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Abstract

This chapter surveys some evolutionary games used in biological sciences. These
include the Hawk–Dove game, the Prisoner’s Dilemma, Rock–Paper–Scissors,
the war of attrition, the Habitat Selection game, predator–prey games, and
signaling games.

Keywords
Battle of the Sexes � Foraging games � Habitat Selection game � Hawk–Dove
game � Prisoner’s Dilemma � Rock–Paper–Scissors � Signaling games � War
of attrition

1 Introduction

Evolutionarily game theory (EGT) as conceived by Maynard Smith and Price (1973)
was motivated by evolution. Several authors (e.g., Lorenz 1963; Wynne-Edwards
1962) at that time argued that animal behavior patterns were “for the good of
the species” and that natural selection acts at the group level. This point of view
was at odds with the Darwinian viewpoint where natural selection operates on the
individual level. In particular, adaptive mechanisms that maximize a group benefit
do not necessarily maximize individual benefit. This led Maynard Smith and Price
(1973) to develop a mathematical model of animal behavior, called the Hawk–Dove
game, that clearly shows the difference between group selection and individual
selection. We thus start this chapter with the Hawk–Dove game.

Today, evolutionary game theory is one of the milestones of evolutionary ecology
as it put the concept of Darwinian evolution on solid mathematical grounds. Evolu-
tionary game theory has spread quickly in behavioral and evolutionary biology with
many influential models that change the way that scientists look at evolution today.
As evolutionary game theory is noncooperative, where each individual maximizes
its own fitness, it seemed that it cannot explain cooperative or altruistic behavior
that was easy to explain on the grounds of the group selection argument. Perhaps
the most influential model in this respect is the Prisoner’s Dilemma (Poundstone
1992), where the evolutionarily stable strategy leads to a collective payoff that
is lower than the maximal payoff the two individuals can achieve if they were
cooperating. Several models within evolutionary game theory have been developed
that show how mutual cooperation can evolve. We discuss some of these models in
Sect. 3. A popular game played by human players across the world, which can also
be used to model some biological populations, is the Rock–Paper–Scissors game
(RPS; Sect. 4). All of these games are single-species matrix games, so that their
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payoffs are linear, with a finite number of strategies. An example of a game that
cannot be described by a matrix and that has a continuum of strategies is the war
of attrition in Sect. 5.1 (or alternatively the Sir Philip Sidney game mentioned in
Sect. 10). A game with nonlinear payoffs which examines an important biological
phenomenon is the sex-ratio game in Sect. 5.2.

Although evolutionary game theory started with consideration of a single species,
it was soon extended to two interacting species. This extension was not straightfor-
ward, because the crucial mechanism of a (single-species) EGT, that is, negative
frequency dependence that stabilizes phenotype frequencies at an equilibrium, is
missing if individuals of one species interact with individuals of another species.
These games are asymmetric, because the two contestants are in different roles
(such asymmetric games also occur within a single species). Such games that can
be described by two matrices are called bimatrix games. Representative examples
include the Battle of the Sexes (Sect. 6.1) and the Owner–Intruder game (Sect. 6.2).
Animal spatial distribution that is evolutionarily stable is called the Ideal Free
Distribution (Sect. 7). We discuss first the IFD for a single species and then for
two species. The resulting model is described by four matrices, so it is no longer a
bimatrix game. The IFD, as an outcome of animal dispersal, is related to the question
of under which conditions animal dispersal can evolve (Sect. 8). Section 9 focuses
on foraging games. We discuss two models that use EGT. The first model, that uses
decision trees, is used to derive the diet selection model of optimal foraging. This
model asks what the optimal diet of a generalist predator is in an environment that
has two (or more) prey species. We show that this problem can be solved using
the so-called agent normal form of an extensive game. We then consider a game
between prey individuals that try to avoid their predators and predators that aim to
capture prey individuals. The last game we consider in some detail is a signaling
game of mate quality, which was developed to help explain the presence of costly
ornaments, such as the peacock’s tail.

We conclude with a brief section discussing a few other areas where evolutionary
game theory has been applied. However, a large variety of models that use EGT have
been developed in the literature, and it is virtually impossible to survey all of them.

2 The Hawk–Dove Game: Selection at the Individual Level
vs. Selection at the Population Level

One of the first evolutionary games was introduced to understand evolution of
aggressiveness among animals (Maynard Smith and Price 1973). Although many
species have strong weapons (e.g., teeth or horns), it is a puzzling observation
that in many cases antagonistic encounters do not result in a fight. In fact, such
encounters often result in a complicated series of behaviors, but without causing
serious injuries. For example, in contests between two male red deer, the contestants
first approach each other, and provided one does not withdraw, the contest escalates
to a roaring contest and then to the so-called parallel walk. Only if this does not lead
to the withdrawal of one deer does a fight follow. It was observed (Maynard Smith



1042 M. Broom and V. Křivan

1982) that out of 50 encounters, only 14 resulted in a fight. The obvious question is
why animals do not always end up in a fight? As it is good for an individual to get the
resource (in the case of the deer, the resources are females for mating), Darwinian
selection seems to suggest that individuals should fight whenever possible. One
possible answer why this is not the case is that such a behavior is for the good
of the species, because any species following this aggressive strategy would die out
quickly. If so, then we should accept that the unit of selection is not an individual
and abandon H. Spencer’s “survival of the fittest” (Spencer 1864).

The Hawk–Dove model explains animal contest behavior from the Darwinian
point of view. The model considers interactions between two individuals from the
same population that meet in a pairwise contest. Each individual uses one of the
two strategies called Hawk and Dove. An individual playing Hawk is ready to fight
when meeting an opponent, while an individual playing Dove does not escalate the
conflict. The game is characterized by two positive parameters where V denotes the
value of the contested resource and C is the cost of the fight measured as the damage
one individual can cause to his opponent. The payoffs for the row player describe
the increase/decrease in the player’s fitness after an encounter with an opponent.
The game matrix is

�Hawk Dove

Hawk V �C
2

V

Dove 0 V
2

�

and the model predicts that when the cost of the fight is lower than the reward
obtained from getting the resource, C < V , all individuals should play the Hawk
strategy that is the strict Nash equilibrium (NE) (thus an evolutionarily stable
strategy (ESS)) of the game. When the cost of a fight is larger than the reward
obtained from getting the resource, C > V , then p D V =C .0 < p < 1/ is the
corresponding monomorphic ESS. In other words, each individual will play Hawk
when encountering an opponent with probability p and Dove with probability 1�p.
Thus, the model predicts that aggressiveness in the population decreases with the
cost of fighting. In other words, the species that possess strong weapons (e.g., antlers
in deer) should solve conflicts with very little fighting.

Can individuals obtain a higher fitness when using a different strategy? In a
monomorphic population where all individuals use a mixed strategy 0 < p < 1,
the individual fitness and the average fitness in the population are the same and
equal to

E.p; p/ D
V

2
�

C

2
p2:

This fitness is maximized for p D 0, i.e., when the level of aggressiveness in the
population is zero, all individuals play the Dove strategy, and individual fitness
equals V =2. Thus, if selection operated on a population or a species level, all
individuals should be phenotypically Doves who never fight. However, the strategy
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p D 0 cannot be an equilibrium from an evolutionary point of view, because in
a Dove-only population, Hawks will always have a higher fitness (V ) than Doves
(V =2) and will invade. In other words, the Dove strategy is not resistant to invasion
by Hawkish individuals. Thus, securing all individuals to play the strategy D, which
is beneficial from the population point of view, requires some higher organizational
level that promotes cooperation between animals (Dugatkin and Reeve 1998, see
also Sect. 3).

On the contrary, at the evolutionarily stable equilibrium p� D V =C , individual
fitness

E.p�; p�/ D
V

2

�
1 �

V

C

�

is always lower than V =2. However, the ESS cannot be invaded by any other single
mutant strategy.

Darwinism assumes that selection operates at the level of an individual, which
is then consistent with noncooperative game theory. However, this is not the only
possibility. Some biologists (e.g., Gilpin 1975) postulated that selection operates on
a larger unit, a group (e.g., a population, a species etc.), maximizing the benefit of
this unit. This approach was termed group selection. Alternatively, Dawkins (1976)
suggested that selection operates on a gene level. The Hawk–Dove game allows us
to show clearly the difference between the group and Darwinian selections.

Group selection vs. individual selection also nicely illustrates the so-called
tragedy of the commons (Hardin 1968) (based on an example given by the English
economist William Forster Lloyd) that predicts deterioration of the environment,
measured by fitness, in an unconstrained situation where each individual maximizes
its profit. For example, when a common resource (e.g., fish) is over-harvested, the
whole fishery collapses. To maintain a sustainable yield, regulation is needed that
prevents over-exploitation (i.e., which does not allow Hawks that would over-exploit
the resource to enter). Effectively, such a regulatory body keeps p at zero (or close
to it), to maximize the benefits for all fishermen. Without such a regulatory body,
Hawks would invade and necessarily decrease the profit for all. In fact, as the cost
C increases (due to scarcity of resources), fitness at the ESS decreases, and when C

equals V, fitness is zero.

2.1 Replicator Dynamics for the Hawk–Dove Game

In the previous section, we have assumed that all individuals play the same strategy,
either pure or mixed. If the strategy is mixed, each individual randomly chooses
one of its elementary strategies on any given encounter according to some given
probability. In this monomorphic interpretation of the game, the population mean
strategy coincides with the individual strategy. Now we will consider a distinct
situation where n phenotypes exist in the population. In this polymorphic setting
we say that a population is in state p 2 �n (where �n D fp 2 R

n j pi � 0; p1 C
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� � �Cpn D 1g is a probability simplex) if pi is the proportion of the population using
strategy i . As opposed to the monomorphic case, in this polymorphic interpretation,
the individual strategies and the mean population strategy are different, because the
mean strategy characterizes the population, not a single individual.

The ESS definition does not provide us with a mechanistic description of
phenotype frequency dynamics that would converge to an ESS. One of the frequency
dynamics often used in evolutionary game theory is the replicator dynamics (Taylor
and Jonker 1978). Replicator dynamics assume that the population growth rate of
each phenotype is given by its fitness, and they focus on changes in phenotypic
frequencies in the population (see Volume I, �Chap. 6, “Evolutionary Game
Theory”). Let us consider the replicator equation for the Hawk–Dove game. Let
x be the frequency of Hawks in the population. The fitness of a Hawk is

E.H; x/ D
V � C

2
x C V .1 � x/

and, similarly, the fitness of a Dove is

E.D; x/ D .1 � x/
V

2
:

Then the average fitness in the population is

E.x; x/ D xE.H; x/ C .1 � x/E.D; x/ D
V � Cx2

2
;

and the replicator equation is

dx

dt
D x .E.H; x/ � E.x; x// D

1

2
x.1 � x/.V � Cx/:

Assuming C > V; we remark that the interior distribution equilibrium of this
equation, x D V =C , corresponds to the mixed ESS for the underlying game. In
this example phenotypes correspond to elementary strategies of the game. It may be
that phenotypes also correspond to mixed strategies.

3 The Prisoner’s Dilemma and the Evolution of Cooperation

The Prisoner’s Dilemma (see Flood 1952; Poundstone 1992) is perhaps the most
famous game in all of game theory, with applications from areas including eco-
nomics, biology, and psychology. Two players play a game where they can Defect
or Cooperate, yielding the payoff matrix

http://doi.org/10.1007/978-3-319-44374-4_6
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�Cooperate Defect

Cooperate R S

Defect T P

�
:

These abbreviations are derived from Reward (reward for cooperating), Temptation
(temptation for defecting when the other player cooperates), Sucker (paying the
cost of cooperation when the other player defects), and Punishment (paying the
cost of defecting). The rewards satisfy the conditions T > R > P > S . Thus while
Cooperate is Pareto efficient (in the sense that it is impossible to make any of the two
players better off without making the other player worse off), Defect row dominates
Cooperate and so is the unique ESS, even though mutual cooperation would yield
the greater payoff. Real human (and animal) populations, however, involve a lot of
cooperation; how is that enforced?

There are many mechanisms for enabling cooperation, see for example Nowak
(2006). These can be divided into six types as follows:

1. Kin selection, that occurs when the donor and recipient of some apparently
altruistic act are genetic relatives.

2. Direct reciprocity, requiring repeated encounters between two individuals.
3. Indirect reciprocity, based upon reputation. An altruistic individual gains a

good reputation, which means in turn that others are more willing to help that
individual.

4. Punishment, as a way to enforce cooperation.
5. Network reciprocity, where there is not random mixing in the population and

cooperators are more likely to interact with other cooperators.
6. Multi-level selection, alternatively called group selection, where evolution occurs

on more than one level.

We discuss some of these concepts below.

3.1 Direct Reciprocity

Direct reciprocity requires repeated interaction and can be modeled by the Iterated
Prisoner’s Dilemma (IPD). The IPD involves playing the Prisoner’s Dilemma over
a (usually large) number of rounds and thus being able to condition choices in
later rounds on what the other player played before. This game was popularized by
Axelrod (1981, 1984) who held two tournaments where individuals could submit
computer programs to play the IPD. The winner of both tournaments was the
simplest program submitted, called Tit for Tat (TFT), which simply cooperates on
the first move and then copies its opponent’s previous move.

TFT here has three important properties: it is nice so it never defects first; it is
retaliatory so it meets defection with a defection next move; it is forgiving so even
after previous defections, it meets cooperation with cooperation next move. TFT
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effectively has a memory of one place, and it was shown in Axelrod and Hamilton
(1981) that TFT can resist invasion by any strategy that is not nice if it can resist
both Always Defect ALLD and Alternative ALT, which defects (cooperates) on
odd (even) moves. However, this does not mean that TFT is an ESS, because nice
strategies can invade by drift as they receive identical payoffs to TFT in a TFT
population (Bendorf and Swistak 1995). We note that TFT is not the only strategy
that can promote cooperation in the IPD; others include Tit for Two Tats (TF2T
which defects only after two successive defections of its opponent), Grim (which
defects on all moves after its opponent’s first defection), and win stay/lose shift
(which changes its choice if and only if its opponent defected on the previous move).

Games between TFT, ALLD, and ALT against TFT have the following sequence
of moves:

TF T CCCCCC : : :

TF T CCCCCC : : :

ALLD DDDDDD : : :

TF T CDDDDD : : :

ALT DCDCDC : : :

TF T CDCDCD : : :

(23.1)

We assume that the number of rounds is not fixed and that there is always the
possibility of a later round (otherwise the game can be solved by backwards
induction, yielding ALLD as the unique NE strategy). At each stage, there is a
further round with probability w (as in the second computer tournament); the payoffs
are then

E.TF T; TF T / D R C Rw C Rw2 C : : : D
R

1 � w
; (23.2)

E.ALLD; TF T / D T C P w C P w2 C : : : D T C
P w

1 � w
; (23.3)

E.ALT; TF T / D T C Sw C T w2 C Sw3 C : : : D
T C Sw

1 � w2
: (23.4)

Thus TFT resists invasion if and only if

R

1 � w
> max

�
T C

P w

1 � w
;

T C Sw

1 � w2

�

i.e., if and only if

w > max

�
T � R

T � P
;

T � R

R � S

�
; (23.5)

i.e., when the probability of another contest is sufficiently large (Axelrod 1981,
1984). We thus see that for cooperation to evolve here, the extra condition 2R >
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S C T is required, since otherwise the right-hand side of inequality (23.5) would be
at least 1.

While TFT proved successful at promoting cooperation above, what if errors
occur, so that an intention to cooperate becomes a defection (or is perceived as
such)? After a single mistake, a pair of interacting TFT players will be locked
in an alternating cycle of Defect versus Cooperation and then mutual defection
after a second mistake when C was intended. Under such circumstances, TF2T
can maintain cooperation, whereas TFT cannot. In fact a better strategy (in the
sense that it maintains cooperation when playing against itself but resists invasion
from defecting strategies) is GTFT (generous tit for tat; see Komorita et al. 1968),
which combines pure cooperation with TFT by cooperating after a cooperation, but
meeting a defection with a defection with probability

min

�
1 �

T � R

R � S
;

R � P

T � P

�
:

3.2 Kin Selection and Hamilton’s Rule

In most evolutionary game theoretical models, the aim of each individual is to
maximize its own fitness, irrespective of the fitness of other individuals. However,
if individuals are related, then the fitnesses of others should be taken into account.

Let us consider two interacting individuals, with coefficient of relatedness r ,
which is the probability that they share a copy of a given allele. For example, father
and son will have r D 1=2. One individual acts as a potential donor, the other
as a recipient, which receives a benefit b from the donor at the donor’s cost c.
The donating individual pays the full cost but also indirectly receives the benefit
b multiplied by the above factor r . Thus donation is worthwhile provided that

rb > c i.e., r >
c

b

which is known as Hamilton’s rule (Hamilton 1964).
Note that this condition is analogous to the condition for cooperation to resist

invasion in the IPD above, where a commonly used special class of the PD matrix
has payoffs representing cooperation as making a donation and defecting as not.
Then TFT resists invasion when w > c=b.

3.3 Indirect Reciprocity and Punishment

The IPD is an example of direct reciprocity. Suppose now we have a population of
individuals who play many contests, but these are not in long sequences against a
single “opponent” as above? If faced with a series of single-shot games, how can
cooperation be achieved?
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Such situations are often investigated by the use of public goods games involving
experiments with groups of real people, as in the work of Fehr and Gachter (2002).
In these experiments individuals play a series of games, each game involving a
new group. In each game there were four individuals, each of them receiving an
initial endowment of 20 dollars, and each had to choose a level of investment into
a common pool. Any money that was invested increased by a factor of 1.6 and was
then shared between the four individuals, meaning that the return for each dollar
invested was 40 cents to each of the players. In particular the individual making the
investment of one dollar only receives 40 cents and so makes a loss of 60 cents.
Thus, like the Prisoner’s Dilemma, it is clear that the best strategy is to make no
investment but simply to share rewards from the investments of other players. In
these experiments, investment levels began reasonably high, but slowly declined, as
players saw others cheat.

In later experiments, each game was played over two rounds, an investment round
and a punishment round, where players were allowed to punish others. In particular
every dollar “invested” in punishment levied a fine of three dollars on the target of
the punishment. This led to investments which increased from their initial level, as
punishment brought cheating individuals into line. It should be noted that in a popu-
lation of individuals many, but not all of whom, punish, optimal play for individuals
in this case should not be to punish, but to be a second-order free rider who invests
but does not punish, and therefore saves the punishment fee. Such a population
would collapse down to no investment after some number of rounds. Thus it is clear
that the people in the experiments were not behaving completely rationally.

Thus we could develop the game to have repeated rounds of punishment. An
aggressive punishing strategy would then in round 1, punish all defectors; in round
2, punish all cooperators who did not punish defectors in round 1; in round 3, punish
all cooperators who did not punish in round 2 as above; and so on. Thus such players
not only punish cheats, but anyone who does not play exactly as they do. Imagine a
group of m individuals with k cooperators (who invest and punish), ` defectors and
m � k � ` � 1 investors (who do not punish). This game, with this available set of
strategies, requires two rounds of punishment as described above. The rewards to
our focal individual in this case will be

R D

8̂
<̂
ˆ̂:

.m�`/cV

m
� kP if an investor,

.m�`/cV

m
� .m � k � 1/ if a cooperator,

.m�`�1/cV

m
C V � kP if a defector;

where V is the initial level of resources of each individual, c < m is the return on
investment (every dollar becomes 1 C c dollars), and P is the punishment multiple
(every dollar invested in punishment generates a fine of P dollars). The optimal play
for our focal individual is

Defect if V
�
1 � c

m

�
> kP � .m � k � 1/;

Cooperate otherwise.
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Thus defect is always stable and invest and punish is stable if V .1 � c=m/ <

.m � 1/P .
We note that there are still issues on how such punishment can emerge in the first

place (Sigmund 2007).

4 The Rock–Paper–Scissors Game

The Rock–Paper–Scissors game is a three-strategy matrix game, which people
commonly play recreationally. In human competition, the game dates back at least
to seventeenth-century China. There is a lot of potential psychology involved in
playing the game, and there are numerous tournaments involving it. The important
feature of the game is that Rock beats Scissors, Scissors beats Paper, and Paper beats
Rock. The payoff matrix is

0
@

Rock Scissors Paper

Rock 0 a3 �b2

Scissors �b3 0 a1

Paper a2 �b1 0

1
A;

where all a’s and b’s are positive. For the conventional game played between people
ai D bi D 1 for i D 1; 2; 3.

There is a unique internal NE of the above game given by the vector

p D
1

K
.a1a3 C b1b2 C a1b1; a1a2 C b2b3 C a2b2; a2a3 C b1b3 C a3b3/;

where the constant K is just the sum of the three terms to ensure that p is a
probability vector. In addition, p is a globally asymptotically stable equilibrium of
the replicator dynamics if and only if a1a2a3 > b1b2b3. It is an ESS if and only if
a1 � b1; a2 � b2, and a3 � b3 are all positive, and the largest of their square roots is
smaller than the sum of the other two square roots (Hofbauer and Sigmund 1998).
Thus if p is an ESS of the RPS game, then it is globally asymptotically stable under
the replicator dynamics. However, since the converse is not true, the RPS game
provides an example illustrating that while all internal ESSs are global attractors of
the replicator dynamics, not all global attractors are ESSs.

We note that the case when a1a2a3 D b1b2b3 (including the conventional game
with ai D bi D 1) leads to closed orbits of the replicator dynamics, and a stable (but
not asymptotically stable) internal equilibrium. This is an example of a nongeneric
game, where minor perturbations of the parameter values can lead to large changes
in the nature of the game solution.

This game is a good representation for a number of real populations. The most
well known of these is among the common side-blotched lizard Uta stansburiana.
This lizard has three types of distinctive throat coloration, which correspond to very
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different types of behavior. Males with orange throats are very aggressive and have
large territories which they defend against intruders. Males with dark blue throats
are less aggressive and hold smaller territories. Males with yellow stripes do not
have a territory at all but bear a strong resemblance to females and use a sneaky
mating strategy. It was observed in Sinervo and Lively (1996) that if the Blue
strategy is the most prevalent, Orange can invade; if Yellow is prevalent, Blue can
invade; and if Orange is prevalent, then Yellow can invade.

An alternative real scenario is that of Escherichia coli bacteria, involving three
strains of bacteria (Kerr et al. 2002). One strain produces the antibiotic colicin. This
strain is immune to it, as is a second strain, but the third is not. When only the first
two strains are present, the second strain outcompetes the first, since it forgoes the
cost of colicin production. Similarly the third outcompetes the second, as it forgoes
costly immunity, which without the first strain is unnecessary. Finally, the first strain
outcompetes the third, as the latter has no immunity to the colicin.

5 Non-matrix Games

We have seen that matrix games involve a finite number of strategies with a payoff
function that is linear in the strategy of both the focal player and that of the
population. This leads to a number of important simplifying results (see Volume I,
�Chap. 6, “Evolutionary Game Theory”). All of the ESSs of a matrix can be found
in a straightforward way using the procedure of Haigh (1975). Further, adding a
constant to all entries in a column of a payoff matrix leaves the collection of ESSs
(and the trajectories of the replicator dynamics) of the matrix unchanged. Haigh’s
procedure can potentially be shortened, using the important Bishop–Cannings
theorem (Bishop and Cannings 1976), a consequence of which is that if p1 is an
ESS, no strategy p2 whose support is either a superset or a subset of the support of
p1 can be an ESS.

However, there are a number of ways that games can involve nonlinear payoff
functions. Firstly, playing the field games yield payoffs that are linear in the focal
player but not in the population (e.g., see Sects. 7.1 and 9.1). Another way this can
happen is to have individual games of the matrix type, but where opponents are not
selected with equal probability from the population, for instance, if there is some
spatial element. Thirdly, the payoffs can be nonlinear in both components. Here
strategies do not refer to a probabilistic mix of pure strategies, but a unique trait,
such as the height of a tree as in Kokko (2007) or a volume of sperm; see, e.g., Ball
and Parker (2007). This happens in particular in the context of adaptive dynamics
(see Volume I, �Chap. 6, “Evolutionary Game Theory”).

Alternatively a non-matrix game can involve linear payoffs, but this time with
a continuum of strategies (we note that the cases with nonlinear payoffs above can
also involve such a continuum, especially the third type). A classical example of this
is the war of attrition (Maynard Smith 1974).

http://doi.org/10.1007/978-3-319-44374-4_6
http://doi.org/10.1007/978-3-319-44374-4_6
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5.1 The War of Attrition

We consider a Hawk–Dove game, where both individuals play Dove, but that instead
of the reward being allocated instantly, they become involved in a potentially long
displaying contest where a winner will be decided by one player conceding, and
there is a cost proportional to the length of the contest. An individual’s strategy is
thus the length of time it is prepared to wait. Pure strategies are all values of t on the
non-negative part of the real line, and mixed strategies are corresponding probability
distributions. These kinds of contests are for example observed in dung flies (Parker
and Thompson 1980).

Choosing the cost to be simply the length of time spent, the payoff for a game
between two pure strategies St (wait until time t ) and Ss (wait until time s) for the
player that uses strategy St is

E.St ; Ss/ D

8̂̂
<
ˆ̂:

V � s t > s;

V =2 � t t D s;

�t t < s:

and the corresponding payoff from a game involving two mixed strategists playing
the probability distributions f .t/ and g.s/ to the f .t/ player is

Z 1

0

Z 1

0

f .t/g.s/E.St ; Ss/dtds:

It is clear that no pure strategy can be an ESS, since Ss is invaded by St (i.e.,
E.St ; Ss/ > E.Ss; Ss/) for any t > s, or any positive t < s � V =2. There is a
unique ESS which is found by first considering (analogous to the Bishop–Cannings
theorem; see Volume I, �Chap. 6, “Evolutionary Game Theory”) a probability
distribution p.s/ that gives equal payoffs to all pure strategies that could be played
by an opponent. This is required, since otherwise some potential invading strategies
could do better than others, and since p.s/ is simply a weighted average of such
strategies, it would then be invaded by at least one type of opponent. Payoff of a pure
strategy St played against a mixed strategy Sp.s/ given by a probability distribution
p.s/ over the time interval is

E.St ; Sp.s// D

Z t

0

.V � s/p.s/ds C

Z 1

t

.�t /p.s/ds: (23.6)

Differentiating equation (23.6) with respect to t (assuming that such a derivative
exists) gives

.V � t /p.t/ �

Z 1

t

p.s/ds C tp.t/ D 0: (23.7)

http://doi.org/10.1007/978-3-319-44374-4_6
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If P .t/ is the associated distribution function, so that p.t/ D P 0.t/ for all t � 0,
then Eq. (23.7) becomes

VP 0.t/ C P .t/ � 1 D 0

and we obtain

p.t/ D
1

V
exp

�
�

t

V

�
: (23.8)

It should be noted that we have glossed over certain issues in the above, for example,
consideration of strategies without full support or with atoms of probability. This is
discussed in more detail in Broom and Rychtar (2013). The above solution was
shown to be an ESS in Bishop and Cannings (1976).

5.2 The Sex-Ratio Game

Why is it that the sex ratio in most animals is close to a half? This was the first
problem to be considered using evolutionary game theory (Hamilton 1967), and
its consideration, including the essential nature of the solution, dates right back to
Darwin (1871). To maximize the overall birth rate of the species, in most animals
there should be far more females than males, given that females usually make a
much more significant investment in bringing up offspring than males. This, as
mentioned before, is the wrong perspective, and we need to consider the problem
from the viewpoint of the individual.

Suppose that in a given population, an individual female will have a fixed number
of offspring, but that she can allocate the proportion of these that are male. This
proportion is thus the strategy of our individual. As each female (irrespective of
its strategy) has the same number of offspring, this number does not help us in
deciding which strategy is the best. The effect of a given strategy can be measured
as the number of grandchildren of the focal female. Assume that the number of
individuals in a large population in the next generation is N1 and in the following
generation is N2. Further assume that all other females in the population play the
strategy m and that our focal individual plays strategy p.

As N1 is large, the total number of males in the next generation is mN1 and
so the total number of females is .1 � m/N1. We shall assume that all females
(males) are equally likely to be the mother (father) of any particular member of the
following generation of N2 individuals. This means that a female offspring will be
the mother of N2=..1 � m/N1/ of the following generation of N2 individuals, and a
male offspring will be the father of N2=.mN1/ of these individuals. Thus our focal
individual will have the following number of grandchildren

E.p; m/ D p
N2

mN1

C .1 � p/
N2

.1 � m/N1

D
N2

N1

�
p

m
C

1 � p

1 � m

�
: (23.9)
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To find the best p, we maximize E.p; m/. For m < 0:5 the best response is p D 1,
and for m > 0:5 we obtain p D 0. Thus m D 0:5 is the interior NE at which all
values of p obtain the same payoff. This NE satisfies the stability condition in that
E.0:5; m0/ � E.m0; m0/ > 0 for all m0 ¤ 0:5 (Broom and Rychtar 2013).

Thus from the individual perspective, it is best to have half your offspring as
male. In real populations, it is often the case that relatively few males are the parents
of many individuals, for instance, in social groups often only the dominant male
fathers offspring. Sometimes other males are actually excluded from the group; lion
prides generally consist of a number of females, but only one or two males, for
example. From a group perspective, these extra males perform no function, but there
is a chance that any male will become the father of many.

6 Asymmetric Games

The games we have considered above all involve populations of identical indi-
viduals. What if individuals are not identical? Maynard Smith and Parker (1976)
considered two main types of difference between individuals. The first type
was correlated asymmetries where there were real differences between them, for
instance, in strength or need for resources, which would mean their probability of
success, cost levels, valuation of rewards, set of available strategies, etc., may be
different, i.e., the payoffs “correlate” with the type of the player. Examples of such
games are the predator–prey games of Sect. 9.2 and the Battle of the Sexes below in
Sect. 6.1.

The second type, uncorrelated asymmetries, occurred when the individuals were
physically identical, but nevertheless occupied different roles; for example, one was
the owner of a territory and the other was an intruder, which we shall see in Sect. 6.2.
For uncorrelated asymmetries, even though individuals do not have different payoff
matrices, it is possible to base their strategy upon the role that they occupy. As we
shall see, this completely changes the character of the solutions that we obtain.

We note that the allocation of distinct roles can apply to games in general; for
example, there has been significant work on the asymmetric war of attrition (see,
e.g., Hammerstein and Parker 1982; Maynard Smith and Parker 1976), involving
cases with both correlated and uncorrelated asymmetries.

The ESS was defined for a single population only, and the stability condition of
the original definition cannot be easily extended for bimatrix games. This is because
bimatrix games assume that individuals of one species interact with individuals of
the other species only, so there is no frequency-dependent mechanism that could
prevent mutants of one population from invading residents of that population at
the two-species NE. In fact, it was shown (Selten 1980) that requiring the stability
condition of the ESS definition to hold in bimatrix games restricts the ESSs to strict
NEs, i.e., to pairs of pure strategies. Two key assumptions behind Selten’s theorem
are that the probability that an individual occupies a given role is not affected by
the strategies that it employs, and that payoffs within a given role are linear, as in
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matrix games. If either of these assumptions are violated, then mixed strategy ESSs
can result (see, e.g., Broom and Rychtar 2013; Webb et al. 1999).

There are interior NE in bimatrix games that deserve to be called “stable,” albeit
in a weaker sense than was used in the (single-species) ESS definition. For example,
some of the NEs are stable with respect to some evolutionary dynamics (e.g., with
respect to the replicator dynamics, or the best response dynamics). A static concept
that captures such stability that proved useful for bimatrix games is the Nash–Pareto
equilibrium (Hofbauer and Sigmund 1998). The Nash-Pareto equilibrium is an NE
which satisfies an additional condition that says that it is impossible for both players
to increase their fitness by deviating from this equilibrium. For two-species games
that cannot be described by a bimatrix (e.g., see Sect. 7.4), this concept of two-
species evolutionary stability was generalized by Cressman (2003) (see Volume I,
�Chap. 6, “Evolutionary Game Theory”) who defined a two-species ESS .p�; q�/

as an NE such that, if the population distributions of the two species are slightly
perturbed, then an individual in at least one species does better by playing its ESS
strategy than by playing the slightly perturbed strategy of this species. We illustrate
these concepts in the next section.

6.1 The Battle of the Sexes

A classical example of an asymmetric game is the Battle of the Sexes (Dawkins
1976), where a population contains females with two strategies, Coy and Fast, and
males with two strategies, Faithful and Philanderer. A Coy female needs a period
of courtship, whereas a Fast female will mate with a male as soon as they meet.
Faithful males are willing to engage in long courtships and after mating will care for
the offspring. A Philanderer male will not engage in courtship and so cannot mate
with a Coy female and also leaves immediately after mating with a Fast female.

Clearly in this case, any particular individual always occupies a given role (i.e.,
male or female) and cannot switch roles as is the case in the Owner–Intruder game in
Sect. 6.2 below. Thus, males and females each have their own payoff matrix which
are often represented as a bimatrix. The payoff bimatrix for the Battle of the Sexes is

0
@

MalenFemale Coy Fast

Faithful .B � CR

2
� CC ; B � CR

2
� CC / .B � CR

2
; B � CR

2
/

Philanderer .0; 0/ .B; B � CR/

1
A:

(23.10)

Here B is the fitness gained by having an offspring, CR is the (potentially shared)
cost of raising the offspring, and CC is the cost of engaging in a courtship. All
three of these terms are clearly positive. The above bimatrix is written in the form
.A1; AT

2 /, where matrix A1 is the payoff matrix for males (player 1) and matrix A2

is the payoff matrix for females (player 2), respectively.
For such games, to define a two-species NE, we study the position of the two

equal payoff lines, one for each sex. The equal payoff line for males (see the

http://doi.org/10.1007/978-3-319-44374-4_6
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horizontal dashed line in Fig. 23.1) is defined to be those .p; q/ 2 �2 ��2 for which
the payoff when playing Faithful equals the payoff when playing the Philanderer
strategy, i.e.,

.1; 0/A1qT D .0; 1/A1qT

which yields q1 D CR

2.B�CC /
. Similarly, along the equal payoff line for females (see

the vertical dashed line in Fig. 23.1), the payoff when playing strategy Coy must
equal the payoff when playing strategy Fast, i.e.,

.1; 0/A2pT D .0; 1/A2pT :

If the two equal payoff lines do not intersect in the unit square, no completely mixed
strategy (both for males and females) is an NE (Fig. 23.1A, B). In fact, there is a
unique ESS (Philanderer, Coy), i.e., with no mating (clearly not appropriate for a
real population), for sufficiently small B (Fig. 23.1A), B < min.CR=2 C CC ; CR/,
a unique ESS (Philanderer, Fast) for sufficiently high B (Fig. 23.1B), when B > CR.
For intermediate B satisfying CR=2 C CC < B < CR, there is a two-species weak
ESS

p D

�
CR � B

CC C CR � B
;

CC

CC C CR � B

�
; q D

�
CR

2.B � CC /
; 1 �

CR

2.B � CC /

�
;

where at least the fitness of one species increases toward this equilibrium, except
when p1 D CR�B

CC CCR�B
or q1 D CR

2.B�CC /
(Fig. 23.1C). In all three cases of

A

p1

q1

10

1
B

p1

q1

10

1
C

p1

q1

10

1

Fig. 23.1 The ESS for the Battle of the Sexes game. Panel A assumes small B and the only ESS
is .p1; q1/ D .0; 1/ D (Philanderer, Coy). Panel B assumes large B and the only ESS is .p1; q1/ D
.0; 0/ D (Philanderer, Fast). For intermediate values of B (panel C), there is an interior NE. The
dashed lines are the two equal payoff lines for males (horizontal line) and females (vertical line).
The direction in which the male and female payoffs increase are shown by arrows (e.g., a horizontal
arrow to the right means the first strategy (Faithful) has the higher payoff for males, whereas a
downward arrow means the second strategy (Fast) has the higher payoff for females). We observe
that in panel C these arrows are such that at least the payoff of one player increases toward the
Nash–Pareto pair, with the exception of the points that lie on the equal payoff lines. This qualifies
the interior NE as a two-species weak ESS
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Fig. 23.1, the NE is a Nash-Pareto pair, because it is impossible for both players
to simultaneously deviate from the Nash equilibrium and increase their payoffs. In
panels A and B, both arrows point in the direction of the NE. In panel C at least
one arrow is pointing to the NE .p; q/ if both players deviate from that equilibrium.
However, this interior NE is not a two-species ESS since, when only one player
(e.g., player one) deviates, no arrow points in the direction of .p; q/. This happens
on the equal payoff lines (dashed lines). For example, let us consider points on
the vertical dashed line above the NE. Here vertical arrows are zero vectors and
horizontal arrows point away from p. Excluding points on the vertical and horizontal
line from the definition of a two-species ESS leads to a two-species weak ESS.

6.2 The Owner–Intruder Game

The Owner–Intruder game is an extension of the Hawk–Dove game, where player
1 (the owner) and player 2 (the intruder) have distinct roles (i.e., they cannot be
interchanged as is the case of symmetric games). In particular an individual can
play either of Hawk or Dove in either of the two roles. This leads to the bimatrix
representation of the Hawk–Dove game below, which cannot be collapsed down to
the single 2 � 2 matrix from Sect. 2, because the strategy that an individual plays
may be conditional upon the role that it occupies (in Sect. 2 there are no such distinct
roles). The bimatrix of the game is

�OwnernIntruder Hawk Dove

Hawk . V �C
2

; V �C
2

/ .V; 0/

Dove .0; V / .V =2; V =2/

�
:

Provided we assume that each individual has the same chance to be an owner or
an intruder, the game can be symmetrized with the payoffs to the symmetrized game
given in the following payoff matrix,

0
BB@

Hawk Dove Bourgeois Anti-Bourgeois

Hawk .V � C /=2 V .3V � C /=4 .3V � C /=4

Dove 0 V =2 V =4 V =4

Bourgeois .V � C /=4 3V =4 V =2 .2V � C /=4

Anti-Bourgeois .V � C /=4 3V =4 .2V � C /=4 V =2

1
CCA

where

Hawk � play Hawk when both owner and intruder,
Dove � play Dove when both owner and intruder,
Bourgeois � play Hawk when owner and Dove when intruder,
Anti-Bourgeois � play Dove when owner and Hawk when intruder.

It is straightforward to show that if V � C , then Hawk is the unique ESS
(Fig. 23.2A), and that if V < C , then Bourgeois and Anti-Bourgeois (alternatively
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A

p1

q1

10

1
B

p1

q1

10

1

Fig. 23.2 The ESS for the Owner–Intruder game. Panel A assumes V > C and the only ESS is to
be Hawk at both roles (i.e., .p1; q1/ D .1; 1/ D .Hawk; Hawk/). If V < C (Panel B), there are two
boundary ESSs (black dots) corresponding to the Bourgeois (.p1; q1/ D .1; 0/ D .Hawk; Dove/)
and Anti-Bourgeois (.p1; q1/ D .0; 1/ D .Dove; Hawk/) strategies. The directions in which the
owner and intruder payoffs increase are shown by arrows (e.g., a horizontal arrow to the right
means the Hawk strategy has the higher payoff for owner, whereas a downward arrow means
the Dove strategy has the higher payoff for intruder). The interior NE (the light gray dot at the
intersection of the two equal payoff lines) is not a two-species ESS as there are regions (the upper-
left and lower-right corners) where both arrows point in directions away from this point

called Marauder) are the only ESSs (Fig. 23.2B). As we see, there are only pure
strategy solutions, as opposed to the case of the Hawk–Dove game, which had a
mixed ESS V =C for V < C , because the interior NE in Fig. 23.2B is not a Nash–
Pareto pair as in the upper-left and lower-right regions both arrows are pointing
away from the NE. Thus, if both players simultaneously deviate from the Nash
equilibrium, their payoffs increase. Consequently, this NE is not a two-species
(weak) ESS.

Important recent work on this model and its ramifications for the part that
respecting ownership plays has been carried out by Mesterton Gibbons, Sherratt
and coworkers (see Mesterton-Gibbons and Sherratt 2014; Sherratt and Mesterton-
Gibbons 2015). In particular, why in real populations is the Bourgeois respect for
ownership strategy so common and the Anti-Bourgeois strategy so rare? One expla-
nation offered by Maynard Smith (1982) was “infinite regress.” In this argument,
immediately after a contest, the winner becomes the owner of the territory, and
the loser becomes a potential intruder which could immediately rechallenge the
individual that has just displaced it. In an Anti-Bourgeois population, this would
result in the new owner conceding and the new intruder (the previous owner) once
again being the owner, but then the displaced owner could immediately rechallenge,
and the process would continue indefinitely. It is shown in Mesterton-Gibbons
and Sherratt (2014) that under certain circumstances, but not always, this allows
Bourgeois to be the unique ESS. Sherratt and Mesterton-Gibbons (2015) discuss
many issues, such as uncertainty of ownership, asymmetry of resource value,
continuous contest investment (as in the war of attrition), and potential signaling
of intentions (what they call “secret handshakes,” similar to some of the signals we



1058 M. Broom and V. Křivan
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Fig. 23.3 (Continued)
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discuss in Sect. 10) in detail. There are many reasons that can make evolution of
Anti-Bourgeois unlikely, and it is probably a combination of these that make it so
rare.

6.3 Bimatrix Replicator Dynamics

The single-species replicator dynamics such as those for the Hawk–Dove game
(Sect. 2.1) can be extended to two roles as follows (Hofbauer and Sigmund 1998).
Note that here this is interpreted as two completely separate populations, i.e., any
individual can only ever occupy one of the roles, and its offspring occupy that same
role. If A D .aij / iD1;:::;n

j D1;:::;m
and B D .bij /iD1;:::;m

j D1;:::;n
are the payoff matrices to an

individual in role 1 and role 2, respectively, the corresponding replicator dynamics
are

d
dt

p1i .t/ D p1i

�
.Ap2

T /i � p1Ap2
T
�

i D 1; : : : ; nI

d
dt

p2j .t/ D p2j

�
.Bp1

T /j � p2Bp1
T
�

j D 1; : : : ; mI

where p1 2 �n and p2 2 �m are the population mixtures of individuals in role 1
and 2, respectively. For example, for the two-role, two-strategy game, where without
loss of generality we can set a11 D a22 D b11 D b22 D 0 (since as for matrix games,
adding a constant to all of the payoffs an individual gets against a given strategy does
not affect the NEs/ ESSs), we obtain

dx

dt
D x.1 � x/.a12 � .a12 C a21/y/;

dy

dt
D y.1 � y/.b12 � .b12 C b21/x/;

(23.11)

where x is the frequency of the first strategy players in the role 1 population and
y is the corresponding frequency for role 2. Hofbauer and Sigmund (1998) show
that orbits converge to the boundary in all cases except if a12a21 > 0; b12b21 > 0,
and a12b12 < 0, which yield closed periodic orbits around the internal equilibrium.
Replicator dynamics for the Battle of the Sexes and the Owner–Intruder game are
shown in Fig. 23.3.

J
Fig. 23.3 Bimatrix replicator dynamics (23.11) for the Battle of the Sexes game (A–C) and the
Owner–Intruder game (D, E), respectively. Panels A–C correspond to panels given in Fig. 23.1,
and panels D and E correspond to those of Fig. 23.2. This figure shows that trajectories of the
bimatrix replicator dynamics converge to a two-species ESS as defined in Sects. 6.1 and 6.2. In
particular, the interior NE in panel E is not a two-species ESS, and it is an unstable equilibrium
for the bimatrix replicator dynamics. In panel C the interior NE is two-species weak ESS, and it is
(neutrally) stable for the bimatrix replicator dynamics
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Note there are some problems with the interpretation of the dynamics of
two populations in this way, related to the assumption of exponential growth of
populations, since the above dynamics effectively assume that the relative size of
the two populations remains constant (Argasinski 2006).

7 The Habitat Selection Game

Fretwell and Lucas (1969) introduced the Ideal Free Distribution (IFD) to describe
a distribution of animals in a heterogeneous environment consisting of discrete
patches i D 1; : : : ; n. The IFD assumes that animals are free to move between
several patches, travel is cost-free, each individual knows perfectly the quality of all
patches, and all individuals have the same competitive abilities. Assuming that these
patches differ in their basic quality Bi (i.e., their quality when unoccupied), the IFD
model predicts that the best patch will always be occupied.

Let us assume that patches are arranged in descending order (B1 > � � � > Bn > 0)
and mi is the animal abundance in patch i . Let pi D mi =.m1 C � � � C mn/ be the
proportion of animals in patch i , so that p D .p1; : : : ; pn/ describes the spatial
distribution of the population. For a monomorphic population, pi also specifies the
individual strategy as the proportion of the lifetime an average animal spends in
patch i . We assume that the payoff in each patch, Vi .pi /, is a decreasing function
of animal abundance in that patch, i.e., the patch payoffs are negatively density
dependent. Then, fitness of a mutant with strategy Qp D . Qp1; : : : ; Qpn/ in the resident
monomorphic population with distribution p D .p1; : : : ; pn/ is

E. Qp; p/ D

nX
iD1

Qpi Vi .pi /:

However, we do not need to make the assumption that the population is monomor-
phic, because what really matters in calculating E. Qp; p/ above is the animal
distribution p: If the population is not monomorphic, this distribution can be
different from strategies animals use, and we call it the population mean strategy.
Thus, in the Habitat Selection game, individuals do not enter pairwise conflicts, but
they play against the population mean strategy (referred to as a “playing the field”
or “population” game).

Fretwell and Lucas (1969) introduced the concept of the Ideal Free Distribution
which is a population distribution p D .p1; : : : ; pn/ that satisfies two conditions:

1. There exists a number 1 � k � n such that p1 > 0; : : : ; pk > 0 and pkC1 D

� � � D pn D 0

2. V1.p1/ D � � � D Vk.pk/ D V � and V � � Vi .pi / for i D k C 1; : : : ; n:

They proved that provided patch payoffs are negatively density dependent (i.e.,
decreasing functions of the number of individuals in a patch), then there exists a
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unique IFD which Cressman and Křivan (2006) later showed is an ESS. In the next
section, we will discuss two commonly used types of patch payoff functions.

7.1 Parker’s Matching Principle

Parker (1978) considered the case where resource input rates ri ; i D 1; : : : ; n

are constant and resources are consumed immediately when they enter the patch
and so there is no standing crop. This leads to a particularly simple definition of
animal patch payoffs as the ratio of the resource input rate divided by the number of
individuals there, i.e.,

Vi D
ri

mi

D
ri

pi M
(23.12)

where M D m1 C � � � C mn is the overall population abundance. The matching
principle then says that animals distribute themselves so that their abundance in
each patch is proportional to the rate with which resources arrive into the patch,
pi =pj D ri =rj : This is nothing other than the IFD for payoff functions (23.12).
It is interesting to notice that all patches will be occupied independently of the
total population abundance. Indeed, as the consumer density in the i�th patch
decreases, payoff ri =.pi M/ increases, which attracts some animals, and there
cannot be unoccupied patches. There is an important difference between this
(nonlinear) payoff function (23.12) and the linear payoff function that we consider
in the following Eq. (23.13), because as the local population abundance in a patch
decreases, then (23.12) tends to infinity, but (23.13) tends to ri . This means that in
the first case there cannot be unoccupied patches (irrespective of their basic patch
quality ri ) because the payoffs in occupied patches are finite, but the payoff in
unoccupied patches would be infinite (provided all ri > 0). This argument does not
apply in the case of the logistic payoff (23.13). This concept successfully predicts
the distribution of house flies that arrive at a cow pat where they immediately mate
(Blanckenhorn et al. 2000; Parker 1978, 1984) or of fish that are fed at two feeders
in a tank (Berec et al. 2006; Milinski 1979, 1988).

In the next section, we consider the situation where resources are not consumed
immediately upon entering the system.

7.2 Patch Payoffs are Linear

Here we consider two patches only, and we assume that the payoff in habitat
i.D 1; 2/ is a linearly decreasing function of population abundance:

Vi D ri

�
1 �

mi

Ki

�
D ri

�
1 �

pi M

Ki

�
(23.13)
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where mi is the population density in habitat i , ri is the intrinsic per capita
population growth rate in habitat i , and Ki is its carrying capacity. The total
population size in the two-habitat environment is denoted by M (D m1 C m2), and
the proportion of the population in habitat i is pi D mi =M . Payoff (23.13) is often
used in population dynamics where it describes the logistic population growth.

Let us consider an individual which spends proportion Qp1 of its lifetime in habitat
1 and Qp2 in habitat 2. Provided total population density is fixed at M , then its fitness
in the population with mean strategy p D .p1; p2/ is

E. Qp; p/ D Qp1V1.p1/ C Qp2V2.p2/ D Qp U pT ;

where

U D

 
r1.1 � M

K1
/ r1

r2 r2.1 � M
K2

/

!

is the payoff matrix with two strategies, where strategy i represents staying in patch
i (i D 1; 2). This shows that the Habitat Selection game with a linear payoff can
be written for a fixed population size as a matrix game. If the per capita intrinsic
population growth rate in habitat 1 is higher than that in habitat 2 (r1 > r2), the IFD
is (Křivan and Sirot 2002)

p1 D

8<
:

1 if M < K1
r1�r2

r1

r2K1

r2K1 C r1K2

C
K1K2.r1 � r2/

.r2K1 C r1K2/M
otherwise:

(23.14)

When the total population abundance is low, the payoff in habitat 1 is higher than the
payoff in habitat 2 for all possible population distributions because the competition
in patch 1 is low due to low population densities. For higher population abundances,
neither of the two habitats is always better than the other, and under the IFD payoffs
in both habitats must be the same (V1.p1/ D V2.p2/). Once again, it is important
to emphasize here that the IFD concept is different from maximization of the mean
animal fitness

W .p; p/ D p1V1.p1/ C p2V2.p2/

which would lead to

p1 D

8̂<
:̂

1 if M < K1

r1 � r2

2r1
r2K1

r1K2 C r2K1

C
K1K2.r1 � r2/

2.r1K2 C r2K1/M
otherwise:

(23.15)

The two expressions (23.14) and (23.15) are the same if and only if r1 D r2.
Interestingly, by comparing (23.14) and (23.15), we see that maximizing mean
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fitness leads to fewer animals than the IFD in the patch with higher basic quality
ri (i.e., in patch 1).

7.3 Some Extensions of the Habitat Selection Game

The Habitat Selection game as described makes several assumptions that were
relaxed in the literature. One assumption is that patch payoffs are decreasing func-
tions of population abundance. This assumption is important because it guarantees
that a unique IFD exists. However, patch payoffs can also be increasing functions
of population abundance. In particular, at low population densities, payoffs can
increase as more individuals enter a patch, and competition is initially weak. For
example, more individuals in a patch can increase the probability of finding a mate.
This is called the Allee effect. The IFD for the Allee effect has been studied in the
literature (Cressman and Tran 2015; Fretwell and Lucas 1969; Křivan 2014; Morris
2002). It has been shown that for hump-shaped patch payoffs, up to three IFDs
can exist for a given overall population abundance. At very low overall population
abundances, only the most profitable patch will be occupied. At intermediate
population densities, there are two IFDs corresponding to pure strategies where all
individuals occupy patch 1 only, or patch 2 only. As population abundance increases,
competition becomes more severe, and an interior IFD appears exactly as in the case
of negative density-dependent payoff functions. At high overall population abun-
dances, only the interior IFD exists due to strong competition among individuals.
It is interesting to note that as the population numbers change, there can be sudden
(discontinuous) changes in the population distribution. Such erratic changes in the
distribution of deer mice were observed and analyzed by Morris (2002).

Another complication that leads to multiple IFDs is the cost of dispersal. Let us
consider a positive migration cost c between two patches. An individual currently
in patch 1 will migrate to patch 2 only if the payoff there is such that V2.p2/ �

c � V1.p1/: Similarly, an individual currently in patch 2 will migrate to patch 1
only if its payoff does not decrease by doing so, i.e., V1.p1/ � c � V2.p2/: Thus,
all distributions .p1; p2/ that satisfy these two inequalities form the set of IFDs
(Mariani et al. 2016).

The Habitat Selection game was also extended to situations where individuals
perceive space as a continuum (e.g., Cantrell et al. 2007, 2012; Cosner 2005). The
movement by diffusion is then combined, or replaced, by a movement along the
gradient of animal fitness.

7.4 Habitat Selection for Two Species

Instead of a single species, we now consider two species with population densities
M and N dispersing between two patches. We assume that individuals of these
species compete in each patch both intra- and inter-specifically. Following our
single-species Habitat Selection game, we assume that individual payoffs are linear
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functions of species distribution (Křivan and Sirot 2002; Křivan et al. 2008)

Vi .p; q/ D ri

�
1 �

pi M

Ki

�
˛i qi N

Ki

�
;

Wi .p; q/ D si

�
1 �

qi N

Li

�
ˇi pi M

Li

�
;

where p D .p1; p2/ denotes the distribution of species one and q D .q1; q2/

the distribution of species two. Here, positive parameters ˛i (respectively ˇi ) are
interspecific competition coefficients, ri (respectively si ) are the intrinsic per capita
population growth rates, and Ki (respectively Li ) are the environmental carrying
capacities. The two-species Habitat Selection game cannot be represented in a bima-
trix form (to represent it in a matrix form, we would need four matrices), because the
payoff in patch i for a given species depends not only on the distribution (strategy) of
its competitors but also on the distribution of its own conspecifics. The equal payoff
line for species one (two) are those .p; q/ 2 �2 � �2 for which V1.p; q/ D V2.p; q/

(W1.p; q/ D W2.p; q/). Since payoffs are linear functions, these are lines in the
coordinates p1 and q1, but as opposed to the case of bimatrix games in Sects. 6.1
and 6.2, they are neither horizontal nor vertical. If they do not intersect in the unit
square, the two species cannot coexist in both patches at an NE. The most interesting
case is when the two equal payoff lines intersect inside the unit square. Křivan et al.
(2008) showed that the interior intersection is the two-species ESS provided

r1s1K2L2.1 � ˛1ˇ1/ C r1s2K2L1.1 � ˛1ˇ2/C

r2s1K1L2.1 � ˛2ˇ1/ C r2s2K1L1.1 � ˛2ˇ2/ > 0:

Geometrically, this condition states that the equal payoff line for species one has
a more negative slope than that for species two. This allows us to extend the
concept of the single-species Habitat Selection game to two species that compete
in two patches. In this case the two-species IFD is defined as a two-species ESS.
We remark that the best response dynamics do converge to such two-species IFD
(Křivan et al. 2008).

One of the predictions of the Habitat Selection game for two species is that as
competition gets stronger, the two species will spatially segregate (e.g., Křivan and
Sirot 2002; Morris 1999). Such spatial segregation was observed in experiments
with two bacterial strains in a microhabitat system with nutrient-poor and nutrient-
rich patches (Lambert et al. 2011).

8 Dispersal and Evolution of Dispersal

Organisms often move from one habitat to another, which is referred to as dispersal.
We focus here on dispersal and its relation to the IFD discussed in the previous
section.
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Here we consider n habitat patches and a population of individuals that disperse
between them. In what follows we will assume that the patches are either adjacent
(in particular when there are just two patches) or that the travel time between them
is negligible when compared to the time individuals spend in these patches. There
are two basic questions:

1. When is dispersal an adaptive strategy, i.e., when does individual fitness increase
for dispersing animals compared to those who are sedentary?

2. Where should individuals disperse?

To describe changes in population densities, we will consider demographic
population growth in each patch and dispersal between patches. Dispersal is
described by the propensity of individuals to disperse (ı � 0) and by a dispersal
matrix D: The entries of this matrix (Dij ) describe the transition probabilities that
an individual currently in patch j moves to patch i per unit of time. We remark
that Dii is the probability of staying in patch i . Per capita population growth rates
in patches are given by fi (e.g., fi can be the logistic growth rate Vi (23.13) in
Sect. 7.2). The changes in population numbers are then described by population–
dispersal dynamics

dmi

dt
D mi fi .mi / C ı

nX
j D1

�
Dij .m/mj � Dji .m/mi

�
for i D 1; : : : ; n (23.16)

where m D .m1; � � � ; mn/ is the vector of population densities in n patches.
Thus, the first term in the above summation describes immigration to patch i from
other patches, and the second term describes emigration from patch i to other
patches. In addition, we assume that D is irreducible, i.e., there are no isolated
patches.

The case that corresponds to the passive diffusion between patches assumes that
entries of the dispersal matrix are constant and the matrix is symmetric. It was
shown (Takeuchi 1996) that when functions fi are decreasing with fi .0/ > 0 and
fi .Ki / D 0 for some Ki > 0, then model (23.16) has an interior equilibrium
which is globally asymptotically stable. However this does not answer the question
of whether such an equilibrium is evolutionarily stable, i.e., whether it is resistant to
invasion of mutants with the same traits (parameters) as the resident population, but
different propensity to disperse ı: The answer to this question depends on the entries
of the dispersal matrix. An interior population distribution m� D .m�

1 ; : : : ; m�
n/ will

be the IFD provided patch payoffs in all patches are the same, i.e., f1.m�
1 / D � � � D

fn.m�
n/: This implies that at the population equilibrium, there is no net dispersal,

i.e.,

ı

nX
j D1

�
Dij m�

j � Djim
�
i

�
D 0:
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There are two possibilities. Either

nX
j D1

�
Dij m�

j � Dji m
�
i

�
D 0; (23.17)

or ı D 0. The pattern of equalized immigration and emigration satisfying (23.17)
is called “balanced dispersal” (Doncaster et al. 1997; Holt and Barfield 2001;
McPeek and Holt 1992). Under balanced dispersal, there is an inverse relation
between local population size and its dispersal rate. In other words, individuals at
good sites are less likely to disperse than those from poor sites. When dispersal is
unbalanced, Hastings (1983) showed that mutants with lower propensity to disperse
will outcompete the residents and no dispersal (ı D 0) is the only evolutionarily
stable strategy.

However, dispersal can be favored even when it is not balanced. Hamilton and
May (1977) showed that unconditional and costly dispersal among very many
patches can be promoted because it reduces competition between relatives. Their
model was generalized by Comins et al. (1980) who assumed that because of
stochastic effects, a proportion e of patches can become empty at any time step. A
proportion p of migrants survives migration and re-distributes at random (assuming
the Poisson distribution) among the patches. These authors derived analytically
the evolutionarily stable dispersal strategy that is given by a complicated implicit
formula (see formula (3) in Comins et al. 1980). As population abundance
increases, the evolutionarily stable dispersal rate converges to a simpler formula

ı D
e

1 � p.1 � e/
:

Here the advantage of dispersal results from the possibility of colonizing an extinct
patch.

Evolution of mobility in predator–prey systems was also studied by Xu et al.
(2014). These authors showed how interaction strength between mobile vs. sessile
prey and predators influences the evolution of dispersal.

9 Foraging Games

Foraging games describe interactions between prey, their predators, or both. These
games assume that either predator or prey behave in order to maximize their fitness.
Typically, the prey strategy is to avoid predators while predators try to track their
prey. Several models that focus on various aspects of predator–prey interactions
were developed in the literature (e.g., Brown and Vincent 1987; Brown et al. 1999,
2001; Vincent and Brown 2005).

An important component of predation is the functional response defined as the
per predator rate of prey consumption (Holling 1959). It also serves as a basis for
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models of optimal foraging (Stephens and Krebs 1986) that aim to predict diet
selection of predators in environments with multiple prey types. In this section we
start with a model of optimal foraging, and we show how it can be derived using
extensive form games (see Volume I, �Chap. 6, “Evolutionary Game Theory”). As
an example of a predator–prey game, we then discuss predator–prey distribution in
a two-patch environment.

9.1 Optimal Foraging as an Agent Normal Form of an Extensive
Game

Often it is assumed that a predator’s fitness is proportional to its prey intake
rate, and the functional response serves as a proxy of fitness. In the case of two
or more prey types, the multi-prey functional response is the basis of the diet
choice model (Charnov 1976; Stephens and Krebs 1986) that predicts the predator’s
optimal diet as a function of prey densities in the environment. Here we show how
functional responses can be derived using decision trees of games given in extensive
form (Cressman 2003; Cressman et al. 2014; see also Broom et al. 2004, for an
example of where this methodology was used in a model of food stealing). Let us
consider a decision tree in Fig. 23.4 describing a single predator feeding on two
prey types. This decision tree assumes that a searching predator meets prey type
1 with probability p1 and prey type 2 with probability p2 during the search time
�s . For simplicity we will assume that p1 C p2 D 1: Upon an encounter with a
prey individual, the predator decides whether to attack the prey (prey type 1 with

1 2

p1 p2

q1 1− q1 q2 1− q2

e2e1 0 0

τs + h1

p1q1

τs

p1(1 − q1)

τs + h2

p2q2

τs

p2(1 − q2)

Level 1

Level 2

Fig. 23.4 The decision tree for two prey types. The first level gives the prey encounter distribution.
The second level gives the predator activity distribution. The final row of the diagram gives the
probability of each predator activity event and so sums to 1. If prey 1 is the more profitable type,
the edge in the decision tree corresponding to not attacking this type of prey is never followed at
optimal foraging (indicated by the dashed edge in the tree)

http://doi.org/10.1007/978-3-319-44374-4_6
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probability q1 and prey type 2 with probability q2) or not. When a prey individual is
captured, the energy that the predator receives is denoted by e1 or e2. The predator’s
cost is measured by the time lost. This time consists of the search time �s and the
time needed to handle the prey (h1 for prey type 1 and h2 for prey type 2).

Calculation of functional responses is based on renewal theory which proves that
the long-term intake rate of a given prey type can be calculated as the mean energy
intake during one renewal cycle divided by the mean duration of the renewal cycle
(Houston and McNamara 1999; Stephens and Krebs 1986). A single renewal cycle is
given by a predator passing through the decision tree in Fig. 23.4. Since type i prey
are only killed when the path denoted by pi and then qi is followed, the functional
response to prey i.D 1; 2/ is

fi .q1; q2/ D
pi qi

p1 .q1.�s C h1/ C .1 � q1/�s/ C p2 .q2.�s C h2/ C .1 � q2/�s/

D
pi qi

�s C p1q1h1 C p2q2h2

:

When xi denotes density of prey type i in the environment and the predator meets
prey at random, pi D xi =x; where x D x1 C x2: Setting � D 1=.�sx/ leads to

fi .q1; q2/ D
�xi qi

1 C �x1q1h1 C �x2q2h2

:

These are the functional responses assumed in standard two prey type models. The
predator’s rate of energy gain is given by

E.q1; q2/ D e1f1.q1; q2/ C e2f2.q1; q2/ D
e1p1q1 C e2p2q2

�s C p1q1h1 C p2q2h2

: (23.18)

This is the proxy of the predator’s fitness which is maximized over the predator’s
diet .q1; q2/, (0 � qi � 1, i D 1; 2).

Here, using the agent normal form of extensive form game theory (Cressman
2003), we show an alternative, game theoretical approach to find the optimal
foraging strategy. This method assigns a separate player (called an agent) to each
decision node (here 1 or 2). The possible decisions at this node become the agent’s
strategies, and its payoff is given by the total energy intake rate of the predator
it represents. Thus, all of the virtual agents have the same common payoff. The
optimal foraging strategy of the single predator is then a solution to this game. In
our example, player 1 corresponds to decision node 1 with strategy set �1 D fq1 j

0 � q1 � 1g and player 2 to node 2 with strategy set �2 D fq2 j 0 � q2 � 1g.
Their common payoff E.q1; q2/ is given by (23.18), and we seek the NE of the two-
player game. Assuming that prey type 1 is the more profitable for the predator, as its
energy content per unit handling time is higher than the profitability of the second
prey type (i.e., e1=h1 > e2=h2) we get E.1; q2/ > E.q1; q2/ for all 0 � q1 < 1 and
0 � q2 � 1. Thus, at any NE, player 1 must play q1 D 1. The NE strategy of player
2 is then any best response to q1 D 1 (i.e., any q2 that satisfies E.1; q0

2/ � E.1; q2/
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for all 0 � q0
2 � 1) which yields

q2 D

8<
:

0 if p1 > p�
1

1 if p1 < p�
1

Œ0; 1� if p1 D p�
1 ;

(23.19)

where

p�
1 D

e2�s

e1h2 � e2h1

: (23.20)

This NE coincides with the optimal strategy derived by maximization of (23.18).
It makes quite striking predictions. While the more profitable prey type is always
included in the predator’s diet, inclusion of the less profitable prey type is indepen-
dent of its own density and depends on the more profitable prey type density only.
This prediction was experimentally tested with great tits (e.g., Berec et al. 2003;
Krebs et al. 1977). That the Nash equilibrium coincides with the optimal foraging
strategy (i.e., with the maximum of E) in this model is not a coincidence. Cressman
et al. (2014) proved that this is so for all foraging games with a 2-level decision
tree. For decision tress with more levels, they showed that the optimal foraging
strategy is always an NE of the corresponding agent normal form game and that
other, nonoptimal, NE may also appear.

9.2 A Predator-Prey Foraging Game

As an example we consider here a predator–prey foraging game between prey and
predators in a two-patch environment. If xi denotes the abundance of prey in patch
i.D 1; 2/, the total abundance of prey is x D x1 C x2 and, similarly, the total
abundance of predators is y D y1 C y2: Let u D .u1; u2/ be the distribution of
prey and v D .v1; v2/ be the distribution of predators. We neglect the travel time
between patches so that u1 C u2 D v1 C v2 D 1 (i.e., each animal is either in
patch 1 or patch 2). We assume that the prey population grows exponentially at each
patch with the per capita population growth rate ri and it is consumed by predators.
The killing rate is given by the functional response. For simplicity we neglect the
handling time so that the functional response in patch i is fi D �i xi ; i.e., the per
prey per predator killing rate is �i . The prey payoff in patch i is given by the per
capita prey population growth rate in that patch, i.e., ri � �i vi y as there are vi y

predators in patch i . The fitness of a prey individual is

V .u; v/ D .r1 � �1v1y/u1 C .r2 � �2v2y/u2: (23.21)

The predator payoff in patch i is given by the per capita predator population growth
rate ei ui x � mi , where ei is a coefficient by which the energy gained by feeding on
prey is transformed into new predators and mi is the per capita predator mortality
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rate in patch i . The fitness of a predator with strategy v D .v1; v2/ when the prey
use strategy u D .u1; u2/ is

W .v; u/ D .e1�1u1x � m1/v1 C .e2�2u2x � m2/v2: (23.22)

This predator–prey game can be represented by the following payoff bimatrix

�PreynPredator Patch 1 Patch 2

Patch 1 .r1 � �1y; e1�1x � m1/ .r1; �m2/

Patch 2 .r2; �m1/ .r2 � �2y; e2�2x � m2/

�
:

That is, the rows in this bimatrix correspond to the prey strategy (the first row means
the prey are in patch 1; the second row means the prey are in patch 2), and similarly
columns represent the predator strategy. The first of the two expressions in the
entries of the bimatrix is the payoff for the prey, and the second is the payoff for
the predators.

For example, we will assume that for prey patch 1 has a higher basic patch quality
when compared to patch 2 (i.e., r1 � r2) while for predators patch 1 has a higher
mortality rate (m1 > m2). The corresponding NE is (Křivan 1997)

(a) .u�
1 ; v�

1 / if x >
m1 � m2

e1�1

; y >
r1 � r2

�1

,

(b) .1; 1/ if x >
m1 � m2

e1�1

; y <
r1 � r2

�1

,

(c) .1; 0/ if x <
m1 � m2

e1�1

;

where

.u�
1 ; v�

1 / D

�
m1 � m2 C e2�2x

.e1�1 C e2�2/x
;

r1 � r2 C �2y

.�1 C �2/y

�
:

If prey abundance is low (case (c)), all prey will be in patch 1, while predators
will stay in patch 2. Because the mortality rate for predators in patch 1 is higher
than in patch 2 and prey abundance is low, patch 2 is a refuge for predators. If
predator abundance is low and prey abundance is high (case (b)), both predators
and prey will aggregate in patch 1. When the NE is strict (cases (b) and (c) above),
it is also the ESS because there is no alternative strategy with the same payoff.
However, when the NE is mixed (case (a)), there exist alternative best replies to it.
This mixed NE is the two-species weak ESS. It is globally asymptotically stable
for the continuous-time best response dynamics (Křivan et al. 2008) that model
dispersal behavior whereby individuals move to the patch with the higher payoff.
We remark that for some population densities (x D m1�m2

e1�1
and y D r1�r2

�1
), the NE

is not uniquely defined, which is a general property of matrix games (the game is
nongeneric in this case).
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10 Signaling Games

Signaling between animals occurs in a number of contexts. This can be signals,
often but not necessarily between conspecifics, warning of approaching predators.
This situation can be game theoretic, as the signaler runs a potentially higher risk
of being targeted by the predator. There are also cases of false signals being given
when no predator is approaching to force food to be abandoned which can then be
consumed by the signaler (Flower 2011). Alternatively within a group of animals,
each individual may need to decide how to divide their time between vigilance and
feeding, where each individual benefits from the vigilance of others as well as itself,
and this has been modeled game-theoretically (e.g., Brown 1999; McNamara and
Houston 1992; Sirot 2012).

Another situation occurs between relatives over items of food, for example, a par-
ent bird feeding its offspring. Young birds beg aggressively for food, and the parent
must decide which to feed, if any (it can instead consume the item itself). The most
well-known model of this situation is the Sir Philip Sidney game (Maynard Smith
1991) and is a model of cost-free signaling (Bergstrom and Lachmann 1998).

The classic example of a signaling game is between potential mates. Males
of differing quality advertise this quality to females, often in a way that is
costly, and the females choose who to mate with based upon the strength of the
signal. Examples are the tail of the peacock or the elaborate bowers created by
bowerbirds. There is obviously a large incentive to cheat, and so how are such
signals kept honest? A signal that is not at least partly correlated to quality would
be meaningless, and so would eventually be ignored. The solution as developed by
Zahavi (1975, 1977), the handicap principle, is that these costly signals are easier to
bear by higher-quality mates and that evolution leads to a completely honest signal,
where each quality level has a unique signal.

10.1 Grafen’s Signaling Game

The following signaling model is due to (Grafen 1990a,b). Consider a population
with a continuum of male quality types q and a single type of female. Assume
that a male of quality q gives a signal a D A.q/ of this quality, where higher
values of a are more costly. It is assumed that there is both a minimum quality
level q0 > 0 (there may or may not be a maximum quality level) and a minimum
signal level a0 � 0 (which can be thought of as giving no signal). When a female
receives a signal, she allocates a quality level to the signal P .a/. We have a nonlinear
asymmetric game with sequential decisions; in particular the nonlinearity makes this
game considerably more complicated than asymmetric games such as the Battle of
the Sexes of Sect. 6.1. The female pays a cost for misassessing a male of quality q

as being of quality p of D.q; p/, which is positive for p ¤ q, with D.q; q/ D 0.
Assuming that the probability density of males of quality q is g.q/, the payoff to
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the female, which is simply minus the expected cost, is

�

Z 1

q0

D.q; p/g.q/dq:

An honest signaling system with strategies A� and P � occurs if and only if
P �.A�.q// D q, for all q. We note that here the female never misassesses a
male and so pays zero cost. Clearly any alternative female assessment strategy
would do worse. But how can we obtain stability against alternative (cheating) male
strategies?

The fitness of a male of quality q, W .a; p; q/, depends upon his true quality, the
quality assigned to him by the female and the cost of his signal. W .a; p; q/ will be
increasing in p and decreasing in a. For stability of the honest signal, we need that
the incremental advantage of a higher level of signaling is greater for a high-quality
male than for a low-quality one, so that

�
@
@a

W .a; p; q/

@
@p

W .a; p; q/
(23.23)

is strictly decreasing in q (note that the ratio is negative, so minus this ratio is
positive), i.e., the higher quality the male, the lower the ratio of the marginal cost
to the marginal benefit for an increase in the level of advertising. This ensures that
completely honest signaling cannot be invaded by cheating, since costs to cheats to
copy the signals of better quality males would be explicitly higher than for the better
quality males, who could always thus achieve a cost they were willing to pay that
the lower quality cheats would not.

The following example male fitness function is given in Grafen (1990a) (the
precise fitness function to the female does not affect the solution provided that
correct assessment yields 0, and any misassessment yields a negative payoff)

W .a; p; q/ D prqa; (23.24)

with qualities in the range q0 � q < 1 and signals of strength a � a0, for some
r > 0.

We can see that the function from (23.24) satisfies the above conditions on
W .a; p; q/. In particular consider the condition from expression (23.23)

�
@

@a
W .a; p; q/ D �prqa ln q;

@

@p
W .a; p; q/ D rpr�1qa

which are the increase in cost per unit increase in the signal level and the increase
in the payoff per unit increase in the female’s perception (which in turn is directly
caused by increases in signal level), respectively. The ratio from (23.23), which
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is proportional to the increase in cost per unit of benefit that this would yield,
becomes �p ln q=r , takes a larger value for lower values of q. Thus there is an
honest signaling solution. This is shown in Grafen (1990a) to be given by

A.q/ D a0 � r ln

�
ln.q/

ln.q0/

�
; P .a/ D q

exp.�.a�a0/=r/
0 :

11 Conclusion

In this chapter we have covered some of the important evolutionary game models
applied to biological situations. We should note that we have left out a number of
important theoretical topics as well as areas of application. We briefly touch on a
number of those below.

All of the games that we have considered involved either pairwise games,
or playing the field games, where individuals effectively play against the whole
population. In reality contests will sometimes involve groups of individuals. Such
models were developed in Broom et al. (1997), for a recent review see Gokhale and
Traulsen (2014). In addition the populations were all both effectively infinite and
well-mixed in the sense that for any direct contest involving individuals, each pair
was equally likely to meet. In reality populations are finite and have (e.g., spatial)
structure. The modeling of evolution in finite populations often uses the Moran
process (Moran 1958), but more recently games in finite populations have received
significant attention (Nowak 2006). These models have been extended to include
population structure by considering evolution on graphs (Lieberman et al. 2005),
and there has been an explosion of such model applications, especially to consider
the evolution of cooperation. Another feature of realistic populations that we have
ignored is the state of the individual. A hungry individual may behave differently to
one that has recently eaten, and nesting behavior may be different at the start of the
breeding season to later on. A theory of state-based models has been developed in
Houston and McNamara (1999).

In terms of applications, we have focused on classical biological problems,
but game theory has also been applied to medical scenarios more recently. This
includes the modeling of epidemics, especially with the intention of developing
defense strategies. One important class of models (see, e.g., Nowak and May
1994) considers the evolution of the virulence of a disease as the epidemic
spreads. An exciting new line of research has recently been developed which
considers the development of cancer as an evolutionary game, where the pop-
ulation of cancer cells evolves in the environment of the individual person or
animal (Gatenby et al. 2010). A survey of alternative approaches is considered in
Durrett (2014).
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