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Abstract

This chapter describes a number of results obtained in the last 60 years on the
theory of nonzero-sum discrete-time stochastic games. We provide an overview
of almost all basic streams of research in this area such as the existence of
stationary Nash and correlated equilibria in models on countable and general
state spaces, the existence of subgame-perfect equilibria, algorithms, stopping
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games, and the existence of uniform equilibria. Our survey incorporates several
examples of games studied in operations research and economics. In particular,
separate sections are devoted to intergenerational games, dynamic Cournot
competition and game models of resource extraction. The provided reference list
includes not only seminal papers that commenced research in various directions
but also exposes recent advances in this field.

Keywords
Nonzero-sum game � Stochastic game � Discounted payoff � Limit-average
payoff � Markov perfect equilibrium � Subgame-perfect equilibrium �

Intergenerational altruism � Uniform equilibrium � Stopping game

1 Introduction

The fundamentals of modern theory of non-cooperative dynamic games were estab-
lished in the 1950s at Princeton University. First Nash (1950) introduced the notion
of equilibrium for finite n-person static games and proved its existence using the
fixed point theorem of Kakutani (1941). Next Shapley (1953) presented the model
of infinite time horizon stochastic zero-sum game with positive stop probability.
Fink (1964) and Takahashi (1964) extended his model to nonzero-sum discounted
stochastic games with finite state spaces and proved the existence of equilibrium in
stationary Markov strategies. Later on, Rogers (1969) and Sobel (1971) obtained
similar results for irreducible stochastic games with the expected limit-average
payoffs. Afterwards, the theory of discrete-time nonzero-sum stochastic games
was extended in various directions inspiring a lot of interesting applications. An
overview of selected basic topics in stochastic dynamic games with instructive
examples can be found in the books of Başar and Olsder (1995) and Haurie et al.
(2012) and the survey paper by Dutta and Sundaram (1998). Theoretically more
advanced material is included in the book edited by Neyman and Sorin (2003) and
the monograph of Mertens et al. (2015).

In this chapter, we provide an overview of almost all basic streams of research
in the area of nonzero-sum discrete-time stochastic games such as: the existence
of stationary equilibria in models on both countable and general state spaces, the
existence of subgame-perfect equilibria, algorithms, stopping games, correlated and
uniform equilibria. Our survey incorporates several examples of games studied
in operations research and economics. In particular, separate sections are devoted
to intergenerational games, dynamic Cournot competition and game models of
resource extraction. The provided reference list not only includes seminal papers
that initiated research in various directions but also exposes recent advances in this
field.

The paper is organized as follows. In Sect. 2 we describe some basic material
needed for an examination of nonzero-sum stochastic games with general state
spaces. To make the presentation less technical, we restrict our attention to Borel
space models. A great deal of the results described in this chapter are stated in the
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literature in a more general framework. However, the Borel state space models are
sufficiently rich for most applications. Section 2 includes auxiliary results on set-
valued mappings arising in the study of the existence of stationary Nash/correlated
equilibria and certain known results in the literature such as a random version
of the Carathéodory theorem or the Mertens measurable selection theorem. The
second part, on the other hand, is devoted to supermodular games. Sect. 3 deals
with the concept of subgame-perfect equilibrium in games on a Borel state space
and introduces different classes of strategies, in which subgame-perfect equilibria
may be obtained. Sect. 4 includes results on correlated equilibria with public signal
proved for games on Borel state spaces, whereas Sect. 5 presents the state-of-
the-art results on the existence of stationary equilibria (further called “stationary
Markov perfect equilibria”) in discounted stochastic games. This theory found its
applications to several examples examined in operations research and economics.
Namely, in Sect. 6 we provide models with special but natural transition structures,
for which there exist stationary equilibria. Sect. 7 recalls the papers, where the
authors proved the existence of an equilibrium for stochastic games on denumerable
state spaces. This section embraces the discounted models as well as models with
the limit-average payoff criterion. Moreover, it is also shown that the discounted
game with a Borel state space can be approximated, under some assumptions, by
simpler games with countable state spaces. Sect. 8 reviews algorithms applied to
nonzero-sum stochastic games. In particular, it is shown how a formulation of a
linear complementarity problem can be helpful in solving games with discounted
and limit-average payoff criteria with special transition structure. In addition, we
also mention the homotopy methods applied to this issue. Sect. 9 presents material
on games with finite state and action spaces, while Sect. 10 deals with games
with product state spaces. In Sect. 11 we formulate results proved for various
intergenerational games. Our models incorporate paternalistic and non-paternalistic
altruistic economic growth models: games with one, finite, or infinitely many
descendants as well as games on one- and multidimensional commodity spaces.
Finally, Sect. 12 provides a short overview of stopping games beginning from the
Dynkin extension of Neveu’s stopping problem.

2 Preliminaries

In this section, we recall essential notations and several facts, which are crucial
for studying Nash and correlated equilibria in nonzero-sum stochastic games with
uncountable state spaces. Here we follow preliminaries in Jaśkiewicz and Nowak
(2018a). Let N D f1; : : : ; ng be the set of n-players. Let X , A1; : : : ; An be Borel
spaces. Assume that for each i 2 N , x ! Ai.x/ � Ai is a lower measurable
compact-valued action correspondence for player i: This is equivalent to saying that
the graph of this correspondence is a Borel subset ofX�Ai : LetA WD A1� � � ��An:

We consider a nonzero-sum n-person game parameterized by a state variable x 2 X .
The payoff or utility function for player i 2 N is ri W X � A ! R and it
is assumed that ri is bounded, ri .�; a/ is Borel measurable for each a 2 A, and
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ri .x; �/ is continuous on A for each x 2 X: Assuming that i 2 N chooses a mixed
strategy �i 2 Pr.Ai .x// and � WD .�1; : : : ; �n/; we denote the expected payoff to
player i by

P i.x; �/ WD

Z
An.x/

� � �

Z
A1.x/

ri .x; a1; : : : ; an/�1.da1/ � � � � � �n.dan/:

A strategy profile �� D .��
1 ; : : : ; �

�
n / is a Nash equilibrium in the game for a given

state x 2 X if

P i.x; ��/ � P i.x; .�i ; �
�
�i //

for every i 2 N and �i 2 Pr.Ai .x//: As usual .�i ; ��
�i / denotes �� with ��

i replaced
by �i : For any x 2 X , by N .x/, we denote the set of all Nash equilibria in the
considered game. By Glicksberg (1952), N .x/ 6D ;: It is easy to see that N .x/ is
compact. Let NP.x/ � R

n be the set of payoff vectors corresponding to all Nash
equilibria in N .x/: By co, we denote the convex hull operator in R

n:

Proposition 1. The mappings x ! N .x/, x ! NP.x/ and x ! coNP.x/ are
compact-valued and lower measurable.

For a detailed discussion of these statements, consult Nowak and Raghavan
(1992), Himmelberg (1975), and Klein and Thompson (1984). By Kuratowski and
Ryll-Nardzewski (1965), every set-valued mapping in Proposition 1 has a Borel
measurable selection. Making use of standard results on measurable selections (see
Castaing and Valadier 1977) and Carathéodory’s theorem, we obtain the following
result.

Proposition 2. Let b W X ! R
n be a Borel measurable selection of the mapping

x ! coNP.x/: Then, there exist Borel measurable selections bi W X ! R
n and

Borel measurable functions �i W X ! Œ0; 1� (i D 1; : : : ; n C 1) such that for each
x 2 X , we have

nC1X
iD1

�i .x/ D 1 and b.x/ D

nC1X
iD1

�i .x/bi .x/:

Similarly as in Nowak and Raghavan (1992), from Filippov’s measurable implicit
function theorem, we conclude the following facts.

Proposition 3. Let p W X ! R
n be a Borel measurable selection of the mapping

x ! NP.x/: Then, there exists a Borel measurable selection  of the mapping
x ! N .x/ such that
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p.x/ D .P 1.x;  .x//; : : : ; P n.x;  .x/// for all x 2 X:

Proposition 4. If b W X ! R
n is a Borel measurable selection of the mapping

x ! coNP.x/, then there exist Borel measurable selections  i of the mapping
x ! N .x/ and Borel measurable functions �i W X ! Œ0; 1� (i D 1; : : : ; n C 1)
such that for each x 2 X , we have

PnC1
iD1 �

i .x/ D 1 and

b.x/ D

nC1X
iD1

�i .x/.P 1.x;  i .x//; : : : ; P n.x;  i .x///:

The following result plays an important role in studying Nash equilibria in
stochastic games with Borel state spaces and can be deduced from Theorem 2 in
Mertens (2003) and Filippov’s measurable implicit function theorem. It is related
to Lyapunov’s theorem on the range of nonatomic measures and also has some
predecessors in control theory; see Artstein (1989).

Proposition 5. Let � be a nonatomic Borel probability measure onX . Assume that
qj (j D 1; : : : ; l) are Borel measurable transition probabilities from X to X and
for every j and x 2 X , qj .�jx/ � �, i.e., qj .�jx/ is dominated by �: Let w0 W

X ! R
n be a Borel measurable mapping such that w0.x/ 2 coNP.x/ for each

x 2 X: Then there exists a Borel measurable mapping v0 W X � X ! R
n such that

v0.x; y/ 2 NP.x/ for all x; y 2 X and

Z
X

w0.y/qj .dyjx/ D

Z
X

v0.x; y/qj .dyjx/; j D 1; : : : ; l:

Moreover, there exists a Borel measurable mapping � W X � X ! Pr.A/ such that
�.x; y/ 2 N .x/ for all x; y 2 X:

LetL be a lattice contained in Euclidean space Rk equipped with the component-
wise order �. For any x; y 2 L, x _ y (x ^ y) denotes the join (meet) of x and y.
A function � W L ! R is supermodular if for any x; y 2 L, it holds

�.x _ y/C �.x ^ y/ � �.x/C �.y/:

Clearly, if k D 1, then any function � is supermodular. Let L1 � R
k , L2 � R

l

be lattices. A function  W L1 � L2 ! R has increasing differences in .x; y/ if
for every x0 � x in L1,  .x0; y/ �  .x; y/ is non-decreasing in y: Let the set Ai
of pure strategies of player i 2 N be a compact convex subset of Euclidean space
R
mi : An element ai of Ai is denoted by ai D .ai1; ai2; : : : ; aimi /: We consider an

n-person game G0 in which Ri W A ! R is the payoff function of player i 2 N and
A WD A1 � � � � � An: As usual, any strategy profile a D .a1; a2; : : : ; an/ can also be
denoted as .ai ; a�i / for i 2 N:
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Assume that every Ai is a lattice. The game G0 is called supermodular if for
every player i 2 N and a�i , the function ai ! Ri.ai ; a�i / is supermodular and Ri
has increasing differences in .ai ; a�i /:

It is well known that any supermodular game with continuous utility functions
and compact strategy sets Ai has a pure Nash equilibrium; see Topkis (1998) or
Theorems 4 and 5 in Milgrom and Roberts (1990).

The game G0 is called smooth if every Ri can be extended from A to an open
superset Ao in such a way that its second-order partial derivatives exist and are
continuous on Ao:

A game G0 is called a smooth supermodular game if for every player i 2 N ,

(a) Ai is a compact interval in R
mi ,

(b) @2Ri
@aij @aik

� 0 on A for all 1 � j < k � mi ,

(c) @2Ri
@aij @akl

� 0 on A for each k 6D i and all 1 � j � mi , 1 � l � mk:

It is well known that any game satisfying conditions (a)–(c) is supermodular.
Conditions (a) and (b) imply that Ri is a supermodular function with respect to ai
for fixed a�i , while conditions (a) and (c) imply that Ri has increasing differences
in .ai ; a�i /: For a detailed discussion of these issues, see Topkis (1978, 1998) or
Theorem 4 in Milgrom and Roberts (1990).

In order to obtain a uniqueness of an equilibrium in a smooth supermodular game
G0, one needs an additional assumption, often called a strict diagonal dominance
condition, see page 1271 in Milgrom and Roberts (1990) or Rosen (1965). As noted
by Curtat (1996), this condition can be described for smooth supermodular games
as follows. Let Mi WD f1; 2; : : : ; mig:

(C1) For every i 2 N and j 2 Mi ,

@2Ri

@a2ij
C

X
l2Minfj g

@2Ri

@aij @ail
C

X
k2Nnfig

X
l2Mk

@2Ri

@aij @akl
< 0:

From Milgrom and Roberts (1990) and page 187 in Curtat (1996), we obtain the
following auxiliary result.

Proposition 6. Any smooth supermodular game G0 satisfying condition (C1) has a
unique pure Nash equilibrium.

Assume now that the payoff functions Ri are parameterized by � in some
partially ordered set T , i.e., Ri W A � T ! R: We introduce a new condition.

(C2) @2Ri
@aij @�

� 0 for all 1 � j � mi , and i 2 N:
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It is known that the set of Nash equilibria in any supermodular game G0 is a
lattice and has the smallest and the largest elements. The following result follows
from Theorem 7 in Milgrom and Roberts (1990).

Proposition 7. Suppose that a smooth supermodular game satisfies (C2). Then, the
largest and smallest pure Nash equilibria are non-decreasing functions of �:

3 Subgame-Perfect Equilibria in Stochastic Games with
General State Space

We consider an n-person nonzero-sum discounted stochastic game G as defined
below.

• .X;B.X// is a nonempty Borel state space with its Borel � -algebra B.X/:
• Ai is a Borel space of actions for player i 2 N WD f1; : : : ; ng:

• Ai.x/ � Ai is a set of actions available to player i 2 N in state x 2 X: The
correspondence x ! Ai.x/ is lower measurable and compact-valued. Define

A WD A1 � : : : � An and A.x/ D A1.x/ � : : : � An.x/; x 2 X:

• ui W X � A ! R is a Borel measurable bounded utility (or payoff ) function for
player i 2 N: It is assumed that ui .x; �/ is continuous on A for every x 2 X:

• q W X �A� B.X/ ! Œ0; 1� is a transition probability. We assume that q.Djx; �/

is continuous on A for each x 2 X and D 2 B.X/:
• ˇ 2 .0; 1/ is a discount factor.

Every stage of the game begins with a state x 2 X , and after observing x; the
players simultaneously choose their actions ai 2 Ai.x/ (i 2 N ) and obtain payoffs
ui .x; a/, where a D .a1; : : : ; an/: A new state x0 is realized from the distribution
q.�jx; a/ and new period begins with payoffs discounted by ˇ: Let H1 D X and Ht

be the set of all plays ht D .x1; a
1; : : : ; xt�1; a

t�1; xt /, where ak D .ak1 ; : : : ; a
k
n/ 2

A.xk/, k D 1; : : : ; t �1: A strategy for player i 2 N is a sequence 	i D .	it /t2N of
Borel measurable transition probabilities from Ht to Ai such that 	it .Ai .xt // D 1

for each ht 2 Ht : The set of strategies for player i 2 N is denoted by ˘i : We let
˘ WD ˘1 � : : : � ˘n: Let Fi (F 0

i ) be the set of all Borel measurable mappings
fi W X � X ! Pr.Ai / (�i W X ! Pr.Ai /) such that fi .x�; x/ 2 Pr.Ai .x//
(�i .x/ 2 Pr.Ai .x//) for each x�; x 2 X: A stationary almost Markov strategy for
player i 2 N is a constant sequence .	it /t2N where 	it D fi for some fi 2 Fi
and for all t 2 N: If xt is a state of the game on its t -stage with t � 2, then player
i chooses an action using the mixed strategy fi .xt�1; xt /: The mixed strategy used
at an initial state x1 is fi .x1; x1/: The set of all stationary almost Markov strategies
for player i 2 N is identified with the set Fi : A stationary Markov strategy for
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player i 2 N is identified with a Borel measurable mapping fi 2 F 0
i : We say that

	i D .	i1; 	i2; : : :/ 2 ˘i is a Markov strategy for player i if 	it 2 F 0
i for all t 2 N:

Any strategy profile 	 D .	1; : : : ; 	n/ 2 ˘ together with an initial state
x D x1 2 X determines a unique probability measure P	

x on the space H1 of all
plays h1 D .x1; a

1; x2; a
2; : : :/ endowed with the product � -algebra. The expected

discounted payoff or utility function for player i 2 N is

J
i;T
ˇ .x; 	/ D E	

x

 
TX
tD1

ˇt�1ui .xt ; a
t /

!
where T � 1:

We shall write J iˇ.x; 	/, if T D 1:

A profile of strategies 	� 2 ˘ is called a Nash equilibrium, if

J
i;T
ˇ .x; 	�/ � J

i;T
ˇ .x; .	�

�i ; 	i // for all x 2 X; 	i 2 ˘i and i 2 N:

A stationary almost Markov (stationary Markov) perfect equilibrium is a Nash
equilibrium that belongs to the class of strategy profiles F WD F1 � : : : � Fn
(F 0 WD F 0

1 � : : : � F 0
n ). A Markov perfect equilibrium, on the other hand, is a

Nash equilibrium 	�, in which 	�
i t D fit and fit 2 F 0

i for every t 2 N and every
player i 2 N: The strategies involved in such an equilibrium are called “markovian,”
“state-contigent,” or “payoff-relevant”; see Maskin and Tirole (2001). Clearly, every
stationary Markov perfect equilibrium is also a Markov perfect equilibrium.

Let 	 D .	1; : : : ; 	n/ 2 ˘ and ht 2 Ht : By 	i Œht � we denote the conditional
strategy for player i that can be applied from stage t onward. Let 	Œht � D

.	1Œht �; : : : ; 	nŒht �/: Using this notation, one can say that 	� is a subgame-perfect
equilibrium in the stochastic game if for any t 2 N and every partial history ht 2 Ht ,
	�Œht � is a Nash equilibrium in the subgame starting at xt , where xt is the last
coordinate in ht : This definition refers to the classical idea of Selten (1975).

Let B.X/ be the space of all bounded Borel measurable real-valued functions on
X and Bn.X/ WD B.X/ � � � � � B.X/ (n times). Similarly define B.X � X/ and
Bn.X � X/: With any x 2 X and v D .v1; : : : ; vn/ 2 Bn.X/, we associate the
one-shot game 
v.x/ in which the payoff function to player i 2 N is

U i
ˇ.vi ; x; a/ WD ui .x; a/C ˇ

Z
X

vi .y/q.dyjx; a/; a 2 A.x/: (6.1)

If � D .�1; : : : ; �n/ 2 Pr.A.x//, then

U i
ˇ.vi ; x; �/ D

Z
An.x/

: : :

Z
A1.x/

U i
ˇ.vi ; x; a1; : : : ; an/�1.da1/ � � � � � �n.dan/

and if f D .f1; : : : ; fn/ 2 F 0, then U i
ˇ.vi ; x; f / D U i

ˇ.vi ; x; �/ with � D

.f1.x/; : : : ; fn.x//: Further, U i
ˇ.vi ; x; .�i ; f�i // D U i

ˇ.vi ; x; �/ with �i D �i ,
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�j D fj .x/ for j 6D i: Under our assumptions, a ! U i
ˇ.vi ; x; a/ is continuous on

A.x/ for every vi 2 B.X/, x 2 X , i 2 N: Let Nv.x/ be the set of all Nash equilibria
in the game 
v.x/: By NPv.x/ we denote the set of payoff vectors corresponding
to all Nash equilibria in Nv.x/: Let Mv be the set of all Borel measurable selections
of the set-valued mapping x ! Nv.x/: We know from Proposition 1 that Mv 6D ;:

Consider a T -stage game (2 � T < 1). Assume that the .T �1/-stage subgame
starting at any state x2 2 X has a Markov perfect equilibrium, say 	�

T�1: Let v�
T�1

be the vector payoff function in Bn.X/ determined by 	�
T�1: Then we can get some

f � 2 Mv�

T�1
and define 	�

T WD .f �; 	�
T�1/: It is obvious that 	�

T is a Markov
perfect equilibrium in the T -stage game. This fact was proved by Rieder (1979) and
we state it below.

Theorem 1. Every finite-stage nonzero-sum discounted stochastic game satisfying
the above conditions has a subgame-perfect equilibrium. For any " > 0, there exists
an "-equilibrium 	" in Markov strategies, i.e.,

J iˇ.x; 	
"/C " � J iˇ.x; .	i ; 	

"
�i // for all x 2 X; 	i 2 ˘i and i 2 N:

Note that "-equilibrium in the second part of this theorem has no subgame-
perfection property.

We now make an additional assumption.

(A1) The transition probability q is norm continuous in actions, i.e., for each x 2 X ,
ak ! a0 in A.x/ as k ! 1, it follows that

sup
D2B.X/

jq.Djx; ak/ � q.Djx; a0/j ! 0:

Condition (A1) is quite restrictive, but it is satisfied, if q has a continuous in
actions conditional density with respect to some probability measure on X:

Theorem 2. Every discounted nonzero-sum stochastic game G satisfying (A1) has
a subgame-perfect equilibrium.

Theorem 2 was proved in a more general form by Mertens and Parthasarathy
(2003), where the payoffs and discount factors may depend on time and the state
space is a general measurable space. A special case was considered by Mertens
and Parthasarathy (1991), who assumed that the action sets are finite and state
independent and transitions are dominated by some probability measure on X:

The proofs given in Mertens and Parthasarathy (1991, 2003) are based upon
studying a specified fixed point property of an operator defined in the class of
measurable selections of compact set-valued mappings from the state space to
the payoff space. The fixed point obtained in that class is used to define in a
recursive way a subgame-perfect equilibrium that consists of history-dependent
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strategies (unbounded memory is assumed). For further comments on possible
extensions of Theorem 2, the reader is referred to Mertens (2002) and Mertens
et al. (2015). A modified proof of their results was provided by Solan (1998),
who analyzed accumulation points of �-equilibria (as � ! 0) obtained in Theo-
rem 1.

Assume that Ai.x/ D Ai for each x 2 X and i 2 N and that every space Ai is
compact. LetX and A1; : : : ; An be given the discrete topology. According to Maitra
and Sudderth (2007), a function g W H1 ! R is DS -continuous on H1 if it is
continuous on H1 endowed with the product topology. It is easy to see that g is
DS -continuous on H1 if and only if, for any � > 0 and y D .y1; y2; : : :/ 2 H1,
there exists m such that jg.y/ � g.y0/j < � for each y0 D .y0

1; y
0
2; : : :/ 2 H1

such that yl D y0
l for 1 � l � m: Suppose that gi W H1 ! R is a bounded

Borel measurable payoff function for player i 2 N: For any strategy profile 	 2 ˘

and every initial state x D x1, the expected payoff to player i is E	
x .gi /: The

subgame-perfect equilibrium can be defined for this game in the usual way. Maitra
and Sudderth (2007) (see Theorem 1.2) obtained a general theorem on the existence
of subgame-perfect equilibria for stochastic games.

Theorem 3. Let the payoff functions gi , i 2 N be bounded, Borel measurable, and
DS -continuous onH1 and let the action spaces Ai , i 2 N be finite. Then the game
has a subgame-perfect equilibrium.

The proof of Theorem 3 applies some techniques from gambling theory described
in Dubins and Savage (2014), i.e., approximations of DS -continuous functions
by “finitary functions”. Theorem 3 extends a result due to Fudenberg and Levine
(1983). An example given in Harris et al. (1995) shows that Theorem 3 is false,
if the action spaces are compact metric and the transition probability q is weakly
continuous.

The next result was proved by Maitra and Sudderth (2007) (see Theorem 1.3) for
“additive games” and sounds as follows.

Theorem 4. Assume that every action space is compact and the transition prob-
ability satisfies (A1). Assume that gi .h1/ D

P1
tD1 rit .xt ; a

t / and this series
converges uniformly onH1: If, in addition, every function rit is bounded, rit .�; a/ is
Borel measurable on X for each a 2 A WD A1 � � � � �An and rit .x; �/ is continuous
on A for each x 2 X , then the game has a subgame-perfect equilibrium.

It is worth to emphasize that stationary Markov perfect equilibria may not exist
in games considered in this section. Namely, Levy (2013) gave a counterexample of
a discounted game with uncountable state space, finite action sets and deterministic
transitions. Then, Levy and McLennan (2015) showed that stationary Markov
perfect equilibria may not exist even if the action spaces are finite, X D Œ0; 1�

and the transition probability has a density function with respect to some measure
� 2 Pr.X/: A simple modification of the example given in Levy and McLennan
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(2015) shows that a new game (with X D Œ0; 2�) need not have a stationary Markov
perfect equilibrium, when the measure � (dominating the transition probability q)
is nonatomic.

4 Correlated Equilibria with Public Signals in Games with
Borel State Spaces

Correlated equilibria for normal form games were first studied by Aumann (1974,
1987). In this section we describe an extensive-form correlated equilibrium with
public randomization inspired by the work of Forges (1986). A further discussion of
correlated equilibria and communication in games can be found in Forges (2009).
The sets of all equilibrium payoffs in extended form games that include a general
communication device are characterized by Solan (2001).

We now extend the sets of strategies available to the players in the sense that
we allow them to correlate their choices in some natural way. Suppose that .�t /t2N
is a sequence of so-called signals, drawn independently from Œ0; 1� according to
the uniform distribution. Suppose that at the beginning of each period t of the
game the players are informed not only of the outcome of the preceding period
and the current state xt , but also of �t : Then, the information available to them is
a vector ht D .x1; �1; a

1; : : : ; xt�1; �t�1; a
t�1; xt ; �t /, where x� 2 X , �� 2 Œ0; 1�,

a� 2 A.x�/, 1 � � � t � 1: We denote the set of such vectors by Ht : An extended
strategy for player i is a sequence 	i D .	it /t2N, where 	it is a Borel measurable
transition probability fromHt toAi such that 	it .Ai .xt /jht / D 1 for each ht 2 Ht :

An extended stationary strategy for player i 2 N can be identified with a Borel
measurable mapping f W X � Œ0; 1� ! Pr.Ai / such that f .Ai .x/jx; �/ D 1

for all .x; �/ 2 X � Œ0; 1�: Assuming that the players use extended strategies we
actually assume that they play the stochastic game with the extended state space
X � Œ0; 1�: The law of motion, say p, in the extended state space model is obviously
the product of the original law of motion q and the uniform distribution  on Œ0; 1�:
More precisely, for any x 2 X , � 2 Œ0; 1�, a 2 A.x/, Borel sets C � X and
D � Œ0; 1�, p.C � Djx; �; a/ D q.C jx; a/.D/: For any profile of extended
strategies 	 D .	1; : : : ; 	n/ of the players, the expected discounted payoff to player
i 2 N is a function of the initial state x1 D x and the first signal �1 D � and
is denoted by J iˇ.x; �; 	/: We say that f � D .f �

1 ; : : : ; f
�
n / is a Nash equilibrium

in the ˇ-discounted stochastic game in the class of extended strategies if for each
initial state x1 D x, i 2 N and every extended strategy 	i of player i , we have

Z 1

0

J iˇ.x; �; f
�/d� �

Z 1

0

J iˇ.x; �; .	i ; f
�

�i //d�:

The Nash equilibrium in extended strategies is also called a correlated equilibrium
with public signals. The reason is that after the outcome of any period of the game,
the players can coordinate their next choices by exploiting the next (known to all
of them, i.e., public) signal and using some coordination mechanism telling which
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(pure or mixed) action is to be played by everyone. In many applications, we
are particularly interested in stationary equilibria. In such a case the coordination
mechanism can be represented by a family of n C 1 Borel measurable functions
�j W X ! Œ0; 1� such that

PnC1
jD1 �

j .x/ D 1 for each x 2 X: A stationary correlated
equilibrium can be constructed then by using a family of nC 1 stationary strategies
f 1
i ; : : : ; f

nC1
i given for every player i , and the following coordination rule. If the

game is in state xt D x on stage t and a random number �t D � is selected, then
player i 2 N is suggested to use f k

i .�jx/ where k is the least index for whichPk
jD1 �

j .x/ � �: The functions �j and f j
i induce an extended stationary strategy

f �
i for every player i as follows

f �
i .�jx; �/ WD f 1

i .�jx/ if � � �1.x/; x 2 X;

and

f �
i .�jx; �/ WD f k

i .�jx/ if
k�1X
jD1

�j .x/ < � �

kX
jD1

�j .x/

for x 2 X , 2 � k � n C 1: Because the signals are independent and uniformly
distributed in Œ0; 1�, it follows that at any period of the game and for any current state
x, the number �j .x/ can be interpreted as the probability that player i is suggested
to use f j

i .�jx/ as a mixed action.

(A2) Let� 2 Pr.X/: There exists a conditional density function � for q with respect
to � such that if ak ! a0 in A.x/, x 2 X , as k ! 1, then

lim
k!1

Z
X

j�.x; ak; y/ � �.x; a0; y/j�.dy/ D 0:

Theorem 5. Any discounted stochastic game G satisfying (A2) has a stationary
correlated equilibrium with public signals.

Theorem 5 was proved by Nowak and Raghavan (1992). First it is shown by
making use of a theorem in Glicksberg (1952) that the correspondence v ! Mv

has a fixed point, i.e., there exists w� 2 Bn.X/ such that w�.x/ 2 coNPw�.x/ for
all x 2 X: Then, applying Propositions 2 and 4, one can prove the existence of a
stationary correlated equilibrium with public signals for the game with the payoff
functions U i

ˇ.w
�
i ; x; a/ defined in (6.1). A verification that f � obtained in this way

is indeed a Nash equilibrium in the game with the extended state space X � Œ0; 1�

relies on using standard Bellman equations for discounted dynamic programming;
see Blackwell (1965) or Puterman (1994). Observe also that the set of all atoms Da

for � is countable. A refinement of the above result is Theorem 2 in Jaśkiewicz and
Nowak (2016), where it is shown that public signals are important only in states
belonging to the set X n Da: A similar result on correlated equilibria was given in
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Nowak and Jaśkiewicz (2005) for semi-Markov games with Borel state spaces and
the expected average payoffs. This result, in turn, was proved under geometric drift
conditions (GE1)–(GE3) formulated in Sect. 5 in Jaśkiewicz and Nowak (2018a).

Condition (A2) can be replaced in the proof (with minor changes) by assumption
(A1) on norm continuity of q with respect to actions. A similar result to Theorem 5
was given by Duffie et al. (1994), where it was assumed that for any x; x0 2 X ,
a 2 A.x/, a0 2 A.x0/, we have

q.�jx; a/ � q.�jx0; a0/ and q.�jx0; a0/ � q.�jx; a/:

In addition, Duffie et al. (1994) required the continuity of the payoffs and transitions
with respect to actions. Thus, the result in Duffie et al. (1994) is weaker than
Theorem 5. Moreover, they also established the ergodicity of the Markov chain
induced by a stationary correlated equilibrium. Their proof is different from that
of Nowak and Raghavan (1992). Subgame-perfect correlated equilibria were also
studied by Harris et al. (1995) for games with weakly continuous transitions and
general continuous payoff functions on the space of infinite plays endowed with
the product topology. Harris et al. (1995) gave an example showing that public
signals play an important role. They proved that the subgame-perfect equilibrium
path correspondence is upper hemicontinuous. Later, Reny and Robson (2002)
provided a shorter and simpler proof of existence that focuses on considerations
of equilibrium payoffs rather than paths. Some comments on correlated equilibria
for games with finitely many states or different payoff evaluation will be given in
the sequel.

5 Stationary Equilibria in Discounted Stochastic Games with
Borel State Spaces

In this section, we introduce the following condition.

(A3) There exist l Carathéodory functions ˛j W X � A ! Œ0; 1� such thatPl
jD1 ˛j .x; a/ D 1 for every .x; a/ 2 X �A and Borel measurable transition

probabilities qj W X � B.X/ ! Œ0; 1� such that

q.�jx; a/ D

lX
jD1

˛j .x; a/qj .�jx/; .x; a/ 2 X � A:

Additionally, every qj .�jx/ is dominated by some � 2 Pr.X/:

We can now state a result due to Jaśkiewicz and Nowak (2016).

Theorem 6. Assume that game G satisfies (A3). Then, G has a stationary almost
Markov perfect equilibrium.
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We outline the proof of Theorem 6 for nonatomic measure �. The general case
needs an additional notation. First, we show that there exists a Borel measurable
mapping w� 2 Bn.X/ such that w�.x/ 2 coNPw�.x/ for all x 2 X: This result
is obtained by applying a generalization of the Kakutani fixed point theorem due
to Glicksberg (1952). (Note that closed balls in Bn.X/ are compact in the weak-
star topology due to Banach-Alaoglu’s theorem.) Second, applying Proposition 5
we conclude that there exists some v� 2 Bn.X �X/ such that

Z
X

w�.y/qj .dyjx/ D

Z
X

v�.x; y/qj .dyjx/; j D 1; : : : ; l:

Hence, by (A3) we infer that

Z
X

w�.y/q.dyjx; a/ D

Z
X

v�.x; y/q.dyjx; a/; .x; a/ 2 X � A:

Moreover, we know that v�.x; y/ 2 NPv�.y/ for all states x and y: Furthermore,
making use of Filippov’s measurable implicit function theorem (as in Proposition 5),
we claim that v�.x; y/ is the vector of equilibrium payoffs corresponding to some
stationary almost Markov strategy profile. Finally, we utilize the system of n
Bellman equations to provide a characterization of stationary equilibrium and to
deduce that this profile is indeed a stationary almost Markov perfect equilibrium.
For details the reader is referred to Jaśkiewicz and Nowak (2016).

Corollary 1. Consider a game where the set A is finite and the transition probabil-
ity q is Borel measurable. Then, the game has a stationary almost Markov perfect
equilibrium.

Proof. We show that the game meets (A3). Let m 2 N be such that A D

fa1; : : : ; amg: Now, for j D 1; : : : ; m, define

˛j .s; a/ WD

�
1; if a 2 A.x/; a D aj

0; otherwise,
and

qj .�jx/ WD

�
q.�jx; a/; if a 2 A.x/; a D aj

�.�/; otherwise.

Then, q.�js; a/ D
Pl

jD1 gj .s; a/qj .�js/ for l D m and the conclusion follows from
Theorem 6.

Remark 1. Corollary 1 extends the result of Mertens and Parthasarathy (1991),
where it is additionally assumed that Ai.x/ D Ai for all x 2 X , i 2 N and that
� is nonatomic; see Comment on page 147 in Mertens and Parthasarathy (1991) or
Theorem VII.1.8 on page 398 in Mertens et al. (2015). If � admits some atoms, then
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they proved the existence of a subgame-perfect equilibrium in which the strategy of
player i 2 N is of the form .fi1; fi2; : : :/ with fit 2 F 0

i for each t 2 N: Thus, the
equilibrium strategy of player i 2 N is stage-dependent.

Remark 2. It is worth to emphasize that equilibria established in Theorem 6 are
subgame-perfect. A related result to Theorem 6 is given in Barelli and Duggan
(2014). The assumption imposed on the transition probability in their paper is
weaker, but an equilibrium is shown to exist in the class of stationary semi-Markov
strategies, where the players take into account the current state, the previous state
and the actions chosen by the players in the previous state.

Remark 3. As already mentioned in Sect. 3, Levy and McLennan (2015) con-
structed a stochastic game that does not have a stationary Markov perfect equi-
librium. In their model, each set Ai is finite, Ai.x/ D Ai for every i 2 N , x 2 X ,
and the transition law is a convex combination of a probability measure (depending
on the current state) and the Dirac measure concentrated at some state. Such a
model satisfies the absolute continuity condition. Hence, their example confirms
that one cannot expect to obtain an equilibrium in stationary Markov strategies even
for games with finite action spaces. Therefore, Corollary 1 is meaningful.

Remark 4. By Urysohn’s metrization theorem (see Theorem 3.40 in Aliprantis and
Border 2006), every action space Ai can be embedded homeomorphically in the
Hilbert cube. The action correspondences remain measurable and compact-valued
after the embedding. Therefore, one can assume without loss of generality as in
Jaśkiewicz and Nowak (2016) that the action spaces are compact metric.

A stochastic game with additive reward and additive transitions (ARAT for
short) satisfies some separability condition for the actions of the players. To simplify
presentation, we assume that N D f1; 2g: The payoff function for player i 2 N is
of the form

ui .x; a1; a2/ D ui1.x; a1/C ui2.x; a2/;

where x 2 X; a1 2 A1.x/; a2 2 A2.x/ and similarly

q.�jx; a1; a2/ D q1.�jx; a1/C q2.�jx; a2/;

where q1 and q2 are Borel measurable subtransition probabilities dominated by some
� 2 Pr.X/:

The following result was proved in Jaśkiewicz and Nowak (2015a).

Theorem 7. If � is a nonatomic probability measure and the action sets A1 and A2

are finite, then the ARAT stochastic game has a Nash equilibrium in pure stationary
almost Markov strategies.
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The separability condition as in ARAT games can be easily generalized to n-
person case. Assumptions of similar type are often used in differential games; see
Başar and Olsder (1995). ARAT stochastic games with Borel state and finite action
spaces were first studied by Himmelberg et al. (1976), who showed the existence of
stationary Markov equilibria for �-almost all initial states with � 2 Pr.X/: Their
result was strengthened by Nowak (1987), who considered compact metric action
spaces and obtained stationary equilibria for all initial states. Pure stationary Markov
perfect equilibria may not exist in ARAT stochastic games if � has atoms; see
Example 3.1 (a game with 4 states) in Raghavan et al. (1985) or counterexample (a
game with 2 states) in Jaśkiewicz and Nowak (2015a). Küenle (1999) studied ARAT
stochastic games with a Borel state space and compact metric action spaces and
established the existence of non-stationary history-dependent pure Nash equilibria.
In order to construct subgame-perfect equilibria, he used the well-known idea of
threats (frequently used in repeated games). The result of Küenle (1999) is stated for
two-person games only. Theorem 7 can also be proved for n-person games under a
similar additivity assumption. An almost Markov equilibrium is obviously subgame-
perfect.

Stationary Markov perfect equilibria exist in discounted stochastic games with
state-independent transitions (SIT games) studied by Parthasarathy and Sinha
(1989). They assumed that Ai.x/ D Ai for all x 2 X and i 2 N , the action sets
Ai are finite, and q.�jx; a/ D q.�ja/ are nonatomic for all a 2 A: A more general
class of games with additive transitions satisfying (A3) but with all qj independent
of state x 2 X (AT games) was examined by Nowak (2003b). A stationary Markov
perfect equilibrium f � 2 F 0 was shown to exist in that class of stochastic games.
Additional special classes of discounted stochastic games with uncountable state
space having stationary Markov perfect equilibrium are described in Krishnamurthy
et al. (2012). Some of them are related to AT games studied by Nowak (2003b).

Let X D Y � Z where Y and Z are Borel spaces. In a noisy stochastic game
considered by Duggan (2012), the states are of the form x D .y; z/ 2 X , where
z is called a noise variable. The payoffs depend measurably on x D .y; z/ and
are continuous in actions of the players. The transition probability q is defined as
follows:

q.Djx; a/ D

Z
Y

Z
Z

1D.y
0; z0/q2.d z0jy0/q1.dy

0jx; a/; a 2 A.x/; D 2 B.Y �Z/:

Moreover, it is assumed that q1 is dominated by some �1 2 Pr.Y / and q2 is
absolutely continuous with respect to some nonatomic measure �2 2 Pr.Z/:
Additionally, q1.�jx; a/ is norm continuous in actions a 2 A, for each x 2 X:

This form of q implies that conditional on y0 the next shock z0 is independent of
the current state and actions. In applications, .y; z/may represent a pair: the price of
some good and the realization of random demand. By choosing actions, the players
can determine (stochastically) the next period price y0, which in turn, has some
influence on the next demand shock. Other applications are discussed by Duggan
(2012), who obtained the following result.
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Theorem 8. Every noisy stochastic game has a stationary Markov perfect equilib-
rium.

Let X be a Borel space, � 2 Pr.X/ and let G � B.X/ be a sub-� -algebra. A
set D 2 B.X/ is said to be a (conditional) G-atom if �.D/ > 0 and for any Borel
set B � D, there exists some D0 2 G such that �.B4.D \ D0// D 0: Assume
that the transition probability q is dominated by some probability measure �, and �
denotes a conditional density function. Following He and Sun (2017), we say that
a discounted stochastic game has a decomposable coarser transition kernel if there
exists a sub-� -algebra G � B.X/ such that B.X/ has no G-atom and there exist
Borel measurable nonnegative functions �j and dj (j D 1; : : : ; l) such that, for
every x 2 X , a 2 A, each function �j .�; x; a/ is G-measurable and the transition
probability density � is of the form

�.y; x; a/ D

lX
jD1

�j .y; x; a/dj .y/; x; y 2 X; a 2 A:

Using a theorem of Dynkin and Evstigneev (1977) on conditional expectations
of measurable correspondences and a fixed point property proved in Nowak and
Raghavan (1992), He and Sun (2017) established the following result.

Theorem 9. Every discounted stochastic game having decomposable coarser tran-
sition kernel with respect to a nonatomic probability measure � on X has a
stationary Markov perfect equilibrium.

A slight extension of the above theorem, given in He and Sun (2017), contains
as special cases the results proved by Parthasarathy and Sinha (1989), Nowak
(2003b), Nowak and Raghavan (1992). However, the form of the equilibrium
strategy obtained by Nowak and Raghavan (1992) does not follow from He and Sun
(2017). The result of He and Sun (2017) also covers the class of noisy stochastic
games examined in Duggan (2012). In this case, it suffices to take G � B.Y � Z/

that consists of the sets D � Z, D 2 B.Y /: Finally, we wish to point out that
ARAT discounted stochastic games as well as games considered in Jaśkiewicz and
Nowak (2016) (see Theorem 6) are not included in the class of models mentioned
in Theorem 9.

Remark 5. A key tool in proving the existence of a stationary Markov perfect equi-
librium in a discounted stochastic game that has no ARAT structure is Lyapunov’s
theorem on the range of a nonatomic vector measure. Since the Lyapunov theorem
is false for infinitely many measures, the counterexample of Levy’s eight-person
game is of some importance (see Levy and McLennan 2015). There is another
reason for which the existence of an equilibrium in the class of stationary Markov
strategies F 0 is difficult to obtain. One can recognize strategies from the sets
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F 0
i as “Young measures” and consider natural in that class weak-star topology;

see Valadier (1994). Young measures are often called relaxed controls in control
theory. With the help of Example 3.16 from Elliott et al. (1973), one can easily
construct a stochastic game withX D Œ0; 1�, finite action spaces and trivial transition
probability q being a Lebesgue measure on X , where the expected discounted
payoffs J iˇ.x; f / are discontinuous on F 0 endowed with the product topology.

The continuity of f ! J iˇ.x; f / (for fixed initial state) can only be proved for
ARAT games. Generally, it is difficult to obtain compact families of continuous
strategies. This property requires very strong conditions in order to get, for instance,
equicontinuous family of functions (see Sect. 6).

6 Special Classes of Stochastic Games with Uncountable
State Space and Their Applications in Economics

In a number of applications of discrete-time dynamic games in economics, the state
space is an interval in Euclidean space. An illustrative example is the “fish war
game” studied by Levhari and Mirman (1980), where the state space X D Œ0; 1�,
Ai.x/ D Œ0; x=n� for each i 2 N . Usually, X is interpreted as the set of common
property renewable resources. If xt is a resource stock at the beginning of period
t 2 N and player i 2 N extracts ait 2 Ai.xt / for consumption, then the new

state is xtC1 D
�
xt �

Pn
jD1 ajt

�˛
with ˛ 2 .0; 1/: The game is symmetric

in the sense that the utility function of player i 2 N is: ui .x; a/ WD ln ai
with a D .a1; : : : ; an/ being a pure strategy profile chosen by the players in
state x 2 X: Levhari and Mirman (1980) constructed a symmetric stationary
Markov perfect equilibrium for the two-player ˇ-discounted game that consists of
linear strategies. For the arbitrary n-player case, the equilibrium strategy profile
is f ˇ D .f

ˇ
1 ; : : : ; f

ˇ
n / where f

ˇ
i .x/ D .1�˛ˇ/x

nC.1�n/˛ˇ
, x 2 X , i 2 N ; see

Nowak (2006c). Levhari and Mirman (1980) concluded that, in equilibrium, the
fish population will be smaller than the population that would have resulted if the
players had cooperated and had maximized their joint utility. The phenomenon
of overexploitation of a common property resource is known in economics as the
“tragedy of the commons.” Dutta and Sundaram (1993) showed that there may
exist equilibria (that consist of discontinuous consumption functions), in which
the common resource is underexploited, so that the tragedy of the commons need
not occur. A characterization of the set of equilibria in this model has been given
by Chiarella et al. (1984). If ˇ ! 1, then f ˇ ! f � D .f �

1 ; : : : ; f
�
n / where

f �
i .x/ D .1�˛/x

nC.1�n/˛
, x 2 X , i 2 N: As shown in Nowak (2008), f � is a Nash

equilibrium in the class of all strategies of the players in the fish war game under
the overtaking optimality criterion. Such a criterion was examined in economics
by Ramsey (1928), von Weizsäcker (1965), and Gale (1967), and its application
to repeated games was pointed out by Rubinstein (1979). Generally, finding an
equilibrium under the overtaking optimality criterion in the class of all strategies
is a difficult task; see Carlson and Haurie (1996).
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Dutta and Sundaram (1992) considered a stochastic game of resource extraction
with state space X D Œ0;1/, Ai.x/ D Œ0; x=n� for each i 2 N , x 2 X and the
same nonnegative utility function u for each player. Their model includes both the
dynamic game with deterministic transitions studied by Sundaram (1989a,b) and the
stochastic game with nonatomic transition probabilities considered by Majumdar
and Sundaram (1991). Now we list the assumptions used by Dutta and Sundaram
(1992). For any y; z 2 X , let Q.yjz/ WD q.Œ0; y�jz/ and for any y > 0 set
Q.y�jz/ WD limy0"y Q.y

0jz/:

(D1) For any x 2 X , a D .a1; : : : ; an/ 2 A.x/ and i 2 N , ui .x; a/ D

u.ai / � 0: The utility function u is strictly concave, increasing and
continuously differentiable. Moreover, lima#0 u0.a/ D 1:

(D2) Q.0j0/ D 1 and for each z > 0, there exists a compact interval I .z/ � .0;1/

such that q.I .z/jz/ D 1:

(D3) There exists z1 > 0 such that if 0 < z < z1, then Q.z�jz/ D 0, i.e.,
q.Œz;1/jz/ D 1:

(D4) There exists Oz > 0 such that for each z � Oz, Q.zjz/ D 1, i.e., q.Œ0; z�jz/ D 1:

(D5) If zm ! z as m ! 1, then q.�jzm/ ! q.�jz/ in the weak topology on Pr.X/:
(D6) If z < z0, then for each y > 0, Q.y�jz/ � Q.yjz0/:

Assumption (D6) is a “strong stochastic dominance” condition that requires
larger investments to obtain probabilistically higher stock levels. This assumption
and the fact that the players have identical utility functions play a crucial role in the
proof of Theorem 1 in Dutta and Sundaram (1992) that can be stated as follows.

Theorem 10. Every discounted stochastic game satisfying conditions (D1)–(D6)
has a pure stationary Markov perfect equilibrium.

Remark 6. The equilibrium strategies obtained by Dutta and Sundaram (1992)
are identical for all the players, and the corresponding equilibrium functions
are nondecreasing and upper semicontinuous on X: One can observe that the
assumptions on the transition probability functions include the usual deterministic
case with an increasing continuous production function. A slightly more general
model was recently studied by Jaśkiewicz and Nowak (2018b), who dealt with
unbounded utilities.

Transition probabilities considered in other papers on equilibria in stochastic
games are assumed to satisfy much stronger continuity conditions, e.g., the norm
continuity in actions.

The problem of proving the existence of a Nash equilibrium in a stochastic game
of resource extraction with different utility functions for the players seems to be
difficult. Partial results were reported by Amir (1996a), Nowak (2003b), Balbus
and Nowak (2008) and Jaśkiewicz and Nowak (2015b), where specific transition
structures were assumed. Below we give an example, where the assumptions are
relatively simple to list.
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(S1) X D Œ0;1/ and Ai.x/ D Œ0; bi .x/� with
Pn

jD1 bj .x/ � x for all x 2 X ,
where each bj is a continuous increasing function.

(S2) ui W Œ0;1/ ! R is a nonnegative increasing twice differentiable utility
function for player i 2 N such that ui .0/ D 0:

(S3) If a D .a1; : : : ; an/ 2 A.x/ and s.a/ D
Pn

iD1 ai , then

q.�jx; a/ D h.x � s.a//q0.�jx/C .1 � h.x � s.a///ı0.�/;

where h W X ! Œ0; 1� is an increasing twice differentiable function such that
h00 < 0 and h.0/ D 0, ı0 is the Dirac measure concentrated at the point 0 2 X:

Moreover, q0..0;1/jx/ D 1 for each x > 0, q0.f0gj0/ D 1 and q0.�jx/ has a
density function �.x; �/ with respect to a � -finite measure � defined onX: The
function x ! �.x; y/ is continuous for each y 2 X:

The following result is a special case of Theorem 2 in Jaśkiewicz and Nowak
(2015b).

Theorem 11. Every discounted stochastic game satisfying assumptions (S1)–(S3)
has a pure stationary Markov perfect equilibrium.

The proof of Theorem 11 uses the fact that the auxiliary game 
v.x/ has a unique
Nash equilibrium for any vector v D .v1; : : : ; vn/ of nonnegative continuation
payoffs vi such that vi .0/ D 0: The uniqueness follows from page 1476 in
Balbus and Nowak (2008) or can be deduced from the classical theorem of Rosen
(1965) (see also Theorem 3.6 in Haurie et al. 2012). The game 
v.x/ is not
supermodular since for increasing continuation payoffs vi such that vi .0/ D 0,

we have
@2U iˇ.vi ;x;a/

@ai @aj
< 0, for i 6D j: A stronger version of Theorem 11 and related

results can be found in Jaśkiewicz and Nowak (2015b).
Transition probabilities presented in (S3) were first used in Balbus and Nowak

(2004). They dealt with the symmetric discounted stochastic games of resource
extraction and proved that the sequence of Nash equilibrium payoffs in the n-
stage games converges monotonically as n ! 1: Stochastic games of resource
extraction without the symmetry condition were first examined by Amir (1996a),
who considered so-called convex transitions. More precisely, he assumed that the
conditional cumulative distribution function Q.yjz/ is strictly convex with respect
to z 2 X for every fixed y > 0: He proved the existence of pure stationary Markov
perfect equilibria, which are Lipschitz continuous functions in the state variable.
Although the result obtained is strong, a careful analysis of various examples
suggests that the convexity assumption imposed by Amir (1996a) is satisfied very
rarely. Usually, the cumulative distribution Q.yjz/ is neither convex nor concave
with respect to z: A further discussion on this condition is provided in Remarks 7–8
in Jaśkiewicz and Nowak (2015b). The function Q.yjz/ induced by the transition
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probability q of the form considered in (S3) is strictly concave in z D x � s.a/ only
when q0 is independent of x 2 X: Such transition probabilities that are “mixtures”
of finitely many probability measures on X were considered in Nowak (2003b)
and Balbus and Nowak (2008). A survey of various game theoretic approaches to
resource extraction models can be found in Van Long (2011).

In many other examples, the one-shot game 
v.x/ has also nonempty compact set
of pure Nash equilibria. Therefore, a counterpart of Theorem 6 can be formulated
for the class of pure strategies of the players. We now describe some examples
presented in Jaśkiewicz and Nowak (2016).

Example 1 (Dynamic Cournot oligopoly). Let X D Œ0; Nx� and x 2 X represent a
realization of a random demand shock that is modified at each period of the game.
Player i 2 N (oligopolist) sets a production quantity ai 2 Ai.x/ D Œ0; 1�: If

P
�
x;
Pn

jD1 aj

�
is the inverse demand function, and ci .x; ai / is the cost function

for player i , then

ui .x; a/ WD aiP

0
@x;

nX
jD1

aj

1
A � ci .x; ai /; a D .a1; : : : ; an/:

A simple example of the inverse demand function is

P

0
@x;

nX
jD1

aj

1
A D x

0
@n �

nX
jD1

aj

1
A :

The function ai ! aiP
�
x;
Pn

jD1 aj

�
is usually concave and ai ! ci .x; ai / is

often convex. Assume that

q.�jx; a/ D .1 � a/q1.�jx/C aq2.�jx/; a WD
1

n

nX
jD1

aj ;

where q1.�jx/ and q2.�jx/ are dominated by some probability measure � on X for
all x 2 X: In order to provide an interpretation of q, we observe that

q.�jx; a/ D q1.�jx/C a.q2.�jx/ � q1.�jx//: (6.2)

Let

Eq.x; a/ WD

Z
X

yq.dyjx; a/ and Eqj .x/ WD

Z
X

yqj .dyjx/
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be the mean values of the distributions q.�jx; a/ and qj .�jx/, respectively. By (6.2),
we have Eq.x; a/ WD Eq1.x/ C a.Eq2.x/ � Eq1.x//: Assume that Eq1.x/ � x �

Eq2.x/: This condition implies that

Eq2.x/ �Eq1.x/ � 0:

Thus, the expectation of the next demand shock Eq.x; a/ decreases if the total
sale na in the current state x 2 X increases. Observe that the game 
v.x/ is
concave. From Nash (1950), it follows that the game 
v.x/ has a pure equilibrium
point. However, the set of Nash equilibria in 
v.x/ may contain many points. A
modification of the proof of Theorem 1 given in Jaśkiewicz and Nowak (2016)
implies that this game has a pure stationary almost Markov perfect equilibrium.

Example 2 (Cournot competition with substituting goods in differentiated markets).
This model is inspired by a dynamic game with complementary goods studied by

Curtat (1996). Related static games were already discussed in Spence (1976) and
Vives (1990). There are n firms on the market and firm i 2 N produces a quantity
ai 2 Ai.x/ D Œ0; 1� of a differentiated product. The inverse demand function is
given by a twice differentiable function Pi.a/, where a D .a1; : : : ; an/: The goods
are substitutes, i.e., @Pi .a/

@aj
< 0 for all i; j 2 N , see Spence (1976). In other words,

consumption of one good will decrease consumption of the others. We assume that
X D Œ0; 1�n, where i -th coordinate xi 2 Œ0; 1� is a measure of the cumulative
experience of firm i 2 N: If ci .xi / is the marginal cost for firm i 2 N , then

ui .x; a/ WD ai ŒPi .a/ � ci .xi /� ; a D .a1; : : : ; an/; x D .x1; : : : ; xn/ 2 X:

(6.3)

The transition probability of the next state (experience vector) is of the form:

q.�jx; a/ D h

0
@ nX
jD1

.xj C aj /

1
A q2.�jx/C

0
@1 � h

0
@ nX
jD1

.xj C aj /

1
A
1
A q1.�jx/;

(6.4)
where

h

0
@ nX
jD1

.xj C aj /

1
A D

Pn
jD1 xj C

Pn
jD1 aj

2n
(6.5)

and q1.�jx/, q2.�jx/ are dominated by some probability measure � on X for all
x 2 X: In Curtat (1996) it is assumed that q1 and q2 are independent of x 2 X

and also that q2 stochastically dominates q1: Then, the underlying Markov process
governed by q captures the ideas of learning-by-doing and spillover (see page 197
in Curtat 1996). Here, this stochastic dominance condition can be dropped, although
it is quite natural. It is easy to see that the game 
v.x/ is concave, if ui .x; .�; a�i //

is concave on Œ0; 1�: Clearly, this is satisfied, if for each i 2 N , we have
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2
@Pi .a/

@ai
C
@2Pi .a/

@a2i
ai < 0:

If the goods are substitutes, this condition holds, when @2Pi .a/

@a2i
� 0 for all i 2 N:

The game 
v.x/ may have multiple pure Nash equilibria. Using the methods from
Jaśkiewicz and Nowak (2016), one can show that any concave game discussed here
has a pure stationary almost Markov perfect equilibrium.

Supermodular static games were extensively studied by Milgrom and Roberts
(1990) and Topkis (1998). This class of games finds applications in dynamic
economic models with complementarities. Our next illustration refers to Example 2,
but with products that are complements. The state space and action spaces for firms
are the same as in Example 2. We endow both X and A D Œ0; 1�n with the usual
component-wise ordering. Then, X and A are complete lattices. We assume that the
transition probability is defined as in (6.4) and q1.�jx/ and q2.�jx/ are for all x 2 X

dominated by some probability measure � on S: The payoff function for every firm
is given in (6.3).

Example 3 (Cournot oligopoly with complementary goods in differentiated mar-
kets). Let h be defined as in (6.5). Suppose that the payoff function in the game

v.x/ satisfies the following condition:

@2U i
ˇ.vi ; x; a/

@ai@aj
� 0 for j 6D i:

Then, by Theorem 4 in Milgrom and Roberts (1990), the game 
v.x/ is supermodu-
lar. Note that within our framework, it is sufficient to prove that for ui .x; a/, defined

in (6.3), it holds @2ui .s;a/
@ai @aj

� 0, j 6D i: But

@2ui .x; a/

@ai@aj
D ai

@2Pi .a/

@ai@aj
C
@Pi .a/

@aj
; j 6D i

and @2ui .x;a/
@ai @aj

are likely to be nonnegative, if the goods are complements, i.e., @Pi .a/
@aj

�

0 for j 6D i ; see Vives (1990). From Theorem 5 in Milgrom and Roberts (1990), it
follows that the game 
v.x/ has a pure Nash equilibrium. Therefore, the arguments
used in Jaśkiewicz and Nowak (2016) imply that the stochastic game has a pure
stationary almost Markov perfect equilibrium.

Remark 7. The game described in Example 3 is also studied in Curtat (1996),
but with additional restrictive assumptions that q1 and q2 are independent of
x 2 X: Then, the transition probability q has so-called increasing differences in
.x; a/. This fact implies that the functions U i

ˇ.vi ; �; �/ satisfy the assumptions in
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Proposition 7. Other condition imposed by Curtat (1996) states that the payoff
functions ui .x; a/ are increasing in a�i and, more importantly, satisfy the so-called
strict diagonal dominance condition for each x 2 X: For details the reader is referred
to Curtat (1996) and Rosen (1965). This additional condition entails the uniqueness
of a pure Nash equilibrium in every auxiliary game 
v.x/ under consideration;
see Proposition 6. The advantage is that Curtat (1996) can directly work with
Lipschitz continuous strategies for the players and find a stationary Markov perfect
equilibrium in that class using Schauder’s fixed point theorem. Without the strict
diagonal dominance condition, 
v.x/ may have many pure Nash equilibria and
Curtat’s approach cannot be applied. The coefficients of the convex combination
in (6.4) are affine functions of a 2 A: This requirement can slightly be generalized;
see, for instance, Example 4 in Jaśkiewicz and Nowak (2016). If q1 or q2 depends on
x 2 X , then the increasing differences property of q does not hold and the method
of Curtat (1996) does not work. Additional comments on supermodular stochastic
games can be found in Amir (2003).

The result in Curtat (1996) on the existence of stationary Markov perfect
equilibria for supermodular discounted stochastic games is based upon the lattice
theoretic arguments and on complementarity and monotonicity assumptions. The
state and action spaces are assumed to be compact intervals in Euclidean space,
and the transition probability is assumed to be norm continuous in state and action
variables. Moreover, the strict diagonal dominance condition (see (C1) in Sect. 2)
applied to the auxiliary one-shot games 
v.x/ for any increasing Lipschitz con-
tinuous continuation vector payoff v plays a crucial role. Namely, this assumption
together with others implies that NPv.x/ is a singleton. In addition, the function
x ! NPv.x/ is increasing and Lipschitz continuous. Thus, his proof is comprised
of two steps. First, he shows that there exists an increasing Lipschitz continuous
vector payoff function v� such that v�.x/ D NPv�.x/ for all x 2 X: Second, he
makes use of a theorem on the Lipschitz property of the unique equilibrium in 
v� :

Horst (2005) provided a different and more unified approach to stationary
Markov perfect equilibria that can be applied beyond the setting of supermodular
games. Instead of imposing monotonicity conditions on the players’ utility func-
tions, he considered stochastic games in which the interaction between different
players is sufficiently weak. For instance, certain “production games” satisfy this
property. The method of his proof is based on a selection theorem of Montrucchio
(1987) and the Schauder fixed point theorem applied to the space of Lipschitz
continuous strategy profiles of the players. The assumptions imposed by Horst
(2005) are rather complicated. For example, they may enforce a number of players
in the game or the upper bound for a discount factor. Such limitations do not occur
in the approach of Curtat (1996).

Balbus et al. (2014a) considered supermodular stochastic games with an absorb-
ing state and the transition probabilities of the form q.�jx; a/ D g.x; a/q0.�jx/C.1�

g.x; a//ı0.�/. Under some strong monotonicity conditions on the utility functions
and transitions, they showed that the Nash equilibrium payoffs in the n-stage games
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monotonically converge as n ! 1. This fact yields the existence of pure stationary
Markov perfect equilibrium. A related result is given in Balbus et al. (2013b) for
a similar class of dynamic games. The state space X in Balbus et al. (2014a) is
one-dimensional, and their results do not apply to the games of resource extraction
discussed earlier. If, on the other hand, the transition probability is a “mixture” of
finitely many probability measures, then a stationary Markov perfect equilibrium
can be obtained, in certain models, by solving a system of non-linear equations.
This method was discussed in Sect. 5 of Nowak (2007). The next example is not
a supermodular game in the sense of Balbus et al. (2014a), but it belongs to the
class of production games examined by Horst (2005). Generally, there are only few
examples of games with continuum states, for which Nash equilibria can be given
in a closed form.

Example 4. Let X D Œ0; 1�, Ai.x/ D Œ0; 1� for all x 2 X and i 2 N D f1; 2g. We
consider the symmetric game where the stage utility of player i is

ui .x; a1; a2/ D a1 C a2 C 2xa1a2 � a2i : (6.6)

The state variable x in (6.6) is a complementarity coefficient of the players’ actions.
The transition probabilities are of the form

q.�jx; a1; a2/ WD
x C a1 C a2

3
�1.�/C

3 � x � a1 � a2

3
�2.�/:

We assume that �1 has the density �1.y/ D 2y and �2 has the density �2.y/ D

2 � 2y, y 2 X . Note that �1 stochastically dominates �2. From the definition
of q, it follows that higher states x 2 X or high actions a1, a2 (efforts) of the
players induce a distribution of the next state having a higher mean value. Assume
that v� D .v�

1 ; v
�
2 / is an equilibrium payoff vector in the ˇ-discounted stochastic

game. As shown in Example 1 of Nowak (2007), it is possible to construct a
system of non-linear equations with unknown z1 and z2, whose solution z�

1 , z�
2 is

z�
i D

R
X
v�
i .y/�i .dy/. This fact, in turn, gives the possibility finding of a symmetric

stationary Markov perfect equilibrium .f �
1 ; f

�
2 / and v�

1 D v�
2 . It is of the form

f �
i .x/ D 1Cz�

4�2x
: x 2 X; i 2 N , where

z� D
�8 � 6p.ˇ � 1/ �

p
.8C 6p.ˇ � 1//2 � 36

6
and p D

9C 2ˇ ln 2 � 2ˇ

ˇ.1 � ˇ/.6 ln 2 � 3/
:

Moreover, we have

v�
i .x/ D .pˇ C x/z� C

.1C z�/2.3 � x/

2.2 � x/2
:
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Ericson and Pakes (1995) provided a model of firm and industry dynamics that
allows for entry, exit and uncertainty generating variability in the fortunes of firms.
They considered the ergodicity of the stochastic process resulting from a Markov
perfect industry equilibrium. A dynamic competition in an oligopolistic industry
with investment, entry and exit was also extensively studied by Doraszelski and
Satterthwaite (2010). Computational methods for the class of games studied by
Ericson and Pakes (1995) are presented in Doraszelski and Pakes (2007). Further
applications of discounted stochastic games with countably many states to models in
industrial organization including models of industry dynamics are given in Escobar
(2013).

Shubik and Whitt (1973) considered a non-stochastic model of sequential
strategic market game, where the state includes a current stocks of capital. At each
period of the game, one unit of a consumer good is put up for sale, and players
bid some amounts of fiat money for it. A stochastic counterpart of this game was
first presented in Secchi and Sudderth (2005). Więcek (2009), on the other hand,
obtained a general structure of equilibrium policies in two-person games, where bids
gradually decrease with increase of the discount factor. Moreover, Więcek (2012)
proved that a Nash equilibrium, where all the players use “aggressive strategies”,
emerges in the game for any value of the discount factor as the number of players
is sufficiently large. This fact corresponds to a similar result for a deterministic
economy given in Shubik and Whitt (1973) as well as being consistent with
existing results about economies with continuum of players. Other applications
of nonzero-sum stochastic games to economic models can be found in Duggan
(2012) and He and Sun (2017). Although the concept of mean field equilibrium in
dynamic games is not directly inspired by Nash, the influence of the theory of non-
cooperative stochastic games on this area of research is obvious. Also the notion
of supermodularity is used in studying the mean field equilibria in dynamic games.
The reader is referred to Adlakha and Johari (2013) where some applications to
computer science and operations research are given.

7 Special Classes of Stochastic Games with Countably Many
States

Assume that the state space X is countable. Then every F 0
i can be recognized as a

compact convex subset of a linear topological space. A sequence .f k
i /k2N converges

to fi 2 F 0
i if for every x 2 X f k

i .�jx/ ! fi .�jx/ in the weak-star topology on the
space of probability measures on Ai.x/. The weak or weak-star convergence of
probability measures on metric spaces is fully described in Aliprantis and Border
(2006) or Billingsley (1968). Since X is countable, every space F 0

i is sequentially
compact (it suffices to use the standard diagonal method for selecting convergent
subsequences) and, therefore, F 0 is sequentially compact when endowed with the
product topology. IfX is finite and the sets of actions are finite, then F 0 can actually
be viewed as a convex compact subset of Euclidean space. In the finite state space
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case, it is easy to prove that the discounted payoffs J iˇ.x; f / are continuous on F 0:

If X is countable and the payoff functions are uniformly bounded, and q.yjx; a/ is
continuous in a 2 A.x/ for all x; y 2 X , then showing the continuity of J iˇ.x; f /

on F 0 requires a little more work; see Federgruen (1978). From the Bellman
equation in discounted dynamic programming (see Puterman 1994), it follows that
f � D .f �

1 ; : : : ; f
�
n / is a stationary Markov perfect equilibrium in the discounted

stochastic game if and only if there exist bounded functions v�
i W X ! R such that

for each x 2 X and i 2 N we have

v�
i .x/ D max

�i2Pr.Ai .x//
U i
ˇ.v

�
i ; x; .�i ; f

�
�i // D U i

ˇ.v
�
i ; x; f

�/: (6.7)

From (6.7), it follows that v�
i .x/ D J iˇ.x; f

�/. Using the continuity of the

expected discounted payoffs in f 2 F 0 and (6.7), one can define the best
response correspondence in the space of strategies, show its upper semicontinuity
and conclude from the fixed point theorem due to Glicksberg (1952) (or due to
Kakutani (1941) in the case of finite state and action space) that the game has a
stationary Markov perfect equilibrium f � 2 F 0. This fact was proved for finite
state space discounted stochastic games by Fink (1964) and Takahashi (1964).
An extension to games with countable state spaces was reported in Parthasarathy
(1973) and Federgruen (1978). Some results for a class of discounted games with
discontinuous payoff functions can be found in Nowak and Wiȩcek (2007).

The fundamental results in the theory of regular Nash equilibria in normal form
games concerning genericity (see Harsanyi 1973a) and purification (see Harsanyi
1973b) were extended to dynamic games by Doraszelski and Escobar (2010). A
discounted stochastic game possessing equilibria that are all regular in the sense
of Doraszelski and Escobar (2010) has a compact equilibrium set that consists of
isolated points. Hence, it follows that the equilibrium set is finite. They proved that
the set of discounted stochastic games (with finite sets of states and actions) having
Markov perfect equilibria that all are regular is open and has full Lebesgue measure.
Related results were given by Haller and Lagunoff (2000), but their definition of
regular equilibrium is different and may not be purifiable.

The payoff function for player i 2 N in the limit-average stochastic game can be
defined as follows:

NJ i .x; 	/ WD lim inf
T!1

E	
x

 
1

T

TX
tD1

ui .xt ; a
t /

!
; x 2 X; 	 2 ˘:

The equilibrium solutions for this class of games are defined similarly as in
the discounted case. The existence of stationary Markov perfect equilibria for
games with finite state and action spaces and the limit-average payoffs was proved
independently by Rogers (1969) and Sobel (1971). They assumed that the Markov
chain induced by any stationary strategy profile and the transition probability q
is irreducible . It is shown under the irreducibility condition that the equilibrium
payoffs w�

i of the players are independent of the initial state. Moreover, it is proved
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that there exists a sequence of equilibria .f k/k2N in ˇk-discounted games (with
ˇk ! 1 as k ! 1) such that w�

i D limk!1.1�ˇk/J
i
ˇk
.x; f k/. Later, Federgruen

(1978) extended these results to limit-average stochastic games with countably
many states satisfying some uniform ergodicity conditions. Other cases of similar
type were mentioned by Nowak (2003a). Below we provide a result due to Altman
et al. (1997), which has some potential for applications in queueing models. The
stage payoffs in their approach may be unbounded. We start with a formulation of
their assumptions.

Let m W X ! Œ1;1/ be a function for which the following conditions hold.

(A4) For each x; y 2 X , i 2 N , the functions ui .x; �/ and q.yjx; �/ are continuous
on A.x/. Moreover,

sup
x2X

max
a2A.x/

jui .x; a/j=m.x/ < 1 and

lim
k!1

X
y2X

jq.yjx; ak/ � q.yjx; a/jm.y/ D 0

for any ak ! a 2 A.x/.
(A5) There exist a finite set Y � X and � 2 .0; 1/ such that

X
y2XnY

q.yjx; a/m.y/ � �m.x/ for all x 2 X; a 2 A.x/:

(A6) The function f ! n.f / is continuous with respect to stationary strategy
profiles f 2 F 0, where n.f / denotes the number of closed classes in the
Markov chain induced by the transition probability q.yjx; f /, x; y 2 X .

Property (A5) is called m-uniform geometric recurrence; see Altman et al.
(1997). Condition (A6) is quite restrictive and implies that the number of positive
recurrent classes is a constant function of the stationary strategies. If the Markov
chains resulting from the stationary policies are all unichain, the limit-average
payoff functions are constant, i.e., independent of the initial state. For a detailed
discussion, we refer the reader to Altman et al. (1997) and the references cited
therein.

Theorem 12. If conditions (A4)–(A6) are satisfied, then the limit-average payoff
n-person stochastic game has a stationary Markov perfect equilibrium.

The above result follows from Theorem 2.6 in Altman et al. (1997), where it
is also shown that under (A4)–(A6) any limit of stationary Markov equilibria in
ˇ-discounted games (as ˇ ! 1) is an equilibrium in the limit-average game.
A related result was established by Borkar and Ghosh (1993) under a stochastic
stability condition. More precisely, they assumed that the Markov chain induced by
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any stationary strategy profile is unichain and the transition probability from any
fixed state has a finite support.

Stochastic games with countably many states are usually studied under some
recurrence or ergodicity conditions. Without these conditions n-person nonzero-
sum limit-average payoff stochastic games with countable state spaces are very
difficult to deal with. Nevertheless, the results obtained in the literature have some
interesting applications, especially to queueing systems; see, for example, Altman
(1996) and Altman et al. (1997).

Now assume that X is a Borel space and � is a probability measure on X .
Consider an n-person discounted stochastic game G, where Ai.x/ D Ai for all
i 2 N and x 2 X , the payoff functions are uniformly bounded and continuous in
actions.

(A7) The transition probability q has a conditional density function �, which is
continuous in actions and such that

Z
X

max
a2A

�.x; a; y/�.dy/ < 1:

Let C.A/ be the Banach space of all real-valued continuous functions on the
compact space A endowed with the supremum norm k � k1. By L1.X;C .A// we
denote the Banach space of all C.A/-valued measurable functions � on X such
that k�k1 WD

R
X

k�.y/k1�.dy/ < 1. Let fXkgk2N0 be a measurable partition
of the state space (N0 � N), fui;kgk2N0 be a family of functions ui;k 2 C.A/ and
f�kgk2N0 be a family of functions �k 2 L1.X;C .A// such that �k.x/.a; y/ � 0 andR
X
�k.x/.a; y/�.dy/ D 1 for each k 2 N0; a 2 A. Consider a game QG where the

payoff function for player i is Qui .x; a/ D uk.a/ if x 2 Xk . The transition density
is Q�.x; a; y/ D �k.x/.a; y/ if x 2 Xk . Let QF 0

i be the set of all fi 2 F 0
i that are

constant on every set Xk . Let QF 0 WD QF 0
1 � � � � � QF 0

n . The game QG resembles a game
with countably many states and if the payoff functions Qui are uniformly bounded,
then QG with the discounted payoff criterion has an equilibrium in QF 0. Denote by
QJ iˇ.x; 	/ the discounted expected payoff to player i 2 N in the game QG. It is well

known that C.A/ is separable. The Banach space L1.X;C .A// is also separable.
Note that x ! ui .x; �/ is a measurable mapping from X to C.A/. By, (A7) the
mapping x ! �.x; �; �/ from X to L1.X;C .A// is also measurable. Using these
facts Nowak (1985) proved the following result.

Theorem 13. Assume that G satisfies (A7). For any � > 0, there exists a game QG

such that jJ iˇ.x; 	/� QJ iˇ.x; 	/j < �=2 for all x 2 X , i 2 N and 	 2 ˘ . Moreover,
the game G has a stationary Markov �-equilibrium.

A related result on approximation of discounted nonzero-sum games and exis-
tence of �-equilibria was given by Whitt (1980), who used stronger uniform
continuity conditions and used a different technique. Approximations of discounted
and also limit-average stochastic games with general state spaces and unbounded
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stage functions were studied in Nowak and Altman (2002). They used the weighted
norm approach and imposed some geometric ergodicity conditions while examining
the limit-average case. An extension with simpler and more transparent proof
for semi-Markov games satisfying a geometric drift condition and a majorization
property, similar to (GE1)–(GE3) in Sect. 5 in Jaśkiewicz and Nowak (2018a), was
given in Jaśkiewicz and Nowak (2006).

8 Algorithms for Nonzero-Sum Stochastic Games

In this section, we assume that the state spaceX and the sets of actions Ai are finite.
In the 2-player case, we let for notational convenience A1.x/ D A1, A2.x/ D A2
and a D a1 2 A1, b D a2 2 A2. Further, for any fi 2 F 0

i , i D 1; 2, we set

q.yjx; f1; f2/ WD
X
a2A1

X
b2A2

q.yjx; a; b/f1.ajx/f2.bjx/;

q.yjx; f1; b/ WD
X
a2A1

q.yjx; a; b/f1.ajx/;

ui .x; f1; f2/ WD
X
a2A1

X
b2A2

ui .x; a; b/f1.ajx/f2.bjx/;

ui .x; f1; b/ WD
X
a2A1

ui .x; a; b/f1.ajx/:

In a similar way, we define q.yjx; a; f2/ and ui .x; a; f2/. Note that every fi 2 F 0
i

can be recognized as a compact convex subset of Euclidean space. Also every
function � W X ! R can be viewed as a vector in Euclidean space. Below we
describe two results of Filar et al. (1991) about characterization of stationary equi-
libria in stochastic games by constrained nonlinear programming. However, due to
the fact that the constraint sets are not convex, the results are not straightforward in
numerical implementation. Although it is common in mathematical programming
to use matrix notation, we follow the one introduced in previous sections.

Let c D .v1; v2; f1; f2/. Consider the following problem (OPˇ):

min O1.c/ WD

2X
iD1

X
x2X

0
@vi .x/ � ui .x; f1; f2/ � ˇ

X
y2X

vi .y/q.yjx; f1; f2/

1
A

subject to .f1; f2/ 2 F 0
1 � F 0

2 and

u1.x; a; f2/C ˇ
X
x2X

v1.y/q.yjx; a; f2/ � v1.x/; for all x 2 X; a 2 A1;

and
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u2.x; f1; b/C ˇ
X
x2X

v2.y/q.yjx; f1; b/ � v2.x/; for all x 2 X; b 2 A2:

Theorem 14. Consider a feasible point c� D .v�
1 ; v

�
2 ; f

�
1 ; f

�
2 / in (OPˇ). Then

.f �
1 ; f

�
2 / 2 F 0

1 � F 0
2 is a stationary Nash equilibrium in the discounted stochastic

game if and only if c� is a solution to problem (OPˇ) with O1.c�/ D 0.

Let c D .z1; v1;w1; f2; z2; v2;w2; f1/. Now consider the following problem
(OPa):

min O2.c/ WD

2X
iD1

X
x2X

0
@vi .x/ �

X
y2X

vi .y/q.yjx; f1; f2/

1
A

subject to .f1; f2/ 2 F 0
1 � F 0

2 and

X
y2X

v1.y/q.yjx; a; f2/ � v1.x/;

u1.x; a; f2/C
X
y2X

z1.y/q.yjx; a; f2/ � v1.x/C z1.x/

for all x 2 X; a 2 A1 and

X
y2X

v2.y/q.yjx; f1; b/ � v2.x/;

u2.x; f1; b/C
X
y2X

z2.y/q.yjx; f1; b/ � v2.x/C z2.x/

for all x 2 X; b 2 A2 and

ui .x; f1; f2/C
X
y2X

wi .y/q.yjx; f1; f2/ D vi .x/C wi .x/

for all x 2 X and i D 1; 2.

Theorem 15. Consider a feasible point c� D .z�
1 ; v

�
1 ;w

�
1 ; f

�
2 ; z

�
2 ; v

�
2 ;w

�
2 ; f

�
1 / in

(OPa). Then .f �
1 ; f

�
2 / 2 F 0

1 � F 0
2 is a stationary Nash equilibrium in the limit-

average payoff stochastic game if and only if c� is a solution to problem (OPa) with
O2.c

�/ D 0.

Theorems 14 and 15 were stated and proved in Filar et al. (1991); see also
Theorems 3.8.2 and 3.8.4 in Filar and Vrieze (1997).
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As in the zero-sum case, when one player controls the transitions, it is possible
to construct finite-step algorithms to compute Nash equilibria. The linear comple-
mentarity problem (LCP) is defined as follows. Given a square matrix M of orderm
and a (column) vector Q 2 R

m, we find two vectors Z D Œz1; : : : ; zm�T 2 R
m and

W D Œw1; : : : ;wm�T 2 R
m such that

MZ CQ D W and wj � 0; zj � 0; zjwj D 0 for all j D 1; : : : ; m:

Lemke (1965) proposed some pivoting finite-step algorithms to solve the LCP
for a large class of matrices M and vectors Q. Further research on the LCP can be
found in Cottle et al. (1992).

Finding a Nash equilibrium in any bimatrix game .A;B/ is equivalent to solving
the LCP with

M D

�
B
T
O

O A

�
where O is the matrix with zero entries, Q D Œ�1; : : : ;�1�T :

A finite-step algorithm for this LCP was given by Lemke and Howson (1964). If
Z

�
D ŒZ

�

1 ; Z
�

2 � is a part of the solution of the above LCP, then the normalization of
Z

�

i is an equilibrium strategy for player i .
Suppose that only player 2 controls the transitions in a discounted stochas-

tic game, i.e., q.yjx; a; b/ is independent of a 2 A. Let ff1; : : : ; fm1g and
fg1; : : : ; gm2g be the families of all pure stationary strategies for players 1 and 2,
respectively. Consider the bimatrix game .A;B/, where the entries aij of A and bij
of B are

aij WD
X
x2X

u1.x; fi .x/; gj .x// and bij WD
X
x2X

J 2ˇ .x; fi ; gj /:

Then, making use of the Lemke-Howson algorithm, Nowak and Raghavan (1993)
proved the following result.

Theorem 16. Let �� D .��
1 ; : : : ; �

�
m1
/ and �� D .��

1 ; : : : ; �
�
m2
/ and assume that

.��; ��/ is a Nash equilibrium in the bimatrix game .A;B/ defined above. Then the
stationary strategies

f �.x/ D

m1X
jD1

��
j ıfj .x/ and g�.x/ D

m2X
jD1

��
j ıgj .x/

form a Nash equilibrium in the discounted stochastic game.

It should be noted that a similar result does not hold for stochastic games with
the limit-average payoffs. Note that the entries of the matrix B can be computed
in finitely many steps, but the order of the associated LCP is very high. Therefore,
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a natural question arises as to whether the single-controller stochastic game can
be solved with the help of LCP formulation with appropriately defined matrix M

(with lower dimension) and vector Q. Since the payoffs and transitions depend on
states and stationary equilibria which are characterized by the systems of Bellman
equations, the dimension of the LCP must be high. However, it should be essentially
smaller than in the case of Theorem 16. Such an LCP formulation for discounted
single-controller stochastic games was given by Mohan et al. (1997) and further
developed in Mohan et al. (2001). In the case of the limit-average payoff and
single-controller stochastic game, Raghavan and Syed (2002) provided an analogous
algorithm. Further studies on specific classes of stochastic games (acyclic 3-person
switching control games, polystochastic games) can be found in Krishnamurthy
et al. (2012).

Let us recall that a Nash equilibrium in an n-person game is a fixed point of some
mapping. A fixed point theorem of certain deformations of continuous mappings
proved by Browder (1960) turned out to be basic for developing so-called homotopy
methods in computing equilibria in nonzero-sum games. It reads as follows.

Theorem 17. Assume that C � R
d is a nonempty compact convex set. Let � W

Œ0; 1� � C ! C be a continuous mapping and F .�/ WD f.t; c/ 2 Œ0; 1� � C W c D

�.t; c/g. Then F .�/ contains a connected subset Fc.�/ such that Fc.�/ \ .f0g �

C/ 6D ; and Fc.�/ \ .f1g � C/ 6D ;.

This result was extended to upper semicontinuous correspondences by Mas-
Colell (1974). Consider an n-person game and assume that �1 is a continuous
mapping whose fixed points in the set C of strategy profiles correspond to Nash
equilibria in this game. The basic idea in the homotopy methods is to define a
“deformation” � of �1 such that �.1; c/ D �1.c/ for all c 2 C and such
that �.0; c/ has a unique fixed point, say c�

0 , that is relatively simple to find. By
Theorem 17, Fc.�/ is a connected set. Thus, c�

0 is connected via Fc.�/ with
a fixed point c�

1 of �1. Hence, the idea is to consider the connected set Fc.�/.
Since the dimension of the domain of � is one higher than the dimension of
its range, one can formulate regularity conditions under which the approximation
path is a compact, piecewise differentiable one-dimensional manifold, i.e., it is a
finite collection of arcs and loops. In the case of bimatrix games, a nondegeneracy
condition is sufficient to guarantee that the aforementioned properties are satisfied.
A comprehensive discussion of the homotopy algorithms applied to n-person games
is provided by Herings and Peeters (2010) and references cited therein. According to
the authors, “advantages of homotopy algorithms include their numerical stability,
their ability to locate multiple solutions, and the insight they provide in the
properties of solutions”. Various examples show that implementation of homotopy
methods is rather straightforward with the aid of available professional software. It
is worth recalling the known fact that the Lemke-Howson algorithm can be applied
to bimatrix games only. An issue of finding Nash equilibria in concave n-person
games comprises a non-linear complementarity problem. Therefore, one can only
expect to obtain approximate equilibria by different numerical methods.
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The homotopy methods, as noted by Herings and Peeters (2004), are also useful
in the study of stationary equilibria, their structure and computation in nonzero-sum
stochastic games. Their results can be applied to n-person discounted stochastic
games with finite state and action spaces.

Recently, Govindan and Wilson (2003) proposed a new algorithm to compute
Nash equilibria in finite games. Their algorithm combines the global Newton
method (see Smale 1976)) and a homotopy method for finding fixed points of
continuous mappings developed by Eaves (1972, 1984). In the construction of a
Nash equilibrium, a fundamental topological property of the graph of the Nash
equilibrium correspondence discovered by Kohlberg and Mertens (1986) plays an
important role. Being more precise, the authors show that making use of the global
Newton method, it is possible to trace the path of the homotopy by a dynamical
system. The same method can be applied to a construction of an algorithm for n-
person discounted stochastic games with finite action and state sets; see Govindan
and Wilson (2009). Strategic n-person games with a potential function having pure
Nash equilibria were considered by Monderer and Shapley (1996). Potters et al.
(2009), on the other hand, examined certain classes of discounted stochastic games
via the potential function approach and constructed pure stationary Nash equilibria
by solving a finite number of finite strategic games.

Solan and Vieille (2010) pointed out that the methods based on formal logic,
successfully applied to zero-sum games, are also useful in the examination of certain
classes of nonzero-sum stochastic games with the limit-average payoff criterion.

9 Uniform Equilibrium, Subgame Perfection, and
Correlation in Stochastic Games with Finite State and
Action Spaces

In this section, we consider stochastic games with finite state space X D f1; : : : ; sg

and finite sets of actions. We deal with “normalized discounted payoffs” and use
notation which is more consistent with the surveyed literature. We let ˇ D 1 � �

and multiply all current payoffs by � 2 .0; 1/. Thus, we consider

J i�.x; 	/ WD E	
x

 
1X
tD1

�.1 � �/t�1ui .xt ; a
t /

!
; x D x1 2 X; 	 2 ˘; i 2 N:

For any T 2 N and x D x1 2 X , 	 2 ˘ , the T -stage average payoff for player
i 2 N is

J iT .x; 	/ WD E	
x

 
1

T

TX
tD1

ui .xt ; a
t /

!
:

A vector Ng 2 R
n is called a uniform equilibrium payoff at the initial state x 2 X

if for every � > 0 there exist �0 2 .0; 1�, T 0 2 N and a strategy profile 	0 2 ˘
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such that for every player i 2 N and every strategy 	i 2 ˘i , we have

Ngi C � � J i�.x; 	
0/ � Ngi � � � J i�.x; .	i ; 	

0
�i // � 2� for � 2 .0; �0�

and

Ngi C � � J iT .x; 	
0/ � Ngi � � � J iT .x; .	i ; 	

0
�i // � 2� for T � T 0:

Any profile 	0 that has the above two properties is a called a uniform
�-equilibrium. In other words, the game has a uniform equilibrium payoff if for
every � > 0 there is a strategy profile 	0 which is an �-equilibrium in every
discounted game with a sufficiently small discount factor � and in every finite-stage
game with sufficiently long time horizon.

A stochastic game is called absorbing if all states but one are absorbing. Assume
that X D f1; 2; 3g and only state x D 1 is nonabsorbing. Let E0 denote the set
of all uniform equilibrium payoffs. Since the payoffs are determined in states 2
and 3, in a two-person game, the set E0 can be viewed as a subset of R

2. Let
�k ! 0 as k ! 1, and let f �

k be a stationary Markov perfect equilibrium in
the �k-discounted two-person game. A question arises as to whether the sequence
.J 1�k .x; f

�
k /; J

2
�k
.x; f �

k //k2N with x D 1 has an accumulation point Ng 2 E0.
That is the case in the zero-sum case (see Mertens and Neyman 1981). Sorin
(1986) provided a nonzero-sum modification of the “Big Match,” where only state
x D 1 is nonabsorbing in which limk!1.J

1
�k
.1; f �

k /; J
2
�k
.1; f �

k // 62 E0. A similar
phenomenon occurs for the limit of T -stage equilibrium payoffs. Sorin (1986) gave
a full description of the set E0 in his example. His observations were generalized
by Vrieze and Thuijsman (1989) to all 2-person absorbing games. They proved the
following result.

Theorem 18. Any two-person absorbing stochastic game has a uniform equilib-
rium payoff.

We now state the fundamental result of Vieille (2000a,b).

Theorem 19. Every two-person stochastic game has a uniform equilibrium payoff.

The proof of Vrieze and Thuijsman (1989) is based on the “vanishing discount
factor approach” combined with the idea of “punishment” successfully used in
repeated games. The assumption that there are only two players is important in the
proof. The �-equilibrium strategies that they construct need unbounded memory.
The proof of Vieille (2000a,b) is involved. One of the reasons is that the ergodic
classes do not depend continuously on strategy profiles. Following Vieille (2002)
one can briefly say that “the basic idea is to devise an �-equilibrium profile that
takes the form of a stationary-like strategy vector, supplemented by threats of
indefinite punishment”. The construction of uniform equilibrium payoff consists
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of two independent steps. First, a class of solvable states is recognized and some
controlled sets are considered. Second, the problem is reduced to the existence
of equilibria in a class of recursive games. The punishment component is crucial
in the construction and therefore the fact that the game is 2-person is important.
Neither of the two parts of the proof can be extended to games with more than
two players. The �-equilibrium profiles have no subgame-perfection property and
require unbounded memory for the players. For a heuristic description of the proof,
the reader is referred to Vieille (2002). In a recent paper Solan (2017) proposed a
new solution concept for multiplayer stochastic games called acceptable strategy
profiles. It is relatively simpler than uniform equilibrium and has some interesting
properties. A suitable adaptation of the notion of uniform equilibrium is studied
by Neyman (2017) in the class of continuous-time stochastic games with a small
imprecision in the specification of players’ evaluations of streams of payoffs.

Flesch et al. (1997) proposed a three-person game with absorbing states where
only a cyclic Markov equilibrium exists. No examples of this type were found in
the 2-person case. This example inspired Solan (1999), who making use of certain
arguments from Vrieze and Thuijsman (1989), proved the following result.

Theorem 20. Every 3-person absorbing stochastic game has a uniform equilib-
rium payoff.

In a quitting game, every player has only two actions, c for continue and q for
quit. As soon as one or more of the players at any stage chooses q, the game stops
and the players receive their payoffs, which are determined by the subset of players,
say S , that choose simultaneously the action q. If nobody chooses q throughout all
stages of play, then all players receive zero. The payoffs are defined as follows. For
every nonempty subset S � N of players, there is a payoff vector v.S/ 2 R

n.
The first stage on which S is the subset of players that choose q at this stage, every
player i 2 N receives the payoff v.S/i . A quitting game is a special limit-average-
absorbing stochastic game. The example of Flesch et al. (1997) belongs to this class.
We now state the result due to Solan and Vieille (2001).

Theorem 21. Consider a quitting game satisfying the following assumptions: if
player i alone quits, then i receives 1, and if player i quits with some other players,
then i receives at most 1. Then the game has a subgame-perfect �-equilibrium.
Moreover, there is a cyclic �-equilibrium strategy profile.

Quitting games are special cases of “escape games” studied by Simon (2007). As
shown by Simon (2012), a study of quitting games can be based on some methods
of topological dynamics and homotopy theory. More comments on this issue can be
found in Simon (2016).

Thuijsman and Raghavan (1997) studied n-person perfect information stochastic
games and n-person ARAT stochastic games and showed the existence of pure
equilibria in the limit-average payoff case. They also derived the existence of
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�-equilibria for 2-person switching control stochastic games with the same payoff
criterion. A class of n-person stochastic games with the limit-average payoff
criterion and additive transitions as in the ARAT case (see Sect. 5) was studied
by Flesch et al. (2007). The payoff functions do not satisfy any separability in
actions assumption. They established the existence of Nash equilibria that are
history dependent. For 2-person absorbing games, they showed the existence of
stationary �-equilibria. In Flesch et al. (2008, 2009), the authors studied stochastic
games with the limit-average payoffs where the state space X is the Cartesian
product of some finite sets Xi , i 2 N . For any state x D .x1; : : : ; xn/ 2 X and
any profile of actions a D .a1; : : : ; an/, the transition probability is of the form
q.yjx; a/ D q1.y1jx1; a1/ � � � qn.ynjxn; an/ where y D .y1; : : : ; yn/ 2 X . In both
aperiodic and periodic cases, they established the existence of Nash equilibria for
n-person games. In the two-person zero-sum case, there exists a stationary Markov
perfect equilibrium.

A stochastic game is recursive if the payoffs at all nonabsorbing states are zero.
The class of recursive stochastic games is important. The payoffs in any absorbing
state can be interpreted as limit averages of stage payoffs as soon as the absorbing
state is reached. If no absorbing state is reached, then the average payoff is zero.
Moreover, as noted by Simon (2016), “by expanding the state space of any normal
stochastic game so that there is a one-to-one relationship between the finite histories
of play and the states, any state corresponds to a clopen (open and closed) subset of
the infinite histories of play and every open subset of the infinite histories of play
will correspond to some collection of states. A stochastic game where all non-zero
payoffs are determined by membership in an open set of the infinite histories of
play becomes in this way equivalent to a recursive game. Notice that if all absorbing
payoffs are positive then the payoffs are lower semicontinuous, and if all absorbing
payoffs are negative then the payoffs are upper semicontinuous (as functions on
the infinite histories of play).” Flesch et al. (2010b) considered a class of n-person
stochastic perfect information games assuming that in every state, the transitions
are controlled by one player. The payoffs are equal to zero in every nonabsorbing
state and are nonnegative in every absorbing state. They proposed a new iterative
method to analyse these games under the expected limit-average payoff criterion
and proved the existence of a subgame-perfect �-equilibrium in pure strategies. They
also showed the existence of the uniform equilibrium payoffs. Recursive n-person
perfect information games, where each player controls one nonabsorbing state and
the transitions are deterministic, were studied in Kuipers et al. (2016). Allowing
also for negative payoffs in absorbing states (in contrast to Flesch et al. 2010b), the
authors showed the existence of a subgame-perfect �-equilibrium by a combinatorial
method.

Correlated equilibria were introduced by Aumann (1974, 1987) for games in
normal form. Correlation devices may be of different types; see Forges (2009). In
Sect. 4 we considered a correlation device using public randomization. They are
also called stationary, because at every stage a signal is generated according to the
same probability distribution, independent of any data. There are also devices based
on past signals that were sent to the players, but not on the past play. They are
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called “autonomous correlation devices” (see Forges 2009). An �-equilibrium in
an extended game that includes an autonomous correlation device is also called
an extensive-form correlated �-equilibrium in a multistage game. Solan (2001)
characterized the set of extensive-form correlated �-equilibria in stochastic games.
He showed that every feasible and individually rational payoff in a stochastic game
is an extensive-form correlated equilibrium payoff constructed with the help of an
appropriately chosen device.

The following two results are due to Solan and Vieille (2002).

Theorem 22. Every n-person stochastic game with finite state and action spaces
has a uniform correlated equilibrium payoff using an autonomous correlation
device.

The construction of an equilibrium profile is based on the method of Mertens
and Neyman (1981) applied to zero-sum games. The equilibrium path is sustained
by the use of threat strategies. However, punishment occurs only if a player disobeys
the recommendation of the correlation device. The second result is stronger in some
sense but concerns positive recursive games, where the payoffs in absorbing states
are nonnegative for all players.

Theorem 23. Every positive recursive stochastic game with finite sets of states and
actions has a uniform correlated equilibrium payoff and the correlation device can
be taken to be stationary.

The proof of the above result makes use of a variant of the method of Vieille
(2000b).

In a recent paper, Mashiah-Yaakovi (2015) considered stochastic games with
countable state spaces, finite sets of actions and Borel measurable bounded payoffs,
defined on the spaceH1 of all plays. This class includes theGı-games of Blackwell
(1969). The concept of uniform �-equilibrium does not apply to this class of games,
because the payoffs are not additive. She proved that these games have extensive-
form correlated �-equilibria.

Secchi and Sudderth (2002a) considered a special class of n-person stochastic
“stay-in-a-set games” defined as follows. Let Gi be a fixed subset of X for each
i 2 N . Define Gi

1 WD f.x1; a
1; x2; a

2; : : :/g, where xt 2 Gi for every t . The
payoff function for player i 2 N is the characteristic function of the set G1

i . They
proved the existence of an �-equilibrium (equilibrium) assuming that the state space
is countable (finite) and the sets of actions are finite. Maitra and Sudderth (2003)
generalized this result to the Borel state stay-in-a-set games with compact action
sets using standard continuity assumption on the transition probability with respect
to actions. Secchi and Sudderth (2002b) proved that every n-person stochastic game
with countably many states, finite action sets and bounded upper semicontinuous
payoff functions on H1 has an �-equilibrium. All proofs in the aforementioned
papers are partially based on the methods from gambling theory; see Dubins and
Savage (2014).
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Nonzero-sum infinite horizon games with perfect information are special cases
of stochastic games. Flesch et al. (2010a) established the existence of subgame-
perfect �-equilibria in pure strategies in perfect information games with lower
semicontinuous payoff functions on the space H1 of all plays. A similar result
for games with upper semicontinuous payoffs was proved by Purves and Sudderth
(2011). It is worth mentioning that the aforementioned results also hold for games
with arbitrary nonempty action spaces and deterministic transitions. Solan and
Vieille (2003) provided an example of a two-person game with perfect information
that has no subgame-perfect �-equilibrium in pure strategies, but does have a
subgame-perfect �-equilibrium in behavior strategies. Their game belongs to the
class of deterministic stopping games. Recently, Flesch et al. (2014) showed that
a subgame-perfect �-equilibrium (in behavioral strategies) may not exist in perfect
information games if the payoff functions are bounded and Borel measurable.

Additional general results on subgame-perfect equilibria in games of perfect
information can be found in Alós-Ferrer and Ritzberger (2015, 2016). Two refine-
ments of subgame-perfect �-equilibrium concept were introduced and studied in
continuous games of perfect information by Flesch and Predtetchinski (2015).

Two-person discounted stochastic games of perfect information with finite state
and action spaces were treated in Küenle (1994). Making use of threat strategies,
he constructed a history-dependent pure Nash equilibrium. However, it is worth to
point out that pure stationary Nash equilibria need not exist in this class of games.
A similar remark applies to irreducible stochastic games of perfect information with
the limiting average payoff criterion. Counterexamples are described in Federgruen
(1978) and Küenle (1994).

We close this section with a remark on “folk theorems” for stochastic games.
It is worth mentioning that the techniques, based on threat strategies utilized very
often in repeated games, cannot be immediately adapted to stochastic games,
where the players use randomized (behavioral) strategies. Deviations are difficult
to discover when the actions are selected at random. However, some folk theorems
for various classes of stochastic games were proved in Dutta (1995), Fudenberg
and Yamamoto (2011), Hörner et al. (2011, 2014), and Pęski and Wiseman (2015).
Further comments can be found in Solan and Zillotto (2016).

Abreu et al. (1986, 1990) applied a method for analysing subgame-perfect
equilibria in discounted repeated games that resembles the dynamic programming
technique. The set of equilibrium payoffs is a set-valued fixed points of some
naturally defined operator. A similar idea was used in stochastic games by Mertens
and Parthasarathy (1991). The fixed point property for subgame-perfect equilibrium
payoffs can be used to develop algorithms. Berg (2016) and Kitti (2016) considered
some modifications of the aforementioned methods for discounted stochastic games
with finite state spaces. They also demonstrated some techniques for computing
(non-stationary) subgame-perfect equilibria in pure strategies provided that they
exist. Sleet and Yeltekin (2016) applied the methods of Abreu et al. (1986, 1990) to
some classes of dynamic games and provided a new approach for computing equilib-
rium value correspondences. Their idea is based on outer and inner approximations
of the equilibrium value correspondence via step set-valued functions.
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10 Nonzero-Sum Stochastic Games with Imperfect
Monitoring

There are only a few papers on nonzero-sum stochastic games with imperfect
monitoring (or incomplete information). Although in many models an equilibrium
does not exist, some positive results were obtained for repeated games; see Forges
(1992), Chap. IX in Mertens et al. (2015) and references cited therein. Altman
et al. (2005, 2008) studied stochastic games, in which every player can only observe
and control his “private state” and the state of the world is composed of the vector
of private states. Moreover, the players do not observe the actions of their partners
in the game. Such models of games are motivated by certain examples in wireless
communications.

In the model of Altman et al. (2008), the state space X D
Qn
iD1 Xi , where Xi

is a finite set of private states of player i 2 N . The action space Ai.xi / of player
i 2 N depends on xi 2 Xi and is finite. It is assumed that player i 2 N has no
information about the payoffs called costs. Hence, player i only knows the history
of his private state process and the action chosen by himself in the past. Thus, a
strategy 	i of player i 2 N is independent of realizations of state processes of
other players and their actions. If x D .x1; : : : ; xn/ 2 X is a state at some period
of the game and a D .a1; : : : ; an/ is the action profile selected independently by
the players at that state, then the probability of going to state y D .y1; : : : ; yn/ is
q.yjx; a/ D q1.y1jx1; a1/ � � � qn.ynjxn; an/, where qi .�jxi ; ai / 2 Pr.Ai .xi //. Thus
the coordinate (or private) state processes are independent. It is assumed that every
player i has a probability distribution �i of the initial state xi 2 Xi and that the
initial private states are independent. The initial distribution � of the state x 2 X is
determined by �1; : : : ; �n in an obvious way and is known by the players. Further,
it is supposed that player i 2 N is given some stage cost functions cji .x; a/ (j D

0; 1; : : : ; ni ) depending on x 2 X and action profiles a available in that state. The
cost function c0i is to be minimized by player i in the long run, and cji (for j > 0)
are the costs that must satisfy some constraints described below.

Any strategy profile 	 together with the initial distribution � and the transition
probability q induces a unique probability measure on the space of all infinite
plays. The expectation operator with respect to this measure is denoted by E	

� . The
expected limit-average cost Cj

i .	/ is defined as follows:

C
j
i .	/ WD lim sup

T!1

1

T
E	
�

 
TX
tD1

c
j
i .x

t ; at /

!
:

Note that xt 2 X and at is an action profile of all the players.
Let bji > 0 (j D 1; : : : ; ni ) be bounds used to define constraints below. A

strategy profile 	 is i -feasible if

C
j
i .	/ � b

j
i for each j D 1; : : : ; ni :
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Thus, 	 is feasible if it is i -feasible for every player i 2 N .
A strategy profile 	� is called a constrained Nash equilibrium, if 	� is feasible

and for every player i 2 N and his strategy 	i such that the profile .	i ; 	�
�i / is

i -feasible, we have

C0
i .	/ � C0

i .	i ; 	
�
�i /:

Note that a unilateral deviation of player i may increase his cost or it may violate
his constraints. The aforementioned fact is illustrated in Altman et al. (2008) by an
example in wireless communications.

Altman et al. (2008) made the following assumptions.

(I1) (Ergodicity) For every player i 2 N and any stationary strategy the state
process on Xi is an irreducible Markov chain with one ergodic class and
possibly some transient states.

(I2) (Strong Slater condition) There exists some  > 0 such that every player i 2 N

has a strategy 	i with the property that for any strategy profile 	�i of other
players

C
j
i .	


i ; 	�i / � b

j
i �  for all j D 1; : : : ; ni :

(I3) (Information) The players do not observe their costs.

Theorem 24. Consider the game model that satisfies conditions (I1)–(I3). Then
there exists a stationary constrained Nash equilibrium.

Stochastic games with finite sets of states and actions and imperfect public
monitoring were studied in Fudenberg and Yamamoto (2011) and Hörner et al.
(2011). The players, in their models, observe states and receive only public signals
on the chosen actions by the partners in the game. Fudenberg and Yamamoto (2011)
and Hörner et al. (2011) established “folk theorems” for stochastic games under
assumptions that relate to “irreducibility” conditions on the transition probability
function. Moreover, Hörner et al. (2011, 2014) also studied algorithms for both
computing the sets of all equilibrium payoffs in the normalized discounted games
and for finding their limit as the discount factor tends to one. As shown in
counterexamples in Flesch et al. (2003) an n-person stochastic game with non-
observable actions of the players (and no public signals), observable payoffs and
the expected limit-average payoff criterion does not possess �-equilibrium. Cole
and Kocherlakota (2001) studied discounted stochastic games with hidden states
and actions. They provided an algorithm for finding a sequential equilibrium, where
strategies depend on private information only through the privately observed state.
Imperfect monitoring is also assumed in the model of the supermodular stochastic
game studied by Balbus et al. (2013b), where the monotone convergence of Nash
equilibrium payoffs in finite-stage games is proved.
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11 Intergenerational Stochastic Games

This section develops a concept of equilibrium behavior and establishes its existence
in various intergenerational games. Both paternalistic and non-paternalistic altruism
cases are discussed. Consider an infinite sequence of generations labelled by t 2 N.
There is a single good (called also a renewable resource) that can be used for
consumption or productive investment. The set of all resource stocks S is an interval
in R. It is assumed that 0 2 S . Every generation lives one period and derives
utility from its own consumption and consumptions of some or all its descendants.
Generation t observes the current stock st 2 S and chooses at 2 A.st / WD Œ0; st �

for consumption. The remaining part yt D st � at is left as an investment for
its descendants. The next generation’s inheritance or endowment is determined by
a weakly continuous transition probability q from S to S (stochastic production
function), which depends on yt 2 A.st / � S . Recall that the weak continuity of q
means that q.�jym/ ) q.�jy0/ if ym ! y0 in S (as m ! 1). Usually, it is assumed
that state 0 is absorbing, i.e., q.f0gj0/ D 1. Let ˚ be the set of all Borel functions
� W S ! S such that �.s/ 2 A.s/ for each s 2 S . A strategy for generation t is
a function �t 2 ˚ . If �t D � for all t 2 N and some � 2 ˚ , then we say that the
generations employ a stationary strategy.

Suppose that all generations from t C 1 onward use a consumption strategy
c 2 ˚ . Then, in the paternalistic model generation t ’s utility when it consumes
at 2 A.st / equals to H.at ; c/.st /, where H is some real-valued function used
for measurement of the satisfaction level of the generation. This implies that in
models with paternalistic altruism each generation derives its utility from its own
consumption and the consumptions of its successor or successors.

Such a game model reveals a time inconsistency. Strotz (1956) and Pollak (1968)
were among the first, who noted this fact in the model of an economic agent whose
preferences change over time. In related works, Phelps and Pollak (1968) and Peleg
and Yaari (1973) observed that this situation is formally equivalent to one, in which
decisions are made by a sequence of heterogeneous planners. They investigated
the existence of consistent plans, what we shall call (stationary) Markov perfect
equilibria. The solution concept is in fact a symmetric Nash equilibrium .c�; c�; : : :/

in a game played by countably many short-lived players having the same utility
functions. Therefore, we can say that a stationary Markov perfect equilibrium
.c�; c�; : : :/ corresponds to a strategy c� 2 ˚ such that

H.c�.s/; c�/.s/ D sup
a2A.s/

H.a; c�/.s/

for every s 2 S . We identify this equilibrium with c�.
In other words, c� 2 ˚ is a stationary Markov perfect equilibrium if

c�.s/ 2 arg max
a2A.s/

H.a; c�/.s/ for each s 2 S:
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There is now a substantial body of work on paternalistic models, see for instance,
Alj and Haurie (1983), Harris and Laibson (2001), and Nowak (2010) and the results
presented below in this section. At the beginning we consider three types of games,
in which the existence of a stationary Markov perfect equilibrium was proved in
a sequence of papers: Balbus et al. (2015a,b,c). Game (G1) describes a purely
deterministic case, while games (G2) and (G3) deal with a stochastic production
function. However, (G2) concerns a model with one descendant, whereas (G3)
examines a model with infinitely many descendants. Let us mention that by an
intergenerational game with k (k is finite or infinite) descendants (successors or
followers), we mean a game in which each generation derives its utility from its
own consumption and consumptions of its k descendants.

(G1) Let S WD Œ0;C1/. Assume that q.�jyt / D ıp.yt /.�/, where p W S ! S is a
continuous and increasing production function such that p.0/ D 0. We also
assume that

H.a; c/.s/ D Ou.a; c.p.s � a///

for some continuous and increasing in each variable function Ou W R
2
C !

R [ f�1g. Moreover, we allow Ou to be unbounded from below. Hence, we
assume that Ou.0; y/ � �1 for all y � 0 and Ou.x; 0/ > �1 for all x > 0.
Furthermore, for any y1 > y2 in S and h > 0, we assume that the function
�h Ou.x/ WD Ou.x; y1/ � Ou.x C h; y2/ has the strict single crossing property on
.0;C1/, i.e., �h Ou.x/ � 0 implies that �h Ou.x0/ > 0 for each x0 > x (see
Milgrom and Shannon 1994).

(G2) Let S WD Œ0;C1/. We study a model with a utility that reflects a generation’s
attitude toward risk. This fact is reflected by a positive risk coefficient r . In
this setup, H takes the following form:

H.a; c/.s/ D

�
u.a/C ˇ

R
S
v.c.s0//q.ds0js � a/; for r D 0

u.a/ � ˇ

r
ln
R
S
e�rv.c.s0//q.ds0js � a/; for r > 0;

where u W S ! R [ f�1g is increasing, strictly concave, continuous on
.0;C1/ and u.0/ � �1. In addition, the function v W S ! R is bounded,
continuous and increasing. Further assumptions are as follows: for every s 2

S , the set Zs WD fy 2 S W q.fsgjy/ > 0g is countable and the transition law
q is stochastically increasing. The latter fact means that, if z ! Q.zjy/ is the
cumulative distribution function for q.�jy/, then for all y1 < y2 and z 2 S , we
have Q.zjy1/ � Q.zjy2/.

(G3) Let S WD Œ0; Ns� for some Ns > 0. In this case, we assume that the utility function
of current generation t is as follows:

H.a; c/.s/ D Qu.a/CEc
s Œw.atC1; atC2; : : :/�;
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where w W S1 ! R is continuous and Qu W S 7! R is continuous,
strictly concave and increasing. Here, Ec

s is an expectation operator with
respect to the unique probability measure on the space of all feasible future
histories (starting from the endowment s of generation t ) of the consumption-
investment process induced by the stationary strategy c 2 ˚ used by each
generation � (� > t ) and the transition probability q. The function Qu is also
assumed to be continuous and strictly concave. Defining

QJ .c/.s/ D Ec
s Œw.ak; akC1; akC2; : : :/�

for every k 2 N, we obtain that

H.a; c/.s/ D Qu.a/C

Z
S

QJ .c/.s0/q.ds0js � a/:

In addition, q.�jy/ is assumed to be nonatomic for y > 0.

Let I denote the set of nondecreasing lower semicontinuous functions i W S ! R

such that i.s/ 2 A.s/ for each s 2 S . Note that every i 2 I is continuous from the
left and has at most a countable number of discontinuity points. Put

F WD fc 2 ˚ W c.s/ D s � i.s/; i 2 I; s 2 Sg:

Clearly, any c 2 F is upper semicontinuous and continuous from the left. The
idea of using the class F of strategies for analysing equilibria in deterministic
bequest games comes from Bernheim and Ray (1983). Further, it was successfully
applied to the study of other classes of dynamic games with simultaneous moves;
see Sundaram (1989a) and Majumdar and Sundaram (1991).

Theorem 25. Every intergenerational game (G1), (G2) and (G3) possesses a
stationary Markov perfect equilibrium c� 2 F .

The main idea of the proof is based upon the consideration of an operator L
defined as follows: to each consumption strategy c 2 F used by descendant (or
descendants) the function L assigns the maximal element c0 from the set of best
responses to c. It is shown that c0 2 F . Moreover, F can be viewed as a convex
subset of the vector space Y of real-valued continuous from the left functions
 W S 7! R of bounded variation on every interval Sn WD Œ0; n�, n 2 N, thus in
particular on Œ0; Ns�. We further equip Y with the topology of weak convergence. We
assume that .m/ converges weakly to some 0 2 Y , if lim

m!1
m.s/ D 0.s/ for

every continuity point s of 0. Then, due to Lemma 2 in Balbus et al. (2015c), F is
compact and metrizable. Finally, the equilibrium point is obtained via the Schauder-
Tychonoff fixed point theorem applied to the operator L.
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Theorem 25 for game (G1) was proved in Balbus et al. (2015c). Related results
for the purely deterministic case were considered by Bernheim and Ray (1983)
and Leininger (1986). For instance, Leininger (1986) studied a class U of bounded
from below utility functions for which every selector of the best response corre-
spondence is nondecreasing. In particular, he noticed that this class is nonempty
and it includes, for instance, the separable case, i.e., u.x; y/ D v.x/ C bv.y/,
where v is strictly increasing and concave and b > 0. Bernheim and Ray (1983),
on the other hand, showed that the functions u that are strictly concave in their first
argument and satisfying the so-called increasing differences property (see Sect. 2)
also belong to U : Other functions u that meet conditions imposed by Bernheim
and Ray (1983) and Leininger (1986) are of the form u.x; y/ D v1.x/v2.y/,
where v1 is strictly concave and v2 � 0 is continuous and increasing. The class
U is not fully characterized. The class (G1) of games includes all above-mentioned
examples and some new ones. Our result is also valid for a larger class of utilities
that can be unbounded from below. Therefore, Theorem 25 is a generalization of
Theorem 4.2 in Bernheim and Ray (1983) and Theorem 3 in Leininger (1986).
The proofs given by Bernheim and Ray (1983) and Leininger (1986) do not work
for unbounded utility functions. Indeed, Leininger (1986) uses a transformation of
upper semicontinuous consumption strategies into the set of Lipschitz functions
with constant 1. This clever “levelling” operation enables him to equip the space of
continuous functions on the interval Œ0; Ny�with the topology of uniform convergence
and to apply the Schauder fixed point theorem. His proof strongly makes use of
the uniform continuity of u. This is the case, when the production function crosses
the 45ı line. If the production function does not cross the 45ı line, a stationary
equilibrium is then obtained as a limit of equilibria corresponding to the truncations
of the production function. However, this part of the proof is descriptive and sketchy.
Bernheim and Ray (1983), on the other hand, identify with the maximal best
response consumption strategy, which is upper semicontinuous, a convex-valued
upper hemicontinuous correspondence. Then, such a space of upper hemicontinuous
correspondences is equipped with the Hausdorff topology. This fact implies the
strategy space is compact, if endowments have an upper bound, i.e., when the
production function p crosses the 45ı line. If this is not satisfied, then a similar
approximation technique as in Leininger (1986) is employed. Our proof does not
follow the above-mentioned approximation methods. The weak topology introduced
in the space Y implies that F is compact and allows to use an elementary but
non-trivial analysis. For examples of deterministic bequest games with stationary
Markov perfect equilibria given in closed form the reader is referred to Fudenberg
and Tirole (1991) and Nowak (2006b, 2010).

Theorem 25 for game (G2) was proved by Balbus et al. (2015b), whereas for
game (G3) by Balbus et al. (2015a). Within the stochastic framework, Theorem 25
is an attempt of saving the result reported by Bernheim and Ray (1989) on the
existence of stationary Markov perfect equilibria in games with very general utility
function and nonatomic shocks. If q is allowed to possess atoms, then a stationary
Markov perfect equilibrium exists in the bequest games with one follower (see
Theorems 1–2 in Balbus et al. 2015b). The latter result also embraces the purely
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deterministic case; see Example 1 in Balbus et al. (2015b), where the nature and
role of assumptions are discussed. However, as shown in Example 3 in Balbus et al.
(2015a), the existence of stationary Markov perfect equilibria in the class of F
cannot be proved in intergenerational games where q has atoms and there are more
than one descendant.

The result in Bernheim and Ray (1986) concerns “consistent plans” in models
with finite time horizon. The problem is then simpler. The results of Bernheim
and Ray (1986) were considerably extended by Harris (1985) in his paper on
perfect equilibria in some classes of games of perfect information. It should be
noted that there are other papers that contain certain results for bequest games with
stochastic production function. Amir (1996b) studied games with one descendant
for every generation and the transition probability such that the induced cumulative
distribution function Q.zjy/ is convex in y 2 S . This condition is rather restrictive.
Nowak (2006a) considered similar games in which the transition probability is
a convex combination of the Dirac measure at state s D 0 and some transition
probability from S to S with coefficients depending on investments. Similar models
were considered by Balbus et al. (2012, 2013a). The latter paper also studies some
computational issues for stationary Markov perfect equilibria. One should note,
however, that the transition probabilities in the aforementioned works are specific.
However, the transition structure in Balbus et al. (2015a,b) is consistent with the
transitions used in the theory of economic growth; see Bhattacharya and Majumdar
(2007) and Stokey et al. (1989).

The interesting issue studied in the economics literature concerns the limiting
behavior of the state process induced by a stationary Markov perfect equilibrium.
Below we formulate a steady state result for a stationary Markov perfect equilibrium
obtained for the game (G1). Under slightly more restrictive conditions it was shown
by Bernheim and Ray (1987) that the equilibrium capital stock never exceeds the
optimal planning stock in any period. Namely, it is assumed that

(B1) p is strictly concave, continuously differentiable and limy!0C p0.y/ > 1,
limy!1 p0.y/ < 1=ˇ, where ˇ 2 .0; 1� is a discount factor;

(B2) Ou.at ; atC1/ D Ov.at /Cˇ Ov.atC1/, where Ov W S ! R is increasing, continuously
differentiable, strictly concave and Ov.a/ ! 1 as a ! 1.

An optimal consumption program Oa WD . Oat /t2N is the one which maximizesP1
tD1 ˇ

t�1 Ov. Oat / subject to all feasibility constraints described in the model. The
following result is stated as Theorems 3.2 and 3.3 in Bernheim and Ray (1987).

Theorem 26. Assume (B1)–(B2) and consider game (G1). If c� is a stationary
Markov perfect equilibrium, then i�.s/ D s � c�.s/ � Oy, where Oy 2 Œ0;1/

is the limit of the sequence .st � Oat /t2N. If Oy > 0, it solves ˇp0.y/ D 1. If
limy!0C p0.y/ > 1=ˇ, then Oy > 0.

For further properties of stationary Markov perfect equilibria such as efficiency,
and Pareto optimality, the reader is referred to Sect. 4 in Bernheim and Ray (1987).
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For stochastic models it is of some interest to know whether a stationary Markov
perfect equilibrium induces a Markov process having an invariant distribution.
It turns out that the answer is positive if an additional stochastic monotonicity
requirement is met:

(B3) If y1 < y2, then for any nondecreasing Borel measurable function h W S ! R,

Z
S

h.s/q.dsjy1/ �

Z
S

h.s/q.dsjy2/:

By Theorem 25 for game (G3), there exists c� 2 F . Then s ! i�.s/ D s�c�.s/

is nondecreasing on S . Put q�.Bjs/ WD q.Bji�.s// where B is a Borel subset of S
and s 2 S . From (B3), it follows that s ! q�.�js/ is nondecreasing. Define the
mapping � W Pr.S/ ! Pr.S/ by

��.B/ WD

Z
S

q�.Bjs/�.ds/

where B 2 B.S/. An invariant distribution for the Markov process induced by the
transition probability q� determined by i� (and thus by c�) is any fixed point of � .
Let �.q�/ be the set of invariant distributions for the process induced by q�. In
Sect. 4 in Balbus et al. (2015a), the following result was proved.

Theorem 27. Assume (B3) and consider game (G3). Then, the set of invariant
distributions �.q�/ is compact in the weak topology on Pr.S/.

For each � 2 �.q�/, M.�/ WD
R
S
s�.ds/ is the mean of distribution � . By

Theorem 27, there exists ��� with the highest mean over the set �.q�/.
One can ask for the uniqueness of invariant distribution. Theorem 4 in Balbus

et al. (2015a) yields a positive answer to this question. However, this result concerns
the model with multiplicative shocks, i.e., q is induced by the equation

stC1 D f .yt /�t ; t 2 N;

where f W S ! S is a continuous increasing function such that f .0/ > 0. In
addition, there is a state Os 2 .0;1/ such that f .y/ > y for y 2 .0; Os/ and
f .y/ < y for y 2 .Os;1/. Here .�t /t2N is an i.i.d. sequence with the nonatomic
distribution 	 . Assuming additionally the monotone mixing condition, we conclude
from Theorem 4 in Balbus et al. (2015a) the uniqueness of the invariant distribution.
Further discussion on these issues can be found in Stokey et al. (1989), Hopenhayn
and Prescott (1992), Stachurski (2009), Balbus et al. (2015a) and the references
cited therein.

In contrast to the paternalistic model one can also think of a non-paternalistic
altruism. This notion is concerned with a model, in which each generation’s utility
is derived from its own consumption and the utilities of its all successors. The
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most general model with non-paternalistic altruism was formulated by Ray (1987).
His work is of some importance, because it provides a proper definition of an
equilibrium for the non-paternalistic case. According to Ray (1987), a stationary
equilibrium consists of a pair of two functions: a saving policy (or strategy) and an
indirect utility function. Such a pair constitutes an equilibrium if it is optimal for the
current generation, provided its descendants use the same saving strategy and the
same indirect utility function.

Assume that the generations from t onward use a consumption strategy c 2 ˚ .
Then, the expected utility of generation t , that inherits an endowment st D s 2

S WD Œ0; Ns�, is of the form

Wt.c; v/.s/ WD .1 � ˇ/Qu.c.s//C ˇEc
s Œw.v.stC1/; v.stC2/; : : :/�: (6.8)

where Qu W S ! K and w W K1 ! K are continuous functions andK WD Œ0; Nk� with
some Nk � Ns. The function v W S ! K is called an indirect utility and is assumed to
be Borel measurable. Similarly, for any c 2 ˚ and s D stC1 2 S , we can define

J .c; v/.s/ WD Ec
s Œw.v.stC2/; v.stC3/; : : :/�;

which yields

W .c; v/.s/ WD Wt.c; v/.s/ D .1 � ˇ/Qu.c.s//C ˇ

Z
S

J .c; v/.s0/q.ds0js � c.s//:

Let us define

P .a; c; v/.s/ WD .1 � ˇ/Qu.a/C ˇ

Z
S

J .c; v/.s0/q.ds0js � a/;

where s 2 S , a 2 A.s/ and c 2 ˚ . If st D s, then P .a; c; v/.s/ is the utility
for generation t choosing the consumption level a 2 A.st / in this state under the
assumption that all future generations will employ a stationary strategy c 2 ˚ and
the indirect utility is v.

A stationary equilibrium in the sense of Ray (1987) is a pair .c�; v�/, with
c� 2 ˚ , and v� W S ! K being a bounded Borel measurable function such
that for every s 2 S , we have that

v�.s/ D sup
a2A.s/

P .a; c�; v�/.s/ D P .c�.s/; c�; v�/.s/ D W .c�; v�/.s/: (6.9)

Note that equality (6.9) says that there exist an indirect utility function v� and
a consumption strategy c�, both depending on the current endowment, such that
each generation finds it optimal to adopt this consumption strategy provided its
descendants use the same strategy and exhibit the given indirect utility.
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Let V be the set of all nondecreasing upper semicontinuous functions v W

S ! K. Note that every v 2 V is continuous from the right and has at most a
countable number of discontinuity points. By I we denote the subset of all functions
' 2 V such that '.s/ 2 A.s/ for each s 2 S . Let F D fc W c.s/ D s � i.s/; s 2 S;

i 2 I g. We impose similar conditions to those imposed on model (G3). Namely,
we shall assume that Qu is strictly concave and increasing. Then, the following result
holds.

Theorem 28. In a non-paternalistic game as described above with nonatomic
transitions, there exists a stationary equilibrium .c�; v�/ 2 F � V .

Theorem 28 was established as Theorem 1 in Balbus et al. (2016). Ray
(1987) analysed games with non-paternalistic altruism and deterministic production
functions. Unfortunately, his proof contains a mistake. The above result is strongly
based on the assumption that the transitions are nonatomic and weakly continuous.
The problem in the deterministic model of Ray (1987) remains open. However,
Theorem 28 implies that an equilibrium exists if a “small nonatomic noise” is added
to the deterministic transition function.

There is a great deal of work devoted to the so-called hyperbolic decision makers,
in which the function w in (G3) has a specific form. Namely,

w.ak; akC1; akC2; : : :/ D ˛ˇ

1X
mDk

ˇm�k Qu.am/; (6.10)

where ˛ > 0 and is interpreted as a short-run discount factor and ˇ < 1 is known
as a long-run discount coefficient. This model was studied by Harris and Laibson
(2001) with the transition function defined via the difference equation

stC1 D R.st � at /C �t ; R � 0 and t 2 N:

The random variables .�t /t2N are nonnegative, Independent, and identically dis-
tributed with respect to a nonatomic probability measure. The function Qu satisfies
some restrictive condition concerning the risk aversion of the decisionmaker, but
it may be unbounded from above. Working in the class of strategies with locally
bounded variation, Harris and Laibson (2001) showed the existence of a stationary
Markov perfect equilibrium in their model with concave utility function Qu. They
also derived a strong hyperbolic Euler relation. The model considered by Harris and
Laibson (2001) can also be viewed as a game between generations; see Balbus and
Nowak (2008), Nowak (2010), and Jaśkiewicz and Nowak (2014a) where related
versions are studied. However, its main interpretation in the economics literature
says that it is a decision problem where the utility of an economic agent changes over
time. Thus, the agent is represented by a sequence of selves and the problem is to
find a time-consistent solution . This solution is actually a stationary Markov perfect
equilibrium obtained by thinking about selves as players in an intergenerational
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game. For further details and references, the reader is referred to Harris and Laibson
(2001) and Jaśkiewicz and Nowak (2014a). A decision model with time-inconsistent
preferences involving selves who can stop the process at any stage was recently
studied by Cingiz et al. (2016)

The model with the function w defined in (6.10) can be extended by adding to the
transition probabilities an unknown parameter � . Then, the natural solution for such
a model is a robust Markov perfect equilibrium. Roughly speaking, this solution is
based on the assumption that the generations involved in the game are risk-sensitive
and accept a maxmin utility. More precisely, let � be a nonempty Borel subset of
Euclidean space R

m (m � 1). Then, the endowment stC1 for generation t C 1 is
determined by the transition q from S � � to S that depends on the investment
yt 2 A.st / and a parameter �t 2 �. This parameter is chosen according to a certain
probability measure �t 2 P , where P denotes the action set of nature and it is
assumed to be a Borel subset of Pr.�/.

Let 
 be the set of all sequences .�t /t2N of Borel measurable mappings �t W

D ! P , where D D f.s; a/ W s 2 S; a 2 A.s/g. For any t 2 N and � D

.�t /t2N 2 
 , we set �t WD .�� /��t . Clearly, �t 2 
 . A Markov strategy for nature
is a sequence � D .�t /t2N 2 
 . Note that �t can be called a Markov strategy used
by nature from period t onward.

For any t 2 N, define Ht as the set of all sequences

ht D .at ; �t ; stC1; atC1; �tC1; : : :/; where .sk; ak/ 2 D; �k 2 � and k � t:

H t is the set of all feasible future histories of the process from period t onward.
Endow Ht with the product � -algebra. Assume in addition that Qu � 0, the
generations employ a stationary strategy c 2 ˚ and nature chooses some � 2 
 .

Then the choice of nature is a probability measure depending on .st ; c.st //. LetEc;�t

st

denote as usual the expectation operator corresponding to the unique probability
measure on Ht induced by a stationary strategy c 2 ˚ used by each generation
� (� � t ), a Markov strategy of nature �t 2 
 and the transition probability q.
Assume that all generations from t onward use c 2 ˚ and nature applies a strategy
�t 2 
 . Then, the generation t ’s expected utility is of the following form:

OW .c/.st / WD inf
�t2


Ec;�t

st

 
Qu.c.st //C ˛ˇ

1X
mDtC1

ˇm�t�1 Qu.c.s� //

!
:

This definition of utility in an intergenerational game provides an intuitive notion
of ambiguity aversion, which can be regarded as the generations’ diffidence for
any lack of precise definition of uncertainty, something that provides room for the
malevolent influence of nature. Letting

OJ .c/.sj / D inf
�j2


Ec;�j

sj

0
@ 1X
mDj

ˇm�j Qu.c.s� //

1
A



6 Nonzero-Sum Stochastic Games 331

we one can show that

OW .c/.st / D Qu.c.s//C inf
�2P

˛ˇ

Z
S

OJ .c/.stC1/q.dstC1jst � c.st /; �/:

For any s 2 S , a 2 A.s/, and c 2 ˚ , we set

OP .a; c/.s/ D Qu.a/C inf
�2P

˛ˇ

Z
S

OJ .c/.s0/q.ds0js � a; �/:

If s D st , then OP .a; c/.s/ is the utility for generation t choosing a 2 A.st / in this
state when all future generations employ a stationary strategy c 2 ˚ .

A robust Markov perfect equilibrium is a function c� 2 ˚ such that for every
s 2 S we have

sup
a2A.s/

OP .a; c�/.s/ D OP .c�.s/; c�/.s/ D OW .c�/.s/:

The existence of a robust Markov perfect equilibrium in the aforementioned model
was proved by Balbus et al. (2014) under the assumption that the transition
probability is a convex combination of probability measures �1; : : : ; �l on S

with coefficients depending on investments y D s � a. A robust Markov perfect
equilibrium was obtained in the class of functions F under the condition that all
measures �1; : : : ; �l are nonatomic. If �1; : : : ; �l have atoms, then some stochastic
dominance conditions are imposed, but the equilibrium was obtained in the class of
Lipschitz continuous functions with constant 1. A different approach was presented
in the work of Jaśkiewicz and Nowak (2014b), where the set of endowments S and
the set of consumptions are Borel and the parameter set � is finite. Assuming again
that the transition probability is a finite convex combination of probability measures
�1; : : : ; �l on S depending on the parameter � with coefficients depending on
the inheritance s and consumption level a, they have established a twofold result.
First, they proved the existence of a robust Markov perfect equilibrium in the class
of randomized strategies. Second, assuming that �1; : : : ; �l are nonatomic, and
making use of the purification theorem of Dvoretzky-Wald-Wolfowitz, they replaced
a randomized equilibrium by a pure one.

The models of intergenerational games with general spaces of consumptions and
endowments were also examined by Jaśkiewicz and Nowak (2014a). A novel feature
in this approach is the fact that generation t can employ the entropic risk measure to
calculate its utilities. More precisely, if Z is a random variable with the distribution
	 , then its entropic risk measure is E.Z/ D 1

r
ln
R
˝
erZ.!/	.d!/, where r < 0 is

a risk coefficient. If r is sufficiently close to zero, then making use of the Taylor
expansion one can see that

E.Z/ 	 EZ C
r

2
Var.Z/:
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This means that a generation which uses the entropic risk measure to calculate
its utility is risk averse and takes into account not only the expected value of
a random future successors’ utilities derived from consumptions but also their
variance. Assuming that each generation cares only about its m descendants and
assuming that the transition probability is a convex combination of finitely many
nonatomic measures on the endowment space with coefficients that may depend on
s and a, Jaśkiewicz and Nowak (2014a) proved the existence of stationary Markov
perfect equilibrium in pure strategies. The same result was shown for games with
infinitely many descendants in the case of hyperbolic preferences. In both cases
the proof consists of two parts. First, a randomized stationary Markov perfect
equilibrium was shown to exist. Second, making use of the specific structure of
the transition probability and applying the Dvoretzky-Wald-Wolfowitz theorem a
desired pure stationary Markov perfect equilibrium was obtained.

A related game to the above mentioned models is the one with quasi-geometric
discounting from the dynamic consumer theory; see Chatterjee and Eyigungor
(2016). Particularly, the authors showed that in natural cases such a game does not
possess a Markov perfect equilibrium in the class of continuous strategies. However,
a continuous Markov perfect equilibrium exists, if the model was reformulated
involving lotteries. These two models were then numerically compared. It is
known that the numerical analysis of equilibrium in models with hyperbolic (quasi-
geometric) discounting shows difficulties in achieving convergence even in a simple,
deterministic optimal growth problem that has a smooth closed-form solution.
Maliar and Maliar (2016) defined some restrictions on the equilibrium strategies
under which the numerical methods studied deliver a unique smooth solution for
many deterministic and stochastic models.

Finally, we wish to point out that Markov Perfect Equilibria for stochastic
bequest games with transition probabilities and utilities depending on time were
shown to exist in Balbus et al. (2017, 2018).

12 Stopping Games

Stopping games were introduced by Dynkin (1969) as a generalization of optimal
stopping problems. They were used in several models in economics and operations
research, for example, in equipment replacement, job search, and consumer pur-
chase behavior; see Heller (2012).

Dynkin (1969) dealt with the following problem. Two players observe a bivariate
sequence of adapted random variables .X.k/; Y .k//k2N0 , where N0 D N [ f0g.
Player 1 chooses a stopping time �1 such that f�1 D kg � fX.k/ � 0g, whereas
player 2 selects �2 such that f�2 D kg � fX.k/ < 0g. If �1 ^ �2 is finite, then
player 2 pays Y .�/ to player 1 and the game terminates. Hence, the objective of
player 1 (respectively 2) is to maximize (minimize) R.�1; �2/ D EŒY .�1 ^ �2/�.
Dynkin (1969) characterized �-optimal stopping times and proved that the game has
a value provided that supk2N0

jY .k/j is integrable. This model was later extended by
Kiefer (1971) and Neveu (1975). In particular, Neveu (1975) showed the existence
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of a game value in a slightly modified model. Namely, he dealt with the following
expected payoff function:

R.�1; �2/ D EŒX.�1/1Œ�1 < �2�C Y .�2/1Œ�2 � �1��;

where .X.k//k2N0 and .Y .k//k2N0 are R-valued adapted stochastic processes such
that supk2N0

.XC.k/CY �.k// are integrable and X.k/ � Y .k/ for all k 2 N0. The
game considered by Neveu (1975) was generalized by Yasuda (1985), who dropped
the latter assumption on monotonicity. In his model, the expected payoff function
takes the following form:

R.�1; �2/ D EŒX.�1/1Œ�1 < �2�C Y .�2/1Œ�2 < �1�CZ.�1/1Œ�1 D �2��;

where as usual .X.k//k2N0 , .Y .k//k2N0 and .Z.k//k2N0 are adapted integrable
random variables. Yasuda (1985) considered randomized strategies instead of pure
ones. According to Yasuda (1985) a strategy for a player is an adapted random
sequence p D .pk/k2N0 (or q D .qk/k2N0) such that 0 � pk; qk � 1 with
probability one. Here, pk (or qk) stands for the probability that the player stops
the game at time k conditional on the event that the game was not stopped before.
In computing the payoff induced by a pair of strategies .p; q/, one assumes that the
randomizations performed by the players in various stages are mutually independent
and independent of the payoff processes. Thus, a strategy that corresponds to a
stopping time � is pk D 0 on the event Œ� > k� and pk D 1 on the event Œ� � k�.
Yasuda (1985) proved the existence of the value in the set of randomized strategies
in finite and discounted infinite time horizon problems.

Before formulating the next result, we define the stopping stages for players
1 and 2 by �1 WD inffk 2 N0 W P .k/ � pkg, and �2 WD inffk 2 N0 W Q.k/ � qkg;

where .P .k/;Q.k//k2N0 is a double sequence of i.i.d. random variables uniformly
distributed over Œ0; 1� satisfying certain independence assumptions imposed in
Rosenberg et al. (2001). Set � D �1 ^ �2: Clearly, � is the stage at which the game
stops. Let us define

R.p; q/ D EŒX.�1/1Œ�1 < �2�C Y .�2/1Œ�2 < �1�CZ.�1/1Œ�1 D �2 < C1��

and its ˇ-discounted evaluation

Rˇ.p; q/ D .1 � ˇ/E
�
ˇ�C1.X.�1/1Œ�1 < �2�C Y .�2/1Œ�2 < �1�

CZ.�1/1Œ�1 D �2 < C1�/
�
:

The following result was proved by Rosenberg et al. (2001).

Theorem 29. Assume that EŒsupk2N0
.jX.k/j C jY .k/j C jZ.k/j/� < C1. Then

the stopping games with the payoffs R.p; q/ and Rˇ.p; q/ have values, say v and
vˇ , respectively. Moreover, limˇ!1 vˇ D v.
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Let us now turn to nonzero-sum Dynkin games. They were considered in several
papers; see, for instance, Ferenstein (2007), Krasnosielska-Kobos (2016), Morimoto
(1986), Nowak and Szajowski (1999), Ohtsubo (1987), Ohtsubo (1991), Solan
and Vieille (2001), and Szajowski (1994). Obviously, the list of references is by
no means exhaustive. We start with presenting a result for two-player nonzero-
sum stopping games. Assume that the aforementioned sequences .X.k//k2N0 ,
.Y .k//k2N0 and .Z.k//k2N0 are bounded in R

2 and let � be a uniform bound on
the payoffs. The payoff of the game is R.p; q/ except that R.p; q/ 2 R

2. Shmaya
and Solan (2004) proved the following result.

Theorem 30. For each � > 0, the stopping game has an �-equilibrium .p�
� ; q

�
� /.

Theorem 30 does not hold, if the payoffs are not uniformly bounded. Its proof
is based upon a stochastic version of the Ramsey theorem that was also proved
by Shmaya and Solan (2004). It states that for every colouring of a complete
infinite graph by finitely many colours, there is a complete infinite monochromatic
subgraph. Shmaya and Solan (2004) applied a variation of this result to reduce the
problem of the existence of an �-equilibrium in a general stopping game to that of
studying properties of �-equilibria in a simple class of stochastic games with finite
state space. A similar result for deterministic 2-player nonzero-sum stopping games
was reported by Shmaya et al. (2003).

All the aforementioned works deal with the two-player case and/or assume some
special structure of the payoffs. Recently, Hamadène and Hassani (2014) studied n-
person nonzero-sum Dynkin games. Such a game is terminated at � WD �1^ : : :^�n,
where �i is a stopping time chosen by player i . Then, the corresponding payoff for
player i is given by

Ri.�1; : : : ; �n/ D W i;I
� ;

where Is denotes the set of players who make the decision to stop, that is, Is D

fm 2 f1; : : : ; ng W � D �mg and W i;Is is the payoff stochastic process of player i .
The main assumption says that the payoff is less when the player belongs to the
group involved in the decision to stop than when he is not. Hamadène and Hassani
(2014) showed that the game has a Nash equilibrium in pure strategies. The proof is
based on the approximation scheme whose limit provides a Nash equilibrium.

Krasnosielska-Kobos and Ferenstein (2013) is another paper that is concerned
with multi-person stopping games. More precisely, they consider a game in which
players sequentially observe the offers X.1/;X.2/; : : : at jump times T1; T2; : : : of
a Poisson process. It is assumed that the random variables X.1/;X.2/; : : : form an
i.i.d. sequence. Each accepted offer results in a reward R.k/ D X.k/r.Tk/, where
r is a non-increasing discount function. If more than one player accepts the offer,
then the player with the highest priority gets the reward. By making use of the
solution to the multiple optimal stopping time problem with above reward structure,
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Krasnosielska-Kobos and Ferenstein (2013) constructed a Nash equilibrium which
is Pareto efficient.

Mashiah-Yaakovi (2014), on the other hand, studied subgame-perfect equilibria
in stopping games. It is assumed that at every stage one of the players is chosen
according to a stochastic process, and that player decides whether to continue the
interaction or to stop it. The terminal payoff vector is obtained by another stochastic
process. Mashiah-Yaakovi (2014) defines a weaker concept of subgame-perfect
equilibrium, namely, a ı-approximate subgame-perfect �-equilibrium. A strat-
egy profile is a ı-approximate subgame-perfect �-equilibrium if it induces an
�-equilibrium in every subgame, except perhaps a set of subgames that occur
with probability at most ı. A 0-approximate subgame-perfect �-equilibrium is
actually a subgame-perfect �-equilibrium. The concept of approximate subgame-
perfect equilibrium relates to the concept of “trembling-hand perfect equilibrium”
introduced by Selten (1975). A stopping game in which, at every stage, one player
who decides to stop or continue the game is chosen according to a (periodic in
some sense) stochastic process is also studied in Mashiah-Yaakovi (2009). This
assumption extends the random priority in stopping games considered, for example,
in Szajowski (1994, 1995). Once the chosen player decides to stop, the players
receive terminal payoffs that are determined by a second stochastic process. Periodic
subgame-perfect �-equilibria in pure strategies are studied under some quite general
conditions. Some bases for stopping n-person games with fixed priorities were
provided by Enns and Ferenstein (1987).

Finally, it is worth pointing out that there are three notions of random stop-
ping times. The above mentioned randomized strategies used by Yasuda (1985)
and Rosenberg et al. (2001) are also called behavioral stopping times. A randomized
stopping time, on the other hand, is a nonnegative adapted real-valued process � D

.�k/k2N[f1g that satisfies
P

k2N[f1g �k D 1. The third concept allows to define
mixed stopping times �. Roughly speaking, they are product measurable functions
in which the first coordinate r is chosen according to the uniform distribution over
the interval Œ0; 1� at the outset. Then, the stopping time is �.r; �/. For more details,
the reader is referred to Rosenberg et al. (2001). As communicated to us by Eilon
Solan, the classes of mixed and randomized stopping times are equivalent by a
proper generalization of Kuhn’s theorem.
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Jaśkiewicz A, Nowak AS (2015a) On pure stationary almost Markov Nash equilibria in nonzero-
sum ARAT stochastic games. Math Methods Oper Res 81:169–179
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