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Abstract

In this chapter, we describe a major part of the theory of zero-sum discrete-time
stochastic games. We review all basic streams of research in this area, in the
context of the existence of value and uniform value, algorithms, vector payoffs,
incomplete information, and imperfect state observation. Also some models
related to continuous-time games, e.g., games with short-stage duration, semi-
Markov games, are mentioned. Moreover, a number of applications of stochastic
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games are pointed out. The provided reference list reveals a tremendous progress
made in the field of zero-sum stochastic games since the seminal work of
Shapley (Proc Nat Acad Sci USA 39:1095–1100, 1953).

Keywords
Zero-sum game � Stochastic game � Borel space � Unbounded payoffs �

Incomplete information � Measurable strategy � Maxmin optimization �

Limsup payoff � Approachability � Algorithms

1 Introduction

Stochastic games extend the model of strategic form games to situations in which
the environment changes in time in response to the players’ actions. They also
extend the Markov decision model to competitive situations with more than one
decision maker. The choices made by the players have two effects. First, together
with the current state, the players’ actions determine the immediate payoff that each
player receives. Second, the current state and the players’ actions have an influence
on the chance of moving to a new state, where future payoffs will be received.
Therefore, each player has to observe the current payoffs and take into account
possible evolution of the state. This issue is also present in one-player sequential
decision problems, but the presence of additional players who have their own goals
adds complexity to the analysis of the situation. Stochastic games were introduced
in a seminal paper of Shapley (1953). He considered zero-sum dynamic games with
finite state and action spaces and a positive probability of termination. His model
is often considered as a stochastic game with discounted payoffs. Gillette (1957)
studied a similar model but with zero stop probability. These two papers inspired
an enormous stream of research in dynamic game theory and Markov decision
processes. There is a large variety of mathematical tools used in studying stochastic
games. For example, the asymptotic theory of stochastic games is based on some
algebraic methods such as semi-algebraic functions. On the other hand, the theory of
stochastic games with general state spaces has a direct connection to the descriptive
set theory. Furthermore, the algorithmic aspects of stochastic games yield interesting
combinatorial problems. The other basic mathematical tools make use of martingale
limit theory. There is also a known link between nonzero-sum stochastic games and
the theory of fixed points in infinite-dimensional spaces. The principal goal of this
chapter is to provide a comprehensive overview of the aforementioned aspects of
zero-sum stochastic games.

To begin a literature review, let us mention that a basic and clear introduction
to dynamic games is given in Başar and Olsder (1995) and Haurie et al. (2012).
Mathematical programming problems occurring in algorithms for stochastic games
with finite state and action spaces are broadly discussed in Filar and Vrieze (1997).
Some studies of stochastic games by the methods developed in gambling theory
with many informative examples are described in Maitra and Sudderth (1996). An
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advanced material on repeated and stochastic games is presented in Sorin (2002)
and Mertens et al. (2015). The two edited volumes by Raghavan et al. (1991) and
Neyman and Sorin (2003) contain a survey of a large part of the area of stochastic
games developed for almost fifty years since Shapley’s seminal work. This chapter
and the chapter of Jaśkiewicz and Nowak (2018) include a very broad overview
of state-of-the-art results on stochastic games. Moreover, the surveys given by
Mertens (2002), Vieille (2002), Solan (2009), Krishnamurthy and Parthasarathy
(2011), Solan and Vieille (2015), and Laraki and Sorin (2015) constitute relevant
complementary material.

There is a great deal of applications of stochastic games in science and
engineering. Here, we only mention the ones concerning zero-sum games. For
instance, Altman and Hordijk (1995) applied stochastic games to queueing models.
On the other hand, wireless communication networks were examined in terms of
stochastic games by Altman et al. (2005). For use of stochastic games in models
that arise in operations research, the reader is referred to Charnes and Schroeder
(1967), Winston (1978), Filar (1985), or Patek and Bertsekas (1999). There is also
a growing literature on applications of zero-sum stochastic games in theoretical
computer science (see, for instance, Condon (1992), de Alfaro et al. (2007) and
Kehagias et al. (2013) and references cited therein). Applications of zero-sum
stochastic games to economic growth models and robust Markov decision processes
are described in Sect. 3, which is mainly based on the paper of Jaśkiewicz and
Nowak (2011). The class of possible applications of nonzero-sum stochastic games
is larger than in the zero-sum case. They are discussed in our second survey in this
handbook.

The chapter is organized as follows: In Sect. 2 we describe some basic material
needed for a study of stochastic games with general state spaces. It incorpo-
rates auxiliary results on set-valued mappings (correspondences), their measurable
selections, and the measurability of the value of a parameterized zero-sum game.
This part naturally is redundant in a study of stochastic games with discrete state
and action spaces. Sect. 3 is devoted to a general maxmin decision problem in
discrete-time and Borel state space. The main motivation is to show its applications
to stochastic economic growth models and some robust decision problems in
macroeconomics. Therefore, the utility (payoff) function in illustrative examples is
unbounded and the transition probability function is weakly continuous. In Sect. 4
we consider standard discounted and positive Markov games with Borel state spaces
and simultaneous moves of the players. Sect. 5 is devoted to semi-Markov games
with Borel state space and weakly continuous transition probabilities satisfying
some stochastic stability assumptions. In the limit-average payoff case, two criteria
are compared, the time average and ratio average payoff criterion, and a question
of path optimality is discussed. Furthermore, stochastic games with a general Borel
payoff function on the spaces of infinite plays are examined in Sect. 6. This part
includes results on games with limsup payoffs and limit-average payoffs as special
cases. In Sect. 7 we present some basic results from the asymptotic theory of
stochastic games, mainly with finite state space, the notion of uniform value. This
part of the theory exhibits nontrivial algebraic aspects. Some algorithms for solving



218 A. Jaśkiewicz and A. S. Nowak

zero-sum stochastic games of different types are described in Sect. 8. In Sect. 9 we
provide an overview of zero-sum stochastic games with incomplete information and
imperfect monitoring. This is a vast subarea of stochastic games, and therefore, we
deal only with selected cases of recent contributions. Stochastic games with vector
payoffs and Blackwell’s approachability concept, on the other hand, are discussed
briefly in Sect. 10. Finally, Sect.11 gives a short overview of stochastic Markov
games in continuous time. We mainly focus on Markov games with short-stage
duration. This theory is based on an asymptotic analysis of discrete-time games
when the stage duration tends to zero.

2 Preliminaries

Let R be the set of all real numbers, R D R[f�1g and N D f1; 2; : : :g. By a Borel
space X we mean a nonempty Borel subset of a complete separable metric space
endowed with the relative topology and the Borel � -algebra B.X/. We denote by
Pr.X/ the set of all Borel probability measures on X . Let B�.X/ be the completion
of B.X/ with respect to some � 2 Pr.X/. Then U.X/ D \�2Pr.X/B�.X/ is
the � -algebra of all universally measurable subsets of X . There are a couple of
ways to define analytic sets in X (see Chap. 12 in Aliprantis and Border 2006 or
Chap. 7 in Bertsekas and Shreve 1996). One can say that C � X is an analytic
set if and only if there is a Borel set D � X � X whose projection on X is C .
If X is uncountable, then there exist analytic sets in X which are not Borel (see
Example 12.33 in Aliprantis and Border 2006). Every analytic set C � X belongs
to U.X/. A function  W X ! R is called upper semianalytic (lower semianalytic)
if for any c 2 R the set fx 2 X W  .x/ � cg (fx 2 X W  .x/ � cg) is analytic.
It is known that  is both upper and lower semianalytic if and only if  is Borel
measurable. Let Y be also a Borel space. A mapping � W X ! Y is universally
measurable if ��1.C / 2 U.X/ for each C 2 B.Y /.

A set-valued mapping x ! ˚.x/ � Y (also called a correspondence from X to
Y ) is upper semicontinuous (lower semicontinuous) if the set ˚�1.C / WD fx 2 X W

˚.x/\C 6D ;g is closed (open) for each closed (open) set C � Y . ˚ is continuous
if it is both lower and upper semicontinuous. ˚ is weakly or lower measurable if
˚�1.C / 2 B.X/ for each open setC � Y . Assume that˚.x/ 6D ; for every x 2 X .
If ˚ is compact valued and upper semicontinuous, then by Theorem 1 in Brown
and Purves (1973), ˚ admits a measurable selector, that is, there exists a Borel
measurable mapping g W X ! Y such that g.x/ 2 ˚.x/ for each x 2 X . Moreover,
the same holds if ˚ is weakly measurable and has complete values ˚.x/ for all
x 2 X (see Kuratowski and Ryll-Nardzewski 1965). Assume that D � X � Y is
a Borel set such that D.x/ WD fy 2 Y W .x; y/ 2 Dg is nonempty and compact for
each x 2 X . If C is an open set in Y , then D�1.C / WD fx 2 X W D.x/ \ C 6D

;g is the projection on X of the Borel set D0 D .X � C/ \ D and D0.x/ D

fy 2 Y W .x; y/ 2 D0g is � -compact for any x 2 X . By Theorem 1 in Brown
and Purves (1973), D�1.C / 2 B.X/. For a broad discussion of semicontinuous or
measurable correspondences, the reader is referred to Himmelberg (1975), Klein
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and Thompson (1984) or Aliprantis and Border (2006). For any Borel space Y , let
C.Y / be the space of all bounded continuous real-valued functions on Y . Assume
that Pr.Y / is endowed with the weak topology and the Borel � -algebra B.Pr.Y //
(see Bertsekas and Shreve 1996; Billingsley 1968 or Parthasarathy 1967). The � -
algebra B.Pr.Y // of all Borel subsets of Pr.Y / coincides with the smallest � -algebra
on Pr.Y / for which all the mappings p ! p.D/ from Pr.Y / to Œ0; 1� are measurable
for each D 2 B.Y / (see Proposition 7.25 in Bertsekas and Shreve 1996). Recall
that a sequence .pn/n2N converges weakly to some p 2 Pr.Y / if and only if for any
� 2 C.Y /,

Z
Y

�.y/pn.dy/ !

Z
Y

�.y/p.dy/ as n ! 1:

If Y is a Borel space, then Pr.Y / is a Borel space too, and if Y is compact, so is
Pr.Y / (see Corollary 7.25.1 and Proposition 7.22 in Bertsekas and Shreve 1996).

Consider the correspondence x ! �.x/ WD Pr.˚.x// � Pr.Y /. The following
result from Himmelberg and Van Vleck (1975) is useful in studying stochastic
games.

Proposition 1. If ˚ is upper (lower) semicontinuous and compact valued, then so
is � .

A transition probability or a stochastic kernel from X to Y is a function
' W B.Y / � X ! Œ0; 1� such that '.Dj�/ is a Borel measurable function on X
for every D 2 B.Y / and '.�jx/ 2 Pr.Y / for each x 2 X . It is well known that
every Borel measurable mapping f W X ! Pr.Y / may be regarded as a transition
probability ' from X to Y . Namely, '.Djx/ D f .x/.D/, D 2 B.Y /, x 2 X (see
Proposition 7.26 in Bertsekas and Shreve 1996). We shall write f .dyjx/ instead
of f .x/.dy/. Clearly, any Borel measurable mapping f W X ! Y is a special
transition probability ' from X to Y such that for each x 2 X , '.�jx/ is the Dirac
measure concentrated at the point f .x/. Similarly, universally measurable transition
probabilities are defined, when B.X/ is replaced by U.X/.

In studying zero-sum stochastic games with Borel state spaces, we must use in
the proofs some results on minmax measurable selections in parameterized games.
LetX ,A, andB be Borel spaces. Assume thatKA 2 B.X�A/ andKB 2 B.X�B/

and suppose that the sets A.x/ WD fa 2 A W .x; a/ 2 Ag and B.x/ WD fb 2

B W .x; b/ 2 Bg are nonempty for all x 2 X . Let K WD f.x; a; b/ W x 2 X; a 2

A.x/; b 2 B.x/g. ThenK is a Borel subset ofX�A�B . Let r W K ! R be a Borel
measurable payoff function in a zero-sum game parameterized by x 2 X . If players
1 and 2 choose mixed strategies � 2 Pr.A.x// and � 2 Pr.B.x//, respectively, then
the expected payoff to player 1 (cost to player 2) depends on x 2 X and is of the
form

R.x; �; �/ WD

Z
A.x/

Z
B.x/

r.x; a; b/�.db/�.da/



220 A. Jaśkiewicz and A. S. Nowak

provided that the double integral is well defined. Assuming this and that B.x/ is
compact for each x 2 X and r.x; a; �/ is lower semicontinuous on B.x/ for each
.x; a/ 2 KA, we conclude from the minmax theorem of Fan (1953) that the game
has a value, that is, the following equality holds

v�.x/ WD min
�2Pr.B.x//

sup
�2Pr.A.x//

R.x; �; �/ D sup
�2Pr.A.x//

min
�2P r.B.x//

R.x; �; �/; x 2 X:

A universally (Borel) measurable strategy for player 1 is a universally (Borel)
measurable transition probability f from X to A such that f .A.x/jx/ D 1 for
all x 2 X . By the Jankov-von Neumann theorem (see Theorem 18.22 in Aliprantis
and Border 2006), there exists a universally measurable function ' W X ! A such
that '.x/ 2 A.x/ for all x 2 X . Thus, the set of universally measurable strategies
for player 1 is nonempty. Universally (Borel) measurable strategies for player 2 are
defined similarly. A strategy g� is optimal for player 2 if

v�.x/ D sup
�2Pr.A.x//

Z
A.x/

Z
B.x/

r.x; a; b/g�.dbjx/�.da/ for all x 2 X:

Let " � 0. A strategy f � is "-optimal for player 1 if

v�.x/ � inf
�2Pr.B.x//

Z
A.x/

Z
B.x/

r.x; a; b/�.db/f �.dajx/C " for all x 2 X:

A 0-optimal strategy is called optimal.
The following result follows from Nowak (1985b). For a much simpler proof,

see Nowak (2010).

Proposition 2. Under the above assumptions the value function v� is upper
semianalytic. Player 2 has a universally measurable optimal strategy and, for any
" > 0, player 1 has a universally measurable "-optimal strategy. If, in addition, we
assume that A.x/ is compact for each x 2 X and r.x; �; b/ is upper semicontinuous
for each .x; b/ 2 KB , then v� is Borel measurable and both players have Borel
measurable optimal strategies.

As a corollary to Theorem 5.1 in Nowak (1986), we can state the following result.

Proposition 3. Assume that x ! A.x/ is lower semicontinuous and has complete
values in A and x ! B.x/ is upper semicontinuous and compact valued. If r W

K ! R is lower semicontinuous on K, then v� is lower semicontinuous, player 2
has a Borel measurable optimal strategy, and for any " > 0, player 1 has a Borel
measurable "-optimal strategy.
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The lower semicontinuity of v� in Proposition 3 is a corollary to the maximum
theorem of Berge (1963). In some games or minmax control models, one can
consider the minmax value

v�.x/ WD inf
�2Pr.B.x//

sup
�2Pr.A.x//

R.x; �; �/; x 2 X;

if the mixed strategies are used, or

w�.x/ WD inf
b2B.x/

sup
a2A.x/

r.x; a; b/; x 2 X;

if the attention is restricted to pure strategies. If the assumption on semicontinuity
of the function r is dropped, then the measurability of v� or w� is connected
with the measurability of projections of coanalytic sets. This issue leads to some
considerations in the classical descriptive set theory. A comprehensive study of the
measurability of upper or lower value of a game with Borel payoff function r is
given in Prikry and Sudderth (2016).

3 Robust Markov Decision Processes

A discounted maxmin Markov decision process is defined by the objects X , A, B ,
KA, K, u, q, and ˇ, where:

• X is a Borel state space;
• A is the action space of the controller (player 1) and B is the action space of the

opponent (player 2). It is assumed that A and B are Borel spaces;
• KA 2 B.X � A/ is the constraint set for the controller. It is assumed that

A.x/ WD fa 2 A W .x; a/ 2 Ag 6D ;

for each x 2 X . This is the set of admissible actions of the controller in the state
x 2 X I

• K 2 B.X � A � B/ is the constraint set for the opponent. It is assumed that

B.x; a/ WD fb 2 B W .x; a; b/ 2 Bg 6D ;

for each .x; a/ 2 KA. This is the set of admissible actions of the opponent for
.x; a/ 2 KA;

• u W K ! R is a Borel measurable stage payoff function;
• q is a transition probability from K to X , called the law of motion among states.

If xn is a state at the beginning of period n of the process and actions an 2

A.xn/ and bn 2 B.xn; an/ are selected by the players, then q.�jxn; an; bn/ is the
probability distribution of the next state xnC1;
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• ˇ 2 .0; 1/ is the discount factor.

We make the following assumptions on the admissible action sets.

(C1) For any x 2 X , A.x/ is compact and the set-valued mapping x ! A.x/ is
upper semicontinuous.

(C2) The set-valued mapping .x; a/ ! B.x; a/ is lower semicontinuous.
(C3) There exists a Borel measurable mapping g W KA ! B such that g.x; a/ 2

B.x; a/ for all .x; a/ 2 KA.

Remark 1. From Sect. 2, it follows that condition (C3) holds if B.x; a/ is � -
compact for each .x; a/ 2 KA (see Brown and Purves 1973) or if B is a complete
separable metric space and each set B.x; a/ is closed (see Kuratowski and Ryll-
Nardzewski 1965).

Let H1 WD X , Hn WD Kn � X for n � 2. Put H�
1 WD KA and H�

n WD Kn �KA

if n � 2. Generic elements of Hn and H�
n are histories of the process, and

they are of the form h1 D x1, h�
1 D .x1; a1/ and for each n � 2, hn D

.x1; a1; b1; : : : :xn�1; an�1; bn�1; xn/, h�
n D .hn; an/:

A strategy for the controller is a sequence � D .�n/n2N of stochastic kernels
�n from Hn to A such that �n.A.xn/jhn/ D 1 for each hn 2 Hn. The class of
all strategies for the controller will be denoted by ˘ . A strategy for the opponent
is a sequence 	 D .	n/n2N of stochastic kernels 	n from H�

n to B such that
	n.B.xn; an/jh

�
n/ D 1 for all h�

n 2 H�
n . The class of all strategies for the opponent

will be denoted by 
 �. Let F be the set of Borel measurable mappings f from X

to A such that f .x/ 2 A.x/ for each x 2 X . A deterministic stationary strategy for
the controller is a sequence � D .fn/n2N where fn D f for all n 2 N and some
f 2 F . Such a strategy can obviously be identified with the mapping f 2 F . Let

uC.x; a; b/ WD maxfu.x; a; b/; 0g and

u�.x; a; b/ WD minfu.x; a; b/; 0g; .x; a; b/ 2 K:

For each initial state x1 D x and any strategies � 2 ˘ and 	 2 
 �, define

JC
ˇ .x; �; 	/ D E�	

x

 
1X
nD1

ˇn�1uC.xn; an; bn/

!
; (5.1)

J�
ˇ .x; �; 	/ D E�	

x

 
1X
nD1

ˇn�1u�.xn; an; bn/

!
: (5.2)

Here,E�	
x denotes the expectation operator corresponding to the unique conditional

probability measure P�	
x defined on the space of histories, starting at state x,

and endowed with the product � -algebra, which is induced by strategies � , 	
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and the transition probability q according to the Ionescu-Tulcea Theorem (see
Proposition 7.45 in Bertsekas and Shreve 1996 or Proposition V.1.1 in Neveu 1965).
In the sequel, we give conditions under which JC

ˇ .x; �; 	/ < 1 for any x 2 X ,
� 2 ˘ , 	 2 
 �. They enable us to define the expected discounted payoff over an
infinite time horizon as follows:

Jˇ.x; �; 	/ D E�	
x

 
1X
nD1

ˇn�1u.xn; an; bn/

!
: (5.3)

Then, for every x 2 X , � 2 ˘ , 	 2 
 � we have that Jˇ.x; �; 	/ 2 R and

Jˇ.x; �; 	/ D JC
ˇ .x; �; 	/C J�

ˇ .x; �; 	/ D

1X
nD1

ˇn�1E�	
x u.xn; an; bn/:

Let

vˇ.x/ WD sup
�2˘

inf
	2
 �

Jˇ.x; �; 	/; x 2 X:

This is the maxmin or lower value of the game starting at the state x 2 X . A strategy
�� 2 ˘ is called optimal for the controller if inf	2
 � Jˇ.x; �

�; 	/ D vˇ.x/ for
every x 2 X .

It is worth mentioning that if u is unbounded, then an optimal strategy �� need
not exist even if 0 � vˇ.x/ < 1 for every x 2 X and the available action sets A.x/
and B.x/ are finite (see Example 1 in Jaśkiewicz and Nowak 2011).

The maxmin control problems with Borel state spaces have been already consid-
ered by González-Trejo et al. (2003), Hansen and Sargent (2008), Iyengar (2005),
and Küenle (1986) and are referred to as games against nature or robust dynamic
programming (Markov decision) models. The idea of using maxmin decision rules
was introduced in statistics (see Blackwell and Girshick 1954). It is also used in
economics (see, e.g., the variational preferences in Maccheroni et al. 2006).

3.1 One-Sided Weighted Norm Approach

We now describe our regularity assumptions imposed on the payoff and transition
probability functions.

(W1) The payoff function u W K ! R is upper semicontinuous.
(W2) For any � 2 C.X/ the function

.x; a; b/ !

Z
X

�.y/q.dyjx; a; b/

is continuous.
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(M1) There exist a continuous function ! W X ! Œ1;1/ and a constant ˛ > 0 such
that

sup
.x;a;b/2K

R
X
!.y/q.dyjx; a; b/

!.x/
� ˛ and ˇ˛ < 1: (5.4)

Moreover, the function .x; a; b/ !
R
X
!.y/q.dyjx; a; b/ is continuous.

(M2) There exists a constant d > 0 such that

sup
a2A.x/

sup
b2B.x;a/

uC.x; a; b/ � d!.x/

for all x 2 X .

Note that under conditions (M1) and (M2), the discounted payoff function is well
defined, since

0 � E�	
x

 
1X
nD1

ˇn�1uC.xn; an; bn/

!
� d

1X
nD1

ˇn�1˛n�1!.x/ < 1:

Remark 2. Assumption (W2) states that transition probabilities are weakly con-
tinuous. It is worth emphasizing that this property, in contrast to the setwise
continuous transitions, is satisfied in a number of models arising in operations
research, economics, etc. Indeed, Feinberg and Lewis (2005) studied the typical
inventory model:

xnC1 D xn C an � �nC1; n 2 N;

where xn is the inventory at the end of period n, an is the decision on how much
should be ordered, and �n is the demand during period n and each �n has the same
distribution as the random variable � . Assume that X D R, A D RC. Let q.�jx; a/
be the transition law for this problem. In view of Lebesgue’s dominated convergence
theorem, it is clear that q is weakly continuous. On the other hand, recall that the
setwise continuity means that q.Djx; ak/ ! q.Djx; a0/ as ak ! a0 for any D 2

B.X/. Suppose that the demand is deterministic d D 1, ak D a C 1=k and D D

.�1; x C a � 1�. Then, q.Djx; a/ D 1, but q.Djx; ak/ D 0.

For any function � W X ! R, define the !-norm as follows:

k�k! D sup
x2X

j�.x/j

!.x/
; (5.5)

provided that it is finite. Let U!.X/ be the space of all upper semicontinuous
functions endowed with the metric induced by the !-norm. By U!.X/ we denote
the set of all upper semicontinuous functions � W X ! R such that �C 2 U!.X/.
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Define uk WD maxfu;�kg, k 2 N. For any � 2 U!.X/, .x; a; b/ 2 K, and
k 2 N, let

Lˇ;k�.x; a; b/ D uk.x; a; b/C ˇ

Z
X

�.y/q.dyjx; a; b/

and

Lˇ�.x; a; b/ D u.x; a; b/C ˇ

Z
X

�.y/q.dyjx; a; b/:

The maximum theorem of Berge (1963) (see also Proposition 10.2 in Schäl
1975) implies the following auxiliary result.

Lemma 1. Assume (C1)–(C3), (W1)–(W2), and (M1)–(M2). Then for any � 2

U!.X/, the functions

inf
b2B.x;a/

Lˇ;k�.x; a; b/ and max
a2A.x/

inf
b2B.x;a/

Lˇ;k�.x; a; b/

are upper semicontinuous on KA and X , respectively. Similar properties hold if
Lˇ;k�.x; a; b/ is replaced by Lˇ�.x; a; b/.

For any x 2 X , define

Tˇ;k�.x/ D max
a2A.x/

inf
b2B.x;a/

Lˇ;k�.x; a; b/ and

Tˇ�.x/ D max
a2A.x/

inf
b2B.x;a/

Lˇ�.x; a; b/: (5.6)

By Lemma 1, the operators Tˇ;k and Tˇ are well defined. Additionally, note that

Tˇ�.x/ D max
a2A.x/

inf
�2Pr.B.x;a//

Z
B.x;a/

Lˇ�.x; a; b/�.db/:

We can now state the main result in Jaśkiewicz and Nowak (2011).

Theorem 1. Assume (C1)–(C3), (W1)–(W2), and (M1)–(M2). Then vˇ 2 U!.X/,
Tˇvˇ D vˇ and there exists a stationary strategy f � 2 F such that

vˇ.x/ D inf
b2B.x;a/

Lˇvˇ.x; f
�.x/; b/

for x 2 X . Moreover,

vˇ.x/ D inf
	2
 �

Jˇ.x; f
�; 	/ D sup

�2˘

inf
	2
 �

Jˇ.x; �; 	/

for all x 2 X , so f � is an optimal stationary strategy for the controller.
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The proof of Theorem 1 consists of two steps. First, we deal with truncated
models, in which the payoff function u is replaced by uk . Then, making use of the
fixed point argument, we obtain an upper semicontinuous solution to the Bellman
equation, say vˇ;k . Next, we observe that the sequence .vˇ;k/k2N is nonincreasing.
Letting k ! 1 and making use of Lemma 1, we arrive at the conclusion.

Remark 3. The weighted supremum norm approach in Markov decision processes
was proposed by Wessels (1977) and further developed, e.g., by Hernández-Lerma
and Lasserre (1999). This method has been also adopted to zero-sum stochastic
games (see Couwenbergh 1980; González-Trejo et al. 2003; Jaśkiewicz 2009, 2010;
Jaśkiewicz and Nowak 2006, 2011; Küenle 2007 and references cited therein).
The common feature of the aforementioned works is the fact that the authors use
the weighted norm condition instead of assumption (M2). More precisely, in our
notation it means that the following holds

sup
a2A.x/

sup
b2B.x;a/

ju.x; a; b/j � d!.x/; x 2 X (5.7)

for some constant d > 0. This assumption, however, excludes many examples
studied in economics where the utility function u equals �1 in some states.
Moreover, inequality in (M1) and (5.7) often enforces additional constraints on
the discount coefficient ˇ in comparison with (M1) and (M2) (see Example 6 in
Jaśkiewicz and Nowak 2011).

Observe that if the payoff function u accepts only negative values, then assump-
tion (M2) is redundant. Thus, the problem comes down to the negative program-
ming, which was solved by Strauch (1966) in the case of one-player game (Markov
decision process).

3.1.1 Models with Unknown Disturbance Distributions
Consider the control system in which

xnC1 D �.xn; an; �n/; n 2 N:

It is assumed that .�n/n2N is a sequence of independent random variables with values
in a Borel space S having unknown probability distributions that can change from
period to period. The set B of all possible distributions is assumed to be a nonempty
Borel subset of the space Pr.S/ endowed with the weak topology. The mapping
� W KA � S ! X is assumed to be continuous. Let u0 be an upper semicontinuous
utility function defined onKA �S such that uC

0 .x; a; s/ � d!.x/ for some constant
d > 0 and all .x; a/ 2 KA, s 2 S .

We can formulate a maxmin control model in the following way:

(a) B.x; a/ D B � Pr.S/ for each .x; a/ 2 KA, K D KA � BI

(b) u.x; a; b/ D
R
S

u0.x; a; s/b.ds/, .x; a; b/ 2 KI

(c) for any Borel set D�X , q.Djx; a; b/D
R
X
1D.�.x; a; s//b.ds/, .x; a; b/2K.
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Then for any bounded continuous function � W X ! R, we have that
Z
X

�.y/q.dyjx; a; b/ D

Z
X

�.�.x; a; s//b.ds/: (5.8)

From Proposition 7.30 in Bertsekas and Shreve (1996) or Lemma 5.3 in Nowak
(1986) and (5.8), it follows that q is weakly continuous. Moreover, by virtue of
Proposition 7.31 in Bertsekas and Shreve (1996), it is easily seen that u is upper
semicontinuous on K.

The following result can be viewed as a corollary to Theorem 1.

Proposition 4. Let � and u0 satisfy the above assumptions. If (M1) holds, then the
controller has an optimal strategy.

Proposition 4 is a counterpart of the results obtained in Sect. 6 of González-
Trejo et al. (2003) for discounted models (see Propositions 6.1, 6.2, 6.3 and their
consequences in González-Trejo et al. (2003)). However, our assumptions imposed
on the primitive data are weaker than the ones used by González-Trejo et al. (2003).
They are satisfied for a pretty large number of systems, in which the disturbances
comprise “random noises” that are difficult to observe and often caused by external
factors influencing the dynamics. Below we give certain examples which stem from
economic growth theory and related topics. Mainly, they are inspired by models
studied in Stokey et al. (1989), Bhattacharya and Majumdar (2007), and Hansen
and Sargent (2008).

Example 1 (A growth model with multiplicative shocks). Let X D Œ0;1/ be the
set of all possible capital stocks. If xn is a capital stock at the beginning of period n,
then the level of satisfaction of consumption of an 2 A.xn/ D Œ0; xn� in this period
is a�n . Here � 2 .0; 1� is a fixed parameter. The evolution of the state process is
described by the following equation:

xnC1 D .xn � an/
�n; n 2 N;

where  2 .0; 1/ is some constant and �n is a random shock in period n. Assume that
each �n follows a probability distribution b 2 B for some Borel set B � Pr.Œ0;1//.
We assume that b is unknown.

Consider the maxmin control model, where X D Œ0;1/, A.x/ D Œ0; x�,
B.x; a/ D B , and u.x; a; b/ D a� for .x; a; b/ 2 K. Then, the transition
probability q is of the form

q.Djx; a; b/ D

Z 1

0

1D..x � a/ s/b.ds/;

where D 2 B.X/. If � 2 C.X/, then the integral

Z
X

�.y/q.dyjx; a; b/ D

Z 1

0

�..x � a/ s/b.ds/
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is continuous at .x; a; b/ 2 K. We further assume that

Ns D sup
b2B

Z 1

0

sb.ds/ < 1:

Define now

!.x/ D .r C x/� ; x 2 X; (5.9)

where r � 1 is a constant. Clearly, uC.x; a; b/ D a� � !.x/ for any .x; a; b/ 2 K.
Hence, condition (M2) is satisfied. Moreover, by Jensen’s inequality we obtain

Z
X

!.y/q.dyjx; a; b/ D

Z 1

0

.r C .x � a/ s/�b.ds/ � .r C x Ns/� :

Thus,

R
X
!.y/q.dyjx; a; b/

!.x/
� ��.x/; where �.x/ WD

r C Nsx

r C x
; x 2 X:

(5.10)
If x � Nx WD Ns1=.1�/, then �.x/ � 1, and consequently, ��.x/ � 1. If x < Nx, then

�.x/ <
r C Nsx

r C x
�
r C Ns Nx

r
D 1C

Nx

r
;

and

��.x/ � ˛ WD

�
1C

Nx

r

��
: (5.11)

Let ˇ 2 .0; 1/ be any discount factor. Then, there exists r � 1 such that ˛ˇ < 1,
and from (5.10) and (5.11) it follows that assumption (M1) is satisfied.

Example 2. Let us consider again the model from Example 1 but with u.x; a; b/ D

ln a, a 2 A.x/ D Œ0; x�. This utility function has a number of applications in
economics (see Stokey et al. 1989). Nonetheless, the two-sided weighted norm
approach cannot be employed, because ln.0/ D �1. Assume now that the state
evolution equation is of the form

xnC1 D .1C �0/.xn � an/�n; n 2 N;

where �0 > 0 is a constant rate of growth and �n is an additional random income
(shock) received in period n. Let !.x/ D r C ln.1C x/ for all x 2 X and
some r � 1. Clearly, uC.x; a; b/ D maxf0; ln ag � maxf0; ln xg � !.x/ for all
.x; a; b/ 2 K. By Jensen’s inequality it follows that
Z
X

!.y/q.dyjx; a; b/ D

Z 1

0

!..x�a/.1C�0/Cs/b.ds/ � rCln.1Cx.1C�0/Ns/
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for all .x; a; b/ 2 K. Thus

R
X
!.y/q.dyjx; a/

!.x/
�  .x/ WD

r C ln.1C x.1C �0/Ns/

r C ln.1C x/
: (5.12)

If we assume that Ns.1C �0/ > 1, then

 .x/ � 1 D
ln
�
1C.1C�0/Nsx

1Cx

�

r C ln.1C x/
�
1

r
ln

�
1C .1C �0/Nsx

1C x

�
�
1

r
ln.Ns.1C �0//:

Hence

 .x/ � ˛ WD 1C
1

r
ln.Ns.1C �0//:

Choose now any ˇ 2 .0; 1/. If r is sufficiently large, then ˛ˇ < 1 and by (5.12)
condition (M1) holds.

Example 3 (A growth model with additive shocks). Consider the model from
Example 1 with the following state evolution equation:

xnC1 D .1C �0/.xn � an/C �n; n 2 N;

where �0 is constant introduced in Example 2. The transition probability q is now
of the form

q.Djx; a; b/ D

Z 1

0

1D..1C �0/.x � a/C s/b.ds/;

where D 2 B.X/. If � 2 C.X/, then the integral

Z
X

�.y/q.dyjx; a/ D

Z 1

0

�..1C �0/.x � a/C s/b.ds/

is continuous in .x; a; b/ 2 K. Let the function ! be as in (5.9). Applying Jensen’s
inequality we obtain

Z
X

!.y/q.dyjx; a; b/ D

Z 1

0

!..x � a/.1C �0/C s/b.ds/

� !.x.1C �0/C Ns/ D .r C x.1C �0/C Ns/� :

Thus,
R
X
!.y/q.dyjx; a; b/

!.x/
� ��0 .x/; where �0.x/ WD

r C x.1C �0/C Ns

r C x
; x 2 X:
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Take r > Ns=�0 and note that

lim
x!0C

�0.x/ D 1C
Ns

r
< lim

x!1
�0.x/ D 1C �0:

Hence,

sup
.x;a;b/2K

R
X
!.y/q.dyjx; a; b/

!.x/
� sup

x2X

��0 .x/ D .1C �0/
� :

Therefore, condition (M1) holds for all ˇ 2 .0; 1/ such that ˇ.1C �0/
� < 1.

For other examples involving quadratic cost/payoff functions and linear evolution
of the system, the reader is referred to Jaśkiewicz and Nowak (2011).

3.1.2 An Application to the Hansen-Sargent Model in
Macroeconomics

In this subsection, we study maxmin control model, in which minimizing player
(nature) helps the controller to design a decision rule that is robust to misspecifi-
cation of a dynamic approximating model linking controls today to state variables
tomorrow. The constraint on nature is represented by a cost based on a reference
transition probability q. Nature can deviate away from q, but the larger the deviation,
the higher the cost. In particular, this cost is proportional to the relative entropy
I . Oqjjq/ between the chosen probability Oq and the reference probability q, i.e., the
cost equals to 0I . Oqjjq/, where 0 > 0. Such preferences in macroeconomics are
called multiplier preferences (see Hansen and Sargent 2008).

Let us consider the following scalar system:

xnC1 D xn C an C "n C bn; n 2 N; (5.13)

where xn 2 X D R, an 2 A.xn/ � A D Œ0; Oa� is an action selected by the controller
and bn 2 B.xn; an/ � B D .�1; 0� is a parameter chosen by the malevolent
nature. The sequence of random variables ."n/n2N is i.i.d., where "n follows the
standard Gaussian distribution with the density denoted by �. At each period the
controller selects a control a 2 A, which incurs the payoff u0.x; a/. It is assumed
that the function u0 is upper semicontinuous on X �A. The controller has a unique
explicitly specified approximating model (when bn � 0 for all n) but concedes that
data might actually be generated by a number of set of models that surround the
approximating model.

Let n 2 N be fixed. By p we denote the conditional density of variable Y D xnC1

implied by equation (5.13). Setting a D an, x D xn, and bn D b we obtain that

p.yjx; a; b/ D
1

p
2�
e�

.y�x�a�b/2

2 for y 2 R:



5 Zero-Sum Stochastic Games 231

Clearly, p.�jx; a; b/ defines the probability measure q, where

q.Djx; a; b/ D

Z
D

p.yjx; a; b/dy for D � B.R/:

If b D 0, then we deal with the baseline model. Hence, the relative entropy

I .q.�jx; a; b/jjq.�jx; a; 0// D
1

2
b2;

and consequently, the payoff function in the model is

u.x; a; b/ D u0.x; a/C
1

2
0b

2:

The term 1
2
0b

2 is a penalized cost paid by nature. The parameter 0 can be viewed
as the degree of robustness. For example, if 0 is large, then the penalization
becomes so great that only the nominal model remains and the strategy is less robust.
Conversely, the lower values of 0 allow to design a strategy which is appropriate
for a wider set of model misspecifications. Therefore, a lower 0 is equivalent to a
higher degree of robustness.

Within such a framework, we shall consider pure strategies for nature. A strategy
	 D .	n/n2N is an admissible strategy to nature, if 	n W H�

n ! B is a Borel
measurable function, i.e., bn D 	n.h

�
n/, n 2 N, and for every x 2 X and � 2 ˘

E�	
x

 
1X
nD1

ˇn�1b2n

!
< 1:

The set of all admissible strategies to nature is denoted by 
 �
0 .

The objective of the controller is to find a policy �� 2 ˘ such that

inf
	2
 �

0

E��	
x

 
1X
nD1

ˇn�1

�
u0.xn; an/C

1

2
0b

2
n

�!
D

max
�2˘

inf
	2
 �

0

E�	
x

 
1X
nD1

ˇn�1

�
u0.xn; an/C

1

2
0b

2
n

�!
:

We solve the problem by proving that there exists a solution to the optimality
equation. First, we note that assumption (M1) is satisfied for !.x/ D maxfx; 0g C r ,
where r � 1 is some constant. Indeed, on page 268 in Jaśkiewicz and Nowak (2011),
it is shown that for every discount factor ˇ 2 .0; 1/, we may choose sufficiently large
r � 1 such that ˛ˇ < 1, where ˛ D 1C . Oa C 1/=r . Further, we shall assume that
supa2A uC

0 .x; a/ � d!.x/ for all x 2 X .
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For any function � 2 U!.X/, we define the operator Tˇ as follows:

Tˇ�.x/ D max
a2A

inf
b2B

�
u0.x; a/C

1

2
0b

2 C ˇ

Z
X

�.y/q.dyjx; a; b/

	

for all x 2 X . Clearly, Tˇ maps the space U!.X/ into itself. Indeed, we have

Tˇ�.x/ � max
a2A

�
u0.x; a/C ˇ

Z
X

�.y/q.dyjx; a; b/

	
� d!.x/C ˇ˛k�Ck!!.x/

for all x 2 X . Hence, .Tˇ�/C 2 U!.X/ and by Lemma 1, Tˇ� is upper
semicontinuous. Proceeding analogously as in the proof of Theorem 1, we infer
that vˇ 2 U!.X/, where vˇ D Tˇvˇ and there exits f � 2 F such that

vˇ.x/ D Tˇvˇ.x/ D max
a2A

inf
b2B

�
u0.x; a/C

1

2
0b

2 C ˇ

Z
X

vˇ.y/q.dyjx; a; b/

	

D inf
b2B

�
u0.x; f

�.x//C
1

2
0b

2 C ˇ

Z
X

vˇ.y/q.dyjx; f �.x/; b/

	

(5.14)

for x 2 X . Finally, we may formulate the following result.

Proposition 5. Consider the system given in (5.13). Then, vˇ 2 U!.X/ and there
exists a stationary strategy f � such that (5.14) is satisfied for all x 2 X . The
strategy f � is optimal for the controller.

3.2 Average Reward Robust Markov Decision Process

In this subsection, we assume that u takes values in R rather than in R. Moreover,
the action set of nature is independent of .x; a/ 2 KA, i.e., B.x; a/ � B , where
B is a compact metric space. Obviously, (C3) is then immediately satisfied. Since
we consider the average payoff in the maxmin control problem, we impose a bit
stronger assumptions than in the previous subsection. Below are their counterparts.

(C̃1) For any x 2 X , A.x/ is compact and the set-valued mapping x ! A.x/ is
continuous.

(W̃1) The payoff function u is continuous on K.

A strategy for the opponent is a sequence 	 D .	n/n2N of Borel measurable
mappings 	n W H�

n ! B rather than a sequence of stochastic kernels. The set of all
strategies for the opponent is denoted by 
 �

0 .
For any initial state x 2 X and strategies � 2 ˘ , 	 2 
 �

0 , we set
u�
n .x; �; 	/ D E

�	
x Œu�.xn; an; bn/�, uC

n .x; �; 	/ D E
�	
x ŒuC.xn; an; bn/�, and
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un.x; �; 	/ D E
�	
x Œu.xn; an; bn/�, provided that the integral is well defined, i.e.,

either uC
n .x; �; 	/ < C1 or u�

n .x; �; 	/ > �1. Note that un.x; �; 	/ is the n-
stage expected payoff. For x 2 X , strategies � 2 ˘ , 	 2 
 �

0 , and ˇ 2 .0; 1/, we
define J�

ˇ .x; �; 	/ and JC
ˇ .x; �; 	/ as in (5.1) and in (5.2). Assuming that these

expressions are finite, we define the expected discounted payoff to the controller as
in (5.3). Clearly, the maxmin value vˇ is defined as in the previous subsection, i.e.,

vˇ.x/ D sup
�2˘

inf
	2
 �

0

Jˇ.x; �; 	/:

For any initial state x 2 X , strategies � 2 ˘ , 	 2 
 �
0 , and n 2 N, we let

J�
n .x; �; 	/ WD E�	

x

"
nX

mD1

u�.xm; am; bm/

#
and

JC
n .x; �; 	/ WD E�	

x

"
nX

mD1

uC.xm; am; bm/

#
:

If these expressions are finite, we can define the total expected n-stage payoff to the
controller as follows:

Jn.x; �; 	/ WD JC
n .x; �; 	/C J�

n .x; �; 	/:

Clearly, we have that

Jn.x; �; 	/ D

nX
mD1

um.x; �; 	/:

Furthermore, we set

J
�

n .x; �; 	/ D
J�
n .x; �; 	/

n
; J

C

n .x; �; 	/ D
JC
n .x; �; 	/

n
;

and

J n.x; �; 	/ D
Jn.x; �; 	/

n
:

The robust expected average payoff per unit time (average payoff, for short) is
defined as follows:

OR.x; �/ D lim inf
n!1

inf
	2
 �

0

J n.x; �; 	/: (5.15)

A strategy N� 2 ˘ is called an optimal robust strategy for the controller in the
average payoff case, if sup�2˘

OR.x; �/ D OR.x; N�/ for each x 2 X .
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We can now formulate our assumption.

(D) There exist functions DC W X ! Œ1;1/ and D� W X ! Œ1;1/ such that

J
C

n .x; �; 	/ � DC.x/ and jJ
�

n .x; �; 	/j � D�.x/

for every x 2 X , � 2 ˘ , 	 2 
 �
0 and n 2 N. Moreover, DC is continuous and

the function .x; a; b/ !
R
X
DC.y/q.dyjx; a; b/ is continuous on K.

Condition (D) trivially holds if the payoff function u is bounded. The models with
unbounded payoffs satisfying (D) are given in Jaśkiewicz and Nowak (2014) (see
Examples 1 and 2). Our aim is to consider the robust expected average payoff per
unit time. The analysis is based upon studying the so-called optimality inequality,
which is obtained via vanishing discount factor approach. However, we note that we
cannot use the results from previous subsection, since in our approach we must take
a sequence of discount factors converging to one. Theorem 1 was obtained under
assumption (M1). Unfortunately, in our case this assumption is useless. Clearly, if
˛ > 1, as it happens in Examples 1, 2, and 3, the requirement ˛ˇ < 1 is a limitation
and makes impossible to define a desirable sequence .ˇn/n2N converging to one.
Therefore, we first reconsider the robust discounted payoff model under different
assumption.

Put w.x/ D DC.x/=.1 � ˇ/, x 2 X . Let QUw.X/ be the space of all real-valued
upper semicontinuous functions v W X ! R such that v.x/ � w.x/ for all x 2 X .
Assume now that � 2 QUw.X/ and f 2 F . For every x 2 X we set (recall (5.6))

Tˇ�.x/ D sup
a2A.x/

inf
b2B

�
u.x; a; b/C ˇ

Z
X

�.y/q.dyjx; a; b/

	
: (5.16)

The following result is Theorem 1 in Jaśkiewicz and Nowak (2014).

Theorem 2. Assume (C̃1),(W̃1), (W2), and (D). Then, for each ˇ 2 .0; 1/, vˇ 2
QUw.X/, vˇ D Tˇvˇ , and there exists f � 2 F such that

vˇ.x/ D inf
b2B

�
u.x; f �.x/; b/C ˇ

Z
X

vˇ.y/q.dyjx; f �.x/; b/

	
; x 2 X:

Moreover, vˇ.x/ D sup�2˘ inf	2
 �

0
Jˇ.x; �; 	/ D inf	2
 �

0
Jˇ.x; f

�; 	/ for each
x 2 X , i.e., f � is optimal.

Remark 4. The proof of Theorem 2 is to some extent standard, but as mentioned we
cannot apply the Banach contraction principle (see for instance Blackwell 1965 or
Bertsekas and Shreve 1996). The majority of papers that deal with maximization
of the expected discounted payoff assume that the one-stage payoff function is
bounded from above (see Hernández-Lerma and Lasserre 1996; Schäl 1975) or it
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satisfies inequality (5.7). Neither requirement is met in this framework. Therefore,
we have to consider truncated models and finite horizon maxmin problems.

In order to establish the optimality inequality, we shall need a generalized
Tauberian relation, which plays a crucial role in proving Theorem 3 stated below.

For any sequence .uk/k2N of real numbers, let un WD 1
n

Pn
kD1 uk for any n 2

N. Fix a constant D � 1 and consider the set SD of all sequences .uk/k2N such
that junj � D for each n 2 N. Assume now that the elements of the sequence
.uk.�//k2N 2 SD may depend on � belonging to some set � . Define

un.�/ D
1

n

nX
kD1

uk.�/

and

vˇ D inf
�2�

.1 � ˇ/

1X
kD1

ˇk�1uk.�/ for ˇ 2 .0; 1/; vn WD inf
�2�

un.�/:

Proposition 6. Assume that .un.�//n2N 2 SD for each � 2 � . Then, we have the
following

lim inf
ˇ!1�

vˇ � lim inf
n!1

vn:

Proposition 6 extends Proposition 4 and Corollary 5 in Lehrer and Sorin (1992)
that are established under the assumption that 0 � un.�/ � 1 for every n 2 N and
� 2 � . This result is related to the so-called Tauberian relations. Recent advances
on this issue can be found in Renault (2014) (see also the discussion in Sect. 7). It
is worth mentioning that Proposition 6 is also useful in the study of risk-sensitive
control models (see Jaśkiewicz 2007 or Appendix in Jaśkiewicz and Nowak 2014).

Let us fix a state z 2 X and define

hˇ.x/ WD Vˇ.x/ � Vˇ.z/; for x 2 X and ˇ 2 .0; 1/:

Furthermore, we make the following assumptions.

(B1) There exists a function M W X ! .�1; 0� such that infˇ2.0;1/ hˇ.x/ �

M.x/, and there exists a continuous function Q W X ! Œ0;C1/ such
that supˇ2.0;1/ hˇ.x/ � Q.x/ for every x 2 X . Moreover, the function
.x; a; b/ !

R
X
Q.y/q.dyjx; a; b/ is continuous on K.

(B2) For any x 2 X , � 2 ˘ , and 	 2 
 �
0 , it holds that

lim
n!1

E
�	
x ŒQ.xn/�

n
D 0:
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The main result in Jaśkiewicz and Nowak (2014) is as follows.

Theorem 3. Assume (C̃1), (W̃1), (W2), (D), and (B1)–(B2). Then, there exist a
constant g, a real-valued upper semicontinuous function h, and a stationary strategy
Nf 2 F such that

h.x/C g � sup
a2A.x/

inf
b2B

�
u.x; a; b/C

Z
X

h.y/q.dyjx; a; b/

	

D inf
b2B

�
u.x; Nf .x/; b/C

Z
X

h.y/q.dyjx; Nf .x/; b/

	

for x 2 X . Moreover, g D sup�2˘
OR.x; �/ D OR.x; Nf / for all x 2 X , i.e., Nf is the

optimal robust strategy.

4 Discounted and Positive Stochastic Markov Games with
Simultaneous Moves

From now on we assume that B.x; a/ D B.x/ is independent of a 2 A.x/ for each
x 2 X . Therefore, we now have KA 2 B.X � A/,

KB 2 B.X � B/; and K WD f.x; a; b/ W x 2 X; a 2 A.x/; b 2 B.x/g:

(5.17)

Thus, at every stage n 2 N, player 2 does not observe player 1’s action an 2 A.xn/

in state xn 2 X . One can say that the players act simultaneously and play the
standard discounted stochastic game as in the seminal work of Shapley (1953). It
is assumed that both players know at every stage n 2 N the entire history of the
game up to state xn 2 X . Now a strategy for player 2 is a sequence 	 D .	n/n2N of
Borel (or universally measurable) transition probabilities 	n fromHn toB such that
	n.B.xn/jhn/ D 1 for each hn 2 Hn. The set of all Borel (universally) measurable
strategies for player 2 is denoted by 
 (
u). Let G (Gu) be the set of all Borel
(universally) measurable mappings g W X ! Pr.B/ such that g.x/ 2 Pr.B.x// for
all x 2 X . Every g 2 Gu induces a transition probability g.dbjx/ from X to B and
is recognized as a randomized stationary strategy for player 2. A semistationary
strategy for player 2 is determined by a Borel or universally measurable function
g W X � X ! Pr.B/ such that g.x; x0/ 2 Pr.B.x0// for all .x; x0/ 2 X � X .
Using a semistationary strategy, player 2 chooses an action bn 2 B.xn/ on any
stage n � 2 according to the probability measure g.x1; xn/ depending on xn and the
initial state x1. Let F (Fu) be the set of all Borel (universally) measurable mappings
f W X ! Pr.A/ such that f .x/ 2 Pr.A.x// for all x 2 X . Then, F (Fu) can be
considered as the set of all randomized stationary strategies for player 1. The set of
all Borel (universally) measurable strategies for player 1 is denoted by ˘ (˘u). For
any initial state x 2 X , � 2 ˘u, 	 2 
u, the expected discounted payoff function
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Jˇ.x; �; 	/ is well defined under conditions (M1) and (M2). Since ˘ � ˘u and

 � 
u, Jˇ.x; �; 	/ is well defined for all � 2 ˘ , 	 2 
 . If we restrict attention
to Borel measurable strategies, then the lower value of the game is

vˇ.x/ D sup
�2˘

inf
	2


Jˇ.x; �; 	/

and the upper value of the game is

vˇ.x/ D inf
	2


sup
�2˘

Jˇ.x; �; 	/; x 2 X:

Suppose that the stochastic game has a value, i.e., vˇ.x/ WD vˇ.x/ D vˇ.x/, for
each x 2 X . Then, under our assumptions (M1) and (M2), vˇ.x/ 2 R. Let X WD

fx 2 X W vˇ.x/ D �1g. A strategy �� 2 ˘ is optimal for player 1 if

inf
	2


Jˇ.x; �
�; 	/ D vˇ.x/ for all x 2 X:

Let " > 0 be fixed. A strategy 	� 2 
 is "-optimal for player 2 if

sup
�2˘

Jˇ.x; �; 	
�/ D vˇ.x/ for all x 2 X nX and

sup
�2˘

Jˇ.x; �; 	
�/ < �

1

"
for all x 2 X:

Similarly, the value vˇ and "-optimal or optimal strategies can be defined in the class
of universally measurable strategies. Let

NKA WD f.x; �/ W x 2 X; � 2 Pr.A.x//g; NKB WD f.x; �/ W x 2 X; � 2 Pr.B.x//g;

and

NK WD f.x; �; �/ W x 2 X; � 2 Pr.A.x//; � 2 Pr.B.x//g:

For any .x; �; �/ 2 NK and D 2 B.X/, define

u.x; �; �/ WD

Z
A.x/

Z
B.x/

u.x; a; b/�.db/�.da/

and

q.Djx; �; �/ WD

Z
A.x/

Z
B.x/

q.Djx; a; b/�.db/�.da/:

If f 2 Fu and g 2 Gu, then

u.x; f; g/ WD u.x; f .x/; g.x// and q.Djx; f; g/ WD q.Djx; f .x/; g.x//:

(5.18)
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For any .x; �; �/ 2 NK and � 2 U!.X/, define

Lˇ�.x; �; �/ D u.x; �; �/C ˇ

Z
X

�.y/q.dyjx; �; �/ (5.19)

and

Tˇ�.x/ D max
�2Pr.A.x//

inf
�2Pr.B.x//

Lˇ�.x; �; �/: (5.20)

By Lemma 7 in Jaśkiewicz and Nowak (2011), the operator Tˇ is well defined,
and using the maximum theorem of Berge (1963), it can be proved that Tˇ� 2

U!.X/ for any � 2 U!.X/.

Theorem 4. Assume (C1), (W1)–(W2), and (M1)–(M2). In addition, let the corre-
spondence x ! B.x/ be lower semicontinuous and let every setB.x/ be a complete
subset of B . Then, the game has a value vˇ 2 U!.X/, player 1 has an optimal
stationary strategy f � 2 F and

Tˇvˇ.x/Dvˇ.x/D max
�2Pr.A.x//

inf
�2Pr.B.x//

Lˇvˇ.x; �; �/D inf
�2Pr.B.x//

Lˇvˇ.x; f
�.x/; �/

for each x 2 X . Moreover, for any " > 0, player 2 has an "-optimal Borel
measurable semistationary strategy.

The assumption that every B.x/ is complete in B is made to assure that G 6D

; (see Kuratowski and Ryll-Nardzewski 1965). The construction of an "-optimal
semistationary strategy for player 2 is based on using “truncated games” Gk with
the payoff functions uk WD maxfu;�kg, k 2 N. In every game Gk player 2 has an
"
2
-optimal stationary strategy, say g�

k 2 G. If vˇ;k is the value function of the game
Gk , then it is shown that vˇ.x/ D infk2N vˇ;k.x/ for all x 2 X . This fact can be
easily used to construct a measurable partition fXngn2Z of the state space (Z � N)
such that vˇ.x/ > vˇ;k.x/ � "

2
for all x 2 Xk , k 2 Z. If g�.x; x0/ WD g�

n .x
0/ for

every x 2 Xn, n 2 Z and for each x0 2 X , then g� is an "-optimal semistationary
strategy for player 2. The above definition is valid, if vˇ.x/ > �1 for all x 2 X .
If vˇ.x/ D �1 for some state x 2 X , then the reader is referred to the proof of
Theorem 2 in Jaśkiewicz and Nowak (2011), where a modified construction of the
"-optimal semistationary strategy is provided.

Remark 5. Zero-sum discounted stochastic games with a compact metric state
space and weakly continuous transitions were first studied by Maitra and
Parthasarathy (1970). Kumar and Shiau (1981) extended their result to Borel state
space games with bounded continuous payoff functions and weakly continuous
transitions. Couwenbergh (1980) studied continuous games with unbounded payoffs
and a metric state space using the weighted supremum norm approach introduced by
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Wessels (1977). He proved that both players possess optimal stationary strategies.
In order to obtain such a result, additional conditions should be imposed. Namely,
the function u is continuous and such that ju.x; a; b/j � d!.x/ for some constant
d > 0 and all .x; a; b/ 2 K. Moreover, the mappings x ! A.x/ and x ! B.x/

are compact valued and continuous. It should be noted that our condition (M2)
allows for much larger class of models and is less restrictive for discount factors
compared with the weighted supremum norm approach. We also point out that a
class of zero-sum lower semicontinuous stochastic games with weakly continuous
transition probabilities and bounded from below nonadditive payoff functions was
studied by Nowak (1986).

A similar result can also be proved under the following conditions:

(C4) A.x/ is compact for each x 2 X .
(C5) The payoff function u is Borel measurable and u.x; �; b/ is upper semicon-

tinuous and q.Djx; �; b/ is continuous on A.x/ for any D 2 B.X/, x 2 X ,
b 2 B.x/.

A simple modification of the proof of Theorem 2 in Jaśkiewicz and Nowak
(2011) using appropriately adapted theorems on measurable minmax selections
proved in Nowak (1985b) yields the following result:

Theorem 5. Assume (C4)–(C5) and (M1)–(M2). Then, the game has a value vˇ;
which is a lower semianalytic function on X . Player 1 has an optimal stationary
strategy f � 2 Fu and

Tˇvˇ.x/Dvˇ.x/D max
�2Pr.A.x//

inf
�2Pr.B.x//

Lˇvˇ.x; �; �/D inf
�2Pr.B.x//

Lˇvˇ.x; f
�.x/; �/

for each x 2 X . Moreover, for any " > 0, player 2 has an "-optimal universally
measurable semistationary strategy.

Maitra and Parthasarathy (1971) first studied positive stochastic games, where
the stage payoff function u � 0 and ˇ D 1. The extended payoff in a positive
stochastic game is

Jp.x; �; 	/ WD E�	
x

 
1X
nD1

u.xn; an; bn/

!
; x D x1 2 X; � 2 ˘; 	 2 
 :

Using standard iteration arguments as in Strauch (1966) or Bertsekas and Shreve
(1996), one can show that Jp.x; �; 	/ < 1 if and only if there exists a nonnegative
universally measurable function w on X such that the following condition holds:

u.x; a; b/C

Z
X

w.y/q.dyjx; a; b/ � w.x/ for all .x; a; b/ 2 K: (5.21)
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Value functions and "-optimal strategies are defined in positive stochastic games
in an obvious manner. Studying positive stochastic games, it is convenient to use
approximation of Jp.x; �; 	/ from below by Jˇ.x; �; 	/ as ˇ goes to 1. To make
this method effective we must change our assumptions on the primitives in the way
described below.

(C6) B.x/ is compact for each x 2 X .
(C7) The payoff function u is Borel measurable and u.x; a; �/ is lower semicon-

tinuous and q.Djx; a; �/ is continuous on B.x/ for any D 2 B.X/, x 2 X ,
a 2 A.x/.

As noted in the preliminaries, assumption (C6) implies that ; 6D G � Gu and
Fu 6D ;. Let L1 and T1 be the operators defined as in (5.19) and (5.20), respectively,
but with ˇ D 1.

Theorem 6. Assume that (5.21) and (C6)–(C7) hold. Then the positive stochas-
tic game has a value function vp which is upper semianalytic and vp.x/ D

supˇ2.0:1/ vˇ.x/ for all x 2 X . Moreover, vp is the smallest nonnegative upper
semianalytic solution to the equation

T1v.x/ D v.x/; x 2 X:

Player 2 has an optimal stationary strategy g� 2 Gu such that

T1vp.x/ D sup
�2Pr.A.x//

min
�2Pr.B.x//

L1vp.x; �; �/ D sup
�2Pr.A.x//

L1vp.x; �; g
�.x//; x 2 X

and for any " > 0, player 1 has an "-optimal universally measurable semistationary
strategy.

Theorem 6 is a version of Theorem 5.4 in Nowak (1985a). Some special
cases under much stronger continuity assumptions were considered by Maitra and
Parthasarathy (1971) for games with compact state spaces and by Kumar and Shiau
(1981) for games with a Borel state space and finite action sets in each state. An
essential part of the proof of Theorem 6 is Proposition 2.

A similar result holds for positive semicontinuous games satisfying the following
conditions:

(C8) For any x 2 X , A.x/ is a complete set in A and the correspondence x !

A.x/ is lower semicontinuous.
(C9) For any x 2 X , B.x/ is compact and the correspondence x ! B.x/ is upper

semicontinuous.
(W3) u � 0 and u is lower semicontinuous on K.
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Theorem 7. Assume (5.21), (C8)–(C9), and (W3). Then, the positive stochastic
game has a value function vp which is lower semicontinuous and vp.x/ D

supˇ2.0;1/ vˇ.x/ for all x 2 X . Moreover, vp is the smallest nonnegative lower
semicontinuous solution to the equation

T1v.x/ D v.x/; x 2 X: (5.22)

Player 2 has an optimal stationary strategy g� 2 G such that

T1vp.x/D sup
�2Pr.A.x//

min
�2Pr.B.x//

L1vp.x; �; �/D sup
�2Pr.A.x//

L1vp.x; �; g
�.x//; x 2 X

and for any " > 0, player 1 has an "-optimal Borel measurable semistationary
strategy.

The proof of Theorem 7 is similar to that of Theorem 6 and makes use of
Proposition 3.

Player 1 need not have an optimal strategy even if X is finite. This is shown
in Kumar and Shiau (1981) in Example 1 (see also pages 192–193 in Maitra and
Sudderth 1996), which was inspired by Everett (1957). We present this example
below.

Example 4. Let X D f�1; 0; 1g, A D f0; 1g, B D f0; 1g. States x D �1 and x D 1

are absorbing with zero payoffs. If x D 0 and both players choose the same actions
(a D 1 D b or a D 0 D b), then u.x; a; b/ D 1 and q.�1j0; a; b/ D 1. Moreover,
q.0j0; 0; 1/ D q.1j0; 1; 0/ D 1 and u.0; 0; 1/ D u.0; 1; 0/ D 0. It is obvious that
vp.�1/ D 0 D vp.1/. In state x D 0we obtain the equation vp.0/ D 1=.2�vp.0//,
which yields the solution vp.0/ D 1. In this game player 1 has no optimal strategy.

If player 2 is dummy, i.e., every set B.x/ is a singleton, X is a countable set and
vp is bounded on X , then by Ornstein (1969) player 1 has a stationary "-optimal
strategy. A counterpart of this result does not hold for positive stochastic games.

Example 5. Let X D N [ f0g, A D f1; 2g, B D f1; 2g. State x D 0 is absorbing
with zero payoffs. Let x � 2 and a D 1. Then u.x; 1; b/ D 0 for b 2 B and
q.x � 1jx; 1; 1/ D q.x C 1jx; 1; 2/ D 1. If x � 2 and a D 2, then u.x; 2; 1/ D 0

and u.x; 2; 2/ D 1. In both cases (b D 1 or b D 2) the game moves to the absorbing
state x D 0 with probability one. If x D 1, then u.1; a; b/ D 1 and q.0j1; a; b/ D 1

for all a 2 A and b 2 B . It is obvious that vp.0/ D 0 and vp.1/ D 1. It is shown that
vp.x/ D .x C 1/=2x for x � 2 and player 1 has no stationary "-optimal strategy.
It is easy to check that the function vp given here is a solution to equation (5.22). It
may be interesting to note that also v.0/ D 0, v.x/ D 1 for x � 1 is also a solution
to equation (5.22) and v.x/ > vp.x/ for x > 1. For details see counterexample in
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Nowak and Raghavan (1991), whose interesting modification called the “Big Match
on the integers” was studied by Fristedt et al. (1995).

The assumption that q.Djx; a; �/ is continuous on B.x/ for each .x; a/ 2 KA

and D 2 B.X/ is weaker than the norm continuity of q.�jx; a; b/ in b 2 B.x/.
However, from the point of view of applications, e.g., in dynamic economic
models or engineering problems, the weak continuity assumption of q.�jx; a; b/ in
.x; a; b/ 2 K is more useful (see Remark 2).

We close this section with a remark on the weighted evaluation proposed for
Markov decision models in Krass et al. (1992) and for zero-sum stochastic games in
Filar and Vrieze (1992). The criterion is either a convex combination of discounted
evaluation and an average evaluation or a convex combination of two discounted
evaluations. In the first case, it is proved that the value of the game exists and
that both players have �-optimal strategies. In the second case, it is shown that the
value is the unique solution of some system of functional equations and that both
players have optimal Markov policies. The idea of using the weighted evaluations
was applied to the study of nonzero-sum stochastic games (with finite state and
action sets) by Flesch et al. (1999). Zero-sum perfect information games under
the weighted discounted payoff criterion were studied by Altman et al. (2000).
We would like to point out that discounted utility (payoff) functions belong to the
class of “recursive utilities” extensively examined in economics (see Miao 2014). It
seems, however, that the weighted discounted utilities are not in this class.

5 Zero-Sum Semi-Markov Games

In this section, we study zero-sum semi-Markov games on a general state space with
possibly unbounded payoffs. Different limit-average expected payoff criteria can be
used for such games, but under some conditions they turn out to be equivalent. Such
games are characterized by the fact that the time between jumps is a random variable
with distribution dependent on the state and actions chosen by the players. Most
primitive data for a game model considered here are as in Sect. 4. More precisely,
let KA 2 B.X � A/ and KB 2 B.X � B/. Then, the set K in (5.17) is Borel. As in
Sect. 4 we assume that A.x/ and B.x/ are the admissible action sets for the player
1 and 2, respectively, in state x 2 X . Let Q be a transition probability from K to
Œ0;1/ � X . Hence, if a 2 A.x/ and b 2 B.x/ are actions chosen by the players
in state x, then for D 2 B.X/ and t � 0, Q.Œ0; t � � Djx; a; b/ is the probability
that the sojourn time of the process in x will be smaller than t , and the next state x0

will be in D. Let k D .x; a; b/ 2 K. Clearly, q.Djk/ D Q.Œ0;1� � Djk/ is the
transition law of the next state. The mean holding time given k is defined as

�.k/ D

Z C1

0

tH.dt jk/;
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where H.t jk/ D Q.Œ0; t ��X jk/ is a distribution function of the sojourn time. The
payoff function to player 1 is a Borel measurable function u W K ! R and is usually
of the form

u.x; a; b/ D u1.x; a; b/C u2.x; a; b/�.x; a; b/; .x; a; b/ 2 K; (5.23)

where u1.x; a; b/ is an immediate reward obtained at the transition time and
u2.x; a; b/ is the reward rate in the time interval between successive transitions.

The game starts at T1 WD 0 and is played as follows. If the initial state is
x1 2 X and the actions .a1; b1/ 2 A.x1/ � B.x1/ are selected by the players,
then the immediate payoff u1.x1; a1; b1/ is incurred for player 1 and the game
remains in state x1 for a random time T2 that enjoys the probability distribution
H.�jx1; a1; b1/. The payoff u2.x1; a1; b1/ to player 1 is incurred until the next
transition occurs. Afterwards the system jumps to the state x2 according to the
transition law q.�jx1; a1; b1/: The situation repeats itself yielding a trajectory
.x1; a1; b1; t2; x2; a2; b2; t3; : : :/ of some stochastic process, where xn; an; bn and
tnC1 describe the state, the actions chosen by the players, and the decision epoch,
respectively, on the nth stage of the game. Clearly, tnC1 is a realization of the random
variable TnC1, and H.�jxn; an; bn/ is a distribution function of the random variable
TnC1 � Tn for any n 2 N.

Strategies and their sets for both players are defined in a similar way as in Sect. 4.
The only difference now is that the history of the process also includes the jump
epochs, i.e., hn D .x1; a1; b1; t2; : : : ; xn/ is the history of the process up to the nth
state.

Let N.t/ be the number of jumps that have occurred prior to time t , i.e., N.t/ D

maxfn 2 N W Tn � tg. Under our assumptions for each initial state x 2 X and any
strategies .�; 	/ 2 ˘ � 
 , we have P�	

x .N .t/ < 1/ D 1 for any t � 0.
For any pair of strategies .�; 	/ 2 ˘ �
 and an initial state x 2 X , we define

• the ratio average payoff

OJ .x; �; 	/ D lim inf
n!1

E
�	
x .

Pn
kD1 u.xk; ak; bk//

E
�	
x .

Pn
kD1 �.xk; ak; bk//

I (5.24)

• the time average payoff

Oj .x; �; 	/ D lim inf
t!1

E
�	
x .

PN.t/
nD1 u.xn; an; bn//

t
; (5.25)

where E�	
x is the expectation operator corresponding to the unique measure P�	

x

defined on the space of all histories of the process starting at x and induced by q,
H , and strategies � 2 ˘ and 	 2 
 .

Remark 6. (a) The definition of average reward in (5.25) is more natural for semi-
Markov games, since it takes into account continuous nature of such processes.
Formally, the time average payoff should be defined as follows:



244 A. Jaśkiewicz and A. S. Nowak

Oj .x; �; 	/D lim inf
t!1

E
�	
x .

PN.t/
nD1 u.xn; an; bn/C .TN.t/C1 � t /u2.xN.t/; aN.t/; bN.t//

t
:

However, from Remark 3.1 in Jaśkiewicz (2009), it follows that the assumptions
imposed on the game model with the time average payoff imply that

lim
t!1

E
�	
x .TN.t/C1 � t /u2.xN.t/; aN.t/; bN.t//

t
D 0:

Finally, it is worth emphasizing that the payoff defined in (5.25) requires additional
tools and methods for the study (such as renewal theory, martingale theory, and
analysis of the underlying process to the so-called small set) than the model with
average payoff (5.24).

(b) It is worth mentioning that payoff criteria (5.24) and (5.25) need not coincide
even for stationary policies and may lead to different optimal policies. Such
situations happen if the Markov chain induced by stationary strategies is not ergodic
(see Feinberg 1994).

We shall need the following continuity-compactness, ergodicity, and regularity
assumptions.

(C10) The set-valued mappings x ! A.x/ and x ! B.x/ are continuous;
moreover, A.x/ and B.x/ are compact for each x 2 X .

(C11) The functions u and � are continuous on K, and there exist a positive
constant d and continuous function ! W X ! Œ1;1/ such that

�.x; a; b/ � d!.x/; ju.x; a; b/j � d!.x/;

for all .x; a; b/ 2 K.
(C12) The function .x; a; b/ !

R
X
!.y/q.dyjx; a; b/ is continuous.

(GE1) There exists a Borel set C � X such that for some O� 2 .0; 1/ and � > 0, we
have

Z
X

!.y/q.dyjx; a; b/ � O�!.x/C �1C .x/;

for each .x; a; b/ 2 K, with ! introduced in (C11).
(GE2) The function ! is bounded on C , that is,

!C WD sup
x2C

!.x/ < 1:

(GE3) There exist some ı 2 .0; 1/ and a probability measure onC with the property
that

q.Djx; a; b/ � ı�.D/;

for each Borel set D � C , x 2 C , a 2 A.x/, and b 2 B.x/.
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(R1) There exist � > 0 and � < 1 such that

H.�jx; a; b/ � �;

for all x 2 C , a 2 A.x/ and b 2 B.x/. Moreover, �.x; a; b/ � d for all
.x; a; b/ 2 K.

(R2) There exists a decreasing function ˛ such that ˛.0/ � d , ˛.1/ D 0 and

Z 1

t

sH.dsjx; a; b/ � ˛.t/

for all .x; a; b/ 2 K. Moreover, limt!1 supx2C supa2A.x/;b2B.x/Œ1 � H

.t jx; a; b/� D 0:

(C13) There exists an open set eC � C such that �.eC/ > 0.

For any Borel function v W X ! R, we define the !-norm as in (5.5). By B!.X/
we denote the set of all Borel measurable functions with finite !-norm.

Remark 7. (a) Assumption (GE3) in the theory of Markov chains implies that the
process generated by the stationary strategies of the players and the transition
law q is '-irreducible and aperiodic. The irreducible measure can be defined as
follows:

'.D/ WD ı�.D \ C/ for D 2 B.X/:

In other words, if '.D/ > 0, then the probability of reaching the setD is positive,
independent of the initial state. The set C is called “small set.”

The function ! in (GE1, GE2) up to the multiplicative constant is a bound for
the average time of first entry of the process to the set C (Theorem 14.2.2 in Meyn
and Tweedie 2009).

Assumptions (GE) imply that the underlying Markov chain .xn/n2N induced by
a pair of stationary strategies .f; g/ 2 F � G of the players possesses a unique
invariant probability measure �fg. Moreover, .xn/n2N is !-uniformly ergodic (see
Meyn and Tweedie 1994), i.e., there exist constants  > 0 and Ǫ < 1 such that

ˇ̌
ˇ̌
Z
X

�.y/q.dyjx; f; g/ �

Z
X

�.y/�fg.dy/

ˇ̌
ˇ̌ � k�k!!.x/ Ǫ n (5.26)

for every � 2 B!.X/ and x 2 X , n � 1. Here q.n/.�jx; f; g/ denotes the n-step
transition probability induced by q, f 2 F , and g 2 G. Clearly, for integers n � 2

and D 2 B.X/, we have

q.n/.Djx; f; g/ WD

Z
X

q.n�1/.Djy; f; g/q.dyjx; f; g/
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and q.1/.Djx; f; g/ WD q.Djx; f; g/. From (5.26) we conclude that

OJ .f; g/ WD OJ .x; f; g/ D

R
X

u.y; f; g/�fg.dy/R
X
�.y; f; g/�fg.dy/

; x 2 X; (5.27)

for every f 2 F and g 2 G, that is, the average payoff is independent of the
initial state. Obviously, �.x; f; g/ D �.x; f .x/; g.x// (see (5.18)). Consult also
Proposition 10.2.5 in Hernández-Lerma and Lasserre (1999) and Theorem 3.6 in
Kartashov (1996) for similar type of assumptions that lead to !-ergodicity of the
underlying Markov chains induced by stationary strategies of the players. The
reader is also referred to Arapostathis et al. (1993) for an overview of ergodicity
assumptions.

(b) Condition (R1) ensures that infinite number of transitions does not occur in a
finite time interval when the process is in the set C . Indeed, when the process
is outside the set C , then assumption (GE) implies that the process governed
by any strategies of the players returns to the set C within a finite number
of transitions with probability one. Then, (R1) prevents the process in the set
C from the explosion. As an immediate consequence of (R1), we get that
�.x; a; b/ > �.1 � �/ for all x 2 C and .x; a; b/ 2 K. Assumption (R2) is a
technical assumption used in the proof of the equivalence of the aforementioned
two average payoff criteria.

In order to formulate the first result, we replace the function ! by a new one
W .x/ WD !.x/C �

ı
that satisfies the following inequality:

Z
X

W .y/q.dyjx; a; b/ � ��W .x/C ı1C .x/

Z
C

W .y/�.dy/;

for .x; a; b/ 2 K and a suitably chosen �� 2 .0; 1/ (see Lemma 3.2 in Jaśkiewicz
2009). Observe that if we define the subprobability measure p.�jx; a; b/ WD

q.�jx; a; b/ � ı1C .x/�.�/; then

Z
X

W .y/p.dyjx; a; b/ � ��W .x/:

The above inequality plays a crucial role in the application of the fixed point
argument in the proof of Theorem 8 given below.

Similarly as in (5.5) we define k�kW and the set BW .X/. For each average payoff,
we define the lower value, upper value, and the value of the game in an obvious way.

The first result summarizes Theorem 4.1 in Jaśkiewicz (2009) and Theorem 1 in
Jaśkiewicz (2010).
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Theorem 8. Assume (C10)–(C13), (GE1)–(GE3), and (W2). Then, the following
hold:

(a) There exist a constant v and h� 2 BW .X/; which is continuous and such that

h�.x/ D val

�
u.x; �; �/ � v�.x; �; �/C

Z
X

h�.y/q.dyjx; �; �/

	
(5.28)

D sup
�2Pr.A.x//

inf
�2Pr.B.x//

�
u.x; �; �/ � v�.x; �; �/C

Z
X

h�.y/q.dyjx; �; �/

	

D inf
�2Pr.B.x//

sup
�2Pr.A.x//

�
u.x; �; �/ � v�.x; �; �/C

Z
X

h�.y/q.dyjx; �; �/

	

for all x 2 X .
(b) The constant v is the value of the game with the average payoff defined in (5.24).
(c) There exists a pair . Of ; Og/ 2 F �G such that

h�.x/ D inf
�2Pr.B.x//

�
u.x; Of .x/; �/ � v�.x; Of .x/; �/C

Z
X

h�.y/q.dyjx; Of .x/; �/

	

D sup
�2Pr.A.x//

�
u.x; �; Og.x// � v�.x; �; Og.x//C

Z
X

h�.y/q.dyjx; �; Og.x//

	

for all x 2 X . The stationary strategy Of 2 F ( Og 2 G) is optimal for player 1
(player 2).

The proof of Theorem 8 owes much to the approach introduced by Vega-Amaya
(2003), who used a fixed point argument in the game model with setwise continuous
transition probabilities. However, we cannot directly apply a fixed point argument.
First, we have to regularize (to smooth in some sense) certain functions. Using this
smoothing method, we are able to apply the Banach fixed point theorem in the space
of lower semicontinuous functions that are bounded in the W -norm. It is worth
mentioning that the contraction operator for any lower semicontinuous function h W

X ! R is of the form

. OT h/.x/ WD inf
�2Pr.B.x//

sup
�2Pr.A.x//

˚h.x; �; �/;

where

˚h. Nk/ WD lim inf
d.k0; Nk/!0

�
u.k0/ � V�.k0/C

Z
X

h.y/p.dyjk0/

�
;

d is a metric on X � Pr.A/ � Pr.B/, and

V WD sup
f 2F

inf
g2G

OJ .f; g/
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is the lower value (in the class of stationary strategies) of the game with the payoff
function defined in (5.24). Next, it is proved that k ! ˚h.k/ is indeed lower
semicontinuous. The definition of the operator OT is more involved when compared
to the one studied by Vega-Amaya (2003), who assumed that the transition law is
setwise continuous in actions, i.e., for which the function .x; a; b/ ! q.Djx; a; b/

is continuous in .a; b/ for every set D 2 B.X/. Within such a framework he
obtained a solution to the optimality equation h� 2 BW .X/. The operator OT , on
the other hand, enables us to get a lower semicontinuous solution to the optimality
equation. In order to obtain a continuous solution, we have to repeat this procedure
for a game with the payoff �u. Then, it is sufficient to show that the obtained
lower semicontinuous solution for the game with the payoff �u coincides with the
solution to the optimality equation obtained for the original game. Hence, it must
be continuous. The optimal strategies and the conclusion that V D v are deduced
immediately from the optimality equation.

The problem of finding optimal strategies for the players in ergodic zero-sum
Markov games on a general state space was considered by, among others, Ghosh
and Bagchi (1998), who assumed that the transition law q has a majorant, i.e., there
exists a probability measure O� such that q.�jx; a; b/ � O�.�/ for all .x; a; b/ 2 K.
Then, the solution to the optimality equation is obtained via the Banach fixed
point theorem, since due to the aforementioned assumption, one can introduce a
contractive operator in the so-called span semi-norm: khksp WD supx2X h.x/ �

infx2X h.x/, where h W X ! R is a bounded Borel function. Nowak (1994) studied
Markov games with state-independent transitions and obtained some optimality
inequalities using standard vanishing discount factor approach. Finally, the results
of Meyn and Tweedie (1994, 2009) and Kartashov (1996) allowed to study other
classes of stochastic (Markov or semi-Markov) games satisfying general ergodicity
conditions. These assumptions were used to prove the existence of the game value
with the average payoff criteria and the existence of optimal strategies for the
players in games with unbounded payoff functions (see Jaśkiewicz 2002; Vega-
Amaya 2003 or Jaśkiewicz and Nowak 2006; Küenle 2007, and references cited
therein). For instance, the first two papers mentioned above deal with semi-Markov
zero-sum games with setwise continuous transition probabilities. The payoffs and
transitions in Jaśkiewicz (2002) and Vega-Amaya (2003) need not be continuous
with respect to the state variable. Within such a framework, the authors proved that
the optimality equation has a solution, there exists a value of the game, and both
players possess optimal stationary strategies. However, the proofs in these papers
are based on different methods. For instance, Jaśkiewicz (2002) analyzes auxiliary
perturbed models, whereas Vega-Amaya (2003) makes use of a fixed point theorem,
which directly leads to a solution of the optimality equation. Moreover, neither of
these works deals with the time average payoff criterion.

Jaśkiewicz and Nowak (2006) and Küenle (2007), on the other hand, examine
Markov games with weakly continuous transition probabilities. Jaśkiewicz and
Nowak (2006) proved that such a Markov game has a value and both players
have optimal stationary strategies. Their approach relies on applying Fatou’s lemma
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for weakly convergent measures, which in turn leads to the optimality inequalities
instead of the optimality equation. Moreover, the proof employs Michael’s theorem
on a continuous selection. A completely different approach was presented by Küenle
(2007). Under slightly weaker assumptions, he introduced certain contraction
operators that lead to a parameterized family of functional equations. Making use
of some continuity and monotonicity properties of the solutions to these equations
(with respect to the parameter), he obtained a lower semicontinuous solution to the
optimality equation.

Remark 8. Jaśkiewicz (2009) and Küenle (2007) imposed a weaker version of
basic assumption (C10). In particular, they assumed that the payoff function u is
lower semicontinuous, A.x/ is a complete metric space, and the mapping x !

A.x/ is lower semicontinuous, while the correspondence x ! B.x/ is upper
semicontinuous and B.x/ is a compact metric space. Then, it was shown that the
game has a value and the second player has an optimal stationary strategy, whereas
the first player has an �-optimal stationary strategy for any � > 0.

The next result is concerned with the second payoff criterion.

Theorem 9. Assume (C10)–(C13), (GE1)–(GE3), (W2), and (R1)–(R2). Then, v is
the value of the game and the pair of stationary strategies . Of ; Og/ is also optimal for
the players in the game with the time average payoff defined in (5.25).

The proof of Theorem 9 requires different methods than the proof of Theorem 8
and was formulated as Theorem 5.1 in Jaśkiewicz (2009). The point of departure of
its proof is the optimality equation (5.28). It allows to define a certain martingale
or a super- (sub-) martingale, to which the optional sampling theorem is applied.
Use of this result requires an analysis of returns of the process to the small set C
and certain consequences of !-geometric ergodicity as well as some facts from the
renewal theory. Theorem 5.1 in Jaśkiewicz (2009) refers to the result in Jaśkiewicz
(2004) on the equivalence of the expected time and ratio average payoff criteria
for semi-Markov control processes with setwise continuous transition probabilities.
Some adaptation to the weakly continuous transition probability case is needed.
Moreover, the conclusion of Lemma 7 in Jaśkiewicz (2004) that is also used in the
proof of Theorem 9 requires an additional assumption as (R2) given above.

The third result deals with the sample path optimality. For any pair of strategies
.�; 	/ 2 ˘ � 
 and an initial state x 2 X , we define three payoffs:

• the sample path ratio average payoff (I)

OJ 1.x; �; 	/ D lim inf
n!1

Pn
kD1 u.xk; ak; bk/

Tn
I (5.29)
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• the sample path ratio average payoff (II)

OJ 2.x; �; 	/ D lim inf
n!1

Pn
kD1 u.xk; ak; bk/Pn
kD1 �.xk; ak; bk/

I (5.30)

• the sample path time average payoff

Oj .x; �; 	/ D lim inf
t!1

PN.t/
nD1 u.xn; an; bn/

t
: (5.31)

A pair of strategies .��; 	�/ 2 ˘ � 
 is said to be sample path optimal with
respect to (5.29), if there exists a function v1 2 B!.X/ such that for all x 2 X it
holds

OJ 1.x; ��; 	�/ D v1.x/ P ��	�

x a:s:

for every 	 2 
 OJ 1.x; ��; 	/ � v1.x/ P ��	
x a:s:

for every � 2 ˘ OJ 1.x; �; 	�/ � v1.x/ P �	�

x a:s:

Analogously, we define sample path optimality with respect to (5.30) and (5.31). In
order to prove sample path optimality, we need additional assumptions.

(C14) There exist positive constants d1, d2, and p 2 Œ1; 2/ such that

d2 � �.x; a; b/p � d1!.x/; and ju.x; a; b/jp � d1!.x/;

for all .x; a; b/ 2 K.
(C15) If we introduce

O�.x; a; b/ D

Z 1

0

tpH.dt jx; a; b/;

where the constant p is introduced in (C14) and .x; a; b/ 2 K, then there
exists a constant d3 > 0 such that

O�.x; a; b/ � d3!.x/; .x; a; b/ 2 K:

The following result states that the sample path average payoff criteria coincide.
The result was proved by Vega-Amaya and Luque-Vásquez (2000) (see Theorems
3.7 and 3.8). for semi-Markov control processes (one-player games).

Theorem 10. Assume (C10)–(C15), (W2), and (GE1)–(GE2). Then, the pair of
optimal strategies . Nf ; Ng/ 2 F � G from Theorem 8 is sample path optimal with
respect to each of the payoffs in (5.29), (5.30), and (5.31). Moreover, OJ 1.x; Nf ; Ng/ D
OJ 2.x; Nf ; Ng/ D Oj .x; Nf ; Ng/ D v.
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The point of departure in the proof of Theorem 10 is the optimality equation
from Theorem 8. Namely, from (5.28) we get two inequalities. The first one is
obtained with the optimal stationary strategy Nf for player 1, whereas the second
one is connected with the optimal stationary strategy Ng for player 2. Then, the proofs
proceed as in Vega-Amaya and Luque-Vásquez (2000) and make use of strong law
of large numbers for Markov chains and for martingales (see Hall and Heyde 1980).

6 Stochastic Games with Borel Payoffs

Consider a game G with countable state space X , finite action spaces, and the
transition law q. Let r W H1 ! R be a bounded Borel measurable payoff function
defined on the setH1 of all plays .xt ; at ; bt /t2N endowed with the product topology
and the Borel � -algebra. (X , A, and B are given the discrete topology.) For any
initial state x D x1 and each pair of strategies .�; 	/, the expected payoff is

R.x; �; 	/ WD E�	
x r.x1; a1; b1; x2; a2; b2; : : :/:

If X is a singleton, then G is called the Blackwell game (see Martin 1998).
Blackwell (1969, 1989) proved the following result:

Theorem 11. The game G has a value if r D 1Z is the indicator function of a
Gı-set Z � H1.

Martin (1998) proved the following remarkable result:

Theorem 12. The Blackwell game G has a value for any bounded Borel measurable
payoff function r W H1 ! R.

Maitra and Sudderth (2003b) noted that Theorem 12 can be extended easily to
stochastic games with countable set of states X . It is interesting that the proof of
the above result is in some part based on the theorem of Martin (1975, 1985) on the
determinacy of infinite Borel games with perfect information extending the classical
work of Gale and Steward (1953) on clopen games. A further discussion of games
with perfect information can be found in Mycielski (1992). An extension to games
with delayed information was studied by Shmaya (2011). Theorem 12 was extended
by Maitra and Sudderth (1998) in a finitely additive measure setting to a pretty large
class of stochastic games with arbitrary state and action spaces endowed with the
discrete topology and the history space H1 equipped with the product topology.
The payoff function r in their approach is Borel measurable. Since Fubini’s theorem
is not true for finite additive measures, the integration order is fixed in the model.
The proof of Maitra and Sudderth (1998) is based on some considerations described
in Maitra and Sudderth (1993b) and basic ideas of Martin (1998).
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As shown in Maitra and Sudderth (1992), Blackwell Gı-games (as in Theorem
11) belong to a class of games where the payoff function r D lim supn!1 rn and rn
depends on finite histories of play. Clearly, the limsup payoffs include the discounted
ones. A “partial history trick” on page 181 in Maitra and Sudderth (1996) or page
358 in Maitra and Sudderth (2003a) can be used to show that the limsup payoffs
also generalize the usual limiting average ones. Using the operator approach of
Blackwell (1989) and some ideas from gambling theory developed in Dubins and
Savage (2014) and Dubins et al. (1989), Maitra and Sudderth (1992) showed that
every stochastic game with the limsup payoff, countable state, and action spaces has
a value. The approach is algorithmic in some sense and was extended to a Borel
space framework by Maitra and Sudderth (1993a), where some measurability issues
were resolved by using the minmax measurable selection theorem from Nowak
(1985a) and some methods from the theory of inductive definability. The authors
first studied “leavable games,” where player 1 can use a stop rule. Then, they
considered approximation of a non-leavable game by leavable ones. The limsup
payoffs are Borel measurable, but the methods used in Martin (1998) and Maitra
and Sudderth (1998) are not suitable for the countably additive games considered in
Maitra and Sudderth (1993a). On the other hand, the proof given in Maitra and
Sudderth (1998) has no algorithmic aspect compared with Maitra and Sudderth
(1993a). As mentioned above the class of games with the limsup payoffs includes
the games with the average payoffs defined as follows: Let X , A, and B be Borel
spaces and let u W X � A � B ! R be a bounded Borel measurable stage payoff
function defined on the Borel set K. Assume that the players are allowed to use
universally measurable strategies. For any initial state x D x1 and each strategy
pair .�; 	/, the expected limsup payoff is

R.x; �; 	/ WD E�	
x

 
lim sup
n!1

1

n

nX
kD1

u.xk; ak; bk/

!
: (5.32)

By a minor modification of the proof of Theorem 1.1 in Maitra and Sudderth (1993a)
together with the “partial history trick” mentioned above, one can conclude the
following result:

Theorem 13. Assume that X , A, and B are Borel spaces, KA 2 B.X � A/, KB 2

B.X � B/, and the set B.x/ is compact for each x 2 X . If u W K ! R is bounded
Borel measurable, u.x; a; �/ is lower semicontinuous and q.Djx; a; �/ is continuous
on B.x/ for all .x; a/ 2 KA and D 2 B.X/, then the game with the expected
limiting average payoff defined in (5.32) has a value and for any " > 0 both players
have "-optimal universally measurable strategies.

The methods of gambling theory were also used to study “games of survival”
of Milnor and Shapley (1957) (see Theorem 16.4 in Maitra and Sudderth 1996).
As defined by Everett (1957) a recursive game is a stochastic game, where the
payoff is zero in every state from which the game can move after some choice of
actions to a different state. Secchi (1997, 1998) gave conditions for recursive games
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with countably many states and finite action sets under which the value exists and
the players have stationary "-optimal strategies. He used techniques from gambling
theory.

The lower semicontinuous payoffs r W H1 ! R used in Nowak (1986) are of the
limsup type. However, Theorem 4.2 on the existence of value in a semicontinuous
game established in Nowak (1986) is not a special case of the aforementioned works
of Maitra and Sudderth. The reason is that the transition law in Nowak (1986) is
weakly continuous. If r is bounded and continuous and the action correspondences
are compact valued and continuous, then Theorem 4.2 in Nowak (1986) implies
that both players have “persistently optimal strategies.” This notion comes from
gambling theory (see Kertz and Nachman 1979). A pair of persistently optimal
strategies forms a sub-game perfect equilibrium in the sense of Selten (1975).

We close this section with a famous example of Gillette (1957) called the Big
Match.

Example 6. Let X D f0; 1; 2g, A.x/ D A D f0; 1g, and B.x/ D B D f0; 1g. The
state x D 0 is absorbing with zero payoffs and x D 2 is absorbing with payoffs 1.
The game starts in state x D 1. As long as player 1 picks 0, she gets one unit on
each stage that player 2 picks 0 and gets nothing on stages when player 2 chooses
1. If player 1 plays 0 forever, then she gets

lim sup
n!1

r1 C � � � C rn

n
;

where rk is the number of units obtained on stage k 2 N. However, if player 1 picks
1 on some stage (goes to “Big Match”) and the choice of player 2 is also 1, then the
game moves to the absorbing state 2 and she will get 1 from this stage on. If player
1 picks 1 on some stage and the choice of player 2 is 0, then the game moves to the
absorbing state 0 and all future payoffs will be zero. The definition of the transition
probability is obvious. Blackwell and Ferguson (1968) proved the following: The
Big Match has no value in the class of stationary strategies. However, if the players
know the entire history at every stage of the game, then the game has a value in
general classes of strategies. Player 2 has a stationary optimal strategy (toss a coin
in state x D 1), and for any " > 0 player 1 has an "-optimal strategy. The value of the
game in state 1 is 1=2. An important feature of this example (that belongs to the class
of games studied by Maitra and Sudderth 1992) is that player 1 must remember the
entire history of the game at every moment of play. Blackwell and Ferguson (1968)
gave two different constructions of an "-optimal strategy for player 1. One of them
relies on using a sequence of optimal stationary strategies in the discounted games
with the discount factor tending to one. The idea was to switch from one discounted
optimal strategy to another on the basis of some statistics defined on the past plays.
This concept was used by Mertens and Neyman (1981) in their fundamental work on
stochastic games with average payoffs. The Big Match was generalized by Kohlberg
(1974), who considered finite state and finite action games in which all states but one
are absorbing. Useful comments on the Big Match can be found in Mertens (2002)
or Solan (2009).
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7 Asymptotic Analysis and the Uniform Value

In this section, we briefly review some results found in the literature in terms of
“normalized discounted payoffs.” Let x D x1 2 X , � 2 ˘ , and 	 2 
 . The
normalized discounted payoff is of the form

J�.x; �; 	/ WD E�	
x

 
�

1X
nD1

.1 � �/n�1u.xn; an; bn/

!
:

The discount factor is ˇ D 1 � � where � 2 .0; 1/. Clearly J�.x; �; 	/ D .1 � ˇ/

Jˇ.x; �; 	/. If the value w�.x/ exists for the normalized game for an initial state
x 2 X , then w�.x/ D .1 � ˇ/vˇ.x/. By vn.x/ we denote the value function of the
n-stage game with the payoff function:

J n.x; �; 	/ WD E�	
x

�Pn
kD1 u.xk; ak; bk/

n

�
:

A function v1 W X ! R is called a uniform value for the stochastic game if for
any � > 0, there exist a pair of strategies .��; 	�/ 2 ˘ � 
 , some n0 2 N and
�0 2 .0; 1/ such that for all n � n0 and x 2 X ,

sup
�2˘

J n.x; �; 	
�/ � � � v1.x/ � inf

	2

J n.x; �

�; 	/C � (5.33)

and for all � 2 .0; �0/ and x 2 X ,

sup
�2˘

J�.x; �; 	
�/ � � � v1.x/ � inf

	2

J�.x; �

�; 	/C �: (5.34)

If v1 exists, then from (5.33) and (5.34), it follows that v1.x/ D limn!1 vn.x/ D

lim�!0C w�.x/. Moreover, .��; 	�/ is a pair of nearly optimal strategies in all
sufficiently long finite games as well as in all discounted games with the discount
factor ˇ (or �) sufficiently close to one (zero).

Mertens and Neyman (1981) gave sufficient conditions for the existence of v1

for arbitrary state space games. For a proof of the following result, see Mertens and
Neyman (1981) or Chap. VII in Mertens et al. (2015).

Theorem 14. Assume that

– the payoff function u is bounded,
– for any � 2 .0; 1/, w� exists, and both players have "-optimal stationary

strategies,
– for any ˛ < 1, there exists a sequence .�i /i2N such that 0 < �i < 1, �iC1 � ˛�i

for all i 2 N, limi!1 �i D 0 and
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1X
iD1

sup
x2X

jw�i .x/ � w�iC1
.x/j < 1:

Then, the uniform value v1 exists. Moreover, if x D x1 is an initial state and

Un.hn; an; bn/ D
u.x1; a1; b1/C � � � C u.xn; an; bn/

n
;

then we have

sup
�2˘

E�	�

x

�
lim sup
n!1

Un.hn; an; bn/

�
� � � v1.x/ (5.35)

� inf
	2


E��	
x

�
lim inf
n!1

Un.hn; an; bn

�
C �:

Mertens and Neyman (1981) proved additionally that w� and vn converge to v1

uniformly on X . It is worth emphasizing that their �-optimal strategy has a simple
intuition behind it. Namely, at every step, the strategy updates a fictitious discount
factor and plays an optimal strategy for that fictitious parameter. This parameter
summarizes past play and its updating is based on payoffs received in the previous
steps. If payoffs received so far are high, the player places higher weight on the
future and increases his patience by letting the fictitious discount factor get closer
to one. If, on the other hand, payoffs received so far are low, he focuses more
about short-term payoffs and therefore decreases this fictitious discount factor. The
construction idea of such a strategy lies in the fine-tuning and hinges on algebraic
properties of the value of the discounted game as a function of the discount factor
(see Bewley and Kohlberg 1976a). For a detailed discussion of the assumptions
made in Theorem 14, consult Mertens (2002) and Mertens et al. (2015). It should be
noted that neither the existence of uniform value nor (5.35) follows from the general
minmax theorems of Maitra and Sudderth (1992, 1993a).

Assume that X , A, and B are finite. Bewley and Kohlberg (1976a,b)
proved that the limits lim�!0C w�.x/ and limn!1 vn.x/ exist and have a common
value v.x/, called the asymptotic value. Using their results, Mertens and Neyman
(1982) proved that v.x/ is actually the uniform value v1.x/. Independent of
this result, it is possible to show using Bewley and Kohlberg (1976a) that the
assumptions of Theorem 14 hold for games with a finite state space and finite action
sets (see Remark VII.3.2 in Mertens et al. 2015). Bewley and Kohlberg (1976a)
actually proved more, i.e., w�.x/ has in the neighborhood of zero the Puiseux series
expansion. More precisely, there exist �0 2 .0; 1/, M 2 N, and numbers ai .x/
(i D 0; 1; : : :) (depending on x 2 X ) such that for all � 2 .0; �0/, we have

w�.x/ D

1X
iD0

ai .x/�
i=M : (5.36)
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Recently, Oliu-Barton (2014) gave a direct proof of the existence of lim�!0C w�.
His proof does not utilize the Tarski-Seidenberg elimination from real algebraic
geometry as in Bewley and Kohlberg (1976a). (An excellent introduction to semi-
algebraic functions and their usage in finite state and action stochastic games can
be found in Neyman 2003a.) Moreover, based upon the explicit description of
asymptotically optimal strategies, Oliu-Barton (2014) showed that his approach can
also be used to obtain the uniform value as in Mertens and Neyman (1981). Further
generalization of the abovementioned results to other stochastic games was provided
by Ziliotto (2016).

A similar Puiseux expansion can be obtained for stationary optimal strategies in
discounted games. Mertens (1982, 2002) showed how to get (5.36) for normalized
discounted payoffs in finite nonzero-sum games. Different proofs of (5.36) are given
in Milman (2002), Szczechla et al. (1997), and Neyman (2003a). It is also worth
mentioning that the values vn of finite stage games can be approximated by also
some series of expansions. Bewley and Kohlberg (1976b) proved that there exist
M 2 N and real numbers bi .x/ (i D 0; 1; 2 : : :) such that for n sufficiently large we
have

ˇ̌
ˇ̌
ˇvn.x/ �

1X
iD0

bi .x/n
�i=M

ˇ̌
ˇ̌
ˇ D O.lnn=n/ (5.37)

and the bound in (5.37) is tight. A result on a uniform polynomial convergence
rate of the values vn to v1 is given in Milman (2002). The results on the values w�
described above generalize the paper of Blackwell (1962) on dynamic programming
(one-person games), where it was shown that the normalized value is a bounded and
rational function of the discount factor.

The Puiseux series expansions can also be used to characterize average payoff
games, in which the players have optimal stationary strategies (see Bewley and
Kohlberg 1978, Chap. 8 in Vrieze 1987 or Filar and Vrieze 1997). For example,
one can prove that the average payoff game has a constant value v0 and both players
have optimal stationary strategies if and only if a0.x/ D v0 and a1.x/ D � � � D

aM�1.x/ D 0 in (5.36) for all x 2 X (see, e.g.,Theorem 5.3.3 in Filar and Vrieze
1997).

We recall that a stochastic game is absorbing if all states but one are absorbing.
A recursive or an absorbing game is called continuous if the action sets are compact
metric, the state space is countable, and the payoffs and transition probabilities
depend continuously on actions. Mertens and Neyman (1981) gave sufficient
conditions for lim�!0C w� D limn!1 vn to hold that include the finite case as
well as a more general situation, e.g., when the function � ! w� is of bounded
variation or satisfies some integrability condition (see also Remark 2 in Mertens
2002 and Laraki and Sorin 2015). However, their conditions are not known to hold
in continuous absorbing or recursive games. Rosenberg and Sorin (2001) studied
the asymptotic properties of w� and vn using some non-expansive operators called
Shapley operators, naturally connected with stochastic games (see also Kohlberg
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1974; Neyman 2003b; Sorin 2004). They obtained results implying that equality
lim�!0C w� D limn!1 vn holds for continuous absorbing games with finite state
spaces. Their result was used by Mertens et al. (2009) to show that every game in
this class has a uniform value (consult also Sect. 3 in Ziliotto 2016).

Recursive games were introduced by Everett (1957), who proved the existence
of value and of stationary "-optimal strategies, when the state space and action sets
are finite. Recently, Li and Venel (2016) proved that recursive games on a countable
state space with finite action spaces have the uniform value, if the family fvng is
totally bounded. Their proofs follow the same idea as in Solan and Vieille (2002).
Moreover, the result in Li and Venel (2016) together with the ones in Rosenberg and
Vieille (2000) provides the uniform Tauberian theorem for recursive games: .vn/
converges uniformly if and only if .v�/ converges uniformly and both limits are the
same. For finite state continuous recursive games, the existence of lim�!0C w� was
recently proved by Sorin and Vigeral (2015a).

We also mention one more class of stochastic games, the so-called definable
games, studied by Bolte et al. (2015). Such games involve a finite number of states,
and it is additionally assumed that all their data (action sets, payoffs, and transition
probabilities) are definable in an o-minimal structure. Bolte et al. (2015) proved
that these games have the uniform value. The reason for that lies in the fact that
definability allows to avoid highly oscillatory phenomena in various settings (partial
differential equations, control theory, continuous optimization) (see Bolte et al. 2015
and the references cited therein).

Generally, the asymptotic value lim�!0C w� or limn!1 vn may not exist for
stochastic games with finitely many states. An example with four states (two of them
being absorbing) and compact action sets was recently given by Vigeral (2013).
Moreover, there are problems with asymptotic theory in stochastic games with finite
state space and countable action sets (see Ziliotto 2016). In particular, the example
given in Ziliotto (2016) contradicts the famous hypothesis formulated by Mertens
(1987) on the existence of asymptotic value. A generalization of examples due to
Vigeral (2013) and Ziliotto (2016) is presented in Sorin and Vigeral (2015b).

A new approach to the asymptotic value in games with finite state and action sets
was recently given by Oliu-Barton (2014). His proof when compared to Bewley
and Kohlberg (1976a) is direct, relatively short, and more elementary. It is based
on the theory of finite-dimensional systems and the theory of finite Markov chains.
The existence of uniform value is obtained without using algebraic tools. A simpler
proof for the existence of the asymptotic value lim�!0 w� of finite �-discounted
absorbing games was provided by Laraki (2010), who obtained explicit formulas
for this value. According to the author’s comments, certain extensions to absorbing
games with finite state and compact action spaces are also possible, but under some
continuity assumptions on the payoff function. The convergence of the values of n-
stage games (as n ! 1) and the existence of the uniform value in stochastic games
with a general state space and finite action spaces were studied by Venel (2015) who
assumed that the transition law is in certain sense commutative with respect to the
actions played at two consecutive periods. Absorbing games can be reformulated as
commutative stochastic games.
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8 Algorithms for Zero-Sum Stochastic Games

Let P D Œpij � be a payoff matrix in a zero-sum game where 1 � i � m1, 1 � j �

m2. By valP we denote the value for this game in mixed strategies. We assume in
this section that X , A, and B are finite sets. For any function � W X ! R, we can
consider the zero-sum game 
�.x/ where the payoff matrix is

P�.x/ WD

2
4�u.x; i; j /C .1 � �/

X
y2X

�.y/q.yjx; i; j /

3
5 ; x 2 X:

Recall that ˇ D 1 � �. Similar to (5.20) we define T��.x/ as the value of the game

�.x/, i.e., T��.x/ D valP�.x/. If �.x/ D �0.x/ D 0 for all x 2 X , then T n� �0.x/
is the value of the n-stage discounted stochastic game starting at the state x 2 X . As
we know from Shapley (1953), the value function w� of the normalized discounted
game is a unique solution to the equation w�.x/ D T�w�.x/, x 2 X . Moreover,
w�.x/ D limn!1 T n� �0.x/. The procedure of computing T n� �0.x/ is known as the
value iteration and can be used as an algorithm to approximate the value function
w�. However, this algorithm is rather slow. If f �.x/ (g�.x/) is an optimal mixed
strategy for player 1 (player 2) in game 
w�.x/, then the functions f � and g� are
stationary optimal strategies for the players in the infinite horizon discounted game.

Example 7. Let X D f1; 2g, A.x/ D B.x/ D f1; 2g for x 2 X . Assume that state
x D 2 is absorbing with zero payoffs. In state x D 1, we have u.1; 1; 1/ D 2,
u.1; 2; 2/ D 6, and u.1; i; j / D 0 for i 6D j . Further, we have q.1j1; 1; 1/ D

q.1j1; 2; 2/ D 1 and q.2j1; i; j / D 1 for i 6D j . If � D 1=2, then the Shapley
equation is for x D 1 of the form

w�.1/ D val

�
1C 1

2
w�.1/ 0C 1

2
w�.2/

0C 1
2
w�.2/ 3C 1

2
w�.1/

	
:

Clearly, w�.2/ D 0 and w�.1/ � 0. Hence, the above matrix game has no pure
saddle point and it is easy to calculate that w�.1/ D .�4C 2

p
13/=3. This example

is taken from Parthasarathy and Raghavan (1981) and shows that in general there is
no finite step algorithm for solving zero-sum discounted stochastic games.

The value iteration algorithm of Shapley does not utilize any information on
optimal strategies in the n-stage games. Hoffman and Karp (1966) proposed a new
algorithm involving both payoffs and strategies. Let g1.x/ be an optimal strategy for
player 2 in the matrix game P�0.x/, x 2 X . Define w1.x/ D sup�2˘ J�.x; �; g1/.
Then, choose an optimal strategy g2.x/ for player 2 in the matrix game Pw1 .x/.
Define w2.x/ D sup�2˘ J�.x; �; g2/ and continue the procedure. It is shown that
limn!1 wn.x/ D w�.x/.

Let X D f1; : : : ; kg. Any function w W X ! R can be viewed as a vector
Nw D .w.1/; : : : ;w.k// 2 R

k . The fact that w� is a unique solution to the Shapley
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equation is equivalent to saying that the unconstrained optimization problem

min
Nw2Rk

X
x2X

.T�w.x/ � w.x//2

has a unique global minimum. Pollatschek and Avi-Itzhak (1969) proposed a
successive iterations algorithm, which corresponds to the “policy iteration” in
dynamic programming. The proposed algorithm is connected with a Newton-
Raphson type procedure associated with the global minimum problem mentioned
above. Van der Wal (1978) showed that their algorithm does not converge in general.
Filar and Tolwinski (1991) presented an improved version of the Pollatschek and
Avi-Itzhak algorithm for solving discounted zero-sum stochastic games based on
a “modified Newton’s method.” They demonstrated that it always converges to the
value of the stochastic game and solved the example of Van der Wal (1978). For
further comments on the abovementioned iterative algorithms, the reader is referred
to Vrieze (1987), Breton (1991), Raghavan and Filar (1991), Filar and Vrieze
(1997), and Raghavan (2003).

Observe now that every f 2 F (also g 2 G) can be viewed as a vector in
Euclidean space. If f 2 F , then

u.x; f; b/ D
X
a2A.x/

u.x; a; b/f .ajx/ and q.yjx; f; b/ D
X
a2A.x/

q.yjx; a; b/f .ajx/:

Similarly u.x; a; g/ and q.yjx; a; g/ are defined for any g 2 G.
In the remaining part of this section we assume that u � 0. This condition is

made only for simplicity of presentation. A zero-sum discounted stochastic game
can also be solved by a constrained nonlinear programming technique studied by
Filar et al. (1991) (see also Chap. 3 in Filar and Vrieze 1997). Consider the problem
(NP1) defined as follows:

min
X
x2X

.w1.x/C w2.x//

subject to .f; g/ 2 F �G; w1 � 0;w2 � 0 and

�u.x; a; g/C .1 � �/
X
y2X

w1.y/q.yjx; a; g/ � w1.x/; for all x 2 X; a 2 A.x/;

��u.x; f; b/C .1 � �/
X
y2X

w2.y/q.yjx; f; b/ � w2.x/; for all x 2 X; b 2 B.x/:

Note that the objective function is linear, but the constraint set is not convex. It is
shown (see Chap. 3 in Filar and Vrieze 1997) that every local minimum of (NP1) is
a global minimum. Hence, we have the following result.
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Theorem 15. Let .w�
1 ;w

�
2 ; f

�; g�/ be a global minimum of (NP1). Then,P
x2X.w

�
1 .x/ C w�

2 .x// D 0 and w�
1 .x/ D w�.x/ for all x 2 X . Moreover,

.f �; g�/ is a pair of stationary optimal strategies for the players in the discounted
stochastic game.

In the case of single-controller stochastic game, in which q.yjx; a; b/ is inde-
pendent of a 2 A.x/ for each x 2 X and denoted by q.yjx; b/, the problem of
finding optimal strategies for the players is much simpler. We now present a result
of Parthasarathy and Raghavan (1981). Consider the following linear programming
problem (LP1):

max
X
x2X

w.x/

subject to f 2 F; w � 0 and

�u.x; f; b/C .1 � �/
X
y2X

w.y/q.yjx; b/ � w.x/; for all x 2 X; b 2 B.x/:

Note that the constraint set in (LP1) is convex.

Theorem 16. The problem (LP1) has an optimal solution .w�; f �/. Moreover,
w�.x/ D w�.x/ for all x 2 X , and f � is an optimal stationary strategy for player
1 in the single-controller discounted stochastic game.

Remark 9. Knowing w� one can find an optimal stationary strategy g� for player 2
using the Shapley equation w� D T�w�, i.e., g�.x/ can be any optimal strategy in
the matrix game with the payoff function:

�u.x; a; b/C .1 � �/
X
y2X

w�.y/q.yjx; b/; a 2 A.x/; b 2 B.x/:

Let X D X1 [ X2 and X1 \ X2 D ;. Assume that q.yjx; a; b/ D q1.yjx; a/

for x 2 X1 and q.yjx; a; b/ D q2.yjx; b/ for x 2 X2, a 2 A.x/, b 2 B.x/,
y 2 X . Then the game is called a switching control stochastic game (SCSG for
short). Filar (1981) studied this class of games with discounting and showed the
order field property saying that a solution to the game can be found in the same
algebraic field as the data of the game. Other classes of stochastic games having
the order field property are described in Raghavan (2003). It is interesting that the
value function w� for the SCSG can be represented in a neighborhood of zero by
the power series of � (see Theorem 6.3.5 in Filar and Vrieze 1997) . It should be
mentioned that every discounted SCSG can be solved by a finite sequence of linear
programming problems (see Algorithm 3.2.1 in Filar and Vrieze 1997). This was
first shown by Vrieze (1987).
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We can now turn to the limiting average payoff stochastic games. We know from
the Big Match example of Blackwell and Ferguson (1968) that "-optimal stationary
strategies may not exist. A characterization of limiting average payoff games, where
the players have stationary optimal strategies, was given by Vrieze (1987) (see also
Theorem 5.3.5 in Filar and Vrieze 1997). Below we state this result. For any function
� W X ! R we consider the zero-sum game 
 0

� .x/ with the payoff matrix

P 0
� .x/ WD

2
4X
y2X

�.y/q.yjx; i; j /

3
5 ; x 2 X

and the zero-sum game 
 1
� .x/ with the payoff matrix

QP�.x/ WD

2
4u.x; i; j /C

X
y2X

�.y/q.yjx; i; j /

3
5 ; x 2 X:

Theorem 17. Consider a function v� W X ! R and f � 2 F , g� 2 G. Then, v� is
the value of the limiting average payoff stochastic game and f �, g� are stationary
optimal strategies for players 1 and 2, respectively, if and only if for each x 2 X

v�.x/ D valP 0
v�.x/; (5.38)

.f �.x/; g�.x// is a pair of optimal mixed strategies in the zero-sum game with the
payoff matrix P 0

v�.x/, and there exist functions �i W X ! R (i D 1; 2) such that for
every x 2 X , we have

v�.x/C �1.x/ D val QP�1.x/ D min
b2B.x/

2
4u.x; f �; b/C

X
y2X

�1.y/q.yjx; f �; b/

3
5 ;

(5.39)
and

v�.x/C �2.x/ D val QP�2.x/ D max
a2A.x/

2
4u.x; a; g�/C

X
y2X

�2.y/q.yjx; a; g�/

3
5 :

(5.40)

Remark 10. If the Markov chain induced by any stationary strategy pair is irre-
ducible, then v� is a constant. Then, (5.38) holds trivially and �1.x/, �2.x/
satisfying (5.39) and (5.40) are such that �1.x/��2.x/ is independent of x 2 X . In
such a case we may take �1 D �2. However, in other cases (without irreducibility)
�1.x/ � �2.x/ may depend on x 2 X . For details the reader is referred to Chap. 8
in Vrieze (1987).
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A counterpart to the optimization problem (NP1) with non-convex constraints
can also be formulated for the limiting average payoff case. Consider the problem
(NP2):

min
X
x2X

.v1.x/C v2.x//

subject to .f; g/ 2 F �G, v1 � 0; v2 � 0, �1 � 0; �2 � 0 and

X
y2X

v1.y/q.yjx; a; g/ � v1.x/; u.x; a; g/C
X
y2X

�1.y/q.yjx; a; g/ � v1.x/C�1.x/

for all x 2 X; a 2 A.x/ and

X
y2X

v2.y/q.yjx; f; b/ � v2.x/; �u.x; f; b/C
X
y2X

�2.y/q.yjx; f; b/ � v2.x/C�2.x/

for all x 2 X; b 2 B.x/.

Theorem 18. If .��
1 ; �

�
2 ; v

�
1 ; v

�
2 ; f

�; g�/ is a feasible solution of (NP2) with the
property that

P
x2X.v1.x/C v2.x// D 0, then it is a global minimum and .f �; g�/

is a pair of optimal stationary strategies. Moreover, v�
1 .x/ D R.x; f �; g�/

(see (5.32)) for all x 2 X .

For a proof consult Filar et al. (1991) or pages 127–129 in Filar and Vrieze
(1997). Single-controller average payoff stochastic games can also be solved by
linear programming. The formulation is more involved than in the discounted case
and generalizes the approach known in the theory of Markov decision processes.
Two independent studies on this topic are given in Hordijk and Kallenberg (1981)
and Vrieze (1981). Similarly as in the discounted case, the SCSG with the average
payoff criterion can be solved by a finite sequence of nested linear programs (see
Vrieze et al. 1983).

If X D X1 [X2, X1 \X2 D ;, and A.x/ (B.x/) is a singleton for each x 2 X1
(x 2 X2), then the stochastic game is of perfect information. Raghavan and Syed
(2003) gave a policy-improvement type algorithm to find optimal pure stationary
strategies for the players in discounted stochastic games of perfect information.
Avrachenkov et al. (2012) proposed two algorithms to find the uniformly optimal
strategies in discounted games. Such strategies are also optimal in the limiting
average payoff stochastic game. Fresh ideas for constructing optimal stationary
strategies in zero-sum limiting average payoff games can be found in Boros et al.
(2013). In particular, Boros et al. (2013) introduced a potential transformation
of the original game to an equivalent canonical form and applied this method
to games with additive transitions (AT games) as well as to stochastic games
played on a directed graph. The existence of a canonical form was also provided
for stochastic games with perfect information, switching control games, or ARAT
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(additive reward-additive transition) games. Such a potential transformation has an
impact on solving some classes of games in sub-exponential time. Additional results
can be found in Boros et al. (2016). It is worth to note that a finite step algorithm of
Cottle-Dantzig’s type was recently applied for solving discounted zero-sum semi-
Markov ARAT games by Mondal et al. (2016).

Computation of the uniform value is a difficult task. Chatterjee et al. (2008)
provided a finite algorithm for finding the approximation of the uniform value. As
mentioned in the previous section, Bewley and Kohlberg (1976a) showed that the
function � ! w� is semi-algebraic. It can be function of �: It can be expressed as a
Taylor series in fractional powers of � (called Puiseux series) in the neighborhood of
zero. By Mertens and Neyman (1981), the uniform value v.x/ D lim�!0C w�.x/.
Chatterjee et al. (2008) noted that, for a given ˛ > 0, determining whether v > ˛

is equivalent to finding the truth value of a sentence in the theory of real-closed
fields. A generalization of the quantifier elimination algorithm of Tarski (1951)
due to Basu (1999) (see also Basu et al. 2003) can be used to compute this truth
value. The uniform value v is bounded by the maximum payoffs of the game; it
is therefore sufficient to repeat this algorithm for finitely many different values
of ˛ to get a good approximation of v. An "-approximation of v.x/ at a given
state x can be computed in time bounded by an exponential in a polynomial of
the size of the game times a polynomial function of log.1="/: This means that
the approximating uniform value v.x/ lies in the computational complexity class
EXPTIME (see Papadimitriou 1994). Solan and Vieille (2010) applied the methods
of Chatterjee et al. (2008) to calculate the uniform "-optimal strategies described by
Mertens and Neyman (1981). These strategies are good for all sufficiently long finite
horizon games as well as for all (normalized) discounted games with � sufficiently
small. Moreover, they use unbounded memory. As shown by Bewley and Kohlberg
(1976a), any pair of stationary optimal strategies in discounted games (which are
obviously functions of �) can also be represented by a Taylor series of fractional
powers of � for � 2 .0; �0/ with �0 sufficiently small. This result, the theory of
real-closed fields, and the methods of formal logic developed in Basu (1999) are
basic ideas for Solan and Vieille (2010). A complexity bound on the algorithm of
Solan and Vieille (2010) is not determined yet.

9 Zero-Sum Stochastic Games with Incomplete Information
or Imperfect Monitoring

The following model of a general two-player zero-sum stochastic game, say G, is
described in Sorin (2003a).

• X is a finite state space.
• A and B are finite admissible action sets for players 1 and 2, respectively.
• ˝ is a finite state of signals.
• r W X � A � B ! Œ0; 1� is a payoff function to player 1.
• q is a transition probability mapping from X � A � B to Pr.X �˝/.
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Let p be an initial probability distribution on X � ˝. The game evolves as
follows. At stage one nature chooses .x1; !1/ according to p and the players learn
!1. Then, simultaneously player 1 selects a1 2 A and player 2 selects b1 2 B .
The stage payoff r.x1; a1; b1/ is paid by player 2 to player 1 and a pair .x2; !2/ is
drawn according to q.�jx1; a1; b1/. The game proceeds to stage two and the situation
is repeated. The standard stochastic game with incomplete information is obtained,
when ˝ D A � B . Such a game with finite horizon of play was studied by Krausz
and Rieder (1997), who showed the existence of the game value and presented an
algorithm to compute optimal strategies for the players via linear programming.
Their model assumes incomplete information on one side, i.e., player 2 is never
informed about the state of the underlying Markov chain in contrast to player 1. In
addition, both players have perfect recall. Renault (2006) studied a similar model.
Namely, he assumed that the sequence of states follows a Markov chain, i.e., q is
independent of the actions of the players. At the beginning of each stage, only player
1 is informed of the current state, the actions are selected simultaneously, and they
are observed by both players. The play proceeds to the next stage. Renault (2006)
showed that such a game has a uniform value and the second player has an optimal
strategy.

Clearly, if ˝ is a singleton, the game is a standard stochastic game. For general
stochastic games with incomplete information, little is known, but some classes
were studied in the literature. For the Big Match game, Sorin (1984, 1985) and
Sorin and Zamir (1991) proved the existence of the maxmin value and the minmax
value. These values may be different. Moreover, they showed that the values of the
n-stage games (�-discounted games with normalized payoffs) converge as n ! 1

(as � ! 0C) to the maxmin value.
Another model was considered by Rosenberg et al. (2004). Namely, at the

beginning of the game a signal ! is chosen according to p 2 Pr.˝/. Only player 1
is informed of !. At stage n 2 N players simultaneously choose actions an 2 A and
bn 2 B . The stage payoff r!.xn; an; bn/ is incurred and the next state xnC1 is drawn
according to q.�jxn; an; bn/. Both players are informed of .an; bn; xnC1/. Note that
in this setting r!.xn; an; bn/ is told to player 1, but not to player 2. Rosenberg et al.
(2004) proved the following result

Theorem 19. If player 1 controls the transition probability, the game value exists. If
player 2 controls the transition probability, both the minmax value and the maxmin
value exist.

Recursive games with incomplete information on one side were studied by
Rosenberg and Vieille (2000), who proved that the maxmin value exists and is
equal to the limit of the values of n-stage games (�-discounted games) as n ! 1

(as � ! 0C). Rosenberg (2000), on the other hand, considered absorbing games.
She proved the existence of the limit of the values of finitely repeated absorbing
games (discounted absorbing games) with incomplete information on one side as the
number of repetitions goes to infinity (� ! 0C). Additional discussion on stochastic
games with incomplete information on one side can be found in Sorin (2003b) and
Laraki and Sorin (2015).
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Coulomb (1992, 1999, 2001) was the first who studied stochastic games with
imperfect monitoring. These games are played as follows. At every stage, the game
is in one of finitely many states. Each player chooses an action, independently of
his opponent. The current state, together with the pair of actions, determines a
daily payoff, a probability distribution according to which a new state is chosen,
and a probability distribution over pairs of signals, one for each player. Each
player is then informed of his private signal and of the new state. However, no
player is informed of his opponent’s signal and of the daily payoff (see also the
detailed model in Coulomb 2003a). Coulomb (1992, 1999, 2001) studied the class of
absorbing games and proved that the uniform maxmin and minmax values exist. In
addition, he provided a formula for both values. One of his main findings is that the
maxmin value does not depend on the signaling structure of player 2. Similarly, the
minmax value does not depend on the signaling structure of player 1. In general, the
maxmin and minmax values do not coincide, hence stochastic games with imperfect
monitoring need not have a uniform value. Based on these ideas, Coulomb (2003c)
and Rosenberg et al. (2003) independently proved that the uniform maxmin value
always exists in a stochastic game, in which each player observes the state and
his/her own action. Moreover, the uniform maxmin value is independent of the
information structure of player 2. Symmetric results hold for the uniform minmax
value.

We now consider the general model of zero-sum dynamic game presented in
Mertens et al. (2015) and Coulomb (2003b). These games are known as games of
incomplete information on both sides.

• X , A, and B are as above.
• S and T are finite signal spaces for players 1 and 2, respectively.
• The payoff function is defined as above, and the transition probability function is
q W X � A � B ! Pr.X � S � T /.

The evolution of the game is as follows. At stage one nature chooses .x1; s1; t1/
according to a given distribution p 2 Pr.X �S �T /. Player 1 learns s1 and player 2
is informed of t1. Then, simultaneously player 1 selects a1 2 A and player 2 selects
b1 2 B . The stage payoff r.x1; a1; b1/ is incurred and a new triple .x2; s2; t2/ is
drawn according to q.�jx1; a1; b1/. The game proceeds to stage two and the process
repeats. Let us denote this game by G0. Renault (2012) proved that such a game has
a value under an additional condition.

Theorem 20. Assume that player 1 can always deduce the state and player 2’s
signal from his own signal. Then, the game G0 has a uniform value.

Further examples of games for which Theorem 20 holds were recently provided
by Gensbittel et al. (2014). In particular, they showed that if player 1 is more
informed than player 2 and controls the evolution of information on the state, then
the uniform value exists. This result, from one side, extends results on Markov
decision processes with partial observation given by Rosenberg et al. (2002), and,
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on the other hand, it extends a result on repeated games with an informed controller
studied by Renault (2012).

An extension of the repeated game in Renault (2006) to a game with incomplete
information on both sides was examined by Gensbittel and Renault (2015). The
model is described by two finite action sets A and B and two finite sets of states
S and T . The payoff function is r W S � T � A � B ! Œ�1; 1�. There are given
two initial probabilities p1 2 Pr.S/ and p2 2 Pr.T / and two transition probability
functions q1 W S ! Pr.S/ and q2 W T ! Pr.T /. The Markov chains .sn/n2N,
.tn/n2N are independent. At the beginning of stage n 2 N, player 1 observes sn and
player 2 observes tn. Then, both players simultaneously select actions an 2 A and
bn 2 B . Player 1’s payoff in stage n is r.sn; tn; an; bn/. Then, .an; bn/ is publicly
announced and the play goes to stage nC1. Notice that the payoff r.sn; tn; an; bn/ is
not directly known and cannot be deduced. The main theorem states that limn!1 vn
exists and is a unique continuous solution to the so-called Mertens-Zamir system of
equations (see Mertens et al. 2015). Recently, Sorin and Vigeral (2015a) showed in
a simpler model (repeated game model, where s1 and t1 are chosen once and they
are kept throughout the play) that v� converges uniformly as � ! 0.

In this section, we should also mention the Mertens conjecture (see Mertens
1987) and its solution. His hypothesis is twofold: the first statement says that in
any general model of zero-sum repeated game, the asymptotic value exists, and the
second one says that if player 1 is always more informed than player 2 (in the sense
that player 2’s signal can be deduced from player 1’s private signal), then in the long
run player 1 is able to guarantee the asymptotic value. Ziliotto (2016) showed that
in general the Mertens hypothesis is false. Namely, he constructed an example of a
seven-state symmetric information game, in which each player has two action sets.
The set of signals is public. The game is played as the game G described above.
More details can be found in Solan and Ziliotto (2016) where related issues are also
discussed.

Although the Mertens conjecture does not generally hold, there are some classes
of games for which it is true. The interested reader is referred to Sorin (1984, 1985),
Rosenberg et al. (2004), Renault (2012), Gensbittel et al. (2014), Rosenberg and
Vieille (2000), and Li and Venel (2016). For instance, Li and Venel (2016) dealt
with a stochastic game G0 with incomplete information on both sides and proved
the following (see Theorem 5.8 in Li and Venel 2016).

Theorem 21. Let G0 be a recursive game such that player 1 is more informed than
player 2. Then, for every initial distribution p 2 Pr.X �S �T /, both the asymptotic
value and the uniform maxmin exist and are equal, i.e.,

v1 D lim
n!1

vn D lim
�!0

v�:

Different notions of value in two-person zero-sum repeated games were recently
examined by Gimbert et al. (2016). Assuming that the state evolves and players
receive signals, they showed that the uniform value (limsup value) may not exist.
However, the value exists if the payoff function is Borel measurable and the players
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observe a public signal including the actions played. The existence of the uniform
value was proved for recursive games with nonnegative payoffs without any special
assumptions on signals.

Stochastic games with partial observations, in which one player observes the
sequence of states, while the other player observes the sequence of state-dependent
signals, are examined in Basu and Stettner (2015) and its references. A class of
dynamic games in which a player is informed of his opponent’s actions and states
after some time delay were studied by Dubins (1957), Scarf and Shapley (1957), and
Levy (2012). For obvious reasons, this survey does not cover all models and cases
of games with incomplete information. Further references and applications can be
found in Laraki and Sorin (2015), Neyman and Sorin (2003), or Solan and Ziliotto
(2016).

10 Approachability in Stochastic Games with Vector Payoffs

In this section, we consider games with payoffs in Euclidean space R
k , where the

inner product is denoted by h�; �i and the norm of any Nc 2 R
k is k Nck D

p
h Nc; Nci.

Let A and B be finite sets of pure strategies for players 1 and 2, respectively. Let
u0 W A � B ! R

k be a vector payoff function. For any mixed strategies s1 2 Pr.A/
and s2 2 Pr.B/, Nu0.s1; s2/ stands for the expected vector payoff. Consider a two-
person infinitely repeated gameG1 defined as follows. At each stage t 2 N, players
1 and 2 choose simultaneously at 2 A and bt 2 B . Behavioral strategies O� and O	

for the players are defined in the usual way. The corresponding vector outcome is
gt D u0.at ; bt / 2 R

k . The couple of actions .at ; bt / is announced to both players.
The average vector outcome up to stage n is Ngn D .g1 C � � � C gn/=n. The aim of
player 1 is to make Ngn approach a target set C � R

k . If k D 1, then we usually have
in mind C D Œv0;1/ where v0 is the value of the game in mixed strategies. If C �

R
k and y 2 R

k , then the distance from y to the set C is d.y; C / D infz2C ky � zk.
A nonempty closed set C � R

k is approachable by player 1 in G1 if for every
� > 0 there exists a strategy O� of player 1 and n� 2 N such that for any strategy O	

of player 2 and any n � n� , we have

E O� O	d. Ngn; C / � �:

The dual concept is excludability.
Let PC .y/ denote the set of closest points to y in C . A closed set C � R

k

satisfies the Blackwell condition for player 1, if for any y 62 C , there exist z 2

PC .y/ and a mixed action (depending on y) s1 D s1.y/ 2 Pr.A/ such that the
hyperplane through z orthogonal to the line segment Œyz� separates y from the set
fNu0.s1; s2/ W s2 2 Pr.B/g, i.e.,

hNu0.s1; s2/ � z; y � zi � 0 for all s2 2 Pr.B/:
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The following two results are due to Blackwell (1956).

Theorem 22. If C � R
k is a nonempty closed set satisfying the Blackwell

condition, then C is approachable in game G1. An approachability strategy is
O�.hn/ D s1. Ngn/, where hn is the history of a play at stage n.

Theorem 23. A closed and convex set C � R
k is either approachable or

excludable.

The next result was proved by Spinat (2002).

Theorem 24. A closed set C � R
k is approachable if and only if C contains a

subset having the Blackwell property.

Related results with applications to repeated games can be found in Sorin (2002)
and Mertens et al. (2015). Applications to optimization models, learning, and games
with partial monitoring can be found in Cesa-Bianchi and Lugosi (2006), Cesa-
Bianchi et al. (2006), Perchet (2011a,b), and Lehrer and Solan (2016). A theorem
on approachability for stochastic games with vector payoffs was proved by Shimkin
and Shwartz (1993). They imposed certain ergodicity conditions on the transition
probability and showed the applications of these results to queueing models. A more
general theorem on approachability for vector payoff stochastic games was proved
by Milman (2006). Below we briefly describe his result.

Consider a stochastic game with finite state spaceX and action spacesA.x/ � A

and B.x/ � B , where A and B are finite sets. The stage payoff function is
u W X � A � B ! R

k . For any strategies � 2 ˘ and 	 2 
 and an
initial state x D x1, there exists a unique probability measure P�	

x on the space
of all plays (the Ionescu-Tulcea theorem) generated by these strategies and the
transition probability q. By PD�	

x we denote the probability distribution on the
stream of vector payoffs g D .g1; g2; : : :/. Clearly, PD�	

x is uniquely induced by
P
�	
x .

A closed set C � R
k is approachable in probability from all initial states x 2

X , if there exists a strategy �0 2 ˘ such that for any x 2 X and � > 0 we
have

lim
n!1

sup
	2


PD�0	
x .fg W d.gk; C / > �g/ D 0:

Assume that y 62 C and z 2 PC .y/. Let �.z; y/ WD .z � y/=kz � yk: Consider
the stochastic game with scalarized payoffs u� .x; a; b/ WD hu.x; a; b/; �.z; y/i. By
Mertens and Neyman (1981) this game has a uniform value, denoted here by v�.x/,
x 2 X . An analogue to the theorem of Blackwell (1956), due to Milman (2006),
sounds as follows.
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Theorem 25. A closed set C � R
k is approachable in probability from all initial

states x 2 X if, for each y 62 C , there exists z 2 PC .y/ such that v�.x/ �

hz; �.z; y/i for all x 2 X .

We close this section by mentioning a recent paper by Kalathil et al. (2016)
devoted to the approachability problem in Stackelberg stochastic games with
vector costs. They constructed a simple and computationally tractable strategy for
approachability for this class of games and gave a reinforcement learning algorithm
for learning the approachable strategy when the transition kernel is unknown.

11 Stochastic Games with Short-Stage Duration and Related
Models

Studying continuous-time Markov games entails some conceptual and mathemat-
ical difficulties. One of the main issues concerns randomization in continuous
time. Zachrisson (1964) first considered zero-sum Markov games of a finite and
commonly known duration. His method of evaluating the stream of payoffs in
continuous time was simply to integrate over time. In his approach, the players use
Markov strategies, i.e., they choose their actions as a function of time and the current
state only. Stochastic games on Markov jump processes were studied by many
authors (see, e.g., Guo and Hernández-Lerma 2003, 2005). The payoff functions
and transition rates are time independent, and it is assumed that using randomized
Markov strategies, the players determine an infinitesimal operator of the stochastic
process, whose trajectories determine the stream of payoffs. The assumptions made
on the primitives imply that the players have optimal stationary strategies in the
zero-sum case (stationary equilibria in the nonzero-sum case), i.e., strategies that are
independent of time, but depend on the state that changes at random time epochs.
Altman and Gaitsgory (1995) studied zero-sum “hybrid games,” where the state
evolves according to a linear continuous-time dynamics. The parameters of the state
evolution equation may change at discrete times according to a countable state
Markov chain that is directly controlled by both players. Each player has a finite
action space. The authors proposed a procedure (similar in form to the well-known
maximum principle) that determines a pair of stationary strategies for the players,
which is asymptotically a saddle point, as the number of transitions during the finite
time horizon grows to infinity. Levy (2013) studied some connections of continuous-
time (finite state and action spaces) n-person Markov games with differential
games and the theory of differential inclusions. He also gave some results on
correlated equilibria with public randomization in an approximating game. He
considered Markov strategies only. We mention his paper here because no section
on continuous-time games is included in our chapter on nonzero-sum stochastic
games. Cardaliaguet et al. (2012) considered the asymptotic value of two-person
zero-sum repeated games with incomplete information games, splitting games, and
absorbing games. They used a technique relying on embedding the discrete repeated
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game into a continuous-time game and using the viscosity solution methods. Other
approaches to continuous-time Markov games including discretization of time are
briefly described in Laraki and Sorin (2015). The class of games discussed here is
important for many applications, e.g., in studying queueing models involving birth
and death processes and more general ones (see Altman et al. 1997).

Recently, Neyman (2013) presented a framework for fairly general strategies
using an asymptotic analysis of stochastic games with stage duration converging
to zero. He established some new results, especially on the uniform value and
approximate equilibria. There has been very little development in this direction.
In order to describe briefly certain ideas from Neyman (2013), we must introduce
some notation. We assume that the state space X and the action sets A and B are
finite. Let ı > 0 and 
ı be a zero-sum stochastic game played in stages tı, t 2 N.
Strategies for the players are defined in the usual way, but we should note that the
players act in time epochs ı, 2ı, and so on. Following Neyman (2013), we say that
ı is the stage duration. The stage payoff function uı W X � A � B ! R is assumed
to depend on ı. The evaluation of streams of payoffs in a multistage game is not
specified at this moment. The transition probability qı also depends on ı and is
defined using so-called transition rate function q0ı W X �X �A�B ! R satisfying
standard assumptions

q0ı .y; x; a; b/ � 0 for y 6D x; q0ı .y; y; a; b/ � �1 and
X
y2X

q0ı .y; x; a; b/ D 0:

The transition probability is

qı.yjx; a; b/ D q0ı .y; x; a; b/ if y 6D x and qı.xjx; a; b/ D q0ı .x; x; a; b/C 1

for all x 2 X , a 2 A and b 2 B . The transition rate q0ı .y; x; a; b/ represents the
difference between the probability that the next state will be y and the probability
(0 or 1) that the current state is y when the current state is x and the players’ actions
are a and b, respectively.

Following Neyman (2013), we say that the family of games .
ı/ı>0 is converging
if there exist functions � W X �X �A�B ! R and u W X �A�B ! R such that
for all x, y 2 X , a 2 A, and b 2 B , we have

lim
ı!0C

q0ı .y; x; a; b/

ı
D �.y; x; a; b/ and lim

ı!0C

uı.x; a; b/

ı
D u.x; a; b/;

and the family of games .
ı/ı>0 is exact if there exist functions� W X�X�A�B !

R and u W X � A � B ! R such that for all x; y 2 X , a 2 A, and b 2 B , we have
q0ı .y; x; a; b/=ı D �.y; x; a; b/ and uı.x; a; b/=ı D u.x; a; b/.

Assume that .x1; a1; b1; : : :/ is a play in the game with stage duration ı.
According to Neyman (2013), the unnormalized payoff in the �-discounted game,
denoted by 
ı;�, is
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1X
tD1

.1 � �ı/t�1uı.xt ; at ; bt /:

The discount factor ˇ in the sense of Sect. 3 is 1 � ı�. It is called admissible, if
limı!0C.1 � ˇ.ı//=ı exists. This limit is known as an asymptotic discount rate. In
the case of ˇ.ı/ D 1 � �ı, � > 0 is the asymptotic discount rate. Other example
of an admissible ı-dependent discount factor is e��ı . Assuming that the family of
games .
ı/ı>0 is converging, it is proved that the value of 
ı;�, denoted by vı;�.x/,
converges to some v�.x/ (called the asymptotic �-discounted value) for any initial
state x 2 X as ı ! 0C and the players have stationary optimal strategies �� and
	� that are independent of ı. Optimality of �� means that �� is �.ı/-optimal in the
game 
ı;�, where �.ı/ ! 0 as ı ! 0C. Similarly, we define the optimality for 	�.
For details the reader is referred to Theorem 1 in Neyman (2013).

For any play .x1; a1; b1; : : :/ and s > 0, define the average per unit time payoff
gı.s/ as

gı.s/ WD
1

s

X
1�t<s=ı

uı.xt ; at ; bt /:

A family .
ı/ı>0 of two-person zero-sum stochastic games has an asymptotic
uniform value v.x/ (x 2 X ) if for every � > 0 there are strategies �ı of player 1
and 	ı of player 2, a duration ı0 > 0 and a time s0 > 0 such that for every ı 2 .0; ı0/

and s > s0, strategy � of player 1, and strategy 	 of player 2, we have

� CE�ı	
x gı.s/ � v.x/ � E�	ı

x gı.s/ � �:

Theorem 6 in Neyman (2013) states that any exact family of zero-sum games
.
ı/ı>0 has an asymptotic uniform value.

The paper by Neyman (2013) contains also some results on the limit-average
games and n-person games with short-stage duration. His asymptotic analysis is
partly based on the theory of Bewley and Kohlberg (1976a) and Mertens and
Neyman (1981). His work inspired other researchers. For instance, Cardaliaguet
et al. (2016) studied the asymptotics of a class of two-person zero-sum stochastic
game with incomplete information on one side. Furthermore, Gensbittel (2016)
considered a zero-sum dynamic game with incomplete information, in which one
player is more informed. He analyzed the limit value and gave its characterization
through an auxiliary optimization problem and as the unique viscosity solution of a
Hamilton-Jacobi equation. Sorin and Vigeral (2016), on the other hand, examined
stochastic games with varying duration using iterations of non-expansive Shapley
operators that were successfully used in the theory of discrete-time repeated and
stochastic games.
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Jaśkiewicz A (2010) On a continuous solution to the Bellman-Poisson equation in stochastic
games. J Optim Theory Appl 145:451–458
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