a Z-Model where the reputation score is based only on biased social response
data. This model can be viewed as a special form of our model in which only
user interest profile and sharing levels are considered, while the PageRank
score is dismissed.

Results. We present overall results in terms of F1, MAP and AUC metrics in
Fig. 2. Generally, the performance of our model is notable. For instance, MAP
values are between 0.45–0.48, this means out of all user ranking based on repu-
tation score, more than 45 % of them are correct.

Moreover, according to Fig. 2, FEP outperforms other approaches. Specifi-
cally, FEP gives a significant margin over the PR and RWR. It also gains over the
FR model. For example, in the retweeting-based network, in terms of AUC we
get more than 11 % over RWR and PR, and near 5 % over FR, while in terms of
MAP the relative improvement are respectively more than 108 % and 16 %, and
in terms of F1-score, FEP gives a 18 % and a 3 % lift over the PageRank-based
methods and FR method.

Modeling Information Diffusion via Reputation Estimation 145

Fig. 2. Performance of different models in estimating user reputation.

The RWR algorithm slightly trails PR approach due to the characteristics of
networks: more than 90 % of pairs of nodes have a distance of at most 3 hops, and
thus node jumps back to the seed node with high probability. However, both two
algorithms are the bottom performers. Recall these PageRank-based baselines
do not take into account user interest profile, influences between user and other
ones, and the content of items diffused by sharers which play an important role
in affecting the diffusion actions of users, and thus, their reputation scores. So it
is not surprising that they are worse than the featured-based models like FEP
and FR.

Now we discuss the comparison between FEP and FR. By combining user
and link features, the item content and the PageRank score in the computation
of reputation score, all evaluation metrics of FEP are further improved. This
result indicates that the feature-based model and PageRank-based model can
be complementary to each other. Only considering one of them is not enough.

Figure 3 visualizes the performance comparison via Precision-recall and ROC
curves. We can see that our method obtains a significant precision over the PR
and RWR methods, and also outperforms the FR model.

3.4 Predicting Information Diffusion

Another target of our work is to predict the tendency of a new tweet, namely,
to identify (i) whether it becomes a trending at a future timestamp, and (ii) the
active users of the diffusion process of this tweet.

In the first subtask of predicting the trending tweet, we observe the distri-
bution of the number of retweets in the dataset and define a trending tweet as
the one having at least 500 (resp. 50) reposts for the retweeting (resp. mention)
network. As a result, we get 281 and 258 trending tweets from the testing sets of
the retweeting graph and mention graph, respectively. We also randomly select
719 (resp. 742) tweets having more than 100 (resp. 20) reposts from the testing
set of retweeting (resp. mention) graph. We measure the performance of this
task for these original tweets.

Likewise, in the second subtask, we randomly select 1000 tweets with the
number of retweets exceeding 100 (resp. 20) from the testing set of retweeting

146 B.-T. Hoang et al.

(resp. mention) graph. In each experiment, we count the number of predicted
active users w.r.t. one selected tweet, then compute the average prediction results
for all 1000 tweets. We repeat the experiment 20 times, then the average result
is reported.

Fig. 3. Presion-recall and ROC curves in estimating user reputation for the retweeting
(a and b) and mention (c and d) networks.

Baselines. We compare the predictive performance of our model, denoted by
FIR, to several state-of-the-art models:

– Featured-Based Model (ETL) [6]. This method considers the hot emerg-
ing topic learner problem. It explores all user and link features for outbreak
training and prediction of topic emerging. Thus, the proposed features and
learning methods can be applied to predict the information diffusion. This
baseline is used to measure the contribution of user and link features.

– Influence-Based Model (IBP) [11]. This work analyzes pair-wise influ-
ence among users and assigns each pair an influence probability of predicting
whether a user performs an action w.r.t. a diffusion process. We consider this
model as a restricted form of our model where only link features are taken
into account. This baseline is used to measure the contributions of the link
features.

– Supervised Random Walk (SRW) [1]. Backstrom et al. [1] proposed a
link prediction algorithm (SRW) that combines user and link features with
RWR. In SRW, the transition probability is determined by a function of the
attributes of users and links, and the function is adjusted through supervised
learning. However, this approach ignores the attractiveness of content items
of sharers. Hence, this approach is used to prove the need of analyzing the
content of diffused items.

Results of Predicting Trending Tweet. Figure 4 compares the results of
various methods on the retweeting and mention networks. First, we can see
that the feature-based model ETL has lower performance compared to other

Modeling Information Diffusion via Reputation Estimation 147

Fig. 4. Performance of predicting the trending of a new tweet.

baselines. This can be possibly explained by the fact that ETL uses few amount
of training data. Hence, its prediction ability is limited. Second, the influence
model IBP outperforms SRW in terms of non-ordered-based measurement like
F1-score, but gives lower performance in terms of other ordered-based scores
such as MAP and AUC. A possible explanation is as follows: under SRW model,
the PageRank scores of users are contributed to the transition probability of
users. As we know that, this score brings the order to the network [4]. And in
SRW, it is evaluated as a function of user features, link features and influences
among users, and is adjusted through supervised learning. This leads to the
ranking-based evaluation metrics it produces are more precise than the ones of
models considering only features or influence of users. Therefore, the ability of
prediction of SRW is better than other influence-based and feature-based models.
Moreover, this result indicates that the prediction analysis based on influence of
users is not sufficient to obtain a good result combining both the user features,
link features and the PageRank score of users.

Finally, our model outperforms each of the baselines by a significant margin
in terms of the evaluation metrics. For instance, in the retweeting network, we
achieve a F1-measure of 0.77, a MAP score of 0.46 and an AUC score of 0.77,
compared to the best baseline’s scores of 0.73, 0.42, 0.70 respectively. We give
more details concerning the precision of each model at different recalls and the
ROC curves in Fig. 5. All of the experimental results confirm that the appropriate
combination of user features, influences among users, the PageRank scores and
the attractiveness of content items shared by users improves the accuracy of the
prediction.

Results of Predicting Active Users. The results of predicting active users
are shown in Fig. 6. Similar to the first subtask, the ETL method still remains
the worst performer, while our proposed method yields the best results under all
evaluation measures. The underlying reason is that when a user makes a decision
on diffusion of an item, he/she will consider the characteristics of a network in
a comprehensive way, instead of focusing on some single aspect.

148 B.-T. Hoang et al.

Fig. 5. Presion-recall and ROC curves in predicting tendency of a new tweet for the
retweeting (a and b) and mention (c and d) networks.

Fig. 6. Performance of predicting active users.

Discussion. From all empirical results, we find that each component in our
model has different significance in the prediction model, and the performance
drops significantly by removing any of the proposed components. For instance,
if we consider only user features and link features, then the model achieves the
worst performance. When we add subsequently other components like PageRank
score, user interest, influence of users, and the relatedness level of items, the
result becomes better. And the best model is the combination of all mentioned
components.

4 Related Work

Several approaches related to information diffusion and social influence in net-
works have been proposed. Leskovec et al. [18] described how recommendations
of products propagate among users. Gruhl et al. [13] addressed the problem of
tracking the propagation patterns of topics. However these work either require
network characteristic or focus on decompising the topics along two orthogonal
axes like chatter and spikes, and this makes them different from our target.

Independent Cascade [8] and Linear Threshold [16] are useful models for
simulating the information flow in networks, but cannot be directly applied to
predict information diffusion. The heat-diffusion models are applied in various
domains such as classification, dimensionality reduction [3,17], or can be used as
the core of DiffusionRank [25]. Yet all of these studies only take into account the

Modeling Information Diffusion via Reputation Estimation 149

level of influence from one user to another one, while we address all aspects affect-
ing the link between two users. Introduced by Kempe et al. [16], the influence
maximization problem have been tackled by many approaches such as [5,12].
However they are different from our study because they assume the influence
probability is known in advance. In [11], the authors proposed a probabilistic
model for learning influence probablities by mining the influence in the history
logs. In [23], Tang et al. studied the topic-level social influence. Ma et al. [20],
introduced a model of social network marketing for the influence maximization
problem. Again, these papers do not consider the edge feature or just focus
on the defense against diffusion of the negative information, which are not our
consideration.

Another line of related work is the link prediction problem. Many approaches
have been designed to infer the most plausible links such as NetInf [10], Connie
[21] and Netrate [9]. However, all of them concentrate in analyzing the link
features, but do not take into account other aspects like user profile interest,
content items of sharers.

5 Conclusion

In this paper, we first presented a scheme for evaluating user reputation. This
score is measured by combining network structure, user and link features, PageR-
ank scores, sharing levels of users, and the attractiveness of the shared items. In
addition, we focused on modeling how information diffuses by presenting a pre-
dictive model that identifies the trending of a new content item and the perspec-
tive participants of this diffusion process. We furthermore conducted empirical
analysis on a snapshot of Twitter which shows the effectiveness of our app-
roach compared to alternative state-of-the-arts. We plan to propose a predictive
model in competitive networks, where each network adopts some strategy and
the influences under the strategies is considered as payoffs.

References

1. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommend-
ing links in social networks. In: WSDM, pp. 635–644 (2011)

2. Ballester, C., Vorsatz, M.: A new measure of rank correlation. Rev. Econ. Stat. 3,
383–401 (2014)

3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Comput. 15(6), 1373–1396 (2003)

4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. 30(1–7), 107–117 (1998)

5. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: SIGKDD, pp. 1029–1038 (2010)

6. Chen, Y., Amiri, H., Li, Z., Chua, T.: Emerging topic detection for organizations
from microblogs. In: SIGIR, pp. 43–52 (2013)

7. Cui, P., Jin, S., Yu, L., Wang, F., Zhu, W., Yang, S.: Cascading outbreak prediction
in networks: a data-driven approach. In: SIGKDD, pp. 901–909 (2013)

150 B.-T. Hoang et al.

8. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look
at the underlying process of word-of-mouth. Mark. Lett. 12(3), 211–223 (2001)

9. Gomez-Rodriguez, M., Balduzzi, D., Schölkopf, B.: Uncovering the temporal
dynamics of diffusion networks. In: ICML, pp. 561–568 (2011)

10. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and
influence. TKDD 5(4), 21 (2012)

11. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in
social networks. In: WSDM, pp. 241–250 (2010)

12. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: A data-based approach to social influ-
ence maximization. PVLDB 5(1), 73–84 (2011)

13. Gruhl, D., Liben-Nowell, D., Guha, R.V., Tomkins, A.: Information diffusion
through blogspace. SIGKDD Explor. 6(2), 43–52 (2004)

14. Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm
for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)

15. Jones, K.S.: A statistical interpretation of term specificity and its application in
retrieval. J. Documentation 60(5), 493–502 (2004)

16. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence
through a social network. In: SIGKDD, pp. 137–146 (2003)

17. Kondor, R., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input
spaces. ICML 2002, 315–322 (2002)

18. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing.
TWEB 1(1), 5 (2007)

19. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of
social networks. In: SIGKDD, pp. 462–470 (2008)

20. Ma, H., Yang, H., Lyu, M.R., King, I.: Mining social networks using heat diffusion
processes for marketing candidates selection. In: CIKM, pp. 233–242 (2008)

21. Myers, S.A., Leskovec, J.: On the convexity of latent social network inference. In:
NIPS, pp. 1741–1749 (2010)

22. Myers, S.A., Zhu, C., Leskovec, J.: Information diffusion and external influence in
networks. In: SIGKDD, pp. 33–41 (2012)

23. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale net-
works. In: SIGKDD, pp. 807–816 (2009)

24. Tong, H., Faloutsos, C., Pan, J.: Fast random walk with restart and its applications.
In: ICDM, pp. 613–622 (2006)

25. Yang, H., King, I., Lyu, M.R.: Diffusionrank: a possible penicillin for web spam-
ming. In: SIGIR 2007, pp. 431–438 (2007)

26. Yang, J., Chen, B., Agarwal, D.: Estimating sharer reputation via social data
calibration. In: SIGKDD, pp. 59–67 (2013)

Data Clustering

Mining Arbitrary Shaped Clusters
and Outputting a High Quality Dendrogram

Hao Huang1, Song Wang1, Shuangke Wu1, Yunjun Gao2, Wei Lu3(B),
Qinming He2, and Shi Ying1

1 State Key Laboratory of Software Engineering,
Wuhan University, Wuhan, People’s Republic of China
{haohuang,xavierwang,wsk9551,yingshi}@whu.edu.cn

2 College of Computer Science, Zhejiang University,
Hangzhou, People’s Republic of China

{gaoyj,hqm}@zju.edu.cn
3 Key Laboratory of Data Engineering and Knowledge Engineering,

Renmin University of China, MOE, Beijing, People’s Republic of China
uqwlu@ruc.edu.cn

Abstract. Hierarchical clustering (HC for short) outputs a dendrogram
that offers more topological information than flat clustering (e.g., k-
means). However, the existing HC algorithms focus on either the quality
of the dendrogram or the ability of mining arbitrary shaped clusters.
To address the above two aspects simultaneously, we present HICMEN
by adopting (1) the classic agglomerative clustering framework that can
generate a complete dendrogram, and (2) a novel similarity measure
based on mutual k-nearest neighbors to capture the connectivity of data
points and help properly merge up each arbitrary shaped cluster piece by
piece. More importantly, we prove that the similarity measure has a nice
property called weak monotonicity, which guarantees the quality of the
dendrogram generated by HICMEN. Extensive experimental results show
that HICMEN is capable of mining arbitrary shaped clusters effectively,
and can simultaneously output a high quality dendrogram.

Keywords: Clustering · Arbitrary shaped clusters · Dendrogram

1 Introduction

Hierarchical clustering (abbreviated as HC henceforth) groups data points into a
tree hierarchy of clusters, in which every cluster node contains children clusters
while sibling nodes of clusters partition data points covered by their common
parent according to a similarity measure. Figure 1 illustrates an example of such
a process which organizes data points into a tree hierarchy called dendrogram.

A good dendrogram generated in HC should be able to preserve and present
the intrinsic proximities of original data points, and offer valuable information in
practice. For example, in the area of biology, by performing HC on the physical
signs of living being, the dendrogram can be used to find the subspecies of each
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 153–168, 2016.
DOI: 10.1007/978-3-319-44403-1 10

154 H. Huang et al.

Fig. 1. An illustrative example of HC, and its generated dendrogram.

category, and reveal their taxonomic relations [5]. In the area of Internet, by
adopting HC to categorize web pages, the dendrogram can be used to build a
catalog of these web pages as a web directory, and facilitate the construction of
web-directory-based browse systems [17].

Nonetheless, as a rule the existing HC algorithms only focus on either the
quality of the dendrogram, such as traditional HC approaches using linkage met-
rics [7,23,25] which however are more applicable to compact and spherical clus-
ters, or the ability of mining arbitrary shaped clusters, such as CHAMELEON
algorithm [19] which however cannot output a complete dendrogram, let alone
guarantee the quality of the dendrogram. In fact, the existing HC algorithms’
efforts on either aspect usually sacrifice the performance of the other.

In this paper, we present HICMEN (HIerarchical Clustering with Mutual
k-nEarest Neighbors) an HC algorithm that takes both aspects into account. To
the best of our knowledge, it is the first time that we explicitly identify and solve
the problem of simultaneously mining arbitrary shaped clusters and outputting
a high quality dendrogram. HICMEN uses the classic agglomerative clustering
framework to generate a complete dendrogram. By adopting a novel similar-
ity measure described by the MkNN (Mutual k-Nearest Neighbors) relationship
across two sub-clusters, HICMEN prefers to merge up sub-cluster pairs with sim-
ilar local densities and close proximities, and aggregates each arbitrary shaped
cluster piece by piece. We prove that the proposed similarity measure has a nice
property called weak monotonicity, which has the following two advantages, i.e.,
(1) it can better reflect the real cohesiveness between sub-clusters in an arbitrary
shaped cluster and help HICMEN achieve an accurate clustering performance,
and (2) with this similarity measure, the dendrogram generated by HICMEN
can obtain a high quality, which is quantitated by a commonly used criterion for
dendrogram quality called CPCC (Cophenetic Correlation Coefficient) [24].

The remaining sections are organized as follows. We review the related
work in Sect. 2, introduce a MkNN-based similarity measure in Sect. 3, and
present HICMEN algorithm in Sect. 4. We experimentally verify the effectiveness
and efficiency of our approach in Sect. 5 before concluding the paper in Sect. 6.

Mine Arbitrary Shaped Clusters and Output a High Quality Dendrogram 155

(a)
Cd

Cj

Ci Φ(Ci ∪ Cj, Cd) = max{Φ(Ci, Cd), Φ(Cj, Cd)}
Φ(Ci, Cj) = 5, Φ(Cj, Cd) = 4, Φ(Ci, Cd) ≈ 0.

φ(Ci ∪ Cj, Cd) = φ(Ci, Cd) + φ(Cj, Cd)

φ(Ci, Cj) = 5, φ(Cj, Cd) = 4, φ(Ci, Cd) = 0.

= 4 ≤ φ(Ci, Cj).

= 4 ≤ Φ(Ci, Cj).

(b)

Cj

Ci

Cd

Φ(Ci ∪ Cj, Cd) = max{Φ(Ci, Cd), Φ(Cj, Cd)}
Φ(Ci, Cj) = 5, Φ(Cj, Cd) = 4, Φ(Ci, Cd) = 3.

φ(Ci ∪ Cj, Cd) = φ(Ci, Cd) + φ(Cj, Cd)

φ(Ci, Cj) = 5, φ(Cj, Cd) = 4, φ(Ci, Cd) = 3.

= 7 > φ(Ci, Cj).

= 4 ≤ Φ(Ci, Cj).

Fig. 2. Comparison of traditional similarity measure Φ(·) (e.g., single link) and bound-
ary similarity measure φ(·). (a) Case 1: when Cd is only linked with Cj (i.e., φ(Ci, Cd) =
0), both Φ(·) and φ(·) satisfy restrictive monotonicity property; (b) Case 2: when Cd is
linked with both Ci and Cj , Φ(·) still satisfies restrictive monotonicity property, while
φ(·) will be re-calculated according to the changed boundary regions after merging Ci

and Cj and the result may not satisfy restrictive monotonicity property any more.

2 Related Work

The related work to the problem of simultaneously mining arbitrary shaped
clusters and outputting a high quality dendrogram can be briefly categorized
into two groups, namely (1) the dendrogram centered HC algorithms, and (2)
the arbitrary shaped clustering algorithms.

2.1 Dendrogram Centered HC Algorithms

Dendrogram centered HC algorithms focus on the completeness and quality of
the dendrograms they generate. To this end, they perform the classic agglom-
erative clustering framework (i.e., beginning from individual data points and
recursively merging two most similar sub-clusters) to output a complete dendro-
gram, and adopt a similarity measure Φ(·) that satisfies a restrictive monotonicity
property, i.e., Φ(Ci ∪ Cj , Cd) � Φ(Ci, Cj), where Ci and Cj are the merged sub-
clusters and Cd is any other disjoint sub-cluster (∀ p ∈ {i, j}, Cd∩Cp = ∅). Link-
age metrics (such as single link [23], complete link [7] and average link [25]) exem-
plify this kind of similarity measures. Dendrograms generated by this restrictive
monotonic manner were claimed to be true and reflect real cohesiveness of sub-
clusters, and have high quality.

The above claim holds true when sub-cluster Cd is linked with either Ci or
Cj , such as the situation illustrated in Fig. 2(a). However, in an arbitrary shaped
cluster, sub-clusters Cd, Ci and Cj may all be linked with each other, such as
the example illustrated in Fig. 2(b). In this situation, the aforementioned claim

156 H. Huang et al.

may not hold. The reason is twofold. (1) Firstly, in an arbitrary shaped cluster,
the adjacent sub-clusters are only connected by a small part, i.e., their contact
boundaries, while their majority parts are often not so cohesive to each other
due to the arbitrary shape. Hence, compared against using a global or average
similarity measure, a reasonable estimation on the boundary cohesiveness of
the contact boundaries for adjacent sub-clusters helps better reflect the true
probability that these sub-clusters are from a same arbitrary shaped cluster
structure [18]; (2) on this basis, after merging up adjacent sub-clusters Ci and Cj ,
if the new sub-cluster Ci∪Cj has larger contact boundaries to sub-cluster Cd, the
boundary cohesiveness between Ci∪Cj and Cd would increase. Sometimes it may
even exceed the boundary cohesiveness between Ci and Cj , i.e., φ(Ci∪Cj , Cd) >
φ(Ci, Cj), where φ(·) refers to a boundary similarity measure that can reflect the
boundary cohesiveness between a sub-cluster pair, resulting in that the restrictive
monotonicity property is not valid in this case.

In brief, although similarity measures with restrictive monotonicity property
were claimed to be helpful in preserving the quality of the dendrogram, they
may fail to reflect real cohesiveness of sub-clusters in arbitrary shaped clusters.
By contrast, a similarity measure that can dynamically update boundary cohe-
siveness according to changed contact boundaries helps to better reflect the real
cohesiveness between sub-clusters in an arbitrary shaped cluster.

2.2 Arbitrary Shaped Clustering Algorithms

Many HC algorithms have been proposed to identify arbitrary shaped clusters
from large data sets. CHAMELEON [19], OPTICS family [1], and CURE [14]
are such pioneering examples. CHAMELEON builds a kNN (k-Nearest Neigh-
bors) graph on a given data set, and partitions the graph to a predefined number
of sub-graphs, followed by merging up closely linked sub-graph pairs. OPTICS
family outputs a cluster ordering which is a linear list of all data points and
reflects their density-based clustering structures. CURE first shrinks the data
set size by sampling and conducts an agglomerative clustering on the sampled
data points. Compared against CHAMELEON, ROCK and OPTICS family,
CURE can be much faster since it takes only a few sampled data points for
similarity computation. Nonetheless, the clustering results of CURE are sensi-
tive to sampling quality. To mitigate this sensitivities, SPARCL [3] and CLASP
[18], two evolutions of CURE, decompose a data set into small local groups
via k-means, take group centers as representative data examples, and merge up
the representative data examples; some other solutions like ABACUS [4] find
the representative data examples by making data points to iteratively glob suf-
ficiently close neighbors from their kNN. Although the above HC algorithms
show good capability on mining arbitrary shaped clusters, they can only output
an incomplete dendrogram since their HC processes start from sub-graphs or
representative data examples rather than the original data set. Moreover, these
HC algorithms do not take the dendrogram monotonicity into account, neither
the restrictive monotonicity or a weak monotonicity, and lack guarantees for the
dendrogram quality.

Mine Arbitrary Shaped Clusters and Output a High Quality Dendrogram 157

Besides the above HC algorithms, many non-HC algorithms can also identify
arbitrary shaped clusters. For example, spectral clustering [6,20,26] embeds the
arbitrary shaped clusters into a low-dimensional space to make cluster struc-
tures more distinguishable for clustering; the graph-based approaches [8,16,21]
formulate the problem of clustering as a graph partition task; the density-based
approaches [9,22,27] detect a cluster by searching a set of density-connected
data points. However, non-HC methods do not output any dendrogram, and are
inapplicable for the scenario where users require a dendrogram after clustering.

Similar to our proposed HICMEN algorithm, some existing HC and non-HC
algorithms also adopt MkNN-based similarity measures [8,13,15,18] to estimate
boundary cohesiveness between sub-clusters. Nevertheless, to the best of our
knowledge, few of these approaches provide any dendrogram quality guarantee.

In summary, although some existing clustering algorithms show good capa-
bility on mining arbitrary shaped clusters, they are not competent to clustering
tasks in which a complete and high quality dendrogram is required by users.

3 MkNN-Based Similarity Measure

Before introducing the detailed steps of HICMEN algorithm, in this section, we
first present a novel MkNN-based similarity measure for arbitrary shaped clus-
tering, followed by a theoretical analysis on its dendrogram quality guarantee.

3.1 Similarity Measure Definition

Data points have different number of MkNN (see Definition 1). This is because
even if a data point x is one of the kNN of another data point y, x may not find y
as its kNN when there are enough alternatives around x (i.e., local density around
x is high enough). Thus, MkNN relationship tends to appear between sub-
cluster pairs that are closely connected (i.e., they have close contact boundaries
with similar local densities). This property is of practical significance to reveal
the boundary cohesiveness of adjacent sub-clusters, especially those located in
an arbitrary shaped cluster structure and only linked by their contact bound-
aries. Given this property, we introduce an MkNN-based similarity measure (see
Definition 2) for arbitrary shaped clustering.

Definition 1. Given a data set D and a positive integer k, the mutual k-
nearest neighbors of a data point x ∈ D, denoted by MkNN(x), is defined as
MkNN(x) = {y ∈ D | x ∈ kNN(y) ∧ y ∈ kNN(x)}, where kNN(x) denotes
the k-nearest neighbors of data point x.

Definition 2. Given disjoint sub-clusters Ci and Cj, let Sij be the set of data
points that participate in the MkNN relationship across Ci and Cj, i.e., Sij ={
x ∪ y | x ∈ Ci, y ∈ Cj , x ∈ MkNN(y)

}
. Then, the similarity between Ci and

Cj, denoted by φ(·), is defined as

φ(Ci, Cj) = max
{ |Sij ∩ Ci|

|Ci| ,
|Sij ∩ Cj |

|Cj |
}

.

158 H. Huang et al.

This similarity measure φ(·) is symmetric (i.e., φ(Ci, Cj) = φ(Cj , Ci)). It
refers to the maximum ratio of connecting points (i.e., data points that have
MkNN relationship across a given sub-cluster pair) to their host sub-cluster.
A high value of φ(Ci, Cj) indicates that sub-clusters Ci and Cj are tightly con-
tacted with each other by their contact boundaries, and it is very likely that
they are within a same arbitrary shaped cluster.

3.2 Guarantee for High Quality Dendrogram

MkNN-based similarity measures are commonly used in arbitrary shaped cluster-
ing [8,13,15,18] since they can often better reflect the real cohesiveness between
adjacent sub-clusters in arbitrary shaped clusters, and help conduct a more accu-
rate clustering work. Nonetheless, few of the existing MkNN-based similarity mea-
sures take the dendrogram quality into account when they are used in HC.

In contrast, our similarity measure φ(·) is able to preserve the quality of
the dendrogram generated by HC, i.e., as much as possible, it helps HC orga-
nize the dendrogram in a monotonic manner so that original data points with
closer proximities would be merged as preferred. Note that the HC mentioned
here performs the classic agglomerative clustering framework, i.e., starting from
individual data points, it recursively merges two most similar sub-clusters until
there is only one cluster left at the end. This progress can be described as fol-
lows. Given disjoint sub-clusters Ci, Cj , and Cd, if Ci and Cj are merged first,
then the merging criterion ensures the inequality below.

max
{

φ(Ci, Cd), φ(Cj , Cd)
}

� φ(Ci, Cj). (1)

With this inequality, we can prove the dendrogram quality guarantee of our
similarity measure φ(·) in the following two situations.

(1) When Cd is linked with either Ci or Cj (i.e., φ(Ci, Cd) > 0∧φ(Cj , Cd) = 0,
or φ(Ci, Cd) = 0 ∧ φ(Cj , Cd) > 0, such as the situation illustrated in Fig. 2(a)),
similar to traditional similarity measures, our similarity measure φ(·) also helps
HC organize the dendrogram in a restrictively monotonic manner.

Theorem 1. Given disjoint sub-clusters Ci, Cj, and Cd, if Ci and Cj are
merged first and relationships φ(Ci, Cd) = 0 and φ(Cj , Cd) > 0 hold, then the
proposed similarity measure φ(·) satisfies restrictive monotonicity property, i.e.,

φ(Ci ∪ Cj , Cd) � φ(Ci, Cj).

Proof. As φ(Ci, Cd) = max
{

|Sid∩Ci|
|Ci| , |Sid∩Cd|

|Cd|
}

= 0, we have Sid ∩ Ci = Sid ∩
Cd = ∅, (Sid ∪ Sjd) ∩ Cd = Sjd ∩ Cd. Based on the definition of φ(·),

φ(Ci ∪ Cj , Cd) = max
{ |Sid ∩ Ci| + |Sjd ∩ Cj |

|Ci| + |Cj | ,
|(Sid ∪ Sjd) ∩ Cd|

|Cd|
}

= max
{ |Sjd ∩ Cj |

|Ci| + |Cj | ,
|Sjd ∩ Cd|

|Cd|
}

.

Mine Arbitrary Shaped Clusters and Output a High Quality Dendrogram 159

As inequality |Sjd∩Cj |
|Ci|+|Cj | � |Sjd∩Cj |

|Cj | holds naturally, we have

φ(Ci ∪ Cj , Cd) � max
{ |Sjd ∩ Cj |

|Cj | ,
|Sjd ∩ Cd|

|Cd|
}

= φ(Cj , Cd).

Combining with Inequality (1), we have φ(Ci ∪ Cj , Cd) � φ(Ci, Cj), and the
proof completes. �

Therefore, when Cd is linked with either Ci or Cj , φ(·) also has the restrictive
monotonicity property to ensure the monotonicity of dendrogram, and thus helps
the dendrogram to preserve the intrinsic proximities of original data points.

(2) When Cd has contact boundaries with both Ci and Cj (i.e., φ(Ci, Cd) >
0 ∧ φ(Cj , Cd) > 0, such as the situation illustrated in Fig. 2(b)), as mentioned
in Sect. 2.1, similarity measures with restrictive monotonicity property may fail
to reflect the real cohesiveness between the sub-clusters in this situation. Our
similarity measure φ(·) is not restricted by the restrictive monotonicity property
in this situation. Instead, it re-evaluates the similarity φ(Ci ∪ Cj , Cd) between
Cd and the newly merged sub-cluster Ci ∪ Cj based on the changed contact
boundaries. But this re-evaluated similarity φ(Ci ∪ Cj , Cd) is bounded. It will
not be significantly greater than the similarity φ(Ci, Cj) between the previously
merged sub-clusters Ci and Cj , and prevent a large distortion for the monotonic-
ity between two successive levels in dendrogram. We refer to this property as
weak monotonicity, which can be proven by the following lemma and theorem.

Lemma 1. Given disjoint sub-clusters Ci, Cj, and Cd, if Ci and Cj are merged
first and relationships φ(Ci, Cd) > 0 and φ(Cj , Cd) > 0 hold, then the proposed
similarity measure φ(·) satisfies the following relationship, i.e.,

φ(Ci ∪ Cj , Cd) � max
{

φ(Ci, Cd), φ(Cj , Cd),
|Sid ∩ Cd| + |Sjd ∩ Cd|

|Cd|
}

.

Proof. Without loss of generality, assuming |Sid∩Ci|
|Ci| � |Sjd∩Cj |

|Cj | , then we have

|Sid ∩ Ci|
|Ci| � |Sid ∩ Ci| + |Sjd ∩ Cj |

|Ci| + |Cj | � |Sjd ∩ Cj |
|Cj | .

On the other hand, the following inequality holds naturally.

|Sid ∩ Cd|
|Cd| ,

|Sjd ∩ Cd|
|Cd| � |(Sid ∪ Sjd) ∩ Cd|

|Cd| � |Sid ∩ Cd| + |Sjd ∩ Cd|
|Cd| .

Combining the above inequalities, we have

max

{ |Sid ∩ Ci|
|Ci|

,
|Sid ∩ Cd|

|Cd|
}

� max

{ |Sid ∩ Ci| + |Sjd ∩ Cj |
|Ci| + |Cj |

,
|(Sid ∪ Sjd) ∩ Cd|

|Cd|
}

� max

{ |Sjd ∩ Cj |
|Cj |

,
|Sjd ∩ Cd|

|Cd| ,
|Sid ∩ Cd| + |Sjd ∩ Cd|

|Cd|
}
.

160 H. Huang et al.

By Definition 2, the above inequality can be re-written as

φ(Ci, Cd) � φ(Ci ∪ Cj , Cd) � max
{

φ(Cj , Cd),
|Sid ∩ Cd| + |Sjd ∩ Cd|

|Cd|
}

.

By moving the leftmost item into the rightmost item, we get

φ(Ci ∪ Cj , Cd) � max
{

φ(Ci, Cd), φ(Cj , Cd),
|Sid ∩ Cd| + |Sjd ∩ Cd|

|Cd|
}

,

and the proof completes. �

With Lemma 1, we have the theorem below.

Theorem 2. Given disjoint sub-clusters Ci, Cj, and Cd, if Ci and Cj are
merged first and relationships φ(Ci, Cd) > 0 and φ(Cj , Cd) > 0 hold, then the
proposed similarity measure φ(·) satisfies the following relationship, i.e.,

φ(Ci ∪ Cj , Cd) � 2 · φ(Ci, Cj).

Proof. The following three inequalities holds naturally.

|Sid ∩ Cd| + |Sjd ∩ Cd|
|Cd| � 2 · max

{ |Sid ∩ Cd|
|Cd| ,

|Sjd ∩ Cd|
|Cd|

}

,

|Sid ∩ Cd|
|Cd| � max

{ |Sid ∩ Ci|
|Ci| ,

|Sid ∩ Cd|
|Cd|

}

= φ(Ci, Cd),

|Sjd ∩ Cd|
|Cd| � max

{ |Sjd ∩ Cj |
|Cj | ,

|Sjd ∩ Cd|
|Cd|

}

= φ(Cj , Cd).

Combining the above three inequalities, we have

|Sid ∩ Cd| + |Sjd ∩ Cd|
|Cd| � 2 · max

{
φ(Ci, Cd), φ(Cj , Cd)

}
.

Based on Inequality (1), we get

max
{

φ(Ci, Cd), φ(Cj , Cd),
|Sid ∩ Cd| + |Sjd ∩ Cd|

|Cd|
}

� 2 · φ(Ci, Cj).

Combining Lemma 1, we have φ(Ci ∪ Cj , Cd) � 2 · φ(Ci, Cj), and the proof
completes. �

Theorem 2 shows that with φ(·), when HC merges a sub-cluster C (e.g.,
Ci ∪ Cj) with any other disjoint sub-cluster (e.g., Cd), the similarity between
them will not exceed twice of the similarity between the parent sub-cluster pair
(e.g., Ci and Cj) of C. In other words, this theorem provides the theoretical upper
bound for the distortion of two successive levels in the dendrogram generated by
HC, and roughly guarantees the dendrogram’s quality (i.e., its monotonicity).

Mine Arbitrary Shaped Clusters and Output a High Quality Dendrogram 161

Algorithm 1. HICMEN Algorithm
Input : data set D = {x1, x2, . . . , xN}; parameter k.
Output: dendrogram root R.

1 Γ = ∅; Λ = ∅; //set Γ of clusters and set Λ of outliers
2 [Γ, Λ] = remove outliers(D);
3 while |Γ | > 1 and φ(CK , CL) > 0 do
4 [CK , CL] = arg max{φ(Ci, Cj)} where (Ci and Cj ∈ Γ);
5 CM = CK ∪ CL; children(CM) = {CK , CL};
6 Γ = Γ ∪ {CM} \ {CK} \ {CL};

7 for each xi ∈ Λ(1 � i � |Λ|) do
8 xnn = arg minx{dist(xi, x) | x ∈ D \ Λ};
9 Cnn = Cnn ∪ {xi} where xn ∈ Cnn and Cnn ∈ Γ ;

10 R = average link(Γ); //run average link with Euclidean distance

4 HICMEN Algorithm

4.1 Algorithm Description

With the similarity measure φ(·), we propose HICMEN algorithm to mine arbi-
trary shaped clusters and output a high quality dendrogram. Before presenting
the detailed steps, we would like to clarify that there may be no MkNN relation-
ship across natural clusters in a data set. In this situation, φ(·) will regard the
similarities between the natural clusters as zeros, and hinder HC from carrying
out a complete agglomerative clustering. Hence, when the maximal similarity
evaluated by φ(·) is zero and the work of agglomerative clustering has not been
finished (i.e., there is still more than one cluster), we adopt average link algo-
rithm with Euclidean distance to complete the HC process.

The pseudo-code of HICMEN is presented in Algorithm 1. It takes as inputs
a data set D containing N data points, and a parameter k for calculating φ(·).

HICMEN is carried out by three phases, namely the initialization phase (lines
1–2), the merging phase (lines 3–6), and the ending phase (lines 7–10). (1) In the
initialization phase, to prevent outliers from affecting the identification of real clus-
tering structures, HICMEN first removes outliers Λ from data set D via an efficient
outlier detection algorithm proposed by Bay and Schwabacher [2]. The rest of data
points are classified into set Γ for the succeeding merge process (line 4). (2) In the
merging phase, starting from individual data points in Γ , HICMEN recursively
merges the sub-clusters by using the proposed similarity measure φ(·). In each iter-
ation, it searches and merges two most similar sub-clusters (line 4) and labels the
parent-child relationship in dendrogram (line 5). The merging process does not
stop until every data point is in a single cluster or the maximal similarity is zero.
(3) In the ending phase, HICMEN firstly assigns each outlier to its nearest cluster,
and adopts average link algorithm with Euclidean distance to merge the rest of
sub-clusters (if any) before returning the root of dendrogram.

162 H. Huang et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. The clustering results of (a)–(d) average link and (e)–(h) HICMEN (with k = 22)
on D1.1–D1.4 (in which # of final clusters are 9, 15, 8, and 12, respectively).

4.2 Complexity Analysis

In the initialization phase, after kNN search which takes O(dN2−1/d+N log N +
kN) time by building a k-d tree [11], the outlier detection algorithm proposed
by Bay and Schwabacher [2] can achieve a linear time complexity.

In the merging phase, MkNN relationship can be found by searching the kNN
list with O(kN) time. At each iteration, we update the merged sub-clusters’ hash
tables with O(k) time since the average number of MkNN-connected sub-clusters
is O(k). We also update the hash tables of other sub-clusters that contain the
merged sub-clusters. Given ν such sub-clusters, it takes O(νk) time to update the
hash tables, and O(ν log N) time to find the next two most similar sub-clusters
to be merged with the help of a maximum heap. In summary, the merging phase
takes about O(νN log N + νkN) time since there are at most (N − 1) iterations.

In the ending phase, suppose that the number of outliers is ω. It takes O(ωN)
time to search their nearest non-outlier neighbors. Supposing that there still
exist κ sub-clusters after merging phase, it takes O(κN) time to merge them by
average link algorithm. In summary, the ending phase takes O(ωN + κN) time.

According to extensive experimental results, ν, ω and κ are far less than N .
Hence, the overall time complexity of HICMEN is about O(dN2−1/d +N log N).

5 Experimental Evaluation

In this section, we first verify the effectiveness of HICMEN by comparing it
with (1) single link, complete link, and average link algorithms, which are the
most famous dendrogram centered HC algorithms, (2) CHAMELEON algorithm,
which is the paradigm of arbitrary shaped clustering centered HC algorithms,
(3) ABACUS algorithm, which is a state-of-the-art evolution of CURE, and (4)
DBSCAN, which is a high-performance representative of non-HC algorithms. We
then conduct an efficiency study for the algorithms followed by a discussion on
the impact of parameter k to HICMEN’s clustering performance and execution
time. Note that as the parameters of CHAMELEON and DBSCAN often affect
the clustering performance of these two algorithms, we give them a privilege, i.e.,

Mine Arbitrary Shaped Clusters and Output a High Quality Dendrogram 163

Table 1. Description of data sets D2.1–D2.6

Data set Name (domain application) N d c

D2.1 Iris 150 4 3

D2.2 Breast Cancer Wisconsin 683 9 2

D2.3 Vehicle Silhouettes 846 18 4

D2.4 Image Segmentation 2, 100 16 7

D2.5 Landsat Satellite 6, 435 36 6

D2.6 Letter Recognition 20, 000 16 26

Table 2. NMI scores of HC algorithms on D2.1–D2.6

Algorithm D2.1 D2.2 D2.3 D2.4 D2.5 D2.6

Single Link 0.72 0.01 0.01 0.35 0.62 0.40

Complete Link 0.72 0.64 0.18 0.50 0.48 0.39

Average Link 0.81 0.68 0.17 0.49 0.64 0.40

CHAMELEON 0.70 0.77 0.12 0.59 0.61 0.31

ABACUS 0.79 0.70 0.16 0.56 0.61 0.40

DBSCAN 0.73 0.74 0.15 0.52 0.58 0.29

HICMEN 0.82 0.84 0.21 0.68 0.69 0.43

we vary their parameters at each execution and report their best performance
from 20 times of run. All tested algorithms are implemented in C++, running
on a desktop PC with 8GB RAM and Intel Core i7-2600 CPU at 3.40 GHz.

5.1 Effectiveness Evaluation

We first evaluate the effectiveness of HICMEN from the following two aspects,
namely (1) clustering performance, and (2) dendrogram quality.

(1) Clustering Performance Study. In this experiment, we first demonstrate
HICMEN’s ability of mining arbitrary shaped clusters, and compare HICMEN
with the other tested algorithms in terms of clustering accuracy.

(a) Effectiveness of Mining Arbitrary Shaped Clusters: We run HICMEN on four
commonly used 2D data sets D1.1–D1.4 (8, 000 points in D1.1–D1.3 and 10, 000
points in D1.4), which were also used to evaluate CHAMELEON, ABACUS and
DBSCAN algorithms. As shown in [4,19], CHAMELEON and ABACUS have
good performance on these data sets, while DBSCAN’s performance on them
often has minor flaws.

Figure 3 illustrates the clustering results of HICMEN and average link algo-
rithm, from which we can observe that HICMEN can effectively identify arbitrary
shaped clusters, while average link fails. Single link and complete link algorithms
have similar failures to average link.

164 H. Huang et al.

Table 3. Description of data sets D3.1–D3.8

Data set N d c Data set N d c

D3.1 3, 000 2 20 D3.5 2, 701 4 10

D3.2 5, 250 2 35 D3.6 4, 051 6 10

D3.3 7, 500 2 50 D3.7 5, 401 8 10

D3.4 2, 026 3 10 D3.8 6, 751 10 10

Table 4. CPCC scores of HC algorithms

Algorithm D3.1 D3.2 D3.3 D3.4 D3.5 D3.6 D3.7 D3.8

Single Link 0.61 0.58 0.52 0.79 0.86 0.91 0.92 0.88

Complete Link 0.72 0.71 0.67 0.79 0.90 0.84 0.92 0.87

Average Link 0.74 0.70 0.66 0.82 0.92 0.92 0.94 0.91

HICMEN 0.75 0.71 0.69 0.84 0.92 0.92 0.94 0.92

(b) Accuracy Comparison: We compare HICMEN (with parameter k = 22) with
the other tested approaches on six real data sets D2.1–D2.6 from UCI machine
learning repository [10]. The data set properties are described in Table 1, in
which N , d, and c indicate the number of points, data set dimensions, and the
number of real clusters. The accuracy performance of each algorithm is measured
by NMI (Normalized Mutual Information). Each NMI score falls in the range
[0, 1]. A greater NMI score indicates a more accurate clustering result.

Table 2 lists the NMI scores of clustering results of each algorithm, from
which we can observe that our HICMEN algorithm outperforms the other tested
HC algorithms in accuracy performance.

(2) Dendrogram Quality. In this experiment, we compare the quality of the
dendrogram generated by each algorithm on data sets D3.1–D3.8 [12], of which
the properties are summarized in Table 3. Data sets D3.1–D3.3 have the same
dimension with increased numbers of clusters, while data sets D3.4–D3.8 have
the same cluster number with increased dimensions. We adopt CPCC (Cophe-
netic Correlation Coefficient) as dendrogram quality criterion, which describes
how faithfully a dendrogram preserves the intrinsic proximities between the orig-
inal data points. The definition of CPCC is as follows.

CPCC =
1
M

∑N−1
i=1

∑N
j=i+1 d(i, j)c(i, j) − μPμC

√(
1
M

∑N−1
i=1

∑N
j=i+1 d2(i, j) − μ2

P

)(
1
M

∑N−1
i=1

∑N
j=i+1 c2(i, j) − μ2

C

)

where d(i, j) and c(i, j) are the ordinary Euclidean distance and dendrogram-
matic distance between points i and j respectively, N is the number of points,
M = 1

2N(N − 1), and μP and μC are defined as

Mine Arbitrary Shaped Clusters and Output a High Quality Dendrogram 165

0 1 2 3 4 5 6

x 10
4

0

20

40

60

80

R
un

tim
e

(S
ec

on
ds

)

of Data Poins

Average Link
CHAMELEON
ABACUS
DBSCAN
HICMEN

0 20 40 60 80 100
0

5

10

15

20

25

R
un

tim
e

(S
ec

on
ds

)

of Dimensions

Average Link
CHAMELEON
ABACUS
DBSCAN
HICMEN

Fig. 4. Efficiency performance (runtime) of HC algorithms on data sets with different
number of data points and different number of dimensions.

μP =
1
M

∑N−1

i=1

∑N

j=i+1
d(i, j), μC =

1
M

∑N−1

i=1

∑N

j=i+1
c(i, j).

A greater CPCC score indicates a better dendrogram quality.
Table 4 presents the CPCC score of the dendrogram generated by HIC-

MEN (with parameter k = 22) and HC using linkage metrics. Note that
CHAMELEON, ABACUS and DBSCAN have no CPCC score since they cannot
output a full dendrogram. As shown in the table, HICMEN has almost the great-
est CPCC scores among all HC algorithms, indicating that it can most faithfully
preserve the intrinsic proximities between the original data points, better than
traditional similarity measures with restrictive monotonicity property.

5.2 Efficiency Evaluation

In this experiment, we evaluate the efficiency of the tested algorithms with vari-
ous data set sizes and dimensions. To investigate their scalability to the number
of data points, we generate D4.1–D4.8 based on D3.3 by creating new data
points nearby the original data points from the original number 7, 500 to the
number of 60, 000 (with interval 7, 500). To investigate their scalability to the
dimensionality of data sets, we generate D5.1–D5.8 based on D3.3 by creating
new dimensions from 10 to 100 (with interval 10).

Figure 4 shows the execution time of the tested algorithms on D4.1–D4.8 and
D5.1–D5.8 respectively (The parameter k of HICMEN is set to 22). We skip to
plot the runtime curves of single link and complete link algorithms since they
are very similar to that of average link algorithm.

From the figure, we can have the following observations. (1) With the growth
of data set size, the execution time of our HICMEM algorithm increases slower
than that of the other tested algorithms, indicating that our HICMEM algorithm
shows better scalability to large data sets; (2) with the growth of dimensions,
the execution time of average link algorithm increases very slowly, whereas the
execution time of HICMEN, CHAMELEON, ABACUS and DBSCAN increase
linearly with regard to the dimensions. Nonetheless, our HICMEN algorithm
still keeps faster than CHAMELEON, ABACUS and DBSCAN.

166 H. Huang et al.

Fig. 5. Impact of parameter k to HICMEN’s clustering result accuracy (in terms of
NMI scores) and dendrogram quality (in terms of CPCC scores).

5.3 Impact of Parameter

HICMEN has only one parameter k for calculating the MkNN-based similarity
measure φ(·). In this experiment, we evaluate the impact of this parameter k to
the effectiveness of HICMEN. By varying the value of k, we report the NMI score
of HICMEN’s clustering result, and the CPCC score of its generated dendrogram.

Figure 5 depicts the corresponding results on D2.4 (similar observations can
be obtained on the rest of UCI data sets used in this paper), from which we can
observe that the clustering performance and dendrogram quality of our HICMEM
algorithm keep relatively stable with various k values, indicating that the effective-
ness of HICMEN is relatively insensitive to the value of parameter k.

6 Conclusion

In this paper, we have defined an MkNN-based similarity measure for HC, and
proven its weak monotonicity which enables HC to accurately express arbitrary
shaped data sets with little distortion on the dendrogram. Based on this simi-
larity measure, we have proposed HICMEN a simple yet effective HC algorithm
for accurately identifying arbitrary shaped clusters and with a complete and
high quality dendrogram as the output. Experimental results on both real and
synthetic data sets have verified the effectiveness and efficiency of our approach.

Acknowledgements. This work was supported in part by NSFC Grants (61502347,
61502504, 61522208, 61572376, 61472359, 61379033, 61373038, and 61364025),
the Fundamental Research Funds for the Central Universities (2015XZZX005-07,
2015XZZX004-18, and 2042015kf0038), and the Research Funds for Introduced Tal-
ents of WHU.

Mine Arbitrary Shaped Clusters and Output a High Quality Dendrogram 167

References

1. Ankerst, M.: OPTICS: ordering points to identify the clustering structure. In:
SIGMOD, pp. 49–60 (1999)

2. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time
with randomization and a simple pruning rule. In: KDD, pp. 29–38 (2003)

3. Chaoji, V., Hasan, M.A., Salem, S., Zaki, M.J.: SPARCL: an efficient and effective
shape-based clustering. Knowl. Inf. Syst. 21(2), 201–229 (2009)

4. Chaoji, V., Li, G., Yildirim, H., Zaki, M.J.: ABACUS: mining arbitrary shaped
clusters from large datasets based on backbone identification. In: SDM, pp. 295–306
(2011)

5. Chen, Y.-A., Tripathi, L.P., Dessailly, B.H., Nyström-Persson, J., Ahmad, S.,
Mizuguchi, K.: Integrated pathway clusters with coherent biological themes for
target prioritisation. Plos One 9(6), e99030 (2014)

6. Correa, C.D., Lindstrom, P.: Locally-scaled spectral clustering using empty region
graphs. In: KDD, pp. 1330–1338 (2012)

7. Defays, D.: An efficient algorithm for a complete link method. Comput. J. 20(4),
364–366 (1977)

8. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes,
and densities in noisy, high dimensional data. In: SDM, pp. 47–58 (2003)

9. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

10. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
11. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches

in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)
12. SIPU Clustering datasets. http://cs.joensuu.fi/sipu/datasets/
13. Guha, S., Rastogi, R., Shim, K.: ROCK: a robust clustering algorithm for categor-

ical attributes. In: ICDE, pp. 512–521 (1999)
14. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large

databases. Inf. Syst. 26(1), 35–58 (2001)
15. Houle, M.E.: The relevant-set correlation model for data clustering. In: SDM, pp.

775–786 (2008)
16. Hu, T., Liu, C., Tang, Y., Sun, J., Song, H., Sung, S.Y.: High-dimensional cluster-

ing: a clique-based hypergraph partitioning frameworks. Knowl. Inf. Syst. 39(1),
61–88 (2014)

17. Huang, H., Gao, Y., Chen, L., Li, R., Chiew, K., He, Q.: Browse with a social web
directory. In: SIGIR, pp. 865–868 (2013)

18. Huang, H., Gao, Y., Chiew, K., Chen, L., He, Q.: Towards effective and efficient
mining of arbitrary shaped clusters. In: ICDE, pp. 28–39 (2014)

19. Karypis, G., Han, E.H., Kumar, V.: CHAMELEON: hierarchical clustering using
dynamic modeling. IEEE Comput. 32(8), 68–75 (1999)

20. Li, J., Xia, Y., Shan, Z., Liu, Y.: Scalable constrained spectral clustering. IEEE
Trans. Knowl. Data Eng. 27(2), 589–593 (2015)

21. Mok, P.K., Huang, H.Q., Kwok, Y.L., Au, J.S.: A robust adaptive clustering analy-
sis method for automatic identification of clusters. Pattern Recogn. 45(8), 3017–
3033 (2012)

22. Alex, R., Alessandro, L.: Clustering by fast search and find of density peaks. Science
344(6191), 1492–1496 (2014)

23. Sibson, R.: SLINK: an optimally efficient algorithm for the single-link cluster
method. Comput. J. 16(1), 30–34 (1973)

http://cs.joensuu.fi/sipu/datasets/

168 H. Huang et al.

24. Sokal, R.R., Rohlf, F.J.: The comparison of dendrograms by objective methods.
Taxon 11(2), 33–40 (1962)

25. Voorhees, E.M.: Implementing agglomerative hierarchic clustering algorithms for
use in document retrieval. Inf. Process. Manag. 22(6), 465–476 (1985)

26. Yang, Y., Ma, Z., Yang, Y., Nie, F., Shen, H.T.: Multitask spectral clustering by
exploring intertask correlation. IEEE Trans. Cybern. 45(5), 1069–1080 (2015)

27. Kim, Y., Shim, K., Kim, M.-S., Lee, J.S.: DBCURE-MR: an efficient density-based
clustering algorithm for large data using MapReduce. Inf. Syst. 42, 15–35 (2014)

Hierarchically Clustered LSH for Hierarchical
Outliers Detection

Konstantinos Georgoulas(B) and Yannis Kotidis

Department of Informatics, Athens University of Economics and Business,
Patission 76, 10434 Athens, Greece

{kgeorgou,kotidis}@aueb.gr

Abstract. In this work we introduce hierarchical outliers that extend
the notion of distance-based outliers for handling hierarchical data
domains. We present a novel framework that permits us to detect hierar-
chical outliers in a consistent manner, providing a desired monotonicity
property, which implies that a data observation that finds enough sup-
port so as to be disregarded as an outlier at a level of the hierarchy, will
not be labelled as an outlier when examined at a more coarse-grained
level above. This way, we enable users to grade how suspicious a data
observation is, depending on the number of hierarchical levels for which
the observation is found to be an outlier. Our technique utilizes an innov-
ative locality sensitive hashing indexing scheme, where data points shar-
ing the same hash value are being clustered. The computed centroids
are maintained by our framework’s scheme index while detailed data
descriptors are discarded. This results in reduced storage space needs,
execution time and number of distance evaluations compared to utilizing
a straightforward LSH index.

1 Introduction

An outlier is an observation that differs so much from others so as to arouse
suspicion that it was generated by a different process than the rest of the data.
In order to put this intuition into a context where outliers can be formally defined
and computed many alternative definitions have been proposed. One of the most
commonly used approach is the distance-based outlier definition, which suggests
that given a dataset P , a positive integer N and a positive real number r, a data
object p of P is a O(N, r)-outlier, if less than N objects in P lie within distance
r from p, for some appropriate distance metric.

Outliers detection is critical for many modern applications such as decision
support (OLAP), customer behavior analysis and network management. How-
ever, none of the well known outlier detection techniques takes into consideration
the hierarchical nature of the data domains that is inherent in such applications.
The natural aggregation of atomic values along a domain hierarchy is a critical
summarization technique that can be used to detect different grades of abnormal
behavior by looking at all levels of the hierarchy.

c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 169–184, 2016.
DOI: 10.1007/978-3-319-44403-1 11

170 K. Georgoulas and Y. Kotidis

As an example, we consider the case of an electronic store. There are several
ways to categorize products (ProductId, Group, Class categories) that a cus-
tomer purchases. Table 1 presents an example of customers and the products
they purchased. Distance-based computations of outliers in this example can be
performed by mapping each customer into a point in a high-dimensional domain
(e.g. dimensions being the productIds). The values of the coordinates on each
dimension (i.e. productId) can be boolean values (indicating whether the user
has purchased the product), or may be derived from different statistics (e.g.
number of times the customer purchased a product, her rating, etc.).

Independently of the details of this mapping, if we compare customers based
on the productIds of the products they purchased, then John and Mary show no
apparent similarity. However, if we look at the Group category of the products, it
is obvious that they both purchased Smart Phones. Similarly, John and Jim look
dissimilar until they are observed at the upper level of the product’s hierarchy
(Class category). Consequently, distance-based outliers derived by looking at the
data domain that corresponds to the leaves of the product’s domain hierarchy
(Product→Class→Group→ProductID) may find support when these observa-
tions are aggregated further up the hierarchy.

Table 1. Product purchases

User ProductId Group Class

John Samsung Galaxy S4 Smart phones Computers

John Apple iPhone 6 Smart phones Computers

Tim Nikon Camera D750 Cameras Tvs-cameras

Jim Apple iPad Air 2 Tablets Computers

Mary LG Nexus 5 Smart phones Computers

Given that domain hierarchies are commonly used in many applications,
in this work we first look at the problem of deriving an intuitive definition
that extends the notion of distance-based outliers over hierarchical domains.
A straightforward independent computation of distance-based outliers over all
hierarchical levels may yield inconsistent results that complicate data analysis.
As an example, depending on the selected threshold values N and r, an obser-
vation that is not an outlier at the leaves of the hierarchy may be deemed as
such at an intermediate level. This goes against intuition, which suggests that
as atomic values are being aggregated via the hierarchy, data observations tend
to look similar.

In this work, we introduce the notion of hierarchical outliers for handling
hierarchically organized data domains. Our proposed definition computes out-
liers in a consistent manner, which implies that a data observation that finds
enough support so as to be disregarded as an outlier at a level of the hierarchy,
can not be labelled as an outlier when examined at a more coarse-grained level

Hierarchically Clustered LSH for Hierarchical Outliers Detection 171

above. This intended monotonicity property not only leads to conclusions that
are not surprising to the user analyst but also enable us to grade how suspicious
a data observation is, depending on the number of hierarchy levels for which the
observation is found to be an outlier.

In addition to providing a proper definition of hierarchical outliers, in this
work we also look at efficient techniques that enable us to compute such outliers
in large datasets. Locality sensitive hashing (LSH) is a popular technique that
partitions a high-dimensional dataset into buckets so as to avoid performing all-
pair computation of item distances. Direct application of LSH for hierarchical
outliers identification is prohibitively expensive as independent indexes need to
be constructed for each level of the hierarchy, leading to increased computational
and storage overhead.

Thus, we propose an innovative LSH index scheme, termed as hierarchically
clustered LSH (cLSH), which instead of storing the data items at an independent
index for every level of the hierarchy, it only maintains the centroids of clusters,
which are constructed performing a clustering technique among the data items
that share a common hash value at every index. As a result, both the compu-
tational and storage overhead for the cLSH is reduced compared to the original
LSH structure.

The contributions of our work are:

– We introduce the notion of hierarchical outliers and provide an intuitive
framework for detecting hierarchical outliers over hierarchically organized data
domains. Our framework assigns a simple and intuitive statistic called grade
for every data item identified as hierarchical outlier, which is a positive inte-
ger referring to the number of levels for which the specific item is outlier. The
higher the grade, the more erroneous the item is.

– We propose an innovative indexing scheme based on locality sensitive hashing.
This scheme maintains centroids of data clusters at LSH indexes of hierarchical
levels, making it less space demanding compared to the case of independently
created original LSH indexes at every level.

– We introduce a bottom up computation via the hierarchy of data domain in
order to detect hierarchical outliers. At each level, our method utilizes results
from previously performed computations resulting in faster computation of
outliers.

– We present an experimental evaluation for our framework measuring the accu-
racy and the efficiency (in terms of space and time) of our proposed techniques.

2 Related Work

Many previous works in different areas of data management have studied the
problem of outlier detection. Different approaches for the definition of an outlier
have been presented in case of multidimensional data. In [2,9,15] distance based
outliers are discussed, while [3,13] consider density-based outliers as well. In
the first case, data items are considered as outliers based on the distances from
their neighbors. In the second case data items are studied by computing the

172 K. Georgoulas and Y. Kotidis

density of data around their local neighbors. The relative density of a data item
compared to its neighbors is computed as an outlier score. Different approaches
have discussed different variants for computing this score [8,16]. A different
outlier definition presented in [10] suggests that angles between data vectors are
more stable than distances in high dimensional spaces. In this case items are
compared using angle-based similarity metrics, like the cosine similarity metric.
A data item is not considered as outlier if most of the objects are located in
similar directions with it.

Many of the aforementioned solutions exploit well known indexing techniques
(like the R-tree and its variants) in order to perform range or NN queries that
are necessary for outlier detection. Conventional multidimensional indexes are
inapplicable in large data domains. For instance, the cardinality of the prod-
uct dimension in a data warehouse can be in the order of tens of thousands.
Instead, our technique utilizes a probabilistic indexing method termed LSH [4]
that approximates the results of NN and range queries in high dimensional spaces
and extends it in order to handle efficiently the hierarchical structure that data
follows. The LSH scheme that we present in this work can be extended to sup-
port different distance metrics, including the cosine similarity for angle-based
computation of outliers [6].

3 Motivational Example

Suppose that we would like to detect hierarchical outliers in the data ware-
house of an electronic store. A set of data items could be derived by projecting
every customer’s purchases at the hierarchically organized Product domain space.
Figure 1 shows a data item representing a customer’s purchases. The hierarchy
of the Product domain consists of four levels. The lowest level l4 contains all
ProductIds, which are used for the unique identification of the products. At level
l3, the Group category of the products is represented (i.e. Home Theatre, TVs,
Cameras, Smart Phones, Tablets, Laptops). Level l2 depicts the Class category
of products (i.e. Audio, Tvs & Cameras, Computers), while l1 contains the Top
level representing all products. In this example, without loss of generality, at the

Fig. 1. Product domain hierarchy

Hierarchically Clustered LSH for Hierarchical Outliers Detection 173

lowest level of the hierarchy the values represent cumulative purchases of differ-
ent productIds for this customer. Aggregated values at upper levels are obtained
by the utilization of sum function (e.g. as in a typical roll-up aggregation).

Given this setting of data, we may focus on detecting outliers at every level
of this hierarchy. We could try to identify outliers based on the productIds that
the customer bought, or according to her aggregated purchases over product
Groups. Someone else may take into consideration customers purchases at more
abstracted summarization levels provided by the Class or Top category. We
suggest a holistic approach that considers all abstraction levels of product pur-
chases, based on the specified hierarchy. We introduce the notion of hierarchical
outlier that takes into consideration the whole hierarchical tree that represents
her complete purchasing history, supporting a more intuitive decision whether a
customer is an outlier, or not.

Moreover, our framework provides an succinct measure termed hierarchical
outlier grade that denotes the number of levels a customer is identified as an out-
lier. For instance, if a customer is regarded as hierarchical outlier with grade = 2,
this would suggest that her purchases based on the productIds and their Groups
are significantly different from other people on the dataset. On the other hand,
this result implies that her purchases when aggregated at the Class level are
similar to many other customers.

4 Hierarchical Outliers

The hierarchical nature of the data domain motivates us to examine data at
every level of the hierarchy they follow, in order to be identified as outliers. In
our motivational example, if we check all customers at level l4 and identify a
specific customer as an outlier, we have no evidence to regard her as an outlier
at upper levels too. It is likely that only few customers purchase the same exactly
products as she does (in terms of productIds), while there are many who purchase
similar quantities of products at the Group level of products categorization.

This observation leads us to propose a framework for the outlier detection
problem that takes into consideration the hierarchical structure of the data
domain. An obvious solution would be to compute distance-based outliers at
all different abstracted levels in a completely separate way. Given the fact that
data items are high dimensional, someone could construct an index for every
hierarchical level, in order to retrieve the nearest neighbors of the queried item
at every level and then according to the distance-based outlier definition she
could decide whether it is outlier or not. However, it is quite possible a specific
item in question to be identified as an outlier at some levels and not to be con-
sidered as an outlier at some others lower or higher to previous ones, depending
on the selected distance thresholds.

This lack of coherence stems from the main drawback of an independent
evaluation of distance-based outliers: it handles the different abstraction levels
of a data item as independent observations, rather than different abstractions
of the same data item, obtained through the hierarchy. By manipulating data

174 K. Georgoulas and Y. Kotidis

in this manner, there could be no consistent results in order to characterize a
customer’s behavior in total.

In order to alleviate this inconsistency of results for hierarchically organized
data we introduce the notion of hierarchical outlier HO(N, r).

Definition 1 (Hierarchical Outlier HO(N, r)). Given a dataset P over a
hierarchically organized data domain with h hierarchical levels, a positive integer
N (threshold) and a positive real number r, a data item p ∈ P is a HO(N, r)-
Hierarchical Outlier with grade L, if there are L levels of data hierarchy, at
which less than N objects in P lie within distance ri from p, where 1 ≤ i < h.
ri =

√
(2 ∗ max(F i) − 1) ∗ ri+1, rh = r and max(F i) denotes the maximum

fanout of those hierarchical tree’s nodes belong to hierarchical level li.

Intuitively, the definition utilizes a certain method for computing the distance
thresholds at the different levels. As will be explained in what follows this ensures
that outliers’ grade can be computed in a consistent manner following the desired
monotonicity property.

We first present some preliminaries that we utilize to better describe our
hierarchical outlier definition.

Lemma 1. Given a data item X = {x1, x2, x3, . . . , xdi+1} and a query point
q = {q1, q2, q3, . . . , qdi+1} in a domain organized by a hierarchy H, it holds that
Di(q,X) ≤ √

(2 ∗ max(F i) − 1)∗Di+1(q,X) where Di+1(q,X),Di(q,X) are the
Euclidean distance between q and X at hierarchical levels li+1 and li, respectively,
where 1 ≤ i < h and max(F i) is the maximum fanout of those hierarchical tree’s
nodes belonging to hierarchical level li.

Lemma 1 ensures the consistency of the results that the proposed hierarchical
outlier detection process provides. Based on this property, if a data item q has
N items that lie within distance ri+1 from it at level li+1, then it will also have
at least the same N items in distance ri =

√
(2 ∗ max(F i) − 1) ∗ ri+1 at higher

level li. By utilizing the popular distance-based outlier definition, we disregard
q as an outlier at a level li+1 and furthermore we also do not consider it as
outlier at any upper level li with the condition of defining distance thresholds ri
based on Lemma 1. In Fig. 2, we graphically depict how the distance threshold
r4 at the lowest level l4 is “expanded” at the upper levels of hierarchy H. When
thresholds are increased in a manner consistent to Lemma 1, the computation of
distance-based outliers provides the desired consistency.

Proof. Here, we prove that Di(q,X) ≤ √
(2 ∗ max(F i) − 1) ∗ Di+1(q,X). For

every level li, where 1 ≤ i < h we know that

D2
i (q,X) =

di∑

j=1

(
(qkj+1 − xkj+1) + · · · +

+ (qkj+fj − xkj+fj)
)2

=
di∑

j=1

V alue(j).

Hierarchically Clustered LSH for Hierarchical Outliers Detection 175

where fj is the fanout of j-th node at level li of hierarchical tree. di is dimen-

sionality of level li and kj =
j−1∑

w=0
fw.

V alue(j) = (qkj+1 − xkj+1)2 + · · · + (qkj+fj − xkj+fj)
2+

+2 ∗
kj+fj−1∑

w=kj+1

kj+fj∑

y=w+1

(qw − xw)(qy − xy)

and thus,

D2
i (q,X) = D2

i+1(q,X) +
di∑

j=1

extra(j) (1)

where extra(j) = 2
kj+fj−1∑

w=kj+1

kj+fj∑

y=w+1
(qw − xw)(qy − xy).

Bounding the
di∑

j=1

extra(j) of Eq. 1, we are able to express distance Di(q,X) as

a factor of Di+1(q,X). It is

di∑

j=1

extra(j) ≤ 2 ∗
di∑

j=1

kj+fj−1∑

w=kj+1

kj+fj∑

y=w+1

|qw − xw| |qy − xy|

≤ 2 ∗ (max(F i) − 1)
di∑

j=1

kj+fj∑

w=kj+1

(qw − xw)2

≤ 2 ∗ (max(F i) − 1)
di+1∑

j=1

(qj − xj)2

≤ 2 ∗ (max(F i) − 1) ∗ D2
i+1(q,X)

and thus we prove that: D2
i (q,X) ≤ (2max(F i) − 1) ∗ D2

i+1(q,X)

Although our techniques are tailored for the popular Euclidean metric, they
can be adapted appropriately for different distance metrics and aggregation func-
tions applied to the data domain’s hierarchy.

In the following sections, we present in detail our adopted LSH indexing
structure that is tailored to identify hierarchical outliers, as well as our algorithm
for their efficient detection based on the proposed index.

5 Hierarchically Clustered LSH Indexing

Given that we need to compare high-dimensional data when looking for hierar-
chical outliers, we adapt a powerful dimensionality reduction technique called
LSH [1]. LSH generates an indexing structure by evaluating multiple hashing
functions over each data item. Using the LSH index, we can identify the nearest

176 K. Georgoulas and Y. Kotidis

neighbors of each customer and compute outliers based on the distances from
her neighbors.

We utilize hash functions that are based on 2-stable distributions and create
several different hash tables in order to increase the effectiveness of the LSH
indexing schema. There have been many proposals on how to tune and increase
performance of LSH (e.g. [6,11]), however such techniques are orthogonal to the
work we present here.

Fig. 2. Bounding r for dif-
ferent hierarchical levels.

Fig. 3. Hierarchical clustering of our LSH scheme.

A direct approach for indexing a data set over a hierarchical domain would
be the construction of independent LSH hash schemes (one per hierarchical
level). Each hash scheme would contain T hash tables, named HT 1

1 . . . HTT
1 ,

HT 1
2 . . . HTT

2 , . . . , HT 1
h . . . HTT

h , which would maintain the data items of lev-
els l1, l2, . . . , lh, respectively. As we have already denoted, storing the whole
dataset at independent LSH indexes for every hierarchical level is not an effi-
cient way of indexing. Instead, we introduce a more space-saving index by creat-
ing Ti hash tables at every level li, named HCT 1

1 . . . HCTT1
1 , HCT 1

2 . . . HCTT2
2 ,

HCT 1
h . . . HCTTh

h . Each HCTi is a hierarchically clustered hash table and con-
tains a small number of centroids, which are computed by clustering the data
items that falls in the bucket with the same id for the HCTi+1 hash table of the
immediate lower level li+1.

At most k centroids (to be stored in HCTi) are computed by clustering
the data items belonging to the same bucket of HCTi+1. k is a user-defined
parameter, which affects the space cost of our proposed LSH scheme. Its value
could vary from one to the exact number of items stored every time at a bucket.
The more centroids per bucket we maintain, the higher the space requirements
of the index would be. A more flexible option that we apply in our framework,
is the derivation of different values for k at every bucket so as a target space
reduction ratio rr is achieved for the whole index.

Thus, we compute kBj (where kBj = |Bj |
rr) centroids for every Bj bucket of

HCTi+1. We compute the hash values for the computed centroids and store them
in the appropriate bucket of HCTi. We have to notice that, both the number Ti

Hierarchically Clustered LSH for Hierarchical Outliers Detection 177

of HCT tables that are created at every level li and the hash functions utilized to
hash the centroids, are selected following the same parametrization process [14]
as in the case of building independent hash schemes for every level. Similarly,
for hash table HCTi−1, we compute the centroids after the clustering of the
centroids maintained to each bucket of HCTi. As a result, HCTi−1 maintains
centroids of the clusters constructed over the centroids stored at each bucket
of HCTi. Following the same procedure, we create the HCT tables for all the
remaining levels up to l1, in a bottom-up process. The higher the hierarchical
level, the fewer centroids need to be indexed to its corresponding hash table
HCT. The aforementioned procedure can also be performed at the lowest level
lh. In this case a primary LSH scheme for level lh is constructed. The clusters
and their centroids for every bucket are computed and stored to newly created
HCT hash tables, while the primary LSH scheme is not required any more and
is, thus, discarded.

In more detail, our LSH indexing structure construction requires the following
steps:

– We initially construct a temporary LSH scheme for indexing the real data
items of level lh. These hash tables are auxiliary (i.e. used for the construction
of the HCT hash tables at level lh) and they are discarded immediately after
the next step of the process is completed.

– We compute kBj = |Bj |
rr centroids for every bucket Bj of the hash table HT 1

h .
In our framework, we utilize k-means for clustering, however this choice is
orthogonal to our scheme. This set of centroids are hashed to a set of Th hash
tables using hash functions g1h . . . g

Th

h , where gih for 1 ≤ i ≤ Th is a family of a
2-stable distribution functions [5].

– We repeat the previous step for every level li, with 1 ≤ i ≤ h − 1. Each time,
we perform a k-means clustering at the centroids stored to the buckets of the
HCT 1

i+1 hash table. These centroids are abstracted to the upper hierarchical
level li, forming a much smaller dataset (in terms of cardinality) than the real
dataset, for the level li. Based on the centroids’ hash values, they are stored
at the corresponding buckets of HCT 1

i . . . HCTTi
i hash tables.

In Fig. 3, we show an instance of our indexing structure for the case of our
running example’s hierarchy. For ease of presentation, we create only one table,
instead of Ti, at every hierarchical level li. The hierarchy consists of 4 levels and,
thus, we create four tables HCT4,HCT3,HCT2,HCT1, one per level. Every
arrow links a centroid, that is maintained at HCTi−1, with the cluster of a
HCTi hash table at level li which members it represents. There can be one or
multiple clusters in the same bucket, for example the two clusters at the first
bucket of HCT4. At hash table HCT3, we can see thirteen centroids derived
from HCT4’s data. As we mentioned previously, these centroids are assigned to
buckets of HCT3, based on their hash value during index’s construction. Only
these thirteen centroids are maintained in the hierarchically clustered hash table
HCT3 of level l3. Similarly, at HCT2 seven centroids are constructed based on
the hash values of the centroids of the seven clusters created at HCT3. Finally
at the top HCT1 hash table, we notice only four entries.

178 K. Georgoulas and Y. Kotidis

It is clear that the number of data items/centroids stored at each level are
quite fewer than the data maintained in the case of storing the whole dataset at
every hash table of every hierarchical level. Consequently, our index requires sig-
nificantly smaller space compared to the original LSH scheme. It maintains hash
tables, consisted only of a small number of centroids performing a per-bucket
clustering of the data items. These centroids, as we will explain in Sect. 6, are
utilized in order to compute the support score to a query point during the hier-
archical outlier detection process. This evaluation leads to reduced number of
distance computations when querying the index resulting to even faster outlier
identification compared to the baseline approach. In our experimental analysis,
we depict several figures proving our aforementioned claims. Encapsulated infor-
mation in centroids, such as the number of data items that the cluster contains
and the cluster range (i.e. distance of the centroid to its furthest cluster mem-
ber), is a key factor for the reduction of the computation cost of hierarchical
outlier identification, as we show in the next section.

6 Efficient Identification of Hierarchical Outliers

Given the proposed cLSH indexing scheme, we are able to identify hierarchical
outliers HO(N,r) based on Definition 1 and compute their grade according to the
procedure described below.

Formally, given a query point q, we would like to compute its grade. Notice
that q may be part of the data set, or an arbitrary point (e.g. a new customer).
The identification process begins at the lowest level lh of the hierarchy. Firstly,
a nearest neighbor (NN) query is executed for the query point q utilizing the
HCTh hash tables created for indexing data at level lh. Following the original
LSH scheme’s way of NN evaluation [7], we compute the hash value of q by
applying the gih hash function for every one of the Th hash tables at level lh,
where 1 ≤ i ≤ Th. We retrieve from every HCTh hash table the content from
those buckets which id value is the same with the computed hash value of q.
A set of items is returned from each bucket. These sets are merged, removing
any duplicates, forming a resulted set, named SupCandh(q). SupCandh(q) set
contains all the centroids of the data clusters containing data items that are
candidates to lie within distance r from q.

A query item q gains support (i.e. increases its support score), if a centroid
lies within distance ri from it at level li. In order to compute the support that a
centroid gives to a query item we proceed to an approximation technique, based
on which a centroid c, with radius rc and rep(c) (where rep(c) are the number of
data items a cluster contains), gives support sup(c)q to a query point q according
to the following formula:

sup(c)iq = rep(c) × V (Sphere(c, rc)
⋂

Sphere(q, ri))
V (c, rc)

(2)

where Sphere(q, ri) is the the hyper-sphere having as center the point q and
radius ri. Figure 4 provides a visualization of this process.

Hierarchically Clustered LSH for Hierarchical Outliers Detection 179

Algorithm 1. HO Query(q, L, support, grade)
Input: q is the query point

li is i-th level of hierarchy H
support is the support score of q at level lL+1

cur support is the support score of q at level lL
grade is Hierarchical Outlier Grade for q

1: SupCandL(q) = ∅ cur support = 0
2: for j = 1 . . . TL do
3: SupCandL(q) = SupCandL(q) ∪ lsh(q,HCT j

L)
4: end for
5: for ∀c ∈ SupCandL(q) do
6: sup(c)Lq = ComputeSupport(q, c)
7: cur support = cur support + sup(c)Lq
8: if pred(c) /∈ bucket(q,HCT 1

L+1) then
9: support = support + sup(c)Lq

10: end if
11: end for
12: if support < N OR cur support < N then
13: grade + +
14: if L ≥ 2 then
15: HO Query(q, L − 1, support, grade)
16: end if
17: end if

Algorithm 1 shows the algorithm for computing whether q is a hierarchical
outlier and return its grade. Firstly, we compute the set SupCandL(q) of candi-
date centroids (Lines 2–4), that may give support to q at level L. Function lsh
returns those centroids from all the hierarchical hash tables at level lL, which
have the same hash value with q. We then update (Lines 5–10) the support score
of q at level lL based on every centroid c that belongs to SupCandL(q). Function
ComputeSupport(q,c) (Line 6) approximates (as it implied by Eq. 2) the support
that c provides to q. In Line 7 the support sup(c)Lq increases the cur support of
q at level lL. In case the centroid c represents a cluster of centroids (this infor-
mation is derived by function pred(c)) that belong to a bucket HCT 1

L+1 of level
lL+1 that it has not been processed during the query evaluation at level lL+1(i.e.
members of c’s cluster do not fall in the same bucket of HCT 1

L+1 with the one
that q’s hash value implies - bucket(q,HCT 1

L+1)), its providing support to q is
also added to the support that q has already gained by the previous levels (Lines
8–10). If the support or cur support do not exceed threshold N the q’s grade is
increased by one and we recursively call the algorithm for level lL−1. Our process
terminates whenever the obtained support at a level li exceeds threshold N or
level l1 is reached.

In our running example, given a query point q, we first compute its hash
values for hierarchical levels l4, l3, l2, l1 and then we assign it to the corresponding
buckets that our index maintains. As it is depicted in Fig. 5, q falls in buckets
B410, B38, B27 and B13 of HCT4,HCT3,HCT2 and HCT1 respectively. For

180 K. Georgoulas and Y. Kotidis

Fig. 4. Computing support that a cen-
troid c “gives” to a query point q

Fig. 5. Buckets visited during query execution.

ease of presentation, we only depict one table per level, instead of T i copies
for every level li that our method suggests. However, query execution utilizing
T i tables per level is straightforward to what we discuss here. We only need to
merge the sets of items retrieved from the buckets of T i tables of a specific level
and then proceed as we describe below.

For a given threshold value N = 10, our method starts at level l4 evaluating
the Euclidean distance between q and centroids stored in bucket B410 of HCT4.
Based on these evaluations we approximate q’s support score at hierarchical level
l4. In case support value is greater than N , we terminate query’s evaluation and
answer that q is not a hierarchical outlier, otherwise we set its grade value to 1
and we continue checking q at level l3. Assuming in this example that support
score at hierarchical level l4 is two, we continue at level l3 retrieving the two
centroids (c310, c311) stored at bucket B38 of HCT3 based on q’s hash value. For
each one of these two centroids we approximate the support that they provide to
q by utilizing Eq. 2. Suppose that sup(c310)3q = 3 and sup(c311)3q = 2 we conclude
that q is also an outlier at level l3 and increase its grade by one. Continuing at
level l2 we obtain centroids c25, c26 from B27 bucket, which represent clusters
that its members are stored in bucket B34 and B37 respectively, that has not
been processed during the lower levels query evaluation and thus could be added
to the already computed support score of q. The support that c25 provides (e.g.
sup(c25)2q = 6) is added both to the cur support for level l2 and support that q
have already gained from levels l3 and l4. support exceeds threshold N and query
execution terminates (without accessing bucket B13 of level l1). As a result, our
algorithm replies that q is identified as a hierarchical outlier with grade = 2.

Concluding, we should notice that a hierarchical outlier detection query
involves processing of several buckets of the HCT tables for levels lh up to
l1. However, the higher the hierarchical level our method examines, the lower is
the number of centroids obtained by these buckets, as the number of centroids
at higher levels is reduced as an effect of the recursive clustering over the hier-
archy during index construction. Moreover, our algorithm retains the value of
support from previous (lower) levels, in order to expedite processing. Consider
level l1, where we have already processed three buckets (B410, B38, B27), that

Hierarchically Clustered LSH for Hierarchical Outliers Detection 181

give the necessary support to q at l2 and so the B13 bucket is not need to be
accessed. Finally, the monotonicity property of hierarchical outliers, permits us
to terminate the query, when enough support is gained at a specific level.

7 Experimental Evaluation

In this section, we present an experimental evaluation of the proposed hierar-
chical outlier detection framework. All algorithms are implemented in Java and
the experiments run on a desktop PC with an i7 CPU (4 cores, 3.4 GHz), 8 GB
RAM, and a 128 GB SSD.

7.1 Experimental Setup

Data Sets. In the experimental study, we employ two data sets. In the first
dataset, we created a hierarchy of products consisting of six levels with dimen-
sions (cardinality) 2654, 380, 51, 13, 3, 1 from the leaves to the root of hierarchical
tree, respectively. We generated data for 50000 customers with their purchases
over the 2654 different products at the lowest level of the hierarchy. In order to
generate the purchases of a customer, we first set the number of cumulative pur-
chases for every customer by selecting uniformly from the range 30000–80000.
We then selected randomly 20 % of the 2654 products belonging at the lowest
level of product’s domain hierarchical tree. These 20 % of products are consid-
ered as high interest products for customers and 80 % of her total purchases
are uniformly distributed to these products. The remaining 20 % of a customer’s
purchases are distributed randomly to the rest of products (that span 80 % of the
produce domain) that are considered as low interest. We created several clusters
of customers where customers of the same cluster have the same sets of high and
low interest products.

We also used the OLAP Council APB-1 benchmark generator [12] to create
a second dataset which contains 5300 customers. For every customer, the gen-
erator produced a vector representing her cumulative purchases over a period
of 17 months on a domain of 6050 products. The products’ domain hierarchy
consists of six hierarchical levels.

Algorithms. We evaluate our hierarchical outlier detection algorithm that uti-
lizes the hierarchically clustered LSH (cLSH) index and we compared it to an
alternative implementation of the same algorithm that utilizes independent LSH
indices for every level of the hierarchy. All indices are parametrized as described
in [14].

Metrics. Our main metrics include: (a) the average number of distance evalua-
tions for a hierarchical outlier detection query, (b) the average query execution
time, (c) the average number of candidates points that the indices return per
query execution, (d) the storage needs for both implementations, and (e) the
precision of the results of both techniques computed as

precisionlevel(i) =
|customers retrievedlevel(i) ∩ real outlierslevel(i)|

|customers retrievedlevel(i)|

182 K. Georgoulas and Y. Kotidis

 0

 200

 400

 600

 800

 1000

 1200

1 1.5 2 2.5 3 3.5 4

St
or

ag
e

N
ee

ds
 (M

B)

rr

cLSH-synthetic

LSH-synthetic

cLSH-APB

LSH-APB

Fig. 6. Storage requirements

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1 1.5 2 2.5 3 3.5 4

#C
en

tro
id

s
R

et
rie

ve
d

rr

cLSH-synthetic

LSH-synthetic

cLSH-APB

LSH-APB

Fig. 7. Index points retrieved per
query

 0

 500

 1000

 1500

 2000

 2500

 3000

1 1.5 2 2.5 3 3.5 4

#D
is

ta
nc

e
Ev

al
ua

tio
ns

rr

cLSH-synthetic

LSH-synthetic

cLSH-APB

LSH-APB

Fig. 8. Average distance evaluations
per query

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

1 1.5 2 2.5 3 3.5 4

Ex
ec

ut
io

n
Ti

m
e

(m
se

cs
)

Level

BruteForce-synthetic

cLSH-synthetic

BruteForce-APB

cLSH-APB

LSH-synthetic

LSH-APB

Fig. 9. Average execution time per
query

Queries. We present average values over 100 queries, where all query points are
outliers at lowest level of products hierarchy on both datasets. For the remaining
levels the number of outliers range from 4 to 74. The higher the hierarchical level,
the smaller the number of queries that are outliers. For instance at fifth level there
are 74 queries identified as outliers for APB dataset and 13 for the synthetic one
while at the highest hierarchical level there are only 6 and 4 outliers respectively.

Parameters. We conduct experiments varying the reduction ratio rr (1.5–4)
that defines ki = |Bi|

rr for the k-means clustering evaluation on every bucket Bi.

7.2 Experimental Results

Space Cost. In Fig. 6, we depict the storage needs of our technique for various
values of rr. The higher the requested value of rr the lower the space cost because
larger clusters are constructed and, thus, fewer centroids are stored at the cLSH
index. Given that only centroids are maintained by cLSH it is expected that we
gain in terms of space compared to the original LSH scheme.

Distance Evaluations and Index Points Retrieved. In Fig. 7, we show the
average number of the points (LSH)/centroids (cLSH) returned as candidates
by each index to provide support to a query point. This number is significantly

Hierarchically Clustered LSH for Hierarchical Outliers Detection 183

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5 6

Pr
ec

is
io

n

Level

LSH
cLSH-rr1,5

cLSH-rr2
cLSH-rr2,5

cLSH-rr3
cLSH-rr3,5

cLSH-rr4

Fig. 10. Synthetic dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5 6

Pr
ec

is
io

n

Level

LSH
cLSH-rr1,5

cLSH-rr2
cLSH-rr2,5

cLSH-rr3
cLSH-rr3,5

cLSH-rr4

Fig. 11. APB dataset

smaller for cLSH, as a result of the recursive clustering over the hierarchy and
the way these centroids are used to increase the support of a query point.

Figure 8 depicts the average number (over 100 queries) of distance evalua-
tions required in order to compute the hierarchical outliers and their grade. Our
method using cLSH performs up to 80 % fewer distance evaluations in order to
detect a hierarchical outlier, compared to the straightforward LSH scheme. This
significant reduction is attributed to the use of centroids in order to calculate
the support from a whole cluster of points to the query point in a single step,
instead of a per-data-item calculation.

Execution Time. Figure 9 shows that our method is up to 75 % faster compared
to the original LSH scheme and 15 times faster than a brute-force method that
does not use any index. The main factor that increases the execution time is the
number of distance evaluations. This is evident by the fact that the evaluations
and execution time graphs follow the same trend.

Precision. Figs. 10 and 11 depict the precision of both indices (LSH/cLSH) in
hierarchical outlier identification. Both techniques are very accurate and pro-
vide high precision results. We do not provide a similar graph for the recall
because it was 100 % for all levels of the hierarchy, in these experiments (i.e.
our approximation technique – summarized in Formula 2 – overestimates the
support score). Even though cLSH is significantly more condense than the LSH
index, it provides equally accurate results.

8 Conclusions

In this work we introduced a framework for detecting outliers in hierarchically
organized domains. Key to our method is a monotonicity property that enables
us to grade in an intuitive manner how erroneous a data item seems with respect
to the rest of the data. We also discussed a novel indexing scheme that computes
hierarchical clusters of data items and embeds them in a LSH index. Using this
index we can quickly identify hierarchical outliers with reduced storage and
computation cost compared to using a straightforward LSH index. The benefits

184 K. Georgoulas and Y. Kotidis

of our techniques stem from the hierarchical organization of the LSH buckets
that permits us to reuse distance computations while exploring a data item.

References

1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: FOCS, pp. 459–468. IEEE Computer Society
(2006)

2. Bhaduri, K., Matthews, B.L., Giannella, C.R.: Algorithms for speeding up distance-
based outlier detection. In: Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 859–867. ACM (2011)

3. Breunig, M., Kriegel, H., Ng, R., Sander, J., et al.: LOF: identifying density-based
local outliers. Sigmod Rec. 29(2), 93–104 (2000)

4. Charikar, M.: Similarity estimation techniques from rounding algorithms. In:
STOC (2002)

5. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proccedings of SCG (2004)

6. Georgoulas, K., Kotidis, Y.: Distributed similarity estimation using derived dimen-
sions. VLDB J. 21(1), 25–50 (2012)

7. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC (1998)

8. Jin, W., Tung, A.K.H., Han, J., Wang, W.: Ranking outliers using symmetric
neighborhood relationship. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.)
PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 577–593. Springer, Heidelberg (2006)

9. Knorr, E., Ng, R., Tucakov, V.: Distance-based outliers: algorithms and applica-
tions. VLDB J. 8(3), 237–253 (2000)

10. Kriegel, H., Zimek, A., et al.: Angle-based outlier detection in high-dimensional
data. In: Proceeding of ACM SIGKDD, pp. 444–452 (2008)

11. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient
indexing for high-dimensional similarity search. In: VLDB, pp. 950–961 (2007)

12. OLAP Council APB-1 Benchmark. http://www.olapcouncil.org/research/resrchly.
htm

13. Papadimitriou, S., Kitagawa, H., Gibbons, P., Faloutsos, C.: LOCI: fast out-
lier detection using the local correlation integral. In: Proceedings of ICDE, pp.
315–326 (2003)

14. Slaney, M., Lifshits, Y., He, J.: Optimal parameters for locality-sensitive hashing.
In: Proceedings of the IEEE, pp. 2604–2623 (2012)

15. Sugiyama, M., Borgwardt, K.: Rapid distance-based outlier detection via sampling.
In: Advances in Neural Information Processing Systems, pp. 467–475 (2013)

16. Tang, J., Chen, Z., Fu, A.W., Cheung, D.W.: Enhancing effectiveness of outlier
detections for low density patterns. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD
2002. LNCS (LNAI), vol. 2336, pp. 535–548. Springer, Heidelberg (2002)

http://www.olapcouncil.org/research/resrchly.htm
http://www.olapcouncil.org/research/resrchly.htm

Incorporating Clustering into Set Similarity Join
Algorithms: The SjClust Framework

Leonardo Andrade Ribeiro1(B), Alfredo Cuzzocrea2,
Karen Aline Alves Bezerra3, and Ben Hur Bahia do Nascimento3

1 Instituto de Informática, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
laribeiro@inf.ufg.br

2 DIA Department, University of Trieste and ICAR-CNR, Trieste, Italy
alfredo.cuzzocrea@dia.units.it

3 Departmento de Ciência da Computação, Universidade Federal de Lavras,
Lavras, Brazil

karen.bezerra@posgrad.ufla.br, bhn@computacao.ufla.br

Abstract. Data cleaning and integration found on duplicate record iden-
tification, which aims at detecting duplicate records that represent the
same real-world entity. Similarity join is largely used in order to detect
pairs of similar records in combination with a subsequent clustering
algorithm meant for grouping together records that refer to the same
entity. Unfortunately, the clustering algorithm is strictly used as a post-
processing step, which slows down the overall performance, and final
results are produced at the end of the whole process only. Inspired by
this critical evidence, in this paper we propose and experimentally assess
SjClust, a framework to integrate similarity join and clustering into a sin-
gle operation. The basic idea of our proposal consists in introducing a
variety of cluster representations that are smoothly merged during the
set similarity task, carried out by the join algorithm. An optimization
task is further applied on top of such framework. Experimental results,
which are derived from an extensive experimental campaign, we retrieve
are really surprising, as we are able to outperform the original set simi-
larity join algorithm by an order of magnitude in most settings.

1 Introduction

Data cleaning and integration (e.g., [7,15]) found on duplicate record identifica-
tion (e.g., [8,24]), which aims at detecting duplicate records that represent the
same real-world entity. This is becoming more and more relevant in emerging big
data research (e.g., [14,22,25]), as a plethora of real-life applications are char-
acterized by the presence of multiple records representing the same real-world
entity, which practically plagues every large database. Such records are often
referred to as fuzzy duplicates (duplicates, for short), because they might not be
exact copies of one another. Duplicates arise due to a variety of reasons, such
as typographical errors and misspellings, different naming conventions, and as a
result of the integration of data sources storing overlapping information.

c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 185–204, 2016.
DOI: 10.1007/978-3-319-44403-1 12

186 L.A. Ribeiro et al.

Duplicates degrade the quality of the data delivered to application programs,
thereby leading to a myriad of problems. Some examples are misleading data
mining models owing to erroneously inflated statistics, inability of correlating
information related to a same entity, and unnecessarily repeated operations,
e.g., mailing, billing, and leasing of equipment. Duplicate identification is thus
of crucial importance in data cleaning and integration.

Duplicate identification is computationally very expensive and, therefore,
typically done offline. However, there exist important application scenarios that
demand (near) real-time identification of duplicates. Prominent examples are
data exploration [10], where new knowledge has to be efficiently extracted from
databases without a clear definition of the information need, and virtual data
integration [7], where the integrated data is not materialized and duplicates in
the query result assembled from multiple data sources have to be identified — and
eliminated — on-the-fly. Such scenarios have fueled the desire to integrate dupli-
cate identification with processing of complex queries [2] or even as a general-
purpose physical operator within a DBMS [6].

An approach to realize the above endeavor is to employ similarity join in con-
cert with a clustering algorithm [9]. Specifically, similarity join is used to find
all pairs of records whose similarity is not less than a specified threshold; the
similarity between two records is determined by a similarity function. In a post-
processing step, the clustering algorithm groups together records using the simi-
larity join results as input. For data of string type, set similarity join is an appeal-
ing choice for composing a duplicate identification operator. Set similarity join
views its operands as sets — strings can be easily mapped to sets. The correspond-
ing similarity function assesses the similarity between two sets in terms of their
overlap and a rich variety of similarity notions can be expressed in this way [6].
Furthermore, a number of optimization techniques have been proposed over the
years [3,6,18,19,23,24] yielding highly efficient and scalable algorithms.

The strategy of using a clustering algorithm strictly for post-processing the
results of set similarity join has two serious drawbacks, however. First, given a
group of n, sufficiently similar, duplicates, the set similarity join performs

(
n
2

)

similarity calculations to return the same number of set pairs. While this is
the expected behavior considering a similarity join in isolation, it also means
that repeated computations are being performed over identical subsets. Even
worse, we may have to perform much more additional similarity calculations
between non-duplicates: low threshold values are typically required for clustering
algorithms to produce accurate results [9]. Existing filtering techniques are not
effective at low threshold values and, thus, there is an explosion of the number of
the comparisons at such values. Second, the clustering is a blocking operator in
our context, i.e., it has to consume all the similarity join output before producing
any cluster of duplicates as result element. This fact is particularly undesirable
when duplicate identification is part of more complex data processing logic,
possibly even with human interaction, because it prevents pipelined execution.

In this paper, we propose and experimentally assess SjClust, a framework
to integrate set similarity join and clustering into a single operation, which

Incorporating Clustering into Set Similarity Join Algorithms 187

addresses the above issues. The main idea behind our framework is to represent
groups of similar sets by a cluster representative, which is incrementally updated
during the set similarity join processing. Besides effectively reducing the num-
ber similarity calculations needed to produce a cluster of n sets to O (n), we are
able to fully leverage state-of-the-art optimization techniques at high threshold
values, while still performing well at low threshold values where such techniques
are much less effective. Indeed, the resulting composed algorithm is even up to
an order of magnitude faster than the original set similarity join algorithm for
low threshold values. Moreover, we exploit set size information to identify when
no new set can be added to a cluster; therefore, we can then immediately output
this cluster and, thus, avoid the blocking behavior. Furthermore, there exists
a plethora of clustering algorithms suitable for duplicate identification and no
single algorithm is overall the best across all scenarios [9]. Thus, versatility in
supporting a variety of clustering methods is essential. Our framework smoothly
accommodates various cluster representation and merging strategies, thereby
yielding different clustering methods for each combination thereof.

2 Related Work

The duplicate identification problem has a long history of investigation con-
ducted by several research communities spanning databases, machine learning,
and statistics, frequently under different names, including record linkage, de-
duplication, and near-duplicate identification [8,12]. Over the last years, there
is growing interest in realizing duplicate identification on-the-fly. In [1], a query-
driven approach is proposed to reduce the number of cleaning steps in simple
selections queries over dirty data. The same authors presented a framework to
answer complex Select-Project-Join queries [2]. Our work is complementary to
these proposals as our algorithms can be encapsulated into physical operators
to compose query evaluation plans.

There is long line of research on (exact) set similarity joins [3,6,18,19,23,24].
Aspects most relevant to our work are discussed at length in Sect. 3. To the best
of our knowledge, integration of clustering into set similarity joins has not been
previously investigated in the literature —the general idea of our proposal was
presented in [17]. In [15], the authors employ the concept of proximity graph to
cluster strings without requiring a predefined threshold value. The algorithm to
automatically detected cluster borders was improved later in [11]. However, it is
not clear how to leverage state-of-the-art set similarity joins in these approaches
to improve efficiency and deal with large datasets. In [9], a large number of
clustering algorithms are evaluated in the context of duplicate identification.
These algorithms use similarity join to produce their input, but can start only
after the complete similarity join execution.

By looking at the innovative context of duplicate detection over big data
repositories, which is really emerging at now, some relevant state-of-the-art pro-
posals are the following ones. [25] proposes a data cleaning algorithm based on
MapReduce that extracts relations from nodes in the target Cloud environment,

188 L.A. Ribeiro et al.

and then cleans data based on an innovative weighted-based knowledge model.
[14] evidences the relevance of data cleaning methodologies in big data scenar-
ios, and harnesses both context and usage patterns of data entities to determine
relationships among objects that are recognized as similar. Finally, [22] focuses
the attention on the specific case of big RDF data cleaning, by also considering
semi-automatic methods.

3 Fundamental Concepts and Background Knowledge

3.1 Basic Concepts and Definitions

We map strings to sets of tokens using the popular concept of q-grams, i.e.,
sub-strings of length q obtained by “sliding” a window over the characters of
an input string v. We (conceptually) extend v by prefixing and suffixing it with
q−1 occurrences of a special character “$” not appearing in any string. Thus, all
characters of v participate in exact q q-grams. For example, the string “token”
can be mapped to the set of 2 -gram tokens {t, to, ok, ke, en, n}. As the result
can be a multi-set, we simply append the symbol of a sequential ordinal number
to each occurrence of a token to convert multi-sets into sets, e.g., the multi-set
{a,b,b} is converted to {a◦1, b◦1, b◦2}. In the following, we assume that all
strings in the database have already been mapped to sets.

We associate a weight with each token to obtain weighted sets. A widely
adopted weighting scheme is the Inverse Document Frequency (IDF), which
associates a weight idf (tk) to a token tk as follows: idf (tk) = ln (1 + N/df (tk)),
where df (tk) is the document frequency, i.e., the number of strings a token tk
appears in a database of N strings. The intuition behind using IDF is that rare
tokens are more discriminative and thus more important for similarity assess-
ment. The weight of a set r, denoted by w (r), is given by the weight summation
of its tokens, i.e., w (r) =

∑
tk∈r w (tk).

We consider the general class of set similarity functions. Given two sets r and
s, a set similarity function sim (r, s) returns a value in [0, 1] to represent their
similarity; larger value indicates that r and s have higher similarity. Popular set
similarity functions are defined as follows.

Definition 1 (Set Similarity Functions). Let r and s be two sets. We have:

– Jaccard similarity: J (r, s) = w(r∩s)
w(r∪s) .

– Dice similarity: D (r, s) = 2·w(r∩s)
w(r)+w(s) .

– Cosine similarity: C (r, s) = w(r∩s)√
w(r)·w(s)

We now formally define the set similarity join operation.

Definition 2 (Set Similarity Join). Given two set collections R and S, a set
similarity function sim, and a threshold τ , the set similarity join between R and
S returns all scored set pairs 〈(r, s), τ ′〉 s.t. (r, s) ∈ R×S and sim (r, s) = τ ′ ≥ τ .

Incorporating Clustering into Set Similarity Join Algorithms 189

In this paper, we focus on self-join, i.e., R = S; we discuss the extension
for binary inputs in Sect. 3.3. For brevity, we use henceforth the term similarity
function (join) to mean set similarity function (join). Further, we focus on the
Jaccard similarity and the IDF weighting scheme, i.e., unless stated otherwise,
sim (r, s) and w (tk) denotes J (r, s) and idf (tk), respectively.

Example 1. Consider the sets r and s below

r = {A, B, C, D, E}
s = {A, B, D, E, F}

and the following token-IDF association table:

tk A B C D E F

idf (tk) 1.5 2.5 2 3.5 0.5 2

Thus, we have w (r) = w (s) = 10 and w (r ∩ s) = 8; thus sim (r, s) =
8

10+10−8 ≈ 0.66.

3.2 Optimization Techniques

Similarity functions can be equivalently represented in terms of an overlap bound
[6]. Formally, the overlap bound between two sets r and s, denoted by O (r, s),
is a function that maps a threshold τ and the set weights to a real value, s.t.
sim (r, s) ≥ τ iff w (r ∩ s) ≥ O (r, s)1. The similarity join can then be reduced
to the problem of identifying all pairs r and s whose overlap is not less than
O (r, s). For the Jaccard similarity, we have O (r, s) = τ

1+τ · (w (r) + w (s)).
Further, similar sets have, in general, roughly similar weights. We can derive

bounds for immediate pruning of candidate pairs whose weights differ enough.
Formally, the weight bounds of r, denoted by min (r) and max (r), are functions
that map τ and w (r) to a real value s.t. ∀s, if sim (r, s) ≥ τ , then min (r) ≤
w (s) ≤ max (r) [19]. Thus, given a set r, we can safely ignore all other sets
whose weights do not fall within the interval [min (r) ,max (r)]. For the Jaccard
similarity, we have [min (r) ,max (r)] =

[
τ · w (r) , w(r)

τ

]
. We refer the reader

to [20] for definitions of overlap and weight bounds of several other similarity
functions, including Dice and Cosine.

We can prune a large share of the comparison space by exploiting the prefix
filtering principle [6,19], which allows discarding candidate pairs by examining
only a fraction of the input sets. We first fix a global order O on the universe U
from which all tokens are drawn. A set r′ ⊆ r is a prefix of r if r′ contains the
first |r′| tokens of r. Further, prefβ (r) is the shortest prefix of r, the weights of
whose tokens add up to more than β. The prefix filtering principle is defined as
follows.
1 For ease of notation, the parameter τ is omitted.

190 L.A. Ribeiro et al.

Definition 3 (Prefix Filtering Principle [6]). Let r and s be two sets. If
w (r ∩ s) ≥ α, then prefβr (r) ∩ prefβs (r) �= ∅, where βr = w (r) − α and βs =
w (s) − α, respectively.

We can identify all candidate matches of a given set r using the prefix
prefβ (r), where β = w (r) − min (r). We denote this prefix simply by pref (r).
It is possible to derive smaller prefixes for r, and thus obtain more pruning
power, when we have information about the set weight of the candidate sets,
i.e., if w (s) ≥ w (r) [3] or w (s) > w (r) [18]. Note that prefix overlap is a con-
dition necessary, but not sufficient to satisfy the original overlap constraint: an
additional verification must be performed on the candidate pairs. Finally, the
number of candidates can be significantly reduced by using the inverse document
frequency ordering, Oidf , as global token order to obtain sets ordered by decreas-
ing IDF weight2. The idea is to minimize the number of sets agreeing on prefix
elements and, in turn, candidate pairs by shifting lower frequency tokens to the
prefix positions — recall that higher IDF weights are associated to low-frequency
tokens.

Example 2. Consider the sets r and s in Example 1 and τ = 0.6. We have
O (r, s) = 7.5; [min (r) ,max (r)] and [min (s) ,max (s)] are both [6, 16.7]. By
ordering r and s according to Oidf and the IDF weights in Example 1, we obtain:

r = [D,B,C,A,E]
s = [D,B,F,A,E].

We have pref (r) = pref (s) = [D].

3.3 Similarity Join Algorithms: Definitions and Usage

Similarity join algorithms based on inverted lists are effective in exploiting the
previous optimizations [3,18,19,24]. Most of such algorithms have a common
high-level structure following a filter-and-refine approach.

Algorithm 1 formalizes the steps of a similarity join algorithm. The algorithm
receives as input a set collection sorted in increasing order of set weights, where
each set is sorted according to Oidf . An inverted list It stores all sets containing
a token t in their prefix. The input collection R is scanned and, for each probe set
r, its prefix tokens are used to find candidate sets in the corresponding inverted
lists (lines 4–10); this is the candidate generation phase, where the map M is
used to associate candidates to its accumulated overlap score os (line 3). Each
candidate s is dynamically removed from the inverted list if its weight is less
than min (r) (lines 6–7). Further filters, e.g., filter based on overlap bound, are
used to check whether s can be a true match for r, and then the overlap score is
accumulated, or not, and s can be safely ignored in the following processing (lines
8–10). In the verification phase, r and its matching candidates, which are stored
in M, are checked against the similarity predicate and those pairs satisfying the
2 A secondary ordering is used to break ties consistently (e.g., the lexicographic order-

ing).

Incorporating Clustering into Set Similarity Join Algorithms 191

Algorithm 1. Similarity join algorithm
Input: A set collection R sorted in increasing order of the set weight; each set

is sorted according to Oidf ; a threshold τ
Output: A set S containing all pairs (r, s) s.t. Sim (r, s) ≥ τ

1 I1, I2, . . . I|U| ← ∅, S ← ∅

2 foreach r ∈ R do
3 M ← empty map from set id to overlap score (os)
4 foreach t ∈ pref (r) do // can. gen. phase

5 foreach s ∈ It do
6 if w (s) < min (r)
7 Remove s from It
8 if filter (r, s,M (s))
9 M (s) .os ← −∞ // invalidate s

10 else M (s) .os = M (s) .os + w (t)

11 S ← S ∪ Verify (r, M, τ) // verif. phase

12 foreach t ∈ pref (r) do // index. phase

13 It ← It ∪ {r}
14 return S

predicate are added to the result set. To this end, the Verify procedure (not
shown) employs a merge-join-based algorithm exploiting token order and the
overlap bound to define break conditions (line 11) [18]. Finally, in the indexing
phase, a pointer to set r is appended to each inverted list It associated with its
prefix tokens (lines 12 and 13).

Algorithm 1 is actually a self-join. Its extension to binary joins is trivial:
we first index the smaller collection and then go through the larger collection to
identify matching pairs. For simplicity, several filtering strategies such positional
filtering [24] and min-prefixes [18], as well as inverted list reduction techniques
[3,18] were omitted. Nevertheless, these optimizations are based on bounds and
prefixes and, therefore, our discussion in the following remains valid.

4 Our Proposal: The Innovative SjClust Framework

We now present SjClust, a general framework to integrate clustering methods into
similarity joins algorithms. The goals of our framework are threefold: (1) flexibility
and extensibility by accommodating different clustering methods; (2) efficiency by
fully leveraging existing optimization techniques and by reducing the number of
similarity computations to form clusters; (3) non-blocking behavior by producing
results before having consumed all the input, preferably much earlier.

The backbone of SjClust is the similarity join algorithm presented in Sect. 3.
In particular, SjClust operates over the same input of sorted sets, without
requiring any pre-processing, and has the three execution phases present in
Algorithm 1, namely, candidate generation, verification, and indexing phases.
Nevertheless, there are, of course, major differences.

192 L.A. Ribeiro et al.

Fig. 1. Cluster representation.

First and foremost, the main objects are now cluster of sets, or simply clus-
ters. Figure 1 illustrates strategy adopted for cluster representation. The internal
representation contains a list of its set element’s ids, an (optional) auxiliary struc-
ture, and the cluster’s complete representation, a set containing all tokens from
all set elements. A cluster exports its external representation as the so-called
cluster representative (or simply representative) (Fig. 1(a)). Representatives are
fully comparable to input sets and similarity evaluations are always performed
on the representatives, either between a probe set and a cluster or between two
clusters (Fig. 1(b)). In the following, we use the term cluster and representative
interchangeably whenever the distinction is unimportant for the discussion.

Figure 2 depicts more details on the SjClust framework. In the candidate
generation phase, prefix tokens of the current probe set are used to find cluster
candidates in the inverted lists (Fig. 2(a)). Also, there is a merging phase between
verification and indexing phases (Fig. 2(b)). The verification phase reduces the
number of candidates by removing false positives, i.e., clusters whose similarity
to the probe set is less than the specified threshold. In the merging phase, a new
cluster is generated from the probing set and the clusters that passed through the
verification are considered for merging with it according to a merging strategy.
In the indexing phase, references to the newly generated cluster are stored in
the inverted lists associated with its prefix tokens. Finally, there is the so-called
Output Manager, which is responsible for maintaining references to all clusters —
a reference to a cluster is added to the Output Manager right after its generation
in the merging phase (Fig. 2(b)). Further, the Output Manager sends a cluster
to the output as soon as it is identified that no new probing set can be similar to
this cluster. Clusters in such situation can be found in the inverted lists during
the candidate generation (Fig. 2(a)) as well as identified using the weight of the
probe set (not shown in Fig. 2).

Fig. 2. SjClust framework components.

Incorporating Clustering into Set Similarity Join Algorithms 193

The aforementioned goals of SjClust are met as follows: flexibility and exten-
sibility are provided by different combinations of cluster representation and
merging strategies, which can be independently and transparently plugged into
the main algorithm; efficiency is obtained by the general strategy to cluster rep-
resentation and indexing; and non-blocking behavior is ensured by the Output
Manager. Next, we provide details of each SjClust component.

5 SjClust Architecture and Components

5.1 Cluster Representation

Cluster representatives are used to compactly represent a cluster, while capturing
the most significant features of its elements. In our context, there is the addi-
tional requirement that cluster representatives must be fully comparable with
the original sets. Also, we want flexibility in obtaining different representation
strategies.

We start by defining the complete representation of a cluster of sets, from
which we extract the corresponding representative. Intuitively, the complete rep-
resentation of a cluster is given by the union of its sets. We then order all tokens
according to a cluster ordering, denoted by Ocl. While Oidf is used to increase
prefix filtering effectiveness (recall Sect. 3.2), Ocl is used to improve quality by
sorting the tokens in the complete representation in decreasing order of impor-
tance. We formally define the concept of complete representation of a cluster in
the following.

Definition 4 (Complete Representation). Let C = {r1, r2, . . . , rn} be a
cluster of sets. The complete representation of C, denoted by CompRC, is the
union of its elements, i.e., CompRC = r1 ∪ r2 ∪ . . . ∪ rn, sorted in decreasing
order according to Ocl.

Given that the tokens in CompRC are sorted according to some notion of
importance, we can use the prefix concept to derive the representative containing
the most important tokens in C. To this end, we need to first define the size of
the prefix. A natural choice is to use average weight of sets in C. Then, we define
a slight variation of the prefix concept: given a sorted set r, pref ′α (r) is the
shortest prefix of r, the weights of whose tokens add up to not less than α.
Finally, to be comparable with probe sets, we need to further sort the tokens in
the representative according to Oidf . We are now ready to formally define the
concept of cluster representative in our context.

Definition 5 (Cluster Representative). Let C = {r1, r2, . . . , rn} be a cluster
of sets and CompRC its complete representation according to Definition 4. The
cluster representative of C, denoted by CRC, is the following prefix of CompRC:

CRC = pref ′α (CompRC), where α =
∑n

i=1
w(ri)

n ,

ordered according to Oidf .

194 L.A. Ribeiro et al.

We can now derive cluster representation strategies by instantiating Ocl.
Specifically, Ocl can be defined by associating weights to tokens using a weight-
ing scheme in the same fashion as Oidf . A suitable weighting scheme to our
context is the TF (Term Frequency), where the weight tf (tk) of a token tk in a
cluster C is directly given by the frequency of tk in C. The intuition behind using
TF-based ordering is to represent a cluster by its most frequent tokens. Such
strategy requires the maintenance of a token-tf table for each cluster. Two sort-
ing operations are needed after a merging between a probe set and one or more
clusters: the first on the complete representation using the updated token-TF
table and the second on the representative using IDF weights. Note that merg-
ing always occurs on the complete representation and the new representative is
generated afterward.

Furthermore, except for Oidf and the more general definition in terms of
weighted sets, this cluster representation is the same as the one used in [15].
A clear drawback of using TF is that frequent tokens in the collection, con-
sequently with low IDF weights, tend to be also frequent within clusters. As
opposed to rare tokens, such highly frequent tokens are often unimportant for
similarity assessment, but can nevertheless appear in the representative owing
to the TF-based ordering.

An alternative is to simply make Ocl = Oidf , i.e., the complete representation
follows the same ordering of the input sets. A representative now is composed
by tokens with the highest IDF values. This approach has a lower computational
cost as compared to the previous representation: it does not require maintenance
of an extra data structure such as the token-TF table, nor further sorting after
merging clusters to probe sets. However, we now have the drawback that the
representative may contain tokens that appear in only a few sets in the cluster.

Finally, we can avoid the issues of the previous strategies, while keeping their
advantages, by using the TF-IDF weighting scheme: the weight tf -idf (tk) of a
token tk is given by tf -idf (tk) = (1 + ln (tf (tk))) · idf (tk). Henceforth, we refer
to the proposed representation strategies by their adopted weighting scheme,
i.e., as TF, IDF, and TF-IDF representations.

Example 3. Consider the sets (or cluster representatives) r and s in Example 1.
After the union of r and s, the resulting token-TF and token-TF-IDF association
tables are as follows (for simplicity, we have not taken the logarithm of TF in
the latter table).

tk A B C D E F

tf (tk) 2 2 1 2 2 1

tf -idf (tk) 3 5 2 7 1 2

The complete representation and the corresponding cluster representative for
strategies TF, IDF, and TF-IDF are shown in Table 1—for the complete repre-
sentation using TF and TF-IDF, ties are broken using the IDF-based ordering.

Incorporating Clustering into Set Similarity Join Algorithms 195

Table 1. Cluster representations from Example 3 for strategies TF, IDF, and TF-IDF.

TF Complete representation

D B A E C F

Representative

D B C A E —

IDF Complete representation

D B C F A E

Representative

D B C F — —

TF-IDF Complete representation

D B A C F A

Representative

D B A C F —

5.2 Merging Strategies

We now discuss strategies for the merging phase. The output of the verification
phase is the current probe set r and a set S of similar clusters. After generating
a new (singleton) cluster Cr from the probe set, and before sending it to the
indexing phase, there are three cases to consider.

(1) S is empty: the probe set is similar to no cluster and Cr goes directly to the
indexing phase.

(2) S contains a single cluster: this single cluster is merged into Cr .
(3) S contains more than one cluster: we apply a merging strategy, consider-

ing that the elements in S were not identified as similar to one another in
previous SjClust iterations.

The new cluster Cr is also sent to the Output Manager in cases (2) and (3),
and in case (1) if singleton clusters are allowed to appear in the result.

Fig. 3. Cluster merging strategies.

Now, we present three strategies for case (3) as depicted in Fig. 3.

– Closure: the simplest strategy is to merge all clusters in S into Cr (Figure
3(a)). This strategy corresponds to calculating the transitive closure of the

196 L.A. Ribeiro et al.

similarity graph induced by input sets. The main problem of this strategy is
that it tends to produce bigger clusters with several sets representing non-
duplicates, thereby leading to poor precision in the results.

– Top-K : in this strategy, we first sort the elements in S according to their
similarity to the probe set. Then, we take the K closest clusters and merge
them into Cr (Figure 3(b)). An issue with this strategy is choosing the value
of K: we can have the same issue of poor precision as Closure if K is too large;
conversely, we can face the opposite problem if K is too small, i.e., smaller
clusters are formed with duplicates in different clusters, thereby leading to
poor recall.

– Iterative: this strategy is an specialization of Top-K, which aims at allow-
ing the use of a small K value to maintain precision, while avoiding drop in
recall. First, the K closest clusters are merged into Cr; afterward the algorithm
proceeds iteratively, evaluating the similarity between Cr and the following
K + 1,K + 2, . . . , |S| clusters, in decreasing order of similarity to the original
probe set. If the similarity between the current cluster CK+i and Cr is greater
than the original threshold τ , then CK+i is merged into Cr and the algorithm
proceeds to the next representative; otherwise it stops. This strategy is similar
in spirit to the merge-and-refine strategy to duplicate identification [4], which
exploits the insight that a merging operation can lead to new matches.

A last point is that clusters are invalidated after being merged into another
cluster, i.e., they are ignored in the subsequent processing. Since there are several
references to clusters in the inverted lists and Output Manager, we need some
garbage collection mechanism. To this end, we use a simple attribute in the
cluster object to indicate whether it is valid or not. This attribute is checked
every time a reference to a cluster is found in the candidate evaluation phase
(see line 5 in Algorithm 1) and references to invalid ones are promptly discarded.

5.3 The Output Manager

At each SjClust iteration, a probe set is converted into a new cluster and indexed.
Afterward, this cluster may progressively become part of bigger clusters, up to a
point when no new element can be added to the current cluster; we say then that
this cluster is closed. A cluster is trivially closed when the input is exhausted or
when the weight of the current probe set is too large to be similar to this cluster.
In the latter situation, we know that no following probe set can be similar either,
because the input is sorted in increasing order of set weights. The concept of
closed cluster is defined as follows.

Definition 6 (Closed Cluster). Let C be a cluster and CRC its representa-
tive; let r be the current probe set. C is a closed cluster if w (CRC) < min (r)3.

3 This definition can be made consistent when the input is exhausted by defining a
conceptual probe set of infinite weight after the last input set.

Incorporating Clustering into Set Similarity Join Algorithms 197

Fig. 4. The Output Manager.

The Output Manager is the SjClust component in charge of sending closed
cluster to the output. The Output Manager is illustrated in Fig. 4. It contains two
data structures: a temporary repository and an output buffer. Clusters generated
in the merging phase are first stored in the temporary repository. It is a kind
of priority queue, which maintains clusters sorted in increasing order of their
representative weights. We use a simple but highly efficient implementation based
on linked lists. Incoming clusters are usually larger than the majority of the
stored ones, and, therefore, we only need to scan at most a few positions from
the tail to the head of the list to find the point of insertion.

We search the temporary repository for closed clusters at end of each SjClust
iteration using the min (r) value of the current probe cluster. The search is
performed from the head to the tail of the list. Closed clusters are sent to the
output buffer as they are found and the search is stopped when the first non-
closed cluster is met. Note that the temporary repository may also contain invalid
clusters, e.g., clusters that were merged into other clusters. Entries to invalid
clusters are removed both during insertion and search time and, thus, the size
of the temporary repository is kept to a minimum.

The output buffer is a queue , which can be used to deliver clusters in a
pipelined execution either in pull- or push-model. Besides from the temporary
repository, the output buffer can also receive closed clusters from candidate
evaluation phase. This occurs when references to closed clusters are found in the
inverted lists (see line 6 in Algorithm 1; in this part, the algorithm is extended
with a call to the Output Manager to send the closed cluster to the output
buffer). References to closed clusters also need to be garbage collected. They are
set as invalid after being sent to the output buffer, so their references can be
removed afterward from inverted lists or the temporary repository.

6 Experimental Assessment and Analysis

We used publicly available datasets from the Stringer Project4, which have been
extensively used to evaluate duplicate identification algorithms [9]. Starting with
a clean dataset as source, duplicates were generated by performing controlled
transformations, such as character-level modifications (insertions, deletions, and
substitutions), word swapping, and domain specific abbreviations, such replacing
Incorporated with Inc. The “dirtiness level” of a generated dataset is determined
by the percentage of duplicates to which transformations are applied (erroneous
duplicates) and the extent of transformations applied to each erroneous duplicate
(errors in duplicates).
4 http://dblab.cs.toronto.edu/project/stringer/clustering/.

http://dblab.cs.toronto.edu/project/stringer/clustering/

198 L.A. Ribeiro et al.

Table 2. Information about duplicate datasets.

Group Name Percentage of

Dirty duplicates Errors in duplicates

High error H1 90 30

H2 50 30

Average error M1 30 30

M2 10 30

M3 90 10

M4 50 10

Low error L1 30 10

L2 10 10

In this evaluation, we used datasets generated from two sources: Company,
containing company names and DBLP containing information about titles of
computer science publications (dblp.uni-trier.de/xml). The average string length
of Company is 21.03 characters, while of DBLP 33.55 characters. The parameters
used in the generation processes are shown in Table 2; the percentage of token
swap and abbreviations for all datasets were 20 % and 50 %, respectively. There
are 8 datasets for each source, grouped according to their “dirtiness”, i.e., high,
average, and low error. Finally, the number of clusters in each dataset is 500.

We evaluate the quality of the results using two metrics: the pairwise F1
measure, denoted by pF1, and the closest cluster F1 measure, denoted by ccF1.
The first metric is based on counting the number of pairs of duplicates correctly
identified and is defined as follows [16]. Let G be set of ground truth clusters,
i.e., the clusters whose duplicates have been all correctly identified, and D be
the set of clusters returned by some cluster algorithm. Further, given a set of
clusters P , let pairs (P) be a function that returns the set of distinct pairs of
elements that are in the same cluster. For example, if P = {〈a, b〉, 〈d, e, f〉}, then
pairs (P)={(a, b), (d, e), (d, f), (e, f)}. Thus, the pairwise precision and recall are
defined as

pPr (G,D) =
|pairs (G) ∩ pairs (D) |

pairs (D)
, and pRe (G,D) =

|pairs (G) ∩ pairs (D) |
pairs (G)

.

Therefore:

pF1 (G,D) =
2 · pPr (G,D) · pRe (G,D)
pPr (G,D) + pRe (G,D)

.

The closest cluster F1 measure is based on summing up the pairwise Jaccard
similarity of (unweighted) clusters. The corresponding pairwise precision and
recall are defined as follows [4].

ccPr (G,D) =
∑

d∈D maxg∈GJ (d, g)
|D| , and ccRe (G,D) =

∑
g∈G maxd∈DJ (g, d)

|G| .

Incorporating Clustering into Set Similarity Join Algorithms 199

Therefore:

ccF1 (G,D) =
2 · ccPr (G,D) · ccRe (G,D)
ccPr (G,D) + ccRe (G,D)

.

We ran our experiments on an Intel Xeon E3-1240 Quad-core, 3,3 GHz, 8 MB
CPU cache, and 8 GB of main memory. All algorithms were implemented using
Java JDK 8 (Oracle). The processing cost of the algorithms is measured in
average wall-clock time over repeated runs.

We implemented the set similarity join described in [18]; this implemen-
tation provided the basis for the own SjClust implementation as well as was
used directly in the performance experiments. SjClust was set to not produce
singletons. We used Jaccard as similarity function in all evaluations and used
K = 1 for Top-K and Iterative merging strategies. We converted strings to
upper-case letters, eliminated repeated white spaces, and generated the corre-
sponding weighted token sets using q-grams of size 3 and IDF weighting scheme.
We did not perform any further data pre-processing, such as removal of stop
words.

In the experimental charts, the representation strategy TF-IDF is abbrevi-
ated to TI and the merging strategies Closure, Top-K, and Iterative are abbrevi-
ated to C, T, and I, respectively. The combination of representation and merging
strategies is represented by their abbreviated form connected by a hyphen, i.e.,
TI-T represents the combination of TF-IDF and Top-K.

6.1 Accuracy Results

We first report accuracy results. We show the average accuracy value for each
group of datasets. To calculate the average, we executed each algorithm 7 times
with threshold value varying from 0.2 to 0.8 and took the best result value for
each metric. As an important observation, the highest threshold leading to the
best accuracy result was never higher than 0.3 on DBLP and lower than 0.4 in
67 % of the evaluations on Company.

Figure 5 shows the results on Company datasets. The F1 values are above
0.85 for all algorithms on lower error datasets (Fig. 5(a)). The strategies based on
TF-IDF representation performed the best, while those based on IDF the worst.
The IDF-based ordering on the complete representation shifts low-frequency

Fig. 5. Accuracy results on the Company dataset.

200 L.A. Ribeiro et al.

tokens to the cluster representative (recall to the discussion in Sect. 5.1). In this
context, representatives contain tokens that appear in a few set elements in the
corresponding cluster. As a result, objects representing duplicates, i.e., probe
sets and representatives, cannot be easily identified because they have fewer
tokens in common and, thus, lower similarity.

On the other hand, the explanation for the worse results of TF as compared
to TF-IDF is that the Company dataset is characterized by the presence of high
frequency and similar words. For example, the sub-string “Comp” appears in
one third the strings. The token distribution contains a large number of high-
frequency tokens accordingly, which are then shifted to the cluster representative
in the TF strategy. Clusters representing distinct strings can then be evaluated
as similar and erroneously merged due to common high-frequency tokens in their
representatives, thereby hurting precision.

Differences in performance are less pronounced when comparing merging
strategies. In general, the Closure strategy leads to slight better results when
combined with IDF and TF-IDF, whereas Top-K and Iterative perform better
with TF. Closure merges more clusters than the other strategies, and there-
fore, favors recall over precision. Hence, it tends to compensate the relative
low-recall of IDF (and TF-IDF), while causing drop in precision when combined
with TF. As expected, accuracy results degrade as we move to average error
datasets (Fig. 5(b)). However, such accuracy degradation is only moderated on
the algorithms based on TF and TF-IDF, which show better robustness to qual-
ity decrease of the underlying datasets. On the other hand, F1 values are less
than 0.45 for all algorithms on high error datasets (Fig. 5(c)). Correctly identi-
fying duplicates on such low-quality datasets is a challenge as some generated
duplicates are hardly identified even by manual inspection.

Fig. 6. Accuracy results on the DBLP dataset.

Figure 6 shows accuracy results on DBLP datasets. Our first observation
is that F1 values are markedly better for all algorithms as compared to those
obtained on Company datasets. On low error datasets (Fig. 6(a)), all pF1 (ccF1)
values are higher than 0.92 (0.87). In contrast to Company, the DBLP datasets
have a small number of high-frequent terms and distinct elements have typically
low similarity. As a result, there is more information to distinguish duplicates
from non-duplicates.

Algorithms using TF performed even better than those using TF-IDF on
average and high error datasets (Figs. 6(b) and 6(c), respectively); particularly,

Incorporating Clustering into Set Similarity Join Algorithms 201

pF1 values are still higher than 0.8 for these algorithms on the latter. In contrast
to Company, the token distribution derived from DBLP is highly skewed, with
a large number of rare tokens. As result, the problem of low recall caused by
IDF-based ordering is exacerbated.

6.2 Performance Results

We now report and analyze performance results. For this experiment, we gener-
ated a dataset from DBLP containing 20k groups of 5 duplicates (totaling 100k
strings). Besides using a larger dataset, we also increased the average string
length to 69 characters by appending the corresponding author names to each
publication title. We only used lower threshold values from 0.2 to 0.5, because
we observed poor accuracy with higher values in the previous experiment.

Fig. 7. Performance results on the DBLP dataset.

The results are show in Fig. 7. We first compared the performance of the
merging strategies; we fixed the cluster representation to TF-IDF. There is no
noticeable performance difference among them, as shown in Fig. 7(a). Even with
the tendency to performing more merging, Closure exhibits nearly the same
performance as compared to Top-K and Iterative. The underlying algorithm
exploits token ordering to optimize the merging process and, therefore, the neg-
ative impact on performance is reduced. Also, closed inspection revealed that
merging of more than 2 clusters is quite rare.

Further, we compared the three proposed representation strategies using Top-
K as merging strategy. Figure 7(b) shows the results. Now, while there is rel-
atively little difference between IDF and TF-IDF, TF is about 3× slower than
them. Because TF uses more frequent tokens in the cluster representatives, the
corresponding prefixes have more incidences of such tokens even with the poste-
rior IDF-based ordering. As a result, token collisions in the prefixes of dissimilar
objects are more frequent, reducing pruning power because those objects need
to be verified.

Our next experiment compared SjClust with similarity join. Recall that for
duplicate identification, similarity join is followed by clustering algorithm, which
only starts after the similarity joins has completed. Hence, the results showed
here for similarity join are only a (loose) lower bound for the scenario of sequen-
tial composition of similarity join and clustering. For SjClust, we used TF-IDF

202 L.A. Ribeiro et al.

Table 3. Input consumed before starting producing results.

Threshold 0.2 0.3 0.4 0.5

of sets proc. 10080 479 105 51

and Top-K as representation and merging strategies, respectively. Figure 7(c)
shows the results. Remarkably, SjClust is dramatically faster than similarity
join. For the threshold value of 0.2, SjClust is 12× times faster. The reason is
that prefix filtering is ineffective for low threshold values, which causes an explo-
sion in the number of candidates and, consequently, in the number of similarity
calculations. This limitation may prevent the use of similarity joins in duplicate
identification in large datasets, because lower threshold are often required to
obtain accurate results. In contrast, SjClust drastically reduces the number of
similarity calculations by restricting them to cluster representatives, which are
much fewer than the original sets.

Finally, we illustrate the non-blocking behavior of SjClust. Table 3 shows the
number of input sets processed before SjClust starts producing cluster results.
For threshold of 0.5, the first cluster is produced before processing less than
0.1 % of the input. Even for threshold of 0.2, the first result is produced after
consuming less than 11 % of the input.

7 Conclusions and Future Work

In this paper, we presented SjClust, a framework to integrate clustering into set
similarity join algorithms. We demonstrated the flexibility of SjClust in incorpo-
rating different clustering methods by proposing several cluster representation
and merging strategies. SjClust is an order of magnitude faster than the orig-
inal set similarity join algorithm for lower thresholds, which are often needed
in practice to obtain accurate results in duplicate identification. Furthermore,
our proposal produces results earlier, thereby avoiding blocking behavior. We
described SjClust and its main components in detail and experimentally evalu-
ated its accuracy and efficiency using different datasets. Future work is mainly
oriented towards enriching our framework with advanced features such as uncer-
tain data management (e.g., [13]), adaptiveness (e.g., [5]), and execution time
prediction (e.g., [21]).

Acknowledgments. This research was partially supported by the Brazilian agencies
CNPq and CAPES.

References

1. Altwaijry, H., Kalashnikov, D.V., Mehrotra, S.: Query-driven approach to entity
resolution. PVLDB 6(14), 1846–1857 (2013)

2. Altwaijry, H., Mehrotra, S., Kalashnikov, D.V.: Query: a framework for integrating
entity resolution with query processing. PVLDB 9(3), 120–131 (2015)

Incorporating Clustering into Set Similarity Join Algorithms 203

3. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: Pro-
ceedings of the WWW Conference, pp. 131–140 (2007)

4. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Qi, S., Whang, S.E., Widom, S.:
Swoosh: a generic approach to entity resolution. VLDB J. 18(1), 255–276
(2009)

5. Cannataro, M., Cuzzocrea, A., Mastroianni, C., Ortale, R., Pugliese, A.: Modeling
adaptive hypermedia with an object-oriented approach and xml. In: WebDyn 2002
(2002)

6. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins
in data cleaning. In: Proceedings of the 22nd International Conference on Data
Engineering, p. 5 (2006)

7. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kauf-
mann, Burlington (2012)

8. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a
survey. TKDE 19(1), 1–16 (2007)

9. Hassanzadeh, O., Chiang, F., Miller, R.J., Lee, H.C.: Framework for evaluating
clustering algorithms in duplicate detection. PVLDB 2(1), 1282–1293 (2009)

10. Idreos, S., Papaemmanouil, O., Chaudhuri, S.: Overview of data exploration tech-
niques. In: Proceedings of the SIGMOD Conference, pp. 277–281 (2015)

11. Kazimianec, M., Augsten, N.: PG-Skip: proximity graph based clustering of long
strings. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS,
vol. 6588, pp. 31–46. Springer, Heidelberg (2011)

12. Koudas, N., Sarawagi, S., Srivastava, D., Record linkage: similarity measures and
algorithms. In: Proceedings of the SIGMOD Conference, pp. 802–803 (2006)

13. Leung, C.K.-S., Cuzzocrea, A., Jiang, F.: Discovering frequent patterns from
uncertain data streams with time-fading and landmark models. In: Küng, J.,
Wagner, R., Cuzzocrea, A., Dayal, U., Hameurlain, A. (eds.) TLDKS VIII. LNCS,
vol. 7790, pp. 174–196. Springer, Heidelberg (2013)

14. Liu, H., Ashwin Kumar, T.K, Thomas, J.P.: Cleaning framework for big data -
object identification and linkage. In: Proceedings of the Big Data Congress, pp.
215–221 (2015)

15. Mazeika, A., Böhlen, M.H.: Cleansing databases of misspelled proper nouns. In:
Proceedings of the VLDB Workshop on Clean Databases (2006)

16. Menestrina, D., Whang, S., Garcia-Molina, H.: Evaluating entity resolution results.
PVLDB 3(1), 208–219 (2010)

17. Ribeiro, L.A., Cuzzocrea, A., Bezerra, K.A.A., do Nascimento, B.H.B.: SJClust:
Towards a framework for integrating similarity join algorithms and clustering. In:
Proceedings of the ICEIS Conference, pp. 75–80 (2016)

18. Ribeiro, L.A., Härder, T.: Generalizing prefix filtering to improve set similarity
joins. Inf. Syst. 36(1), 62–78 (2011)

19. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates. In Proceedings
of the SIGMOD Conference, pp. 743–754 (2004)

20. Schneider, N.C., Ribeiro, L.A., de Souza, A., Inácio, H.M., Wagner, A., von Wan-
genheim. SimDataMapper: An architectural pattern to integrate declarative simi-
larity matching into database applications. In: Proceedings of the SBBD Confer-
ence, pp. 967–972 (2015)

21. Sidney, C.F., Mendes, D.S., Ribeiro, L.A., Härder, T.: Performance prediction for
set similarity joins. In: Proceedings of the SAC Conference, pp. 967–972 (2015)

22. Tang, N.: Big RDF data cleaning. In: Proceedings of the ICDE Conference Work-
shops, pp. 77–79 2015)

204 L.A. Ribeiro et al.

23. Wang, J., Li, G., Feng, J.: Can we beat the prefix filtering?: an adaptive framework
for similarity join and search. In: Proceedings of the SIGMOD Conference, pp.
85–96 (2012)

24. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Efficient similarity joins for
near-duplicate detection. TODS 36(3), 15 (2011)

25. Zhang, F., Xue, H.-F., Xu, D.-S., Zhang, Y.-H., You, F.: Big data cleaning algo-
rithms in cloud computing. iJOE 9(3), 77–81 (2013)

Distributed and Big Data Processing

“Overloaded!” — A Model-Based Approach
to Database Stress Testing

Jorge Augusto Meira1,2(B), Eduardo Cunha de Almeida2, Dongsun Kim1,
Edson Ramiro Lucas Filho2, and Yves Le Traon1

1 SnT Research Center, University of Luxembourg, Luxembourg City, Luxembourg
{jorge.meira,dongsun.kim,yves.letraon}@uni.lu

2 C3SL - Federal University of Paraná, Curitiba, Brazil
{jmeira,eduardo,erlfilho}@inf.ufpr.br

Abstract. As a new era of “Big Data” comes, contemporary database
management systems (DBMS) introduced new functions to satisfy new
requirements for big volume and velocity applications. Although the
development agenda goes at full pace, the current testing agenda does
not keep up, especially to validate non-functional requirements, such as:
performance and scalability. The testing approaches strongly rely on the
combination of unit testing tools and benchmarks. There is still a testing
methodology missing, in which testers can model the runtime environ-
ment of the DBMS under test, defining the testing goals and the harness
support for executing test cases. The major contribution of this paper
is the MoDaST (Model-based Database Stress Testing) approach that
leverages a state transition model to reproduce a runtime DBMS with
dynamically shifting workload volumes and velocity. Each state in the
model represents the possible running states of the DBMS. Therefore,
testers can define state goals or specific state transitions that revealed
bugs. Testers can also use MoDaST to pinpoint the conditions of perfor-
mance loss and thrashing states. We put MoDaST to practical applica-
tion testing two popular DBMS: PostgreSQL and VoltDB. The results
show that MoDaST can reach portions of source code that are only possi-
ble with non-functional testing. Among the defects revealed by MoDaST,
when increasing the code coverage, we highlight a defect confirmed by
the developers of VoltDB as a major bug and promptly fixed.

1 Introduction

Scalable and high performance data processing is one of the key aspects for
successful business operations as the volume of incoming transactions is getting
larger for most application areas. Over the last 40 years traditional “one-size-
fits-all” Database Management Systems (DBMS), such as DB2, Oracle, Post-
greSQL, have been successful in processing transactions. However, the recent
growth of the transaction workload (e.g., Internet, Cloud computing, Big Data)
is challenging these DBMS requiring revisiting their kernel. Even new DBMS
are being designed ground up to better tackle these workloads.

c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 207–222, 2016.
DOI: 10.1007/978-3-319-44403-1 13

208 J.A. Meira et al.

Although the development agenda goes at full pace, with the recent appear-
ance of a great deal of new DBMS, the testing agenda does not keep up, specially
for validating non-functional requirements, such as performance, robustness and
scalability. With the increasing demand in volume and velocity of transactions,
many load conditions challenge the DBMS in unexpected ways that the state
of the art in testing tools cannot exercise. Different bugs can be found in the
literature describing that the root cause is linked to different conditions of tran-
sient load shifts or sudden spikes. The result in the DBMS can be treacherous
leading to a number of non-functional failures, such as: poor performance query
plans [1], backpressure1, lock escalation (for lock-based mode) [2], poor perfor-
mance estimations [3], performance degraded mode and load shedding [4]. Many
of these failures are also called “Heisenbugs” [5], because the root cause are not
easy to detect and may elude the bug-catcher for years of execution.

1.1 Motivation

The bug-catching task becomes even harder when the existing testing method-
ologies for transaction processing only validate functional requirements [6,7]. The
validation of non-functional requirements is still an open issue and strongly rely on
the combination of unit testing tools2 (e.g., Jepsen, JUnit, Jmeter, PeerUnit [8])
and benchmarks to reproduce specific workloads (e.g., TPC-like, YCSB).

The main problem with this combination is that it is strictly based on tools
and does not adhere to a general methodological testing approach. In general,
this combination has to be conservative to eke out the “ideal” testing environ-
ment: test cases mimic any benchmark workload and then execute on top of
an unit testing tool. However, the expected environment grounds testing with
a proper methodological approach to define the testing goals and the harness
support for executing test cases. Writing and executing test cases come later.

The major contribution of this paper is such a methodological approach
that can eventually be implemented on top of any unit testing tool with the
benchmark of your choice. Figure 1 shows the impact on PostgreSQL of executing
test cases with and without a testing methodology. The impact is measured
by the code coverage ratio of our methodological approach and the same test
case reproducing the TPC-C benchmark workload on top of a unit test tool
without following any testing methodology. First, we see that the impact of
shifting the transaction load in PostgreSQL can only be analyzed when testing
is driven by a methodological approach. Second, we notice that the load shifting
exercises PostgresSQL in different code portions. More interestingly, when the
DBMS is upon heavy loads (rightmost bar), the throughput goes down, but
exercising almost 60 % of the source code of the kernel (12 % more than the
steady condition).

This result shows that even the kernel of a mature DBMS, such as Post-
greSQL, is not acquainted to non-functional testing, which would reveal the

1 https://voltdb.com/docs/UsingVoltDB/DesignAppErrHandling.php.
2 VoltDB testing: https://voltdb.com/blog/how-we-test-voltdb.

https://voltdb.com/docs/UsingVoltDB/DesignAppErrHandling.php
https://voltdb.com/blog/how-we-test-voltdb

“Overloaded!” — A Model-Based Approach to Database Stress Testing 209

Fig. 1. Example of inherent limitations of the existing testing tools.

bugs that we discuss in this paper (see Fig. 2). To come up with a general non-
functional testing approach for transaction processing in the Big Data era, it is
important to define a running model of the Database System Under Test (DUT)
that allow reproducing and harnessing load shifts.

1.2 Contribution

This paper presents, MoDaST (Model-based Database Stress Testing), a novel
methodological approach to DBMS stress testing. This approach focuses on test-
ing scalability and performance of DBMS with dynamically changing load lev-
els by using a test model for database systems. The approach leverages a state
machine model with observable runtime states: warm-up, steady, under-pressure,
stress, and thrashing. The model allows us to infer and explore internal states of
the DUT even if black-box testing is only available. The observable states can
basically be used for guiding the testing goals with test cases forcing the state
transitions. More importantly, MoDaST allows reproducing the state transitions
for regression or to figure out what is the exact condition that revealed a bug.

Fig. 2. Conceptual execution paths under normal and stress conditions.

210 J.A. Meira et al.

To evaluate MoDaST and show that it can be put to practical application, we
applied it to two different classes of real-world DBMS (i.e., SQL and NewSQL)
collected from open source projects: PostgreSQL and VoltDB. We designed a
distributed stress testing environment by using a cluster facility and a distributed
testing driver to shift the submission volume and velocity of the workload. We
collected performance monitoring data and code coverage to figure out whether
there is any potential defect. We also conducted a comparative study between
MoDaST and unit testing running the TPC-C benchmark to find out which one
can correctly test different behaviors of DBMS and cover more source code.

The results of the experiments showed that our approach successfully drove
the DUTs into the different states specified in the test model. MoDaST found
out that DUTs actually follows the model by observing performance data. In
addition, the results revealed that our approach explored different performance
behaviors and increased test coverage up to 20 % in certain code packages of
PostgreSQL and 12 % for VoltDB compared to the baseline technique. Newly
covered lines by MoDaST exposed three new bugs. In particular, one of the bugs
had significant impact on VoltDB by affecting not just non-functional but also
functional requirements upon heavy load conditions. This bug was confirmed
and promptly fixed by the VoltDB hackers after our reporting3.

Overall, this paper makes the following contributions: 1- Database state
model: We designed a running model to infer the internal states of DBMS based
on performance observations. Among different possible states, our model detects
performance loss and thrashing states at runtime. 2- MoDaST, a model-
based DB stress testing approach: We introduce a novel testing approach to
force state transitions in the model by shifting the transaction loads. The state
transitions allow exercising different source code portions of the DBMS that
would never be exercised by single test cases of unit testing tools. 3- Empiri-
cal evaluation: We present empirical evaluation results by applying MoDaST
to popular open-source DBMS. Based on the evaluation results, we identified
and reported potential bugs. One of them was confirmed as “major bug” and
promptly fixed by the core developers.

The remainder of this paper is organized as follows. Section 2 we discuss the
related work. Section 3 describes our model-based approach to database stress
testing. Section 4 we present empirical results stress testing two popular DBMS.
Finally, Sect. 5 concludes with future directions.

2 Related Work

Stress testing is designed to impose heavy loads such as HTTP requests or
database queries at the same time to ensure the reliability of the system In
DBMS, performance/stress testing validates the system from different angles.
Commonly, this validation is executed through a benchmark pattern to repro-
duce a production environment. Since the DebitCredit benchmark [9], several
benchmarks were presented along the last decades. These benchmarks focus
3 https://issues.voltdb.com/browse/ENG-6881.

https://issues.voltdb.com/browse/ENG-6881

“Overloaded!” — A Model-Based Approach to Database Stress Testing 211

on comparing metrics (e.g., response time, throughput, and resource consump-
tion) [3]. The TPC-like benchmarks offer different workload levels to evaluate
databases from two perspectives: OLTP or OLAP. In contrast, the Yahoo Cloud
Serving Benchmark (YCSB) [10] is designed to evaluate four specific features
of distributed databases: Performance, Scalability, Availability and Replication.
There are another type of benchmarks focusing on DBMS availability: R-cubed
[11], DBench-OLTP [12], Under Pressure Benchmark [13].

Some of existing performance testing tools attempt to test database systems
under different levels of workload. Jepsen4, Hammerora5, AppPerfect6 and Ora-
cle Application Testing Suite7 provide a test driver to build up test cases on
top of TPC-like benchmarks. Agenda [7] provides its own methodology and test
driver, but this tool can only generate functional test cases. JMeter is also a well
known and widely applied load testing tool for different applications, including
DBMS. But, it was designed to load test functional requirements.

The main disadvantage of these tools is the lack of a high level testing
methodology, like MoDaST. In software testing, the testing methodology is the
foundation over which the tools are used [14]. Otherwise, test cases will be nar-
rowed to reproduce specific load conditions that cannot reflect a far more aggres-
sive real-world production environment with load spikes and shifts after a while
in steady condition state [1,4]. In addition, these tools cannot correlate perfor-
mance loss and related defects to specific its root causes.

Finally, techniques to generate test cases can be used to boost testing results
of MoDaST for specific testing goals. For instance, [15,16] presents a technique
to generate queries with cardinality constraints for validating multidimensional
histograms A complementary technique to generate test databases is presented
in [17]. Although MoDaST is a testing model, rather than a data/query genera-
tion tool, it was built for validating write-mostly, while the mentioned techniques
are meant to read-mostly database systems assessments.

3 Approach: MoDaST

This section describes our Model-based Database Stress Testing (MoDaST) app-
roach. Figure 3 shows an overview of this approach. MoDaST consists of the
Database State Machine (DSM) and a test driver. The DSM represents a set of
observable states of a DBMS and its transition function. The test driver defines
the load model of each state and commences performance testing by giving a
specific load to the DUT. Then, the driver observes the current performance
data of the DUT and figures out state transitions by giving the data to DSM.
The remainder of this section details MoDaST.

4 https://aphyr.com/tags/jepsen.
5 http://hammerora.sourceforge.net/.
6 http://www.appperfect.com/.
7 http://www.oracle.com/technetwork/oem/app-test/index.html.

https://aphyr.com/tags/jepsen
http://hammerora.sourceforge.net/
http://www.appperfect.com/
http://www.oracle.com/technetwork/oem/app-test/index.html

212 J.A. Meira et al.

Database
State Machine

Database
Under Test

Test Driver

Workload
Model

Performance
Inputs

Workload

Results

Fig. 3. Architectural overview of MoDaST.

3.1 The Database State Machine (DSM)

The DSM models how a DUT behaves at given workload levels. In particular,
DSM focuses on representing observable states of a DUT with respect to perfor-
mance (i.e., performance behaviors). The behaviors of a DUT can be represented
by the following states: Warm-up (s1), Steady (s2), Under Pressure (s3), Stress
(s4), Thrashing (s5). We formally define the DSM and its corresponding states
in Definition 1. Figure 4 depicts the DSM, the running states and transitions.

s1 s2 s3 s4 s5

Fig. 4. The Database State Machine (DSM) and the observable states.

Definition 1. The Database State Machine (DSM) denoted as T, is a 5-tuple
(S, s1,F , β, τ) where:

– S = {s1, s2, s3, s4, s5} is a set of states,
– s1 ∈ S is the initial state,
– F ⊂ S is the set of final states, where F = {s5} in DSM,
– β is the set of performance input defined by Definition 2,
– τ a state transition function defined by Definition 6.

The detailed information about every state is available in Sect. 3.1. To
describe each state in detail, it is necessary to define the performance input,
β. Based on the performance input, the DSM determines state transitions, τ .

Performance Input: DSM takes three different performance input from a DUT
to infer its current internal state. The input, β, is the set of (1) the performance
variation, (2) the transaction efficiency, and (3) the performance trend.

Definition 2. The performance Input, denoted by β, is a tuple of three per-
formance variables: β =< Δ, δ, ϕ¿, where Δ is the performance variation (Defi-
nition 3), δ is the transaction efficiency (Definition 4), and ϕ is the performance
trend (Definition 5), respectively.

“Overloaded!” — A Model-Based Approach to Database Stress Testing 213

The performance variation represents the stability of transactions treated
by a DUT. This is denoted by Δ as shown in Definition 3. MoDaST makes
n observations (n > 1) and computes the number of transactions treated per
second (y) for each observation. For example, if Δ → 0, the DUT is processing
a steady number of incoming transactions.

Definition 3. The performance variation, Δ, is the dispersion of the number
of treated transactions per second and formally defined as:

Δ =

√
√
√
√ 1

n − 1

n∑

i=1

(yi − μ)2, (1)

where μ = 1
n

∑n
i=1(yi)

The transaction efficiency, δ, is the proportion between the number of
transactions treated by a DUT and requested by clients. This enables to define
the upper bound number of transactions in concurrent execution with steady
behavior. For example, if δ → 1 across a number of performance observations,
the DUT is successfully treating most of transactions requested by clients.

Definition 4. The transaction efficiency, denoted by δ, is the proportion of
the transactions treated per second (y) by the number of transactions requested
per second (z):

δ =
y

z
(2)

The performance trend, ϕ, is a metric explaining the expected perfor-
mance slope of a DUT within a certain size of a sliding window as described in
Definition 5. As shown in Fig. 5, ϕ can be computed by the distance between the

Fig. 5. DSM and its performance input. The X-axis is time in seconds and the Y-
axis represents transactions per second. This shows relationships between performance
input and states in DSM.

214 J.A. Meira et al.

current time (observation) and expected time when the transaction efficiency of
the DUT converges to 0 (i.e., δ = y/z = 0, where z �= 0). Section 3.2 describes
how to compute the distance in detail.

Definition 5. The performance trend is a function defined as

ϕ = x′ − x (3)

where x is the current time and x′ represents the point that the tangent line
crosses the time axis.

States: The DSM models, with a state machine, the database performance
states found in the literature in which non-functional bugs were reported [1–5].
The following paragraphs describe each state in detail.

State 1 — Warm-up: This state is the startup process of the DUT. In this
state, the DUT initializes internal services such as transaction management ser-
vice. Although some transactions can be treated during this state, performance
is not stable since the DUT focuses on filling memory caches. DSM defines the
Warm-up state by using performance variations (Δ in Definition 3).

The DSM infers that a DUT is in the Warm-up state if Δ is not converging
to 0 after the startup of the DUT. In other words, ¬(Δ < tw), where tw is
the warm-up threshold value. Otherwise (i.e., Δ < tw holds), the transition to
the next state (i.e., Steady) is triggered. Each DBMS has a unique tw value.
Section 4 explains how to determine the value.

State 2 — Steady: The DSM infers this state if the performance variation,
Δ, is converging to 0. Once the DUT is in this state, it never comes back to
the Warm-up state again since all the internal services are already initialized
and running. In addition, the memory cache of the DUT is filled to provide the
expected performance, which indicates that the DUT can correctly treat most
of incoming transaction requested by clients in time. Specifically, this can be
represented as δ > ts, where ts is the steady threshold value. Each DBMS has a
different value for the threshold that may vary based on the type of the expected
workload and the available hardware environment.

State 3 — Under Pressure: This state implies that a DUT is on the limit of
performance. The DUT goes to the state if δ approaches to zero, which means
that a set of unexpected load is coming to the DUT. Unexpected loads include
shifts and sudden spikes (e.g., Black Friday or Christmas) that affect perfor-
mance [1,4,13]. In this state, the DUT can still deal with the similar amount
of transactions processed in the previous state (Steady). However, it cannot
properly treat a certain amount of transactions in time since the total amount
requested by clients is beyond the limit of the DUT. Although this situation can
be transient, it might need an external help from the DB administrator (DBA)
to go back to Steady. For example, DBA can scale up the DUT’s capability or
set up the DBMS to reject a certain amount of the incoming transactions until
the load decreases to an acceptable amount (i.e., z → y and δ > ts).

“Overloaded!” — A Model-Based Approach to Database Stress Testing 215

State 4 — Stress: a DUT goes into this state when the number of transactions
requested by clients is beyond the performance limit. This state is different from
the Under Pressure state since the performance variation (i.e., Δ) increases. The
DUT in this state is highly vulnerable to crash if no external help is available.
For example, the DBA should consider additional solutions such as adopting
database replica, adding more cluster machines, or killing long running transac-
tions (normally triggered by bulk loads). If an appropriate solution is performed,
the DUT can go back to the Under Pressure state and Δ < tst, where tst is the
stress threshold value.

State 5 — Thrashing: This state represents that the DUT uses a large amount
of computing resources for a minimum number of transactions. The DUT expe-
riences resource contention and cannot deal with any new transaction in this
state. In this state, it is no longer possible to come back to the previous one
as any external intervention is useless. The DSM detects the transition to the
Thrashing state if ϕ < tth, where tth is the thrashing threshold value. Predicting
the thrashing state is explained in Sect. 3.2.

State Transitions: The state transition function, τ , determines whether the
DUT changes its internal state based on observed performance data. This func-
tion takes performance input (< Δ, δ, ϕ >) from the test driver and gives the
next state s ∈ S as described in Definition 6. In each state, the DSM examines
the current values of performance input and compares the values with threshold
values8 (i.e., tw, ts and tst). Table 1 summarizes the threshold values.

Definition 6. The state transition function, τ , is defined as:

τ : S × β → S (4)

where ∀s ∈ S,∃p ∈ β and ∃s′ ∈ S|(s, p) → (s′).

Table 1. Threshold values for state transitions.

Target state

States s1 s2 s3 s4 s5

s1 ¬(Δ < tw) Δ < tw - - -

s2 - δ > ts ¬(δ > ts) - -

s3 - δ > ts ¬(δ > ts) Δ > tst -

s4 - - ¬(Δ > tst) Δ > tst ϕ < tth

s5 - - - - ϕ = 0

8 The values used in the experiments are specified in the Sect. 4 since it is variable
depending on the DUT.

216 J.A. Meira et al.

3.2 Predicting the Thrashing State

In addition to stress testing, MoDaST can predict crashes before a DUT actually
goes into the Thrashing state. This indicates the time remaining until out-of-
service and allows DBA to react before service failure.

The first step to predict the Thrashing state is computing the performance
slope. MoDaST uses the Least Squares method [18] that approximates the rela-
tionship between independent (x) and dependent (y) variables in the form of
y = f(x). The testing time in seconds is denoted by x and y denotes the
corresponding throughput at time x. It allows the computation of the three
required coefficients (i.e., a0, a1 and a2) for the quadratic function (i.e., perfor-
mance slope): f(x) = a0x

2 + a1x + a2

Our approach computes the coefficients by using recent p observations9 of
(x, y) (i.e., sliding window). The quadratic function estimates the performance
slope as shown in Fig. 5. Once the performance slope is identified it is possible to
calculate the derivative f ′(x) (i.e., tangent line), considering the current obser-
vation xi. By using the tangent projection in the axis x, MoDaST can estimate
the performance trend, ϕ, according to Definition 5. If the value is converging to
the thrashing threshold (tth), we assume that DUT may crash at any moment
(i.e., transition from the stress to thrashing state).

3.3 The Test Driver

The goal of the test driver is to generate different load conditions and collect the
performance input for the DSM. The test driver is built on top of the PeerUnit
distributed testing framework [8]. PeerUnit allows building, coordinating and
executing distributed test cases, which are key features for stress testing.

Since the performance of a DBMS can be affected by both the number of
connections and transactions, it is necessary to test both the connection and
transaction management modules by using two workload cases as follows: Case
#1: The goal of this case is to submit a heavy load to the connection module
of the DUT. The number of connections is gradually increased for each step.
In this case, the driver submits only one transaction per connection; Case #2:
The goal of this case is to submit a heavy load to the transaction module of the
DUT instead of the connection module. The number of transactions is gradually
increased for each step. In this case, the driver submits an increasing number of
transactions per connection (i.e., fixed number of connections).

4 Empirical Evaluation

We applied our approach to two DBMS running TPC-C: VoltDB 4.5 and Post-
greSQL 9.3. These subjects are selected for several reasons. First, both of them
are ACID open-source RDBMS. In addition, they have representative charac-
teristics of each category: PostgreSQL is a centralized disk-oriented DBMS and
9 p is defined by the least squares correlation coefficient [18].

“Overloaded!” — A Model-Based Approach to Database Stress Testing 217

VoltDB is a distributed in-memory DBMS. The experiment procedure has four
steps: (1) Submit the load condition, (2) Analyze the execution, (3) Collect the
code coverage data, and (4) Proceed to the comparative study.

The experiments are executed on a HPC platform [19]. We used two differ-
ent configurations: (1) 11 machines for PostgreSQL (one DBMS server and ten
testers) and (2) 13 machines for VoltDB (three DBMS server and ten testers).
Each machine has dual Xeon X5675@3.07 GHz with 48 GB of RAM running
Debian GNU/Linux and connected by the Infiniband QDR (40 Gb/s) network.
Our approach is implemented in Java 7. To collect the code coverage information
of PostgreSQL, we used the GNU/Gcov, which is supported by default by the
DBMS. For VoltDB, the code coverage is measured by Eclemma JaCoCo, since
the DBMS is implemented in Java.

The threshold values are specified in Table 2. They were set based on the
available hardware, the workload of our choice and the architecture of the DBMS.
For instance, VoltDB does not need threshold values for the warm-up and thrash-
ing states. Since VoltDB is an in-memory database, the warm-up process is
basically instant. The thrashing state was not observed on the VoltDB. The ts
threshold is limited by 90 % of the transaction rate acceptance and the tst is
limited by 10 % of the transaction acceptance rate compared to the previous
state “tpsup” (i.e., Under Pressure). For the tth, we used one second. The slide
window is set to 60 observations (i.e., p = 60).

Table 2. Threshold values for the state transitions. VoltDB does not need values for
the warm-up and thrashing states since this DBMS does not experience these states.

PostgreSQL VoltDB

tw 0.1 –

ts 0.9 0.9

tst 0.1 * tpsup 0.1* tpsup

tth 1 –

The remainder of this section is guided by four research questions that are,
respectively, related to: 4.1 performance results, 4.2 code coverage, 4.3 defects,
and 4.4 thrashing prediction.

4.1 Does DSM Properly Reflect Performance Behaviors of a DUT?

This is the baseline question since our approach assumes that the DUT follows
the DSM as designed. PostgreSQL experienced all the states of DSM as shown
in Fig. 6. It presented an unexpected behavior concerning the ability to maintain
a stable performance. During the execution of the workload case #1, the test
driver increased the number of connections sequentially as described in Sect. 3.3.
According to the specification of PostgreSQL, it can process 2,000 concurrent
connections (i.e., defined by the MAX CONNECTION configuration). However,

218 J.A. Meira et al.

Fig. 6. Performance results of PostgreSQL. Fig. 7. Performance results of VoltDB.

the DUT could not deal with any workload greater than 1,000 concurrent con-
nections as shown in Fig. 610. For the workload case #2, the test driver increased
the number of transactions with a fixed number of connections. PostgreSQL’s
behavior was more stable in this case and did not reach the thrashing state.
However, it stayed either in the under pressure or stress states.

VoltDB presented consistent results in terms of throughput stability. Thus,
the DUT was mostly either in the steady or under pressure states for both
workload cases (see Fig. 7). However, the connection module was forced into
stress state triggering a backpressure condition when applying the workload case
#1. This condition occurs when a burst of incoming transactions was sustained
for a certain period of time. This period must be sufficient to make the planner
queue full. More information about this condition will be described in Sect. 4.3.

A curious reader may ask what would happen if instead of using MoDaST,
we execute stress testing with a combination of standard benchmark on top
of a popular testing tool, like jepsen or jmeter. We call this combination as
baseline approach. By definition, this baseline approach considers performance
constraints to ensure the DBMS on the steady state during measurement time.
For example, one of the constraints defined by TPC-C as “Response Time” is:
“At least 90 % of all transactions of each type must have a Transaction RT less
than 5 s...”. Thus, it is not possible to explore any stress condition of the DUT,
since it never reached the under pressure nor the stress states. In both workload
cases, the baseline approach only contemplates the steady state.

Answer: MoDaST drove a DUT into each state of the DSM while the baseline
technique can only explore two initial states.

4.2 How Much Does Our Approach Cover the Source Code
of a DUT (i.e., Code Coverage)?

This question is about our assumption that some execution paths in DBMS
source code can only be explored when a certain amount of workload is requested.

10 The thrashing state is only observable in the workload case #1.

“Overloaded!” — A Model-Based Approach to Database Stress Testing 219

Fig. 8. Code coverage results of Post-
greSQL. This focuses on three major
modules: Free Space, Page, and Man-
ager.

Fig. 9. Code coverage results of VoltDB.
These packages are related to the concur-
rency control and server management

Figure 8 shows the code coverage results of PostgreSQL. Three packages pre-
sented a significant impact on the following modules: (i) Freespace that imple-
ments the seek for free space in disk pages; (ii) Page that initializes pages in
the buffer pool; and (iii) Manager that implements the shared-row-lock. The
coverage increased mainly during the two last states: stress and thrashing. It
occurs because those packages are responsible for managing disk page allocation
and the transaction lock mechanism. PostgreSQL needed to execute functions
dedicated to stress conditions to allocate extra resources and to deal with the
high concurrency when the number of transactions increases.

VoltDB showed a notable improvement of code coverage results as shown in
Fig. 9, even though it was not significant compared to that of PostgreSQL. We
observed the improvement in two packages: org.voltdb and org.voltdb.sysproc.
These packages manage the maximum number of connections and concurrent
transactions. The package “org.voltdb.sysproc” is related to the basic manage-
ment information about the cluster. The above-mentioned VoltDB classes were
not covered when applying the baseline approach. Basically, the warm-up and
steady states did not generate any concurrent condition. We see the same result
for PostgreSQL testing.

Answer: MoDaST allows to explore a larger part of source code of DUTs than
the baseline technique since a certain part of source code can be executed only
when pushing the DUT to heavy loads.

4.3 Does Our Approach Find Bugs?

This question is correlated to the previous one; if MoDaST can explore more
lines of code by submitting different load conditions, we may find new defects
located in functions dealing with stress conditions. During the experiments, we
found two potential defects (one from PostgreSQL and one from VoltDB) and
one new unreported major bug (VoltDB).

220 J.A. Meira et al.

We identified a performance defect of PostgreSQL, which is related to the
inability to deal with the incoming connections, mainly in the workload case #1.
Actually, the defect can be triggered either by transaction or connection flooding.
PostgreSQL implements a backend process to deal with the incoming clients.
Each client keeps one connection with the database. Thus, for each incoming
connection, the DUT starts a new backend process.

Moreover, each connection holds one or more transactions, which proceed
to modifications in the database. The modifications are made by insert and
update operations that compose each transaction. The DBMS configuration
allows to set the number of concurrent connections (i.e., MAX CONNECTIONS)
up to the resources limitations. In our experiments, the maximum value set for
MAX CONNECTIONS was 2,000. Despite of the limit, PostgreSQL was not
able to reach the number of 2,000 open connections at any time. As the number
of connections/transactions increases, PostgreSQL spends most of the compu-
tational power dealing with the table locks instead of creating new backend
processes. From the testing point of view, we consider a potential defect.

VoltDB experienced a backpressure condition by applying the workload case
#2. The increasing number of submitted transactions, via JDBC interface, fulfills
the planner queue limit (i.e., 250) and raised up the message below: (GRACE-
FUL FAILURE): ‘Ad Hoc Planner task queue is full. Try again.’ This
can be considered a potential defect11, once the planner queue is waiting for
VoltDB planner. The planner became full and started to reject new operations.

The code coverage also enabled to reveal a functional bug. Figure 10 shows
the code fragment where the defect was identified (Line 426). We reported this
bug12 to the developer community of VoltDB. This branch of code is responsible
for ensuring that the DUT does not accept more concurrent connections than the
maximum constraint allowed by the server resources. The bug rose up when our
approach led the DUT to the stress state, which exposed it to a race condition in
the connection module. The solution for this bug is to ensure that, even during
race conditions, the number of concurrent connections never goes beyond the
limit. Basically it should be guaranteed in the condition statement (i.e., IF) by
replacing “==” by “>=”. VoltDB developers created a bug report13 as a major
bug and promptly fixed after our reporting.

Answer: The MoDaST found and reproduced three potential defects and one of
them is confirmed as a major bug by the developers of VoltDB.

...
426 if (m_numConnections.get() == MAX_CONNECTIONS.get()) {
427 networkLog.warn(’’Rejected connection from ’’ +

...

Fig. 10. Example of bug only identified under stress conditions.

11 http://zip.net/bmps8J.
12 http://zip.net/byptRy.
13 https://issues.voltdb.com/browse/ENG-6881.

http://zip.net/bmps8J
http://zip.net/byptRy
https://issues.voltdb.com/browse/ENG-6881

“Overloaded!” — A Model-Based Approach to Database Stress Testing 221

4.4 Can Our Approach Predict Performance Degradation
(e.g., the Thrashing State)?

This question is necessary because performance prediction is one of the advan-
tages when using MoDaST. If the prediction is available, the DBA can apply
several solutions for preventing DBMS crashes. Our approach could predict the
thrashing states of PostgreSQL (see Fig. 6). However, due the instability of Post-
greSQL, it crashed immediately after detecting ϕ < tth. Thus, it is almost impos-
sible to take any action to avoid such a state. VoltDB never went to the thrashing
state under the two workload cases. This implies that ϕ � tth and VoltDB was
highly stable. It does not mean that our approach was not effective. Rather,
MoDaST correctly performed thrashing prediction for a stable DBMS. Due to
our limited resources, we could not significantly scale up the number transac-
tions. This remains as future work.

Answer: The thrashing prediction showed to be precise, even with: (1) Perfor-
mance instability of PostgreSQL; (2) Resources limitations to crash VoltDB.

5 Conclusion

In this paper, we presented a novel model-based approach to database stress
testing, MoDaST. It leverages a state machine to figure out the internal state of
DBMS at run time. We evaluated MoDaST on two popular DBMS: PostgreSQL
and VoltDB. Our results show that MoDaST can successfully infer their current
internal state based on the state model. We also found out that submitting a
high workload can lead to exercising the kernel in many different ways that is
not possible by the current testing tools. Consequently, we identified new bugs in
both DBMS. In particular, one of the bugs is already confirmed as “major bug”
and promptly fixed by the VoltDB hackers. Our future work includes applying
MoDaST to NoSQL and Streaming DBMS, since they implement different levels
of concurrency control for transaction processing and, therefore, require different
testing assumptions.

Acknowledgments. Supported by the Digital Inclusion Project: Ministry of Com-
munication of Brazil, National Research Fund of Luxembourg and CNPq grant
441944/2014-0.

References

1. Soror, A.A., Minhas, U.F., Aboulnaga, A., Salem, K., Kokosielis, P., Kamath, S.:
Automatic virtual machine configuration for database workloads. ACM Trans.
Database Syst. 35(1), 7:1–7:47 (2008)

2. Chang, J.W., Whang, K.Y., Lee, Y.K., Yang, J.H., Oh, Y.C.: A formal approach
to lock escalation. Inf. Syst. 30(2), 151–166 (2005)

3. Jain, R.: The Art of Computer Systems Performance Analysis - Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley Professional
Computing. Wiley, Hoboken (1991)

222 J.A. Meira et al.

4. Storm, A.J., Garcia-Arellano, C., Lightstone, S.S., Diao, Y., Surendra, M.: Adap-
tive self-tuning memory in DB2. In: Proceedings of the 32nd International Confer-
ence on Very Large Data Bases. VLDB 2006, pp. 1081–1092. VLDB Endowment
(2006)

5. Gray, J.: Why do computers stop and what can be done about it? (1985)
6. Willmor, D., Embury, S.M.: An intensional approach to the specification of test

cases for database applications. In: Proceedings of the 28th International Confer-
ence on Software Engineering, pp. 102–111. ACM (2006)

7. Deng, Y., Frankl, P., Chays, D.: Testing database transactions with agenda. In:
Proceedings of the 27th International Conference on Software Engineering. ICSE
2005, pp. 78–87. ACM, New York (2005)

8. de Almeida, E.C., Marynowski, J.E., Sunyé, G., Valduriez, P.: Peerunit: a frame-
work for testing peer-to-peer systems. In: Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineering. ASE 2010, pp. 169–170.
ACM, New York (2010)

9. DeWitt, D.J., Levine, C.: Not just correct, but correct and fast: a look at one of
Jim Gray’s contributions to database system performance. SIGMOD Rec. 37(2),
45–49 (2008)

10. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing. SoCC 2010, pp. 143–154. ACM, New York (2010)

11. Zhu, J., Mauro, J., Pramanick, I.: R-cubed (r3): rate, robustness, and recovery -
an availability benchmark framework. Technical report, CA, USA (2002)

12. Vieira, M., Madeira, H.: A dependability benchmark for OLTP application envi-
ronments. In: Proceedings of the 29th International Conference on Very Large Data
Bases, VLDB 2003, vol. 29, pp. 742–753. VLDB Endowment (2003)

13. Fior, A.G., Meira, J.A., de Almeida, E.C., Coelho, R.G., Fabro, M.D.D., Traon,
Y.L.: Under pressure benchmark for DDBMS availability. JIDM 4(3), 266–278
(2013)

14. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River (1991)

15. Bruno, N., Chaudhuri, S., Thomas, D.: Generating queries with cardinality con-
straints for DBMS testing. IEEE Trans. Knowl. Data Eng. 18(12), 1721–1725
(2006)

16. Lo, E., Binnig, C., Kossmann, D., Tamer Özsu, M., Hon, W.K.: A framework for
testing DBMS features. VLDB J. 19(2), 203–230 (2010)

17. Binnig, C., Kossmann, D., Lo, E.: Towards automatic test database generation.
IEEE Data Eng. Bull. 31(1), 28–35 (2008)

18. Radhakrishna Rao, C., Helge Toutenburg, S., Heumann, C.: Linear models and
generalizations, least squares and alternatives, 3rd edition. AStA Adv. Stat. Anal.
93(1), 121–122 (2009)

19. Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an academic
HPC cluster: The UL experience. In: Proceedings of the 2014 International Confer-
ence on High Performance Computing & Simulation (HPCS 2014), Bologna, Italy.
IEEE, July 2014

A Cost Model for DBaaS Storage

Djillali Boukhelef1, Jalil Boukhobza2(&), and Kamel Boukhalfa1

1 University of Science and Technology Houari Boumediene, Algiers, Algeria
{dboukhelef,kboukhalfa}@usthb.dz

2 UMR 6285, Lab-STICC, Univ. Bretagne Occidentale, Brest, France
boukhobza@univ-brest.fr

Abstract. Cloud infrastructures employ hybrid storage systems that incorporate
various types of devices (flash memory solid-state and hard disk drives). Dealing
with such heterogeneity makes the use of data placements strategies necessary.
These strategies generally rely on cost modeling techniques. In this paper, we
propose a cost model for the storage of database objects in a Cloud infras-
tructure. Our cost model increments the existing work by including: (1) storage
cost, which comprises the occupation, the energy and the endurance costs,
(2) the penalty cost that could arise from the SLA (Service Level Agreement)
violation, and (3) the migration cost resulting from the object movement
between storage systems. We also evaluate the relevance of our model and its
usability throughout examples.

Keywords: Cloud � DBaaS � Cost model � Storage system � Database � SLA

1 Introduction

Over the last few years, there was a high demand of outsourcing database to cut IT
costs. As a result, many Cloud service providers (CSP) started offering Database-as-a-
Service (DBaaS) to their customers, such as Amazon RDS and Microsoft Azure. It is
then challenging for the CSP to satisfy customers’ requirements while minimizing the
overall cost. To address this challenge, several technologies and strategies have been
employed. From a storage perspective, the efficient use of hybrid storage systems (flash
memory solid-state and hard disk drives) [1–8] is one of the most critical issues.

In a DBaaS context, each customer is associated with a Service Level Agreement
(SLA) that defines the amount of allocated resources, and the expected quality of
service (QoS). The infrastructure SLA includes the metrics that quantify resources
allocated, for instance CPU, RAM, and storage (IOPS). The violation of SLA terms
results in customer dissatisfaction and is subject to penalty for the CSP. The penalty
amount depends on many factors such as the violation degree and time. Therefore, the
CSP must allocate the resources in a manner to satisfy the agreed upon SLA. In our
study, we focus on storage system I/O throughput metric (IOPS).

I/O operations have always been considered as the main computer system bottle-
neck [9]. In addition, as reported in [10], the I/O access time represents almost 90 % of
the transaction execution time in some database requests. Flash memory technology
came to partly bridge the performance gap between main memory and Hard Disk

© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 223–239, 2016.
DOI: 10.1007/978-3-319-44403-1_14

Drives (HDD). It has very appealing properties: low access latency, low energy con-
sumption, light weight, and shock resistance [8]. But still, HDD are not dead, as flash
memory based drives (Solid State Drive –SSD) are about 10 times more expensive than
HDDs. There are mainly two ways for architecting hybrid storage system: (1) a vertical
integration, or tiered architecture in which SSDs tier is used as a cache for the HDD tier
[2, 3, 11], and (2) a horizontal integration where HDDs and SSDs are put at the same
level with HDDs [1, 4, 7, 8, 12–14]. We use this latter architecture in the scope of our
study.

In order to optimize I/O performances in such hybrid systems, CSP needs to
investigate objects placement strategies to reduce the overall operation cost while
satisfying customers SLA. To do so, an accurate evaluation of the storage cost of
database object placement over the available storage devices is required.

Several state-of-the-art work have proposed models to evaluate the storage system
cost and are summarized in Table 1. We structured state-of-the-art contributions
according to four parameters that, in our opinion, must be considered: (1) the storage
cost, taking into account occupation, endurance (or wear out), and energy, (2) the
penalty cost in case of SLA violation, (3) the migration cost in case a migration
happens because of a workload change for instance, and (4) the database application
specificities. While we think that considering penalty is crucial in cost modeling in a
Cloud context, there are few contributions of cost models taking this parameter into
account. We can also observe that very few cost models are related to a DBaaS context,
they mainly focus on Virtual Machine (VM) placement. In a DBaaS context, each
customer has a set of database objects (e.g. a table, an index) that can be independently
stored. Note that there exist other related work that proposed to overcome the data
migration issue from a performance perspective [5, 6, 15–17]. Nevertheless, they do
ignore the cost induced by such operation, for instance the storage, penalty, and even
migration costs.

In this paper, we propose a detailed cost model to evaluate the overall cost of data
placement in a DBaaS Cloud context. Our cost model includes the storage system cost,
the workload cost (energy cost, endurance cost, penalty cost) and the migration cost.
Note that our cost model takes into account the impact of migration order.

The rest of paper is organized as follows: in Sect. 2, we formulate the problem.
Then we present our cost model in Sect. 3 and we evaluate it in Sect. 4. In Sect. 5, we
introduce the related work. Finally, Sect. 6 concludes the paper.

Table 1. Related work

224 D. Boukhelef et al.

2 Problem Definition

CSP manages a set of customers U ¼ fu1; u2; . . .; ukg. Each customer uk has: (1) a
database instance, which consists of a set of objects Ouk (2) an I/O workload wuk , (3) a
requested I/O performance in terms of IOPS noted iopssla;uk , and (4) a penalty function
pnuk . The database objects are placed in a hybrid storage system with devices of
different characteristics.

A Cloud administrator needs to find the right object placement on the hybrid
storage system to meet customers’ requirements. Two issues need to be considered:
(1) the initial placement for storing new customer’s objects, (2) a dynamic placement
(migration) where the CSP can move objects from an initial placement, to a new one.
The first case being a subcase of the second, we focus on the more general case of
dynamic placement.

In our model, we suppose that periodically, the Cloud administrator takes decisions
about object migration. We defined an evaluation period T: which is the period of
time over which the overall cost for a placement is evaluated and decision about object
migration can be taken.

We assume that migration process is run as a background process without affecting
performance of foreground workloads (I/O operations on database objects). To this end,
we considered that migration process consumes only the remaining I/O resource per-
formance as in [12, 16]. We also consider that migrations are serialized with respect to
a given storage device, which means that each object migration consumes all the
available I/O resource performance on a given device. Note that when applying a given
number of migrations in a period T, even though each migration cost for a specific
object is constant, the overall storage cost of migrations depends on the order upon
which the migrations are performed. If a given migration is performed in the beginning
of a period, the overall storage cost will be mainly related to the destination device,
while if the migration is performed at the end, the storage cost will be mainly related to
the source device.

In Appendix A, we declared variables used in this paper.
In the following, we define the main aspects of our problem: Cloud customer,

database objects, customer workloads, I/O system, customer requirements, placement,
migration, evaluation period and monitoring.

Cloud Customer: We call a Cloud customer uk any entity that hosts externally their
database in a Cloud. An SLA agreement must be concluded between the customer and
CSP to define the expected QoS.

Object: Each customer uk has a database that consists of a set of objects Ouk ¼
fo1;uk ; . . .; oi;ukg. We denote soi;uk the size of object oi;uk . In this work, an object is any
logical entity of a database such as index, table, materialized view, log, sequence, etc.
A database object can be composed of one or more physical files. We consider the data
placement and the data migration at a granularity of a database object. Using a smaller
granularity (e.g. block) would increase the volume of metadata, the processing time,
and the complexity, while using a virtual machine (VM) granularity as in [7] is not
optimal for DBaaS context.

A Cost Model for DBaaS Storage 225

Workload: Each customer uk generates a workload wuk that is modeled by a set of
query sequence, wuk ¼ fq1;uk ; . . .; qn;ukg. The customer workload generates a set of I/O
operations. In our work, we distinguish four types of I/O operations: random read (rr),
sequential read (sr), random write (rw), and sequential write (sw). We denote OP ¼
frr; sr; rw; swg the set of I/O operation types.

I/O System: We assume that the I/O system consists of set of storage devices
D ¼ fd1; d2; d3; . . .; djg. Each storage device dj has a capacity cdj , purchase cost pdj ,
and wear out wodj . We denote top;dj (respectively iopsop;dj) the response time (respec-
tively maximum throughput) of device dj for I/O operations of type op. Note that the
I/O system is shared between the cloud customers, and the customer objects can be
distributed among several storage devices.

Customer Requirements: Each customer uk has a storage related performance
requirement. As a case of study, we used the frequent IOPS metric. We denote iopssla;uk
the expected IOPS of customer uk. Let us denote iopsoffered ukð Þ the IOPS delivered by
the CSP to customer uk . Our approach can easily be extended to other performance
metrics such as data transfer rate. The violation of customer requirements implies a
penalty calculated using a function pnuk that takes as input the iopsofferedðukÞ.
Placement: We define a placement as a mapping from a set of objects O;O ¼SK

k¼1 Ouk ¼ oi;uk j9!Ouk ; oi;uk 2 Ouk

� �
to set of devices D. We note that the mapping

function pl oi;uk
� �

indicates the storage device dj which stores the object oi;uk . A valid
object placement must conform to the capacity and the performance constraints of each
storage devices dj in D. We denote Odj the set of objects hosted on device dj,
Odj ¼ foi;uk jpl oi;uk

� � ¼ dj; dj 2 D; oi;uk 2 Og.
Migration: The migration is the process that consists in moving a subset of objects
among the storage devices D to achieve the target placement from an initial placement.
Let us denote Omv;Omv�O the set of objects to move. We use omvm;ds;dd (respectively
M) to refer the mth object (respectively the cardinality) of Omv;Omv ¼ omv0;ds;dd ;

�
omv1;ds;dd ; . . .; omvm;ds;ddg. We note that ds; dd represent respectively source and desti-
nation device, ds; dd�D; ds 6¼ dd . We assume that objects are moved following an order
defined by the administrator.

Monitoring and Trace: To evaluate the storage cost of placement the Cloud
administrator needs to extract the I/O access pattern of each object oi;uk of the previous
period. The monitoring phase outputs the average number of I/O requests of type op
delivered to object oi;uk in a period T. Let us denote it reqop;oi;uk :

Problem Formulation: In the following, we formally define our problem:
Input: (1) set of storage devices D, where each device dj has a capacity cdj , pur-

chase cost pdj , wear out wodj , response time top;dj , maximum IOPS iopsop;dj (2) a set of
customers U ¼ fu1; . . .; ukg, where each customer uk has a set of objects
Ouk ¼ fo1;uk ; . . .oi;ukg, a workload wuk ¼ fq0;uk ; . . .; qn;ukg, an agreed upon IOPS
iopssla;uk , a penalty function pnuk (3) a Target placement, with an initial placement (4) a

226 D. Boukhelef et al.

Period T , (5) for each object oi;uk , the average number of I/O requests reqop;oi;uk (6) a set
of objects to move Omv according to a well-defined order.

StorageConstraint: Capacity: 8dj 2 D; ð
X

oi;uk2Odj

soi;uk Þ� cdj

Performance: 8dj 2 D;
X

op2OP

P
oi;uk2Odj

reqop;oi;uk
iopsop;dj

 !
� 1

Output: The overall monetary cost of placement for a given period T (Costpl;T). So
far, we formulated our problem. In the next section, we define our cost model.

3 Cost Model

In the following, we provide a cost model to evaluate the overall cost of a placement for
a given period T (Costpl;T). We compute the cost by assuming that target placement is
obtained by moving M objects from current placement. Note that, serialize the
migration ofM objects generates sequence ofMþ 1 placements. Thus, we compute the
Costpl;T from the sum of placement costs (Costpl;tmÞ as shown in (1). We called Costpl;tm
(respectively tm) the placement cost in the period tm (respectively migration time of mth

object).

Costpl;T ¼
XM
m¼0

Costpl;tm ð1Þ

As shown in Fig. 1, we assume that the placement cost is obtained from storage
system cost (Coststg;T), penalty cost (costpnl;T), and migration cost (Costmgr;T), see (2).
Note that for an initial placement, the migration cost is nil. All the notations used are
described in the Appendix.

Costpl;T ¼ Coststg;T þCostpnl;T þCostmgr;T ð2Þ

Placement Cost

Storage cost

I/O
Workload Cost

Penalty
Cost

Occupation
Cost

Energy
Cost

Migration Cost

Endurance
Cost

Migration
Workload Cost

Energy
Cost

Endurance Cost

Fig. 1. Our cost model hierarchy

A Cost Model for DBaaS Storage 227

3.1 Storage System Cost

The storage system cost includes three components: (1) the occupation cost, (2) the
workload cost, and (3) the management cost. The occupation cost (Costoccp;T) repre-
sents the cost of storing the database objects over all the storage system. The workload
cost (Costw;T) is related to the required performance to handle I/O requests issued to
database objects.

Note that there are other additional costs which are not closely related to the
database objects placement such as maintenance cost, human resources cost, air-
conditioning costs. These costs are integrated in one global cost called management
cost (Costmng;T). We used a fixed estimation for the Costmng;T as in [2, 7]. Equation (3)
shows the total cost of storage system.

Coststg;T ¼ Costoccp;T þCostw;T þCostmng;T ð3Þ
Occupation Cost. We calculate the occupation cost of storage system as the sum of
I/O device occupation costs as shown in Eq. (4). We compute the I/O device occu-
pation for a given period T as the multiplication of the amortized cost of device dj over
that period, by the fraction of capacity occupied by the objects.

Costoccp;T ¼
XJ
j¼1

P
oi;uk2Odj

soi;uk
cdj

 !
� Costamz;T dj

� �� � !
ð4Þ

We obtain the amortized cost of device dj for a given period T as the multiplication
of amortized cost over one unit of time (Costamz;1) by period T as shown in (5). Note
that we calculate Costamz;1 by distributing the purchase cost pdj of I/O device dj over
amortization period representing the guarantee period (e.g. 5 years).

Costamz;T dj
� � ¼ T � Costamz;1 dj

� � ð5Þ

Workload Cost. Processing I/O requests consumes energy and affects the devices
endurance. Therefore, we summarize the workload cost as the sum of energy and
endurance costs as shown in (6). The energy cost (Costerg;T) represents the energy
consumed by the storage system to handle the I/O requests in a period T , while the
endurance cost (Costedr;T) represents the wear out caused by the I/O workload.

Costw;T ¼ Costerg;T þCostedr;T ð6Þ

Energy Cost. The energy cost is the multiplication of: (1) energy consumed by the
storage system over the period T (Ess;T), and (2) the energy unitary price (Eup), as
shown below.

Costerg;T ¼ Ess;T � Eup ð7Þ

The energy unitary price is defined by local electricity authority. In this paper, we
assume it to be fixed. We consider the energy consumed by the storage system (Ess;T)
as the sum of the energy consumed by the storage devices (Ed;T).

228 D. Boukhelef et al.

Ess;T ¼
XJ
j¼1

Ed;T dj
� �� � ð8Þ

We compute the device storage energy (Ed;T) for a given period T as the integral of
device power P over this period:

Ed;T dj
� � ¼ Z

T

PðdjÞ ¼ PðdjÞ � T ð9Þ

A storage device has several power states which change according to its activity.
We distinguish three states for HDD (standby, idle, active), with the respective power
consumptions: Patv;Pidl;Psdb. Where Patv [Pidl [Psdb because of the mechanical
movements induced. Several studies noticed that spinning down an idle disk is not very
effective in server workloads [20–22]. Thus, we only distinguish two states: active and
idle. Note that SSDs have similar number of states, but have no moving parts. Equa-
tion (10) shows the power consumption of device dj. The values of Patv;dj , Pidl;dj are
obtained from device specifications data sheets.

PðdjÞ ¼ Patv;dj where state ¼ active
Pidl;dj where state ¼ idle

�
ð10Þ

In this paper, we used a power model that considers constant power values for a
given device that do not depend on the workload pattern like it was proved in [7]. Note
that from (9) and (10), we calculate Ed;T dj

� �
as:

Ed;T dj
� � ¼ Patv;dj � tatv dj

� �� �þ Pidl;dj � tidl dj
� �� � ð11Þ

tatv represents the time needed to run the I/O workload issued to the device for all
contained objects, while tidl represents the inactivity time. We obtain tidl by subtracting
tatv from T (tidl dj

� � ¼ T � tatv dj
� �

). Therefore, by substitution, we formulate the energy
cost consumed by a storage system as follows:

Costerg;T ¼
XJ
j¼1

Patv;dj � tatv dj
� �� �þ Pidl;dj � tidl dj

� �� �� �" #
� Eup ð12Þ

As shown in (13), we calculate the device active time from the device response time
top;dj and the number of issued I/O operations.

tatv dj
� � ¼ X

oi;uk2Odj

X
op2OP

top;dj � reqop;oi;uk � T
	
 !

ð13Þ

The value of reqop;oi;uk is obtained from a monitoring phase, while the value top;dj is
measured in a calibration phase (see Sect. 4.1).

A Cost Model for DBaaS Storage 229

Endurance Cost. We calculate the storage system endurance cost for a given period
T as the sum of storage devices endurance costs (Costedr;d;T) shown in Eq. (14).

Costedr;T ¼
XJ

j¼1
Costedr;d;T dj

� � ð14Þ

The Costedr;d;TðdjÞ represents the monetary cost of workload impact on the lifetime
of the device dj as shown in (15). Let us define the workload impact by the ratio

wow djð Þ
wodj

� �
. Therefore, we compute Costedr;d;TðdjÞ by multiplying this ratio by the

purchase cost of a device as in [2].

Costedr;d;T dj
� � ¼ pj �

wow dj
� �

wodj

� �
ð15Þ

Note that the values wodj , wow dj
� �

are specific to each device dj. We evaluated SSD
lifetime (wodj) by the total amount of write operations that it can sustain as in [2].
However, it is more complex to define the HDD wear out. Historically, several studies
used the number of duty cycle to represent the HDD endurance [2, 7, 23]. Nowadays,
HDD manufacturers replaced the concept of start-stop cycle with the readily quan-
tifiable workload, which is defined as the total amount of data read from (or written to)
the device. Therefore, we calculate wodj (respectively wow dj

� �
) of device dj as shown

in (16) (respectively (17)).

wodj ¼
total bytes written if dj 2 SDDf g
workload limit if dj 2 HDDf g

�
ð16Þ

wow dj
� � ¼

P
oi;uk2Odj

P
op2 rw;swf g

iosize � reqop;oi;uk � T
	
 !

if dj 2 SDDf g

P
oi;uk2Odj

P
op2OP

iosize � reqop;oi;uk � T
	
 !

if dj 2 HDDf g

8>>>><
>>>>:

ð17Þ

The total_byte_written and workload_limit are available in the disks datasheet.
Note that both the occupation cost defined in (4) and the endurance cost introduced

in (14) evaluate data placement impact on the device lifetime. Thus, the Cloud
administrator should consider only the maximum value.

3.2 Penalty Cost

We calculate the penalty cost of a storage system for a given period T (Costpnl;T) as the
sum of customers penalties (Costpnl;u;TðukÞ) in this period as shown below.

Costpnl;T ¼
XK
k¼1

Costpnl;u;T ukð Þ� � ð18Þ

230 D. Boukhelef et al.

Nowadays, pricing models and SLA templates become more complex. Three types
of penalty have been proposed in the literature as in [24]: (1) Fixed Penalty: a fixed
penalty is applied if the SLA clauses are violated (2) Delay-dependent Penalty: The
amount of penalty is related to the violation time (3) Proportional Penalty: the penalty
is proportional to the delay and the degree of SLA violation. Note that the amount of
penalty will be deduced from the customer’s bill. We used proportional penalty in this
work as it considers more parameters related to the violation. The amount of penalty

will be proportional to rate of violation iopsoffered;uðukÞ
iopssla;uk

	

and the period T . Therefore, for

each customer uk we calculate the penalty Costpnl;u;TðukÞ as follows:

Costpnl;u;T ukð Þ ¼ pnk
iopsoffered;uðukÞ

iopssla;uk
; T

� �
ð19Þ

The penalty function pnuk and iopssla;uk value are defined in the SLA. While the
iopsoffered;uðukÞ value is calculated from the time needed to handle the I/O workload of
customer uk (texe;uðukÞ) and the total number of I/O requests issued to their objects
(iotot;uðukÞ):

iopsoffered;uðukÞ ¼ iotot;u ukð Þ
texe;u ukð Þ ð20Þ

We obtain texe;uðukÞ from the number of I/O requests issued to the objects and the
device response time as shown in (21). Note that xdj ¼ 1 if pl oi;uk

� � ¼ dj; 0 else

texe;u ukð Þ ¼
XJ
j¼1

X
oi;uk2Ouk

X
op2OP

xdj � top;dj � reqop;oi;k � T
� � ð21Þ

We calculate iotot;uðukÞ from the sum of I/O requests issued to the customer’s
objects:

iotot;u ukð Þ ¼
X

oi;uk2Ouk

X
op2OP

T � reqop;oi;uk
 !

ð22Þ

3.3 Migration Cost

Migration consists of reading the object oi;uk from a source disk ds and writing it to a
destination disk dd . This workload causes additional I/O traffic that decreases the
lifetime of both disks ds, dd and increases their energy consumption. Then, we calculate
the migration cost as the sum of the endurance cost and energy cost for ds and dd .

Costmgr;T ¼ Costedr;d;T dsð ÞþCostedr;d;T þ Ed;T dsð ÞþEd;T ddð Þ� � � Eup
� � ð23Þ

A Cost Model for DBaaS Storage 231

In order to calculate this cost, we only need to determine the migration time as the
equations for the endurance and energy have already been introduced. The Costedr;d;T ,
Ed;T are calculated as shown in Eqs. (15) and (12) respectively. We assume that the
migration workload consists of x I/O sequential read operations from source disk ds and
x I/O sequential write operations to the destination disk dd . Indeed, fragmentation of
objects is supposed to be low which corresponds to reality:

x ¼ soi;uk
iosize

ð24Þ

We calculate the migration time (tm) as the maximum between the read and write
time of object as the write and reads are pipelined.

tm ¼ max x � tsr;ds ; x � tsw;dd
� � ð25Þ

4 Experimentation

In this section, we evaluated the effectiveness of the proposed cost model. First, we
show the usability of our cost model by explaining how to obtain the input values.
Second, we discuss the relevance of each sub cost used in our cost model and compare
our results with the output of state-of-the-art cost models for databases built using
TPC-H and TPC-C benchmarks.

Experimental Platform Architecture. As shown in Fig. 2, our VMs run on top of
VMware hypervisor. We built a simple storage system consisting of an HDD and an
SSD. We developed a kernel module, like in [27], that captures the I/O requests issued
to the different I/O devices in order to infer I/O access patterns. The module consoli-
dates the information collected at object level and logs the result in a file. Note that our
tool traces below the RDBMS buffer and kernel page cache to avoid the caching
impact.

Fig. 2. Experimental platform architecture

232 D. Boukhelef et al.

Experimental Setup. All of experiments were performed in VMs ran on top of
VMware ESXi-5.1.0 server. Each VM is configured with 8 vCPU and 8 GB of RAM.
Note that only one VM is running at a time. The hypervisor ESX hosted on a server
with a CPU Intel Xeon 2.4 GHz and 12 GB of RAM. We used Debian 7.5 (kernel
3.19.5) and RDBMS PostgreSQL 9.3.5. Table 2 details the storage devices
characteristics.

4.1 Cost Model Usability

This part presents a use case of the proposed cost model. We show first how to obtain
the input values used in our cost model, and then we detail the calibration phase
required to get some specific input values.

Cost Model Input Values. Several input parameters are employed in our cost model
(see Sect. 2). We classify them into four categories based on from where one can gather
their values: (1) storage device datasheet: contains pdj , cdj , wodj ;Patv;dj , and Pidl;dj as
shown in Table 2, (2) I/O tracer: as will be explained farther, we developed an I/O
tracer allowing to output reqop;oi;uk and seekdj , (3) Calibration phase: is executed so that
to get accurate devices performance characteristics (top;dj , iopsop;dj) for each operation
type op 2 OP, this phase will be discussed in more detail in the next section. (4) Cloud
administrator: has access to system metadata to obtain customers and objects infor-
mation such as (uk; iopssla;uk ; pnuk ; Ok; oi;uk ; and soi;uk).

Calibration Phase. We follow the same method described in [4, 25] to measure
storage devices response time (top;dj). Note that we experimented using the default I/O
database block size. Table 3 shows our results. We observe that SSD response time is
stable, and the measured values are very close to the average. Thus, we compute top;dj
from the average response time from measurements. Note that we used a device fill rate
value of less than 50 %, as in [13]. HDD response time is rather stable for sequential
access due the impact of data location (outer/inner tracks). In our cost model, we used
the average response time. However, for random access on HDD, we observe a high
instability due the impact of seek distance. To overcome this situation, we have con-
ducted a study to explore the impact of seek distance on the device response time. We
confirmed that response times increase linearly with average seek distance. Thus, we

Table 2. Devices specifications

Table 3. Devices response times

A Cost Model for DBaaS Storage 233

used linear regression to define response time based on average seek distance as shown
in Eq. (26) for the used disk. This simple model showed an average error of ±3.11 %
and a maximum of ±11 %.

u seekj;t
� � ¼ tres;j;op ¼

4:98ms if seekj;t\0:5GB
0:058 seekj;t

� �þ 5:56 seekj;t 2 0:5; 150½ �GB
15ms if seekj;t [150GB

8<
: ð26Þ

4.2 Cost Model Evaluation

Experiments Description. We applied our cost model to estimate the placement cost
of several databases built using the conventional TPC-H and TPC-C benchmarks. We
varied the size and the workload of the databases to simulate real environment. In this
evaluation, the amortized cost shown in Table 4 is computed by distributing the pur-
chase cost of the storage device over a period of 5 years as in [18], and the energy cost
is computed using a cost of 0.1$ per kWh as in [13]. Obviously, the migration cost
depends on the migration frequency and the amount of the data migrated. We assume
that the migration is performed at frequency of twice per day as in [6]. The amount of
penalty is calculated as thirty percent (30 %) of the total charges paid by client as in
Amazon Cloud. Note that we present results based on the real purchase cost of storage
devices. The TPC-H databases are populated using DBGen with a scale factor of 30,
100, and 300. The workload is generated randomly from the 22 TPC-H query template
as in [4]. The TPC-C databases were populated using scale factor of 12, 350, and 800
warehouses. We varied query arrival rates for TPC-H workload and the number of
terminals/warehouse (or think time) for TPC-C workload to generate different work-
loads. We used our I/O tracer to extract the I/O access pattern of databases objects. We
estimated the HDD response time for random access using Eq. (26). Table 3 below
shows the databases access pattern of one hour and the different monthly costs.

Discussion. We show, from Table 4, that all the evaluated costs are in the same order
of magnitude and the dominant costs vary according to the database size, the workload
pattern, and storage device. We observe that occupation cost increases the operating
cost for large databases infrequently accessed (see DB4, DB6). We take as example
OLAP databases occasionally requested. However, the endurance cost becomes the
most significant for small databases which have I/O intensive workloads (see DB2,
DB3). One example is OLTP databases. We observed that the energy cost constitutes 5
to 28 % of the overall cost for the databases placed in the HDD (see DB1 and DB5).
The endurance cost can represent up to 90 % of the total cost for databases with
intensive write workload placed in SSD. Moreover, the Cloud administrator should be
attentive to the migration cost that can easily explode when large quantity of data is
selected to move (see DB4). Note that the migration order affects the overall cost. Our
experimentations show that the impact of move order represents between 0.5 to 8.25 %
of the overall cost. On the other hand, we see that penalty cost is very large and it can
achieve 80 % of the overall cost. That is, it becomes one of the biggest concern of the
CSP [26].

234 D. Boukhelef et al.

From the discussion above, we demonstrated that for an accurate estimation of the
placement cost all the considered parts of our cost model can have a significant impact
depending on the overall configuration. Note that the aforementioned evaluation is far
smaller in scale than real data centers.

Comparison with State-of-the-Art Cost Model. In the second part of Table 4, we
show a comparison between our results and the output costs of the previous cost
models. We see that [2, 4, 12–14, 18] propose cost model to accurately estimate the
operating cost by combining occupation cost, energy cost, and endurance. Unfortu-
nately, they ignore penalty cost which is a very impacting parameter. We observe that
using such cost models leads to inaccurate cost estimation which can reach �80%
difference in the worst case. In [7], the authors propose a cost model that includes
penalty and migration cost. However, it ignores the occupation cost and the impact of
migration order. The proposed cost model results in an estimation error (compared to
ours) between 7 % and 80 % as shown in Table 4. The error increases linearly with
database size. Note that this cost model ignores also the impact of migration order with
can constitutes 8.25 % of the overall cost in the examples discussed above.

5 Related Work

Our work relies upon previous research on storage system cost models, database
objects placement, hybrid storage system management and data migration policy. We
classify the related work in three classes.

Storage System Cost Model. Many researchers have made great efforts to estimate the
cost of hybrid HDD/SSD storage systems or, more generally, the cost of I/O system
[1, 2, 4, 12, 13, 18, 19] as illustrated in Table 1. Most of them represent the overall cost
of the storage system by the sum of occupation cost (or purchase cost) and energy cost
[4, 12, 13, 18], while others only use endurance cost [1], or the purchase cost [19].

Table 4. Cost simulation (for one month in $)

A Cost Model for DBaaS Storage 235

In [7], the authors use the cost arising from I/O workload issued. Other work consider
the overall cost of the storage system as the sum of purchase cost, energy cost, and
endurance cost as in [2], however, they do not consider customer’s SLA and thus
cannot be applied as is.

Migration. A large literature explores the data migration issue in hybrid storage [5, 6,
15–17]. The objective of those works is choosing the data to move to optimize per-
formance and moving it without impact on foreground I/O performance. Unfortunately,
they do not use a detailed storage cost and do ignore the penalty cost. In [7], authors
attempt to propose cost model for VM placement by including both migration cost and
storage cost. However, they propose a too simple model for migrations.

Penalty. Few related work include the storage system penalty in the evaluation of the
overall cost of placement. The work that is the most related to ours is [7]. They define a
cost model for VM Storage in Cloud which includes the storage penalty caused by the
violation of I/O constraints defined in SLA. However, this cost model is not applicable
in a data base context.

6 Conclusion and Future Work

In this paper, we introduced a new accurate storage cost model to evaluate database
objects placement in a DBaaS applications. Our model complement existing model
taking into account: (1) the customers SLA constraints, (2) the extra penalty cost,
(3) Migration cost, and (4) the impact of the objects migration order in the estimation of
overall cost.

The proposed cost model can be used in number of key areas such as: (1) Pricing
strategy to evaluate precisely the overall cost of storage system; (2) Placement
strategies to find the optimal placement of objects and (3) Resources allocation to
effectively allocate the I/O resource to Cloud’s customers. While we have focused on
HDD/SSD storage system in this paper, our model can be easily generalized to be
applied for other new storage class devices. In our experimentations, we demonstrated
the usability and relevance of our cost model.

In future work, we plan to use our cost model within Framework based on the
MAPE-K autonomic loop. The framework aims to place and automatically migrate the
objects across the different storage devices (HDD/SSD) to adapt to the workload
fluctuation.

We would like to investigate some issues related to our cost model in future works.
The proposed cost model has not considered the case of distributed storage system, as
result it ignores network related costs. So the cost model can be updated to suit large
distributed storage systems.

Acknowledgement. This work is supported by the PHC (Partenariat Hubert Curien) Tassili
GHEEMaS project (number 16MDU964).

236 D. Boukhelef et al.

Appendix A: Notations

Variable Description

Customers
U,uk The set of customer in cloud, kth customer in cloud k 2 f1;Kg
wuk The workload of customer uk
pnuk The penalty of customer uk
iopssla;uk The IOPS SLA of customer uk
iopsoffered;uðukÞ The IOPS offered to customer uk in the period T

texe;uðukÞ The time need to handle the I/O workload of customer uk
ioreq;uðukÞ The total number of the IO requests issued from customer uk
Objects
O;Ouk The set of cloud objects, The set of objects of customer uk
Odj The set of objects hosted in device dj
oi;uk , soi;uk The ith object of customer uki 2 f1; Ig, its size
reqop;oi;uk The average IOPS of type op issued to the object oi;k
Migration
Omv; omvm;ds;dd The set of objects to move, the mth objects to move
promvm The priorty of mth objects to move

Devices
D, dj The set of device, The jth device j 2 f1; Jg
pdj ,cdj ,wodj The price, The capacity, The wear out of device dj
iopsop;dj The max throughput of device dj for operation type op

top;dj The response time of device dj for operation type op

tatvðdjÞ,tidlðdjÞ The active time, the idle time of device
seekdj The average seek distance of device dj

msrop;dj The set of experimental measures taken for the device dj and I/O operations of
type op

wow The impact of workload on the lifetime of device
Ess;t,Ed;t,Eup storage system energy, device energy, energy unit price

P;Patv;dj ,Pidl;dj The power, the active power, the idle power of device dj
General
iosize The size of I/O block (database block)
T Period of time
op op�OP;OP ¼ frr; sr; rw; swg,rr:random read. sr: sequential read,rw:

random write, and sw:sequential write.
Cost notations
Costpl;T The placment cost for given period T

Coststg;T The storage cost for given period T

Costpnl;T The penalty cost for given period T

Costpnl;u;TðukÞ The penalty cost of customer uk for given period T

(Continued)

A Cost Model for DBaaS Storage 237

(Continued)

Variable Description

Costmgr;T The Migration Cost for given period T

Costmng;T The Management Cost for given period T

Costoccp;T The occupation cost for given period T

Costw;T The workload cost for given period T

Costamz;T The amortized cost for given period T

Costamz;1 The amortized cost for one unite of time
Costerg;T The energy cost for given period T

Costedr;T The Endurance cost of stotage system for given period T

Costedr;d;TðdjÞ The endurence cost of device dj for given period T

References

1. Cheng, Y., Iqbal, M.S., Gupta, A., Butt, A.R.: Pricing games for hybrid object stores in the
cloud: provider vs. tenant. In: 7th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 2015) (2015)

2. Li, Z., Mukker, A., Zadok, E.: On the importance of evaluating storage systems’ $costs. In:
6th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 2014)
(2014)

3. Cheng, Y., Iqbal, M.S., Gupta, A., Butt, A.R.: CAST: tiering storage for data analytics in the
cloud. In: Proceedings of the 24th International Symposium on High-Performance Parallel
and Distributed Computing (2015)

4. Zhang, N., Tatemura, J., Patel, J.M., Hacigümüş, H.: Towards cost-effective storage
provisioning for DBMSs. Proc. VLDB Endow. 5, 274–285 (2011)

5. Tai, J., Sheng, B., Yao, Y., Mi, N.: Live data migration for reducing SLA violations in
multi-tiered storage systems. In: 2014 IEEE International Conference on Cloud Engineering
(IC2E), pp. 361–366 (2014)

6. Zhang, G., Chiu, L., Liu, L.: Adaptive data migration in multi-tiered storage based cloud
environment. In: 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD),
pp. 148–155 (2010)

7. Ouarnoughi, H., Boukhobza, J., Singhoff, F., Rubini, S.: A cost model for virtual machine
storage in cloud IaaS context. In: 2016 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), pp. 664–671 (2016)

8. Boukhobza, J.: Flashing in the Cloud: Shedding some Light on NAND Flash Memory
Storage Systems. IGI Global, Hershey (2013)

9. Shriver, E.: Performance modeling for realistic storage devices (1997)
10. Sharaf, M.A., Chrysanthis, P.K., Labrinidis, A., Amza, C.: Optimizing I/O-intensive

transactions in highly interactive applications. In: Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, pp. 785–798. ACM, New York (2009)

11. Oh, Y., Choi, J., Lee, D., Noh, S.H.: Caching less for better performance: balancing cache
size and update cost of flash memory cache in hybrid storage systems. In: FAST (2012)

12. Guerra, J., Pucha, H., Glider, J.S., Belluomini, W., Rangaswami, R.: Cost effective storage
using extent based dynamic tiering. In: FAST, pp. 20–20 (2011)

238 D. Boukhelef et al.

13. Kim, Y., Gupta, A., Urgaonkar, B., Berman, P., Sivasubramaniam, A.: HybridStore: a
cost-efficient, high-performance storage system combining SSDs and HDDs. In: 2011 IEEE
19th International Symposium on Modeling, Analysis Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 227–236 (2011)

14. Kim, Y., Gupta, A., Urgaonkar, B., Berman, P., Sivasubramaniam, A.: HybridPlan: a
capacity planning technique for projecting storage requirements in hybrid storage systems.
J. Supercomput. 67, 277–303 (2013)

15. Lin, L., Zhu, Y., Yue, J., Cai, Z., Segee, B.: Hot random off-loading: a hybrid storage system
with dynamic data migration. In: 2011 IEEE 19th International Symposium on Modeling,
Analysis Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 318–
325 (2011)

16. Lu, C., Alvarez, G.A., Wilkes, J.: Aqueduct: online data migration with performance
guarantees. In: Proceedings of the 1st USENIX Conference on File and Storage
Technologies. USENIX Association, Berkeley (2002)

17. Sundaram, V., Wood, T., Shenoy, P.: Efficient data migration in self-managing storage
systems. In: IEEE International Conference on Autonomic Computing, 2006, ICAC 2006,
pp. 297–300 (2006)

18. Dutta, A.K., Hasan, R.: How much does storage really cost? Towards a full cost accounting
model for data storage. In: Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) GECON 2013.
LNCS, vol. 8193, pp. 29–43. Springer, Heidelberg (2013)

19. Moore, R.L., D’Aoust, J., McDonald, R.H., Minor, D.: Disk and tape storage cost models.
In: Archiving Conference, pp. 29–32. Society for Imaging Science and Technology (2007)

20. Gurumurthi, S., Sivasubramaniam, A., Kandemir, M., Franke, H.: DRPM: dynamic speed
control for power management in server class disks. In: Proceedings of 30th Annual
International Symposium on Computer Architecture, 2003, pp. 169–179 (2003)

21. Hylick, A., Sohan, R., Rice, A., Jones, B.: An analysis of hard drive energy consumption. In:
IEEE International Symposium on Modeling, Analysis and Simulation of Computers and
Telecommunication Systems, 2008, MASCOTS 2008, pp. 1–10 (2008)

22. Son, S.W., Chen, G., Kandemir, M.: Disk layout optimization for reducing energy
consumption. In: Proceedings of the 19th Annual International Conference on
Supercomputing, pp. 274–283. ACM, New York (2005)

23. Pinheiro, E., Weber, W.-D., Barroso, L.A.: Failure trends in a large disk drive population. In:
FAST, pp. 17–23 (2007)

24. Garg, S.K., Gopalaiyengar, S.K., Buyya, R.: SLA-based resource provisioning for
heterogeneous workloads in a virtualized cloud datacenter. In: Xiang, Y., Cuzzocrea, A.,
Hobbs, M., Zhou, W. (eds.) ICA3PP 2011, Part I. LNCS, vol. 7016, pp. 371–384. Springer,
Heidelberg (2011)

25. Canim, M., Mihaila, G.A., Bhattacharjee, B., Ross, K.A., Lang, C.A.: An object placement
advisor for DB2 using solid state storage. Proc. VLDB Endow. 2, 1318–1329 (2009)

26. Du, L.: Pricing and resource allocation in a cloud computing market. In: Proceedings of the
2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(Ccgrid 2012), pp. 817–822. IEEE Computer Society, Washington (2012)

27. Ouarnoughi, H., Boukhobza, J., Singhoff, F., Rubini, S.: A multi-level I/O tracer for timing
and performance storage systems in IaaS cloud. In: REACTION (2014)

A Cost Model for DBaaS Storage 239

A Query Processing Framework for Array-Based
Computations

Leonidas Fegaras(B)

University of Texas at Arlington, Arlington, USA
fegaras@cse.uta.edu

Abstract. Current scientific applications must analyze enormous
amounts of array data using complex mathematical data processing
methods. This paper describes a distributed query processing framework
for large-scale scientific data analysis that captures array-based compu-
tations using SQL-like queries and optimizes and evaluates these com-
putations using state-of-the-art parallel processing algorithms. Instead
of providing a library of concrete distributed algorithms that implement
certain matrix operations efficiently, we generalize these algorithms by
making them parametric in such a way that the same efficient imple-
mentations that apply to the concrete algorithms can also apply to their
generic counterparts. By specifying matrix operations as generic alge-
braic operators, we are able to perform inter-operator optimizations,
such as fusing matrix transpose with matrix multiplication, resulting
to new instantiations of the generic algebraic operators, without having
to introduce new efficient algorithms on the fly. We evaluate the effec-
tiveness of our framework by measuring the performance improvement
of matrix factorization when evaluated with inter-operator optimization.

1 Introduction

In recent years, it has become easier and cheaper than ever to collect data but
harder to turn these data into value. In computational science, the explosion in
scientific data generated by experiments and simulations has created a major
challenge for many scientific projects. For data scientists who need to analyze
vast volumes of data, data-intensive processing is fast becoming a necessity. They
need algorithms capable of scaling to petabytes and faster tools that are more
sophisticated, more reliable, and easier to use.

As datasets grow larger, new frameworks in distributed Big Data analytics
have become essential tools to large-scale machine learning and scientific dis-
coveries. Among these frameworks, the Map-Reduce programming model [3] has
emerged as a generic, scalable, and cost effective solution for Big Data process-
ing on clusters of commodity hardware. The Map-Reduce paradigm is a scale-out
solution that brings computations to the data, rather than data to the computa-
tions. This is a drastic departure from high-performance computing models, which
make a clear distinction between processing and storage nodes. Currently, most
programmers prefer to use a higher-level declarative language to code their Map-
Reduce applications, such as Apache Hive [11] and PigLatin [18], instead of cod-
ing them directly in an algorithmic language, such as Java. For instance, Hive is
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 240–254, 2016.
DOI: 10.1007/978-3-319-44403-1 15

A Query Processing Framework for Array-Based Computations 241

used for over 90 % of Facebook Map-Reduce jobs. Most Map-Reduce query lan-
guages though provide a limited syntax for operating on data collections, in the
form of simple relational joins and group-bys. They cannot express complex data
analysis tasks, such as PageRank, data clustering, and matrix factorization, using
SQL-like syntax exclusively. Because of these limitations, these languages enable
users to plug-in custom scripts into their queries for those jobs that cannot be
declaratively coded in their query language. This nullifies the benefits of using
a declarative query language and may result in platform-dependent, suboptimal,
error-prone, and hard-to-maintain code. Furthermore, some of these languages are
inappropriate for complex scientific and graph analysis applications, because they
do not directly support iteration in declarative form and are not able to handle
complex scientific data. But there are some recent query systems, such as Apache
MRQL [17], which are powerful enough to express complex data analysis tasks.

In the past, large-scale data processing was mainly done in the realm of
scientific computing. In recent years, the volume of data generated by scientists
through experiments and simulations has been steadily increasing at an unprece-
dented rate. For example, the Large Hadron Collider at CERN and astronomy’s
Pan-STARRS5 array of celestial telescopes are capable of generating several
petabytes of data per day, which need to be made available and analyzed by
scientists on worldwide grids of computers. Data-intensive scientific comput-
ing shares some of the key ingredients of cloud computing. Just like in cloud
computing, scientific computing is driven to use the most efficient computing
techniques available, including high-performance computing and low-level data
management. Since most of the data generated by scientists are in array form,
current scientific applications must analyze enormous amounts of array data
using complex mathematical data processing methods. Scientists are typically
comfortable with numerical analysis tools, such as MatLab, but are not familiar
with the intricacies of Big Data analysis and distributed computing. A declar-
ative distributive query language capable of expressing complex mathematical
operations on arrays could help them develop their data analysis applications
without any prior knowledge of distributed computing.

The goal of this paper is to support large-scale scientific data analysis by
(1) extending an existing distributed query language, namely Apache MRQL
[17], with array operations that can capture most array-based computations in
declarative form and (2) by developing a query processing framework that can
optimize and evaluate these computations using state-of-the-art parallel process-
ing algorithms. Other proposed systems [1,8,20,22] focus on storage structures
and indexing techniques for arrays, such as chunking and tiling, to achieve bet-
ter performance on certain parallel array computations. Although such storage
layouts may speed up the processing of individual array operations, they pro-
duce results in a certain layout that may need to be restructured before it is
used for the next matrix operation. Furthermore, such schemes do not address
inter-operation optimization, which is the focus of our work. Our approach is
to accept any kind of array representation and storage but at the same time
be able to recognize certain array operations in a query and translate them into

242 L. Fegaras

efficient parallel array processing algorithms. For example, matrix multiplication
X × Y between two sparse matrices X and Y can be implemented efficiently in
a distributed environment using a 2D mesh of processors [7,23] by distributing
the data to worker nodes in the form of a grid of partitions, where each par-
tition contains only those rows from X and those columns from Y needed to
compute a single grid partition of the resulting matrix. If a query language were
to adopt a certain matrix representation and provide a fixed number of matrix
operations in the form of predefined operators or library functions, then the task
of recognizing these operations and mapping them to efficient algorithms would
have become easy. Such an approach though does not leave many opportuni-
ties of inter-operator optimization, such as fusing matrix transpose with matrix
multiplication, because the resulting fused operation would have been a new
operation that requires the introduction of a new efficient algorithm on the fly.
Instead of looking at concrete algorithms that implement specific mathematical
operations, our objective is to generalize these algorithms by making them para-
metric in such a way that the same efficient implementations that apply to the
concrete algorithms can also apply to their generic counterparts.

The most effective method of making an algorithm parametric is to make it
higher-order by abstracting parts of its computations into its functional para-
meters. Such a higher-order operation must capture the essence of the concrete
algorithm it generalizes by facilitating an equivalent data distribution and by
supporting a similar parallel processing method. To generate such a higher-order
operation from a query, a query evaluator must be able to recognize certain syn-
tactic patterns in the query, in their most generic form, that can be mapped to
this operation. This task can become more feasible if it is done at the algebraic
operation level, rather than at the syntactic level. That is, instead of intro-
ducing source-to-source transformations to match parts of a query with certain
generic syntactic patterns that correspond to a generic operation, our approach
is to translate queries into algebraic forms and then normalize and rewrite these
forms into these algorithms using algebraic rewrite rules. We believe that this
approach will be very effective when applied, not only to mathematical opera-
tions, but also to a wide spectrum of queries whose functionality is in essence
equivalent to these mathematical operations.

The contribution of this work can be summarized as follows:

– We introduce a new higher-order operator, called GroupByJoin, that gen-
eralizes many algorithms that correlate two data sources using an equi-join
followed by a group-by with aggregation (Sect. 5).

– We provide an efficient implementation of GroupByJoin in Map-Reduce based
on an algorithm that generalizes the SUMMA parallel algorithm for matrix
multiplication (Sect. 6).

– We have extended the query optimization framework in MRQL to generate
physical plans that use this operator. This is accomplished with algebraic
rewrite rules that recognize certain patterns in the algebraic terms derived
from MRQL queries that are equivalent to a GroupByJoin operation. We
show how these rewrite rules can be used, in conjunction with the existing

A Query Processing Framework for Array-Based Computations 243

algebraic optimization rules in MRQL, to minimize the number of Map-Reduce
operations for queries that contain consecutive matrix operations (Sect. 7).

– We report on a prototype implementation of our framework using MRQL run-
ning on top of Hadoop Map-Reduce. We show the effectiveness of our method
through experiments on two queries, a simple query that combines matrix
multiplication with matrix transpose, and the very complex query for matrix
factorization, that is both iterative and contains many matrix operations in
every iteration (Sect. 8).

2 Related Work

One of the major drawbacks of the Map-Reduce model is that, to simplify relia-
bility and fault tolerance, it does not preserve data in memory between the map
and reduce tasks of a Map-Reduce job or across consecutive jobs, which imposes
a high overhead to complex workflows and graph algorithms, such as PageRank
and matrix factorization, which require repetitive Map-Reduce jobs. To achieve
better performance for such complex workflows, it is crucial to minimize the
required number of Map-Reduce jobs, mostly because of the high overhead of
dumping the intermediate results between consecutive Map-Reduce jobs to the
HDFS. As an alternative solution, some recent systems for cloud computing use
distributed memory for inter-node communication, such as the main memory
Map-Reduce (M3R [21]), Apache Spark [19], Apache Flink [6], and distributed
GraphLab [15]. Another alternative framework to the Map-Reduce model is the
Bulk Synchronous Parallelism (BSP) programming model [23]. The best known
implementations of the BSP model for data analysis on the cloud are Google’s
Pregel [16] and Apache Hama [10].

Most other array-processing systems use special storage techniques, such as
regular tiling, to achieve better performance on certain array computations.
SciDB [22] is a large-scale data management system for scientific analysis based
on an array data model with implicit ordering. The SciDB storage manager
decomposes arrays into a number of equal sized and potentially overlapping
chunks, in a way that allows parallel and pipeline processing of array data. Like
SciDB, ArrayStore [20] stores arrays into chunks, which are typically the size of a
storage block. One of their most effective storage method is a two-level chunking
strategy with regular chunks and regular tiles. SystemML [8] is an array-based
declarative language to express large-scale machine learning algorithms, imple-
mented on top of Hadoop. It supports many array operations, such as matrix
multiplication, and provides alternative implementations to each of them. Sci-
Hadoop [1] is a Hadoop plugin that allows scientists to specify logical queries
over arrays stored in the NetCDF file format. Their chunking strategy, which is
called the Baseline partitioning strategy, subdivides the logical input into a set
of partitions (sub-arrays), one for each physical block of the input file. Finally,
MLlib, which is part of MLbase [13], is a machine learning library built on top
of Spark and includes algorithms for fast matrix manipulation.

244 L. Fegaras

3 Background: The MRQL Query Language

Apache MRQL [17] is a query processing and optimization system for large-
scale, distributed data analysis. MRQL was originally developed by the author
[4,5], but is now an Apache incubating project with many developers and users
worldwide. MRQL (the Map-Reduce Query Language) is an SQL-like query
language for large-scale data analysis on computer clusters. The MRQL query
processing system can evaluate MRQL queries in four modes: in Map-Reduce
mode using Apache Hadoop [9], in BSP mode (Bulk Synchronous Parallel model)
using Apache Hama [10], in Spark mode using Apache Spark [19], and in Flink
mode using Apache Flink (previously known as Stratosphere) [6]. The MRQL
query language is powerful enough to express most common data analysis tasks
over many forms of raw in-situ data, such as XML and JSON documents, binary
files, and CSV documents. MRQL is more powerful than other current high-
level Map-Reduce languages, such as Hive [11] and PigLatin [18], since it can
operate on more complex data and supports more powerful query constructs,
thus eliminating the need for using explicit procedural code. With MRQL, users
are able to express complex data analysis tasks, such as PageRank, k-means
clustering, matrix factorization, etc., using SQL-like queries exclusively, while
the MRQL query processing system is able to compile these queries to efficient
Java code.

For example, the following MRQL query that calculates the k-means clus-
tering algorithm (Lloyd’s algorithm), by deriving k new centroids from the old
(the stopping condition has been omitted):

repeat centroids = ...
step select < X: avg(s.X), Y: avg(s.Y) >

from s in Points
group by k: (select c from c in centroids

order by distance (c, s))[0]

where Points is the input data set of points on a plane, centroids is the current
set of centroids (k cluster centers), and distance is a function that calculates the
distance between two points. The initial value of centroids (the ... value) can be a
bag of k random points. The select-query in the group-by part assigns the closest
centroid to a point s (where [0] returns the first tuple of an ordered list). The
select-query in the repeat step clusters the data points by their closest centroid,
and, for each cluster, a new centroid is calculated from the average values of its
points.

4 Our Framework

One of the objectives of our work is to accept any kind of array representation
but at the same time be able to recognize certain array operations in a query and
translate them into efficient parallel array processing algorithms. Sparse vectors
and matrices can be captured as regular collections in MRQL. For example,
a sparse matrix M can be represented as a collection of triples, (v, i, j), for

A Query Processing Framework for Array-Based Computations 245

v = Mij . Then, the matrix multiplication between two sparse matrices X and
Y can be expressed as follows in MRQL:

select (sum(z), i , j)
from (x, i ,k) in X, (y,k, j) in Y, z = x∗y
group by i , j

that is, we retrieve the values Xik ∈ X and Ykj ∈ Y for all i, j, k, and we set
z = Xik ∗Ykj . The group-by operation in MRQL lifts each non-group-by variable
defined in the from-part of the query from some type T to a bag of T , indicating
that each such variable must now contain multiple values, one for each group.
Consequently, after we group by the indexes i and j, the variable z will be lifted
to a bag of numerical values Xik ∗ Ykj , for all k. Hence, sum(z) in the query
header will sum up all these values, deriving

∑
k Xik ∗ Ykj for the ij element of

the resulting matrix.

Fig. 1. Matrix multiplication: each partition P requires N/n rows from X and M/m
columns from Y

Matrix multiplication is an important operation, used frequently in scientific
computations and machine learning. Suppose that X is an N ∗ K matrix and
Y is an K ∗ M matrix. If the previous matrix multiplication query for X × Y
is evaluated naively using an equi-join followed by a group-by, the intermediate
result of the join would have been of size N ∗ K ∗ M , which would have to be
shuffled to cluster nodes for the group-by operation. Instead, one may use the
SUMMA algorithm for matrix multiplication [7], which has been adapted for
the BSP distributed model [23] and later for Map-Reduce [2]. This algorithm
distributes the data as a grid of m ∗n partitions, so that each partition contains
N/n full rows from X and M/m full columns from Y (Fig. 1). That is, the
X elements are replicated m times and the Y elements are replicated n times.
Then, each partition is assigned to a single node in a cluster, which must have
enough free memory to multiply the associated submatrices of size N/n ∗K and
K ∗ M/m. The goal of this method is to minimize replication (m and n) so that
the memory of each worker node in the cluster is fully utilized by performing
the submatrix multiplication in memory. When implemented using Map-Reduce,
this algorithm requires only one Map-Reduce job: the map task replicates and
distributes the data to reducers, while each reducer multiplies its submatrices in
memory using a hash join.

246 L. Fegaras

How can such algorithm be incorporated into the evaluation engine of a
query language? One solution is to provide a library of predefined functions for
various matrix operations, using their most efficient implementation. But such
an approach does not leave any opportunities for inter-operation optimization.
Consider, for example, Matrix Factorization using Gradient Descent [12], used
in machine learning applications, such as for recommender systems. The goal of
this computation is to split a matrix R of dimension n × m into two low-rank
matrices P and Q of dimensions n×k and k×m, for small k, such that the error
between the predicted and the original rating matrix R − P × QT is below some
threshold, where P × QT is the matrix multiplication of P with the transpose
of Q and ‘−’ is cell-wise subtraction. Matrix factorization can be done using an
iterative algorithm that repeatedly applies the following rules to minimize the
error matrix E:

E ← R − P × QT

P ← P + γ(2E × QT − λP)
Q ← Q + γ(2E × PT − λQ)

where γ is the learning rate and λ is the normalization factor used in avoid-
ing overfitting. But matrix transpose and cell-wise operations can be fused with
matrix multiplication, because they both correspond to a map operation, which
can be incorporated into the map stage of the Map-Reduce operation that imple-
ments matrix multiplication, thus avoiding the extra map stage all together. That
is, instead of defining matrix operations as opaque library functions, we can
express them using sufficiently generic algebraic operations (i.e., higher-order
functions) and use algebraic rewrite rules to fuse them, thus minimizing the
number of processing stages and eliminating intermediate results. That way, in
addition to offering more opportunities for optimization, application developers
will not be forced to represent their data matrices in the single fixed representa-
tion used by the underlying implementation of the concrete matrix algorithms.
Instead, they will be free to use any representation, thus focusing only on the
computation logic. In addition, by generalizing these algorithms, one can opti-
mize a wider spectrum of queries that resemble matrix multiplication, such as
calculating the shortest distance between all pairs of nodes in a graph G:

repeat S = G
step select (x,z,min(d))

from (x,y,d1) in S, (y,z,d2) in S, z = d1+d2
group by x, z

(assuming for simplicity that (x, x, 0) ∈ G for every node x).

5 The GroupByJoin Operation

In this section, we generalize matrix multiplication using an algebraic operation,
called a Group-By Join. Let X and Y be bags of types {α} and {β}, respectively,
for arbitrary types α and β. The generic MRQL query

A Query Processing Framework for Array-Based Computations 247

select h(k, reduce(acc,zero ,z))
from x in X, y in Y, z = (x,y)
where jx(x) = jy(y)
group by k: (gx(x), gy(y))

which generalizes matrix multiplication, returns a value of type {δ}, where

– jx is the left join key function of type α → κ,
– jy is the right join key function of type β → κ,
– gx is the left group-by function of type α → κ1,
– gy is the right group-by function of type β → κ2,
– h is the head function of type ((κ1, κ2), γ) → δ.
– reduce(acc,zero,s) reduces the elements of a bag s of type {(α, β)} into a value

of type γ, using an accumulator acc of type ((α, β), γ) → γ and a zero value of
type γ. That is, reduce(acc, zero, {z1, z2, . . . , zn}) = acc(z1, acc(z2, . . . , acc(zn,
zero))).

To preserve bag semantics, we must have acc(x, acc(y, s)) = acc(y, acc(x, s)), for
all x, y, and s.

The previous generic query is captured by the higher-order physical opera-
tion:

GroupByJoin(jx, jy, gx, gy, acc, zero, h, X, Y)

which generalizes the SUMMA algorithm by distributing X and Y into a
grid of n ∗ m partitions based on their group-by and join key functions.

For example, matrix multiplication, which corresponds to the MRQL query

select (sum(z), i , j)
from (x, i ,k) in X, (y,k, j) in Y, z = x∗y
group by i , j

is captured by the operation:
GroupByJoin(λ(x,i,k). k, λ(y,k,j). k, λ(x,i,k). i, λ(y,k,j). j, λ((x,y),c). c+x*y, 0, λ((i,j),c).

(c,i,j), X, Y)

6 The Implementation of GroupByJoin in Map-Reduce

The GroupByJoin operation distributes the data to worker nodes in the form of a
n ∗ m grid of partitions, where each partition contains only those rows from X
and those columns from Y needed to compute a single partition of the resulting
matrix.

Figure 2 shows the pseudo-code for the implementation of GroupByJoin in
Map-Reduce, where flush(H) is:

for each (key,value) in H
emit h(key, value)

clear H

248 L. Fegaras

Fig. 2. Map-Reduce pseudo-code for GroupByJoin(jx, jy, gx, gy, acc, zero, h, X, Y)

which applies the function h to each key-value pair in the key-value map H and
emits the results to the output. Similar to a regular reduce-side join on Map-
Reduce [14], our group-by join uses two mappers, mapLeft and mapRight, for each
of the inputs, X and Y, respectively. Both mappers emit pairs of key-values. A
mapper value takes the form (tag,data), where data is the input data and tag is
the source number 1 or 2, to specify the input source (X or Y). A mapper key
is a triple (partition,joinkey,tag), where partition is one of the n ∗ m partitions, and
joinkey is the join key value, jx(x) or jy(y). The partition number of a partition (i, j)
in the grid of n∗m partitions is equal to i∗m+j. The two mappers replicate the
X values m times and the Y values n times (associated with different partition
numbers). A value x ∈ X is sent to all the row partitions (gx(x) mod n, ∗) and
a value y ∈ Y is sent to all the column partitions (∗, gy(y) mod m). Hadoop
Map-Reduce supports custom partitioning, grouping, and sorting functions that
control the shuffling of the map results to the reducers. In our Hadoop Map-
Reduce implementation,

– the partition function returns the partition value of the mapper key,
– the grouping function returns the pair (partition,joinkey), and
– the sorting is based on partition (major order), joinkey (minor order), and tag

(sub-minor order).

A Query Processing Framework for Array-Based Computations 249

That is, each partition will contain multiple reduce groups, one for each join
key. For each partition p and for each different join key value v, the grouping
values in the reducer method, reduce, will contain all the tuples from x ∈ X and
y ∈ Y that are shuffled to this partition and satisfy jx(x)= jy(y)= v. For matrix
multiplication, when X is an N ∗ K matrix and Y is an K ∗ M matrix, the
size of values will be N/n + M/m (one column from the X horizontal partition
and one row from the Y vertical partition), while the size of hash table H will
be (N ∗ M)/(n ∗ m). The number of partitions may be larger than the num-
ber of worker nodes (the reducers). That is, each reducer may receive multiple
partitions, and each partition may contain multiple groupings. Each grouping
is handled separately by the reduce method, and the results of processing each
partition is emitted by flush(H) at the end of each partition (when the partition
number changes). The result of processing each partition are stored in the hash
table H, of maximum size (N ∗ M)/(n ∗ m). That is, we must select n and m to
be the minimum values so that H can fit in memory. That is, if there is available
memory to fit T tuples, then (N ∗ M)/(n ∗ m) = T . Our goal is to minimize
data replication, which is equal to N ∗ K ∗ m + K ∗ M ∗ n. That is, we want
to minimize N/n + M/m (if we divide by the constants K and n ∗ m). This
is possible, when N/n = M/m =

√T . Internally though, done implicitly by
Hadoop Map-Reduce, each reducer node sorts and groups its entire partition
(which contains N ∗ K/n + K ∗ M/m tuples) before reduction, which is done
with external sorting at each reducer.

7 Translating Queries to GroupByJoin Operations

Based on the discussion in the Introduction, it would be hard to use source-to-
source transformations to put queries, such as matrix multiplication and shortest
distance, into an algebraic form, such as GroupByJoin, because query syntax
may take many different equivalent forms, which have to be recognized by these
source-to-source transformations. Instead, our approach is to translate queries
into their default algebraic forms and then normalize and rewrite these forms
using algebraic rules.

The MRQL algebra used in this section has already been described in our
previous work [4]. The most important algebraic operation in the MRQL algebra
is cMap (also known as concat-map or flatten-map in functional programming
languages), which generalizes the select, project, join, and unnest operators of
the nested relational algebra. Given two arbitrary types α and β, the operation
cMap(f,X) maps a bag X of type {α} to a bag of type {β} by applying the
function f of type α → {β} to each element of X, yielding one bag for each
element, and then by merging these bags to form a single bag of type {β}. Using
a set former notation on bags, it is expressed as follows:

cMap(f,X) = { z |x ∈ X, z ∈ f(x) } (1)

Given an arbitrary type κ that supports value equality (=), an arbitrary type α,
and a bag X of type {(κ, α)}, the operation groupBy(X) groups the elements of

250 L. Fegaras

the bag X by their first component and returns a bag of type {(κ, {α})}, where
the first component of each tuple is a unique group-by key and the second is the
group (a bag) that contains all values that correspond to this key. For exam-
ple, groupBy({(1,“A”), (2,“B”), (1,“C”)}) returns {(1,{“A”,“C”}), (2,{“B”})}.
Although any join X �	jx(x)=jy(y) Y can be expressed as a nested cMap, to
facilitate the creation of physical plans for joins, the MRQL algebra provides a
special join operator:

join(jx, jy, h,X, Y)
= {h(x, y) |x ∈ X, y ∈ Y, jx(x) = jy(y) }
= cMap(λx. cMap(λy. if jx(x) = jy(y) then {h(x, y)} else { }, Y), X)

where an anonymous function λx. e specifies a unary function (a lambda abstrac-
tion) f such that f(x) = e. This operation joins two bags, X of type {α}
and Y of type {β}, using the join functions, jx of type α → κ and jy of type
β → κ, and combines the joining values using the function h of type (α, β) → γ,
deriving a bag of type {γ}. Finally, aggregations are captured by the operation
reduce(acc, zero,X), which reduces the elements of a bag X of type {α} into a
value of type β, using an accumulator acc of type (α, β) → β and a zero value
zero of type β. For example, reduce(λ(x, s). x + s, 0, {1, 2, 3}) = 6.

The algebraic terms derived from MRQL queries can be normalized using
rewrite rules, such as:

cMap(f, cMap(g, S)) → cMap(λx. cMap(f, g(x)), S) (2)

that fuses two cascaded cMaps into a nested cMap, thus avoiding the construc-
tion of the intermediate bag. This rule can be proven directly from the cMap
definition in Eq. (1):

cMap(f, cMap(g, S))
= { z |w ∈ { y |x ∈ S, y ∈ g(x) }, z ∈ f(w) }
= { z |x ∈ S, y ∈ g(x), z ∈ f(y) }
= { z |x ∈ S, z ∈ {w | y ∈ g(x), w ∈ f(y) } }
= cMap(λx. cMap(f, g(x)), S)

In addition, a cMap can be fused with a join resulting to a join:

join(jx, jy, h, X, cMap(λy. {f(y)}, Y))
→ join(jx, λy. jy(f(y)), λ(x, y). h(x, f(y)), X, Y) (3)

cMap(λv. {f(v)}, join(jx, jy, h, X, Y))
→ join(jx, jy, λ(x, y). f(h(x, y)), X, Y)) (4)

In our framework, GroupByJoin operations are derived from algebraic forms
with the help of the following rule:

cMap(λ(k,s). { h(k,reduce(acc,zero,s)) },
groupBy(join(jx, jy,

λ(x,y). ((gx(x),gy(y)), (x,y)),
X, Y)))

→ GroupByJoin(jx, jy, gx, gy, acc, zero, h, X, Y)

A Query Processing Framework for Array-Based Computations 251

which rewrites an equi-join followed by a group-by to a GroupByJoin. For exam-
ple, the MRQL query that captures matrix multiplication X × Y :

select (sum(z), i , j)
from (x, i ,k) in X, (y,k, j) in Y, z = x∗y
group by i , j

is translated into the following algebraic form:
cMap(λ((i,j),s). {(reduce(λ(v,c). c+v, 0, s), i, j)},

groupBy(join(λ(x,i,k). k, λ(y,k,j). k,
λ((x,i,k),(y,l,j)). ((i,j), x*y),
X, Y)))

while the MRQL query that captures matrix transpose Y T :

select (y, j , i) from (y, i , j) in Y

is translated into the following algebraic form:

cMap(λ(y,i,j). {(y,j,i)}, Y)

Hence, using Eq. 3, the two cMaps in the composition X × Y T are fused into:
cMap(λ((i,j),s). {(reduce(λ(v,c). c+v, 0, s), i, j)},

groupBy(join(λ(x,i,k). k, λ(y,j,k). k,
λ((x,i,k),(y,j,l)). ((i,j), x*y),
X, Y)))

which is translated to the following algebraic operation:
GroupByJoin(λ(x,i,k). k, λ(y,j,k). k, λ(x,i,k). i, λ(y,j,l). j, λ((x,y),c). c+x*y, 0, λ((i,j),c).

(c,i,j), X, Y)

that combines matrix multiplication with matrix transpose.

8 Performance Evaluation

The platform used for our evaluations is a small cluster of 9 nodes, built on
the Chameleon cloud computing infrastructure, www.chameleoncloud.org. This
cluster consists of nine m1.medium instances running Linux, each one with 4 GB
RAM and 2 VCPUs at 2.3 GHz. For our experiments, we used Hadoop 2.6.0
(Yarn) and MRQL 0.9.6. The cluster frontend was used exclusively as a NameN-
ode/ResourceManager, while the rest 8 compute nodes were used as DataN-
odes/NodeManagers. For our experiments, we used all the available 16 VCPUs
of the compute nodes for Map-Reduce tasks.

We have experimentally validated the effectiveness of our methods using two
MRQL queries: Matrix factorization using gradient descent, shown in Fig. 3, and
the simple query: multiply(Pmatrix,transpose(Qmatrix)), where multiply and transpose

are also given in Fig. 3. Given a matrix R, our matrix factorization query in
Fig. 3 calculates the error matrix E = R − P × QT and the factor matrices P
and Q, so that R is approximately equal to P × QT . For our experiments, we
set this query to iterate 10 times and used the learning rate a = 0.002 and the
normalization factor b = 0.02. The matrix to be factorized, Rmatrix, was an n×m

www.chameleoncloud.org

252 L. Fegaras

Fig. 3. Matrix factorization using gradient descent in MRQL

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 T

im
e

(s
ec

s)

(A) A simple query data with/without optimization

opt
no-opt

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10

T
ot

al
 T

im
e

(m
in

ut
es

)

(B) Matrix factorization with/without optimization

opt
no-opt

Fig. 4. Evaluation of a simple matrix query (A) and matrix factorization (B)

A Query Processing Framework for Array-Based Computations 253

sparse matrix with random integer values between 1 and 5 (resembling the 5-star
rating in Netflix) in which only the 10 % of the elements were provided (the rest
were zero). The size of m was always kept equal to 10 ∗ n, while n ∗ m was equal
to 100000 + i ∗ 50000 elements, for i ∈ [0, 9]. That is, n ∗ m took the following
values: 100*1000, 122*1220, 141*1410, 158*1580, 173*1730, 187*1870, 200*2000,
212*2120, 223*2230, 234*2340. The initial factor matrices, Pmatrix and Qmatrix,
had sizes n ∗ k and m ∗ k, respectively, where k = 10 for all experiments (a low
rank), and were initialized with random values between 1 and 5.

For both MRQL queries, we perform our evaluations in two modes: with and
without inter-operation optimization. With inter-operation optimization means
that matrix operations were defined using macros so that compositions of oper-
ations are fused into one operation, thus avoiding the creation of intermediate
results (which Hadoop Map-Reduce must store in the HDFS). Without inter-
operation optimization means that the matrix operations were defined as opaque
functions, which have to be evaluated as is, thus offering no opportunities for
optimization. The results for the simple query multiply(Pmatrix,transpose(Qmatrix))

are shown in Fig. 4A. The results look very similar for different data sizes (100K
through 145K tuples) because all matrices (including the intermediate results)
are split into 16 files (one for each compute node in the HDFS) and each file can
fit into one HDFS block (64MBs) regardless of its size. We can see in Fig. 4A
that there is improvement even for just two operations: matrix multiplication
and transpose. With inter-operation optimization, these two operations are fused
into a single one, a GroupByJoin, which runs in about the same time as matrix
multiplication alone. The results for matrix factorization are shown in Fig. 4B.
Here, the improvement is even more substantial (the optimized query takes about
half the time of the non-optimized one) since the results of all these optimizations
are aggregated and repeated at each iteration step.

9 Conclusion

We have presented a general framework for optimizing SQL-like queries that
capture array-based computations on sparse arrays. In contrast to related work,
we do not provide a library of predefined array operations. Instead, we are let-
ting programmers express their array operations using normal SQL-like syntax,
but, at the same time, we provide an optimization framework that translates
these queries into efficient distributed array operations. That way, we are able
to achieve inter-operation optimization that would be infeasible if these opera-
tions were expressed as black boxes.

Acknowledgments. This work is supported in part by the National Science Foun-
dation under the grant CCF-1117369. Our performance evaluations were performed at
the Chameleon cloud computing infrastructure, www.chameleoncloud.org, supported
by NSF.

www.chameleoncloud.org

254 L. Fegaras

References

1. Buck, J., Watkins, N., Lefevre, J., Ioannidou, K., Maltzahn, C., Polyzotis, N.,
Brandt, S.A.: SciHadoop: array-based query processing in hadoop. In: SC 2011

2. Das, A., Afrati, F.N., Salihoglu, S., Ullman, J.D.: Upper and lower bounds on the
cost of a map-reduce computation. In: VLDB 2013

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI 2004

4. Fegaras, L., Li, C., Gupta, U.: An optimization framework for map-reduce queries.
In: EDBT 2012

5. Fegaras, L., Li, C., Gupta, U., Philip, J.J.: XML query optimization in map-reduce.
In: International Workshop on the Web and Databases (WebDB) (2011)

6. Apache Flink. http://flink.apache.org/
7. Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix multiplication algo-

rithm. Concurrency: Pract. Experience 9(4), 255–274 (1997)
8. Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sindhwani, V.,

Tatikonda, S., Tian, Y., Vaithyanathan, S.: SystemML: declarative machine learn-
ing on MapReduce. In: IEEE International Conference on Data Engineering
(ICDE) (2011)

9. Apache Hadoop. http://hadoop.apache.org/
10. Apache Hama. http://hama.apache.org/
11. Apache Hive. http://hive.apache.org/
12. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender

systems. In: IEEE Computer, August 2009
13. Kraska, T., Talwalkar, A., Duchi, J., Griffith, R., Franklin, M., Jordan, M.I.:

MLbase: a distributed machine learning system. In: Conference on Innovative Data
Systems Research (2013)

14. Lin, J., Dyer, C.: Data-intensive text processing with MapReduce. Book pre-
production manuscript, April 2010

15. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning and data mining in the
cloud. In: VLDB 2012

16. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: PODC 2009

17. Apache MRQL (incubating). http://mrql.incubator.apache.org/
18. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: a not-so-

foreign language for data processing. In: SIGMOD 2008
19. Apache Spark. http://spark.apache.org/
20. Soroush, E., Balazinska, M., Wang, D.: ArrayStore: a storage manager for complex

parallel array processing. In: SIGMOD 2011
21. Shinnar, A., Cunningham, D., Herta, B., Saraswat, V.: M3R: increased perfor-

mance for in-memory Hadoop jobs. In: VLDB 2012
22. The SciDB Development Team: overview of SciDB: large scale array storage,

processing and analysis. In: SIGMOD 2010
23. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),

103–111 (1990)

http://flink.apache.org/
http://hadoop.apache.org/
http://hama.apache.org/
http://hive.apache.org/
http://mrql.incubator.apache.org/
http://spark.apache.org/

Decision Support Systems, and Learning

Creative Expert System: Result of Inference
and Machine Learning Integration

Bartlomiej Sniezynski1(B), Grzegorz Legien1, Dorota Wilk-Ko�lodziejczyk1,2,
Stanislawa Kluska-Nawarecka2, Edward Nawarecki1, and Krzysztof Jaśkowiec2

1 AGH University of Science and Technology, Al. Mickiewicza 30,
30-059 Krakow, Poland

bartlomiej.sniezynski@agh.edu.pl
2 Foundry Research Institute in Krakow, Zakopianska Street 73, Krakow, Poland

Abstract. This paper presents an idea of a creative expert system. It
is based on inference and machine learning integration. Execution of
learning algorithm is automatic because it is formalized as applying a
complex inference rule. Firing such a rule generates intrinsically new
knowledge: rules are learned from training data, which consists of facts
stored already in the knowledge base. This new knowledge may be used
in the same inference chain to derive a decision. Complex rules may also
represent other procedural activities, like searching databases. Such a
solution makes the reasoning process more creative and allows to con-
tinue reasoning in cases when the knowledge base does not have appro-
priate knowledge explicit encoded. In the paper appropriate model and
inference algorithm are proposed. The idea is tested on a decision support
system in a casting domain.

Keywords: Web-based expert system · Logic of plausible reasoning ·
Knowledge representation and processing

1 Introduction

Traditional reasoning techniques applied in AI (e.g. classical logic, rule-based
systems based on classical logic [11,17], fuzzy logic [23], Bayesian Networks [15])
offer convergent interpretation of the stored knowledge, which does not provide
new knowledge. Machine learning techniques may be creative and provide diver-
sity but are not integrated with inference process. In this paper a method to
integrate these two approaches is proposed. Execution of learning algorithm is
defined as a complex inference rule executed in an inference chain if the reason-
ing process is not able to continue classical reasoning. Training data consists of
facts stored already in the knowledge base. The new knowledge may be used in
the same inference chain to derive a decision.

This work is a continuation of [10] in which machine learning was not applied.
We have chosen the same knowledge representation and reasoning formalism: the
Logic of Plausible Reasoning (LPR) [6] and added complex inference rules. As a
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 257–271, 2016.
DOI: 10.1007/978-3-319-44403-1 16

258 B. Sniezynski et al.

result, our implementation combines many knowledge manipulation techniques
during reasoning. It is able to use a background knowledge, simple proof rules
(such as Modus Ponens or generalization) or complex ones (machine learning or
searching algorithms) to infer a decision.

The solution we propose allows to create a creative expert system, which,
in a case there is no appropriate knowledge in the knowledge base, instead of
getting stuck, automatically creates intrinsically new knowledge to continue the
reasoning process.

In the following sections related research is discussed, the Creative Reasoning
Model and inference algorithm are presented. Next, LPR basics and the software
are described. Results of experiments in a domain of material choice support for
casting (knowledge base and reasoning scenarios) conclude the work.

2 Related Research

Integration of expert systems and machine learning was analyzed some time
ago. A system presented in [5] is based on Neural logic networks corresponding
to three-valued logic. System allows for adaptive learning of new rules from its
experience.

In [22] neural network was also applied to overcome brittleness of classical
expert systems. It is used for choosing the most appropriate questions for the
current case. Description of user’s interaction with system is collected as training
data for the network.

In [21] adaptive expert system is proposed for aircraft maintenance. It recom-
mends the most accurate action for symptoms reported by user. Like in examples
above, learning uses historical data (in this case repairs register) to update asso-
ciation weights between symptoms and actions. Certainty of suggested diagnosis
is increased in case of successful prediction or decreased in the other case. Symp-
toms may be also combined using generalization.

In the solutions presented above machine learning algorithms are not part of
the formal reasoning system. Therefore the integration of machine learning and
reasoning is not complete.

In CoMES system [4] authors attempted to join many popular techniques
from Artificial Intelligence and Software Engineering. Machine learning is used
for updating the knowledge base, which can be accessed by few algorithms in
parallel. The system uses agent architecture to integrate knowledge from human
experts and other expert systems.

Our solution is based on the Inferential Theory of Learning (ITL). This theory
was created by Michalski [12]. Michalski et al. also developed ITL partial imple-
mentation - an INTERLACE system [3]. The system can generate sequences of
knowledge operations that will enable the derivation of a target trace from the
input hierarchies and traces. Machine learning was not integrated in this system.

Logic of Plausible Reasoning (LPR) used in our system was proposed by
Collins and Michalski [6]. The goal of that work was to identify reasoning pat-
terns used by humans and create a formal system, which would be able to rep-
resent these patterns. The objective set by the creators has caused that LPR

Creative Expert System 259

is significantly different from other known knowledge representation methods:
there are many inference rules in LPR and many parameters are specified for
representing the uncertainty of knowledge.

3 Creative Inference Model

The proposed Creative Inference Model assumes that the knowledge representa-
tion and reasoning method, can be formalized as a Labeled Deductive System
(LDS) [8]. Knowledge is represented by formulas. Inference process consists of a
sequence of Knowledge transmutation applications.

Knowledge transmutation can be represented as the following triple:

kt = (p, c, a), (1)

where p is a (possibly empty) premise or precondition, c is a consequence (pat-
tern of formula(s) that can be generated) and a is an action (empty for simple
transmutations) that should be executed to generate consequence if premises are
true according to the knowledge base. As a result we can represent three types
of inference rules:

– simple (e.g. Modus Ponens proof rule);
– complex (using machine learning, e.g. rule induction algorithms or clustering

methods);
– search (database or web searching procedures).

We assume that every transmutation has its cost assigned (costkt). The
cost should represent its computational complexity and (or) other important
resources that are consumed (e.g. database access or search engines fees). Usu-
ally, simple transmutations have a low cost, search transmutations have a mod-
erate cost and complex ones have a high cost.

To manage uncertainty a label algebra may be used:

A = (A, {fkt}). (2)

A is a set of labels which estimate uncertainty of formulas. Labeled formula is a
pair f : l where f is a formula and l ∈ A is a label. A finite set of labeled formulas
can be considered as a knowledge base. Functions fkt are used to calculate labels
of reasoning results. If kt = (p, c, a) and p is a conjunction of premises αi (of
length n) then the plausible label l of its conclusion c is calculated using fkb :
An → A, hence l = fkt(l1, ..., ln), where li is a label of αi.

Creative Inference Algorithm (see Algorithm 1) is an adaptation of LPR
proof algorithm [19], where proof rules are replaced by more general knowledge
transmutations. It is based on AUTOLOGIC system developed by Morgan [14].
To limit the number of nodes and to generate optimal inference chains, algorithm
A* [9] is used.

Input data is a set of labeled formulas KB – a knowledge base and a hypoth-
esis (question) represented by the formula ϕ, which should be derived from KB.

260 B. Sniezynski et al.

Input: ϕ – formula, KB – finite set of labeled formulas
Output: If ∃l ∈ A such that ϕ : l can be inferred from KB: success, P –

inference chain of ϕ : l from KB; else: failure
T := tree with one node (root) s = [ϕ];
OPEN := [s];
while OPEN is not empty do

n := the first element from OPEN ;
Remove n from OPEN ;
if n = [] then

Generate proof P using path from s to n;
Exit with success;

end
if the first formula of n represents action then

Execute action;
if action was successfull then

add action’s results to KB;
E:=nodes generated by removing from n action formula;

end
else

K := knowledge transmutations, which consequence can be unified with
first formula of n;
E := nodes generated by replacing the first formula of n by premises
and action of transmutations from K and applying substitutions from
unifier generated in the previous step;
if the first formula from n can be unified with element of KB then

Add to E node obtained from n by removing the first formula and
applying substitutions from unifier;

end
end
Remove from E nodes generating loops;
Append E to T connecting nodes to n;
Insert nodes from E to OPEN ;

end
Exit with failure;

Algorithm 1: Creative Inference Algorithm

If there exist a label l ∈ A such, that ϕ : l can be inferred from KB, appropriate
inference chain is returned, else procedure exits with failure.

Agent’s experience and the context description should be also stored in KB
as LPR formulas.

This algorithm generates a tree T , which nodes (N) are labeled by sequences
of formulas. Every edge of T is labeled by a knowledge transmutation, which
consequence can be unified with the first formula of a parent node or is labeled
by the term kb(l) if the first formula of a parent node can be unified with
ψ : l ∈ KB. s is the root of T . It is labeled by [ϕ]. The goal is to generate a
node labeled by empty set of formulas.

As it was mentioned, to limit the number of nodes expanded, A* algorithm
may be used. Therefore nodes in the OPEN sequence can be ordered according
to the values of evaluation function f : N → R, which is defined as follows:

Creative Expert System 261

f(n) = g(n) + h(n), (3)

where g : N → R represents the actual cost of the inference chain (sum of costkt

for transmutations applied), using knowledge transmutation costs and label of ϕ
that can be generated, and h : N → R is a heuristic function which estimates the
cost of the path from n to the goal node (e.g. minimal knowledge transmutation
cost multiplied by the length of n can be used).

4 LIIS System

In this section the LPR Intelligent Information System (LIIS) used in experi-
ments is described. At the beginning LPR is introduced, next main features and
implementation details of system are described. Finally, inference algorithms and
label algebra are presented.

4.1 Introduction to LPR

We have chosen LPR for basic knowledge representation and reasoning. If
needed, instead of LPR another technique, which can be formulated using LDS,
may be used.

The language used by LPR consists of a countable set of constants C, vari-
ables X, the seven relational symbols, and logical connectives → and ∧. Formally,
it is a quadruple: L = (C,X, {V,H,B,E, S, P,N}, {→,∧}). The relational sym-
bols (V,H,B,E, S, P,N) are used for defining the following relationships:

– H defines the hierarchy between concepts; expression H(o1, o, c) means that
o1 is o in a context c;

– B is used to present the fact that one object is placed below another one in a
hierarchy;

– V is used for representing statements: V (o, a, v) is a representation of the fact
that object o has an attribute a equal to v;

– E is used for representing relationships; the notation E(o1, a1, o2, a2) means
that values of attribute a1 of object o1 depend on attribute a2 of the second
object o2;

– S determines similarity between objects; S(o1, o2, c) represents the fact that
o1 is similar to o2 in a context c;

– P represents order between concepts: P (o1, o2) means that concept o1 precedes
concept o2;

– N is used for comparing the concepts; N(o1, o2) means that concept o1 is
different from the concept o2. This relation do not appear in the knowledge
base only as a premise of some implication.

To represent vagueness of the knowledge it is possible to extend statement
definition and allow to use composite value [v1, v2, . . . , vn] (list of elements of C).
It can be interpreted that object o has an attribute a equal to v1 or v2, . . ., or
vn. If n = 1 instead of V (o, a, [v1]) notation V (o, a, v1) is used.

262 B. Sniezynski et al.

In statements, value should be placed below an attribute in a hierarchy: if
V (o, a, [v1, v2, . . . , vn]) is in a knowledge base, there should be also H(vi, a, c) for
any 1 ≤ i ≤ n, c ∈ C.

LPR formula means every atomic formula: H(o1, o2, c), B(o1, o2), V (o, a, v),
E(o1, a1, o2, a2), S(o1, o2, c), P (o1, o2), where o, o1, o2, a, a1, a2, c, v ∈ C, a con-
junction of atomic formulas and implications in the form of α1 ∧ α2 ∧ . . . αn →
V (oα, aα, vα), where n ∈ N, n > 0. It is assumed that αi has the form of
V (oα

i , aα
i , vα

i), P (vα
i , wα

i) or N(vα
i , wα

i), and oα, oα
i , aα, aα

i , vα, vα
i , wα

i ∈ C ∪ X
for 1 ≤ i ≤ n.

The most commonly used proof rules operate on the statement (others can be
found in [6]). Index attached to the name of the rule tells us what is transformed:
o is an object, and v is the value. These rules are shown in Table 1. GENo and
SPECo are generalization and specialization of objects in statements, respec-
tively, while GENo and SPECo are similar transformations of values. SIMo rep-
resents reasoning by analogy (similarity) between objects, while SIMv represents
analogy of values. MP is the classical Modus Ponens inference rule.

Table 1. Rules transforming object-attribute-value triples

GENo

H(o1, o, c)
E(o, a, o, c)
V(o1, a, v)

V(o, a, v)

SPECo

H(o1, o, c)
E(o, a, o, c)
V(o, a, v)

V(o1, a, v)

SIMo

S(o1, o2, c)
E(o1, a, o1, c)
V(o2, a, v)

V(o1, a, v)

GENv

H(v1, v, c)
E(a, o, a, c)
H(o1, o, c2)
B(v, a)
V(o1, a, v1)

V(o1, a, v)

SPECv

H(v1, v, c)
E(a, o, a, c)
H(o1, o, c1)
V(o1, a, v)

V(o1, a, v1)

SIMv

S(v1, v2, c)
E(a, o, a, c)
H(o1, o, c1)
B(v1, a)
V(o1, a, v2)

V(o1, a, v1)

MP

α1 ∧ . . . ∧ αn →
V(o, a, v)

α1

...
αn

V(o, a, v)

4.2 LIIS Main Features

The main function of the system is to perform inference based on the knowledge
base available and user-defined hypothesis (also known as query). This function
is based on the MILS framework.

The query is a statement which can include constants, variables and numeric
values. The hypothesis is verified by the inference engine. If it can be proved to

Creative Expert System 263

have a non-zero probability, a proof is submitted. If there are several proofs, all
of them are presented to the user with the relevant information concerning their
credibility.

The user can choose maximum depth of the proof tree and knowledge trans-
mutations that are to be used in the process.

Machine learning algorithms may be automatically executed during inference
process. Currently two complex knowledge transmutations are defined. Both
apply rule induction using AQ [13] or C4.5 [16] algorithms. Consequence c (see
(1)) has a form of statement for both transmutations. To limit the computation
time, the user may limit the learning for a set of attributes called category set.
In premise p it is checked if it is possible to generate enough examples from the
knowledge base. Examples are divided into training and testing data. Second
one is used to estimate strength of the rules learned.

The system provides engine for performing decision support. This function-
ality is extensively used in the case study described in the next section. Expert
system scenarios use both formulas from base and information provided by a
user executing decision support procedure. The user can supply knowledge by
selecting answer from list or filling in inputs with numerical values. Questions
can be skipped. Scenarios can be developed using GUI.

The application supports edition of knowledge base elements, providing tools
facilitating this process. Single formula is created with a form, suggesting object
names basing on ones already used in system. Formulas of different types are
placed in their own tables, where they can be filtered by the name of one of their
object.

4.3 Description of LIIS Implementation

In the description of the developed application an attempt was made to charac-
terize the solution, heading for the widest possible use of existing development
tools, while providing the functionality needed to effectively meet the functional
requirements. As a result, LPR Intelligent Information System is a web applica-
tion created with Google Web Toolkit, solution supporting the development of
browser-based applications. Technology affects system architecture, dividing it
into three logical parts.

Server-side part of system brings realization of main features. Reasoning
engine, using LPR-Library, implements inference, machine learning and exper-
tise conduction. The engine is used by services responsible for providing these
functions to users – Reasoning Service and Expert System Service. LPR Service
allows storing and obtaining knowledge base elements from MySQL database
with use of Data Access Objects. Persistence layer takes advantage of Hibernate
object-relational mapping and stores formulas, expert system scenarios, user
data and knowledge bases’ metadata. System management is provided via User
Service and App Service.

Client part of application contains JavaScript views, compiled from Java
classes. It communicates with server-side with Remote Proxy Calls, where data is
transported via HTTP as Data Transfer Objects – plain, serializable Java classes

264 B. Sniezynski et al.

shared by both sides. LIIS is build with Maven, dependencies management tool.
It works on Apache Tomcat web server.

In current implementation of reasoning engine the following formulas can
be used: statements (V), hierarchy (H), similarity (S), implications, P and N .
Applied transformations includes rules of object and value generalization, spe-
cialization, similarity, Modus Ponens, ordering and hierarchy transitivity.

4.4 Label Algebra

In our research we use a simplified version of label algebra defined in [18]. The
system uses the following coefficients representing certainty, which are real num-
bers from the range [0,1]: for formulas V – confidence, for formulas S – similarity
rate, for formulas H – typicality and dominance, for formulas B – confidence, for
formulas I (implications) – strength. Formulas P and N are certain (have label
equal to 1.0).

The certainty label of the statement, which is conclusion of proof rule ri is a
product of the label of each of the premises:

fri
(l1, l2, . . . , lni

) =
ni∏

i=1

li (4)

If premise represents hierarchy, typicality is used in object transformation and
dominance is used in value transformation.

5 Experimental Results

In order to examine the functionality of the system, various scenarios have been
developed. Below the selected three scenarios are presented. The description of
the scenarios contains the hypotheses, user responses, the proof obtained, the
proof rules used during inference, and the description the inference process.

The goal of the decision support system is to find a material which fits the
requirements and reduce the cost of the casting through the use of a new material.

5.1 Knowledge Base

The model was tested before on two small domains [1,2]. To show advantages
of the proposed solution in a larger scale, a decision support system was devel-
oped in a domain, which is complex enough, contain hierarchies of objects, and
is characterized by a number of parameters of an intuitive nature, difficult to
measure. The system supports the choice of metal products manufacturing tech-
nology, casting technology included. Knowledge base consists of more than 700
formulas.

Often the choice of technology for the manufacture of metal item and of the
material from which this item is to be produced stems from the experience and

Creative Expert System 265

knowledge of the engineer designing this item. These human aspects are diffi-
cult to represent using formal languages. When the task of designing machine
parts is undertaken, parameters that the item should have and the related oper-
ational and utility functions must be taken into account. This also applies to
the case of the conversion of material. A new type of material must provide
at least the same mechanical properties and reliability as the original one. The
choice of the method of manufacture is affected by the batch size, dimensional
accuracy, dimensions, complexity, the type of the necessary machining and heat
treatment, etc. All these factors also create costs. In this situation, the problem
which the designer of a particular product (machine part) has to face and solve
consists in selecting the material and the technology of its manufacture, which
will ensure that the specific technical requirements are satisfied, while allowing
the maximum reduction of production costs.

In the application of LIIS system considered here it is very important to
indicate the appropriate material, which could replace the traditional materials
(forged steel, cast steel). This material can be Austempered Ductile Iron (ADI),
which has a favorable relationship between the tensile strength (Rm) and elon-
gation (A), offering at the same time significantly lower manufacturing costs
(savings of approx. 20 %). The decision about the possible use of ADI must be
based, however, on more detailed analysis of requirements imposed on a par-
ticular product and its characteristics, to mention as an example the damping
capacity, corrosion resistance, dimensions, the batch size, and the weight of a
single item.

It is accepted that the low-volume production includes up to 50 pieces of
castings weighing between 0 and 25 kg. Low-volume production also comprises
up to 10 cast pieces if the casting weight is 25–500 kg. If the casting weight
exceeds 500 kg, the small-volume production comprises 1 cast piece. Medium-
volume production covers 50–5000 pieces for the weight range between 0 and
25 kg, 10–100 pieces for the weight range of 25–500 kg, and 2–10 pieces for the
total weight of more than 500 kg. All values above this level stand for the large-lot
production.

The batch size (production volume) is dependent on the weight of product for
each of the three type ranges. This helps to better understand the comparison
of prices for the same product made from ADI and carburized steel for different
batch sizes and product weights.

Core of the knowledge base are hierarchies. They were defined during con-
sultations with experts. They represent facts that ADI is a kind of cast iron and
define its 63 subtypes (ADI GSJ-1400-1, ADI 1, ADI 2, ..., ADI 31, ..., ADI 34,
ADI 41, ..., ADI 44, ADI 51, ..., ADI 68, ...). Context is related to cost, pro-
duction volume, application and mechanical properties. The first label value
(typicality) is high (often equal to 1.0), which means that certainty of special-
ization of objects and values (SPECo and SPECv) will be also high. The second
label (dominance) is low.

1. H(adi, cast iron, cost):0.8:0.1
2. H(adi, cast iron, volume production):0.8:0.1

266 B. Sniezynski et al.

3. H(adi gsj-1400-1, adi, application):1.0:0.1
4. H(adi 4, adi, application):1.0:0.1
5. H(adi 42, adi, application):1.0:0.1

In statements minimum elongation and tensile strength of selected steel
grades are expressed. Labels representing certainty have high values. Similar
statements are prepared for other types of ADI (like ADI 4, ADI 42, ADI 52
etc.). Some parameters are not known and corresponding statements are missing.

1. V(adi, application, rake):1.0
2. V(adi gsj-1400-1, minimal elongation A, 1):1.0
3. V(adi gsj-1400-1, tensile strength Rm, 1400):1.0
4. V(engjs 14001, chemical composition c, 3.462-3.524):1.0
5. V(adi gsj-1400-1, austenization time, 105-inf):1.0
6. V(adi gsj-1400-1, austenization temp, 867.5-895):1.0
7. V(adi gsj-1400-1, hardening time, 187.5-inf):1.0

The rest of formulas have form of implication. Four of them allow to recom-
mend a material for production (see below). They have conclusion V(casting,
material alternative, X). The more parameters are checked (and more premises
the rule has), the more certain the answer is. The first implication checks appli-
cation, costs, tensile strength and minimal elongation and it has certainty 1.0.
Fourth rule checks only application, therefore its certainty is equal to 0.25 Other
rules allow to predict the production costs assuming a particular batch size and
product weight.

1. V(casting, application required, A) ∧ V(X, application, A) ∧
V(casting, cost required, COST MAX)∧V(X, cost, COST CALCULATED)
∧ P(COST CALCULATED, COST MAX) ∧
V(casting, tensile strength Rm required, STRENGTH MIN)
∧ V(X, tensile strength Rm, C) ∧ P(STRENGTH MIN, C)
∧ V(casting, minimal elongation A required, ELONG MIN)
∧ V(X, minimal elongation A, E) ∧ P(ELONG MIN, E)]
→V(casting, material alternative, X):1.0

...
4. V(casting, application required, A) ∧ V(X, application, A)] →V(casting,

material alternative, X):0.25

5.2 Scenario 1

The first scenario illustrates a simple case, in which all the knowledge necessary
for reasoning is given explicitly in knowledge base. Application of the material
is a rake1, the maximum cost limit is equal to 15, product weight is heavy, the
1 A rake is a tool used in sewage-treatment plants. Its main task is to mix organic

materials such as straw, grass, hay, etc. with semi-liquid material obtained from the
municipal waste-water treatment after suitable processing, and with soil and refining
additives to obtain mineral fertilizer used in agriculture.

Creative Expert System 267

Fig. 1. Graphical presentation of the proof found in scenario 1

batch size is large, minimal tensile strength Rm is equal to 1100 and hardness
is high. As a result, the system recommends ADI 4 with confidence 1.0.

The proof was obtained by double application of the Modus Ponens (MP)
rule and double object specialization (SPECo) rule. It is presented in Fig. 1. In
the first step, the MP rule was applied to implication no. 1, which means that
if the required application of casting under consideration is equal to A (premise
1) and is the same as the application allowed for an alternative material in the
rule marked by variable X (premise 2), the required maximum cost is equal to
COST MAX (premise 3), and the cost calculated for an alternative material
is equal to COST CALCULATED (premise 4) and is lower than the maximum
cost (premise 5), the required minimum tensile strength Rm is STRENGTH MIN
(premise 6), and for an alternative material it is C (premise 7) and is higher than
STRENGTH MIN (premise 8), and required hardness described as HARDNESS
(premise 9) is the same as for alternative material (premise 10), then the alter-
native material (X) should be used with confidence 1.0.

Premises 1 and 3 can be adapted to the knowledge base elements or answers
to questions. Premise 2 (application acceptable for ADI 4) was inferred using
SPECo object specialization rule because ADI 4 is a typical ADI in terms of
application, and it is known that ADI may be used to produce rakes. Similarly,
premise 4 was derived using SPECo specialization rule and knowing that ADI 4
is a typical ADI in terms of the cost of obtaining it and calculating this cost for
ADI based on the mass of the casting and using the implication no. 13 as above.
Premises 5–10 can be unified with the knowledge base elements or answers to
questions.

5.3 Scenario 2

User requirements in this scenario are the following. Application is also rake, the
maximum allowable cost is 15, casting weight (diameter) is medium this time,
batch size is large, minimum tensile strength Rm is lower: 1000, hardness is high.

The last parameter is problematic because there are some materials for which
it is not measured. It is the case for ADI 42 which matches the other criteria.

268 B. Sniezynski et al.

Fig. 2. Graphical presentation of the proof found in scenario 2

However, due to presence of other examples, a classifier predicting hardness
may be learned and applied to this case. Therefore, expert system recommends
ADI 42 with confidence 1.0.

The proof was obtained by triple application of the Modus Ponens (MP)
rule and double object specialization (SPECo). Most of the inference steps look
similar to the first scenario. At the beginning, the MP rule was applied to impli-
cation no. 1. Its premises 1, 3, 6, 9 are user’s responses. Proof is presented as a
diagram in Fig. 2.

Exactly like in first scenario, premises 2 and 4 were inferred using SPECo
object specialization rule because ADI 42 is a typical ADI in terms of appli-
cation and cost. Premises 5 and 8 expressed that inferred cost (variable
COST CALCULATED) or given by user tensile strength (variable C) fits
demanded range. Premise 7 was unified with knowledge base. The last premise
related to hardness was missing and the system was not able to infer it. There-
fore a complex knowledge transmutation was applied. 14 examples described
by all available attributes were prepared. One of the rules checked hardening
temperature and carbon content:

V (CASTING, hardening temp, [0 − 293.75, 293.75 − 337.5])
∧ V (CASTING, chemical composition c, [3.462 − 3.524, 3.586 − inf])

→ V (CASTING, hardness hb, high) : 1.0. (5)

Its premises were true for ADI 42 and it allowed to derive its hardness. Therefore
ADI 42 was supposed to have high hardness and it was recommended to the user.

5.4 Scenario 3

Requirements in this scenario are the same as in the previous one. However, other
implication from machine learning results was selected to predict the hardness.

Proof structure is shown in Fig. 3. Inference is similar to one from the second
scenario. The only difference is replacing the learned implication in the last step
with implication:

Creative Expert System 269

Fig. 3. Graphical presentation of the proof found in scenario 3

V (CASTING, hardening temp, [0 − 293.75, 293.75 − 337.5])
→ V (CASTING, hardness hb, high) : 1.0. (6)

It has a shorter form – premise related to carbon content is omitted. As a result,
casting ADI 52 was recommended material with confidence 1.0. In the previous
scenario this material was not selected because it was not matching the condition
related to the carbon content.

5.5 Time Complexity

We have checked how adding complex knowledge transmutation influences the
inference time. We have used the same knowledge base and a scenario for which
the answer can be found with and without machine learning. Three attributes
were allowed as categories: hardness, application and cost. For maximal proof
tree depth equal to 10 the inference time was doubled, while for the depth equal
to 80 the time was increased by 33 %.

5.6 Summary

Domain experts reviewed results of presented scenarios. Achieved answers and
their certainties was evaluated as correct. Second and third scenario show that
MILS model allows to continue reasoning even in cases not covered by the KB. In
such cases, recommendations depend on the learned implications. The increase
of the inference time after adding complex transmutations is acceptable.

6 Conclusions and Further Works

The presented LIIS system based on LPR allowed to create a web-based expert
system for material and technology recommendation in a casting process. The
system was tested in many scenarios, three examples of which are described
above. Technologists confirmed that the answers are right and the proofs are
valid and easy to follow.

270 B. Sniezynski et al.

The knowledge base created consists of various types of formulas: statements,
hierarchies, similarities and implications. Therefore, in the knowledge processing
various types of inference patterns are applied (deductive reasoning, generaliza-
tion, and similarity). As a result, the knowledge and reasoning reflect human
way of thinking, what makes the creation of the knowledge base more natural.

Further works will concern adding learning capabilities to the system. Learn-
ing module is already implemented (see Sect. 4). However, appropriate knowledge
base and use cases are still under construction. Other works concern application
in a system in other domains. Knowledge-based systems for telemetry-oriented
applications [20] and money laundering detection [7] are under investigation.
Also consistency check of the Knowledge Base should be added.

Acknowledgments. The research reported in the paper was supported by the grant of
The National Centre for Research and Development (LIDER/028/593/L-4/12/NCBR
/2013) and by the Polish Ministry of Science and Higher Education under AGH Uni-
versity of Science and Technology Grant 11.11.230.124.

References

1. Szczepaniak, P., Kacprzyk, J., Niewiadomski, A.: Advances in Web Intelligence.
LNCS, vol. 3528. Springer, Heidelberg (2005)

2. Sniezynski, B.: Integration of inference and machine learning as a tool for creative
reasoning. In: AAAI Fall Symposium Series, North America, September 2014

3. Alkharouf, N.W., Michalski, R.S.: Multistrategy task-adaptive learning using
dynamically interlaced hierarchies. In: Michalski, R.S., Wnek, J. (eds.) Proceedings
of the Third International Workshop on Multistrategy Learning (1996)

4. Althoff, K., Bach, K., Deutch, J., Hanft, A., Manz, J., Muller, T., Newo, R., Reichle,
M., Schaaf, M., Weis, K.: Collaborative multi-expert-systems realizing knowledge-
lines with case factories and distributed learning systems. In: Proceedings of the
3rd Workshop on Knowledge Engineering and Software Engineering (2007)

5. Boon Toh, L., Ho Chung, L., Ah Hwee, T., Hoon Heng, T.: Connectionist expert
system with adaptive learning capability. IEEE Trans. Knowl. Data Eng. 3(2),
200–207 (1991)

6. Collins, A., Michalski, R.S.: The logic of plausible reasoning: a core theory. Cogn.
Sci. 13, 1–49 (1989)

7. Drezewski, R., Sepielak, J., Filipkowski, W.: The application of social network
analysis algorithms in a system supporting money laundering detection. Inf. Sci.
295, 18–32 (2015)

8. Gabbay, D.M.: LDS - Labeled Deductive Systems. Oxford University Press, Oxford
(1991)

9. Hart, P., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination
of minimum cost path. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

10. Legień, G., Śnieżyński, B., Wilk-Ko�lodziejczyk, D., Kluska-Nawarecka, S.,
Nawarecki, E., Jaśkowiec, K.: Expert system with web interface based on logic
of plausible reasoning. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R.,
Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 13–20. Springer, Heidelberg
(2015)

Creative Expert System 271

11. Ligeza, A.: Logical Foundations for Rule-Based Systems. Springer, Heidelberg
(2006)

12. Michalski, R.S.: Inferential theory of learning: developing foundations for multi-
strategy learning. In: Michalski, R.S. (ed.) Machine Learning: A Multistrategy
Approach, vol. IV. Morgan Kaufmann Publishers, Burlington (1994)

13. Michalski, R.S., Larson, J.: AQVAL/1 (AQ7) user’s guide and program descrip-
tion. Technical report 731, Department of Computer Science, University of Illinois,
Urbana, June 1975

14. Morgan, C.G.: Autologic. Logique et Anal. 28(110–111), 257–282 (1985)
15. Neapolitan, R.E.: Probabilistic Reasoning In Expert Systems: Theory and Algo-

rithms. CreateSpace Independent Publishing Platform, North Charleston (2012)
16. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, Burlington

(1993)
17. Riley, G.: Clips - an expert system building tool. In: Proceedings of Technology

2001 Conference, San Jose, CA (1991)
18. Sniezynski, B.: Probabilistic label algebra for the logic of plausible reasoning. In:

K�lopotek, M., et al. (eds.) Intelligent Information Systems 2002. ASC, vol. 17, pp.
267–277. Springer, Heidelberg (2002)

19. Sniezynski, B.: Proof searching algorithm for the logic of plausible reasoning. In:
K�lopotek, M., et al. (eds.) Intelligent Information Processing and Web Mining.
ASC, vol. 22, pp. 393–398. Springer, Heidelberg (2003)

20. Szydlo, T., Nawrocki, P., Brzoza-Woch, R., Zielinski, K.: Power aware MOM
for telemetry-oriented applications using GPRS-enabled embedded devices - levee
monitoring use case. In: Proceedings of the 2014 Federated Conference on Com-
puter Science and Information Systems, vol. 2, pp. 1059–1064. IEEE, September
2014

21. Tran, L.P., Hancock, J.P.: An adaptive-learning expert system for maintenance
diagnostics. In: Proceedings of the IEEE 1989 National Aerospace and Electronics
Conference, NAECON 1989, vol. 3, pp. 1034–1039, May 1989

22. Wiriyacoonkasem, S., Esterline, A.C.: Adaptive learning expert systems. In: Pro-
ceedings of the IEEE Southeastcon 2000, pp. 445–448. IEEE (2000)

23. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

A Reverse Nearest Neighbor Based Active
Semi-supervised Learning Method

for Multivariate Time Series Classification

Yifei Li1, Guoliang He1,2(&), Xuewen Xia3, and Yuanxiang Li1,2

1 State Key Laboratory of Software Engineering,
Wuhan University, Wuhan, China

{yfli814,glhe,yxli}@whu.edu.cn
2 College of Computer Science, Wuhan University, Wuhan, China

3 School of Software, East China Jiaotong University, Nanchang, China
laughkid@163.com

Abstract. Time series widely exist in many areas. In reality, the number of
labeled time series data is often small and there is a huge number of unlabeled
data. Manually labeling these unlabeled examples is time-consuming and
expensive, and sometimes it is even impossible. To reduce manual cost and
obtain high confident labeled training data for multivariate time series classifi-
cation, in this paper a reverse nearest neighbor based active semi-supervised
learning method is proposed. First, based on information entropy and distribution
density of the training data, a sampling strategy is introduced to select the most
informative examples for manual annotation. Second, in terms of the newly
labeled example by experts, a reverse nearest neighbor based semi-supervised
learning method is presented to automatically and accurately label some confi-
dent examples. We evaluate our work with a comprehensive set of experiments
on diverse multivariate time series data. Experimental results show that our
approach can obtain a confident labeled training data with less manual cost.

Keywords: Multivariate time series � Active learning � Semi-supervised
learning

1 Introduction

Time series widely exist in many areas such as speech recognition, finance and
engineering. Time series data mining has been attracting great interest, and time series
classification is one of fundamental tasks. Traditional time series classification methods
usually require significant amount of labeled training data to learn a high-quality
classification model. However, the number of labeled data is often smaller in real-life
applications, and there is a huge number of unlabeled data as the quick development of
network and information technology. On the other hand, manually labeling examples is
time-consuming and expensive, and sometimes it is even impossible. Therefore, how to
make better use of these unlabeled data for learning a good classification model is
critical.

© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 272–286, 2016.
DOI: 10.1007/978-3-319-44403-1_17

To make best use of unlabeled data for learning a good classifier, recently some
efficient semi-supervised learning methods have been introduced to automatically
annotate some of unlabeled data by using only handful of labeled data [1–5]. However,
existing semi-supervised learning is not efficient to deal with multiple sub-concepts in a
class when the size of labeled examples is extremely smaller [6]. Furthermore,
semi-supervised methods are difficult to find confident examples with the limited
labeled multivariate time series (MTS) data because comparing with univariate time
series, MTS data has multiple variables and data distribution is more complex.
Therefore, it is a challenging work to obtain sufficient and reliable labeled MTS data
from positive and unlabeled data for classification.

To handle the issue, in this paper we focus on combing active learning and
semi-supervised learning for annotating the vast majority of original unlabeled MTS
data, which could provide much more information to learn a good classifier. First, we
present an efficient way to measure the density of an unlabeled example based on its
reverse K-nearest neighbors. Then, a valid method is proposed to evaluate the infor-
mativeness of unlabeled examples for manual annotation. Next, based on reverse
nearest neighbor technique, we advance a semi-supervised learning method to auto-
matically label some confident unlabeled examples in terms of the newly labeled
example. Last, we introduce an efficient active semi-supervised learning framework.
We make several contributions.

1. Based on information entropy and density, a sampling strategy is proposed to find
the most informative unlabeled MTS examples for manual annotation.

2. A reverse nearest neighbor based semi-supervised learning method is presented to
automatically and accurately identify some unlabeled MTS data to further enlarge
the scale of the labeled training data.

3. An efficient active semi-supervised learning framework is proposed to accurately
annotate the vast majority of original unlabeled MTS data as cheap as possible. And
the labeled training data could provide the information to learn a good classifier as
much as possible.

4. Experimental results on benchmark datasets show that our proposed method is
competitive.

The remainder of this paper is organized as follows. In Sect. 2, we review related
work and some basic concepts are defined in Sect. 3. Section 4 introduces sample
selection strategy and active semi-supervised learning framework. In Sect. 5, we per-
form a comprehensive set of experiments on several datasets. Finally, we conclude our
work and suggest directions for future work in Section 6.

2 Related Work

2.1 Semi-supervised Learning

In general, traditional classification methods need lots of labeled training examples for
learning. In practice, labeled data are often insufficient and labeling examples is
time-consuming and expensive. To make better use of unlabeled examples,

A Reverse Nearest Neighbor Based Active Semi-supervised Learning Method 273

semi-supervised approaches have been proposed to improve the performance of time
series classification. For instance, Wei and Keogh proposed a semi-supervised way to
automatically label the nearest example closest to labeled examples iteratively [1].
However, it’s hard to find a good stopping criterion to decide when to stop the iteration,
which leads to automatically labeled examples being not confident.

To find an accurate boundary between positive and negative samples in unlabeled
samples, Nguyen et al. proposed an effective technique called LCLC (Learning from
Common Local Clusters) [3]. The unlabeled samples are clustered and all samples
within a cluster are assumed to be from same class. Then, a chaining approach was
applied to find the boundary between positive and negative clusters in terms of their
similarity distances. However, the assumption that all samples within a cluster are from
same class is unpractical. To overcome the drawbacks of LCLC, Nguyen et al. pro-
posed a novel ensemble based approach to obtain multiple diverse classifiers [4].

Moreover, Mabel et al. [5] delved into the stopping criterion problem in the
self-training context. They proposed a family of parameter-free stopping criteria for
k-nearest neighbor in positive unlabeled time series classification, in terms of the
minimum distances achieved by the k-NN in each iteration. It used a specialized
graphical analysis technique to identify the boundary between classes.

To the best of our knowledge, up to now few work touched the issue of
semi-supervised learning on multivariate time series due to the complexity of its data
distribution.

2.2 Active Learning

Active learning is an efficient way to find the most valuable instances from lots of
unlabeled data for manual labeling. It makes use of user’s feedback to enlarge the size
of the training data and enhance the confidence of examples, which could improve
effectiveness of learning algorithm. In the process of active learning, the key issue is
how to select limited subset of most informative examples in the unlabeled data [7, 8].

Among different sample selection strategies, uncertainty based sampling and query
by committee are two most popular sampling strategies [7, 8]. Uncertainty sampling is
the simplest and most commonly sampling way. In the process of the uncertainty
sampling, some instances whose classes are most uncertain with the classifier are
selected and further annotated [9, 10]. The assumption is that instances which are
harder to identify are more helpful to further enhance the classification performance by
updating the classifier. Query by committee strategy selects unlabeled examples whose
class is the most disagreement among the committee numbers is chosen for annotation.
To implement a Query by Committee algorithm, a committee of hypotheses should be
firstly constructed to consistent with the labeled data. Then, a measure is designed to
evaluate the disagreements between committee members [11, 12].

However, examples selected by the uncertainty sampling method do not always
provide more information than other unlabeled examples for learning a good model.
The reason is that some outliers that are most uncertain are also selected during the
process of the uncertainty sampling. To avoid outliers being selected by in the process
of sampling, He et al. [13] addressed the issue of active learning for multivariate time

274 Y. Li et al.

series classification with positive unlabeled data, and proposed an uncertainty and
utility based sampling strategy to find informative unlabeled examples for manual
annotation. First, a few of unlabeled examples with the highest uncertainty are selected.
Then, among these chosen examples, the best one with the highest utility is manually
annotated finally. Although the experimental results show clearly that this method was
competitive, we observed that it has drawbacks. It could not consider uncertainty and
utility at the same time, which leads to the most informative examples with high local
density being not selected due to its little lower uncertainty. However, firstly annotating
the most informative one could offer more information for classification and auto-
matically labeling more confident unlabeled examples in the semi-supervised learning
process. Therefore, this method results in more examples for manual annotation, which
lead to excessive costs. This motivates use to propose a more robust approach to reduce
manual cost as much as possible.

3 Definitions and Notations

In this section, we define some basic concepts and the notations used in this paper.

Definition 1. Univariate time series: a univariate time series s = t1, t2,…, tL is an
ordered set of L real-valued variables, and L is the length of the time series s (for
simplicity, L = |s|).

Definition 2. Multivariate time series: a multivariate time series is a vector of
sequences X = (x1, x2,…, xT), where each component xj is a univariate time series.

This MTS object X has T variables, and the corresponding component of the ith

variable is xi.
For the similarity distance, there are several methods to measure the similarity

between two MTS examples. Here we adopt cosine distance method [14].

Definition 3. Cosine Similarity: For two multivariate time series B = (b1, b2, …, bm)
and S = (s1, s2, …, sm), supposing |bi| ≤ |si|, the cosine similarity between B and S is

calculated by Sim B; Sð Þ ¼ Pm
i¼1 minb0i2bi;len b0ið Þ¼lenðsiÞ

b0i�si
jjb0ijj�jjsijj.

Definition 4. P is a subset of all positive examples from the training data.

At the beginning, P contains all positive examples of the training data, which is
often smaller. As some unlabeled exampled being annotated, the number of the dataset
P increases. At the same time, the size of new negative examples is also augmented.

Definition 5. U is a subset of all unlabeled examples from the training data.

Originally, the dataset U consists of all the unlabeled examples in the primitive
training data. As some unlabeled exampled being annotated as positive or negative, the
scale of the dataset U gradually reduces. In this paper my try to minimize the size of the
dataset U, which could provide more information to learn a good classifier.

A Reverse Nearest Neighbor Based Active Semi-supervised Learning Method 275

4 Our Proposed Method

In this paper, our goal is to accurately annotate the vast majority of original unlabeled
MTS data, which could provide much more information to learn a good classifier. We
know that semi-supervised learning is an efficient method to automatically label a large
of unlabeled data. However, as we mentioned, it is inefficient to deal with positive
unlabeled MTS data. Therefore, in this paper we try to combine active learning and
semi-supervised learning to enlarge the number of labeled MTS training data. Because
active learning is too costly, we try to improve the quality of the data annotations as
well as reducing the amount of manual annotation.

Here we just deal with issue of two-class data. If the data is more than two classes,
usually there are two ways to generate a binary class dataset. One is to use a class as
positive class and the rest is as negative class. The other way is to select two classes
among all classes. In this paper we adopt the later. Moreover, we assure that the data is
in general balanced. When the original training data is imbalanced, it is more complex,
which is beyond our discussion in this paper.

In this section, we discuss how to combine active learning and semi-supervised
learning methods to enlarge the scale of labeled data. First, we present an uncertainty
and density based sampling strategy for manual annotation. Then, an active
semi-supervised learning framework is proposed.

4.1 Sampling Strategy

As mentioned above, in literature [13] we proposed an uncertainty and utility based
sampling strategy. However, the performance of overall this algorithm is less satis-
factory than expected. We notice that the cardinality of an example’s reverse K-nearest
neighbors is more suitable to measure its local density [15, 16]. Therefore, we intro-
duce an efficient sampling strategy to select most informative examples for annotation
by considering its uncertainty and local density synchronously.

We are now in a position to present the definitions necessary to describe our idea.

Definition 6. Uncertainty. For an unlabeled MTS sample u, suppose its nearest
positive sample is up and nearest negative sample is un. Based on information entropy,
we can calculate the uncertainty of this unlabeled sample u by

UCT(u) = - (Pu � log Pu þNu � log NuÞ ð1Þ

Pu ¼ Simðu; upÞ
Sim u; up

� �þ Simðu; unÞ

Nu ¼ Simðu; unÞ
Sim u; up

� �þ Simðu; unÞ
where Sim(u, up) and Sim(u, un) is the cosine similarity between its nearest positive
sample un and its nearest negative sample un, respectively.

276 Y. Li et al.

Definition 7. Reverse K-nearest Neighbor. Given a data set D, for a MTS example
S ϵ D, its reverse K-nearest neighbor, i.e. RkNN (S), is a subset of D that treat S as its
K-nearest neighbors. Specifically, 8X 2 RkNN Sð Þ, S 2 kNN Xð Þ, where kNN(X)
means the K-nearest neighbors of example X.

Definition 8. Density. Given a data set D, for a MTS example S ϵ D, its density
denotes as

Density ðS;KÞ ¼ 1
minY2S[kNN Sð ÞfSim S; Yð Þg

X
X2S[kNNðSÞ jRkNNðXÞj ð2Þ

where jRkNNðXÞj denotes the size of the RkNN(X).
Because in the process of active learning, the unlabeled examples are annotated by

an oracle iteratively, each time only an example is annotated in order. Sometimes the
average density could not represent the data distribution variation of an example’s the
local area. To handle this issue, we introduce the weight of density of an example.

Definition 9. Weight. Given a data set D, for a MTS example S ϵ D, the weight of S
denotes as

Weight S; kð Þ ¼ RkNN Sð Þj j þ 1
minX2kNNðSÞ RkNN Xð Þj j þ 1

ð3Þ

Definition 10. Given a data set D, for a MTS example S ϵ D, based on the density and
weight of S, the weighted density of S

W Density S;Kð Þ ¼ Weight S; kð Þ � Density S; kð Þ ð4Þ

Definition 11. Score. Given a data set D, for a MTS example S ϵ D, based on the
uncertainty and weighted density, the score of an unlabeled example S denotes as

Score Sð Þ ¼ UCT Sð Þ �W Density S; kð Þ ð5Þ

Based on the definition of score, we rank all the unlabeled examples and select the
example with the highest score for manual annotation.

According to the definitions in the above, we could easily discover some distin-
guished and informative unlabeled examples, which to a large extent could provide
more information to identify the remaining unlabeled examples.

4.2 Active Semi-supervised Learning for Data Annotations

Based on the sample selection strategy presented in the above, the next work is to select
most informative examples for manual annotation. However, the original data is a
positive unlabeled dataset, in which it is hard to evaluate the degree of the uncertainty
of all unlabeled examples. Therefore, to evaluate the uncertainty degree of each
unlabeled example, we first try to find a confident negative example from unlabeled
data. In general, the most dissimilar example far from original positive examples is

A Reverse Nearest Neighbor Based Active Semi-supervised Learning Method 277

likely to be a negative example. However, this situation is not always true due to the
diversity of class and the complexity of the MTS data distribution. Here we continu-
ously select the most dissimilar examples far from positive examples and manually
annotate its label until the chosen example is negative. Then, we select the most
informative unlabeled sample using sample selection strategy. Next, we adopt
semi-supervised learning to confidently identify some of unlabeled data. For clarity, we
provide the framework of semi-supervised active learning as following.

In the process of semi-supervised learning, to confidently identify some of unla-
beled data, we introduce a reverse nearest neighbor based semi-supervised learning
method. Specifically, for the newly labeled example x, all unlabeled examples Y in U
that treat x as its k-nearest neighbors are automatically labeled as the class of x.

4.3 The Stopping Criterion

A naïve stopping criterion for active semi-supervised learning method is to dynami-
cally evaluate the performance of the trained classifier as the labeled training examples

278 Y. Li et al.

enlarges. When the performance of the classification stops to improve, the process of
the active learning would be quit. However, measuring the performance on the labeled
training data is costly and time-consuming, in this paper we focus on annotating the
vast majority of original unlabeled examples. Therefore, when the percentage of
original unlabeled examples having been annotated is above 95, we end the process of
active semi-supervised learning. This valid stopping criterion has two advantages: One
is that vast majority of original unlabeled examples are annotated. The other is that
some abnormal examples are not labeled, which could effectively avoid reducing the
performance of classification.

4.4 Multivariate Time Series Classification

As we know, lots of algorithms can be used for MTS classification. Here our aim is to
obtain confident labeled training data with less manual cost. To illustrate the efficiency
of our proposed method, we adopt a sample and effective classification model, 1-NN, to
evaluate the classification performance.

Here we use the F-measure and accuracy to evaluate the performance of these
approaches. The F-measure is defined as F ¼ 2 � p � r= pþ rð Þ, where p and r means the
precision and recall of classification, respectively. F-measure is larger when both of
precision and recall are good.

5 Experimental Evaluation

In this section, we empirically study the proposed method for MTS classification on
positive unlabeled data. The algorithms are implemented in Matlab, and the parameter
k = 1. In the beginning, there is only one positive example in P and the rest of
examples are treated as U. Therefore, the performance of the trained classifier can be
sensitive to the initial labeled example. To mitigate this sensitivity, we repeat the
training process ten times by each time starting from a different training example.
Finally, we average the F-measure and accuracy of the classifier over all runs.

5.1 Datasets

The experiments are carried out on five real-world datasets, that is, Japanese Vowels,
Character Trajectories, Pen-Based Recognition of Handwritten Digits, Wafer, and
uWaveGestureLibrary [17–19]. For the Japanese Vowels dataset, there are 9 classes,
and here we combine the first 4 classes as positive and the next 4 classes as negative to
form a new dataset JV. For the Character Trajectories dataset, we select “b” class as
positive and select “d” class as negative to form a new dataset CT. For the Pen-Based
Recognition of Handwritten Digits dataset, we select “i” class as positive and select “j”
class as negative to form a new dataset PRH. For Wafer dataset, its original dataset is
imbalanced. Here we randomly select 127 negative examples and all positive examples
to form a new balanced dataset. For uWaveGestureLibrary dataset, we select the second
class as positive and select the fourth class as negative to form a new dataset WG.

A Reverse Nearest Neighbor Based Active Semi-supervised Learning Method 279

Table 1 shows the summary of all of the datasets used in the experiments.

5.2 Analysis of Sample Selection Strategy

To illustrate the efficiency of our proposed sample selection method in terms of
information entropy and reverse-nearest-neighbor based density (IR), in this section we
first compare with other three classical sample selection approaches as following.

UU: A sampling method based on uncertainty and utility proposed in literature [13].
UD: A sampling method based on uncertainty and density in literature [14].
DR: A sampling method based on in terms of density based re-ranking in liter-
ature [14].

To analyze the function of these four sample selection methods, we compare their
F-measure and accuracy when they manually label the same number of unlabeled
examples. To show the changes in the performance of classification as the manually
labeled examples gradually augmented, we do experiments on different percentage of
manually labeled examples.

Figure 1 shows classification results of the four sample selection strategies on five
datasets. It is clear that IR produces the best results consistently on different percentage
of manually labeled examples. The reason is that at each time IR could select the most
informative unlabeled example for manual annotation, which could effectively improve
the classification performance when the expert resource is limited. At the same time, we
notice that when the number of manually labeled examples is smaller, our proposed
method is more competitive. This phenomenon gradually slows down when the per-
centage of manually labeled examples becomes larger. It is reasonable that as the
number of manually labeled examples is larger, informative examples are mostly labeled
and added to the labeled training data by all sampling methods for classification.

On the other hand, we also analyze the performance of these four methods when the
stopping Criterion is satisfied, which is natural for applications. The comparison of the
classification performances are shown in Table 2, where “% (manual annotation)”
means the percentage of all original unlabeled examples have been manually annotated
when the active semi-supervised learning process ends. We see that when the labeling
process ends, classification performance of four active learning methods is similar.
Meanwhile, we notice that that the number of manually labeled examples with IR is
much smaller than other methods on all datasets. It shows the selected example to be
manually annotated with our proposed method each time is a better representative of
unlabeled examples, which could further automatically label more confident unlabeled

Table 1. Summary of datasets used in the experiments

JV CT PRH Wafer WG

Num of labels 2 2 2 2 2
Num of variables 12 3 2 6 3
Max length 29 174 8 198 315
Min length 7 174 8 37 315
Num of samples 581 298 2110 254 1120

280 Y. Li et al.

Fig. 1. The classification performances of 4 sampling methods with different ratio of manually
labeled examples to original unlabeled examples on five datasets

A Reverse Nearest Neighbor Based Active Semi-supervised Learning Method 281

examples in the semi-supervised process. More examples need to be labeled by experts,
which is more time-consuming and expensive. Therefore, considering the performance
and the manual cost, our proposed active learning method is much effective among four
sampling methods.

Table 2. Classification results of 4 sampling methods on five datasets

F-measure Accuracy % (manual annotation)
IR UU ID DR IR UU ID DR IR UU ID DR

JV 0.78 0.77 0.78 0.78 0.69 0.7 0.7 0.69 28.45 92.05 44.35 51.46
CT 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 48.7 81.17 51.3 66.88
PRH 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 45.3 76.06 52.82 64.79
WAFER 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 44.69 69.27 51.4 58.66
WG 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 42.86 80.65 49.31 72.81

Fig. 1. (continued)

282 Y. Li et al.

5.3 Analysis of Proposed Semi-supervised Learning

In this section, we further analyze our proposed reverse nearest neighbor based
semi-supervised learning method. To discuss its performance, we compare with the
most commonly method, 1-NN based semi-supervised learning method. Specifically,
In the process of the semi-supervised learning, based on the newly labeled example, in

Fig. 2. The classification performances of two semi-supervised learning methods on 5 Datasets

A Reverse Nearest Neighbor Based Active Semi-supervised Learning Method 283

the data an unlabeled example that is the most close to this labeled example is labeled
automatically at each iteration. Therefore, here we generate two active semi-supervised
learning methods. To be fair, they both consist of our proposed IR active learning
except different semi-supervised learning methods. For short, we define them as
IR_R1NN and IR_1NN, respectively.

We do some experiments on five datasets to compare the performance of two
semi-supervised learning methods. The experimental results of both methods are shown
in Fig. 2. Firstly, we analyze the performance of both methods with the same number
of the manual labeled examples. When the number of the manually labeled examples is
the same in two methods, from this figure it is clear that the F-measure and accuracy of
IR_R1NN is much higher than that of IR_1NN on five datasets. The reason is that for
the same number of manual labeled examples, IR_R1NN could automatically label
larger number of confident unlabeled examples, which could efficiently improve the
performance of classification.

Meanwhile, we notice that the stability of IR_R1NN is much better than that
IR_1NN. For CT, Wafer and WG datasets, it is clear that the trends of F-measure and
accuracy of IR_R1NN is consistently increasing on five datasets while that of IR_1NN
is declining when the number of manually labeled examples is larger.

Next, we compare the number of unlabeled examples need to be manually annotated
by both methods. From Fig. 2(a), (d) and (e) we could see that the number of manually
labeled examples with IR_R1NN is much smaller on JV, Wafer and WG datasets while

Fig. 2. (continued)

284 Y. Li et al.

on CT and PRH datasets the number of manually labeled examples with both methods
are similar. It is reasonable because IR_R1NN can automatically label several examples
based on a newly labeled example while IR_1NN can only automatically label one. So
the IR_R1NN could annotate the vast majority of original unlabeled examples with less
number of manually labeled examples, which could reduce manual cost.

Therefore, the performance of reverse nearest neighbor based semi-supervised
learning method is more competitive.

5.4 Comparison with State-of-the-Art Semi-supervised Methods

The last experiment analyzes the function for our proposed active semi-supervised
learning method IR_R1NN against existing state-of-the–art semi-supervised methods
such as WK [5], RK and CBD [1], for MTS classification. The experimental results on
five datasets are listed in Table 3.

It is clear that our proposed methods are more efficient than existing semi-
supervised methods. The reason is that in our proposed method, active learning process
focus on selecting most informative examples and manually labeling them, and the
semi-supervised process just automatically label the confident unlabeled examples
which are the reverse nearest neighbors to the newly manually labeled examples.
However, existing semi-supervised methods label repeatedly unlabeled examples in
terms of the labeled ones, and it does not guarantee that the classes of these labeled
examples are all correct because some of them are labeled by the semi-supervised
method. Therefore, Comparing with existing state-of-the–art semi-supervised methods,
our proposed active semi-supervised method could offer more confidently labeled
training data for classification. It could improve the performance of classification.

6 Conclusions

In this paper we focus on combing active learning and semi-supervised learning for
annotating the vast majority of original unlabeled examples. First, based on information
entropy and density, a sampling strategy is proposed to find the most informative
examples for manual annotation. Second, in terms of the newly labeled example by
experts, a reverse nearest neighbor based semi-supervised learning method is presented
to automatically and accurately label some examples. Last, an efficient active

Table 3. Summary results of various methods on five datasets

F-measure Accuracy
IR_R1NN WK RK CBD IR_R1NN WK RK CBD

JV 0.78 0.68 0.65 0.68 0.69 0.59 0.58 0.59
CT 0.99 0.92 0.35 0.56 0.99 0.91 0.64 0.70
PRH 1.00 0.62 0.90 0.98 1.00 0.76 0.95 0.98
Wafer 0.99 0.68 0.40 0.37 0.99 0.79 0.64 0.62
WG 1.00 0.33 0.91 0.73 1.00 0.60 0.95 0.80

A Reverse Nearest Neighbor Based Active Semi-supervised Learning Method 285

semi-supervised learning framework is proposed to accurately annotate the vast
majority of original unlabeled data. The experimental results show clearly that our
proposed method is competitive.

In future, we plan to perform research on sampling method on imbalanced unla-
beled data to obtain a balanced labeled training data for multivariate time series
classification.

References

1. Wei, L., Keogh, E.: Semi-supervised time series classification. In: KDD (2006)
2. Begum, N., Hu, B., Rakthanmanon, T., Keogh, E.: Towards a minimum description length

based stopping criterion for semi-supervised time series classification. In: IEEE IRI (2013)
3. Nguyen, M.N., Li, X.-L., Ng, S.-K.: Positive unlabeled learning for time series classification.

In: IJCAI (2011)
4. Nguyen, M.N., Li, X.-L., Ng, S.-K.: Ensemble based positive unlabeled learning for time

series classification. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo,
J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 243–257. Springer, Heidelberg (2012)

5. Mabel, G., Chrisoph, B., Isaac, T., Taneet, R., Kosé, B.: On the stopping criteria for
k-nearest neighbor in positive unlabeled time series classification problems. Inf. Sci. 328,
42–59 (2016)

6. He, G., Duan, Y., Peng, R., Jing, X., Qian, T., Wang, L.: Early classification on multivariate
time series. Neurocomputing 149, 777–787 (2015)

7. Yifan, F., Zhu, X., Li, B.: A survey on instance selection for active learning. Knowl. Inf.
Sys. 35, 249–283 (2013)

8. Settles, B.: Active learning literature survey. Computer Sciences Technical report,
University of Wisconsin–Madison, 26 January 2010

9. Guo, H., Wang, W.: An active learning-based SVM multi-class classification model. Pattern
Recogn. 48(5), 1577–1597 (2015)

10. Huang, S.-J., Jinm, R., Zhou, Z.: Active learning by querying informative and representative
examples. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 1936–1949 (2014)

11. Hady, M.F.A., Schwenker, F.: Combing committee-based semi-supervised learning and
active learning. J. Comput. Sci. Technol. 25(4), 681–698 (2010)

12. Seung, H., Opper, M., Sompolinsky, H.: Query by committee. In: ACM Workshop on
Computational Learning Theory, pp. 287–294 (1992)

13. He, G., Duan, Y., Li, Y., Qian, T., He, J., Jia, X.: Active learning for multivariate time series
classification with positive unlabeled data. In: ICTAI (2015)

14. Zhu, J., Wang, H., Tsou, B.K., Ma, M.: Active learning with sampling by uncertainty and
density for data annotations. IEEE Trans. Audio Speech Lang. Process. 18(6), 1323–1331
(2010)

15. Huang, H., He, Q., He, J., Ma, L.: RADRA: rare category detection iva computation of
boundary degree. In: PAKDD (2011)

16. Xia, C., Hsu, W., Lee, M.L., Ooi, B.C.: BORDER: efficient computation of boundary points.
IEEE Trans. Knowl. Data Eng. 18(3), 289–303 (2006)

17. http://archive.ics.uci.edu/ml/datasets.html
18. http://www.cs.cmu.edu/*bobski/
19. http://www.cs.ucr.edu/*eamonn/time_series_data/

286 Y. Li et al.

http://archive.ics.uci.edu/ml/datasets.html
http://www.cs.cmu.edu/%7ebobski/
http://www.cs.ucr.edu/%7eeamonn/time_series_data/

Leveraging Structural Hierarchy for Scalable
Network Comparison

Rakhi Saxena1, Sharanjit Kaur2(B), Debasis Dash3, and Vasudha Bhatnagar4

1 Deshbandhu College, University of Delhi, Delhi, India
rsaxena@db.du.ac.in

2 Acharya Narendra Dev College, University of Delhi, Delhi, India
sharanjitkaur@andc.du.ac.in

3 CSIR-Institute of Genomics and Integrative Biology, Delhi, India
ddash@igib.res.in

4 Department of Computer Science, University of Delhi, Delhi, India
vbhatnagar@cs.du.ac.in

Abstract. K-core decomposition is a popular method that segments a
network revealing the underlying hierarchy. We explore the propensity
of this decomposition method for structural discrimination among net-
works by extracting features from each level of the hierarchy. We propose
a novel algorithm for Network Comparison using k-core Decomposition
(NCKD). The method is effective, efficient and scalable, with computa-
tional complexity of O(|E|), where E is the set of edges in the network.
The low computational complexity of the method makes it attractive for
scalable network comparison.

NCKD algorithm decomposes networks and extracts features from
the resulting shells. Jensen-Shannon distance between extracted fea-
tures quantifies structural differences between networks. We establish
that probability distributions of coreness and intra/inter-shell edges are
capable of characterizing different genres of networks and capturing finer
structural differences between networks of the same genre. We experi-
ment with synthetic and real-life networks up to eight million edges on a
single PC. Comparison with two recent state-of-the-art network compar-
ison methods affirms that NCKD outperforms in terms of effectiveness
and scalability.

Keywords: Network comparison · K-core decomposition · Graph
analytics · Social networks · Jensen-Shannon distance

1 Introduction

Complex networks have attracted immense attention because of their ability to
model social relations, power grids, transportation links, biological processes etc.
[7]. One of the challenging tasks in network analytics is to assess and quantify
similarity between two networks. Applications of network comparison include
construction of phylogenetic trees and function prediction in biological networks,
studying evolution in social networks, analysing semantic structure in natural
languages, detecting code theft by comparing two executable objects etc. [7,9].
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 287–302, 2016.
DOI: 10.1007/978-3-319-44403-1 18

288 R. Saxena et al.

Similarity between two networks is a function of similarities between their
orders, sizes, and topological features. While similarities in orders and sizes are
trivial to assess, capturing topological and structural similarities is the core
challenge in the task of network1 comparison. Comparison of two networks essen-
tially entails analogizing structural properties such as nature of hierarchy, clus-
tering tendency, neighborhood characterization, correlation between topologi-
cal attributes etc. Networks may be compared either at a local or global level
depending upon the application. For example, construction of a phylogenetic
tree using biological networks involves clustering organisms with similar bio-
logical evolution. This task demands a global comparison of networks. On the
other hand, comparison of two metabolic networks for the purpose of discovering
causal factors for functional differences calls for local level comparison.

Extraction of global features like diameter, average clustering coefficient,
characteristic path length, betweenness centrality etc. for comparison purpose is
unattractive because of high computational complexity even for medium-sized
graphs. Computation of local features, on the other hand, involves examining
configuration and properties of small subgraphs, conferring scale independence
to the comparison method. Hence, it is tempting to adopt local properties for
structural comparison of massive networks. Earlier approaches for network com-
parison pursued this trend and deployed local features including degree, clus-
tering coefficient, degree centrality, triad census, graphlet distribution etc. [10].
Lamentably, these approaches fail to capture underlying structural hierarchy
prevailing in real-life networks.

Therefore, it is desirable to devise methods that summarize network structure
both locally and globally. Since hierarchical k-core decomposition promotes the
local feature degree to the global feature coreness, we explore k-core decomposi-
tion as a tool to quantify the structural similarity between two networks. K-core
decomposition has been recognized as an important technique for understanding
complex networks by decomposing them in hierarchy [2,12,24]. We posit that
hierarchical segmentation using k-core decomposition method has potential to
reveal structural differences between networks at all levels of hierarchy.

1.1 Motivation

Motivational factors for using hierarchical k-core decomposition approach for
scalable network comparison are listed below.

i. Real-life networks exhibit structural hierarchy and comparing analogous sig-
nals at all levels of hierarchies has potential to reveal the structural disparity
between networks.

ii. The proposed algorithm is particularly appealing for comparing large and
sparse graph since k-core decomposition method has computational com-
plexity of O(|E|), E being the set of edges [4].

iii. Massive networks that cannot fit in main memory can be decomposed using
distributed k-core decomposition [22].

1 We use terms network/graph, node/vertex, and edge/link interchangeably.

Scalable Network Comparison 289

1.2 Contributions

In this paper, we propose a novel and scalable method for Network Comparison
using k-core Decomposition (NCKD). According to Faust [10], network compar-
ison studies are designed to answer two questions. First, does a pair of networks
exhibit common structural tendencies?, and second, which structural features
distinguish among different relations between nodes? We demonstrate that node
distribution in shells of the network is an effective and efficient implement to
answer the first question. Augmenting node distribution in shells with edge dis-
tribution boosts its power to cogently answer the second question. Research
contributions of the paper are listed below:

i. A novel algorithm (NCKD) that uses k-core decomposition to quantify net-
work similarity through network signatures generated using probability dis-
tribution of nodes and edges in shells respectively (Sect. 4).

ii. Comparison of NCKD with two state-of-the-art network comparison algo-
rithms (Sect. 5.2).

iii. Extensive experimentation to demonstrate effectiveness, scalability and
robustness of NCKD (Sects. 5.3 and 5.4).

2 Related Work

Several decent algorithms for network comparison, that quantify similarity
between networks, have been proposed in recent years. A related but differ-
ent problem is network alignment, addressed in bio-informatics, where the goal
is to map nodes of one network to the nodes of another. Our focus is on recent
representative network comparison algorithms followed by a brief overview of
applications of k-core decomposition.

2.1 Network Comparison

Popular approaches for comparing networks include (i) graph isomorphism, (ii)
graph edit distance, (iii) iterative methods, and (iv) feature extraction [6].

Graph isomorphism, a theoretically sound approach, has been traditionally
employed to establish exact matching between two graphs [15]. Approximate
matching is commonly obtained by graph edit distance, which essentially is an
error-tolerant method [11]. Iterative methods compute the pairwise similarity
between nodes by capturing similarity/dissimilarity of their neighborhoods [21].
These three approaches lead to algorithms with high computational complexity
and are hence non-scalable [18]. This deters their applicability to large networks.

Feature extraction approach has recently found favour with the community
interested in analyzing massive graphs. The strategy involves constructing fea-
tures from the compared graphs and computing distance between them to quan-
tify differences. Banerjee [3] used eigenvalues of normalized graph Laplacian
spectra to capture global topological properties for computing pairwise networks

290 R. Saxena et al.

similarity. Recently, Lu et al. [18] compared complex networks using the heat
content estimated by lazy random walk.

Macindoe et al. [19] considered all induced subgraphs of a parametrized
radius centered on each vertex and computed three socially relevant structural
features, Leadership, Bonding, and Diversity (L,B,D), driven by social theories
for each subgraph. Earth mover’s distance between LBD distributions of net-
works quantifies their similarity. Netsimile [6] algorithm composes network sig-
nature from moments of distributions of selected local topological properties of
the network. The pairwise similarity score of networks is computed using Can-
berra distance between their signatures. Scale-independent nature of selected
properties renders a computational complexity of O(N), where N is the order
of the graph.

These algorithms make use of either local or global features, each of which
is individually ineffective and non-scalable for network discrimination. NCKD
algorithm plugs the gap as it is scalable and exploits local feature while taking
into account the global hierarchical structure of the network.

2.2 K-Core Decomposition

Seidman [24] introduced k-core decomposition for characterizing network struc-
ture.The k-core of a network is a maximal subgraph in which every node is
connected to at least k other nodes. Batagelj et al. [4] present an O(|E)| algo-
rithm for k-core decomposition of a graph G with |E| edges. Analysis of the
k-core structure of a graph has been effectively used in identification of social
cores and influential nodes in social networks, acceleration of community detec-
tion, evaluation of co-operation in communities, and as a visualization tool to
highlight the topological and hierarchical structure of graphs [2,12,23]. Recently
proposed k-truss decomposition method also presents a hierarchical view of the
network yielding the largest subgraph in which every edge is contained in at least
(k-2) triangles within it [25]. The method is effective for focusing on smaller and
cohesive areas, which are subgraphs of k-core. However higher computational
complexity of order O(|E|1.5) for k-truss decomposition is a discouraging factor.
Hence, we chose to use k-core decomposition method for network comparison.

To the best of authors’ knowledge, NCKD is first-ever application of k-core
decomposition for scalable network comparison using single PC.

3 Preliminaries and Notation

We introduce formal notation and definitions used in the paper. Let G be a
simple, undirected graph G = (V, E), where V is the set of vertices and E is the
set of edges. An edge eij ∈ E if it connects vertices vi and vj ; vi, vj ∈ V. The
order of G is |V| and its size is |E|. The degree of a vertex v is denoted by ρ(v).
The k-core decomposition algorithm iteratively prunes vertices of degree less
than k resulting in a hierarchy of nested k-core sub-graphs, within which each
node is connected to at least k other nodes. Formal definitions as adapted from
[2] follow.

Scalable Network Comparison 291

Definition 3.1. A subgraph, G′
k = (V ′

k, E ′
k) of G = (V, E), induced by the set

V ′
k ⊆ V is a k-core (core of order k) of G if ∀v ∈ V ′

k: ρ(v) ≥ k, (k ≥ 0) and G′
k

is a maximal connected subgraph with this property. �
Definition 3.2. Coreness ζ(v) of vertex v is k if it belongs to a k-core but not
to any (k+1)-core. Coreness of a graph G = (V, E) is max{ζ(v)∀v ∈ V}. �
Definition 3.3. A k-shell (Sk) of G = (V, E) is the set of all vertices with core-
ness k, i.e., Sk = {v|v ∈ V ∧ ζ(v) = k}. �
The k-core decomposition reflects the structure of a network by faithfully cap-
turing the inherent hierarchy as nested cores. The lower bound on number of
nodes in a k-core is (k+1) and a loose upper bound is |V|. The lower bound
on the number of edges is

(k+1
2

)
, while a loose upper bound is |E| [5]. If both

endpoints of an edge have the same coreness, the edge is termed as an intra-shell
edge, otherwise it is an inter-shell edge.

Example 3.1. Figure 1 shows graph G with |V| = 32 and |E| = 47. Dashed
circles, marked k = i, demarcate the cores. Nodes within a dashed circle and
having same color denote shell Sk. Shell S4, the highest order shell induces the
4-core of G. Subgraph induced by S3 ∪ S4 is the 3-core of G. �

Fig. 1. K-core decomposition of G. Nodes with same color constitute a shell. (Color
figure online)

4 Characterizing Networks Using K-Core Decomposition

Adaptation of k-core decomposition for designing a similarity measure is non-
trivial because two networks with the same hierarchical structure can have vastly
different topology. The challenge is to identify and extract suitable features of
the decomposed graph for effective and scalable network discrimination. We
hypothesize that differences in the node/edge distribution of shells in the decom-
posed graph are effective discriminators for the overall structure of underly-
ing networks. We first explain a simple and effective network feature i.e. node

292 R. Saxena et al.

distribution followed by the statement of its limitation, and reasoning behind
inclusion of edges arrangements.

4.1 Coreness Distribution

Distribution of nodes within shells captures the spread of nodes and reflects the
underlying structure [24]. It is synonymous with the distribution of coreness of
nodes in the decomposed graph.

Consider a graph G = (V, E) with coreness k and shells {S0, . . . ,Sk}. Let X
be a discrete random variable denoting coreness of a node in G and defined on
the sample space Λ = {0, . . . , k}. We define probability mass function for X as
p(x) = p(X = x) = |Sx|

|V| , where |Sx| is the cardinality of shell Sx. It is clear that
∑k

x=0 |Sx| = |V|. Here, p(x) denotes the probability that a node has coreness
value x. Alternatively, p(x) is the probability of an arbitrary node lying in shell
Sx. Following example explains computation of probability distribution (p) of
nodes (coreness) in the shell.

Example 4.1. Graph G in Fig. 1 has 32 nodes and 5 shells. Probability distri-
bution (p) of nodes in G, is given by p = 〈0/32, 17/32, 4/32, 6/32, 5/32〉.

We studied probability distribution of coreness for several synthetic and real-
life networks (Table 1) to test its propensity for network comparison. We show
the plot of coreness distribution of six metabolic and five co-author networks in
Figs. 2a and b. The striking similarity between the coreness probability distrib-
utions of graphs belonging to the same genre strongly indicates its utility as a
discriminating network feature. Preliminary experimentation (not reported due
to space constraint) however quickly revealed the inadequacy of this feature to
effectively capture structural differences arising in the real world networks.

(a) Metabolic Networks (b) Co-authors Networks

Fig. 2. Plots for probability distribution of coreness for two genres of real-life networks.

This insufficiency arises because the arrangement of edges in a graph, which
is the cause of topological variations, is completely ignored by the coreness dis-
tribution. Extreme topologies of star and chain with n nodes having identical
hierarchical structure and probability distribution of coreness, present a very

Scalable Network Comparison 293

clear example to substantiate the argument. Since coreness is inadequate to cap-
ture finer structural differences between networks, it is myopic to depend on it
as a sole distinguishing feature.

4.2 Edges Distribution

Theoretically, a graph of order n with coreness k and coreness distribution p is
a random sample from the family Fk,p,n of graphs [14]. Graph G in question is
one realization from this family. All graphs in Fk,p,n will have similar coreness
distribution, even though they may be topologically different. This is unaccept-
able in both theory and practice. Rewiring and swapping lemmas stated in [5]
reinforce this argument.

According to the rewiring lemma, two adjacent nodes in a shell can discon-
nect and connect independently to nodes with higher coreness, and vice versa
without changing the coreness distribution of the graph. The swapping lemma
allows non-adjacent nodes in the same shell to swap end-nodes without alter-
ing the coreness distribution of the graph. It is reasonable to conclude that
coreness distribution is inadequate to capture finer structural differences between
networks. For better discrimination between the members of Fk,p,n family, we
incorporate arrangements of edges influencing the network structure in addition
to nodes distribution.

Let G be a graph with coreness k. Then, El denotes the lower triangular
matrix representing the arrangement of edges of G. El

ij is the count of inter-
shell links between shells Si and Sj . El

ii is the count of intra-shell links in shell
Si. Clearly

∑
i

∑
j El

ij = |E|, (0 ≤ i ≤ k, 0 ≤ j ≤ i). Example 4.2 clarifies the
idea of intra- and inter-shells links using matrix representation used in [5].

Example 4.2. The count of intra- and inter-shell edges in G of Fig. 1 is shown
below in the lower triangular matrix (El). Shell S2 has one intra-shell link indi-
cated by El

22 = 1. It also has six inter-shell links with S1 indicated by El
21 = 6.

E
l
=

⎛

⎜
⎜
⎜
⎝

0
0 4
0 6 1
0 5 2 9
0 1 5 4 10

⎞

⎟
⎟
⎟
⎠

We vectorize matrix El to a vector V of size (k+1)(k+2)
2 such that V =

[El
00, E

l
10, E

l
11, E

l
20, . . . , E

l
kk]. Index r in V for El

ij is obtained by using the fol-
lowing rule.

r ←− j +
i ∗ (i + 1)

2
(1)

Clearly, the vectorization expresses isomorphism between V and El. Let R be a
discrete random variable defined on sample space Λ′ =

(
0, 1, . . . , (k+1)(k+2)

2 − 1
)

denoting linkage count within and between shells in the graph. When R = r,
it denotes linkage between shells Si and Sj , with the mapping defined by Eq. 1.

294 R. Saxena et al.

The probability mass function u(r) of random variable R is defined as u(r) =

p(R = r) = El
ij

|E| . Here u(r) denotes the probability that an arbitrary edge in G
connects a node in Si to a node in Sj . It is easy to show that u corresponds
to probability distribution of intra-shell and inter-shell links. Following example
shows the edge probability distribution u for the lower triangular matrix given
in Example 4.2.

Example 4.3. Given 47 edges in G, probability distribution of edges (u) is com-
puted as: 〈 0/47, 0/47, 4/47, 0/47, 6/47, 1/47, 0/47, 5/47, 2/47, 9/47, 0/47,
1/47, 5/47, 4/47, 10/47 〉. �

If the number of nodes and edges in two graphs with identical coreness dis-
tribution are same, structural differences between them arise due to rewiring of
edges. To examine the sensitivity of El towards rewiring, we focus on the cases
that do not alter the coreness of the involved nodes post-rewiring. There are two
possibilities for rewiring of a node. It can either connect to a node in the same
shell or to a node in a higher shell. Rewiring of a node in a lower shell can be
considered as the former situation from the viewpoint of the node in the lower
shell. We explain these cases below.

(a) Inter-shell (b) Intra-shell

Fig. 3. Example for edge rewiring. Si, Sj , Sk are the shells.

R1. Rewiring an inter-shell edge: Consider nodes u, v,w ∈ V, located in distinct
shells Si, Sj , Sk respectively, s.t. i = j = k and i < j, k. Let edges (u, v) ∈ E and
(u,w) /∈ E Then R1 leads to

E := E \ (u, v) ∪ (u,w) (2)

Figure 3(a) exhibits this case. Since node u lies in shell Si, it has at least
i links with nodes in higher shells. After deleting edge (u, v) and adding edge
(u,w), link count of u in higher shell remains same. Consequently, coreness of u
remains unchanged. Coreness of v and w remains unchanged since links to lower
shells do not impact coreness (by Definition 3.1). Consequently, post-rewiring
coreness distribution remains unchanged. In the edge distribution matrix, two
entries change as follows: El

ik is incremented and El
ij is decremented by 1. Hence

altered structure of the graph is captured by the edge distribution.

R2. Rewiring an intra-shell edge: Consider nodes u, v, u′, v′ ∈ V s.t. u, v ∈ Si,
u′ ∈ Sj , v′ ∈ Sk and i = j = k, i < j, k. Let edges (u, v) ∈ E , (u, u′) /∈ E ,
(v, v′) /∈ E . Then R2 leads to

Scalable Network Comparison 295

E := E \ (u, v) ∪ (u, u′) ∪ (v, v′) (3)

Figure 3(b) exhibits this case. Following similar arguments as in R1, intra-shell
rewiring does not alter coreness distribution, but is reflected in edge distribution.

4.3 NCKD Algorithm

The proposed algorithm for Network Comparison using k-core Decomposition
(NCKD) uses probability distribution of nodes as well as intra-shell/inter-shell
edges. The problem of pair-wise network comparison reduces to computing the
statistical distance between probability distributions representing signatures of
the networks. We use Jensen-Shannon Distance (JSD) as it is a popular metric
for comparing probability distributions due to its property of non-negativity,
identity, symmetry, and boundedness [17]. Equation 4 gives JSD between two
probability distributions p and q, with respective weights w1 and w2 (w1, w2 ≥
0 and w1 + w2 = 1).

JSD(p, q) = [H(w1 ∗ p + w2 ∗ q) − w1 ∗ H(p) − w2 ∗ H(q)]
1
2 (4)

Here, H is the Shannon entropy function. Equipped with a tool to capture finer
distinctions of graph topologies, we quantify the structural difference (distance)
between two networks as average of differences (distance) between the (i) distri-
bution of coreness and (ii) distribution of edges.

Let p and q respectively denote the probability distributions of coreness of
graphs G1 and G2. Further, u and v denote the edge probability distributions
of graphs G1 and G2. Applying JSD on these distributions and averaging the
result gives the net distance between two networks. Equation 5 formally defines
distance between networks.

D(G1,G2) = avg(JSD(p, q), JSD(u, v)) (5)

Algorithm 1. Algorithm NCKD
Input : Graphs G1and G2

Output: Distance between G1and G2

Begin
Decompose G1and G2 into cores
p ← Prob. dist. of coreness of nodes in G1

q ← Prob. dist. of coreness of nodes in G2

u ← Prob. dist. of intra and inter-shell links in G1

v ← Prob. dist. of intra and inter-shell links in G2

D(G1, G2) ← avg(JSD(p, q), JSD(u, v)) //Jensen-Shannon Distance
End

Algorithm 1 summarizes the steps for NCKD. Please note that in all exper-
iments reported in paper, we assign equal weights to the distributions while
computing JSD. We are conscious that weights can be constructively manipu-
lated to capture preference for one graph over other during the comparison.

296 R. Saxena et al.

5 Experiments

The experimental study is designed to assess and compare effectiveness, scalabil-
ity and robustness of NCKD algorithm against two recent network comparison
algorithms Netsimile [6] and LBD [19]. We implemented NCKD algorithm in
Python (64 bits, v 2.7.3) and executed on Intel Core i5-3201M CPU @2.50 GHz
with 8 GB RAM, running UBUNTU 12.04.

5.1 About Datasets

We performed experiments with both synthetic and real-life datasets (Table 1).
Synthetic datasets allow controlled variation of data characteristics and hence
enable close scrutiny of algorithmic behaviour. Real-life datasets expose the
strengths and weakness of the algorithm in practical scenarios.

Synthetic datasets were generated using igraph package of R. Erdös-Rényi
(E), Forest-Fire (F), Watts-Strogatz (W), and Barabási-Albert (B) models were
used for analysis. Order (number of nodes) of the network in thousands (K) is
included in nomenclature. Since each network is one probabilistic realization of
the model parameters, we generated multiple networks with same parameters.
Thus, B10K-n meant nth realization of Barabási-Albert network of order 10K.
Three real-life genres include (i) Co-author (CA), (ii) Autonomous Systems (A),
and (iii) Metabolic (M) networks. Large datasets used for scalability experiment
are described in Sect. 5.4.

5.2 Effectiveness of NCKD

We compute effectiveness of NCKD by comparing D(G1,G2) (Eq. 5) with dis-
tance measures defined in two state-of-the-art algorithms LBD and Netsimile.
We compute pairwise distances for networks given in Table 1, using distance
measures used in three algorithms. LBD algorithm was unable to generate net-
work signatures for large graphs even after running for more than 24 h. We,
therefore, restrict experiment to 14/32 graphs that LBD algorithm was able to
process in reasonable time (<4 h) and cluster the networks using hierarchical
agglomerative clustering2. We compute purity, precision, recall, accuracy, and
Normalized Mutual Information (NMI) measures [20] to assess the quality of
clustering (Table 2).

It is clear from Table 2 that resultant clustering of 14 small networks by
NCKD is better than those delivered by Netsimile and LBD algorithms. Tim-
ings (averaged over 3 runs) for generating network signatures (Table 3) for small
networks show that NCKD is also faster. We dropped LBD algorithm for fur-
ther experimentation since it was patently non-scalable and the clustering, as
evidenced by NMI, was also poorer in quality.

2 hclust and cutree functions of stats package in R were used for agglomerative clus-
tering and to cut dendrogram by specifying known number of classes.

Scalable Network Comparison 297

Table 1. Characteristics of synthetic and real-life networks used; D: Diameter, C:
Connected components, GCC: Global clustering coefficient, α: Parameter for power
law distribution

Networks Nodes Edges D C GCC α Remarks

Synthetic networks using generative models

Erdos Reyni [8] E10K-1 9827 19823 15 7 0.0004 11.47 Generator G(n,m=2n)

E10K-2 9807 19772 14 9 0.0005 11.58 m: number of edges

E1K-1 983 2010 10 3 0.0030 13.568 n: number of nodes

E1K-2 984 2022 10 3 0.0037 10.61

Forest Fire [16] F10K-1 10000 58901 6 1 0.0598 3.06 4 ambassador vertices

F10K-2 10000 58823 6 1 0.0588 3.105 20% backward burning probability

F1K-1 1000 5873 5 1 0.0894 3.05 30% forward burning probability

F1K-2 1000 5717 5 1 0.0899 3.111

Watts Strogatz [26] W20K-1 20000 80000 8 1 0.0714 8.30 Lattice dimension=1

W20K-2 20000 80000 8 1 0.0694 8.25 Degree= 4

W2K-1 2000 8000 7 1 0.0757 8.19 Rewiring probability= 0.3

W2K-2 2000 8000 7 1 0.0731 8.22

Barabasi Albert [1] B10K-1 10000 9999 2 1 0 1.33 Non-assortative version

B10K-2 10000 9999 3 1 0 1.33 added 4 edges/iteration

B1K-1 1000 999 3 1 0 2

B1K-2 1000 999 2 1 0 2

Real-life networks

Co-author [16] CA-1 18772 396159 14 290 0.3180 1.71 Papers submitted to arXiv during

CA-2 23133 186935 15 567 0.2643 2.21 period January 1993 to April 2003

CA-3 5242 28979 17 355 0.6298 2.23 Astro Physics, Condensed Matter

CA-4 12008 237009 13 278 0.6595 1.74 General Relativity, High Energy

CA-5 9877 51970 18 429 0.2840 2.36 Physics (HEP) and HEP Theory

Autonomous [16] A-1 10670 22002 10 1 0.0093 2.17 Oregon route-views for period

A-2 10729 21999 12 1 0.0085 2.19 March 31 to May 26, 2001

A-3 10790 22469 10 1 0.0094 2.20

A-4 10859 22747 10 1 0.0097 2.206

A-5 10886 22493 10 1 0.0089 2.19

Metabolic [13] M-1 1268 3011 14 1 0 2.17 Three types of Organisms

M-2 490 1163 11 1 0 2.18 Archaea (M-1, M-2),

M-3 993 2368 12 2 0 2.21 Bacteria (M-3, M-4)

M-4 409 880 9 7 0 2.35 and Eukaryotes (M-5, M-6)

M-5 665 1514 14 3 0 2.25

M-6 1511 3833 14 1 0 2.37

Next, we execute Netsimile and NCKD on all networks mentioned in Table 1.
Figures 4a and b show the dendrograms generated from pairwise distances com-
puted by two algorithms. It is evident that NCKD algorithm performs better
grouping than Netsimile. Cluster quality metrics of 32 networks (Table 2) for
two algorithms vindicate the visual observation. Comparison of execution time
of two algorithms reveals that NCKD is several orders faster than Netsimile (See
Large synthetic and real-life networks in Table 3). The swift execution of NCKD
indicates its scalability.

298 R. Saxena et al.

Table 2. Quality metrics for hierarchical clustering of 14 small networks and all 32
networks.

Datasets Algorithm Purity Precision Recall Accuracy NMI

Small networks (14) NCKD 1.0 1.0 1.0 1.0 1.0

LBD 0.8571 0.8182 0.9474 0.9451 0.8921

NetSimile 0.8947 0.625 0.5263 0.8352 0.8213

All networks (32) NCKD 0.875 0.688 0.8983 0.9395 0.9161

Netsimile 0.656 0.382 0.5763 0.8387 0.6885

Table 3. Signature generation time (in seconds) for NCKD, Netsimile and LBD on
selected networks from Table 1. A - indicates that the algorithm did not complete even
after running for 24 h.

Algorithm → NCKD Netsimile LBD

Networks ↓
Small M-2 0.015 0.783 120.615

F1K-1 0.018 0.899 1825.11

CA-5 0.076 6.711 6583.153

Large synthetic B10K-1 0.0202 111.534 −
E10K-1 0.0503 4.817 −
W20K-1 0.097 25.353 −
F10K-1 0.077 13.643 −

Large real-life M-6 0.013 0.821 −
A-5 0.065 30.676 −
CA-1 0.245 198.789 −

(a) NCKD (b) Netsimile

Fig. 4. Dendrogram for networks described in Table 4. Networks belonging to same
genre have same color. (Color figure online)

Scalable Network Comparison 299

In order to capture finer distinctions between networks of the same genre, we
selected eleven metabolic networks in two sub-categories (six Archaea (A) and
five Eukaryotes (E)) whose order ranges from 490 to 1511 and size ranges from
1148 to 3807 [13]. We performed hierarchical agglomerative clustering of these
networks from distance matrices generated by NCKD and NetSimile (Fig. 5).
Algorithm NCKD is able to identify one pure group of Eukaryotes, which Net-
simile missed. The clustering quality metrics for metabolic networks shown in
Table 4 confirm the effectiveness of NCKD over Netsimile.

(a) NCKD (b) Netsimile

Fig. 5. Metabolic networks in two sub-categories - A: Archaea, and E: Eukaryote.

Table 4. Quality metrics for dendrograms shown in Fig. 5

N/w type → Metabolic networks

Algorithm ↓ Purity Precision Recall Accuracy NMI

NCKD 0.8182 0.6129 0.76 0.6727 0.4393

Netsimile 0.5455 0.40 0.40 0.4545 0.0073

5.3 Handling of Missing Data

We compare effectiveness of NCKD and Netsimile towards missing data. For this
experiment, we compared networks with themselves after applying random edge
deletion systematically. For network G, we created G

′
x1

, G
′
x2

· · · G′
xk

variations by
deleting xi% of edges from it. Intuitively, both algorithms should yield similarity
score (SS) of 1 while comparing G with G

′
0, with the score falling as deleted

edges increase. Fall in SS is expected to be different for different graphs due to
structural differences. In order to beat the effect of randomness, reported results
are averaged over three runs.

Three real-life networks (A-1, DC-1, CA-1) and one synthetic network (E10K-
1) were perturbed by deleting edges from 0 % to 20 % (in steps of 2) and com-
pared using two algorithms. Similarity scores obtained by NCKD and Netsimile
are plotted in Figs. 6a and b. Netsimile registered a fall of maximum 10 % for the
real-life datasets even after deleting 20 % edges while NCKD revealed significant
differences in networks. This observation indicates superior ability of NCKD to
suitably react to missing data.

300 R. Saxena et al.

(a) Variation in SS - NCKD (b) Variation in SS - Netsimile

Fig. 6. Comparison of robustness towards missing data - NCKD vs. Netsimile.

Fig. 7. Feature generation time of
NCKD for synthetic networks

Large networks Nodes Edges Runtime
(106) (106) (seconds)

Amazon product 0.33 0.93 0.799
Road n/w of Texas 1.38 1.92 1.528
Road n/w of California 1.96 2.77 3.4824
Youtube OSN 1.13 2.99 3.532
Web graph of Berkeley 0.69 7.796 10.889
and Stanford

Fig. 8. Feature generation time of NCKD for
massive real-life networks. n/w: Network

5.4 Scalability w.r.t Large Datasets

Networks generated from different models allow convenient variations in the
order of graphs to examine scalability of NCKD. We generated 10 graphs for
each generative model (description in Table 1) with varying number of nodes
100K to 1000K in steps of 100K, and edges proportionally depending on the
model. Netsimile was unable to process graphs of order >100K even after run-
ning for more than 24 h. Hence, it was dropped for scalability analysis. NCKD
was executed five times for each graph to average out the timing observations.
Figure 7 shows approximately sublinear growth in timings for each model. The
increase in timings for the models varies with the number of edges in the corre-
sponding networks. Edges increase fastest in FF model and slowest in BA model,
which is faithfully reflected by the timings for two models.

Figure 8 shows execution timings of NCKD for five real-life large datasets
downloaded from SNAP3, which strengthens the claim of scalability. Since k-
core decomposition algorithm is O(E), time increases linearly with edges.

6 Conclusion

Each large-scale network is unique at the microscopic level. However, at differ-
ent levels of resolutions, commonalities emerge among different pairs of graphs.
3 http://snap.stanford.edu/data.

http://snap.stanford.edu/data

Scalable Network Comparison 301

Discovery of these commonalities and their quantification is the goal of the
proposed algorithm NCKD (Network Comparison using k-core Decomposition),
which is intuitive, effective and scalable. The algorithm decomposes the graph
into cores, analyses shells and constructs node and edge related probability distri-
butions, which serve as network signatures. Jensen-Shannon distance is applied
on these signatures to find distance between networks. We establish that node
and edge distributions adequately discriminate networks.

Extensive experimentation and comparison of NCKD with Netsimile and
LBD algorithms establish its superiority in terms of effectiveness and scalability.
Execution timings for large synthetic and real-life networks affirm its scalability.
We also demonstrate that NCKD is sensitive to the underlying topological struc-
ture of the graph, but needs to be improved to take cognizance of size and order
of the network. The agenda for future is to overcome its deficiency to clearly
segregate networks of the same genre by including more shell features.

References

1. Albert, R., lászló Barabsi, A.: Statistical mechanics of complex networks. Rev.
Mod. Phys. 74, 47 (2002)

2. Alvarez-Hamelin, J.I., Barrat, A., Vespignani, A.: Large scale networks fingerprint-
ing and visualization using the k-core decomposition. Adv. Neural Inf. Process.
Syst. 18, 41–50 (2006)

3. Banerjee, A.: Structural distance and evolutionary relationship of networks. Biosys-
tems 107(3), 186–196 (2012)

4. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of net-
works. CoRR cs.DS/0310049 (2003)

5. Baur, M., Gaertler, M., Grke, R., Krug, M.: Generating graphs with predefined
k-core structure. Technical report, DELIS - Dynamically Evolving, Large-Scale
Information Systems (2007)

6. Berlingerio, M., Koutra, D., Eliassi-Rad, T., Faloutsos, C.: Network similarity via
multiple social theories. In: Proceedings of International Conference on ASONAM,
pp. 1439–1440. IEEE (2013)

7. Dorogovtsev, S., Goltsev, A., Mendes, J.: Critical phenomena in complex networks.
Rev. Mod. Phys. 80, 1275 (2008)

8. Erdös, P., Rényi, A.: On random graphs I. Publicationes Math. 6, 290–297 (1959).
Debrecen

9. Faloutsos, C., Koutra, D., Vogelstein, J.T.: DELTACON: a principled massive-
graph similarity function. In: Proceedings of the 13th SIAM International Confer-
ence on Data Mining, pp. 162–170 (2013)

10. Faust, K.: Comparing social networks: size, density and local structure. Adv.
Methodol. Stat. 3(2), 185–216 (2006)

11. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010)

12. Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: Evaluating cooperation in commu-
nities with the k-core structure. In: Proceedings of International Conference on
ASONAM, pp. 87–93. IEEE (2011)

13. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale
organization of metabolic networks. Nature 407(6804), 651–654 (2000)

302 R. Saxena et al.

14. Karwa, V., Pelsmajer, M.J., Petrovic, S., Stasi, D., Wilburne, D.: Statistical mod-
els for cores decomposition of an undirected random graph. CoRR abs/1410.7357
(2014)

15. Kollias, G., Mohammadi, S., Grama, A.: Network similarity decomposition (NSD):
a fast and scalable approach to network alignment. Technical report. Purdue Uni-
versity (2011)

16. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 2 (2007)

17. Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Inf.
Theory 37(1), 145–151 (1991)

18. Lu, S., Kang, J., Gong, W., Towsley, D.: Complex network comparison using ran-
dom walks. In: Proceedings of 23rd International WWW Conference, pp. 727–730
(2014)

19. Macindoe, O., Richards, W.: Graph comparison using fine structure analysis. In:
Proceedings of the 2nd IEEE International Conference on Social Computing, pp.
193–200 (2010)

20. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

21. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In: Proceedings of
the 18th ICDE, pp. 117–128 (2002)

22. Montresor, A., Pellegrini, F.D., Miorandi, D.: Distributed k-core decomposition.
IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)

23. Peng, C., Kolda, T.G., Pinar, A.: Accelerating community detection by using k-
core subgraphs. CoRR abs/1403.2226 (2014)

24. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5, 269–287
(1983)

25. Wang, J., Cheng, J.: Truss decomposition in massive networks. Proc. VLDB
Endowment 5(9), 812–823 (2012)

26. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393(6684), 440–442 (1998)

Data Streams

Incremental Stream Processing
of Nested-Relational Queries

Leonidas Fegaras(B)

University of Texas at Arlington, Arlington, USA
fegaras@cse.uta.edu

Abstract. Current work on stream processing is focused on approxi-
mation techniques that calculate approximate answers to simple queries
by focusing on a fixed or sliding window that contains the most recent
tuples from an input stream and by using condensed synopses to sum-
marize the state. It is widely believed that without using approximation
techniques, most interesting queries would be blocking (i.e., they would
have to wait for the end of stream to release their results) or unbounded
(i.e., their memory requirements would grow proportionally to the stream
size, which may be infinite). The goal of this paper is to convert nested-
relational queries to incremental stream processing programs automati-
cally. In contrast to most current stream processing systems that calcu-
late approximate answers, our system derives incremental programs that
return accurate results. This is accomplished by retaining a state during
the query evaluation lifetime and by using incremental evaluation tech-
niques to return an accurate snapshot answer at each time interval that
depends on the current state and the data in the current fixed window.
Our methods can handle most forms of declarative queries on nested data
collections, including arbitrarily nested queries, group-by with aggrega-
tion, and equi-joins. We report on a prototype system implementation
and we show some preliminary results on evaluating queries on a small
computer cluster running Spark.

1 Introduction

New frameworks in Big Data analytics have become indispensable tools for
large-scale data mining and scientific data analysis. Currently, the most pop-
ular framework for Big Data processing is Map-Reduce [12], which has emerged
as a powerful, generic, and scalable solution for a wide range of data analy-
sis applications. Unfortunately, to simplify fault tolerance and recovery, the
Map-Reduce model does not preserve data in memory between consecutive jobs,
which inflicts a high overhead on complex workflows and repetitive algorithms,
such as PageRank and data clustering. Although the Map-Reduce framework
was originally designed for batch processing, there are several recent systems
that have extended Map-Reduce with on-line processing capabilities, such as
MapReduce Online [11], Incoop [7], and i2MapReduce [37]. In addition, many
distributed stream processing engines (DSPEs) have emerged recently, such as

c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 305–320, 2016.
DOI: 10.1007/978-3-319-44403-1 19

306 L. Fegaras

Apache Storm [28], Spark’s D-Streams [36], and Flink Streaming [16]. Most of
these systems use data stream processing techniques based on fixed or slid-
ing windows and incremental operators [4], which have already been used suc-
cessfully in relational stream processing systems, such as Aurora [1] and Tele-
graph [10].

Furthermore, there is a recent interest in incremental data analysis, where
data are analyzed in incremental fashion, so that existing results on current
data are reused and merged with the results of processing the new data. In
many cases, incremental data processing can achieve better performance and
may require less memory than batch processing for many common data analysis
tasks. Incremental processing can also be used for analyzing large amounts of
data incrementally, in small batches that can fit in memory, thus enabling to
process more data with less hardware. It can also be very valuable to stream-
based applications that need to process continuous streams of data in real-time
with low latency, which is not possible with existing batch analysis tools.

We are presenting a novel incremental stream processing framework for large-
scale data analysis queries that run on a distributed stream processing engine
(DSPE). Our design objective is to be able to convert any batch data analysis
query to an incremental distributed stream processing program automatically,
without requiring the user to rewrite the query. Furthermore, in contrast to most
current stream processing systems that calculate approximate answers, we want
our system to derive incremental programs that return accurate results. Such a
task requires a query analysis to separate the query parts that can be used to
process the incremental batches of data from the query parts that merge the cur-
rent results with the new results of processing the incremental batches of data.
Such analysis is more tractable if it is performed on declarative queries than on
algorithmic programming languages, such as Java. We have developed our frame-
work on Apache MRQL [26], because it is the only Big Data query language
powerful enough to express complex data analysis tasks, such as PageRank,
data clustering, and matrix factorization. We have developed general methods to
transform batch MRQL queries to incremental queries. The derived incremental
queries retain a state during their evaluation lifetime and use incremental eval-
uation techniques to return an accurate snapshot answer at each time interval
that depends on the current state and the latest batches of data.

The first step in our approach is to transform a query so that it propa-
gates the join and group-by keys to the query output. This is known as lineage
tracking [5,6]. That way, the values in the query output are grouped by a key
combination that corresponds the join/group-by keys used in deriving these val-
ues during query evaluation. If we also group the new data in the same way, then
computations on existing data can be combined with the computations on the
new data by joining the data on these keys. Our approach requires that we can
combine computations on data that have the same lineage to derive incremental
results. In our framework, this is accomplished by transforming a query to a
monoid homomorphism by removing the non-homomorphic parts of the query,
using algebraic transformation rules, and by combining them to form an answer
function. The remaining query, which is now a monoid homomorphism, is used

Incremental Stream Processing of Nested-Relational Queries 307

to derive the state transformation that merges the existing state with the new
results to form a new state.

We have implemented our incremental processing framework on MRQL [26]
on top of Spark Streaming [36], which is an in-memory distributed stream
processing platform. Our system is called Incremental MRQL. MRQL is cur-
rently the best choice for implementing our framework because other query
languages for data-intensive, distributed computations provide limited syntax
for operating on data collections, in the form of simple relational joins and
group-bys, and cannot express complex data analysis tasks, such as PageRank,
data clustering, and matrix factorization, using SQL-like syntax exclusively. Our
framework, though, can be easily adapted to apply to other query languages, such
as Hive, PigLatin, SQL, XQuery, and Jaql.

The contribution of this work can be summarized as follows:

– We present a general framework for translating nested-relational data analysis
queries to incremental stream processing programs that can run on a distrib-
uted stream processing platform.

– This framework can handle many forms of queries over nested data, including
deeply nested queries, group-by with aggregation, and equi-joins.

– We report on a prototype system implementation and we show some prelimi-
nary results on evaluating three queries, groupBy, join-groupBy, and PageRank
step, on a small computer cluster running Spark.

2 MRQL Overview

Apache MRQL [26] is a query processing and optimization system for large-scale,
distributed data analysis. MRQL was originally developed by the author [13,14],
but is now an Apache incubating project with many users and developers. The
MRQL language is an SQL-like query language for large-scale data analysis on
clusters of commodity hardware. The MRQL query processing system can eval-
uate MRQL queries in four modes: in Map-Reduce mode using Apache Hadoop,
in BSP mode (Bulk Synchronous Parallel model) using Apache Hama, in Spark
mode using Apache Spark [31], and in Flink mode using Apache Flink. The
MRQL query language is sufficiently powerful to express many data analysis
tasks over many different kinds of raw data, such as XML documents, JSON doc-
uments, binary files, and text documents in CSV format. The design of MRQL
has been influenced by XQuery and OQL. In fact, when restricted to XML data,
MRQL is as powerful as XQuery. MRQL is more powerful than other current
high-level Map-Reduce languages, such as Hive and PigLatin, since it can operate
on more complex data and supports more powerful query constructs, thus elim-
inating the need for using explicit procedural code. With MRQL, users are able
to express complex data analysis tasks, such as PageRank, k-means clustering,
matrix factorization, etc., using SQL-like queries exclusively, while the MRQL
query processing system is able to compile these queries to efficient Java code
that can run on various distributed processing platforms. The MRQL system
stack is shown in Fig. 1.

308 L. Fegaras

Fig. 1. The MRQL system stack

A recent extension to MRQL, called MRQL Streaming, supports the process-
ing of continuous MRQL queries on streams of batch data (that is, data that
come in continuous large batches). Before our incremental MRQL work presented
in this paper, MRQL Streaming supported traditional window-based streaming
based on a sliding window during a specified time interval. Currently, MRQL
Streaming works on Spark Streaming only but we are currently adding support
for Storm and Flink Streaming. The work reported here, called Incremental
MRQL, extends the current MRQL Streaming engine with incremental stream
processing. Incremental MRQL is now available in the latest official MRQL
release (MRQL-0.9.6).

3 Incremental Query Processing

The MRQL data model consists of collections types, such as lists (sequences),
bags (multisets), and key-value maps. The difference between a list and a bag is
that a list supports order-based operations, such as indexing and subsequence.
In addition, MRQL supports records, tuples, algebraic data types (union types),
and basic types, such as integers and booleans. These types can be freely nested,
thus supporting nested relations and hierarchical data. For example, XML data
can be represented as a recursive algebraic data type with two value constructors,
Node and CData:

data XML = Node: < tag: String, attributes : bag((String , String)),
children : list (XML) >

| CData: String

Non-streaming MRQL queries work on datasets, which are stored in the distrib-
uted file system (HDFS). A dataset is a bag (multiset) that consists of arbitrar-
ily complex values. Datasets are stored as text files, such as XML, JSON, and
CSV, or sequence (binary) files. Streaming MRQL queries work on ‘batch’ data
streams, where stream data arrive in batches (bags) of new data. For example,
the query:

select (x,avg(y)) from (x,y) in stream(binary ,‘‘ data/points”) group by x

Incremental Stream Processing of Nested-Relational Queries 309

groups a stream of points (x, y) by x and returns the average y values in each
group. The MRQL Streaming engine will first process all the existing sequence
files in the directory data/points and then will check this directory periodically for
new files. When a new file is inserted in the directory, MRQL will process the new
batch of data using distributed processing. In addition to directory of files, MRQL
Streaming supports a special socket input format for listening to TCP sockets for
text input, based on one of the current supported MRQL Parsed Input Formats
(XML, JSON, CSV). A query may work on multiple stream sources and multiple
batch dataset sources. If there is at least one stream source in the query, the query
becomes continuous, that is, it never stops. The output of a continuous query
is dumped into a directory HDFS as a sequence of files, so that each file in the
sequence contains the results of processing a single batch of streaming data.

Our incremental query processing framework can handle continuous queries
over a number of streaming data sources, S1, . . . , Sn, denoted by S. A data
stream Si in our framework consists of an initial dataset, followed by a continuous
stream of incremental batches ΔSi, which arrive at regular time intervals Δt.
In MRQL Streaming, these are batch data streams, where stream data arrive in
batches of new data in the form of new files created inside some pre-specified
directories. Then, a streaming query can be expressed as q(S), where an Si ∈ S
is a streaming data source. Incremental stream processing is attainable if we can
derive the query results at time t + Δt by combining the query results at time
t with the results of processing ΔSi, rather than processing the query over the
entire streams Si � ΔSi, where � is bag union. This is possible if q(S � ΔS)
can be expressed in terms of the current query result, q(S), and the incremental
query result, q(ΔS), that is, when q(S) is a monoid homomorphism over S. In
abstract algebra, a monoid ⊗ is an associative function with a zero element ⊗z,
such that x ⊗ ⊗z = ⊗z ⊗ x = x. In addition, h is a monoid homomorphism if
h(x ⊕ y) = h(x) ⊗ h(y), for two monoids ⊕ and ⊗.

Unfortunately, some queries, such as counting the number of distinct elements
in a stream or calculating average values after a group-by, are not (monoid)
homomorphisms. The first query is not a homomorphism because when we count
the distinct elements in a bag X we loose the information about which elements
are contained in X, and therefore, counting the distinct elements of X � Y
cannot be derived by combining the counts of the distinct elements in X and
Y separately, since X and Y may have common elements. The average in the
second query prevents the query from becoming a homomorphism because the
average value is the sum divided by the count of values, and both these values
are lost after we derive the query result. To handle a non-homomorphic query
q(S), we break q into two functions a and h, so that h is a homomorphism
with q(S) = a(h(S)). Recall that function h is a homomorphism if h(S � ΔS) =
h(S) ⊗ h(ΔS) for some monoid ⊗. For example, the first query that counts the
number of distinct elements can be broken into the query h that returns the list
of distinct elements, which is a homomorphism, and the answer query a that
counts the derived distinct elements. For this approach to be effective, most of
the computations in q must be done in h, possibly leaving some computationally

310 L. Fegaras

inexpensive data mappings to the answer function a. After we split the query q
into an answer function a and a homomorphism h, we can calculate the results
of h incrementally by storing its results into a state, which is maintained across
the stream processing, and then combine the current state with the new data to
calculate the next state instance. More specifically, at each time interval Δt, the
query answer h(S � ΔS) is calculated from the new state, state ← state ⊗ h(ΔS),
and is equal to a(state), which is the snapshot of the query answer at time t+Δt.

Our framework translates incremental MRQL queries into incremental query
plans as follows. First, it pulls all non-homomorphic parts of a query q out
from the query using algebraic transformations, leaving an algebraic homo-
morphic term h, such that q(S) = a(h(S)). Then, it combines these non-
homomorphic parts into an answer function a. Finally, from the homomorphic
algebraic term h(S), our framework synthesizes a merge function ⊗, such that
h(S � ΔS) = h(S)⊗h(ΔS). All these tasks are performed using algebraic trans-
formations on the MRQL query algebraic terms [13,14]. Although all algebraic
operations used in MRQL are homomorphic, their composition may not be.
We have developed transformation rules to derive homomorphisms from com-
positions of homomorphisms, and for pulling non-homomorphic parts outside a
query. Our methods can handle most forms of queries on nested data sets, includ-
ing complex nested queries with any form of nesting and any number of nesting
levels, complex group-bys with aggregations, and general one-to-one and one-to-
many equi-joins. Our methods cannot handle non-equi-joins and many-to-many
equi-joins, as they are very difficult to implement efficiently in a streaming or
an incremental computing environment.

For example, consider the following MRQL query q(S1, S2):

select (x, avg(z))
from (x,y) in S1 , (y,z) in S2

group by x

where S1 and S2 are stream data sources. Here, the streams S1 and S2 are joined
so that the second column of S1 is equal to the first column of S2, then the join
result is grouped by the first column of S1, and finally the average value of all z
values in the group is returned. This query is not a homomorphism over both S1

and S2, that is q(S1 � ΔS1, S2 � ΔS2) cannot be expressed in terms of q(S1, S2)
and q(ΔS1,ΔS2), because the query result does not contain any information
on how the avg(z) value is related to the x value. That is, there is no lineage
in the query output that links a pair in the query result to the join key that
contributed to this pair. Hence, it is impossible to tell how the new data ΔS1

and ΔS2 will contribute to the previous query results if we do not know how
these results are related to the previous inputs S1 and S2. Our approach is to
establish links between the query results and the parts of the data sources that
were used to form their values. This is called lineage tracking and has been used
for propagating annotations in relational queries [6]. In our case, this lineage
tracking can be done by propagating all keys used in joins and group-bys along
with the values associated with these keys, so that, for each combination of keys,

Incremental Stream Processing of Nested-Relational Queries 311

we return one group of result values. For our query, this is done by including the
join key y in the group-by keys. That is, the query is transformed to h(S1, S2):

select ((x,y), (sum(z), count(z)))
from (x,y) in S1 , (y,z) in S2

group by (x,y)

Hence, the join key y is propagated to the output values so that the avg com-
ponents, sum and count, are aggregations over groups associated with unique
combinations of x and y. This query is a homomorphism over S1 and S2, pro-
vided that the join is not on a many-to-many relationship. In general, a query
with N join/group-by/order-by steps is transformed to a query that injects the
join/group-by/order-by keys to the output so that each output value is associ-
ated with a unique combination of N keys. The answer query a that returns the
final result in q(S1, S2) = a(h(S1, S2)) is:

select (x, sum(s)/sum(c))
from ((x,y),(s ,c)) in State
group by x

where State is the current state, equal to h(S1, S2). This query removes the
lineage y (the join key) from the State but also groups the result by the group-by
key again, since there may be duplicate x values, and returns the final average
value. (Note that sum(s) adds the partial sums while sum(c) adds the partial
counts.) The merge function H1⊗H2 of the homomorphism h, which combines
tuples with the same lineage key, is a full outer-join on the lineage key that
aggregates the matches:

select (k,(s1+s2,c1+c2))
from (k,(s1,c1)) in H1,

(k,(s2,c2)) in H2
union select (k,(s2,c2)) from (k,(s2,c2)) in H2 where k not in π1(H1)
union select (k,(s1,c1)) from (k,(s1,c1)) in H1 where k not in π1(H2)

where π1 is a bag projection that retrieves the keys. The first select is an equi-join
between H1 and H2 over the lineage key k, equal to the pair (x,y) that contains
the group-by key x and the join key y. The first union returns all H2 pair that
are not joined with H1, while the second union returns all H1 pair that are not
joined with H2.

MRQL Streaming has been implemented on Apache Spark [31] running on
an Apache Yarn cluster. More specifically, the incremental state is cached in
memory as a Distributed DataSet (an RDD [35]), which is distributed across
the worker nodes, while the streaming data sources are implemented as Dis-
cretized Streams (D-Streams [36]), which are also distributed across the worker
nodes. The full outer-join used in the homomorphism h, which merges the query
result on the new data with the current state, is implemented efficiently as a
distributed hash-partitioned join (a Spark’s coGroup operation), by keeping the
state partitioned on the lineage keys and shuffling only the new results to worker
nodes to be combined locally with the state using merging. That is, the results
of processing the new data, which are typically substantially smaller than the

312 L. Fegaras

state, are shuffled across the worker nodes before coGroup. Our approach is to
keep the state partitioned on the lineage keys by simply leaving the partitions
of the newly created state by coGroup at the place they were generated, since
hash-partitioning generates data partitioned by the same join key. That way,
only the results from the new data would have to be partitioned and shuffled
across the working nodes to be combined with the current state.

4 The Translation Framework

The MRQL algebra consists of a small number of higher-order homomorphic
operators [14], which are defined using structural recursion based on the union
representation of bags [15]. The most important operation is cMap (also known
as flatten-map in functional programming), which generalizes the select, project,
join, and unnest operators of the nested relational algebra. Given two arbitrary
types α and β, the operation cMap(f,X) maps a bag X of type {α} to a bag
of type {β} by applying the function f of type α → {β} to each element of X,
yielding one bag for each element, and then by merging these bags to form a
single bag of type {β}. Using a set former notation on bags, cMap(f,X) can be
expressed as { z |x ∈ X, z ∈ f(x) }. Using structural recursion, it can also be
defined as a homomorphism:

cMap(f,X � Y) = cMap(f,X) � cMap(f, Y)
cMap(f, {a}) = f(a)
cMap(f, { }) = { }

The second in importance operator is groupBy, which groups a bag of pairs
by their first value. Given the arbitrary types κ and α, and a bag X of
type {(κ, α)}, the operation groupBy(X) groups the elements of the bag X
by their first component and returns a bag of type {(κ, {α})}. For example,
groupBy({(1,10),(2,20),(1,30),(1,40)}) returns {(1,{10,30,40}),(2,{20})}. The
groupBy operation can be defined using structural recursion:

groupBy(X � Y) = groupBy(X) ⇑� groupBy(Y)
groupBy({(k, a)}) = {(k, {a})}

groupBy({ }) = { }
where the parametric monoid ⇑⊕ is a full outer-join that merges groups asso-
ciated with the same key using the monoid ⊕ (equal to � for groupBy). It is
expressed using a set-former notation for bags:

X ⇑⊕ Y ={ (k, a ⊕ b) | (k, a) ∈ X, (k′, b) ∈ Y, k = k′ } (join between X and Y)

� { (k, a) | (k, a) ∈ X, ∀(k′, b) ∈ Y : k′ �= k } (⊆ X not joined with Y)

� { (k, b) | (k, b) ∈ Y, ∀(k′, b) ∈ X : k′ �= k } (⊆ Y not joined with X)

In other words, the monoid ⇑⊕ constructs a set of pairs whose unique key is the
first pair element. In fact, any bag X can be converted to a set:

distinct(X) = cMap(λ(.k, s).{k}, groupBy(cMap(λx.. {(x, x)}, X)))

Incremental Stream Processing of Nested-Relational Queries 313

Equi-joins and outer-joins between a bag X of type {(κ, α)} and a bag Y of type
{(κ, β)} over their first component of a type κ, are captured by coGroup(X,Y),
which returns a bag of type {(κ, ({α}, {β}))}:

coGroup(X1 � X2, Y1 � Y2) = coGroup(X1, Y1) ⇑�×� coGroup(X2, Y2)

(plus more equations for cases with singleton and empty bags). Here, the
product of two monoids, ⊕ × ⊗ is a monoid that, when applied to the two
pairs (x1, x2) and (y1, y2), returns (x1 ⊕ y1, x2 ⊗ y2). That is, the monoid
⇑�×� merges two bags of type {(κ, ({α}, {β}))} by unioning together their
{α} and {β} values that correspond to the same key κ. For example,
coGroup({(1,10),(2,20),(1,30)},{(1,100),(2,200),(3,300)}) returns {(1,({10,30},
{100})),(2,({20},{200}),(3,({},{300})))}. Finally, aggregations are captured by
reduce(⊕,X), which aggregates a bag X using a commutative monoid ⊕. For
example, reduce(+, {2, 1, 1}) = 4.

Algebraic terms can be normalized using the following rule:

cMap(f, cMap(g, S)) → cMap(λx. cMap(f, g(x)), S)

which fuses two cascaded cMaps into a nested cMap, thus avoiding the con-
struction of the intermediate bag. If we apply this transformation repeatedly,
any algebraic term can be normalized to a tree of groupBy/coGroup operations
connected via cMaps, while the root of the tree may be either a cMap or a reduce
operation, if the query is a total aggregation.

A query q in our framework is transformed in such a way that it propagates
the lineage to the query output, starting with the empty lineage () at the sources
and extended with the join and group-by keys. Each value v returned by the
transformed query is annotated with a lineage θ, in the form of a pair (θ, v).
The lineage θ of the query result v is a tree of groupBy and coGroup keys that
are used in deriving the result v. The lineage tree θ has the same shape as the
groupBy/coGroup tree of the algebraic term of the query.

The transformation of an algebraic term to a term that propagates the join
and group-by keys is done using rewrite rules, which make use of the fact that
normalized algebraic terms are trees of groupBy/coGroup operations connected
via cMaps. The first rule is:

cMap(f, groupBy(X))
→ { (k′, ((k, θ), v)) | ((k, θ), s) ∈ groupBy({ ((k, θ), x) | (k, (θ, x)) ∈ X }),

(k′, v) ∈ f(k, s) }

Here, X at the left-hand side is a bag of type {(k, x)} that contains the groupBy
key k, while the cMap result is a bag of type {(k′, v)} so that the new key
k′ is used for the subsequent groupBy or coGroup (the parent operation) in
the algebraic tree. In the transformed term, X is lifted to a type {(k, (θ, x))},
which includes the incoming lineage θ, while the cMap result is lifted to

314 L. Fegaras

{(k′, ((k, θ), v))}, which extends the lineage with the groupBy key k. The second
rule handles joins:

cMap(f, coGroup(X,Y))
→ { (k′, ((k, (θx, θy)), v)) | (k, (s1, s2)) ∈ coGroup(X,Y),

(θx, xs) ∈ groupBy(s1), (θy, ys) ∈ groupBy(s2),
(k′, v) ∈ f(k, (xs, ys)) }

Here, both inputs X and Y have been lifted to {(k, (θx, x))} and {(k, (θy, y))},
respectively, with possibly different lineages. Hence, these two lineages θx and θy
must be paired with k to form the new lineage. Finally, if there is a reduce(⊕,X)
at the tree root, it is lifted to reduce(⇑⊕,X), which aggregates data with the
same lineage.

Transforming an algebraic term to propagate the group-by and join keys alone
does not guarantee that the resulting term would be a homomorphism, but it is
a required step. Although all algebraic operators used in MRQL are homomor-
phisms, their composition may not be. For instance, cMap(f, groupBy(X)) is not
a homomorphism for certain functions f , because, in general, cMap does not dis-
tribute over ⇑�. Since both groupBy and coGroup are ⇑⊕ homomorphisms, our
goal is to make sure that cMap is a ⇑⊕ homomorphism too, so that the entire
query would be a ⇑⊕ homomorphism. More specifically, it can be proved by
induction that cMap(f,X) is a ⇑⊗ homomorphism if X is a ⇑⊕ homomorphism
and f(k, s) is a ⇑⊗ homomorphism, if s is a ⊕ homomorphism. That is, a cMap
is a homomorphism if its functional argument is a homomorphism too. This rule
is part of a monoid inference system that we have developed, inspired by type
inference systems used in programming languages, which infers the monoid of
any algebraic term, if exists.

If a cMap term is not a ⇑⊗ homomorphism, our approach is to split cMap
into two cMaps, one homomorphic and one not, and pull out and fuse all non-
homomorphic cMaps at the root of the algebraic tree, thus splitting the query
into two parts: the answer query and a homomorphism. Consider the term
cMap(λv. e, X). In our framework, we find the largest subterms in the alge-
braic term e, namely e1, . . . , en, that are homomorphisms. This is accomplished
by traversing the tree that represents the term e, starting from the root, and by
checking if the node can be inferred to be a homomorphism. If it is, the node
is replaced with a new variable. Thus, e is mapped to a term f(e1, . . . , en), for
some term f , and the terms e1, . . . , en are replaced with variables when f is
pulled outwards. That is, cMap(λv. e, X) is split into two cMaps:

cMap(λ(v, v1, . . . , vn). f(v1, . . . , vn), cMap(λv. {(v, e1, . . . , en)}, X))

5 Performance Evaluation

We have implemented our incremental processing framework using Apache
MRQL [26] on top of Apache Spark Streaming [36]. The Spark streaming engine
monitors the file directories used as stream sources in an MRQL query, and when

Incremental Stream Processing of Nested-Relational Queries 315

a new file is inserted in one of these directories or the modification time of a file
changes, it triggers the MRQL query processor to process the new files, based on
the state derived from the previous step, and creates a new state. The platform
used for our evaluations is a small cluster of 9 nodes, built on the Chameleon
cloud computing infrastructure, www.chameleoncloud.org. This cluster consists
of nine m1.medium instances running Linux, each one with 4 GB RAM and
2 VCPUs at 2.3 GHz. For our experiments, we used Hadoop 2.6.0 (Yarn) and
MRQL 0.9.6. The cluster front-end was used exclusively as a NameNode/Re-
sourceManager, while the rest 8 compute nodes were used as DataNodes/N-
odeManagers. For our experiments, we used all the available 16 VCPUs of the
compute nodes for Map-Reduce tasks.

We have experimentally validated the effectiveness of our methods using three
queries: groupBy, join-groupBy, and a PageRank step. The groupBy and join-
groupBy queries are expressed in MRQL as follows:

select (x,avg(y))
from (x,y) in stream(binary ,”S”)
group by x;

select (x,avg(z))
from (x,y) in stream(binary ,”S1”),

(y,z) in stream(binary ,”S2”)
group by x;

The PageRank algorithm computes the importance of the web pages in a web
graph based exclusively on the topology of the graph. For a graph with vertices
V and edges E, the PageRank Pi of a vertex vi ∈ V is calculated from the
PageRank Pj of its incoming neighbors vj ∈ V with (vj , vi) ∈ E using the rule
Pi =

∑
(vj ,vi)∈E

Pj

|{ vk | (vj ,vk)∈E }| . We represent the web graph as a bag of edges
(i, j) from node i to node j. The following MRQL query computes one step of
the PageRank algorithm:

select < id: a, rank: (1−factor)/graph size+factor∗sum(in rank) >
from n in (select < id: src , rank: 0.1, adjacent : dst >

from (src , dst) in stream(binary ,”S”)
group by src)

a in n.adjacent ,
in rank = n.rank/count(n.adjacent)

group by a;

where factor=0.85 is the dumping factor and graph size is the number of graph
nodes. The inner select-query converts the bag of edges from the input stream to
a nested bag of type {< id: int, rank: double, adjacent: {int} >}, that is, to a bag of
nodes where each node is associated with a unique id, a current PageRank value
rank, and a bag of its outgoing neighbors adjacent. Then, the outer-select query
binds the in rank variable to one incoming PageRank contribution from node n

to node a (= in MRQL is for binding a variable to a value, not ranging through
a bag), and all these contributions are added in the sum to form the new rank
of a. This query is over nested relations (it uses the node adjacent list) and is
also a nested query.

The data streams used by the first two queries (groupBy and join-groupBy)
consist of a large set of initial data, which is used to initialize the state, followed by
a sequence of 9 equal-size batches of data (the increments). The groupBy initial

www.chameleoncloud.org

316 L. Fegaras

2%

4%

6%

8%

10%

12%

14%

16%

18%

 0 1 2 3 4 5 6 7 8 9

In
cr

em
en

ta
l/b

at
ch

 r
un

 ti
m

e

A. GroupBy (n = time interval 1..9)

1M+n*1K tuples
1M+n*2K tuples
1M+n*3K tuples
1M+n*4K tuples

2%

4%

6%

8%

10%

12%

14%

 0 1 2 3 4 5 6 7 8 9

In
cr

em
en

ta
l/b

at
ch

 r
un

 ti
m

e

B. Join-GroupBy (n = time interval 1..9)

100K+n*10k tuples
100K+n*20k tuples
100K+n*30k tuples
100K+n*40k tuples

10%

20%

30%

40%

50%

60%

70%

 0 1 2 3 4 5 6 7 8 9

In
cr

em
en

ta
l/b

at
ch

 r
un

 ti
m

e

C. Pagerank (n = time interval 1..9)

100K+n*10k tuples
100K+n*20k tuples
100K+n*30k tuples
100K+n*40k tuples

Fig. 2. Incremental query evaluation of groupBy, join-groupBy, and PageRank step

dataset had size 1M tuples, while the two join-groupBy inputs had sizes 100K
tuples. The experiments were repeated for increments of size 1K–4K tuples for
groupBy and 10K–40K tuples for join-groupBy, always starting with a fresh state
(constructed from the initial data only). For the PageRank step query, we gen-
erated random graphs using the R-MAT algorithm using the Kronecker graph
generator parameters: a = 0.30, b = 0.25, c = 0.25, and d = 0.20. The initial graph
used in our evaluations had size 10K nodes with 10K edges and the four different
increments have sizes 100, 200, 300, and 400 edges, respectively. The performance
results are shown in Fig. 2. The x-axis represents the time points Δt when we get
new batches of data in the stream. The 9 increments arrive at the time points 1Δt
through 9Δt. The y-axis is the incremental execution time for each batch of data
divided by the total processing time of the initial data (percentage).

We can see from Fig. 2 that incremental processing can give an order of
magnitude speed-up compared to batch processing that processes all the data
every time the data changes. More importantly, the time to process each new
batch of data remains nearly constant through time, even though the state grows
with new data each time. The reason that the incremental processing time does
not substantially increase through time is that we have carefully implemented
state merging using Spark’s coGroup operation (a hash-partitioned join), which
is configured to partitioned the new batch of data only, but not the existing state,
since the state has already been partitioned during the previous incremental
step. That is, the new state created by coGroup is cached as a Spark RDD

Incremental Stream Processing of Nested-Relational Queries 317

and is already partitioned by the join key, so that next time, when the state is
merged with the new batch of data, it does not need to be partitioned again. Re-
partitioning data is very expensive because it requires to suffle the data across
the worker nodes. That way, the state merging is done very fast, because the
new batch of data is expected to be substantially smaller than the state.

6 Related Work

Recently, there is a large number of Big Data stream processing systems, also
known as distributed stream processing engines (DSPEs), that have emerged.
The most popular one is Twitter’s Storm [28], which is now part of the Apache
ecosystem for Big Data analytics. It provides primitives for transforming streams
based on a user-defined topology, consisting of spouts (stream sources) and bolts
(which consume input streams and may emit new streams). Other popular DSPE
platforms include Spark’s D-Streams [36], Flink Streaming [16], Apache S4, and
Apache Samza. Many of these systems build on the well-established research
on incremental stream processing of relational data, based on sliding windows
and incremental operators [4], which includes systems such as Aurora [1] and
Telegraph [10]. In addition, there are several recent systems that have extended
Map-Reduce with online processing capabilities, since Map-Reduce was originally
designed for batch processing only. MapReduce Online [11] maintains state in
memory for a chain of Map-Reduce jobs and reacts efficiently to additional input
records. It also provides a memoization-aware scheduler to reduce communication
across a cluster. Incoop [7] is a Hadoop-based incremental processing system with
an incremental storage system that identifies the similarities between the input
data of consecutive job runs and splits the input based on the similarity and file
content. i2MapReduce [37] implements incremental iterative Map-Reduce jobs
using a store, MRB-Store, that maps input values to the reduce output values.
This store is used for detecting delta changes and propagating these changes to
the output. Google’s Percolator [28] is a system based on BigTable for incremen-
tally processing updates to a large data set. It updates an index incrementally
as new documents are crawled. Microsoft Naiad [25] is a distributed framework
for cyclic dataflow programs that facilitates iterative and incremental computa-
tions. It is based on differential dataflow computations, which allow incremental
computations to have nested iterations. CBP [20] is a continuous bulk process-
ing system on Hadoop that provides a stateful group-wise operator that allows
users to easily store and retrieve state during the reduce stage as new data inputs
arrive. Their incremental computing PageRank implementation is able to cut run-
ning time in half. REX [24] handles iterative computations in which changes in the
form of deltas are propagated across iterations and state is updated efficiently. In
contrast to our automated approach, REX requires the programmer to explicitly
specify how to process deltas, which are handled as first class objects. Trill [9] is
a high throughput, low latency streaming query processor for temporal relational
data, developed at Microsoft Research. The Reactive Aggregator [33], developed
at IBM Research, is a new sliding-window streaming engine that performs many

318 L. Fegaras

forms of sliding-window aggregation incrementally. Furthermore, the incremen-
tal query processing is related to the problem of incremental view maintenance,
which has been extensively studied in the context of relational views (see [17] for
a literature survey).

In programming languages, self-adjusting computation [2] refers to a tech-
nique for compiling batch programs into programs that can automatically
respond to changes to their data. It requires the construction of a dependence
graph at run-time so that when the computation data changes, the output can be
updated by re-evaluating only the affected parts of the computation. In contrast
to our work, which requires only the state to reside in memory, self-adjusting
computation expects both the input and the output of a computation to reside
in memory, which makes it inappropriate for unbounded data in a continuous
stream. Furthermore, such dynamic methods impose a run-time storage and
computation overhead by maintaining the dependence graph. The main idea
in [2] is to manually annotate the parts of the input type that is changeable,
and the system will derive an incremental program automatically based on these
annotations. Each changeable value is wrapped by a mutator that includes a list
of reader closures that need to be evaluated when the value changes. A read
operation on a mutator inserts a new closure, while the write operation triggers
the evaluation of the closures, which may cause writes to other mutators, etc.,
resulting to a cascade of closure execution triggered by changed data only. This
technique has been extended to handle incremental list insertions (like our work),
but it requires the rewriting of all list operations to work on incremental lists.
Recently, there is a proof-of-concept implementation of this technique on map-
reduce [3], but it was tested on a serial machine. It is doubtful that such dynamic
techniques can be efficiently applied to a distributed environment, where a write
in one compute node may cause a read in another node. Finally, there is recent
work on static incrementalization based on derivatives [8]. In contrast to our
work, it assumes that the merge function that combines the previous result with
the result on the delta changes uses exactly the same delta changes, a restriction
that excludes aggregations and group-bys.

7 Conclusion

We have presented a general framework for incremental distributed stream
processing that translates SQL-like data analysis queries to incremental dis-
tributed stream processing programs. In contrast to other stream processing
approaches, our framework derives incremental programs that return accurate
results, rather than approximate answers. Our framework can also be used on a
batch distributed system to process data larger than the total available memory
in the cluster, by processing these data incrementally, in batches that can fit in
memory. As a future work, we are planning to improve our state transforma-
tions by using a map join, where the results of processing the new batch of data
are broadcast to all workers and joined with their state partitions locally. We
are also planning to store each state partition as a local key-value map at each
worker to implement state updates more efficiently.

Incremental Stream Processing of Nested-Relational Queries 319

Acknowledgments. This work is supported in part by the National Science Foun-
dation under the grant CCF-1117369. Our performance evaluations were performed at
the Chameleon cloud computing infrastructure, www.chameleoncloud.org, supported
by NSF.

References

1. Abadi, D.J., Carney, D., Cetintemel, U., et al.: Aurora: a new model and architec-
ture for data stream management. VLDB J. 12(2), 120–139 (2003)

2. Acar, U.A., Blelloch, G.E., Blume, M., Harper, R., Tangwongsan, K.: An experi-
mental analysis of self-adjusting computation. ACM Trans. Program. Lang. Syst.
32(1), 3:1–3:53 (2009)

3. Acar, U.A., Chen, Y.: Streaming big data with self-adjusting computation. In:
Workshop on Data Driven Functional Programming (DDFP) (2013)

4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: Symposium on Principles of Database Systems (PODS),
pp. 1–16 (2002)

5. Benjelloun, O., Sarma, A.D., Halevy, A., Widom, J.: ULDBs: databases with uncer-
tainty and lineage. In: International Conference on Very Large Data Bases (VLDB),
pp. 953–964 (2006)

6. Bhagwat, D., Chiticariu, L., Tan, W.C., Vijayvargiya, G.: An annotation manage-
ment system for relational databases. In: International Conference on Very Large
Data Bases (VLDB), pp. 900–911 (2004)

7. Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U.A., Pasquin, R.: Incoop: MapRe-
duce for incremental computations. In: ACM Symposium on Cloud Computing
(SoCC) (2011)

8. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-
order languages. Incrementalizing λ-calculi by static differentiation. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
pp. 145–155 (2014)

9. Chandramouli, B., Goldstein, J., Barnett, M., DeLine, R., Fisher, D., Platt, J.C.,
Terwilliger, J.F., Wernsing, J.: Trill: a high-performance incremental query proces-
sor for diverse analytics. In: International Conference on Very Large Data Bases
(VLDB), pp. 401–412 (2014)

10. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.:
TelegraphCQ: continuous data flow processing for an uncertain world. In: Con-
ference on Innovative Data System Research (CIDR) (2003)

11. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.:
MapReduce online. In: USENIX Symposium on Networked Systems Design and
Implementation (NSDI), vol. 10, no. (4) (2010)

12. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Symposium on Operating System Design and Implementation (OSDI) (2004)

13. Fegaras, L., Li, C., Gupta, U., Philip, J.J.: XML query optimization in Map-
Reduce. In: International Workshop on the Web and Databases (WebDB) (2011)

14. Fegaras, L., Li, C., Gupta, U.: An optimization framework for Map-Reduce queries.
In: International Conference on Extending Database Technology (EDBT), pp.
26–37 (2012)

15. Fegaras, L., Maier, D.: Optimizing object queries using an effective calculus. ACM
Trans. Database Syst. (TODS) 25(4), 457–516 (2000)

www.chameleoncloud.org

320 L. Fegaras

16. Apache Flink. http://flink.apache.org/
17. Gupta, A., Mumick, I.S.: Maintenance of materialized views: problems, techniques,

and applications. IEEE Bull. Data Eng. 18(2), 145–157 (1995)
18. Apache Hadoop. http://hadoop.apache.org/
19. Apache Hive. http://hive.apache.org/
20. Logothetis, D., Olston, C., Reed, B., Webb, K.C., Yocum, K.: Stateful bulk process-

ing for incremental analytics. In: ACM Symposium on Cloud Computing (SoCC)
(2010)

21. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning and data mining in the
cloud. Proc. VLDB Endow. 5(8), 716–727 (2012)

22. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a System for large-scale graph processing. In: ACM Sym-
posium on Principles of Distributed Computing (PODC) (2009)

23. McSherry, F., Murray, D.G., Isaacs, R., Isard, M.: Differential dataflow. In: Con-
ference on Innovative Data System Research (CIDR) (2013)

24. Mihaylov, S.R., Ives, Z.G., Guha, S.: REX: recursive, delta-based data-centric com-
putation. Proc. VLDB Endow. 5(11), 1280–1291 (2012)

25. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad:
a timely dataflow system. In: ACM Symposium on Operating Systems Principles
(SOSP) (2013)

26. Apache MRQL (incubating). http://mrql.incubator.apache.org/
27. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: a not-so-

foreign language for data processing. In: ACM SIGMOD International Conference
on Management of Data, pp. 1099–1110 (2008)

28. Peng, D., Dabek, F.: Large-scale incremental processing using distributed trans-
actions and notifications. In: Symposium on Operating System Design and Imple-
mentation (OSDI) (2010)

29. Power, R., Li, J.: Piccolo: building fast, distributed programs with partitioned
tables. In: Symposium on Operating System Design and Implementation (OSDI)
(2010)

30. Shinnar, A., Cunningham, D., Herta, B., Saraswat, V.: M3R: increased perfor-
mance for in-memory Hadoop jobs. Proc. VLDB Endow. 5(12), 1736–1747 (2012)

31. Apache Spark. http://spark.apache.org/
32. Apache Storm: A System for Processing Streaming Data in Real Time. http://

hortonworks.com/hadoop/storm/
33. Tangwongsan, K., Hirzel, M., Schneider, S., Wu, K.-L.: General incremental sliding-

window aggregation. Proc. VLDB Endow. 8(7), 702–713 (2015)
34. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM (CACM)

33(8), 103–111 (1990)
35. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M.,

Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-
tolerant abstraction for in-memory cluster computing. In: USENIX Symposium
on Networked Systems Design and Implementation (NSDI) (2012)

36. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: Symposium on Operating Sys-
tems Principles (SOSP) (2013)

37. Zhang, Y., Chen, S., Wang, Q., Yu, G.: i2 MapReduce: incremental MapReduce
for mining evolving big data. IEEE Trans. Knowl. Data Eng. (TKDE) 27(7),
1906–1919 (2015)

http://flink.apache.org/
http://hadoop.apache.org/
http://hive.apache.org/
http://mrql.incubator.apache.org/
http://spark.apache.org/
http://hortonworks.com/hadoop/storm/
http://hortonworks.com/hadoop/storm/

Incremental Continuous Query Processing over
Streams and Relations with Isolation Guarantees

Salman Ahmed Shaikh1(B), Dong Chao2, Kazuya Nishimura2,
and Hiroyuki Kitagawa1

1 Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
salman@kde.cs.tsukuba.ac.jp, kitagawa@cs.tsukuba.ac.jp

2 Graduate School of Systems and Information Engineering, University of Tsukuba,
Tsukuba, Japan

{dongchaotina,sigkan311}@kde.cs.tsukuba.ac.jp

Abstract. Stream processing has become an important research issue
with the increase in stream data sources. Many stream processing sys-
tems need to reference non-streaming resources such as database rela-
tions to answer real world queries. Since database relation is a shared
entity, it may be updated during the continuous query (CQ) execution by
other database clients resulting in inconsistent query results (partly using
the relation before update and partly after update). For this problem,
an isolation model is needed to define the way in which these updates
are reflected in the output of the stream-relation join. In this work we
propose an incremental CQ processing approach with isolation guaran-
tees which makes use of a monitor operator to transform the relational
updates into stream tuples. Since database relations tend to be large,
an in-memory T*-Tree index is used to increase the stream-relation join
efficiency. Experiments are performed to prove that guaranteeing isola-
tion solves the inconsistency problem and to show that the incremental
computation and indexing improves the query throughput significantly.

Keywords: Continuous query processing · Stream processing · Isolation
guarantees · Stream-relation join · Inconsistency problem · Incremental
computation · T*-Tree index

1 Introduction

Stream processing has gained a lot of attention recently with the rise of real-time
processing and analysis requirements. To fulfil such requirements, many stream
processing engines (SPEs) have been developed [2–9]. Most of the SPEs run in
main memory as their main goal is to produce quick results for real-time analysis.
While real-time analysis is an essential requirement, a lot of stream processing
applications require access to stored data such as database relations (hereafter
called database) along with data streams to answer real world queries [19–26].
Since a database is a shared entity, it may be updated by other database clients

c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 321–335, 2016.
DOI: 10.1007/978-3-319-44403-1 20

322 S.A. Shaikh et al.

Fig. 1. Inconsistency example

during the query execution resulting in inconsistent query results (partly using
the database before update and partly after update). Example 1 discusses this
problem in detail.

Example 1. Consider a data stream Sales of books selling transactions. Let a
query on this data stream needs to know if the book being sold is in the top-3
popular books list, which is available in a database relation Ranking. This query
can be modelled as a join between the stream Sales and the relation Ranking,
which we call a mixed join1 in this work. We assume that the CQ in this example
uses Rstream2 (discussed in Sect. 2) to produce output. Figure 1 shows the inputs
and output at timestamp t4. Assuming that the relation Ranking is updated
after the arrival of stream tuple <b2,40> at t2, the Rstream operator at t4
produces the output as shown in Fig. 1, which is inconsistent. Although the
query is expected to output top-3 books, however due to the relation update
four tuples are generated with book ids b2 and b4 both ranked 1.

To solve the inconsistency problem discussed in Example 1, an isolation model
is required to determine the way in which the database updates must be reflected
in the output of the mixed-join. Hence we propose an incremental CQ process-
ing approach for mixed join with isolation guarantees. The proposed approach
introduces a monitor operator to transform the relational updates into stream
tuples. The monitor operator employs an in-memory mapping table. The map-
ping table exploits the cheap and large memory available in the machines these
days, to map the primary keys of the database tuples to the unique IDs for the
identification of tuples within the SPE. Since database relations tend to be large,
a T*-Tree index [13] is used to increase the mixed join efficiency. Although there
exist a few other stream processing frameworks dealing with the inconsistency
problem (discussed in Sect. 5), none of them focus on the incremental compu-
tation which is an important framework and adopted by many state-of-the-art
SPEs [4,8]. Our main contributions can be summarized as follows.

– A monitor operator employing an in-memory mapping table to transform the
database updates into stream tuples.

– Use of an index structure for the synopsis handling the database tuples to
increase the mixed join efficiency.

1 The term mixed join is used by Neil Conway in [10] for the stream-relation join.
2 The Rstream operator is commonly used to stream the mixed-join results.

Incremental CQ Proc. over Streams and Relations with Isolation Guarantees 323

– Experimental study to prove that the proposed approach solves the incon-
sistency problem by guaranteeing isolation and to show that the incremental
computation and indexing improves the query throughput significantly.

The rest of the paper is organized as follows. Section 2 presents preliminar-
ies and assumptions. In Sect. 3, the proposed incremental CQ processing with
isolation guarantees is presented. In Sect. 4 we present an experimental study
to prove that the proposed approach solves the inconsistency problem and to
show that the incremental computation along with the indexing improves the
query throughput significantly. We discuss related work in Sects. 5 and 6 finally
concludes this paper and discusses some of the future directions.

2 Preliminaries and Assumptions

To fully understand the proposed incremental CQ processing for mixed join,
understanding of the basic incremental computation is needed. For complete-
ness, we summarize the incremental computation given by Arasu et al. for their
STREAM SPE [4] and the related concepts in this section.

To process and query continuously evolving data streams, many SPEs have
been developed. STREAM [4], Borealis [5], Aurora [2] and Storm [3] are a few
examples of the well-known and commonly used SPEs. When a user registers a
CQ on an SPE, it is executed continuously on the incoming stream tuples and
continuous output is generated. CQL [1] is an SQL-based declarative language
for CQs. It is a state of the art continuous query language, initially designed for
STREAM, the prototype Data Stream Management System [4]. CQL is more
general than many other continuous query languages and is therefore adopted
by many SPEs. We summarize the CQL abstract semantics, its query plan and
its incremental computation from [1,4] in the following subsections.

2.1 CQL Abstract Semantics

The CQL abstract semantics is based on two data types, streams and relations.
Let Γ be discrete, ordered time domain then a stream is an unbounded multiset
of pairs 〈e, t〉, where e is a tuple and t ∈ Γ is the timestamp that denotes
the arrival time of tuple e on stream S. Similarly, a relation is a time-varying
multiset of tuples. The multiset at time t ∈ Γ is denoted by R(t), where R(t) is
an instantaneous relation.

The abstract semantics uses three classes of operators over streams and rela-
tions. (1) relation-to-relation operator takes one or more relations as input and
produces a relation as output. (2) stream-to-relation operator takes a stream as
input and produces a relation as output. (3) relation-to-stream operator takes a
relation as input and produces a stream as output. A CQ Q is a tree of opera-
tors belonging to the three classes. Q uses leaf operators to receive inputs which
could be streams and relations, and a root operator to produce output which
could be either a stream or a relation. At time t, an operator of Q produces new
outputs corresponding to t which depends on its inputs up to t.

324 S.A. Shaikh et al.

CQL is defined by instantiating the operators of the abstract semantics.
For the relation-to-relation operators, CQL uses existing SQL constructs. The
stream-to-relation operators in CQL are based on sliding window over a stream,
which are specified using window specification language derived from SQL-99.
A window at any point of time holds a historical snapshot of a finite portion of
the stream. Although various window operators have been given by SPEs and
discussed by researchers, here we summarize two of the most commonly used.
(1) tuple-based window operator on a stream S is specified using an integer n.
At any time t it returns a relation R of n most recent tuples from stream S.
(2) time-based window takes a parameter τ and at any time t returns a relation
R containing tuples with timestamps between t − τ and t from stream S. CQL
has three relation-to-stream operators which are also adopted in our framework:
Istream, Dstream and Rstream. At time t, the Istream (insert stream) applied to
relation R results in a stream element 〈e, t〉 whenever tuple e is in R(t)−R(t−1)3.
The Dstream (delete stream) returns a stream element 〈e, t〉 from R whenever
tuple e is in R(t−1)−R(t). The Rstream (relation stream) applied to R, results
in a stream element 〈e, t〉 whenever tuple e is in R.

An example of a query written in CQL is shown in Query 1.1, which performs
continuous binary-join with respect to common integer attribute A of streams
S1 and S2.

Select S1.B, S2.C
From S1[Range τ], S2[Rows n]
Where S1.A = S2.A

Query 1.1. A simple CQL query

2.2 CQL Query Plan

A CQL query is translated into a query plan and is executed continuously. Query
plans are composed of operators, queues and synopsis. Operators perform actual
processing on data streams. The data arrive at an operator as a sequence of
timestamped tuples, where each tuple is additionally flagged as either an inser-
tion (+) or deletion (−) as explained later. These tuple-timestamp-flag triples
are referred as elements. Each operator reads from one or more input queues,
processes the input and writes any output to the output queue. Queues buffer
elements as they move between operators. Synopsis is a buffer which belongs to
a specific operator. It stores an operator’s state that may be required for future
evaluation of that operator.

A query plan for Query 1.1 is shown in Fig. 2. The query plan in Fig. 2 con-
sists of seven operators: a root, an Rstream, a binary join, two instances of
window operators and two instances of leaf operators. Note that the projection
is performed as part of the binary join, so no separate projection operator or
synopsis is employed. Queues q1 and q2 hold the input stream elements read by
their respective leaf operators. Queues q3 and q4 hold elements representing the
3 For simplicity, we assume that a new tuple arrives at every time instant t.

Incremental CQ Proc. over Streams and Relations with Isolation Guarantees 325

window

window

binary
join

synopsis1

synopsis2

synopsis3

synopsis4

synopsis5

leaf

Rstream root

leaf

Synopsis

Operator

Queue

Fig. 2. Query plan for Query 1.1

relations S1[Range τ] and S2[Rows n], respectively. Queue q5 holds elements
for the result of joining relations S1[Range τ] and S2[Rows n]. Queue q6 holds
the elements coming out of the Rstream operator, which may lead to output
or input to other query. The query plan has five synopsis, synopsis1∼synopsis5.
Each window operator has a synopsis so that it can hold the current window ele-
ments and generate ‘−’ elements when elements expire from the sliding window.
The binary-join operator has two synopses, one for each input, to materialize
each of its relational inputs. The Rstream operator has a synopsis to convert its
relational input to stream output.

2.3 Incremental Computation

A CQL query logically outputs elements based on R(t) and R(t − 1), but com-
putations required for R(t) and R(t−1) often have a lot of overlap. To eliminate
redundant computation, the incremental computation is used.

Considering the query plan shown in Fig. 2, the window operator on S1, on
being executed reads element 〈e, t,+〉. It inserts element e in synopsis1, and if an
old element e′ expires, it removes that element from the synopsis. The window
then outputs elements 〈e, t,+〉 and 〈e′, t,−〉 to q3 to reflect the addition and
deletion of elements e and e′ respectively. The other window operator executes
in the similar fashion. When the binary-join operator is executed, it reads the
newly arrived element from one of its two input queues, i.e., q3 or q4. If it
reads an element 〈e, t,+〉 from q3, then it inserts e into synopsis3 and joins e
with the contents of synopsis4, generating output elements 〈e.f, t,+〉 for each
matching element f in synopsis4. Similarly, if the binary-join operator reads an
element 〈e′, t,−〉 from q3, it generates 〈e′.f, t,−〉 for each matching element f in
synopsis4. The same process is done for the elements read from q4. The output
elements from the binary join are enqueued to q5. The Rstream operator reads
the data from q5, inserts it into synopsis5, converts the relational input to stream
output and enqueues it to q6 which is then output by the root operator.

Now consider this incremental computation for the case of mixed join as
shown in Fig. 1, which can be expressed as Query 1.2 in CQL. The input stream
sales behaves similarly as discussed above. However, due to the absence of

326 S.A. Shaikh et al.

well-defined semantics to handle database tuples incrementally in the basic
mixed join computation, a trigger is used to update the database related query
operators’ synopses (DB synopses for short). That is, the trigger is fired at the
start of the query to populate the DB synopses and during the execution of the
query it is fired as a result of the database update to update the DB synopses.
Let us assume that there are three tuples in the database relation Ranking as
shown in Fig. 1. The trigger populates the DB synopses in the start of the query.
When the Ranking is updated after t2, the trigger is fired to update the DB
synopses, i.e., the tuple with Rank 1 is updated from Book-id b2 to b4. How-
ever this update is not communicated to the query downstream operators in an
incremental fashion, resulting in multiple book ids with Rank 1 in the Rstream
operators’ synopsis. This causes inconsistent query output as shown in the Fig. 1.

Select S1.book -id , T1.rank , S1.price
From Sales[Rows n] as S1, Ranking as T1
Where S1.book -id = T1.book -id

Query 1.2. Stream-relation join query

3 Isolation Guaranteed Incremental CQ Processing

In order to solve the inconsistency problem discussed in Sects. 1 and 2, we pro-
pose an incremental CQ approach for mixed join with isolation guarantees. To
guarantee isolation or to define the way in which the database updates are
reflected in the mixed join output without resulting in inconsistency, a moni-
tor operator is proposed in this work. For the details on the different isolation
models, please refer [10]. In this section, we first present our proposed monitor
operator employing the mapping table and then discuss the use of indexing to
increase the mixed join efficiency.

3.1 Monitor Operator

The monitor operator is placed exactly after the leaf operator responsible for
receiving database tuples as shown in Fig. 3. (For brevity leaf and root operators
are not shown in Fig. 3.) Its main task is to transform database updates into
stream tuples. The monitor operator receives all the database tuples at the start
of a CQ involving mixed join. Since a tuple within the SPE (we assume the
use of the JsSpinner SPE [9]) is identified by a unique ID, generated by the
SPE, the monitor operator assigns a unique ID to each incoming database tuple.
Additionally it maps the assigned IDs to the database tuples’ primary keys in
a one-to-one fashion and stores them in a mapping table. The mapping table is
an in-memory data structure maintained in the monitor operator’s synopsis.

In order to keep track of the database modifications (insert, update or delete),
a trigger is associated with it. When the database is modified the trigger is fired,
as a result modifications are sent to the monitor operator of the SPE. The mon-
itor operator updates the mapping table and also sends the modifications to

Incremental CQ Proc. over Streams and Relations with Isolation Guarantees 327

the downstream operators in the query plan. The modifications are sent as ‘+’
and ‘−’ tuples, i.e., for the insert a ‘+’ tuple is sent, for the delete a ‘−’ tuple is
sent and for the update both the ‘+’ and ‘−’ tuples are sent to the downstream
operators as shown in Fig. 3 and discussed in the Example 2. Hereafter, the term
database update is used for the modifications in database.

Fig. 3. Isolation guaranteed incremental CQ processing

Example 2. Once again consider the data stream Sales of books selling trans-
actions and a database relation Ranking containing the top-3 popular books,
as shown in Fig. 3. For the same query as of Example 1, we assume that the
database is updated after timestamp t2 and the figure shows the synopses snap-
shot at timestamp t4. The monitor operator receives the database update and
updates its mapping table by assigning a new ID (004) to rank 1. The database
updates are also sent to the downstream operators in an incremental fashion,
i.e., a ‘+’ tuple < 004, 1, b4,+ > is generated for the updated tuple and a ‘−’
tuple < 001, 1, b2,−> is generated for its corresponding old tuple and are sent
to the downstream operators. The downstream operators on receiving the ‘−’
tuple delete its corresponding ‘+’ tuple from their synopses while append the
‘+’ tuple into their synopses. As a result of the synopses update, the mixed join
produces consistent results which is then output by the Rstream operator.

3.2 Indexed Synopsis

Joining is computationally expensive operation, especially when one of the join-
ing relation is big, as in our case. To increase the join efficiency between database
relation and stream tuples, we use T*-Tree [13] index, which is an extension of
T-Tree [12].

328 S.A. Shaikh et al.

T-Tree [12] is a binary tree with many elements in a node. It is evolved from
AVL Tree [27], which is an effective main memory data structure, and B-Tree
[28], which has good update and storage characteristics. Therefore, T-Tree is an
effective main memory data structure that supports binary search. It is known
to be one of the best index structures for ordered data in main memory. T*-Tree,
which is an extension of T-Tree provides better support for the range queries in
addition to the features of the T-Tree. T*-Tree structure is exactly the same as
that of the T-Tree, except that it has a successor pointer pointing directly to
the successor node.

The T*-Tree index is used only for the database tuples and is maintained in
the monitor and the mixed join operators synopses containing them. Since the
number of stream tuples is relatively small, no index structure is used for the
synopses containing stream tuples, as shown in Fig. 3.

4 Experiments

This section presents experimental study to prove that guaranteeing isolation
solves the inconsistency problem and to show that the incremental computation
and indexing improves the query throughput significantly.

4.1 Experimental Setup

For the sake of experiments a prototype SPE, JsSpinner [9], which enables users
to register CQL style Jaql queries is used. The JsSpinner is being developed at
the KDE Lab, University of Tsukuba. The experiments are performed on Dell
Precision T3610 with Intel Xeon 3.7 GHz processor and 16 GB RAM running
Ubuntu 14.10 OS.

For the relational database, we choose Oracle Express 11.2.0 on the same
machine running the SPE. To connect the oracle to the JsSpinner, Oracle C++
Call Interface (OCCI) [29] is used. It is a high-performance and comprehensive
API to access the Oracle database.

To simulate situations where database referenced by the continuous queries
are updated by other systems, we register a simple CQ to the SPE similar to
the one shown in Query 1.2. While the SPE processes the query continuously,
the relational table referenced by the join operation is updated periodically.

Table 1. Default parameter values

Parameter Meaning Default value

NT Relation size 10,000 tuples

UT Database update frequency 300 tuples/second

RS Input stream arrival rate 10,000 tuples/second

WS Window size 100 tuples

Incremental CQ Proc. over Streams and Relations with Isolation Guarantees 329

T1T1’

Data stream S1

Database update after the arrival of e2

e4 e3 e2 e1 e4 e3 e2 e1

T1’ T1’ T1 T1

e4 e3 e2 e1

T1’ T1’ T1’ T1’

a)Inconsistent (referencing T1 and T1’)

b)Consistent (referencing only T1’)

Fig. 4. An example of mixed join output

The maximum and minimum T*-Tree node sizes used for the experiments are
16 and 12 respectively. Unless stated otherwise the parameter values listed in
the Table 1 are used in the experiments.

Stream and Relational Data: For the experiments, a synthetic data stream
S1 and a database relation T1 is used. The S1 contains a string attribute A and
an integer attribute B, while the T1 contains three integer attributes PK, A
and B. The synthetic data stream is generated at different rates using random
strings for the string attribute A. For the T1 attributes PK and A, consecutive
integer values are used. Join attribute B of S1 and T1 is generated in a way to
keep the mixed join selectivity equals to 0.01.

4.2 Experimental Evaluation

The experimental evaluation in this section is divided into inconsistency, effi-
ciency and memory usage.

Inconsistency: Here we perform experiments to prove that not guarantee-
ing isolation results in the inconsistent results. To show this, we execute the
Query 1.2 using the basic mixed join computation (referred as Basic computa-
tion in Fig. 5) as discussed in Sect. 2.3 on the stream S1 and database relation T1
with the default parameter values. To measure the inconsistency in the mixed
join output, we update 100 T1 tuples every 5 s.4 The inconsistency percentage
in the Fig. 5 is measured as follows.

Inconsistency (%) =
no. of inconsistent tuples in the output
total number of tuples in the output

Mixed join output can be inconsistent in the following ways.

– Join computed using tuples referencing the old version (before update) of the
database as shown in Fig. 4.

– Presence of tuples in the output which must had been deleted but exist due
to the absence of the incremental approach.

– Absence of tuples in the output which have been inserted in the database.

4 For the sake of experiments, the inconsistent tuples are checked manually.

330 S.A. Shaikh et al.

Fig. 5. Inconsistency in query results (NT =10K tuples, UT =300 tuples/s, RS =10K
tuples/s, WS =100 tuples)

In Fig. 5, soon after the database update, the inconsistency reaches to its
local maximum because in the absence of the proposed incremental approach the
tuples in the query plan operators’ synopses are not updated, resulting in the
output referencing multiple versions of the database. As time proceeds, arrival of
new stream tuples causes the old and inconsistent tuples to expire, resulting in
the reduction in inconsistency as can be observed from Fig. 5. The inconsistency
reaches zero once all the inconsistent tuples expire. Similarly, the next update
causes the rise of inconsistency to local maximum once again which reduces to
zero with the expiration of the inconsistent tuples and so on. On the other hand,
the proposed approach continues to be consistent throughout the experiment.

Fig. 6. Default: NT =10K tuples, UT =300 tuples/s, RS =10K tuples/s, WS =100
tuples

Efficiency: Next we perform experiments to show that the incremental com-
putation and indexing improves the query throughput significantly. For this we
compare the following three approaches, all of which guarantees the consistent

Incremental CQ Proc. over Streams and Relations with Isolation Guarantees 331

Fig. 7. Default: NT =10K tuples, UT =300 tuples/s, RS =10K tuples/s, WS =100
tuples

query results: (1) Database: Using this approach, the mixed join is performed
by joining the stream tuples directly to the database tuples. The proposed mon-
itor operator is still being used but it only maps the database tuples’ primary
keys (PKs) to the SPE generated IDs for the sake of incremental computation.
(2) Sequential: This approach uses the monitor operator for mapping the PKs
to the IDs and sending the updates to the downstream operator, however for the
mixed join processing no index structure is used. Instead, for each stream tuple,
all the database tuples in its respective synopsis are scanned sequentially to
process the join. (3) Indexed: This approach is similar to that of the sequential
approach, except that it uses an index structure for the synopsis handling the
database tuples, i.e., monitor operator and join operator synopses, to increase
the mixed join efficiency.

Firstly, experiments are performed by varying the input stream arrival rate
RS from 10 tuples/second to 100K tuples/second. From Fig. 6(a) one can observe
that, all the approaches can process lower RS , however with the increase in RS

the database and the sequential approaches cannot handle all the stream tuples.
This is because in the database approach, with the increase in RS the number
of required IO increases, making it difficult for the higher RS to get processed.
In the sequential approach, absence of index requires the sequential scan of all
the database tuples in the synopsis for each stream tuple join, making the join
processing expensive. On the other hand, the indexing in the indexed approach
improves the stream processing rate significantly.

Next, the experiments are performed by varying the database relation size
NT . Figure 6(b) shows that both the sequential and the indexed approaches can
process equal number of stream tuples at NT = 10. However as NT increases,
the stream processing rate decreases significantly. This is due to the absence
of index in the sequential approach making the join processing expensive. The
database approach can process much smaller number of tuples though the NT

does not affect the performance a lot. That is again due to the requirement to

332 S.A. Shaikh et al.

fetch the database tuples from the secondary storage, resulting in a lot of IO,
thus reducing the overall stream processing rate.

We also performed experiments by varying the parameters UT and WS as
shown in Figs. 7(a) and (b), respectively. Both the figures prove the advantage
of using the proposed indexed incremental approach. The number of tuples
processed by the indexed approach is several times higher than that of the
database and the sequential approaches. Additionally, one can observe from
Fig. 7(a) that with the increase in UT , the number of processed tuples by all
the approaches decreases slightly. This is due to the increase in the number of
update tuples that need to be processed by the system with the increase in UT .
Furthermore, from Figs. 7(a) and (b) we can observe that the database app-
roach performs slightly better than the sequential approach. This is because in
the database approach, for the join of each stream tuple we use an SQL query to
search the matching tuples in the database. Since the database search is backed
by indexes, reduction in the search time for the matching tuples for the mixed
join processing results in an improved performance compared to the sequential
approach which uses the sequential scan for the same.

Fig. 8. Memory consumption (UT =300 tuples/s, RS =10K tuples/s, WS =100 tuples)

Memory Usage: In this experiment, we compared the memory usage of the
indexed and the sequential approaches by varying the database relation size NT .
Figure 8 shows that the indexed approach consumes a little more memory than
the sequential. This is due to the utilization of the T*-Tree index structure by the
indexed approach in the synopses for the database tuples. This is the cost that
need to be paid for the better system throughput, however with the availability
of the cheap and large memories these days, this cost is bearable.

5 Related Work

Golab et al. [14] are among the pioneers to point out the difference between rela-
tions and streams. Their work discusses the role of database relations in contin-
uous queries and proposes to model relations as look-up time-varying relations.

Incremental CQ Proc. over Streams and Relations with Isolation Guarantees 333

For mixed join, they define an order for events and updates according to which
an update on the relation at time t should only affect the stream events that
arrive after t.

The first comprehensive work on transactional stream processing supporting
queries on both streams and stored data sources was given by Botan et al. [15].
They extended the page model [18] used by DBMS for streams and CQs. Stream
sources in [15] are treated as stored data sources with read/write operations and
CQs as a series of one-time queries activated by stream data arrivals. Hence,
each one time query is equivalent to a sequence of read and/or write opera-
tions. Operations from one or more sequences are grouped into transactions.
Conflict serializability and event arrival ordering are ensured when executing
these transactions. Hence in their work, isolation is achieved by grouping and
correct ordering of read/write operations in a transaction.

Oyamada et al. [11] also studied the inconsistency problem in the join results
when the referenced non-streaming source in the mixed join is updated dur-
ing the query execution. To tackle this problem the authors introduced CQ-
derived transactions, a concept that derives read-only transactions from contin-
uous queries. Based on this they showed that the above-mentioned inconsistency
problem can be solved by ensuring serializable schedules. Furthermore, to ensure
serializable schedules they proposed three continuous query processing strategies,
i.e., two-phase lock strategy, snapshot strategy and optimistic strategy.

S-Store [16] is another transactional processing system that supports mixing
of streaming transactions with OLTP transactions. It is built on top of H-Store
[17], which is an in-memory OLTP system to offer low-latency query response
and provide consistency guarantees. In order to guarantee the isolation of a
transaction’s operations from others’, S-Store puts constraints on the ordering
of stored procedure in the dataflow graph (DAG in which nodes represent stream-
ing transactions and edges represent an execution ordering) in addition to the
ordering of stream tuples.

In contrast to above works, this work presents an incremental approach to
reflect the database updates in the output of the mixed join or to guarantee the
isolation and consistency of results, which is an important requirement of many
application.

Neil Conway in his work [10], presented an isolation model to guarantee the
consistency of mixed join results at a window level. According to this model,
single window’s worth of tuples must be joined to a single consistent snapshot
of all the relations in the database. However, as mentioned by the author this
model is not suitable for queries containing multiple, differing window clauses.
For example, consider a query with two mixed joins, the outputs of which are
then joined. If the two mixed joins access the same database relation, while the
window sizes of two streams are different, the join joining their outputs will
receive stream input derived from two different snapshots of the database rela-
tion, resulting in inconsistent query results. The proposed isolation model avoids
such a problem by sending the incremental updates to the query downstream
operators immediately as they occur.

334 S.A. Shaikh et al.

6 Conclusion and Future Work

In this work, we addressed the inconsistency problem that arrive when the non-
streaming data sources referenced by the mixed join are updated during the con-
tinuous query execution. To solve this problem, we proposed an isolation guar-
anteed incremental computation of mixed join. The proposed solution employs a
monitor operator to transform the database updates into stream tuples with the
help of a mapping table. Furthermore, we used a T*-Tree index structure for the
monitor and join operators’ synopses handling the database tuples to increase
the mixed join efficiency. Experimental study proved that the proposed approach
effectively solves the inconsistency problem of the mixed join. Additionally, the
incremental computation and the use of index improve the query throughput
significantly.

As part of the future work, we are working on the extension of the proposed
incremental model to incorporate other features of transactional stream process-
ing. Additionally we have plans to perform intensive experiments on real data
streams and relational data.

Acknowledgements. This research was partly supported by the program “Research
and Development on Real World Big Data Integration and Analysis” of MEXT, Japan.

References

1. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantics
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

2. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture
for data stream management. VLDB J. 12(2), 120–139 (2003)

3. Storm project. https://storm.apache.org/. Accessed 16 Feb 2016
4. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R.,

Srivastava, U., Widom, J.: STREAM: the stanford data stream management sys-
tem. Technical report, Stanford InfoLab (2003). IEEE Data Eng. Bull. 26(1)

5. Abadi, D.J., Ahmad, Y., Balazinska, M., Cherniack, M., Hyon Hwang, J.,
Lindner, W., Maskey, A.S., Rasin, E., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik,
S.: The design of the borealis stream processing engine. In: Proceedings of the
CIDR, pp. 277–289 (2005)

6. Wu, Y., Tan, K.: ChronoStream: elastic stateful stream computation in the cloud.
In: Proceedings of the ICDE, pp. 723–734 (2015)

7. Cetintemel, U., Du, J., Kraska, T., Madden, S., Maier, D., Meehan, J., Pavlo, A.,
Stonebraker, M., Sutherland, E., Tatbul, N., Tufte, K., Wang, H., Zdonik, S.B.:
S-Store: a streaming NewSQL system for big velocity applications. In: Proceedings
of VLDB, pp. 1633–1636 (2014)

8. Chandramouli, B., Goldstein, J., Barnett, M., DeLine, R., Fisher, D., Platt, J.C.,
Terwilliger, J.F., Wernsing, J.: Trill: a high-performance incremental query proces-
sor for diverse analytics. In: Proceedings of VLDB, pp. 401–412 (2014)

9. Shaikh, S.A., Watanabe, Y., Wang, Y., Kitagawa, H.: Smart query execution for
event-driven stream processing. In: Proceedings of IEEE BigMM (2016, to appear)

10. Conway, N.: Transactions and data stream processing, pp. 1–28 (2008)

https://storm.apache.org/

Incremental CQ Proc. over Streams and Relations with Isolation Guarantees 335

11. Oyamada, M., Kawashima, H., Kitagawa, H.: Continuous query processing with
concurrency control: reading updatable resources consistently. In: Proceedings of
ACM SAC, pp. 788–794 (2013)

12. Lehman, T.J., Carey, M.J.: A study of index structures for main memory database
management systems. In: Proceedings of VLDB, pp. 294–303 (1986)

13. Choi, K.-R., Kim, K.-C.: T*-tree: a main memory database index structure for
real time applications. In: Proceedings of International Workshop on Real-Time
Computing Systems and Applications, pp. 81–88 (1996)

14. Golab, L., Tamer Özsu, M.: Update-pattern-aware modeling and processing of
continuous queries. In: Proceedings of ACM SIGMOD, pp. 658–669 (2005)

15. Botan, I., Fischer, P.M., Kossmann, D., Tatbul, N.: Transactional stream process-
ing. In: Proceedings of EDBT, pp. 204–215 (2012)

16. Meehan, J., Tatbul, N., Zdonik, S., Aslantas, C., Cetintemel, U., Jiang, D.,
Kraska, T., Madden, S., Maier, D., Pavlo, A., Stonebraker, M., Tufte, K., Wang,
H.: S-Store: streaming meets transaction processing. Proc. VLDB 8(13), 2134–2145
(2015)

17. Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S.,
Jones, E.P.C., Madden, S., Stonebraker, M., Zhang, Y., Hugg, J., Abadi, D.J.:
H-Store: a high-performance, distributed main memory transaction processing sys-
tem. Proc. VLDB 1(2), 1496–1499 (2008)

18. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann Pub-
lishers, San Francisco (2001)

19. Chakraborty, A., Singh, A.: A partition-based approach to support streaming
updates over persistent data in an active DW. In: Proceedings of IPDPS, pp.
1–11 (2009)

20. Chandramouli, B., Goldstein, J., Duan, S.: Temporal analytics on big data for web
advertising. In: Proceedings of ICDE, pp. 90–101 (2012)

21. Golab, L., Johnson, T.: Consistency in a stream warehouse. In: Proceedings of
CIDR, pp. 114–122 (2011)

22. Golab, L., Johnson, T., Seidel, J.S., Shkapenyuk, V.: Stream warehousing with
DataDepot. In: Proceedings of ACM SIGMOD, pp. 847–854 (2009)

23. Jubatus. http://jubat.us/. Accessed 16 Feb 2016
24. Naeem, M.A., Dobbie, G., Weber, G., Alam, S.: R-MESHJOIN for near-real-time

data warehousing. In: Proceedings of International Workshop on DOLAP, pp.
53–60 (2010)

25. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.E.: Sup-
porting streaming updates in an active DW. In: Proceedings of ICDE, pp. 476–485
(2007)

26. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.: Meshing
streaming updates with persistent data in an active data warehouse. IEEE TKDE
20(7), 976–991 (2008)

27. Aho, A., Hopcroft, J., Ullman, J.D.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley Publishing Company, Boston (1974)

28. Comer, D.: Ubiquitous B-tree. ACM Comp. Surv. 11(2), 121–137 (1979)
29. OCCI. http://www.oracle.com/. Accessed 18 Dec 2015

http://jubat.us/
http://www.oracle.com/

An Improved Method of Keyword Search
over Relational Data Streams by Aggressive

Candidate Network Consolidation

Savong Bou1(B), Toshiyuki Amagasa2, and Hiroyuki Kitagawa2

1 Graduate School of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Japan
savong.bou@kde.cs.tsukuba.ac.jp

2 Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
{amagasa,kitagawa}@cs.tsukuba.ac.jp

Abstract. Keyword search over relational streams is useful when allow-
ing users to query on streams without understanding the details about
the streams and query language as well. There have been several research
works on this direction, and the state-of-the-art approaches exploit Can-
didate Networks (CNs), which are schema-level descriptions of possible
joining networks of tuples, and generate query plans based on CNs. How-
ever, in fact, the performance of these approaches seriously degrades in
particular when the maximum size of CNs (Tmax) and/or the number
of query keywords are large due to the explosive increase in number of
CNs. To cope with this problem, we propose a novel query plan called
MX-structure to consolidate all CNs as much as possible. We suppress
explosive blowup of nodes in query plans by consolidating all common
edges among CNs. The experimental results prove that the proposed
algorithm performs much better than the state-of-the-art approaches.

Keywords: Keyword search · Relational streams · Candidate network

1 Introduction

With the recent trends of Cyber Physical Systems [7,13], Internet of Things [6,18],
etc., the number of real-time information sources has been explosively increas-
ing. Besides, it has become common to extract information from various social
medias, such as Twitter and Facebook, in real-time for making analysis of diverse
social activities. Such stream data sources can typically be modeled as relational
streams, where structured records (relational tuples) are transmitted. Therefore,
the importance of query processing over relational streams has been increasing.

When querying relational streams, keyword search is considered to be an
attractive and practical approach due to several reasons. One of the major rea-
sons is that users do not need to learn neither (potentially) complicated query
language, like CQL [3], nor the schemas of streams being queried, which is also
very complicated in many real applications. Instead, what they only need to do is
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 336–351, 2016.
DOI: 10.1007/978-3-319-44403-1 21

Efficient Keyword Search over Relational Data Streams 337

to give several query keywords. So far, keyword search over permanently-stored
relational data [2,9,10,12,14,17] has been extensively studied, but only a few
works have addressed keyword search over relational streams [11,15].

In the works [11,15], they employ candidate network-based approach for
improving query performance. Specifically, for a given set of query keywords
and a parameter that defines the maximum size of resulting networks of tuples
(Tmax), they first enumerate all candidate networks (CNs) that represent all
possible combinations of keyword occurrences on join paths, and the generated
CNs are merged to generate a query plan. Then, the actual streams are processed
according to the query plan. More precisely, in S-KWS [11], a set of CNs are
merged only if they share at least one leaf node called root, and possible subtrees
are merged to remove redundant processing as much as possible. In SS-KWS [15],
common partial networks are merged more aggressively from every leaf node of
CNs, thereby generating more compact query plans.

However, it should be noted that the performance of S-KWS and SS-KWS
considerably degrades when the number of query keywords and/or network size
(Tmax) are increased. The increase of these two parameters causes rapid increase
in the number of CNs, which results in a lot of common partial networks remain
unintegrated. To exemplify the problem, let us take TPC-H dataset [1] as an
example. When the number of keywords and Tmax are increased from four to
five, the number of CNs increases from 3,600 to 85,803 [15]. Likewise, the total
number of edges in the query execution plans exponentially increases from 4,276
to 73,596 in S-KWS and from 7,486 to 222,040 in SS-KWS. (More detailed
discussion can be found in Sect. 5.1.) Thus the performance of S-KWS and SS-
KWS would deteriorate in particular when dealing with a lot of query keywords
and/or large relational streams consisting of many relations. As reported in [8],
the average query length to the search engines has been increasing. For example,
the ratio of queries containing more than five words has increased by 10 % over
the years, while that of single keyword queries has decreased by 3 %.

How can we cope with such exponential blow up of CNs and the complication
of query plans? If we consider the edges in CNs, each of them can be associated
to one of the primary/foreign-key relationship between two tables, whose number
is in general small. In other words, we can consider that the edges in CNs are
intensively duplicated from the primary/foreign-key relationships in the schema.
With the same example above when the number of keywords and Tmax are
increased from four to five, the total number of unique edges in all CNs grows
linearly from 1,088 to 3,536. Under this observation, to cope with the problem
of CN’s exponential blow up, it is possible to consolidate the edges sharing the
same primary/foreign-key relationship into one edge when generating a query
plan, which leads to great performance improvement.

This paper proposes a novel approach to processing keyword search over
relational streams by taking into account the above idea. Specifically, an MX-
structure is proposed to consolidate common edges in different CNs as much
as possible. The experimental results reveal that the proposed approach greatly
outperforms comparative methods in both CPU running time and memory usage.

338 S. Bou et al.

2 Problem Statement

In this section, we shall first introduce keyword search on relational databases.
As a common basis, graph representation of relational database is used to define
the semantics of keyword search [16]. In a data graph, each node represents
a tuple, and an edge represents a primary/foreign-key reference between two
tuples. Now, let us assume a relational schema and a database that conforms
to the schema. Given a set of user-specified query keywords, {k1, k2, . . . , kn},
keyword search on the database is to find all minimal total joining networks of
tuples (MTJNT) [10]. More precisely, total means that all keywords are contained
in each joining networks of tuples, and minimal means that removing any tuple
from a network of tuples leads to loss of eligibility for query results. Figures 1(a)
and (c) show an example of MTJNT. Notice that the maximum size of data
graphs is bounded by parameter Tmax.

In contrast to conventional relational data, relational streams [3] can be mod-
eled as possibly unbounded sequences of relational tuples that conform to rela-
tional schemas. In other words, each tuple in a stream can be represented by a
pair of (1) a relational tuple and (2) a time instant of a discrete and ordered time
domain, e.g., integer. Thus tuples are regarded that they are arrived according
to their timestamps. Figure 1 illustrates a sample schema and its instances.

When dealing with (relational) streams, we often use sliding windows to
convert an infinite stream of tuples to a relation of finite tuples. In such window
semantics, two tuples can be joined only if both tuples are in the sliding window.

Having defined relational streams and sliding windows, keyword search over
relational streams can be defined as follows: given a set of query keywords
{k1, k2, . . . , kn}, a maximum network size Tmax, and a window specification W ,
it continuously reports (1) new MTJNTs when new tuples are delivered and (2)
invalidation of existing MTJNTs due to deletion or aging of tuples.

(a) Schema.

(b) Instances (t1, t2, .. are tuples). (c) Example of MTJNT.

Fig. 1. An example of keyword search “NEC, TV” on relational streams in 1(b). The
joining networks of tuples (JNTs) 1 and 2 are MTJNT; while, 3 and 4 are not as shown
in 1(c). Therefore, search results (MTJNTs) are JNTs 1 and 2.

3 Existing Works

As mentioned in Sect. 1, S-KWS [11] and SS-KWS [15] are the predecessors of
this work. In this section, we briefly overview these works.

Efficient Keyword Search over Relational Data Streams 339

3.1 Overview

In S-KWS and SS-KWS the process of keyword search on relational streams
comprises two main steps: preprocessing and filtering steps as shown in Fig. 4.

Preprocessing Step. Given a schema, a set of query keywords, and Tmax, all
Candidate Networks (CNs) [11,15] are generated. A CN is a tree, where (1)
each node represents a relation and (2) each edge represents a relational join
operation. Notice that all CNs must conform to the concept of MTJNT [11].
Figure 2 shows three examples of linear CNs from the schema in Fig. 1(a).
Then a query plan is generated from all CNs.

Filtering Step. In this step, the query plan is evaluated over relational streams.
When new MTJNTs are detected due to arrivals of new tuples, they are
reported. On the other hand, expired tuples are removed by using either
eager or lazy approaches [11].

3.2 S-KWS

S-KWS [11] is one of the pioneering works for this framework. In this work,
for each CN, the root node is defined as a node containing one chosen query
keyword. Then, left-deep operator tree is created for each CN.

To improve performance, they propose a query plan, called operator mesh,
by grouping all left-deep operator trees that share the same root into a cluster
so that all common join operators can be consolidated, resulting in improved
performance by sharing common operations on the same data. Figure 3 shows
two clusters of operator mesh created from the three CNs in Fig. 2.

When processing relational streams, all partial results are cached in each
operator’s buffer for efficient retrieval of matched results. However, caching all
partial results causes a performance bottleneck due to its high memory cost.

3.3 SS-KWS

SS-KWS [15] is a successor of S-KWS and can be regarded as the state-of-the-art
approach. The novel idea of SS-KWS is to aggressively merge more sub-networks

Fig. 2. Some CNs created
from schema in Fig. 1(a) for
query {k1, k2, k3}.

(a) Cluster #1.
(Combine the first two CNs.)

(b) Cluster #2.
(Only CN 3 is included.)

Fig. 3. Operator mesh for CNs in Fig. 2.

340 S. Bou et al.

Fig. 4. General framework.

Fig. 5. Lattice for CNs in
Fig. 2. (Color figure online)

in CNs not only at single leaf, but also at all leaves. Unlike S-KWS, the root
is the center node of the CNs. Besides, instead of operator mesh, a query plan,
called lattice, is created by combining all CNs so that the query processing cost
is reduced by sharing common subtrees except for the root nodes in CNs as
much as possible. For example, the lattice structure for the three CNs in Fig. 2
is shown in Fig. 5. In this example, nodes marked with double lines are root
nodes; black colored nodes are leaf nodes; and the rests are other non-leaf nodes.

To fully reduce all partial results, SS-KWS proposes selection/semi-join app-
roach by dividing buffer of each node into three sub-buffers: N (not joinable),
W (waiting), and R (ready). It adopts a bottom-up probing sequence. If the
tuple is joinable with other tuples, it is stored in sub-buffer W; otherwise, in N.
If MTJNT of any CN is detected, all related tuples are stored in sub-buffer R.
Thus SS-KWS successfully reduces memory usage compared to S-KWS. Figure 5
shows the lattice structure and all sub-buffers of node P .

3.4 Scalability Issues in Existing Approaches

We discuss in detail the scalability issues of these approaches. As a common
problem, the number of CNs grows exponentially as the number of keywords
and/or Tmax increase. This gives a significant impact on both time and space.

In S-KWS, partial results are maintained in the buffers in an operator mesh.
Due to the low sharing rate of common subtrees in CNs; i.e., in an operator mesh,
we can find a lot of edges connecting the same relations but are not consolidated,
because they are either in different clusters or do not have same root node (e.g.,
common edge PS{k3}-P{k2} in CNs 2 and 3 in Fig. 3). Consequently, in query
processing, a lot of partial results have to be duplicated in buffers and need also
to be processed independently.

In SS-KWS, the problem of the low sharing rate of common subtrees is
mitigated by sharing common subtrees in all possible subtrees. However, there
still exists a restriction that it is impossible to consolidate common paths in
internal nodes, because (1) sharing is only allowed for common subtrees; and
(2) root nodes are not allowed to be shared (e.g., common edges PS{}-$P{} and

Efficient Keyword Search over Relational Data Streams 341

P{}-PS{k3}, marked in red and green, are not consolidated in lattice in Fig. 5).
Therefore, the number of unconsolidated paths grows rapidly as the number of
CNs grows. For the same reason discussed above, such duplicated paths cause
high memory consumption in internal buffers and also cause high computational
cost for possibly useless processing of (duplicated) intermediate results.

4 Proposed Approach

4.1 Overview

We propose a novel query plan representation, called MX-structure (maximal-
sharing structure), that combines all CNs by consolidating common edges. By
using MX-structure, we can avoid redundant nodes and edges to be expanded.
To make it possible to evaluate queries using MX-structure, we introduce fine-
grained node buffers and branch maps for managing existing partial/full query
results. To deal with expiration of tuples, we employ lazy approach [11] where
expired tuples are removed when node buffers are probed. Due to the page
limitation, we do not give detailed explanation. Interested readers may refer to
the original paper [11].

4.2 MX-Structure

First, we introduce the proposed MX-structure. In each CN, the root (and the
output node as well) is determined as the center of the CN (the node which its
path to all leaf nodes is minimal). Then, all CNs are merged in such a way that
all edges are unique; i.e., edges in MX-structure are created only for different
combinations of nodes regardless of the node’s position (root or leaf). Such infor-
mation needs to be maintained as well. In the sequel discussion, we denote by ()
a leaf node and by [] a root node. Notice that, in MX-structure, a source node
and an edge represent selection operation and join operation between two con-
nected nodes, respectively. When all CNs are generated, each of them is labeled
by a unique ID, which is used detect the matched MTJNTs.

Due to the space limitation, we cannot show the algorithm, but it can be
constructed in the following way. Basically, all CNs are processed and added to
an MX-structure one by one. When adding a new CN, we take each edge, and
check its existence; we add one only if it has not been added yet. Next, the ID of
CN is added to each of its edges in MX-structure. The information about each
CN’s root and leaf nodes is also maintained.

Figure 6 illustrates an example of MX-structure for the CNs in Fig. 2. Nodes
marked with double lines show root nodes, and black nodes are leaf nodes. The
label on each edge represents the set of corresponding CNs in term of IDs. The
numbers in () and [] are the IDs of CNs of leaf and root nodes, respectively.

342 S. Bou et al.

Fig. 6. MX-structure for CNs in Fig. 2.
(Color figure online)

Fig. 7. Example of probing sequence.

4.3 Query Evaluation in MX-Structure

To evaluate queries over relational streams using MX-structure, we need to track
the matching status of each tuple in the respective CNs. For example, look at
Fig. 6. If all joins between all edges in C{k1}-PS{}-P{}-PS{k3}-C{k2} (marked
in red) of CN 1 are detected, tuples that contribute to form MTJNT of CN 1
need to be output as a query result. This is allowed by the fine-grained status
management of (existing) tuples using node buffers. More precisely, for each
incoming tuple, its joinability is checked according to the probing sequence, and
is stored in an appropriate sub-space in a sub-buffer w.r.t. the corresponding
CN, which is allocated dynamically when necessary. Thus the proposed scheme
achieves better performance while consuming less memory space.

4.3.1 Node Buffers
In an MX-structure, each node buffer is divided into two sub-buffers, N and WR.
Sub-buffer N is for storing tuples that are not joinable, while WR is for storing
tuples that are joinable with other tuples. Moreover, sub-buffer WR is divided
into sub-spaces according to the CNs it belongs to. A sub-space indicates the
joint status of each joinable tuple to its matched CNs. In the following discussion
we denote by ∼n the sub-space for tuples that are fully matched (as part of the
complete query results) w.r.t. CN n, whereas by n the sub-space for tuples
that are partially matched (not part of the complete query results) w.r.t. CN
n. The table in Fig. 6 shows the buffer of node PS{k3} in the MX-structure. As
can be seen, node PS{k3} appears in CNs 1, 2, and 3. For this reason, some
sub-spaces are created in sub-buffer WR; e.g., {∼1,∼2, 3} is for those tuples
that fully match in CNs 1 and 2 and partially match in CN 3. Notice that we
dynamically create sub-spaces when necessary to avoid allocation of unnecessary
(unpopulated) sub-spaces.

4.3.2 Probing Sequence
To systematically evaluate queries, for each incoming tuple, we check its join-
ability with other existing tuples in the node buffers in other child and/or parent

Efficient Keyword Search over Relational Data Streams 343

nodes, and such probes are performed in the bottom-to-root direction; if a new
tuple arrives at a leaf node, then we probe its parent nodes; otherwise, we first
probe the child nodes, then probe the parent nodes. More precisely, when prob-
ing child nodes, we probe existing tuples in both sub-buffers N and WR if the
nodes being probed are at the leaf level, but do so only in WR if the nodes are
at non-leaf levels. If it turns out that the incoming tuple is not joinable with
any other tuples in the node buffers in the child nodes, then current probing is
finished, and the tuple is stored in sub-buffer N (not joinable); otherwise, it is
stored in a sub-space in sub-buffer WR that corresponds to the CN(s) to which
the incoming tuple contributes to form resulting MTJNT(s).

Note here that we call the CN(s) that the incoming tuple contributes to form
MTJNT(s) active CN(s). The set of active CNs are defined as follows:

cnactive = cnedge ∩ (cnleaf ∪ cnecsubspace) (1)

where cnedge is the set of IDs of CNs assigned to a connected edge being tra-
versed, cnleaf is the set of IDs of CNs assigned to a leaf node if the probed child
node is s leaf, and cnecsubspace is the set of IDs of CNs of non-empty sub-spaces
in the child node(s). Notice that, if the probed child node is a non-leaf node,
cnleaf is empty. Similarly, in sub-buffer N, cnecsubspace is also empty. Determin-
ing active CNs is beneficial to avoid unnecessary probings due to the fact that
inactive CNs in child nodes can never be active in parent nodes. Thus, once
active CNs are determined by probing child nodes, only the parent nodes that
are connected via edges of active CNs are probed, thereby avoiding unnecessary
probings in upper levels.

Look at Fig. 7 as an example. Notice that node buffers that store tuples are
shown for simplicity. Let us assume that tuples t1 and t2, which are (1) of
relations C and PS, resp., (2) contain keywords k2 and k3, resp., and (3) joinable
with each other, arrive in this order. When t1 arrives, we immediately probe the
parent node PS{k3}, because C{k2} is at the leaf level. As a result, it turns out
that t1 is not joinable because of empty node buffer in PS{k3}, and is stored
in the sub-buffer N in C{k2}. Afterwards, when t2 arrives, we probe the child
nodes, C{k2} and P{k2}. When probing C{k2}, t2 turns out to be joinable with
t1 w.r.t. CN 1 by applying the formula explained above1, and (1) t1 is moved
to the sub-space {1} in sub-buffer WR and (2) t2 is stored in sub-space {1} in
sub-buffer WR in the respective nodes. For subsequent probings of parents, only
active CN (CN 1) is taken into consideration. Consequently, only P{} is probed
while C{} is not, because P{} is connected by CN 1 edge.

4.3.3 Branch Map
In an MX-structure, in many cases, root/output nodes are internal (non-leaf)
nodes in one or more CNs and probing proceeds in the leaf-to-root direction. For

1 We have cnedge = {1} (edge C{k2}-PS{k3} belongs to CN 1), cnleaf = {1} (node
C{k2} is leaf node of CN 1), and cnecsubspace = {} (t1 is currently in sub-buffer N).
As a result, we get cnactive = {1}.

344 S. Bou et al.

Fig. 8. Branch maps
for CNs in Fig. 2.

(a) t3 arrives. (b) CN 1 is matched. (c) Move tuples.

Fig. 9. Example of MX-structure evaluation. (Color
figure online)

this reason, we need to maintain for each tuple in the root its matching status so
that we can output new MTJNTs as soon as they are detected. To this end, we
use a map called branch map to track whether all nodes from the leaves up to
the root/output node are matched. More precisely, a branch map is attached to
each joinable tuple in the root/output nodes. A branch map is comprises several
bits corresponding to the branches from the leaf (or leaves). When all bits are set
to one, the MTJNT that contains the root tuple is output as a result. Figure 8
is the branch maps of all CNs in Fig. 2. Since each CN has two leaf nodes, each
map has two bits which are initialized by zero.

Continued from the example in Fig. 7. Suppose tuple t3 in P{} has arrived
(Fig. 9(a)), and is joinable with t2 w.r.t. active CN 12. Since node P{} is the
root node, a branch map for active CN (CN 1) is created, and the second bit
corresponding to branch C{k2}-PS{k3}-P{} (colored in red) is set to one.

When another branch C{k1}-PS{}-P{}, belonging to CNs 1 and 2, is detected
as matched (Fig. 9(b)) due to the arrival of additional tuples, another branch map
for CN 2 is created, and the first bits in the branch maps for CNs 1 and 2 in t3
are set to one. Now, CN 1 is detected as matched, and the MTJNT is returned
as a query result. Then, all matched tuples are moved to appropriate sub-spaces
of their fully matched CN 1 as shown in Fig. 9(c) for subsequent processing3.

4.3.4 Dynamic Generation of Sub-spaces
As explained earlier, we dynamically populate sub-spaces when necessary,
because (1) generating all possible sub-spaces requires huge memory spaces and
(2) only a few sub-spaces are used in query processing. To this end, we populate

2 We have cnedge = {1, 2} (edge PS{k3}-P{} belongs to CNs 1 and 2), cnleaf is empty
(node PS{k3} is not leaf node), and cnecsubspace = {1} (t2 is currently in sub-space
{1}). As a result, we get cnactive = {1}.

3 Notice that buffers of nodes C{k1} and PS{} are not shown here for simplicity.

Efficient Keyword Search over Relational Data Streams 345

a new sub-space according to the following formula:

cnnewsubspace = cnoldsubspace ∪ cnactive (2)

where cnnewsubspace and cnoldsubspace are respectively the new sub-space and
the existing sub-space marked by IDs of CNs for each joinable tuple. Notice
that, if tuple just arrives or is currently in sub-buffer N, its cnoldsubspace is
empty. The algorithm is omitted due to the space limitation, but its algorithm
is straightforward.

4.4 Algorithm Details

The proposed algorithm is shown in Algorithm 1. This algorithm works as
follows. If the incoming tuple, t0, belongs to a non-leaf node, it probes child
nodes by calling function Probe child nodes (Line 3). This function returns
joinable to child= true if there are joinable tuples in child nodes with the incom-
ing tuple. Otherwise, it returns joinable to child= false, which results in finish-
ing the current probing, and t0 is stored in sub-buffer N (Line 4).

This function Probe child nodes works as follow. For each sub-space of
sub-buffer WR in each child node (and sub-buffer N if child node is leaf node),
cnactive is computed by Eq. (1). If cnactive is not empty, it checks each tuples in
that sub-space (Line 2–5). If there are tuples joinable with the incoming tuple,
joinable to child is set to true (Line 6), and function Match CN is called to check
if any partially matched CNs in cnactive are fully matched (Line 7). This function
returns joinable to child (Line 12).

In function Match CN, each CN in cnactive is checked if there are fully matched
CNs. First, appropriate sub-space, cnnewsubspace, is computed by Eq. (2) (Line 1).
Then, for each partially matched CN, branch map is updated (Line 2). There are
fully matched CNs if the parent node is root node and all bits in the branch map
are set (Line 3–4). If any fully matched CN is found, its MTJNT is returned as
result, and sub-space, cnnewsubspace, are updated according to the fully matched
CN (Line 5–6). Finally, all matched tuples are moved to appropriate sub-space
cnnewsubspace (Line 8).

Back to the main algorithm, if the incoming tuple is from leaf nodes or
joinable to child is true, subsequent parent nodes are probed until no parent
nodes have joinable tuples (Line 8–18) by calling function Probe parent nodes
(Line 10) following similar procedure above.

4.5 Discussion

In this section we elaborate the reason why the proposed scheme is advanta-
geous to the existing approaches, S-KWS and SS-KWS. As we observed, the
number of CNs exponentially increases as query keywords and/or Tmax grows.
Consequently, even though S-KWS and SS-KWS try to merge the CNs by finding
common sub-networks, the size of query plans rapidly grows, which means a large
number of CNs cannot share processing and need to be evaluated independently.

346 S. Bou et al.

Algorithm 1. MX-structure Evaluation
Input: Tuple t0 just from streams, MX-structure MX

1: joinable to child = false
2: if t0 from non-leaf nodes then
3: joinable to child = Probe child nodes (t0, MX)
4: Put t0 in sub-buffer N if joinable to child = false
5: end if
6: if t0 from leaf nodes or joinable to child = true then
7: put t0 in set joint tuples
8: while 1 do
9: while each t in set joint tuples do

10: sjtp = Probe parent nodes (t, sjtp, MX)
11: end while
12: if sjtp is empty then
13: break;
14: else
15: set joint tuples = sjtp
16: clear sjtp
17: end if
18: end while
19: end if
Function: Probe child nodes (t, MX)
1: joinable to child = false
2: while Each child nodes do
3: while Each sub-space, sp, in WR (and N if child node is leaf node) do
4: if cnactive not empty then
5: while Each tuple t1 in sp joinable with t do
6: joinable to child = true
7: Matched CN (cnactive, MX)
8: end while
9: end if

10: end while
11: end while
12: Return joinable to child

Function: Probe parent nodes (t, sjtp, MX)
1: while Each parent node, pn do
2: if cnactive not empty then
3: while Each tuple t1 in pn joinable with t do
4: Matched CN (cnactive, MX)
5: put t1 in sjtp
6: end while
7: end if
8: end while
9: Return sjtp
Function: Matched CN (cnactive, MX)
1: Compute cnnewsubspace

2: while Update branch map of each CN in cnactive do
3: if All bits in branch map set to 1 then
4: if Parent node is root node then
5: Return all matched tuples (MTJNT) as result
6: Update cnnewsubspace to fully match to ∼CN .
7: end if
8: Move all matched tuples into appropriate sub-space cnnewsubspace

9: end if
10: end while

Such redundant evaluation is very costly because it requires to scan all related
tuples and check if they are joinable. This leads to very poor performance.

Efficient Keyword Search over Relational Data Streams 347

In MX-structure, we combine all CNs by consolidating all common edges
without any restriction of node position. Thus, we can avoid the exponential
blow up in query plans, which means all CNs having overlapping edges can share
processing. We enable MX-structure by keeping track of matching status using
sub-space in each node buffer. It is true that the management of the complicated
sub-buffers is not cost-free; however, that cost is very trivial comparing to that
of independent evaluation of all unconsolidated CNs (very costly operation as
explained above) in the query plans of S-KWS and SS-KWS. This leads to much
better performance. We confirm this in the following experimental evaluation.

5 Experiments

In this section we compare the performance of the proposed approach with full
mesh (FM) and partial mesh (PM) of S-KWS, and SS-KWS. All approaches
were implemented using C++ language. All experiments were performed using
2.93 GHz Intel Core i7 CPU with 31.4 GiB memory running Ubuntu 13.10.

We used both synthetic and real datasets. Due to lack of space, we only
reported the result of synthetic dataset, TPC-H [1], which deals with ad-hoc
decision support system in business environment. In this dataset, there are eight
tables with 61 attributes. To generate relational streams, we read datasets from
the disk, and fed them in the implement systems. Parameters used in the exper-
iments are shown in Table 1. The default parameters are written in bold.

5.1 Comparison of Query Plans’ Size

We first make a comparison of query plans’ size (in terms of number of edges)
of all approaches because they have great impact on the performance.

For this experiment, we only use two parameters, number of query keywords
and Tmax, because other parameters do not have an impact on the size of query
plan. The result is shown in Fig. 10. As can be seen, when the number of query
keywords and Tmax increased, the total number of edges in S-KWS and SS-KWS
was exponentially increased, which was caused by the explosion of number of
CNs whose edges could not be consolidated in their query plans. Such explo-
sive increase in size of query plans indicates that the performance of S-KWS
and SS-KWS will greatly degrade when the number of query keywords and

Table 1. Parameters used in the experiments.

Parameter Range and default

Window size (mn) 10, 20, 30, 40, 50

Keyword frequency (%) 0.003, 0.007, 0.01, 0.013

of keywords 2, 3, 4, 5

Tmax 2, 3, 4, 5

348 S. Bou et al.

(a) # keywords = 2. (b) # keywords = 3. (c) # keywords = 4. (d) # keywords = 5.

Fig. 10. Comparison of number of edges.

Tmax increase. However, the growth rate of the proposed scheme was linearly
increased because it consolidated unique edges into one, and the total number
of unique edges, which were the primary/foreign-key relationships between two
tables in the schema (which is usually comparatively small), in all CNs was
slightly increased as the number of CNs increased. This proves that the pro-
posed scheme can scale well with the increase in number of query keywords and
Tmax.

5.2 Performance Comparison

We compared CPU running time, memory usage, and total number of probings.
Notice that this dataset is specially prepared to favor SS-KWS to S-KWS.

First, we measured the CPU running time and the memory usage when
varying the number of keywords (Figs. 11(a) and (b), respectively). As can be
seen, CPU running time and the memory usage in FM/PM and SS-KWS were
increased exponentially, whereas the proposed scheme was not. As an evidence,
the number of probings was also exponentially increased in FM/PM and SS-
KWS as shown in Fig. 11(c). This is due to the explosive in size of the query
plans of FM/PM and SS-KWS as explained in the above experiment. Similar
tendency can be observed when varying Tmax from two to five (Fig. 12).

Next, we increased the size of window from 10 min, 20 min, 30 min, 40 min,
and 50 min. As expected, when the size of window was increased, the CPU
running time, memory usage, and number of probings of all approaches also
increased as shown in Fig. 13. This was because fewer tuples in the buffers of
all approaches were expired and deleted as a result of the increase in size of
window. Figure 14 shows the impact on the performance of all approaches when
varying keyword frequency. When keyword frequency was increased, there were
more tuples containing the keywords of the query. As a result, there were more
tuples that need to be joint. Therefore, the CPU running time, memory usage,
and number of probings of all approaches also increased. Nevertheless, the total
number of CNs did not increase when increasing window size and keyword fre-
quency. Therefore, there is no change in size of query plans of all approaches,
which caused little impact on the performance.

Efficient Keyword Search over Relational Data Streams 349

(a) CPU running times. (b) Memory usage. (c) # of probings.

Fig. 11. Varying # of keywords.

(a) CPU running times. (b) Memory usage. (c) # of probings.

Fig. 12. Varying Tmax.

(a) CPU running times. (b) Memory usage. (c) # of probings.

Fig. 13. Varying window size.

(a) CPU running times. (b) Memory usage. (c) # of probings.

Fig. 14. Varying keyword frequency.

350 S. Bou et al.

6 Related Work

So far, many works have been done to enable keyword search on permanently-
stored-relational data [2,4,5,10,14] and few proposals on relational streams
[11,15].

DISCOVER [10] and DBXPLORER [2] are the CN-based keyword search on
(static) relational data. In these works, first all CNs are generated from the given
keyword search and relational data’s schema. Then, a plan is built for efficient
evaluation. Since the total number of CNs can be very big, and evaluation of all
CNs is costly, [14] proposes an algorithm to rank all CNs, and only top-k CNs
are chosen to evaluate against relational data.

S-KWS [11] is the first work to enable keyword search over relational streams.
It is also a candidate network based approach. S-KWS [11] proposes a query plan,
called operator mesh. Later, SS-KWS [15] proposes a more compact query plan,
called lattice, for better query evaluation.

7 Conclusion

In this paper we have proposed an improved keyword search method over rela-
tional streams. In the proposed scheme candidate networks are merged into
a novel data structure called MX-structure, and keyword search is efficiently
processed based on the proposed algorithms with the help of MX-structure. The
experimental results have shown that the proposed scheme significantly outper-
forms the state-of-the-art methods even when the number of query keywords
and/or Tmax are increased.

In this work we have noticed that CN-based approach has some limitations.
In particular some CNs are not used due to the biased keyword distribution with
respect to different schemas. For the future work we plan to exploit such locality
to enhance the performance.

Acknowledgments. This research was partly supported by the Grant-in-Aid for Sci-
entific Research (B) (#26280037) by JSPS and the program Research and Development
on Real World Big Data Integration and Analysis of the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

References

1. TPC-H benchmark dataset (2015). http://www.tpc.org/tpch/
2. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: a system for keyword-based search

over relational databases. In: ICDE (2002)
3. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Srivastava, U.,

Widom, J.: STREAM: the Stanford data stream management system. Technical
report, Stanford InfoLab (2004). http://ilpubs.stanford.edu:8090/641/

4. Arasu, A., Babu, S., Widom, J.: CQL: a language for continuous queries over
streams and relations. In: Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS, vol.
2921, pp. 1–19. Springer, Heidelberg (2004)

http://www.tpc.org/tpch/
http://ilpubs.stanford.edu:8090/641/

Efficient Keyword Search over Relational Data Streams 351

5. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic ranking of data-
base query results. In: VLDB, Toronto, Canada (2004)

6. Dyk, M., Najgebauer, A., Pierzcha�la, D.: Agent-based M&S of smart sensors
for knowledge acquisition inside the Internet of Things and sensor networks. In:
Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS, vol. 9012, pp.
224–234. Springer, Heidelberg (2015)

7. Edward, L.: Cyber physical systems: design challenges. Technical report no.
UCB/EECS-2008-8, University of California, Berkeley (2008). Accessed 07 June
2008

8. Hogan, K.: Interpreting hitwise statistics on longer queries. Technical report,
Ask.com (2009)

9. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style keyword search
over relational databases. In: VLDB (2003)

10. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational data-
bases. In: VLDB, Hong Kong, China (2002)

11. Markowetz, A., Yang, Y., Papadias, D.: Keyword search on relational data streams.
In: SIGMOD, Beijing, China (2007)

12. Mehdi, K., Aijun, A., Nick, C., Parke, G., Jaroslaw, S., Xiaohui, Y.: Meaningful
keyword search in relational databases with large and complex schema. In: ICDE,
Seoul, Korea (2015)

13. Niggermann, O., Lohweg, V.: On the diagnosis of cyber-physical production sys-
tems. In: AAAI, Austin, Texas, USA (2015)

14. Pericles, O., Altigran, S., Edleno, M.: Ranking candidate networks of relations to
improve keyword search over relational databases. In: ICDE, Seoul, Korea (2015)

15. Qin, L., Yu, J.X., Chang, L.: Scalable keyword search on large data streams. VLDB
J. 20, 35–57 (2011)

16. Shaul, D., Gadi, E., Shai, G., Eran, P.: DTL’s DataSpot: database exploration
using plain language. In: VLDB, San Francisco, CA, USA (1998)

17. Xu, Y., Guan, J., Ishikawa, Y.: Scalable top-k keyword search in relational data-
bases. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.)
DASFAA 2012, Part II. LNCS, vol. 7239, pp. 65–80. Springer, Heidelberg (2012)

18. Zhang, H., Sanin, C., Szczerbicki, E.: Experience-oriented enhancement of smart-
ness for Internet of Things. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.)
ACIIDS 2015. LNCS, vol. 9012, pp. 506–515. Springer, Heidelberg (2015)

https://www.Ask.com

Data Integration, and Interoperability

Evolutionary Database Design: Enhancing Data
Abstraction Through Database Modularization

to Achieve Graceful Schema Evolution

Gustavo Bartz Guedes1,2(B), Gisele Busichia Baioco2,
and Regina Lúcia de Oliveira Moraes2

1 Federal Institute of São Paulo, Hortolândia, SP 13183-250, Brazil
gubartz@ifsp.edu.br

http://hto.ifsp.edu.br
2 University of Campinas, Limeira, SP 13484-332, Brazil

{gisele,regina}@ft.unicamp.br
http://www.ft.unicamp.br/

Abstract. Software systems are not immutable through time, especially
in modern development methods such as agile ones. Therefore, a soft-
ware system is constantly evolving. Besides coding, the database schema
design also plays a major role. Changes in requirements will probably
affect the database schema, which will have to be modified to accom-
modate them. In a software system, changes to the database schema are
costly, due to application’s perspective, where data semantics needs to be
maintained. This paper presents a process to conduct database schema
evolution by extending the database modularization to work in an evo-
lutionary manner. The evolutionary database modularization process is
executed during conceptual design, improving the abstraction capacity
of generated data schema and results in loosely coupled database ele-
ments, organized in database modules. Finally, we present the process
execution in an agile project.

Keywords: Evolutionary database design · Schema evolution ·
Database evolution · Agile methods

1 Introduction

Software systems manipulate data through a database management system,
which provides a set of resources that allow the transparent creation, definition
and manipulation of databases. An important process in the database design is
its definition, made as a schema that describes the metadata about how infor-
mation is represented and stored.

During an evolution process, new requirements demand the evaluation of the
necessary changes and their impact along all levels that compose the software
system. Therefore, it is most likely that the database schema also needs to be
updated in order to support new functionalities.
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 355–369, 2016.
DOI: 10.1007/978-3-319-44403-1 22

356 G.B. Guedes et al.

Nowadays, the database evolution is mainly performed with the refactoring
technique, which consists in small changes to the database schema in order to
support new functionalities [1]. However, these changes are costly and may result
on inconsistencies and semantic lost, regarding the original database schema.
Therefore, it is desirable to produce a high quality data schema at first, rich in
abstraction, to facilitate further evolution.

In this way, the choice of the database model has a great impact on schema
evolution. Schemas built upon low expressiveness data models make further evo-
lution harder, because they have a poor representation of reality. Therefore,
conceptual data models are preferable, since they provide a high-level abstract
representation. According to Batini, Ceri and Navathe [2] “the quality of the
resulting schemas depends not only on the skill of the database designers, but
also on the qualities of the selected data model”.

In respect to the software development, Sommerville [3] states that modular-
ity is one of the attributes towards software quality, and if the modularization
process is well conducted it results in improved software quality. Thus, modular-
ity assists in software evolution, since each module contains a set of loosely cou-
pled functionalities. In addition, the emergence of the agile methods introduced
a new standard in software development, allowing the delivery of independent
functional modules in an incremental manner [4–6]. In this way, each increment
must be integrated with the already operational software system delivered in
previous iterations in order to provide new functionalities. Therefore, modular-
ity can be used at database design process level, in order to produce cohesive
and loosely coupled database elements assisting in the schema evolution.

The work of Ferreira and Busichia [7] presents the database modularization
process, an extension of the classical database design process. It decomposes a
database schema into database modules, according to the application’s trans-
actions. In addition, it provides a representation for a database module, which
enhances the overall expressiveness of the database design, by representing the
conceptual data schema of a module along with its related functionalities.

Database modularization provides a standardized way to conduct the data-
base design process, resulting in loosely coupled and autonomous schemas,
providing an evolutionary design approach. It narrows down the scope when
assessing the changes and impacts caused by evolution, improving traceability
from database and software perspective. A preliminary work towards evolution-
ary database modularization process was introduced in Guedes, Busichia and
Moraes [8].

This paper presents the extension of the database modularization process to
support an evolutionary design. The result is a graceful schema evolution ampli-
fying the schema’s abstraction to database designers, assisting future changes.
Also, we propose a metadata schema to hold the database modules definitions
providing the application with a transparent view of the database modules.

The remainder of this paper is organized as follows: related works are pre-
sented in Sect. 2; Sect. 3 presents an overview of the database modulariza-
tion process; the evolutionary database modularization process, including new

Evolutionary Database Design 357

phases, is described in Sect. 4; Sect. 5 presents our approach for the evolutionary
database modules integration; an application of our approach is presented in
Sect. 6; finally Sect. 7 concludes the paper and indicates future works.

2 Related Works

Database schema evolution is not a recent topic and some works date back to
the seventies [9,10]. Whereas the software-developing paradigm has changed,
from procedural to object oriented, database technologies did not have such a
dramatic change and are mostly supported by the relational model [11].

Most works in schema evolution includes database refactoring, co-evolution of
the conceptual and physical schemas, impact and prediction analysis of schema
changes and schema mapping and versioning. The tight coupling between appli-
cation and database schema is a common topic of these works.

A database refactoring [1,12] consists in a small change to the schema in
order to support new functionalities while it must preserve the behavioral and
informational semantics. Thus, after a refactoring, the information, from the
application’s point of view, must be preserved.

According to Ambler [12], a database refactoring comprises: (i) Changes in
the database schema, such as modification in relations, views, stored procedures,
triggers; (ii) Data migration to the new schema. This may require data transfor-
mation, such as type conversion and update in referential integrity constraints.
When multiple applications use the database, a transition period may exist, in
which the old and new schemas coexist; (iii) Changes to the application’s source
code to reflect the schema’s modifications.

Cleve et al. [13,14] approach explores the co-evolution of the conceptual
and physical layer, by automating generation of the relational schema from its
corresponding conceptual schema.

The Hecataeus is a “what-if” analysis tool that simulates the propagation of
events caused by schema changes [15]. Hence, focused on the coupling between
database elements. Hecataeus maps a relational database schema as well as
queries and views into a directed graph, where each node represents a depen-
dency. A set of metrics is provided to evaluate coupling.

The work of Curino et al. [16] presents a set of operators, called Schema Mod-
ification Operators (SMO) that modify the physical database schema while pre-
serving previous versions and establishing a mapping among them. This allows
different applications to query multiple versions of the database. In that work
a prototype tool, the PRISM workbench, is presented in order to support the
SMOs.

This paper presents a standardized method to design the database schema
in evolutionary and modular way, resulting in a set of cohesive and independent
database modules, improving the schema abstraction and reducing the need for
database changes. In addition, it provides interoperability between the software
and the database, through a catalog that stores the database modules metadata
definition.

358 G.B. Guedes et al.

3 Background

This work is based on the extension of the database modularization design
process proposed in Ferreira and Busichia [7]. Therefore, in this section we
present the background regarding the phases involved in this process.

3.1 Overview of Database Modularization Design

In this section, we describe the four stages of the “Modularization Design” phase
as it is in Ferreira and Busichia [7].

Stage 1 - Partitioning of the conceptual global data schema. The input is the
global application schema, which is partitioned in one subschema per subsystem.
A subsystem is defined as a group of functionalities.

Stage 2 - Treatment of information sharing. Previous stage may result in over-
laps, when a schema element belongs to more than one subschema. In these
situations each element is classified according to read or write operations exe-
cuted by each subsystem. Three classifications are defined as follows:
1. Non-shared: the element belongs to a single subschema and a single subsystem

carries out both reading and writing operations on the element.
2. Unidirectional sharing: the element belongs to two or more subschemas and

a single subsystem performs the writing operations on the element, while the
others carry out only reading operations.

3. Multidirectional sharing: the element belongs to two or more subschemas and
two or more subsystems perform writing operations on the element.

Stage 3 - Definition of the database modules. Here a group GSi is created for
each subsystem Si containing the elements that it maintains, which are those
that perform writing operations. An intersection with all groups is made, in
order to handle multidirectional sharing and to define the database modules.

Groups, which intersection with all others is empty, originates a database
module per group.

GS1 ∩ GS2 ∩ ...GSn = ∅, a Module Mn is created for each GSn.
Groups, which intersection with all others is non-empty, can originate a data-

base module with all elements of the groups.
GS1 ∩ GS2 ∩ ...GSn �= ∅, a Module Mn is created with GS1 ∪ GS2 ∪ ...GSn.

Another possibility is to create a database module based on the difference
between the elements of the intersection result and each subsystem elements
group.

GS1 ∩ GS2 = Gx, generates module Mx.
GS1-Gx, generates Module Mn.
GS2-Gx, generates Module Mn+1.

Stage 4 - Definition of the interface of the database modules. This stage encapsu-
lates subschemas in database modules with public and private procedures, read
access and write access respectively. Figure 1 shows a graphical representation
of a database module, enhancing abstraction by including both the conceptual
schema of the database module as well as the associated procedures.

Evolutionary Database Design 359

Fig. 1. A module representation [7].

4 Evolutionary Database Modularization Design Process

Our approach towards database evolution is an extension of the database mod-
ularization design process along with new data modeling concepts.

The original database modularization process was designed as a top-down
database project, which means that a global conceptual schema was upfront
designed and partitioned (modularized). On the other hand, our scenario is an
incremental database schema design, where subsequent development cycles start
from an already implemented schema. For example, this is the case on agile
projects.

The evolutionary database modularization design process is conducted with
both top-down and bottom-up design strategies. The top-down is applied at each
cycle to define new subsystems or associate new requirements and functional-
ities to the already existing ones. Concurrently, it is necessary to consider the
existence of database modules created in previous cycles that can contemplate
fully or partially new functionalities, thus characterizing a bottom-up design.

Six phases comprises the evolutionary database modularization design
process as showed in Fig. 2. Gray rectangles represent our extension of the orig-
inal design process.

1. Requirements Collection and Analysis: it consists in identifying and docu-
menting both data and functional requirements.

2. Evolutionary Analysis of Modularization Requirements: in an evolutionary
approach, it becomes an iterative process, where all phases are executed at
each cycle, resulting in a new increment to the database. Therefore, this phase
aims to analyze new requirements taking into account the already imple-
mented databases modules from previous iterations. The output is the Mod-
ularization Data Requirements, which indicates how the iteration will affect
the subsystems definitions, according to the functional requirements of the
previous stage, and the impact on the database modules, resulting in either
extending or creating new modules.

3. Iteration’s Conceptual Design: the requirements are analyzed in order to
produce the iteration’s conceptual schema through the use of the entity-
relationship model.

360 G.B. Guedes et al.

4. Evolutionary Database Modularization Design: this phase was extended to
perform the database modularization design in an evolutionary manner, con-
sidering the stages presented in Sect. 3.1. Thus, we added the “Evolutionary
definition of the database modules” in respect to the original modulariza-
tion process. In addition, the conceptual schema of each database module is
adapted to support future evolutions.

5. Logical Design to each Module: in this phase, the conceptual schema of each
database module is transformed into a logical schema.

6. Physical Design to each Module: lastly the logical schema of each module is
deployed physically into the database, using a specific database management
system.

From the second iteration on, we consider the deployed database modules, rep-
resented by the dotted arrow in Fig. 2. The next subsections describe, in detail,
the new phase called “Evolutionary Analysis of Modularization Requirements”
and the extended one called “Evolutionary Database Modularization Design”.

Fig. 2. Evolutionary database modularization design process.

Evolutionary Database Design 361

4.1 Evolutionary Analysis of Modularization Requirements

This phase assess the completeness of the database modules in respect to an
iteration’s functionalities. The activity diagram of Fig. 3 shows the requirements
analysis according to the “Evolutionary Analysis of Modularization Require-
ments” phase as well as the possible outputs.

1. The already existing database modules support the new requirements; there-
fore, no change is required and the functionalities are implemented into the
correspondent database modules.

2. There is no support, from the existing database modules, to the new require-
ments; thus, new database modules will be created with the correspondent
elements and functionalities.

3. If the existing database modules contemplate partially the new requirements,
new database modules can be created as well as the extension of the existing
ones, in order to support the new requirements.

Fig. 3. Activity diagram: evolutionary approach to modularization design.

It is important to note that there are no database modules to assess at
the first iteration. Therefore, it results in the creation of the early database
modules, which means that the output is the “Create new database module
with associated functionalities, elements and interrelationships” of Fig. 3. From
the second iteration, this phase receives also the conceptual data schema of
database modules generated in previous iterations, represented by the dotted
arrow of Fig. 2.

4.2 Evolutionary Database Modularization Design

Our work presents interrelationship and intergeneralization as new semantic data
modeling concepts that arise from modules definitions. In order to produce cohe-
sive database modules to support further evolution, we need to consider coupling

362 G.B. Guedes et al.

that in modularization occurs in interrelationships and generalization hierarchies
among modules, a semantic data modeling concept that we named intergeneral-
ization.

An intergeneralization occurs when a future requirement needs to specialize
an entity type that belongs to an existing database module. In this scenario, the
specific entity type is created in a new module. This avoid unnecessary coupling
between the specific and generic entity types and it conforms to the database
modularization definition where “a highly detailed degree of data abstraction
is required to make a partition of the conceptual data schema” [7]. The dot-
ted generalization hierarchy of Fig. 4, represents an intergeneralization, where
the generic entity type E1 and the specific E1’ belong to two distinct database
modules. A specific entity type (EX) is added to Module X and shares the AE1’

attributes domain. Therefore, intergeneralization provides independent evolution
of each entity type reducing coupling among the elements. As of interrelation-
ships, they represent the point where two database modules share data. In an
evolutionary design there is a high probability of multiplicity change in a future
iteration, which would require refactoring. Therefore, interrelationships are mul-
tiplicity change safe, since they are mapped as many-to-many relationships, as
it is the case of R relationship type in Fig. 4.

Module X

Procedures

E1

E1'
AE1'

AE1

R1 EModuleX

EX
AEX

AE1'

R2

Module Z

Procedures

E R EModuleW

NM

Fig. 4. Intergeneralization representation (left) and interrelationship mapped as many-
to-many (right).

With the concepts of interrelationship and intergeneralization presented pre-
viously, now we discuss the “Evolutionary Database Modularization Design”
stages, that include adaptations and extensions of the original “Modularization
Design” stages presented in Sect. 3.1.

Stage 1 - Partitioning of the conceptual database schema. The conceptual schema
is still being partitioned in one subschema per subsystem. However, new sub-
systems and modifications on the already existing ones can occur on future
iterations, which can result in a different set of subschemas in respect to the
previous iterations.

Stage 2 - Treatment of information sharing. The overlaps of the elements between
the subschemas of the stage 1 can change from one iteration to the other.

Evolutionary Database Design 363

The introduction of new subsystems and the modification of the already existing
ones can change the classification of an element:

1. From Non-shared to Unidirectional Sharing: if a subsystem starts to read
data from an element maintained by another subsystem;

2. From Unidirectional to Multidirectional Sharing: if a subsystem starts to
write data on an element maintained by another subsystem.

Stage 3 - Evolutionary definition of the database modules. In this stage, the
elements may have had their classification changed according to the stage 2,
which means intersection operations can generate new interrelationships. Hence,
this stage’s role was extended and we have added the “Evolutionary” to the
original’s stage name “Definition of the database modules” (see Sect. 3.1).

According to the database modularization process, there are two options to
handle multidirectional sharing. One is to create a database module with the
intersected elements; the other is to perform a union among all these elements.
Our approach considers only the first, since it will result in loosely coupled
modules. First, from one iteration to another the multiplicity of the relationship
types can change, however when this occurs in an interrelationship there is no
need to refactoring because it is already a many-to-many relationship. The same
happens with newly introduced generalization among modules, because they will
be mapped as intergeneralizations, hence the specialized entity type is created
in the correspondent database module.

This stage defines the database modules following the database modulariza-
tion requirements, which is the output of the “Evolutionary Analysis of Modu-
larization Requirements” phase, resulting in:

1. Creation of new database modules when:
(a) a set of elements that were non-shared or unidirectional shared become

multidirectional shared;
(b) new elements are not associated to any previously existing database

module.
2. A database module is extended when the newly introduced set of elements

were associated to a previously existing database module and have only non-
shared or unidirectional sharing.

Stage 4 - Definition of the interface of the database modules. The public and
private procedures are associated with each defined database module according
to stage 3.

5 Evolutionary Database Modules Integration

In order to support the evolutionary design, we propose an Integration Object
Catalog that holds the modularization’s process metadata at each iteration, such
as subsystems definitions, entity types, relationships types, attributes and the
database modules definitions. Figure 5 shows the conceptual schema of catalog,

364 G.B. Guedes et al.

which is updated to reflect database modules changes. The gray highlighted
subschema represents the extension proposed by this work, while the remaining
subschema was introduced in Busichia and Ferreira [17,18].

The conceptual schema holds interrelationships metadata in the “Belongs”
and “Participates” relationship types. The first relates each database module’s
elements to its module, while the second holds the relationship types of the
application’s conceptual schema. Hence, a relationship between two entity types
of two distinct database modules is a interrelationship. The former multiplicity
of an interrelationship is store to enforce integrity rules, since physically they
are many-to-many. Similarly, “Belongs” and “Generalizes” hold intergeneraliza-
tions, where the latest indicates if an entity type participates in a generalization
hierarchy. If the generic and specific entity types belong to two distinct database
modules, then it is characterized as an intergeneralization.

The catalog has a major role in the process and it is used as the input of
the “Evolutionary Analysis of Modularization Requirements” phase (see Fig. 2),
since it maintains the metadata of the database modularization process. More-
over, it can be used to automate the generation of database modules at each iter-
ation, by verifying the changes in the metadata, such as the conceptual schema,
subsystems and the access type to each element. In this way, it is necessary to
keep at least the previous instance of catalog data, in order to compare changes
and apply them to the database schema, according to the definitions of the
evolutionary database modularization design process.

Subsystem

Id
Name

Entity Type Relationship Type

Id
Name

Attribute

Id
Name
IsKey

Atribute Domain

Id
Name

Has

Has2

Access

Access Type

Id
Name

Generalizes

Database Module

Id
Name

Belongs

Participates

M N
1

N

1

1 N
M

N

1N

N

1

Element

Id
Name

Id
Name

Procedure

Id
Name

Public
Procedure

Private
Procedure

Referential Integrity
Procedure

Contains

Event

Id
Descripton
Propagation

Associates1

Associates 2

1N

1 1

M
N

Fig. 5. Conceptual schema of the Integration Object Catalog.

Evolutionary Database Design 365

6 Case Study: Applying the Evolutionary Database
Modularization in an Agile Project

In this section we use the software specification contained in Ambler [19], a
simple karate school system at first, to demonstrate the Evolutionary Database
Modularization Design. Table 1 presents a brief description of the requirements.

Table 1. Brief description of the requirements.

Iteration Description

1 Maintain student contact information

Enroll student

Drop student

Record payment

2 Promote student to higher belt

Invite student to grading

Email membership to student

Print membership for student

3 Schedule grading

Print certificate

Put membership on hold

4 Enroll child student

Offer family membership plan

Support child belt system

5 Enroll student in Tai Chi

Support Tai Chi belt system

Enroll student in cardio kick boxing

Support the belt order for each style

6 Maintain product information

Sell product

The first iteration results in two subsystems, one to handle the student func-
tionalities (S1) and one to control payment (S2). These subsystems originate
database modules M1 and M2 respectively. Also, we create the Student entity
type, instead of creating a generic Person entity type upfront.

Second iteration introduces the belt control system, whose functionalities are
grouped in S3 subsystem. When applying the database modularization process
it indicates that the existing database modules attend the data requirements
partially, since module M1 maintain student data. Next, “treatment of infor-
mation sharing” indicates that there is only unidirectional sharing between new
elements; therefore, new M3 module is created to support the belt system. Iter-
ations 3 and 4 also have similar situations where either a database module is
created or an existing one is extended. Figure 6 shows the generated database
modules until the fourth iteration.

366 G.B. Guedes et al.

• Register payment

• List payments

M2

Student
Payment

Amount
PaymentDateMakes

Name
EnrollDate
Phone
HouseNumber
IsChild

M N

Student

Belongs

Name
EnrollDate
Phone
HouseNumber
IsChild

NM

• Promote Student to heigher belt
• Mantain Belt Information

• Email membership to student
• Print membership for student

M3

Belt
Description
IsChild

Student

Address
Street
City
Zipcode

Lives

Membership
Hold

BeginDate
EndDate Makes2

N1

1N

Name
EnrollDate
Phone
HouseNumber
IsChild

MemberOf

1

N

M1

• Enroll Student
• Disenroll Student
• Enroll in Family Membership

• List Students

• Enroll Child Student
• Put membership on hold

Family
FamilyName

Student

Belt
Description
IsChild

Schedule

Grading
Date
Time
Cost
HasPassed

Participate

Name
EnrollDate
Phone
HouseNumber
IsChildN

M

N M

M4

• Schedule grading
• Print certificate
• List Gradings

Fig. 6. Generated modules until fourth iteration.

6.1 Fifth Iteration

Initially, the system was design to support only one type of training (karate).
However, fifth iteration requirements introduce support for other types of coach-
ing. First, training management functionalities are grouped in a new subsystem,
S5. The “Evolutionary Analysis of Modularization Requirements” phase indi-
cates that M1 and M3 modules partially support multi-training functionality.
The result of “Evolutionary Database Modularization Design” phase is summa-
rized on Fig. 7.

6.2 Sixth Iteration

The sixth iteration requirements introduce a store functionalities that are
grouped into a new subsystem (S6). An intergeneralization is introduced to
support both student and general customers buys (Fig. 8). Note that Credit-
Card attribute are added to both “StudentCustomer” and “Customer” entity
types. On the other hand, DiscountIndex attribute is only present in “Student-
Customer” entity type, since it only makes sense to students byers. In this way,
“StudentCustomer” and “Customer” entity types evolve separately in further
iterations.

Evolutionary Database Design 367

Fig. 7. Evolutionary database modularization design phase until sixth iteration.

Figure 8 shows the extension of M1 module with “Lives” relationship type as
an interrelationship. Also, a new database module M7 accommodates “Address”
entity type, with a multidirectional sharing, since both S1 and S6 subsystems per-
form writing operations. Intergeneralization avoids over modeling, like it would
have been the case if a “Person” entity type was upfront created at the first iter-
ation. It allows independent evolution of entity types that would participate in
a same generalization hierarchy. This is achieved by representing most detailed
level of data abstraction, creating the specific entity types only.

Fig. 8. M6 and M7 modules.

368 G.B. Guedes et al.

7 Conclusion

Preserve software system integrity through an evolutionary process demands a
great deal of effort, especially due to two different paradigms: coding and data-
base, whose schema must evolve to support new functionalities. Therefore, in
a constantly changing environment it is ideal to have an evolutionary database
design process. Thus, this paper presented the evolutionary database modular-
ization design process.

At first our design increases the abstraction level of the general schema.
First, because the process is conducted at conceptual design phase; secondly by
introducing two new data modeling concepts, interrelationship and intergener-
alization.

Interrelationships, can stand further multiplicity changes without refactoring.
That is also the case of intergeneralizations, that evolve independently in each
module.

The scope of change assessment is narrowed down within each database mod-
ule. In addition it improves traceability, since a database module representation
includes both the conceptual schema and its related transactions.

We presented an Integration Object Catalog to store database modules def-
inition. Therefore, it is possible to use database modules metadata to assist the
evolution process of database modules.

In short, a standardized evolutionary database design method is provided
facilitating further schema evolution. Agile projects can benefit from our app-
roach due to its incremental and iterative characteristics.

Future work includes the extension of evolutionary database modularization
design process to intra-modules changes, when they occur inside a database mod-
ule. Further, the creation of a database module definition language. Another issue
concerns the coexistence of multiple database schemas for a certain period. In
this situation, public and private procedures could encapsulate the transactions,
making schema changes transparent to the application. This can be achieved by
implementing an integration object layer to handle transactions.

References

1. Ambler, S., Sadalage, P.J.: Refactoring Databases: Evolutionary Database Design.
Addison Wesley, Upper Saddle River (2006)

2. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design: An Entity-
Relationship Approach. Addison Wesley, California (1991)

3. Sommerville, I.: Software Engineering. Addison-Wesley, Harlow (2007)
4. Beck, K., et al.: Manifesto for Agile Software Development (2001). http://

agilemanifesto.org. Accessed 2 Mar 2015
5. Wells, D.: Extreme Programming: A Gentle Introduction (1999). http://www.

extremeprogramming.org. Accessed 2 Mar 2015
6. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd

edn. Addison-Wesley, Boston (2004)

http://agilemanifesto.org
http://agilemanifesto.org
http://www.extremeprogramming.org
http://www.extremeprogramming.org

Evolutionary Database Design 369

7. Ferreira, J.E., Busichia; G.: Database modularization design for the construction
of flexible information systems. In: Proceedings of the 1999 International Sympo-
sium on Database Engineering & Applications (IDEAS 1999), pp. 415–422. IEEE
Computer Society, Montreal (1999)

8. Guedes, G.B., Busichia, G., Moraes, R.L.O.: Database modularization applied to
system evolution. In: Sixth Latin American Symposium on Dependable Computing
(LADC 2013), Rio de Janeiro, Brazil, pp. 81–82 (2013)

9. Navathe, S.B., Fry, J.P.: Restructuring for large databases: three levels of abstrac-
tion. ACM Trans. Database Syst. 1, 138–158 (1976)

10. Sockut, G.H., Goldberg, R.P.: Database reorganization-principles and practice.
ACM Comput. Surv. 11(4), 371–395 (1979)

11. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

12. Ambler, S.: Agile Database Techniques: Effective Strategies for the Agile Software
Developer. Wiley, New York (2003)

13. Cleve, A., Hainaut, J.-L.: Co-transformations in database applications evolution.
In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp.
409–421. Springer, Heidelberg (2006)

14. Cleve, A., Brogneaux, A.-F., Hainaut, J.-L.: A conceptual approach to database
applications evolution. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y.
(eds.) ER 2010. LNCS, vol. 6412, pp. 132–145. Springer, Heidelberg (2010)

15. Papastefanatos, G., Anagnostou, F., Vassiliou, Y., Vassiliadis, P.: Hecataeus: a
what-if analysis tool for database schema evolution. In: Proceedings of the 2008
12th European Conference on Software Maintenance and Reengineering (CSMR
2008), pp. 326–328. IEEE Computer Society, Washington (2008)

16. Curino, C.A., Moon, H.J., Ham, M., Zaniolo, C.: The PRISM workwench: database
schema evolution without tears. In: Proceedings of the 2009 IEEE International
Conference on Data Engineering (ICDE 2009), pp. 1523–1526. IEEE Computer
Society, Washington (2009)

17. Busichia, G., Ferreira, J.E.: Sharing of heterogeneous database modules by integra-
tion objects. In: Eder, J., Rozman, I., Welzer, T. (eds.) Proceedings of the Third
East European Conference on Advances in Databases and Information Systems
(ADBIS 1999), pp. 1–8. Institute of Informatics, Faculty of Electrical Engineering
and Computer Science, Smetanova 17, IS-2000 Maribor, Slovenia (1999)

18. Busichia, G., Ferreira, J.E.: Compartilhamento de Módulos de Bases de Dados
Heterogêneas através de Objetos Integradores. In: Simpósio Brasileiro de Banco
de Dados (SBBD), pp. 395–409. SBC, Florianpolis (1999)

19. Ambler, S.: Agile/Evolutionary Data Modeling: From Domain Modeling to Phys-
ical Modeling (2004). http://www.agiledata.org/essays/agileDataModeling.html.
Accessed 2 Mar 2015

http://www.agiledata.org/essays/agileDataModeling.html

Summary Generation for Temporal Extractions

Yafang Wang1(B), Zhaochun Ren2, Martin Theobald3, Maximilian Dylla4,
and Gerard de Melo5

1 Shandong University, Jinan, China
yafang.wang@sdu.edu.cn

2 University of Amsterdam, Amsterdam, The Netherlands
z.ren@uva.nl

3 University of Ulm, Ulm, Germany
martin.theobald@uni-ulm.de

4 Max Planck Institute of Informatics, Saarbrücken, Germany
mdylla@mpi-inf.mpg.de

5 Tsinghua University, Beijing, China
gdm@demelo.org

Abstract. Recent advances in knowledge harvesting have enabled us to
collect large amounts of facts about entities from Web sources. A good
portion of these facts have a temporal scope that, for example, allows
us to concisely capture a person’s biography. However, raw sets of facts
are not well suited for presentation to human end users. This paper
develops a novel abstraction-based method to summarize a set of facts
into natural-language sentences. Our method distills temporal knowledge
from Web documents and generates a concise summary according to a
particular user’s interest, such as, for example, a soccer player’s career.
Our experiments are conducted on biography-style Wikipedia pages, and
the results demonstrate the good performance of our system in compar-
ison to existing text-summarization methods.

Keywords: Temporal information extraction · Knowledge harvesting ·
Summarization

1 Introduction

In recent years, we have seen a number of major advances in large-scale text
mining and information extraction (IE). Amongst others, such efforts have led
to the emergence of large knowledge graphs, which are collected by companies
like Google, Microsoft, and Facebook, as well as open efforts such as DBpedia
[2] and YAGO [22]. Given a piece of input text, numerous open-domain tools,
such as NELL [4], ReVerb [7] or PRAVDA [31], are readily available for extract-
ing subject-predicate-object triples from the text. However, while the extracted
triples concisely capture the essential information conveyed by the original text
also with respect to their temporal scope, they are usually not directly suit-
able for presentation to human end users. In this paper, we thus present a
novel method to automatically generate natural-language summaries of such
extractions.
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 370–386, 2016.
DOI: 10.1007/978-3-319-44403-1 23

Summary Generation for Temporal Extractions 371

There are a number of challenges to be addressed. Existing summarization
methods for natural-language text mostly just return existing sentences from the
text, instead of summarizing the content at a more “abstract” level. A sentence
may be long and include both key facts but also large amounts of less essential
information. Additionally, key facts may need to be ranked and aggregated.
What, for instance, should a short summary of, say, 100 words for a soccer
player’s career include? For famous players, with long careers, it may well be
quite impossible to list all their clubs and games. An ideal summary might thus
focus on the most important clubs and honors. Also, when extracting facts,
we often just obtain observations about a series of individual time points that
needs to be aggregated to obtain a larger picture, e.g., that a person not only
played for Arsenal in 2013 and 2015 but over a longer period of time. Thus,
it is important to move towards systems that attempt to go beyond selecting
pre-existing sentences and are able to produce more concise summaries.

Contributions. We propose a method that, unlike previous approaches,
attempts to identify the key facts in a document, much like a human would, and
then generates concise summaries from them. We propose a new method that
(1) summarizes facts extracted from multiple documents, (2) deals with tempo-
ral reordering and aggregation of potentially noisy pieces of evidence, and (3)
produces a coherent abstractive text summary. Our experiments on Wikipedia
biographies demonstrate the strength of this method.

Overview. Figure 1 provides an overview of our approach. Our approach is
designed to follow the way a human would summarize information, by first digest-
ing it and then capturing, aggregating, and rearranging the essential pieces of
knowledge. To harvest information from both semi-structured and textual data
sources, we rely on a number of extraction rules to mine a set of seed facts for
our relations of interest from the semi-structured parts of the input documents
(e.g., tables and Wikipedia infoboxes). These seed facts are then used to identify

Fig. 1. Overall workflow

372 Y. Wang et al.

characteristic patterns to harvest more facts from the textual data sources. For
this purpose, we rely on the general architecture of the PRAVDA system [31]
to extract such facts (including temporal ones) from free-text sources. Multiple
occurrences of temporal facts are reconciled via a form of evidence aggrega-
tion, which serves to condense the extracted knowledge, and in particular to
extract high-confidence time intervals at which these new facts are found to be
valid. Finally, for better readability and coherence of the final summary, these
facts along with their time intervals are ordered chronologically and presented
as natural-language sentences by mapping the temporally aligned facts onto a
set of handcrafted sentence templates.

2 Knowledge Harvesting

Model. We are given a set of input sources D = {D1,D2, . . . , Dn} (e.g., doc-
uments) and a set of binary target relations R = {R1, R2, . . . , Rm} of interest.
Then, the knowledge harvesting step aims at extracting instances of these rela-
tions from the input sources. Each relation R has an associated type signature
(T s

R, T o
R), providing valid entity types for the subjects and objects of this rela-

tion. We distinguish between base facts and temporal facts. A base fact (b-fact,
for short) is of the form R(e1, e2), where the entity e1 is of type T s

R and e2 has
type T o

R.

Temporal Facts. A temporal fact includes an additional temporal marker,
which we denote as R(e1, e2)@t. This indicates that the relationship holds (i.e.,
is valid) at time t, which may refer to either a time point or a time inter-
val. In our system, we define the finest granularity to be days, and all coarser
granularities are converted to time intervals (e.g., January 2012 to [1-Jan-2012,
31-Jan-2012]). For example, playsForClub(David Beckham, Real Madrid)@2005
is consistent with playsForClub’s type signature (Person, Club) and indicates
that David Beckham played for Real Madrid in 2005. This may reflect just one
statement in a document, while the overall time interval would be 2003–2007.
We thus further distinguish between event and state relations, which we describe
in Sect. 3 in more detail.

Temporal Knowledge Extraction. For semi-structured input sources, such as
tables or Wikipedia infoboxes, simple extraction rules such as regular expressions
suffice to extract both base and temporal facts. These are then used as seeds
to find more facts in textual sources. Although not being the main focus of this
paper, we briefly summarize our extraction system as follows:

1. Candidate Gathering: This step generates fact candidates and their corre-
sponding patterns from sentences containing at least two entities (and a time
marker for temporal fact candidates). The entities must satisfy the type sig-
nature of any of the relations of interest. The textual pattern of the fact
candidate in such a sentence is generated by considering n-grams of the sur-
face string between the entity pair and accounting for POS tags (for nouns,
verbal phrases, prepositions, etc.).

Summary Generation for Temporal Extractions 373

2. Pattern Analysis: We compute the initial weight of each pattern based on the
seed facts and the output of the previous step. The weight depends on the
number of co-occurrences between the seed facts and the textual patterns.
Patterns with co-occurrence weights above a threshold are initialized with
this weight for the algorithm we apply in the next step, while the initial value
for other patterns is zero.

3. Fact Extraction: In our final step, a graph is built from the fact candidates
and patterns. Edges between fact candidates and patterns are added if they
co-occur within a sentence. Similar patterns are also connected this way.
Then, a form of label propagation [25] is utilized to determine the most likely
relation for each of the fact candidates. Once a fact candidate is labeled with
a particular relation R, it is called a valid observation and added to the set
of event facts that are returned as result of the knowledge harvesting phase.

3 Evidence Aggregation Model

A main challenge in extracting and mining temporal knowledge is the proper
distinction between event and state relations. For an event relation, a t-fact is
valid only at a single time point. For example, visits(François Hollande, Berlin)
is valid on 24-Aug-2015. Actually, President Hollande visits Germany frequently,
so there could be multiple such facts, each with different time points. State rela-
tions hold for an extended time interval during which a fact is valid at any
time point within a given interval. For example, playsForClub(Diego Maradona,
FC Barcelona) is valid in the entire interval [1-July-1982, 30-June-1984]. Mul-
tiple non-contiguous time spans are represented by several such state facts. The
extraction of time periods for state facts is challenging, because there are typi-
cally only few occurrences of facts in input sentences with explicit time intervals.
Ideally, we would encounter sentences like “Maradona had a contract with FC
Barcelona from July 1982 to June 1984”. However, such explicit sentences are
rare in both news and web sources. Instead, we can find cues that refer to the
begin, end, or some time point during the desired interval. For example, news
articles would often mention sentences such as “Maradona did not play well in
the match against Arsenal London” with a publication date of 15-May-1983 (a
time point presumably contained within the corresponding state fact’s interval).
Thus, having extracted specific time points, we need to aggregate these into
intervals for state-oriented t-facts. To address this, our method (1) aggregates
individual time points into time histograms, and (2) computes a high-confidence
time interval from these histograms.

We aim to aggregate individual begin, end, and during observations of a fact
into a concise time histogram. So even if we are aiming at state-oriented t-facts,
we first collect and aggregate event-style cues. Ideally, these point-wise observa-
tions would then form a compact time interval that captures the validity of the
fact. However, a general problem of such an approach is the inherent ambigu-
ity when individual events are mapped to an initially unknown amount of time

374 Y. Wang et al.

intervals. This gets even more difficult due to frequent extraction errors, overlap-
ping occurrences of begin and end events, or other inconsistencies. However, the
observations are often noisy and require non-trivial reconciliation for each base
fact. First, we construct histograms for each of the begin, end, and during events.
After that, the histograms are combined into a single state-oriented histogram,
which is distilled into a single high-confidence interval that represents the fact’s
temporal validity. Finally, an algorithm computes the confidence interval of the
histogram.

3.1 Aggregating Events into State Histograms

Among all observations of event facts with matching entities found in the input
sentences, we first determine the time range [tb, te] of the largest possible validity
interval of a corresponding state fact by selecting the earliest time point tb and
the latest time point te encountered, respectively. According to the relation an
event fact has been labeled with, we classify the individual facts as begin, end,
and during observations that mark either the possible begin or end time point,
or a time point during which the corresponding state fact may be valid.

Next, all observations of begin, end, and during facts are aggregated into
three initial histograms, each ranging over [tb, te]. This yields one frequency
value f [ti] per time point ti. Initially, the i-th bin’s frequency value f [ti] refers
to the plain number of observations corresponding to this time point, for each
of the three types of event facts. Subsequent time points with equal frequencies
are coalesced into a single histogram bin. In each of the histograms, the bins’
frequencies are then normalized to 1. For combining the three event-oriented
histograms into a single histogram of the corresponding state fact, we apply the
following assumptions:

1. A during observation at time point tj should increase the confidence in the
state fact being correct at tj (for all time points captured by the interval of
the during observation).

2. A begin observation at time point tj should increase the confidence in the
state fact for all time points ranging from tj to te.

3. An end observation at time point tj should decrease the confidence in the
state fact for all time points tj to te.

Our approach produces a multi-modal histogram if end facts interleave with
begin and during events at different time points, which we can exploit to extract
multiple validity intervals for the state fact (there are two time intervals in
Fig. 2). In case none of the different event types interleave (i.e., all begin events
occur before all end events, and all during indeed occur between all begin and
end events), we obtain a uni-modal histogram from which we can extract just a
single validity interval for the resulting state fact.

Algorithm 1 describes how we combine the begin, end and during histograms.
We first merge the two begin and end histograms, before we merge the resulting
begin-end histogram with the during histogram as follows (using De Morgan’s
law):

Summary Generation for Temporal Extractions 375

P = Pduring ∪ Pbegin,end = Pduring

⋂
Pbegin,end (1)

= 1 − (1 − Pduring) · (1 − Pbegin,end)

Here, P denotes the final frequency obtained after all aggregation steps,
Pduring denotes the frequency of the during event, and Pbegin,end is the output
(i.e., the f [ti] after the inner for loop in Algorithm 1) of aggregating the begin
and end histograms. For all the non-empty bins in the during histogram, we use
Eq. 1 to compute the new frequency value P . Pduring refers to the probability of
a time point indicating during given the observations from during events. The
new frequency is thus the union of the probability of a time point by considering
all types of events. Finally, all consecutive bins with the same frequency values
are merged, and the bins are once more normalized to 1 (cf. Algorithm 1 and
Fig. 2).

Algorithm 1. Aggregating events into state histograms.
Require: Event histograms with frequencies fbegin, fend, fduring over the time range
[tb, te]
For all ti ∈ [tb, te] do

f [ti] ← 0
For all tj ∈ [ti, te] do � Aggregate begin and end histograms
f [tj] ← f [tj] + fbegin[ti] � aggregate begin
f [tj] ← max(0, f [tj] − fend[ti]) � reduce end

End
f [ti] ← (1 − (1 − fduring[ti]) · (1 − f [ti]))

� Combine begin,end histogram with during one
End
Reorganize the bins and normalize their frequencies to 1
Return: State histogram with frequencies f

Fig. 2. Aggregating events into state histograms.

376 Y. Wang et al.

3.2 Extracting High-Confidence Intervals

The combined state histogram reflects the confidence distribution for a fact’s
validity over time. The value of a bin can be interpreted as the probability of the
fact being valid during this bin’s interval. For our temporal summarization, we
next simplify the possibly very fine-grained histogram by discarding bins with
a low confidence. Assuming, for example, we are interested in a final histogram
that captures at least 90 % of the confidence mass of the original histogram,
we discard all low-confidence bins whose cumulative frequencies sum up to at
most 10 %.

Since the original histogram’s bins form a discrete confidence distribution, we
pursue an iterative strategy. Starting from the lowest-frequency bin, we first sort
all bins by their frequency values and then check for the remaining confidence
mass when cutting off these bins horizontally. Let τ be the expected threshold
of the confidence interval (e.g., 90 %). Our algorithm stops as soon as we have
cut off more than a threshold of 1− τ (e.g., 10 %) of the overall confidence mass.
We then pick the previous solution, which must still be above τ . This procedure
is further refined by a final vertical trimming step of the remaining bins. To
this end, we assume a uniform confidence distribution within each bin, and we
adjust the frequency f [i] of the trimmed bin proportionally to its cut-off width
(cf. Fig. 2) until we reach τ .

4 Sentence Generation and Reordering

When summarizing multiple sources, possibly containing randomly ordered facts,
it is usually not a-priori clear in which order to present these facts to the user.
For short texts, we conjecture that a chronological order is appropriate in many
cases.

4.1 Knowledge Ordering

Before sorting the individual facts about an entity of interest, we first roughly
sort the more abstract relations associated with t-facts. Some relations can be
naturally ordered. Considering a person’s life, for example, the time point of a t-
fact for the isBornIn relation must occur before the start point of a isMarriedTo
t-fact for the same person, which in turn must occur before the time point of a
diedIn t-fact of that person.

This order of relations can be learned statistically. Given a set of relations R
and their temporal instances (t-facts), we build a time-ordered directed graph
G = (V,A), where each vertex refers to a relation and each arc represents a
chronological dependency. We start by creating an initial graph G′ = (R, E) by
adding an arc (Ri, Rj) (indicating that Ri tends to precede Rj) if the support
sij of Ri occurring before Rj is much greater than the inverse sji. sij is cal-
culated by counting the instances of Ri and Rj having the same subject, i.e.
(a, b)@t1 ∈ Ri and (a, c)@t2 ∈ Rj , satisfying that t1 precedes t2. The final graph

Summary Generation for Temporal Extractions 377

G is then obtained from G′ by adding two extra vertices representing the start
and end states to G′ and by removing all transitive dependencies from G′. For
example, isBornIn may have an edge with many relations, such as graduated-
FromHighSchool, graduatedFromUniversity and diedIn. These edges are removed
according to the transitive dependencies among these relations, and only a path
from isBornIn through graduatedFromHighSchool, graduatedFromUniversity to
diedIn is kept. If the graph G contains a cycle, we remove the cycle by dropping
the edge with the lowest support within the cycle. Figure 3 illustrates an example
for transforming a set of relations into G, while Algorithm 2 shows details about
how to determine the chronological order of both t-facts and b-facts according
to G. For a state fact, which is valid during an entire time interval, only the start
time point is taken into consideration. For example, suppose we captured that
David Beckham played for Manchester United from 1991 to 2003, Real Madrid
from 2003 to 2007 and got married on 4-July-1999. The three temporal
facts are ordered as {playsForClub(David Beckham, Manchester United), gets-
MarriedTo(David Beckham, Victoria Beckham, playsForClub(David Beckham,
Real Madrid)}, according to the time points {1-January-1991, 4-July-1999, 1-
January-2003}. Base facts (b-facts), which generally cannot be ordered explic-
itly by time, are inserted into G after the temporal facts (t-facts) in the same
relation according to the topological order (Line 14).

4.2 Natural Language Generation

Similar to many other abstractive summarization methods [18], we rely on tem-
plates for natural language generation. For each relation, we manually define a
number of sentence templates to construct the summary sentences. After the
knowledge ordering, t-facts of the same relation are ordered next to each other
due to the topological order in the relation graph. For each relation, we randomly

Algorithm 2. Knowledge Ordering
Require: Graph G; the base and temporal facts Fb and Ft.
1: S = ∅ � Empty list that will contain the sorted facts.
2: L ⇐= Set of all vertices with no incoming edges.
3: while L is non-empty do
4: remove a vertex n from L
5: if n has not been visited yet then
6: insert all t-facts (in temporal order) of relation n into S
7: insert all b-facts of relation n into S
8: for each node m with an edge e from n to m do
9: remove edge e from the graph G

10: if m has no other incoming edges then
11: insert m into L and mark m as visited
12: sort all the t-facts of relation m by time
13: insert sorted t-facts into S
14: insert b-facts of relation m into S
15: return S � Facts sorted by topological order of relations in G.

378 Y. Wang et al.

Fig. 3. Relation graph.

choose among the templates for a given subject to improve the diversity of the
output. For a given subject, sentences representing the same relation are likely to
contain a lot of redundancy. Thus we enable merging of arguments. For exam-
ple, “David Beckham played for Manchester United from 1993 to 2003” and
“David Beckham played for Real Madrid from 2003 to 2007” are merged into
“David Beckham played for Manchester United (1993–2003) and Real Madrid
(2003–2007)”. For his honors, we similarly obtain the merged sentence “David
Beckham won the Premier League (1996), the FA Cup (1999), the UEFA Cham-
pions League (1999), the Intercontinental Cup (1999), and the La Liga (2007),
etc.” There are many honors, so we resort to only show the first ones.

In case there are too many facts holding the same relation, the method
chooses among omitting unimportant facts, reporting the total number, or choos-
ing only some examples for the summary sentences. Similarly, repeated occur-
rences of the main subject name (e.g., “David Beckham”) are replaced by the
corresponding pronoun (“he”), as heuristically determined by the most frequent
pronoun in the source text, if available. Hence, the final summary is compressed
into “David Beckham has played for about eight clubs. He joined Manchester
United in 1993. During his career in Manchester United, he won about fifteen
honors including the Premier League (1996), the FA Cup (1999), etc.”. The ini-
tially redundant sentences were thus condensed into just three sentences with
the key facts about David Beckham.

5 Experiments

5.1 Experimental Setup

We evaluate our method on Wikipedia articles from two domains: soccer players
and movie stars. The corpora include Wikipedia articles for soccer players from
the “FIFA 100 list”1, and movie stars from the “Top 100 movies stars”2. For
extraction, we preprocessed the corpora by replacing the most frequent pronoun
by the title of the Wikipedia article, and all the entity mentions were disam-
biguated against the YAGO [22] knowledge base using the AIDA [10] framework
for named entity disambiguation.
1

http://en.wikipedia.org/wiki/FIFA 100/.
2

http://articles.cnn.com/2003-05-06/entertainment/movie.poll.100 1 star-movies-godfather? s=
PM:SHOWBIZ/.

http://en.wikipedia.org/wiki/FIFA_100/
http://articles.cnn.com/2003-05-06/entertainment/movie.poll.100_1_star-movies-godfather?_s=PM:SHOWBIZ/
http://articles.cnn.com/2003-05-06/entertainment/movie.poll.100_1_star-movies-godfather?_s=PM:SHOWBIZ/

Summary Generation for Temporal Extractions 379

Table 1. Example sentence templates for relations.

Relation Templates

isBornIn ARG1 was born in ARG2

worksForClub ARG1 served for ARG2; ARG1 worked for ARG2

actedIn ARG1 acted in ARG2; ARG1 appeared in ARG2

hasWonHonor ARG1 has won ARG2; ARG1 received ARG2

Relations. We list some example templates in Table 1. These are used for base
facts. For temporal facts, an additional time point or time interval placeholder
is added. For example, the template for temporal facts of isBornIn is “ARG1
was born in ARG2 on TIME”. The template for temporal facts of worksFor-
Club with a single time interval is “ARG1 served for ARG2 from begin TIME
to end TIME”, and for multiple time intervals we use “ARG1 served for
ARG2 (begin TIME1 -end TIME1, begin TIME2 -end TIME2,...,begin TIMEn-
end TIMEn)”. For both domains, we query the system for summaries about
facts associated with the birth and death dates of the respective persons, their
family life (including marriage and children), honors they won, and their career
(including the relations worksForClub for soccer players or actedIn for movie
stars, as well as playing positions for soccer players).

Baseline Systems. We compare our system to four alternative approaches. For
existing extraction-based multi-document summarization methods, we choose
NIST-Wiki as the baseline in our experiments. NIST-Wiki extracts the first
n sentences from a Wikipedia article. Since the top paragraphs in a Wikipedia
article usually contain a short biography of the subject of the article, this is
a very strong baseline. LDA here refers to an latent dirichlet allocation-based
summarization method [1], which uses probabilistic topic distributions to cal-
culate the salience for each input sentence. Additionally, as a representative
model for recent abstractive summarization methods, we use Opinosis as another
baseline. Opinosis [9] is a graph-based abstractive summarization framework.
It constructs a graph from a set of input sentences set by considering redun-
dancy and generates an optimal path from the graph. Finally, we also add a
Random baseline to our comparison. The Random baseline just randomly
selects n sentences from the data source. Since these baseline systems only sup-
port textual input data, the semi-structured sources (such as infoboxes) are
translated to natural-language sentences via the sentence templates, yielding,
e.g. “David Beckham has won FIFA 100”.

Evaluation Procedures. We conduct two experiments. (1) We generate the
summary with all the facts about a person, and (2) we generate a summary
with only the most important facts and aggregated statistics. Since the first
summary is longer than the second one, the corresponding baselines generate
more sentences for the first experiment. We call the results from each experiment
a long summary and a short summary, respectively. For the short summaries, we

380 Y. Wang et al.

limit the number of words to at most 100, for long summaries 200. Since Opinosis
is limited based on the number of sentences, a short summary is limited to 10
sentences, while a long summary contains 20 sentences. We evaluate the summary
for informativeness, diversity, coherence, and precision [13,16] by performing a
user study. We randomly sample thirty summaries for each domain. For each of
the above metrics, two human judges rate the summary on a Likert scale from one
to five, where one means {“least informative”, “least diverse”, “very incoherent”,
“very imprecise”}, depending on the measure; while a rating of five means {“very
informative”, “very diverse”, “very coherent”, “very precise”}, respectively. The
final score of each metric then is the average of all thirty summaries. The score
of each metric in Table 4 is the average of all sixty summaries on both domains.
The overall score then is the average over all metrics for each system.

5.2 Experimental Results

Table 2 provides examples of generated summaries, while the experimental
results are given in Tables 3 and 4. In terms of the average over all metrics, our
system outperforms all baseline systems (see Table 5). More specifically, it out-
performs all the others on diversity and informativeness. On precision and coher-
ence, NIST-Wiki is slightly better, because it just picks the first n sentences from
each Wikipedia article, which are essentially human-written summaries. The pre-
cision of NIST-Wiki in the soccer domain is not 100 % correct, because in some
cases it misinterpreted URL links as sentences. Since there is no 100 % perfect
extraction methodology, incorrect extractions obviously affect the precision of
our method. Furthermore, extraction recall can affect short summaries, since we
report an aggregate number, as in “David Beckham won about one honor”, which
is incorrect. To reduce such errors, we might consider including also vague state-
ments like “at least”. Opinosis compresses the text by considering the sentence
redundancy, so the newly generated sentences may change the semantics of the
original sentences. This holds for semi-structured contents, which is presented
as natural language, e.g. “Rui Costa has won Toulon Tournament in 1992. Rui
Costa has won FIFA U-20 World Cup in 1991.” Opinosis is able to compress them
into one meaningful sentence “Rui Costa has won Toulon Tournament in 1992
and FIFA U-20 World Cup in 1991.” While for other sentences in the Wikipedia
article, most generated sentences are meaningless and often incorrect, as evi-
dent in Table 2. Opinosis generates the sentence “Beckham’s marriage in 2007-
-/:.”, but Beckham actually married Victoria on July 4, 1999. NIST-Wiki pro-
duces perfect coherence, as it just returns contiguous n input sentences. Other
extraction-based methods, such as LDA and Random, introduce incoherence.
They also introduce imprecision when the extracted sentence contains indica-
tive pronouns, such as “after this”, and temporal phrases, such as “one year
later”, when the prior sentences were not chosen. As for the abstractive method,
some sentences generated by Opinosis are meaningless, increasing the difficulty
of reading the summary. On the contrary, our system exploits simple templates
that are easy to understand. Only when too many facts hold for the same rela-
tion, the generated sentence feels non-fluent. For example, “David Beckham won

Summary Generation for Temporal Extractions 381

Table 2. Example summaries.

Our System (long): David Beckham was born in London in 1975/05/02.
He played as Midfielder. He served in Manchester United F.C. (1991-2003),
Real Madrid C.F. (2003-2007), Los Angeles Galaxy (2007-). He has won FA
Youth Cup (1992), FA Community Shield (1993,1994,1996,1997), Premier League
(1996,1997,1999,2000,2001,2003), FA Cup (1996,1999), UEFA Club Football Awards
(1999), MLS Cup (2011), FIFA 100, etc.

Our System (short): David Beckham was born in London in 1975/05/02. He played
as Midfielder. He has played for about 3 clubs and won about 45 honors. In 1991 he
joined Manchester United F.C. and served for 13 years. During this time period, he
was awarded FA Youth Cup (1992), FA Cup (1996), FA Cup (1999), Intercontinental
Cup (1999), UEFA Club Football Awards (1999), etc.

NIST-Wiki: David Robert Joseph Beckham, Order of the British Empire (born
1975-05-02) is an England association footballer who plays for Los Angeles Galaxy.
David Beckham has played for Manchester United F.C., Preston North End F.C.,
Real Madrid C.F., A.C. Milan, and the England national football team for which
David Beckham holds the appearance record for a Outfield#Association football. David
Beckham’s career began when David Beckham signed a professional contract with
Manchester United, making his first-team debut in 1992 aged 17.

LDA: Beckham scored the equaliser and United went on to win the match and the
league. Beckham scored 9 goals that season, all in the Premier League. The income
from his new contract, and his many endorsement deals, made Beckham the highest-
paid player in the world at the time. In the first nine matches David Beckham started,
Real lost 7. David Beckham returned to play in the final home match of the season.
Beckham is Officers of the Order of the British Empire. Beckham is England expatri-
ates in the United States.

Opinosis: David Beckham enjoyed tremendous following. Beckham’s right midfield
position. Beckham’s contract became public knowledge. Beckham’s maternal grandfa-
ther was Jewish. Beckham’s best season as united player and united. Beckham is Eng-
land under-21 international footballers. Beckham England people of Jewish descent.
Beckham’s marriage in 2007- -/:. Beckham crumpled hard to the ground. Beckham of
the most recognisable athletes throughout the world, not concentrating on the tourna-
ment and England ’s next match.

Manual: David Beckham, born in 2 May, 1975, is a midfielder. Beckham began his
career with Manchester United in 1991. During his 13 years career there, he won
several honors. He received Premier League 10 Seasons Awards for his contribution
from the 1992-93 to 2001-02 seasons. He also played for Real Madrid, LA Galaxy, etc.
To honor his contribution, he was named FIFA 100. On 4 July 1999, David married
Victoria. They have four children: sons Brooklyn Joseph, Romeo James, and Cruz
David; and daughter Harper Seven.

the Primier League (1996,1997,1999,2000,2001,2003), FA Cup (1996), La Liga
(2007), MLS Cup (2011) ...”. Notice also that the informativeness and diversity
are affected by recall. Our system managed to find the key information. The
sentences from the semi-structured input contents facilitate LDA and Opinosis
to find this key information. Specifically for LDA, those sentences get higher

382 Y. Wang et al.

Table 3. Long summaries.

System Diversity Informativeness Coherence Precision

Ours 3.93 4.73 4.33 4.57 Soccer

NIST-Wiki 3.13 3.73 4.97 4.97

LDA 3.10 4.10 3.47 4.73

Opinosis 1.97 3.87 1.87 3.10

Random 1.63 2.27 1.63 4.53

Ours 3.40 4.83 4.10 4.70 Movie Star

NIST-Wiki 2.23 3.63 4.47 5.00

LDA 1.87 3.63 1.97 4.77

Opinosis 1.20 3.20 1.77 3.37

Random 1.60 2.47 1.87 4.83

Table 4. Short summaries.

System Diversity Informativeness Coherence Precision

Ours 3.73 4.23 4.40 4.17 Soccer

NIST-Wiki 2.73 2.93 4.93 4.97

LDA 2.40 3.63 3.23 4.73

Opinosis 1.80 3.07 1.77 3.07

Random 1.27 1.50 1.63 4.80

Ours 3.37 4.53 4.47 4.03 Movie Star

NIST-Wiki 1.90 3.27 4.53 5.00

LDA 1.33 3.10 2.03 4.83

Opinosis 1.10 2.80 1.63 3.33

Random 1.13 1.70 2.17 4.80

topic saliency than other sentences from the free text contents in the article
for each topic. Thus, LDA could extract more information from those structured
sentences into the final summary. Because of this, the score of LDA and Opinosis
for informativeness is better than or close to NIST-Wiki (the natural biography),
according to Table 5. The diversity is not very good for all systems. No system
managed to extract all information of interest. Looking at the last parts of the
examples in Table 2, no system extracted summaries about Beckham’s marriage
and children. Considering the honors, even if our system extracted all the honors
for Beckham, it is difficult to decide which ones are the most important ones to
be shown in the summary, since it takes expert knowledge to judge which are
the most significant. Since the LDA-based summarization strategy calculates the
saliency in multiple topics, it could get different sentences focusing on different
sub-topics for each article. Therefore, as shown in the results, for diversity, the
LDA-based method could obtain scores close to those of NIST-Wiki.

Summary Generation for Temporal Extractions 383

Table 5. Overall score.

System Diversity Informativeness Coherence Precision Overall

Ours 3.61 4.58 4.33 4.37 4.22

NIST-Wiki 2.50 3.39 4.72 4.98 3.90

LDA 2.17 3.61 2.68 4.77 3.31

Opinosis 1.52 3.24 1.76 3.22 2.44

Random 1.41 1.98 1.83 4.74 2.49

6 Related Work

Summarization strategies for text can broadly be categorized as either extractive
or abstractive. Extractive frameworks produce a summary by selecting existing
sentences from the input text and concatenating them. For example, MEAD [19]
relies on a centroid clustering-based strategy to score the saliency of input sen-
tences, while others use random walks [28] and coverage maximization with
bigram concepts [20]. For the supervised methods, HMMs [6], CRFs [21] and
system combinations [11] have proven effective for extractive document sum-
marization. However, all of these approaches merely pick sentences from input
documents, without attempting to identify the key facts expressed in them.

Abstractive document summarization methods seek to produce novel sen-
tences summarizing the contents at a more abstract level. Some methods apply
sentence compression techniques to remove less important parts of existing sen-
tences [8,12]. Opinosis [9,15] generate a summary from redundant data sources
by building a graph-based representation. [3] constructs new sentences by select-
ing and merging informative phrases. Still, all of these works aim at summarizing
text, which is different from our goal of summarizing key facts extracted from
both semi-structured and unstructured sources while aggregating temporal evi-
dence.

There are also some works that aim to summarize factual information from
a knowledge base. [32] introduced the notion of RDF sentences and to summa-
rize an ontology by ranking in the ontology graph. [27] retrieves the salient type
properties for a certain entity. [23] presented a diversity-aware algorithm for
graphical entity summarization. [5] generates a ranked list of textual summaries
for the two-length entity chains. These works only consider existing knowledge
bases as input, and the summary is merely given in the form of a subgraph or
list of properties, while our work automatically harvests knowledge from hetero-
geneous data sources, aggregates temporal and other evidence (which is much
noisier and incomplete in automatic extractions than in knowledge graphs), and
produces a textual summary.

There has been some previous work on temporal extraction. For instance,
[29] use a combination of statistical aggregation, label propagation, and integer
linear programming to extract fact. [14,26] connect time events in documents by
using unimodal time histograms, whereas our aggregation approach also supports

384 Y. Wang et al.

multimodal histograms. [17,24] study the properties of relations, e.g. whether
a relation is time-dependent and unique. However, all of these works aim at
temporal information extraction-related tasks and do not address the issue of
summarization.

An approach that handles queries over uncertain temporal facts has been pre-
sented by [30]. However it was mainly about probabilistic reasoning with rules
and lineage and histograms played only an auxiliary role. CoTS [26] applies a
classifier to publication dates to determine the begin and end dates of temporal
facts, but does not make use of temporal expressions in text. Most importantly,
both methods are limited to coping with unimodal distributions. So they cannot
express that a football player was with the same club during two non-contiguous
time-spans. In contrast, aggregation in this work can handle multimodal distri-
butions.

7 Conclusion

Given the wealth of new knowledge graphs and knowledge harvesting efforts,
we have proposed the novel task of summarizing temporal extractions. Our sys-
tem achieves this by aggregating information in a temporally aware manner,
supporting both semi-structured and textual sources. This leads to abstractive
multi-document summaries beyond the capabilities of current summarization
tools for text, opening up important new avenues of research on how to exploit
extraction techniques in information retrieval and information management.

Acknowledgments. We thank the anonymous reviewers for their valuable com-
ments. This project was sponsored by National Natural Science Foundation of China
(No. 61503217), Shandong Provincial Natural Science Foundation of China (No.
ZR2014FP002), and The Fundamental Research Funds of Shandong University (Nos.
2014TB005, 2014JC001).

References

1. Arora, R., Ravindran, B.: Latent Dirichlet allocation based multi-document sum-
marization. In: Second Workshop on Analytics for Noisy Unstructured Text Data
(AND), pp. 91–97. ACM (2008)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

3. Bing, L., Li, P., Liao, Y., Lam, W., Guo, W., Passonneau, R.J.: Abstractive multi-
document summarization via phrase selection and merging. In: ACL, pp. 1587–1597
(2015)

4. Carlson, A., Betteridge, J., Wang, R.C., Hruschka Jr., E.R., Mitchell, T.M.: Cou-
pled semi-supervised learning for information extraction. In: WSDM (2010)

5. Chhabra, S., Bedathur, S.: Towards generating text summaries for entity chains.
In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K.,
Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 136–147. Springer, Heidelberg
(2014)

Summary Generation for Temporal Extractions 385

6. Conroy, J., O’leary, D.: Text summarization via hidden Markov models. In: SIGIR,
pp. 406–407. ACM (2001)

7. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information
extraction. In: EMNLP, Edinburgh, Scotland, UK, pp. 1535–1545, 27–31 July 2011

8. Filippova, K.: Multi-sentence compression: finding shortest paths in word graphs.
In: ACL, pp. 322–330 (2010)

9. Ganesan, K., Zhai, C., Han, J.: Opinosis: a graph-based approach to abstractive
summarization of highly redundant opinions. In: ACL, pp. 340–348 (2010)

10. Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Thater,
S., Weikum, G.: Robust disambiguation of named entities in text. In: EMNLP, pp.
782–792 (2011)

11. Hong, K., Marcus, M., Nenkova, A.: System combination for multi-document sum-
marization. In: EMNLP, pp. 107–117 (2015)

12. Knight, K., Marcu, D.: Summarization beyond sentence extraction: a probabilistic
approach to sentence compression. Artif. Intell. 139(1), 91–107 (2002)

13. Li, L., Zhou, K., Xue, G., Zha, H., Yu, Y.: Enhancing diversity, coverage and
balance for summarization through structure learning. In: WWW, pp. 71–80. ACM
(2009)

14. Ling, X., Weld, D.S.: Temporal information extraction. In: AAAI, pp. 1385–1390,
11–15 July 2010

15. Liu, F., Flanigan, J., Thomson, S., Sadeh, N.M., Smith, N.A.: Toward abstractive
summarization using semantic representations. In: NAACL, pp. 1077–1086 (2015)

16. Mani, I.: Summarization evaluation: an overview (2001)
17. McClosky, D., Manning, C.D.: Learning constraints for consistent timeline extrac-

tion. In: EMNLP-CoNLL, pp. 873–882 (2012)
18. McDonald, D., Pustejovsky, J.: Natural language generation. In: IJCAI. Citeseer

(1986)
19. Radev, D., Allison, T., Blair-Goldensohn, S., Blitzer, J., Celebi, A., Dimitrov, S.,

Drabek, E., Hakim, A., Lam, W., Liu, D., et al.: MEAD-a platform for multidoc-
ument multilingual text summarization. In: LREC, vol. 2004 (2004)

20. Schluter, N., Søgaard, A.: Unsupervised extractive summarization via coverage
maximization with syntactic and semantic concepts. In: ACL, pp. 840–844 (2015)

21. Shen, D., Sun, J., Li, H., Yang, Q., Chen, Z.: Document summarization using
conditional random fields. IJCAI 7, 2862–2867 (2007)

22. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: WWW, pp. 697–706. ACM, New York (2007)

23. Sydow, M., Pikula, M., Schenkel, R.: The notion of diversity in graphical entity
summarisation on semantic knowledge graphs. J. Intell. Inf. Syst. 41(2), 109–149
(2013)

24. Takaku, Y., Kaji, N., Yoshinaga, N., Toyoda, M.: Identifying constant and unique
relations by using time-series text. In: EMNLP-CoNLL, pp. 883–892 (2012)

25. Talukdar, P.P., Crammer, K.: New regularized algorithms for transductive learn-
ing. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009, Part II. LNCS, vol. 5782, pp. 442–457. Springer, Heidelberg (2009)

26. Talukdar, P.P., Wijaya, D., Mitchell, T.: Coupled temporal scoping of relational
facts. In: WSDM. Association for Computing Machinery, Seattle, February 2012

27. Tylenda, T., Sozio, M., Weikum, G.: Einstein: physicist or vegetarian? Summariz-
ing semantic type graphs for knowledge discovery. In: WWW (Companion Volume),
pp. 273–276 (2011)

28. Wan, X., Yang, J.: Multi-document summarization using cluster-based link analy-
sis. In: SIGIR, pp. 299–306. ACM (2008)

386 Y. Wang et al.

29. Wang, Y., Dylla, M., Spaniol, M., Weikum, G.: Coupling label propagation and
constraints for temporal fact extraction. In: ACL, vol. 2, pp. 233–237 (2012)

30. Wang, Y., Yahya, M., Theobald, M.: Time-aware reasoning in uncertain knowledge
bases. In: MUD, pp. 51–65 (2010)

31. Wang, Y., Yang, B., Qu, L., Spaniol, M., Weikum, G.: Harvesting facts from textual
web sources by constrained label propagation. In: CIKM, pp. 837–846 (2011)

32. Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence
graph. In: WWW, pp. 707–716 (2007)

SuMGra: Querying Multigraphs via Efficient
Indexing

Vijay Ingalalli1,2(B), Dino Ienco2, and Pascal Poncelet1

1 Université de Montpellier, LIRMM, Montpellier, France
{vijay,pascal.poncelet}@lirmm.fr

2 IRSTEA Montpellier, UMR TETIS, F-34093 Montpellier, France
dino.ienco@irstea.fr

Abstract. Many real world datasets can be represented by a network
with a set of nodes interconnected with each other by multiple relations.
Such a rich graph is called a multigraph. Unfortunately, all the exist-
ing algorithms for subgraph query matching are not able to adequately
leverage multiple relationships that exist between the nodes. In this paper
we propose an efficient indexing schema for querying single large multi-
graphs, where the indexing schema aptly captures the neighbourhood
structure in the data graph. Our proposal SuMGra couples this novel
indexing schema with a subgraph search algorithm to quickly traverse
though the solution space to enumerate all the matchings. Extensive
experiments conducted on real benchmarks prove the time efficiency as
well as the scalability of SuMGra.

1 Introduction

Many real world datasets can be represented by a network with a set of nodes
interconnected with each other by multiple relations. Such a rich graph is called
multigraph and it allows different types of edges in order to represent different
types of relations between vertices [1,2]. Example of multigraphs are: social
networks spanning over the same set of people, but with different life aspects
(e.g. social relationships such as Facebook, Twitter, LinkedIn, etc.); protein-
protein interaction multigraphs created considering the pairs of proteins that
have direct interaction/physical association or they are co-localised [15]; gene
multigraphs, where genes are connected by considering the different pathway
interactions belonging to different pathways; RDF knowledge graph where the
same subject/object node pair is connected by different predicates [10].

One of the difficult operation in graph data management is subgraph query-
ing [6]. Although subgraph querying is an NP-complete [6] problem, practically,
we can find embeddings in real graph data by employing a good matching order
and intelligent pruning rules. In literature, different families of subgraph match-
ing algorithms exist. A first group of techniques employ Feature based indexing
followed by a filtering and verification framework. During filtering, some graph
patterns (subtrees or paths) are chosen as indexing features to minimize the
number of candidate graphs. Then the verification step checks for the subgraph
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 387–401, 2016.
DOI: 10.1007/978-3-319-44403-1 24

388 V. Ingalalli et al.

isomorphism using the selected candidates [4,11,14,16]. All these methods are
developed for transactional graphs, i.e. the database is composed of a collection
of graphs and each graph can be seen as a transaction of such database, and they
cannot be trivially extended on the single multigraph scenario. A second family
of approaches avoids indexing and it uses Backtracking algorithms to find embed-
dings by growing the partial solutions. In the beginning, they obtain a potential
set of candidate vertices for every vertex in the query graph. Then a recursive
subroutine called SubgraphSearch is invoked to find all the possible embed-
dings of the query graph in the data graph [5,7,13]. All these approaches are
able to manage graphs with only a single label on the vertex. Although index
based approaches focus on transactional database graphs, some backtracking
algorithms address the large single graph setting [9]. All these methods are not
conceived to manage and query multigraphs and their extension to manage mul-
tiple relations between nodes cannot be trivial. A third and recent family of tech-
niques defines equivalence classes at query and/or database level, by exploiting
vertex relationships. Once the data vertices are grouped into equivalence classes,
the search space is reduced and the whole process is speeded up [6,12].

Adapting these methods to multigraph is not straightforward since, the differ-
ent types of relationships between vertices can exponentially increase the number
of equivalent classes (for both query and data graph) thereby drastically reduc-
ing the efficiency of these strategies. Among the vast literature on subgraph
isomorphism, [3] is the unique approach, which is a backtracking approach, that
is able to directly manage graph with (multiple) labels on the edges. It proposes
an approach called RI that uses light pruning rules in order to avoid visiting
useless candidates.

Due to the availability of multigraph data and the importance of performing
query on multigraph data, in this paper, we propose a novel method SuMGra
that supports subgraph matching in a multigraph via efficient indexing. In par-
ticular, we capture the multigraph properties in order to build the index struc-
tures, and we show that by exploiting multigraph properties, we are able to
perform subgraph matching very efficiently. As observed in Table 1, the pro-
posed SuMGra is almost one order of magnitude better than the benchmark
approach RI, for the DBPEDIA dataset and for the query sizes from 3 to 11.

Deviating from all the previous proposed approaches, we conceive an index-
ing schema to summarize information contained in a single large multigraph.
SuMGra involves two main phases: (i) an off-line phase that builds effi-
cient indexes for the information contained in the multigraph; (ii) an on-line
phase, where a search procedure exploits the indexing schema previously built.

Table 1. Time (msec) taken by RI and SuMGra for DBPEDIA dataset

Approach 3 5 7 9 11

SuMGra 160.5 254.1 545.7 971.5 1610.9

RI 7045.7 7940.8 7772.7 6872.6 8502.5

SuMGra: Querying Multigraphs via Efficient Indexing 389

The rest of the paper is organized as follows. Background and problem definition
are provided in Sect. 2. An overview of the proposed approach is presented in
Sect. 3, while Sects. 4 and 5 describe the indexing schema and the query subgraph
search algorithm, respectively. Section 6 presents experimental results. Conclu-
sions are drawn in Sect. 7.

2 Preliminaries and Problem Definition

Formally, we can define a multigraph G as a tuple of four elements (V,E,LE ,D)
where V is the set of vertices and D is the set of dimensions, E ⊆ V × V is the
set of undirected edges and LE : V ×V → 2D is a labelling function that assigns
the subset of dimensions to each edge it belongs to. In this paper, we address
the sub-graph isomorphism problem for undirected multigraphs.

Definition 1. Subgraph isomorphism for undirected multigraph. Given a multi-
graph Q = (V q, Eq, Lq

E ,Dq) and a multigraph G = (V,E,LE ,D), the subgraph
isomorphism from Q to G is an injective function ψ : V q → V such that:

∀(um, un) ∈ Eq,∃ (ψ(um), ψ(un)) ∈ E and Lq
E(um, un) ⊆ LE(ψ(um), ψ(un)).

Problem Definition. Given a query multigraph Q and a data multigraph
G, the subgraph query problem is to enumerate all the embeddings of Q in G.

For the ease of representation, in the rest of the paper, we simply refer to a
data multigraph G as a graph, and a query multigraph Q as a subgraph. We also
enumerate (for unique identification) the set of query vertices by U and the set
of data vertices by V .

In Fig. 1, we introduce a query multigraph Q and a data multigraph G. The
two valid embeddings for the subgraph Q are marked by the thick lines in the
graph G and are enumerated as follows: R1 := {[u1, v4], [u2, v5], [u3, v3], [u4, v1]};
R2 := {[u1, v4], [u2, v3], [u3, v5], [u4, v6]}; where, each query vertex ui is matched
to a distinct data vertex vj , written as [ui, vj].

Fig. 1. A sample (a) query multigraph Q and (b) data multigraph G

390 V. Ingalalli et al.

3 An Overview of SuMGra

In this section, we sketch the main idea behind our proposal. The entire proce-
dure can be divided into two parts: (i) an indexing schema for the graph G that
exploits edge dimensions and the vertex neighbourhood structure (Sect. 4) (ii)
a subgraph search algorithm, that integrates recent advances in the graph data
management field, to enumerate the embeddings of the subgraph (Sect. 5).

The overall idea of SuMGra is depicted in Algorithm 1. Initially, we order
the set of query vertices U using a heuristic proposed in Sect. 5.1. With an
ordered set of query vertices Uo, we use the indexing schema to find a list of pos-
sible candidate matches only for the initial query vertex uinit by calling Select-
Cand (Line 5), as described in Sect. 5.2. Then, for each possible candidate of the
initial query vertex, we call the recursive subroutine SubgraphSearch, that
performs the subgraph isomorphism test.

The SubgraphSearch procedure (Sect. 5.3), finds the embeddings starting
with the possible matches for the initial query vertex uinit (Lines 7–11). Since
uinit has |Cuinit

| possible matches, SubgraphSearch iterates through |Cuinit
|

solution trees in a depth first manner until an embedding is found. That is, Sub-
graphSearch is recursively called to find the matchings that correspond to all
ordered query vertices Uo. The partial embedding is stored in M = [Mq,Mg] - a
pair that contains the already matched query vertices Mq and the already matched
data vertices Mg. Once the partial embedding grows to become a complete embed-
ding, the repository of embeddings R is updated.

Algorithm 1. SuMGra
1 Input: subgraph Q, graph G, indexes S, N
2 Output: R: all the embeddings of Q in G
3 Uo = OrderQueryVertices(Q, G)
4 uinit = u|u ∈ Uo

5 Cuinit
= SelectCand(uinit, S)

6 R = ∅ /* Embeddings of Q in G */
7 for each vinit ∈ Cuinit

do
8 Mq = uinit; /* Matched initial query vertex */
9 Md = vinit; /* Matched possible data vertex */

10 M = [Mq, Mg] /* Partial matching of Q in G */
11 Update: R := SubgraphsSearch(R, M, N , Q, G, Uo)

12 return R

4 Indexing

In this section, we propose the indexing structures that are built on the data
multigraph G, by leveraging the multigraph properties in specific; this index is
used during the subgraph querying procedure. The primary goal of indexing is
to make the query processing time efficient. For a lucid understanding of our
indexing schema, we introduce a few definitions.

Definition 2. Vertex signature. For a vertex v, the vertex signature σ(v) is a
multiset containing all the multiedges that are incident on v, where a multiedge

SuMGra: Querying Multigraphs via Efficient Indexing 391

between v and a neighbouring vertex v′ is represented by a set that corresponds
to edge dimensions. Formally, σ(v) =

⋃
v′∈N(v) LE(v, v′) where N(v) is the set

of neighbourhood vertices of v, and ∪ is the union operator for multiset.

For instance, in Fig. 1(b), σ(v6) = {{E1, E3}, {E1}}. The vertex signature is an
intermediary representation that is exploited by our indexing schema.

The goal of constructing indexing structures is to find the possible candidate
set for the set of query vertices u, thereby reducing the search space for the
SubgraphSearch procedure, making SuMGra time efficient.

Definition 3. Candidate set. For a query vertex u, the candidate set C(u) is
defined as C(u) = {v ∈ g|σ(u) ⊆ σ(v)}.

In this light, we propose two indexing structures that are built offline: (i)
given the vertex signature of all the vertices of graph G, we construct a vertex
signature index S by exploring a set of features f of the signature σ(v) (ii) we
build a vertex neighbourhood index N for every vertex in the graph G. The index
S is used to select possible candidates for the initial query vertex in the Select-
Cand procedure while the index N is used to choose the possible candidates for
the rest of the query vertices during the SubgraphSearch procedure.

4.1 Vertex Signature Index S
This index is constructed to enumerate the possible candidate set only for the
initial query vertex. Since we cannot exploit any structural information for the
initial query vertex, S captures the edge dimension information from the data
vertices, so that the non suitable candidates can be pruned away.

We construct the index S by organizing the information supplied by the
vertex signature of the graph; i.e., observing the vertex signature of data vertices,
we intend to extract some interesting features. For example, the vertex signature
of v6, σ(v6) = {{E1, E3}, {E1}} has two sets of dimensions in it and hence v6 is
eligible to be matched with query vertices that have at most two sets of items
in their signature. Also, σ(v2) = {{E2, E3, E1}, {E1}} has the edge dimension
set of maximum size 3 and hence a query vertex must have the edge dimension
set size of at most 3. More such features (e.g., the number of unique dimensions,
the total number of occurrences of dimensions, etc.) can be proposed to filter
out irrelevant candidate vertices. In particular, for each vertex v, we propose to
extract a set of characteristics summarizing useful features of the neighbourhood
of a vertex. Those features constitute a synopses representation (surrogate) of
the original vertex signature.

In this light, we propose six |f | = 6 features, that leverage the multigraph
properties; the features will be illustrated with the help of the vertex signature
σ(v3) = {{E1, E2, E3}, {E1, E3}, {E1, E2}, {E1}}:

f1 Cardinality of vertex signature, (f1(v3) = 4)
f2 The number of unique dimensions in the vertex signature, (f2(v3) = 3)
f3 The number of all occurrences of the dimensions (repetition allowed), (f3(v3) = 8)

392 V. Ingalalli et al.

f4 Minimum index of the lexicographically ordered edge dimensions, (f4(v3) = 1)
f5 Maximum index of the lexicographically ordered edge dimensions, (f5(v3) = 3)
f6 Maximum cardinality of the vertex sub-signature, (f6(v3) = 3)

By exploiting the aforementioned features, we build the synopses to repre-
sent the vertices in an efficient manner that will help us to select the eligible
candidates during query processing.

Once the synopsis representation for each data vertex is computed, we store
the synopses in an efficient data structure. Since each vertex is represented by
a synopsis of several fields, a data structure that helps in efficiently performing
range search for multiple elements would be an ideal choice. For this reason, we
build a |f |-dimensional R-tree, whose nodes are the synopses having |f | fields.

The general idea of using an R-tree structure is as follows: A synopses
F = {f1, . . . , f|f |} of a data vertex spans an axes-parallel rectangle in an
f -dimensional space, where the maximum co-ordinates of the rectangle are the
values of the synopses fields (f1, . . . , f|f |), and the minimum co-ordinates are
the origin of the rectangle (filled with zero values). For example, a data vertex
represented by the synopses with two features Fv = (2, 3) spans a rectangle in a
2-dimensional space in the interval range ([0, 2], [0, 3]). Now if we consider syn-
opses of two query vertices, Fu1 = (1, 3) and Fu2 = (1, 4), we observe that the
rectangle spanned by Fu1 is wholly contained in the rectangle spanned by Fv but
Fu2 is not wholly contained in Fv. Formally, the possible candidates for vertex
u can be written as P(u) = {v|∀i∈[1,...,f]Fu(i) ≤ Fv(i)}, where the constraints
are met for all the |f |-dimensions. Since we apply the same inequality constraint
to all the fields, we need to pre-process few synopses fields; e.g., the field f4
contains the minimum value of the index, and hence we negate f4 so that the
rectangular containment problem still holds good. Thus, we keep on inserting
the synopses representations of each data vertex v into the R-tree and build the
index S, where each synopses is treated as an |f |-dimensional node of the R-tree.

4.2 Vertex Neighbourhood Index N
The aim of this indexing structure is to find the possible candidates for the rest
of the query vertices.

Since the previous indexing schema enables us to select the possible candi-
date set for the initial query vertex, we propose an index structure to obtain the
possible candidate set for the subsequent query vertices. The index N will help
us to find the possible candidate set for a query vertex u during the Subgraph-
Search procedure by retaining the structural connectivity with the previously
matched candidate vertices, while discovering the embeddings of the subgraph
Q in the graph G.

The index N comprises of neighbourhood trees built for each of the data
vertex v. To understand the index structure, let us consider the data vertex
v3 from Fig. 1(b), shown separately in Fig. 2(a). For this vertex v3, we collect
all the neighbourhood information (vertices and multiedges), and represent this

SuMGra: Querying Multigraphs via Efficient Indexing 393

information by a tree structure. Thus, the tree representation of a vertex v con-
tains the neighbourhood vertices and their corresponding multiedges, as shown
in Fig. 2(b), where the nodes of the tree structure are represented by the edge
dimensions.

In order to construct an efficient tree structure, we propose the structure -
Ordered Trie with Inverted List (OTIL). Consider a data vertex vi, with a set
of n neighbourhood vertices N(vi). Now, for every pair (vi, N

j(vi)), where j ∈
{1, . . . , n}, there exists a multiedge (set of edge dimensions) {E1, . . . , Ed}, which
is inserted into the OTIL structure. Each multiedge is ordered (with the increasing
edge dimensions), before inserting into OTIL structure, and the order is univer-
sally maintained for both query and data vertices. Further, for every edge dimen-
sion Ei that is inserted into the OTIL, we maintain an inverted list that contains
all the neighbourhood vertices N(vi), that have the edge dimension Ei incident on
them. For example, as shown in Fig. 2(b), the edge E2 will contain the list {v2, v4},
since E2 forms an edge between v3 and both v2 and v4.

To construct the OTIL index as shown in Fig. 2(b), we insert each ordered
multiedge that is incident on v at the root of the trie structure. To make index
querying more time efficient, the OTIL nodes with identical edge dimension
(e.g., E3) are internally connected and thus form a linked list of data vertices.
For example, if we want to query the index in Fig. 2(b) with a vertex having
edges {E1, E3}, we do not need to traverse the entire OTIL. Instead, we perform
a pre-ordered search, and as soon as we find the first set of matches, which is
{V2}, we will be redirected to the OTIL node, where we can fetch the matched
vertices much faster (in this case {V1}), thereby outputting the set of matches
as {V2, V1}.

Fig. 2. (a) Neighbourhood structure of v3 and (b) Neighbourhood index for vertex v3

5 Subgraph Query Processing

We now proceed with the subgraph query processing. In order to find the embed-
dings of a subgraph, we not only need to find the valid candidates for each query
vertex, but also retain the structure of the subgraph to be matched.

394 V. Ingalalli et al.

5.1 Query Vertex Ordering

Before performing query processing, we order the set of query vertices U into
an ordered set of query vertices Uo. It is argued that an effective ordering of
the query vertices improves the efficiency of subgraph querying [9]. In order to
achieve this, we propose a heuristic that employs two scoring functions.

The first scoring function relies on the number of multiedges of a query ver-
tex. For each query vertex ui, the number of multiedges incident on it is assigned
as a score; i.e., r1(ui) =

∑m
j=1 |σ(uj

i)|, where ui has m multiedges, |σ(uj
i)| cap-

tures the number of edge dimensions in the jth multiedge. Query vertices are
ordered in ascending order considering the scoring function r1, and thus uinit =
argmax(r1(ui)). For example, in Fig. 1(a), vertex u3 has the maximum number of
edges incident on it, which is 4, and hence is chosen as an initial vertex.

The second scoring function depends on the structure of the subgraph. We
maintain an ordered set of query vertices Uo and keep adding the next eligible
query vertex. In the beginning, only the initial query vertex uinit is in Uo.
The set of next eligible query vertices Uo

nbr are the vertices that are in the
1-neighbourhood of Uo. For each of the next eligible query vertex un ∈ Uo

nbr,
we assign a score depending on a second scoring function defined as r2(un) =
|{Uo ∩ adj(un)}|. It considers the number of the adjacent vertices of un that are
present in the already ordered query vertices Uo.

Then, among the set of next eligible query vertices Uo
nbr for the already

ordered Uo, we give first priority to function r2 and the second priority to func-
tion r1. Thus, in case of any tie ups, w.r.t. r2, the score of r1 will be considered.
When both r2 and r1 leave us in a tie up situation, we break such tie at random.

5.2 Select Candidates for Initial Query Vertex

For the initial query vertex uinit, we exploit the index structure S to retrieve the
set of possible candidate data vertices, thereby pruning the unwanted candidates
for the reduction of search space.

During the SelectCand procedure (Algorithm 1, Line 5), we retrieve the
possible candidate vertices from the data graph by exploiting the vertex signa-
ture index S. However, since querying S would not prune away all the unwanted
vertices for uinit, the corresponding partial embeddings would be discarded dur-
ing the SubgraphSearch procedure. For instance, to find candidate vertices
for uinit = u3, we build the synopses for u3 and find the matchable vertices in
G using the index S. As we recall, synopses representation of each data vertex
spans a rectangle in the d-dimensional space. Thus, it remains to check, if the
rectangle spanned by u3 is contained in any of rectangles spanned by the syn-
opses of the data vertices, with the help of R-tree built on data vertices, which
results in the candidate set {v3, v5}.

5.3 Subgraph Searching

The SubgraphSearch recursive procedure is described in Algorithm 2. Once an
initial query vertex uinit and its possible data vertex vinit ∈ Cuinit

, that could be
a potential match, is chosen from the set of select candidates, we have the partial

SuMGra: Querying Multigraphs via Efficient Indexing 395

Algorithm 2. SubgraphSearch(R,M,N , Q,G,Uo)
1 Fetch unxt ∈ Uo /* Fetch query vertex to be matched */
2 MC = FindJoinable(Mq, Mg, N , unxt) /* Matchable candidate vertices */
3 if |MC | �= ∅ then
4 for each vnxt ∈ MC do
5 Mq = Mq ∪ unxt;
6 Mg = Mg ∪ vnxt;
7 M = [Mq, Mg] /* Partial matching grows */
8 SubgraphSearch(R, M, N , Q, G, Uo)
9 if (|M | == |Uo|) then

10 R = R ∪ M /* Embedding found */

11 return R

solution pair M = [Mq,Mg] of the subgraph query pattern we want to grow. If
vinit is a right match for uinit, and we succeed in finding the subsequent valid
matches for Uo, we will obtain an embedding; else, the recursion would revert
back and move on to next possible data vertex to look for the embeddings.

In the beginning of SubgraphSearch procedure, we fetch the next query ver-
tex unxt from the set of ordered query vertices Uo, that is to be matched (Line
1). Then FindJoinable procedure finds all the valid data vertices that can be
matched with the next query vertex unxt (Line 2). The main task of subgraph
matching is done by the FindJoinable procedure, depicted in Algorithm 3. Once
all the valid matches for unxt are obtained, we update the solution pair M =
[Mq,Mg] (Line 5–7). Then we recursively call SubgraphSearch procedure until
all the vertices in Uo have been matched (Line 8). If we succeed in finding matches
for the entire set of query vertices Uo, then we update the repository of embeddings
(Line 9–10); else, we keep on looking for matches recursively in the search space,
until there are no possible candidates to be matched for unxt (Line 3).

Algorithm 3. FindJoinable(Mq,Mg,N , unxt)
1 Aq := Mq ∩ adj(unxt) /* Matched query neighbours */
2 Ag := {v|v ∈ Mg} /* Corresponding matched data neighbours */

3 Intialize: Mtemp
C = 0, MC = 0

4 Mtemp
C = ∩|Aq|

i=1 NeighIndexQuery(N , Ai
g, (Ai

q, unxt))

5 for each vc ∈ Mtemp
C do

6 if σ(vc) ⊇ σ(unxt) then
7 add vc to MC /* A valid matchable vertex */

8 return MC

The FindJoinable procedure guarantees the structural connectivity of the
embeddings that are outputted. Referring to Fig. 1, let us assume that the
already matched query vertices Mq = {u2, u3} and the corresponding matched
data vertices Mg = {v3, v5}, and the next query vertex to be matched unxt = u1.
Initially, in the FindJoinable procedure, for the next query vertex unxt, we col-
lect all the neighbourhood vertices that have been already matched, and store
them in Aq; formally, Aq := Mq ∩ adj(unxt) and also collect the corresponding
matched data vertices Ag (Line 1–2). For instance, for the next query vertex u1,
Aq = {u2, u3} and correspondingly, Ag = {v3, v5}.

396 V. Ingalalli et al.

Now we exploit the neighbourhood index N in order to find the valid matches
for the next query vertex unxt. With the help of vertex N , we find the possible
candidate vertices M temp

C for each of the matched query neighbours Ai
q and the

corresponding matched data neighbour Ai
g.

To perform querying on the index structure N , we fetch the multiedge that
connects the next matchable query vertex unxt and the ith previously matched
query vertex Ai

q. We now take the multiedge (Ai
q, unxt) and query the index struc-

ture N of the correspondingly matched data vertex Ai
g (Line 4). For instance, with

Ai
q = u2, and unxt = u1 we have a multiedge {E1, E2}. As we can recall, each

data vertex vj has its neighbourhood index structure N (vj), represented by an
OTIL structure. The elements that are added to OTIL are nothing but the mul-
tiedges that are incident on the vertex vj , and hence the nodes in the tree are
nothing but the edge dimensions. Further, each of these edge dimensions (nodes)
maintain a list of neighbourhood (adjacent) data vertices of vj that contain the
particular edge dimension as depicted in Fig. 2(b). Now, when we look up for
the multiedge (Ai

q, unxt), which is nothing but a set of edge dimensions, in the
OTIL structure N (Ai

g), two possibilities exist. (1) The multiedge (Ai
q, unxt) has

no matches in N (Ai
g) and hence, there are no matchable data vertices for the next

query vertex unxt. (2) The multiedge (Ai
q, unxt) has matches in N (Ai

g) and hence,
NeighIndexQuery returns a set of possible candidate vertices M temp

C . The set
of vertices M temp

C , present in the OTIL structure as a linked list, are the possible
data vertices since, these are the neighbourhood vertices of the already matched
data vertex Ai

g, and hence the structure is maintained. For instance, multiedge
{E1, E2} has a set of matched vertices {v2, v4} as we can observe in Fig. 2(a).

Further, we check if the next possible data vertices are maintaining the struc-
tural connectivity with all the matched data neighbours Ag, that correspond to
matched query vertices Aq, and hence we collect only those possible candidate
vertices M temp

C , that are common to all the matched data neighbours with the
help of intersection operation ∩. Thus we repeat the process for all the matched
query vertices Aq and the corresponding matched data vertices Ag to ensure
structural connectivity (Line 4). For instance, with A1

q = u2 and corresponding
A1

g = v3, we have M temp1
C = {v2, v4}; with A2

q = u3 and corresponding A2
g = v5,

we have M temp2
C = {v4}, since the multiedge between (Ai

q, unxt) is {E2}. Thus,
the common vertex v4 is the one that maintains the structural connectivity, and
hence belongs to the set of matchable candidate vertices M temp

C = v4.
The set of matchable candidates M temp

C are the valid candidates for unxt

both in terms of edge dimension matching and the structural connectivity with
the already matched partial solution. However, at this point, we propose a strat-
egy that predicts whether the further growth of the partial matching is possible,
w.r.t. to the neighbourhood of already matched data vertices, thereby pruning
the search space. We can do this by checking the condition whether the vertex
signature σ(unxt) is contained in the vertex signature of v ∈ M temp

C (Line 11–13).
This is possible since, the vertex signature σ contains the multiedge information
about the unmatched query vertices that are in the neighbourhood of already
matched data vertices. For instance, v4 can be qualified as MC since σ(v4)

SuMGra: Querying Multigraphs via Efficient Indexing 397

⊇ σ(u1). That is, considering the fact that we have found a match for u1, which
is v4, and that the next possible query vertex is u4, the superset containment
check will assure us the connectivity (in terms of edge dimensions) with the next
possible query vertex u4. Suppose a possible candidate data vertex fails this
superset containment test, it means that, the data vertex will be discarded by
FindJoinable procedure in the next iteration, and we are avoiding this useless
step in advance, thereby making the search more time efficient.

In order to efficiently address the superset containment problem between the
vertex signatures σ(vc) and σ(unxt), we model this task as a maximum matching
problem on a bipartite graph [8]. Basically, we build a bipartite graph whose
nodes are the sub-signatures of σ(vc) and σ(unxt); and an edge exists between
a pair of nodes only if the corresponding sub-signatures do not belong to the
same signature, and the ith sub-signature of vc is a superset of jth sub-signature
of unxt. This construction ensures to obtain at the end a bipartite graph. Once
the bipartite graph is built we run a maximum matching algorithm to find a
maximum match between the two signatures. If the size of the maximum match
found is equal to the size of σ(unxt), the superset operation returns true otherwise
σ(unxt) is not contained in the signature σ(vc). To solve the maximum matching
problem on the bipartite graph, we employ the Hopcroft-Karp [8] algorithm.

6 Experimental Evaluation

In this section, we evaluate the performance of SuMGra on real multigraphs.
We evaluate the performance of SuMGra by comparing it with two base-

line approaches (its own variants) and a competitor RI [3]. The two baseline
approaches are: (i) SuMGra-No-SC that does not consider the vertex signa-
ture index S and it initializes the candidate set of the initial vertex C(uinit)
with the whole set of data nodes; (ii) SuMGra-Rand-Order that consider all
the indexing structure but it employs a random ordering of the query vertices
preserving connectivity. The RI approach is able to manage graphs with multi-
edges, and we obtain the implementation from the original authors. For the
purpose of evaluation. we consider three real world multigraphs: DBLP data set
built by following the procedure adopted in [1]; FLICKR1 crawled from Flickr,
which is an image and video hosting website, web services suite, and an online
community; DBPEDIA2 that is the well-known knowledge base built by the
Semantic Web Community. For DBLP, vertices correspond to different authors
and each dimensions represent one of the top 50 Computer Science conferences.
Two authors are connected over a dimension if they co-authored at least one
paper together in that conference. In FLICKR, users are represented by nodes,
and blogger’s friends are represented using edges. Multiple edges exist between
two users if they have common multiple memberships. The RDF format in which
DBPEDIA is stored can naturally be modeled as a multigraph where vertices
are subjects and objects of the RDF triplets and edges represent the predicates
between them. Benchmark characteristics are reported in Table 2.
1 http://socialcomputing.asu.edu/pages/datasets.
2 http://dbpedia.org/.

http://socialcomputing.asu.edu/pages/datasets
http://dbpedia.org/

398 V. Ingalalli et al.

Table 2. Benchmark statistics.

Dataset Nodes Edges Dim Density

DBLP 83 901 141 471 50 4.0e-5

FLICKR 80 513 5 899 882 195 1.8e-3

DBPEDIA 4 495 642 14 721 395 676 1.4e-6

Table 3. Index construction time
(secs.).

Dataset S N
DBLP 1.15 0.37

FLICKR 1.55 8.89

DBPEDIA 64.51 66.59

To test the behavior of the different approaches, we generate random
queries [7,13] varying their size (in terms of vertices) from 3 to 11 in steps of 2. All
the generated queries contain one (or more) edge with at least two dimensions.
In order to generate queries that can have at least one embedding, we sample
them from the corresponding multigraph. For each dataset and query size we
obtain 1 000 samples. Following the methodology previously proposed [6,11], we
report the average time values considering the first 1 000 embeddings for each
query. It should be noted that the queries returning no answers were not counted
in the statistics (the same statistical strategy has been used by [7,11]).

All the experiments were run on a server, with 64-bit Intel 6 processors @
2.60 GHz, and 250 GB RAM, running on a Linux OS - Ubuntu. Our methods
have been implemented using C++.

6.1 Performance of SuMGra

Table 3 reports the index construction time of SuMGra for each of the employed
dataset. As we can observe for the bigger datasets like FLICKR, and DBPEDIA,
construction of the index N takes more time when compared to the construction
of S. This happens due to either huge number of edges, or nodes or both in these
two datasets. For DBLP we can observe the opposite phenomenon. This can be
explained by the small number of edges and dimensions present in this dataset.
Among all the datasets, DBPEDIA is the most expensive dataset in terms of
indices construction but it always remains reasonable as time consumption for
the off-line step is around one minute for each index.

Query Processing Time. Figures 3, 4 and 5 summarize time results. All the
times we report are in milliseconds; the Y-axis (logarithmic in scale) represents
the query matching time; the X-axis represents the increasing query sizes.

We also analyse the time performance of SuMGra by varying the number
of edge dimensions in the subgraph. In particular, we perform experiments for
query multigraphs with two different edge dimensions: d = 2 and d = 4. That
is, a query with d = 2 has at least one edge that exists in at least 2 dimensions.
The same analogy applies to the queries with d = 4.

For DBLP dataset, we observe in Fig. 3 that SuMGra performs the best
in all the situations, and in fact it outperforms the other approaches by a huge
margin. This happens thanks to both: a rigorous pruning of candidate vertices

SuMGra: Querying Multigraphs via Efficient Indexing 399

100

101

102

103

 3 4 5 6 7 8 9 10 11

A
vg

. e
la

ps
ed

 ti
m

e
(m

se
c.

)

Query Size (# of vertices)

RI
SumGra-No-SC

SumGra-Rand-Order
SumGra

(a)

10-1

100

101

102

103

 3 4 5 6 7 8 9 10 11

A
vg

. e
la

ps
ed

 ti
m

e
(m

se
c.

)

Query Size (# of vertices)

RI
SumGra-No-SC

SumGra-Rand-Order
SumGra

(b)

Fig. 3. Query time on DBLP dataset for (a) with d = 2 (b) with d = 4

100

101

102

103

104

 3 4 5 6 7 8 9 10 11

A
vg

. e
la

ps
ed

 ti
m

e
(m

se
c.

)

Query Size (# of vertices)

RI
SumGra-No-SC

SumGra-Rand-Order
SumGra

(a)

100

101

102

103

104

 3 4 5 6 7 8 9 10 11

A
vg

. e
la

ps
ed

 ti
m

e
(m

se
c.

)

Query Size (# of vertices)

RI
SumGra-No-SC

SumGra-Rand-Order
SumGra

(b)

Fig. 4. Query time on FLICKR dataset for (a) with d = 2 (b) with d = 4

102

103

104

 3 4 5 6 7 8 9 10 11

A
vg

. e
la

ps
ed

 ti
m

e
(m

se
c.

)

Query Size (# of vertices)

RI
SumGra-No-SC

SumGra-Rand-Order
SumGra

(a)

102

103

104

105

 3 4 5 6 7 8 9 10 11

A
vg

. e
la

ps
ed

 ti
m

e
(m

se
c.

)

Query Size (# of vertices)

RI
SumGra-No-SC

SumGra-Rand-Order
SumGra

(b)

Fig. 5. Query time on DBPEDIA dataset (a) for d = 2 (b) d = 4

for initial query vertex as underlined by the gain w.r.t. SuMGra-No-SC and
an efficient query vertex ordering strategy as highlighted by the difference w.r.t.
SuMGra-Rand-Order. For the FLICKR dataset (Fig. 4) SuMGra, SuMGra-
No-SC and SuMGra-Rand-Order outperform RI. For many query instances,
especially for FLICKR, SuMGra-No-SC obtains better performance than RI

400 V. Ingalalli et al.

while SuMGra still outperforms competitors. We can observe that random
query ordering drastically affects the performance pointing out the importance
of this step. Moving to DBPEDIA dataset in Fig. 5, we observe a significant
deviation between RI and SuMGra, with SuMGra winning by a huge margin.

To conclude, we note that SuMGra outperforms the considered competitors,
for all the employed benchmarks for all query size. Its performance is reported
as best for multigraphs having many edge dimensions - FLICKR and high spar-
sity - DBPEDIA. Thus, we highlight that SuMGra is robust in terms of time
performance varying both the query size and dimensions.

Assessing the Set of Synopses Features. In this experiment we assess the
quality of the features composing the synopses representation for our indexing
schema. To this end, we vary the features we consider to build the synopsis
representation to understand if some of them can be redundant and/or do not
improve the final performance. Since visualizing the combination of the whole
set of features will be hard, we limit this experiment to a subset of combinations.
Hence, we choose to vary the size of the feature set from one to six, by considering
the order defined in Sect. 4.1. Using all the six features results in the proposed
approach SuMGra.

100

101

102

103

 3 4 5 6 7 8 9 10 11

A
vg

. e
la

ps
ed

 ti
m

e
(m

se
c.

)

Query Size (# of vertices)

No-SC
|f|=1

|f|=2
|f|=3

|f|=4
|f|=5

|f|=6

Fig. 6. Query time with varying syn-
opses fields for DBLP with d = 4

We perform experiments with dif-
ferent configurations that have varying
number of synopses features; for instance
|f | = 3| means that it considers only
first three features to build synopses.
Although we report plots only for DBLP
for queries with d = 4, the behaviour for
different datasets has similar behaviour.
Results are reported in Fig. 6. We note
that, considering the entire set of fea-
tures drastically improves the time per-
formance, when compared to a subset of
these six features. We conclude that the
different features are not redundant and
they are all helpful in pruning the useless
data vertices.

7 Conclusion

We proposed an efficient strategy to support Subgraph Matching in a Multi-
graph via efficient indexing. The proposed indexing schema leverages the rich
structure available in the multigraph. The different indexes are exploited by a
subgraph search procedure that works on multigraphs. The experimental section
highlights the efficiency, versatility and scalability of our approach over different
real datasets. The comparison with a state of the art approach points out the
necessity to develop specific techniques to manage multigraphs.

SuMGra: Querying Multigraphs via Efficient Indexing 401

As a future work, we are interesting in testing new synopses features as
well as try novel vertex ordering strategies more rigorously. Further, we will be
addressing dynamic multigraphs where nodes and multiedges are being added
or removed over time.

Acknowledgments. This work has been funded by Labex NUMEV (NUMEV, ANR-
10-LABX-20).

References

1. Boden, B., Günnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs
in multi-layer graphs with edge labels. In: KDD, pp. 1258–1266 (2012)

2. Bonchi, F., Gionis, A., Gullo, F., Ukkonen, A.: Distance oracles in edge-labeled
graphs. In: EDBT, pp. 547–558 (2014)

3. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., Ferro, A.: A subgraph isomor-
phism algorithm and its application to biochemical data. BMC Bioinform. 14(S–7),
S13 (2013)

4. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query process-
ing on graph databases. In: SIGMOD, pp. 857–872. ACM (2007)

5. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism
algorithm for matching large graphs. IEEE TPAMI 26(10), 1367–1372 (2004)

6. Han, W.-S., Lee, J., Lee, J.-H.: Turbo ISO: towards ultrafast and robust subgraph
isomorphism search in large graph databases. In: SIGMOD, pp. 337–348. ACM
(2013)

7. He, H., Singh, A.K.: Graphs-at-a-time: query language and access methods for
graph databases. In: SIGMOD, pp. 405–418. ACM (2008)

8. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

9. Lee, J., Han, W.-S., Kasperovics, R., Lee, J.-H.: An in-depth comparison of sub-
graph isomorphism algorithms in graph databases. In: PVLDB, pp. 133–144 (2012)

10. Libkin, L., Reutter, J., Vrgoč, D.: Trial for RDF: adapting graph query languages
for RDF data. In: PODS, pp. 201–212. ACM (2013)

11. Lin, Z., Bei, Y.: Graph indexing for large networks: a neighborhood tree-based
approach. Knowl. Based Syst. 72, 48–59 (2014)

12. Ren, X., Wang, J.: Exploiting vertex relationships in speeding up subgraph iso-
morphism over large graphs. PVLDB 8(5), 617–628 (2015)

13. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism. PVLDB 1(1), 364–375 (2008)

14. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach.
In: SIGMOD, pp. 335–346. ACM (2004)

15. Zhang, A.: Protein Interaction Networks: Computational Analysis. Cambridge Uni-
versity Press, Cambridge (2009)

16. Zhao, X., Xiao, C., Lin, X., Wang, W., Ishikawa, Y.: Efficient processing of graph
similarity queries with edit distance constraints. VLDB J. 22(6), 727–752 (2013)

Semantic Web, and Data Semantics

Re-constructing Hidden Semantic Data Models
by Querying SPARQL Endpoints

Maŕıa Jesús Garćıa-Godoy(B), Esteban López-Camacho,
Ismael Navas-Delgado, and José F. Aldana-Montes

Departamento de Lenguaje y Ciencias de la Computación, Universidad de Málaga,
Andalućıa Tech, Ada Byron Research Building, 29071 Málaga, Spain

{mjgarciag,jfam}@lcc.uma.es
http://khaos.uma.es/

Abstract. Linked Open Data community is constantly producing new
repositories that store information from different domains. The data
included in these repositories follow the rules proposed by the W3C
community, based on standards such as Resource Description Frame-
work (RDF) and the SPARQL query language. The main advantage of
this approach is the possibility of external developers accessing the data
from their applications. This advantage is also one of the main challenges
of this new technology due to the cost of exploring how the data is struc-
tured in a given repository in order to construct SPARQL queries to
retrieve useful information. According to the reviewed literature, there
are no applications to reconstruct the underlying semantic data mod-
els from an SPARQL endpoint. In this paper, we present an applica-
tion for the reconstruction of the data model as an OWL (Ontology
Web Language) ontology. This application, available as Open Source at
http://github.com/estebanpua/ontology-endpoint-extraction uses a set
of SPARQL queries to discover the classes and the (object and data)
properties for a given RDF database. A web application interface has
also been implemented for users to browse through classes, properties
of the ontology generated from the data structure (http://khaos.uma.
es/oee). The ontologies generated by this application can help users to
understand how the information is semantically organized, making easier
the design of SPARQL queries.

Keywords: Semantic Web · Ontology · OWL · Linked Open Data ·
Endpoint

1 Introduction

Linked (Open) Data has become a set of repositories that stores information from
different domains and interlinks related data that has not been previously linked
[6]. This approach makes possible to integrate or solve queries accessing data
repositories retrieving the requested information. Linked Data is based on the
Semantic Web principles proposed by the W3C community of using standards
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 405–415, 2016.
DOI: 10.1007/978-3-319-44403-1 25

http://github.com/estebanpua/ontology-endpoint-extraction
http://khaos.uma.es/oee
http://khaos.uma.es/oee

406 M.J. Garćıa-Godoy et al.

such as RDF to formally describe the data [7] and SPARQL as query language
[10]. Following these principles, data is published in RDF and accessible through
SPARQL queries.

The building of an RDF database is guided by a semantic model that provides
all the elements to represent the RDF graphs. The semantic model defines the
Classes and Properties that can be used in the description of the data. Thus,
SPARQL queries use these elements to build the query graph.

VoID1 is an RDF Schema vocabulary for expressing metadata about RDF
datasets. This vocabulary aims at connecting the publishers and users of RDF
data. This standard provides two mechanisms to provide documentation on the
SPARQL Endpoint semantics:

– To publish the documentation in a document with the address .well-
known/void.

– To include the link to the documentation into a triplet of the dataset, using
the property void:inDataset, for example: <document.rdf> void:inDataset
<void.ttl#MyDataset>. So, this information could be obtained with an
SPARQL query:

PREFIX void:<http://rdfs.org/ns/void#>
SELECT *
FROM <http://sparql.uniprot.org/taxonomy/>
WHERE
{
?s void:Dataset ?o .
}
However, the development of RDF databases does not always use this app-

roach to make explicit the underlying semantic model. Database developers have
in mind the conceptual design of the database when developing queries on appli-
cations using databases. However, the access to Linked Data sources are usually
made by developers that have not participated in the database design. Thus,
the absence of an explicit semantic model makes either the design of SPARQL
queries or the RDF navigation a complex issue that requires an effort for under-
standing the explicit semantic model.

Aemoo [9] is an application that supports exploratory search through exploit-
ing Semantics and explicit links. This application is based on encyclopaedic
knowledge patterns (EKPs) which are only applicable to RDF schemas such as
DBpedia. This tool does not provide the hidden OWL semantic data model, so
it is not comparable to the proposed approach. Another approach to mention is
Linked Data summaries [4]. The objective of this is the evaluation of conjunctive
queries that are answered using a structure index which summarizes the content
of sources. The purpose of this approach is different than the presented in this
paper, which tries to make easier the task of linked data exploration to end-users
by providing the endpoint semantic model in OWL.

1 https://www.w3.org/TR/void/.

https://www.w3.org/TR/void/

Re-constructing Hidden Semantic Data Models by Querying SPARQL 407

According to the literature reviewed, there are no proposals for reconstruct-
ing the underlying semantic data models in OWL from an RDF database. In
this paper, we present an application for discovering part of the explicit seman-
tic model of an RDF database. This approach is based on a set of simple queries
for exploring the RDF graph. As a result of the exploration procedure the appli-
cation returns an OWL ontology.

This paper is organized as follows: Sect. 2 presents the methodology that has
been followed to develop the application; Sect. 3 presents some cases in which
the proposed application has been used for the discovery of the explicit semantic
model and how it can be used to build SPARQL queries; Finally, Sect. 4 shows
the main results of this application and how it can be extended.

2 Methods

The approach for extracting the hidden semantic data model is based on a set
of SPARQL queries that are executed to infer the implicit RDF structure of any
Linked Data endpoint. These queries are combined to produce a single OWL
ontology. The query patterns are described below:

1. The first query pattern aims at returning all the classes describing the objects
(instances) stored in the database. This pattern requires that the RDF graph
contains this information as triplets defining the type of each data node. The
use of blank nodes ([]) allows the SPARQL engine to avoid linking the class
URIs to a variable, and so reducing the evaluation cost.

SELECT DISTINCT ?class
WHERE {

[] a ?class .
}

2. The second query pattern returns all the properties that link all the data
instances between them.

SELECT DISTINCT ?property
WHERE {

[] ?property [] .
}

3. After having obtained the set of classes and properties (using patterns 1 and
2), the relationship between them has to be specified by knowing which classes
are part of the domain or range of the properties. This query pattern will be
executed for each property discovered by pattern 2. The pattern shown below
uses as example the property with URI http://www.example.org/property 1.

SELECT DISTINCT ?domain
WHERE {

?s <http://www.example.org/property_1> [] .
?s a ?domain .

}

http://www.example.org/property_1

408 M.J. Garćıa-Godoy et al.

4. This query pattern aims at discovering the range of object properties. Thus,
this pattern will discover entities used as the object in a property, and later to
know if this is an object or a literal. In fact, this is a combination of patterns
1 and 2.

SELECT DISTINCT ?range
WHERE {

[] <http://www.example.org/property_1> ?o .
?o a ?range .

}
5. Data properties connect entities with literals. In this case, we aim at discov-

ering the data type of such literals (such as integer or string).

SELECT DISTINCT (datatype(?o) as ?datatype)
WHERE {

[] <http://www.example.org/property_1> ?o .
}
According to the range of the property, it is possible to divide the obtained

list of properties into two subsets: object properties (when its range is composed
by classes) and data properties (when its range is composed by data types).

The application developed is a Java program that orchestrates the execu-
tion of all these SPARQL queries and use the query results to build the OWL
ontology. This ontology can be explored in dedicated programs such as Protégé2.
The code of the program is publicly shared in GitHub3 to allow other users and
developers to contribute to new features and improve those already included.
The application uses the Apache Jena open framework4 to build and execute
the SPARQL queries and the OWL API5 for building the ontology from the
extracted data results. The following pseudo-code shows how this application
manages the use of the query patterns to reconstruct the semantic data models:

This pseudo-code is based in functions using the described query patterns:

– query classes() makes use of the query pattern 1.
– query properties() makes use of the query pattern 2.
– query domain(property) makes use of the query pattern 3.
– query range(property) makes use of the query pattern 4.
– query datatype(property) makes use of the query pattern 5.

When executing the program on large remote databases such as DBpedia6,
queries or server time-out may occur. This problem is avoided using some para-
meters that can be configured in the developed application:

2 http://protege.stanford.edu/about.php.
3 http://github.com/estebanpua/ontology-endpoint-extraction.
4 https://jena.apache.org/.
5 http://owlapi.sourceforge.net/.
6 http://wiki.dbpedia.org/.

http://protege.stanford.edu/about.php
http://github.com/estebanpua/ontology-endpoint-extraction
https://jena.apache.org/
http://owlapi.sourceforge.net/
http://wiki.dbpedia.org/

Re-constructing Hidden Semantic Data Models by Querying SPARQL 409

Algorithm 1.
1: procedure Construct ontology from endpoint
2: classes = query classes();
3: properties = query properties();
4: for property in properties do
5: domains += query domain(property);
6: ranges += query range(property);
7: datatypes += query datatype(property);
8: end for
9: object properties = get object properties(properties);

10: data properties = get data properties(properties);
11: build owl file(classes, object properties, data properties, domains, ranges,

datatypes);
12: end procedure

– Limit of Results: Instead of trying to get all classes or properties in our
single query, a limit parameter can be set to retrieve the results in batches.
This approach is useful when databases have a large number of distinct ele-
ments, so it is easier to get results with several smaller queries than with a
single all-inclusive query. Default value: 1000

– Number of Retries: Sometimes a remote database can fail to return some
data because of having to respond to multiple requests simultaneously. In
that case, a number of retries of the same query can be established. Default
value: 5

– Cool-down Time: Time in milliseconds between different query retries after
a remote error. Default value: 10000

Each database endpoint has a better parameter set-up, but the user can
modify them as they prefer and try different configurations. In the case of the
remote database to continue failing, the program will build the ontology with
the data that has been retrieved successfully instead of failing to do so.

3 Use Cases

This application has been tested using a collection of endpoints to manually
test its accuracy. Some use cases obtained from the experimentation process are
presented below, including two SPARQL Endpoints developed by us (Sects. 3.1
and 3.2), a well-know SPARQL Endpoint in the Life Sciences domain (Sect. 3.3)
and a well-known SPARQL Endpoint in the Linked Data community (Sect. 3.4).

3.1 Kpath

Kpath [8] is a database that integrates information related to metabolic pathways
from different sources such as Bio2Rdf Kegg’s, NCBI Taxonomy and Protein data
from SwissProt. This Endpoint contains classes that refer to concepts related to

410 M.J. Garćıa-Godoy et al.

Table 1. Model obtained from the Kpath endpoint. Full URI paths are not shown for
simplicity, but the complete OWL ontology is available at http://khaos.uma.es/oee/
examples/kpath.owl.

CLASSES
Compound, Enzyme, Gene, Glycan, Organism, Pathway, Protein, Reaction

OBJECT PROPERTIES
egnaRniamoDytreporP

enzymaticActivity Protein Enzyme
enzyme Reaction Enzyme
gene Enzyme Gene
left Reaction Glycan, Compound
organism Protein, Pathway Organism
reaction Pathway Reaction
relatedPathway Pathway Pathway
right Reaction Glycan, Compound
sameAs - Organism, Glycan,

Compound, Reaction

DATA PROPERTIES
egnaRniamoDytreporP

comment Reaction, Compound, Organism, Pathway, string
Protein

gnirtsemyznErebmuNce
formula Compound, Glycan string
geneName Protein string
id Gene string
keggCode Organism string
keyword Protein string
mass Compound, Glycan string
metabolism Pathway string
name Enzyme, Glycan, Protein, Pathway, string

Organism, Reaction, Compound
synonim Enzyme, Glycan, Compound, Organism, string

Protein
uniprotID Protein string
seeAlso Gene string

metabolism (such as pathway, reaction, organism, enzyme, etc.), object and data
properties with domain and range. This SPARQL endpoint is available at http://
sparql.kpath.khaos.uma.es/.

Table 1 summarizes all classes, object and data properties obtained from the
resulting semantic model. As we have mentioned previously, the knowledge of
the inferred semantic model can help users to design queries. For example, in
this case, it can be observed that the right and left properties have the Reaction
class as domain and either the Compound or Glycan classes as range. With this
information about the data structure, a user can make an SPARQL query that
retrieves the chemical reactions whose right participant elements are glycans:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select DISTINCT *
WHERE {

?reaction rdf:type <http://khaos.uma.es/pathways/Reaction>.
?reaction <http://khaos.uma.es/pathways/right> ?right .
?right rdf:type <http://khaos.uma.es/pathways/Glycan>.

}

http://khaos.uma.es/oee/examples/kpath.owl
http://khaos.uma.es/oee/examples/kpath.owl
http://sparql.kpath.khaos.uma.es/
http://sparql.kpath.khaos.uma.es/

Re-constructing Hidden Semantic Data Models by Querying SPARQL 411

Or another that retrieves the chemical reactions whose left participant ele-
ments are chemical compounds:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select DISTINCT *
WHERE {

?reaction rdf:type <http://khaos.uma.es/pathways/Reaction>.
?reaction <http://khaos.uma.es/pathways/left> ?left .
?left rdf:type <http://khaos.uma.es/pathways/Compound>.

}

3.2 ReprOlive

ReprOlive [1] is an easy-to-use olive tree (Olea europaea L.) database con-
taining its reproductive transcriptome obtained from pollen and stigma (both
together and separately). This database has been migrated to RDF and provides
an SPARQL Endpoint at http://150.214.214.6/sparql inside the graph http://
khaos.uma.es/olivedb. Table 2 shows all classes, object and data properties of
the semantic model extracted from the ReprOlive endpoint.

With the semantic model of the ReprOlive Endpoint, as example in
this case, some queries can be designed. For example, the object property
owl:has annotation has the Protein class as domain and the InterPro, descrip-
tion, annotation, GO, orthologue, EC and Gene classes as range. The object
property owl:has pathway has the Gene as domain and Annotation classes and
the Annotation keggs class as range. With this information, an SPARQL query
can retrieve all those proteins that have an annotation which is a gene and this
gene has a role in a pathway that is annotated as a Kegg annotation:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select DISTINCT *

WHERE {
?s rdf:type <http://khaos.uma.es/vocab/protein> .

?s <http://khaos.uma.es/vocab/has_annotation> ?annotation .

?annotation rdf:type <http://khaos.uma.es/vocab/gene> .

?annotation <http://khaos.uma.es/vocab/has_pathway> ?annotation_kegg .

}

3.3 Biomodels

Biomodels [2] is a repository that stores computational models of biological
processes. This database has been migrated to RDF standard and is part of
the EBI (European Bioinformatics Institute) RDF platform [5]. The SPARQL
endpoint is available at https://www.ebi.ac.uk/rdf/services/biomodels/sparql.
As the number of classes, object and data properties are very large to summarize
in a table. Table 3 includes the number of ontology elements. In the case of
Biomodels ontology, the number of classes, object and data properties are 41,
63 and 107, respectively. A column with the time (in ms unit) that each process
took has also been added.

http://150.214.214.6/sparql
http://khaos.uma.es/olivedb
http://khaos.uma.es/olivedb
https://www.ebi.ac.uk/rdf/services/biomodels/sparql

412 M.J. Garćıa-Godoy et al.

Table 2. Model obtained from the ReprOlive endpoint. Full URI paths are not shown
for simplicity, but the complete OWL ontology is available at http://khaos.uma.es/
oee/examples/repr olive.owl.

CLASSES
EC, GO, InterPro, annotation, annotation keggs, assembly, description, expressions,
gene, orthologue, pathway, pollen, protein, ssr, stigma,
transcript, vegetative, Property, Class

OBJECT PROPERTIES
egnaRniamoDytreporP

has ,noitpircsed,orPretnInietorpnoitatonna
annotation, GO,
orthologue, EC, gene

has noitatonna,enegyawhtap annotation keggs
has rss,tpircsnartrss,tpircsnartrss
is produced by assembly transcript assembly
produces nietorptpircsnartnietorp
produces tpircsnartylbmessatpircsnart

ssalC,noitatonna,orPretnI,OG,CEepyt
annotation keggs, assembly,
description, expressions, gene,
orthologue, pathway, pollen,
protein, ssr, stigma,
transcript, vegetative,
Property, Class

DATA PROPERTIES
egnaRniamoDytreporP

ace name, assembly description, assembly string
assembly name, file, organism,
owner group, tissue
alignment, database, fln gnirtstpircsnart,sutats
nucleotides, transcript sequence,
transcript subject
annotated, reversed, transcript regetnitpircsnarthtgnel
transcript orf end, transcript orf start
assemblies mean contig length assembly integer
assemblies total nt, assembly id,
order, sub assembly, version
description gnirtsnoitpircsed,noitatonnaeman
ec CE,noitatonnaedoc string
end position, ssr id, ssr regetnirss,htgnel
start position
expressions id, expressions raw, expressions, pollen, stigma, integer
expressions unigen id vegetative
expressions elbuod,amgits,nellop,snoisserpxemkpr

vegetative
gene gnirtseneg,noitatonnadi
go id, go gnirtsOG,noitatonnaepytbus
interpro gnirtsorPretnI,noitatonnadi
kegg id, pathway gnirtsyawhtapeman
message, protein gnirtsnietorpecneuqes
orthologue name, orthologue subtype annotation, orthologue string
protein name, transcript name protein, transcript string
repeat motif, ssr sequence ssr string
test lamicedtpircsnartedoc

,eneg,evitategev,OGlebal string
transcript, pollen, InterPro,
ssr, annotation, expressions,
Property, stigma, orthologue,
EC, protein, Class, pathway,
assembly, description

http://khaos.uma.es/oee/examples/repr_olive.owl
http://khaos.uma.es/oee/examples/repr_olive.owl

Re-constructing Hidden Semantic Data Models by Querying SPARQL 413

Table 3. Statistics of analysed SPARQL endpoints.

Endpoint Classes Object properties Data properties Time taken (ms)

kPatha 8 8 10 308, 089

ReprOliveb 19 7 50 104, 124

Biomodelsc 41 63 107 1, 008, 788

LinkedGeoDatad 1, 164 125 1, 175 9, 553, 433
aEndpoint: http://sparql.kpath.khaos.uma.es/.
OWL file: http://khaos.uma.es/oee/examples/kpath.owl

bEndpoint: http://150.214.214.6/sparql.
Graph: http://khaos.uma.es/olivedb.
OWL file: http://khaos.uma.es/oee/examples/repr olive.owl

cEndpoint: https://www.ebi.ac.uk/rdf/services/biomodels/sparql.
OWL file: http://khaos.uma.es/oee/examples/biomodels.owl

dEndpoint: http://linkedgeodata.org/sparql.
OWL file: http://khaos.uma.es/oee/examples/geodata.owl

With the semantic model extracted from Biomodels endpoint, some queries
can be designed to end-users with a biological background. For example, the
model shows that the data property owl:initialConcentration has the SBMLU-
nit, LocalParameter, Parameter, FunctionDef, Reaction, SpeciesReference, Com-
partment, Species, SBMLUnitdef, KineticLaw, ModifiedSpeciesReference classes
as domain and double integer as range. As example, according to the model, an
SPARQL query can retrieve all biological models whose initial reactive concen-
tration is equal or greater than 30.5 M.

PREFIX sbmlrdf: <http://identifiers.org/biomodels.vocabulary#>
SELECT *
WHERE {

?s rsbmlrdf:initialConcentration ?o .
FILTER (?o >= 30.5)

}

3.4 LinkedGeoData

LinkedGeoData [11] was included in this study because of its large size. This
repository is focused to adding a spatial dimension to the Semantic Web. It uses
the information collected by the OpenStreetMap project7 and makes it available
as RDF. They have available two public endpoints: one that is updated frequently
and an static one with data from a certain date which is the one that has been
used. This endpoint is available at http://linkedgeodata.org/sparql.

Table 3 includes the number of classes, object and data properties of the
inferred LinkedGeoData semantic model and the time that took to generate the
model from the endpoint.
7 https://www.openstreetmap.org/.

http://sparql.kpath.khaos.uma.es/
http://khaos.uma.es/oee/examples/kpath.owl
http://150.214.214.6/sparql
http://khaos.uma.es/olivedb
http://khaos.uma.es/oee/examples/repr_olive.owl
https://www.ebi.ac.uk/rdf/services/biomodels/sparql
http://khaos.uma.es/oee/examples/biomodels.owl
http://linkedgeodata.org/sparql
http://khaos.uma.es/oee/examples/geodata.owl
http://linkedgeodata.org/sparql
https://www.openstreetmap.org/

414 M.J. Garćıa-Godoy et al.

The semantic model extracted from the endpoint shows that, for example,
the data property owl:altitude has several classes such as HistoricThing, Drink-
ingWater, Shop, Toilets as domain and a string as range. An SPARQL query
example could retrieve all places which have a historical element at an altitude
above 2,000 ft and that these places also have drinking water at the same altitude
as optional. The corresponding SPARQL query is the following:

Prefix lgdo:<http://linkedgeodata.org/ontology/>
SELECT distinct *
WHERE {

?s rdf:type lgdo:HistoricThing .
?s lgdo:ALTITUDE ?o FILTER (?o > 2000) .
OPTIONAL{
?s rdf:type lgdo:DrinkingWater
?s lgdo:ALTITUDE ?o FILTER (?o > 2000)}

}
These four examples are different according to its data size and complexity.

As mentioned in each subsection, Table 3 included a comparison between their
number of classes and properties and the time taken to extract their related data
model. After each execution, all this data was used to create an OWL file with
the extracted ontology.

4 Conclusions and Future Work

In this paper we have presented an approach to reconstruct the semantic
data model behind an RDF database. This technological approach is based
on a set of simple SPARQL queries to explore the structure of the RDF
graph. As a result, the application is able to partially discover the underly-
ing data model to help users in designing new SPARQL queries. The resulting
tools have been published as Open Source at http://github.com/estebanpua/
ontology-endpoint-extraction. This Open Source project is open to other devel-
opers to improve the tool with new SPARQL patterns to extract other aspects
that the current approach could have missed. This, we aim at continuously
improving this solution to enhance the semantic models generated.

The experiments carried out for testing the application show that the recon-
structed model does not usually include some specific parts of the underlying
semantic model. For example, the subsumption relationship between classes is
not obtained. This hierarchical relationship cannot be directly extracted if it
is not stored as part of the RDF graph. The implicit use of owl:subClass,
rdfs:domain and rdfs:range axioms can be used to obtain these relations, but
they are nor usually available in most of the endpoints. We are currently devel-
oping an extension for using these axioms, in case they are used in the analysed
Endpoints. Otherwise, different approaches should be used to discover such rela-
tionships. A possible approach is to align these automatically extracted ontolo-
gies with existing ones to infer these relationships from how the classes are orga-
nized in similar ontologies. Another different approach we are currently testing

http://github.com/estebanpua/ontology-endpoint-extraction
http://github.com/estebanpua/ontology-endpoint-extraction

Re-constructing Hidden Semantic Data Models by Querying SPARQL 415

is the extraction of the instance set for each discovered class in the Endpoint,
and calculating if any of them have a subsumption relationship. This method
would provide false subclass results, but they could be manually curated.

Additionally, a Web interface has been developed to help users to directly
generate the data models given an SPARQL Endpoint. This interface and the
application itself have been tested in a number of SPARQL Endpoints, showing
that the results are useful for the design of SPARQL queries. This application is
being used to help Bioqueries [3] (http://bioqueries.uma.es) in designing queries
on SPARQL Endpoints accessing biological data.

Acknowledgements. This work was partially supported by Grants TIN2014-58304-
R (Ministerio de Ciencia e Innovación) and P11-TIC-7529 and P12-TIC-1519 (Plan
Andaluz de Investigación, Desarrollo e Innovación).

References

1. Carmona, R.M., Zafra, A., Seoane, P., Castro, A.J., Guerrero-Fernndez, D.,
Castillo-Castillo, T., Medina-Garćıa, A., Cánovas, F.M., Aldana-Montes, J., Navas-
Delgado, I., Alché, J.D.D., Claros, M.G.: ReprOlive: a database with linked data
for the olive tree (Olea europaea L.) reproductive transcriptome. Front. Plant Sci.
6(625) (2015)

2. Chelliah, V., Juty, N., Ajmera, I., Ali, R., Dumousseau, M., Glont, M., Hucka,
M., Jalowicki, G., Keating, S., Knight-Schrijver, V., Lloret-Villas, A., Natarajan,
K.N., Pettit, J.B., Rodriguez, N., Schubert, M., Wimalaratne, S.M., Zhao, Y.,
Hermjakob, H., Le Novre, N., Laibe, C.: BioModels: ten-year anniversary. Nucleic
Acids Res. 43(D1), D542–D548 (2015)

3. Garćıa-Godoy, M.J., López-Camacho, E., Navas-Delgado, I., Aldana-Montes, J.F.:
Sharing and executing linked data queries in a collaborative environment. Bioin-
formatics 29(13), 1663–1670 (2013)

4. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data
summaries for on-demand queries over linked data, pp. 411–420 (2010)

5. Jupp, S., Malone, J., Bolleman, J., Brandizi, M., Davies, M., Garcia, L., Gaulton,
A., Gehant, S., Laibe, C., Redaschi, N., Wimalaratne, S.M., Martin, M., Le Novère,
N., Parkinson, H., Birney, E., Jenkinson, A.M.: The EBI RDF platform: linked open
data for the life sciences. Bioinformatics (Oxf., Engl.) 30(9), 1338–1339 (2014).
http://dx.doi.org/10.1093/bioinformatics/btt765

6. LOD: Open linked data. http://linkeddata.org/
7. Manola, F., Miller, E.: RDF Primer. World Wide Web Consortium, February 2004
8. Navas-Delgado, I., Garćıa-Godoy, M.J., López-Camacho, E., Rybinski, M., Reyes-

Palomares, A., Medina, M., Aldana-Montes, J.F.: Kpath: integration of metabolic
pathway linked data. Database 2015, bav053 (2015)

9. Nuzzolese, A.G., Presutti, V., Gangemi, A., Musetti, A., Ciancarini, P.: Aemoo:
exploring knowledge on the web. In: Proceedings of the 5th Annual ACM Web
Science Conference, WebSci 2013, pp. 272–275 (2013)

10. Prudh́ommeaux, E., Seaborne, A.: SPARQL query language for RDF, W3C rec-
ommendation. http://www.w3.org/TR/rdf-sparql-query/

11. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: LinkedGeoData: a core
for a web of spatial open data. Semant. Web J. 3(4), 333–354 (2012).
http://jens-lehmann.org/files/2012/linkedgeodata2.pdf

http://bioqueries.uma.es
http://dx.doi.org/10.1093/bioinformatics/btt765
http://linkeddata.org/
http://www.w3.org/TR/rdf-sparql-query/
http://jens-lehmann.org/files/2012/linkedgeodata2.pdf

A New Formal Approach to Semantic Parsing
of Instructions and to File Manager Design

Alexander A. Razorenov and Vladimir A. Fomichov(&)

Faculty of Business and Management, School of Business Informatics,
Department of Innovations and Business in the Sphere of Informational
Technologies, National Research University Higher School of Economics,

Kirpichnaya Street 33, 105187 Moscow, Russia
{arazorenov,vfomichov}@hse.ru

Abstract. During roughly the last seven years, an increase of interest in
semantic parsing of instructions in natural language (NL) could be observed. The
principal applications of developed algorithms are NL-interfaces for interaction
with robots and the personages of videogames, navigation in virtual space, and
for developing programs by means of NL. However, the known algorithms are
able to process only simple instructions, including one verb with dependent
words. This paper has the following theoretical objectives: (a) to formally define
in a new way the semantic-syntactic component of a linguistic database and
semantic-syntactic structure of a NL-text; (b) to develop a new algorithm of
semantic parsing of instructions satisfying the following conditions: (i) being
able to process complex NL-instructions including several verbs; (ii) having a
relatively compact form due to a high-level angle of look; (iii) being easy to
implement and to expand; (iv) finding semantic-syntactic relationships in the
input text without constructing a pure syntactic representation of the input text;
(v) being convenient for processing texts not only from English but also from
Russian, German, French and many other languages. The practical objective of
the study was to develop a useful NL-interface to a file manager. A file manager
with a NL-interface NLC-2 (Natural Language Commander - Version Two) has
been developed. This study is underpinned by the theory of K-representations
(knowledge representations) developed by the second author.

Keywords: Natural language processing � Semantic parsing � Theory of
K-representations � SK-language � Morphological basis � Dictionary of lexical
frames � Linguistic database model � Graph-like semantic-syntactic
representation of a text � Software management � File system natural
language management � Natural language commander � Haskell

1 Introduction

The field of designing natural language (NL) processing systems has been quickly
progressed during last fifteen years. During last five-seven years, one has been able to
observe a considerable growth of interest in NL-interfaces being able to fulfill semantic
parsing of instructions. The major part of the publications consider principal aspects of
interaction with robots [1, 2, 4, 17, 19], governing the personages of videogames,

© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 416–430, 2016.
DOI: 10.1007/978-3-319-44403-1_26

navigation in virtual two- and three-dimensional space [5, 18], and developing pro-
grams by means of NL [6, 16].

The problem of instructions’ semantic parsing shifts the accent from statistical
processing of NL-texts to developing the methods of extracting meanings from texts.
The formal methods for designing such NL-interfaces have been still insufficiently
developed. The principal reason is that the most popular formal means for representing
texts’ meanings are based either on first order logic (FOL) or on lambda-calculus. Both
approaches are oriented at considering assertions, the sets of their well-constructed
expressions (formulas) don’t include formal analogues of imperatives.

That is why the listed above NL-interfaces for dealing with instructions realized the
idea of recognizing inputs, proceeding from preliminary prepared templates. The
common shortcomings of the approaches described in the mentioned papers are as
follows: (a) orientation at simple systems of instructions; (b) the necessity to foresee the
full spectrum of the supported instructions.

The analysis of publications on formal semantics of NL shows that nowadays there
is at least one theory providing expressive mechanisms for describing structured
meanings (or semantic structure) of arbitrary complex instructions in NL. It is the
theory of K-representations (knowledge representations), or TKR; it was called the
theory of K-calculuses and K-languages during the first stage of its development. It is
an original theory of designing semantic parsers of NL-texts with the broad use of
formal means for representing input, intermediary, and output data. This theory is set
forth in numerous publications in English [7–9, 11–14] and Russian (see [10]).

This paper continues the line of the works [15, 20] describing the methodology of
designing the file manager with a NL-interface NLC-1 (Natural Language Comman-
der – Version 1) under the framework of TKR.

The first objective of this paper is to develop a new formal approach to designing
the algorithms of complex instructions’ semantic parsing. The constructed semantic
representations (SR) of instructions belong to the class of K-representations, because
they are the expressions of SK-languages (standard knowledge languages). The second
objective is to propose a new approach to designing file managers with NL-interface.
The principles of designing the NL-interface NLC-2 are set forth.

The structure of this paper is as follows. Section 2 describes related approaches to
semantic parsing of instructions; in particular, it includes a short introduction to TKR.
The Sects. 3–8 contain a new mathematical model of a linguistic database, a new
formal way of describing semantic-syntactic structure of NL-texts, and a new algorithm
of instructions’ semantic parsing. Section 9 describes an implementation of the pro-
posed algorithm – a file manger with a NL-interface NLC-2 (Natural Language
Commander - Version 2). Section 10 contains the conclusions.

2 The Main Approaches to Representing Structured
Meanings of Instructions

The design decisions in the process of developing the semantic parsing algorithms
considerably depend on the used approaches to representing structured meanings
(SMs) of instructions in NL. In other words, one often speaks about the approaches to

A New Formal Approach to Semantic Parsing of Instructions 417

constructing semantic representations (SRs) of instructions. The analysis of the sci-
entific literature shows that the main approaches to this problem used in practice are
Abstract Meaning Representation (AMR) [3, 4], lambda-calculus meaning represen-
tation (LCMR) [1], and the theory of K-representations [7–14, 20].

For instance, the instruction “Take the book on the table” is represented by means
of AMR in [4] as follows: (t/take - Taking: Theme (b/book); Source (t1/table); location
(o/n; traject(b). In [1], the instruction “Move to the chair in the third intersection” is
associated with the following SR being an LCMR:

λa.move(a) ∧to(a, ιx.sofa(x)) ∧ intersect(order(λy.junction(y), frontdist, 3), x).
One of the shortcomings of using SRs of such kinds for reflecting SMs of NL-texts

is the loss of expressiveness: if a text is relatively large, its SR provides no possibility
of reconstructing this text (e.g., for the control of this process by a user).

The SRs of instructions belonging to the classes AMR and LCMR usually look
different. However, their significant common feature is the possibility of constructing
designations of various objects mentioned in instructions.

The approaches AMR and LCMR are rather convenient for representing SMs of
simple instructions: with one verb and dependent words, containing no connective OR.
But the instructions emerging in real applications may be much more complex: include
actions joined by the connective AND or OR, indicate the order of actions, time
distance between actions, mention compound designations of objects’ groups as the
operands of actions, include the modal words “necessary”, “should”, etc.

The analysis shows that expressive power of AMR and LCMR is insufficient for
effectively dealing with such complex instructions. However, since the middle of the
1990s, an approach has been available being free from the listed restrictions. It is the
theory of K-representations (knowledge representations), or TKR, developed by
Fomichov [7–14]. An early version of TKR (the theory of restricted K-calculuses and
restricted standard K-languages) [7, 8] introduced a class of formal languages with the
expressive power considerably exceeding the expressive power of AMR seventeen
years before the description of AMR in [3]. A part of advantages of restricted standard
K-languages and SK-languages is indicated in the end of this section.

The part 1 of TKR is a mathematical model (Model 1) of a system of primary units
of conceptual level used by an applied intelligent system. This model determines, in
particular, a new class of complex formal objects called conceptual bases. To construct
an arbitrary conceptual basis (c.b.) B is equivalent to defining a certain finite sequence
of formal objects Tuple(B). The interpretation of its distinguished components St, X, V,
F, tp is as follows. St is a finite set of symbols called sorts and interpreted as desig-
nations of most general notions used in the considered application domains: physical
object, intelligent system, organization, distance value, price value, etc. The countable
set V contains the variables. The countable set X includes the subset St of sorts and
contains the symbols interpreted as the designations of primary informational (or
conceptual) units. The set X is called the primary informational universe of the c.b.
B. The finite subset F of X contains the designations of functions.

The component tp of the sequence Tuple(B) is a function from the union of X and
V into a countable set of strings Types (B), it includes St. The elements of this set are

418 A.A. Razorenov and V.A. Fomichov

called types and are interpreted as structured characteristics (labels) of the entities
denoted by the elements of X. The mapping tp gives us a much more fine-grained
structuring of application domains than first order logic.

Example. A c.b. B may satisfy the following conditions: (a) St includes the elements
(sorts) dyn.phys.ob (dynamic physical object), ints (intelligent system), org (organi-
zation), inf.ob (informational object); (a) X includes the elements Leo-Tolstoy, War-
and-Piece, person, tourist-group, Suppliers, Authorship, and

tp(person) =↑ ints * dyn.phys.ob, tp(Leo-Tolstoy) = ints * dyn.phys.ob,
tp(War-and-Piece) = inf.ob, tp(Authorship) = {(ints, inf.ob)},
tp(tourist-group) = =↑ {ints * dyn.phys.ob}, tp(Suppliers) = {(org, {org})}.

Here the symbol ↑indicates a type of a notion; Suppliers is the name of the function
associating an enterprise with the set of all its suppliers.

A partial order |- is defined on the set of types Types (B), it is called the con-
cretization relation (here the symbol |- is used in a non-standard way, i.e., not as in
mathematical logic). For instance, the following relationships may take place:

phys:obj�dyn:phys:ob; phys:ob �ints � dyn:phys:ob; intsj j�ints � dyn:phys:ob;
ints �ints � dyn:phys:ob; phys:obf gj j� ints � dyn:phys:obf g:

The part 2 of TKR determines a mathematical model (Model 2) of a system
consisting of ten partial operations on conceptual structures. The Model 2 defines, in
particular, a new class of formal languages called SK-languages (standard knowledge
languages). There are weighty reasons to conjecture that SK-languages is a convenient
formal tool for building SRs of arbitrarily complex NL-texts (sentences and discourses)
pertaining to mass spheres of professional activity (engineering, medicine, business,
sport, etc.). The term “a K-representation” (KR) is used for denoting SRs of NL-texts
being the expressions of SK-languages.

The expressions of SK-languages are built from primary semantic units given by a
conceptual basis (c.b.) and several service symbols by means of inductive application
of some original rules P[0], P[1], …, P[10]. The language corresponding to an arbitrary
c.b. B is designated by Ls(B).

The rule P[0] says that the elements of the primary informational universe X(B) and
the variables from V(B) belong to Ls(B); in other words, they are K-strings. E.g., the
unit file1 is a K-string. The rules P[1]–P[10] jointly define a system consisting of ten
partial operations on conceptual structures [10, 11].

The rule P[1] allows to connect intensional quantifiers and designations (simple or
compound) of notions, in particular, to construct the formulas certain file1, certain file1
* (Extension, “doc”), all file1 * (Extension, “doc”). The rule P[2] is used for con-
structing the expressions of the form f(t1,…, tn), where f is the name of a function
(example: Creation-date(certain file1)). The rule P[3] enables us to build the expres-
sions of the form a � bð Þ. Example: (document ≡ file1 * (Extension, “doc”)).

A New Formal Approach to Semantic Parsing of Instructions 419

One uses the rule P[4] for building the expressions of the form r(t1,…, tn), where r is
the name of a relation with n attributes (example: Earlier (Creation-date(certain file1),
#yeasrterday#)). The rule P[5] provides the possibility to mark a formula or its part by
means of a variable. Example: all file1 * (Extension, “doc”) : S1.

The rule P[6] allows us to join the negation connective : to a formula (example:
¬file1). The rule P[7] governs the use of the logical connectives ^ (and) and _ (or).
Example: file1 * (Extension, (“doc” _ “docx”)). Using the rule P[8] at the last step of
an inference, it is possible to construct compound designations of notions. Example:

file1 * (Extension, (“doc” _ “docx”))(Location, certain desktop).
The rule P[9] allows us to use the universal quantifier and existential quantifier (8 и

9) in formulas. The rule P[10] enables us to construct the SRs of finite sequences as the
strings of the form <c1,…, cn>, where c1,…, cn are the elements of a sequence.

Example 1. The instruction “Move to the chair in the third intersection” may have a
KR Semrepr1 of the form IsAction (#now#, movement1 *(Object, certain chair)
(Destination, certain Intersection*(Number, 3))).

Example 2. The instruction “Archive documents in folder “Project” and send to
somebody@example.org” may be associated with the KR Semrepr2 of the form

(IsAction (#now#, archiving1 * (Object1, certain set * (Qualitative-composition,
document1 * (Location, certain folder 1 * (Name1, “Project”) : S1))(Result, x1), e1 ^
IsAction (#now#, sending1 * (Object1, x1)(Email-address, “somebody@example.
org”), e2) ^ Immediately-after(e2, e1)).

SK-languages enable us to construct SRs both of simple and complex instructions,
preserving the expressiveness of NL and without the loss of intuitively-understandable
connection with the initial text of instruction. Their expressive means exceed the means
of other considered above approaches to representing structured meanings of instruc-
tions. Besides, it is necessary to underline such additional possibilities of SK-languages
as (a) the advantages of using one format both for representing semantics of instruc-
tions and for representing knowledge pieces from ontologies; (b) the possibility to
represent goals and to connect compound goals of active systems by means of logical
connectives; (c) to construct formal semantic representations of compound descriptions
of sets and of notions; (d) to reflect the time and other connections between separate
goals being the components of a compound goal.

3 The Notion of Morphological Basis

Let’s start to describe the principal ideas of transforming NL-texts into
K-representations (KR). The main thing is to find semantic-syntactic links between
lexical units of the processed text and, on this basis, to form one or several KR. With
this aim, we’ll define several new formal objects: a morphological basis, a set of
K-templates (Sect. 4), a dictionary of lexical frames and a linguistic database (Sect. 5),
and a graph-like semantic-syntactic representation of an input text (Sect. 6).

Consider the main ideas of defining a new class of formal objects called mor-
phological bases. Let W be a finite set of elementary textual units (words of word

420 A.A. Razorenov and V.A. Fomichov

combinations) of an input language, and W be the union of the non-intersecting finite
sets of symbols Wd, Ws, Wu, and Wp, where (a) Wd is the set of main lexical units
(words or word combinations) associated with meanings, (b) Ws is the set of markers
(point, comma, etc.); (c) Wu is the set of the connectives ‘and” “or”, and others; (d) Wp
is the set of prepositions and, possibly, another lexical units used for linking the words.

If Z is an arbitrary finite set, let the power set P(Z) be the designation of the set
consisting of all subsets of Z, including the empty set Ø and the set Z.

Let Mprop be a finite set of symbols interpreted as the values of morphological
properties associated with the lexical units of input language: the designations of parts
of speech, of grammatical cases, etc. Let M be a certain subset of Mprop (it is not
excluded that M coincides with the power set P(Mprop)), and <=: be a partial order on
M (i.e., <=: is binary relation on M being reflexive, transitive and antisymmetric).

Example. Let Mprop = (verb, noun, past.simple, present.simple, active.voice, passive.
voice, singular, plural, artif.name}. Here artif.name is the value of the property “class
of textual unit” introduced in the described study; the value artif.name have the strings
in quotes or apostrophes. Then M may contain the subsets of Mprop {verb}, {verb,
past.simple}, {verb, present.simple}, {noun}, {noun, singular}, {noun, plural}, empty
set Ø. Then the following relationships may take place: {verb} <=: {verb, past.simple},
{verb} <=: {verb, present.simple}, {noun} <=: {noun, singular}, {noun} <=: {noun,
plural}, Ø <=: Y, where Y is an arbitrary element of M.

Let B be an arbitrary conceptual basis (see an explanation in Sect. 2 and the defi-
nition in [11]). Let also the following mappings be given:

• rm: W -> P(M) – a mapping associating a unit of an input language with a set of the
possible collections of its morphological properties (the empty set is not excluded);

• rc: W -> W – a mapping associating an elementary text unit with its basic mor-
phological form;

• ru: W -> P(X(B)) – a mapping associating an elementary text unit with a finite
subset of elements from the primary informational universe X(B); besides, for each
d from Wu, ru(d) is a subset of the set {^, _ }, i.e., of the set consisting of the
connectives conjunction and disjunction.

For instance, for a certain subset of English describing the operations with the file
systems, rm(deleted) = {verb, verb.transitive, past.simple, active.voice}. The functions
rc and ru may be described in such a way that rc(deleted) = delete, ru(and) = {^}, ru
(or) = {_}. The described ideas can help to grasp the meaning of the definition of a
morphological basis. It will be used below as one of the tools for finding the links
between lexical units of a text.

Definition 1. Let B be an arbitrary conceptual basis (c.b.). Then a morphological basis
co-ordinated with the c.b. B is an arbitrary ordered 10-tuple Morph of the form

Wd;Ws;Wu;Wp;Mprop;M;\ ¼:; rm; rc; ruð Þ;

A New Formal Approach to Semantic Parsing of Instructions 421

where

• Wd, Ws, Wu, Wp, Mprop are non-intersecting finite sets of symbols;
• M is a non-empty subset of the power set P(Mprop), and <=: is a partial order on the

set M;
• rm: W -> P(M) is a mapping from W into the power set P(M); rc: W -> W is a

mapping from W into W; ru: W -> P(X(B)) is a mapping from W into P(X(B)),
where X(B) is the primary informational universe of the c.b. B.

4 Templates for Building K-Representations

Let’s introduce the notion of a formula’s template for constructing K-representations
(KR). E.g., a template can have the form x1 * (Object, x2), where x1, x2 are the
variables of the type inf.object. Let’s make a try to use this string for processing the
phrase “Delete the folder “Documents”. It is possible to replace the variables x1 and x2
by KRs describing an action and an object being the operand of this action. E.g., x1
may be replaced by the informational unit deleting1, and x2 – by the KR certain
folder1 * (Name1, “Documents”). Then the result of replacement will be the KR
deleting1 * (Object, certain folder1 * (Name1, “Documents”)).

Definition 2. Let B be an arbitrary conceptual basis (c.b.). Then a template of a K-
representation is an ordered triple (Frame, x1, x2), where x1 and x2 are the variables of
the c.b. B, and Frame is a string that can be transformed into an expression (an
l-formula) of the SK-language Ls(B) by means of replacing the occurrences of the
symbols x1 and x2 by certain expressions (l-formulas) of the language Ls(B). The set of
all templates of a KR corresponding to the c.b. B is denoted by K-templates (B).

5 A Dictionary of Lexical Frames and a Model of Linguistic
Database

A dictionary of lexical frames describes the rules used for establishing the
semantic-syntactic relationships between the lexical units of the processed text. It
formulates the requirements to the lexical units to be connected: the collections of their
morphological properties and additional semantic restrictions.

For describing semantic restrictions, the mechanism of structuring thematic
domains in the theory of K-representations (TKR) by means of types will be used. This
mechanism will prevent us, in particular, from building the semantic structures of the
form certain paint * (Colour, sweet), because semantic units corresponding to the
colours and tastes will have different types.

Since TKR defines the concretization relation |- on the set of types Types (B), we do
have the possibility (if necessary) to indicate most general semantic restrictions and to
verify not the coincidence of two types but the fact that one type t1 is a concretization
of the other type t2 (in particular, the types t1 and t2 may coincide). E.g., the type of the
notion “a person” may be the string ints * dyn.phys.ob, where ints is the sort

422 A.A. Razorenov and V.A. Fomichov

“intelligent system”, and dyn.phys.ob is the sort “dynamic physical object”. That is we
are able to consider a concrete person as dynamic physical object, while finding his/her
space location, and as an intelligent system, while reading the news about the devel-
opment of a new technology, etc.

Definition 3. B be an arbitrary conceptual basis (c.b.), Morph be an arbitrary mor-
phological basis co-ordinated with the c.b. B. Then a dictionary of lexical frames
co-ordinated with B and Morph is an arbitrary finite set LexFrames consisting of the
ordered 7-tuples of the form

type1;morph1; type2;morph2; prep; template; dirð Þ;

where the following conditions are satisfied:

• type1 and type2 are the types from the set Types(B);
• morph1 and morph2 are the elements of the set M, i.e. they are the collections of

morphological properties’ values;
• prep is either an element of the set Wp or the empty preposition nil;
• template is an element of the set K-templates(B);
• dir is a number from the set {−1,0,1}.

Example. A certain dictionary of lexical frames to be used below may include the
7-tuples

(action, {verb}, [object], {noun}, nil, (x1 * (Object1, x2), x1, x2), 0),
(action, {verb}, space.object, {noun}, to, (x1 * (Object1, x2), x1, x2), 0),
([object],{noun}, literal,{artif.name},(x2 * (Name1, x4), x2, x4), 1).

A natural partial order on the set M being a subset of the power set P(Mprop) may
be the relation “To be a subset of a set”, e.g. {noun} <=: {noun, possessive.case}.

Definition 4. A linguistic database is the ordered triple LingDb of the form (B, Morph,
LexFrames), where B is an arbitrary conceptual basis (c.b.), Morph is an arbitrary
morphological basis (m.b.) co-ordinated with the c.b. B, and LexFrames is an arbitrary
dictionary of lexical frames co-ordinated with the c.b. B and m.b. Morph.

6 A Graph-like Semantic-Syntactic Structure of a Text

Let’s introduce a notion playing the crucial role in the description of the algorithm
SemSyntRA in Sect. 7.

Definition 5. A graph-like semantic-syntactic structure (GSSR) of the input text
T = t1…tn for the linguistic database LingDb = (B, Morph, LexFrames) is an ordered
pair SemGraph = (V, E) such that V = {1,…, n | ti belongs to Wd }, and E is the set of
all possible ordered triples of the form (i, j, (sem1,sem2,k,f)) such that i, j belong to V
and for a certain element (type1, morph1, type2, morph2, prep, template, dir) of the
dictionary of lexical frames LexFrames the following conditions are satisfied:

A New Formal Approach to Semantic Parsing of Instructions 423

(1) the set of semantic units ru(t1) associated with the lexical unit t1 includes such unit
sem1 that the type tp(sem1) is a concretization of the element type1 in the partially
ordered set of types Types(B);

(2) the set of the collections of morphological properties’ values rm(t1) associated
with the lexical unit t1 includes a collection x such that morph1 <=: x;

(3) the set of semantic units ru(t2) associated with the lexical unit t2 includes such unit
sem2 that the type tp(sem2) is a concretization of the element type2

(4) the set of the collections of morphological properties’ values rm(t2) associated
with the lexical unit t2 includes a collection y such that morph2 <=: y;

(5) the element prep either is the empty preposition nil or rc(tk) = prep for a certain k,
where 0 < k < j; besides, if i < j, then i < k < j;

(6) f is an element of the set K-templates(B);
(7) if dir = −1, then i > j; if dir = 1, then i < j; if dir = 0, then i is not equal to j.

The indicated conditions are interpreted as follows. The conditions 1–4 formulate
the restrictions for the pair of words to be connected by a semantic relationship; later it
will be described by a K-representation constructed with the help of the string template
(the condition 6). The condition 1 restricts the type of semantic unit corresponding to
the principal lexical unit, and the condition 2 restricts the values of morphological
properties of the unit. The conditions 3 and 4 set forth similar restrictions for the
dependent lexical unit. The condition 5 takes into account the participation of prepo-
sitions in establishing semantic relations between the words. Besides, it says that a
preposition is located before the dependent lexical unit. The condition 7 restricts or not
the order of principal and dependent lexical units.

It should be mentioned that the vertices of a graph are not the words but their
indexes. The explanation is that the same word may have several occurrences in a text
having different connections with another words.

Example. Using the set of the values of morphological properties and the dictionary of
lexical frames described above, it is possible to construct a GSSR of the instruction
Move (1) file (2) “a.txt”(3) to (4) the folder (5) “Documents”(6).

The GSSR will be as follows (we indicate only the set of edges, because the set of
vertices, obviously, is {1,2,3,5,6}):

fð1; 2; ðmovement1; file1; nil; ðx1 � ðObject1; x2Þ; x1; x2ÞÞÞ;
ð1; 5; ððmovement1; file1; folder1; 4; ðx1 � ðDestination1; x3Þ; x2; x3ÞÞÞ;
ð2; 3; ðfile1; 00a:txt00; nil; ðx2 � ðName1; x4Þ; x2; x4ÞÞÞ;
ð5; 6; ðfile1; 00Documents00; nil; ðx2 � ðName1; x4Þ; x2; x4ÞÞÞ;
ð2; 6; ðfile1; 00Documents00; nil; ðx2 � ðName1; x4Þ; x2; x4ÞÞÞg:

7 The Algorithm of Semantic Parsing SemSyntRA

The ideas stated above underpin a new algorithm of semantic parsing described below.
We combined the methods of descending and ascending design.

424 A.A. Razorenov and V.A. Fomichov

A New Formal Approach to Semantic Parsing of Instructions 425

8 The Examples of Processing Instructions by the Algorithm
SemSyntRA

The stage of building GSSR was illustrated above by means of examples. For building
spanning trees, we used the algorithm from [21]. It was modified for dealing with
directed graphs. This algorithm gets all possible subgraphs with all vertices of GSSR
and checks that the subgraph is a tree and all vertices of GSSR are reachable from a
certain root vertex.

K-representations for every spanning tree are built by tree folding from the deepest
nodes to the root of the tree. On every step we reduce the subtrees with depth 1. For
every edge of the subtree, the algorithm builds a KR based on a K-representation
template. Several K-representations are mapped to single K-representation in accor-
dance with certain rules, in particular:

• K-representations of the form c*(r1, z1),…,c*(rn, zn) are mapped to K-representation
c*(r1, z1)…(rn, zn);

• K-representations of the form int c, where int is intensional quantifier, together with
K-representations of the form c*(r1,z1),…, c*(rn, zn) are mapped to K-representation
int c*(r1, z1)…(rn, zn);

• K-representation a and (b1 λ…λ bn), where λ2{∧,∨}, are mapped to
K-representations (aλb1λ…λbn), if tp(a) = tp(b1λ…λbn).

This K-representation is used on next step of tree folding or (for root node) as the
result. Consider the graph-like semantic-syntactic representation (GSSR) from the
example above. Its edges: (2, 3, (certain x2*(Name1, x4), x2, x4)) and (5, 6, (certain
x2*(Name1, x4), x2, x4)) will be mapped to K-representations certain file1*(Name1,
“a.txt”) and certain folder1*(Name1, “Documents”) respectively. The edges
(1, 2, (x1*(Object1, x2), x1, x2)) and (1, 5, (x1*(Destination1, x3), x1, x3)) will be
mapped to K-representations movement1*(Object1, certain file1*(Name1, “a.txt”))
and movement1*(Destination1, folder1*(Name1, “Documents”)) respectively. These
K-representations will be mapped to single K-representation:

movement1 � ðObject1; certain file1 � ðName1;00 a:txt00ÞÞðDestination1; certain
folder1 � ðName1;00 Documents00ÞÞ:

This K-representation is the result of spanning tree folding. Not every spanning tree
could be mapped to correct KR. Also spanning trees could be filtered by some rules, for
example: all words between the proposition and the noun should be connected to the
noun.

Let’s consider an example with the conjunctions “and” or “or”:
Move (1) files(2) “a.txt”(3) and (4) “b.txt”(5) to(6) the folder(7) “Documents”(8).
The GSSR for this text is the follows: the set of vertices: {1,2,3,5,6}; the edges:

426 A.A. Razorenov and V.A. Fomichov

f
ð1; 2; ðMovement1; file1; nil; ðcertain x1 � ðObject1; x2Þ; x1; x2ÞÞÞ;
ð1; 7; ðmovement1; folder1;� to �; ðcertain x1 � ðDestination1; x3Þ; x1; x3ÞÞÞ;
ð2; 3; ðfile1;00 a:txt00; nil; ðcertain x2 � ðName1; x4Þ; x2; x4ÞÞÞ;
ð2; 5; ðfile1;00 b:txt00; nil; ðcertain x2 � ðName1; x4Þ; x2; x4ÞÞÞ;
ð7; 8; ðfolder1;00 Documents00; nil; ðcertain x2 � ðName1; x4Þ; x2; x4ÞÞÞ;
ð2; 8; ðfile1;00 Documents00; nil; ðcertain x2 � ðName1; x4Þ; x2; x4ÞÞÞ

g:

Consider spanning tree without the edge (2,8, …). Let’s describe the folding of
node 2 subtree. Edges of subtree will be mapped to K-representations certain file1*
(Name1, “a.txt”) и certain file1*(Name1, “b.txt”). So, these K-representations should
be mapped to KR certain file1*(Name1, (“a.txt” λ “b.txt”)), where λ2{∧,∨}. So we
should define binary link between literals “a.txt” λ “b.txt”. The vertices of subtree are
between 2 and 5. There is the conjunction “and” between 2nd and 5th positions on
position 4, so we should use λ = ru(«and») = ∧. And subtree of the vertex 2 will be
mapped to K-representation certain File1*(Name1, (“a.txt” ∧ “b.txt”)). The final
K-representation will be:

movement1 � ðObject1; certain file1 � ðName1; ð00a:txt00 ^00 b:txt00ÞÞÞðDestination1; certain
folder1 � Name1;00 Documents00ð ÞÞ:

We should also note that every spanning tree could be mapped to at most one
K-representation, because variations are not allowed by the algorithm and edge
marking.

9 Application of the Algorithm in the File Manager NLC-2

The model of linguistic database, the notion of GSSR, and the described algorithm
underpinned the design of file management system NLC-2 (Natural Language Com-
mander – Version 2). This program is the next generation of NLC-1, which was
developed for the studies and experiments in the field of NL-interfaces to action-based
applications [15, 20]. NLC-2 processes natural language instructions in accordance
with the following scheme on Fig. 1:

Example. Let’s look how NLC-2 processed the user instruction from Example 2 of
Sect. 2: “Archive documents in folder “Project” and send to “somebody@example.
org””. This instruction is transformed by the algorithm described above into the pri-
mary K-representation Semrepr2 described in Sect. 2.

Now if the knowledge base of NLC-2 contains the transformation rule Document1
├ file1 * (Extention1, (“doc” ∨ “docx” ∨ “odt”)) then the system NLC-2 transforms
the constructed primary K-representation of the user instruction into its secondary KR

A New Formal Approach to Semantic Parsing of Instructions 427

ðIsActionð#now#; archiving1 � ðObject1; certain set � ðQualitative�
composition; certain file1 � ðExtention1; ð00doc00 _00 docx00 _00 odt00ÞÞðLocation;
certain folder1 � ðName1;00 Project00Þ : S1ÞÞðResult; x1Þ; e1 ^ IsAction

ð#now#; sending1 � ðObject1; x1ÞðEmail�address;
00somebody@example:org00Þ; e2Þ ^ Immediately�afterðe2; e1ÞÞ:

Then the result shell script for Bourne-Again Shell (BASH) is as follows:
zip/tmp/z000129.zip “Project/*.doc” “Project/*.docx” “Project/*.odt”; sendfile
somebody@example.com/tmp/z000129.zip. The final step is the execution of this script.

10 Conclusions

The principal scientific results described in this paper are as follows. Firstly, a new
mathematical model of a linguistic database is developed. This model considers less
formal entities in comparison with the models proposed in [10, 11] due to the union of
the dictionaries of verbal-prepositional frames and of prepositional frames. Secondly, a
new formal way of describing semantic-syntactic structure of NL-texts is proposed in
comparison with matrix semantic-syntactic representation introduced in [10, 11].
Besides, a new algorithm of semantic parsing of instructions is presented, it satisfies the
following conditions: (a) being able to process complex NL-instructions including
several verbs; (b) being easy to implement and to expand; (c) finding semantic-
syntactic relationships in the input text without constructing a pure syntactic repre-
sentation of the input text; (d) being convenient for processing texts not only from
English but also from Russian, German, French and many other languages. A program
implementation of this algorithm with the help of the language Huskell is developed.

Acknowledgements. We are grateful to four anonymous referees of this paper for precious
remarks.

User instruction

Primary K-representation

Secondary K-representation

BASH Script

Fig. 1. The scheme of processing instructions in NLC-2

428 A.A. Razorenov and V.A. Fomichov

References

1. Artzi, Y., Zettlemoyer, L.: Weakly supervised learning of semantic parsers for mapping
instructions to actions. Trans. Assoc. Comput. Linguist. 1, 49–62 (2013). Action Editor:
Jason Eisner. https://aclweb.org/anthology/Q/Q13/Q13-1005.pdf. Accessed 13 Mar 2016

2. Babes-Vroman, M., MacGlashan, J., Gao, R., Winner, K., Adjogah, R., desJardins, M.,
Littman, M., Muresan, S.: Learning to interpret natural language instructions. In:
Proceedings of the Second Workshop on Semantic Interpretation in an Actionable
Context, pp. 1–6, Montreal, Canada, 3–8 June 2012. https://aclweb.org/anthology/W/
W12/W12-2801.pdf. Accessed 13 Mar 2016

3. Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K.,
Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation for sembanking. In:
Proceedings of the 7th ACL Linguistic Annotation Workshop and Interoperability with
Discourse, Sofia, Bulgaria, 8–9 August 2013 (2013). www.aclweb.org/anthology/W13-2322.
Accessed 12 Mar 2016

4. Bastianelli, E., Castellucci, C., Croce, D., Basili, R.: Textual inference and meaning
representation in human robot interaction. In: Proceedings of the Joint Symposium on
Semantic Processing. Textual Inference and Structures in Corpora, pp. 65–69 (2013). https://
aclweb.org/anthology/W/W13/W13-3820v2.pdf. Accessed 13 Mar 2016

5. Benotti, L., Villalba, M., Lau, T., Cerruti, J.: Corpus-based interpretation of instructions in
virtual environments. In: Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 181–186, Jeju, Republic of Korea,
8–14 July 2012 (2012). https://aclweb.org/anthology/P/P12/P12-2036.pdf. Accessed 13 Mar
2016

6. Carlos, C.S.: Natural language programming using class sequential rules. In: Proceedings of
5th International Joint Conference on Natural Language Processing, pp. 237–245, Chiang
Mai, Thailand, 8–13 November 2011. https://aclweb.org/anthology/I/I11/I11-1027.pdf.
Accessed 13 Mar 2016

7. Fomichov, V.A.: A mathematical model for describing structured items of conceptual level.
Informatica. Int. J. Comput. Inform. (Slovenia) 20(1), 5–32 (1996)

8. Fomichov, V.A.: Theory of restricted K-calculuses as a comprehensive framework for
constructing agent communication languages. Informatica. Int. J. Comput. Inform.
(Slovenia) 22(4), 451–463 (1998). In: Fomichov, V.A., Zeleznikar, A.P. (eds.) Special
Issue on NLP and Multi-Agent Systems

9. Fomichov, V.A.: An ontological mathematical framework for electronic commerce and
semantically-structured web. Informatica. Int. J. Comput. Inform. (Slovenia) 24(1), 39–49
(2000). In: Zhang, Y., Fomichov, V.A., Zeleznikar, A.P. (eds.) Special Issue on Database,
Web, and Cooperative Systems

10. Fomichov, V.A.: The Formalization of Designing Natural Language Processing Systems.
MAX Press, Moscow (2005). (in Russian)

11. Fomichov, V.A.: Semantics-Oriented Natural Language Processing: Mathematical Models
and Algorithms. Springer, New York (2010)

12. Fomichov, V.A.: Theory of K-representations as a comprehensive formal framework for
developing a multilingual semantic web. Informatica. Int. J. Comput. Inform. 34(3), 387–
396 (2010)

13. Fomichov, V.A.: A broadly applicable and flexible conceptual metagrammar as a basic tool
for developing a multilingual semantic web. In: Métais, E., Meziane, F., Saraee, M.,
Sugumaran, V., Vadera, S. (eds.) NLDB 2013. LNCS, vol. 7934, pp. 249–259. Springer,
Heidelberg (2013)

A New Formal Approach to Semantic Parsing of Instructions 429

https://aclweb.org/anthology/Q/Q13/Q13-1005.pdf
https://aclweb.org/anthology/W/W12/W12-2801.pdf
https://aclweb.org/anthology/W/W12/W12-2801.pdf
http://www.aclweb.org/anthology/W13-2322
https://aclweb.org/anthology/W/W13/W13-3820v2.pdf
https://aclweb.org/anthology/W/W13/W13-3820v2.pdf
https://aclweb.org/anthology/P/P12/P12-2036.pdf
https://aclweb.org/anthology/I/I11/I11-1027.pdf

14. Fomichov, V.A.: SK-languages as a comprehensive formal environment for developing a
multilingual semantic web. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R.
(eds.) DEXA 2014, Part I. LNCS, vol. 8644, pp. 394–401. Springer, Heidelberg (2014)

15. Fomichov, V.A., Razorenov, A.A.: A new method of extracting structured meanings from
natural language texts and its application. In: Métais, E., Roche, M., Teisseire, M. (eds.)
NLDB 2014. LNCS, vol. 8455, pp. 81–84. Springer, Heidelberg (2014)

16. Lei, T., Long, F., Barzilay, R., Rinard, M.: From natural language specifications to program
input parsers. In: Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1294–1303, Sofia, Bulgaria, 4–9
August 2013. https://aclweb.org/anthology/P/P13/P13-1127.pdf. Accessed 13 Mar 2016

17. Marge, M., Rudnicky, A.: Comparing spoken language route instructions for robots across
environment representations. In: Proceedings of the SIGDIAL 2010 Conference, pp. 157–
164, The University of Tokyo, 24–25 September 2010. https://aclweb.org/anthology/W/
W10/W10-4328.pdf. Accessed 13 Mar 2016

18. Misra, D.K., Tao, K., Liang, P., Saxena, A.: Environment-driven lexicon induction for
high-level instructions. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 992–1002, Beijing, China, 26–31 July 2015.
https://aclweb.org/anthology/P/P15/P15-1096.pdf. Accessed 13 Mar 2016

19. She, L., Yang, S., Cheng, Y., Jia, Y., Cha, J, Xi, N.: Back to the blocks world: learning new
actions through situated human-robot dialogue. In: Proceedings of the 15th Annual Meeting
of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pp. 89–97,
Philadelphia, U.S.A., 18–20 June 2014 (2014). https://aclweb.org/anthology/W/W14/W14-
4313.pdf. Accessed 13 Mar 2016

20. Razorenov, A.A., Fomichov, V.A.: The design of a natural language interface for file system
operations on the basis of a structured meanings model. Proc. Comput. Sci. 31, 1005–1011
(2014). Elsevier; Open access. http://authors.elsevier.com/sd/article/S1877050914005304

21. Web-resource: Ninety-Nine Haskell Problems: Construct all spanning trees. https://wiki.
haskell.org/99_questions/Solutions/83. Accessed 21 May 2015

430 A.A. Razorenov and V.A. Fomichov

https://aclweb.org/anthology/P/P13/P13-1127.pdf
https://aclweb.org/anthology/W/W10/W10-4328.pdf
https://aclweb.org/anthology/W/W10/W10-4328.pdf
https://aclweb.org/anthology/P/P15/P15-1096.pdf
https://aclweb.org/anthology/W/W14/W14-4313.pdf
https://aclweb.org/anthology/W/W14/W14-4313.pdf
http://authors.elsevier.com/sd/article/S1877050914005304
https://wiki.haskell.org/99_questions/Solutions/83
https://wiki.haskell.org/99_questions/Solutions/83

Ontology-Based Deep Restricted Boltzmann
Machine

Hao Wang(B), Dejing Dou, and Daniel Lowd

Computer and Information Science, University of Oregon, Eugene, USA
{csehao,dou,lowd}@cs.uoregon.edu

Abstract. Deep neural networks are known for their capabilities for
automatic feature learning from data. For this reason, previous research
has tended to interpret deep learning techniques as data-driven meth-
ods, while few advances have been made from knowledge-driven perspec-
tives. We propose to design a semantic rich deep learning model from a
knowledge driven perspective, by introducing formal semantics into deep
learning process. We propose ontology-based deep restricted Boltzmann
machine (OB-DRBM), in which we use ontology to guide architecture
design of deep restricted Boltzmann machines (DRBM), as well as to
assist in their training and validation processes. Our model learns a set
of related semantic-rich data representations from both formal semantics
and data distribution. Representations in this set correspond to concepts
at various semantic levels in a domain ontology. We show that our model
leads to an improved performance, when compared with conventional
deep learning models in classification tasks.

1 Introduction

Deep learning has achieved state of the art performance on many cutting-edge
applications, including computer vision [1], speech and phonetic recognition [2],
natural language processing [3], multi-task and multi-modal learning [4], and
many others. Deep learning is often called representation learning [5], which
emphasizes its aspect of automatic representation learning from data. Features
in learned representations are formulated in a bottom up way, such that higher-
level features are defined recursively from lower-level ones. For this reason, pre-
vious research tended to interpret deep learning techniques from data-driven
perspectives. Few efforts have been made for semantic-rich deep learning meth-
ods, especially, for the ones using formal semantics.

In practice, data-driven approaches often carry various limitations. In deep
learning, it is often difficult to interpret representations learned from data with
accurate high-level semantics [6]. Over-fitting is a prevalent issue in deep neural
networks that have a large number of parameters [7]. While we expect a well-
trained deep representation to encode a non-local generalization prior over input
space, it has often been proved to be sensitive to training data distribution.
Poorly distributed data can result in an inferior or even wrong generalization.
For similar reasons, deep representations often fail to generalize to examples that
c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part I, LNCS 9827, pp. 431–445, 2016.
DOI: 10.1007/978-3-319-44403-1 27

432 H. Wang et al.

fall outside original training sample domain. For instance, deep neural networks
can mis-classify images, when imperceptible perturbation is applied [8]. Or they
can interpret images that are completely unrecognizable to humans, with almost
full confidence [9].

One prevalent way to solve the afore-mentioned issues in data-driven
approaches is to augment machine learning tasks with domain knowledge. Pre-
viously, domain knowledge has been applied on a wide range of applications in
various forms. However, for those methods with task-dependent domain knowl-
edge, making generalizations to new applications are usually difficult due to their
labor-intensive knowledge crafting process. On the other hand, formal semantics,
the formal encoding of domain knowledge, has provided a way to systematically
encode, share, and reuse knowledge across applications and domains. In practice,
formal semantics can support a wide range of key aspects in machine learning,
data mining, and artificial intelligence techniques. For instance, formal semantics
can help filter out redundant or inconsistent data, and can generate semantic
rich results [10]. It can work as a set of prior knowledge or constraints, to help
reduce search space and to guide search path [11].

It turns out to be an intriguing question to wonder what roles formal seman-
tics can play in the recent trend of machine learning research, deep learning.
Based on previous research, we expect formal semantics to assist in deep learn-
ing process from the following perspectives:

– Directing deep learning architecture design, resulting in learning models that
better fit with current application domains.

– Assisting in representation learning processes, leading to data representations
that encode critical factors from both data and formal semantics.

– Guiding training processes that capture critical semantics of data, with a
representation that well generalizes a non-local prior over input space.

– Assisting in the resulting generation processes with expressive representation
interpretations for high level semantics.

In this paper, we address the above goals with a semantic-rich deep learning
framework that learns representations from both data distribution and formal
semantics. Specifically, we propose an ontology-based deep restricted Boltzmann
machine (OB-DRBM) model, in which formal ontology is used to guide archi-
tecture design of deep restricted Boltzmann machines (DRBM) [12], as well as
to assist in their training and validation processes.

An ontology provides a formal representation of domain knowledge, through
concepts, relationships, axiomatic constraints, and individuals. Figure 1 shows a
sample ontology for news reports, recreational sports domain, used in one of our
experiments. It contains a set of concepts for recreational sports in news reports,
and relations between the concepts. Using a domain ontology, we can design an
OB-DRBM model to learn a set of representations, each of which corresponds to
a concept in the ontology. This set of representations learns to encode regularities
from data with various semantic granularities for the current domain. For instance,
using the news report ontology, we can learn representations that correspond to

Ontology-Based Deep Restricted Boltzmann Machine 433

Fig. 1. A sample ontology for news reports, recreational sports domain. Each concept
represents a type or category of recreational sport.

concepts, “recreational sports,” “auto racing,” and “automobile racing.” Further-
more, our model provides a solution to semantic rich representation learning, in
that representations learned for higher level semantics can support representation
learning processes for their lower level subclass semantics. For instance, as shown
in Fig. 2, in our model, representation learned for “recreational sports” can serve as
a priori for the representation learning of “auto racing” and “bat and ball games.”
The inspiration for our OB-DRBM design primarily comes from the robustness
theory of cognitive development process in biological neural networks.

Fig. 2. Representation learning for news report ontology. For each concepts in this
ontology, we use RBM layers to learn its data representation, which are further feed
into RBM layers for related concepts, as auxiliary information.

In biological neural networks, many activities related to cognitive develop-
ment process, such recognition and categorization, are often learned as a repre-
sentation of a shared ontology [13]. Humans learn to categorize objects starting

434 H. Wang et al.

from early age by a hierarchal representation of object taxonomy in the world.
The cognitive development process, for human being, usually begins with learn-
ing basic categories, such as ball, then progressively evolves into categories with
more details, such as basketball [14]. Based on past knowledge and experience, a
biological neural network learns by taking advantage of knowledge coming from
previously learned categories, rather than learning from scratch. It leads to an
efficient learning system that requires fewer samples to develop new generaliza-
tion or ability promotion.

On the contrary, current deep neural networks not only require a large
amount of data to make efficient learning and generalizations, but they also
generalize poorly to data instances in a new but related domain [8,9]. Current
deep neural networks not only require a large amount of data to make efficient
learning and generalizations, but they also generalize poorly to data instances
in a new but related domain [8,9]. Following the inspirations from robustness
of human cognitive development process [14], we model representation learning
in our model with a shared higher-level representation. We model representa-
tion learning in our model with a shared higher-level representation. We expect
that representations learned for concepts at a higher semantic level, such as car
and computer, can well assist in the process of learning representations, such as
sedan and laptop, at more detailed semantic levels. It also renders our model the
potential to explore the semantic relations between data instances, as well as the
capability to learn a set of semantic rich representations with various semantic
granularities.

Our contributions of this paper are as follows:

– We introduce a semantic-rich deep learning model, OB-DRBM, in which for-
mal ontology has assisted in all stages of the deep learning process, including
architecture design, training, and validation. Such architecture can learn a
set of semantic-rich data representations from both data distribution and for-
mal semantics. Representations learned correspond to concepts in a domain
ontology, at various semantic levels.

– We propose corresponding training and validation methods, with assistance of
inference and consistency-checking capabilities from ontologies and semantic
reasoners. We show that our model leads to an improved performance, when
compared with conventional deep learning models in text document classifi-
cation tasks.

The remainder of this paper paper is structured as follows: Sect. 2 describes
relevant previous works; Sect. 3 formally describes the architecture formulation
of our model; in Sect. 4, we present our experiment result, when we apply OB-
DRBM model to problems in various domains; in Sect. 5, we conclude our work
by discussing potential future directions and their applications.

2 Related Work

In this paper, we propose to use formal ontology to assist in the deep learning
process. Our OB-DRBM model learns a set of semantically related representations

Ontology-Based Deep Restricted Boltzmann Machine 435

for each concept in a domain ontology. This set of representations also constitutes
a formal semantics embedding based on both formal semantics and data distrib-
ution. Fields closely related to our model include, but are not restricted to, deep
learning, knowledge engineering, and knowledge base embedding.

2.1 Deep Learning

In recent years, the rich set of deep neural network variations has lead to suc-
cesses in numerous applications. Popular architectures of deep neural networks
include, restricted Boltzmann machine (RBM) [12], convolutional neural net-
works (CNN) [1], and recurrent neural networks (RNN) [15]. RBM models have
demonstrated exceptional performances for tasks with both labeled and unla-
beled data [12]. CNN can effectively train data with topological structures and
strong local correlations, such as image and speech [1]. RNN has been success-
fully applied on time series data and natural languages as a memory and latency
model [15].

2.2 Knowledge Engineering

Knowledge engineering (KE) [16] is a research field that dedicates to develop
techniques to build and reuse formal knowledge in a systematic way. In the past
few decades, the proliferation of knowledge engineering has remarkably enriched
the family of formal semantic representations. Ontology is one of the successful
knowledge engineering advances. The encoded formal semantics in ontologies
is primarily used for effectively sharing and reusing of knowledge and data.
Prominent examples of domain ontologies include the Gene Ontology (GO [17]),
Unified Medical Language System (UMLS [18]), and more than 300 ontologies
in the National Center for Biomedical Ontology (NCBO [19]).

2.3 Knowledge Base Embedding

Recent research has developed methods to learn embeddings of knowledge base
(KB) systems, such as WordNet, FreeBase, and DBPedia [20,21]. Entities in
knowledge bases are embedded as low-dimensional vector representation. Syn-
tactics, operations, and relations between entities are embedded as linear and
bi-linear translations, matrix and matrix factorizations, and tensors. Bordes
et al. [20] propose to learn vector-matrix embedding of knowledge base, in which
knowledge bases are considered as graph models. Socher et al. [21] developed
knowledge base embedding systems based on neural tensor networks for knowl-
edge base completion. The key difference between our OB-DRBM model and
previous knowledge base embedding model is, our model can learn embeddings
from both data distributions and formal semantics, while previous methods learn
only from a knowledge base.

436 H. Wang et al.

3 Ontology-Based Deep Restricted Boltzmann Machine

In this section, we introduce our method to build an OB-DRBM model. We
begin with a review of related techniques, including ontology in Sect. 3.1, seman-
tic reasoner in Sect. 3.2, and restricted Boltzmann machine (RBM) in Sect. 3.3.
We discuss the architecture design of our OB-DRBM model in Sect. 3.4 and
corresponding training and validation methods in Sect. 3.5.

3.1 Ontology

Ontology [22] is an explicit specification of a shared conceptualization. The for-
mal specification of an ontology can be defined as a quintuple, O = (C,P, I, V,A)
where C, P , I, V , A are the set of classes, properties, individuals, property
values and other axioms respectively [23]. Classes C, also referred to as con-
cepts, describe the collections, concepts, types of objects and entities in a
domain discourse. Properties P , also referred to as object properties, define rela-
tions between classes. Individuals I, are the instances or ground level objects
of classes. Property values V , also referred to as data type properties, define
features, attributes, parameter values that classes can have. Axioms A, define
the ground truth of the domain discourse. The architecture design of our OB-
DRBM model primarily uses the set of classes C and properties P in a domain
ontology following the subclass relations in P . For concepts c, s ∈ C, we use
subclass(c, s), superclass(c, s) ∈ P to denote the subclass and superclass rela-
tions between c and s. For each c ∈ C, π(c) = {s |superclass(s, c), s, c ∈ C}
and ρ(c) = {s |subclass(s, c), s, c ∈ C} are used to denote the set of its subclass
and superclass concepts.

3.2 Semantic Reasoner

A semantic reasoner [24] (also referred to as inference engine or reasoning engine)
is a piece of software that infers logical consequences from a set of explicitly
asserted facts or axioms. Prominent semantic reasoners of ontologies includes
Pellet [25] and HerMit [26], and many more. It typically provides automated
support for reasoning tasks such as deducting new knowledge, checking con-
sistencies, verifying facts, and answering queries. Specifically, given a domain
ontology O and a semantic reasoner R, semantic reasoner can deduct an answer
of query q based on the ontology O and axiom a, that q = R(O, a).

In our OB-DRBM model, the semantic reasoner is used in as a component
for data semantics promotion and result validation. For a data instance {x, y},
a semantic reasoner R can return with promoted data instances with labels at
a higher semantic level using x → π(y) = R(O, x → y). For instance, for data
instance {x,AutomobileRacing}, a semantic reasoner R can deduct with the
valid promoted data instance, {x,AutoRacing}, using:

∀ x AutomobileRacing(x)
∀ x AutomobileRacing(x) → AutoRacing(x)

∀ x AutoRacing(x)

Ontology-Based Deep Restricted Boltzmann Machine 437

By recursively applying x → π(y) = R(O, x → y) k times, it can deduct with
promoted data at even higher semantic levels, x → π(k)(y) = R(O, x → y).

Semantic reasoner can also validate the consistency of a set of axioms. For
model with multiple representations and outputs, such as our OB-DRBM model;
inconsistency can happen without consistency regulations from formal semantics.
For instance, for classification outputs, o1 = x → MotorcycleRacing and o2 =
x → BatAndBallGames, a semantic reasoner can deduct with inconsistency
state, ⊥ = R(O, {o1, o2}) using:

∀ x MotorcycleRacing(x)
∀ x MotorcycleRacing(x) → AutoRacing(x)

∀ x AutoRacing(x)
∀ x AutoRacing(x) → ¬BatAndBallGames(x) ∧ BatAndBallGames(x)

⊥.

3.3 Deep Restricted Boltzmann Machine

A deep restricted Boltzmann machine (DRBM) is a deep neural network model
with a stacking of many restricted Boltzmann machines (RBM) layers. RBM
is a deep learning structure with bidirectionally connected binary stochastic
processing units. Typically, a RBM contains a layer of visible units v and a
layer of hidden units u, which are connected as a bipartite graph. RBM is a
probabilistic graphic model that is based on an energy function defined on the
exponential family. The joint probability that RBM assigned to visible units v
and hidden units u are:

p(v, h) =
exp(−E(v, h))

Z
, (1)

where E(v, h) is a energy function defined on all RBM units, which indicates the
degree of harmony of the network, Z is the partition function,

Z =
∑

u,v

exp(−E(v, h)). (2)

For RBM with binary visible units, E(v, h) is defined as:

E(v, h) = −
∑

i

aivi −
∑

j

bjhj −
∑

i, j

vihjwij . (3)

For RBM with Gaussian visible units, E(v, h) is defined as:

E(v, h) = −
∑

i

(vi − ai)2

2σ2
i

−
∑

j

bjhj −
∑

i, j

vi

σi
hjwij . (4)

where σi is the standard deviation for the Gaussian noise for visible unit i, ai,
bi are the bias parameters for visible and hidden units and wij is the weight
parameter of a RBM respectively.

438 H. Wang et al.

Algorithm 1. OB-DRBM Architecture Design
Input: Ontology O = {C, P, I, V, A}, Semantic Reasoner R
Output: OB-DRBM structure T
1: Let r ∈ C be root concept of O
2: Let sc be an empty set
3: Add r into set sc

4: while sc is not empty do
5: for each concept c in sc do
6: Initialize DRBM Dc for concept c
7: Let ρ(c) = {s | s = R(O, subclass of c)}
8: if ρ(c) is not empty then
9: Initialize Mc = mhmv layer(c, ρ(c))

10: Let oc = {c | c ∈ C, c �∈ ρ(c)}
11: Let t = ρ(c) ∪ oc

12: Initialize Sc = softmax layer(c, t)
13: Connect Sc, Dc with Mc

14: Add Mc, Sc, Dc into T
15: end if
16: Let π(c) = {s | s = R(O, superclass of c)}
17: if π(c) is not empty then
18: Connect Dπ(c) and Mπ(c)

19: end if
20: Let sc = ρ(c)
21: end for
22: end while
23: return T

3.4 OB-DRBM Architecture Design

In this section, we present the architecture design of our OB-DRBM model. In
Algorithm 1, we present the method of the model construction. Given an ontology
O and a semantic reasoner R, we compose the OB-DRBM model T following
the subclass relations ρ(c) ∈ P for each concept c ∈ C, for C, P ∈ O. In Fig. 3,
we show a sample OB-DRBM model following the sample news reports ontology
in Fig. 1. The architecture design follows a top down process from higher level
concepts to lower level concepts in C. The model construction process starts
by adding the top level class r ∈ C in the subclass hierarchy into the building
sequence set sc. For each concept c ∈ sc, we first build a DRBM module Dc

for the representation learning of concept c (lines 1–6). For top class r of the
ontology, the DRBM module Dr takes only its own features as input. For other
classes c ∈ C, c �= r, the DRBM module Dc takes inputs from both its own
features and transformed representations from its superclass modules Dπ(c).

For each concept c and its corresponding DRBM module Dc, we attach a
semantic softmax layer Sc, for semantic rich representation learning. The seman-
tic softmax layer Sc is a layer that contains target output units at the correspond-
ing semantic level. For each concept c, let ρ(c) be the set of subclass concepts

Ontology-Based Deep Restricted Boltzmann Machine 439

Fig. 3. An OB-DRBM architecture from news report ontology

of c. Each output unit in Sc corresponds to one concept in the subclass concept
set, ρ(c), plus one out of domain unit oc. The unit oc is used to model data
that falls out of the domain of class c. For example, the semantic softmax layer
SAutoRacing contains three output units, for AutomobileRacing, MotorcycleRac-
ing, OutofDomain respectively. For data instance {x, MotorcycleRacing}, the
target output for SAutoRacing is (0, 1, 0). At the training phase, through seman-
tic reasoner query R(O, x → y), we can convert each labeled data l = {x, y} to
a set of promoted data instances, l(k) = {x, π(k)(y)}, for each semantic softmax
layer.

For each concept c and its corresponding DRBM module Dc, we also attach a
multiple hidden multiple visible restricted Boltzmann machine (MHMV-RBM)
layer Mc for subclass relation modeling. As shown in Fig. 4, a MVMH-RBM
layer is a RBM variation designed to model the subclass transformation from a
superclass to its subclasses. In our OB-DRBM model, each DRBM module Dc for
concept c is attached to its own semantic softmax layer Sc. The representation
learned in Dc encodes the high level feature abstractions for concept c. Before
feeding such a representation to subclass modules Dρ(c), the MVMH-RBM layer
learns a generative representation for both the input of subclasses features and
representation in Dc. The subclass representation and raw input are further feed
into subclass modules Dρ(c) as input.

440 H. Wang et al.

Fig. 4. A MHMV-RBM layer for subclass relation modeling

3.5 Training and Validation

We train our OB-DRBM model using a similar way as the conventional DRBM
model. An OB-DRBM model was first trained with greedy module wised and
layer wised contrastive divergence (CD) [27]. Then we use stochastic gradient
descent across all semantic softmax output to further fine-tune our model with
labeled data. In this process, we minimize the sum of cross entropy error for all
softmax outputs of each concept in our model.

At the validation phase, the output of our OB-DRBM model contains a set
of consistent outputs from all semantic softmax layer units. For example, ŷ =
{Motorcycle Racing, Auto Racing, Recreational Sports} is a consistent output for
input data, {x, MotorcycleRacing}. We enforce this consistency using a logistic
regression across all semantic softmax output configurations with consistency
validation from a semantic reasoner. Specifically, let S be the set of all softmax
output values, the set of outputs is,

ŷ = argmax
s⊂S

∏

c∈s
fc(x,w)[R(O, x → s)]

∑

s⊂S

∏

c∈s
fc(x,w)[R(O, x → s)]

, (5)

in which fc(x,w) is the softmax confidence value for unit c, [R(O, x → s)] is the
activation function that ensures a valid output configuration.

4 Experiment

We present experiments on two problems related to text documents: topic classi-
fication and sentiment analysis. For selected text documents, we adopt a contin-
uous bag of word model [28] in our experiment to convert text documents into
continuous vector representations. From the frequent word set, we remove stop
words and the most frequent 100 words, then keep the next 5000 most frequent
words. In our experiments, we adopt the bag of word model primarily for its
simplicity. We understand that the bag of word model might not be the best
fit and state of the art approach for the datasets to which we have applied our
method on. However, our primary goal is to explore the effect of formal seman-
tics in deep learning process. We verify our theory by comparing our OB-DRBM

Ontology-Based Deep Restricted Boltzmann Machine 441

model with conventional DRBM model under the same context, including data
distribution, meta parameters, training time and algorithms, and so on. In all
experiments, we divide the dataset into 70 % training, 15 % validation, and 15 %
testing. The number of iterations over the training set was determined using early
stopping according to the validation set classification error with an additional
100 iterations.

4.1 News Topic Classification

We first evaluated our model on the news topic classification problem on 20
Newsgroups dataset [29]. The data is organized into 20 different newsgroups, each
corresponding to a different topic, across four domains of computer company,
recreational sports, science, and public talks. We define domain ontologies for
each of those domains, based on the natural taxonomy relations of the topics.
We have shown one example domain ontology defined for this dataset in the
recreational sports domain in Sect. 1, Fig. 1. Other domain ontologies defined for
our experiments can be found in our website [30].

Table 1 gives the classification performances on the four topic domains. Our
OB-DRBM model outperforms the conventional DRBM models in 3 out of the 4
domains, including company, sports, and social, In the science domain, DRBM
model outperforms our model but only by a less than 1 % margin. This is
mostly because the 4 topics in the science domain, sci.electronics, sci.medicine,
sci.space, and sci.crypt share very few common characteristics. The best domain
ontology that fits with the data is an ontology with a flat structure. In this case,
our OB-DRBM model cannot benefit from the shared representation of super-
class in this ontology.

Table 1. Classification performance on news topics

Topic domain OB-DRBM DRBM

Company 77.46 % 75.83 %

Sports 82.11 % 79.57 %

Social 74.20 % 72.69 %

Science 70.46 % 71.32 %

4.2 Sentiment Analysis Datasets

We further conduct our experiment upon document datasets on sentiment analy-
sis tasks. We test our OB-DRBM model on the Pang/Lee movie review data [31]
and sentiment analysis dataset from sentiment tree bank [32]. In both datasets,
movie reviews are labeled as four categories, positive, neutral positive, neutral
negative, and negative. Table 2 gives the classification performances on sentiment
analysis tasks. In both datasets, our OB-DRBM model outperforms conventional
DRBM model by a large margin.

442 H. Wang et al.

Table 2. Classification performance on sentiment analysis

Data set OB-DRBM DRBM

Pang/Lee 68.09 % 64.20 %

Sentiment tree bank 60.19 % 54.45 %

4.3 Data Simulation of Formal Semantics Embedding

One primary motivation of our work is to learn a structured set of representa-
tions from both the formal semantics and the data distribution. We expect this
set of semantic rich representations can encode regularities of the data at various
semantic levels, such that representations of higher-level semantics can encode
the common data regularities of their lower-level subclass semantics. We exam
our hypothesis through visualization of the representation the learning process.
In Fig. 5, we present the low-dimensional principle component analysis (PCA)
embedding of the representations learned in our OB-DRBM model at various
epochs of the supervised-training process. It shows the representation embed-
dings of three concepts with subclass relations, “recreational sports, “automobile
racing,” and “bat and ball games” in our recreational sports ontology. Before
the supervised-training process, the OB-DRBM model was first trained with
unsupervised-training using contrastive divergence (CD) [27].

In Fig. 5(a), we show the set of representations learned in our OB-DRBM
model after the unsupervised-training. At this phase, the model can only learn
from the data distribution. There is neither any data semantics, nor any for-
mal knowledge semantics involved during this phase. After the unsupervised-
training, representation learned for superclass and subclasses are roughly of the
same distribution. Without the direction of formal semantics, each of the three
representations plays a similar role in the model. At the 500th epoch, as shown
in Fig. 5(b), the distributions of the three data representations are still similar.
However, with assistance of formal semantics and labeled data, the represen-
tation of superclass, “recreational sports,” as diverged into a different principle
components compared with the representations of its subclasses.

At the 3000th epoch, as shown in Fig. 5(c), principle components of the repre-
sentations for the two subclass concepts, “moto racing” and “bat and ball,” start
to show difference as well. Distinction of distributions has started to emerge
between the representation of the superclass “recreational sports” and the two
subclasses. At the 5000th epoch, as shown in Fig. 5(d), the model learns a set
of data representations with three distinct principle components and distrib-
utions. At this stage, the representations of the superclass and the subclasses
has encoded data representations with different levels of semantics. We can see
through this process, how the set of semantic rich data representations influence
each other through the assistance of formal semantics. When the superclass
representation starts to model the common semantics of “recreational sports”
gradually, the representations of the two subclasses were set free to learn its
local semantics as well.

Ontology-Based Deep Restricted Boltzmann Machine 443

(a) Embedding at the 10th epoch (b) Embedding at the 500th epoch

(c) Embedding at the 3000th epoch (d) Embedding at the 5000th epoch

Fig. 5. Visualization of OB-DRBM representations.

5 Conclusion and Future Work

We have evaluated the potential of semantic rich deep learning using our OB-
DRBM model. We have demonstrated that, with assistance of formal semantics,
deep learning models can learn a set of semantic rich representations from both
formal semantics and data. This set of representations constitute a structured
embedding of formal knowledge under the data distribution. They also lead to
improved performances in document classification tasks.

For future work, we would like to investigate the embedding learning of formal
semantics in more forms, such as convolutional neural networks, or matrix vector
embeddings. We would like to explore the potential to learn from unsupervised-
data with assistance of formal semantics, as well.

Acknowledgment. This work is supported by the NIH grant R01GM103309. We
acknowledge Ellen Klowden for her contributions to the manuscript. We also thank
anonymous reviewers for their constructive comments, which helped improve the paper.

444 H. Wang et al.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

2. Le, H.S., Oparin, I., Allauzen, A., Gauvain, J., Yvon, F.: Structured output layer
neural network language models for speech recognition. IEEE Trans. Audio Speech
Lang. Process. 21(1), 197–206 (2013)

3. Mikolov, T., Deoras, A., Kombrink, S., Burget, L., Cernockỳ, J.: Empirical eval-
uation and combination of advanced language modeling techniques. In: Annual
Conference of the International Speech Communication Association, pp. 605–608
(2011)

4. Srivastava, N., Salakhutdinov, R.R.: Multimodal learning with deep Boltzmann
machines. In: Advances in Neural Information Processing Systems, pp. 2222–2230
(2012)

5. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

6. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In:
Proceedings of the 13th European Conference on Computer Vision, pp. 818–833
(2014)

7. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

8. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks (2013). arXiv preprint
arXiv:1312.6199

9. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high
confidence predictions for unrecognizable images. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 427–436 (2015)

10. Dou, D., Wang, H., Liu, H.: Semantic data mining: a survey of ontology-based
approaches. In: IEEE International Conference on Semantic Computing, pp. 244–
251 (2015)

11. Balcan, N., Blum, A., Mansour, Y.: Exploiting ontology structures and unlabeled
data for learning. In: Proceedings of the 30th International Conference on Machine
Learning, pp. 1112–1120 (2013)

12. Salakhutdinov, R., Hinton, G.E.: Deep Boltzmann machines. In: International Con-
ference on Artificial Intelligence and Statistics, pp. 448–455 (2009)

13. Kolb, B., Whishaw, I.Q.: Fundamentals of Human Neuropsychology. Macmillan,
London (2009)

14. Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., Boyes-Braem, P.: Basic
objects in natural categories. Cogn. Psychol. 8(3), 382–439 (1976)

15. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural
language with recursive neural networks. In: Proceedings of the 28th International
Conference on Machine Learning, pp. 129–136 (2011)

16. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Pearson Education, Upper Saddle River (2003)

17. Consortium, T.G.O.: Creating the gene ontology resource: design and implemen-
tation. Genome Res. 11(8), 1425–1433 (2001)

18. Lindberg, D., Humphries, B., McCray, A.: The unified medical language system.
Methods Inf. Med. 32(4), 281–291 (1993)

http://arxiv.org/abs/1312.6199
http://arXiv.org/abs/1312.6199

Ontology-Based Deep Restricted Boltzmann Machine 445

19. NCBO: The National Center for Biomedical Ontology. http://www.bioontology.
org/

20. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, pp. 301–306 (2011)

21. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor net-
works for knowledge base completion. In: Advances in Neural Information Process-
ing Systems, pp. 926–934 (2013)

22. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

23. Wimalasuriya, D.C., Dou, D.: Components for information extraction: ontology-
based information extractors and generic platforms. In: Proceedings of the 19th
ACM Conference on Information and Knowledge Management, pp. 9–18 (2010)

24. Dentler, K., Cornet, R., Ten Teije, A., De Keizer, N.: Comparison of reasoners for
large ontologies in the OWL 2 EL profile. Seman. Web 2(2), 71–87 (2011)

25. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. Web Seman. 5(2), 51–53 (2007)

26. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
J. Artifi. Intell. Res. 36, 165–228 (2009)

27. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786), 504–507 (2006)

28. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013). arXiv preprint arXiv:1301.3781

29. Lang, K.: Newsweeder: learning to filter netnews. In: Proceedings of the Interna-
tional Conference on Machine Learning, pp. 331–339 (1995)

30. AIMLAB: Ontologies. http://aimlab-server.cs.uoregon.edu/ontologies
31. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment catego-

rization with respect to rating scales. In: Proceedings of the Annual Meeting on
Association for Computational Linguistics, pp. 115–124 (2005)

32. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y.,
Potts, C.: Recursive deep models for semantic compositionality over a sentiment
treebank. In: Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, p. 1642 (2013)

http://www.bioontology.org/
http://www.bioontology.org/
http://arxiv.org/abs/1301.3781
http://arXiv.org/abs/1301.3781
http://aimlab-server.cs.uoregon.edu/ontologies

Author Index

Aldana-Montes, José F. I-405
Alwan, Ali Amer II-377
Amagasa, Toshiyuki I-336
Amagata, Daichi I-37
Amer, Nawal Ould II-235
Andersen, Ove II-437

Baba, Satoshi II-27
Bah, Ashraf II-410
Baioco, Gisele Busichia I-355
Batko, Michal II-185
Beer, Martin II-244
Behzadnia, Peyman II-315
Berdun, Luis II-335
Bezerra, Karen Aline Alves I-185
Bhatnagar, Vasudha I-287
Bischoff, Holger II-137
Boissier, Martin II-137
Bou, Savong I-336
Bouaziz, Rafik II-167
Boukhalfa, Kamel I-223
Boukhelef, Djillali I-223
Boukhobza, Jalil I-223
Brahmia, Safa II-167
Brahmia, Zouhaier II-167
Brzykcy, Grażyna II-275

Campo, Marcelo II-335
Cao, Jialiang II-326
Cao, Zhongsheng II-454
Caroprese, Luciano II-368
Carterette, Ben II-410
Casanova, Marco A. II-68
Chao, Dong I-321
Chao, Han-Chieh I-71
Chelghoum, Kamel I-136
Chen, Guihai II-326
Chen, Hanxiong II-87
Cheng, Kai II-426
Chevalier, Jules II-287
Cuzzocrea, Alfredo I-185

Dash, Debasis I-287
de Almeida, Eduardo Cunha I-207

de La Robertie, Baptiste II-19
de Melo, Gerard I-370
de Oliveira Moraes, Regina Lúcia I-355
Desmontils, Emmanuel II-303
do Nascimento, Ben Hur Bahia I-185
Dong, Yuyang II-87
Dou, Dejing I-431
Dylla, Maximilian I-370

Eisenreich, Katrin II-137

Faghihi, Usef I-88
Färber, Franz II-137
Faron-Zucker, Catherine II-52
Faust, Martin II-137
Fegaras, Leonidas I-240, I-305
Filho, Edson Ramiro Lucas I-207
Fomichov, Vladimir A. I-416
Fournier-Viger, Philippe I-71, I-88
Fugini, Mariagrazia I-121
Furuse, Kazutaka II-87

Gan, Wensheng I-71
Gao, Xiaofeng II-326
Gao, Yunjun I-153
García-Godoy, María Jesús I-405
Georgoulas, Konstantinos I-169
Géry, Mathias II-235
Goda, Kazuo II-389
Golenberg, Konstantin II-399
Grandi, Fabio II-167
Gravier, Christophe II-287
Guedes, Gustavo Bartz I-355
Guesmi, Soumaya II-11

Hara, Takahiro I-37
Haughian, Gerard II-152
Hayamizu, Yuto II-389
He, Guoliang I-272
He, Qinming I-153
Hoang, Bao-Thien I-136
Horie, Shintaro II-102
Hsu, Jing Ouyang II-254

Hsu, Wynne I-3
Huang, Hao I-153

Ibrahim, Hamidah II-377
Ienco, Dino I-387
Ingalalli, Vijay I-387

Jaśkowiec, Krzysztof I-257
Jenkins, Elliot II-201
Jia, Xianyan I-3

Kacem, Imed I-136
Kantere, Verena II-355
Kato, Chihiro II-389
Kaur, Sharanjit I-287
Kayem, Anne V.D.M. I-105
Keller, Marvin II-137
Keyaki, Atsushi II-216
Kießling, Werner II-3
Kim, Dongsun I-207
Kiritoshi, Keisuke II-102
Kitagawa, Hiroyuki I-321, I-336, II-87
Kitsuregawa, Masaru I-55, II-389
Kluska-Nawarecka, Stanislawa I-257
Knottenbelt, William J. II-152
Komatsuda, Takuya II-216
Kotidis, Yannis I-169
Krishna Reddy, P. I-55

Laforest, Frédérique II-287
Latiri, Chiraz II-11
Le Traon, Yves I-207
Lee, Mong Li I-3
Legien, Grzegorz I-257
Leme, Luiz A.P.Paes II-68
Li, Xuhui II-263
Li, Yifei I-272
Li, Yuanxiang I-272
Liao, Husheng II-445
Lin, Jerry Chun-Wei I-71, I-88
Liu, Jia II-445
Lloret-Gazo, Jorge II-343
Lopes, Giseli Rabello II-68
López-Camacho, Esteban I-405
Lowd, Daniel I-431
Lu, Wei I-153

Ma, Qiang II-27, II-102
Marilli, Guido I-121

Martinez-Gil, Jorge II-295
Meinel, Christoph I-105, II-118
Meira, Jorge Augusto I-207
Menendez, Elisa S. II-68
Michel, Franck II-52
Miyazaki, Jun II-216
Molli, Pascal II-303
Montagnat, Johan II-52
Muhammad Fuad, Muhammad Marwan

II-418
Mulhem, Philippe II-235

Nakayama, Yuki I-37
Nalepa, Filip II-185
Nassopoulos, Georges II-303
Navas-Delgado, Ismael I-405
Nawarecki, Edward I-257
Ngu, Anne H.H. II-254
Nishimura, Kazuya I-321
Nunes, Bernardo P. II-68

Osman, Rasha II-152

Paik, Hye-young II-254
Pankowski, Tadeusz II-275
Paoletti, Alejandra Lorena II-295
Pitarch, Yoann II-19
Plattner, Hasso II-137
Poncelet, Pascal I-387

Qian, Tieyun II-263
Qin, Yongrui II-37

Razorenov, Alexander A. I-416
Ren, Zhaochun I-370
Ribeiro, Leonardo Andrade I-185
Rodríguez, Guillermo II-335

Saad, Nurul Husna Mohd II-377
Safiya, Al Sharji II-244
Sagiv, Yehoshua II-399
Saxena, Rakhi I-287
Schewe, Klaus-Dieter II-295
Schwalb, David II-137
Serrano-Alvarado, Patricia II-303
Shaabani, Nuhad II-118
Shaikh, Salman Ahmed I-321
Sheng, Quan Z. II-37
Sidi, Fatimah II-377

448 Author Index

Sniezynski, Bartlomiej I-257
Soria, Álvaro II-335
Subercaze, Julien II-287

Teimourikia, Mahsa I-121
Teste, Olivier II-19
Teyseyre, Alfredo II-335
Theobald, Martin I-370
Torp, Kristian II-437
Trabelsi, Chiraz II-11
Tseng, Vincent S. I-88
Tu, Yi-Cheng II-315

Uday Kiran, R. I-55
Uruchurtu, Elizabeth II-244

Venkatesh, J.N. I-55
Vester, C.T. I-105
Vidal, Vânia M.P. II-68

Wang, Hao I-431
Wang, Song I-153
Wang, Wei I-20
Wang, Xiaorui II-315
Wang, Yafang I-370

Wenzel, Florian II-3
Wilk-Kołodziejczyk, Dorota I-257
Wu, Cheng-Wei I-88
Wu, Shuangke I-153

Xia, Xuewen I-272
Xu, Jianliang I-20

Yaakob, Razali II-377
Yang, Yanyan II-201
Yao, Lina II-37
Ying, Shi I-153
You, Zhenni II-263
Yuan, Wei II-315

Zeng, Bo II-315
Zezula, Pavel II-185
Zhan, Liming II-254
Zhang, Caicai II-454
Zhang, Yatao II-326
Zhou, Xiaoling I-20
Zhu, Hong II-454
Zhu, Peisong II-263
Zumpano, Ester II-368

Author Index 449

	Preface
	Organization
	Keynotes
	From Natural Language to Automated Reasoning
	The Price of Data

	Contents -- Part I
	Contents -- Part II
	Temporal, Spatial, and High Dimensional Databases
	Target-Oriented Keyword Search over Temporal Databases
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Solution
	4.1 Target-Oriented Search
	4.2 Time-Aware Pruning
	4.3 Algorithms

	5 Performance Study
	5.1 Experiments on Queries Without Time Constraints
	5.2 Experiments on Queries with Time Constraints

	6 Conclusion
	References

	General Purpose Index-Based Method for Efficient MaxRS Query
	1 Introduction
	2 Related Work
	3 The New Index
	3.1 A Naïve Solution
	3.2 Index the Changing Points into k-Lines

	4 Query Processing
	4.1 Dominance Relationship
	4.2 The O(log2 n) Query Processing Method
	4.3 The O(logn) Query Processing Algorithm

	5 Index Construction
	5.1 Main Idea
	5.2 The Complete Algorithm

	6 Other Problems
	7 Experiment
	8 Conclusion
	References

	An Efficient Method for Identifying MaxRS Location in Mobile Ad Hoc Networks
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Naive Method

	3 Proposed Method
	3.1 Overview
	3.2 Phase 1: Finding a Region Which Could Be a Query Answer
	3.3 Phase 2: Retrieving Data Items in a Limited Region

	4 Experiments
	4.1 Simulation Environment
	4.2 Results

	5 Related Work
	6 Conclusion
	References

	Data Mining
	Discovering Periodic-Frequent Patterns in Transactional Databases Using All-Confidence and Periodic-All-Confidence
	1 Introduction
	2 Related Work
	3 Extended Model of Periodic-Frequent Patterns
	3.1 Limitations of Existing Approaches
	3.2 Proposed Model

	4 Proposed Algorithm
	4.1 Structure of EPF-Tree
	4.2 Construction of EPF-Tree
	4.3 Mining EPF-Tree

	5 Experimental Results
	5.1 Patterns Generated by the Proposed Model
	5.2 Comparison of Proposed Model Against the Existing Models

	6 Conclusions and Future Work
	References

	More Efficient Algorithms for Mining High-Utility Itemsets with Multiple Minimum Utility Thresholds
	1 Introduction
	2 Related Works
	3 Preliminaries and Problem Statement
	4 Proposed HIMU Algorithm for Mining HUIs
	4.1 Search Space of HIMU and the Proposed MIU-Tree
	4.2 Proposed Conditional Downward Closure (CDC) and Global Downward Closure (GDC) Properties
	4.3 Estimated Utility Co-occurrence Pruning Strategy
	4.4 Procedure of the HIMU Algorithm and the Enhanced Algorithm

	5 Experimental Evaluation
	5.1 Execution Time
	5.2 Effect of Pruning Strategies
	5.3 Memory Consumption
	5.4 Scalability Analysis

	6 Conclusion
	References

	Mining Minimal High-Utility Itemsets
	1 Introduction
	2 Related Work
	3 The Minimal High Utility Itemsets
	4 The MinFHM Algorithm
	5 Experimental Study
	6 Conclusion
	References

	Authenticity, Privacy, Security, and Trust
	Automated k-Anonymization and l-Diversity for Shared Data Privacy
	1 Introduction
	2 Related Work
	3 Multi-Objective Data Anonymization (MOA)
	3.1 Information Loss Notation
	3.2 Information Loss and Severity Weighting
	3.3 CG-Kanon Scheme
	3.4 CG-Diverse Scheme

	4 Results and Analysis
	5 Conclusions
	References

	Context-Based Risk-Adaptive Security Model and Conflict Management
	1 Introduction
	2 Related Work
	3 Preliminary Definitions
	4 A Motivating Scenario
	5 Risk-Adaptive Access Control System (ACS)
	5.1 Risk-Adaptive AC Architecture
	5.2 Hierarchical Contexts and Access Control Domains

	6 Conflict Analysis of XACML 3.0 Rules
	7 Implementation
	7.1 Customization of the Policy Editor
	7.2 ECA Rules Implementation
	7.3 Managing Multiple Contexts in XACML 3.0
	7.4 Performance Analysis

	8 Concluding Remarks and Future Works
	References

	Modeling Information Diffusion via Reputation Estimation
	1 Introduction
	2 Methodology
	2.1 Problem Setting
	2.2 Proposed Model
	2.3 Parameter Learning

	3 Experiments
	3.1 Dataset
	3.2 Experimental Setup
	3.3 Estimating User Reputation
	3.4 Predicting Information Diffusion

	4 Related Work
	5 Conclusion
	References

	Data Clustering
	Mining Arbitrary Shaped Clusters and Outputting a High Quality Dendrogram
	1 Introduction
	2 Related Work
	2.1 Dendrogram Centered HC Algorithms
	2.2 Arbitrary Shaped Clustering Algorithms

	3 MkNN-Based Similarity Measure
	3.1 Similarity Measure Definition
	3.2 Guarantee for High Quality Dendrogram

	4 HICMEN Algorithm
	4.1 Algorithm Description
	4.2 Complexity Analysis

	5 Experimental Evaluation
	5.1 Effectiveness Evaluation
	5.2 Efficiency Evaluation
	5.3 Impact of Parameter

	6 Conclusion
	References

	Hierarchically Clustered LSH for Hierarchical Outliers Detection
	1 Introduction
	2 Related Work
	3 Motivational Example
	4 Hierarchical Outliers
	5 Hierarchically Clustered LSH Indexing
	6 Efficient Identification of Hierarchical Outliers
	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Experimental Results

	8 Conclusions
	References

	Incorporating Clustering into Set Similarity Join Algorithms: The SjClust Framework
	1 Introduction
	2 Related Work
	3 Fundamental Concepts and Background Knowledge
	3.1 Basic Concepts and Definitions
	3.2 Optimization Techniques
	3.3 Similarity Join Algorithms: Definitions and Usage

	4 Our Proposal: The Innovative SjClust Framework
	5 SjClust Architecture and Components
	5.1 Cluster Representation
	5.2 Merging Strategies
	5.3 The Output Manager

	6 Experimental Assessment and Analysis
	6.1 Accuracy Results
	6.2 Performance Results

	7 Conclusions and Future Work
	References

	Distributed and Big Data Processing
	``Overloaded!'' --- A Model-Based Approach to Database Stress Testing
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Related Work
	3 Approach: MoDaST
	3.1 The Database State Machine (DSM)
	3.2 Predicting the Thrashing State
	3.3 The Test Driver

	4 Empirical Evaluation
	4.1 Does DSM Properly Reflect Performance Behaviors of a DUT?
	4.2 How Much Does Our Approach Cover the Source Code of a DUT (i.e., Code Coverage)?
	4.3 Does Our Approach Find Bugs?
	4.4 Can Our Approach Predict Performance Degradation (e.g., the Thrashing State)?

	5 Conclusion
	References

	A Cost Model for DBaaS Storage
	Abstract
	1 Introduction
	2 Problem Definition
	3 Cost Model
	3.1 Storage System Cost
	3.2 Penalty Cost
	3.3 Migration Cost

	4 Experimentation
	4.1 Cost Model Usability
	4.2 Cost Model Evaluation

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgement
	Appendix A: Notations
	References

	A Query Processing Framework for Array-Based Computations
	1 Introduction
	2 Related Work
	3 Background: The MRQL Query Language
	4 Our Framework
	5 The GroupByJoin Operation
	6 The Implementation of GroupByJoin in Map-Reduce
	7 Translating Queries to GroupByJoin Operations
	8 Performance Evaluation
	9 Conclusion
	References

	Decision Support Systems, and Learning
	Creative Expert System: Result of Inference and Machine Learning Integration
	1 Introduction
	2 Related Research
	3 Creative Inference Model
	4 LIIS System
	4.1 Introduction to LPR
	4.2 LIIS Main Features
	4.3 Description of LIIS Implementation
	4.4 Label Algebra

	5 Experimental Results
	5.1 Knowledge Base
	5.2 Scenario 1
	5.3 Scenario 2
	5.4 Scenario 3
	5.5 Time Complexity
	5.6 Summary

	6 Conclusions and Further Works
	References

	A Reverse Nearest Neighbor Based Active Semi-supervised Learning Method for Multivariate Time Series Classification
	Abstract
	1 Introduction
	2 Related Work
	2.1 Semi-supervised Learning
	2.2 Active Learning

	3 Definitions and Notations
	4 Our Proposed Method
	4.1 Sampling Strategy
	4.2 Active Semi-supervised Learning for Data Annotations
	4.3 The Stopping Criterion
	4.4 Multivariate Time Series Classification

	5 Experimental Evaluation
	5.1 Datasets
	5.2 Analysis of Sample Selection Strategy
	5.3 Analysis of Proposed Semi-supervised Learning
	5.4 Comparison with State-of-the-Art Semi-supervised Methods

	6 Conclusions
	References

	Leveraging Structural Hierarchy for Scalable Network Comparison
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	2.1 Network Comparison
	2.2 K-Core Decomposition

	3 Preliminaries and Notation
	4 Characterizing Networks Using K-Core Decomposition
	4.1 Coreness Distribution
	4.2 Edges Distribution
	4.3 NCKD Algorithm

	5 Experiments
	5.1 About Datasets
	5.2 Effectiveness of NCKD
	5.3 Handling of Missing Data
	5.4 Scalability w.r.t Large Datasets

	6 Conclusion
	References

	Data Streams
	Incremental Stream Processing of Nested-Relational Queries
	1 Introduction
	2 MRQL Overview
	3 Incremental Query Processing
	4 The Translation Framework
	5 Performance Evaluation
	6 Related Work
	7 Conclusion
	References

	Incremental Continuous Query Processing over Streams and Relations with Isolation Guarantees
	1 Introduction
	2 Preliminaries and Assumptions
	2.1 CQL Abstract Semantics
	2.2 CQL Query Plan
	2.3 Incremental Computation

	3 Isolation Guaranteed Incremental CQ Processing
	3.1 Monitor Operator
	3.2 Indexed Synopsis

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Evaluation

	5 Related Work
	6 Conclusion and Future Work
	References

	An Improved Method of Keyword Search over Relational Data Streams by Aggressive Candidate Network Consolidation
	1 Introduction
	2 Problem Statement
	3 Existing Works
	3.1 Overview
	3.2 S-KWS
	3.3 SS-KWS
	3.4 Scalability Issues in Existing Approaches

	4 Proposed Approach
	4.1 Overview
	4.2 MX-Structure
	4.3 Query Evaluation in MX-Structure
	4.4 Algorithm Details
	4.5 Discussion

	5 Experiments
	5.1 Comparison of Query Plans' Size
	5.2 Performance Comparison

	6 Related Work
	7 Conclusion
	References

	Data Integration, and Interoperability
	Evolutionary Database Design: Enhancing Data Abstraction Through Database Modularization to Achieve Graceful Schema Evolution
	1 Introduction
	2 Related Works
	3 Background
	3.1 Overview of Database Modularization Design

	4 Evolutionary Database Modularization Design Process
	4.1 Evolutionary Analysis of Modularization Requirements
	4.2 Evolutionary Database Modularization Design

	5 Evolutionary Database Modules Integration
	6 Case Study: Applying the Evolutionary Database Modularization in an Agile Project
	6.1 Fifth Iteration
	6.2 Sixth Iteration

	7 Conclusion
	References

	Summary Generation for Temporal Extractions
	1 Introduction
	2 Knowledge Harvesting
	3 Evidence Aggregation Model
	3.1 Aggregating Events into State Histograms
	3.2 Extracting High-Confidence Intervals

	4 Sentence Generation and Reordering
	4.1 Knowledge Ordering
	4.2 Natural Language Generation

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	References

	SuMGra: Querying Multigraphs via Efficient Indexing
	1 Introduction
	2 Preliminaries and Problem Definition
	3 An Overview of SuMGra
	4 Indexing
	4.1 Vertex Signature Index S
	4.2 Vertex Neighbourhood Index N

	5 Subgraph Query Processing
	5.1 Query Vertex Ordering
	5.2 Select Candidates for Initial Query Vertex
	5.3 Subgraph Searching

	6 Experimental Evaluation
	6.1 Performance of SuMGra

	7 Conclusion
	References

	Semantic Web, and Data Semantics
	Re-constructing Hidden Semantic Data Models by Querying SPARQL Endpoints
	1 Introduction
	2 Methods
	3 Use Cases
	3.1 Kpath
	3.2 ReprOlive
	3.3 Biomodels
	3.4 LinkedGeoData

	4 Conclusions and Future Work
	References

	A New Formal Approach to Semantic Parsing of Instructions and to File Manager Design
	Abstract
	1 Introduction
	2 The Main Approaches to Representing Structured Meanings of Instructions
	3 The Notion of Morphological Basis
	4 Templates for Building K-Representations
	5 A Dictionary of Lexical Frames and a Model of Linguistic Database
	6 A Graph-like Semantic-Syntactic Structure of a Text
	7 The Algorithm of Semantic Parsing SemSyntRA
	8 The Examples of Processing Instructions by the Algorithm SemSyntRA
	9 Application of the Algorithm in the File Manager NLC-2
	10 Conclusions
	Acknowledgements
	References

	Ontology-Based Deep Restricted Boltzmann Machine
	1 Introduction
	2 Related Work
	2.1 Deep Learning
	2.2 Knowledge Engineering
	2.3 Knowledge Base Embedding

	3 Ontology-Based Deep Restricted Boltzmann Machine
	3.1 Ontology
	3.2 Semantic Reasoner
	3.3 Deep Restricted Boltzmann Machine
	3.4 OB-DRBM Architecture Design
	3.5 Training and Validation

	4 Experiment
	4.1 News Topic Classification
	4.2 Sentiment Analysis Datasets
	4.3 Data Simulation of Formal Semantics Embedding

	5 Conclusion and Future Work
	References

	Author Index

