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Georges Zaccour
Editors



Handbook of Dynamic Game Theory
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Preface

The Handbook of Dynamic Game Theory is a comprehensive two-part two-volume
treatise on dynamic/differential games, which is a mature but still growing and
expanding field, in both theoretical developments and the range of its applications.
The first part (and volume) of the Handbook focuses on fundamentals and theory,
and the second part (and volume) covers applications in diverse fields, such as
economics, management science, engineering, and biology. Each part is broken into
chapters dealing with specific topics or sub-areas, all written by experts on these
topics. Each chapter itself provides a comprehensive coverage of the corresponding
topics, written with a broader audience in mind, but without dilution of the technical
content. We provide below brief descriptions of the contents of the two parts
(and volumes), and hence of the Handbook.

1 Part I: Theory of Dynamic Games

The first part (and volume) includes fourteen chapters. To set the stage for dynamic
games covered by other chapters in the Handbook, Tamer Başar provides in
Chap. 1 a general Introduction to the Theory of Games. In particular, he describes
what game theory is about and its historical origins, shows how to formulate a
(static) game, introduces main solution concepts for both zero-sum and nonzero-
sum games, and discusses some classical results. In Chap. 2, Tamer Başar, Alain
Haurie and Georges Zaccour provide an overview of the theory of Nonzero-Sum
Differential Games, describing the general framework for their formulation, the role
played by information structures and their importance, and noncooperative solution
concepts. The chapter illustrates some of the key concepts with simple examples
and places particular emphasis on the tractable class of linear-quadratic differential
games, which has often been adopted in applications.

In Chap. 3, Dean Carlson, Alain Haurie and Georges Zaccour expose a full
theory for Infinite-Horizon Concave Differential Games with Coupled Constraints.
Concave games provide an attractive setting for many applications of differential
games in economics, management science, and engineering, and state coupling
constraints happen to arise quite naturally in many of these applications. The theory
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is illustrated with the classical model of Ramsey. In Chap. 4, Jacek B. Krawczyk
and Vladimir Petkov provide a comprehensive coverage of the theory of Multistage
Games, that is, state-space dynamic games in discrete time. The objective and
the content of the chapter are similar to those in Chap. 2, which is a continuous-
time counterpart to this one. The role of information structure in dynamic games
is highlighted and different equilibria are discussed. The authors also show how
memory-based (non-Markovian) strategies can support Pareto-efficient outcomes in
a dynamic game.

Chapters 5 and 6 deal with zero-sum stochastic games and nonzero-sum stochas-
tic games, respectively. In Chap. 5, Anna Jaśkiewicz and Andrzej S. Nowak
review all basic streams of research in Zero-Sum Stochastic Games, including
the existence of value and uniform value, algorithms, vector payoffs, incomplete
information, and imperfect state observation. Some models related to continuous-
time games are briefly discussed. Chapter 6 describes a number of results obtained
in the last 60 years on the theory of Nonzero-Sum Stochastic Games. In particular,
Anna Jaśkiewicz and Andrzej S. Nowak provide an overview of most important
results related to the existence of stationary Nash and correlated equilibria in models
on countable and general state spaces, the existence of subgame-perfect equilibria,
algorithms, stopping games, and the existence of uniform equilibria. The survey
also incorporates several examples of games studied in operations research and
economics.

In Chap. 7, Peter E. Caines, Minyi Huang and Roland P. Malhamé deliver
a comprehensive current account of the theory of Mean Field Games (MFGs). As
the theory and methodology of MFGs has rapidly developed since its (relatively
recent) inception and is still advancing, the objective of this chapter is to present
the fundamental conceptual framework of MFGs in the continuous time setting
and the main techniques that are currently available. In a nutshell, MFG theory
studies the existence of Nash equilibria, together with the individual strategies which
generate them, in games involving a large number of asymptotically negligible
agents modeled by controlled stochastic dynamical systems. Chapter 8 is devoted to
two-player, Zero-Sum Differential Games, with a special emphasis on the existence
of a value and its characterization in terms of a partial differential equation, the
Hamilton-Jacobi-Isaacs equation. Pierre Cardaliaguet and Catherine Rainer
discuss different classes of finite horizon, infinite horizon, and pursuit-evasion
games. They also analyze differential games in which the players do not have a
full information on the structure of the game or cannot completely observe the state.

In Chap. 9, Pierre Bernhard presents the theory of Robust Control and Dynamic
Games. The chapter’s main objective is to describe a series of problems of robust
control that can be approached using game theoretical tools. Chapter 10 is about
Evolutionary Game Theory. Ross Cressman and Joe Apaloo first summarize
features of matrix games before showing how the theory changes when the two-
player game has a continuum of traits or interactions become asymmetric. Its focus
is on the connection between static game-theoretic solution concepts (e.g., evolu-
tionarily stable, continuously stable strategies) and stable evolutionary outcomes
for deterministic evolutionary game dynamics (e.g., the replicator equation, adaptive
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dynamics). The chapter provides a series of examples to illustrate some of the main
results of this theory. In Chap. 11, Jason R. Marden and Jeff S. Shamma provide
an overview of the Game Theoretic Learning in Distributed Control. In distributed
architecture control problems, there is a collection of interconnected decision-
making components that seek to realize desirable collective behaviors through local
interactions and by processing local information. One approach to control such
architectures is to view the components as players in a game. The chapter covers
special game classes, measures of distributed efficiency, utility design, and online
learning rules, all with the interpretation of using game theory as a prescriptive
paradigm for distributed control design. In Chap. 12, S. Rasoul Etesami and Tamer
Başar provide a general overview of the topic of Network Games, its application in
a number of areas, and recent advances, by focusing on four major types of games,
namely, congestion games, resource allocation games, diffusion games, and network
formation games. Several algorithmic aspects and methodologies for analyzing such
games are discussed, and connections between network games and other relevant
topical areas are identified.

The last two chapters of the first part of the Handbook concern cooperative
differential games. In many instances, players find it individually and collectively
rational to sign a long-term cooperative agreement. A major concern in such a
setting is how to ensure that each player will abide by her commitment as time
goes by. The players will stick to the agreement if each one of them still finds it
individually rational at any intermediate instant of time to continue to implement her
cooperative control rather than switch to a noncooperative control. If this condition
is satisfied for all players, then we say that the agreement is time consistent. In
Cooperative Differential Games with Transferable Payoffs (Chap. 13), Leon A.
Petrosyan and Georges Zaccour deal with the design of schemes that guarantee
time consistency in deterministic differential games with transferable payoffs.
In Nontransferable Utility Cooperative Dynamic Games (Chap. 14), David W.K.
Yeung and Leon A. Petrosyan deal with the same issues, but assuming away the
possibility of side payments between players.

2 Part II: Applications of Dynamic Games

The second part (and volume) of the Handbook also has fourteen chapters, with four
of them being in economics, two in management science, and five in engineering.
The remaining chapters cover the classical area of pursuit-evasion games, social
networks, and evolutionary games in biology.

In Resource Economics (Chap. 15), Ngo van Long provides a selective review
of dynamic game models of exploitation of both exhaustible and renewable natural
resources. To avoid much overlap with earlier surveys, the chapter focuses on recent
literature, while emphasizing economic intuition behind the models and the results.
In Chap. 16, Dynamic Games of International Pollution Control: A Selective Review,
Aart de Zeeuw focuses on dynamic games of climate change with one global
stock of pollutants. The chapter has two parts. In the first part, the author derives
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Nash equilibria under different information structures and compares their outcomes
to those that the players would achieve if they were to cooperate. In the second
part, the stability of international environmental agreements (or partial-cooperation
Nash equilibria) is investigated from different angles and representative examples
are discussed.

In Dynamic Games in Macroeconomics (Chap. 17), Łukasz Balbus, Kevin
Reffett and Łukasz Woźny survey how the methods of dynamic and stochastic
games have been applied in recent work in macroeconomics. Among other topics,
the authors discuss the strategic dynamic programming method with states, which
is useful for proving the existence of sequential or subgame perfect equilibrium of
a dynamic game. The chapter presents some illustrative cases and concludes with
alternative methods that are useful for some macroeconomic problems. In Chap. 18,
Luca Colombo and Paola Labrecciosa provide an overview of applications of Dif-
ferential Games in Industrial Organization. On the menu are classical contributions
on adjustment costs, sticky prices, and R&D races, as well as some more recent
ones dealing with imperfect competition in the exploitation of renewable productive
assets and strategic investments under uncertainty.

The next two chapters are on applications of dynamic games in management
science. In Chap. 19, Michèle Breton covers Dynamic Games in Finance. Finance is
a discipline encompassing all the essential ingredients of dynamic games, involving
investors, managers, and financial intermediaries as players who have competing
interests and interact strategically over time. This chapter presents dynamic game
models used in various applications in the broad area of finance, with the objective
of illustrating the scope of possibilities in this field. In Chap. 20, Steffen Jørgensen
provides a survey of dynamic games in Marketing. As a functional area within
a firm, marketing includes all the activities that the firm has at its disposal to
sell products or services to other firms (wholesalers, retailers) or directly to the
final consumers. The objective of this chapter is to demonstrate that the theory of
differential games has proved to be useful for the study of a variety of problems
in marketing, recognizing that most marketing decision problems are dynamic and
involve strategic considerations.

In Chap. 21, Sadegh Bolouki, Angelia Nedić and Tamer Başar present some
applications of game theory in Social Networks. The authors first focus on the
formation of opinions over time through strategic interactions. In particular, they
first determine whether an agreement (consensus) among all individuals is reached,
or a clustering of opinions occurs, or none of these happens. Next, they turn their
attention to decision-making processes (such as elections) in social networks, where
a collective decision (social choice) must be made by multiple individuals (voters)
with different preferences over the alternatives (candidates). In Chap. 22, Valerii
Patsko, Sergey Kumkov and Varvara Turova provide a comprehensive survey of
Pursuit-Evasion Games, a class of games that was at the origin of the development
of differential game theory. The authors focus on time-optimal problems close to
Rufus Isaacs’ ’homicidal chauffeur’ game and to linear differential games of fixed
terminal time, with Josef Shinar’s space interception problem as the major example.
In Biology and Evolutionary Games (Chap. 23), Mark Broom and Vlastimil
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Křivan survey some evolutionary games used in biological sciences. These include
the Hawk-Dove game, the Prisoner’s Dilemma, Rock-Paper-Scissors, the war of
attrition, the Habitat Selection game, predator prey games, and signalling games.

The next five chapters deal with applications of dynamics games in engineering.
In Chap. 24, Joseph Z. Ben-Asher and Jason L. Speyer discuss Games in
Aerospace: Homing Missile Guidance. The development of a homing missile
guidance law against an intelligent adversary requires the solution of a differential
game. First, the authors formulate this problem as a linear dynamic system with
an indefinite quadratic performance criterion. Next, they formulate a deterministic
game allowing saturation, which is shown to be superior to the LQ guidance
law. Finally, they deal with the presence of uncertainties in the measurements
and process noise. In Stackelberg Routing on Parallel Transportation Networks
(Chap. 25), Walid Krichene, Jack D. Reilly, Saurabh Amin, and Alexandre M.
Bayen present a game theoretic framework for studying Stackelberg routing games
on parallel transportation networks. They introduce a new class of latency functions
to model congestion, inspired from the fundamental diagram of traffic. For this new
class, several results from the classical congestion games literature do not hold, and
the authors provide a characterization of Nash equilibria and show, in particular,
that there may exist multiple equilibria that have different total costs. A simple
polynomial-time algorithm is provided for computing the best Nash equilibrium,
i.e., the one which achieves minimal total cost.

In Communication Networks: Pricing, Congestion Control, Routing and
Scheduling (Chap. 26), Srinivas Shakkottai and R. Srikant consider three
fundamental problems in the general area of communication networks and their
relationship to game theory, namely: (i) allocation of shared bandwidth resources,
(ii) routing across shared links, and (iii) scheduling across shared spectrum. The
authors present results on each problem and characterize the efficiency loss that
results from requesting information from the competing agents to construct a
mechanism to allocate resources, instead of finding a globally optimal solution,
which is impractical when the number of agents is very large. In Power System
Analysis: Competitive Markets, Demand Management, and Security (Chap. 27),
Anibal Sanjab and Walid Saad provide an overview of the application of game
theory to various aspects of the power system, including strategic bidding in
wholesale electric energy markets, demand side management mechanisms with
special focus on demand response and energy management of electric vehicles,
energy exchange and coalition formation between microgrids, as well as security
of the power system viewed as a cyber-physical system, presenting a general
security framework along with applications to the security of state estimation and
automatic generation control. The final chapter in this second part of the Handbook,
Chap. 28, is by Debarun Kar, Thanh H. Nguyen, Fei Fang, Matthew Brown,
Arunesh Sinha, Milind Tambe, and Albert Xin Jiang. Trends and Applications
in Stackelberg Security Games provides an overview of use-inspired research in
security games, including algorithms for scaling up security games to real-world
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sized problems, handling multiple types of uncertainty and dealing with bounded
rationality and bounded surveillance of human adversaries.

Each chapter was an invited contribution to the Handbook and was evaluated by
at least two reviewers. We thank the authors for their contributions and the reviewers
for their benevolent work, often carried out with short deadlines.

University of Illinois Tamer Başar
Urbana-Champaign, IL, USA

GERAD, HEC Montréal Georges Zaccour
Montréal, QC, Canada
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2 Nonzero-Sum Differential Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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Tamer Başar has been with the University of Illi-
nois at Urbana-Champaign since 1981, where he
currently holds the academic positions of Swanlund
Endowed Chair; Center for Advanced Study professor
of Electrical and Computer Engineering; professor,
Coordinated Science Laboratory; professor, Informa-
tion Trust Institute; and affiliate professor, Mechanical
Sciences and Engineering. Since 2014, he also holds
the administrative position of director of the Center
for Advanced Study, and prior to that he was interim
director of the Beckman Institute for Advanced Science
and Technology. He received his BSEE degree from
Robert College (Istanbul) and M.S., M.Phil., and Ph.D.
degrees from Yale University (New Haven). Dr. Başar
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Czech Republic

Faculty of Science, University of South Bohemia, České Budějovice, Czech
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Abstract

This chapter provides a general introduction to the theory of games, as a
prelude to other chapters in this Handbook of Dynamic Game Theory which
discuss in depth various aspects of dynamic and differential games. The present
chapter describes in general terms what game theory is, its historical origins,
general formulation (concentrating primarily on static games), various solution
concepts, and some key results (again primarily for static games). The conceptual
framework laid out here sets the stage for dynamic games covered by other
chapters in the Handbook.

Keywords
Game theory � Dynamic games � Historical evolution of game theory �

Zero-sum games � Nonzero-sum games � Strategic equivalence � Saddle-point
equilibrium � Nash equilibrium � Correlated equilibrium � Stackelberg
equilibrium � Computational methods � Linear-quadratic games

1 Game Theory, Its Origins, and Classifications

1.1 What Is Game Theory?

Game theory deals with strategic interactions among multiple decision-makers,
called players (and in some context agents), with each player’s preference ordering
among multiple alternatives captured in an objective function for that player, which
she either tries to maximize (in which case the objective function is a utility function
or benefit function) or minimize (in which case we refer to the objective function as
a cost function or a loss function). For a nontrivial game, the objective function
of a player depends on the choices (actions, or equivalently decision variable)
of at least one other player, and generally of all the players, and hence a player
cannot simply optimize her own objective function independently of the choices
of the other players. This thus brings in a coupling between the actions of the
players and binds them together in decision-making even in a noncooperative
environment. If the players were able to enter into a cooperative agreement so that
the selection of actions or decisions is done collectively and with full trust, so that
all players would benefit to the extent possible, and no inefficiency would arise,
then we would be in the realm of cooperative game theory, where the issues of
bargaining, coalition formation, excess utility distribution, etc., are of relevance.
Various aspects of cooperative games, in both static and dynamic environments,
are covered extensively in other chapters in this Handbook and will not be
addressed in this introductory chapter. There are also several textbooks that cover
the fundamentals of cooperative games, such as Owen (1995), Fudenberg and
Tirole (1991), and Vorob’ev et al. (1977); see also the survey article (Saad et al.
2009), which focuses on applications of cooperative game theory to communication
systems.



1 Introduction to the Theory of Games 5

If no cooperation is allowed among the players, then we are in the realm of
noncooperative game theory, where first one has to introduce a satisfactory solution
concept. Leaving aside for the moment the issue of how the players can reach such
a satisfactory solution point, let us address the issue of, assuming that the players
are at such a solution point, what would be the minimum set of requirements or
features one would expect to hold there. To first order, such a solution point should
have the property that if all players but one stay put, then the player who has
the option of moving away from the solution point should not have any incentive
to do so because she cannot improve her payoff. Note that we cannot allow two
or more players to move collectively from the solution point, because such a
collective move requires cooperation, which is not allowed in a noncooperative
game. Such a solution point where none of the players can improve her payoff by
a unilateral move is known as a noncooperative equilibrium or Nash equilibrium,
named after John Nash, who introduced it and proved that it exists in finite games
(i.e., games where each player has only a finite number of alternatives) (Nash 1950,
1951). We will discuss this result later in this chapter, following some terminology,
a classification of noncooperative games according to various attributes, and a
mathematical formulation.

Another noncooperative equilibrium solution concept is the Stackelberg equilib-
rium, introduced in von Stackelberg (1934), and predating the Nash equilibrium,
where there is a hierarchy in decision-making among the players, with some of
the players, designated as leaders, having the ability to first announce their actions
(and make a commitment to play them), and the remaining players, designated
as followers, taking these actions as given in the process of computation of their
noncooperative (Nash) equilibria (among themselves). Before announcing their
actions, the leaders would of course anticipate these responses and determine their
actions in a way such that the final outcome will be most favorable to them (in terms
of their objective functions).

We say that a noncooperative game is nonzero-sum if the sum of the players’
objective functions cannot be made zero after appropriate positive scaling and/or
translation that do not depend on the players’ decision variables. We say that a two-
player game is zero-sum if the sum of the objective functions of the two players is
zero or can be made zero by appropriate positive scaling and/or translation that do
not depend on the decision variables of the players. If the two players’ objective
functions add up to a constant (without scaling or translation), then the game is
sometimes called constant sum, but according to our convention, such games are
also zero sum. A game is a finite game if each player has only a finite number of
alternatives; that is, the players pick their actions out of finite sets (action sets);
otherwise, the game is an infinite game; finite games are also known as matrix
games. An infinite game is said to be a continuous-kernel game if the action sets
of the players are continua and the players’ objective functions are continuous with
respect to action variables of all players. A game is said to be deterministic if
the players’ actions uniquely determine the outcome, as captured in the objective
functions, whereas if the objective function of at least one player depends on an
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additional variable (state of nature) with a known probability distribution, then we
have a stochastic game. A game is a complete information game if the description of
the game (that is, the players, the objective functions, and the underlying probability
distributions (if stochastic) is common information to all players; otherwise, we
have an incomplete information game. We say that a game is static if players have
access to only the a priori information (shared by all), and none of the players has
access to information on the actions of any of the other players; otherwise, what we
have is a dynamic game. A game is a single-act game if every player acts only
once; otherwise, the game is multi-act. Note that it is possible for a single-act
game to be dynamic and for a multi-act game to be static. A dynamic game is
said to be a differential game if the evolution of the decision process (controlled
by the players over time) takes place in continuous time, and generally involves a
differential equation; if it takes place over a discrete-time horizon, a dynamic game
is sometimes called a discrete-time game.

In dynamic games, as the game progresses, players acquire information (com-
plete or partial) on past actions of other players and use this information in selecting
their own actions (also dictated by the equilibrium solution concept at hand). In
finite dynamic games, for example, the progression of a game involves a tree
structure (also called extensive form) where each node is identified with a player
along with the time when she acts, and branches emanating from a node show
the possible moves of that particular player. A player, at any point in time, could
generally be at more than one node, which is a situation that arises when the player
does not have perfect information on the past moves of other players, and hence
may not know with certainty which particular node she is at at any particular time.
This uncertainty leads to a clustering of nodes into what is called information sets
for that player. What players decide on within the framework of the extensive form
is not their actions, but their strategies, that is what action they would take at each
information set (in other words, correspondences between their information sets and
their allowable actions). They then take specific actions (or actions are executed on
their behalf), dictated by the strategies chosen as well as the progression of the game
(decision) process along the tree. The equilibrium solution is then defined in terms
of not actions but strategies.

The notion of a strategy, as a mapping from the collection of information sets to
action sets, extends readily to infinite dynamic games, and hence in both differential
games and dynamic games (also known as difference games, as evolution takes
place in discrete time), Nash equilibria and Stackelberg equilibria are defined in
terms of strategies (Başar and Olsder 1999). Several chapters in this Handbook dis-
cuss such equilibria, for both zero-sum and nonzero-sum noncooperative differential
and dynamic games, with and without the presence of probabilistic uncertainty.

In the broad scheme of things, game theory, and particularly noncooperative
game theory, can be viewed as an extension of two fields: mathematical pro-
gramming and optimal control theory. Any problem in game theory collapses to
a problem in one of these disciplines if there is only one player. One-player static
games are essentially mathematical programming problems (linear programming
or nonlinear programming), and one-player difference or differential games can be
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viewed as optimal control problems. It is therefore quite to be expected for tools
of single-player optimization (like mathematical programming (Bertsekas 1999)
and optimal control (Bertsekas 2007; Pontryagin et al. 1962)) to be relevant to the
analysis of noncooperative games.

1.2 The Past and the Present

Game Theory has enjoyed over 70 years of scientific development, with the
publication of the Theory of Games and Economic Behavior by John von Neumann
and Oskar Morgenstern (1947) generally acknowledged to kick start the field. It
has experienced incessant growth in both the number of theoretical results and
the scope and variety of applications. As a recognition of the vitality of the field,
since the 1990s, a total of 10 individuals have received Nobel Prizes in Economic
Sciences for work primarily in game theory. The first such recognition was bestowed
in 1994 on John Harsanyi, John Nash, and Reinhard Selten “for their pioneering
analysis of equilibria in the theory of noncooperative games.” The second set of
Nobel Prizes in game theory went to Robert Aumann and Thomas Schelling in 2005,
“for having enhanced our understanding of conflict and cooperation through game-
theory analysis.” The third one was in 2007, recognizing Leonid Hurwicz, Eric
Maskin, and Roger Myerson, “for having laid the foundations of mechanism design
theory.” And the most recent one was in 2012, recognizing Alvin Roth and Lloyd
Shapley “for the theory of stable allocations and the practice of market design.”
Also to be added to this list of highest-level awards in game theory is the Crafoord
Prize in 1999 (which is the highest prize in biological sciences), which went to
John Maynard Smith (along with Ernst Mayr and G. Williams) “for developing
the concept of evolutionary biology,” where Smith’s recognized contributions had a
strong game-theoretic underpinning, through his work on evolutionary games and
evolutionary stable equilibrium (Smith 1974, 1982; Smith and Price 1973).

Even though von Neumann and Morgenstern’s 1944 book is taken as the starting
point of the scientific approach to game theory, game-theoretic notions and some
isolated key results date back to much earlier years. Sixteen years earlier, in 1928,
John von Neumann himself had resolved completely an open fundamental problem
in zero-sum games, that every finite two-player zero-sum game admits a saddle point
in mixed strategies, which is known as the minimax theorem (von Neumann 1928)
– a result which Emile Borel had conjectured to be false 8 years before. Some early
traces of game-theoretic thinking can be seen in the 1802 work (Considérations sur
la théorie mathématique du jeu) of André-Marie Ampère (1775–1836), who was
influenced by the 1777 writings (Essai d’Arithmétique Morale) of Georges Louis
Buffon (1707–1788).

Which event or writing has really started game-theoretic thinking or approach
to decision-making (in law, politics, economics, operations research, engineering,
etc.) may be a topic of debate, but what is indisputable is that the second half of the
twentieth century was a golden era of game theory, and the twenty-first century has
started with a big bang and is destined to be a platinum era with the proliferation
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of textbooks, monographs, and journals covering the theory and applications (to an
ever-growing breadth) of static and dynamic games.

Another indisputable fact regarding the origins (as it pertains to dynamic games
– the main focus of the Handbook) is that in (zero-sum) differential games, the
starting point was the work of Rufus Isaacs in the RAND Corporation in the early
1950s, which remained classified for at least a decade, before being made accessible
to a broad readership in 1965 (Isaacs 1975); see also the review (Ho 1965), which
was the first journal article to introduce the book to a broader community. Several
chapters in this Handbook deal with Isaacs’ theory, its extensions, applications,
and computational aspects; another chapter discusses the impact the zero-sum
differential game framework has made on robust control design, as introduced in
Başar and Bernhard (1995). Extension of the game-theoretic framework to nonzero-
sum differential games with Nash equilibrium as the solution concept was initiated
in Starr and Ho (1969), and with Stackelberg equilibrium as the solution concept in
Simaan and Cruz (1973). A systematic study of the role information structures play
in the existence of such equilibria and their uniqueness or nonuniqueness (termed
informational nonuniqueness) was carried out in Başar (1974, 1976, 1977).

2 Noncooperative Games and Equilibria

2.1 Main Elements and Equilibrium Solution Concepts

For a precise formulation of a noncooperative game, we have to specify (i) the
number of players; (ii) the possible actions available to each player, and any
constraints that may be imposed on them; (iii) the objective function of each player,
which she attempts to optimize (minimize or maximize, as the case may be); (iv) any
time ordering of the execution of the actions if the players are allowed to act more
than once; (v) any information acquisition that takes place and how the information
available to a player at each point in time depends on the past actions of other
players; and (vi) whether there is a player (nature) whose action is the outcome
of a probabilistic event with a fixed (known) distribution. Here we will first consider
formulation of games where only items (i)–(iii) above are relevant, that is, players
act only once, the game is static so that players do not acquire information on other
players’ actions, and there is no nature player. Subsequently, in the context of finite
games, we will consider more general formulations, particularly dynamic games,
that will incorporate all the ingredients listed above.

Accordingly, we consider an N -player game, with N WD f1; : : : ; N g denoting
the Players set.1 The decision or action variable of Player i is denoted by xi 2 Xi ,

1It is also possible to define games where the Players set is not finite. This chapter will not discuss
such games, known generally as mean field games when some structure is imposed on the way
other players’ decision variables enter into the objective function of a particular (generic) player.
Another chapter in this Handbook will address primarily such games.
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where Xi is the action set of Player i. The action set could be a finite set (so that the
player has only a finite number of possible actions), an infinite but finite-dimensional
set (such as the unit interval, Œ0; 1�), or an infinite-dimensional set (such as the space
of all continuous functions on the interval Œ0; 1�). We let x denote the N -tuple of
action variables of all players, x WD .x1; : : : ; xN /. Allowing for possibly coupled
constraints, we let � � X be the constraint set for the game, where X is the N -
product of X1; : : : ; XN ; hence for an N -tuple of action variables to be feasible, we
need x 2 � (e.g., with N D 2, we could have a coupled constraint set described
by: 0 � x1; x2 � 1; x1 C x2 � 1, which would arise in a resource allocation
game with a hard constraint on the total amount of resource available to the two
players).

If we consider the players to be minimizers, the objective function (loss function
or cost function) of Player i will be denoted by Li .xi ; x�i /, where x�i stands for the
action variables of all players except the i ’th one. If the players are maximizers, then
the objective function (utility function) of Player i will be denoted by Vi .xi ; x�i /.
Note that a game where all players are minimizers, with cost functions Li ’s, can
be seen as one where all players are maximizers, with utility functions Vi � �Li ,
i 2 N .

Now, an N -tuple of action variables x� 2 � constitutes a Nash equilibrium (or,
noncooperative equilibrium) (NE) if, for all i 2 N ,

Li .x
�
i ; x�

�i / � Li .xi ; x�
�i /; 8 xi 2 Xi ; such that .xi ; x�

�i / 2 �; (1.1)

or, if the players are maximizers,

Vi .x
�
i ; x�

�i / � Vi .xi ; x�
�i /; 8 xi 2 Xi ; such that .xi ; x�

�i / 2 �: (1.2)

If N D 2 and L1 � �L2 DW L, then we have a two-player zero-sum game
(ZSG), with Player 1 minimizing L and Player 2 maximizing the same quantity.
In this case, the Nash equilibrium becomes the saddle-point equilibrium (SPE),
which is formally defined as follows, where we leave out the coupling constraint
set � (or simply assume it to be equal to the product set X WD X1 � X2): A pair
of actions .x�

1 ; x�
2 / 2 X is in saddle-point equilibrium (SPE) for a game with cost

function L, if

L.x�
1 ; x2/ � L.x�

1 ; x�
2 / � L.x1; x�

2 /; 8.x1; x2/ 2 X: (1.3)

This also implies that the order in which minimization and maximization are carried
out is inconsequential, that is

min
x12X1

max
x22X2

L.x1; x2/ D max
x22X2

min
x12X1

L.x1; x2/ D L.x�
1 ; x�

2 / DW L�;



10 T. Başar

where the first expression on the left is known as the upper value of the game, the
second expression is the lower value of the game, and L� is known as the value of
the game.2 Note that we generally have

min
x12X1

max
x22X2

L.x1; x2/ � max
x22X2

min
x12X1

L.x1; x2/;

or more precisely

inf
x12X1

sup
x22X2

L.x1; x2/ � sup
x22X2

inf
x12X1

L.x1; x2/;

which follows directly from the obvious inequality

sup
x22X2

L.x1; x2/ � inf
x12X1

L.x1; x2/;

since the LHS expression is only a function of x1 and the RHS expression only a
function of x2.

Next, note that the value of a game, whenever it exists (which certainly does if
there exists a saddle point), is unique. Hence, if there exists another saddle-point
solution, say . Ox1; Ox2/, then L. Ox1; Ox2/ D L�. Moreover, these multiple saddle points
are orderly interchangeable, that is, the pairs .x�

1 ; Ox2/ and . Ox1; x�
2 / are also in saddle-

point equilibrium. This property that saddle-point equilibria enjoy do not extend
to multiple Nash equilibria (for nonzero-sum games): multiple Nash equilibria are
generally not interchangeable, and furthermore, they do not lead to the same values
for the players’ cost functions, the implication being that when players switch from
one equilibrium to another, some players may benefit from that switch (in terms of
reduction in cost), while others may see an increase in their costs. Further, if the
players pick their actions randomly from the set of multiple Nash equilibria of the
game, then the resulting N -tuple of actions may not be in Nash equilibrium.

Now coming back to the zero-sum game, if there is no value, which essentially
means that the upper and lower values are not equal, in which case the former is
strictly higher than the latter,

min
x12X1

max
x22X2

L.x1; x2/ > max
x22X2

min
x12X1

L.x1; x2/;

then a saddle point does not exist. We then say in this case that the zero-sum game
does not have a saddle point in pure strategies. This opens the door for looking
for a mixed-strategy equilibrium. A mixed strategy for a player is a probability
distribution over her action set, which we denote by pi for Player i . This argument

2Upper and lower values are defined in more general terms using infimum (inf) and supremum
(sup) replacing minimum and maximum, respectively, to account for the facts that minima and
maxima may not exist. When the action sets are finite, however, the latter always exist.
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also extends to the general N -player game, which may not have a Nash equilibrium
in pure strategies (actions, in this case). In search of a mixed-strategy equilibrium,
Li is replaced by its expected value taken with respect to the mixed strategy choices
of the players, which we denote for Player i by Ji .p1; : : : ; pN /. Nash equilibrium
over mixed strategies is then introduced as before, with just Ji ’s replacing Li ’s, and
pi ’s replacing xi ’s, and pi 2 Pi , where Pi is the set of all probability distributions
on Xi (we do not bring � into the picture here, since we take the constraint sets to
be rectangular). If Xi is finite, then pi will be a probability vector, taking values in
the probability simplex determined by Xi . In either case, the N-tuple .p�

1 ; : : : ; p�
N /

is in (mixed-strategy) Nash equilibrium (MSNE) if

Ji .p
�
i ; p�

�i / � Ji .pi ; p�
�i /; 8 pi 2 Pi : (1.4)

This readily leads, in the case of zero-sum games, as a special case, to the following
definition of a saddle point in mixed strategies: A pair .p�

1 ; p�
2 / constitutes a saddle

point in mixed strategies (or a mixed-strategy saddle-point equilibrium) (MSSPE),
if

J .p�
1 ; p2/ � J .p�

1 ; p�
2 / � J .p1; p�

2 /; 8 .p1; p2/ 2 P :

where J .p1; p2/ D Ep1;p2 ŒL.x1; x2/� and P WD P1 � P2. Here J � D J .p�
1 ; p�

2 / is
the value of the zero-sum game in mixed strategies.

2.2 Security Strategies

If there is no Nash equilibrium in pure strategies, and the players do not necessarily
want to adopt mixed strategies, an alternative approach is for each player to pick
that pure strategy that will safeguard her losses under worst scenarios. This will
entail each player essentially playing a zero-sum game, minimizing her cost function
against collective maximization of all other players. A strategy (or an action, in this
case) that provides a loss ceiling for a player is known as a security strategy for that
player. Assuming again rectangular action product sets, security strategy xs

i 2 Xi

for Player i is defined through the relationship

sup
x

�i 2X
�i

Li .x
s
i ; x�i / D inf

xi 2Xi

sup
x

�i 2X
�i

Li .xi ; x�i / DW NLi

where the “sup” could be replaced with “max” if the action sets are finite. Note that,
the RHS value, NLi , is the upper value of the zero-sum game played by Player i .
Also note that even if the security strategies of the players, say xs WD fxs

i ; i 2 N g,
are unique, then this N-tuple would not necessarily constitute an equilibrium in any
sense. In the actual play, the players will actually end up doing better than just
safeguarding their losses, since Li .xs/ � NLi for all i 2 N .
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The notion of a security strategy could naturally also be extended to mixed
strategies. Using the earlier notation, ps

i 2 Pi would be a mixed security strategy
for Player i if

sup
p

�i 2P�i

Ji .p
s
i ; p�i / D inf

pi 2Pi

sup
p

�i 2P�i

Ji .pi ; p�i / DW NJi

Remark 1. If the original game is a two-player zero-sum game, and the upper and
lower values are equal, then security strategies for the players will have to be in
SPE. If the upper and lower values are not equal in pure strategies, but are in mixed
strategies, then mixed security strategies for the players will have to be in MSPE. ˘

2.3 Strategic Equivalence

Strategic equivalence is a useful property that facilitates study of noncooperative
equilibria of nonzero-sum games (NZSGs). Let us now make the simple observation
that given an N -player NZSG of the type introduced in this section, if two operations
are applied to the loss function of a player, positive scaling and translation, that do
not depend on the action variable of that player, this being so for every player, then
the set of NE of the resulting NZSG is identical to the set of NE of the original game.
In view of this property, we say that the two games are strategically equivalent. In
mathematical terms, if QLi ’s are the cost functions of the players in the transformed
game, then we have, for some functions, ˛i .x�i / > 0; ˇi .x�i /; i 2 N ,3

QLi .xi ; x�i / D ˛i .x�i / Li .xi ; x�i / C ˇi .x�i /; i 2 N :

Now note that, if for a given NZSG, there exist ˛i ’s and ˇi ’s of the types above, such
that QLi is independent of i , that is, the transformed NZSG features the same cost
function, say QL, for all players, then we have a single objective game, or equivalently
a team problem. Any NE of this transformed game (which is a team) is a person-
by-person optimal solution of the team problem. That is, if x�

i ; i 2 N is one such
solution, we have

QL.xi ;
� x�

�i / D min
xi 2Xi

QL.xi ; x�
�i /; 8 i 2 N ;

which is not as strong as the globally minimizing solution for QL:

QL.xi ;
� x�

�i / D min
xi 2Xi

min
x

�i 2X
�i

QL.xi ; x�i /:

3Here the positivity requirement on each ˛i is uniform for all x
�i , that is, there exists a constant

� > 0 such that ˛i .x�i / > � 8 x
�i 2 X

�i ; i 2 N .
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Clearly, the latter implies the former, but not vice versa. Consider, for example, the
two-player game where each player has two possible actions, for which QL admits
the matrix representation

QL D

�
0 1

1 1

�
;

where Player 1 is the row player and Player 2 the column player (and both are
minimizers). The south-east entry (row 2, column 2) is clearly a person-by-person
optimal solution (NE), but is not the globally minimum one, which is the north-
west entry (row 1, column 1) (which is of course also a person-by-person optimal
solution). Of course, if the players were to cooperate, they would unquestionably
pick the latter, but since this is a noncooperative game, they are not allowed to
correlate their choices. With the entries as above, however, the chances of them
ending up at the global minimum are very high, because neither one would end up
worse than the inferior NE if they stick to the first row and first column (even if one
player inadvertently deviates). But this is not the whole story, because it would be
misleading to make the mutual benefit argument by working on the transformed
game. Consider now the following two-player, two-action NZSG, where again
Player 1 is the row player and Player 2 the column player:

L1 D

�
99 1

100 1

�
; L2 D

�
0 1

1 1

�
:

This game has two pure-strategy NE, (row 1, column 1) and (row 2, column 2),
the same as the game QL. In fact, it is easy to see that the two games are strategically
equivalent (subtract 99 from the first column of L1). But now, Player 1 would prefer
the south-west entry (that is what was inferior in the transformed game), which
shows that there are perils in jumping to conclusions based on a transformed game.

When this all comes handy, however, is when the transformed game as a team
problem can be shown to have a unique person-by-person optimal solution, which
is also the globally optimal team solution. Then, there would be no ambiguity in the
selection of the unique NE.

For a given NZSG, if there exists a strategically equivalent team problem, then
we say that the original game is team like. There could also be situations when a
game is strategically equivalent to a zero-sum team problem, that is, there exists a
proper subset of N , say N1, such that for i 2 N1, QLi is independent of i , say QL,
and for j 62 N1, QLj � � QL. This means that there exists a strategically equivalent
game where players in N1 form a team, playing against another team comprised of
all players outside N1. In particular, if N D 2, we have every NE of the original
game equal to the SPE of the transformed strategically equivalent ZSG.
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3 Finite Games, and Existence and Computation of NE

3.1 Zero-Sum Finite Games and the Minimax Theorem

Let us first consider two-player zero-sum finite games, or equivalently matrix
games. For any such game, we have to specify the cardinality of action sets X1

and X2 (card (X1) and card (X2)) and define the objective function L.x1; x2/ on the
product of these finite sets. As per our earlier convention, Player 1 is the minimizer
and Player 2 the maximizer. Let card (X1) = m and card (X2) = n, that is, the
minimizer has m choices and the maximizer has n choices, and let the elements
of X1 and X2 be ordered according to some (could be arbitrary) convention. We
can equivalently associate an m � n matrix A with this game, whose entries are the
values of L.x1; x2/, following the same ordering as that of the elements of the action
sets, that is, ij ’th entry of A is the value of L.x1; x2/ when x1 is the i ’th element
of X1 and x2 is the j ’th element of X2. Player 1’s choices are then the rows of the
matrix A and Player 2’s are its columns.

It is easy to come of with example matrix games where a saddle point does not
exist in pure strategies, with perhaps the simplest one being the game known as
matching pennies, where

A D

�
1 �1

�1 1

�
;

and each entry is cost to Player 1 (minimizer) and payoff to Player 2 (maximizer).
Here there is no row–column combination at which the players would not have an
incentive to deviate and improve their returns.

The next question is whether there exists a saddle point in mixed strategies.
Assume that Player 1 now picks row 1 and row 2 with equal probability 1

2
. Then,

regardless of whether Player 2 picks column 1 or column 2, she will face the same
expected cost of 0. Hence, in response to this equal probability choice of Player 1,
Player 2 is indifferent between the two actions available to her; she could pick
column 1, or column 2, or any probability mix between the two. Likewise, if Player 2
picks column 1 and column 2 with equal probability 1

2
, this time Player 1 faces an

expected cost of 0 regardless of her choice. In view of this, the mixed strategy pair�
p�

1 D
�

1
2
; 1

2

�
; p�

2 D
�

1
2
; 1

2

��
is a MSSPE, and in fact is the unique one. The SP value

in mixed strategies is 0.
To formalize the above, let A be an m�n matrix representing the finite ZSG, and

as before, let p1 and p2 be the probability vectors for Players 1 and 2, respectively
(both column vectors, and note that in this case p1 is of dimension m and p2 is of
dimension n, and components of each are nonnegative and add up to 1). We can
then rewrite the expected cost function as

J .p1; p2/ D p0
1Ap2:
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By the minimax theorem, due to John von Neumann (1928), J indeed admits a
saddle point, which means that the matrix game A has a saddle point in mixed
strategies, that is, there exists a pair .p�

1 ; p�
2 / such that for all other probability

vectors p1 and p2, of dimensions m and n, respectively, the following pair of saddle-
point inequalities hold:

p�
1

0
Ap2 � p�

1
0
Ap�

2 � p0
1Ap�

2 : (1.5)

The quantity p�
1

0Ap�
2 is the value of the game in mixed strategies. This result is now

captured in the following minimax theorem. Its proof uses the alternating hypotheses
lemma in matrix theory, which says that given the matrix A as above, either there
exists y 2 R

m; y � 0, such that y0A � 0, or there exists z 2 R
n; z � 0, such that

Az � 0. Details can be found in Başar and Olsder (1999, p. 26).

Theorem 1. Every finite two-person zero-sum game has a saddle point in mixed
strategies.

3.2 Neutralization and Domination

A mixed strategy that assigns positive probability to every action of a player is
known as an inner mixed strategy. A MSSPE where both strategies are inner mixed
is known as an inner MSSPE, or a completely mixed MSSPE. Note that if .p�

1 ; p�
2 /

is an inner MSSPE, then p0
1Ap�

2 is independent of p1 on the m-dimensional
probability simplex, and p0

2A0p�
1 is independent of p2 on the n-dimensional

probability simplex. The implication is that in an inner MSSPE, all the players do
is to neutralize each other, and the solution would be the same if their roles were
reversed (i.e., Player 1 the maximizer and Player 2 the minimizer). This suggests an
obvious computational scheme for solving for the MSSPE, which involves solving
linear algebraic equations for p1 and p2, of course provided that MSSPE is inner.

Now, if MSSPE is not inner but is proper mixed, that is, it is not a pure-strategy
SPE, then a similar neutralization will hold in a lower dimension. For example,
if .p�

1 ; p�
2 / is a MSSPE where some components of p�

2 are zero, then p�
1 will

neutralize only the actions of Player 2 corresponding to the remaining components
of p�

2 (which are positive), with the expected payoff for Player 2 (which is minus
the cost) corresponding to the non-neutralized actions being no smaller than the
neutralized ones. In this case, whether a player is a minimizer or a maximizer does
make a difference. The following game, which is an expanded version of matching
pennies, where Player 2 has a third possible action, illustrates this point:

A D

�
1 �1 0

�1 1 �1

�
:
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Here, the MSSPE is
�
p�

1 D
�

1
2
; 1

2

�
; p�

2 D
�

1
2
; 1

2
; 0

��
, where Player 1 neutralizes only

the first two actions of Player 2, with the expected cost of the third action being � 1
2
,

lower than 0, and hence Player 2, being the maximizer, would not put any positive
weight on it. Note that in this game, it does make a difference whether a player
is a minimizer or a maximizer, because if we reverse the roles (now Player 1 is
the maximizer, and Player 2 the minimizer), the SP value in mixed strategies is no
longer 0, but is � 1

3
, with the MSSPE being

�
p�

1 D
�

2
3
; 1

3

�
; p�

2 D
�
0; 1

3
; 2

3

��
. Player 2

ends up not putting positive probability to the first column, which is dominated by
the third column. Domination can actually be used to eliminate columns and/or
rows which will not affect the MSSPE, and this will lead to reduction in the
size of the game (and hence make computation of MSSPE more manageable).
MSSPE of a reduced ZS matrix game (reduced through domination) is also an
MSSPE of the original ZSG (with appropriate lifting to the higher dimension, by
assigning eliminated columns or rows zero probability), but in this process, some
mixed SP strategies may also be eliminated. This, however, is not a major issue
because the MSSPE value is unique. If only strictly dominated rows and columns
are eliminated,4 then all mixed SP strategies are preserved (see, Başar and Olsder
1999; Vorob’ev et al. 1977).

3.3 Offline Computation of MSSPE

We have seen in the previous subsection that inner MSSPE can be computed using
the idea of neutralization and solving linear algebraic equations. The same method
can in principle be applied to MSSPE that are not inner, but then one has to carry out
an enumeration by setting some components of the probability vectors to zero, and
looking for neutralization in a reduced dimension – a process that converges because
MSSPE exists by the minimax theorem. In this process, domination can be used (as
discussed above) to eliminate some rows or columns, which would sometimes lead
to a (reduced) game with an inner MSSPE.

Yet another approach to computation of MSSPE is a graphical one, which
however is practical only when one of the players has only two possible actions
(Başar and Olsder 1999, pp. 29–31). And yet another offline computational method
is to use the powerful tool of linear programming (LP). One can actually show that
there is a complete equivalence between a matrix game and an LP. The following
proposition captures this result, a proof of which can be found in Başar and Olsder
(1999).

4In ZS matrix games, under the convention adopted in this chapter regarding the roles of the
players, we say that a row strictly dominates another row if the difference between the two vectors
(first one minus the second one) has all negative entries. Likewise, a column strictly dominates
another column if the difference has all positive entries.
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Proposition 1. Given a ZS matrix game described by the m � n matrix A, let B be
another matrix game (strategically equivalent to A), obtained from A by adding an
appropriate positive constant to make all its entries positive. Let Vm.B/ denote the
SP value of B in mixed strategies. Introduce the two LPs5:

Primal LP: max y01m such that B 0y � 1n; y � 0

Dual LP: min z01n such that Bz � 1m; z � 0,

with their optimal values (if they exist) denoted by Vp and Vd , respectively. Then:

(i) Both LPs admit solutions, and Vp D Vd D 1=Vm.B/.
(ii) If .y�; z�/ solves matrix game, B , y�=Vm.B/ solves the primal LP, and

z�=Vm.B/ solves the dual LP.
(iii) If Qy� solves the primal LP, and Qz� solves the dual LP, the pair . Qy�=Vp; Qz�=Vd /

constitutes a MSSPE for the matrix game B , and hence for A, and Vm.B/ D

1=Vp .

3.4 Nonzero-Sum Finite Games and Nash’s Theorem

We now move on to N-player NZS finite games, and study the Nash equilibrium
(NE), introduced earlier. As in the case of ZSGs, it is easy to come up with examples
of games that do not admit NE in pure strategies. The question then is whether there
is a counterpart of the minimax theorem in this case, which guarantees the existence
of NE in mixed strategies. This is indeed the case – a result established by John
Nash (1951) and captured in the following theorem.

Theorem 2. Every finite N -player nonzero-sum game has a Nash equilibrium in
mixed strategies.

Note that clearly the minimax theorem follows from this one since ZSGs are
special cases of NZSGs. The main difference between the two, however, is that
in ZSGs, the value is unique (even though there may be multiple saddle-point
solutions), whereas in genuine NZSGs, the expected cost N -tuple to the players
under multiple Nash equilibria need not be the same. In ZSGs, multiple equilibria
have the ordered interchangeability property, whereas in NZSGs they do not, as we
have discussed earlier.

The notions of inner mixed equilibria, neutralization, and domination introduced
earlier in the context of SPE and MSSPE equally apply here, and particularly the
inner MSNE also has the neutralization property and can be solved using algebraic
equations. These equations, however, will not be linear unless N D 2, that is,
the NZSG is a bi-matrix game. In two-player NZSGs, a counterpart of the LP

5The notation 1m below stands for the m-dimensional column vector whose entries are all 1s.
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equivalence exists, but this time it is a bilinear program, as captured in the following
proposition; for a proof, see Başar and Olsder (1999, pp. 96–97).

Proposition 2. For a bi-matrix game .A; B/, where players are minimizers, a pair
.y�; z�/ constitutes a MSNE if, and only if, there exists a pair of real numbers
.p�; q�/ such that the quadruple .y�; z�; p�; q�/ solves the bilinear program:

min
y;z;p;q

�
y0AZ C y0Bz C p C q

�

such that

Az � �p1m; B 0y � �q1n; y � 0; z � 0; y01m D 1; z01n D 1:

3.5 Online Computation of MSSPE and MSNE: Fictitious Play

In the discussion of the computation of MSNE, as well as MSSPE, we have so far
focused on offline methods, where the assumption was that the players have access
to the entire game parameters (including other players’ payoff or cost matrices).
This, however, may not always be possible, which then begs the question of whether
it would be possible for the players to end up at a MSSPE or MSNE by following
a process where each one observes others’ actions in a repetition of the game and
builds probabilistic beliefs (empirical probabilities) on other players’ moves. Such
a process is known as a fictitious play (FP). We say that the process converges in
beliefs to equilibrium (MSSPE or MSNE, as the case may be) if the sequence of
beliefs converges to an equilibrium. We further say that a game has the fictitious play
property (FPP) if every fictitious play process converges in beliefs to equilibrium.

The fictitious play process was first suggested in 1949 by Brown (1951) as a
mechanism to compute MSNE of a finite NZSG. Robinson (1951) then proved in
1950 that every two-player ZSG has the FPP. Miyasawa (1961) proved in 1961
(using a particular tie-breaking rule) that every 2 � 2 bi-matrix game has the FPP.
Shapley (1964) constructed in 1964 an example of a 3 � 3 bi-matrix game which
does not have the FPP. Last 20 years have seen renewed interest and activity on
FP, with some representative papers being Monderer and Shapley (1996), Shamma
and Arslan (2004), Shamma and Arslan (2005), Nguyen et al. (2010a,b), as well
as Alpcan and Başar (2011), which discusses applications to security games. Some
details on fictitious play within the context of learning in games can be found in
another chapter of the Handbook.

3.6 Correlated Equilibrium

One undesirable property of NE is that it is generally inefficient, meaning that if
the players had somehow correlated their choices of their actions, or better had
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collaborated in their selections, at least some of them would be able to do better
in terms of the outcome (than any of the NE), and the remaining ones would be
doing no worse. In mathematical terms, NE is generally not Pareto efficient, that is,
if x� 2 X is a NE, it would be possible to find another N -tuple Qx 2 X such that
Li . Qx/ � Li .x

�/ for all i 2 N , with strict inequality for at least one i .
The question then arises as how to improve the costs (or payoffs) to players while

still preserving the noncooperative nature of the decision process. One way of doing
this is through incentive strategies, or mechanism design, which will require the
introduction of another player who would dictate the decision-making process (or
equip one of the players with this hierarchical role), having also access to at least
partial information on the actions of the other players; this would then definitely
make the underlying game a dynamic game (Başar and Olsder 1999). Another way
is to correlate the choices of the players through some signaling mechanisms, which
leads to the notion of correlated equilibrium (CE), introduced by Aumann (1974,
1987), which is briefly discussed below.

Starting with an example scenario, consider the situation faced by two drivers
when they meet at an intersection (simultaneously). If both proceed, then that will
lead to collision, and hence result in extreme cost to both drivers. If both yield, then
they lose some time, which entails some cost, whereas if one yields and the other
one proceeds, then the one that yields incurs some cost and the one that proceeds
receives positive payoff. This can be modeled as a two-player 2 � 2 bi-matrix game,
of the type below (where the first row and first column correspond to Cross (C), and
the second row and the second column correspond to Yield (Y), and both players
are minimizers):

Intersection Game W

�
.10; 10/ .�5; 0/

.0; �5/ .1; 1/

�

The game admits two pure-strategy NE, .C; Y / and .Y; C /, and one MSNE,�
. 3

8
; 5

8
/; . 3

8
; 5

8
/
�
. The costs to the players (drivers) under the two pure-strategy NE

are .�5; 0/ and .0; �5/, respectively, and under the MSNE (expected cost) . 5
8
; 5

8
/.

Note that both pure-strategy NE are uniformly better than the MSNE for both
players, and therefore so is any convex combination of the two: .�5�; �5.1 � �//,
� 2 Œ0; 1�. Any pair in this convex combination can be achieved through correlated
randomization, but the question is how such outcomes (or even better ones) can be
attained through noncooperative play. How can a randomization device be installed
without any enforcement?

Of course, an obvious answer is to install a traffic light, which would function
as a randomization device which, with a certain probability, would tell the players
whether to cross or yield. Note that such a signal would help the players to correlate
their actions. For example, if the traffic light tells with probability 0:55 cross to
Player 1 (green light), and yield to Player 2 (red light); with probability 0:4 the
other way around; and with the remaining probability (0:05) yield to both players,
then the resulting expected cost pair is .�2:7; �1:95/. Note that these expected costs
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add up to �4:65, which is somewhat worse than any convex combination of the two
pure-strategy NE (where the sum is �5), but it is a safe outcome and can only be
achieved through correlation. Another noteworthy point is that actually the players
do not have to obey the traffic light, but once it is there it is to their advantage
to use it as a signal to correlate their moves; in that sense, what this yields is an
equilibrium, which is called a correlated equilibrium (CE). We now proceed with a
precise definition of CE for bi-matrix games.

Consider a bi-matrix game .A; B/, where the matrices are m � n. Consider a
randomization device which with probability pij signals Player 1 to use row i and
Player 2 to use column j . This generates an m � n probability matrix

P D fpij g; pij � 0;
X

i

X
j

pij D 1;

which we call a correlated mixed strategy (CMS). Such a strategy is in equilibrium
if, whenever the signal dictates Player 1 to use row i , his expected cost cannot be
lower by using some other action, i.e.,

nX
j D1

"
aij pij =

X
`

pi`

#
�

nX
j D1

"
akj pij =

X
`

pi`

#
8k 6D i;

which can equivalently be written as

nX
j D1

�
aij � akj

�
pij � 0 8k 6D i: (1.6)

Likewise for Player 2, if j is the signal,

mX
iD1

�
bij � bi`

�
pij � 0 8` 6D j: (1.7)

Definition 1. A correlated equilibrium (CE) for the bi-matrix game .A; B/ is a
correlated mixed strategy P that satisfies (1.6) for all i D 1; : : : ; m, and (1.7) for all
j D 1; : : : ; n.

Remark 2. If x is a mixed strategy for Player 1 and y is a mixed strategy for Player
2, then P D xy0 is a correlated mixed strategy for the bi-matrix game. Note that in
this case pij D xi yj : But this is only a one-direction relationship, because not all
correlated mixed strategies can be written this way. Hence, the set of all correlated
mixed strategies for the bi-matrix game is larger than the set of all mixed strategy
pairs. Furthermore, if .x�; y�/ is a MSNE, then P � D x�y�0 is a CE, which then
implies that CE always exists. ˘
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4 Games in Extensive Form

If players act in a game more than once, and at least one player has information
(complete or partial) on past actions of other players, then we are in the realm of
dynamic games (as mentioned earlier), for which a complete description (in finite
games) involves a tree structure where each node is identified with a player along
with the time when she acts, and branches emanating from a node show the possible
moves of that particular player. A player, at any point in time, could generally be at
more than one node – which is a situation that arises when the player does not have
complete information on the past moves of other players, and hence may not know
with certainty which particular node she is at at any particular time. This uncertainty
leads to a clustering of nodes into what is called information sets for that player. A
precise definition of extensive form of a dynamic game now follows.

Definition 2. Extensive form of an N -person nonzero-sum finite game without
chance moves is a tree structure with

(i) a specific vertex indicating the starting point of the game,
(ii) N cost functions, each one assigning a real number to each terminal vertex

of the tree, where the i th cost function determines the loss to be incurred to
Player i,

(iii) a partition of the nodes of the tree into N player sets,
(iv) a subpartition of each player set into information sets f�i

j g, such that the
same number of branches emanate from every node belonging to the same
information set and no node follows another node in the same information
set. ˘

What players decide on within the framework of the extensive form is not their
actions but their strategies, that is, what action they should take at each information
set. They then take specific actions (or actions are executed on their behalf), dictated
by the strategies chosen as well as the progression of the game (decision) process
along the tree. A precise definition now follows.

Definition 3. Let N i denote the class of all information sets of Player i , with a
typical element designated as �i . Let U i

�i denote the set of alternatives of Player i at

the nodes belonging to the information set �i . Define U i D [U i
�i , where the union

is over �i 2 N i . Then, a strategy �i for Player i is a mapping from N i into U i ,
assigning one element in U i for each set in N i , and with the further property that
�i .�i / 2 Ui

�i for each �i 2 N i . The set of all strategies of Player i is called his

strategy set (space), and it is denoted by �i . ˘

Let J i .�1; : : : ; �N / denote the loss incurred to Player i when the strategies �1 2

�1; : : : ; �N 2 �N are adopted by the players. This construction leads to what is
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known as the normal form of the dynamic game, which in a sense is no different
from the matrix forms we have seen in the earlier sections. In particular, for a finite
game with a finite duration (i.e., players act only a finite number of times), the
number of elements in each �i is finite, and hence the game can be viewed as a
matrix game, of the type considered earlier. In this normal form, the concept of
Nash equilibrium (NE) is introduced in exactly the same way as in static games,
with now the action variables replaced by strategies. Hence, we have6:

Definition 4. An N -tuple of strategies �� WD f�1�; �2�; : : : ; �N �g with �i� 2 �i ,
i 2 N constitutes a noncooperative (Nash) equilibrium solution for an N -person
nonzero-sum finite game in extensive form, if the following N inequalities are
satisfied for all �i 2 �i , i 2 N 7:

J 1� WD J i .� i�; ��i�/ � J i .� i ; ��i�/:

The N -tuple of quantities fJ 1�; : : : ;J N �g is known as a Nash equilibrium outcome
of the nonzero-sum finite game in extensive form. ˘

Note that the word a is emphasized in the last sentence of the preceding
definition, since NE solution could possibly be nonunique, with the corresponding
set of NE values being different. This then leads to a partial ordering in the set of all
NE solutions.

As in the case of static (matrix) games, pure-strategy NE may not exist in
dynamic games also. This leads to the introduction of mixed strategies, which are
defined (quite analogously to the earlier definition) as probability distributions on
�i ’s, that is, for each player as a probability distribution on the set of all her pure
strategies; denote such a collection for Player i by N�i . A MSNE is then defined in
exactly the same way as before. Again, since in normal form a finite dynamic game
with a finite duration (to be referred to henceforth as finite-duration multi-act finite
games) can be viewed as a matrix game, there will always exist a MSNE by Nash’s
theorem:

Proposition 3. Every N -person nonzero-sum finite-duration multi-act finite game
in extensive form admits a Nash equilibrium solution in mixed strategies (MSNE).

A MSNE may not be desirable in a multi-act game, because it allows for a player
to correlate her choices across different information sets. A behavioral strategy,

6Even though the discussion in this section uses the framework of N-player noncooperative games
with NE as the solution concept, it applies as a special case to two-player zero-sum games, by
taking J 1 D �J 2 and noting that in this case NE becomes SPE.
7Using the earlier convention, the notation ��i stands for the collection of all players’ strategies,
except the i ’th one.
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on the other hand, allows a player to assign independent probabilities to the set
of actions at each information set (that is independent across different information
sets); it is an appropriate mapping whose domain of definition is the class of all the
information sets of the player. By denoting the behavioral strategy set of Player i by
O�i , and the average loss incurred to Player i as a result of adoption of the behavioral
strategy N -tuple f O�1 2 O�1; : : : ; O�N 2 O�N g by OJ . O�1; : : : ; O�N /, the definition of a
Nash equilibrium solution in behavioral strategies (BSNE) may be obtained directly
from Definition 4 by replacing �i , �i , and J i with O�i , O�i , and OJ i , respectively.
A question of interest now is whether a BSNE is necessarily also a MSNE. The
following proposition settles that Başar and Olsder (1999).

Proposition 4. Every BSNE of an N -person nonzero-sum multi-act game also
constitutes a Nash equilibrium in the larger class of mixed strategies (i.e., a MSNE).

Even though MSNE exists in all finite-duration multi-act finite games, there is
no guarantee that BSNE will exist. One can in fact construct games where a BSNE
will not exist, but it is also possible to impose structures on a game so that BSNE
will exist; for details, see Başar and Olsder (1999, p. 127).

Given multi-act games which are identical in all respects except in the con-
struction of the information sets, one can introduce a partial ordering among them
depending on the relative richness of their strategy sets (induced by the information
sets). One such ordering is introduced below, followed by a specific result that it
leads to; for a proof, see Başar and Olsder (1999).

Definition 5. Let I and II be two N -person multi-act nonzero-sum games with fixed
orders of play, and with the property that at the time of her act each player has
perfect information concerning the current level of play, that is, no information set
contains nodes of the tree belonging to different levels of play. Further let �i

I and �i
II

denote the strategy sets of Player i in I and II, respectively. Then, I is informationally
inferior to II if �i

I 	 �i
II for all i 2 N , with strict inclusion for at least one i . ˘

Proposition 5. Let I and II be two N -person multi-act nonzero-sum games as
introduced in Definition 5, so that I is informationally inferior to II. Then,

(i) any NE for I is also a NE for II,
(ii) if f�1; : : : ; �N g is a NE for II so that �i 2 �i

I for all i 2 N , then it is also a NE
for I.

An important conclusion to be drawn from the result above is that dynamic games
will generally admit a plethora of NE, because for a given game, the NE of all
inferior games will also constitute NE of the original game, and these are generally
not even partially orderable – which arises due to informational richness. We call
such occurrence of multiple NE informational nonuniqueness.
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5 Refinements on Nash Equilibrium

As we have seen in the previous sections, finite NZSGs will generally have multiple
NE, in both pure and mixed strategies, and these equilibria are generally not
interchangeable, with each one leading to a different set of equilibrium cost values or
payoff values to the players, and they are not strictly ordered. In dynamic games, the
presence of multiple NE is more a rule rather than an exception, with the multiplicity
arising in that case because of the informational richness of the underlying decision
problem (in addition to the structure of the players’ cost matrices). As a means of
shrinking the set of Nash equilibria in a rational way, refinement schemes have been
introduced in the literature; we discuss in this section some of those relevant to finite
games. Refinement schemes for infinite games are discussed in a different chapter
of the Handbook.

To motivate the discussion, let us start with a two-player matrix game .A; B/

where the players are minimizers and have identical cost matrices (which is what
we called a team problem earlier).

A D B D

P2

U 0 1

D 1 1

L R

P1 (1.8)

The game admits two pure-strategy Nash equilibria: .U; L/ and .D; R/. Note, how-
ever, that if we perturb the entries of the two matrices slightly, and independently

A C 	A D

P2

�1
11 1 C �1

12

1 C �1
21 1 C �1

22

P1I B C 	B D

P2

�2
11 1 C �2

12

1 C �2
21 1 C �2

22

P1I

where �k
ij ; i ; j ; k D 1; 2, are infinitesimally small (positive or negative) numbers,

then .U; L/ will still retain its equilibrium property (as long as j�k
ij j < 1=2), but

.D; R/ will not. More precisely, there will exist infinitely many perturbed versions
of the original game for which .D; R/ will not constitute a Nash equilibrium.
Hence, in addition to admissibility,8 .U; L/ can be singled out in this case as the
Nash solution that is robust to infinitesimal perturbations in the entries of the cost
matrices.

Can such perturbations be induced naturally by some behavioral assumptions
imposed on the players? The answer is yes, as discussed next. Consider the scenario
where a player who intends to play a particular pure strategy (out of a set of n

possible alternatives) errs and plays with some small probability one of the other
n � 1 alternatives. In the matrix game (1.8), for example, if both players err with

8 An NE is said to be admissible if there is no other NE which yields better outcome for all players.
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equal (independent) probability � > 0, the resulting matrix game is .A�; B�/, where

A� D B� D

P2

U �.2 � �/ 1 � � C �2

D 1 � � C �2 1 � �2

L R

P1

Note that for all � 2 .0; 1=2/, this matrix game admits the unique Nash equilibrium
.U; L/, with a cost pair of .�.2��/; �.2��//, which converges to .0; 0/ as � # 0, thus
recovering one of the NE cost pairs of the original game. An NE solution that can be
recovered this way is known as a perfect equilibrium, which was first introduced in
precise terms by Selten (1975), in the context of N -player games in extensive form.9

Given a game of perfect recall,10 denoted G, the idea is to generate a sequence of
games, G1;G2; : : : ;Gk; : : :, a limiting equilibrium solution of which (in behavioral
strategies, and as k ! 1)11 is an equilibrium solution of G. If Gk is obtained from
G by forcing the players at each information set to choose every possible alternative
with positive probability (albeit small, for those alternatives that are not optimal),
then the equilibrium solution(s) of G that are recovered as a result of the limiting
procedure above is (are) called perfect equilibrium (equilibria).12 Selten has shown
in Selten (1975) that every finite game in extensive form with perfect recall (and as
a special case in normal form) admits at least one perfect equilibrium, thus making
this refinement scheme a legitimate one.

The procedure discussed above, which amounts to “completely” perturbing a
game with multiple equilibria, is one way of obtaining perfect equilibria; yet another
one, as introduced by Myerson (1978), is to restrict the players to use completely
mixed strategies (with some lower positive bound on the probabilities) at each
information set. Again referring back to the matrix game .A; B/ of (1.8), let the
players’ mixed strategies be restricted to the class

O�1 D

�
U w.p. y

D w.p. 1 � y
I O�2 D

�
L w.p. z
R w.p. 1 � z

9Selten’s construction and approach also apply to static games of the types discussed heretofore,
where slight perturbations are made in the entries of the matrices, instead of at information sets.
10A game is one with perfect recall if all players recall their past moves – a concept that applies to
games in extensive form.
11As introduced in the previous section, behavioral strategy is a mixed strategy for each
information set of a player (in a dynamic game in extensive form). When the context is static
games, it is identical with mixed strategy.
12This is also called “trembling hand equilibrium,” as the process of erring at each information set
is reminiscent of a “trembling hand” making unintended choices with small probability. Here, as
k ! 1, this probability of unintended plays converges to zero.
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where � � y � 1 � �, � � z � 1 � �, for some (sufficiently small) positive �. Over
this class of strategies, the average cost functions of the players will be

OJ 1 D OJ 2 D �yz C 1;

which admits (assuming that 0 � � < 1
2
) a unique Nash equilibrium:

p1�

� D O�2�

� D

�
L w.p. 1 � �

R w.p. �
I OJ 1�

� D OJ 2�

� D 1 � .1 � �/2:

Such a solution is called an �-perfect equilibrium (Myerson and Selten 1978), which
in the limit as � # 0 clearly yields the perfect Nash equilibrium obtained earlier.
Myerson in fact proves, for N -person games in normal form, that every perfect
equilibrium can be obtained as the limit of an appropriate �-perfect equilibrium
(Myerson and Selten 1978), with the converse statement also being true. More
precisely, letting yi denote a mixed strategy for Player i, and Y i the simplex of
probabilities, we have:

Proposition 6. For an N -person finite game in normal form, an MSNE fyi�

2

Y i ; i 2 N g is a perfect equilibrium if, and only if, there exist some sequences

f�kg1
kD1, fyi

�k
2

ı

Y i ; i 2 N g1
kD1 such that

(i) �k > 0 and limk!1 �k D 0

(ii) fyi
�k

; i 2 N g is an �k-perfect equilibrium

(iii) limk!1 yi
�k

D yi�

, i 2 N .

Furthermore, a perfect equilibrium necessarily exists, and every perfect equilibrium
is an NE. ˘

Even though perfect equilibrium provides a refinement of Nash equilibrium with
some appealing properties, it also carries some undesirable features as the following
example of an identical cost matrix game (due to Myerson (1978) exhibits:

A D B D

P2

U 0 1 10

M 1 1 8

D 10 8 8

L M R

P1 (1.9)

Note that this is a matrix game derived from (1.8) by adding a completely dominated
row and a completely dominated column. It now has three Nash equilibria: .U; L/,
.M; M/, .D; R/, the first two of which are perfect equilibria, while the last one
is not. Hence, inclusion of completely dominated rows and columns could create
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additional perfect equilibria not present in the original game – a feature that is
clearly not desirable. To remove this shortcoming of perfect equilibrium, Myerson
introduced in Myerson and Selten (1978) what is called proper equilibria, which
corresponds to a particular construction of the sequence of strategies used in
Proposition 6. Proper equilibrium is defined as in Proposition 6, with only the
�k-perfect equilibrium in ii) replaced by the notion of �k-proper equilibrium to be
introduced next. Toward this end, let NJ i .j I y�/ denote the average cost to Player
i when she uses her j ’th strategy (such as j ’th column or row of the matrix) in
the game and all the other players use their mixed strategies yk

� , k 2 N , k ¤ i:

Furthermore, let y
i;j
� be the probability attached to her j ’th strategy under the mixed

strategy yi
� . Then, the N -tuple fyi

�; i 2 N g is said to be in �-proper equilibrium if
the strict inequality

NJ i .j I y�/ > NJ i .kI y�/

implies that y
i;j
� � � yi;k

� , this being so for every j , k 2 Mi ,13 and every i 2 N . In
other words, an �-proper equilibrium is one in which every player is giving his better
responses much more probability weight than this worse responses (by a factor 1=�),
regardless of whether those “better” responses are “best” or not. Myerson proves in
Myerson and Selten (1978) that such an equilibrium necessarily exists, that is:

Proposition 7. Every finite N -player game in normal form admits at least one
proper equilibrium. Furthermore, every proper equilibrium is a perfect equilibrium
(but not vice versa). ˘

Remark 3. Note that in the matrix game (1.9), there is only one proper equilibrium,
which is .U; L/, the perfect equilibrium of (1.8). ˘

Another undesirable feature of a perfect equilibrium is that it is very much
dependent on whether the game is in extensive or normal form (whereas the Nash
equilibrium property is form independent). As it has been first observed by Selten
(1975), and further elaborated on by van Damme (1984), a perfect equilibrium of
the extensive form of a game need not be perfect in the normal form, and conversely
a perfect equilibrium of the normal form need not be perfect in the extensive
form. To remove this undesirable feature, van Damme introduced the concept of
quasi-perfect equilibria for games in extensive form, and has shown that a proper
equilibrium of a normal form game induces a quasi-perfect equilibrium in every
extensive form game having this normal form van Damme (1984, 1987). Quasi-
perfect equilibrium is defined as a behavioral strategy combination which prescribes
at every information set a choice that is optimal against mistakes (“trembling
hands”) of the other players; its difference from perfect equilibrium is that here

13Mi is the set of all pure strategies of Player 1, with corresponding labeling of positive integers.
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in the construction of perturbed matrices, each player ascribes “trembling hand”
behavior to all other players (with positive probability) but not to himself.

Other types of refinement have also been proposed in the literature, such as
sequential equilibria (Kreps and Wilson 1982) and strategic equilibria (Kohlberg
and Mertens 1986), which are not further discussed here. None of these, however,
are uniformly powerful, in the sense of shrinking the set of Nash equilibria to the
smallest possible set. This topic of “refinement on Nash equilibria” has further been
discussed in another chapter of the Handbook in the context of infinite dynamic
games and with emphasis placed on the issue of time consistency. In the context of
infinite dynamic games, Başar introduced in Başar (1976) stochastic perturbations
in the system dynamics (“trembling dynamics”) to eliminate multiplicity of Nash
equilibria.

6 Hierarchical Finite Games and Stackelberg Equilibria

The Nash equilibrium solution concept heretofore discussed in this chapter provides
a reasonable noncooperative equilibrium solution for nonzero-sum games when the
roles of the players are symmetric, that is to say, when no single player dominates
the decision process. However, there are yet other types of noncooperative decision
problems wherein one of the players has the ability to enforce her strategy on the
other player(s), and for such decision problems, one has to introduce a hierarchical
equilibrium solution concept. Following the original work of H. von Stackelberg
(1934), the player who holds the powerful position in such a decision problem
is called the leader, and the other players who react (rationally) to the leader’s
decision (strategy) are called the followers. There are, of course, cases of multiple
levels of hierarchy in decision-making, with many leaders and followers; but for
purposes of brevity and clarity in exposition, the discussion is confined here to
hierarchical decision problems which incorporate only two players – one leader and
one follower.

6.1 Stackelberg Equilibria in Pure Strategies

To set the stage to introduce the hierarchical (Stackelberg) equilibrium solution
concept, let us first consider the bi-matrix game .A; B/ displayed (under our
standard convention) as

A D

P2

L 0 2 3=2

M 1 1 3

R �1 2 2

L M R

P1; B D

P2

L �1 1 �2=3

M 2 0 1

R 0 1 �1=2

L M R

P1 (1.10)
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This bi-matrix game clearly admits a unique NE in pure strategies, which is fM; M g,
with the corresponding outcome being .1; 0/. Let us now stipulate that the roles of
the players are not symmetric and P1 (Player 1) can enforce her strategy on P2

(Player 2).14 Then, before she announces her strategy, Player 1 has to take into
account possible responses of Player 2 (the follower), and in view of this, she has
to decide on the strategy that is most favorable to her. For the decision problem
whose possible cost pairs are given as entries of A and B , above, let us now work
out the reasoning that Player 1 (the leader) will have to go through. If Player 1

chooses L, then Player 2 has a unique response (that minimizes his cost) which
is L, thereby yielding a cost of 0 to Player 1. If the leader chooses M , Player 2’s
response is again unique (which is M ), with the corresponding cost incurred to
Player 1 being 1. Finally, if she picks R, Player 2’s unique response is also R, and
the cost to Player 1 is 2. Since the lowest of these costs is the first one, it readily
follows that L is the most reasonable choice for the leader .P1/ in this hierarchical
decision problem. We then say that L is the Stackelberg strategy of the leader .P1/

in this game, and the pair fL; Lg is the Stackelberg solution with Player 1 as the
leader. Furthermore, the cost pair .0; �1/ is the Stackelberg (equilibrium) outcome
of the game with Player 1 as the leader. It should be noted that this outcome is
actually more favorable for both players than the unique Nash outcome – this latter
feature, however, is not a rule in such games. If, for example, Player 2 is the leader
in the bi-matrix game (1.10), then the unique Stackelberg solution is fL; Rg with the
corresponding outcome being .3=2; �2=3/ which is clearly not favorable for Player
1 (the follower) when compared with her unique NE cost. For Player 2 (the leader),
however, the Stackelberg outcome is again better than his NE outcome.

The Stackelberg equilibrium (SE) solution concept introduced above within the
context of the bi-matrix game (1.10) is applicable to all two-person finite games in
normal form, provided that they exhibit one feature which was inherent to the bi-
matrix game (1.10) and was used implicitly in the derivation: the follower’s response
to every strategy of the leader should be unique. If this requirement is not satisfied,
then there is ambiguity in the possible responses of the follower and thereby in the
possible attainable cost levels of the leader. As an explicit example to demonstrate
such a decision situation, consider the bi-matrix game

A D

P2

L 0 1 3

R 2 2 �1

L M R

P1; B D

P2

L 0 0 1

R �1 0 �1

L M R

P1; (1.11)

and with P1 (Player 1) acting as the leader. Here, if P1 chooses (and announces)
L, P2 has two optimal responses L and M , whereas if P1 picks R, P2 again has
two optimal responses, L and R. Since this multiplicity of optimal responses for

14In this asymmetric decision-making setting, we will refer to Player 1 as “she” and Player 2 as
“he.”
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the follower results in a multiplicity of cost levels for the leader for each one of
her strategies, the Stackelberg solution concept introduced earlier cannot directly be
applied here. However, this ambiguity in the attainable cost levels of the leader can
be resolved if we stipulate that the leader’s attitude is toward securing her possible
losses against the choices of the follower within the class of his optimal responses,
rather than toward taking risks. Then, under such a mode of play, P1’s secured cost
level corresponding to her strategy L would be 1, and the one corresponding to R

would be 2. Hence, we declare �1� D L as the unique Stackelberg strategy of P1

in the bi-matrix game of (1.11), when she acts as the leader.15 The corresponding
Stackelberg cost for P1 (the leader) is J 1� D 1. It should be noted that, in the actual
play of the game, P1 could actually end up with a lower cost level, depending on
whether the follower chooses his optimal response �2 D L or the optimal response
�2 D M . Consequently, the outcome of the game could be either .1; 0/ or .0; 0/,
and hence we cannot talk about a unique Stackelberg equilibrium outcome of the bi-
matrix game (1.11) with P1 acting as the leader. Before concluding the discussion on
this example, we note that the admissible NE outcome of the bi-matrix game (1.11)
is .�1; �1/ which is more favorable for both players than the possible Stackelberg
outcomes given above.

We now provide a precise definition for the Stackelberg solution concept
introduced above within the context of two bi-matrix games, so as to encompass
all two-person finite games of the single-act and multi-act type which do not
incorporate any chance moves. For such a game, let �1 and �2 again denote the
pure-strategy spaces of Player 1 and Player 2, respectively, and J i .�1; �2/ denote
the cost incurred to Player i corresponding to a strategy pair f�1 2 �1; �2 2 �2g.
Then, we have

Definition 6. In a two-person finite game, the set R2.�1/ � �2 defined for each
�1 2 �1 by

R2.�1/ D
˚

 2 �2 W J 2.�1; 
/ � J 2.�1; �2/; 8�2 2 �2

	
(1.12)

is the optimal response (rational reaction) set of Player 2 to the strategy �1 2 �1 of
Player 1. ˘

Definition 7. In a two-person finite game with Player 1 as the leader, a strategy
�1 2 �1 is called a Stackelberg equilibrium strategy for the leader, if

max
�22R2.�1�/

J 1.�1�; �2/ D min
�12�1

max
�22R2.�1/

J 1.�1; �2/
	
D J 1�: (1.13)

15Of course, the “strategy” here could also be viewed as an “action” if what we have is a static
game, but since we are dealing with normal forms here (which could have an underlying extensive
form description) we will use the term “strategy” throughout, to be denoted by �i for Pi , and the
cost to Pi will be denoted by J i .
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The quantity J 1� is the Stackelberg cost of the leader. If, instead, Player 2

is the leader, the same definition applies with only the superscripts 1 and 2
interchanged. ˘

Theorem 3. Every two-person finite game admits a Stackelberg strategy for the
leader.

Remark 4. The result above follows directly from (1.13), since the strategy spaces
�1 and �2 are finite and R2.�1/ is a subset of �2 for each �1 2 �1. Note that
the Stackelberg strategy for the leader does not necessarily have to be unique, but
nonuniqueness of the equilibrium strategy does not create any problem here (as it
did in the case of NE), since the Stackelberg cost for the leader is unique. ˘

Remark 5. If R2.�1/ is a singleton for each �1 2 �1, then there exists a mapping
T 2 W �1 ! �2 such that �2 2 R2.�1/ implies �2 D T 2�1. This corresponds to the
case when the optimal response of the follower (which is T 2) is unique for every
strategy of the leader, and it leads to the following simplified version of (1.13) in
Definition 7:

J 1.�1�; T 2�1�/ D min
�12�1

J 1.�1; T 2�1/
	
D J 1�: (1.14)

Here J 1� is no longer only a secured equilibrium cost level for the leader .P1/, but
it is the cost level that is actually attained. ˘

From the follower’s point of view, the equilibrium strategy in a Stackelberg game
is any optimal response to the announced Stackelberg strategy of the leader. More
precisely,

Definition 8. Let �1� 2 �1 be a Stackelberg strategy for the leader .P1/. Then,
any element �2� 2 R2.�1�/ is an optimal strategy for the follower .P2/ that is in
equilibrium with �1�. The pair f�1�; �2�g is a Stackelberg solution for the game
with Player 1 as the leader and the cost pair .J 1.�1�; �2�/; J 2.�1�; �2�// is the
corresponding Stackelberg equilibrium outcome. ˘

Remark 6. In the preceding definition, the cost level J 1.�1�; �2�/ could in fact be
lower than the Stackelberg cost J 1� – a feature that has already been observed within
the context of the bi-matrix game (1.11). However, if R2.�1�/ is a singleton, then
these two cost levels have to coincide. ˘

For a given two-person finite game, let J 1� again denote the Stackelberg cost
of the leader .P1/ and J 1

N denote any Nash equilibrium cost for the same player.
We have already seen within the context of the bi-matrix game (1.11) that J 1� is not
necessarily lower than J 1

N , in particular, when the optimal response of the follower is
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not unique. The following proposition now provides one sufficient condition under
which the leader never does worse in a “Stackelberg game” than in a “Nash game”;
for a proof, see Başar and Olsder (1999).

Proposition 8. For a given two-person finite game, let J 1� and J 1
N be as defined

before. If R2.�1/ is a singleton for each �1 2 �1, then

J 1� � J 1
N :

Remark 7. One might be tempted to think that if a nonzero-sum game admits a
unique Nash equilibrium solution and a unique Stackelberg strategy .�1�/ for the
leader, and further if R2.�1�/ is a singleton, then the inequality of Proposition 8 still
should hold. This, however, is not true as the following bi-matrix game demonstrates

A D

P2

L 0 1

R �1 2

L R

P1; B D

P2

L 0 2

R 1 1

L R

P1

Here, there exists a unique Nash equilibrium solution, as indicated, and a unique
Stackelberg strategy �1� D L for the leader .P1/. Furthermore, the follower’s
optimal response to �1� D L is unique (which is �2 D L). However, 0 D

J 1� > J 1
N D �1. This counterexample indicates that the sufficient condition of

Proposition 8 cannot be relaxed any further in any satisfactory way. ˘

6.2 Stackelberg Equilibria in Mixed and Behavioral Strategies

The motivation behind introducing mixed strategies in the investigation of saddle-
point equilibria and Nash equilibria was that such equilibria do not always exist in
pure strategies, whereas within the enlarged class of mixed strategies, one can ensure
existence of noncooperative equilibria. In the case of the Stackelberg solution of
two-person finite games, however, an equilibrium always exists (cf. Theorem 3), and
thus, at the outset, there seems to be no need to introduce mixed strategies. Besides,
since the leader dictates her strategy on the follower, in a Stackelberg game, it might
at first seem to be unreasonable to imagine that the leader would ever employ a
mixed strategy. Such an argument, however, is not always valid, and there are cases
when the leader can actually do better (in the average sense) with a proper mixed
strategy than the best she can do within the class of pure strategies. As an illustration
of such a possibility, consider the bi-matrix game .A; B/ displayed below:
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A D

P2

L 1 0

R 0 1

L R

P1; B D

P2

L 1=2 1

R 1 1=2

L R

P1: (1.15)

If P1 acts as the leader, then the game admits two pure-strategy Stackelberg
equilibrium solutions, which are fL; Lg and fR; Rg, the Stackelberg outcome in
each case being .1; 1=2/. However, if the leader .P1/ adopts the mixed strategy
which is to pick L and R with equal probability 1=2, then the average cost incurred
to P1 will be equal to 1=2, quite independent of the follower’s (pure or mixed)
strategy. This value NJ 1 D 1=2 is clearly lower than the leader’s Stackelberg cost in
pure strategies, which can further be shown to be the unique Stackelberg cost of the
leader in mixed strategies, since any deviation from .1=2; 1=2/ for the leader results
in higher values for NJ 1, by taking into account the optimal responses of the follower.

The preceding result then establishes the significance of mixed strategies in
the investigation of Stackelberg equilibria of two-person nonzero-sum games and
demonstrates the possibility that a proper mixed-strategy Stackelberg solution could
lead to a lower cost level for the leader than the Stackelberg cost level in pure
strategies. To introduce the concept of mixed-strategy Stackelberg equilibrium in
mathematical terms, we take the two-person nonzero-sum finite game to be in
normal form (without any loss of generality) and associate with it a bi-matrix
game .A; B/. Abiding by the earlier notation and terminology, let Y and Z denote
the mixed-strategy spaces of Player 1 and Player 2, respectively, with their typical
elements denoted by y and z. Then, we have:

Definition 9. For a bi-matrix game .A; B/, the set

NR2.y/ D fzı 2 Z W y0Bzı � y0Bz; 8z 2 Zg (1.16)

is the optimal response (rational reaction) set of Player 2 in mixed strategies to the
mixed strategy y 2 Y of Player 1. ˘

Definition 10. In a bi-matrix game .A; B/ with Player 1 acting as the leader, a
mixed strategy y� 2 Y is called a mixed Stackelberg equilibrium strategy for the
leader if

max
z2 NR2.y�/

y�0Az D inf
y2Y

max
z2 NR2.y/

y0Az
	
D NJ 1�: (1.17)

The quantity NJ 1� is the Stackelberg cost of the leader in mixed strategies. ˘

It should be noted that the “maximum” in (1.17) always exists since, for each
y 2 Y , y0Az is continuous in z, and R2.y/ is a closed and bounded subset of
Z (which is a finite dimensional simplex). Hence, NJ 1� is a well-defined quantity.
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The “infimum” in (1.17), however, cannot always be replaced by a “minimum,”
unless the problem admits a mixed Stackelberg equilibrium strategy for the leader.
The following example, taken from Başar and Olsder (1999), now demonstrates
the possibility that a two-person finite game might not admit a mixed-strategy
Stackelberg strategy even though NJ 1� < J 1�.

Example. Consider the following modified version of the bi-matrix game of (1.15):

A D

P2

L 1 0

R 0 1

L R

P1; B D

P2

L 1=2 1

R 1 1=3

L R

P1 :

With P1 as the leader, this bi-matrix game also admits two pure-strategy Stackelberg
equilibria, which are fL; Lg and fR; Rg, the Stackelberg cost for the leader being
J 1� D 1. Now, let the leader adopt the mixed strategy y D .y1; .1 � y1//0, under
which NJ 2 is

NJ 2.y; z/ D y0Bz D

�
�

7

6
y1 C

2

3

�
z1 C

2

3
y1 C

1

3
;

where z D .z1; .1�z1//0 denotes any mixed strategy of P2. Then, the mixed-strategy
optimal response set of P2 can readily be determined as

NR2.y/ D

8<
:

fz D .1; 0/g if y1 > 4=7

fz D .0; 1/g if y1 < 4=7

Z if y1 D 4=7:

Hence, for y1 > 4=7, the follower chooses “column 1” with probability 1, and this
leads to an average cost of NJ 1 D y1 for P1. For y1 < 4=7, on the other hand,
P2 chooses “column 2” with probability 1, which leads to an average cost level of
NJ 1 D .1�y1/ for P1. Then, clearly, the leader will prefer to stay in this latter region;

in fact, if he employs the mixed strategy y D .4=7 � �; 3=7 C �/0 where � > 0 is
sufficiently small, his realized average cost will be NJ 1 D 3=7C�, since then P2 will
respond with the unique pure-strategy �2 D R. Since � > 0 can be taken as small as
possible, we arrive at the conclusion that NJ 1� D 3

7
< 1 D J 1�. In spite of this fact,

the leader does not have a mixed Stackelberg strategy since for the only candidate
yı D .4=7; 3=7/, NR2.yı/ D Z, and therefore maxz2 NR2.yı/ yı0

Az D 4=7, which is
higher than NJ 1�. ˘

The preceding example thus substantiates the possibility that a mixed Stackelberg
strategy might not exist for the leader, but she can still do better than her pure
Stackelberg cost J 1� by employing some suboptimal mixed strategy (such as the
one y D .4=7 � �; 3=7 C �/0 in the example, for sufficiently small � > 0). In fact,
whenever NJ 1� < J 1�, there will always exist such an approximating mixed strategy
for the leader. If NJ 1� D J 1�, however, it is, of course, reasonable to employ the pure
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Stackelberg strategy which always exists by Theorem 3. The following proposition
now verifies that NJ 1� < J 1� and NJ 1� D J 1� are the only two possible relations
we can have between NJ 1� and J 1�; in other words, the inequality NJ 1� > J 1� never
holds (Başar and Olsder 1999, p. 142).

Proposition 9. For every two-person finite game, we have

NJ 1� � J 1�: (1.18)

Computation of a mixed-strategy Stackelberg equilibrium (whenever it exists) is
not as straightforward as in the case of pure-strategy equilibria, since the spaces Y
and Z are not finite. The standard technique is first to determine the minimizing
solution(s) of

min
z2Z

y0Bz

as functions of y 2 Y . This will lead to a decomposition of Y into subsets (regions),
on each of which a reaction set for the follower is defined. (Note that in the analysis
of the previous example, Y has been decomposed into three regions.) Then, one
has to minimize y0Az over y 2 Y , subject to the constraints imposed by these
reaction sets, and under the stipulation that the same quantity is maximized on
these reaction sets whenever they are not singletons. This brute-force approach
also provides approximating strategies for the leader, whenever a mixed Stackelberg
solution does not exist, together with the value of NJ 1�.

If the two-person finite game under consideration is a dynamic game in extensive
form, then it is more reasonable to restrict attention to behavioral strategies.
Stackelberg equilibrium within the class of behavioral strategies can be introduced
as in Definitions 9 and 10, by replacing the mixed strategy sets with the behavioral
strategy sets. Hence, using the earlier terminology and notation, we have the
following counterparts of Definitions 9 and 10, in behavioral strategies:

Definition 11. Given a two-person finite dynamic game with behavioral-strategy
sets . O�1; O�2) and average cost functions . OJ 1; OJ 2/, the set

bR2
. O�1/ D

n
O�2ı 2 O�2 W OJ 2. O�1; O�2ı/ � OJ 2. O�1; O�2/; 8 O�2 2 O�2

o
; (1.19)

is the optimal response (rational reaction) set of P2 in behavioral strategies to the
behavioral strategy O�1 2 O�1 of P1. ˘

Definition 12. In a two-person finite dynamic game with Player 1 acting as the
leader, a behavioral strategy O�1� 2 O�1 is called a behavioral Stackelberg equilibrium
strategy for the leader if
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sup
O�22 NR2. O�1�/

OJ 1. O�1�; O�2/ D inf
O�12 O�1

sup
O�22bR2

. O�1/

OJ 1
�

O�1; O�2
� 	

D OJ 1�: (1.20)

The quantity OJ 1� is the Stackelberg cost of the leader in behavioral strategies. ˘

7 Nash Equilibria of Infinite/Continuous-Kernel Games

7.1 Formulation, Existence, and Uniqueness

We now go back to the general class of N -player games introduced through (1.1),
with Xi being a finite-dimensional space (e.g., mi -dimensional Euclidean space,
R

mi ), for i 2 N ; Li a continuous function on the product space X , which of course
is also finite-dimensional (e.g., if Xi D R

mi , X can be viewed as Rm, where m WDP
i2N mi ); and the constraint set � a subset of X . This class of games is known as

continuous-kernel games with coupled constraints, and of course if the constraints
are not coupled, for example, with each player having a separate constraint set �i �

Xi , this would also be covered as a special case. Now, further assume that � is
closed, bounded, and convex, and for each i 2 N , Li .xi ; x�i / is convex in xi 2 Xi

for every x�i 2 �j 6Di Xj . Then, the basic result for such games is that they admit
Nash equilibria in pure strategies (but the equilibria need not be unique), as stated in
the theorem below, due to Rosen (1965); see also Başar and Olsder (1999, pp. 176–
177).

Theorem 4. For the N -player nonzero-sum continuous-kernel game formulated
above, with the constraint set � a closed, bounded, and convex subset of Rm, and
with Li .xi ; x�i / convex in xi for each x�i and each i 2 N , there exists a Nash
equilibrium in pure strategies.

Remark 8. The proof of the result above uses Kakutani’s fixed-point theorem.16 If
the constraint sets are decoupled, and Li .xi ; x�i / is strictly convex in xi 2 �i ,
then there is an alternative proof for Theorem 4, which uses Brouwer’s fixed-point
theorem.17 Under the given hypotheses, it follows from Weirstrass theorem and
strict convexity that the minimization problem

min
xi 2�i

Li .xi ; x�i /

16This fixed point theorem says that if S is a compact subset of R
n, and f is an upper

semicontinuous function which assigns to each x 2 S a closed and convex subset of S , then
there exists x 2 S such that x 2 f .x/.
17 Brouwer’s theorem says that a continuous mapping, f , of a closed, bounded, convex subset, S ,
of a finite-dimensional space into itself has a fixed point.
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admits a unique solution for each x�i , this being so for each i 2 N , that is, there
exists a unique map Ti W �i ! ��i ,18 such that the solution to the minimization
problem is

xi D Ti .x�i /; i 2 N (1.21)

Furthermore, Ti is continuous on ��i . Clearly, every pure-strategy NE has to
provide a solution to (1.21), and vice versa. Stacking these maps, there exists a
corresponding continuous map T W � ! �, whose components are the Ti ’s,
and (1.21) is equivalent to x D T .x/, which is a fixed-point equation. Since T

is a continuous mapping of � into itself, and � is a closed and bounded subset of a
finite-dimensional space (and thus compact), by Brouwer’s fixed-point theorem, T

has a fixed point, and hence an NE exists. ˘

For the special class of 2-person ZSGs structured the same way as the NZSG of
Theorem 4, a similar result clearly holds (as a special case), implying the existence
of a SPE (in pure strategies). Note that in this case, the single objective function
(L � L1 � �L2) to be minimized by Player 1 and maximized by Player 2 is
convex in x1 and concave in x2, in view of which such zero-sum games are known
as convex-concave games. Even though convex-concave games could admit multiple
saddle-point solutions, they are ordered interchangeable, and the values of the games
are unique (which is not the case for multiple Nash equilibria in genuine NZSGs,
as we have also seen earlier). Now, if the convexity-concavity is replaced by strict
convexity-concavity (for ZSGs), then the result can be sharpened as below,19 which
however has no a counterpart for Nash equilibria in genuine NZSGs.

Theorem 5. For a two-person zero-sum game on closed, bounded, and convex
finite-dimensional action sets �1 � �2, defined by the continuous kernel L.x1; x2/,
let L.x1; x2/ be strictly convex in x1 for each x2 2 �2 and strictly concave in x2 for
each x1 2 �1. Then, the game admits a unique pure-strategy SPE.

If the structural assumptions of Theorem 4 do not hold, then a pure-strategy
Nash equilibrium may not exist, but there may exist one in mixed strategies. Mixed
strategy (MS) for a player (say, Player i ) is a probability distribution on that player’s
action set, which we take to be a closed and bounded subset, �i , of Xi D R

mi , and
denote an MS of Player i by pi , and the set of all probability distributions on �i

by Pi . NE, then, is defined by the N -tuple of inequalities (1.4), using the expected
values of Li ’s given mixed strategies of all the players, which we denote by Ji as

18Ti is known as the reaction function (or response function) of Player i to other players’ actions.
19Here, existence of SPE is a direct consequence of Theorem 4. By strict convexity and strict
concavity, there can be no SPE outside the class of pure strategies, and uniqueness follows from the
ordered interchangeability property of multiple SPs, in view of strict convexity/concavity (Başar
and Olsder 1999).
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before. The following theorem, whose proof can be found in Owen (1974), now
states the basic result on existence of MSNE in continuous-kernel games.20

Theorem 6. For the N -player continuous-kernel NZSG formulated above, with the
constrained action set �i for Player i a closed and bounded subset of Rmi , and
with Li .xi ; x�i / continuous on � D �1 � � � � � �N , for each i 2 N , there exists
an MSNE, .p�

1 ; : : : ; p�
N /, satisfying (1.4).

Remark 9. As in the case of finite (matrix) games, the existence of a pure-strategy
NE does not preclude the existence of also a genuine MSNE,21 and all such
(multiple) NE are generally noninterchangeable, unless the game is a ZSG or is
strategically equivalent to one. ˘

As a special case of Theorem 6, we now have:

Corollary 1. Every continuous-kernel 2-player ZSG with compact action spaces
has an MSSPE. ˘

7.2 Stability and Computation

We have seen in the previous subsection that when the cost functions of the players
are strictly convex in a continuous-kernel NZSG, then the NE is completely char-
acterized by the solution of a fixed-point equation, namely, (1.21). Since solutions
of fixed-point equations can be obtained recursively (under some condition), this
brings up the possibility of computing the NE recursively, using the iteration

xi .k C 1/ D Ti .x�i .k//; k D 0; 1; : : : ; i 2 N ; (1.22)

where k stands for times of updates by the players. Note that this admits an online
computation interpretation for the underlying game, where each player needs to
know only the most recent actions of the other players (and not their cost functions)
and her own reaction function Ti (for which only the individual cost function of the
player is needed). Hence, this recursion entails a distributed computation with little
information on the parameters of the game. Lumping all players’ actions together
and writing (1.22) as

20The underlying idea of the proof is to make the kernels Li discrete so as to obtain an N -person
matrix game that suitably approximates the original game in the sense that an MSNE of the latter
(which exists by Nash’s theorem) is arbitrarily close to a mixed equilibrium solution of the former.
Compactness of the action spaces ensures that a limit to the sequence of solutions obtained for
approximating finite matrix games exists.
21The qualifier genuine is used here to stress the point that mixed strategies in this statement are
not pure strategies (even though pure strategies are indeed special types of mixed strategies, with
all probability weight concentrated on one point).
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x.k C 1/ D T .x.k//; k D 0; 1; : : : ;

we note that the sequence generated converges for all possible initial choices,
x.0/ D x0, if T is a contraction from X into itself.22 As an immediate by-product,
we also have uniqueness of the NE.

The recursion above is not the only way one can generate a sequence converging
to its fixed point. But before discussing other possibilities, it is worth to make a
digression and introduce a classification of NE based on such recursions, provided
by the notion of “stability” of the solution(s) of the fixed-point equation. This
discussion will then immediately lead to other possible recursions (for N > 2).
For the sake of simplicity in the initial discussion, let us consider the two-player
case (because in this case there is only one type of recursion for the fixed-point
equation, as will be clear later). Given an NE (and assuming that the players are
at the NE point), consider the following sequence of moves: (i) One of the players
(say Player 1) deviates from his corresponding equilibrium strategy, (ii) Player 2

observes this and minimizes her cost function in view of the new strategy of Player
1, (iii) Player 1 now optimally reacts to that (by minimizing his cost function),
(iv) Player 2 optimally reacts to that optimum reaction, etc. Now, if this infinite
sequence of moves converges back to the original NE solution, and this being so
regardless of the nature of the initial deviation of Player 1, we say that the NE is
stable. If convergence is valid only under small initial deviations, then we say that
the NE is locally stable. Otherwise, the NE is said to be unstable. An NZSG can
of course admit more than one locally stable equilibrium solution, but a stable NE
solution has to be unique.

The notion of stability, as introduced above for two-person games, brings in a
refinement to the concept of NE, which finds natural extensions to the N -player
case. Essentially, we have to require that the equilibrium be “restorable” under any
rational readjustment scheme when there is a deviation from it by any player. For
N > 2, this will depend on the specific scheme adopted, which brings us to the
following formal definition of a stable Nash equilibrium.

Definition 13. An NE x�
i ; i 2 N , is (globally) stable with respect to an adjustment

scheme S if it can be obtained as the limit of the iteration:

x�
i D lim

k!1
xi

.k/; (1.23)

xi
.kC1/ D arg min

xi 2�i

Li



x

.Sk/
�i ; xi

�
; xi

.0/ 2 �i ; i 2 N ; (1.24)

22This follows from Banach’s contraction mapping theorem. If T maps a normed space X into
itself, it is a contraction if there exists ˛ 2 Œ0; 1/ such that kT .x/ � T .y/k � ˛kx � yk;

8x; y 2 X .
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where the superscript Sk indicates that the precise choice of x
.Sk/
�i depends on the

readjustment scheme selected. ˘

One possibility for the scheme above is x
.Sk/
�i D x

.k/
�i , which corresponds to

the situation where the players update (readjust) their actions simultaneously, in
response to the most recently determined actions of the other players. Yet another
possibility is

x
.Sk/
�i D

�
x1

.kC1/; : : : ; xi�1
.kC1/; xiC1

.k/; : : : ; xN
.k/

�
;

where the players update in an predetermined (in this case numerical) order. A third
possibility is

x
.Sk/
�i D



x1

mi
1;k ; : : : ; xi�1

.mi
i�1;k /; xiC1

.mi
iC1;k

/; : : : ; xN
.mi

N;k/
�

;

where mi
j;k is an integer-valued random variable, satisfying the bounds:

max.0; k � d/ � mi
j;k � k C 1; j ¤ i; j 2 N ; i 2 N ;

which corresponds to a situation where Player i receives action update information
from Player j at random times, with the delay not exceeding d time units.

Clearly, if the iteration of Definition 13 converges under any one of the
readjustment schemes above (or any other readjustment scheme where a player
receives update information from every other player infinitely often), then the NE
is unique. Every unique NE, however, is not necessarily stable, nor is an NE
that is stable with respect to a particular readjustment scheme is necessarily stable
with respect to some other scheme. Hence, stability is generally given with some
qualification (such as “stable with respect to scheme S” or “with respect to a given
class of schemes”), except when N D 2, in which case all schemes (with at most a
finite delay in the transmission of update information) lead to the same condition of
stability, as one then has the simplified recursions

xi
.rkC1;i / D QTi

�
xi

.rk;i /
�

; k D 0; 1; : : : I i D 1; 2;

where r1;i , r2;i , r3;i , . . . denote the time instants when Player i receives new action
update information from Player j , j ¤ i , i , j D 1; 2.

8 Continuous-Kernel Games and Stackelberg Equilibria

This section is on the Stackelberg solution of static NZSGs when the number of
alternatives available to each player is not a finite set and the cost functions are
described by continuous kernels. For the sake of simplicity and clarity in exposition,
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the focus will be on two-person static games. A variety of possible extensions of
the Stackelberg solution concept to N -person static games with different levels of
hierarchy can be found in Başar and Olsder (1999).

Here, the notation will be slightly different from the one in the previous section,
with ui 2 U i denoting the action variable of Player i (instead of xi 2 �i ), where
her action set U i is assumed to be a subset of an appropriate metric space (such
as Xi ). The cost function J i of Player i is defined as a continuous function on the
product space U 1 � U 2. Then, we can state the following general definition of a
Stackelberg equilibrium solution (SES), which is the counterpart of Definition 7 for
infinite games.

Definition 14. In a two-person game, with Player 1 as the leader, a strategy u1�

2

U 1 is called a Stackelberg equilibrium strategy for the leader if

J 1� 	
D sup

u22R2.u1�

/

J 1



u1�

; u2
�

� sup
u22R2.u1/

J 1
�
u1; u2

�
; (1.25)

for all u1 2 U 1. Here, R2.u1/ is the rational reaction set of the follower as introduced
in (1.12). ˘

Remark 10. If R2.u1/ is a singleton for each u1 2 U 1, in other words, if it is
described completely by a reaction curve T2 W U 1 ! U 2, then inequality (1.25)
in the above definition can be replaced by

J 1� 	
D J 1



u1�

; T2.u1�

/
�

� J 1
�
u1; T2.u1/

�
; (1.26)

for all u1 2 U 1. ˘

If a SES exists for the leader, then the LHS of inequality (1.25) is known as the
leader’s Stackelberg cost and is denoted by J 1�

. A more general definition for J 1�

is, in fact,

J 1�

D inf
u12U 1

sup
u22R2.u1/

J 1
�
u1; u2

�
; (1.27)

which also covers the case when a Stackelberg equilibrium strategy does not exist. It
follows from this definition that the Stackelberg cost of the leader is a well-defined
quantity, and that there will always exist a sequence of strategies for the leader which
will insure her a cost value arbitrarily close to J 1�

. This observation brings us to the
following definition of � Stackelberg strategies.

Definition 15. Let � > 0 be a given number. Then, a strategy u1�

� 2 U 1 is called an
� Stackelberg strategy for the leader .P1/ if
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sup
u22R2.u1�

� /

J 1



u1�

� ; u2
�

� J 1�

C �:

˘

The next two properties of � Stackelberg strategies now readily follow.

Property 1. In a two-person game, let J 1�

be a finite number. Then, given an
arbitrary � > 0, an � Stackelberg strategy necessarily exists. ˘

Property 2. Let fu1�

�i
g be a given sequence of � Stackelberg strategies in U 1, with

�i > �j for i < j and limj !1 �j D 0. Then, if there exists a convergent
subsequence fu1�

�ik
g in U 1 with limit u1�

, and further if supu22R2.u1/ J 1.u1; u2/ is a

continuous function of u1 in an open neighborhood of u1�

2 U 1, u1�

is a Stackelberg
strategy for Player 1. ˘

The equilibrium strategy of the follower, in a Stackelberg game, would be any
strategy that constitutes an optimal response to the one adopted (and announced)
by the leader. Mathematically speaking, if u1�

(respectively, u1�

� ) is adopted by the
leader, then any u2 2 R2.u1/ (respectively, u2 2 R2.u1�

� ) will be referred to as an
optimal strategy for the follower, in equilibrium with the Stackelberg (respectively,
� Stackelberg) strategy of the leader. This pair is referred to as a Stackelberg
(respectively, � Stackelberg) solution of the two-person game with Player 1 as the
leader (see Definition 8). The following theorem now provides a set of sufficient
conditions for two-person NZSGs to admit a SES; see Başar and Olsder (1999).

Theorem 7. Let U 1 and U 2 be compact metric spaces and J i be continuous on
U 1 � U 2, i D 1; 2. Further, let there exist a finite family of continuous mappings

l .i/ W U 1 ! U 2, indexed by a parameter i 2 I
	
D f1; : : : ; M g, so that R2.u1/ D

fu2 2 U 2 W u2 D l .i/.u1/; i 2 I g. Then, the two-person nonzero-sum static game
admits a Stackelberg equilibrium solution.

Remark 11. The assumption of Theorem 7 concerning the structure of R2.�/

imposes some severe restrictions on J 2; but such an assumption is inevitable as
the following example demonstrates. Take U 1 D U 2 D Œ0; 1�, J 1 D �u1u2, and
J 2 D .u1� 1

2
/u2. Here, R2.�/ is determined by a mapping l.�/ which is continuous on

the half-open intervals Œ0; 1
2
/; . 1

2
; 1�, but is multivalued at u1 D 1

2
. The Stackelberg

cost of the leader is clearly J 1�

D � 1
2
, but a Stackelberg strategy does not exist

because of the “infinitely multivalued” nature of l . ˘

When R2.u1/ is a singleton for every u1 2 U 1, the hypothesis of Theorem 7
can definitely be made less restrictive. One such set of conditions is provided in
the following corollary to Theorem 7 under which there exists a unique l which is
continuous.
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Corollary 2. Let U 1 and U 2 be compact metric spaces and J i be continuous on
U 1�U 2, i D 1; 2. Further let J 2.u1; �/ be strictly convex for all u1 2 U 1 and Player
1 act as the leader. Then, the game admits a SES. ˘

It should be noted that the SES for a two-person game exists under a set of
sufficiency conditions which are much weaker than those required for existence of
Nash equilibria. It should further be noted, however, that the statement of Theorem 7
does not also rule out the existence of a mixed-strategy Stackelberg solution which
might provide the leader with a lower average cost. We have already observed
occurrence of such a phenomenon within the context of matrix games earlier in
the chapter, and we now investigate to what extent such a result could remain valid
in continuous-kernel games.

If mixed strategies are also allowed, then permissible strategies for Player i will
be probability measures �i on the space U i . Let us denote the collection of all such
probability measures for Player i by M i . Then, the quantity replacing J i will be the
average cost function

NJ i .�1; �2/ D

Z
U 1

Z
U 2

J i .u1; u2/ d�1.u1/ d�2.u2/; (1.28)

and the reaction set R2 will be replaced by

NR2.�1/
	
D

nb�2
2 M 2 W NJ 2.�1; b�2

/ � NJ 2.�1; �2/; 8�2 2 M 2
o

: (1.29)

Hence, we have:

Definition 16. In a two-person game with Player 1 as the leader, a mixed strategy
�1�

2 M 1 is called a mixed Stackelberg equilibrium strategy for the leader if

NJ 1� 	
D sup

�22 NR2.�1�

/

NJ 1.�1�

; �2/ � sup
�22 NR2.�1/

NJ 1.�1; �2/

for all �1 2 M 1, where NJ 1�

is known as the average Stackelberg cost of the leader
in mixed strategies. ˘

The following result says that under mixed strategies, the average Stackelberg
cost for the leader cannot be higher than under pure strategies Başar and Olsder
(1999).

Proposition 10.

NJ 1�

� J 1�

(1.30)
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We now show, by a counterexample, that, even under the hypothesis of Theo-
rem 7, it is possible to have strict inequality in (1.30).

(Counter-) Example. Consider a two-person continuous-kernel game with U 1 D

U 2 D Œ0; 1�, and with cost functions

J 1 D �.u1/2 C u1
p

u2 � u2I J 2 D .u2 � .u1/2/2;

where � > 0 is a sufficiently small parameter. The unique Stackelberg solution of
this game, in pure strategies, is u1�

D 0, u2� D .u1/2, and the Stackelberg cost
for the leader is J 1�

D 0. We now show that the leader can actually do better by
employing a mixed strategy.

First note that the follower’s unique reaction to a mixed strategy of the leader is
u2 D EŒ.u1/2� which, when substituted into NJ 1, yields the expression

NJ 1 D �EŒ.u1/2� C EŒu1�
p

fEŒ.u1/2�g � EŒ.u1/2�:

Now, if the leader uses the uniform probability distribution on Œ0; 1�, his average
cost becomes

NJ 1 D
� � 1

3
C

1

2

r
1

3
;

which clearly indicates that, for � sufficiently small, NJ 1�

< 0 D J 1�

. ˘

The preceding example has demonstrated the fact that even in Stackelberg games
with strictly convex cost functionals, there may exist mixed-strategy SE in addition
to pure-strategy one(s), and in fact the former could lead to a better performance for
the leader than any of the latter.23 However, if we further restrict the cost structure
to be quadratic, then only pure-strategy Stackelberg equilibria will exist (Başar and
Olsder 1999, pp. 183–184).

Proposition 11. Consider the two-person nonzero-sum game with U 1 D R
m1 ,

U 2 D R
m2 , and

J i D
1

2
ui 0

Ri
ii u

i C u10
Ri

ij uj C
1

2
uj :0Ri

jj uj C ui 0
ri

i C uj 0
ri

j I i; j D 1; 2; i ¤ j;

where Ri
ii > 0, Ri

ii , Ri
ij , Ri

jj are appropriate dimensional matrices and ri
i , ri

j are
appropriate dimensional vectors. This “quadratic” game can only admit a pure-
strategy Stackelberg solution, with either Player 1 or Player 2 as the leader.

23In retrospect, this should not be surprising since for the special case of ZSGs (without pure-
strategy saddle points), we have already seen that the minimizer could further decrease her
guaranteed expected cost by playing a mixed strategy; here, however, it holds even if J 1 6� �J 2.
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9 Quadratic Games: Deterministic and Stochastic

This section presents explicit expressions for the Nash, saddle-point, and Stackel-
berg equilibrium solutions of static nonzero-sum games in which the cost functions
of the players are quadratic in the decision variables – the so-called quadratic games.
The action (strategy) spaces will be taken as appropriate dimensional Euclidean
spaces, but the results are also equally valid (under the right interpretation) when
the strategy spaces are taken as infinite-dimensional Hilbert spaces. In that case,
the Euclidean inner products will have to be replaced by the inner product of
the underlying Hilbert space, and the positive definiteness requirements on some
of the matrices will have to be replaced by strong positive definiteness of the
corresponding self-adjoint operators. The section also includes some discussion
on iterative algorithms for the computation of Nash equilibria in the quadratic
case, as well as some results on Nash equilibria of static stochastic games with
quadratic costs where the players have access to the state of nature through (possibly
independent) noisy channels.

9.1 Deterministic Games

A general quadratic cost function for Player i , which is strictly convex in her action
variable, can be written as

J i D
1

2

NX
j D1

NX
kD1

uj 0
Ri

jkuk C

NX
j D1

r i
j

0
uj C ci; (1.31)

where uj 2 U j D R
mj is the mj -dimensional action variable of Player j , Ri

jk is

an .mj � mk/-dimensional matrix with Ri
ii > 0, ri

j is an mj -dimensional vector,
and ci is a constant. Without loss of generality, we may assume that, for j ¤ k,
Ri

jk D Ri
kj

0
, since if this were not the case, the corresponding two quadratic terms

could be written as

uj 0
Ri

jkuk C uk 0
Ri

kj uj D uj 0
�

Ri
jkCRi

kj

0

2

�
uk C uk 0

�
Ri

jkCRi
kj

0

2

�
uj ; (1.32)

and redefining Ri
jk as .Ri

jk C Ri
jk

0
/=2, a symmetric matrix could be obtained. By

an analogous argument, we may take Ri
jj to be symmetric, without any loss of

generality.
Quadratic cost functions are of particular interest in game theory, first because

they constitute second-order approximation to other types of nonlinear cost func-
tions, and second because games with quadratic cost or payoff functions are
analytically tractable, admitting, in general, closed-form equilibrium solutions
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which provide insight into the properties and features of the equilibrium solution
concept under consideration.

To determine the NE solution in strictly convex quadratic games, we differentiate
J i with respect to ui .i 2 N /, set the resulting expressions equal to zero, and solve
the set of equations thus obtained. This set of equations, which also provides a
sufficient condition because of strict convexity, is

Ri
ii u

i C
X
j ¤i

Ri
ij uj C ri

i D 0 .i 2 N /; (1.33)

which can be written in compact form as

Ru D �r (1.34)

where

R
	
D

2
66666664

R1
11 R1

12 � � � R1
1N

R2
12 R2

22 � � � R2
2N

� � �

� � �

� � �

RN
1N RN

2N � � � RN
NN

3
77777775

(1.35)

u0 	
D .u1; u2; : : : ; uN /; r 0 	

D .r1
1 ; r2

2 ; : : : ; rN
N /: (1.36)

This then leads to the following result.

Proposition 12. The quadratic N -player nonzero-sum static game defined by the
cost functions (1.31) and with Ri

ii > 0 admits a Nash equilibrium (NE) solution if,
and only if, (1.34) admits a solution, say u�; this NE solution is unique if the matrix
R defined by (1.35) is invertible, in which case it is given by

u� D �R�1r: (1.37)
˘

Remark 12. Since each player’s cost function is strictly convex and continuous in
his action variable, quadratic nonzero-sum games of the type discussed above cannot
admit a NE solution in mixed strategies. Hence, in strictly convex quadratic games,
the equilibrium analysis can be confined to the class of pure strategies. ˘

We now investigate the stability properties of the unique NE solution of quadratic
games, where the notion of stability was introduced earlier. Taking N D 2, and
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directly specializing recursion (1.22) to the quadratic case (with the obvious change
in notation, and in a sequential update mode), we arrive at the following iteration:

u1.kC1/
D C1u2.k/

C d1; u2.kC1/
D C2u1.kC1/

C d2; k D 0; 1; : : : ; (1.38)

with an arbitrary starting choice u2.0/
, where

Ci D �.Ri
i i /

�1Ri
ij ; di D �.Ri

i i /
�1r i

i ; j ¤ i; i; j D 1; 2:

This iteration corresponds to the sequential (Gauss-Seidel) update scheme where
Player 1 responds to the most recent past action of Player 2, whereas Player 2

responds to the current action of Player 1. The alternative to this is the parallel
(Jacobi) update scheme where (1.38) is replaced by24

u1.kC1/
D C1u2.k/

C d1; u2.kC1/
D C2u1.k/

C d2; k D 0; 1; : : : ; (1.39)

starting with arbitrary initial choices .u1.0/
; u2.0/

/. Then, the question of stability of
the NE solution (1.37), with N D 2, reduces to the question of stability of the fixed
point of either (1.38) or (1.39). Note that, apart from a relabeling of indices, stability
of these two iterations is equivalent to the stability of the single iteration:

u1.kC1/
D C1C2u1.k/

C C1d2 C d1:

Since this is a linear difference equation, a necessary and sufficient condition for
it to converge (to the actual NE strategy of Player 1) is that the eigenvalues of the
matrix C1C2 or equivalently those of C2C1 should be in the unit circle, i.e.

�.C1C2/ � �.C2C1/ < 1 (1.40)

where �.A/ is the spectral radius of the matrix A.
Note that the condition of stability is considerably more stringent than the

condition of existence of a unique Nash equilibrium, which is

det.I � C1C2/ ¤ 0: (1.41)

The question we address now is whether, in the framework of Gauss-Seidel or
Jacobi iterations, this gap between (1.40) and could be (1.41) shrunk or even totally
eliminated, by allowing players to incorporate memory into the iterations. While
doing this, it would be desirable for the players to need to know as little as possible
regarding the reaction functions of each other (note that no such information is
necessary in the Gauss-Seidel or Jacobi iterations given above).

24This one corresponds to (1.22).
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To study this issue, consider the Gauss-Seidel iteration (1.38), but with a one-
step memory for (only) Player 1. Then, the “relaxed” algorithm will be (using the
simpler notation u1.k/

D uk , u2.k/
D vk):

ukC1 D C1vk C d1 C A.uk � C1vk � d1/

vkC1 D C2ukC1 C d2

�
; (1.42)

where A is a gain matrix, yet to be chosen. Substituting the second (for vk) into the
first, we obtain the single iteration

ukC1 D ŒC C A.I � C /�uk C .I � A/Œd1 C C1d2�;

where

C
	
D C1C2:

By choosing
A D �C .I � C /�1; (1.43)

where the required inverse exists because of (1.41), we obtain a finite-step conver-
gence, assuming that the true value of C2 is known to Player 1. If the true value of C2

is not known, but a nominal value is given in a neighborhood of which the true value
lies, the scheme (1.42) along with the choice (1.43) for the nominal value still leads
to convergence (but not in a finite number of steps) provided that the neighborhood
is sufficiently small (Başar 1987).

Now, if the original scheme is instead the parallel (Jacobi) scheme, then a one-
step memory for Player 1 will not be sufficient to obtain a finite-step convergence
result as above. In this case, we replace (1.42) by

ukC1 D C1vk C d1 C B.uk�1 � C1vk � d2/

vkC1 D C2uk C d2

�
; (1.44)

where B is another gain matrix. Note that here Player 1 uses, in the computation of
ukC1, not uk but rather uk�1. Now, substituting for vk from the second into the first
equation of (1.44), we arrive at the iteration

ukC1 D ŒC C B.I � C /�uk�1 C .I � B/Œd1 C C1d2�;

which again shows finite-step convergence, with B chosen as

B D �C .I � C /�1: (1.45)

Again, there is a certain neighborhood of nominal C2 or equivalently of the nominal
C , where the iteration (1.44) is convergent.
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In general, however, the precise scheme according to which Player 2 responds to
Player 1’s policy choices may not be common information, and hence one would
like to develop relaxation-type algorithms for Player 1 which would converge to
the true equilibrium solution regardless of what particular scheme Player 2 adopts
(e.g., Gauss-Seidel or Jacobi). Consider, for example, the scheme where Player 2’s
responses for different k are modeled by

vkC1 D C2ukC1�ik C d2; (1.46)

where ik � 0 is an integer denoting the delay in the receipt of current policy
information by Player 2 from Player 1. The choice ik D 0 for all k would correspond
to the Gauss-Seidel iteration, and the choice ik D 1 for all k to the Jacobi iteration –
assuming that ukC1 is still determined according to (1.38). An extreme case would
be the totally asynchronous communication where fikgk�0 could be any sequence
of positive integers. Under the assumptions that Player 1 communicates new policy
choices to Player 2 infinitely often and he uses the simple (“nonrelaxed”) iteration

ukC1 D C1vk C d1; (1.47)

it is known from the work of Chazan and Miranker (1969) that such a scheme
converges if, and only if,

�.jC j/ < 1; (1.48)

where jC j is the matrix derived from C by multiplying all its negative entries by -1.
This condition can be improved upon, however, by incorporating relaxation terms

in (1.47), such as

ukC1 D ˛uk C .1 � ˛/C1vk C .1 � ˛/d1; (1.49)

where ˛ is some scalar. The condition for convergence of any asynchronously
implemented version of (1.46) and (1.49) in this case is

�. NA.˛// < 1; (1.50)

where

NA.˛/ WD

�
j˛jI j.1 � ˛/C1j

jC2j 0

�
: (1.51)

Clearly, there is a value of ˛ ¤ 0 for which (1.50) requires a less stringent condition
(on C1 and C2) than (1.48). For example, if C1 and C2 are scalars, and ˛ D 1

2
, (1.50)

dictates

C1C2 < 4;

while (1.48) requires that C1C2 < 1.
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From a game theoretic point of view, each of the iteration schemes discussed
above corresponds to a game with a sufficiently large number of stages and with a
particular mode of play among the players. Moreover, the objective of each player
is to minimize a kind of an average long horizon cost, with costs at each stage
contributing to this average cost. Viewing this problem overall as a multi-act NZSG,
we observe that the behavior of each player at each stage of the game is rather
“myopic,” since at each stage the players minimize their cost functions only under
past information, and quite in ignorance of the possibility of any future moves. If
the possibility of future moves is also taken into account, then the rational behavior
of each player at a particular stage could be quite different. Such myopic decision-
making could make sense, however, if the players have absolutely no idea as to
how many stages the game comprises, in which case there is the possibility that
at any stage a particular player could be the last one to act in the game. In such a
situation, risk-averse players would definitely adopt “myopic” behavior, minimizing
their current cost functions under only the past information, whenever given the
opportunity to act.

9.1.1 Two-Person Zero-Sum Games
Since ZSGs are special types of two-person NZSGs with J1 D �J2 (Player 1

minimizing and Player 2 maximizing), in which case the NE solution concept
coincides with the concept of SPE, a special version of Proposition 12 will be valid
for quadratic zero-sum games. To this end, we first note that the relation J1 D �J2

imposes in (1.31) the restrictions

R1
12

0
D �R2

21; R2
11 D �R1

11; R1
22 D �R2

22; r2
1 D �r1

1 ; r1
2 D �r2

2 ; c1 D �c2;

under which matrix R defined by (1.35) can be written as

R D

�
R1

11 R1
12

�R1
12

0
R2

22

�

which has to be nonsingular for existence of a saddle point. Since R can also be
written as the sum of two matrices

R D

�
R1

11 0

0 R2
22

�
C

�
0 R1

12

�R1
12

0
0

�

the first one being positive definite and the second one skew symmetric, and
since eigenvalues of the latter are always imaginary, it readily follows that R is
a nonsingular matrix. Hence, we arrive at the conclusion that quadratic strictly
convex-concave zero-sum games admit unique saddle-point equilibrium in pure
strategies.
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Corollary 3. The strictly convex-concave quadratic zero-sum game

J D
1

2
u10

R1
11u1 C u10

R1
12u2 �

1

2
u20

R2
22u2 C u10

r1
1 C u20

r1
2 C c1I

R1
11 > 0; R2

22 > 0;

admits a unique saddle-point equilibrium in pure strategies, which is given by

u1�

D �ŒR1
11 C R1

12.R2
22/�1R1

12

0
��1Œr1

1 C R1
12.R2

22/�1r1
2 �;

u2� D ŒR2
22 C R1

12

0
.R1

11/�1R1
12��1Œr1

2 C R1
12

0
.R1

11/�1r1
1 �:

˘

Remark 13. The positive-definiteness requirements on R1
11 and R2

22 in Corollary 3
are necessary and sufficient for the game kernel to be strictly convex-strictly
concave, but this structure is clearly not necessary for the game to admit a
saddle point. If the game is simply convex-concave (i.e., if the matrices above are
nonnegative definite, with a possibility of zero eigenvalues), then an SPE will still
exist provided that the upper and lower values are bounded.25 If the quadratic game
is not convex-concave, however, then either the upper or the lower value (or both)
will be unbounded, implying that a saddle point will not exist. ˘

9.1.2 Team Problems
Yet another special class of NZSGs are the team problems in which the players (or
equivalently, members of the team) share a common objective. Within the general

framework, this corresponds to the case J1 � J 2 � � � � � J N 	
D J , and

the objective is to minimize this cost function over all ui 2 U i , i D 1; : : : ; N .
The resulting solution N -tuple .u1�

; u2�

; : : : ; uN �

/ is known as the team-optimal
solution. The NE solution, however, corresponds to a weaker solution concept in
team problems (as we have already seen), the so-called person-by-person (pbp)
optimality. In a two-member team problem, for example, a pbp optimal solution
.u1�

; u2�/ dictates satisfaction of the pair of inequalities

J .u1�

; u2�

/ � J .u1; u2�

/; 8u1 2 U 1;

J .u1�

; u2�

/ � J .u1�

; u2/; 8u2 2 U 2;

whereas a team-optimal solution .u1�

; u2�

/ requires satisfaction of a single inequal-
ity

25For a convex-concave quadratic game, the upper value will not be bounded if, and only if, there
exists a v 2 R

m2 such that v0R2
22v D 0 while v0r1

2 ¤ 0. A similar result also applies to the lower
value.
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J .u1�

; u2�

/ � J .u1; u2/; 8u1 2 U 1; u2 2 U 2:

A team-optimal solution always implies pbp optimality, but not vice versa. Of
course, if J is quadratic and strictly convex on the product space U 1 � � � � � U N ,
then a unique pbp optimal solution exists, and it is also team-optimal.26 However,
for a cost function that is strictly convex only on individual spaces U i , but not on
the product space, this latter property may not be true. Consider, for example, the
quadratic cost function

J D .u1/2 C .u2/2 C 10u1u2 C 2u1 C 3u2;

which is strictly convex in u1 and u2, separately. The matrix corresponding to R

defined by (1.35) is

�
2 10

10 2

�
;

which is clearly nonsingular. Hence, a unique pbp optimal solution will exist.
However, a team-optimal solution does not exist since the said matrix (which is
also the Hessian of J ) has one positive and one negative eigenvalue. By cooperating
along the direction of the eigenvector corresponding to the negative eigenvalue, the
members of the team can make the value of J as small as possible. In particular,
taking u2 D � 2

3
u1 and letting u1 ! C1 drives J to �1.

9.1.3 The Stackelberg Solution
We now elaborate on the SESs of quadratic games of type (1.31) but with N D 2

and Player 1 acting as the leader. We first note that since the quadratic cost function
J i is strictly convex in ui , by Proposition 11, we can confine our investigation of
an equilibrium solution to the class of pure strategies. Then, to every announced
strategy u1 of Player 1, the follower’s unique response will be as given by (1.33)
with N D 2, i D 2:

u2 D �.R2
22/�1ŒR2

21u1 C r2
2 �: (1.52)

Now, to determine the Stackelberg strategy of the leader, we have to minimize
J 1 over U 1 and subject to the constraint imposed by the reaction of the follower.
Since the reaction curve gives u2 uniquely in terms of u1, this constraint can best
be handled by substitution of (1.52) in J 1 and by minimization of the resulting
functional (to be denoted by QJ 1) over U 1. To this end, we first determine QJ 1:

26This result may fail to hold true for team problems with strictly convex but nondifferentiable
kernels.



1 Introduction to the Theory of Games 53

QJ 1.u1/ D
1

2
u10

R1
11u1 C

1

2
ŒR2

21u1 C r2
2 �0.R2

22/�1R1
22.R2

22/�1ŒR2
21u1 C r2

2 �

� u10
R1

21.R2
22/�1ŒR2

21u1 C r2
2 � C u10

r1
1

� ŒR2
21u1 C r2

2 �0.R2
22/�1r1

2 C c1:

For the minimum of QJ 1 over U 1 to be unique, we have to impose a strict convexity
condition on QJ 1. Because of the quadratic structure of QJ 1, this condition amounts to
having the coefficient matrix of the quadratic term in u1 positive definite, which is

R1
11 C R2

21

0
.R2

22/�1R1
22.R2

22/�1R2
21 � R1

21.R2
22/�1R2

21

� R2
21

0
.R2

22/�1R1
21

0
> 0:

(1.53)

Under this condition, the unique minimizing solution can be obtained by setting the
gradient of QJ 1 equal to zero, which yields

u1�

D �ŒR1
11 C R2

21.R2
22/�1R1

22.R2
22/�1R2

21 � R1
21.R2

22/�1R2
21

� R2
21

0
.R2

22/�1R1
21

0
��1ŒR2

21

0
.R2

22/�1R1
22R1

22.R2
22/�1r2

2

� R1
21.R2

22/�1r2
2 C r1

1 � R2
21

0
.R2

22/�1r1
2 �:

(1.54)

Proposition 13. Under condition (1.53), the two-person version of the quadratic
game (1.31) admits a unique Stackelberg strategy for the leader, which is given
by (1.54). The follower’s unique response is then given by (1.52). ˘

Remark 14. A sufficient condition for condition (1.53) is strict convexity of J 1 on
the product space U 1 � U 2. ˘

9.2 Stochastic Games

In this subsection, we introduce and discuss the equilibria of stochastic static games
with quadratic cost functions, for only the case N D 2. Stochasticity will enter the
game through the cost functions of the players, as weights on the linear terms of the
action variables. Accordingly, the quadratic cost functions will be given by (where
we differentiate between players using subscripts instead of superscripts)

L1.u1; u2I 
1; 
2/ D
1

2
u0

1R11u1 C u0
1R12u2 C u0

1xi1;

L2.u1; u2I 
1; 
2/ D
1

2
u0

2R22u2 C u0
2R21u1 C u0

2
2;

where Rii are positive definite and 
i ’s are random vectors of appropriate dimen-
sions. Player 1 and Player 2 do not have access to the values of these random vectors,
but they measure another pair of random vectors, y1 (for Player 1) and y2 (for Player
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2), which carry some information on 
i ’s. We assume that all four random variables
have bounded first and second moments, and their joint distribution is common
information to both players.

Player 1 uses y1 in the construction of her policy and subsequently action, where
we denote her policy variable (strategy) by �1, so that u1 D �1.y1/. Likewise, we
introduce �2 as the strategy for Player 2, so that u2 D �2.y2/. These policy variables
have no restrictions imposed on them other than measurability and that ui ’s should
have bounded first and second moments. Let �1 and �2 be the corresponding spaces
where �1 and �2 belong. Then, for each �i 2 �i ; i D 1; 2, using u1 D �1.y1/

and u2 D �2.y2/ in L1 and L2, and taking expectation over the statistics of the
four random variables, we arrive at the normal form of the game (in terms of the
strategies), captured by the expected costs:

J1.�1; �2/ D EŒL1.�1.y1/; �2.y2/I 
1; 
2/�

J2.�1; �2/ D EŒL2.�1.y1/; �2.y2/I 
1; 
2/�

We are looking for a NE in �1 � �2, where NE is defined in the usual way.
Using properties of conditional expectation, for fixed �2 2 �2, there exists a

unique �1 2 �1 that minimizes J1.�1; �2/ over �1. This unique solution is given by

�1.y1/ D R�1
11 ŒR12E Œ�2.y2/jy1� C E
1jy1�� DW T1.�2/.y1/;

which is the unique response by Player 1 to a strategy of Player 2. Likewise, Player
2’s response to Player 1 is unique:

�2.y2/ D R�1
22 ŒR21E Œ�1.y1/jy2� C E
2jy2�� DW T2.�1/.y2/:

Hence, in the policy space, we will be looking for a fixed point of

�1 D T1.�2/; �2 D T2.�1/;

and substituting the second one into the first, we have

�1 D .T1 ı T2/ .�1/;

where T1 ı T2 is the composite map. This will admit a unique solution if T1 ı T2 is
a contraction (note that �1 is a Banach space).

Now, writing out this fixed-point equation

�1.y/DR�1
11 R12R�1

22 R21E ŒE Œ�1.y1/jy2� jy1� C R�1
11 R12R�1

22EŒ
2jy1��R�1
11 EŒ
1jy1�

DW QT1.�1/.y1/ C R�1
11 R12R�1

22 EŒ
2jy1� � R�1
11 EŒ
1jy1�:
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Hence, T1 ı T2 is a contraction if, and only if, QT1 is a contraction, since conditional
expectation is a nonexpansive mapping, it follows that the condition for existence of
NE (and its stability) is exactly the one obtained in the previous subsection for the
deterministic game, that is,

�.C1C2/ D �.R�1
11 R12R�1

22 R21/ < 1:

In this case, the recursion

�
.kC1/
1 D .T1 ı T2/



�

.k/
1

�

will converge for all �
.0/
1 2 �1. Note that if this sequence converges, so does the one

generated by

�
.kC1/
1 D T1



�

.k/
2

�
; �

.kC1/
2 D T2



�

.k/
1

�
;

for all �
.0/
i 2 �i ; i D 1; 2. And the limit is the unique NE.

If the four random vectors are jointly Gaussian distributed, then the unique
NE will be affine in y1 (for Player 1) and y2 (for Player 2), which follows from
properties of Gaussian random variables, by taking �

.0/
i D 0. Further results on this

class of stochastic games for the Stackelberg equilibrium, for the Nash equilibrium
with N > 2, and when the players do not agree on a common underlying statistics
for the uncertainty can be found in Başar (1978, 1985).

10 Games with Incomplete Information

The game models and solution concepts discussed heretofore in this chapter were
all built on the governing assumption that the players all have complete information
on the elements of the game, particularly on the action spaces of all players and
the players’ cost functions, and that this is all common information to all players. It
could, however, happen, especially in a competitive environment, that some private
information available to a player may not be publicly available to other players. In
particular, a player may not have complete information on other players’ possible
actions, strategies, and objective functions. One way of addressing such decision-
making problems with incomplete information in precise mathematical terms is to
formulate them as Bayesian games – a formulation introduced by Harsanyi in the
1960s (Harsanyi 1967). This section provides a brief introduction to such games,
within the static framework, as extension of complete information static games
introduced earlier; more details on such games, as well as Bayesian dynamic games
in extensive form, and applications in economics can be found in Fudenberg and
Tirole (1991). Applications of Bayesian games in wireless communications and
networking have been discussed in Han et al. (2011).
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Now, for static noncooperative games with complete information, we had
identified three basic elements for a precise formulation: (i) the number of players,
N , with players set being N ; (ii) the possible actions available to each player, and
any constraints that may be imposed on them (we had denoted a generic action
for Player i by xi and her action set by Xi , for i 2 N ); and (iii) the objective
function of each player (Li .xi ; x�i / for Player i ) which she attempts to optimize
(specifically, minimize). In static Bayesian games (or static games with incomplete
information), there is one additional element, which is the type of a player, which
we denote by ti 2 Ti for Player i , where Ti is the player’s type space, assumed to be
finite. Then, the objective function of a player depends not only on actions but also
on types (possibly of all players), which we write (using the standard convention)
as Li .ai ; a�i I ti ; t�i / for Player i . Player i knows her own type, ti , but has only
a belief on other players’ types, captured by conditional probability of t�i given
her own type ti , denoted by pi .t�i jti /. Events in such a game follow the following
sequence, initiated by nature’s choice of types:

1. Nature chooses the types of all players.
2. Players observe their own types, as drawn by nature. A full description of a

particular player’s type is known only to that player (private information).
3. Players simultaneously choose their actions. In particular, Player i chooses an

action based on her belief on the types of the other players, given her own type,
this being so for all i 2 N .

4. Each player incurs a cost based on the actions and types of all players; that is, for
Player i , we have the cost Li .ai ; a�i I ti ; t�i /. Note that this quantity is random.

To introduce the proper equilibrium concept for this game (as an extension of
Nash equilibrium for complete information games), it is convenient to introduce
strategies for the players as mappings from their type spaces to their action sets,
that is, for Player i , si W Ti ! Xi , with Si being the set of all such maps. Let us
also introduce the notation s�i .t�i / WD fsj .tj /; j 2 N ; j 6D ig. Then, we say that
an N -tuple fs�

i 2 Si ; i 2 N g constitutes an equilibrium (more precisely, Bayesian
Nash Equilibrium (BNE)) if x�

i D s�
i .ti / minimizes the conditional expectation

of Li .ai ; s�
�i .ti /I ti ; t�i /, where expectation is taken over t�i conditioned on ti . In

mathematical terms, as the counterpart of (1.1), we have (for BNE):

X
t
�i 2T

�i

Li .x
�
i ; s�

�i .t�i /I ti ; t�i /pi .t�i jti /�
X

t
�i 2T

�i

Li .xi ; s�
�i .t�i /I ti ; t�i /pi .t�i jti /;

(1.55)

holding for all xi 2 Xi ; i 2 N .
The BNE, as defined above, can be qualified as a pure-strategy BNE and, as in

the case of NE in finite games discussed earlier, such an equilibrium may not exist.
Then, we have to extend the definition to encompass mixed strategies, defined as a
probability distribution for each player on her action set for each of her types (i.e.,
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a different probability distribution for each type). With such an extension, again the
counterpart of Nash’s theorem holds, that is, every finite incomplete information
game formulated as in this section has a BNE in mixed strategies (Fudenberg and
Tirole 1991).

11 Conclusions

This introductory chapter of the Handbook of Dynamic Game Theory has provided
an exposition to the fundamentals of game theory, by focusing on finite games and
static continuous-kernel games, as a prelude to the rest of the Handbook that has
an in-depth coverage of dynamic and differential games. The focus in this chapter
has also been on noncooperative solution concepts, such as saddle point, Nash,
correlated, and Stackelberg, as opposed to cooperative ones. The chapter has also
provided a historical account of the development and evolution of the discipline of
game theory.
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Başar T (1976) On the uniqueness of the Nash solution in linear-quadratic differential games. Int J

Game Theory 5:65–90
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Başar T (1985) An equilibrium theory for multi-person decision making with multiple probabilistic

models. IEEE Trans Autom Control AC-30(2):118–132
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Başar T, Bernhard P (1995) H1 Optimal control and related minimax design problems: a dynamic

game approach. Birkhäuser, Boston
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Abstract

This chapter provides an overview of the theory of nonzero-sum differential
games, describing the general framework for their formulation, the importance
of information structures, and noncooperative solution concepts. Several special
structures of such games are identified, which lead to closed-form solutions.

Keywords
Closed-loop information structure � Information structures � Linear-quadratic
games � Nash equilibrium � Noncooperative differential games �

Non-Markovian equilibrium � Open-loop information structure �

State-feedback information structure � Stackelberg equilibrium

1 Introduction

Differential games are games played by agents, also called players, who jointly
control (through their actions over time, as inputs) a dynamical system described by
differential state equations. Hence, the game evolves over a continuous-time horizon
(with the length of the horizon known to all players, as common knowledge),
and over this horizon each player is interested in optimizing a particular objective
function (generally different for different players) which depends on the state
variable describing the evolution of the game, on the self-player’s action variable,
and also possibly on other players’ action variables. The objective function for each
player could be a reward (or payoff, or utility) function, in which case the player is
a maximizer, or it could be a cost (or loss) function, in which case the player would
be a minimizer. In this chapter we adopt the former, and this clearly brings in no
loss of generality, since optimizing the negative of a reward function would make
the corresponding player a minimizer. The players determine their actions in a way
to optimize their objective functions, by also utilizing the information they acquire
on the state and other players’ actions as the game evolves, that is, their actions
are generated as a result of the control policies they design as mappings from their
information sets to their action sets. If there are only two players and their objective
functions add up to zero, then this captures the scenario of two totally conflicting
objectives – what one player wants to minimize the other one wants to maximize.
Such differential games are known as zero-sum differential games. Otherwise, a
differential game is known to be nonzero-sum.

The study of differential games (more precisely, zero-sum differential games)
was initiated by Rufus Isaacs at the Rand Corporation through a series of memo-
randa in the 1950s and early 1960s of the last century. His book Isaacs (1965),
published in 1965, after a long delay due to classification of the material it covered,
is still considered as the starting point of the field. The early books following
Isaacs, such as those by Blaquière et al. (1969), Friedman (1971), and Krassovski
and Subbotin (1977), all dealt (in most part) with two-player zero-sum differential
games. Indeed, initially the focal point of differential games research stayed within
the zero-sum domain and was driven by military applications and the presence
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of antagonistic elements. The topic of two-player zero-sum differential games is
covered in some detail in this chapter (TPZSDG) of this Handbook.

Motivated and driven by applications in management science, operations
research, engineering, and economics (see, e.g., Sethi and Thompson 1981),
the theory of differential games was then extended to the case of many players
controlling a dynamical system while playing a nonzero-sum game. It soon became
clear that nonzero-sum differential games present a much richer set of features
than zero-sum differential games, particularly with regard to the interplay between
information structures and nature of equilibria. Perhaps the very first paper on this
topic, by Case, appeared in 1969, followed closely by a two-part paper by Starr and
Ho (1969a,b). This was followed by the publication of a number of books on the
topic, by Leitmann (1974), and by Başar and Olsder (1999), with the first edition
dating back to 1982, Mehlmann (1988), and Dockner et al. (2000), which focuses
on applications of differential games in economics and management science. Other
selected key book references are the ones by Engwerda (2005), which is specialized
to linear-quadratic differential (as well as multistage) games, Jørgensen and Zaccour
(2004), which deals with applications of differential games in marketing, and Yeung
and Petrosjan (2005), which focuses on cooperative differential games.

This chapter is on noncooperative nonzero-sum differential games, presenting
the basics of the theory, illustrated by examples. It is based in most part on material
in Chaps. 6 and 7 of Başar and Olsder (1999) and Chap. 7 of Haurie et al. (2012).

2 A General Framework for m-Player Differential Games

2.1 A System Controlled by m Players

2.1.1 System Dynamics
Consider an n-dimensional dynamical system controlled by a set of m players over
a time interval Œt 0; T �, where T > t0 is a final time that can either be a given data
or defined endogenously as the time of reaching a given target, as to be detailed
below. For future use, let M D f1; : : : ; mg denote the players set, that is, the set of
all players. This dynamical system has the following elements:

1. A state variable x 2 X � R
n, and for each player j 2 M , a control vector

uj 2 Uj � R
pj , where X and Uj ’s are open domains.

2. A state equation (which is an n-dimensional ordinary differential equation) and
an initial value for the state (at time t 0)

Px.t/ D f .x.t/; u.t/; t/; (2.1)

x.t0/ D x0; (2.2)

where fx.t/ W t 2 Œt 0; T �} is the state trajectory and fu.t/ , .u1.t/; : : : ; um.t// W

t 2 Œ0; T �g is the control (or action) schedule (or simply the control) chosen by
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the m players, with uj .�/ generated by player j as a pj -dimensional function.

Here Px.t/ denotes the time derivative
d

dt
x.t/. The function f .�; �; �/ W R

n �

R
p1C���Cpm � R 7! R

n is assumed to be continuously differentiable (of class
C 1) in x; u, and t .

3. If the control vector generated by the m players is a measurable function of t , or
more simply a piecewise continuous function, there is a unique state trajectory
solution of (2.1) and (2.2), and each player j 2 M receives a cumulative reward
over the time horizon Œt 0; T �:

Jj .u.�/I x0; t0/ D

Z T

t0

gj .x.t/; u.t/; t/ dt C Sj .x.T /; T /; (2.3)

where gj is player j ’s instantaneous reward rate and Sj is the terminal reward,
also called salvage value function. The functions gj .�; �; �/ W Rn � R

p1C���Cpm �

R 7! R, j 2 M , are assumed to be continuously differentiable in x; u, and t , and
Sj .�; �/ W Rn � R 7! R, j 2 M , are assumed to be continuously differentiable in
x and t .

2.1.2 Control Constraints
The choice of a control by player j is subject to a pointwise constraint for each
t 2 Œt 0; T �

uj .t/ 2 Uj ; t 2 Œt 0; T �; (2.4)

where Uj is referred to as the player’s admissible pointwise control set. In a more
general setting, the admissible control set may depend on time t and state x.t/.
Then, the choice of a control is subject to a constraint

uj .t/ 2 Uj .x.t/; t//; t 2 Œt 0; T �; (2.5)

where the correspondence, or point-to-set mapping
n
Uj .�; �/ W Rn � R 7! 2R

pj
o

is

assumed to be upper-semicontinuous. In such a case, player j will of course also
have to have access to the current value of the state, which brings in the question of
what information a player has to have access to before constructing her control; this
is related to the information structure of the differential game, without which the
formulation of a differential game would not be complete. Information structures
will be introduced shortly, in the next subsection.

2.1.3 Target
The determination of the terminal time T can be either prespecified (as part of the
initial data), T 2 R

C, or the result of the state trajectory reaching a target. The
target is defined by a surface or manifold defined by an equation of the form
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‚.x; t/ D 0; (2.6)

where ‚.�; �/ W R
n � R 7! R is continuously differentiable. The trajectory ends

(reaches the target), and the rewards are computed, at the first time T when the
condition ‚.x.T /; T / D 0 is satisfied.

2.1.4 Infinite-Horizon Games
In economic and engineering applications, one also considers games where the
terminal time T may tend to 1. The payoff to player j is then defined as

Jj .u.�/I x0; t0/ D

Z 1

0

e��j t gj .x.t/; u.t//dt: (2.7)

Note that player j ’s payoff does not include a terminal reward and the reward rate
depends explicitly on the running time t through a discount factor e��j t , where �j

is a discount rate satisfying �j � 0, which could be player dependent. An important
issue in an infinite-horizon dynamic optimization problem (one-player version of
the problem above) is the fact that when the discount rate �j is set to zero, then
the integral payoff (2.7) may not be well defined, as the integral may not converge
to a finite value for all feasible control paths u.�/, and in some cases for none. In
such situations, one has to rely on a different notion of optimality, e.g., overtaking
optimality, a concept well developed in Carlson et al. (1991). We refer the reader
to the next chapter (Chap. 3) for a deeper discussion of this topic.

2.2 Information Structures and Strategies

2.2.1 Open Loop Versus State Feedback
To complete the formulation of a differential game, one has to describe precisely
the information available to each player (regarding the state and past actions of
other players) when they choose their controls at time t . Let us first focus on
two information structures of common use in applications of differential games,
namely, open-loop and state-feedback information structures. Letting �.t/ denote
the information available to a generic player at time t , we say that the information
structure is open loop if

�.t/ D fx0; tg;

that is, the available information is the current time and the initial state. An
information structure is state feedback if

�.t/ D fx.t/; tg;

that is, the available information is the current state of the system in addition
to the current time. We say that a differential game has open-loop (respectively,
state-feedback) information structure if every player in the game has open-loop
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(respectively, state-feedback) information. It is of course possible for some players
to have open-loop information while others have state-feedback information, but we
will see later that such a mixed information structure does not lead to a well-defined
differential game unless the players who have access to the current value of the state
also have access to the initial value of the state, that is,

�.t/ D fx.t/; x0; tg:

Another more general information structure is the one with memory, known as
closed-loop with memory, where at any time t a player has access to the current
value of the state and also recalls all past values, that is,

�.t/ D fx.s/; s � tg:

The first two information structures above (open loop and state feedback) are
common in optimal control theory, i.e., when the system is controlled by only
one player. In optimal control of a deterministic system, the two information
structures are in a sense equivalent. Typically, an optimal state-feedback control
is obtained by “synthesizing” the optimal open-loop controls defined from all
possible initial states.1 It can also be obtained by employing dynamic programming
or equivalently Bellman’s optimality principle (Bellman 1957). The situation is,
however, totally different for nonzero-sum differential games. The open-loop and
state-feedback information structures generally lead to two very different types of
differential games, except for the cases of two-player zero-sum differential games
(see �Chap. 8, “Zero-sum Differential Games” in this Handbook and also our
brief discussion later in this chapter) and differential games with identical objective
functions for the players (known as dynamic teams, which are equivalent to optimal
control problems as we are dealing with deterministic systems) – or differential
games that are strategically equivalent2 to zero-sum differential games or dynamic
team problems. Now, to understand the source of the difficulty in the nonequivalence
of two differential games that differ (only) in their information structures, consider
the case when the control sets are state dependent, i.e., uj .t/ 2 Uj .x.t/; t/. In
the optimal control case, when the only player who controls the system selects a
control schedule, she can compute also the associated unique state trajectory. In
fact, selecting a control amounts to selecting a trajectory. So, it may be possible to
select jointly the control and the associated trajectory to ensure that at each time t

the constraint u.t/ 2 U .x.t/; t/ is satisfied; hence, it is possible to envision an open-
loop control for such a system. Now, suppose that there is another player involved
in controlling the system; let us call them players 1 and 2. When player 1 defines

1See, e.g., the classical textbook on optimal control by Lee and Markus (1972) for examples of
synthesis of state-feedback control laws.
2This property will be discussed later in the chapter; in the context of static games, “strategic
equivalence” has been discussed in Chap. 1.
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her control schedule, she does not know the control schedule of the other player,
unless there has been an exchange of information between the two players and
a tacit agreement to coordinate their choices of control. Therefore, player 1, not
knowing what player 2 will do, cannot decide in advance if her control at time t

will be in the admissible set U1.x.t/; t/ or not. Hence, in that case, it is impossible
for the players to devise feasible and implementable open-loop controls, whereas
this would indeed be possible under the state-feedback information structure. The
difference between the two information structures is in fact even more subtle, since
even when the admissible control sets are not state dependent, knowing at each
instant t what the state x.t/ is, or not having access to this information will lead to
two different types of noncooperative games in normal form as we will see in the
coming sections.

2.2.2 Strategies
In game theory one calls strategy (or policy or law) a rule that associates an action
to the information available to a player at a position of the game. In a differential
game, a strategy �j for player j is a function that associates to each possible
information �.t/ at t , a control value uj .t/ in the admissible control set. Hence, for
each information structure we have introduced above, we will have a different class
of strategies in the corresponding differential game. We make precise below the
classes of strategies corresponding to the first two information structures, namely,
open loop and state feedback.

Definition 1. Assuming that the admissible control sets Uj are not state dependent,
an open-loop strategy �j for player j (j 2 M ) selects a control action according
to the rule

uj .t/ D �j .x0; t/; 8x0; 8t; j 2 M; (2.8)

where �j .�; �/ W Rn �R 7! Uj is a function measurable (or piecewise continuous) in
t , for each fixed x0. The class of all such strategies for player j is denoted by �OL

j

or simply by �j .

Definition 2. A state-feedback strategy �j for player j (j 2 M ) selects a control
action according to a state-feedback rule

uj .t/ D �j .x.t/; t/; j 2 M; (2.9)

where �j .�; �/ W .x; t/ 2 R
n �R 7! Uj .x; t/ is a given function that must satisfy the

required regularity conditions imposed on feedback controls.3 The class of all such
strategies for player j is denoted by �SF

j or simply by �j .

3These are conditions which ensure that when all players’ strategies are implemented, then
the differential equation (2.1) describing the evolution of the state admits a unique piecewise
continuously differentiable solution for each initial condition x0; see, e.g., Başar and Olsder (1999).
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Remark 1. In the literature on dynamic/differential games, state-feedback strategy
is sometimes called “Markovian,” in contrast to “open loop,” with the argument
being that the former implies less “commitment” than the latter. Such an interpre-
tation is misleading on two counts. First, one can actually view both classes of
strategies as Markovian, since, at each time t , they exploit only the information
received at time t . The strategies do not exploit the history of the information
received up to time t , which is in fact not available. Second, in both cases, a strategy
is a full commitment. Using an open-loop strategy means that the player commits,
at the initial time, to a fixed time path for her control, that is, her choice of control at
each instant of time is predetermined. When using a state-feedback strategy, a player
commits to the use of a well-defined servomechanism to control the system, that is,
her reaction to the information concerning the state of the system is predetermined.
The main advantages of state-feedback strategies lie elsewhere: (i) state-feedback
strategies are essential if one has a stochastic differential game (a differential game
where the state dynamics are perturbed by disturbance (or noise) with a stochastic
description); in fact, if we view a deterministic differential game as the “limit” of a
sequence of stochastic games with vanishing noise, we are left with state-feedback
strategies. (ii) State-feedback strategies allow us to introduce the refined equilibrium
solution concept of “subgame-perfect Nash equilibrium,” which is a concept much
appreciated in economic applications, and will be detailed below.

3 Nash Equilibria

Recall the definition of a Nash equilibrium for a game in normal form (equivalently,
strategic form).

Definition 3. With the initial state x0 fixed, consider a differential game in normal
form, defined by a set of m players, MDf1; : : : ; mg, and for each player j .j 2M )
a strategy set �j and a payoff function

NJj W �1 � � � � � �j � � � � � �m 7! R; j 2 M:

Nash equilibrium is a strategy m-tuple �� D .��
1 ; : : : ; ��

m/, such that for each
player j the following holds:

NJj .��/ � NJj .Œ�j ; ��
�j �/; 8�j 2 �j ; (2.10)

where ��
�j WD .��

i W i 2 M n j / and Œ�j ; ��
�j � is the m-tuple obtained when, in

��, ��
j is replaced by �j . In other words, in Nash equilibrium, for each player j ,

the strategy ��
j is the best reply to the .m � 1/-tuple of strategies ��

�j chosen by the
other players.
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Corresponding to the first two information structures we have introduced for
differential games, we will now define two different games in normal form, leading
to two different concepts of Nash equilibrium for nonzero-sum differential games.

3.1 Open-Loop Nash Equilibrium (OLNE)

Assume that the admissible control sets Uj , j 2 M are not state dependent. If the
players use open-loop strategies (2.8), each �j defines a unique control schedule
uj .�/ W Œ0; T � 7! Uj for each initial state x0. The payoff functions for the normal
form game are defined by

NJj .�/ D Jj .u.�/I x0; t0/; j 2 M; (2.11)

where Jj .�I �; �/ is the reward function defined in (2.3). Then, we have the following
definition:

Definition 4. The control m-tuple u�.�/ D
�
u�

1 .�/; : : : ; u�
m.�/

�
is an open-loop Nash

equilibrium (OLNE) at .x0; t 0/ if the following holds:

Jj .u�.�/I x0; t0/ � Jj .Œuj .�/; u�
�j .�/�I x0; t0/; 8uj .�/; j 2 M;

where uj .�/ is any admissible control of player j and Œuj .�/; u�
�j .�/� is the m-tuple

of controls obtained by replacing the j -th block component in u�.�/ by uj .�/.

Note that in the OLNE, for each player j , u�
j .�/ solves the optimal control

problem

max
uj .�/

�Z T

t0

gj

�
x.t/; Œuj .t/; u�

�j .t/�; t
�

dt C Sj .x.T //

�
;

subject to the state equation

Px.t/ WD
d

dt
x.t/ D f

�
x.t/; Œuj .t/; u�

�j .t/�; t
�

; x.t0/ D x0; (2.12)

control constraints uj .t/ 2 Uj , and target ‚.�; �/. Further note that OLNE strategies
will in general also depend on the initial state x0, but this is information available to
each player under the open-loop information structure.
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3.2 State-Feedback Nash Equilibrium (SFNE)

Now consider a differential game with the state-feedback information structure. The
system is then driven by a state-feedback strategy m-tuple �.x; t /D.�j .x; t /Wj 2M/,
with �j 2 �SF

j for j 2 M . Its dynamics are thus defined by

Px.t/ WD
d

dt
x.t/ D f .x.t/; �.x.t/; t/; t/; x.t0/ D x0: (2.13)

The normal form of the game, at . x0; t 0/, is now defined by the payoff functions4

NJj .� I x0; t0/ D

Z T

t0

gj .x.t/; �.x.t/; t/; t/dt C Sj .x.T //; (2.14)

where, for each fixed x0, x.�/ W Œt 0; T � 7! R
n is the state trajectory solution of (2.13).

In line with the convention in the OL case, let us introduce the notation

��j .t; x.t// ,
�
�1.x.t/; t/; : : : ; �j �1.x.t/; t/; �j C1.x.t/; t/; : : : ; �m.x.t/; t/

�
;

for the strategy .m � 1/-tuple where the strategy of player j does not appear.

Definition 5. The state-feedback m-tuple �� D
�
��

1 ; : : : ; ��
m

�
is a state-feedback

Nash equilibrium (SFNE) on5 X �
�
t 0; T

	
if for any initial data .x0; t 0/ 2 X �

Œ0; T � � R
n � R

C; the following holds:

NJj .��I x0; t0/ � NJj .Œ�j .�/; ��
�j .�/�I x0; t0/; 8�j 2 �SF

j ; j 2 M;

where Œ�j ; ��j �� is the m-vector of strategies obtained by replacing the j -th block
component in �� by �j .

In other words, fu�
j .t/ � ��

j .x�.t/; t/ W t 2 Œt 0; T �g, where x�.�/ is the
equilibrium trajectory generated by �� from .x0; t 0/, solves the optimal control
problem

max
uj .�/

�Z T

t0

gj

�
x.t/;

h
uj .t/; ��

�j .x.t/; t/
i

; t
�

dt C Sj .x.T //

�
; (2.15)

4With a slight abuse of notation, we have included here also the pair .x0; t 0/ as an argument of NJj,
since under the SF information � does not have .x0; t 0/ as an argument for t > t0.
5We use T instead of T because, in a general setting, T may be endogenously defined as the time
when the target is reached.
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subject to the state equation

Px.t/ D f .x.t/;
h
uj .t/; ��

�j .x.t/; t/
i

; t /; x.t0/ D x0; (2.16)

control constraints uj .t/ 2 Uj .x.t/; t/, and target ‚.�; �/. We can also say that ��
j

is the optimal state-feedback control u�
j .�/ for the problem (2.15) and (2.16). We

also note that the single-player optimization problem (2.15) and (2.16) is a standard
optimal control problem whose solution can be expressed in a way compatible with
the state-feedback information structure, that is, solely as a function of the current
value of the state and current time, and not as a function of the initial state and initial
time. The remark below further elaborates on this point.

Remark 2. Whereas an open-loop Nash equilibrium is defined only for the given
initial data, here the definition of a state-feedback Nash equilibrium asks for the
equilibrium property to hold for all initial points, or data, in a region X �

�
t 0; T

	
�

R
n � R

C. This is tantamount to asking a state-feedback Nash equilibrium to
be subgame perfect (Selten 1975), in the parlance of game theory, or strongly
time consistent (Başar 1989). Indeed, even if the state trajectory is perturbed,
either because a player has had a “trembling hand” or an unforeseen small shock
happened, holding on to the same state-feedback strategy will still constitute a
Nash equilibrium in the limit as the perturbations vanish; this property is more
pronounced in the case of linear-quadratic differential games (games where the
state dynamics are linear, payoff functions are jointly quadratic in the state and the
controls, and the time horizon is fixed), in which case the stochastic perturbations in
the state equation do not have to be vanishingly small as long as they have zero mean
(Başar 1976, 1977). It should be clear that open-loop Nash equilibrium strategies do
not possess such a property.

3.3 Necessary Conditions for a Nash Equilibrium

For the sake of simplicity in the exposition below, we will henceforth restrict the
target set to be defined by the simple given of a terminal time, that is, the set
f.t; x/ W t D T g. Also the control constraint set Uj ; j 2 M will be taken to be
independent of state and time. As noted earlier, at a Nash equilibrium, each player
solves an optimal control problem where the system’s dynamics are influenced
by the strategic choices of the other players. We can thus write down necessary
optimality conditions for each of the m optimal control problems, which will then
constitute a set of necessary conditions for a Nash equilibrium. Throughout, we
make the assumption that sufficient regularity holds so that all the derivatives that
appear in the necessary conditions below exist.
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3.3.1 Necessary Conditions for an OLNE
By using the necessary conditions for an open-loop optimal control, obtained, e.g.,
from the maximum principle (see, e.g., Başar and Olsder 1999; Bryson et al. 1975),
we arrive at the conditions (2.17), (2.18), (2.19), (2.20), and (2.21) below, which
are necessary for an open-loop Nash equilibrium. Let us introduce the individual
Hamiltonians, with Hj being the Hamiltonian for player j;6

Hj .x; u; �j ; t/ D gj .x; u; t / C �j .t/f .x; u; t /; (2.17)

where �j .�/ is the adjoint (or costate) variable, which satisfies the adjoint varia-
tional equation (2.18), along with the transversality condition (2.19):

P�j .t/ D �
@

@x
Hj jx�.t/;u�.t/;t ; (2.18)

�j .T / D
@

@x
Sj jx�.T /;T: (2.19)

Further, Hj is maximized with respect to uj, with all other players’ controls fixed at
NE, that is,

u�
j .t/ D arg max

uj 2Uj

Hj .x�.t/; uj ; u�
�j .t/; �j .t/; t/: (2.20)

If the solution to the maximization problem above is in the interior of Uj, then
naturally a necessary condition is for the first derivative to vanish at u�

j for all t ,
that is,

@

@uj

Hj jx�.t/;u�.t/;t D 0; (2.21)

and for the Hessian matrix of second derivatives (with respect to uj ) to be
nonnegative definite.

3.3.2 Necessary Conditions for SFNE
The state-feedback NE can be obtained in various different ways. One could
again use the approach above, but paying attention to the fact that in the optimal
control problem faced by a generic player, the other players’ strategies are now
dependent on the current value of the state. A second approach would be to adapt
to this problem the method used in optimal control to directly obtain state-feedback
controls (i.e., dynamic programming). We discuss here both approaches, first in this
subsection the former. The Hamiltonian for player j is again:

Hj .x; u; �j ; t/ D gj .x; u; t / C �j .t/f .x; u; t /: (2.22)

6We use the convention that �j .t/f .�; �; �/ is the scalar product of two n dimensional vectors �j .t/

and f .� � � /.
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The controls ui for i 2 M n j are now defined by the state-feedback rules ��
i .x; t/.

Along the equilibrium trajectory fx�.t/ W t 2 Œt 0; T �g, the optimal control of
player j is u�

j .t/ D ��
j .x�.t/; t/. Then, as the counterpart of (2.18) and (2.19),

we have �j .�/ satisfying (as a necessary condition)

P�j .t/ D �

0
@ @

@x
Hj C

X
i2Mnj

@

@ui

Hj

@

@x
��

i

1
A jx�.t/;u�.t/;t ; (2.23)

�j .T / D
@

@x
Sj jx�.T /;T ; (2.24)

where the second term in (2.23), involving a summation, is a reflection of the fact
that Hj depends on x not only through gj and f but also through the strategies
of the other players. The presence of this extra term clearly makes the necessary
condition for the state-feedback solution much more complicated than for open-
loop solution.

Again, u�
j .t/ D ��

j .x�.t/; t/ maximizes the Hamiltonian Hj for each t , with all
other variables fixed at equilibrium:

u�
j .t/ D arg max

uj 2Uj

Hj .x�.t/; uj ; ��
�j .x�.t/; t/; �j ; t/: (2.25)

If the solution to the maximization problem above is in the interior of Uj , then as
in (2.21) a necessary condition is for the first derivative to vanish at u�

j for all t , that
is,

@

@uj

Hj jx�.t/;u�

j .t/;��

�j .x�.t/;t/;t D 0; (2.26)

and for the Hessian matrix of second derivatives (with respect to uj ) to be
nonnegative definite.

Remark 3. The summation term in (2.23) is absent in three important cases: (i) in
optimal control problems (m D 1), since @

@u H @u
@x

D 0; (ii) in two-person zero-
sum differential games, because H1 � �H2 so that for player 1, @

@u2
H1

@u2

@x
D

� @
@u2

H2
@u2

@x
D 0, and likewise for player 2; and (iii) in open-loop nonzero-sum

differential games, because @uj

@x
D 0. It would also be absent in nonzero-sum

differential games with state-feedback information structure that are strategically
equivalent (Başar and Olsder 1999) to (i) (single objective) team problems (which
in turn are equivalent to single-player optimal control problems) or (ii) two-person
zero-sum differential games.
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3.4 Constructing an SFNE Using a Sufficient Maximum Principle

As alluded to above, the necessary conditions for an SFNE as presented are not very
useful to compute a state-feedback Nash equilibrium, as one has to infer the form
of the partial derivatives of the equilibrium strategies, in order to write the adjoint
equations (2.24). However, as an alternative, the sufficient maximum principle given
below can be a useful tool when one has an a priori guess of the class of equilibrium
strategies (see, Haurie et al. 2012, page 249).

Theorem 1. Assume that the terminal reward functions Sj are continuously differ-
entiable and concave, and let X � R

n be a state constraint set where the state x.t/

belongs for all t . Suppose that an m-tuple �� D
�
��

1 ; : : : ; ��
m

�
of state-feedback

strategies �j W X � Œt 0; T � 7! R
mj ; j 2 M; is such that

(i) ��.x; t/ is continuously differentiable in x almost everywhere, and piecewise
continuous in t I

(ii) ��.x; t/ generates at .x0; t 0/ a unique trajectory x�.�/ W Œt 0; T � 7! X , solution
of

Px.t/ D f .x.t/; ��.x; t/; t/; x.t0/ D x0;

which is absolutely continuous and remains in the interior of X I

(iii) there exist m costate vector functions �j .�/ W Œt 0; T � 7! R
n, which are

absolutely continuous and such that, for all j 2 M , if we define the
Hamiltonians

Hj .x.t/; Œuj ; u�j �; �j .t/; t/

D gj

�
x.t/; Œuj ; u�j �; t

�
C �j .t/f .x.t/; Œuj ; u�j �; t /;

and the equilibrium Hamiltonians

H�
j .x�.t/; �j .t/; t/ D max

uj 2Uj

Hj .x�.t/; Œuj ; ��
�j .x�.t/; t/�; �j .t/; t/;

(2.27)
the maximum in (2.27) is reached at ��

j .x�.t/; t/; i.e.,

H�
j .x�.t/; �j .t/; t/ D max

uj 2Uj

Hj .x�.t/; ��.x�.t/; t/; �j .t/; t/I (2.28)

(iv) the functions x 7! H�
j .x; �j .t/; t/ where H�

j is defined as in (2.27), but at
position .t; x/, are continuously differentiable and concave for all t 2 Œt 0; T �

and j 2 M I

(v) the costate vector functions �j .�/; j 2 M , satisfy the following adjoint
differential equations for almost all t 2 Œt 0; T �,
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P�j .t/ D �
@

@x
H�

j j.x�.t/;�j .t/;t/; (2.29)

along with the transversality conditions

�j .T / D
@

@x
Sj j.x�.T /;T /: (2.30)

Then,
�
��

1 ; : : : ; ��
m

�
is an SFNE at .x0; t 0/.

3.5 Constructing an SFNE Using Hamilton-Jacobi-Bellman
Equations

We now discuss the alternative dynamic programming approach which delivers
the state-feedback solution directly without requiring synthesis or guessing of the
solution. The following theorem captures the essence of this effective tool for SFNE
(see, Başar and Olsder 1999, page 322; Haurie et al. 2012, page 252).

Theorem 2. Suppose that there exists an m-tuple �� D
�
��

1 ; : : : ; ��
m

�
of state-

feedback laws, such that

(i) for any admissible initial point .x0; t 0/, there exists a unique, absolutely
continuous solution t 2 Œt 0; T � 7! x�.t/ 2 X� R

n of the differential equation

Px�.t/ D f .x�.t/; ��
1 .t; x�.t//; : : : ; ��

m

�
t; x�.t/

�
; t /; x�.t0/ D x0 I

(ii) there exist continuously differentiable value functionals V �
j W X� Œt 0; T � 7!R;

such that the following coupled Hamilton-Jacobi-Bellman (HJB) partial differ-
ential equations are satisfied for all .x; t/ 2 X � Œt 0; T �

�
@

@t
V �

j .x; t/ D max
uj 2Uj

n
gj

�
x; Œuj ; ��

�j .x; t/�; t
�

C
@

@x
V �

j .x; t/f .x;
h
uj ; ��

�j .x; t/
i

; t /

�
(2.31)

D gj

�
x; Œ��.x; t/�; t

�
C

@

@x
V �

j .x; t/f .x; ��.x; t/; t/I (2.32)

(iii) the boundary conditions

V �
j .x; T / D Sj .x/; (2.33)

are satisfied for all x 2 X and j 2 M:
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Then, ��
j .x; t/, is a maximizer of the right-hand side of the HJB equation for

player j , and the m�tuple
�
��

1 ; : : : ; ��
m

�
is an SFNE at every initial point .x0; t 0/ 2

X � Œt 0; T �.

Remark 4. Note that once a complete set of value functionals, fVj ; j 2 M g, is
identified, then (2.31) directly delivers the Nash equilibrium strategies of the players
in state-feedback form. Hence, in this approach one does not have to guess the SFNE
but rather the structure of each player’s value function; this can be done in a number
of games, with one such class being linear-quadratic differential games, as we will
see shortly. Also note that Theorem 2 provides a set of sufficient conditions for
SFNE, and hence once a set of strategies are found satisfying them, we are assured
of their SFNE property. Finally, since the approach entails dynamic programming,
it directly follows from (2.31) that a natural restriction of the set of SFNE strategies
obtained for the original differential game to a shorter interval Œs; T �, with s > t0,
constitutes an SFNE for the differential game which is similarly formulated but on
the shorter time interval Œs; T �. Hence, the SFNE is subgame perfect and strongly
time consistent.

3.6 The Infinite-Horizon Case

Theorems 1 and 2 were stated under the assumption that the time horizon is finite.
If the planning horizon is infinite, then the transversality or boundary conditions,
that is, �j .T / D

@Sj

@x
.x.T /; T / in Theorem 1 and Vj .x.t/; T / D Sj .x.t/; T / in

Theorem 2, have to be modified. Below we briefly state the required modifications,
and work out a scalar example in the next subsection to illustrate this.

If the time horizon is infinite, the dynamic system is autonomous (i.e., f does not
explicitly depend on t ) and the objective functional of player j is as in (2.7), then
the transversality conditions in Theorem 1 are replaced by the limiting conditions:

lim
t!C1

e��j t qj .t/ D 0; 8j 2 M; (2.34)

where qj .t/ D e�j t �j .t/ is the so-called current-value costate variable. In the
coupled set of HJB equations of Theorem 2, the value function V ?

j .x; t/ is
multiplicatively decomposed as

V ?
j .x; t/ D e��j tV?

j .x/; (2.35)

and the boundary condition (2.33) is replaced by

V ?
j .x; t/ ! 0; when t ! 1; (2.36)

which is automatically satisfied if V?
j .x/ is bounded.
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3.7 Examples of Construction of Nash Equilibria

We consider here a two-player infinite-horizon differential game with scalar linear
dynamics and quadratic payoff functions, which will provide an illustration of the
results of the previous subsection, also to be viewed as illustration of Theorems 1
and 2 in the infinite-horizon case.

Let uj .t/ be the scalar control variable of player j; j D 1; 2; and x.t/ be the
state variable, with t 2 Œ0; 1/. Let player j ’s optimization problem be given by

max
uj

�
Jj D

Z 1

0

e��t



uj .t/



� �

1

2
uj .t/

�
�

1

2
'x2.t/

�
dt

�
;

such that Px.t/ D u1.t/ C u2.t/ � ˛x.t/; x.0/ D x0;

where ' and � are positive parameters, 0 < ˛ < 1, and � > 0 is the discount
parameter. This game has the following features: (i) the objective functional of
player j is quadratic in the control and state variables and only depends on the
player’s own control variable; (ii) there is no interaction (coupling) either between
the control variables of the two players or between the control and the state
variables; (iii) the game is fully symmetric across the two players in the state and the
control variables; and (iv) by adding the term e��t

�
ui .t /

�
� � 1

2
ui .t /

��
; i 6D j, to

the integrand of Jj, for j D 1; 2, we can make the two objective functions identical:

J WD

Z 1

0

e��t



u1.t/



� �

1

2
u1.t/

�
C u2.t/



� �

1

2
u2.t/

�
�

1

2
'x2.t/

�
dt:

(2.37)

The significance of this last feature will become clear shortly when we discuss the
OLNE (next). Throughout the analysis below, we suppress the time argument when
no ambiguity may arise.

Open-Loop Nash Equilibrium (OLNE). We first discuss the significance of fea-
ture (iv) exhibited by this scalar differential game. Note that when the information
structure of the differential game is open loop, adding to the objective function of a
player (say, player 1) terms that involve only the control of the other player (player 2)
does not alter the optimization problem faced by player 1. Hence, whether player j

maximizes Jj, or J given by (2.37), makes no difference as far as the OLNE of the
game goes. Since this applies to both players, it readily follows that every OLNE of
the original differential game is also an OLNE of the single-objective optimization
problem (involving maximization of J by each player). In such a case, we say that
the two games are strategically equivalent, and note that the second game (described
by the single-objective functional J ) is a dynamic team. Now, Nash equilibrium
(NE) in teams corresponds to person-by-optimality, and not team optimality (which
means joint optimization by members of the team), but when every person-by-
person optimal solution is also team optimal (the reverse implication is always true),
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then one can obtain all NE of games strategically equivalent to a particular dynamic
team by solving for team optimal (equivalently, globally optimal) solutions of the
team. Further, when solving for team-optimal solutions in deterministic teams,
whether the information structure is open loop or state feedback does not make any
difference, as mentioned earlier. In the particular dynamic team of this example,
since J is strictly concave in u1 and u2 and x (jointly), and the state equation is
linear, every person-by-person optimal solution is indeed team optimal, and because
of strict concavity the problem admits a unique globally optimal solution. Hence, the
OLNE of the original game exists and is unique.

Having established the correspondence with a deterministic concave team and
thereby the existence of a unique OLNE, we now turn to our main goal here, which
is to apply the conditions obtained earlier for OLNE to the differential game at hand.
Toward that end, we introduce the current-value Hamiltonian of player j :

Hj .x; �; u1; u2/ D uj



� �

1

2
uj

�
�

1

2
'x2 C qj .u1 C u2 � ˛x/; i D 1; 2;

where qj .t/ is the current-value costate variable, at time t , defined as

qj .t/ D e�j t �j .t/: (2.38)

Being strictly concave in uj , Hj admits a unique maximum, achieved by

uj D � C qj; j D 1; 2: (2.39)

Note that the Hamiltonians of both players are strictly concave in x, and hence the
equilibrium Hamiltonians also are. Then, the equilibrium conditions read:

Pqj D �qj �
@

@x
Hj D .� C ˛/qj C 'x; lim

t!C1
e��t qj .t/ D 0; j D 1; 2;

Px D 2� C q1 C q2 � ˛x; x.0/ D x0:

It is easy to see that q1.t/ D q2.t/ DW q.t/; 8t 2 Œ0; 1/, and therefore u1.t/ D

u2.t/; 8t 2 Œ0; 1/. This is not surprising given the symmetry of the game. We then
have a two-equation differential system in x and q:



Px

Pq

�
D



�˛ 2

' � C ˛

�

x

q

�
C



2�

0

�
:

We look for the solution of this system converging to the steady state which is given
by

.xss; qss/ D



2�.˛ C �/

˛2 C ˛� C 2'
; �

2�'

˛2 C ˛� C 2'

�
:
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The solution can be written as

x.t/ D .x0 � xss/e
	1t C xss;

q.t/ D �.x0 � xss/
2'

2˛ C � C

q
.2˛ C �/2 C 8'

e	1t C qss;

where 	1 is the negative eigenvalue of the matrix associated with the differential
equations system and is given by

	1 D
1

2
.� �

q
.2˛ C �/2 C 8'/:

Using the corresponding expression for q.t/ for qj in (2.39) leads to the OLNE
strategies (which are symmetric).

State-Feedback Nash Equilibrium (SFNE). The strategic equivalence between
the OL differential game and a team problem we established above does not carry
over to the differential game with state-feedback information structure, since adding
any term to J1 that involves control u2 of player 2 will alter the optimization problem
faced by player 1, since u2 depends on u1 through the state x. Hence, the example
system is a genuine game under SF information, and therefore the only way to obtain
its SFNE would be to resort to Theorem 2 in view of the extension to the infinite
horizon as discussed in Sect. 3.6. The HJB equation for player j , written for the
current-value function Vj .x/ D e�t Vj .t; x/, is

�Vj .x/ D max
uj

�
uj



� �

1

2
uj

�
�

1

2
'x2 C

@

@x
Vj .x/ .u1 C u2 � ˛x/


: (2.40)

Being strictly concave in uj , the RHS of (2.40) admits a unique maximum, with the
maximizing solution being

uj .x/ D � C
@

@x
Vj .x/: (2.41)

Given the symmetric nature of this game, we focus on symmetric equilibrium
strategies. Taking into account the linear-quadratic specification of the differential
game, we make the informed guess that the current-value function is quadratic
(because the game is symmetric, and we focus on symmetric solutions, the value
function is the same for both players), given by

Vj .x/ D
a

2
x2 C bx C c; j D 1; 2;

where a; b; c are parameters yet to be determined. Using (2.41) then leads to
uj .x/ D � C ax C b: Substituting this into the RHS of (2.40), we obtain
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1

2
.3a2 � 2a˛ � '/x2 C .3ab � b˛ C 2a�/x C

1

2
.3b2 C 4b� C �2/:

The LHS of (2.40) reads

�
�a

2
x2 C bx C c

�
;

and equating the coefficients of x2; x and the constant term, we obtain three
equations in the three unknowns, a; b, and c. Solving these equations, we get the
following coefficients for the noncooperative value functions:

a D
� C 2˛ ˙

q
.� C 2˛/2 C 16'

6
;

b D
�2a�

3a � .� C ˛/
;

c D
�2 C 4b� C 3b2

2�
:

Remark 5. The coefficient a is the root of a second-degree polynomial having two
roots: one positive and one negative. The selection of the negative root

a D
� C 2˛ �

q
.� C 2˛/2 C 16'

6
;

guarantees the global stability of the state trajectory. The resulting noncooperative
equilibrium state trajectory is given by

x�.t/ D

�
x0 C

2.� C b/

2a � ˛


e.2a�˛/t �

2.� C b/

2a � ˛
:

The state dynamics of the game has a globally asymptotically stable steady state if
2a � ˛ < 0. It can be shown that to guarantee this inequality and therefore global
asymptotic stability, the only possibility is to choose a < 0.

3.8 Linear-Quadratic Differential Games (LQDGs)

We have seen in the previous subsection, within the context of a specific scalar
differential game, that linear-quadratic structure (linear dynamics and quadratic
payoff functions) enables explicit computation of both OLNE and SFNE strategies
(for the infinite-horizon game). We now take this analysis a step further, and discuss
the general class of linear-quadratic (LQ) games, but in finite horizon, and show
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that the LQ structure leads (using the necessary and sufficient conditions obtained
earlier for OLNE and SFNE, respectively) to computationally feasible equilibrium
strategies. Toward that end, we first make it precise in the definition that follows
the class of LQ differential games under consideration (we in fact define a slightly
larger class of DGs, namely, affine-quadratic DGs, where the state dynamics are
driven by also a known exogenous input). Following the definition, we discuss
characterization of the OLNE and SFNE strategies, in that order. Throughout, x0

denotes the transpose of a vector x, and B 0 denotes the transpose of a matrix B .

Definition 6. An m-player differential game of fixed prescribed duration Œ0; T � is
of the affine-quadratic type if Uj D R

pj .j 2 M/ and

f .t; x; u/ D A.t/x C
X
i2M

Bi .t/ui C c.t/;

gj .t; x; u/ D �
1

2

 
x0Qj .t/x C

X
i2M

u0
i R

i
j .t/ui

!
;

Sj .x/ D �
1

2
x0

j Q
f
j x;

where A.�/, Bj .�/, Qj .�/, Ri
j .�/ are matrices of appropriate dimensions, c.�/ is an

n-dimensional vector, all defined on Œ0; T �, and with continuous entries .i; j 2 M/.
Furthermore, Q

f
j ; Qj .�/ are symmetric, R

j
i .�/ > 0 .j 2 M/, and R

j
j .�/ � 0 .i 6D

j; i; j 2 M/.
An affine-quadratic differential game is of the linear-quadratic type if c � 0.

3.8.1 OLNE
For the affine-quadratic differential game formulated above, let us further assume
that Qi .�/ � 0, Qi

f � 0. Then, under the open-loop information structure,

player j ’s payoff function Jj .Œuj ; u�j �I x0; t0 D 0/, defined by (2.3), is a strictly
concave function of uj .�/ for all permissible control functions u�j .�/ of the other
players and for all x0 2 R

n. This then implies that the necessary conditions for
OLNE derived in Sect. 3.3.1 are also sufficient, and every solution set of the first-
order conditions provides an OLNE. Now, the Hamiltonian for player j is

Hj .x; u; �j ; t/ D �
1

2

 
x0Qj x C

X
i2M

u0
j Ri

j ui

!
C �j

 
Ax C c C

X
i2M

Bi ui

!
;

whose maximization with respect to uj .t/ 2 R
pj yields the unique relation

u�
j .t/ D R

j
j .t/

�1
Bj .t/0�j .t/; j 2 M: (i)
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Furthermore, the costate equations are

P�j D Qj x� � A0�j I �j I .T / D �Q
f
j x.T / .j 2 M/; (ii)

and the optimal state trajectory is generated by

Px� D Ax� C c �
X
i2M

Bi R
i
i

�1
B 0

i �i I x�.0/ D x0: (iii)

This set of differential equations constitutes a two-point boundary value problem,
the solution of which can be written, without any loss of generality, as f�j .t/ D

�Kj .t/x�.t/ � kj .t/; j 2 M I x�.t/; t 2 Œ0; T �g where Kj .�/ are .n � n/-
dimensional matrices and kj .�/ are n-dimensional vectors. Now, substituting �j D

�Kj x� �kj .j 2 M/ into the costate equations (ii), we can arrive at the conclusion
that Kj .j 2 M/ and kj .j 2 M/ should then satisfy, respectively, the following
two sets of matrix and vector differential equations:

PKj C Kj A C A0Kj C Q
j
j � Kj

P
i2M Bi R

i
i

�1
B 0

i Ki D 0I

Kj .T / D Q
f
j .j 2 M/;

(2.42)

and

Pkj C A0kj C Kj c � Kj

P
i2M Bi R

i
i

�1
B 0

i ki D 0I

kj .T / D 0 .j 2 M/:
(2.43)

The expressions for the OLNE strategies can then be obtained from (i) by substitut-
ing �j D �Kj x� � kj, and likewise the associated state trajectory for x� follows
from (iii).

The following theorem now captures this result (see, Başar and Olsder 1999,
pp. 317–318).

Theorem 3. For the m-player affine-quadratic differential game with Qj .�/ � 0;

Q
f
j � 0 .j 2 M/, let there exist a unique solution set fKj ; j 2 M g to the coupled

set of matrix Riccati differential equations (2.42). Then, the differential game admits
a unique OLNE solution given by

��
j .x0; t/ � u�

j .t/ D �Ri
i .t/

�1B 0
i .t /ŒKj .t/x�.t/ C kj .t/� .j 2 M/;

where fkj .�/; j 2 M g solve uniquely the set of linear differential equations (2.43)
and x�.�/ denotes the corresponding OLNE state trajectory, generated by (iii),
which can be written as
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x�.t/ D ˆ.t; 0/x0 C

Z t

0

ˆ.t; 
/�.
/ d
;

d

dt
ˆ.t; 
/ D F .t/ˆ.t; 
/I ˆ.
; 
/ D I;

F .t/ WD A �
P

i2M Bi R
i
i

�1
B 0

i Ki .t/;

�.t/ WD c.t/ �
P

i2M Bi R
i
i

�1
B 0

i ki .t/:

Remark 6 (Nonexistence and multiplicity of OLNE). Note that the existence of
OLNE for the affine-quadratic differential game hinges on the existence of a solution
to the set of coupled matrix Riccati equations (2.42), since the second differential
equation (2.43) always admits a solution, being linear in ki ’s. Further, the OLNE is
unique, whenever the matrix solution to (2.42) is unique. It is within the realm of
possibility, however, that an OLNE may not exist, just as a Nash equilibrium may
not exist in static quadratic games (reaction planes may not have a common point
of intersection) or there may be multiple OLNEs (using the earlier analogy to static
games, reaction planes may have more than one point of intersection). Note also
that even for the LQDG (i.e., when c � 0), when we have kj � 0; j 2 M , still the
same possibilities (of nonexistence or multiplicity of OLNE) are valid.

An important point to note regarding the OLNE in Theorem 3 above is that
the solution does not depend on all the parameters that define the affine-quadratic
differential game, particularly the matrices fRi

j ; i 6D j; i; j D 1; 2g. Hence, the
OLNE would be the same if gj were replaced by

Qgj .t; x; uj / D �
1

2

�
x0Qj .t/x C u0

j R
j
j .t/uj

�
:

This is in fact not surprising in view of our earlier discussion in Sect. 3.7 on strategic
equivalence. Under open-loop information structure, adding to gj .t; x; u/ of one
game any function of u�j generates another game that is strategically equivalent to
the first one and hence has the same set of OLNE strategies, and in this particular
case, adding the term .1=2/

P
i 6Dj u0

i R
i
j .t/ui to gj generates Qgj . We can now go a

step further, and subtract the term .1=2/
P

i 6Dj u0
i R

i
i .t/ui from Qgj, and assuming also

that the state weighting matrices Qj .�/ and Q
f
j are the same across all players (i.e.,

Q.�/ and Qf , respectively), we arrive at a single-objective function for all players
(where we suppress dependence on t in the weighting matrices):

Jj .u.�/I x0/ DW J .u.�/I x0/ D �
1

2

 Z T

0

.x0QxC
X
i2M

u0
i R

i
i ui / dt Cx.T /0Qf x.T /

!
:

(2.44)

Hence, the affine-quadratic differential game where Qj .�/ and Q
f
j are the same

across all players is strategically equivalent to a team problem, which, being
deterministic, is in fact an optimal control problem. Letting u WD .u1

0; : : : ; u0
m/0,
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B WD .B1; : : : ; Bm/, and R D diag.R1
1; : : : ; Rm

m/, this affine-quadratic optimal
control problem has state dynamics

Px D A.t/x C B.t/u.t/ C c.t/; x.0/ D x0;

and payoff function

J .u.�/I x0/ D �
1

2


Z T

0

.x0Q.t/x C u0R.t/u/ dt C x.T /0Qf x.T /

�
;

where R.�/ > 0. Being strictly concave (and affine-quadratic), this optimal control
problem admits a unique globally optimal solution, given by7

u�.t/ D �R.t/�1B.t/0ŒK.t/x�.t/ C k.t/�; t � 0;

where K.�/ is the unique nonnegative-definite solution of the matrix Riccati
equation:

PK C KA C A0K C Q � KBR�1B 0K D 0; K.T / D Qf; (2.45)

k.�/ uniquely solves

Pk C A0k C Kc � KBR�1B 0k D 0; k.T / D 0; (2.46)

and x�.�/ is generated by (3), with

F .t/ D A � BR�1B 0K.t/; �.t/ D c.t/ � BR�1B 0k.t/; t � 0:

Note that for each block component of u, the optimal control can be written as

��
j .x0; t/ D u�

j .t/ D �R
j
j .t/�1Bj .t/0ŒK.t/x�.t/ C k.t/�; t � 0;j 2 M;

(2.47)

which by strategic equivalence is the unique OLNE. The following corollary to
Theorem 3 summarizes this result.

Corollary 1. The special class of affine-quadratic differential games with open-
loop information structure, where in Definition 6, Qj D Q � 0 8j 2 M and

Q
f
j D Qf � 0 8j 2 M , is strategically equivalent to a strictly concave optimal

control problem and admits a unique OLNE, given by (2.47), where K.�/ is the
unique nonnegative-definite solution of (2.45), k.�/ uniquely solves (2.46), and x�.�/

is the unique OLNE state trajectory as defined above.

7This is a standard result in optimal control, which can be found in any standard text, such as
Bryson et al. (1975).
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Remark 7 (Strategic equivalence and symmetry). A special class of affine-
quadratic differential games which fits into the framework covered by Corollary 1
is the class of symmetric differential games, where the players are indistinguishable
(with Bj ; Qj ; Q

f
j ; R

j
j being the same across all players, that is, index j free).

Hence, symmetric affine-quadratic differential games, with Qj D Q � 0 8j 2 M ,

Q
f
j D Qf � 0 8j 2 M , R

j
j D NR > 0 8j 2 M , and Bj D NB 8j 2 M , admit a

unique OLNE:

��
j .x0; t/ D u�

j .t/ D � NR.t/�1 NB.t/0ŒK.t/x�.t/ C k.t/�; t � 0; j 2 M;

where K.�/ and k.�/ uniquely solve

PK C KA C A0K C Q � mK NB NR�1 NB 0K D 0; K.T / D Qf; (2.48)

and

Pk C A0k C Kc � mK NB NR�1 NB 0k D 0; k.T / D 0;

and x�.�/ is as defined before.

Remark 8 (Zero-sum differential games). A special class of nonzero-sum differen-
tial games is zero-sum differential games, where in the general framework, m D 2

and J2 � �J1 DW J. The (two) players in this case have totally opposing objectives,
and hence what one would be minimizing, the other one would be maximizing. Nash
equilibrium in this case corresponds to the saddle-point equilibrium, and if .��

1 ; ��
2 /

is one such pair of strategies, with player 1 as minimizer (of J ) and player 2 as
maximizer, they satisfy the pair of saddle-point inequalities:

NJ .��
1 ; �2/ � NJ .��

1 ; ��
2 / � NJ .�1; ��

2 /; 8�j 2 �j; j D 1; 2: (2.49)

Affine-quadratic zero-sum differential games are defined as in Definition 6, with
m D 2 and (suppressing dependence on the time variable t )

g2 � �g1 DW g.x; u1; u2; t/

D
1

2
.x0Qx C u0

1R1u1 � u0
2R2u2/; Q � 0; Ri > 0; i D 1; 2;

S2.x/ � �S1.x/ DW S.x/ D
1

2
x0Qf x; Qf � 0:

Note, however, that this formulation cannot be viewed as a special case of two-
player affine-quadratic nonzero-sum differential games with nonpositive-definite
weighting on the states and negative-definite weighting on the controls of the
players in their payoff functions (which makes the payoff functions strictly concave
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in individual players’ controls – making their individual maximization problems
automatically well defined), because here maximizing player (player 2 in this case)
has nonnegative-definite weighting on the state, which brings up the possibility of
player 2’s optimization problem to be unbounded. To make the game well defined,
we have to assure that it is convex-concave. Convexity of J in u1 is readily satisfied,
but for concavity in u2, we have to impose an additional condition. It turns out that
(see Başar and Bernhard 1995; Başar and Olsder 1999) a practical way of checking
strict concavity of J in u2 is to assure that the following matrix Riccati differential
equation has a continuously differentiable nonnegative-definite solution over the
interval Œ0; T �, that is, there are no conjugate points:

POS C OSA C A0 OS C Q C OSB2R�1
2 B 0

2
OS D 0; OS.T / D Qf: (2.50)

Then, one can show that the game admits a unique saddle-point solution in open-
loop policies, which can be obtained directly from Theorem 3 by noticing that K2 D

�K1 DW OK and k2 D �k1 DW Ok, which satisfy

POK C OKACA0 OK CQ � OK.B1R�1
1 B 0

1 �B2R�1
2 B 0

2/ OK D 0; OK.T / D Qf; (2.51)

and

POk C A0 Ok C OKc � OK.B1R�1
1 B 0

1 � B2R�1
2 B 0

2/ Ok D 0; Ok.T / D 0: (2.52)

Under the condition of existence of a well-defined solution to (2.50), the matrix
Riccati differential equation (2.51) admits a unique continuously differentiable
nonnegative-definite solution, and the open-loop saddle-point (OLSP) strategies for
the players, satisfying (2.49), are given by

��
1 .x0; t/ D �R�1

1 B 0
1Œ OK.t/x�.t/ C Ok.t/�;

��
2 .x0; t/ D R�1

2 B 0
2Œ OK.t/x�.t/ C Ok.t/�; t � 0;

where x�.�/ is the saddle-point state trajectory, generated by

Px D .A� .B 0
1R�1

1 B 0
1 �B2R�1

2 B 0
2/ OK/x � .B 0

1R�1
1 B1 �B 0

2R�1
2 B2/ Ok Cc; x.0/ D x0:

Hence, the existence of an OLSP hinges on the existence of a nonnegative-definite
solution to the matrix Riccati differential equation (2.50), which as indicated is
related to the nonexistence of conjugate points in the interval Œ0; T �,8 which in turn
is related to whether the game in the infinite-dimensional function space (Hilbert

8The existence of a conjugate point in Œ0; T / implies that there exists a sequence of policies by the
maximizer which can drive the value of the game arbitrarily large, that is, the upper value of the
game is infinite.
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space in this case) is convex-concave or not, as mentioned earlier. For details, we
refer to Başar and Bernhard (1995).

3.8.2 SFNE
We now turn to affine-quadratic differential games (cf. Definition 6) with state-
feedback information structure. We have seen earlier (cf. Theorem 2) that the CLNE
strategies can be obtained from the solution of coupled HJB partial differential
equations. For affine-quadratic differential games, these equations can be solved
explicitly, since their solutions admit a general quadratic (in x) structure, as we
will see shortly. This also readily leads to a set of SFNE strategies which are
expressible in closed form. The result is captured in the following theorem, which
follows from Theorem 2 by using in the coupled HJB equations the structural
specification of the affine-quadratic game (cf. Definition 6), testing the solution
structure Vj .t; x/ D � 1

2
x0Zj .t/x � x0�j .t/ � nj .t/; j 2 M , showing consistency,

and equating like powers of x to arrive at differential equations for Zj , �j , and nj

(see, Başar and Olsder 1999, pp. 323–324).

Theorem 4. For the m-player affine-quadratic differential game introduced in
Definition 6, with Qj .�/ � 0; Q

f
j � 0 .j 2 M/, let there exist a set of

matrix-valued functions Zj .�/ � 0; j 2 M , satisfying the following m-coupled
matrix Riccati differential equations:

PZj C Zj
QF C QF 0Zj C

P
i2M Zi Bi R

i
i

�1
Ri

j Ri
i

�1
B 0

i Zi C Qj D 0I

Zj .T / D Q
f
j ;

(2.53)

where

QF .t/ WD A.t/ �
X
i2M

Bi .t/R
i
i .t/

�1Bi .t/
0Zi .t/: (2.54)

Then, under the state-feedback information structure, the differential game admits
an SFNE solution, affine in the current value of the state, given by

��
j .x; t/ D �R

j
j .t/�1Bj .t/0ŒZj .t/x.t/ C �j .t/�; j 2 M; (2.55)

where �j .j 2 M/ are obtained as the unique solution of the coupled linear
differential equations

P�j C QF 0�j C
X
i2M

Zi Bi R
i
i

�1
Ri

j Ri
i

�1
B 0

i �i C Zj ˇ D 0I �j .T / D 0; (2.56)
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with

ˇ WD c �
X
i2M

Bi R
i
i

�1
B 0

i �i : (2.57)

The corresponding values of the payoff functionals are

NJ �
j D Vj .x0; 0/ D �

1

2
x00

Zj .0/x0 � x00
�j .0/ � nj .0/; j 2 M; (2.58)

where nj .�/ .j 2 M/ are obtained as unique continuously differentiable solutions of

Pnj C ˇ0�j C
1

2

X
i2M

�0
i Bi R

i
i

�1
Ri

j Ri
i

�1
B 0

i �i D 0I nj .T / D 0: (2.59)

Remark 9. Note that the “nonnegative-definiteness” requirement imposed on Zj .�/

is a consequence of the fact that Vj .x; t/ � 0 8x 2 R
n; t 2 Œ0; T �, this latter feature

being due to the eigenvalue restrictions imposed a priori on Qj .�/, Q
f
j , and Ri

j .�/,
i; j 2 M . Finally, the corresponding “Nash” values for the payoff functionals follow
from the fact that Vj .x; t/ is the value function for player j at SFNE, at any point
.x; t/. We also note that Theorem 4 provides only one set of SFNE strategies for the
affine-quadratic game under consideration, and it does not attribute any uniqueness
feature to this solution set. What can be shown, however, is the uniqueness of SFNE
when the players are restricted at the outset to affine memoryless state-feedback
strategies (Başar and Olsder 1999).

Remark 10. The result above extends readily to more general affine-quadratic
differential games where the payoff functions of the players contain additional terms
that are linear in x, that is, with gj and Sj in Definition 6 extended, respectively, to

gj D �
1

2

 
x0ŒQj .t/x C 2lj .t/� C

X
i2M

u0
j R

j
i ui

!
I Sj .x/ D �

1

2
x0ŒQ

f
j x C 2l

f
j �;

where lj .�/ is a known n-dimensional vector-valued function, continuous on Œ0; T �,

and l
f
j is a fixed n-dimensional vector, for each j 2 M . Then, the statement of

Theorem 4 remains intact, with only the differential equation (2.56) that generates
�j .�/ now reading:

P�j C QF 0�j C
X
i2M

Zi Bi R
i
i

�1
Ri

j Ri
i

�1
B 0

i �i C Zj ˇ C lj D 0I �j .T / D l
f
j :

When comparing SFNE with the OLNE, one question that comes up is whether
there is the counterpart of Corollary 1 in the case of SFNE. The answer is
no, because adding additional terms to gj that involve controls of other players
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generally leads to a different optimization problem faced by player j , since ui ’s for
i 6D j depend on x and through it on uj . Hence, in general, a differential game
with state-feedback information structure cannot be made strategically equivalent
to a team (and hence optimal control) problem. One can, however, address the issue
of simplification of the set of sufficient conditions (particularly the coupled matrix
Riccati differential equations (2.53)) when the game is symmetric. Let us use the
same setting as in Remark 7, but also introducing a common notation OR for the
weighting matrices Ri

j ; i 6D j for the controls of the other players appearing in
player j ’s payoff function, and for all j 2 M (note that this was not an issue in the
case of open-loop information since Ri

j ’s, i 6D j were not relevant to the OLNE),
and focusing on symmetric SFNE, we can now rewrite the SFNE strategy (2.55) for
player j as

��
j .x; t/ D � NR.t/�1 NB.t/0ŒZ.t/x.t/ C �.t/�; j 2 M; (2.60)

where Z.�/ � 0 solves

PZ C Z QF C QF 0Z C Z NB NR�1 NB 0Z C
X

i 6Dj; i2M

Z NB NR�1 OR NR�1 NB 0f ; (2.61)

with (from (2.54))

QF WD A.t/ � m NB.t/ NR.t/�1 NB.t/0Z.t/: (2.62)

Substituting this expression for QF into (2.61), we arrive at the following alternative
(more revealing) representation:

PZ C ZA C A0Z � Z NB NR�1 NB 0Z C Q � .m � 1/Z NB NR�1Œ2 NR � OR� NR�1 NB 0Z

D 0 I Z.T / D Qf: (2.63)

Using the resemblance to the matrix Riccati differential equation that arises in
standard optimal control (compare it with the differential equation (2.48) for K in
Remark 7), we can conclude that (2.63) admits a unique continuously differentiable
nonnegative-definite solution whenever the condition

2 NR � OR > 0; (2.64)

holds. This condition can be interpreted as players placing relatively more weight
on their self-controls (in their payoff functions) than on each of the other individual
players. In fact, if the weights are equal, then NR D OR, and (2.63) becomes equivalent
to (2.48); this is of course not surprising since a symmetric game with NR D OR is
essentially an optimal control problem (players have identical payoff functions), for
which OL and SF solutions have the same underlying Riccati differential equations.
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Now, to complete the characterization of the SFNE for the symmetric differential
game, we have to write down the differential equation for �j in Theorem 4, that
is (2.56), using the specifications imposed by symmetry. Naturally, it now becomes
independent of the index j and can be simplified to the form below:

P� C
h
A0 � Z NB NR�1Œ.2m � 1/ NR � .m � 1/ OR� NR�1 NB 0

i
� C Zc D 0I �.T / D 0:

(2.65)

We following corollary to Theorem 4 now captures the main points of the discussion
above.

Corollary 2. For the symmetric affine-quadratic differential game introduced
above, let the matrix Riccati differential equation (2.63) admit a unique
continuously differentiable nonnegative-definite solution Z.�/. Then the game
admits a CLNE solution, which is symmetric across all players, and given by

��
j .x; t/ D � NR.t/�1 NB.t/0ŒZ.t/x.t/ C �.t/�; t � 0;j 2 M;

where �.�/ is generated uniquely by (2.65). If, furthermore, the condition (2.64)
holds, then Z.�/ exists and is unique.

Remark 11 (Zero-sum differential games with SF information). The counterpart of
Remark 8 on saddle-point equilibrium can also be derived under state-feedback
information structure, this time specializing Theorem 4 to the two-player zero-sum
differential game. Using the same setting as in Remark 8, it follows by inspection
from Theorem 4 that Z2 D �Z1 DW OZ and �2 D �1 DW O�, where the differential
equations satisfied by OZ and O� are precisely the ones satisfied by OK and Ok in the OL
case, that is, (2.51) and (2.52), respectively. Under the condition of the existence
of well-defined (unique continuously differentiable nonnegative-definite) solution
to the matrix Riccati differential equation (2.51), the state-feedback saddle-point
(SFSP) strategies for the players, satisfying (2.49), are given by (directly from
Theorem 4)

��
1 .x; t/ D �R�1

1 B 0
1Œ OK.t/x.t/C Ok.t/�; ��

2 .x; t/ D R�1
2 B 0

2Œ OK.t/x.t/C Ok.t/�; t � 0:

Note that these are in the same form as the OLSP strategies, with the difference
being that they are now functions of the actual current value of the state instead of
the computed value (as in the OLSP case). Another difference between the OLSP
and SFSP is that the latter does not require an a priori concavity condition to be
imposed, and hence whether there exists a solution to (2.50) is irrelevant under
state-feedback information; this condition is replaced by the existence of a solution
to (2.51), which is less restrictive Başar and Bernhard (1995). Finally, since the
forms of the OLSP and SFSP strategies are the same, they generate the same state
trajectory (and hence lead to the same value for J ), provided that the corresponding
existence conditions are satisfied.
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4 Stackelberg Equilibria

In the previous sections, the assumption was that the players select their strategies
simultaneously, without any communication. Consider now a different scenario:
a two-player game where one player, the leader, makes her decision before the
other player, the follower.9 Such a sequence of moves was first introduced by
von Stackelberg in the context of a duopoly output game; see, von Stackelberg
(1934).

Denote by L the leader and by F the follower. Suppose that uL.t/ and uF .t/ are,
respectively, the control vectors of L and F . The control constraints uL.t/ 2 UL

and uF .t/ 2 UF must be satisfied for all t . The state dynamics and the payoff
functionals are given as before by (2.1), (2.2), and (2.3), where we take the initial
time to be t 0 D 0, without any loss of generality. As with the Nash equilibrium, we
will define an open-loop Stackelberg equilibrium (OLSE). We will also introduce
what is called feedback (or Markovian)-Stackelberg equilibrium (FSE), which uses
state feedback information and provides the leader only time-incremental lead
advantage.

4.1 Open-Loop Stackelberg Equilibria (OLSE)

When both players use open-loop strategies, 	L and 	F , their control paths are
determined by uL.t/ D 	L.x0; t/ and uF .t/ D 	F .x0; t/, respectively. Here 	j

denotes the open-loop strategy of player j .
The game proceeds as follows. At time t D 0, the leader announces her control

path uL.�/ for t 2 Œ0; T �: Suppose, for the moment, that the follower believes in this
announcement. The best she can do is then to select her own control path uF .�/ to
maximize the objective functional

JF D

Z T

0

gF .x.t/; uL.t/; uF .t/; t/ dt C SF .x.T //; (2.66)

subject to the state dynamics

Px.t/ D f .x.t/; uL.t/; uF .t/; t/ x.0/ D x0; (2.67)

and the control constraint

uF .t/ 2 UF : (2.68)

9The setup can be easily extended to the case of several followers. A standard assumption is then
that the followers play a (Nash) simultaneous-move game vis-a-vis each other, and a sequential
game vis-a-vis the leader (Başar and Olsder 1999).
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This is a standard optimal control problem. To solve it, introduce the follower’s
Hamiltonian

HF .x.t/; �F .t/; uF .t/; uL.t/; t/

D gF .x.t/; uF .t/; uL.t/; t/ C �F f .x.t/; uF .t/; uL.t/; t/;

where the adjoint variable �F D �F .t/ is an n-vector. Suppose that the Hamiltonian
HF is strictly concave in uF 2 UF , where UF is a convex set. Then the
maximization of HF with respect to uF ; for t 2 Œ0; T �; uniquely determines uF .t/

as a function of t; x; uL; and �F , which we write as

uF .t/ D R.x.t/; t; uL.t/; �F .t//: (2.69)

This defines the follower’s best reply (response) to the leader’s announced time path
uL.�/.

The follower’s costate equations and their boundary conditions in this maximiza-
tion problem are given by

P�F .t/ D �
@

@x
HF ;

�F .T / D
@

@x
Sj .x.T // :

Substituting the best response function R into the state and costate equations yields
a two-point boundary-value problem. The solution of this problem, .x.t/; �F .t// ;

can be inserted into the function R: This represents the follower’s optimal behavior,
given the leader’s announced time path uL.�/.

The leader can replicate the follower’s arguments. This means that, since she
knows everything the follower does, the leader can calculate the follower’s best
reply R to any uL.�/ that she may announce: The leader’s problem is then to
select a control path uL.�/ that maximizes her payoff given F ’s response, that is,
maximization of

JL D

Z T

0

gL .x.t/; uL.t/; R .x.t/; t; uL.t/; �F .t// ; t/ dt C SL.x.T //; (2.70)

subject to

Px.t/ D f .x.t/; uL.t/; R.x.t/; t; uL.t/; �F .t//; t/; x.0/ D x0;

P�F .t/ D �
@

@x
HF .x.t/; uL.t/; R .x.t/; t; uL.t/; �F .t/// ; t/;

�F .T / D
@

@x
SF .x.T // ;
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and the control constraint

uL.t/ 2 UL:

Note that the leader’s dynamics include two state equations, one governing the
evolution of the original state variables x and a second one accounting for the
evolution of �F , the adjoint variables of the follower, which are now treated as
state variables. Again, we have an optimal control problem that can be solved using
the maximum principle. To do so, we introduce the leader’s Hamiltonian

HL .x.t/; uL.t/; R .x.t/; t; uL.t/; �F .t// ; �L.t/; .t//

D gL .x.t/; uL.t/; R .x.t/; t; uL.t/; �F .t//; t/

C �L.t/f .x.t/; uL.t/; R.x.t/; t; uL.t/; �F .t//; t/

C .t/



�

@

@x
HF .x.t/; �F .t/; R .x.t/; t; uL.t/; �F .t// ; uL.t/; t/

�
;

where �L D �L.t/ is the n-vector of costate variables appended to the state
equation for x.t/, with the boundary conditions

�L.T / D
@

@x
SL .x.T // ;

and  D .t/ is the vector of n costate variables appended to the state equation for
�F .t/, satisfying the initial condition

 .0/ D 0:

This initial condition is a consequence of the fact that �F .0/ is “free,” i.e.,
unrestricted, being free of any soft constraint in the payoff function, as opposed
to x.T / which enters a terminal reward term. The following theorem now collects
all this for the OLSE (see, Başar and Olsder 1999, pp. 409–410).

Theorem 5. For the two-player open-loop Stackelberg differential game formu-
lated in this subsection, let u�

L.t/ D 	�
L.x0; t/ be the leader’s open-loop equilibrium

strategy and u�
F .t/ D 	�

F .x0; t/ be the follower’s. Let the solution to the follower’s
optimization problem of maximizing JF given by (2.66) subject to the state
equation (2.67) and control constraint (2.68) exist and be uniquely given by (2.69).
Then,

(i) The leader’s open-loop Stackelberg strategy 	�
L maximizes (2.70) subject to the

given control constraint and the 2n-dimensional differential equation system for
x and �F (given after (2.70)) with mixed boundary specifications.
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(ii) The follower’s open-loop Stackelberg strategy 	�
F is (2.69) with uL replaced by

u�
L.

Remark 12. In the light of the discussion in this subsection leading to Theorem 5,
it is possible to write down a set of necessary conditions (based on the maximum
principle) which can be used to solve for L’s open-loop strategy 	�

L. Note that, as
mentioned before, in this maximization problem in addition to the standard state
(differential) equation with specified initial conditions, we also have the costate
differential equation with specified terminal conditions, and hence the dynamic
constraint for the maximization problem involves a 2n-dimensional differential
equation with mixed boundary conditions (see the equations for x and �F follow-
ing (2.70)). The associated Hamiltonian is then HL, defined prior to Theorem 5,
which has as its arguments two adjoint variables, �L and  , corresponding to
the differential equation evolutions for x and �F , respectively. Hence, from the
maximum principle, these new adjoint variables satisfy the differential equations:

P�L.t/ D �
@

@x
HL .x.t/; uL.t/; R .x.t/; t; uL.t/; �F .t// ; �L.t/; .t/; t/;

�L.T / D
@

@x
SL .x.T //;

P.t/ D �
@

@�F

HL .x.t/; uL.t/; R .x.t/; t; uL.t/; �F .t//; �L.t/; .t/; t/;

.0/ D 0:

Finally, u�
L.t/ D 	�

L.x0; t/ is obtained from the maximization of the Hamiltonian
HL (where we suppress dependence on t ):

u�
L D arg max

uL2UL

HL.x; uL; R.x; uL; �F /; �L; /:

4.2 Feedback Stackelberg Equilibria (FSE)

We now endow both players with state-feedback information, as was done in the
case of SFNE, which is a memoryless information structure, not allowing the players
to recall even the initial value of the state, x0, except at t D 0. In the case of
Nash equilibrium, this led to a meaningful solution, which also had the appealing
feature of being subgame perfect and strongly time consistent. We will see in this
subsection that this appealing feature does not carry over to Stackelberg equilibrium
when the leader announces her strategy in advance for the entire duration of the
game, and in fact the differential game becomes ill posed. This will force us to
introduce, again under the state-feedback information structure, a different concept
of Stackelberg equilibrium, called feedback Stackelberg, where the strong time
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consistency is imposed at the outset. This will then lead to a derivation that parallels
the one for SFNE.

Let us first address “ill-posedness” of the classical Stackelberg solution when the
players use state-feedback information, in which case their strategies are mappings
from R

n � Œ0; T � where the state-time pair .x; t/ maps into UL and UF , for L and F ,
respectively. Let us denote these strategies by �L 2 �L and �F 2 �F , respectively.
Hence, the realizations of these strategies lead to the control actions (or control
paths): uL.t/ D �L.x; t/ and uF .t/ D �F .x; t/; for L and F , respectively. Now, in
line with the OLSE we discussed in the previous subsection, under the Stackelberg
equilibrium, the leader L announces at time zero her strategy �.x; t/ and commits to
using this strategy throughout the duration of the game. Then the follower F reacts
rationally to L’s announcement, by maximizing her payoff function. Anticipating
this, the leader selects a strategy that maximizes her payoff functional subject to the
constraint imposed by the best response of F .

First let us look at the follower’s optimal control problem. Using the dynamic
programming approach, we have the Hamilton-Jacobi-Bellman (HJB) equation
characterizing F ’s best response to an announced �L 2 �L:

�
@

@t
VF .x; t/ D max

uF 2UF

fgF .x; uF .t/; �L.x; t/; t/

C
@

@x
VF .x; t/f .x.t/; uF .t/; �L.x; t/; t/

�
;

where VF is the value function of F , which has the terminal condition VF .x; T / D

SF .x.T //: Note that, for each fixed �L 2 �L, the maximizing control for F on
the RHS of the HJB equation above is a function of the current time and state
and hence is an element of �F . Thus, F ’s maximization problem and its solution
are compatible with the state-feedback information structure, and hence we have
a well-defined problem at this stage. The dependence of this best response on �L,
however, will be quite complex (much more than in the open-loop case), since what
we have is a functional dependence in an infinite-dimensional space. Nevertheless,
at least formally, we can write down this relationship as a best reaction function,
QR W �L!�F , for the follower:

�F D QR.�L/: (2.71)

Now, L can make this computation too, and according to the Stackelberg equi-
librium concept, which is also called global Stackelberg solution (see, Başar and
Olsder 1999), she has to maximize her payoff under the constraints imposed by this
reaction function and the state dynamics that is formally

max
�L2�L

JL.�L; QR.�L//
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Leaving aside the complexity of this optimization problem (which is not an optimal
control problem of the standard type because of the presence of the reaction function
which depends on the entire strategy of L over the full- time interval of the game),
we note that this optimization problem is ill posed since for each choice of �L 2 �L,
JL.�L; QR.�L// is not a real number but generally a function of the initial state x0,
which is not available to L; hence, what we have is a multi-objective optimization
problem, and not a single-objective one, which makes the differential game with
the standard (global) Stackelberg equilibrium concept ill posed. One way around
this difficulty would be to allow the leader (as well as the follower) recall the initial
state (and hence modify their information sets to �.x.t/; x0; t/) or even have full
memory on the state (in which case, � is �.x.s/; s � t I t /), which would make
the game well posed, but requiring a different set of tools to obtain the solution
(see, e.g., Başar and Olsder 1980; Başar and Selbuz 1979 and Chap. 7 of Başar and
Olsder 1999), which also has connections to incentive designs and inducement of
collusive behavior, further discussed in the next section of this chapter. We should
also note that including x0 in the information set also makes it possible to obtain the
global Stackelberg equilibrium under mixed information sets, with F ’s information
being inferior to that of L, such as �L.x.t/; x0; t/ for L and �.x0; t/ for F . Such a
differential game would also be well defined.

Another way to resolve the ill-posedness of the global Stackelberg solution under
state-feedback information structure is to give the leader only a stagewise (in the
discrete-time context) first-mover advantage; in continuous time, this translates
into an instantaneous advantage at each time t (Başar and Haurie 1984). This
pointwise (in time) advantage leads to what is called a feedback Stackelberg
equilibrium (FSE), which is also strongly time consistent (Başar and Olsder 1999).
The characterization of such an equilibrium for j 2 fL; F g involves the HJB
equations

�
�

@

@t
Vj .x; t/

�
j D1;2

D Sta

�
gj .x; ŒuF ; uL�/

C
@

@x
Vj .x; t/f .x; ŒuF ; uL�; t/

�
j D1;2

; (2.72)

where the “Sta” operator on the RHS solves, for each .x; t/, for the Stackelberg
equilibrium solution of the static two-player game in braces, with player 1 as leader
and player 2 as follower. More precisely, the pointwise (in time) best response of F

to �L 2 �L is

OR.x; t I �L.x; t// D

arg max
uF 2UF

�
gF .x; ŒuF ; �L.x; t/�; t/ C

@

@x
VF .x; t/f .x; ŒuF ; �L.x; t/�; t/

�
;
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and taking this into account, L solves, again pointwise in time, the maximization
problem:

max
uL2UL

�
gL.x/; .Œ OR.x; t I uL/; uL�; t/ C

@

@x
VL.x; t/f .x; Œ OR.x; t I uL/; uL�; t/

�
:

Denoting the solution to this maximization problem by uL D O�L.x; t/, an FSE for
the game is then the pair of state-feedback strategies:

�
O�L.x; t/; O�F .x; t/ D OR.x; t I O�L.x; t//

o
(2.73)

Of course, following the lines we have outlined above, it should be obvious that
explicit derivation of this pair of strategies depends on the construction of the value
functions, VL and VF , satisfying the HJB equations (2.72). Hence, to complete the
solution, one has to solve (2.72) for VL.x; t/ and VF .x; t/ and use these functions
in (2.73). The main difficulty here is, of course, in obtaining explicit solutions to
the HJB equations, which however can be done in some classes of games, such as
those with linear dynamics and quadratic payoff functions (in which case VL and
VF will be quadratic in x) (Başar and Olsder 1999). We provide some evidence of
this solvability through numerical examples in the next subsection.

4.3 An Example: Construction of Stackelberg Equilibria

Consider the example of Sect. 3.7 but now with player 1 as the leader (from now on
referred to as player L) and player 2 as the follower(player F ). Recall that player j ’s
optimization problem and the underlying state dynamics are

max
uj

�
Jj D

Z 1

0

e��t



uj .t/



��

1

2
uj .t/

�
�

1

2
'x2.t/

�
dt

�
; j DL; F; (2.74)

Px.t/ D uL.t/ C uF .t/ � ˛x.t/; x.0/ D x0; (2.75)

where ' and � are positive parameters and 0 < ˛ < 1. We again suppress the
time argument henceforth when no ambiguity may arise. We discuss below both
OLSE and FSE, but with horizon length infinite. This will give us an opportunity to
introduce, in this context, also the infinite-horizon Stackelberg differential game.

4.3.1 Open-Loop Stackelberg Equilibrium (OLSE).
To obtain the best reply of the follower to the leader’s announcement of the path
uL.t/, we introduce the Hamiltonian of player F :

HF .x; uL; uF / D uF



� �

1

2
uF

�
�

1

2
'x2 C qF .uL C uF � ˛x/;



98 T. Başar et al.

where qF is the follower’s costate variable associated with the state variable x. HF

being quadratic and strictly concave in uF , it has a unique maximum:

uF D � C qF; (2.76)

where (from the maximum principle) qF satisfies

PqF D �qF �
@

@x
HF D .� C ˛/qF C 'x; lim

t!1
e��t qF .t/ D 0; (2.77)

and with (2.76) used in the state equation, we have

Px.t/ D uL.t/ C � C qF .t/ � ˛x.t/; x.0/ D x0: (2.78)

Now, one approach here would be first to solve the two differential equations (2.77)
and (2.78) and next to substitute the solutions in (2.76) to arrive at follower’s best
reply, i.e., uF .t/ D R.x.t/; uL.t/; qF .t//: Another approach would be to postpone
the resolution of these differential equations and instead use them as dynamic
constraints in the leader’s optimization problem:

max
uL

�
JL D

Z 1

0

e��t



uL



� �

1

2
uL

�
�

1

2
'x2

�
dt

�

PqF D .� C ˛/qF C 'x; lim
t!1

e��t qF .t/ D 0;

Px D uL C � C qF � ˛x; x.0/ D x0:

This is an optimal control problem with two state variables (qF and x) and one
control variable (uL). Introduce the leader’s Hamiltonian:

HL .x; uL; qF ; qL; / D uL



� �

1

2
uL

�
�

1

2
'x2 C  ..� C ˛/qF C 'x/

C qL .uL C � C qF � ˛x/;

where  and qL are adjoint variables associated with the two state equations in the
leader’s optimization problem. Being quadratic and strictly concave in uL, HL also
admits a unique maximum, given by

uL D � C qL;

and we have the state and adjoint equations:

P D � �
@

@qF

HL D �˛ � qL; .0/ D 0;
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PqL D �qL �
@

@x
HL D .� C ˛/qL C ' .x � /; lim

t!1
e��t qL.t/ D 0;

Px D
@

@qL

HL D uL C � C qF � ˛x; x.0/ D x0;

PqF D
@

@
HL D .� C ˛/qF C 'x; lim

t!1
e��t qF .t/ D 0:

Substituting the expression for uL in the differential equation for x, we obtain a
system of four differential equations, written in matrix form as follows:

0
BB@

P

PqL

Px

PqF

1
CCA D

0
BB@

�˛ �1 0 0

�' � C ˛ ' 0

0 1 �˛ 1

0 0 ' � C ˛

1
CCA

0
BB@



qL

x

qF

1
CCAC

0
BB@

0

0

2�

0

1
CCA :

Solving the above system yields .; qL; x; qF /. The last step would be to insert the
solutions for qF and qL in the equilibrium conditions

uF D � C qF ; uL D � C qL;

to obtain the open-loop Stackelberg equilibrium controls uL and uF .

4.3.2 Feedback-Stackelberg Equilibrium (FSE).
To obtain the FSE, we first have to consider the infinite-horizon version of (2.72) and
compute the best response of F to uL D �L.x/. The maximization problem faced
by F has the associated steady-state HJB equation for the current-value function
VF .x/ (with the value function defined as VF .x; t/ D e��tVF .x/):

�VF .x/ D max
uF

�
uF



� �

1

2
uF

�
�

1

2
'x2 C

@

@x
VF .x/ .uL C uF � ˛x/


:

(2.79)

Maximization of the RHS yields (uniquely, because of strict concavity)

uF D � C
@

@x
VF .x/: (2.80)

Note that the above reaction function of the follower does not directly depend on
the leader’s control uL, but only indirectly, through the state variable.

Accounting for the follower’s response, the leader’s HJB equation is

�VL.x/D max
uL�0

�
uL



��

1

2
uL

�
�

1

2
'x2C

@

@x
VL.x/



uLC�C

@

@x
VF .x/ � ˛x

�
;

(2.81)
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where VL.x/ denotes the leader’s current-value function. Maximizing the RHS
yields

uL D � C
@

@x
VL.x/:

Substituting in (2.81) leads to

�VL.x/ D



� C

@

@x
VL.x/

�

� �

1

2



� C

@

@x
VL.x/

��
(2.82)

�
1

2
'x2 C

@

@ x
VL.x/



@

@x
VL.x/ C

@

@x
VF .x/ C 2� � ˛x

�
:

As the game at hand is of the linear-quadratic type, we can take the current value
functions to be general quadratic. Accordingly, let

VL.x/ D
AL

2
x2 C BLx C CL; (2.83)

VF .x/ D
AF

2
x2 C BF x C CF ; (2.84)

be, respectively, the leader’s and the follower’s current-value functions, where the
six coefficients are yet to be determined. Substituting these structural forms in (2.82)
yields

�



AL

2
x2 C BLx C CL

�
D

1

2

�
A2

L � ' C 2 .AF � ˛/ AL

�
x2

C .AL .BL C BF C 2�/ C .AF � ˛/ BL/ x C
1

2

�
�2 C B2

L

�
C .BF C 2�/ BL:

Using (2.79), (2.80), and (2.83)–(2.84), we arrive at the following algebraic equation
for the follower:

�



AF

2
x2 C BF x C CF

�
D

1

2

�
A2

F � ' C 2 .AL � ˛/ AF

�
x2

C .AF .BF C BL C 2�/ C .AL � ˛/ BF / x C
1

2

�
�2 C B2

F

�
C .BL C 2�/ BF :

By comparing the coefficients of like powers of x, we arrive at the following six-
equation, nonlinear algebraic system:

0 D A2
L C .2AF � 2˛ � �/ AL � ';

0 D AL .BL C BF C 2�/ C .AF � ˛ � �/ BL;
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0 D
1

2

�
�2 C B2

L

�
C .BF C 2�/ BL � �CL;

0 D A2
F � ' C .2AL � 2˛ � �/ AF ;

0 D AF .BF C BL C 2�/ C .AL � ˛ � �/ BF ;

0 D
1

2

�
�2 C B2

F

�
C .BL C 2�/ BF � �CF :

The above system generally admits multiple solutions. One can eliminate some
of these based on, e.g., convergence to an asymptotically globally stable steady
state. Let the sextuple

�
AS

L; BS
L; C S

L ; AS
F ; BS

F ; C S
F

�
denote a solution to the above

system, satisfying the additional desirable properties. Then, a pair of FSE strategies
is given by

uF D � C V 0
F .x/ D AS

F x C BS
F ;

uL D � C V 0
L .x/ D AS

Lx C BS
L:

4.4 Time Consistency of Stackelberg Equilibria

When, at an initial instant of time, the leader announces a strategy she will use
throughout the game, her goal is to influence the follower’s strategy choice in a way
that will be beneficial to her. Time consistency addresses the following question:
given the option to re-optimize at a later time, will the leader stick to her original
plan, i.e., the announced strategy and the resulting time path for her control variable?
If it is in her best interest to deviate, then the leader will do so, and the equilibrium is
then said to be time inconsistent. An inherently related question is then why would
the follower, who is a rational player, believe in the announcement made by the
leader at the initial time if it is not credible? The answer is clearly that she would
not.

In most of the Stackelberg differential games, it turns out that the OLSE
is time inconsistent, that is, the leader’s announced control path uL.�/ is not
credible. Markovian or feedback Stackelberg equilibria (SFE), on the other hand, are
subgame perfect and hence time consistent; they are in fact strongly time consistent,
which refers to the situation where the restriction of leader’s originally announced
strategy to a shorter time interval (sharing the same terminal time) is still SFE and
regardless of what evolution the game had up to the start of that shorter interval.

The OLSE in Sect. 4.3 is time inconsistent. To see this, suppose that the leader
has the option of revising her plan at time � > 0 and to choose a new decision rule
uL.�/ for the remaining time span Œ� ; 1/. Then she will select a rule that satisfies
.�/ D 0 (because this choice will fulfill the initial condition on the costate  ).

It can be shown, by using the four state and costate equations
�

Px; PqF ; PqL; P
�

; that

for some instant of time, � > 0; it will hold that .�/ ¤ 0: Therefore, the leader
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will want to announce a new strategy at time � , and this makes the original strategy
time inconsistent, i.e., the new strategy does not coincide with the restriction of the
original strategy to the interval Œ� ; 1/.

Before concluding this subsection, we make two useful observations.

Remark 13. Time consistency (and even stronger, strong time consistency) of FSE
relies on the underlying assumption that the information structure is state feedback
and hence without memory, that is, at any time t , the players do not remember the
history of the game.

Remark 14. In spite of being time inconsistent, the OLSE can still be a useful
solution concept for some short-term horizon problems, where it makes sense to
assume that the leader will not be tempted to re-optimize at an intermediate instant
of time.

5 Memory Strategies and Collusive Equilibria

5.1 Implementing Memory Strategies in Differential Games

As mentioned earlier, by memory strategies we mean that the players can, at any
instant of time, recall any specific past information. The motivation for using
memory strategies in differential games is in reaching through an equilibrium
a desirable outcome that is not obtainable noncooperatively using open-loop or
state-feedback strategies. Loosely speaking, this requires that the players agree
(implicitly, or without taking on any binding agreement) on a desired trajectory
to follow throughout the game (typically a cooperative solution) and are willing
to implement a punishment strategy if a deviation is observed. Richness of an
information structure, brought about through incorporation of memory, enables such
monitoring.

If one party realizes, or remembers, that, in the past, the other party deviated from
an agreed-upon strategy, it implements some pre-calculated punishment. Out of the
fear of punishment, the players adhere to the Pareto-efficient path, which would be
unobtainable in a strictly noncooperative game.

A punishment is conceptually and practically attractive only if it is effective, i.e.,
it deprives a player of the benefits of a defection, and credible, i.e., it is in the best
interest of the player(s) who did not defect to implement this punishment. In this
section, we first introduce the concept of non-Markovian strategies and the resulting
Nash equilibrium and next illustrate these concepts through a simple example.

Consider a two-player infinite-horizon differential game, with state equation

Px.t/ D f .x.t/; u1.t/; u2.t/; t/ ; x.0/ D x0:
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To a pair of controls .u1.t/; u2.t//, there corresponds a unique trajectory x.�/

emanating from x0. Player j ’s payoff is given by

Jj . u1.t/; u2.t/I x0/ D

Z 1

0

e��j t gj .x.t/; u1.t/; u2.t/; t/ dt; j D 1; 2;

where gj .x.t/; u1.t/; u2.t/; t/ is taken to be bounded and continuously differen-
tiable.10 As before, the control set of player j is Uj and the state set X is identical
to R

n.
Heretofore, a strategy has been defined as a mapping from player’s information

space to her control set. Unfortunately, this direct approach poses formidable math-
ematical difficulties in the present context; therefore, we will define a strategy as
an infinite sequence of approximate constructions, called ı-strategies. For player j ,
consider the sequence of times tj D iı; i D 0; 1; : : : ; where ı is a fixed positive
number. For any time interval Œtj ; tiC1/, let U i

j be the set of measurable control
functions uj;i W Œtj ; tiC1/ ! Uj ; and let U i D U i

1 � U i
2 . A ı-strategy for player j is

a sequence �ı
j D

�
�j;i

�
iD0;1;:::;

of mappings

�j;0 2 U0
j ;

�j;i D U0 � U1 � : : : � Ui�1 ! U j
j for j D 1; 2; : : : :

A strategy for player j is an infinite sequence of ı-strategies:

�j D
n
�

ın

j W ın ! 0; n D 1; 2; : : :
o

:

Note that this definition implies that the information set of player j at time t is

f.u1.s/; u2.s// ; 0 � s < tg ;

that is, the entire control history up to (but not including) time t . So when players
choose ı-strategies, they are using, at successive sample times tj , the accumulated

information to generate a pair of measurable controls
�

uı
1.�/; uı0

2 .�/
�

which, in turn,

generate a unique trajectory x
Nı .�/ and thus, a unique outcome wNı D

�
wNı

1; wNı
2

�
2 R

2;

where Nı D .ı; ı0/, and

w
Nı
j D

Z 1

0

e��j t gj .x
Nı.t/; uı

1.t/; uı0

2 .t/; t/ dt:

10This assumption allows us to use the strong-optimality concept and avoid introducing additional
technicalities.
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An outcome of the strategy pair N� is a pair Nw 2 R
2; which is a limit of the

sequence
n
wNın

o
of the outcomes of ı-strategy pairs N�

Nın D
�
�

ın

1 ; �
ı0

n

2

�
when n tends

to infinity. With a strategy pair, the initial state and time are thus associated with a set
v
�
t 0; x0I N�

�
of possible outcomes. (Note that we have used the obvious extension

to a non-zero initial time t 0.) The game is well defined if, for any strategy pair N�

and any initial conditions
�
t 0; x0

�
; the set of outcomes v

�
t 0; x0I N�

�
is nonempty.11

Definition 7. A strategy pair N�� is a Nash equilibrium at
�
t 0; x0

�
if, and only if,

1. the outcome set v
�
t 0; x0I N�

�
reduces to a singleton w� D

�
w�

1 ; w�
2

�
;

2. for all strategy pairs N�.1/ ,
�
�1; ��

2

�
and N�.2/ ,

�
��

1 ; �2

�
, the following holds

for j D 1; 2:

.w1; w2/ 2 v
�
t 0; x0I N�.i/

�
) wj � w�

j :

The equilibrium condition for the strategy pair is valid only at
�
t 0; x0

�
. This

implies, in general, that the Nash equilibrium that was just defined is not subgame
perfect.

Definition 8. A strategy pair N�� is a subgame-perfect Nash equilibrium at
�
t 0; x0

�
if, and only if,

1. given a control pair Nu .�/ W Œt 0; t/ ! U1 � U2 and the state x.t/ reached at time t ,

we define the prolongation of N�� at .t; x.t// as
n
�

0�ın
W ın ! 0; n D 1; 2; : : :

o
defined by

�
0ın �

NuŒt;tCın�; : : : ; NuŒtCiın;tC.iC1/ın�

�

D �
ın �

NuŒ0;ın�; NuŒın;2ın� : : : ; NuŒtCiın;tC.iC1/ın�

�
I

2. the prolongation of N�� at .t; x.t// is again an equilibrium at .t; x.t//.

Before providing an illustrative example, we make a couple of points in the
following remark.

Remark 15. 1. The information set was defined here as the entire control history.
An alternative definition is fx .s/ ; 0 � s < tg, that is, each player bases her
decision on the entire past state trajectory. Clearly, this definition requires less

11Here, and in the balance of this section, we depart from our earlier convention of state-time
ordering .x; t/, and use the reverse ordering .t; x/.
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memory capacity and hence may be an attractive option, particularly when the
differential game involves more than two players. (See Tolwinski et al. 1986 for
details.)

2. The consideration of memory strategies in differential games can be traced
back to Varaiya and Lin (1963), Friedman (1971), and Krassovski and Subbotin
(1977). Their setting was (mainly) zero-sum differential games, and they used
memory strategies as a convenient tool for proving the existence of a solution.
Başar used memory strategies in the 1970s to show how richness of and redun-
dancy in information structures could lead to informationally nonunique Nash
equilibria (Başar 1974, 1975, 1976, 1977) and how the richness and redundancy
can be exploited to solve for global Stackelberg equilibria (Başar 1979, 1982;
Başar and Olsder 1980; Başar and Selbuz 1979) and to obtain incentive designs
(Başar 1985). The exposition above follows Tolwinski et al. (1986) and Haurie
and Pohjola (1987), where the setting is nonzero-sum differential games and the
focus is on the construction of cooperative equilibria.

5.2 An Example

Consider a two-player differential game where the evolution of the state is described
by

Px.t/ D .1 � u1.t// u2.t/; x .0/ D x0 > 0; (2.85)

where 0 < uj .t/ < 1: The players maximize the following objective functionals:

J1.u1.t/; u2.t/I x0/ D ˛

Z 1

0

e��t .ln u1.t/ C x.t// dt;

J2.u1.t/; u2.t/I x0/ D .1 � ˛/

Z 1

0

e��t .ln .1 � u1.t// .1 � u2.t// C x.t// dt;

where 0 < ˛ < 1 and 0 < � � 1=4:

Suppose that the two players wish to implement a cooperative solution noncoop-
eratively by using non-Markovian strategies and threats.

Step 1: Determine Cooperative Outcomes. Assume that these outcomes are given
by the joint maximization of the sum of players’ payoffs. To solve this optimal
control problem, we introduce the current-value Hamiltonian (we suppress the time
argument):

H .u1; u2; x; �/ D ˛ ln u1 C .1 � ˛/ ln .1 � u1/ .1 � u2/ C x C q .1 � u1/ u2;

where q is the current-value adjoint variable associated with the state equa-
tion (2.85). Necessary and sufficient optimality conditions are
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Px D .1 � u1/ u2; x .0/ D x0 > 0;

Pq D �q � 1; lim
t!1

e��t q.t/ D 0;

@H
@u1

D
˛

u1

�
.1 � ˛/

.1 � u1/
� qu2 D 0;

@H
@u2

D �
.1 � ˛/

.1 � u2/
� q .1 � u1/ D 0:

It is easy to verify that the unique optimal solution is given by

�
u�

1 ; u�
2

�
D



˛�;

1 � �

1 � ˛�

�
; x�.t/ D x0 C .1 � �/ t;

J1

�
u�

1 .�/; u�
2 .�/I x0

�
D

˛

�



ln ˛� C x0 C

1 � �

�

�
;

J2

�
u�

1 .�/; u�
2 .�/I x0

�
D

1 � ˛

�



ln .1 � ˛/ � C x0 C

1 � �

�

�
:

Note that both optimal controls satisfy the constraints 0 < uj .t/ < 1; j D 1; 2:

Step 2: Compute Nash-Equilibrium Outcomes. As the game is of the linear-
state variety,12 open-loop and state-feedback Nash equilibria coincide. We therefore
proceed with the derivation of the OLNE, which is easier to solve. To determine this
equilibrium, we first write the players’ current-value Hamiltonians:

H1 .u1; u2; x; q1/ D ˛ .ln u1 C x/ C q1 .1 � u1/ u2;

H2 .u1; u2; x; q2/ D .1 � ˛/ .ln .1 � u1/ .1 � u2/ C x/ C q2 .1 � u1/ u2;

where qj is the costate variable attached by player j to the state equation (2.85).
Necessary conditions for a Nash equilibrium are

Px D .1 � u1/ u2; x .0/ D x0 > 0;

Pq1 D �q1 � ˛; lim
t!1

e��t q1.t/ D 0;

Pq2 D �q2 � .1 � ˛/ ; lim
t!1

e��t q2.t/ D 0;

@

@u1

H1 D
˛

u1

� q1u2 D 0;

12In a linear-state differential game, the objective functional, the salvage value and the dynamics
are linear in the state variables. For such games, it holds that a feedback strategy is constant, i.e.,
independent of the state and hence open-loop and state-feedback Nash equilibria coincide.
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@

@u2

H2 D �
.1 � ˛/

.1 � u2/
� q2 .1 � u1/ D 0:

It is easy to check that the Nash equilibrium is unique and is given by

.Nu1; Nu2/ D



1 � k

2
;

1 C k

2

�
; Nx.t/ D x0 C



1 C k

4

�
t;

J1

�
Nu1 .�/ ; Nu2.�/I x0

�
D

˛

�



ln



1 � k

2

�
C x0 C

1 C k

2�
� 1

�
;

J2

�
Nu1 .�/ ; Nu2.�/I x0

�
D

1 � ˛

�



ln � C x0 C

1 C k

2�
� 1

�
;

where k D
p

1 � 4�: Note that the equilibrium controls satisfy the constraints
0 < uj .t/ < 1; j D 1; 2; and as expected in view of the game structure, they
are constant over time.

Step 3: Construct a Collusive Equilibrium. We have thus so far obtained

�
w�

1 ; w�
2

�
D
�
J1

�
u�

1 .�/; u�
2 .�/I x0

�
; J2

�
u�

1 .�/; u�
2 .�/I x0

��
;

. Nw1; Nw2/ D
�
J1

�
Nu1 .�/ ; Nu2.�/I x0

�
; J2

�
Nu1 .�/ ; Nu2.�/I x0

��
:

Computing the differences

w�
1 � Nw1 D

˛

�



ln



1 � k

2˛�

�
C

1 C �2 � 3� C k

2�

�
;

w�
2 � Nw2 D

1 � ˛

�



ln .1 � ˛/ C

1 � 3� C k

2�

�
;

we note that they are independent of the initial state x0 and that their signs depend
on the parameter values. For instance, if we have the following restriction on the
parameter values:

0 < ˛ < min

0
@ 1 � k

2� exp
�

3��1��2�k

2�

� ; 1 � exp



3� � 1 C k

2�

�1
A ;

then w�
1 > Nw1 and w�

2 > Nw2. Suppose that this is true. What remains to be shown
is then that by combining the cooperative (Pareto-optimal) controls with the state-
feedback (equivalent to open-loop, in this case) Nash strategy pair,

.�1 .x/ ; �2 .x// D .Nu1; Nu2/ D



1 � k

2
;

1 C k

2

�
;
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we can construct a subgame-perfect equilibrium strategy in the sense of Definition 8.
Consider a strategy pair

N�j D
n

N��ın

j W ın ! 0; n D 1; 2; : : :
o

;

where, for j D 1; 2; N��ı
j is defined as follows:

��ı
j D

�
�j;i

�
iD0;1;2;:::;

with

��
j;0 D u�

j;0 .�/ ;

��
j;i D

(
u�

j;i .�/ ; if Nu .s/ D Nu� .s/ for almost s � iı;

'j .x .j ı// D Nuj ; otherwise,

for i D 1; 2; : : : ; where u�
j;i .�/ denotes the restriction truncation of u�

j;.�/ to the
subinterval Œiı; .i C 1/ ı� ; i D 0; 1; 2; : : :, and x .iı/ denotes the state observed at
time t D iı.

The strategy just defined is known as a trigger strategy. A statement of the trigger
strategy, as it would be made by a player, is “At time t , I implement my part of the
optimal solution if the other player has never cheated up to now. If she cheats at t ,
then I will retaliate by playing the state-feedback Nash strategy from t onward.” It
is easy to show that this trigger strategy constitutes a subgame-perfect equilibrium.

Remark 16. It is possible in this differential-game setting to define a retaliation
period of finite length, following a deviation. Actually, the duration of this period
can be designed to discourage any player from defecting. Also, in the above
development and example, we assumed that a deviation is instantaneously detected.
This may not necessarily be the case, and in such situations we can consider a
detection lag. For an example of a trigger strategy with a finite retaliation period
and detection lag, see Hämäläinen et al. (1984).

6 Conclusion

This chapter has provided an overview of the theory of nonzero-sum differential
games formulated in continuous time and without any stochastic elements. Only
noncooperative aspects of the theory have been covered, primarily under two
different solution concepts: Nash equilibrium and Stackelberg equilibrium and
several of their variants. The importance of information structures in such dynamic
games has been emphasized, with special focus on open-loop and state-feedback
information structures. The additional degrees of freedom memory strategies bring
in in inducing specific behavior on the part of the players has also been discussed,
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and several special structures of differential games, such as linear-quadratic (or
affine-quadratic) games, symmetric games, and zero-sum differential games, have
also been covered, with some illustrative examples. The chapter has also emphasized
the important role strategic equivalence plays in solvability of some classes of
differential games.

There are several other issues very relevant to the topic and material of this
chapter, which are covered by selected other chapters in the Handbook. These
involve dynamic games described in discrete time, concave differential games with
coupled state constraints defined over infinite horizon, dynamic games with an
infinite number of players (more precisely, mean-field games), zero-sum differential
games (with more in-depth analysis than the coverage in this chapter), games with
stochastic elements (more precisely, stochastic games), mechanism designs, and
computational methods, to list just a few.
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Abstract

In this chapter, we expose a full theory for infinite-horizon concave differential
games with coupled state-constraints. Concave games provide an attractive
setting for many applications of differential games in economics, management
science and engineering, and state coupling constraints happen to be quite natural
features in many of these applications. After recalling the results of Rosen
(1965) regarding existence and uniqueness of equilibrium of concave game with
coupling contraints, we introduce the classical model of Ramsey and presents the
Hamiltonian systems approach for its treatment. Next, we extend to a differential
game setting the Hamiltonian systems approach and this formalism to the case of
coupled state-constraints. Finally, we extend the theory to the case of discounted
rewards.

Keywords
Concave Games � Coupling Constraints � Differential Games � Global Change
Game � Hamilonian Systems � Oligopoly Game � Ramsey Model � Rosen
Equilibrium

1 Introduction and Motivation

Suppose that players in a game face a joint, or coupled constraint on their decision
variables. A natural question is how could they reach a solution that satisfies such
constraint? The answer to this question depends on the mode of play. If the game
is played cooperatively and the players can coordinate their strategies, then the
problem can be solved by following a two-step procedure, i.e., by first optimizing
the joint payoff under the coupled constraint and next by allocating the total payoff
using one of the many available solution concepts of cooperative games. The
optimal solution gives the actions that must be implemented by the players, as well
as the status of the constraint (binding or not). If, for any reason, cooperation is
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not feasible, then the players should settle for an equilibrium under the coupled
constraint. In a seminal paper (Rosen 1965), Rosen proposed in 1965 the concept of
normalized equilibrium to deal with a class of noncooperative games with coupled
constraints. In a nutshell, to obtain such an equilibrium, one appends to the payoff
of each player a penalty term associated with the non-satisfaction of the coupled
constraint, defined through a common Lagrange multiplier divided by a weight that
is specific to each player.

When the game is dynamic, a variety of coupling constraints can be envisioned.
To start with, the players’ controls can be coupled. For instance, in a deregulated
electricity industry where firms choose noncooperatively their outputs, an energy
regulation agency may implement a renewable portfolio standard program, which
typically requires that a given percentage of the total electricity delivered to the
market is produced from renewable sources. Here, the constraint is on the collective
industry’s output and not on individual quantities, and it must be satisfied at
each period of time. A coupling constraint may alternatively be on the state,
reflecting that what matters is the accumulation process and not (necessarily only)
the instantaneous actions. A well-known example is in international environmental
treaties where countries (players) are requested to keep the global cumulative
emissions of GHGs (the state variable) below a given value, either at each period
of time or only at the terminal date of the game. The implicit assumptions here are
(i) the environmental damage is essentially due to the accumulation of pollution,
that is, not only to the flows of emissions, and (ii) the adoption of new less polluting
production technologies and the change of consumption habits can be achieved over
time and not overnight, and therefore it makes economic sense to manage the long-
term concerns rather than the short-term details.

In this chapter, we expose a full theory for infinite horizon concave differential
games with coupled state constraints. The focus on coupled state constraints can be
justified by the fact that, often, a coupled constraint on controls can be reformulated
as a state constraint via the introduction of some extra auxiliary state variables. An
example will be provided to illustrate this approach. Concave games, which were
the focus of Rosen’s theory, provide an attractive setting for many applications of
differential games in economics, management science, and engineering. Further,
state coupling constraints in infinite horizon are quite natural features in many of
these applications. As argued a long time ago by Arrow and Kurz in (1970), infinite
horizon is a natural assumption in economic (growth) models because any chosen
finite date is essentially arbitrary.

This chapter is organized as follows: Sect. 2 recalls the main results of Rosen’s
paper (Rosen 1965), Sect. 3 introduces the classical model of Ramsey and presents
the Hamiltonian systems approach for its treatment, Sect. 4 extends to a differential
game setting the Hamiltonian systems approach, and Sect. 5 extends the formalism
to the case of coupled state constraints. An illustrative example is provided in
Sect. 6, and the extension of the whole theory to the case of discounted rewards
is presented in Sect. 7. Finally, Sect. 8 briefly concludes this chapter.
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2 A Refresher on Concave m-Person Games with Coupled
Constraints

To recall the main elements and results for concave games with coupled constraints
developed in Rosen (1965), consider a game in normal form. Let M D f1; : : : ; mg

be the set of players. Each player j 2 M controls the action xj 2 Xj , whereXj is a
compact convex subset of Rmj and mj is a given integer. Player j receives a payoff
 j .x1; : : : ; xj ; : : : ; xm/ that depends on the actions chosen by all the players. The
reward function  j W X1�� � ��Xj ; � � ��Xm ! R is assumed continuous in each xi ,
for i ¤ j , and concave in xj . A coupled constraint set is defined as a proper subset
X ofX1�� � ��Xj �� � ��Xm. The constraint is that the joint action x D .x1; : : : ; xm/

must be in X .

Definition 1. An equilibrium under the coupled constraint set X is defined as an
m-tuple .x�

1 ; : : : ; x
�
j ; : : : ; x

�
m/ 2 X such that for each player j 2 M

 j .x
�
1 ; : : : ; x

�
j ; : : : ; x

�
m/ �  j .x

�
1 ; : : : ; xj ; : : : ; x

�
m/

for all xj 2 Xj s.t. .x�
1 ; : : : ; xj ; : : : ; x

�
m/ 2 X : (3.1)

For brevity, a coupled constraint equilibrium will be referred to by CCE.

Coupled constraints means that each player’s strategy space may depend on the
strategy of the other players. This may look awkward in a noncooperative game
where the players cannot enter into communication or coordinate their actions.
However, the concept is mathematically well defined. Further, some authors (see,
e.g., Facchinei et al. (2007, 2009), Facchinei and Kanzow (2007), Fukushima
(2009), Harker (1991), von Heusingen and Kanzow (2006) or Pang and Fukushima
(2005)) call a coupled constraints equilibrium a generalized Nash equilibrium
or GNE. See the paper by Facchinei et al. (2007) for a comprehensive survey
on GNE and numerical solutions for this class of equilibria. Among other topics,
the survey includes complementarity formulations of the equilibrium conditions
and solution methods based on variational inequalities. Krawczyk (2007) also
provides a comprehensive survey of numerical methods for the computation of
coupled constraint equilibria. For applications of coupled constraint equilibrium in
environmental economics, see Haurie and Krawczyk (1997), Tidball and Zaccour
(2005, 2009), in electricity markets see Contreras et al. (2004) and Hobbs and Pang
(2007), and see Kesselman et al. (2005) for an application to Internet traffic.

2.1 Existence of an Equilibrium

At a coupled constraint equilibrium point, no player can improve his payoff by a
unilateral change in his strategy while keeping the combined vector in X . To show
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that such a solution exists in a concave game, it is convenient to reformulate the
equilibrium conditions as a fixed-point condition for a point-to-set mapping.1 For
that purpose, introduce the global reaction function � W X�X�RmC ! R defined by

�.x; v; r/ D

mX

jD1

rj j .x1; : : : ; vj ; : : : ; xm/; (3.2)

where the coefficients rj > 0, j D 1; : : : ; m, are arbitrary positive weights given
to each player’s payoff. The precise role of this weighting scheme will be explained
later. One may assume that

Pm
jD1 rj D 1.

As defined in (3.2), the function �.x; v; r/ is continuous in x and concave in v
for every fixed x. This function is helpful to characterize an equilibrium through a
fixed-point property, as shown in the following result, proved in Rosen (1965).

Lemma 1. Let x� 2 X be such that

�.x�; x�; r/ D max
x2X

�.x�; x; r/: (3.3)

Then, x� is a coupled-constraint equilibrium.

To make the fixed-point argument more precise, introduce a coupled-reaction
mapping.

Definition 2. The point-to-set mapping

�.x; r/ D fvj�.x; v; r/ D max
w2X

�.x;w; r/g; (3.4)

is called the coupled reaction mapping associated with the positive weighting r. A
fixed point of �.�; r/ is a vector x� such that x� 2 �.x�; r/.

Lemma 1 shows that a fixed point of �.�; r/ is a coupled constraint equilibrium.
The proof of existence of a coupled constraint equilibrium requires the use of the
Kakutani fixed-point theorem, which is recalled below.

1A point-to-set mapping, or correspondence, is a multivalued function that assigns vectors to sets.
Similarly to the “usual” point-to-point mappings, these functions can also be continuous, upper
semicontinuous, etc.
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Theorem 1. Let ˆ W A ! 2A be a point-to-set mapping with a closed graph,2

where A is a compact subset (i.e., a closed and bounded subset) of Rm. Then, there
exists a fixed point for ˆ, i.e., there exists x� 2 ˆ.x�/ for some x� 2 A.

The existence theorem for coupled constraint equilibrium follows as a direct
application of the Kakutani fixed-point theorem.

Theorem 2. Let the mapping �.�; r/ be defined through (3.4). For any positive
weighting r, there exists a fixed point of �.�; r/, i.e., a point x� s.t. x� 2 �.x�; r/.
Hence, a coupled constraint equilibrium exists.

2.2 Normalized Equilibria

2.2.1 Karush-Kuhn-Tucker Multipliers
Suppose that X , the coupled constraint set (3.1), can be defined by a set of
inequalities

hk.x/ � 0; k D 1; : : : ; p;

where hk W X1� : : :�Xm ! R, k D 1; : : : ; p are given concave functions. Assume
further that the payoff functions  j .�/ as well as the constraint functions hk.�/
are continuously differentiable and satisfy a constraint qualification condition3 so
that Karush-Kuhn-Tucker multipliers exist for each of the implicit single agent
optimization problems defined below.

Assume all players, other than Player j , use their strategies x�
` , ` 2 M n fj g,

while Player j uses xj , and denote the corresponding joint strategy vector by
Œx��j ; xj � to refer to the decision vector where all players i , other than j , play
x�
i , while Player j uses xj . Then, the equilibrium conditions (3.1) define a single

agent optimization problem with a concave objective function and a convex compact
admissible set. Under the assumed constraint qualification, there exists a vector of
Karush-Kuhn-Tucker multipliers �j D .�jk/kD1;:::;p such that the Lagrangian

Lj .Œx��j ; xj �; �j / D  j .Œx��j ; xj �/C
X

kD1:::p

�jkhk.Œx��j ; xj �/; (3.5)

2This mapping has the closed graph property if, whenever the sequence fxkgkD1;2;::: converges in
R
m toward x0 then any accumulation point y0 of the sequence fykgkD1;2;::: in R

n, where yk 2
ˆ.xk/, k D 1; 2; : : : , is such that y0 2 ˆ.x0/.
3Known from mathematical programming, see, e.g., Mangasarian (1969).
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verifies, at the optimum, the following conditions:

0 D
@

@xj
Lj .Œx��j ; x�

j �; �j /; (3.6)

0 � �j ; (3.7)

0 D �jkhk.Œx��j ; x�
j �/ k D 1; : : : ; p; (3.8)

0 � hk.Œx��j ; x�
j �/ k D 1; : : : ; p: (3.9)

Definition 3. The equilibrium is normalized if the multiplier �j is colinear with a
common vector �0, that is,

�j D
1

rj
�0, for all j 2 M; (3.10)

where the coefficient rj > 0 is a weight assigned to player j .

Observe that the common multiplier �0 is associated with the following implicit
mathematical programming problem:

x� D argmaxx2X �.x
�; x; r/: (3.11)

To see this, it suffices to write down the Lagrangian of this problem, that is,

L0.x; �0/ D
X

j2M

rj j .Œx��j ; xj �/C
X

kD1:::p

�0khk.x/; (3.12)

and the first-order necessary conditions

0 D
@

@xj

8
<

:rj j .x
�/C

X

kD1;:::;p

�0khk.x�/

9
=

; ; j 2 M; (3.13)

0 � �0; (3.14)

0 D �0khk.x�/ k D 1; : : : ; p; (3.15)

0 � hk.x�/ k D 1; : : : ; p: (3.16)

Then, the relationship (3.10) is clear.

2.2.2 An Economic Interpretation
In a mathematical programming problem, a Karush-Kuhn-Tucker multiplier can be
interpreted as the marginal cost or shadow price associated with the right-hand side
of a constraint. More precisely, the multiplier measures the sensitivity of the optimal
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solution to marginal changes of this right-hand side. The multiplier permits also a
price decentralization in the sense that, through an ad hoc pricing mechanism, the
optimizing agent is induced to satisfy the constraints.

In a normalized equilibrium, the shadow cost interpretation is not so apparent;
however, the price decomposition principle is still valid. Once the common
multiplier has been defined with the associated weighting rj > 0, j D 1; : : : ; m, the
coupled constraint will be satisfied by equilibrium-seeking players, playing without
the coupled constraint but using the Lagrangians as payoffs

Lj .Œx��j ; xj �; �j / D  j .Œx��j ; xj �/C
1

rj

X

kD1:::p

�0khk.Œx��j ; xj �/;

j D 1; : : : ; m:

The common multiplier permits then an “implicit pricing” of the common
constraint so that the latter remains compatible with the equilibrium structure.
However, to be useful this result necessitates uniqueness.

2.3 Uniqueness of Equilibrium

In a mathematical programming framework, uniqueness of an optimum results from
strict concavity of the objective function to be maximized. In a game, uniqueness of
the equilibrium requires a more stringent concavity condition, called diagonal strict
concavity by Rosen (1965).

Consider the following function:

�.x; r/ D

mX

jD1

rj j .x/; (3.17)

sometimes referred to as the joint payoff. Define the pseudo-gradient of this
function as the vector

g.x; r/ D

0

BBBBBBBBBBBBBBB@

r1
@

@x1
 1.x/

r2
@

@x2
 2.x/

:::

rm
@

@xm
 m.x/

1

CCCCCCCCCCCCCCCA

: (3.18)
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Note that this expression is composed of the partial gradients of the different player
payoffs with respect to the decision variables of the corresponding player.

Definition 4. The function �.x; r/ is diagonally strictly concave on X if the
following condition holds:

.x2 � x1/0g.x1; r/C .x1 � x2/0g.x2; r/ > 0; (3.19)

for every x1 and x2 in X .

A sufficient condition for �.x; r/ to be diagonally strictly concave is that the
symmetric matrix4 ŒG.x; r/ C G.x; r/0� be negative definite for any x in X , where
G.x; r/ is the Jacobian of g.x; r/ with respect to x. The Uniqueness theorem proved
by Rosen is now stated as:5

Theorem 3. If �.x; r/ is diagonally strictly concave on the convex set X , with the
assumptions ensuring existence of the Karush-Kuhn-Tucker multipliers, then there
exists a unique normalized equilibrium for the weighting scheme r > 0.

3 A Refresher on Hamiltonian Systems

A second pillar of a complete theory of open-loop differential games with coupled
constraints is the theory of Hamiltonian systems. The objective here is not to provide
a full introduction to this theory, but to recall what is needed in the sequel. It is
done below using the well-known Ramsey problem, which has led to considerable
development in economic dynamics using the theory of Hamiltonian systems in the
calculus of variations (Cass and Shell 1976). Next, one hints at the extension of the
theory to infinite horizon concave open-loop differential games, with coupled state
constraints.

3.1 Ramsey Problem

Consider a stock of capital x.t/ at time t > 0 that evolves over time according to
the differential equation

Px.t/ D f .x.t// � ıx.t/ � c.t/; (3.20)

4The expression in the square brackets is sometimes referred to as the pseudo-Hessian of �.x; r/.
5See Rosen’s paper (1965) or Haurie et al. (2012) pp. 61–62.
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with fixed initial condition x.0/ D x0, and where f W Œ0;1/ ! R is a
continuous production function, ı > 0 is the rate of depreciation of capital, and
c.t/ denotes consumption at time t satisfying c.t/ � f .x.t// � ıx.t/. The agent
reward is measured by accumulated utility of consumption described by the integral
functional

W T .c.�// WD

Z T

0

U.c.t// dt; (3.21)

where U W Œ0;C1/ ! R is a concave function. Ramsey’s goal was to determine
the rate of consumption that maximizes limT!1W T .c.�//. The first difficulty in
analyzing this problem is that it is not well defined, since for most admissible
consumption schedules c.�/, the improper integral

W .c.�// D

Z 1

0

U.c.t// dt D lim
T!1

Z T

0

U.c.t// dt;

does not converge. If instead the decision maker maximizes a stream of discounted
utility of consumption given by

W�.c.�// D

Z T

0

e��tU.c.t// dt;

where � is the discount rate (0 < � < 1), then convergence of the integral is
guaranteed by assuming U.c/ is bounded. However, Ramsey dismisses this case
as unethical for problems involving different generations of agents in that the
discount rate weights a planner’s decision toward the present generation at the
expense of the future ones. (Those concerns are particularly relevant when dealing
with global environmental change problems, like those created by GHG6 long-lived
accumulation in the atmosphere and oceans.) To deal with the undiscounted case,
Ramsey introduced what he referred to as maximal sustainable rate of enjoyment
or “bliss.” One can view bliss, denoted by B , as an “optimal steady state” or the
optimal value of the mathematical program, referred to here as the optimal steady-
state problem

B D maxfU.c/ W c D f .x/ � ıxg; (3.22)

which is assumed to have a unique solution . Nx; Nc/. The objective can now be
formulated as

WB.c.�// D

Z 1

0

.U.c.t// � B/ dt;

6Greenhouse gases.
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which can be made finite by assuming that there exists a consumption rate that can
steer the capital stock from the value x0 to Nx in a finite time. That is, there exists a
time T and a consumption rate Oc.t/ defined on Œ0; T � so that at time T the solution
Ox.t/ of (3.20) with c.t/ D Oc.t/ satisfies Ox.T / D Nx. This is related to the so-called
turnpike property, which is common in economic growth models.

To formulate the Ramsey problem as a problem of Lagrange in the parlance of
calculus of variations, introduce the integrand L.x; z/ D U.z � f .x/ C ıx/ � B .
Consequently, the optimization problem becomes an Infinite horizon problem of
Lagrange consisting of maximizing

J .x.�// D

Z 1

0

L.x.t/; Px.t// dt D

Z 1

0

ŒU. Px.t/ � f .x.t//C ıx.t// � B� dt;

(3.23)

over all admissible state trajectories x.�/ W Œ0;1/ ! R satisfying the fixed initial
condition x.0/ D x0. This formulation portrays the Ramsey model as an infinite
horizon problem of calculus of variations, which is a well-known problem.

Now, consider this problem in more generality by letting L W Rn � R
n ! R be a

twice differentiable, concave function and consider the infinite horizon problem of
maximizing

J .x/ D

Z 1

0

L.x.t/; Px.t// dt; (3.24)

over all admissible state trajectories x.�/ W Œ0;C1/ ! R
n satisfying a fixed initial

condition x.0/ D x0, where x0 2 R
n is given. The standard optimality conditions

for this problem is that an optimal solution x.�/ must satisfy the Euler-Lagrange
equations

d

dt

 
@L

@zi

ˇ̌
ˇ̌
.x.t/; Px.t//

!
D

@L

@xi

ˇ̌
ˇ̌
.x.t/; Px.t//

; i D 1; 2; : : : ; (3.25)

which for convenience are rewritten as

pi .t/ D @zi L.x.t/; Px.t//; Ppi .t/ D @xi L.x.t/; Px.t//; i D 1; 2; : : : ; n;

(3.26)
where @zi and @xi denote the partial derivatives of L.x; z/ with respect to the zi -th
and xi -th variables, respectively. For the Ramsey model described above, this set of
equations reduces to the single equation

d

dt
U 0.c.t// D �U 0.c.t//.f 0.x.t// � ı/;

where c.t/ D Px.t/ � f .x.t// � ıx.t/, which is the familiar Ramsey’s rule.
From a dynamical systems point of view, it is convenient to express the Euler-

Lagrange equations in an equivalent Hamiltonian form. To do so, define the
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Hamiltonian H W Rn � R
n ! R through the formula

H.x; p/ D sup
z

fL.x; z/C p0zg: (3.27)

When L is twice continuously differentiable and concave, it follows that

H.x; p/ D L.x; Oz/C p0Oz;

where Oz is related to p and x through the formulas pi D �@zi L.x; Oz/ for i D

1; 2; : : : ; n. Further, one also has that

@xiH.x; p/ D @xi L.x; Oz/ and @piH.x; p/ D Ozi ; i D 1; 2 : : : n:

From this, if x� is a solution of the Euler-Lagrange equations it follows that the
pair .x�.t/; p�.t//, where p�.t/ D �@zi L.x

�.t/; Px�.t// satisfies the Hamiltonian
system

Px�
i .t / D @piH.x

�.t/; p�.t//; Ppi
�.t/ D @xiH.x

�.t/; p�.t//; i D 1; 2; : : : n:

(3.28)

The optimal steady-state problem that arises in the Ramsey model is equivalently
expressed as

L. Nx; 0/ D maxfL.x; 0/g D maxfU.c/ W c D f .x/ � ıxg: (3.29)

This leads to considering the analogous problem for the general Lagrange problem.
A necessary and sufficient condition for Nx to be an optimal steady state is that
@xi L. Nx; 0/ D 0. Setting Npi D @Lzi . Nx; 0/ gives a steady-state pair for the
Hamiltonian dynamical system. That is,

0 D @piH. Nx; Np/; 0 D @piH. Nx; Np/; i D 1; 2; : : : ; p: (3.30)

When L.x; z/ is concave, it follows that the pair . Nx; Np/ is a saddle point for
the Hamiltonian system (3.28) giving rise to a stable manifold and an unstable
manifold.7 This leads to the global asymptotic stability (GAS) property for optimal
trajectories x.�/ and costate p.�/, that is, the optimal steady state, actually the bliss
point, is a global attractor for all optimal trajectories emanating from the different
possible initial states.

For finite horizon problems in this setting, the turnpike property says that the
optimal steady-state trajectory is an attractor for the optimal state trajectory. Thus
the turnpike property states that for all sufficiently long terminal times T the optimal
state trajectory spends most of its time near the optimal steady state. More precisely

7For a discussion of these ideas, see, Rockafellar (1973).
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there exists a time T0 > 0 such that for any time T � T0 and each � > 0 there exists
a constant B� > 0 (independent of time T ) so that

measft 2 Œ0; T � W kx�.t/ D Nxk > �g � B�:

For an introduction to these ideas for both finite and infinite horizon problems, see
Carlson et al. (1991, Chap. 3). For more details in the infinite horizon case, see the
monograph by Cass and Shell (1976).

Remark 1. In concave problems of Lagrange, one can use the theory of convex
analysis to allow for nonsmoothness of the integrandL. In this case, the Hamiltonian
H is concave in x and convex in p; and the Hamiltonian system may be written as

Px�
i .t / 2 @piH.x

�.t/; p�.t//; Ppi
�.t/ 2 @xiH.x

�.t/; p�.t//; i D 1; 2; : : : n;

(3.31)

where now the derivative notation @ refers to the set of subgradients. A similar
remark applies to (3.26). Therefore, in the rest of the chapter, the notation for the
nonsmooth case will be used.8

3.2 Toward Competitive Models

Motivated by the study of optimal economic growth models, a general theory of
optimal control over an infinite time horizon has been developed. See Arrow and
Kurz (1970) and Cass and Shell (1976) for a presentation of the economic models
and to the book Carlson et al. (1991) for a comprehensive discussion of the optimal
control problem. An extension of this theory to open-loop differential games is
natural both as an economic paradigm and as an optimization problem. Indeed,
it is appealing to also consider the real case where several firms compete in a
market through their production capacities. One of the first infinite horizon models
of competition among a few firms is due to Brock (1977). His model assumed
decoupled dynamics, i.e., each firm controls its own accumulation of production
capacity. The firms are only coupled in the payoff functionals, and more specifically
through the demand function.

An attempt to extend the global asymptotic stability (GAS) conditions of state
and costate trajectories, known as the turnpike property, to open-loop differential
games (OLDG) is also reported in Brock (1977). A set of sufficient conditions for
obtaining GAS results in infinite horizon OLDG has been proposed by Haurie and
Leitmann in (1984). To define the equilibrium, the authors use the idea of overtaking
optimality of the response of each player to the controls chosen by the opponents.
Conditions for GAS are given in terms of a so-called vector Lyapunov function

8Readers who do not feel comfortable with nonsmooth analysis should, e.g., view the notation
Pp 2 @xH as Pp D @

@x
H .
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applied to the pseudo-Hamiltonian system resulting from the necessary optimality
conditions. Knowing that such a GAS property holds permits in particular the
development of numerical methods for solving infinite horizon differential games,
the use of this property in the analysis of competition has been well illustrated
in Hämäläinen et al. (1985) where a transboundary fisheries model, with several
nations exploiting the same biomass, has been studied and solved numerically, using
the asymptotic steady state as terminal conditions. Now, to take into account coupled
state constraints, one needs to extend to a dynamic setting the results obtained by
Rosen (1965) for concave static games. This leads to a rather complete theory with
proofs of existence, uniqueness, and asymptotic stability (i.e., turnpike property) of
overtaking equilibrium programs for a class of games satisfying a strong concavity
assumption, namely, strict diagonal concavity.9

The rest of this chapter presents a comprehensive theory concerning the exis-
tence, uniqueness, and GAS of equilibrium solutions, for a class of concave
infinite horizon open-loop differential games with coupled state constraints. While
pointwise state constraints generally pose no particular difficulties in establishing
the existence of an equilibrium (or optimal solution), they do create problems when
the relevant necessary conditions are utilized to determine the optimal solution.
Indeed, in these situations the adjoint variable will possibly have a discontinuity
whenever the optimal trajectory hits the boundary of the constraint (see the survey
paper Hartl et al. 1995). The proposed approach circumvents this difficulty by
introducing a relaxed asymptotic formulation of the coupled state constraint. This
relaxation of the constraint, which uses an asymptotic steady-state game with
coupled constraints à la Rosen, proves to be well adapted to the context of economic
growth models with global environmental constraints.

4 Open-Loop Differential Games Played Over Infinite
Horizon

This section introduces the concept of an overtaking equilibrium for a class of
noncooperative infinite horizon differential games.

4.1 The Class of Games of Interest

Consider a controlled system defined by the following data:

• An infinite time horizon t 2 Œ0;1/.

9A discrete time version of the model studied in this chapter can be found in Carlson and Haurie
(1996) where a turnpike theory for discrete time competitive processes is developed.
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• A set of players M PD f1; : : : ; mg. Each of the m players is represented at time t
by a state xj .t/ 2 R

nj , where nj is a given positive integer. Let n PDn1 C : : :C

nm.10

• For each j 2 M , a trajectory for player j is defined as an absolutely continuous
function xj .�/ D .xj .t/ 2 R

nj W t � 0/ that satisfies whatever constraints
are imposed on the model. An M -trajectory is defined as x.�/ D .x.t/ W

t � 0/ PD ..xj .t//j2M W t � 0/.
• Along an M -trajectory, a reward accumulation process for player j is defined as

	Tj .x.�// D

Z T

0

Lj .x.t/; Pxj .t// dt; 8T > 0; (3.32)

where Lj W R
n � R

nj ! R [ f�1g, j 2 M are given functions and
Pxj .t/ D d

dt
xj .t/. The expression Lj .x.t/; Pxj .t// represents a reward rate for

player j when the M -trajectory is x.t/ and the velocity for player j is Pxj .t/.

Remark 2. A control decoupling is assumed since only the velocity Pxj .t/ enters in
the definition of the reward rate of player j . This is not a very restrictive assumption
for most applications in economics.

Remark 3. Adopting a nonsmooth analysis framework means that there is indeed
no loss of generality in adopting this generalized calculus of variations formalism
instead of a state equation formulation of each player’s dynamics. For details
on the transformation of a fully fledged control formulation, including state and
control constraints, into a generalized calculus of variations formulation, see Brock
and Haurie (1976), Feinstein and Luenberger (1981), or Carlson et al. (1991). In
this setting the players’ strategies (or control actions) are applied through their
derivatives Pxj .�/. Once a fixed initial state is imposed on the players, each of their
strategies give rise to a unique state trajectory (via the Fundamental Theorem of
Calculus). Thus one is able to say that each player chooses his/her state trajectory
xj .�/ to mean that in reality the strategy Pxj .�/ is chosen.

4.2 The Overtaking Equilibrium Concept

The overtaking equilibrium concept is a version of the Nash equilibrium concept
which is adapted to the consideration of an infinite time horizon. Given an M -
trajectory x�.�/, let Œx�.j /.�/I xj .�/� denote the M -trajectory obtained when player j
changes unilaterally his trajectory to xj .

10To distinguish between functions of time t and their images, the notation x.�/ will always denote
the function, while x.t/ will denote its value at time t (i.e., a vector).
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Definition 5. An M -trajectory x�.�/ is an overtaking equilibrium at xo if

1. x�.0/ D xo.
2. lim inf

T!1
.	Tj .x

�.�// � 	Tj .Œx
�.j /.�/I xj .�/�/ � 0; for all trajectories xj .�/ such that

xj .0/ D xoj for all j 2 M .

Remark 4. The notation Œx�.j /I xj � is to emphasize that the focus is on player j .
That is, Œx�.j /I xj �

:
D .x�

1 ; x
�
2 ; : : : ; x

�
j�1; xj ; x

�
jC1; : : : ; x

�
m/.

Remark 5. The consideration of the overtaking optimality concept for economic
growth problems is due to von Weizsäcker (1965), and its extension to the overtak-
ing equilibrium concept in dynamic games has been first proposed by Rubinstein in
(1979). The concept has also been used in Haurie and Leitmann (1984) and Haurie
and Tolwinski (1985).

4.3 Optimality Conditions

This section deals with conditions that guarantee that all the overtaking equilibrium
trajectories, emanating from different initial states, bunch together at infinity. As
in the theory of optimal economic growth and, more generally, the theory of
asymptotic control of convex systems (see Brock and Haurie 1976), one may expect
the steady state to play an important role in the characterization of the equilibrium
solution. More precisely, one expects the steady-state equilibrium to be unique and
to define an attractor for all equilibrium trajectories, emanating from different initial
states.

First, recall the necessary optimality conditions for open-loop (overtaking)
equilibrium. These conditions are a direct extension of the celebrated maximum
principle established by Halkin (1974) for infinite horizon control problems but
written for the case of convex systems. Introduce for j 2 M and pj 2 R

nj the
Hamiltonians Hj W Rn � R

nj ! R [ f�1g, defined as

Hj .x; pj / D sup
zj

fLj .x; zj /C p0
j zj g: (3.33)

Here pj is called a j -supporting costate vector. The function

p.t/ D ..pj .t//j2M W t � 0/

will be called an M -costate trajectory.

Assumption 1. For each j , the Hamiltonian Hj .x; pj / is concave in xj and
convex in pj .
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For an overtaking equilibrium, the following necessary conditions hold (see
Carlson and Haurie 1995 for proof):

Theorem 4. If x� is an overtaking equilibrium at initial state xo; then there exists
an absolutely continuous M -costate trajectory p� such that

Px�
j .t/ 2 @pj Hj .x�.t/; p�

j .t//; (3.34)

Pp�
j .t/ 2 �@xj Hj .x�.t/; p�

j .t//; (3.35)

for all j 2 M .

The relations (3.34) and (3.35) are also called a pseudo-Hamiltonian system in
Haurie and Leitmann (1984). These conditions are incomplete since only initial
conditions are specified for the M -trajectories and no transversality conditions are
given for their associated M -costate trajectories. In the single-player case, this
system is made complete by invoking the turnpike property which provides an
asymptotic transversality condition. Due to the coupling among the players, the
system (3.35) considered here does not fully enjoy the rich geometric structure
found in the classical optimization setting (e.g., the saddle point behavior of
Hamiltonian systems in the autonomous case). Below, one gives conditions under
which the turnpike property holds for these pseudo-Hamiltonian systems.

4.4 A Turnpike Result

One of the fundamental assumptions that underlines these developments is now
introduced. It is directly linked to the strict diagonal concavity assumption made by
Rosen (1965) in his study of concave static games. Recall first the definition given
by Rosen. Let x D .xj /jD1;:::;m 2 R

n1 � � � � � R
nm and consider m continuously

differentiable functions 	j .x/. Let rj 	j .x/ denote the gradient of 	j .x/ with
respect to xj . The sum

�.x/ D

mX

jD1

	j .x/;

is said to be diagonally strictly concave, if for every x0 and x1 one has

X

jD1;:::;m

.x1j � x0j /
0.rj 	j .x0/ � rj 	j .x1// > 0:

The assumption concerns the sum of the Hamiltonians. It is also formulated in a
slightly more general way to take care of the possible nondifferentiability of these
functions.
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Assumption 2 (Strict diagonal concavity-convexity assumption (SDCCA)).
Assume that the combined Hamiltonian

P
j2M Hj .x; pj / is strictly diagonally

concave in x, convex in p. That is,

X

j2M

h
. Opj � Qpj /

0. O
j � Q
j /C . Oxj � Qxj /
0. O�j � Q�j /

i
> 0; (3.36)

for all . Oxj ; Qxj ; Opj ; Qpj / and . O
j ; Q
j ; O�j ; Q�j /, such that

O
j 2 @pj Hj .Ox; Opj /; Q
j 2 @pj Hj .Qx; Qpj /; (3.37)

O�j 2 �@xj Hj .Ox; Opj /; Q�j 2 �@xj Hj .Qx; Qpj /: (3.38)

A direct consequence of Assumption 2 is the following lemma,11 which gives
insight into the definition of a Lyapunov function providing a sufficient condition
for GAS.

Lemma 2. Let Ox.�/ and Qx.�/ be two overtaking equilibria at Oxo and Qxo, respectively,
with their respective associated M -costate trajectories Op.�/ and Qp.�/. Then, under
Assumptions 1 and 2, the inequality

X

j2M

d

dt

�
. Opj .t/ � Qpj .t//

0. Oxj .t/ � Qxj .t//
�
> 0; (3.39)

holds.

A turnpike theorem for overtaking equilibria follows12 under a strengthening of
the inequality (3.39).

Definition 6. The overtaking equilibrium M -program Ox.�/ is called strongly diag-
onally supported by the M -costate trajectory Op.�/ if, for every " > 0 there exists a
ı > 0, such that for all t � 0, kx � Ox.t/k C kp � Op.t/k > " implies

X

j2M

��
d

dt
Opj .t/ � 
j

�0

. Oxj .t/ � xj /C

�
d

dt
Oxj .t/ � �j

�0

. Opj .t/ � pj /

�
> ı;

(3.40)

for all .xj ; pj / and .
j ; �j /, such that


j 2 @pj H.x; pj /; (3.41)

11See Carlson and Haurie (1995) for a proof.
12See Carlson and Haurie (1995) for a proof.
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�j 2 �@xj Hj .x; pj /: (3.42)

Remark 6. The stricter inequality (3.40) is obtained as a consequence of Assump-
tion (2) or inequality (3.39) when the state variable x remains in a compact set; this
is known as the Atsumi lemma in the single-player case.

Theorem 5. Let Ox.�/ with its associated M -costate trajectory Op.�/ be a strongly
diagonally supported overtaking equilibrium at Oxo, such that

lim sup
t!1

k.Ox.t/; Op.t//k < 1:

Let Qx.�/ be another overtaking equilibrium at Qxo with Qp.�/ its associated M -
costate trajectory such that

lim sup
t!1

k.Qx.t/; Qp.t//k < 1:

Then,

lim
t!1

k.Ox.t/ � Qx.t/; Op.t/ � Qp.t//k D 0: (3.43)

Remark 7. This turnpike result is very much in the spirit of the turnpike theory of
McKenzie (1976) since it is established for a nonconstant turnpike. The special case
of constant turnpikes will be considered in more detail in Sect. 4.6.

4.5 Conditions for SDCCA

The following lemma shows how the central assumption SDCCA can be checked
on the data of the differential game.

Lemma 3. Assume Lj .x; zj / is concave in .xj ; zj / and assume that the total
reward function

P
j2M Lj .x; zj / is diagonally strictly concave in .x; z/, i.e.,

satisfies

X

j2M

Œ.z1j � z0j /
0.�1j � �0j /C .x1j � x0j /

0.1j � 0j /� > 0; (3.44)

for all

1j 2 @xj Lj .x
1; z1j / �1j 2 @zj Lj .x

1; z1j /;

0j 2 @xj Lj .x
0; z0j / �0j 2 @zj Lj .x

0; z0j /:
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Then Assumption 2 holds true as it follows directly from the concavity of the
Lj .x; zj / in .xj ; zj / and (3.44).

When the functions Lj .x; zj / are smooth, explicit conditions for the total reward
function,

P
j2M Lj .x; zj /, to be diagonally strictly concave in .x; z/ are given in

Rosen (1965).13

4.6 The Steady-State Equilibrium

The optimality conditions (3.34) and (3.35) define an autonomous Hamiltonian
system, and the possibility arises that there exists a steady-state equilibrium. That
is, a pair .Nx; Np/ 2 R

n � R
n that satisfies

0 2 @pj Hj .Nx; Npj /;

0 2 �@xj Hj .Nx; Npj /:

When a unique steady-state equilibrium exists, the turnpike properties discussed
above provide conditions for when the pair .Nx; Np/ becomes an attractor for all
bounded (overtaking) equilibria.

For a steady-state equilibrium .Nx; Np/, the strong diagonal support property
for .Nx; Np/ holds if for each � > 0, there exists ı > 0 so that whenever
kx � Nxk C kp � Npk > �, one has

X

j2M

h�
pj � Npj

	0

j C

�
xj � Nxj

	0
�j

i
> ı; (3.45)

for all j 2 M and pairs
�

j ; �j

	
satisfying


j 2 @pj Hj

�
x; pj

	
and �j 2 �@xj Hj

�
x; pj

	
:

With this strong diagonal support property, the following theorem can be proved
(see Carlson and Haurie 1995).

Theorem 6. Assume that .Nx; Np/ is a unique steady-state equilibrium that has the
strong diagonal support property given in (3.45). Then, for any M -program x.�/
with an associated M -costate trajectory p.�/ that satisfies

lim sup
t!1

k .x.t/;p.t// k < 1;

13In Theorem 6, page 528 (for an explanation of the terminology, please see pp. 524–528). See also
Sect. 2.3.
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one has

lim
t!1

k .x.t/ � Nx;p.t/ � Np/ k D 0:

Remark 8. The above results extend the classical asymptotic turnpike theory to
a dynamic game framework with separated dynamics. The fact that the players
interact only through the state variables and not the control ones is essential. An
indication of the increased complexities of coupled state and control interactions
may be seen in Haurie and Leitmann (1984).

4.7 Existence of Equilibria

In this section, Rosen’s approach is extended to show existence of equilibria for the
class of games considered, under sufficient smoothness and compactness conditions.
Basically, the existence proof is reduced to a fixed-point argument for a point-
to-set mapping constructed from an associated class of infinite horizon concave
optimization problems.

4.8 Existence of Overtaking Equilibria in the Undiscounted Case

The proof of existence of an overtaking equilibrium for undiscounted dynamic
competitive processes uses extensively sufficient overtaking optimality conditions
for single-player optimization problems (see Carlson et al. 1991, Chap. 2). For this
appeal to sufficiency conditions, the existence of a bounded attractor to all good
trajectories is important. This is the reason why this existence theory is restricted
to autonomous systems, for which a steady-state equilibrium provides such an
attractor.

Remark 9. The existence of overtaking optimal control for autonomous systems
(in discrete or continuous time) can be established through a reduction to finite
reward argument (see, e.g., Carlson et al. 1991). There is a difficulty in extending
this approach to the case of dynamic open-loop games. It comes from the inherent
time-dependency introduced by the other players’ decisions. One circumvents this
difficulty by implementing a reduction to finite rewards for an associated class of
infinite horizon concave optimization problems.

Assumption 3. There exists a unique steady-state equilibrium Nx 2 R
n and a

corresponding constant M -costate trajectory Np 2 R
n satisfying

0 2 @pj Hj .Nx; Npj /;

0 2 @xj Hj .Nx; Npj /:
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Assumption 4. There exists �0 > 0 and S > 0 such that for any Qx 2 R
n

satisfying kQx � Nxk < �0; there exists an M -program w.Qx; �/ defined on Œ0; S� such
that w.Qx; 0/ D Qx and w.Qx; S/ D Nx:

This assumption, which is a controllability assumption, states that in a neighbor-
hood of the steady-state equilibrium, Nx; the system can be driven to the steady state
(i.e., turnpike) in a uniform length of time (in this case S ) and still maintain the
uncoupled constraints. In order to achieve the existence result, one must assure that
all admissible M -trajectories lie in a compact set. Additionally, one must assume
that their rates of growth are not too large. Thus, the following additional assumption
is required.

Assumption 5. For each j 2 M there exists a closed bounded set

Xj � R
nj � R

nj ;

such that each M -program, x.�/ satisfies
�
xj .t/; Pxj .t/

	
2 Xj a.e. t � 0.

Introduce the following:

• Let � denote the set of all M -trajectories that start at xo and converge to Nx, the
unique steady-state equilibrium.

• Define the family of functionals �T W � �� ! R, T � 0, by the formula

�T .x.�/; y.�//
:

D

Z T

0

� X

j2M

Lj .Œx.j /.t/; yj .t/�; Pyj .t//

�
dt:

The set � can be viewed as a subset of all bounded continuous functions in R
n

endowed with the topology of uniform convergence on bounded intervals.

Definition 7. Let x.�/; y.�/ 2 �. One says that y.�/ 2 �.x.�// if

lim inf
T!1

�
�T .x.�/; y.�// � �T .x.�/; z.�//

	
� 0;

for all M -trajectories z.�/ such that zj .0/ D x0j , j 2 M . That is, y.�/ is an
overtaking optimal solution of the infinite horizon optimization problem whose
objective functional is defined by �T .x.�/; �/. Therefore, �.x.�// can be viewed as
the set of optimal responses by all players to an M -program x.�/.

One can then prove the following theorem (see Carlson and Haurie (1995) for a
long proof):
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Theorem 7. Under Assumptions 3, 4, and 5, there exists an overtaking equilibrium
for the infinite horizon dynamic game.

4.9 Uniqueness of Equilibrium

In Rosen’s paper (1965), the strict diagonal concavity condition was introduced
essentially in order to have uniqueness of equilibria. In Sect. 4.6, a similar assump-
tion has been introduced to get asymptotic stability of equilibrium trajectories.
Indeed, this condition also leads to uniqueness.14

Theorem 8. Suppose that the assumptions of Theorem 6 hold. Then, there exists an
overtaking equilibrium at xo, and it is unique.

5 Coupled State Constraints

One proceeds now to the extension of the concept of normalized equilibria, also
introduced by Rosen in (1965), to the infinite horizon differential game framework;
this is for differential games with coupled state constraints.15

5.1 The Model and Basic Hypotheses

The game considered in this section appends a coupled state constraint to the general
model considered above. That is, as before the accumulated reward function up to
time T takes the form

	Tj .x.�// D

Z T

0

Lj .x.t/; Pxj .t// dt; (3.46)

where the integrands Lj W R
n � R

nj ! R are continuous in all variables and
concave and continuously differentiable in the variables .xj ; zj /, and in addition it
is assumed that an M -program x.�/ W Œ0;C1/ ! R

n satisfies the constraints

x.0/ D x0 2 R
n; (3.47)

�
xj .t/; Pxj .t/

	
2 Xj � R

2nj a.e. t � 0, j 2 M; (3.48)

hl.x.t// � 0 for t � 0; l D 1; 2; : : : k; (3.49)

14See Carlson and Haurie (1995).
15The usefulness of the concept has been shown in Haurie (1995) and Haurie and Zaccour (1995)
for the analysis of the policy coordination of an oligopoly facing a global environmental constraint.
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in which the sets Xj , j 2 M are convex and compact and the functions hl W

R
n ! R are continuously differentiable and concave, l D 1; 2; : : : ; k. One

refers to the problem described by (3.46), (3.47), and (3.48) as the uncoupled
constraint problem (UCP) and to the problem described by (3.46), (3.47), (3.48), and
(3.49) as the coupled constraint problem (CCP). The consideration of a pointwise
state constraint (3.49) complicates significantly the model and the characterization
of an optimal (equilibrium) solution. However, in the realm of environmental
management problems, the satisfaction of a global pollution constraint is often a
“long term” objective of the regulating agency instead of a strict compliance to a
standard at all points of time. This observation motivates the following definition of
a relaxed version of the coupled constraint for an infinite horizon game (the notation
meas Œ�� is used to denote Lebesgue measure).

Definition 8. AnM -program x.�/ (see Definition 9 below) is said to asymptotically
satisfy the coupled state constraint (3.49) if the following holds: for each " > 0;

there exists a number B."/ > 0 such that

meas Œft � 0 W hl.x.t// < �"g� < B."/ for l D 1; 2; : : : k: (3.50)

Remark 10. This definition is inspired from the turnpike theory in optimal eco-
nomic growth (see, e.g., Carlson et al. 1991). As in the case of a turnpike, for any
" > 0 the asymptotically admissible M -program will spend most of its journey in
the "-vicinity of the admissible set.

Definition 9. An M -program x W Œ0;C1/ ! R
n is said to be

1. Admissible for the uncoupled constrained equilibrium problem (UCP) if x.�/
is locally absolutely continuous, 	Tj .x.�// is finite for all T � 0, and the
constraints (3.47) and (3.48) hold.

2. Asymptotically admissible for the coupled constrained equilibrium problem
(CCP) if it is admissible for UCP and asymptotically satisfies the coupled
constraint (3.49).

3. A pointwise admissible trajectory for CCP if x.�/ is locally absolutely continu-
ous, 	Tj .x.�// is finite for all T � 0 and the constraints (3.47), (3.48), and (3.49)
hold.

Remark 11. When no confusion arises, one refers to only admissible M -programs
with no explicit reference to the uncoupled constraint or coupled constraint problem.

Definition 10. Let x�.�/ W Œ0;C1/ ! R
n be an admissible M -program. For j D

1; 2; : : : m, one defines the set of admissible responses

Aj .x�.�// D
˚
yj W Œ0;C1/ ! R

nj W Œx�.j /.�/; yj .�/� is admissible


;
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where Œx�.j /.�/; yj .�/� D .x�
1 .�/; x

�
2 .�/; : : : ; x

�
j�1.�/; yj .�/; x

�
jC1.�/; : : : ; x

�
p.�//:

Finally, the two following types of equilibria are considered in this section.

Definition 11. An admissible M -program x�.�/ is called

1. An overtaking Nash equilibrium if for every � > 0, j D 1; 2; : : : m, and yj 2

Aj .x�.�// there exists Tj D T .j; �; y/ > 0 such that

	Tj .x
�.�// > 	Tj .Œx

�.j /.�/; yj .�/�/ � �; (3.51)

for all T � Tj (or equivalently,

lim sup
T!1

h
	Tj .Œx

�.j /.�/; yj .�/�/ � 	Tj .x
�.�//

i
� 0; (3.52)

for all yj 2 Aj .x�.�//.
2. An average reward optimal Nash equilibrium if for j D 1; 2; : : : m, one has

lim sup
T!1

1

T

h
	Tj .Œx

�.j /.�/; yj .�/�/ � 	Tj .x
�.�//

i
� 0; (3.53)

for all yj 2 Aj .x�.�//.

Remark 12. If x�.�/ is an overtaking Nash equilibrium, then it is easy to see that it
is an average reward Nash equilibrium as well. To see this, we note that by (3.51)
for all T � Tj , one has

1

T

h
	Tj .Œx

�.j /.�/; yj .�/�/ � 	Tj .x
�.�//

i
<
�

T
;

which, upon taking the limit superior, immediately implies (3.53) holds.

5.2 The Steady-State Normalized Equilibrium Problem

To describe the associated steady-state game, define the m scalar functions ˆj W

R
n ! R by the formulae

ˆj .x/ D Lj .x; 0/ ; (3.54)

where, as usual, x D .x1; x2; : : : xm/ and consider the concave game of finding a
Nash equilibrium for the reward functions ˆj subject to the constraints
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.xj ; 0/ 2 Xj j D 1; 2; : : : m; (3.55)

hl .x/ � 0: l D 1; 2; : : : k; (3.56)

This is a static game of Rosen studied in Sect. 2. In the remainder of this chapter, it
will be shown that the solution of the steady-state game, in particular the vector of
Karush-Kuhn-Tucker multipliers, can be used to define an equilibrium solution, in
a weaker sense, to the dynamic game.

5.3 Equilibria for the Coupled Dynamic Game

Introduce the following additional assumptions:

Assumption 6. There exists a fixed r D .r1; r2; : : : ; rm/ 2 R
n, with rj > 0 so

that the associated steady-state game has a unique normalized Nash equilibrium,
denoted by Nx, with multipliers �j D �0=rj .

Remark 13. Conditions under which this assumption holds were given in the
previous section. An equivalent form for writing this condition is that there exists a
unique normalized steady-state equilibrium, say Nx, a Lagrange multiplier �0 2 R

k ,
and an associated multiplier, say Np 2 R

n, satisfying

0 2 @pj
eHj .Nx; Npj I�0/;

0 2 @xj
eHj .Nx; Npj I�0/;

�0
0 h.Nx/ D 0;

h.Nx/ � 0;

�0 � 0;

in which

eHj .x; pj I�0/
:

D sup
z

(
p0
j z C Lj .x; z/C

1

rj

kX

lD1

�0lhl .x/

)
;

D sup
z

n
p0
j z C Lj .x; z/

o
C
1

rj

kX

lD1

�0lhl .x/;

D Hj .x; pj / �
1

rj

kX

lD1

�0lhl .x/;

where the supremum above is over all z 2 R
nj for which .xj ; zj / 2 Xj .
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In addition to the above assumptions, one must also assume the controllability
assumption 4 in a neighborhood of the unique, normalized, steady-state equilib-
rium Nx.

With these assumptions in place, one considers an associated uncoupled dynamic
game that is obtained by adding to the accumulated rewards (3.46) a penalty term,
which imposes a cost to a player for violating the coupled constraint. To do this,
use the multipliers defining the normalized steady-state Nash equilibrium. That is,
consider the new accumulated rewards

Q	Tj .x.�// D

Z T

0

"
Lj .x.t/; Pxj .t//C

1

rj

kX

lD1

�0lhl .x.t//

#
dt; (3.57)

where one assumes that the initial condition (3.47) and the uncoupled con-
straints (3.48) are included. Note here that the standard method of Lagrange is
not used since a constant multiplier has been introduced instead of a continuous
function as is usually done for variational problems. The fact that this is an
autonomous infinite horizon problem and the fact that the asymptotic turnpike
property holds allow one to use, as a constant multiplier, the one resulting from
the solution of the steady-state game and then obtain an asymptotically admissible
dynamic equilibrium. Under the above assumptions, the following result is a direct
consequence of Theorem 3.1 of Carlson and Haurie (2000).

Theorem 9. The associated uncoupled dynamic game with costs given by (3.57)
and constraints (3.47) and (3.48) has an overtaking Nash equilibrium, say x�.�/;

which additionally satisfies

lim
t!1

x�.t/ D Nx: (3.58)

Remark 14. Under an additional strict diagonal concavity assumption, the above
theorem insures the existence of a unique overtaking Nash equilibrium. The specific
hypothesis required is that the combined reward function

Pp
jD1 rjLj .x; zj / is

diagonally strictly concave in .x; z/, i.e., verifies

pX

jD1

rj

"
.z1j � z0j /

0

�
@

@zj

Lj .x0; z0j / �
@

@zj

Lj .x1; z1j /
�

C .x1j � x0j /
0

 
@

@xj
Lj .x0; z0j / �

@

@xj
Lj .x1; z1j /

!#
> 0; (3.59)

for all pairs

.x1; z1/ and .x0; z0/:
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Remark 15. Observe that the equilibrium M -program guaranteed in the above
result is not generally pointwise admissible for the dynamic game with coupled
constraints. On the other hand, since it enjoys the turnpike property (3.58), it is
an easy matter to see that it is asymptotically admissible for the original coupled
dynamic game. Indeed, since the functions hl.�/ are continuous and since (3.58)
holds, for every " > 0, there exists T ."/ > 0 such that for all t > T ."/ one has

hl.Nx/ � " < hl.x�.t// < hl.Nx/C " � ";

for all l D 1; 2; : : : ; k since hl.Nx/ � 0. Thus, one can take B."/ D T ."/ in (3.50).
As a consequence of this fact, one is led directly to investigate whether this M -
program is some sort of equilibrium for the original problem. This, in fact, is the
following theorem.16

Theorem 10. Under the above assumptions, the overtaking Nash equilibrium for
the UCP (3.47), (3.48), (3.57) is also an averaging Nash equilibrium for the coupled
dynamic game when the coupled constraints (3.49) are interpreted in the asymptotic
sense as described in Definition 8.

This section is concluded by stating that the long-term average reward for each
player for the Nash equilibrium given in the above theorem is precisely the steady-
state reward obtained from the solution of the steady-state equilibrium problem.
That is, the following result holds.17

Theorem 11. For the averaging Nash equilibrium given by Theorem 10, one has

lim
T!C1

1

T

Z T

0

Lj .x�.t/; Px�
j .t// dt D Lj .Nx; 0/:

6 A Global Change Game

As an example of the application of the theory presented above, consider the
following model à la Ramsey describing an international global climate change
control. In this example, the optimal control formalism will be used, instead of the
calculus of variations. This will provide the occasion to look at the theory presented
above when the model is stated in terms of control variables and state equations
instead of trajectories and velocities.

16See Carlson and Haurie (2000).
17See Carlson and Haurie (2000).
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Consider a world formed of m countries, indexed by j D 1; : : : m, with
stationary population level Lj , stock of productive capital Kj .t/, and stock of
mitigating capital Mj .t/. The productive capital stock evolves according to the
following differential equation:

PKj .t/ D IKj .t/ � ˛jKj .t/; Kj .0/ given,

where IKj .t/ is the investment at t and ˛j is the depreciation rate. Similarly, the
evolution of mitigation capacity according to

PMj .t/ D IMj .t/ � ˇjMj .t/; Mj .0/ given,

where IMj .t/ is the investment in abatement (mitigation) capacity at t and ˇj is the
depreciation rate. The GHG emissions are defined as a function Ej .Kj .t/;Mj .t//,
which is increasing in Kj and decreasing in Mj . GHGs accumulate according to
the equation

PG.t/ D

mX

jD1

Ej .Kj .t/;Mj .t// � ıG.t/; G .0/ given, (3.60)

where ı is nature’s absorption rate.
The output of the economy is ELF .G.t//fj .Kj .t//, where the economic loss

factorELF .�/ function takes its values between 0 and 1 and is decreasing inG. The
output is shared between consumption and investments in the two types of capital,
that is,

ELFj .G.t//fj .Kj .t// D Cj .t/C IKj .t/C IMj .t/:

The payoff of country j; j D 1; : : : m, over the time interval Œ0; T �, is given by

ˆj .�/ D

Z T

0

LjUj .Cj .t/=Lj / dt;

where Uj .Cj .t/=Lj / measures the per capita utility from consumption.
As the differential equation in (3.60) is linear, it can be decomposed into m

accumulation equations as follows:

PGj .t/ D Ej .Kj .t/;Mj .t// � ıGj .t/; (3.61)

with

G.t/ D

mX

jD1

Gj .t/: (3.62)
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6.1 The Overtaking Equilibrium for the Infinite Horizon Game

To characterize the equilibrium, one uses the infinite horizon version of the
maximum principle. Introduce the pre-Hamiltonian for Player j as

Hj .Kj ;Mj ;Gj ; IKj ; IMj ; �Kj ; �Mj ; �Gj / D

LjUj .Cj =Lj /C �Kj .IKj � ˛jKj /C �Mj .IMj � ˇjMj /

C �Gj .Ej .Kj ;Mj / � ıGj /;

with Cj being given by

Cj D ELF .G/fj .Kj / � .IKj C IMJ /: (3.63)

Along an overtaking equilibrium trajectory, the following conditions will hold:

0 D
@

@IKj
Hj .Kj .t/;Mj .t/; G.t/; IKj .t/; IMj .t/; �Kj .t/; �Mj .t/; �Gj .t//;

0 D
@

@IMj

Hj .Kj .t/;Mj .t/; G.t/; IKj .t/; IMj .t/; �Kj .t/; �Mj .t/; �Gj .t//;

P�Kj .t/ D �
@

@Kj

Hj .Kj .t/;Mj .t/; G.t/; IKj .t/; IMj .t/; �Kj .t/; �Mj .t/; �Gj .t//;

P�Mj .t/ D �
@

@Mj

Hj .Kj .t/;Mj .t/; G.t/; IKj .t/; IMj .t/; �Kj .t/; �Mj .t/; �Gj .t//;

P�Gj .t/ D �
@

@G
Hj .Kj .t/;Mj .t/; G.t/; IKj .t/; IMj .t/; �Kj .t/; �Mj .t/; �Gj .t//;

PKj .t/ D IKj .t/� ˛jKj .t/;

PMj .t/ D IMj .t/� ˇjMj .t/;

PG.t/ D

mX

jD1

Ej .Kj .t/;Mj .t//� ıG.t/:

The equilibrium steady state satisfies the following algebraic equations:

0 D
@

@IKj
Hj . NKj ; NMj ; NG; NIKj ; NIMj ;

N�Kj ;
N�Mj ;

N�Gj /

0 D
@

@IMj

Hj . NKj ; NMj ; NG; NIKj ; NIMj ;
N�Kj ;

N�Mj ;
N�Gj /

0 D �
@

@Kj

Hj . NKj ; NMj ; NG; NIKj ; NIMj ;
N�Kj ;

N�Mj ;
N�Gj /
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0 D �
@

@Mj

Hj . NKj ; NMj ; NG; NIKj ; NIMj ;
N�Kj ;

N�Mj ;
N�Gj /

0 D �
@

@G
Hj . NKj ; NMj ; NG; NIKj ;

NIMj ;
N�Kj ;

N�Mj ;
N�Gj /

0 D NIKj � ˛j NKj

0 D NIMj � ˇj NMj

0 D

mX

jD1

Ej . NKj ; NMj / � ı NG:

The uniqueness of this steady-state equilibrium is guaranteed if the combined
Hamiltonian

Pm
jD1 Hj .Kj ;Mj ;Gj ; IKj ; IMj / is diagonally strictly concave. This

is the case, for this example, if the function
Pm

jD1 ELFj .G.t//fj .Kj / is strictly
concave and the functions Ej .Kj ;Mj /, j D 1; : : : ; m, are convex.

Then, the steady-state equilibrium is an attractor for all overtaking equilibrium
trajectories, emanating from different initial points.

6.2 Introduction of a Coupled State Constraint

Suppose that the cumulative GHG stockG.t/ is constrained to remain below a given
threshold eG, at any time, that is,

G.t/ � eG; 8t: (3.64)

This is a coupled state constraint, and the extended Hamiltonian is defined as
follows:

eHj .Kj ;Mj ;G; IKj ; IMj ; �Kj ; �Mj ; �Gj ; �/ D

LjUj .Cj =Lj /C �Kj .IKj � ˛jKj /C �Mj .IMj � ˇjMj /

C �Gj .Ej .Kj ;Mj / � ıGj /C
�

rj
.eG �G/:

The necessary conditions for a normalized equilibrium with weights rj � 0 are as
follows:

0 D
@

@IKj
eHj .Kj .t/;Mj .t/; G.t/; IKj .t/; IMj .t/; �Kj .t/; �Mj .t/; �Gj .t/; �.t//

0 D
@

@IMj

eHj .Kj .t/;Mj .t/; G.t/; IKj .t/; IMj .t/; �Kj .t/; �Mj .t/; �Gj .t/; �.t//
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P�Kj .t/ D �
@

@Kj

eHj .Kj .t/;Mj .t/; G.t/; IKj .t/; IMj .t/; �Kj .t/; �Mj .t/; �Gj .t/; �.t//

P�Mj .t/ D �
@

@Mj

eHj .Kj .t/;Mj .t/; G.t/; IKj .t/; IMj .t/; �Kj .t/; �Mj .t/; �Gj .t/; �.t//

P�Gj .t/ D �
@

@G
eHj .Kj .t/;Mj .t/; G.t/; IKj .t/; IMj .t/; �Kj .t/; �Mj .t/; �Gj .t/; �.t//

PKj .t/ D IKj .t/� ˛jKj .t/

PMj .t/ D IMj .t/� ˇjMj .t/

PG.t/ D

mX

jD1

Ej .Kj .t/;Mj .t//� ıG.t/

and the complementary slackness condition for the multiplier �.t/ and the con-
straint 0 � eG �G.t/ are given by

0 D �.t/.eG �G.t//;

0 � eG �G.t/; 0 � � .t/ :

As these complementary conditions introduce a discontinuity in the right-hand
side of some of the differential equations above, they will complicate the search
for the overtaking normalized equilibrium trajectory in our control or calculus of
variations formalisms. This difficulty will disappear if the multiplier is constant
over time. Recalling that the steady-state normalized equilibrium is an attractor
for the overtaking normalized equilibrium trajectory with coupled state constraint,
it becomes attractive to use the constant multiplier �.t/ � N�, where N� is the
multiplier’s value in the steady-state normalized equilibrium.

To define the steady-state normalized equilibrium associated with weights rj �

0, one writes the necessary conditions, which are a set of algebraic equations,

0 D N� NKj
� U 0

j .
NCj /; (3.65)

0 D N� NMj
� U 0

j .
NCj /; (3.66)

0 D �U 0
j .

NCj /ELFj . NG/f 0
j .

NKj /C ˛j N�Kj ; (3.67)

0 D �N� NGj
@Mj .

NEj . NKj ; NMj //C ˇj N�Mj ; (3.68)

0 D �ELF . NG/0 fj . NKj / � N� NGj
C ı N� NGj

C
N�

rj
; (3.69)

0 D N�.eG � NG/; 0 � .eG � NG/; 0 � N�: (3.70)

Under the diagonal strict concavity assumption, this normalized equilibrium is
unique and is an attractor for the uncoupled game, where the constant N�=rj is used
to penalize the non-satisfaction of the constraint by player j .
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Condition (3.65) states that in equilibrium, the marginal utility of consumption is
equal to its marginal cost, which is measured here by the shadow price of production
capacity. Conditions (3.65) and (3.66) imply that the shadow prices of both capitals,
that is, production and mitigation, are equal. Conditions (3.65), (3.66), and (3.67)
imply ELF .G/f 0

j .Kj / D ˛j , that is, the marginal output value is equal to the
depreciation rate of production capital. Equation (3.68) stipulates that the marginal
reduction in emissions due to mitigation times the shadow price of pollution stock
is equal to the shadow price of mitigation capacity times the depreciation rate.
Substituting for ELF .G/f 0

j .Kj / D ˛j in condition (3.69) leads to

�Gj .1 � ı/ D
N�

rj
� ˛j :

It is easy to see that the shadow cost value of the pollution stock depends on the
status of the coupling constraint, which in turn would affect the other equilibrium
conditions.

7 The Discounted Case

As in most economic models formulated over an infinite time horizon, the costs or
profits are discounted, there is a need to also develop the theory in this case. For
the most part, the focus here is to describe the differences between the theory in the
undiscounted case discussed above and the discounted case.

7.1 The Discounted Model and Optimality Conditions

In the discounted case, the accumulated reward for player j , j D 1; 2; : : : ; m up to
time T is given by the integral functional

Q	Tj .x.�// D

Z T

0

e��j tLj .x.t/; Pxj .t// dt; (3.71)

where, for j D 1; 2; : : : ; m, �j > 0 is the constant discount rate for player j
and Lj W R

n � R
nj ! R satisfies the concavity and smoothness assumptions

given for the undiscounted problem. All of the other constraints, both coupled and
uncoupled, remain the same. The advantage of introducing the discount rate is that
as T ! 1 mere boundedness conditions ensures that the accumulated rewards
of the players are convergent improper integrals. As a result, the analysis does not
require the overtaking equilibria concept, and so we take the usual definition of a
Nash equilibrium.

Definition 12. An M -program x�.�/ W Œ0;C1/ ! R
n is a Nash equilibrium for

the discounted problem at xo 2 R if the following conditions are met:
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(a) x�.0/ D xo and the improper integrals

lim
T!1

Q	Tj .x
�.�// D

Z 1

0

e��j tLj .x�; Px�
j .t// dt; (3.72)

are finite for each j D 1; 2; : : : ; m.
(b) For each M -program x.�/ satisfying x.0/ D xo, the condition

lim
T!1

Q	Tj .Œx
��j .�/; xj .�/�/ �

Z 1

0

e��j tLj .x�; Px�
j .t// dt; (3.73)

is satisfied.

The introduction of the discount factors e��j t changes the problem from an
autonomous problem into a nonautonomous problem, which can complicate the
dynamics of the resulting optimality system (3.34) and (3.35) in that now the
Hamiltonian depends on time.18 By factoring out the discount factor, it is possible
to again return to an autonomous dynamical system, which is similar to the
autonomous pseudo-Hamiltonian system with a slight perturbation. This modified
pseudo-Hamiltonian system takes the form

Pxj .t/ 2 @pj Hj .x.t/; pj .t//; (3.74)

Ppj .t/C �j pj .t/ 2 �@xj Hj .x.t/; pj .t//; (3.75)

for all j 2 M , and the corresponding steady-state equilibrium .Nx; Np/ satisfies

0 2 @pj Hj .Nx; Npj /; (3.76)

�j Npj 2 �@xj Hj .Nx; Npj /; (3.77)

for all j 2 M . With this notation the discounted turnpike property can be
considered.

7.2 The Turnpike Property with Discounting

The introduction of the discount factors requires a modification to the support
property given earlier by introducing a so-called “curvature condition” into the
support property. This terminology has been introduced by Rockafellar in (1976),
and it indicates the “amount” of strict concavity-convexity needed to obtain GAS
when discounting is introduced. A way to check this property, when the functions
Lj are autonomous is proposed below.

18That is, Hj .t; x; pj / D supzj fe��j tLj .x; zj /C p0

j zj g:
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Definition 13. Let .Nx; Np/ be a steady-state equilibrium. The strong diagonal support
property for .Nx; Np/ holds relative to the discount rates �j , j 2 M , if for each � > 0

there exists ı > 0 so that whenever kx � Nxk C kp � Npk > �; one has

X

j2M

h�
pj � Npj

	0

j C

�
xj � Nxj

	0 �
�j � �j Npj

	i
> ıC

X

j2M

�j
�
xj � Nxj

	0 �
pj � Npj

	
;

(3.78)
for all j 2 M and pairs

�

j ; �j

	
satisfying


j 2 @pj Hj

�
x; pj

	
and �j 2 �@xj Hj

�
x; pj

	
:

With this notation, the following analogue of Theorem 6 holds.19

Theorem 12. Assume that .Nx; Np/ is a unique steady-state equilibrium that has the
strong diagonal support property given by (3.78). Then, for any M -program x.�/
with an associated M -costate trajectory p.�/ that satisfies

lim sup
t!1

k .x.t/;p.t// k < 1;

one has
lim
t!1

k .x.t/ � Nx;p.t/ � Np/ k D 0:

In the case of an infinite horizon optimal control problem with discount rate
� > 0, Rockafellar (1976) and Brock and Scheinkman (1976) have given easy
conditions to verify curvature. Namely, a steady-state equilibrium Nx is assured to be
an attractor of overtaking trajectories by requiring the Hamiltonian of the optimally
controlled system to be a-concave in x and b-convex in p for values of a > 0 and
b > 0 for which the inequality

.�j /
2 < 4ab;

holds. This idea is extended to the dynamic game case beginning with the following
definition.

Definition 14. Let a D .a1; a2; : : : am/ and b D .b1; b2; : : : bm/ be two vectors
in R

m with aj > 0 and bj > 0 for all j 2 M . The combined HamiltonianP
j2M Hj

�
x; pj

	
is strictly diagonally a-concave in x, b-convex in p if

X

j2M

�
Hj .x; pj /C

1

2

�
aj kxj k2 � bj kpj k2

	�
;

is strictly diagonally concave in x, convex in p.

19For a proof, see Carlson and Haurie (1995).
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Theorem 13. Assume that there exists a unique steady-state equilibrium, .Nx; Np/.
Let a D .a1; a2; : : : am/ and b D .b1; b2; : : : bm/ be two vectors in R

m with
aj > 0 and bj > 0 for all j 2 M , and assume that the combined Hamiltonian
is strictly diagonally a-concave in x, b-convex in p. Further, let x.�/ be a bounded
equilibrium M -program with an associated M -costate trajectory p.�/ that also
remains bounded. Then, if the discount rates �j , j 2 M satisfy the inequalities

.�j /
2 < 4aj bj ; (3.79)

the M -program x.�/ converges to Nx:

Proof. See Carlson and Haurie (1995).

Remark 16. These results extend the classical discounted turnpike theorem to a
dynamic game framework with separated dynamics. As mentioned earlier, the fact
that the players interact only through the state variables and not the control ones is
essential.

7.3 The Common Discounting Case and Coupled Constraint

Now introduce into the model considered above the coupled constraints given
by (3.47), (3.48), and (3.49) under the assumption that all of the discount rates are
the same (i.e., �j D � > 0 for all j 2 M ). The introduction of a common discount
rate modifies the approach to the above arguments in several ways.

• The steady-state equilibrium game must be replaced with an implicit steady-state
equilibrium game.

• Since the discount rate introduces a tendency to delay tough decisions to the
future, the means in which the pointwise state constraint is to be satisfied must
be modified.

• It is not necessary to consider the weaker notions of overtaking and averaging
Nash equilibria since the discount factor forces all of the improper integrals to
converge.

The first two points will be discussed first.

7.3.1 The Implicit Steady-State Equilibrium Problem
Introduce the steady-state dynamic equilibrium conditions with positive discounting
as follows: assume there exists a steady state Ox, a Lagrange multiplier �0 2 R

k , and
an associated costate Op 2 R

n satisfying

0 2 @pj
eHj .Ox; Opj I�0/; (3.80)

� Opj 2 @xj
eHj .Ox; Opj I�0/; (3.81)
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�0
0 h.Ox/ D 0; (3.82)

h.Ox/ � 0; (3.83)

�0 � 0; (3.84)

where eHj .Ox; Opj I�0/ is defined as in (3.57). As indicated in Feinstein and Luen-
berger (1981) for the control case and by Haurie and Roche (1994) for the
differential game case, these steady-state conditions with a positive discount rate
can be interpreted as an implicit equilibrium solution. More precisely, the vector Ox
is a normalized equilibrium solution for the static game with payoffs

Lj .x; �.xj � Oxj //; where .xj ; �.xj � Oxj // 2 Xj ; j D 1; : : : ; p; (3.85)

and coupled constraint h.x/ � 0. The conditions insuring the uniqueness of such
a steady-state implicit equilibrium are not easy to obtain. Indeed, the fixed-point
argument that is inherent in the definition is at the origin of this difficulty. One shall,
however, assume the following:

Assumption 7. There exists a fixed vector r D .r1; r2; : : : ; rp/ 2 R
n, with rj > 0

so that a unique implicit normalized Nash equilibrium exists, denoted by Ox, with
multipliers �j D .1=rj /�0 for the game defined in (3.85).

With this assumption, as in the undiscounted case, one introduces the associated
discounted game with uncoupled constraints by considering the perturbed reward
functionals

Q	Tj .x.�// D

Z T

0

e��t

"
Lj .x.t/; Pxj .t//C

1

rj

kX

lD1

�0lhl .x.t//

#
dt; (3.86)

with uncoupled constraints

.xj .t/; Pxj .t// 2 Xj j D 1; 2; : : : ; p: (3.87)

Theorem 14. Under Assumption 7 there exists a Nash equilibrium, say x�.�/, for
the associated discounted uncoupled game. In addition, if the combined Hamilto-
nian

mX

jD1

eHj .x; pj I�0/;

is sufficiently strictly diagonally concave in x and convex in p relative to the discount
rate �, then this Nash equilibrium, x�.�/; enjoys the turnpike property. That is,
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lim
t!C1

x�.t/ D Ox;

in which Ox is the unique solution of the implicit steady-state game.

Proof. This result follows directly from Theorems 2.5 and Theorem 3.2 in Carlson
and Haurie (1996).

Remark 17. The precise conditions under which the turnpike property in the above
result is valid are given in Carlson and Haurie (1996). One such condition would
be to have the combined Hamiltonian

Pm
jD1

eHj .x; pj I�0/ be strictly diagonally
a-concave in x b-convex in p with a and b chosen so that aj bj > �2 for j D

1; 2; : : : m (see Definition 14).

The natural question to ask now, as before, is what type of optimality is implied
by the above theorem for the original dynamic discounted game. The perturbed cost
functionals (3.86) seem to indicate that, with the introduction of the discount rate, it
is appropriate to consider the coupled isoperimetric constraint

Z C1

0

e��thl .x.t// dt � 0 l D 1; 2; : : : ; k: (3.88)

However, the multipliers �0l are not those associated with the coupled isoperi-
metric constraints (3.88) but those defined by the normalized steady-state implicit
equilibrium problem. In the next section, the solution of the auxiliary game with
decoupled controls and reward functionals (3.86) is shown to enjoy a weaker
dynamic equilibrium property which was called an implicit Nash equilibrium
in Carlson and Haurie (1996).

7.4 Existence of an Implicit Nash Equilibrium

The introduction of the positively discounted isoperimetric constraints (3.88)
enables each of the players to delay costly decisions to the future. This of course
would not lead the players to meet the coupled state constraint for most of the time
in the future. To address this issue, the following definition of admissibility relative
to a trajectory that asymptotically satisfies the constraints as in Definition 8.

Definition 15. Let Nx.�/ be a fixed admissible trajectory for the discounted uncou-
pled dynamic game and let Nx1 2 R

n be a constant vector such that:

lim
t!C1

Nx.t/ D Nx1;

hl .Nx1/ � 0 for l D 1; 2; : : : ; k; (3.89)
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. Nx1
j ; 0/ 2 Xj for j D 1; 2; : : : ; p:

A trajectory x.�/ is said to asymptotically satisfy the coupled state constraints (3.49)
for the discounted dynamic game relative to Nx.�/ if

Z C1

0

e��thl .x.t// dt �

Z C1

0

e��thl .Nx.t// dt for l D 1; 2; : : : ; k: (3.90)

Remark 18. In the above definition, the coupled constraint is viewed as an
isoperimetric-type constraint, where the expression

�

Z C1

0

e��thl .x.t// dt;

may be viewed as a “discounted average value” of the pointwise constraint (3.49)
over the infinite time interval Œ0;C1/. With these terms, a unilateral change from
a given asymptotically admissible strategy by any of the players is admissible if it
does not exceed the “discounted average value” of the constraint.

Definition 16. An admissible trajectory Nx.�/ is an implicit Nash equilibrium for the
discounted dynamic game if there exists a constant vector Nx1 so that (3.89) holds,
and if for all yj .�/, for which the trajectories ŒNx.j /.�/; yj .�/� asymptotically satisfy
the coupled state constraint (3.49) relative to Nx.�/, the following holds:

Z C1

0

e��tLj .Nx.t/; PNxj .t// dt �

Z C1

0

e��tLj .ŒNx.j /.t/; yj .t/�; Pyj .t// dt:

With this definition in hand, the discounted version of Theorem 10 is obtained.20

Theorem 15. Under the assumptions given above, there exists an implicit Nash
equilibrium for the discounted coupled dynamic game.

7.5 Oligopoly Example

To illustrate the theory developed above, consider a simple dynamic economic
model of oligopolistic competition under a global environmental constraint. In
this game, the quantity produced by a firm corresponds to its production capacity.
Each firm emits pollution as a by-product of its production activities, with the level
of emissions depending on the installed production capacity and on the available
abatement (or pollution control) capacity. Both capacities, that is, production and

20See Carlson and Haurie (1995).
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abatement, can be increased by costly investment. The product is homogeneous and
the firms compete à la Cournot, that is, the market price is a decreasing function of
total output (measured by total capacity) put on the market. Each player maximizes
his discounted stream of profits. More specifically, the game is described by the
following elements:

• The state variable xj .t/ denotes the production capacity of firm j at time t and
evolves according to the differential equation

Pxj .t/ D Ixj .t/ � �jxj .t/; xj .0/ given;

where Ixj .t/ is the investment rate and �j is the depreciation rate.
• The state variable yj .t/ denotes the stock of pollution control capital at time t

and evolves over time according to the differential equation

Pyj .t/ D Iyj .t/ � �j yj .t/; yj .0/ given;

where Iyj .t/ is the investment rate and �j is the depreciation rate.
• The inverse demand function that defines a market clearing price is denoted

D
�P

jD1;:::;m xj .t/
�

.

• The emissions level at time t of firm j is a function ej .xj .t/; yj .t//, which is
increasing in xj and decreasing in yj . To illustrate, a possible functional form is
ej .x; y/ D aj .x=y/

˛j .
• The unit production cost for firm j is constant and denoted cj .
• The investment cost function (production adjustment cost) is denoted �j .�/, and

the cost of investment in pollution control capital is denoted ıj .�/.
• The instantaneous profit of firm j at time t is given by

Lj .�/ D

�
D

� mX

jD1

xj .t/

�
�cj

�
xj .t/��j . Pxj .t/C�jxj .t//�ıj . Pyj .t/C�j yj .t//:

The dynamic oligopoly model is then formulated as a differential game with a
reward for player j defined over any time interval Œ0; T � by

Q	Tj .x.�/; y.�// D

Z T

0

e��tLj .x.t/; y.t/; Pxj .t/; Pyj .t// dt; (3.91)

where � is a positive discount rate and with a global environmental constraint
formulated as the coupled pointwise state constraint

mX

jD1

ej .xj .t/; yj .t/// � NE; t � 0; (3.92)

where NE denotes some global limit on the pollutant emissions level.
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From the theory presented above, one knows that a unique normalized equi-
librium exists for each choice of weights r � 0, if the total revenue function

D
�P

j xj

�P
j xj is concave and the functions �j and ıj are convex since this

would imply SDCCA. The equilibrium conditions, in a regular case, are obtained as
follows: one introduces a common multiplier 
.t/, expressed in current value, for
the constraint (3.92) and modifies the payoff of player j as follows:

 T
j .x.�/; y.�/; r/ D

Z T

0

e��t

 
Lj .x.t/; y.t/; Pxj .t/; Pyj .t//

C

.t/

rj

0

@ NE �

mX

jD1

ej .xj .t/; yj .t//

1

A

1

A dt:

Then, the corresponding optimality conditions for this constrained game, in the
Hamiltonian formulation, become

Pxj .t/ D @pj Hj .x.t/; y.t/; pj .t/; qj .t//;

Pyj .t/ D @qj Hj .x.t/; y.t/; pj .t/; qj .t//;

Ppj .t/C �pj .t/ D �Hj .x.t/; y.t/; pj .t/; qj .t//C

.t/

rj
@xj ej .xj .t/; yj .t//;

Pqj .t/C �qj .t/ D �@yj Hj .x.t/; y.t/; pj .t/; qj .t//C

.t/

rj
@yj ej .xj .t/; yj .t//;

0 D 
.t/

�
NE �

mX

jD1

ej .xj .t/; yj .t//

�
;

0 � NE �

mX

jD1

ej .xj .t/; yj .t///;

0 � 
.t/;

where pj .t/ and qj .t/ are the costate variables appended to the production capacity
and pollution control state equations, respectively, and

Hj .x; y; pj ; qj / D sup
zj ;wj

˚
Lj .x; y; zj ;wj /C pj zj C qjwj



:

This means that the investment controls must satisfy

0 D �� 0
j .Ixj /C pj .t/;

0 D �ı0
j .Iyj /C qj .t/;
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that is, the familiar rule of marginal cost of investment being equal to the shadow
price of the corresponding state variable.

Observe that the above optimality conditions state that if the coupled state
constraint is not active (i.e., the inequality in (3.92) becomes strict equality), then the
multiplier 
.t/ equals zero; otherwise, the multiplier 
.t/ can assume any positive
value. If the coupled constraint is not active at all instants of time, then the multiplier

.t/ could have discontinuities, which is difficult to deal with. In the approach
developed in this chapter, one can escape these possible discontinuities by using
the discounted turnpike property and replacing the time-varying multiplier 
.t/ by
a constant multiplier obtained by solving for the steady-state equilibrium problem
with coupled constraints. That is, to determine the turnpike .Ox; Oy/ and the constant
multiplier N�0, one uses conditions (3.80), (3.80), (3.80), and (3.84), which here take
the following form:

0 D @pj Hj .x; y; pj ; qj /;

0 D @qj Hj .x; y; pj ; qj /;

�pj D �@xj Hj .x; y; pj ; qj /;

�qj D �@yj Hj .x; y; pj ; qj /;

0 D �0

�
NE �

mX

jD1

ej .xj ; yj //

�
;

0 � NE �

mX

jD1

ej .xj ; yj //;

0 � �0:

Then N�0 could be interpreted as a constant emissions tax that would lead the
oligopolistic firm j , playing a Nash equilibrium with payoffs including a tax N�0

rj
,

to satisfy the emissions constraint in the sense of a “ discounted average value” as
discussed in Remark 18.

8 Conclusion

In this chapter, a rather complete theory of infinite horizon concave open-loop
differential games has been presented, including the case where the players have to
satisfy jointly, in equilibrium, a coupled state constraint. It happens that the theory
initiated by Rosen (1965) for static concave games, which concerned existence,
uniqueness of normalized equilibrium, and stability for a pseudo-gradient path
algorithm, can be extended nicely to the context of open-loop differential games
played over an infinite time horizon. The strict diagonal concavity assumption,
introduced by Rosen to prove his theorems, which is closely related to the
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monotonicity assumption in the theory of variational inequalities (see Haurie and
Marcotte 1985) allows one, when extended to an associated pseudo-Hamiltonian
system, to prove existence and uniqueness of an overtaking equilibrium for a given
weighting of the players’ payoffs in infinite horizon open-loop differential games.
These proofs come along with the establishment of a global asymptotic stability
property, called the “ turnpike” property in economic applications. The turnpike
is a steady state for the Hamiltonian system, which becomes an attractor for all
equilibrium trajectories, emanating from different possible initial states.

The consideration of an infinite horizon with the turnpike property and the
motivating example of an economic growth model with an environmental coupled
constraint suggest the introduction of a relaxed asymptotic form of the coupled
constraint, permitting a simplification of the computation of extremal trajectories.
Under such a reformulation of the game, one can show that the use of the asymptotic
steady-state game for the definition of a time invariant multiplier (to be interpreted
in the environmental management context as a constant emission tax) permits the
construction of an auxiliary decoupled differential game whose Nash equilibrium is
also an equilibrium (in a weaker sense) of the original game under the asymptotic
coupled state constraint.
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Abstract

In this chapter, we build on the concept of a repeated game and introduce the
notion of a multistage game. In both types of games, several antagonistic agents
interact with each other over time. The difference is that, in a multistage game,
there is a dynamic system whose state keeps changing: the controls chosen by the
agents in the current period affect the system’s future. In contrast with repeated
games, the agents’ payoffs in multistage games depend directly on the state of
this system. Examples of such settings range from a microeconomic dynamic
model of a fish biomass exploited by several agents to a macroeconomic interac-
tion between the government and the business sector. In some multistage games,
physically different decision-makers engage in simultaneous-move competition.
In others, agents execute their actions sequentially rather than simultaneously.
We also study hierarchical games, where a leader moves ahead of a follower. The
chapter concludes with an example of memory-based strategies that can support
Pareto-efficient outcomes.

Keywords
Collusive Equilibrium � Discrete-Time Games � Feedback (Markovian)
Equilibrium � Information Patterns � Open-Loop Nash Equilibrium �

Sequential Games � Stackelberg Solutions

1 Introduction

In this chapter, we present a brief accessible overview of established research
concerning multistage games. For further details, we refer the readers to several
books on the topic, such as Başar and Olsder (1999) or Haurie et al. (2012).

Games that are not one-shot, or “static,” but develop over time are called
dynamic. There are several possible ways to classify such games. In this chapter,
we will investigate a subclass of dynamic games in which the agents (also called
players or actors) obtain rewards that depend on the state of a dynamic system
jointly controlled by these agents. Our focus will be on games that are played in
discrete time (i.e., over many stages).

We will define and study multistage games in a state space. A state space
contains state variables which provide an exhaustive summary of how different
input variables (known as controls) have impacted the system in the past. A system
is called dynamic when its current state depends on its past states and inputs. If the
current state and the future time profiles of the input variables are known, we are
able to predict the subsequent behavior of this dynamic system.

We focus on games that are played in discrete time. The evolution of such
dynamic systems is mathematically described by difference equations. These equa-
tions are called state equations because they determine how the state changes from
one stage to the next. Differential games, on the other hand, are played in continuous
time and are described by differential equations (see �Chap. 2 “Nonzero-Sum
Differential Games”).
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In the next section, we will briefly recall some fundamental properties of dynamic
systems defined in state space. Then we will discuss various equilibrium solutions
under different information structures. We will show how to characterize these
solutions through either the coupled maximum principle or dynamic programming.
We will describe a procedure for determining the equilibrium using an infinite-
horizon fishery’s management problem. This chapter will also cover multistage
games where agents choose their actions sequentially rather than simultaneously.
Examples of such games include alternating-move Cournot competition between
two firms, intergenerational bequest games, and intrapersonal games of decision-
makers with hyperbolic discounting. Furthermore, we will discuss solutions to a
simple dynamic Stackelberg game where the system’s dynamics are described by
discrete transitions, rather than by difference equations. This chapter will conclude
with an analysis of equilibria in infinite-horizon systems that incorporate the use of
threats in the players’ strategies, allowing the enforcement of cooperative solutions.

2 Description of Multistage Games in a State Space

Optimal control theory deals with problems of selecting the best control input
(called optimal control) in a dynamic system to optimize a single performance
criterion. If the controls are distributed among a set of independent actors who strive
to optimize their individual performance criteria, we then have a multistage game in
a state space.

In discrete time, t D 0; 1; 2; : : : ; T , the system’s dynamics of a game played in a
state space by m players can be represented by the following state equation:

x.t C 1/ D f.x.t/I u1.t/; : : : ; um.t/; t/ x.0/ D x0: (4.1)

Here, x0 2 Rn is a given initial condition, x.t/ D .x1.t/; : : : ; xn.t// 2 Rn is the
state vector at t , uj .t/ 2 Rpj ; j D 1; 2 : : : m is the control of Player j at t , and

f.�; �; �/ D .fi .�; �; �//j D1;:::;n W Rn � Rp1C���Cpm � RC 7! Rn

is the transition function from t to tC1.1 Hence, equation (4.1) determines the values
of the state vector at time t C 1, for a given x.t/ D .x1.t/; : : : ; xn.t// and controls2

u1.t/; : : : ; um.t/ of the players. We will use the following notation regarding the
players’ combined controls and state trajectory:

1In the sections where we deal with dynamic systems described by multiple state equations, we
adopt a notation where vectors and matrices are in boldface style to distinguish them from scalars
that are in regular style.
2In stochastic systems, some “controls” may come from nature and are thus independent of other
players’ actions.



160 J. B. Krawczyk and V. Petkov

u.t/ D fu1.t/; : : : ; um.t/g; (4.2)

Qut
j D fuj .0/; uj .1/; uj .2/; : : : ; uj .t � 1/g; (4.3)

Qut D fu.0/; u.1/; u.2/; : : : ; u.t � 1/g; (4.4)

Qxt D fx.0/; x.1/; x.2/; : : : ; x.t/g: (4.5)

When there is no final period T , we will drop the time superscript t .
The vector ht D ft; Qut ; Qxt g is called the history of the game at time t . In other

words, the history is the sequence of values of the control and state variables that
have driven the system up to period t . The information available to the players when
choosing their controls in period t is either the entire history or part of it.

In summary, when defining a multistage state-space game, we must specify the
following elements.

• The set of players M D f1; 2; : : : mg.
• The state equation:

x.t C 1/ D f.x.t/; u.t/; t/; x.t0/ D x0,

where x.t/ 2 Rn (possibly X � Rn) is the state variable vector; u.t/ D

.u1.t/; : : : ; um.t//, uj .t/ 2 Uj � Rpj , are players’ controls, all of appropriate
dimensions; and f.�; �; �/ is the vector of functions in (4.1) that define the evolution
of the state variables.

• The information structure, i.e., the part of the history vectors ht ; t D 0; 1; : : : ; T ,
that is utilized by the players when computing their controls at time t .

• Any other relevant restrictions on the system’s variables.
• The payoff functions (also called utility functions or performance criteria)

optimized by the players. Depending on whether the time horizon of the game is
finite or infinite, these performance criteria could take different forms:

– In finite-horizon settings (T < 1), the payoff of Player j is typically
defined as

Jj ,
T �1X

tDt0

gj .x.t/; u.t/; t/ C Sj .x.T //; (4.6)

where gj .x.t/; u.t/; t/ 2 R is the transition reward of Player j and
Sj .x.T // 2 R is his terminal reward (or the bequest function).

– In infinite-horizon settings (when T ! 1), the infinite sum of transition
rewards may tend to infinity, hence it is not obvious at the outset how
a performance criterion should be defined or how performances could be
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compared if the criterion is not convergent. For such settings, the literature
proposes several approaches. Here we list some commonly used criteria.3

(a) Discounted sum of rewards

Jj ,
1X

tD0

ˇt
j gj .x.t/; u.t//; (4.7)

where 0 � ˇj < 1 is the discount factor of Player j . This approach
to evaluating performance is known as the discounted criterion. If the
transition reward is a uniformly bounded function, this infinite discounted
sum converges to a finite value, so payoffs computed in this manner can
be compared. Note that this criterion assigns a diminishing weight to
rewards that occur in the future. Thus, performance is mostly influenced
by what happens early on. The discounted criterion discriminates against
generations in the far future.

(b) Another criterion which puts more weight on rewards obtained at a distant
future is the limit of average reward.4 It offers another way of dealing with
a non-convergent series,

Jj , lim inf
T !1

1

T

T �1X

tD0

gj .x.t/; u.t//: (4.8)

This criterion is based on the limit of the average reward per period. Note
that, as T tends to infinity, the rewards gained over a finite number of
periods will tend to have a negligible influence on performance; only what
happens in the long term matters. Unlike the previous criterion, this one
does not assign a higher weight on payoffs in early periods.

(c) There are other methods for comparing infinite streams of rewards even
when their sums do not converge. For example, an alternative approach is to
use the overtaking optimality criteria. We do not discuss these criteria here.
Instead, we refer the readers to Haurie et al. (2012) and the bibliography
provided there. When using one of the overtaking optimality criteria, we
cannot talk about payoff maximization; however, such a criterion can still
help us determine whether one stream of rewards is better than another.

We conclude this section by presenting a stylized model of a plausible conflict
situation in fishery management. This situation has all the ingredients of a dynamic
game played in a state space. This was recognized by several authors, e.g., Clark

3We should also note that, when the time horizon is infinite, it is usually assumed that the system
is stationary. That is, the reward and state transition functions do not depend explicitly on time t .
4This limit is known as Cesaro limit.
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(1976), Long (1977), and Levhari and Mirman (1980). Later we will use this model
to illustrate a procedure for computing equilibria.

Example 1. The Great Fish War. The name for this fishery-management model
was coined by Levhari and Mirman (1980). Suppose that two players, j D 1; 2,
exploit a fishery. Let x.t/ be a measure of the fish biomass at time t , and let uj .t/

denote Player j ’s catch in that period (also measured in normalized units). Player j

strives to maximize a performance criterion with form

Jj ,
T �1X

tDt0

ˇt
j

q
uj .t/ C Kj ˇT

j

p
x.T / j D 1; 2; (4.9)

where ˇj 2 Œ0; 1/ is a discount factor, and Kj > 0 is a scaling parameter of the
fishery’s scrap value. The square roots of harvest and of the fishery’s scrap value
in (4.9) reflect diminishing marginal utility from the catch and the bequest. When
the fishery is used in perpetuity, these payoff functions can be modified as follows:

Jj ,
1X

tDt0

ˇt
j

q
uj .t/ j D 1; 2 (4.10)

where 0 < ˇj < 1 is the discount factor of Player j .
The interdependence between the two players is due to their joint exploitation of

the common resource. This interdependence is represented by the state equation for
the evolution of the quantity of fish when there is exploitation:

x.t C 1/ D f .x.t/ � u1.t/ � u2.t//; (4.11)

where f is an increasing function.
Equation (4.11) provides a state-space description for the fishing process at

hand. The state variable is x.t/, and the controls are u1.t/, u2.t/. Expressions (4.9)
and (4.10) suggest possible utility functions that the players may want to maximize.

The dynamics of the model will crucially depend on the transition function f .
One specification considered by Levhari and Mirman (1980) is f .y/ D y˛ , where
0 < ˛ < 1. In this case, without human intervention (i.e., u1.t/ D u2.t/ D 0), the
long-run fish biomass will converge to a steady state of 1. An alternative possibility
is f .y/ D ay. Given this law of motion, setting u1.t/ D u2.t/ D 0 would imply
that the fish biomass will either grow monotonically (if a > 1/ or will approach
extinction (if 0 < a < 1). In a later section of this chapter, we will derive explicit
solutions for the game with a linear law of motion.
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3 Multistage Game Information Structures, Strategies, and
Equilibria

To simplify the exposition, we will restrict the analysis to a two-player multistage
game with a state equation

x.t C 1/ D f.x.t/; u1.t/; u2.t/; t/; x.t0/ D x0; (4.12)

where x.t/ 2 Rn, uj 2 Uj � Rmj and payoff functions Jj .t0; x0I Qu1; Qu2/ , j D 1; 2,
which may have forms (4.6) or (4.7). Here Uj denotes Player j ’s constraint set.5 A
control is admissible if it satisfies the agents’ constraints.

3.1 Information Structures

During game play, information is mapped into actions by the players’ strategies.
Depending on what information is available to the players in a multistage game, the
control of the dynamic system can be designed in different ways (e.g., open loop or
closed loop).

In general, the most complete information that an agent can have is the entire
game history. Since the total amount of information tends to increase with t , the
use of the entire history for decision-making may be impractical. In most cases
of interest, not all information accumulated up to time t turns out to be relevant
for decisions at that point. Thus, we may only need to consider information that is
reduced to a vector of a fixed and finite dimension. The possibility of utilizing the
game history to generate strategies is a topic routinely discussed in the context of
repeated games. Here we will consider the following information structures:

1. Closed-loop information structure. In each period t , both players have access to
the information about the history of the game ht . This history can include only
the state trajectory, i.e., for all t

ht D fx.0/; x.1/; : : : ; x.t/g ; (4.13)

or include the history of players’ actions, i.e., for all t

ht D fx.0/; u1.0/; u2.0/; : : : ; u1.t � 1/; u2.t � 1/g : (4.14)

5In the most general formulation of the problem, the control constraint sets may depend on time
and the current state, i.e., Uj .t; x/ � Rmj . Moreover, sometimes the state may be constrained to
remain in a subset X � Rn. We avoid these complications here.
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In a deterministic context, the knowledge of x.t/ for t > 0 is implicit, since the
state trajectory can be reconstructed from the control inputs and the initial value
of the state.

Let us call H t the set of all possible game histories at time t . The strategy
of Player j is defined by a sequence of mappings �jt .�/ W Ht ! Uj , which
associate a control value at time t with the observed history h t ,

uj .t/ D �jt .h
t /:

2. Feedback information structure, frequently referred to as Markovian information
structure, is a special case of the closed-loop information structure. Both players
know the current state of the system and “forget,” or do not retain, information
from the previous stages. A strategy for Player j is thus a function �j .�; �/ W

N � IRn ! Uj that maps the current state x.t/ and, in finite-horizon games,
calendar time t , into Player j ’s control variable. That is, feedback or Markovian
strategies have forms

uj .t/ D �j .t; x.t//:

3. Open-loop information structure. Both players use only the knowledge of the
initial state x0 and the time t to determine their controls throughout the play. A
strategy for Player j is thus defined by a mapping �j .�; �/ W IRn � N ! Uj ,
where

uj .t/ D �j .x0; t/ for all t:

Given an initial state x0, an open-loop strategy assigns values to a player’s control
for all periods t . The players may use this information structure if they are able
to commit to actions in all forthcoming periods. They may also resort to such
strategies because they simply do not have access to any information other than
the initial condition.

Open-loop and closed-loop control structures are common in real life. The tra-
jectory of interplanetary spacecraft is often designed via an open-loop control law.
In airplanes and modern cars, controls are implemented through servomechanisms,
i.e., in feedback form.6 Many economic dynamics models, e.g., those related to
the theory of economic growth (such as the Ramsey model) are formulated as
open-loop control systems. In industrial organization models of market competition,

6For example, the anti-block braking systems (ABS) used in cars, the automatic landing systems
of aircrafts, etc.
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“strategic” agents define their actions based on the available information; hence,
they are assumed to use closed-loop controls.7

The following example illustrates the difference between open-loop and feedback
controls in a simple nonstrategic setting.

Example 2. If you choose what you wear according to the calendar: “if-it-is-
summer-I-wear-a-teeshirt; if-it-is-winter-I-wear-a-sweater,” you are using an open-
loop control. If, however, you check the actual temperature before you choose a
piece of garment, you use a feedback control: “if-it-is-warm-I-wear-a-teeshirt; if-it-
is-cold-I-wear-a-sweater.” Feedback control is “better” for these decisions because
it adapts to weather uncertainties.

As in the above example, dynamic systems may be subjected to random distur-
bances; we call such systems stochastic. In these systems, the control must be
adapted to the changing conditions and that would require a closed loop, feedback,
or some sort of adaptive control. Stochastic systems and adapting controls to the
history of random disturbances will be studied in other chapters of this handbook.

The information structure has important repercussions for the solution to a
dynamic game.

Remark 1.

• The open-loop structure defined in “3” is often considered implausible in the
context of dynamic games, mainly because it does not lead to subgame perfect
equilibrium solutions. This point will be discussed later in this section.

• The difference between information structures “2” and “1” can profoundly
influence the outcome of play if agents have some ability to utilize the game
history, or “memory,” to formulate strategies based on threats (e.g., to collude).
It also matters if the game context is stochastic. In the presence of stochasticity,
the game history (4.13) is not equivalent to (4.14).

• Under the information structure “2,” players “forget” the opponents’ actions and
are unable to implement an adequate punishment. If, on the other hand, the
structure is as specified by “1,” it is obvious “who did what,” and players may
impose penalties on their opponents for undesirable behavior.

We also make two observations regarding the computation of equilibria.

1. The procedure for computing equilibrium solutions under structures “1” and “2”
can be substantially more difficult relative to that for structure “3.”

7Commitments (agreements, treaties, schedules, planning processes, etc.) may force the agents to
use the open-loop control even if state observations are available. On the other hand, some state
variables (like the quantity of fish biomass in a management model for an ocean fishery) cannot
be easily observable. In such cases, the agents may try to establish feedback controls using proxy
variables, e.g., fish prices on a particular market.
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2. Unless otherwise stated, we always assume that the rules of the games, i.e.,
the dynamics, the control sets, and the information structure, are common
knowledge.

Example 3 below illustrates the notion of information structure and its implica-
tions for game play.

Example 3. In Example 1, if the fishermen do not know the fish biomass, they are
bound to use open-loop strategies, based on some initial x0 assessed or measured at
some point in time. If the fishermen could measure the fish biomass reasonably
frequently and precisely (e.g., by using some advanced process to assess the
catchability coefficient or a breakthrough procedure involving satellite photos),
then, most certainly, they would strive to compute feedback-equilibrium strategies.
However, measuring the biomass is usually an expensive process, and, thus, an
intermediate control structure may be practical: update the “initial” value x0 from
time to time and use an open-loop control in between.8

As discussed earlier, a multistage game can admit different solutions depending
on the information available to players.

3.2 Open-Loop Nash Equilibrium Strategies

In a finite-horizon setting, a multistage two-player game is defined by the following
utility functions (or performance criteria) and state equations9:

Jj ,
T �1X

tD0

gj .x.t/; u1.t/; u2.t/; t/ C Sj .x.T //; for j D 1; 2 (4.15)

uj .t/ 2 Uj (4.16)

x.t C 1/ D f.x.t/; u1.t/; u2.t/; t/ ; t D 0; 1; : : : T � 1 (4.17)

x.0/ D x0: (4.18)

If players use open-loop strategies, each observes the initial state x0 and chooses
an admissible control sequence QuT

j D .uj .0/; : : : ; uj .T � 1//, j D 1; 2. From the
initial position .0; x0/, these choices generate a state trajectory QxT that solves (4.17)–
(4.18),

x.1/ D f.x0; u1.0/; u2.0/; 0/

8An information structure of this type is known as piecewise open-loop control.
9Also see equations (4.35)–(4.36) later in the chapter.
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x.2/ D f.x.1/; u1.1/; u2.1/; 1/

� � �

x.T / D f.x.T � 1/; u1.T � 1/; u2.T � 1/; T � 1/

as well as payoffs according to (4.15). The performance criteria (4.15), together
with (4.16), (4.17), and (4.18), define the normal form of the open-loop multistage
game at the initial point .0; x0/. We will use Jj .0; x0I QuT

1 ; QuT
2 /, j D 1; 2, to denote

the players’ payoffs as functions of the open-loop strategies.10

Definition 1. A pair of admissible control sequences11 Qu� D . Qu�
1 ; Qu�

2 / is an open-
loop Nash equilibrium at .0; x0/ if it satisfies the following equilibrium conditions

J1.0; x0I Qu�/ � J1.0; x0I Qu1; Qu�
2 / 8 admissible Qu1;

J2.0; x0I Qu�/ � J2.0; x0I Qu�
1 ; Qu2/ 8 admissible Qu2:

The standard approach to characterizing an open-loop Nash equilibrium solution
is to apply the so-called coupled maximum principle. For this purpose, we define
the Hamiltonian for each Player j as

Hj .pj .t C 1/; x.t/; u1.t/; u2.t/; t/ �

gj .x.t C 1/; u1.t/; u2.t/; t/ C pj .t C 1/0f.x.t/; u1.t/; u2.t/; t/; (4.19)

where pj .t/ is a costate vector12 in Rn and 0 indicates the transposition of the vector
pj .t C 1/ in a scalar product.

Assumption 1. Assume that f.x; u; t / and gj .x; u; t / are continuously differen-
tiable in the state x and continuous in the controls u for each t D 0; : : : ; T � 1;

and that Sj .x/ is continuously differentiable in x. Moreover, assume that, for each
j , Uj is compact and convex. Finally, suppose that, for each t , x, the function
Hj .p; x; uj ; u�j ; t/ is concave in uj .

We can now state the following lemma that provides the necessary conditions for
the open-loop equilibrium strategies:

10We note that expressing payoffs as functions of players’ strategies is necessary for a game
definition in normal form.
11To simplify notations, from now on we will omit the superscript T and refer to Quj instead of QuT

j

or Qx instead of QxT .
12Also called adjoint vector. This terminology is borrowed from optimal control theory.
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Lemma 1. Suppose that Assumption 1 is satisfied, and let Qu� be an open-loop Nash
equilibrium pair of controls, generating the trajectory Qx� from the initial state x0 for
the game (4.15), (4.17). Then there exist functions of time pj .�/, with values in Rn,
such that the following relations hold

u�
j .t/ D arg max

uj .t/2Uj

Hj .pj .t C 1/; x�.t/; uj .t/; u�
�j .t/; t/; (4.20)

pj .t/0 D
@

@x
Hj .pj .t C 1/; x�.t/; u�

1 .t/; u�
2 .t/; t/; (4.21)

pj .T /0 D
@

@x.T /
Sj .x�.T //; j D 1; 2: (4.22)

The terminal conditions for the functions pj .T / are called transversality
conditions.

For a simple proof see Haurie et al. (2012). Başar and Olsder (1982) or Fan and
Wang (1964) present a more complete proof.

To compute open-loop Nash equilibria, we can use a mathematical-programming
approach, provided that the following assumption holds.

Assumption 2. Assume that f.x; u; t / and gj .x; u; t / are continuously differen-
tiable in the state x and the controls u for each t D 0; : : : ; T � 1; and that Sj .x/ is
continuously differentiable in x. Moreover, assume that, for each j , Uj is defined by
inequalities hj .uj / � 0, where hj W Rmj ! Rpj , pj < mj , are given continuously
differentiable mappings.

Now we consider the Lagrangians

Lj .pj .t C 1/; �j .t/; x.t/; u1.t/; u2.t/; t/ � gj .x.t C 1/; u1.t/; u2.t/; t/

C pj .t C 1/0f.x.t/; u1.t/; u2.t/; t/ C �j .t/0 hj .uj .t//: (4.23)

Lemma 2. Suppose that Assumption 2 is satisfied. Let Qu� be an open-loop Nash
equilibrium pair of controls, generating the trajectory Qx� from the initial state
x0 for the game (4.15), (4.17), and let the constraint qualification conditions of
Karush-Kuhn-Tucker hold. Then there exist functions of time pj .t/, with values in
Rn and functions of time �j .t/, with values in Rpj , such that, when forming the
Lagrangians (4.23), the following holds true:

0 D
@

@uj

Lj .pj .t C 1/; �j .t/; x�.t/; u�
j .t/; u�

�j .t/; t/ (4.24)

pj .t/0 D
@

@x
Lj .pj .t C 1/; �j .t/; x�.t/; u�

1 .t/; u�
2 .t/; t/; (4.25)
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0 D �j .t/0hj .u�
j .t//i; t D 0; : : : ; T � 1 (4.26)

0 � �j .t/; t D 0; : : : ; T � 1 (4.27)

pj .T /0 D
@

@x.T /
Sj .x�.T //; j D 1; 2: (4.28)

For a simple proof see Haurie et al. (2012). Luenberger (1969) presents a more
complete proof.

An open-loop equilibrium of an infinite-horizon multistage game can, in princi-
ple, be characterized by the same apparatus as a game played over a finite horizon.
The only difference is that the transversality condition (4.22) needs to be modified.
When T ! 1, there may be many functions that satisfy this condition. A general
rule is that the function pj .1/ cannot “explode.” We refer the readers to Michel
(1982) and the publications cited there (Halkin 1974 in particular) as they contain a
thorough discussion on this issue.

3.3 Feedback-Nash (Markovian) Equilibrium Strategies

In this section we characterize the Nash equilibrium solutions for the class of feed-
back (or Markovian) strategies. Our approach is based on the dynamic programming
method introduced by Bellman for control systems in Bellman (1957).13

Consider a game defined in normal form14 at the initial data .�; x� / by the payoff
functions

Jj .�; x� I�1; �2/ ,
T �1X

tD�

gj .x.t/; �1.t; x.t//; �2.t; x.t//; t/ C Sj .x.T //; j D 1; 2,

(4.29)
where the state evolves according to

x.t C 1/ D f.x.t/; �1.t; x.t//; �2.t; x.t//; t/ ; t D �; : : : T � 1; (4.30)

x.�/ D x� ; � 2 f0; : : : ; T � 1g: (4.31)

Assume that this game is played in feedback (or Markovian) strategies. That is,
players use admissible feedback rules �j .t; x/, j D 1; 2. These rules generate a
state trajectory from any initial point .�; x� / according to (4.30)–(4.31) and payoffs
according to (4.29). Let †j denote the set of all possible feedback strategies of
Player j .

13If a feedback strategy pair � .t; x/ is continuous in t and its partial derivatives @
@x � .t; x/ exist and

are continuous, then it is possible to characterize a feedback-Nash equilibrium through a coupled
maximum principle (see Haurie et al. 2012).
14For notational simplicity, we still use Jj to designate this game’s normal form payoffs.
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Assuming that players strive to maximize (4.29), expressions (4.29), (4.30), and
(4.31) define the normal form of the feedback multistage game.

When the time horizon is infinite (T D 1), the normal form of these games is
as follows:

Jj .�; x� I �1; �2/ ,
1X

tD�

ˇt
j gj .x.t/; �1.x.t//; �2.x.t///; j D 1; 2: (4.32)

x.t C 1/ D f.x.t/; �1.x.t//; �2.x.t///; t D 0; 1; : : : ; 1; (4.33)

x.�/ D x� ; � 2 f0; : : : ; 1g: (4.34)

As usual, j is the index of a generic player, and ˇt
j is Player j ’s discount factor,

0 < ˇj < 1, raised to the power t .

Definition 2. A pair of admissible feedback strategies �� D .��
1 ; ��

2 / is a
feedback-Nash equilibrium if it satisfies the following equilibrium conditions:

J1.�; x� I ��/ � J1.�; x� I �1; ��
2 / 8�1 2 †1

J2.�; x� I ��/ � J2.�; x� I ��
1 ; �2/ 8�2 2 †2;

at any admissible initial point .�; x� /.

It is important to notice that, unlike the open-loop Nash equilibrium, the above
definition must hold at any admissible initial point and not solely at the initial data
.0; x 0/. This is also why the subgame perfection property, which we shall discuss
later in this chapter, is built into this solution concept.

Even though the definitions of equilibrium are relatively easy to formulate for
multistage feedback or closed-loop games, we cannot be certain of the existence of
these solutions. It is often difficult to find conditions that guarantee the existence of
feedback-Nash equilibria. We do not encounter this difficulty in the case of open-
loop Nash equilibria, which are amenable to existence proofs that are similar to
those used for static concave games. Unfortunately, these methods are not applicable
to feedback strategies.

Because of these existence issues, verification theorems are used to confirm a
proposed equilibrium. A verification theorem shows that if we can find a solution
to the dynamic programming equations, then this solution constitutes a feedback-
Nash (Markovian) equilibrium. The existence of a feedback-Nash equilibrium can
be established only in specific cases for which an explicit solution of the dynamic
programming equations is obtainable. This also means that the dynamic program-
ming technique is crucial for the characterization of feedback-Nash (Markovian)
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equilibrium. We discuss the application of this technique in Sect. 4 (for finite-
horizon games) and in Sect. 5 (for infinite-horizon games).15

3.4 Subgame Perfection and Other Equilibrium Aspects

Strategies are called time consistent if they remain optimal throughout the entire
equilibrium trajectory. The following lemma argues that open-loop Nash equilib-
rium strategies are time consistent.

Lemma 3. Let . Qu�
1 ; Qu�

2 / be an open-loop Nash equilibrium at .0; x0/ and let Qx�

D .x�.0/; x�.1/; : : : ; x�.T // be the equilibrium trajectory generated by . Qu�
1 ; Qu�

2 /

from .0; x0/. Then the truncation . Qu�
1 ; Qu�

2 /Œ�;T �1� of these strategies to the periods
�; : : : ; T � 1 is an open-loop Nash equilibrium at the point .�; x�.�//, where � D

0; 1; : : : ; T � 1, and x�.�/ is an intermediate state along the equilibrium trajectory.

For a proof see Haurie et al. (2012).
However, an open-loop Nash equilibrium is not subgame perfect in the sense

of Selten (see Selten 1975). If a player temporarily deviates from the equilibrium
control and then resumes following an open-loop strategy, the remainder of the
original control sequence will no longer be optimal. Subgame perfection requires
that, from any state, the strategy always generates a control sequence that is optimal.

The lack of subgame perfection of open-loop equilibria has been viewed as
a grave drawback of this solution. Games often involve randomness, like the
“trembling hand” of an agent. This would trigger a deviation from the equilibrium
trajectory, and therefore a collapse of the equilibrium under the open-loop infor-
mation structure. If, however, we are in a non-stochastic environment, there is no
reason to consider such deviations, since they would be detrimental to the deviating
player.

Despite the above positive conclusion, we need to remind the reader that an open-
loop behavior relies on the assumption that, at the beginning of time, the players
can commit to a complete list of future actions without any possibility of update or
revision during the course of the game. So, from that point of view, a feedback (or
Markovian) strategy appears more suited to model the behavior of strategic agents,
i.e., those who react to available information.

Notwithstanding the above reservation, some real-life situations can be modeled
as open-loop equilibria. The oligopolistic R&D problem analyzed in Spencer and
Brander (1983b) (also, see Spencer and Brander 1983a) is such an example. The
so-called patent races are also naturally viewed as open-loop games. In those
models, the use of open-loop strategies is justified because it approximates players’

15In a stochastic context, perhaps counterintuitively, certain multistage (supermodular) games
defined on lattices admit feedback equilibria which can be established via a fixed-point theorem
due to Tarski. See Haurie et al. (2012) and the references provided there.
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real-world behavior: here the open-loop information structure adequately reflects
the fact that a firm cannot observe its rivals’ new technology before choosing its
own output level.

On the other hand, a feedback-Nash equilibrium strategy is subgame perfect by
construction (see Theorem 1). It is easy to see that subgame perfection is a stronger
concept than time consistency,16 implying that a feedback Nash equilibrium must
be time consistent.

4 Dynamic Programming for Finite-Horizon Multistage
Games

It is not difficult to extend the dynamic programming algorithm that is used to
establish subgame perfection of equilibria in repeated games to multistage games.

Consider a finite-horizon dynamic game played by two agents. We will denote
them by j and “not j ,” i.e., �j .17 When the initial point is .�; x� / and the control
sequences are Quj and Qu�j , the payoff of Player j is defined by

Jj ,
T �1X

tD�

gj .x.t/; uj .t/; u�j .t/; t/ C Sj .x.T //; j D 1; 2; (4.35)

where the state trajectory follows

x.t C 1/ D f.x.t/; uj .t/; u�j .t/; t/; t D �; � C 1; : : : T � 1 (4.36)

x.�/ D x� : (4.37)

Because we deal with feedback information structure, each player knows the current
state. Players j and �j will therefore choose their controls in period t using
feedback strategies uj .t/ D �j .t; x/ and u�j .t/ D ��j .t; x/.

Let .��
j .t; x/; ��

�j .t; x// be a feedback-equilibrium solution to the multistage
game, and let Qx� D .x�.�/; : : : ; x�.T // be the associated trajectory resulting from
.�; x� /. The value function for Player j is defined as

W �
j .�; x� / D

T �1X

tD�

gj .x�.t/; ��
j .t; x�.t//; ��

�j .t; x�.t//; t/ C Sj .x�.T //; (4.38)

W �
j .T; x/ D Sj .x/ (4.39)

x�.t C 1/ D f.x�.t/; ��
j .t; x�.t//; ��

�j .t; x�.t//; t/ ; t D �; : : : T � 1 (4.40)

x�.�/ D x� : (4.41)

16For this reason, it is also sometimes referred to as strong time consistency; see Başar and Olsder
(1999) and Başar (1989).
17This notation helps generalize our results. They would formally be unchanged if there were
m > 2 players. In that case, �j would refer to the m � 1 opponents of Player j .
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This value function represents the payoff that Player j will receive if the feedback-
equilibrium strategy is played from an initial point .�; x� / until the end of
the horizon. The following result provides a decomposition of the equilibrium
conditions over time.

Lemma 4. The value functions W �
j .t; x/ and W �

�j .t; x/ satisfy the following
recurrent equations, backward in time, also known as the Bellman equations:

W �
j .t; x�.t// D max

uj

gj .x�.t/; uj ; ��
�j .t; x�.t//; t/ C (4.42)

W �
j .t C 1; f.x�.t/; uj ; ��

�j .t; x�.t//; t///;

W �
�j .t; x�.t// D max

u
�j

g�j .x�.t/; ��
j .t; x�.t//; u�j ; t/ C (4.43)

W �
�j .t C 1; f.x�.t/; ��

j .t; x�.t//; u�j ; t///;

t D T � 1; T � 2; : : : 0; (4.44)

with the boundary condition (4.39).18

For a proof see Haurie et al. (2012).
The above lemma can be used to obtain necessary and sufficient conditions

for a feedback-Nash equilibrium. It also underscores the fact that the equilibrium
condition must hold in a set of local games defined at each possible initial point
.�; x� /.

Consider the local game defined at .�; x� /; in which the players’ actions are
.uj ; u�j / and their payoffs are given by

hj .�; x� I uj ; u�j / � gj .x� ; uj ; u�j ; � ; /CW �
j .t C1; f.x� ; uj ; u�j ; �//: (4.45)

Then the value of the feedback-equilibrium pair .��
j .�; x� /; ��

�j .�; x� // at .�; x� / is
a Nash equilibrium for this local game.

The lemma suggests the following recursive approach for computing a feedback-
Nash equilibrium.

• At time T � 1, for any initial point .T � 1; x.T � 1//; solve the local game with
payoffs

hj .T � 1; x.T � 1/I uj ; u�j /

� gj .x.T � 1/; uj ; u�j ; T � 1/ C Sj .f.x.T � 1/; uj ; u�j ; T � 1//;

(4.46)

18We note that the functions W �

j .� � � / and W �

�j .� � � / are continuation payoffs. Compare Sect. 6.1.
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h�j .T � 1; x.T � 1/I uj ; u�j /

� g�j .x.T � 1/; uj ; u�j ; T � 1/ C S�j .f.x.T � 1/; uj ; u�j ; T � 1//:

(4.47)

Assume that a Nash equilibrium exists for each of these games, and let

.��
j .T � 1; x.T � 1//; ��

�j .T � 1; x.T � 1///

be the equilibrium strategy vector. That is,

��
j .T � 1; x.T � 1// D arg max

uj

n
gj .x.T �1/; uj ; ��

�j .T �1; x.T �1//; T �1/C

Sj .f.x.T � 1/; uj ; ��
�j .T � 1; x.T � 1//; T � 1//

o

and similarly for Player �j . Then define

W �
j .T � 1; x.T � 1// � gj .x.T � 1/; ��

j .T � 1; x.T � 1//;

��
�j .T � 1; x.T � 1//; T � 1/ C Sj .f.x.T � 1/;

��
j .T � 1; x.T � 1//; ��

�j .T � 1; x.T � 1//; T � 1//:

• At time T � 2, for any initial point .T � 2; x.T � 2//; solve the local game with
payoffs

hj .T � 2; x.T � 2/I uj ; u�j /

� gj .x.T �2/; uj ; u�j ; T � 2/ C W �
j .T � 1; f.x.T � 2/; uj ; u�j ; T �2//;

h�j .T � 2; x.T � 2/I uj ; u�j /

� g�j .x.T �2/; uj ; u�j ; T �2/ C W �
�j .T �1; f.x.T �2/; uj ; u�j ; T � 2//:

To ensure the existence of an equilibrium, we also need to assume that the func-
tions W �

j .T � 1; �/ and W �
�j .T � 1; �/ identified in the first step of the procedure

are sufficiently smooth.19 Suppose that an equilibrium exists everywhere, and
define

.��
j .T � 2; x.T � 2//; ��

�j .T � 2; x.T � 2///

19Recall that an equilibrium is a fixed point of a best-reply function, and that a fixed point requires
some regularity to exist.
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to be the equilibrium strategies in the above game. In other words,

��
j .T � 2; x.T �2// D arg max

uj

n
gj .x.T � 2/; uj ; ��

�j .T � 2; x.T � 2//; T �2/C

W �
j .T �1; f.x.T �2/; uj ; ��

�j .T � 2; x.T � 2//; T � 2//
o

and similarly for Player �j . Then define

W �
j .T � 2; x.T � 2// � gj .x.T �2/; ��

j .T �2; x.T �2//; ��
�j .T �2; x.T � 2//;

T �2/ C W �
j .T � 1; f.x.T � 2/; ��

j .T � 2; x.T � 2//;

��
�j .T � 2; x.T � 2//; T � 2//:

• At time T � 3, etc. proceed recurrently, defining local games and their solutions
for all preceding periods, until period 0 is reached.

In the following verification theorem, we show that this procedure generates a
feedback-Nash equilibrium strategy vector.

Theorem 1. Suppose that there are value functions W �
j .t; x/ and feedback strate-

gies .��
j ; ��

�j / which satisfy the local-game equilibrium conditions defined in
equations (4.39), (4.43) for t D 0; 1; 2; : : : ; T � 1, x 2 Rn. Then the feedback
pair .��

j ; ��
�j / constitutes a (subgame) perfect equilibrium of the dynamic game

with the feedback information structure.20 Moreover, the value function W �
j .�; x� /

represents the equilibrium payoff of Player j in the game starting at point .�; x� /.

For a proof see Haurie et al. (2012).

Remark 2. The above result, together with Lemma 4, shows that dynamic program-
ming and the Bellman equations are both necessary and sufficient conditions for a
feedback-Nash equilibrium to exist. Thus, we need to solve the system of Bellman
equations (4.44) for Players j and �j to verify that a pair of feedback-equilibrium
strategies exists.21 This justifies the term verification theorem.22

20The satisfaction of these conditions guarantees that such an equilibrium is feedback-Nash, or
Markovian, equilibrium.
21We observe that feedback-Nash equilibrium is also a Nash equilibrium for the normal (strategic)
form of the game. In that case it is not defined recursively, but using state-feedback control laws as
strategies, see Başar and Olsder (1999) and Başar (1989).
22 If it were possible to show that, at every stage, the local games are diagonally strictly concave
(see e.g., Krawczyk and Tidball 2006), then one can guarantee that a unique equilibrium exists
�.t; x/ � .�j .t; x.t//; �

�j .t; x.t/// : However, it turns out that diagonal strict concavity for a
game at t does not generally imply that the game at t � 1 possesses this feature.
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5 Infinite-Horizon Feedback-Nash (Markovian) Equilibrium
in Games with Discounted Payoffs

5.1 The Verification Theorem

We can extend the method for computing equilibria of the finite-horizon multistage
games from Sect. 4 to infinite-horizon stationary discounted games. Let .��

j ; ��
�j /

be a pair of stationary feedback-Nash equilibrium strategies. The value function for
Player j is defined by

x�.�/ D x� (4.48)

x�.t C 1/ D f.x�.t/; ��
j .x�.t//; ��

�j .x�.t///; t D 0; 1; : : : ; 1 (4.49)

W �
j .�; x� / D

1X

tD�

ˇt
j gj .x�.t/; ��

j .x�.t//; ��
�j .x�.t///; j D 1; 2 : (4.50)

Note that discounting of payoffs implies

W �
j .�; x/ D ˇ�

j W �
j .0; x/: (4.51)

We will call V �
j .x/ � W �

j .0; x/ the current-valued value function. A value function
for Player �j is defined in a similar way.

An analog to Lemma 4 for this infinite-horizon discounted game is provided
below.

Lemma 5. The current-valued value functions V �
j .x/ and V �

�j .x/, defined
in (4.51), satisfy the following recurrence equations, backward in time, also known
as Bellman equations:

V �
j .x.t/�.t// D max

uj .t/
gj .x�.t/; uj .t/; ��

�j .x�.t/// C (4.52)

ˇj V �
j .f.x.t/�; uj .t/; ��

�j .x�.t////;

V �
�j .x�.t// D max

u
�j .t/

g�j .x�.t/; ��
j .x�.t//; u�j .t// C (4.53)

ˇ�j V �
�j .f.x�.t/; ��

j .Qx�.t//; u�j .t///;

t D 0; 1; : : : 1 :

The proof is identical to that proposed for Lemma 4 (see Haurie et al. 2012), except
for obvious changes in the definition of current-valued value functions.

Remark 3. There is, however, an important difference between Lemmas 4 and 5.
The boundary conditions (4.39) which determine the value function in the final
period are absent in infinite-horizon discounted games.
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This remark suggests that we can focus on the local current-valued games, at any
initial point x, with payoffs defined by

hj .xI uj ; u�j / � gj .x; uj ; u�j / C ˇj V �
j .f.x; uj ; u�j // (4.54)

h�j .xI uj ; u�j / � g�j .x; uj ; u�j / C ˇ�j V �
�j .f.x; uj ; u�j //: (4.55)

Theorem 2. Consider value functions V �
j .x/ and V �

�j .x/ and a stationary feedback
strategy vector .��

j ; ��
�j /, such that the following holds true:

V �
j .x/ D max

uj

hj .xI uj ; ��
�j .x// D hj .xI ��

j .x/; ��
�j .x// (4.56)

V �
�j .x/ D max

u
�j

h�j .xI ��
j .x/; u�j / D h�j .xI ��

j .x/; ��
�j .x//; (4.57)

where hj and h�j are defined as in (4.54) and (4.55). Then .��
j ; ��

�j / is a pair
of stationary feedback-Nash equilibrium strategies and V �

j .x/ (resp. V �
�j .x/) is the

current-valued equilibrium value function for Player j (resp. Player �j ).

For a proof see Haurie et al. (2012).

Remark 4. A feedback equilibrium is, by construction, subgame perfect irrespec-
tive of whether the game is played over finite or infinite horizon.

Remark 5. Theorems 1 and 2 (i.e., the verification theorems) provide sufficient
conditions for feedback-Nash (Markovian) equilibria. This means that if we manage
to solve the corresponding Bellman equations, then we can claim that an equilibrium
exists. A consequence of this fact is that the methods for solving Bellman equations
are of prime interest to economists and managers who wish to characterize or
implement feedback equilibria.

Remark 6. The dynamic programming algorithm requires that we determine the
value functions Wj .x/ (or Wj .t; x/ for finite-horizon games), for every x 2 X �

Rn. This can be achieved in practice if X is a finite set, or the system of Bellman
equations has an analytical solution that could be obtained through the method of
undetermined coefficients. If Wj .�; x/ is affine or quadratic in x, then that method
is easily applicable.

Remark 7. When the dynamic game has linear dynamics and quadratic stage
payoffs, value functions are usually quadratic. Such problems are called linear-
quadratic games. The feedback equilibria of these games can be expressed using
coupled Riccati equations. Thus, linear-quadratic games with many players (i.e.,
m > 2) can be solved as long as we can solve the corresponding Riccati equations.
This can be done numerically for reasonably large numbers of players. For a
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detailed description of the method for solving linear-quadratic games see Haurie
et al. (2012); for the complete set of sufficient conditions for discrete-time linear-
quadratic games see Başar and Olsder (1999).

Remark 8. In general, however, when X is a subset of Rn and Wj is not linear or
quadratic (or of some other predetermined form as in Sect. 5.2 below), the only way
to tackle the problem of computing Wj is to approximate X by a finite set, say Xd ,
and to compute an equilibrium for the new game with a discrete (grid) state space
Xd , where the index d corresponds to the grid width. This equilibrium may or may
not converge to the original game equilibrium as d ! 0. The practical limitation of
this approach is that the cardinality of Xd tends to be high. This is the well-known
curse of dimensionality mentioned by Bellman in his original work on dynamic
programming.

5.2 An Infinite-Horizon Feedback-Nash Equilibrium Solution to
the Fishery’s Problem

Next we show how a dynamic game formulated in general in Example 1 can be
solved when the players use the fishery in perpetuity. For a solution to the finite-
horizon version of this game, we refer the readers to Haurie et al. (2012).23 Our
analysis is based on the dynamic programming method explained in the previous
section. This method enables us to find the Markovian strategies in any infinite-
horizon dynamic games where the value functions are available in analytical form.
Although the model we use is stylized, it highlights several important economic
issues arising in competition over a long time horizon.

This game is a special case of Example 1. In particular, we assume a linear state
equation:

x.t C 1/ D a.x.t/ � u1.t/ � u2.t//. (4.58)

The players’ payoffs are as in Example 1:

Jj ,
1X

tD0

ˇt
q

uj .t/ j D 1; 2. (4.59)

We endeavor to compute a pair of feedback stationary equilibrium strategies
.��

1 ; ��
2 / that satisfy (4.56)–(4.57). The strategies must also be feasible, i.e., x �

��
1 .x/ � ��

2 .x/ � 0.
We now apply Theorem 2 to this game. The Bellman equations of the players are

23The system’s dynamics with a linear law of motion is an example of a BIDE model (Birth,
Immigration, Death, Emigration model, see, e.g., Fahrig 2002 and Pulliam 1988).
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W �
1 .x/ D max

u1

˚p
u1 C ˇW �

1 .a.x � u1 � ��
2 .x//

�
(4.60)

W �
2 .x/ D max

u2

˚p
u2 C ˇW �

2 .a.x � ��
1 .x/ � u2/

�
, (4.61)

where W �
1 .x/; W �

2 .x/ are the (Bellman) value functions and .��
1 .x/; ��

2 .x// is the
pair of Markovian equilibrium strategies.

Assuming sufficient regularity of the right-hand sides of (4.60) and (4.61)
(specifically differentiability), we derive the first order conditions for the feedback-
equilibrium Nash harvest strategies:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1

2
p

u1

D ˇ @
@u1

W �
1 .a.x � u1 � ��

2 .x//

1

2
p

u2

D ˇ @
@u2

W �
2 .a.x � u2 � ��

1 .x//:

(4.62)

Because of symmetry, we will restrict attention to value functions which have
the same form for each player. Specifically, we conjecture the following value
functions24: W �

1 .x/ D C
p

x and W �
2 .x/ D C

p
x . Expand the necessary

conditions (4.62) and solve them simultaneously to obtain

��
1 .x/ D ��

2 .x/ D
x

2 C ˇ2C 2a
: (4.63)

We will demonstrate later that these strategies are feasible. Substituting these
forms for u1 and u2 in the Bellman equations (4.60), (4.61) yields the following
identity:

C
p

x �
1 C ˇ2C 2a
p

2 C ˇ2C 2a

p
x : (4.64)

Hence,

C D
1 C ˇ2C 2a
p

2 C ˇ2C 2a
: (4.65)

If the value of C solves (4.65), then W �
1 .x/; W �

2 .x/ will satisfy the Bellman
equations.

Determining C requires solving a double-quadratic equation. The only positive
root of that equation is

24To solve a functional equation like (4.60), we use the method of undetermined coefficients; see
Haurie et al. (2012) or any textbook on difference equations.
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NC D
1

ˇ

vuut
1p

1�a ˇ2
� 1

a
. (4.66)

This root will be real if

aˇ2 < 1 : (4.67)

Remark 9. Equation (4.67) is a necessary condition for the existence of a feedback
equilibrium in the fishery’s game (4.58)–(4.59). We note that this condition will not
be satisfied by economic systems with fast growth and very patient (or “forward-
looking”) players. Consequently, games played in such economies will not have an
equilibrium. Intuitively, the players in these economies are willing to wait infinitely
many periods to catch an infinite amount of fish. (Compare Lemma 6 and also
Lemma 8.)

Substituting C in the strategies and value functions yields

��
1 .x/ D ��

2 .x/ D
x

1p
1�a ˇ2

C 1
(4.68)

W �
1 .x/ D W �

2 .x/ D
1

ˇ

vuut
1p

1�a ˇ2
� 1

a

p
x : (4.69)

In macroeconomics, a growth model described by equation (4.58) is called an
“AK” model.25 A known feature of AK models is that they have a unique steady
state x D 0. A zero steady state would suggest extinction in our fishery’s game. Let
us examine the conditions under which the equilibrium catch strategies (4.68) will
lead to extinction.

First we compute the steady state. Substituting the equilibrium strategies in the
state equation (4.58) yields

x.t C 1/ D a

0

@x.t/ �
x.t/

1p
1�a ˇ2

C 1
�

x.t/
1p

1�a ˇ2
C 1

1

A D

D x.t/ � a

0

@1 �
2

1p
1�a ˇ2

C 1

1

A D x.t/ � a
1 �

p
1 � a ˇ2

1 C
p

1 � a ˇ2
:(4.70)

25Any linear growth model in which capital expands proportionally to the growth coefficient a is
called an AK model.
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We can rewrite (4.70) in the following form:

x.t C 1/ D �x.t/, (4.71)

where

� � a
1 �

p
1 � a ˇ2

1 C
p

1 � a ˇ2

is the state equation’s eigenvalue. Note that if (4.67) is satisfied, we will have � > 0.
Difference-equations analysis (see, e.g., Luenberger 1979) tells us that (4.71) has

a unique steady state at zero, which is asymptotically stable if � < 1 and unstable
if � > 1. We can now formulate the following lemmas concerning the long-term
exploitation of the fishery in game (4.58)–(4.59).

Lemma 6. Feedback-equilibrium strategies (4.68) lead to the fishery’s extinction
when the steady state of (4.71) is asymptotically stable, i.e., when

a <
2

ˇ
� 1:

Proof. We need to show that

� D a
1 �

p
1 � a ˇ2

1 C
p

1 � a ˇ2
< 1 : (4.72)

This inequality implies that

a
�
1 �

p
1 � a ˇ2

�
< 1 C

p
1 � a ˇ2

a � 1 < .a C 1/
p

1 � a ˇ2

�
�

2

ˇ
� 1

�
< a <

�
2

ˇ
� 1

�
:

However, by assumption, the growth coefficient a is bigger than 1. Thus

1 < a <

�
2

ˇ
� 1

�
: (4.73)

˘
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We also notice that
�

2

ˇ
� 1

�
<

1

ˇ2
for ˇ < 1; (4.74)

so (4.73) is compatible with condition (4.67) for existence of equilibrium.

Lemma 7. Feedback-equilibrium strategies (4.68) do not lead to the fishery’s
extinction if

2

ˇ
� 1 < a <

1

ˇ2
:

When the above condition is satisfied, the steady state of (4.71) is unstable.

Proof. We require

� D a
1 �

p
1 � a ˇ2

1 C
p

1 � a ˇ2
> 1 : (4.75)

The previous lemma established that the (zero) unique steady state is unstable if

a >
2

ˇ
� 1 :

On the other hand, (4.67) has to be satisfied in order to ensure existence of
equilibrium. We know from (4.74) that there are values of a which satisfy both.
˘

The above value functions and strategies can also be characterized graphically
with Figs. 4.1 and 4.2. In each of these figures, we see two lines in the plane .a; ˇ/.

The solid line represents a D
1

ˇ2
, while the dashed line shows where a D

2

ˇ
� 1.

A simple conclusion drawn from Fig. 4.2 is that when ˇ is higher (i.e., the players
are more “forward-looking”), equilibrium catch will be lower.

We can also use these figures to make some interesting observations about
fishery’s management. From the above lemma, we know that the fishery will become
extinct if a; ˇ are below the dashed line. This would happen when the players are

not sufficiently patient i.e., ˇ <
2

a C 1
. On the other hand, if a; ˇ are above the

solid line, the players are “over-patient,” i.e., ˇ >
1

p
a

. Then fishing is postponed

indefinitely, and so the biomass will grow to infinity. We see that fishing can be
profitable and sustainable only if a; ˇ are between the dashed and solid lines (see
both figures). Notwithstanding the simplicity of this model (linear dynamics (4.58)
and concave utility (4.59)), the narrowness of the region between the lines can
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Fig. 4.1 Dependence of value function on ˇ and a

explain why real-life fisheries management can be difficult. Specifically, fishermen’s
time preferences should be related to biomass productivity in a particular way. But
the parameters a and ˇ are exogenous to this model. Thus, their values may well be
outside the region between the two lines in Figs. 4.1 and 4.2.

6 Sequential-Move Games

Next we consider several examples of multistage games in which players move
sequentially rather than simultaneously as in the previous sections. Again, agents
receive payoffs over multiple periods. However, in any given stage, only a single
player is able to choose his control, and so only he can affect the subsequent
value of the state. We will study infinite-horizon versions of these games and focus
on their feedback (or Markovian) equilibria. The sequential-move structure makes
these equilibria analytically tractable: they can often be solved in closed form. Also,
they provide a good illustration of the strategic motives underlying agents’ choices.
Specifically, the Markovian equilibria of these games highlight the players’ concern
regarding the effect of their actions on the future behavior of their opponents.
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6.1 Alternating-Move Games

We begin by briefly studying a class of dynamic settings known as alternating-move
games. These games have gained popularity in the industrial organization literature.
Our discussion will draw primarily from Maskin and Tirole (1987). In their model,
two firms, j and �j , engage in output competition. The players set their quantities
in alternating periods. Thus, only one firm can (costlessly) change its output in any
given stage. During the period following an adjustment, a player’s output remains
fixed, and can be observed by his opponent. This assumption is meant to capture the
idea of short-term commitment.26

Without loss of generality, assume that j makes his choices uj in odd periods,
while his opponent makes his choices u�j in even periods. Thus, the state equation is

x.t/ D

�
u�j .t � 1/ when t D 2k C 1

uj .t � 1/ when t D 2k:

Firm j ’s profit is gj .uj .t/; x.t// � gj .uj .t/; u�j .t � 1// in odd periods, and
gj .x.t/; u�j .t// � gj .uj .t � 1/; u�j .t// in even periods. The other player’s stage

26Alternatively, we could postulate that the cost of adjusting output in the subsequent period is
infinite.
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payoff is symmetrical. Agents have a common discount factor ı. Each maximizes
his infinite discounted stream of profits.

Note that this setting satisfies the description of a multistage game from Sect. 2.
The state of the dynamic system evolves according to a well-defined law of motion.
Furthermore, each player receives instantaneous rewards that depend on the controls
and the state. However, in contrast with the previous examples, only a subset of
players are able to influence the state variable in any given stage.

We will characterize the Markovian equilibrium of this game, in which player j

uses a strategy �j .x.t// in odd periods, and player �j uses a strategy ��j .x.t//

in even periods. Maskin and Tirole interpret these Markovian strategies as dynamic
reaction functions.

Let us consider the problem of firm j . When t D 2k C 1; k D 0; 1; 2; : : : ; this
player’s Bellman equation is

Vj .u�j .t � 1// D max
uj .t/

fgj .uj .t/; u�j .t � 1// C ıWj .uj .t//g, (4.76)

where Vj is his value function when he can choose his output, and Wj is his value
function when he cannot. In a Markovian equilibrium, Wj satisfies

Wj .uj .t// D gj .uj .t/; ��j .uj .t/// C ıVj .��j .uj .t///. (4.77)

After substituting Wj in (4.76), the Bellman equation can be rewritten as

Vj .u�j .t � 1// D max
uj .t/

fgj .uj .t/; u�j .t � 1// C ıgj .uj .t/; ��j .uj .t///

C ı2Vj .��j .uj .t///g.

The first-order condition of the maximization problem is

@

@uj .t/
gj .uj .t/; u�j .t � 1// C ı

@

@uj .t/
gj .uj .t/; u�j .tC1// C ı

@

@uj .t/
��j .uj .t//

�
@

@u�j .t C 1/
gj .uj .t/; u�j .t C 1// C ı

@

@u�j .t C 1/
Vj .u�j .t C 1//

	
D 0:

(4.78)

Differentiating both sides of the Bellman equation with respect to the state variable
x.t/ D u�j .t � 1/ yields the envelope condition

@

@u�j .t � 1/
Vj .u�j .t � 1// D

@

@u�j .t � 1/
gj .uj .t/; u�j .t � 1//. (4.79)
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Substituting (4.79) into (4.78) gives us firm j ’s equilibrium condition:

@

@uj .t/
gj .uj .t/; u�j .t � 1//Cı

@

@uj .t/
gj .uj .t/; u�j .t C 1// C ı

@

@uj .t/
��j .uj .t//

�
@

@u�j .t C 1/
gj .uj .t/; u�j .t C 1// C ı

@

@u�j .t C 1/
gj .uj .tC2/; u�j .tC1//

	
D0:

(4.80)

The term on the second line of (4.80) represents the strategic effect of j ’s choice
on his lifetime profit. It accounts for the payoff consequences of �j ’s reaction if j

were to marginally deviate from his equilibrium strategy in the current period.
Suppose that stage profits are quadratic:

gj D .1 � uj � u�j /uj ; gj D .1 � uj � u�j /u�j .

We conjecture a symmetric Markovian equilibrium involving linear strategies:

�j D a � bx; ��j D a � bx.

Substituting these forms in (4.80) and applying the method of undetermined
coefficients yield the following equations for a; b:

ı2b4 C 2ıb2 � 2.1 � ı/b C 1 D 0; a D
1 C b

3 � ıb
. (4.81)

The steady-state output per firm is 1=.3 � ıb/. It exceeds 1=3, which is the
Nash equilibrium output in the one-shot simultaneous-move Cournot game. This
result makes intuitive sense. In an alternating-move setting, agents’ choices have
commitment power. Given that firms compete in strategic substitutes, they tend
to commit to higher output levels, exceeding those that would arise in the Nash
equilibrium of the one-shot game.

6.2 Bequest Games

Next we analyze dynamic games in which agents make choices only once in
their lifetimes. However, these agents continue to obtain payoffs over many
periods. Consequently, their payoffs will depend on the actions of their successors.
Discrepancies between the objectives of the different generations of agents create a
conflict between them, so these agents will behave strategically.

A simple example of such a setting is the bequest game presented in Fudenberg
and Tirole (1991). In this model, generations have to decide how much of their
capital to consume and how much to bequeath to their successors. It is assumed
that each generation lives for two periods. Hence, it derives utility only from its
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own consumption and from that of the subsequent generation, but not from the
consumption of other generations. Specifically, let the period-t consumption be
u.t/ � 0. The payoff of the period-t generation is g.u.t/; u.t C 1//. Suppose that
the stock of capital available to this generation is x.t/. Capital evolves according to
the following state equation:

x.t C 1/ D f .x.t/ � u.t//: (4.82)

The function f can be interpreted as a production function. Assume that f .0/ D 0.
The above payoff specification gives rise to a strategic conflict between the

current generation and its successor. If the period-t generation could choose u.tC1/,
it would not leave any bequests to the period-t C2 generation. However, the period-
t C 1 agent will save a positive fraction of his capital, as he cares about u.t C 2/.
Thus, from the period-t viewpoint, period-t C 1 consumption would be too low in
equilibrium.

Again, we study the Markovian equilibrium of this game, in which the period-
t consumption strategy is �.x.t//. This strategy must be optimal for the current
generation, so long as future generations adhere to the same strategy. That is, �

must satisfy

�.x.t// D arg max
u.t/

g.u.t/; �.f .x.t/ � u.t////.

Let us consider a parametric example. Suppose that

g.u.t/; u.t C 1// D ln u.t/ C ı ln u.t C 1/. (4.83)

Moreover, we assume the following production function:

f .x.t/ � u.t// D .x.t/ � u.t//˛:

The parameters ı; ˛ are in the interval .0; 1/. We conjecture a Markovian strategy
with the form �.x.t// D �x.t/. If future generations follow such a strategy, the
payoff of the current generation can be written as

ln u.t/ C ı ln �.x.t/ � u.t//˛ .

The period-t optimal consumption satisfies the first-order condition

1

u.t/
�

˛ı

x.t/ � u.t/
D 0: (4.84)

Solving the above equation for u.t/ gives us u.t/ D x.t/=.1 C ˛ı/. But, by
conjecture, the equilibrium strategy is �x.t/. Hence � D 1=.1 C ˛ı/. Since
0 < ˛ı < 1, the marginal propensity to consume capital will be between 0.5 and 1.
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6.3 Intrapersonal Games and Quasi-hyperbolic Discounting

In most of the economic literature, the standard framework for analyzing intertem-
poral problems is that of discounted utility theory, see e.g., Samuelson (1937). This
framework has also been used extensively throughout this chapter: in all infinite-
horizon settings, we assumed a constant (sometimes agent-specific) discount factor
that is independent of the agent’s time perspective. This type of discounting is
also known as exponential. Its popularity is due to its analytical convenience.
As demonstrated earlier, exponential discounting allows us to use dynamic pro-
gramming to characterize the decision-maker’s optimal policy. However, there are
many situations in which human behavior cannot be explained with this type of
discounting. In fact, experimental and empirical studies agree that, in the real
world, agents’ time preferences exhibit “present bias” or “increasing patience.”
In particular, people are more patient regarding intertemporal trade-offs that will
happen further in the future. As in bequest games, such preferences would cause a
discrepancy between the objective of the current decision-maker and those of his
successors.

Discounting that exhibits increasing patience over the entire planning horizon
is generally known as “hyperbolic.” However, models based on true hyperbolic
preferences are intractable: they are not amenable to recursive formulation and
often give rise to infinite payoffs. To avoid these difficulties, the existing literature
usually approximates them with an alternative specification referred to as “quasi-
hyperbolic” (or beta-delta) discounting. It was first proposed by Phelps and Pollak
(1968) in the context of an intergenerational bequest game. Later it was used
by Laibson (1997) to study the savings behavior of a consumer with self-control
problems who has access to imperfect commitment devices (e.g., illiquid assets).
Quasi-hyperbolic preferences have also been applied to the problems of procrasti-
nation, see O’Donoghue and Rabin (1999); retirement decisions, see Diamond and
Köszegi (2003); asset pricing, see Kocherlakota (2001); job search, see Paserman
(2008); growth, see Barro (1999); and addiction, see Gruber and Koszegi (2001).

Quasi-hyperbolic (or beta-delta) preferences capture the spirit of increasing
patience by specifying a lower discount factor only for the trade-off between the
current period and the one that follows immediately. For any other two consecutive
future periods, the discount factor is higher and invariant to the agent’s perspective.
Formally, the performance criterion payoff of a period-t agent with quasi-hyperbolic
preferences is defined as

J , g.x.t/; u.t// C ˇ

1X

�DtC1

ı� g.x.�/; u.�//, (4.85)

where ˇ; ı 2 .0; 1/. Note that when ˇ D 1 this specification is reduced to standard
exponential discounting.

As Strotz (1955) has demonstrated, unless agents are exponential discounters, in
the future they will be tempted to deviate from the plans that are currently considered
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optimal. There are several ways of modeling the behavior of quasi-hyperbolic
decision-makers. In this section, we assume that they are sophisticated. That is, they
are aware of future temptations to deviate from the optimal precommitment plan.
We will model their choices as an intrapersonal dynamic game. In particular, each
self (or agent) of the decision-maker associated with a given time period is treated
as a separate player. Our focus will be on the feedback (Markovian) equilibrium of
this game. In other words, we consider strategies that are functions of the current
state: u.t/ D �.x.t//. If all selves adhere to this strategy, the resulting plan will be
subgame perfect.

To study the internal conflict between the period-t self and its successors, we
need to impose some structure on stage payoffs. In particular, suppose that

@

@u.t/
g.x.t/; u.t// > 0;

@

@x.t/
g.x.t/; u.t// 6 0.

Furthermore, we assume that the state variable x.t/ evolves according to a linear
law of motion: x.t C 1/ D f .x.t/; u.t//, where

f .x.t/; u.t// D ax.t/ C bu.t/.

Now we derive a difference-differential equation for the equilibrium Markovian
strategy following the method of Laibson (1996), which makes use of two value
functions. The strategy solves the Bellman equation

V .x.t// D max
u.t/

fg.x.t/; u.t// C ıˇW .ax.t/ C bu.t//g, (4.86)

where V is the period-t agent’s current value function. The function W represents
the agent’s continuation payoff, i.e., the net present value of all stage payoffs after t .
As discounting effectively becomes exponential from period t C 1 onward, W must
satisfy

W .x.t// D g.x.t/; �.x.t/// C ıW .ax.t/ C b�.x.t///. (4.87)

Differentiating the right-hand side of (4.86) with respect to u.t/ yields the first-order
condition

@

@u.t/
g.x.t/; u.t// C ˇıb

@

@x.t C 1/
W .x.t C 1// D 0.

Thus,

@

@x.t C 1/
W .x.t C 1// D �

1

bˇı

@

@u.t/
g.x.t/; u.t//. (4.88)
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Moreover, differentiating (4.87) with respect to x.t/ delivers

@

@x.t/
W .x.t// D

@

@x.t/
�.x.t//

@

@u.t/
g.x.t/; u.t// C

@

@x.t/
g.x.t/; u.t//

C ı

�
a C b

@

@x.t/
�.x.t//

�
@

@x.t C 1/
W .x.t C 1//.

Substitute the derivatives of the continuation payoff function from (4.88) in the
above condition to obtain the agent’s equilibrium condition:

0 D
@

@u.t/
g.x.t/; u.t// C bˇı

@

@x.t C 1/
g.x.t C 1/; u.t C 1// (4.89)

� ı

�
a C b.1 � ˇ/

@

@x.t C 1/
�.x.t C 1//

	
@

@u.t C 1/
g.x.t C 1/; u.t C 1//.

The term

�ıb.1 � ˇ/
@

@x.t C 1/
�.x.t C 1//

@

@u.t C 1/
g.x.t C 1/; u.t C 1//

in the above equation captures the agent’s intrapersonal strategic considerations.
Note that this term disappears when ˇ D 1. It accounts for the discrepancy between
the objectives of the period-t and period-t C 1 selves. Because of this discrepancy,
the current agent adjusts his action in order to strategically influence the behavior of
his successor.

We now illustrate this intrapersonal game with a specific application. Our
discussion follows a simplified version of the consumption-saving model in Laibson
(1996). Consider a quasi-hyperbolic consumer whose period-t stock of savings is
x.t/. Let his current consumption be u.t/. It generates utility

g.x.t/; u.t// D .u.t/1�	 � 1/=.1 � 	/. (4.90)

Savings evolve according to

x.t C 1/ D R.x.t/ � u.t//; (4.91)

where R is the gross interest rate. We conjecture a Markovian consumption strategy
with form �.x.t// D �x.t/. Substitution in (4.89) yields the following equation for
the equilibrium value of �:

1 �
ıR1�	Œ1 � �.1 � ˇ/�

.1 � �/	
D 0.
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In the limiting case when g.x.t/; u.t// D ln u.t/, we can obtain a closed-form
solution for �:

� D
1 � ı

1 � ı.1 � ˇ/
.

From the current viewpoint, future agents are expected to consume too much. The
reasoning is that the period-t C 1 consumer will discount the period-t C 2 payoff
by only ˇı. However, the period-t agent’s discount factor for the trade-off between
t C1 and t C2 is ı. In the example with logarithmic utility, it is easy to show that all
agents would be better off if they followed a rule with a lower marginal propensity to
consume: u.t/ D .1 � ı/x.t/. But if no precommitment technologies are available,
this rule is not an equilibrium strategy in the above intrapersonal game.

7 Stackelberg Solutions in Multistage Games

Another class of sequential-move games is known as Stackelberg games. In these
games, when there are two players, one of them is a leader, and the other one
is a follower. But, while in the settings from the previous section players with
symmetric rewards use symmetric strategies in equilibrium, Stackelberg games are
hierarchically structured: in each stage, the leader moves ahead of the follower.

7.1 Definitions

The Stackelberg solution is another approach that can be applied to some multistage
games (see e.g., Başar and Olsder 1999). Specifically, it is suitable for dynamic
conflict situations in which the leader announces his strategy and the follower
optimizes his policy subject to the constraint of the leader’s strategy. The leader
is able to infer the follower’s reaction to any strategy the leader may announce.
Therefore, the leader announces27 a strategy that optimizes his own payoff, given
the predicted behavior of the follower. Generally, any problems in which there
is hierarchy among the players (such as the principal-agent problem) provide
examples of that structure.

In Sect. 3.1 we defined several information structures under which a dynamic
game can be played. We established that the solution to a game is sensitive to the
information structure underlying the players’ strategies. Of course, this was also true
when we were computing the Nash equilibria in other sections. Specifically, in the
case of open-loop Nash equilibrium, strategies are not subgame perfect, while in the
case of a feedback-Nash equilibrium, they do have the subgame perfection property.

27The announced strategy should be implemented. However, the leader could deviate from that
strategy.
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In the latter case, if a player decided to reoptimize his strategy for a truncated
problem (i.e., after the game has started) the resulting control sequence would be
the truncated control sequence of the full problem. If, on the other hand, a solution
was time inconsistent, a truncated problem would yield a solution which differs
from the truncated solution of the full problem, and thus the players will have an
incentive to reoptimize their strategies in future periods.

We will now show how to compute the Stackelberg equilibrium strategies
.�s

1; �s
2/ 2 
1 � 
2. Here, the index “1” refers to the leader and “2” denotes the

follower; 
j ; j D 1; 2 are the strategy sets. As usual, the strategies in dynamic
problems are indexed by time t 2 f0; 1; : : : T g, where T may be finite or infinite.
The follower’s reaction set is the set of his best answers to the leader’s strategies:

M.�1/; �1 2 
1. (4.92)

The symbol M denotes the follower’s reaction mapping (for details refer to (4.95),
(4.96), (4.97), and (4.98)).

The leader has to find �s
1 such that

J1.0; x0I �s
1;M.�s

1// � J1.0; x0I �1;M.�1// for all �1 2 
1: (4.93)

where we have allowed for (4.92).
In general, this problem is rather difficult.

Firstly, the constraint (4.92) in the (variational) problem (4.93) is itself in the
form of maximum of a functional.

Secondly, the solution to this optimization problem (if it exists), i.e., (4.93)–(4.92),
does not admit a recursive definition (see Başar and Olsder 1999) and,
therefore, is generically not subgame perfect.

We will demonstrate the lack of subgame perfection of the Stackelberg solution
with a simple finite (matrix) game. This game will also be used to highlight
the differences between three Stackelberg-game equilibria obtained under various
information structures.

7.2 A Finite Stackelberg Game

We will illustrate the different Stackelberg-game solutions using a finite game,
originally studied in Simaan and Cruz (1973). This game has a finite number of
strategies, which substantially simplifies its analysis.
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Fig. 4.3 A two-stage game

Example 4. Consider a two-stage finite28 minimization game shown in Fig. 4.3.
This game has three states (x D 0; x D 1; x D 2) and is played over two stages

(t D 0; t D 1). At every stage and from every state, each player has a choice
between two controls, 0 and 1. The encircled quantities are the costs and the non-
encircled ones are controls (first entry – Player 1, second entry – Player 2). Let us
compute Stackelberg equilibria for different information structures in this game and
investigate whether or not they are subgame perfect.

The game at hand will be played under three different information structures.
We will compute equilibria for two of these information structures and, due to

28That is, with a finite number of states. While games described by a state equation are typically
infinite, matrix games are always finite.
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space constraints, sketch the computation process for the third one. In particular,
we consider the following structures:

1. Open loop
2. Closed loop
3. Stackelberg feedback

7.3 Open-Loop Information

Assume that the players commit to controls u1.t/ and u2.t/; t D 0; 1, which are
functions of time only. Since the game has two stages, each player has four possible
sequences to choose from. They give rise to a 4 � 4 bimatrix game shown in
Table 4.1. In that table, the row player is the leader, and the column player is the
follower.

When Player 1 is the leader, the solution to the game is entry f4; 1g (i.e., fourth
row, first column) in Table 4.1. The corresponding costs to the leader and follower
are 6 and 5, respectively. This solution defines the following control and state
sequence:

u1.0/ D 1; u2.0/ D 0 H) x.1/ D 0

u1.1/ D 1; u2.1/ D 0 H) x.2/ D 0:



(4.94)

To show that the solution is f4; 1g, consider the options available to the leader. If
he announces u1.0/ D 0; u1.1/ D 0, the follower selects u2.0/ D 1; u2.1/ D 0,
and the cost to the leader is 10; if he announces u1.0/ D 0; u1.1/ D 1, the follower
selects u2.0/ D 1; u2.1/ D 0, and the cost to the leader is 7; if he announces
u1.0/ D 1; u1.1/ D 0, the follower selects u2.0/ D 1; u2.1/ D 1, and the cost
to the leader is 8; and if he announces u1.0/ D 1; u1.1/ D 1, the follower selects
u2.0/ D 0; u2.1/ D 0, and the cost to the leader is 6, which is minimal.

Subgame perfection means that if the game was interrupted at time t > 0,
Reoptimization would yield a continuation path which is identical to the remainder
of the path calculated at t D 0 (see Sect. 3.4 and also Remark 4). If the continuation
path deviates from the path that was optimal at t D 0, then the equilibrium is not
subgame perfect. Therefore, to demonstrate non-subgame perfection of open-loop
equilibrium of the game at hand, it is sufficient to show that, if the game was to

Table 4.1 Bimatrix game
under open-loop information
structure

00 01 10 11

00 8,8 11,6 10,�2 11,0

01 6,4 12,3 7,2 12,4

10 5,12 20,15 5,11 8,9

11 6,5 16,7 3,7 9,6
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Table 4.2 Final stage of the
game

0 1

0 1,7 16,10

1 2,0 12,2

restart at t D 1, the players would select actions that are different from (4.94),
calculated using Table 4.1.

Let us now compute the players’ controls when the game restarts from x D 0

at t D 1. Since each player would have only two controls, the truncated game (i.e.,
the stage game at t D 1) becomes a 2 � 2 bimatrix game. We see in Fig. 4.3 that
if the players select u1.1/ D 0; u2.1/ D 0, their payoffs are (1,7); if they select
u1.1/ D 0; u2.1/ D 1, they receive (16,10). The truncated game that is played at
state x D 0 at time t D 1 is shown in Table 4.2.

It is easy to see that the Stackelberg equilibrium solution to this truncated game
is entry f1; 1g. The resulting overall cost of the leader is 4 C 1 D 5. Note that f2; 1g,
which would have been played if the leader had been committed to the open-loop
strategy, is not an equilibrium solution: the leader’s cost would have been 6 > 5.
Thus, by not keeping his promise to play u1.0/ D 1; u1.1/ D 1, the leader can
improve his payoff.

7.4 Closed-Loop Information

Next, we sketch how a closed-loop solution can be computed for Example 4.
Although this game is relatively simple, the computational effort is quite big, so
we will omit the solution details due to space constraints.

Assume that, before the start of the game in Example 4, players must announce
controls based on where and when they are (and, in general, also where they were).
So the sets of admissible controls will comprise of four-tuples ordered, for example,
in the following manner:

for x D 1; t D 0 �i0.1/ D ui0

for x D 0; t D 1 �i1.0/ D ui1

for x D 1; t D 1 �i1.1/ D ui1

for x D 2; t D 1 �i1.2/ D ui1

where i D 1 corresponds to leader and i D 2 corresponds to follower. Since each
of ui t can be 0 or 1, each player will have 16 closed-loop strategies.

For every such strategy of Player 1, Player 2 has to solve an optimization
problem. His strategies can easily be obtained via dynamic programming. For
example, if Player 1 chooses (0; 0; 0; 0), i.e., 0 for every state and stage, Player
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Fig. 4.4 Follower’s optimization problem when leader chooses (0; 0; 0; 0)

2’s optimization problem is illustrated in Fig. 4.4. Its solution is the four-tuple
.1; 0; 1; 0/.

To find the leader’s optimal closed-loop strategy, the above procedure
would have to be repeated for the remaining 15 policies. This would give
us the follower’s reaction set, which is composed of 16 pairs of the four-
tuples: fleader policy; fol lower reactiong. The optimal policy of the leader
will minimize his cost function on that set. In general, the closed-loop solution
differs from the one we obtained under the open-loop information structure .
Typically neither solution is subgame perfect.

7.5 Stackelberg Feedback Equilibrium

In Sects. 4, 5, and 6, we computed feedback-Nash equilibria with the help of
Bellman equations (i.e., by using dynamic programming). Because of that, these
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equilibria satisfied the definition of subgame perfection. Now we define a solution to
hierarchical games that is obtained via dynamic programming, called a Stackelberg
feedback strategy. This strategy has the property that, at any instant of the game
and from any allowable state (at that instant), it delivers the leader’s best control
irrespective of previous decisions, under the assumption that the same strategy will
be used for the remainder of the game. Thus, this strategy is subgame perfect by
construction (see Fudenberg and Tirole 1991 and Başar and Olsder 1999).

Now we will show how to obtain a feedback Stackelberg (also called stagewise
or successive) equilibrium for an abstract problem. Then we will revisit Example 4.

Consider a dynamic Stackelberg game defined by

Jj .�; x� I u1; u2/ D

T �1X

tD�

gj .x.t/; u1.t/; u2.t/; t/ C Sj .x.T //; (4.95)

x.t C 1/ D f .x.t/; u1.t/; u2.t/; t/ (4.96)

for i D 1; 2

where Player 1 is the leader and Player 2 is the follower. Let, at every t , t D

0; 1; : : : T �1, the players’ strategies be feedback. Suppose that the strategies belong
to the sets of admissible strategies 
1t and 
2t , respectively. When players use
Stackelberg feedback strategies, at each t; x.t/ we have

u1.t/ D �1t .x/ 2 
1t .x/ (4.97)

u2.t/ D Q�2t .x/ 2 Q
2t .x/ �

f Q�2t .x/ W H2.t; x.t/I �1t .x/; Q�2t .x//

D max
u2t 2
2t .x/

H2.t; x.t/I �1t .x/; u2t .x//g (4.98)

where

H2.t; xI �1t .x/; u2/ � g2.x; �1t .x/; u2; t/ C W2.t C 1; f .x; �1t .x/; u2; t//;

(4.99)
and

W2.t; x/ D H2.t; xI �1t .x/; Q�2t .x//; (4.100)

each for t D T � 1; T � 2; : : : ; 1; 0;

and Wj .T; x/ D Sj .xT / for i D 1; 2. A strategy pair Q�t .x/ D . Q�1t .x/; Q�2t .x// is
called a Stackelberg feedback equilibrium at .t; x.t// if, in addition to (4.97), (4.98),
(4.99), and (4.100) the following relationship is satisfied:

H1.t; xI Q�1t .x/; Q�2t .x// D max
u12
1t .x/

H1.t; xI u1; Q�2t .x//; (4.101)
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where

H1.t; xI u1; Q�2t .x// �

g1.x; u1; Q�2t .x/; t/ C W1.t C 1; f .x; u1; Q�2t .x/; t//; (4.102)

and

W1.t; x/ D H1.t; xI Q�1t .x/; Q�2t .x//: (4.103)

each for t D T � 1; T � 2; : : : ; 1; 0;

Note that (4.97), (4.98), (4.99), (4.100), (4.101), (4.102), and (4.103) provide
sufficient conditions for a strategy pair . Q�1t .x/; Q�2t .x// to be the Stackelberg
feedback equilibrium solution to the game (4.95)–(4.96).

Example 5. Compute the Stackelberg feedback equilibrium for the game shown in
Fig. 4.3.

At time t D 1, there are three possible states. From every state, the transition to
the next stage (t D 2) is a 2 � 2 bimatrix game. In fact, Table 4.2 is one of them:
it determines the last-stage Stackelberg equilibrium from state x D 0. The policies
and the costs to the players are

.�11.0/; �21.0// D .0; 0/; .W1.1; 0/; W2.1; 0// D .1; 7/:

In the same manner, we find that

.�11.1/; �21.1// D .0; 1/; .W1.1; 0/; W2.1; 0// D .8; 3/

and

.�11.2/; �21.2// D .1; 0/; .W1.1; 2/; W2.1; 2// D .2; 5/:

At time t D 0, the game looks as in Fig. 4.5. It is easy to show that the Stackelberg
feedback policy from x D 1 is

.�10.1/; �20.1// D .0; 1/; .W1.0; 1/; W2.1; 0// D .7; 2/:

7.6 Final Remarks

Remark 10. The fact that the open-loop and closed-loop Stackelberg equilibrium
solutions are not subgame perfect casts doubt on the applicability of these solution
concepts. The leader may, or may not, prefer to maintain his reputation over
the gains of a deviation from an announced strategy. If he does, the game will
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Fig. 4.5 Stackelberg
feedback game in t D 0

evolve accordingly to these solution concepts. However, if he prefers the gains
and actually deviates from the announced policy, his policies lose credibility under
these concepts, and he should not expect the follower to respond “optimally.” As
a result of that, the leader will not be able to infer the constraint (4.92), and
the game development may remain undetermined. On the other hand, it seems
implausible that human players would consciously forget their previous decisions
and the consequences of these decisions. This is what would have to happen for a
game to admit a Stackelberg feedback equilibrium.

The most important conclusion one should draw from what we have learned
about the various solution concepts and information structures is that their careful
specification is crucial for making a game solution realistic.

8 Equilibria for a Class of Memory Strategies in
Infinite-Horizon Games

The feedback equilibrium obtained through dynamic programming and illustrated
with the fishery-management game in Sect. 5.2 is by no means the only subgame
perfect equilibrium of a multistage game. In repeated games, it is well known
that other equilibria can be enforced with the help of trigger strategies. Next
we characterize a subgame perfect equilibrium of this type in a multistage game
played in a state space. The method we will use is generic and can be applied
to many dynamic games. Following Krawczyk and Shimomura (2003) (compare
Haurie et al. 2012), we show how a trigger-strategy mechanism can be employed
to deliver a Pareto-efficient subgame perfect equilibrium in a capital-labor conflict
situation.
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8.1 Feedback Threats and Trigger Strategies

Definition 3. A trigger strategy for Player j is defined by an agreed control
sequence u�.�/ and a feedback law �j , which are combined in the following
sequence of policies:

�t
j .x0;UŒ0;t�1�/ D

(
u�

j .t/ if u.s/ D u�.s/; s D 0; : : : ; t � 1

� j .x.t// otherwise,

where x.t/ is the current state of the system and UŒ0;t�1� is the set of admissible
controls on Œ0; 1; : : : ; t � 1�.

Thus, as long as the controls used by all players in the history of play agree
with some nominal control sequence, Player j plays u�

j .t/ in stage t . If a deviation
from the nominal control sequence has occurred in the past, Player j will set his
control according to the feedback law �j in all subsequent periods. Effectively, this
feedback law is a threat that can be used by Player j to motivate his opponents to
adhere to the agreed (nominal) control sequence.

8.2 A Macroeconomic Problem

One of the main goals of modern growth theory is to examine why countries expe-
rience substantial divergences in their long-term growth rates. These divergences
were first noted in Kaldor (1961). Since then, growth theorists have paid this issue
a great deal of attention. In particular, Romer (1986) heavily criticized the so-called
S-S (Solow-Swan) theory of economic growth, because it fails to give a satisfactory
explanation for divergences in long-term growth rates.

There have been a few attempts to explain growth rates through dynamic strategic
interactions between capitalists and workers. Here we will show that a range of
different growth rates can occur in the equilibrium of a dynamic game played
between these two social classes.

Industrial relations and the bargaining powers of workers and capitalists differ
across countries, as do growth rates. Bargaining power can be thought of as the
weight the planner places on the utility of a given social class in his utility function.
More objectively, the bargaining power of the worker class can be linked to the
percentage of the labor force that is unionized and, by extension, to how frequently
a labor (or socio-democratic) government prevails.

The argument that unionization levels have an impact on a country’s growth
rate has been confirmed empirically. Figure 4.6 shows a cross-sectional graph of
the average growth rate in the period 1980–1988 plotted against the corresponding
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Fig. 4.6 Growth rates and unionization levels

percentage of union membership for 20 Asian and Latin American countries.29

About 15 % of the growth rate variability can be explained by union membership.
The above observations motivate our claim that differences in countries’ indus-

trial relations are at least partly responsible for the disparities in growth perfor-
mance.

To analyze these issues, we incorporate two novel features into a game-theoretic
growth model. First, we employ a noncooperative (self-enforcing) equilibrium
concept that we call a collusive equilibrium. Essentially, a collusive-equilibrium
strategy consists of a pair of trigger policies which initiate punishments when the
state deviates from the desired trajectory. Second, we assume that capitalists and
workers have different utility functions. Specifically, workers derive utility from
consumption, while capitalists derive utility from both consumption and possession
of capital.

We use a simple model of endogenous growth proposed in Krawczyk and
Shimomura (2003) which incorporates these two new features. It enables us to show
that:

(i) There exist an uncountably large number of collusive-equilibrium paths associ-
ated with different long-term growth rates.

29Source DeFreitas and Marshall (1998).
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(ii) The growth rate disparities may be driven by differences in the bargaining
power of the workers and capitalists.

Thus, our multistage game demonstrates that economies can grow at different
rates even when they have the same economic fundamentals (other than industrial
relations).

8.3 A Multistage Game Over an Endogenous Growth Model

Consider an economy with two players (social classes): capitalists and workers.
The state variable is capital x.t/ � 0. It evolves according to the state equation

x.t C 1/ D ax.t/ � w.t/ � c.t/; (4.104)

where a is a productivity parameter, c.t/ � 0 is capitalists’ consumption, and
w.t/ � 0 represents the workers’ wages.

The utility functions of the capitalists and the workers are as follows:

Jc ,
1X

tD�

ˇt .B � .x.t//� C D � .c.t//�/ B; D > 0 (4.105)

Jw ,
1X

tD�

ˇt F � .w.t//� F > 0 ; (4.106)

where � 2 .0; 1/ and ˇ is a common discount factor.
The capitalists and the workers are playing a dynamic game. They choose

feasible strategies . Qc; Qw/ such that (4.105) and (4.106) are jointly maximized for a
historically given initial capital x� in period � . We will use Jc and Jw to denote the
total utility measures, i.e., the discounted utility sums in period t for the capitalists
and the workers, respectively.

8.3.1 Solution Concepts
Suppose that the players can observe the state variable. Then the game solution
can be described by a pair of feedback, or Markovian, stationary strategies for
capitalists’ consumption and workers’ wages, as follows:

�c.x/; �w.x/: (4.107)

Depending on how the players organize themselves, we can expect the game to
admit:

• A feedback-Nash equilibrium
�
�c.x/; �w.x/

�
(noncooperative)

• A Pareto-efficient solution
�
c˛.x/; w˛.x/

�
(cooperative), where ˛ is the weight

the planner assigns to the payoff of the capitalists (or their bargaining power)
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or assuming that the players can observe the actions of their opponents

• A collusive equilibrium (noncooperative) enforced with a pair of stationary
trigger strategies

ıc.x; y/; ıw.x; y/;

where y is an auxiliary state variable to be defined below. This solution concept
can yield a solution that is both Pareto efficient and subgame perfect. In reality,
such an equilibrium may require players to engage in negotiations (e.g., about
wages) before the game starts.

8.4 Game Solutions

8.4.1 A Feedback-Nash Equilibrium Solution
Following Theorem 2, the strategy pair .�c.x/; �w.x// is a feedback-Nash equilib-
rium solution if and only if there exist value functions Vc.x/ and Vw.x/ that satisfy
the Bellman equations:

Vc.x/ D max
c

˚
Bx� C Dc� C ˇVc

�
ak � c � �w.x/

��
(4.108)

Vw.x/ D max
w

˚
F w� C ˇVw

�
ak � �c.x/ � w

��
: (4.109)

To determine the feedback-Nash equilibrium, we need to solve these Bellman
equations.

As in Sect. 5.2, we will use the method of undetermined coefficients. Let us
conjecture that the players’ value functions are as follows:

Vc.x/ D 
cx� Vw.x/ D 
wx�: (4.110)

We will show that these functions satisfy equations (4.108) and (4.109). Substituting
the conjectured value functions in (4.108)–(4.109) and using the first-order condi-
tion for the maxima of the right-hand sides, we obtain the following Markovian-
equilibrium strategies:

�c.x.t// D

�
ˇ

D

c

� 1
��1

x.t/ � cx.t/ and �w.x.t//D

�
ˇ

F

w

� 1
��1

x.t/ � wx.t/ :

(4.111)

If we find nonnegative values of c; w; 
c , and 
w; then we will know that a feedback-
Nash (Markovian) equilibrium with strategies specified by (4.111) exists.

Allowing for (4.111), differentiation yields first-order conditions and the enve-
lope conditions:
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�Dc��1x��1 D ˇ�
c.a � c � w/��1x��1 (4.112)

�F w��1x��1 D ˇ�
w.a � c � w/��1x��1 (4.113)

and

�
cx��1 D �Bx��1 C ˇ�.a � w/
c.a � c � w/��1x��1 (4.114)

�
wx��1 D ˇ�.a � c/
w.a � c � w/��1x��1; (4.115)

respectively. Assuming that the undetermined coefficients are nonzero, from (4.112),
(4.113), (4.114), and (4.115) we can derive a system of four equations for the four
unknown coefficients:

Dc��1 D ˇ
c.a � c � w/��1 (4.116)

F w��1 D ˇ
w.a � c � w/��1 (4.117)


c D B C ˇ.a � w/
c.a � c � w/��1 (4.118)

1 D ˇ.a � c/.a � c � w/��1: (4.119)

Repeating substitutions delivers the following equation for the capitalists’ gain
coefficient c:

Q.c/ � a � 2c �

�
B

D

�
c1�� � ˇ

1
1�� .a � c/

1
1�� D 0: (4.120)

Notice that Q.0/ must be positive for (4.120) to have a solution in Œ0; a�. Imposing

Q.0/ D a � .ˇa/
1

1�� > 0 gives us

ˇa� < 1: (4.121)

To ensure a unique feedback-Nash equilibrium of the capitalist game, we require a

unique solution to (4.120). For large c (e.g., c >
a

2
), Q.c/ < 0, and the graph of

Q.c/ crosses 0 at least once. The intersection will be unique if

dQ.c/

dc
D �2 � .1 � �/

�
B

D

�
c�� C

1

1 � �
ˇ

1
1�� .a � c/

1
1�� �1 < 0 (4.122)

for all c 2 .0; a/. This inequality is difficult to solve. However, notice that the
second term in the above expression is always negative. Thus, it only helps achieve
the desired monotonic decrease of Q.c/; in fact, (4.122) will always be negative for
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sufficiently large B=D. We will drop this term from (4.122) and prove a stronger
(sufficient) condition for a unique solution to (4.120). Using (4.121) we get

dQ.c/

dc
< �2C

1

1 � �
ˇ

1
1�� .a�c/

1
1�� �1 < �2C

1

1 � �
.ˇa�/

1
1�� < �2C

1

1 � �
< 0:

(4.123)

The above inequality holds for

� <
1

2
: (4.124)

Hence there is a unique positive c 2 .0; a/ such that Q.c/ D 0 when condi-
tions (4.121) and (4.124) are satisfied.

Once c has been obtained, w is uniquely determined by (4.119). In turn, 
c

and 
w are uniquely determined by (4.116) and (4.117), respectively. Note that all
constants obtained above are positive under (4.121).

Lemma 8. A pair of linear feedback-Nash equilibrium strategies (4.111) and a pair
of value functions (4.110) which satisfy equations (4.108) and (4.109) uniquely exist
if

a� <
1

ˇ
< a and � <

1

2
:

Moreover, if B=D is sufficiently large, the growth rate � D
x.t C 1/

x.t/
;

t D 0; 1; 2; : : : corresponding to the equilibrium strategy pair is positive and
time invariant.

For a proof see Krawczyk and Shimomura (2003) or Haurie et al. (2012).
The above lemma establishes a relationship between capital productivity, the

discount factor, and the degree of agent risk aversion (i.e., �) which ensures that an
equilibrium will exist. For example, a feedback-Nash equilibrium in our capitalist
game would be unlikely to exist in economies with very high productivity of capital
(a 	 1), a high discount factor (ˇ close to 1), and almost risk-neutral agents
(� 
 1). Note that the conditions in the above lemma are sufficient and may be
weakened for large values of B=D. The economic interpretation of a large B=D is
that the capitalists have a high preference for capital in their utility function. Thus,
the “greedier” the capitalists, the stronger the growth.

Equation (4.120), as well as the other conditions determining c; w; 
c , 
w, and
the growth rate, can be solved for numerically. These coefficients are needed to
define the collusive equilibrium, and so we have computed them for a number of
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different values of the discount factor. The remaining parameters of the economy
are assumed to be:

a D 1:07 7 % capital productivity
� D 0:2 utility function exponent
B D 1 capitalists’ weight for “passion for accumulation”
D D 1 capitalists’ weight for “desire for enjoyment”
F D 1 workers’ weight of utility from consumption

0:98 � ˇ � 0:984 discount-factor range corresponding to “true”
discount rate 2 Œ1:6; 2� %

x0 D 1 capital stock

Evidently, each pair of strategies (4.111) depends on the discount rate. Further-
more, for each discount rate, the strategy pair (4.111) generates a distinct pair of
utility measures (see Fig. 4.7).

8.4.2 Pareto-Efficient Solutions
Suppose that the players have agreed to act jointly to maximize

˛J ˛
c C .1 � ˛/J ˛

w ;

Fig. 4.7 Feedback-Nash equilibrium utility measures
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where the parameter ˛ 2 Œ0; 1� is a “proxy” for the capitalists’ bargaining power,
and J ˛

c ; J ˛
w are defined as in (4.105) and (4.106), with a superscript ˛ added30 to

recognize that the objective values will depend on bargaining power.
Let us derive a pair of Pareto-optimal strategies. We compute them as a joint

maximizer of the Bellman equation

U .x/ D max
c;w

f˛.Bx� C Dc�/ C .1 � ˛/F w� C ˇW1.ax � c � w/g : (4.125)

We specify the Pareto-efficient strategies for c and w and the value function U as
the following functions of state x.t/:

c.x.t// D cx.t/ w.x.t// D wx.t/ (4.126)

U ˛.x/ D 
x�: (4.127)

From duopoly theory, we expect c � c and w � w.
The first-order and envelope conditions yield

˛Dc��1 D ˇ
.a � c � w/��1 (4.128)

˛Dc��1 D .1 � ˛/F w��1 (4.129)


 D ˛B C ˇa.a � c � w/��1
: (4.130)

By solving equations (4.128), (4.129), and (4.130), we obtain the Pareto-efficient
strategies (4.126) and the value function (4.127). Similar substitutions as on page
203 yield the following equation:

R.c/ � D

 
a � c

 
1 C

�
.1 � ˛/F

˛D

� 1
1��

!!1��

� ˇ.Bc1�� C aD/ D 0:

(4.131)

Reasoning analogous to the one we used to solve equation (4.120) leads us to the
conclusion that there exists a unique positive c such that R.c/ D 0 if and only if

ˇa� < 1 (4.132)

holds.

Lemma 9. A pair of linear Pareto-optimal strategies uniquely exists if and only
if (4.132) is satisfied. Moreover, the growth rate � corresponding to the strategy
pair is positive and time invariant, even if B D 0.

30In fact, the coefficients c, w, and 
 will all depend on ˛. However, to simplify notation, we will
keep these symbols nonindexed.
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Fig. 4.8 Pareto-efficient growth rates

For a proof see Krawczyk and Shimomura (2003) or Haurie et al. (2012).
Notice that condition (4.132) is identical to the one needed for the existence

of a feedback-Nash equilibrium. However, Pareto-efficient strategies can generate
positive growth even if capitalists are not very “passionate” about accumulation.

Equation (4.131) and the remaining conditions determining c; w; 
 , and the
growth rate can be solved numerically. Each pair of strategies will depend on ˛

(the bargaining power) and ˇ (the discount factor) and will result in a different
growth rate as shown in Fig. 4.8. These growth rates generate different pairs of utility
measures (J ˛

w ; J ˛
c / D .Workers; Capitalists/I see Fig. 4.9, where the “+” represents

the growth rate obtained for the feedback-Nash equilibrium.

8.4.3 Collusive Equilibria
Now we define a pair of strategies

ı˛
c .x; y/; ı˛

w.x; y/

which enforce the payoffs
�
c˛.x/; w˛.x/

�
associated with the Pareto-efficient

strategies. We will show that .ı˛
c ; ı˛

w/ can be subgame perfect.
Assume that the game is played under the feedback information structure with

observable actions and define an auxiliary state variable y, called the mode of the
game, as follows:
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Fig. 4.9 Pareto-efficient utility frontiers

8
<

:

y.0/ D 1

y.t C 1/ D

�
1 if y.t/ D 1 and c.t/ D cx.t/ and w.t/ D wx.t/

0 otherwise:
(4.133)

Once the mode of the game changes from 1 (cooperative) to 0 (noncooperative), the
players remain in this mode indefinitely (i.e., there is no return to negotiations).

Define a new pair of strategies .ı˛
c ; ı˛

w/ in the following way:

8
ˆ̂<

ˆ̂:

ı˛
c .x.t/; y.t// D

�
cx.t/ if y.t/ D 1

cx.t/ otherwise

ı˛
w.x.t/; y.t// D

�
wx.t/ if y.t/ D 1

wx.t/ otherwise:

(4.134)

This definition implies that each player would use a Pareto-efficient strategy so long
as his opponent does the same.

To argue that the payoffs obtained in Fig. 4.9 (and the strategies that generate
them) are plausible, we need to show that (4.134) constitutes a subgame perfect
equilibrium. We will prove this claim by demonstrating that .ı˛

c ; ı˛
w/ is an equilib-

rium at every point .x; y/.
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It is easy to see that the pair is an equilibrium if y.�/ D 0 for � > 0. Indeed,
if one of the players has cheated before � , the players would use feedback-Nash
equilibrium strategies ck; wk, which are subgame perfect.

Moreover, .ı˛
c ; ı˛

w/ will be an equilibrium for .x; 1/ if the maximum gain from
“cheating,” i.e., from breaching the agreement concerning consumption streams
ck; wk, does not exceed the agreed-upon Pareto-efficient utility levels J ˛

c ; J ˛
w

for either player. To examine the range of values of the discount factor and the
bargaining power that support such equilibria, we will solve the following system
of inequalities:

max
cC

˚
Bx� C D � .cC/� C ˇVc

�
ax � cC � ˇ˛

w.x/
��

< W ˛
c .x/ (4.135)

max
wC

˚
F � .wC/� C ˇVw

�
ax � ˇ˛

c .x/ � wC
��

< W ˛
w .x/: (4.136)

Here, cC and wC denote the best cheating policies, Vc.�/; Vw.�/ is the pair of
utilities resulting from the implementation of the punishment strategies .c �; w �/

from any state � > 0; and W ˛
c .�/; W ˛

w .�/ is the pair of utilities resulting from the
Pareto-efficient strategies .c �; w �/.

The maxima of the left-hand sides of the above inequalities are achieved at

cC D
.a � w˛/ x

1 C
�

D
ˇ
c

� 1
��1

(4.137)

wC D
.a � c˛/ x

1 C
�

F
ˇ
w

� 1
��1

(4.138)

respectively.31 After substituting cC and wC in the expressions, under the max

operator in (4.135), (4.136) and simplifying the result, we obtain

0

BBB@B C
.a � w˛/�D

�
1 C

�
D

ˇ
c

� 1
��1

���1

1

CCCA x < W ˛
c .x/ (4.139)

.a � c˛/�D
�

1 C
�

F
ˇ
w

� 1
��1

���1
x < W ˛

w .x/: (4.140)

The inequalities are illustrated graphically in Fig. 4.10 for ˇ D 0:9825.

31Where all c˛; w˛; 
c; 
w depend on ˇ and ˛; see pages 203 and 206.
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Fig. 4.10 Where is cheating non-profitable for ˇ D 0:9825?
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We observe that there is a nonempty interval of values of ˛, approximately
from 0.05 (upper panel) to 0.15, where cheating is unprofitable for both players.
Consequently, there exists a range of bargaining powers and a discount factor such
that (4.134) is a subgame perfect equilibrium.

8.4.4 Final Remarks
We have obtained a continuum of equilibrium growth rates for a particular set
of fundamentals. Moreover, we can infer the properties of this continuum. For
example, Fig. 4.8 suggests that, for a given value of ˇ, countries with higher ˛

experience higher growth rates.
In other words, we have engineered a plausible dynamic game between trade

unions and capitalists which yields a continuum of growth paths. Each path is Pareto
efficient and arises in a feedback equilibrium. We believe that our model captures
some of the reality underlying economic growth by acknowledging that capitalists
have a passion for accumulation (D > 0).

9 Conclusion

This chapter has provided a brief description of existing research on multistage
games with state dynamics and illustrates the underlying theory with several
examples. It highlighted the importance of information structure for the outcome
of such games. We have considered various equilibrium solutions depending on
what information is available to the players, in particular open-loop, closed-loop,
and Markovian (or feedback) equilibria. We have also described the methods for
computing these equilibria.

The chapter has distinguished between several types of settings. In some of them,
all players choose their actions simultaneously, while in others only a subset of the
players are able to affect the state at any given time. We have explored solutions to
games in which there is a hierarchy of players (i.e., Stackelberg games). Finally, we
have shown how the history of play can be used to enforce the cooperative solution
in multistage games.
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Abstract

In this chapter, we describe a major part of the theory of zero-sum discrete-time
stochastic games. We review all basic streams of research in this area, in the
context of the existence of value and uniform value, algorithms, vector payoffs,
incomplete information, and imperfect state observation. Also some models
related to continuous-time games, e.g., games with short-stage duration, semi-
Markov games, are mentioned. Moreover, a number of applications of stochastic
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games are pointed out. The provided reference list reveals a tremendous progress
made in the field of zero-sum stochastic games since the seminal work of
Shapley (Proc Nat Acad Sci USA 39:1095–1100, 1953).

Keywords
Zero-sum game � Stochastic game � Borel space � Unbounded payoffs �

Incomplete information � Measurable strategy � Maxmin optimization �

Limsup payoff � Approachability � Algorithms

1 Introduction

Stochastic games extend the model of strategic form games to situations in which
the environment changes in time in response to the players’ actions. They also
extend the Markov decision model to competitive situations with more than one
decision maker. The choices made by the players have two effects. First, together
with the current state, the players’ actions determine the immediate payoff that each
player receives. Second, the current state and the players’ actions have an influence
on the chance of moving to a new state, where future payoffs will be received.
Therefore, each player has to observe the current payoffs and take into account
possible evolution of the state. This issue is also present in one-player sequential
decision problems, but the presence of additional players who have their own goals
adds complexity to the analysis of the situation. Stochastic games were introduced
in a seminal paper of Shapley (1953). He considered zero-sum dynamic games with
finite state and action spaces and a positive probability of termination. His model
is often considered as a stochastic game with discounted payoffs. Gillette (1957)
studied a similar model but with zero stop probability. These two papers inspired
an enormous stream of research in dynamic game theory and Markov decision
processes. There is a large variety of mathematical tools used in studying stochastic
games. For example, the asymptotic theory of stochastic games is based on some
algebraic methods such as semi-algebraic functions. On the other hand, the theory of
stochastic games with general state spaces has a direct connection to the descriptive
set theory. Furthermore, the algorithmic aspects of stochastic games yield interesting
combinatorial problems. The other basic mathematical tools make use of martingale
limit theory. There is also a known link between nonzero-sum stochastic games and
the theory of fixed points in infinite-dimensional spaces. The principal goal of this
chapter is to provide a comprehensive overview of the aforementioned aspects of
zero-sum stochastic games.

To begin a literature review, let us mention that a basic and clear introduction
to dynamic games is given in Başar and Olsder (1995) and Haurie et al. (2012).
Mathematical programming problems occurring in algorithms for stochastic games
with finite state and action spaces are broadly discussed in Filar and Vrieze (1997).
Some studies of stochastic games by the methods developed in gambling theory
with many informative examples are described in Maitra and Sudderth (1996). An
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advanced material on repeated and stochastic games is presented in Sorin (2002)
and Mertens et al. (2015). The two edited volumes by Raghavan et al. (1991) and
Neyman and Sorin (2003) contain a survey of a large part of the area of stochastic
games developed for almost fifty years since Shapley’s seminal work. This chapter
and the chapter of Jaśkiewicz and Nowak (2018) include a very broad overview
of state-of-the-art results on stochastic games. Moreover, the surveys given by
Mertens (2002), Vieille (2002), Solan (2009), Krishnamurthy and Parthasarathy
(2011), Solan and Vieille (2015), and Laraki and Sorin (2015) constitute relevant
complementary material.

There is a great deal of applications of stochastic games in science and
engineering. Here, we only mention the ones concerning zero-sum games. For
instance, Altman and Hordijk (1995) applied stochastic games to queueing models.
On the other hand, wireless communication networks were examined in terms of
stochastic games by Altman et al. (2005). For use of stochastic games in models
that arise in operations research, the reader is referred to Charnes and Schroeder
(1967), Winston (1978), Filar (1985), or Patek and Bertsekas (1999). There is also
a growing literature on applications of zero-sum stochastic games in theoretical
computer science (see, for instance, Condon (1992), de Alfaro et al. (2007) and
Kehagias et al. (2013) and references cited therein). Applications of zero-sum
stochastic games to economic growth models and robust Markov decision processes
are described in Sect. 3, which is mainly based on the paper of Jaśkiewicz and
Nowak (2011). The class of possible applications of nonzero-sum stochastic games
is larger than in the zero-sum case. They are discussed in our second survey in this
handbook.

The chapter is organized as follows: In Sect. 2 we describe some basic material
needed for a study of stochastic games with general state spaces. It incorpo-
rates auxiliary results on set-valued mappings (correspondences), their measurable
selections, and the measurability of the value of a parameterized zero-sum game.
This part naturally is redundant in a study of stochastic games with discrete state
and action spaces. Sect. 3 is devoted to a general maxmin decision problem in
discrete-time and Borel state space. The main motivation is to show its applications
to stochastic economic growth models and some robust decision problems in
macroeconomics. Therefore, the utility (payoff) function in illustrative examples is
unbounded and the transition probability function is weakly continuous. In Sect. 4
we consider standard discounted and positive Markov games with Borel state spaces
and simultaneous moves of the players. Sect. 5 is devoted to semi-Markov games
with Borel state space and weakly continuous transition probabilities satisfying
some stochastic stability assumptions. In the limit-average payoff case, two criteria
are compared, the time average and ratio average payoff criterion, and a question
of path optimality is discussed. Furthermore, stochastic games with a general Borel
payoff function on the spaces of infinite plays are examined in Sect. 6. This part
includes results on games with limsup payoffs and limit-average payoffs as special
cases. In Sect. 7 we present some basic results from the asymptotic theory of
stochastic games, mainly with finite state space, the notion of uniform value. This
part of the theory exhibits nontrivial algebraic aspects. Some algorithms for solving
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zero-sum stochastic games of different types are described in Sect. 8. In Sect. 9 we
provide an overview of zero-sum stochastic games with incomplete information and
imperfect monitoring. This is a vast subarea of stochastic games, and therefore, we
deal only with selected cases of recent contributions. Stochastic games with vector
payoffs and Blackwell’s approachability concept, on the other hand, are discussed
briefly in Sect. 10. Finally, Sect.11 gives a short overview of stochastic Markov
games in continuous time. We mainly focus on Markov games with short-stage
duration. This theory is based on an asymptotic analysis of discrete-time games
when the stage duration tends to zero.

2 Preliminaries

Let R be the set of all real numbers, R D R[f�1g and N D f1; 2; : : :g. By a Borel
space X we mean a nonempty Borel subset of a complete separable metric space
endowed with the relative topology and the Borel � -algebra B.X/. We denote by
Pr.X/ the set of all Borel probability measures on X . Let B�.X/ be the completion
of B.X/ with respect to some � 2 Pr.X/. Then U.X/ D \�2Pr.X/B�.X/ is
the � -algebra of all universally measurable subsets of X . There are a couple of
ways to define analytic sets in X (see Chap. 12 in Aliprantis and Border 2006 or
Chap. 7 in Bertsekas and Shreve 1996). One can say that C � X is an analytic
set if and only if there is a Borel set D � X � X whose projection on X is C .
If X is uncountable, then there exist analytic sets in X which are not Borel (see
Example 12.33 in Aliprantis and Border 2006). Every analytic set C � X belongs
to U.X/. A function  W X ! R is called upper semianalytic (lower semianalytic)
if for any c 2 R the set fx 2 X W  .x/ � cg (fx 2 X W  .x/ � cg) is analytic.
It is known that  is both upper and lower semianalytic if and only if  is Borel
measurable. Let Y be also a Borel space. A mapping � W X ! Y is universally
measurable if ��1.C / 2 U.X/ for each C 2 B.Y /.

A set-valued mapping x ! ˚.x/ � Y (also called a correspondence from X to
Y ) is upper semicontinuous (lower semicontinuous) if the set ˚�1.C / WD fx 2 X W

˚.x/\C 6D ;g is closed (open) for each closed (open) set C � Y . ˚ is continuous
if it is both lower and upper semicontinuous. ˚ is weakly or lower measurable if
˚�1.C / 2 B.X/ for each open setC � Y . Assume that˚.x/ 6D ; for every x 2 X .
If ˚ is compact valued and upper semicontinuous, then by Theorem 1 in Brown
and Purves (1973), ˚ admits a measurable selector, that is, there exists a Borel
measurable mapping g W X ! Y such that g.x/ 2 ˚.x/ for each x 2 X . Moreover,
the same holds if ˚ is weakly measurable and has complete values ˚.x/ for all
x 2 X (see Kuratowski and Ryll-Nardzewski 1965). Assume that D � X � Y is
a Borel set such that D.x/ WD fy 2 Y W .x; y/ 2 Dg is nonempty and compact for
each x 2 X . If C is an open set in Y , then D�1.C / WD fx 2 X W D.x/ \ C 6D

;g is the projection on X of the Borel set D0 D .X � C/ \ D and D0.x/ D

fy 2 Y W .x; y/ 2 D0g is � -compact for any x 2 X . By Theorem 1 in Brown
and Purves (1973), D�1.C / 2 B.X/. For a broad discussion of semicontinuous or
measurable correspondences, the reader is referred to Himmelberg (1975), Klein
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and Thompson (1984) or Aliprantis and Border (2006). For any Borel space Y , let
C.Y / be the space of all bounded continuous real-valued functions on Y . Assume
that Pr.Y / is endowed with the weak topology and the Borel � -algebra B.Pr.Y //
(see Bertsekas and Shreve 1996; Billingsley 1968 or Parthasarathy 1967). The � -
algebra B.Pr.Y // of all Borel subsets of Pr.Y / coincides with the smallest � -algebra
on Pr.Y / for which all the mappings p ! p.D/ from Pr.Y / to Œ0; 1� are measurable
for each D 2 B.Y / (see Proposition 7.25 in Bertsekas and Shreve 1996). Recall
that a sequence .pn/n2N converges weakly to some p 2 Pr.Y / if and only if for any
� 2 C.Y /,

Z
Y

�.y/pn.dy/ !

Z
Y

�.y/p.dy/ as n ! 1:

If Y is a Borel space, then Pr.Y / is a Borel space too, and if Y is compact, so is
Pr.Y / (see Corollary 7.25.1 and Proposition 7.22 in Bertsekas and Shreve 1996).

Consider the correspondence x ! �.x/ WD Pr.˚.x// � Pr.Y /. The following
result from Himmelberg and Van Vleck (1975) is useful in studying stochastic
games.

Proposition 1. If ˚ is upper (lower) semicontinuous and compact valued, then so
is � .

A transition probability or a stochastic kernel from X to Y is a function
' W B.Y / � X ! Œ0; 1� such that '.Dj�/ is a Borel measurable function on X
for every D 2 B.Y / and '.�jx/ 2 Pr.Y / for each x 2 X . It is well known that
every Borel measurable mapping f W X ! Pr.Y / may be regarded as a transition
probability ' from X to Y . Namely, '.Djx/ D f .x/.D/, D 2 B.Y /, x 2 X (see
Proposition 7.26 in Bertsekas and Shreve 1996). We shall write f .dyjx/ instead
of f .x/.dy/. Clearly, any Borel measurable mapping f W X ! Y is a special
transition probability ' from X to Y such that for each x 2 X , '.�jx/ is the Dirac
measure concentrated at the point f .x/. Similarly, universally measurable transition
probabilities are defined, when B.X/ is replaced by U.X/.

In studying zero-sum stochastic games with Borel state spaces, we must use in
the proofs some results on minmax measurable selections in parameterized games.
LetX ,A, andB be Borel spaces. Assume thatKA 2 B.X�A/ andKB 2 B.X�B/

and suppose that the sets A.x/ WD fa 2 A W .x; a/ 2 Ag and B.x/ WD fb 2

B W .x; b/ 2 Bg are nonempty for all x 2 X . Let K WD f.x; a; b/ W x 2 X; a 2

A.x/; b 2 B.x/g. ThenK is a Borel subset ofX�A�B . Let r W K ! R be a Borel
measurable payoff function in a zero-sum game parameterized by x 2 X . If players
1 and 2 choose mixed strategies � 2 Pr.A.x// and � 2 Pr.B.x//, respectively, then
the expected payoff to player 1 (cost to player 2) depends on x 2 X and is of the
form

R.x; �; �/ WD

Z
A.x/

Z
B.x/

r.x; a; b/�.db/�.da/
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provided that the double integral is well defined. Assuming this and that B.x/ is
compact for each x 2 X and r.x; a; �/ is lower semicontinuous on B.x/ for each
.x; a/ 2 KA, we conclude from the minmax theorem of Fan (1953) that the game
has a value, that is, the following equality holds

v�.x/ WD min
�2Pr.B.x//

sup
�2Pr.A.x//

R.x; �; �/ D sup
�2Pr.A.x//

min
�2P r.B.x//

R.x; �; �/; x 2 X:

A universally (Borel) measurable strategy for player 1 is a universally (Borel)
measurable transition probability f from X to A such that f .A.x/jx/ D 1 for
all x 2 X . By the Jankov-von Neumann theorem (see Theorem 18.22 in Aliprantis
and Border 2006), there exists a universally measurable function ' W X ! A such
that '.x/ 2 A.x/ for all x 2 X . Thus, the set of universally measurable strategies
for player 1 is nonempty. Universally (Borel) measurable strategies for player 2 are
defined similarly. A strategy g� is optimal for player 2 if

v�.x/ D sup
�2Pr.A.x//

Z
A.x/

Z
B.x/

r.x; a; b/g�.dbjx/�.da/ for all x 2 X:

Let " � 0. A strategy f � is "-optimal for player 1 if

v�.x/ � inf
�2Pr.B.x//

Z
A.x/

Z
B.x/

r.x; a; b/�.db/f �.dajx/C " for all x 2 X:

A 0-optimal strategy is called optimal.
The following result follows from Nowak (1985b). For a much simpler proof,

see Nowak (2010).

Proposition 2. Under the above assumptions the value function v� is upper
semianalytic. Player 2 has a universally measurable optimal strategy and, for any
" > 0, player 1 has a universally measurable "-optimal strategy. If, in addition, we
assume that A.x/ is compact for each x 2 X and r.x; �; b/ is upper semicontinuous
for each .x; b/ 2 KB , then v� is Borel measurable and both players have Borel
measurable optimal strategies.

As a corollary to Theorem 5.1 in Nowak (1986), we can state the following result.

Proposition 3. Assume that x ! A.x/ is lower semicontinuous and has complete
values in A and x ! B.x/ is upper semicontinuous and compact valued. If r W

K ! R is lower semicontinuous on K, then v� is lower semicontinuous, player 2
has a Borel measurable optimal strategy, and for any " > 0, player 1 has a Borel
measurable "-optimal strategy.
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The lower semicontinuity of v� in Proposition 3 is a corollary to the maximum
theorem of Berge (1963). In some games or minmax control models, one can
consider the minmax value

v�.x/ WD inf
�2Pr.B.x//

sup
�2Pr.A.x//

R.x; �; �/; x 2 X;

if the mixed strategies are used, or

w�.x/ WD inf
b2B.x/

sup
a2A.x/

r.x; a; b/; x 2 X;

if the attention is restricted to pure strategies. If the assumption on semicontinuity
of the function r is dropped, then the measurability of v� or w� is connected
with the measurability of projections of coanalytic sets. This issue leads to some
considerations in the classical descriptive set theory. A comprehensive study of the
measurability of upper or lower value of a game with Borel payoff function r is
given in Prikry and Sudderth (2016).

3 Robust Markov Decision Processes

A discounted maxmin Markov decision process is defined by the objects X , A, B ,
KA, K, u, q, and ˇ, where:

• X is a Borel state space;
• A is the action space of the controller (player 1) and B is the action space of the

opponent (player 2). It is assumed that A and B are Borel spaces;
• KA 2 B.X � A/ is the constraint set for the controller. It is assumed that

A.x/ WD fa 2 A W .x; a/ 2 Ag 6D ;

for each x 2 X . This is the set of admissible actions of the controller in the state
x 2 X I

• K 2 B.X � A � B/ is the constraint set for the opponent. It is assumed that

B.x; a/ WD fb 2 B W .x; a; b/ 2 Bg 6D ;

for each .x; a/ 2 KA. This is the set of admissible actions of the opponent for
.x; a/ 2 KA;

• u W K ! R is a Borel measurable stage payoff function;
• q is a transition probability from K to X , called the law of motion among states.

If xn is a state at the beginning of period n of the process and actions an 2

A.xn/ and bn 2 B.xn; an/ are selected by the players, then q.�jxn; an; bn/ is the
probability distribution of the next state xnC1;
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• ˇ 2 .0; 1/ is the discount factor.

We make the following assumptions on the admissible action sets.

(C1) For any x 2 X , A.x/ is compact and the set-valued mapping x ! A.x/ is
upper semicontinuous.

(C2) The set-valued mapping .x; a/ ! B.x; a/ is lower semicontinuous.
(C3) There exists a Borel measurable mapping g W KA ! B such that g.x; a/ 2

B.x; a/ for all .x; a/ 2 KA.

Remark 1. From Sect. 2, it follows that condition (C3) holds if B.x; a/ is � -
compact for each .x; a/ 2 KA (see Brown and Purves 1973) or if B is a complete
separable metric space and each set B.x; a/ is closed (see Kuratowski and Ryll-
Nardzewski 1965).

Let H1 WD X , Hn WD Kn � X for n � 2. Put H�
1 WD KA and H�

n WD Kn �KA

if n � 2. Generic elements of Hn and H�
n are histories of the process, and

they are of the form h1 D x1, h�
1 D .x1; a1/ and for each n � 2, hn D

.x1; a1; b1; : : : :xn�1; an�1; bn�1; xn/, h�
n D .hn; an/:

A strategy for the controller is a sequence � D .�n/n2N of stochastic kernels
�n from Hn to A such that �n.A.xn/jhn/ D 1 for each hn 2 Hn. The class of
all strategies for the controller will be denoted by ˘ . A strategy for the opponent
is a sequence 	 D .	n/n2N of stochastic kernels 	n from H�

n to B such that
	n.B.xn; an/jh

�
n/ D 1 for all h�

n 2 H�
n . The class of all strategies for the opponent

will be denoted by 
 �. Let F be the set of Borel measurable mappings f from X

to A such that f .x/ 2 A.x/ for each x 2 X . A deterministic stationary strategy for
the controller is a sequence � D .fn/n2N where fn D f for all n 2 N and some
f 2 F . Such a strategy can obviously be identified with the mapping f 2 F . Let

uC.x; a; b/ WD maxfu.x; a; b/; 0g and

u�.x; a; b/ WD minfu.x; a; b/; 0g; .x; a; b/ 2 K:

For each initial state x1 D x and any strategies � 2 ˘ and 	 2 
 �, define

JC
ˇ .x; �; 	/ D E�	

x

 
1X
nD1

ˇn�1uC.xn; an; bn/

!
; (5.1)

J�
ˇ .x; �; 	/ D E�	

x

 
1X
nD1

ˇn�1u�.xn; an; bn/

!
: (5.2)

Here,E�	
x denotes the expectation operator corresponding to the unique conditional

probability measure P�	
x defined on the space of histories, starting at state x,

and endowed with the product � -algebra, which is induced by strategies � , 	
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and the transition probability q according to the Ionescu-Tulcea Theorem (see
Proposition 7.45 in Bertsekas and Shreve 1996 or Proposition V.1.1 in Neveu 1965).
In the sequel, we give conditions under which JC

ˇ .x; �; 	/ < 1 for any x 2 X ,
� 2 ˘ , 	 2 
 �. They enable us to define the expected discounted payoff over an
infinite time horizon as follows:

Jˇ.x; �; 	/ D E�	
x

 
1X
nD1

ˇn�1u.xn; an; bn/

!
: (5.3)

Then, for every x 2 X , � 2 ˘ , 	 2 
 � we have that Jˇ.x; �; 	/ 2 R and

Jˇ.x; �; 	/ D JC
ˇ .x; �; 	/C J�

ˇ .x; �; 	/ D

1X
nD1

ˇn�1E�	
x u.xn; an; bn/:

Let

vˇ.x/ WD sup
�2˘

inf
	2
 �

Jˇ.x; �; 	/; x 2 X:

This is the maxmin or lower value of the game starting at the state x 2 X . A strategy
�� 2 ˘ is called optimal for the controller if inf	2
 � Jˇ.x; �

�; 	/ D vˇ.x/ for
every x 2 X .

It is worth mentioning that if u is unbounded, then an optimal strategy �� need
not exist even if 0 � vˇ.x/ < 1 for every x 2 X and the available action sets A.x/
and B.x/ are finite (see Example 1 in Jaśkiewicz and Nowak 2011).

The maxmin control problems with Borel state spaces have been already consid-
ered by González-Trejo et al. (2003), Hansen and Sargent (2008), Iyengar (2005),
and Küenle (1986) and are referred to as games against nature or robust dynamic
programming (Markov decision) models. The idea of using maxmin decision rules
was introduced in statistics (see Blackwell and Girshick 1954). It is also used in
economics (see, e.g., the variational preferences in Maccheroni et al. 2006).

3.1 One-Sided Weighted Norm Approach

We now describe our regularity assumptions imposed on the payoff and transition
probability functions.

(W1) The payoff function u W K ! R is upper semicontinuous.
(W2) For any � 2 C.X/ the function

.x; a; b/ !

Z
X

�.y/q.dyjx; a; b/

is continuous.
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(M1) There exist a continuous function ! W X ! Œ1;1/ and a constant ˛ > 0 such
that

sup
.x;a;b/2K

R
X
!.y/q.dyjx; a; b/

!.x/
� ˛ and ˇ˛ < 1: (5.4)

Moreover, the function .x; a; b/ !
R
X
!.y/q.dyjx; a; b/ is continuous.

(M2) There exists a constant d > 0 such that

sup
a2A.x/

sup
b2B.x;a/

uC.x; a; b/ � d!.x/

for all x 2 X .

Note that under conditions (M1) and (M2), the discounted payoff function is well
defined, since

0 � E�	
x

 
1X
nD1

ˇn�1uC.xn; an; bn/

!
� d

1X
nD1

ˇn�1˛n�1!.x/ < 1:

Remark 2. Assumption (W2) states that transition probabilities are weakly con-
tinuous. It is worth emphasizing that this property, in contrast to the setwise
continuous transitions, is satisfied in a number of models arising in operations
research, economics, etc. Indeed, Feinberg and Lewis (2005) studied the typical
inventory model:

xnC1 D xn C an � �nC1; n 2 N;

where xn is the inventory at the end of period n, an is the decision on how much
should be ordered, and �n is the demand during period n and each �n has the same
distribution as the random variable � . Assume that X D R, A D RC. Let q.�jx; a/
be the transition law for this problem. In view of Lebesgue’s dominated convergence
theorem, it is clear that q is weakly continuous. On the other hand, recall that the
setwise continuity means that q.Djx; ak/ ! q.Djx; a0/ as ak ! a0 for any D 2

B.X/. Suppose that the demand is deterministic d D 1, ak D a C 1=k and D D

.�1; x C a � 1�. Then, q.Djx; a/ D 1, but q.Djx; ak/ D 0.

For any function � W X ! R, define the !-norm as follows:

k�k! D sup
x2X

j�.x/j

!.x/
; (5.5)

provided that it is finite. Let U!.X/ be the space of all upper semicontinuous
functions endowed with the metric induced by the !-norm. By U!.X/ we denote
the set of all upper semicontinuous functions � W X ! R such that �C 2 U!.X/.
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Define uk WD maxfu;�kg, k 2 N. For any � 2 U!.X/, .x; a; b/ 2 K, and
k 2 N, let

Lˇ;k�.x; a; b/ D uk.x; a; b/C ˇ

Z
X

�.y/q.dyjx; a; b/

and

Lˇ�.x; a; b/ D u.x; a; b/C ˇ

Z
X

�.y/q.dyjx; a; b/:

The maximum theorem of Berge (1963) (see also Proposition 10.2 in Schäl
1975) implies the following auxiliary result.

Lemma 1. Assume (C1)–(C3), (W1)–(W2), and (M1)–(M2). Then for any � 2

U!.X/, the functions

inf
b2B.x;a/

Lˇ;k�.x; a; b/ and max
a2A.x/

inf
b2B.x;a/

Lˇ;k�.x; a; b/

are upper semicontinuous on KA and X , respectively. Similar properties hold if
Lˇ;k�.x; a; b/ is replaced by Lˇ�.x; a; b/.

For any x 2 X , define

Tˇ;k�.x/ D max
a2A.x/

inf
b2B.x;a/

Lˇ;k�.x; a; b/ and

Tˇ�.x/ D max
a2A.x/

inf
b2B.x;a/

Lˇ�.x; a; b/: (5.6)

By Lemma 1, the operators Tˇ;k and Tˇ are well defined. Additionally, note that

Tˇ�.x/ D max
a2A.x/

inf
�2Pr.B.x;a//

Z
B.x;a/

Lˇ�.x; a; b/�.db/:

We can now state the main result in Jaśkiewicz and Nowak (2011).

Theorem 1. Assume (C1)–(C3), (W1)–(W2), and (M1)–(M2). Then vˇ 2 U!.X/,
Tˇvˇ D vˇ and there exists a stationary strategy f � 2 F such that

vˇ.x/ D inf
b2B.x;a/

Lˇvˇ.x; f
�.x/; b/

for x 2 X . Moreover,

vˇ.x/ D inf
	2
 �

Jˇ.x; f
�; 	/ D sup

�2˘

inf
	2
 �

Jˇ.x; �; 	/

for all x 2 X , so f � is an optimal stationary strategy for the controller.
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The proof of Theorem 1 consists of two steps. First, we deal with truncated
models, in which the payoff function u is replaced by uk . Then, making use of the
fixed point argument, we obtain an upper semicontinuous solution to the Bellman
equation, say vˇ;k . Next, we observe that the sequence .vˇ;k/k2N is nonincreasing.
Letting k ! 1 and making use of Lemma 1, we arrive at the conclusion.

Remark 3. The weighted supremum norm approach in Markov decision processes
was proposed by Wessels (1977) and further developed, e.g., by Hernández-Lerma
and Lasserre (1999). This method has been also adopted to zero-sum stochastic
games (see Couwenbergh 1980; González-Trejo et al. 2003; Jaśkiewicz 2009, 2010;
Jaśkiewicz and Nowak 2006, 2011; Küenle 2007 and references cited therein).
The common feature of the aforementioned works is the fact that the authors use
the weighted norm condition instead of assumption (M2). More precisely, in our
notation it means that the following holds

sup
a2A.x/

sup
b2B.x;a/

ju.x; a; b/j � d!.x/; x 2 X (5.7)

for some constant d > 0. This assumption, however, excludes many examples
studied in economics where the utility function u equals �1 in some states.
Moreover, inequality in (M1) and (5.7) often enforces additional constraints on
the discount coefficient ˇ in comparison with (M1) and (M2) (see Example 6 in
Jaśkiewicz and Nowak 2011).

Observe that if the payoff function u accepts only negative values, then assump-
tion (M2) is redundant. Thus, the problem comes down to the negative program-
ming, which was solved by Strauch (1966) in the case of one-player game (Markov
decision process).

3.1.1 Models with Unknown Disturbance Distributions
Consider the control system in which

xnC1 D �.xn; an; �n/; n 2 N:

It is assumed that .�n/n2N is a sequence of independent random variables with values
in a Borel space S having unknown probability distributions that can change from
period to period. The set B of all possible distributions is assumed to be a nonempty
Borel subset of the space Pr.S/ endowed with the weak topology. The mapping
� W KA � S ! X is assumed to be continuous. Let u0 be an upper semicontinuous
utility function defined onKA �S such that uC

0 .x; a; s/ � d!.x/ for some constant
d > 0 and all .x; a/ 2 KA, s 2 S .

We can formulate a maxmin control model in the following way:

(a) B.x; a/ D B � Pr.S/ for each .x; a/ 2 KA, K D KA � BI

(b) u.x; a; b/ D
R
S

u0.x; a; s/b.ds/, .x; a; b/ 2 KI

(c) for any Borel set D�X , q.Djx; a; b/D
R
X
1D.�.x; a; s//b.ds/, .x; a; b/2K.
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Then for any bounded continuous function � W X ! R, we have that
Z
X

�.y/q.dyjx; a; b/ D

Z
X

�.�.x; a; s//b.ds/: (5.8)

From Proposition 7.30 in Bertsekas and Shreve (1996) or Lemma 5.3 in Nowak
(1986) and (5.8), it follows that q is weakly continuous. Moreover, by virtue of
Proposition 7.31 in Bertsekas and Shreve (1996), it is easily seen that u is upper
semicontinuous on K.

The following result can be viewed as a corollary to Theorem 1.

Proposition 4. Let � and u0 satisfy the above assumptions. If (M1) holds, then the
controller has an optimal strategy.

Proposition 4 is a counterpart of the results obtained in Sect. 6 of González-
Trejo et al. (2003) for discounted models (see Propositions 6.1, 6.2, 6.3 and their
consequences in González-Trejo et al. (2003)). However, our assumptions imposed
on the primitive data are weaker than the ones used by González-Trejo et al. (2003).
They are satisfied for a pretty large number of systems, in which the disturbances
comprise “random noises” that are difficult to observe and often caused by external
factors influencing the dynamics. Below we give certain examples which stem from
economic growth theory and related topics. Mainly, they are inspired by models
studied in Stokey et al. (1989), Bhattacharya and Majumdar (2007), and Hansen
and Sargent (2008).

Example 1 (A growth model with multiplicative shocks). Let X D Œ0;1/ be the
set of all possible capital stocks. If xn is a capital stock at the beginning of period n,
then the level of satisfaction of consumption of an 2 A.xn/ D Œ0; xn� in this period
is a�n . Here � 2 .0; 1� is a fixed parameter. The evolution of the state process is
described by the following equation:

xnC1 D .xn � an/
�n; n 2 N;

where  2 .0; 1/ is some constant and �n is a random shock in period n. Assume that
each �n follows a probability distribution b 2 B for some Borel set B � Pr.Œ0;1//.
We assume that b is unknown.

Consider the maxmin control model, where X D Œ0;1/, A.x/ D Œ0; x�,
B.x; a/ D B , and u.x; a; b/ D a� for .x; a; b/ 2 K. Then, the transition
probability q is of the form

q.Djx; a; b/ D

Z 1

0

1D..x � a/ s/b.ds/;

where D 2 B.X/. If � 2 C.X/, then the integral

Z
X

�.y/q.dyjx; a; b/ D

Z 1

0

�..x � a/ s/b.ds/
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is continuous at .x; a; b/ 2 K. We further assume that

Ns D sup
b2B

Z 1

0

sb.ds/ < 1:

Define now

!.x/ D .r C x/� ; x 2 X; (5.9)

where r � 1 is a constant. Clearly, uC.x; a; b/ D a� � !.x/ for any .x; a; b/ 2 K.
Hence, condition (M2) is satisfied. Moreover, by Jensen’s inequality we obtain

Z
X

!.y/q.dyjx; a; b/ D

Z 1

0

.r C .x � a/ s/�b.ds/ � .r C x Ns/� :

Thus,

R
X
!.y/q.dyjx; a; b/

!.x/
� ��.x/; where �.x/ WD

r C Nsx

r C x
; x 2 X:

(5.10)
If x � Nx WD Ns1=.1�/, then �.x/ � 1, and consequently, ��.x/ � 1. If x < Nx, then

�.x/ <
r C Nsx

r C x
�
r C Ns Nx

r
D 1C

Nx

r
;

and

��.x/ � ˛ WD

�
1C

Nx

r

��
: (5.11)

Let ˇ 2 .0; 1/ be any discount factor. Then, there exists r � 1 such that ˛ˇ < 1,
and from (5.10) and (5.11) it follows that assumption (M1) is satisfied.

Example 2. Let us consider again the model from Example 1 but with u.x; a; b/ D

ln a, a 2 A.x/ D Œ0; x�. This utility function has a number of applications in
economics (see Stokey et al. 1989). Nonetheless, the two-sided weighted norm
approach cannot be employed, because ln.0/ D �1. Assume now that the state
evolution equation is of the form

xnC1 D .1C �0/.xn � an/�n; n 2 N;

where �0 > 0 is a constant rate of growth and �n is an additional random income
(shock) received in period n. Let !.x/ D r C ln.1C x/ for all x 2 X and
some r � 1. Clearly, uC.x; a; b/ D maxf0; ln ag � maxf0; ln xg � !.x/ for all
.x; a; b/ 2 K. By Jensen’s inequality it follows that
Z
X

!.y/q.dyjx; a; b/ D

Z 1

0

!..x�a/.1C�0/Cs/b.ds/ � rCln.1Cx.1C�0/Ns/
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for all .x; a; b/ 2 K. Thus

R
X
!.y/q.dyjx; a/

!.x/
�  .x/ WD

r C ln.1C x.1C �0/Ns/

r C ln.1C x/
: (5.12)

If we assume that Ns.1C �0/ > 1, then

 .x/ � 1 D
ln
�
1C.1C�0/Nsx

1Cx

�

r C ln.1C x/
�
1

r
ln

�
1C .1C �0/Nsx

1C x

�
�
1

r
ln.Ns.1C �0//:

Hence

 .x/ � ˛ WD 1C
1

r
ln.Ns.1C �0//:

Choose now any ˇ 2 .0; 1/. If r is sufficiently large, then ˛ˇ < 1 and by (5.12)
condition (M1) holds.

Example 3 (A growth model with additive shocks). Consider the model from
Example 1 with the following state evolution equation:

xnC1 D .1C �0/.xn � an/C �n; n 2 N;

where �0 is constant introduced in Example 2. The transition probability q is now
of the form

q.Djx; a; b/ D

Z 1

0

1D..1C �0/.x � a/C s/b.ds/;

where D 2 B.X/. If � 2 C.X/, then the integral

Z
X

�.y/q.dyjx; a/ D

Z 1

0

�..1C �0/.x � a/C s/b.ds/

is continuous in .x; a; b/ 2 K. Let the function ! be as in (5.9). Applying Jensen’s
inequality we obtain

Z
X

!.y/q.dyjx; a; b/ D

Z 1

0

!..x � a/.1C �0/C s/b.ds/

� !.x.1C �0/C Ns/ D .r C x.1C �0/C Ns/� :

Thus,
R
X
!.y/q.dyjx; a; b/

!.x/
� ��0 .x/; where �0.x/ WD

r C x.1C �0/C Ns

r C x
; x 2 X:
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Take r > Ns=�0 and note that

lim
x!0C

�0.x/ D 1C
Ns

r
< lim

x!1
�0.x/ D 1C �0:

Hence,

sup
.x;a;b/2K

R
X
!.y/q.dyjx; a; b/

!.x/
� sup

x2X

��0 .x/ D .1C �0/
� :

Therefore, condition (M1) holds for all ˇ 2 .0; 1/ such that ˇ.1C �0/
� < 1.

For other examples involving quadratic cost/payoff functions and linear evolution
of the system, the reader is referred to Jaśkiewicz and Nowak (2011).

3.1.2 An Application to the Hansen-Sargent Model in
Macroeconomics

In this subsection, we study maxmin control model, in which minimizing player
(nature) helps the controller to design a decision rule that is robust to misspecifi-
cation of a dynamic approximating model linking controls today to state variables
tomorrow. The constraint on nature is represented by a cost based on a reference
transition probability q. Nature can deviate away from q, but the larger the deviation,
the higher the cost. In particular, this cost is proportional to the relative entropy
I . Oqjjq/ between the chosen probability Oq and the reference probability q, i.e., the
cost equals to 0I . Oqjjq/, where 0 > 0. Such preferences in macroeconomics are
called multiplier preferences (see Hansen and Sargent 2008).

Let us consider the following scalar system:

xnC1 D xn C an C "n C bn; n 2 N; (5.13)

where xn 2 X D R, an 2 A.xn/ � A D Œ0; Oa� is an action selected by the controller
and bn 2 B.xn; an/ � B D .�1; 0� is a parameter chosen by the malevolent
nature. The sequence of random variables ."n/n2N is i.i.d., where "n follows the
standard Gaussian distribution with the density denoted by �. At each period the
controller selects a control a 2 A, which incurs the payoff u0.x; a/. It is assumed
that the function u0 is upper semicontinuous on X �A. The controller has a unique
explicitly specified approximating model (when bn � 0 for all n) but concedes that
data might actually be generated by a number of set of models that surround the
approximating model.

Let n 2 N be fixed. By p we denote the conditional density of variable Y D xnC1

implied by equation (5.13). Setting a D an, x D xn, and bn D b we obtain that

p.yjx; a; b/ D
1

p
2�
e�

.y�x�a�b/2

2 for y 2 R:
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Clearly, p.�jx; a; b/ defines the probability measure q, where

q.Djx; a; b/ D

Z
D

p.yjx; a; b/dy for D � B.R/:

If b D 0, then we deal with the baseline model. Hence, the relative entropy

I .q.�jx; a; b/jjq.�jx; a; 0// D
1

2
b2;

and consequently, the payoff function in the model is

u.x; a; b/ D u0.x; a/C
1

2
0b

2:

The term 1
2
0b

2 is a penalized cost paid by nature. The parameter 0 can be viewed
as the degree of robustness. For example, if 0 is large, then the penalization
becomes so great that only the nominal model remains and the strategy is less robust.
Conversely, the lower values of 0 allow to design a strategy which is appropriate
for a wider set of model misspecifications. Therefore, a lower 0 is equivalent to a
higher degree of robustness.

Within such a framework, we shall consider pure strategies for nature. A strategy
	 D .	n/n2N is an admissible strategy to nature, if 	n W H�

n ! B is a Borel
measurable function, i.e., bn D 	n.h

�
n/, n 2 N, and for every x 2 X and � 2 ˘

E�	
x

 
1X
nD1

ˇn�1b2n

!
< 1:

The set of all admissible strategies to nature is denoted by 
 �
0 .

The objective of the controller is to find a policy �� 2 ˘ such that

inf
	2
 �

0

E��	
x

 
1X
nD1

ˇn�1

�
u0.xn; an/C

1

2
0b

2
n

�!
D

max
�2˘

inf
	2
 �

0

E�	
x

 
1X
nD1

ˇn�1

�
u0.xn; an/C

1

2
0b

2
n

�!
:

We solve the problem by proving that there exists a solution to the optimality
equation. First, we note that assumption (M1) is satisfied for !.x/ D maxfx; 0g C r ,
where r � 1 is some constant. Indeed, on page 268 in Jaśkiewicz and Nowak (2011),
it is shown that for every discount factor ˇ 2 .0; 1/, we may choose sufficiently large
r � 1 such that ˛ˇ < 1, where ˛ D 1C . Oa C 1/=r . Further, we shall assume that
supa2A uC

0 .x; a/ � d!.x/ for all x 2 X .
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For any function � 2 U!.X/, we define the operator Tˇ as follows:

Tˇ�.x/ D max
a2A

inf
b2B

�
u0.x; a/C

1

2
0b

2 C ˇ

Z
X

�.y/q.dyjx; a; b/

	

for all x 2 X . Clearly, Tˇ maps the space U!.X/ into itself. Indeed, we have

Tˇ�.x/ � max
a2A

�
u0.x; a/C ˇ

Z
X

�.y/q.dyjx; a; b/

	
� d!.x/C ˇ˛k�Ck!!.x/

for all x 2 X . Hence, .Tˇ�/C 2 U!.X/ and by Lemma 1, Tˇ� is upper
semicontinuous. Proceeding analogously as in the proof of Theorem 1, we infer
that vˇ 2 U!.X/, where vˇ D Tˇvˇ and there exits f � 2 F such that

vˇ.x/ D Tˇvˇ.x/ D max
a2A

inf
b2B

�
u0.x; a/C

1

2
0b

2 C ˇ

Z
X

vˇ.y/q.dyjx; a; b/

	

D inf
b2B

�
u0.x; f

�.x//C
1

2
0b

2 C ˇ

Z
X

vˇ.y/q.dyjx; f �.x/; b/

	

(5.14)

for x 2 X . Finally, we may formulate the following result.

Proposition 5. Consider the system given in (5.13). Then, vˇ 2 U!.X/ and there
exists a stationary strategy f � such that (5.14) is satisfied for all x 2 X . The
strategy f � is optimal for the controller.

3.2 Average Reward Robust Markov Decision Process

In this subsection, we assume that u takes values in R rather than in R. Moreover,
the action set of nature is independent of .x; a/ 2 KA, i.e., B.x; a/ � B , where
B is a compact metric space. Obviously, (C3) is then immediately satisfied. Since
we consider the average payoff in the maxmin control problem, we impose a bit
stronger assumptions than in the previous subsection. Below are their counterparts.

(C̃1) For any x 2 X , A.x/ is compact and the set-valued mapping x ! A.x/ is
continuous.

(W̃1) The payoff function u is continuous on K.

A strategy for the opponent is a sequence 	 D .	n/n2N of Borel measurable
mappings 	n W H�

n ! B rather than a sequence of stochastic kernels. The set of all
strategies for the opponent is denoted by 
 �

0 .
For any initial state x 2 X and strategies � 2 ˘ , 	 2 
 �

0 , we set
u�
n .x; �; 	/ D E

�	
x Œu�.xn; an; bn/�, uC

n .x; �; 	/ D E
�	
x ŒuC.xn; an; bn/�, and
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un.x; �; 	/ D E
�	
x Œu.xn; an; bn/�, provided that the integral is well defined, i.e.,

either uC
n .x; �; 	/ < C1 or u�

n .x; �; 	/ > �1. Note that un.x; �; 	/ is the n-
stage expected payoff. For x 2 X , strategies � 2 ˘ , 	 2 
 �

0 , and ˇ 2 .0; 1/, we
define J�

ˇ .x; �; 	/ and JC
ˇ .x; �; 	/ as in (5.1) and in (5.2). Assuming that these

expressions are finite, we define the expected discounted payoff to the controller as
in (5.3). Clearly, the maxmin value vˇ is defined as in the previous subsection, i.e.,

vˇ.x/ D sup
�2˘

inf
	2
 �

0

Jˇ.x; �; 	/:

For any initial state x 2 X , strategies � 2 ˘ , 	 2 
 �
0 , and n 2 N, we let

J�
n .x; �; 	/ WD E�	

x

"
nX

mD1

u�.xm; am; bm/

#
and

JC
n .x; �; 	/ WD E�	

x

"
nX

mD1

uC.xm; am; bm/

#
:

If these expressions are finite, we can define the total expected n-stage payoff to the
controller as follows:

Jn.x; �; 	/ WD JC
n .x; �; 	/C J�

n .x; �; 	/:

Clearly, we have that

Jn.x; �; 	/ D

nX
mD1

um.x; �; 	/:

Furthermore, we set

J
�

n .x; �; 	/ D
J�
n .x; �; 	/

n
; J

C

n .x; �; 	/ D
JC
n .x; �; 	/

n
;

and

J n.x; �; 	/ D
Jn.x; �; 	/

n
:

The robust expected average payoff per unit time (average payoff, for short) is
defined as follows:

OR.x; �/ D lim inf
n!1

inf
	2
 �

0

J n.x; �; 	/: (5.15)

A strategy N� 2 ˘ is called an optimal robust strategy for the controller in the
average payoff case, if sup�2˘

OR.x; �/ D OR.x; N�/ for each x 2 X .
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We can now formulate our assumption.

(D) There exist functions DC W X ! Œ1;1/ and D� W X ! Œ1;1/ such that

J
C

n .x; �; 	/ � DC.x/ and jJ
�

n .x; �; 	/j � D�.x/

for every x 2 X , � 2 ˘ , 	 2 
 �
0 and n 2 N. Moreover, DC is continuous and

the function .x; a; b/ !
R
X
DC.y/q.dyjx; a; b/ is continuous on K.

Condition (D) trivially holds if the payoff function u is bounded. The models with
unbounded payoffs satisfying (D) are given in Jaśkiewicz and Nowak (2014) (see
Examples 1 and 2). Our aim is to consider the robust expected average payoff per
unit time. The analysis is based upon studying the so-called optimality inequality,
which is obtained via vanishing discount factor approach. However, we note that we
cannot use the results from previous subsection, since in our approach we must take
a sequence of discount factors converging to one. Theorem 1 was obtained under
assumption (M1). Unfortunately, in our case this assumption is useless. Clearly, if
˛ > 1, as it happens in Examples 1, 2, and 3, the requirement ˛ˇ < 1 is a limitation
and makes impossible to define a desirable sequence .ˇn/n2N converging to one.
Therefore, we first reconsider the robust discounted payoff model under different
assumption.

Put w.x/ D DC.x/=.1 � ˇ/, x 2 X . Let QUw.X/ be the space of all real-valued
upper semicontinuous functions v W X ! R such that v.x/ � w.x/ for all x 2 X .
Assume now that � 2 QUw.X/ and f 2 F . For every x 2 X we set (recall (5.6))

Tˇ�.x/ D sup
a2A.x/

inf
b2B

�
u.x; a; b/C ˇ

Z
X

�.y/q.dyjx; a; b/

	
: (5.16)

The following result is Theorem 1 in Jaśkiewicz and Nowak (2014).

Theorem 2. Assume (C̃1),(W̃1), (W2), and (D). Then, for each ˇ 2 .0; 1/, vˇ 2
QUw.X/, vˇ D Tˇvˇ , and there exists f � 2 F such that

vˇ.x/ D inf
b2B

�
u.x; f �.x/; b/C ˇ

Z
X

vˇ.y/q.dyjx; f �.x/; b/

	
; x 2 X:

Moreover, vˇ.x/ D sup�2˘ inf	2
 �

0
Jˇ.x; �; 	/ D inf	2
 �

0
Jˇ.x; f

�; 	/ for each
x 2 X , i.e., f � is optimal.

Remark 4. The proof of Theorem 2 is to some extent standard, but as mentioned we
cannot apply the Banach contraction principle (see for instance Blackwell 1965 or
Bertsekas and Shreve 1996). The majority of papers that deal with maximization
of the expected discounted payoff assume that the one-stage payoff function is
bounded from above (see Hernández-Lerma and Lasserre 1996; Schäl 1975) or it
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satisfies inequality (5.7). Neither requirement is met in this framework. Therefore,
we have to consider truncated models and finite horizon maxmin problems.

In order to establish the optimality inequality, we shall need a generalized
Tauberian relation, which plays a crucial role in proving Theorem 3 stated below.

For any sequence .uk/k2N of real numbers, let un WD 1
n

Pn
kD1 uk for any n 2

N. Fix a constant D � 1 and consider the set SD of all sequences .uk/k2N such
that junj � D for each n 2 N. Assume now that the elements of the sequence
.uk.�//k2N 2 SD may depend on � belonging to some set � . Define

un.�/ D
1

n

nX
kD1

uk.�/

and

vˇ D inf
�2�

.1 � ˇ/

1X
kD1

ˇk�1uk.�/ for ˇ 2 .0; 1/; vn WD inf
�2�

un.�/:

Proposition 6. Assume that .un.�//n2N 2 SD for each � 2 � . Then, we have the
following

lim inf
ˇ!1�

vˇ � lim inf
n!1

vn:

Proposition 6 extends Proposition 4 and Corollary 5 in Lehrer and Sorin (1992)
that are established under the assumption that 0 � un.�/ � 1 for every n 2 N and
� 2 � . This result is related to the so-called Tauberian relations. Recent advances
on this issue can be found in Renault (2014) (see also the discussion in Sect. 7). It
is worth mentioning that Proposition 6 is also useful in the study of risk-sensitive
control models (see Jaśkiewicz 2007 or Appendix in Jaśkiewicz and Nowak 2014).

Let us fix a state z 2 X and define

hˇ.x/ WD Vˇ.x/ � Vˇ.z/; for x 2 X and ˇ 2 .0; 1/:

Furthermore, we make the following assumptions.

(B1) There exists a function M W X ! .�1; 0� such that infˇ2.0;1/ hˇ.x/ �

M.x/, and there exists a continuous function Q W X ! Œ0;C1/ such
that supˇ2.0;1/ hˇ.x/ � Q.x/ for every x 2 X . Moreover, the function
.x; a; b/ !

R
X
Q.y/q.dyjx; a; b/ is continuous on K.

(B2) For any x 2 X , � 2 ˘ , and 	 2 
 �
0 , it holds that

lim
n!1

E
�	
x ŒQ.xn/�

n
D 0:
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The main result in Jaśkiewicz and Nowak (2014) is as follows.

Theorem 3. Assume (C̃1), (W̃1), (W2), (D), and (B1)–(B2). Then, there exist a
constant g, a real-valued upper semicontinuous function h, and a stationary strategy
Nf 2 F such that

h.x/C g � sup
a2A.x/

inf
b2B

�
u.x; a; b/C

Z
X

h.y/q.dyjx; a; b/

	

D inf
b2B

�
u.x; Nf .x/; b/C

Z
X

h.y/q.dyjx; Nf .x/; b/

	

for x 2 X . Moreover, g D sup�2˘
OR.x; �/ D OR.x; Nf / for all x 2 X , i.e., Nf is the

optimal robust strategy.

4 Discounted and Positive Stochastic Markov Games with
Simultaneous Moves

From now on we assume that B.x; a/ D B.x/ is independent of a 2 A.x/ for each
x 2 X . Therefore, we now have KA 2 B.X � A/,

KB 2 B.X � B/; and K WD f.x; a; b/ W x 2 X; a 2 A.x/; b 2 B.x/g:

(5.17)

Thus, at every stage n 2 N, player 2 does not observe player 1’s action an 2 A.xn/

in state xn 2 X . One can say that the players act simultaneously and play the
standard discounted stochastic game as in the seminal work of Shapley (1953). It
is assumed that both players know at every stage n 2 N the entire history of the
game up to state xn 2 X . Now a strategy for player 2 is a sequence 	 D .	n/n2N of
Borel (or universally measurable) transition probabilities 	n fromHn toB such that
	n.B.xn/jhn/ D 1 for each hn 2 Hn. The set of all Borel (universally) measurable
strategies for player 2 is denoted by 
 (
u). Let G (Gu) be the set of all Borel
(universally) measurable mappings g W X ! Pr.B/ such that g.x/ 2 Pr.B.x// for
all x 2 X . Every g 2 Gu induces a transition probability g.dbjx/ from X to B and
is recognized as a randomized stationary strategy for player 2. A semistationary
strategy for player 2 is determined by a Borel or universally measurable function
g W X � X ! Pr.B/ such that g.x; x0/ 2 Pr.B.x0// for all .x; x0/ 2 X � X .
Using a semistationary strategy, player 2 chooses an action bn 2 B.xn/ on any
stage n � 2 according to the probability measure g.x1; xn/ depending on xn and the
initial state x1. Let F (Fu) be the set of all Borel (universally) measurable mappings
f W X ! Pr.A/ such that f .x/ 2 Pr.A.x// for all x 2 X . Then, F (Fu) can be
considered as the set of all randomized stationary strategies for player 1. The set of
all Borel (universally) measurable strategies for player 1 is denoted by ˘ (˘u). For
any initial state x 2 X , � 2 ˘u, 	 2 
u, the expected discounted payoff function
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Jˇ.x; �; 	/ is well defined under conditions (M1) and (M2). Since ˘ � ˘u and

 � 
u, Jˇ.x; �; 	/ is well defined for all � 2 ˘ , 	 2 
 . If we restrict attention
to Borel measurable strategies, then the lower value of the game is

vˇ.x/ D sup
�2˘

inf
	2


Jˇ.x; �; 	/

and the upper value of the game is

vˇ.x/ D inf
	2


sup
�2˘

Jˇ.x; �; 	/; x 2 X:

Suppose that the stochastic game has a value, i.e., vˇ.x/ WD vˇ.x/ D vˇ.x/, for
each x 2 X . Then, under our assumptions (M1) and (M2), vˇ.x/ 2 R. Let X WD

fx 2 X W vˇ.x/ D �1g. A strategy �� 2 ˘ is optimal for player 1 if

inf
	2


Jˇ.x; �
�; 	/ D vˇ.x/ for all x 2 X:

Let " > 0 be fixed. A strategy 	� 2 
 is "-optimal for player 2 if

sup
�2˘

Jˇ.x; �; 	
�/ D vˇ.x/ for all x 2 X nX and

sup
�2˘

Jˇ.x; �; 	
�/ < �

1

"
for all x 2 X:

Similarly, the value vˇ and "-optimal or optimal strategies can be defined in the class
of universally measurable strategies. Let

NKA WD f.x; �/ W x 2 X; � 2 Pr.A.x//g; NKB WD f.x; �/ W x 2 X; � 2 Pr.B.x//g;

and

NK WD f.x; �; �/ W x 2 X; � 2 Pr.A.x//; � 2 Pr.B.x//g:

For any .x; �; �/ 2 NK and D 2 B.X/, define

u.x; �; �/ WD

Z
A.x/

Z
B.x/

u.x; a; b/�.db/�.da/

and

q.Djx; �; �/ WD

Z
A.x/

Z
B.x/

q.Djx; a; b/�.db/�.da/:

If f 2 Fu and g 2 Gu, then

u.x; f; g/ WD u.x; f .x/; g.x// and q.Djx; f; g/ WD q.Djx; f .x/; g.x//:

(5.18)
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For any .x; �; �/ 2 NK and � 2 U!.X/, define

Lˇ�.x; �; �/ D u.x; �; �/C ˇ

Z
X

�.y/q.dyjx; �; �/ (5.19)

and

Tˇ�.x/ D max
�2Pr.A.x//

inf
�2Pr.B.x//

Lˇ�.x; �; �/: (5.20)

By Lemma 7 in Jaśkiewicz and Nowak (2011), the operator Tˇ is well defined,
and using the maximum theorem of Berge (1963), it can be proved that Tˇ� 2

U!.X/ for any � 2 U!.X/.

Theorem 4. Assume (C1), (W1)–(W2), and (M1)–(M2). In addition, let the corre-
spondence x ! B.x/ be lower semicontinuous and let every setB.x/ be a complete
subset of B . Then, the game has a value vˇ 2 U!.X/, player 1 has an optimal
stationary strategy f � 2 F and

Tˇvˇ.x/Dvˇ.x/D max
�2Pr.A.x//

inf
�2Pr.B.x//

Lˇvˇ.x; �; �/D inf
�2Pr.B.x//

Lˇvˇ.x; f
�.x/; �/

for each x 2 X . Moreover, for any " > 0, player 2 has an "-optimal Borel
measurable semistationary strategy.

The assumption that every B.x/ is complete in B is made to assure that G 6D

; (see Kuratowski and Ryll-Nardzewski 1965). The construction of an "-optimal
semistationary strategy for player 2 is based on using “truncated games” Gk with
the payoff functions uk WD maxfu;�kg, k 2 N. In every game Gk player 2 has an
"
2
-optimal stationary strategy, say g�

k 2 G. If vˇ;k is the value function of the game
Gk , then it is shown that vˇ.x/ D infk2N vˇ;k.x/ for all x 2 X . This fact can be
easily used to construct a measurable partition fXngn2Z of the state space (Z � N)
such that vˇ.x/ > vˇ;k.x/ � "

2
for all x 2 Xk , k 2 Z. If g�.x; x0/ WD g�

n .x
0/ for

every x 2 Xn, n 2 Z and for each x0 2 X , then g� is an "-optimal semistationary
strategy for player 2. The above definition is valid, if vˇ.x/ > �1 for all x 2 X .
If vˇ.x/ D �1 for some state x 2 X , then the reader is referred to the proof of
Theorem 2 in Jaśkiewicz and Nowak (2011), where a modified construction of the
"-optimal semistationary strategy is provided.

Remark 5. Zero-sum discounted stochastic games with a compact metric state
space and weakly continuous transitions were first studied by Maitra and
Parthasarathy (1970). Kumar and Shiau (1981) extended their result to Borel state
space games with bounded continuous payoff functions and weakly continuous
transitions. Couwenbergh (1980) studied continuous games with unbounded payoffs
and a metric state space using the weighted supremum norm approach introduced by
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Wessels (1977). He proved that both players possess optimal stationary strategies.
In order to obtain such a result, additional conditions should be imposed. Namely,
the function u is continuous and such that ju.x; a; b/j � d!.x/ for some constant
d > 0 and all .x; a; b/ 2 K. Moreover, the mappings x ! A.x/ and x ! B.x/

are compact valued and continuous. It should be noted that our condition (M2)
allows for much larger class of models and is less restrictive for discount factors
compared with the weighted supremum norm approach. We also point out that a
class of zero-sum lower semicontinuous stochastic games with weakly continuous
transition probabilities and bounded from below nonadditive payoff functions was
studied by Nowak (1986).

A similar result can also be proved under the following conditions:

(C4) A.x/ is compact for each x 2 X .
(C5) The payoff function u is Borel measurable and u.x; �; b/ is upper semicon-

tinuous and q.Djx; �; b/ is continuous on A.x/ for any D 2 B.X/, x 2 X ,
b 2 B.x/.

A simple modification of the proof of Theorem 2 in Jaśkiewicz and Nowak
(2011) using appropriately adapted theorems on measurable minmax selections
proved in Nowak (1985b) yields the following result:

Theorem 5. Assume (C4)–(C5) and (M1)–(M2). Then, the game has a value vˇ;
which is a lower semianalytic function on X . Player 1 has an optimal stationary
strategy f � 2 Fu and

Tˇvˇ.x/Dvˇ.x/D max
�2Pr.A.x//

inf
�2Pr.B.x//

Lˇvˇ.x; �; �/D inf
�2Pr.B.x//

Lˇvˇ.x; f
�.x/; �/

for each x 2 X . Moreover, for any " > 0, player 2 has an "-optimal universally
measurable semistationary strategy.

Maitra and Parthasarathy (1971) first studied positive stochastic games, where
the stage payoff function u � 0 and ˇ D 1. The extended payoff in a positive
stochastic game is

Jp.x; �; 	/ WD E�	
x

 
1X
nD1

u.xn; an; bn/

!
; x D x1 2 X; � 2 ˘; 	 2 
 :

Using standard iteration arguments as in Strauch (1966) or Bertsekas and Shreve
(1996), one can show that Jp.x; �; 	/ < 1 if and only if there exists a nonnegative
universally measurable function w on X such that the following condition holds:

u.x; a; b/C

Z
X

w.y/q.dyjx; a; b/ � w.x/ for all .x; a; b/ 2 K: (5.21)
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Value functions and "-optimal strategies are defined in positive stochastic games
in an obvious manner. Studying positive stochastic games, it is convenient to use
approximation of Jp.x; �; 	/ from below by Jˇ.x; �; 	/ as ˇ goes to 1. To make
this method effective we must change our assumptions on the primitives in the way
described below.

(C6) B.x/ is compact for each x 2 X .
(C7) The payoff function u is Borel measurable and u.x; a; �/ is lower semicon-

tinuous and q.Djx; a; �/ is continuous on B.x/ for any D 2 B.X/, x 2 X ,
a 2 A.x/.

As noted in the preliminaries, assumption (C6) implies that ; 6D G � Gu and
Fu 6D ;. Let L1 and T1 be the operators defined as in (5.19) and (5.20), respectively,
but with ˇ D 1.

Theorem 6. Assume that (5.21) and (C6)–(C7) hold. Then the positive stochas-
tic game has a value function vp which is upper semianalytic and vp.x/ D

supˇ2.0:1/ vˇ.x/ for all x 2 X . Moreover, vp is the smallest nonnegative upper
semianalytic solution to the equation

T1v.x/ D v.x/; x 2 X:

Player 2 has an optimal stationary strategy g� 2 Gu such that

T1vp.x/ D sup
�2Pr.A.x//

min
�2Pr.B.x//

L1vp.x; �; �/ D sup
�2Pr.A.x//

L1vp.x; �; g
�.x//; x 2 X

and for any " > 0, player 1 has an "-optimal universally measurable semistationary
strategy.

Theorem 6 is a version of Theorem 5.4 in Nowak (1985a). Some special
cases under much stronger continuity assumptions were considered by Maitra and
Parthasarathy (1971) for games with compact state spaces and by Kumar and Shiau
(1981) for games with a Borel state space and finite action sets in each state. An
essential part of the proof of Theorem 6 is Proposition 2.

A similar result holds for positive semicontinuous games satisfying the following
conditions:

(C8) For any x 2 X , A.x/ is a complete set in A and the correspondence x !

A.x/ is lower semicontinuous.
(C9) For any x 2 X , B.x/ is compact and the correspondence x ! B.x/ is upper

semicontinuous.
(W3) u � 0 and u is lower semicontinuous on K.
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Theorem 7. Assume (5.21), (C8)–(C9), and (W3). Then, the positive stochastic
game has a value function vp which is lower semicontinuous and vp.x/ D

supˇ2.0;1/ vˇ.x/ for all x 2 X . Moreover, vp is the smallest nonnegative lower
semicontinuous solution to the equation

T1v.x/ D v.x/; x 2 X: (5.22)

Player 2 has an optimal stationary strategy g� 2 G such that

T1vp.x/D sup
�2Pr.A.x//

min
�2Pr.B.x//

L1vp.x; �; �/D sup
�2Pr.A.x//

L1vp.x; �; g
�.x//; x 2 X

and for any " > 0, player 1 has an "-optimal Borel measurable semistationary
strategy.

The proof of Theorem 7 is similar to that of Theorem 6 and makes use of
Proposition 3.

Player 1 need not have an optimal strategy even if X is finite. This is shown
in Kumar and Shiau (1981) in Example 1 (see also pages 192–193 in Maitra and
Sudderth 1996), which was inspired by Everett (1957). We present this example
below.

Example 4. Let X D f�1; 0; 1g, A D f0; 1g, B D f0; 1g. States x D �1 and x D 1

are absorbing with zero payoffs. If x D 0 and both players choose the same actions
(a D 1 D b or a D 0 D b), then u.x; a; b/ D 1 and q.�1j0; a; b/ D 1. Moreover,
q.0j0; 0; 1/ D q.1j0; 1; 0/ D 1 and u.0; 0; 1/ D u.0; 1; 0/ D 0. It is obvious that
vp.�1/ D 0 D vp.1/. In state x D 0we obtain the equation vp.0/ D 1=.2�vp.0//,
which yields the solution vp.0/ D 1. In this game player 1 has no optimal strategy.

If player 2 is dummy, i.e., every set B.x/ is a singleton, X is a countable set and
vp is bounded on X , then by Ornstein (1969) player 1 has a stationary "-optimal
strategy. A counterpart of this result does not hold for positive stochastic games.

Example 5. Let X D N [ f0g, A D f1; 2g, B D f1; 2g. State x D 0 is absorbing
with zero payoffs. Let x � 2 and a D 1. Then u.x; 1; b/ D 0 for b 2 B and
q.x � 1jx; 1; 1/ D q.x C 1jx; 1; 2/ D 1. If x � 2 and a D 2, then u.x; 2; 1/ D 0

and u.x; 2; 2/ D 1. In both cases (b D 1 or b D 2) the game moves to the absorbing
state x D 0 with probability one. If x D 1, then u.1; a; b/ D 1 and q.0j1; a; b/ D 1

for all a 2 A and b 2 B . It is obvious that vp.0/ D 0 and vp.1/ D 1. It is shown that
vp.x/ D .x C 1/=2x for x � 2 and player 1 has no stationary "-optimal strategy.
It is easy to check that the function vp given here is a solution to equation (5.22). It
may be interesting to note that also v.0/ D 0, v.x/ D 1 for x � 1 is also a solution
to equation (5.22) and v.x/ > vp.x/ for x > 1. For details see counterexample in
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Nowak and Raghavan (1991), whose interesting modification called the “Big Match
on the integers” was studied by Fristedt et al. (1995).

The assumption that q.Djx; a; �/ is continuous on B.x/ for each .x; a/ 2 KA

and D 2 B.X/ is weaker than the norm continuity of q.�jx; a; b/ in b 2 B.x/.
However, from the point of view of applications, e.g., in dynamic economic
models or engineering problems, the weak continuity assumption of q.�jx; a; b/ in
.x; a; b/ 2 K is more useful (see Remark 2).

We close this section with a remark on the weighted evaluation proposed for
Markov decision models in Krass et al. (1992) and for zero-sum stochastic games in
Filar and Vrieze (1992). The criterion is either a convex combination of discounted
evaluation and an average evaluation or a convex combination of two discounted
evaluations. In the first case, it is proved that the value of the game exists and
that both players have �-optimal strategies. In the second case, it is shown that the
value is the unique solution of some system of functional equations and that both
players have optimal Markov policies. The idea of using the weighted evaluations
was applied to the study of nonzero-sum stochastic games (with finite state and
action sets) by Flesch et al. (1999). Zero-sum perfect information games under
the weighted discounted payoff criterion were studied by Altman et al. (2000).
We would like to point out that discounted utility (payoff) functions belong to the
class of “recursive utilities” extensively examined in economics (see Miao 2014). It
seems, however, that the weighted discounted utilities are not in this class.

5 Zero-Sum Semi-Markov Games

In this section, we study zero-sum semi-Markov games on a general state space with
possibly unbounded payoffs. Different limit-average expected payoff criteria can be
used for such games, but under some conditions they turn out to be equivalent. Such
games are characterized by the fact that the time between jumps is a random variable
with distribution dependent on the state and actions chosen by the players. Most
primitive data for a game model considered here are as in Sect. 4. More precisely,
let KA 2 B.X � A/ and KB 2 B.X � B/. Then, the set K in (5.17) is Borel. As in
Sect. 4 we assume that A.x/ and B.x/ are the admissible action sets for the player
1 and 2, respectively, in state x 2 X . Let Q be a transition probability from K to
Œ0;1/ � X . Hence, if a 2 A.x/ and b 2 B.x/ are actions chosen by the players
in state x, then for D 2 B.X/ and t � 0, Q.Œ0; t � � Djx; a; b/ is the probability
that the sojourn time of the process in x will be smaller than t , and the next state x0

will be in D. Let k D .x; a; b/ 2 K. Clearly, q.Djk/ D Q.Œ0;1� � Djk/ is the
transition law of the next state. The mean holding time given k is defined as

�.k/ D

Z C1

0

tH.dt jk/;
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where H.t jk/ D Q.Œ0; t ��X jk/ is a distribution function of the sojourn time. The
payoff function to player 1 is a Borel measurable function u W K ! R and is usually
of the form

u.x; a; b/ D u1.x; a; b/C u2.x; a; b/�.x; a; b/; .x; a; b/ 2 K; (5.23)

where u1.x; a; b/ is an immediate reward obtained at the transition time and
u2.x; a; b/ is the reward rate in the time interval between successive transitions.

The game starts at T1 WD 0 and is played as follows. If the initial state is
x1 2 X and the actions .a1; b1/ 2 A.x1/ � B.x1/ are selected by the players,
then the immediate payoff u1.x1; a1; b1/ is incurred for player 1 and the game
remains in state x1 for a random time T2 that enjoys the probability distribution
H.�jx1; a1; b1/. The payoff u2.x1; a1; b1/ to player 1 is incurred until the next
transition occurs. Afterwards the system jumps to the state x2 according to the
transition law q.�jx1; a1; b1/: The situation repeats itself yielding a trajectory
.x1; a1; b1; t2; x2; a2; b2; t3; : : :/ of some stochastic process, where xn; an; bn and
tnC1 describe the state, the actions chosen by the players, and the decision epoch,
respectively, on the nth stage of the game. Clearly, tnC1 is a realization of the random
variable TnC1, and H.�jxn; an; bn/ is a distribution function of the random variable
TnC1 � Tn for any n 2 N.

Strategies and their sets for both players are defined in a similar way as in Sect. 4.
The only difference now is that the history of the process also includes the jump
epochs, i.e., hn D .x1; a1; b1; t2; : : : ; xn/ is the history of the process up to the nth
state.

Let N.t/ be the number of jumps that have occurred prior to time t , i.e., N.t/ D

maxfn 2 N W Tn � tg. Under our assumptions for each initial state x 2 X and any
strategies .�; 	/ 2 ˘ � 
 , we have P�	

x .N .t/ < 1/ D 1 for any t � 0.
For any pair of strategies .�; 	/ 2 ˘ �
 and an initial state x 2 X , we define

• the ratio average payoff

OJ .x; �; 	/ D lim inf
n!1

E
�	
x .

Pn
kD1 u.xk; ak; bk//

E
�	
x .

Pn
kD1 �.xk; ak; bk//

I (5.24)

• the time average payoff

Oj .x; �; 	/ D lim inf
t!1

E
�	
x .

PN.t/
nD1 u.xn; an; bn//

t
; (5.25)

where E�	
x is the expectation operator corresponding to the unique measure P�	

x

defined on the space of all histories of the process starting at x and induced by q,
H , and strategies � 2 ˘ and 	 2 
 .

Remark 6. (a) The definition of average reward in (5.25) is more natural for semi-
Markov games, since it takes into account continuous nature of such processes.
Formally, the time average payoff should be defined as follows:
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Oj .x; �; 	/D lim inf
t!1

E
�	
x .

PN.t/
nD1 u.xn; an; bn/C .TN.t/C1 � t /u2.xN.t/; aN.t/; bN.t//

t
:

However, from Remark 3.1 in Jaśkiewicz (2009), it follows that the assumptions
imposed on the game model with the time average payoff imply that

lim
t!1

E
�	
x .TN.t/C1 � t /u2.xN.t/; aN.t/; bN.t//

t
D 0:

Finally, it is worth emphasizing that the payoff defined in (5.25) requires additional
tools and methods for the study (such as renewal theory, martingale theory, and
analysis of the underlying process to the so-called small set) than the model with
average payoff (5.24).

(b) It is worth mentioning that payoff criteria (5.24) and (5.25) need not coincide
even for stationary policies and may lead to different optimal policies. Such
situations happen if the Markov chain induced by stationary strategies is not ergodic
(see Feinberg 1994).

We shall need the following continuity-compactness, ergodicity, and regularity
assumptions.

(C10) The set-valued mappings x ! A.x/ and x ! B.x/ are continuous;
moreover, A.x/ and B.x/ are compact for each x 2 X .

(C11) The functions u and � are continuous on K, and there exist a positive
constant d and continuous function ! W X ! Œ1;1/ such that

�.x; a; b/ � d!.x/; ju.x; a; b/j � d!.x/;

for all .x; a; b/ 2 K.
(C12) The function .x; a; b/ !

R
X
!.y/q.dyjx; a; b/ is continuous.

(GE1) There exists a Borel set C � X such that for some O� 2 .0; 1/ and � > 0, we
have

Z
X

!.y/q.dyjx; a; b/ � O�!.x/C �1C .x/;

for each .x; a; b/ 2 K, with ! introduced in (C11).
(GE2) The function ! is bounded on C , that is,

!C WD sup
x2C

!.x/ < 1:

(GE3) There exist some ı 2 .0; 1/ and a probability measure onC with the property
that

q.Djx; a; b/ � ı�.D/;

for each Borel set D � C , x 2 C , a 2 A.x/, and b 2 B.x/.
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(R1) There exist � > 0 and � < 1 such that

H.�jx; a; b/ � �;

for all x 2 C , a 2 A.x/ and b 2 B.x/. Moreover, �.x; a; b/ � d for all
.x; a; b/ 2 K.

(R2) There exists a decreasing function ˛ such that ˛.0/ � d , ˛.1/ D 0 and

Z 1

t

sH.dsjx; a; b/ � ˛.t/

for all .x; a; b/ 2 K. Moreover, limt!1 supx2C supa2A.x/;b2B.x/Œ1 � H

.t jx; a; b/� D 0:

(C13) There exists an open set eC � C such that �.eC/ > 0.

For any Borel function v W X ! R, we define the !-norm as in (5.5). By B!.X/
we denote the set of all Borel measurable functions with finite !-norm.

Remark 7. (a) Assumption (GE3) in the theory of Markov chains implies that the
process generated by the stationary strategies of the players and the transition
law q is '-irreducible and aperiodic. The irreducible measure can be defined as
follows:

'.D/ WD ı�.D \ C/ for D 2 B.X/:

In other words, if '.D/ > 0, then the probability of reaching the setD is positive,
independent of the initial state. The set C is called “small set.”

The function ! in (GE1, GE2) up to the multiplicative constant is a bound for
the average time of first entry of the process to the set C (Theorem 14.2.2 in Meyn
and Tweedie 2009).

Assumptions (GE) imply that the underlying Markov chain .xn/n2N induced by
a pair of stationary strategies .f; g/ 2 F � G of the players possesses a unique
invariant probability measure �fg. Moreover, .xn/n2N is !-uniformly ergodic (see
Meyn and Tweedie 1994), i.e., there exist constants  > 0 and Ǫ < 1 such that

ˇ̌
ˇ̌
Z
X

�.y/q.dyjx; f; g/ �

Z
X

�.y/�fg.dy/

ˇ̌
ˇ̌ � k�k!!.x/ Ǫ n (5.26)

for every � 2 B!.X/ and x 2 X , n � 1. Here q.n/.�jx; f; g/ denotes the n-step
transition probability induced by q, f 2 F , and g 2 G. Clearly, for integers n � 2

and D 2 B.X/, we have

q.n/.Djx; f; g/ WD

Z
X

q.n�1/.Djy; f; g/q.dyjx; f; g/
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and q.1/.Djx; f; g/ WD q.Djx; f; g/. From (5.26) we conclude that

OJ .f; g/ WD OJ .x; f; g/ D

R
X

u.y; f; g/�fg.dy/R
X
�.y; f; g/�fg.dy/

; x 2 X; (5.27)

for every f 2 F and g 2 G, that is, the average payoff is independent of the
initial state. Obviously, �.x; f; g/ D �.x; f .x/; g.x// (see (5.18)). Consult also
Proposition 10.2.5 in Hernández-Lerma and Lasserre (1999) and Theorem 3.6 in
Kartashov (1996) for similar type of assumptions that lead to !-ergodicity of the
underlying Markov chains induced by stationary strategies of the players. The
reader is also referred to Arapostathis et al. (1993) for an overview of ergodicity
assumptions.

(b) Condition (R1) ensures that infinite number of transitions does not occur in a
finite time interval when the process is in the set C . Indeed, when the process
is outside the set C , then assumption (GE) implies that the process governed
by any strategies of the players returns to the set C within a finite number
of transitions with probability one. Then, (R1) prevents the process in the set
C from the explosion. As an immediate consequence of (R1), we get that
�.x; a; b/ > �.1 � �/ for all x 2 C and .x; a; b/ 2 K. Assumption (R2) is a
technical assumption used in the proof of the equivalence of the aforementioned
two average payoff criteria.

In order to formulate the first result, we replace the function ! by a new one
W .x/ WD !.x/C �

ı
that satisfies the following inequality:

Z
X

W .y/q.dyjx; a; b/ � ��W .x/C ı1C .x/

Z
C

W .y/�.dy/;

for .x; a; b/ 2 K and a suitably chosen �� 2 .0; 1/ (see Lemma 3.2 in Jaśkiewicz
2009). Observe that if we define the subprobability measure p.�jx; a; b/ WD

q.�jx; a; b/ � ı1C .x/�.�/; then

Z
X

W .y/p.dyjx; a; b/ � ��W .x/:

The above inequality plays a crucial role in the application of the fixed point
argument in the proof of Theorem 8 given below.

Similarly as in (5.5) we define k�kW and the set BW .X/. For each average payoff,
we define the lower value, upper value, and the value of the game in an obvious way.

The first result summarizes Theorem 4.1 in Jaśkiewicz (2009) and Theorem 1 in
Jaśkiewicz (2010).
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Theorem 8. Assume (C10)–(C13), (GE1)–(GE3), and (W2). Then, the following
hold:

(a) There exist a constant v and h� 2 BW .X/; which is continuous and such that

h�.x/ D val

�
u.x; �; �/ � v�.x; �; �/C

Z
X

h�.y/q.dyjx; �; �/

	
(5.28)

D sup
�2Pr.A.x//

inf
�2Pr.B.x//

�
u.x; �; �/ � v�.x; �; �/C

Z
X

h�.y/q.dyjx; �; �/

	

D inf
�2Pr.B.x//

sup
�2Pr.A.x//

�
u.x; �; �/ � v�.x; �; �/C

Z
X

h�.y/q.dyjx; �; �/

	

for all x 2 X .
(b) The constant v is the value of the game with the average payoff defined in (5.24).
(c) There exists a pair . Of ; Og/ 2 F �G such that

h�.x/ D inf
�2Pr.B.x//

�
u.x; Of .x/; �/ � v�.x; Of .x/; �/C

Z
X

h�.y/q.dyjx; Of .x/; �/

	

D sup
�2Pr.A.x//

�
u.x; �; Og.x// � v�.x; �; Og.x//C

Z
X

h�.y/q.dyjx; �; Og.x//

	

for all x 2 X . The stationary strategy Of 2 F ( Og 2 G) is optimal for player 1
(player 2).

The proof of Theorem 8 owes much to the approach introduced by Vega-Amaya
(2003), who used a fixed point argument in the game model with setwise continuous
transition probabilities. However, we cannot directly apply a fixed point argument.
First, we have to regularize (to smooth in some sense) certain functions. Using this
smoothing method, we are able to apply the Banach fixed point theorem in the space
of lower semicontinuous functions that are bounded in the W -norm. It is worth
mentioning that the contraction operator for any lower semicontinuous function h W

X ! R is of the form

. OT h/.x/ WD inf
�2Pr.B.x//

sup
�2Pr.A.x//

˚h.x; �; �/;

where

˚h. Nk/ WD lim inf
d.k0; Nk/!0

�
u.k0/ � V�.k0/C

Z
X

h.y/p.dyjk0/

�
;

d is a metric on X � Pr.A/ � Pr.B/, and

V WD sup
f 2F

inf
g2G

OJ .f; g/
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is the lower value (in the class of stationary strategies) of the game with the payoff
function defined in (5.24). Next, it is proved that k ! ˚h.k/ is indeed lower
semicontinuous. The definition of the operator OT is more involved when compared
to the one studied by Vega-Amaya (2003), who assumed that the transition law is
setwise continuous in actions, i.e., for which the function .x; a; b/ ! q.Djx; a; b/

is continuous in .a; b/ for every set D 2 B.X/. Within such a framework he
obtained a solution to the optimality equation h� 2 BW .X/. The operator OT , on
the other hand, enables us to get a lower semicontinuous solution to the optimality
equation. In order to obtain a continuous solution, we have to repeat this procedure
for a game with the payoff �u. Then, it is sufficient to show that the obtained
lower semicontinuous solution for the game with the payoff �u coincides with the
solution to the optimality equation obtained for the original game. Hence, it must
be continuous. The optimal strategies and the conclusion that V D v are deduced
immediately from the optimality equation.

The problem of finding optimal strategies for the players in ergodic zero-sum
Markov games on a general state space was considered by, among others, Ghosh
and Bagchi (1998), who assumed that the transition law q has a majorant, i.e., there
exists a probability measure O� such that q.�jx; a; b/ � O�.�/ for all .x; a; b/ 2 K.
Then, the solution to the optimality equation is obtained via the Banach fixed
point theorem, since due to the aforementioned assumption, one can introduce a
contractive operator in the so-called span semi-norm: khksp WD supx2X h.x/ �

infx2X h.x/, where h W X ! R is a bounded Borel function. Nowak (1994) studied
Markov games with state-independent transitions and obtained some optimality
inequalities using standard vanishing discount factor approach. Finally, the results
of Meyn and Tweedie (1994, 2009) and Kartashov (1996) allowed to study other
classes of stochastic (Markov or semi-Markov) games satisfying general ergodicity
conditions. These assumptions were used to prove the existence of the game value
with the average payoff criteria and the existence of optimal strategies for the
players in games with unbounded payoff functions (see Jaśkiewicz 2002; Vega-
Amaya 2003 or Jaśkiewicz and Nowak 2006; Küenle 2007, and references cited
therein). For instance, the first two papers mentioned above deal with semi-Markov
zero-sum games with setwise continuous transition probabilities. The payoffs and
transitions in Jaśkiewicz (2002) and Vega-Amaya (2003) need not be continuous
with respect to the state variable. Within such a framework, the authors proved that
the optimality equation has a solution, there exists a value of the game, and both
players possess optimal stationary strategies. However, the proofs in these papers
are based on different methods. For instance, Jaśkiewicz (2002) analyzes auxiliary
perturbed models, whereas Vega-Amaya (2003) makes use of a fixed point theorem,
which directly leads to a solution of the optimality equation. Moreover, neither of
these works deals with the time average payoff criterion.

Jaśkiewicz and Nowak (2006) and Küenle (2007), on the other hand, examine
Markov games with weakly continuous transition probabilities. Jaśkiewicz and
Nowak (2006) proved that such a Markov game has a value and both players
have optimal stationary strategies. Their approach relies on applying Fatou’s lemma
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for weakly convergent measures, which in turn leads to the optimality inequalities
instead of the optimality equation. Moreover, the proof employs Michael’s theorem
on a continuous selection. A completely different approach was presented by Küenle
(2007). Under slightly weaker assumptions, he introduced certain contraction
operators that lead to a parameterized family of functional equations. Making use
of some continuity and monotonicity properties of the solutions to these equations
(with respect to the parameter), he obtained a lower semicontinuous solution to the
optimality equation.

Remark 8. Jaśkiewicz (2009) and Küenle (2007) imposed a weaker version of
basic assumption (C10). In particular, they assumed that the payoff function u is
lower semicontinuous, A.x/ is a complete metric space, and the mapping x !

A.x/ is lower semicontinuous, while the correspondence x ! B.x/ is upper
semicontinuous and B.x/ is a compact metric space. Then, it was shown that the
game has a value and the second player has an optimal stationary strategy, whereas
the first player has an �-optimal stationary strategy for any � > 0.

The next result is concerned with the second payoff criterion.

Theorem 9. Assume (C10)–(C13), (GE1)–(GE3), (W2), and (R1)–(R2). Then, v is
the value of the game and the pair of stationary strategies . Of ; Og/ is also optimal for
the players in the game with the time average payoff defined in (5.25).

The proof of Theorem 9 requires different methods than the proof of Theorem 8
and was formulated as Theorem 5.1 in Jaśkiewicz (2009). The point of departure of
its proof is the optimality equation (5.28). It allows to define a certain martingale
or a super- (sub-) martingale, to which the optional sampling theorem is applied.
Use of this result requires an analysis of returns of the process to the small set C
and certain consequences of !-geometric ergodicity as well as some facts from the
renewal theory. Theorem 5.1 in Jaśkiewicz (2009) refers to the result in Jaśkiewicz
(2004) on the equivalence of the expected time and ratio average payoff criteria
for semi-Markov control processes with setwise continuous transition probabilities.
Some adaptation to the weakly continuous transition probability case is needed.
Moreover, the conclusion of Lemma 7 in Jaśkiewicz (2004) that is also used in the
proof of Theorem 9 requires an additional assumption as (R2) given above.

The third result deals with the sample path optimality. For any pair of strategies
.�; 	/ 2 ˘ � 
 and an initial state x 2 X , we define three payoffs:

• the sample path ratio average payoff (I)

OJ 1.x; �; 	/ D lim inf
n!1

Pn
kD1 u.xk; ak; bk/

Tn
I (5.29)
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• the sample path ratio average payoff (II)

OJ 2.x; �; 	/ D lim inf
n!1

Pn
kD1 u.xk; ak; bk/Pn
kD1 �.xk; ak; bk/

I (5.30)

• the sample path time average payoff

Oj .x; �; 	/ D lim inf
t!1

PN.t/
nD1 u.xn; an; bn/

t
: (5.31)

A pair of strategies .��; 	�/ 2 ˘ � 
 is said to be sample path optimal with
respect to (5.29), if there exists a function v1 2 B!.X/ such that for all x 2 X it
holds

OJ 1.x; ��; 	�/ D v1.x/ P ��	�

x a:s:

for every 	 2 
 OJ 1.x; ��; 	/ � v1.x/ P ��	
x a:s:

for every � 2 ˘ OJ 1.x; �; 	�/ � v1.x/ P �	�

x a:s:

Analogously, we define sample path optimality with respect to (5.30) and (5.31). In
order to prove sample path optimality, we need additional assumptions.

(C14) There exist positive constants d1, d2, and p 2 Œ1; 2/ such that

d2 � �.x; a; b/p � d1!.x/; and ju.x; a; b/jp � d1!.x/;

for all .x; a; b/ 2 K.
(C15) If we introduce

O�.x; a; b/ D

Z 1

0

tpH.dt jx; a; b/;

where the constant p is introduced in (C14) and .x; a; b/ 2 K, then there
exists a constant d3 > 0 such that

O�.x; a; b/ � d3!.x/; .x; a; b/ 2 K:

The following result states that the sample path average payoff criteria coincide.
The result was proved by Vega-Amaya and Luque-Vásquez (2000) (see Theorems
3.7 and 3.8). for semi-Markov control processes (one-player games).

Theorem 10. Assume (C10)–(C15), (W2), and (GE1)–(GE2). Then, the pair of
optimal strategies . Nf ; Ng/ 2 F � G from Theorem 8 is sample path optimal with
respect to each of the payoffs in (5.29), (5.30), and (5.31). Moreover, OJ 1.x; Nf ; Ng/ D
OJ 2.x; Nf ; Ng/ D Oj .x; Nf ; Ng/ D v.
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The point of departure in the proof of Theorem 10 is the optimality equation
from Theorem 8. Namely, from (5.28) we get two inequalities. The first one is
obtained with the optimal stationary strategy Nf for player 1, whereas the second
one is connected with the optimal stationary strategy Ng for player 2. Then, the proofs
proceed as in Vega-Amaya and Luque-Vásquez (2000) and make use of strong law
of large numbers for Markov chains and for martingales (see Hall and Heyde 1980).

6 Stochastic Games with Borel Payoffs

Consider a game G with countable state space X , finite action spaces, and the
transition law q. Let r W H1 ! R be a bounded Borel measurable payoff function
defined on the setH1 of all plays .xt ; at ; bt /t2N endowed with the product topology
and the Borel � -algebra. (X , A, and B are given the discrete topology.) For any
initial state x D x1 and each pair of strategies .�; 	/, the expected payoff is

R.x; �; 	/ WD E�	
x r.x1; a1; b1; x2; a2; b2; : : :/:

If X is a singleton, then G is called the Blackwell game (see Martin 1998).
Blackwell (1969, 1989) proved the following result:

Theorem 11. The game G has a value if r D 1Z is the indicator function of a
Gı-set Z � H1.

Martin (1998) proved the following remarkable result:

Theorem 12. The Blackwell game G has a value for any bounded Borel measurable
payoff function r W H1 ! R.

Maitra and Sudderth (2003b) noted that Theorem 12 can be extended easily to
stochastic games with countable set of states X . It is interesting that the proof of
the above result is in some part based on the theorem of Martin (1975, 1985) on the
determinacy of infinite Borel games with perfect information extending the classical
work of Gale and Steward (1953) on clopen games. A further discussion of games
with perfect information can be found in Mycielski (1992). An extension to games
with delayed information was studied by Shmaya (2011). Theorem 12 was extended
by Maitra and Sudderth (1998) in a finitely additive measure setting to a pretty large
class of stochastic games with arbitrary state and action spaces endowed with the
discrete topology and the history space H1 equipped with the product topology.
The payoff function r in their approach is Borel measurable. Since Fubini’s theorem
is not true for finite additive measures, the integration order is fixed in the model.
The proof of Maitra and Sudderth (1998) is based on some considerations described
in Maitra and Sudderth (1993b) and basic ideas of Martin (1998).
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As shown in Maitra and Sudderth (1992), Blackwell Gı-games (as in Theorem
11) belong to a class of games where the payoff function r D lim supn!1 rn and rn
depends on finite histories of play. Clearly, the limsup payoffs include the discounted
ones. A “partial history trick” on page 181 in Maitra and Sudderth (1996) or page
358 in Maitra and Sudderth (2003a) can be used to show that the limsup payoffs
also generalize the usual limiting average ones. Using the operator approach of
Blackwell (1989) and some ideas from gambling theory developed in Dubins and
Savage (2014) and Dubins et al. (1989), Maitra and Sudderth (1992) showed that
every stochastic game with the limsup payoff, countable state, and action spaces has
a value. The approach is algorithmic in some sense and was extended to a Borel
space framework by Maitra and Sudderth (1993a), where some measurability issues
were resolved by using the minmax measurable selection theorem from Nowak
(1985a) and some methods from the theory of inductive definability. The authors
first studied “leavable games,” where player 1 can use a stop rule. Then, they
considered approximation of a non-leavable game by leavable ones. The limsup
payoffs are Borel measurable, but the methods used in Martin (1998) and Maitra
and Sudderth (1998) are not suitable for the countably additive games considered in
Maitra and Sudderth (1993a). On the other hand, the proof given in Maitra and
Sudderth (1998) has no algorithmic aspect compared with Maitra and Sudderth
(1993a). As mentioned above the class of games with the limsup payoffs includes
the games with the average payoffs defined as follows: Let X , A, and B be Borel
spaces and let u W X � A � B ! R be a bounded Borel measurable stage payoff
function defined on the Borel set K. Assume that the players are allowed to use
universally measurable strategies. For any initial state x D x1 and each strategy
pair .�; 	/, the expected limsup payoff is

R.x; �; 	/ WD E�	
x

 
lim sup
n!1

1

n

nX
kD1

u.xk; ak; bk/

!
: (5.32)

By a minor modification of the proof of Theorem 1.1 in Maitra and Sudderth (1993a)
together with the “partial history trick” mentioned above, one can conclude the
following result:

Theorem 13. Assume that X , A, and B are Borel spaces, KA 2 B.X � A/, KB 2

B.X � B/, and the set B.x/ is compact for each x 2 X . If u W K ! R is bounded
Borel measurable, u.x; a; �/ is lower semicontinuous and q.Djx; a; �/ is continuous
on B.x/ for all .x; a/ 2 KA and D 2 B.X/, then the game with the expected
limiting average payoff defined in (5.32) has a value and for any " > 0 both players
have "-optimal universally measurable strategies.

The methods of gambling theory were also used to study “games of survival”
of Milnor and Shapley (1957) (see Theorem 16.4 in Maitra and Sudderth 1996).
As defined by Everett (1957) a recursive game is a stochastic game, where the
payoff is zero in every state from which the game can move after some choice of
actions to a different state. Secchi (1997, 1998) gave conditions for recursive games
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with countably many states and finite action sets under which the value exists and
the players have stationary "-optimal strategies. He used techniques from gambling
theory.

The lower semicontinuous payoffs r W H1 ! R used in Nowak (1986) are of the
limsup type. However, Theorem 4.2 on the existence of value in a semicontinuous
game established in Nowak (1986) is not a special case of the aforementioned works
of Maitra and Sudderth. The reason is that the transition law in Nowak (1986) is
weakly continuous. If r is bounded and continuous and the action correspondences
are compact valued and continuous, then Theorem 4.2 in Nowak (1986) implies
that both players have “persistently optimal strategies.” This notion comes from
gambling theory (see Kertz and Nachman 1979). A pair of persistently optimal
strategies forms a sub-game perfect equilibrium in the sense of Selten (1975).

We close this section with a famous example of Gillette (1957) called the Big
Match.

Example 6. Let X D f0; 1; 2g, A.x/ D A D f0; 1g, and B.x/ D B D f0; 1g. The
state x D 0 is absorbing with zero payoffs and x D 2 is absorbing with payoffs 1.
The game starts in state x D 1. As long as player 1 picks 0, she gets one unit on
each stage that player 2 picks 0 and gets nothing on stages when player 2 chooses
1. If player 1 plays 0 forever, then she gets

lim sup
n!1

r1 C � � � C rn

n
;

where rk is the number of units obtained on stage k 2 N. However, if player 1 picks
1 on some stage (goes to “Big Match”) and the choice of player 2 is also 1, then the
game moves to the absorbing state 2 and she will get 1 from this stage on. If player
1 picks 1 on some stage and the choice of player 2 is 0, then the game moves to the
absorbing state 0 and all future payoffs will be zero. The definition of the transition
probability is obvious. Blackwell and Ferguson (1968) proved the following: The
Big Match has no value in the class of stationary strategies. However, if the players
know the entire history at every stage of the game, then the game has a value in
general classes of strategies. Player 2 has a stationary optimal strategy (toss a coin
in state x D 1), and for any " > 0 player 1 has an "-optimal strategy. The value of the
game in state 1 is 1=2. An important feature of this example (that belongs to the class
of games studied by Maitra and Sudderth 1992) is that player 1 must remember the
entire history of the game at every moment of play. Blackwell and Ferguson (1968)
gave two different constructions of an "-optimal strategy for player 1. One of them
relies on using a sequence of optimal stationary strategies in the discounted games
with the discount factor tending to one. The idea was to switch from one discounted
optimal strategy to another on the basis of some statistics defined on the past plays.
This concept was used by Mertens and Neyman (1981) in their fundamental work on
stochastic games with average payoffs. The Big Match was generalized by Kohlberg
(1974), who considered finite state and finite action games in which all states but one
are absorbing. Useful comments on the Big Match can be found in Mertens (2002)
or Solan (2009).
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7 Asymptotic Analysis and the Uniform Value

In this section, we briefly review some results found in the literature in terms of
“normalized discounted payoffs.” Let x D x1 2 X , � 2 ˘ , and 	 2 
 . The
normalized discounted payoff is of the form

J�.x; �; 	/ WD E�	
x

 
�

1X
nD1

.1 � �/n�1u.xn; an; bn/

!
:

The discount factor is ˇ D 1 � � where � 2 .0; 1/. Clearly J�.x; �; 	/ D .1 � ˇ/

Jˇ.x; �; 	/. If the value w�.x/ exists for the normalized game for an initial state
x 2 X , then w�.x/ D .1 � ˇ/vˇ.x/. By vn.x/ we denote the value function of the
n-stage game with the payoff function:

J n.x; �; 	/ WD E�	
x

�Pn
kD1 u.xk; ak; bk/

n

�
:

A function v1 W X ! R is called a uniform value for the stochastic game if for
any � > 0, there exist a pair of strategies .��; 	�/ 2 ˘ � 
 , some n0 2 N and
�0 2 .0; 1/ such that for all n � n0 and x 2 X ,

sup
�2˘

J n.x; �; 	
�/ � � � v1.x/ � inf

	2

J n.x; �

�; 	/C � (5.33)

and for all � 2 .0; �0/ and x 2 X ,

sup
�2˘

J�.x; �; 	
�/ � � � v1.x/ � inf

	2

J�.x; �

�; 	/C �: (5.34)

If v1 exists, then from (5.33) and (5.34), it follows that v1.x/ D limn!1 vn.x/ D

lim�!0C w�.x/. Moreover, .��; 	�/ is a pair of nearly optimal strategies in all
sufficiently long finite games as well as in all discounted games with the discount
factor ˇ (or �) sufficiently close to one (zero).

Mertens and Neyman (1981) gave sufficient conditions for the existence of v1

for arbitrary state space games. For a proof of the following result, see Mertens and
Neyman (1981) or Chap. VII in Mertens et al. (2015).

Theorem 14. Assume that

– the payoff function u is bounded,
– for any � 2 .0; 1/, w� exists, and both players have "-optimal stationary

strategies,
– for any ˛ < 1, there exists a sequence .�i /i2N such that 0 < �i < 1, �iC1 � ˛�i

for all i 2 N, limi!1 �i D 0 and
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1X
iD1

sup
x2X

jw�i .x/ � w�iC1
.x/j < 1:

Then, the uniform value v1 exists. Moreover, if x D x1 is an initial state and

Un.hn; an; bn/ D
u.x1; a1; b1/C � � � C u.xn; an; bn/

n
;

then we have

sup
�2˘

E�	�

x

�
lim sup
n!1

Un.hn; an; bn/

�
� � � v1.x/ (5.35)

� inf
	2


E��	
x

�
lim inf
n!1

Un.hn; an; bn

�
C �:

Mertens and Neyman (1981) proved additionally that w� and vn converge to v1

uniformly on X . It is worth emphasizing that their �-optimal strategy has a simple
intuition behind it. Namely, at every step, the strategy updates a fictitious discount
factor and plays an optimal strategy for that fictitious parameter. This parameter
summarizes past play and its updating is based on payoffs received in the previous
steps. If payoffs received so far are high, the player places higher weight on the
future and increases his patience by letting the fictitious discount factor get closer
to one. If, on the other hand, payoffs received so far are low, he focuses more
about short-term payoffs and therefore decreases this fictitious discount factor. The
construction idea of such a strategy lies in the fine-tuning and hinges on algebraic
properties of the value of the discounted game as a function of the discount factor
(see Bewley and Kohlberg 1976a). For a detailed discussion of the assumptions
made in Theorem 14, consult Mertens (2002) and Mertens et al. (2015). It should be
noted that neither the existence of uniform value nor (5.35) follows from the general
minmax theorems of Maitra and Sudderth (1992, 1993a).

Assume that X , A, and B are finite. Bewley and Kohlberg (1976a,b)
proved that the limits lim�!0C w�.x/ and limn!1 vn.x/ exist and have a common
value v.x/, called the asymptotic value. Using their results, Mertens and Neyman
(1982) proved that v.x/ is actually the uniform value v1.x/. Independent of
this result, it is possible to show using Bewley and Kohlberg (1976a) that the
assumptions of Theorem 14 hold for games with a finite state space and finite action
sets (see Remark VII.3.2 in Mertens et al. 2015). Bewley and Kohlberg (1976a)
actually proved more, i.e., w�.x/ has in the neighborhood of zero the Puiseux series
expansion. More precisely, there exist �0 2 .0; 1/, M 2 N, and numbers ai .x/
(i D 0; 1; : : :) (depending on x 2 X ) such that for all � 2 .0; �0/, we have

w�.x/ D

1X
iD0

ai .x/�
i=M : (5.36)
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Recently, Oliu-Barton (2014) gave a direct proof of the existence of lim�!0C w�.
His proof does not utilize the Tarski-Seidenberg elimination from real algebraic
geometry as in Bewley and Kohlberg (1976a). (An excellent introduction to semi-
algebraic functions and their usage in finite state and action stochastic games can
be found in Neyman 2003a.) Moreover, based upon the explicit description of
asymptotically optimal strategies, Oliu-Barton (2014) showed that his approach can
also be used to obtain the uniform value as in Mertens and Neyman (1981). Further
generalization of the abovementioned results to other stochastic games was provided
by Ziliotto (2016).

A similar Puiseux expansion can be obtained for stationary optimal strategies in
discounted games. Mertens (1982, 2002) showed how to get (5.36) for normalized
discounted payoffs in finite nonzero-sum games. Different proofs of (5.36) are given
in Milman (2002), Szczechla et al. (1997), and Neyman (2003a). It is also worth
mentioning that the values vn of finite stage games can be approximated by also
some series of expansions. Bewley and Kohlberg (1976b) proved that there exist
M 2 N and real numbers bi .x/ (i D 0; 1; 2 : : :) such that for n sufficiently large we
have

ˇ̌
ˇ̌
ˇvn.x/ �

1X
iD0

bi .x/n
�i=M

ˇ̌
ˇ̌
ˇ D O.lnn=n/ (5.37)

and the bound in (5.37) is tight. A result on a uniform polynomial convergence
rate of the values vn to v1 is given in Milman (2002). The results on the values w�
described above generalize the paper of Blackwell (1962) on dynamic programming
(one-person games), where it was shown that the normalized value is a bounded and
rational function of the discount factor.

The Puiseux series expansions can also be used to characterize average payoff
games, in which the players have optimal stationary strategies (see Bewley and
Kohlberg 1978, Chap. 8 in Vrieze 1987 or Filar and Vrieze 1997). For example,
one can prove that the average payoff game has a constant value v0 and both players
have optimal stationary strategies if and only if a0.x/ D v0 and a1.x/ D � � � D

aM�1.x/ D 0 in (5.36) for all x 2 X (see, e.g.,Theorem 5.3.3 in Filar and Vrieze
1997).

We recall that a stochastic game is absorbing if all states but one are absorbing.
A recursive or an absorbing game is called continuous if the action sets are compact
metric, the state space is countable, and the payoffs and transition probabilities
depend continuously on actions. Mertens and Neyman (1981) gave sufficient
conditions for lim�!0C w� D limn!1 vn to hold that include the finite case as
well as a more general situation, e.g., when the function � ! w� is of bounded
variation or satisfies some integrability condition (see also Remark 2 in Mertens
2002 and Laraki and Sorin 2015). However, their conditions are not known to hold
in continuous absorbing or recursive games. Rosenberg and Sorin (2001) studied
the asymptotic properties of w� and vn using some non-expansive operators called
Shapley operators, naturally connected with stochastic games (see also Kohlberg



5 Zero-Sum Stochastic Games 257

1974; Neyman 2003b; Sorin 2004). They obtained results implying that equality
lim�!0C w� D limn!1 vn holds for continuous absorbing games with finite state
spaces. Their result was used by Mertens et al. (2009) to show that every game in
this class has a uniform value (consult also Sect. 3 in Ziliotto 2016).

Recursive games were introduced by Everett (1957), who proved the existence
of value and of stationary "-optimal strategies, when the state space and action sets
are finite. Recently, Li and Venel (2016) proved that recursive games on a countable
state space with finite action spaces have the uniform value, if the family fvng is
totally bounded. Their proofs follow the same idea as in Solan and Vieille (2002).
Moreover, the result in Li and Venel (2016) together with the ones in Rosenberg and
Vieille (2000) provides the uniform Tauberian theorem for recursive games: .vn/
converges uniformly if and only if .v�/ converges uniformly and both limits are the
same. For finite state continuous recursive games, the existence of lim�!0C w� was
recently proved by Sorin and Vigeral (2015a).

We also mention one more class of stochastic games, the so-called definable
games, studied by Bolte et al. (2015). Such games involve a finite number of states,
and it is additionally assumed that all their data (action sets, payoffs, and transition
probabilities) are definable in an o-minimal structure. Bolte et al. (2015) proved
that these games have the uniform value. The reason for that lies in the fact that
definability allows to avoid highly oscillatory phenomena in various settings (partial
differential equations, control theory, continuous optimization) (see Bolte et al. 2015
and the references cited therein).

Generally, the asymptotic value lim�!0C w� or limn!1 vn may not exist for
stochastic games with finitely many states. An example with four states (two of them
being absorbing) and compact action sets was recently given by Vigeral (2013).
Moreover, there are problems with asymptotic theory in stochastic games with finite
state space and countable action sets (see Ziliotto 2016). In particular, the example
given in Ziliotto (2016) contradicts the famous hypothesis formulated by Mertens
(1987) on the existence of asymptotic value. A generalization of examples due to
Vigeral (2013) and Ziliotto (2016) is presented in Sorin and Vigeral (2015b).

A new approach to the asymptotic value in games with finite state and action sets
was recently given by Oliu-Barton (2014). His proof when compared to Bewley
and Kohlberg (1976a) is direct, relatively short, and more elementary. It is based
on the theory of finite-dimensional systems and the theory of finite Markov chains.
The existence of uniform value is obtained without using algebraic tools. A simpler
proof for the existence of the asymptotic value lim�!0 w� of finite �-discounted
absorbing games was provided by Laraki (2010), who obtained explicit formulas
for this value. According to the author’s comments, certain extensions to absorbing
games with finite state and compact action spaces are also possible, but under some
continuity assumptions on the payoff function. The convergence of the values of n-
stage games (as n ! 1) and the existence of the uniform value in stochastic games
with a general state space and finite action spaces were studied by Venel (2015) who
assumed that the transition law is in certain sense commutative with respect to the
actions played at two consecutive periods. Absorbing games can be reformulated as
commutative stochastic games.
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8 Algorithms for Zero-Sum Stochastic Games

Let P D Œpij � be a payoff matrix in a zero-sum game where 1 � i � m1, 1 � j �

m2. By valP we denote the value for this game in mixed strategies. We assume in
this section that X , A, and B are finite sets. For any function � W X ! R, we can
consider the zero-sum game 
�.x/ where the payoff matrix is

P�.x/ WD

2
4�u.x; i; j /C .1 � �/

X
y2X

�.y/q.yjx; i; j /

3
5 ; x 2 X:

Recall that ˇ D 1 � �. Similar to (5.20) we define T��.x/ as the value of the game

�.x/, i.e., T��.x/ D valP�.x/. If �.x/ D �0.x/ D 0 for all x 2 X , then T n� �0.x/
is the value of the n-stage discounted stochastic game starting at the state x 2 X . As
we know from Shapley (1953), the value function w� of the normalized discounted
game is a unique solution to the equation w�.x/ D T�w�.x/, x 2 X . Moreover,
w�.x/ D limn!1 T n� �0.x/. The procedure of computing T n� �0.x/ is known as the
value iteration and can be used as an algorithm to approximate the value function
w�. However, this algorithm is rather slow. If f �.x/ (g�.x/) is an optimal mixed
strategy for player 1 (player 2) in game 
w�.x/, then the functions f � and g� are
stationary optimal strategies for the players in the infinite horizon discounted game.

Example 7. Let X D f1; 2g, A.x/ D B.x/ D f1; 2g for x 2 X . Assume that state
x D 2 is absorbing with zero payoffs. In state x D 1, we have u.1; 1; 1/ D 2,
u.1; 2; 2/ D 6, and u.1; i; j / D 0 for i 6D j . Further, we have q.1j1; 1; 1/ D

q.1j1; 2; 2/ D 1 and q.2j1; i; j / D 1 for i 6D j . If � D 1=2, then the Shapley
equation is for x D 1 of the form

w�.1/ D val

�
1C 1

2
w�.1/ 0C 1

2
w�.2/

0C 1
2
w�.2/ 3C 1

2
w�.1/

	
:

Clearly, w�.2/ D 0 and w�.1/ � 0. Hence, the above matrix game has no pure
saddle point and it is easy to calculate that w�.1/ D .�4C 2

p
13/=3. This example

is taken from Parthasarathy and Raghavan (1981) and shows that in general there is
no finite step algorithm for solving zero-sum discounted stochastic games.

The value iteration algorithm of Shapley does not utilize any information on
optimal strategies in the n-stage games. Hoffman and Karp (1966) proposed a new
algorithm involving both payoffs and strategies. Let g1.x/ be an optimal strategy for
player 2 in the matrix game P�0.x/, x 2 X . Define w1.x/ D sup�2˘ J�.x; �; g1/.
Then, choose an optimal strategy g2.x/ for player 2 in the matrix game Pw1 .x/.
Define w2.x/ D sup�2˘ J�.x; �; g2/ and continue the procedure. It is shown that
limn!1 wn.x/ D w�.x/.

Let X D f1; : : : ; kg. Any function w W X ! R can be viewed as a vector
Nw D .w.1/; : : : ;w.k// 2 R

k . The fact that w� is a unique solution to the Shapley
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equation is equivalent to saying that the unconstrained optimization problem

min
Nw2Rk

X
x2X

.T�w.x/ � w.x//2

has a unique global minimum. Pollatschek and Avi-Itzhak (1969) proposed a
successive iterations algorithm, which corresponds to the “policy iteration” in
dynamic programming. The proposed algorithm is connected with a Newton-
Raphson type procedure associated with the global minimum problem mentioned
above. Van der Wal (1978) showed that their algorithm does not converge in general.
Filar and Tolwinski (1991) presented an improved version of the Pollatschek and
Avi-Itzhak algorithm for solving discounted zero-sum stochastic games based on
a “modified Newton’s method.” They demonstrated that it always converges to the
value of the stochastic game and solved the example of Van der Wal (1978). For
further comments on the abovementioned iterative algorithms, the reader is referred
to Vrieze (1987), Breton (1991), Raghavan and Filar (1991), Filar and Vrieze
(1997), and Raghavan (2003).

Observe now that every f 2 F (also g 2 G) can be viewed as a vector in
Euclidean space. If f 2 F , then

u.x; f; b/ D
X
a2A.x/

u.x; a; b/f .ajx/ and q.yjx; f; b/ D
X
a2A.x/

q.yjx; a; b/f .ajx/:

Similarly u.x; a; g/ and q.yjx; a; g/ are defined for any g 2 G.
In the remaining part of this section we assume that u � 0. This condition is

made only for simplicity of presentation. A zero-sum discounted stochastic game
can also be solved by a constrained nonlinear programming technique studied by
Filar et al. (1991) (see also Chap. 3 in Filar and Vrieze 1997). Consider the problem
(NP1) defined as follows:

min
X
x2X

.w1.x/C w2.x//

subject to .f; g/ 2 F �G; w1 � 0;w2 � 0 and

�u.x; a; g/C .1 � �/
X
y2X

w1.y/q.yjx; a; g/ � w1.x/; for all x 2 X; a 2 A.x/;

��u.x; f; b/C .1 � �/
X
y2X

w2.y/q.yjx; f; b/ � w2.x/; for all x 2 X; b 2 B.x/:

Note that the objective function is linear, but the constraint set is not convex. It is
shown (see Chap. 3 in Filar and Vrieze 1997) that every local minimum of (NP1) is
a global minimum. Hence, we have the following result.
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Theorem 15. Let .w�
1 ;w

�
2 ; f

�; g�/ be a global minimum of (NP1). Then,P
x2X.w

�
1 .x/ C w�

2 .x// D 0 and w�
1 .x/ D w�.x/ for all x 2 X . Moreover,

.f �; g�/ is a pair of stationary optimal strategies for the players in the discounted
stochastic game.

In the case of single-controller stochastic game, in which q.yjx; a; b/ is inde-
pendent of a 2 A.x/ for each x 2 X and denoted by q.yjx; b/, the problem of
finding optimal strategies for the players is much simpler. We now present a result
of Parthasarathy and Raghavan (1981). Consider the following linear programming
problem (LP1):

max
X
x2X

w.x/

subject to f 2 F; w � 0 and

�u.x; f; b/C .1 � �/
X
y2X

w.y/q.yjx; b/ � w.x/; for all x 2 X; b 2 B.x/:

Note that the constraint set in (LP1) is convex.

Theorem 16. The problem (LP1) has an optimal solution .w�; f �/. Moreover,
w�.x/ D w�.x/ for all x 2 X , and f � is an optimal stationary strategy for player
1 in the single-controller discounted stochastic game.

Remark 9. Knowing w� one can find an optimal stationary strategy g� for player 2
using the Shapley equation w� D T�w�, i.e., g�.x/ can be any optimal strategy in
the matrix game with the payoff function:

�u.x; a; b/C .1 � �/
X
y2X

w�.y/q.yjx; b/; a 2 A.x/; b 2 B.x/:

Let X D X1 [ X2 and X1 \ X2 D ;. Assume that q.yjx; a; b/ D q1.yjx; a/

for x 2 X1 and q.yjx; a; b/ D q2.yjx; b/ for x 2 X2, a 2 A.x/, b 2 B.x/,
y 2 X . Then the game is called a switching control stochastic game (SCSG for
short). Filar (1981) studied this class of games with discounting and showed the
order field property saying that a solution to the game can be found in the same
algebraic field as the data of the game. Other classes of stochastic games having
the order field property are described in Raghavan (2003). It is interesting that the
value function w� for the SCSG can be represented in a neighborhood of zero by
the power series of � (see Theorem 6.3.5 in Filar and Vrieze 1997) . It should be
mentioned that every discounted SCSG can be solved by a finite sequence of linear
programming problems (see Algorithm 3.2.1 in Filar and Vrieze 1997). This was
first shown by Vrieze (1987).
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We can now turn to the limiting average payoff stochastic games. We know from
the Big Match example of Blackwell and Ferguson (1968) that "-optimal stationary
strategies may not exist. A characterization of limiting average payoff games, where
the players have stationary optimal strategies, was given by Vrieze (1987) (see also
Theorem 5.3.5 in Filar and Vrieze 1997). Below we state this result. For any function
� W X ! R we consider the zero-sum game 
 0

� .x/ with the payoff matrix

P 0
� .x/ WD

2
4X
y2X

�.y/q.yjx; i; j /

3
5 ; x 2 X

and the zero-sum game 
 1
� .x/ with the payoff matrix

QP�.x/ WD

2
4u.x; i; j /C

X
y2X

�.y/q.yjx; i; j /

3
5 ; x 2 X:

Theorem 17. Consider a function v� W X ! R and f � 2 F , g� 2 G. Then, v� is
the value of the limiting average payoff stochastic game and f �, g� are stationary
optimal strategies for players 1 and 2, respectively, if and only if for each x 2 X

v�.x/ D valP 0
v�.x/; (5.38)

.f �.x/; g�.x// is a pair of optimal mixed strategies in the zero-sum game with the
payoff matrix P 0

v�.x/, and there exist functions �i W X ! R (i D 1; 2) such that for
every x 2 X , we have

v�.x/C �1.x/ D val QP�1.x/ D min
b2B.x/

2
4u.x; f �; b/C

X
y2X

�1.y/q.yjx; f �; b/

3
5 ;

(5.39)
and

v�.x/C �2.x/ D val QP�2.x/ D max
a2A.x/

2
4u.x; a; g�/C

X
y2X

�2.y/q.yjx; a; g�/

3
5 :

(5.40)

Remark 10. If the Markov chain induced by any stationary strategy pair is irre-
ducible, then v� is a constant. Then, (5.38) holds trivially and �1.x/, �2.x/
satisfying (5.39) and (5.40) are such that �1.x/��2.x/ is independent of x 2 X . In
such a case we may take �1 D �2. However, in other cases (without irreducibility)
�1.x/ � �2.x/ may depend on x 2 X . For details the reader is referred to Chap. 8
in Vrieze (1987).
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A counterpart to the optimization problem (NP1) with non-convex constraints
can also be formulated for the limiting average payoff case. Consider the problem
(NP2):

min
X
x2X

.v1.x/C v2.x//

subject to .f; g/ 2 F �G, v1 � 0; v2 � 0, �1 � 0; �2 � 0 and

X
y2X

v1.y/q.yjx; a; g/ � v1.x/; u.x; a; g/C
X
y2X

�1.y/q.yjx; a; g/ � v1.x/C�1.x/

for all x 2 X; a 2 A.x/ and

X
y2X

v2.y/q.yjx; f; b/ � v2.x/; �u.x; f; b/C
X
y2X

�2.y/q.yjx; f; b/ � v2.x/C�2.x/

for all x 2 X; b 2 B.x/.

Theorem 18. If .��
1 ; �

�
2 ; v

�
1 ; v

�
2 ; f

�; g�/ is a feasible solution of (NP2) with the
property that

P
x2X.v1.x/C v2.x// D 0, then it is a global minimum and .f �; g�/

is a pair of optimal stationary strategies. Moreover, v�
1 .x/ D R.x; f �; g�/

(see (5.32)) for all x 2 X .

For a proof consult Filar et al. (1991) or pages 127–129 in Filar and Vrieze
(1997). Single-controller average payoff stochastic games can also be solved by
linear programming. The formulation is more involved than in the discounted case
and generalizes the approach known in the theory of Markov decision processes.
Two independent studies on this topic are given in Hordijk and Kallenberg (1981)
and Vrieze (1981). Similarly as in the discounted case, the SCSG with the average
payoff criterion can be solved by a finite sequence of nested linear programs (see
Vrieze et al. 1983).

If X D X1 [X2, X1 \X2 D ;, and A.x/ (B.x/) is a singleton for each x 2 X1
(x 2 X2), then the stochastic game is of perfect information. Raghavan and Syed
(2003) gave a policy-improvement type algorithm to find optimal pure stationary
strategies for the players in discounted stochastic games of perfect information.
Avrachenkov et al. (2012) proposed two algorithms to find the uniformly optimal
strategies in discounted games. Such strategies are also optimal in the limiting
average payoff stochastic game. Fresh ideas for constructing optimal stationary
strategies in zero-sum limiting average payoff games can be found in Boros et al.
(2013). In particular, Boros et al. (2013) introduced a potential transformation
of the original game to an equivalent canonical form and applied this method
to games with additive transitions (AT games) as well as to stochastic games
played on a directed graph. The existence of a canonical form was also provided
for stochastic games with perfect information, switching control games, or ARAT
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(additive reward-additive transition) games. Such a potential transformation has an
impact on solving some classes of games in sub-exponential time. Additional results
can be found in Boros et al. (2016). It is worth to note that a finite step algorithm of
Cottle-Dantzig’s type was recently applied for solving discounted zero-sum semi-
Markov ARAT games by Mondal et al. (2016).

Computation of the uniform value is a difficult task. Chatterjee et al. (2008)
provided a finite algorithm for finding the approximation of the uniform value. As
mentioned in the previous section, Bewley and Kohlberg (1976a) showed that the
function � ! w� is semi-algebraic. It can be function of �: It can be expressed as a
Taylor series in fractional powers of � (called Puiseux series) in the neighborhood of
zero. By Mertens and Neyman (1981), the uniform value v.x/ D lim�!0C w�.x/.
Chatterjee et al. (2008) noted that, for a given ˛ > 0, determining whether v > ˛

is equivalent to finding the truth value of a sentence in the theory of real-closed
fields. A generalization of the quantifier elimination algorithm of Tarski (1951)
due to Basu (1999) (see also Basu et al. 2003) can be used to compute this truth
value. The uniform value v is bounded by the maximum payoffs of the game; it
is therefore sufficient to repeat this algorithm for finitely many different values
of ˛ to get a good approximation of v. An "-approximation of v.x/ at a given
state x can be computed in time bounded by an exponential in a polynomial of
the size of the game times a polynomial function of log.1="/: This means that
the approximating uniform value v.x/ lies in the computational complexity class
EXPTIME (see Papadimitriou 1994). Solan and Vieille (2010) applied the methods
of Chatterjee et al. (2008) to calculate the uniform "-optimal strategies described by
Mertens and Neyman (1981). These strategies are good for all sufficiently long finite
horizon games as well as for all (normalized) discounted games with � sufficiently
small. Moreover, they use unbounded memory. As shown by Bewley and Kohlberg
(1976a), any pair of stationary optimal strategies in discounted games (which are
obviously functions of �) can also be represented by a Taylor series of fractional
powers of � for � 2 .0; �0/ with �0 sufficiently small. This result, the theory of
real-closed fields, and the methods of formal logic developed in Basu (1999) are
basic ideas for Solan and Vieille (2010). A complexity bound on the algorithm of
Solan and Vieille (2010) is not determined yet.

9 Zero-Sum Stochastic Games with Incomplete Information
or Imperfect Monitoring

The following model of a general two-player zero-sum stochastic game, say G, is
described in Sorin (2003a).

• X is a finite state space.
• A and B are finite admissible action sets for players 1 and 2, respectively.
• ˝ is a finite state of signals.
• r W X � A � B ! Œ0; 1� is a payoff function to player 1.
• q is a transition probability mapping from X � A � B to Pr.X �˝/.
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Let p be an initial probability distribution on X � ˝. The game evolves as
follows. At stage one nature chooses .x1; !1/ according to p and the players learn
!1. Then, simultaneously player 1 selects a1 2 A and player 2 selects b1 2 B .
The stage payoff r.x1; a1; b1/ is paid by player 2 to player 1 and a pair .x2; !2/ is
drawn according to q.�jx1; a1; b1/. The game proceeds to stage two and the situation
is repeated. The standard stochastic game with incomplete information is obtained,
when ˝ D A � B . Such a game with finite horizon of play was studied by Krausz
and Rieder (1997), who showed the existence of the game value and presented an
algorithm to compute optimal strategies for the players via linear programming.
Their model assumes incomplete information on one side, i.e., player 2 is never
informed about the state of the underlying Markov chain in contrast to player 1. In
addition, both players have perfect recall. Renault (2006) studied a similar model.
Namely, he assumed that the sequence of states follows a Markov chain, i.e., q is
independent of the actions of the players. At the beginning of each stage, only player
1 is informed of the current state, the actions are selected simultaneously, and they
are observed by both players. The play proceeds to the next stage. Renault (2006)
showed that such a game has a uniform value and the second player has an optimal
strategy.

Clearly, if ˝ is a singleton, the game is a standard stochastic game. For general
stochastic games with incomplete information, little is known, but some classes
were studied in the literature. For the Big Match game, Sorin (1984, 1985) and
Sorin and Zamir (1991) proved the existence of the maxmin value and the minmax
value. These values may be different. Moreover, they showed that the values of the
n-stage games (�-discounted games with normalized payoffs) converge as n ! 1

(as � ! 0C) to the maxmin value.
Another model was considered by Rosenberg et al. (2004). Namely, at the

beginning of the game a signal ! is chosen according to p 2 Pr.˝/. Only player 1
is informed of !. At stage n 2 N players simultaneously choose actions an 2 A and
bn 2 B . The stage payoff r!.xn; an; bn/ is incurred and the next state xnC1 is drawn
according to q.�jxn; an; bn/. Both players are informed of .an; bn; xnC1/. Note that
in this setting r!.xn; an; bn/ is told to player 1, but not to player 2. Rosenberg et al.
(2004) proved the following result

Theorem 19. If player 1 controls the transition probability, the game value exists. If
player 2 controls the transition probability, both the minmax value and the maxmin
value exist.

Recursive games with incomplete information on one side were studied by
Rosenberg and Vieille (2000), who proved that the maxmin value exists and is
equal to the limit of the values of n-stage games (�-discounted games) as n ! 1

(as � ! 0C). Rosenberg (2000), on the other hand, considered absorbing games.
She proved the existence of the limit of the values of finitely repeated absorbing
games (discounted absorbing games) with incomplete information on one side as the
number of repetitions goes to infinity (� ! 0C). Additional discussion on stochastic
games with incomplete information on one side can be found in Sorin (2003b) and
Laraki and Sorin (2015).
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Coulomb (1992, 1999, 2001) was the first who studied stochastic games with
imperfect monitoring. These games are played as follows. At every stage, the game
is in one of finitely many states. Each player chooses an action, independently of
his opponent. The current state, together with the pair of actions, determines a
daily payoff, a probability distribution according to which a new state is chosen,
and a probability distribution over pairs of signals, one for each player. Each
player is then informed of his private signal and of the new state. However, no
player is informed of his opponent’s signal and of the daily payoff (see also the
detailed model in Coulomb 2003a). Coulomb (1992, 1999, 2001) studied the class of
absorbing games and proved that the uniform maxmin and minmax values exist. In
addition, he provided a formula for both values. One of his main findings is that the
maxmin value does not depend on the signaling structure of player 2. Similarly, the
minmax value does not depend on the signaling structure of player 1. In general, the
maxmin and minmax values do not coincide, hence stochastic games with imperfect
monitoring need not have a uniform value. Based on these ideas, Coulomb (2003c)
and Rosenberg et al. (2003) independently proved that the uniform maxmin value
always exists in a stochastic game, in which each player observes the state and
his/her own action. Moreover, the uniform maxmin value is independent of the
information structure of player 2. Symmetric results hold for the uniform minmax
value.

We now consider the general model of zero-sum dynamic game presented in
Mertens et al. (2015) and Coulomb (2003b). These games are known as games of
incomplete information on both sides.

• X , A, and B are as above.
• S and T are finite signal spaces for players 1 and 2, respectively.
• The payoff function is defined as above, and the transition probability function is
q W X � A � B ! Pr.X � S � T /.

The evolution of the game is as follows. At stage one nature chooses .x1; s1; t1/
according to a given distribution p 2 Pr.X �S �T /. Player 1 learns s1 and player 2
is informed of t1. Then, simultaneously player 1 selects a1 2 A and player 2 selects
b1 2 B . The stage payoff r.x1; a1; b1/ is incurred and a new triple .x2; s2; t2/ is
drawn according to q.�jx1; a1; b1/. The game proceeds to stage two and the process
repeats. Let us denote this game by G0. Renault (2012) proved that such a game has
a value under an additional condition.

Theorem 20. Assume that player 1 can always deduce the state and player 2’s
signal from his own signal. Then, the game G0 has a uniform value.

Further examples of games for which Theorem 20 holds were recently provided
by Gensbittel et al. (2014). In particular, they showed that if player 1 is more
informed than player 2 and controls the evolution of information on the state, then
the uniform value exists. This result, from one side, extends results on Markov
decision processes with partial observation given by Rosenberg et al. (2002), and,
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on the other hand, it extends a result on repeated games with an informed controller
studied by Renault (2012).

An extension of the repeated game in Renault (2006) to a game with incomplete
information on both sides was examined by Gensbittel and Renault (2015). The
model is described by two finite action sets A and B and two finite sets of states
S and T . The payoff function is r W S � T � A � B ! Œ�1; 1�. There are given
two initial probabilities p1 2 Pr.S/ and p2 2 Pr.T / and two transition probability
functions q1 W S ! Pr.S/ and q2 W T ! Pr.T /. The Markov chains .sn/n2N,
.tn/n2N are independent. At the beginning of stage n 2 N, player 1 observes sn and
player 2 observes tn. Then, both players simultaneously select actions an 2 A and
bn 2 B . Player 1’s payoff in stage n is r.sn; tn; an; bn/. Then, .an; bn/ is publicly
announced and the play goes to stage nC1. Notice that the payoff r.sn; tn; an; bn/ is
not directly known and cannot be deduced. The main theorem states that limn!1 vn
exists and is a unique continuous solution to the so-called Mertens-Zamir system of
equations (see Mertens et al. 2015). Recently, Sorin and Vigeral (2015a) showed in
a simpler model (repeated game model, where s1 and t1 are chosen once and they
are kept throughout the play) that v� converges uniformly as � ! 0.

In this section, we should also mention the Mertens conjecture (see Mertens
1987) and its solution. His hypothesis is twofold: the first statement says that in
any general model of zero-sum repeated game, the asymptotic value exists, and the
second one says that if player 1 is always more informed than player 2 (in the sense
that player 2’s signal can be deduced from player 1’s private signal), then in the long
run player 1 is able to guarantee the asymptotic value. Ziliotto (2016) showed that
in general the Mertens hypothesis is false. Namely, he constructed an example of a
seven-state symmetric information game, in which each player has two action sets.
The set of signals is public. The game is played as the game G described above.
More details can be found in Solan and Ziliotto (2016) where related issues are also
discussed.

Although the Mertens conjecture does not generally hold, there are some classes
of games for which it is true. The interested reader is referred to Sorin (1984, 1985),
Rosenberg et al. (2004), Renault (2012), Gensbittel et al. (2014), Rosenberg and
Vieille (2000), and Li and Venel (2016). For instance, Li and Venel (2016) dealt
with a stochastic game G0 with incomplete information on both sides and proved
the following (see Theorem 5.8 in Li and Venel 2016).

Theorem 21. Let G0 be a recursive game such that player 1 is more informed than
player 2. Then, for every initial distribution p 2 Pr.X �S �T /, both the asymptotic
value and the uniform maxmin exist and are equal, i.e.,

v1 D lim
n!1

vn D lim
�!0

v�:

Different notions of value in two-person zero-sum repeated games were recently
examined by Gimbert et al. (2016). Assuming that the state evolves and players
receive signals, they showed that the uniform value (limsup value) may not exist.
However, the value exists if the payoff function is Borel measurable and the players
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observe a public signal including the actions played. The existence of the uniform
value was proved for recursive games with nonnegative payoffs without any special
assumptions on signals.

Stochastic games with partial observations, in which one player observes the
sequence of states, while the other player observes the sequence of state-dependent
signals, are examined in Basu and Stettner (2015) and its references. A class of
dynamic games in which a player is informed of his opponent’s actions and states
after some time delay were studied by Dubins (1957), Scarf and Shapley (1957), and
Levy (2012). For obvious reasons, this survey does not cover all models and cases
of games with incomplete information. Further references and applications can be
found in Laraki and Sorin (2015), Neyman and Sorin (2003), or Solan and Ziliotto
(2016).

10 Approachability in Stochastic Games with Vector Payoffs

In this section, we consider games with payoffs in Euclidean space R
k , where the

inner product is denoted by h�; �i and the norm of any Nc 2 R
k is k Nck D

p
h Nc; Nci.

Let A and B be finite sets of pure strategies for players 1 and 2, respectively. Let
u0 W A � B ! R

k be a vector payoff function. For any mixed strategies s1 2 Pr.A/
and s2 2 Pr.B/, Nu0.s1; s2/ stands for the expected vector payoff. Consider a two-
person infinitely repeated gameG1 defined as follows. At each stage t 2 N, players
1 and 2 choose simultaneously at 2 A and bt 2 B . Behavioral strategies O� and O	

for the players are defined in the usual way. The corresponding vector outcome is
gt D u0.at ; bt / 2 R

k . The couple of actions .at ; bt / is announced to both players.
The average vector outcome up to stage n is Ngn D .g1 C � � � C gn/=n. The aim of
player 1 is to make Ngn approach a target set C � R

k . If k D 1, then we usually have
in mind C D Œv0;1/ where v0 is the value of the game in mixed strategies. If C �

R
k and y 2 R

k , then the distance from y to the set C is d.y; C / D infz2C ky � zk.
A nonempty closed set C � R

k is approachable by player 1 in G1 if for every
� > 0 there exists a strategy O� of player 1 and n� 2 N such that for any strategy O	

of player 2 and any n � n� , we have

E O� O	d. Ngn; C / � �:

The dual concept is excludability.
Let PC .y/ denote the set of closest points to y in C . A closed set C � R

k

satisfies the Blackwell condition for player 1, if for any y 62 C , there exist z 2

PC .y/ and a mixed action (depending on y) s1 D s1.y/ 2 Pr.A/ such that the
hyperplane through z orthogonal to the line segment Œyz� separates y from the set
fNu0.s1; s2/ W s2 2 Pr.B/g, i.e.,

hNu0.s1; s2/ � z; y � zi � 0 for all s2 2 Pr.B/:
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The following two results are due to Blackwell (1956).

Theorem 22. If C � R
k is a nonempty closed set satisfying the Blackwell

condition, then C is approachable in game G1. An approachability strategy is
O�.hn/ D s1. Ngn/, where hn is the history of a play at stage n.

Theorem 23. A closed and convex set C � R
k is either approachable or

excludable.

The next result was proved by Spinat (2002).

Theorem 24. A closed set C � R
k is approachable if and only if C contains a

subset having the Blackwell property.

Related results with applications to repeated games can be found in Sorin (2002)
and Mertens et al. (2015). Applications to optimization models, learning, and games
with partial monitoring can be found in Cesa-Bianchi and Lugosi (2006), Cesa-
Bianchi et al. (2006), Perchet (2011a,b), and Lehrer and Solan (2016). A theorem
on approachability for stochastic games with vector payoffs was proved by Shimkin
and Shwartz (1993). They imposed certain ergodicity conditions on the transition
probability and showed the applications of these results to queueing models. A more
general theorem on approachability for vector payoff stochastic games was proved
by Milman (2006). Below we briefly describe his result.

Consider a stochastic game with finite state spaceX and action spacesA.x/ � A

and B.x/ � B , where A and B are finite sets. The stage payoff function is
u W X � A � B ! R

k . For any strategies � 2 ˘ and 	 2 
 and an
initial state x D x1, there exists a unique probability measure P�	

x on the space
of all plays (the Ionescu-Tulcea theorem) generated by these strategies and the
transition probability q. By PD�	

x we denote the probability distribution on the
stream of vector payoffs g D .g1; g2; : : :/. Clearly, PD�	

x is uniquely induced by
P
�	
x .

A closed set C � R
k is approachable in probability from all initial states x 2

X , if there exists a strategy �0 2 ˘ such that for any x 2 X and � > 0 we
have

lim
n!1

sup
	2


PD�0	
x .fg W d.gk; C / > �g/ D 0:

Assume that y 62 C and z 2 PC .y/. Let �.z; y/ WD .z � y/=kz � yk: Consider
the stochastic game with scalarized payoffs u� .x; a; b/ WD hu.x; a; b/; �.z; y/i. By
Mertens and Neyman (1981) this game has a uniform value, denoted here by v�.x/,
x 2 X . An analogue to the theorem of Blackwell (1956), due to Milman (2006),
sounds as follows.
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Theorem 25. A closed set C � R
k is approachable in probability from all initial

states x 2 X if, for each y 62 C , there exists z 2 PC .y/ such that v�.x/ �

hz; �.z; y/i for all x 2 X .

We close this section by mentioning a recent paper by Kalathil et al. (2016)
devoted to the approachability problem in Stackelberg stochastic games with
vector costs. They constructed a simple and computationally tractable strategy for
approachability for this class of games and gave a reinforcement learning algorithm
for learning the approachable strategy when the transition kernel is unknown.

11 Stochastic Games with Short-Stage Duration and Related
Models

Studying continuous-time Markov games entails some conceptual and mathemat-
ical difficulties. One of the main issues concerns randomization in continuous
time. Zachrisson (1964) first considered zero-sum Markov games of a finite and
commonly known duration. His method of evaluating the stream of payoffs in
continuous time was simply to integrate over time. In his approach, the players use
Markov strategies, i.e., they choose their actions as a function of time and the current
state only. Stochastic games on Markov jump processes were studied by many
authors (see, e.g., Guo and Hernández-Lerma 2003, 2005). The payoff functions
and transition rates are time independent, and it is assumed that using randomized
Markov strategies, the players determine an infinitesimal operator of the stochastic
process, whose trajectories determine the stream of payoffs. The assumptions made
on the primitives imply that the players have optimal stationary strategies in the
zero-sum case (stationary equilibria in the nonzero-sum case), i.e., strategies that are
independent of time, but depend on the state that changes at random time epochs.
Altman and Gaitsgory (1995) studied zero-sum “hybrid games,” where the state
evolves according to a linear continuous-time dynamics. The parameters of the state
evolution equation may change at discrete times according to a countable state
Markov chain that is directly controlled by both players. Each player has a finite
action space. The authors proposed a procedure (similar in form to the well-known
maximum principle) that determines a pair of stationary strategies for the players,
which is asymptotically a saddle point, as the number of transitions during the finite
time horizon grows to infinity. Levy (2013) studied some connections of continuous-
time (finite state and action spaces) n-person Markov games with differential
games and the theory of differential inclusions. He also gave some results on
correlated equilibria with public randomization in an approximating game. He
considered Markov strategies only. We mention his paper here because no section
on continuous-time games is included in our chapter on nonzero-sum stochastic
games. Cardaliaguet et al. (2012) considered the asymptotic value of two-person
zero-sum repeated games with incomplete information games, splitting games, and
absorbing games. They used a technique relying on embedding the discrete repeated
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game into a continuous-time game and using the viscosity solution methods. Other
approaches to continuous-time Markov games including discretization of time are
briefly described in Laraki and Sorin (2015). The class of games discussed here is
important for many applications, e.g., in studying queueing models involving birth
and death processes and more general ones (see Altman et al. 1997).

Recently, Neyman (2013) presented a framework for fairly general strategies
using an asymptotic analysis of stochastic games with stage duration converging
to zero. He established some new results, especially on the uniform value and
approximate equilibria. There has been very little development in this direction.
In order to describe briefly certain ideas from Neyman (2013), we must introduce
some notation. We assume that the state space X and the action sets A and B are
finite. Let ı > 0 and 
ı be a zero-sum stochastic game played in stages tı, t 2 N.
Strategies for the players are defined in the usual way, but we should note that the
players act in time epochs ı, 2ı, and so on. Following Neyman (2013), we say that
ı is the stage duration. The stage payoff function uı W X � A � B ! R is assumed
to depend on ı. The evaluation of streams of payoffs in a multistage game is not
specified at this moment. The transition probability qı also depends on ı and is
defined using so-called transition rate function q0ı W X �X �A�B ! R satisfying
standard assumptions

q0ı .y; x; a; b/ � 0 for y 6D x; q0ı .y; y; a; b/ � �1 and
X
y2X

q0ı .y; x; a; b/ D 0:

The transition probability is

qı.yjx; a; b/ D q0ı .y; x; a; b/ if y 6D x and qı.xjx; a; b/ D q0ı .x; x; a; b/C 1

for all x 2 X , a 2 A and b 2 B . The transition rate q0ı .y; x; a; b/ represents the
difference between the probability that the next state will be y and the probability
(0 or 1) that the current state is y when the current state is x and the players’ actions
are a and b, respectively.

Following Neyman (2013), we say that the family of games .
ı/ı>0 is converging
if there exist functions � W X �X �A�B ! R and u W X �A�B ! R such that
for all x, y 2 X , a 2 A, and b 2 B , we have

lim
ı!0C

q0ı .y; x; a; b/

ı
D �.y; x; a; b/ and lim

ı!0C

uı.x; a; b/

ı
D u.x; a; b/;

and the family of games .
ı/ı>0 is exact if there exist functions� W X�X�A�B !

R and u W X � A � B ! R such that for all x; y 2 X , a 2 A, and b 2 B , we have
q0ı .y; x; a; b/=ı D �.y; x; a; b/ and uı.x; a; b/=ı D u.x; a; b/.

Assume that .x1; a1; b1; : : :/ is a play in the game with stage duration ı.
According to Neyman (2013), the unnormalized payoff in the �-discounted game,
denoted by 
ı;�, is
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1X
tD1

.1 � �ı/t�1uı.xt ; at ; bt /:

The discount factor ˇ in the sense of Sect. 3 is 1 � ı�. It is called admissible, if
limı!0C.1 � ˇ.ı//=ı exists. This limit is known as an asymptotic discount rate. In
the case of ˇ.ı/ D 1 � �ı, � > 0 is the asymptotic discount rate. Other example
of an admissible ı-dependent discount factor is e��ı . Assuming that the family of
games .
ı/ı>0 is converging, it is proved that the value of 
ı;�, denoted by vı;�.x/,
converges to some v�.x/ (called the asymptotic �-discounted value) for any initial
state x 2 X as ı ! 0C and the players have stationary optimal strategies �� and
	� that are independent of ı. Optimality of �� means that �� is �.ı/-optimal in the
game 
ı;�, where �.ı/ ! 0 as ı ! 0C. Similarly, we define the optimality for 	�.
For details the reader is referred to Theorem 1 in Neyman (2013).

For any play .x1; a1; b1; : : :/ and s > 0, define the average per unit time payoff
gı.s/ as

gı.s/ WD
1

s

X
1�t<s=ı

uı.xt ; at ; bt /:

A family .
ı/ı>0 of two-person zero-sum stochastic games has an asymptotic
uniform value v.x/ (x 2 X ) if for every � > 0 there are strategies �ı of player 1
and 	ı of player 2, a duration ı0 > 0 and a time s0 > 0 such that for every ı 2 .0; ı0/

and s > s0, strategy � of player 1, and strategy 	 of player 2, we have

� CE�ı	
x gı.s/ � v.x/ � E�	ı

x gı.s/ � �:

Theorem 6 in Neyman (2013) states that any exact family of zero-sum games
.
ı/ı>0 has an asymptotic uniform value.

The paper by Neyman (2013) contains also some results on the limit-average
games and n-person games with short-stage duration. His asymptotic analysis is
partly based on the theory of Bewley and Kohlberg (1976a) and Mertens and
Neyman (1981). His work inspired other researchers. For instance, Cardaliaguet
et al. (2016) studied the asymptotics of a class of two-person zero-sum stochastic
game with incomplete information on one side. Furthermore, Gensbittel (2016)
considered a zero-sum dynamic game with incomplete information, in which one
player is more informed. He analyzed the limit value and gave its characterization
through an auxiliary optimization problem and as the unique viscosity solution of a
Hamilton-Jacobi equation. Sorin and Vigeral (2016), on the other hand, examined
stochastic games with varying duration using iterations of non-expansive Shapley
operators that were successfully used in the theory of discrete-time repeated and
stochastic games.
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Abstract

This chapter describes a number of results obtained in the last 60 years on the
theory of nonzero-sum discrete-time stochastic games. We provide an overview
of almost all basic streams of research in this area such as the existence of
stationary Nash and correlated equilibria in models on countable and general
state spaces, the existence of subgame-perfect equilibria, algorithms, stopping
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games, and the existence of uniform equilibria. Our survey incorporates several
examples of games studied in operations research and economics. In particular,
separate sections are devoted to intergenerational games, dynamic Cournot
competition and game models of resource extraction. The provided reference list
includes not only seminal papers that commenced research in various directions
but also exposes recent advances in this field.

Keywords
Nonzero-sum game � Stochastic game � Discounted payoff � Limit-average
payoff � Markov perfect equilibrium � Subgame-perfect equilibrium �

Intergenerational altruism � Uniform equilibrium � Stopping game

1 Introduction

The fundamentals of modern theory of non-cooperative dynamic games were estab-
lished in the 1950s at Princeton University. First Nash (1950) introduced the notion
of equilibrium for finite n-person static games and proved its existence using the
fixed point theorem of Kakutani (1941). Next Shapley (1953) presented the model
of infinite time horizon stochastic zero-sum game with positive stop probability.
Fink (1964) and Takahashi (1964) extended his model to nonzero-sum discounted
stochastic games with finite state spaces and proved the existence of equilibrium in
stationary Markov strategies. Later on, Rogers (1969) and Sobel (1971) obtained
similar results for irreducible stochastic games with the expected limit-average
payoffs. Afterwards, the theory of discrete-time nonzero-sum stochastic games
was extended in various directions inspiring a lot of interesting applications. An
overview of selected basic topics in stochastic dynamic games with instructive
examples can be found in the books of Başar and Olsder (1995) and Haurie et al.
(2012) and the survey paper by Dutta and Sundaram (1998). Theoretically more
advanced material is included in the book edited by Neyman and Sorin (2003) and
the monograph of Mertens et al. (2015).

In this chapter, we provide an overview of almost all basic streams of research
in the area of nonzero-sum discrete-time stochastic games such as: the existence
of stationary equilibria in models on both countable and general state spaces, the
existence of subgame-perfect equilibria, algorithms, stopping games, correlated and
uniform equilibria. Our survey incorporates several examples of games studied
in operations research and economics. In particular, separate sections are devoted
to intergenerational games, dynamic Cournot competition and game models of
resource extraction. The provided reference list not only includes seminal papers
that initiated research in various directions but also exposes recent advances in this
field.

The paper is organized as follows. In Sect. 2 we describe some basic material
needed for an examination of nonzero-sum stochastic games with general state
spaces. To make the presentation less technical, we restrict our attention to Borel
space models. A great deal of the results described in this chapter are stated in the
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literature in a more general framework. However, the Borel state space models are
sufficiently rich for most applications. Section 2 includes auxiliary results on set-
valued mappings arising in the study of the existence of stationary Nash/correlated
equilibria and certain known results in the literature such as a random version
of the Carathéodory theorem or the Mertens measurable selection theorem. The
second part, on the other hand, is devoted to supermodular games. Sect. 3 deals
with the concept of subgame-perfect equilibrium in games on a Borel state space
and introduces different classes of strategies, in which subgame-perfect equilibria
may be obtained. Sect. 4 includes results on correlated equilibria with public signal
proved for games on Borel state spaces, whereas Sect. 5 presents the state-of-
the-art results on the existence of stationary equilibria (further called “stationary
Markov perfect equilibria”) in discounted stochastic games. This theory found its
applications to several examples examined in operations research and economics.
Namely, in Sect. 6 we provide models with special but natural transition structures,
for which there exist stationary equilibria. Sect. 7 recalls the papers, where the
authors proved the existence of an equilibrium for stochastic games on denumerable
state spaces. This section embraces the discounted models as well as models with
the limit-average payoff criterion. Moreover, it is also shown that the discounted
game with a Borel state space can be approximated, under some assumptions, by
simpler games with countable state spaces. Sect. 8 reviews algorithms applied to
nonzero-sum stochastic games. In particular, it is shown how a formulation of a
linear complementarity problem can be helpful in solving games with discounted
and limit-average payoff criteria with special transition structure. In addition, we
also mention the homotopy methods applied to this issue. Sect. 9 presents material
on games with finite state and action spaces, while Sect. 10 deals with games
with product state spaces. In Sect. 11 we formulate results proved for various
intergenerational games. Our models incorporate paternalistic and non-paternalistic
altruistic economic growth models: games with one, finite, or infinitely many
descendants as well as games on one- and multidimensional commodity spaces.
Finally, Sect. 12 provides a short overview of stopping games beginning from the
Dynkin extension of Neveu’s stopping problem.

2 Preliminaries

In this section, we recall essential notations and several facts, which are crucial
for studying Nash and correlated equilibria in nonzero-sum stochastic games with
uncountable state spaces. Here we follow preliminaries in Jaśkiewicz and Nowak
(2018a). Let N D f1; : : : ; ng be the set of n-players. Let X , A1; : : : ; An be Borel
spaces. Assume that for each i 2 N , x ! Ai.x/ � Ai is a lower measurable
compact-valued action correspondence for player i: This is equivalent to saying that
the graph of this correspondence is a Borel subset ofX�Ai : LetA WD A1� � � ��An:

We consider a nonzero-sum n-person game parameterized by a state variable x 2 X .
The payoff or utility function for player i 2 N is ri W X � A ! R and it
is assumed that ri is bounded, ri .�; a/ is Borel measurable for each a 2 A, and
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ri .x; �/ is continuous on A for each x 2 X: Assuming that i 2 N chooses a mixed
strategy �i 2 Pr.Ai .x// and � WD .�1; : : : ; �n/; we denote the expected payoff to
player i by

P i.x; �/ WD

Z
An.x/

� � �

Z
A1.x/

ri .x; a1; : : : ; an/�1.da1/ � � � � � �n.dan/:

A strategy profile �� D .��
1 ; : : : ; �

�
n / is a Nash equilibrium in the game for a given

state x 2 X if

P i.x; ��/ � P i.x; .�i ; �
�
�i //

for every i 2 N and �i 2 Pr.Ai .x//: As usual .�i ; ��
�i / denotes �� with ��

i replaced
by �i : For any x 2 X , by N .x/, we denote the set of all Nash equilibria in the
considered game. By Glicksberg (1952), N .x/ 6D ;: It is easy to see that N .x/ is
compact. Let NP.x/ � R

n be the set of payoff vectors corresponding to all Nash
equilibria in N .x/: By co, we denote the convex hull operator in R

n:

Proposition 1. The mappings x ! N .x/, x ! NP.x/ and x ! coNP.x/ are
compact-valued and lower measurable.

For a detailed discussion of these statements, consult Nowak and Raghavan
(1992), Himmelberg (1975), and Klein and Thompson (1984). By Kuratowski and
Ryll-Nardzewski (1965), every set-valued mapping in Proposition 1 has a Borel
measurable selection. Making use of standard results on measurable selections (see
Castaing and Valadier 1977) and Carathéodory’s theorem, we obtain the following
result.

Proposition 2. Let b W X ! R
n be a Borel measurable selection of the mapping

x ! coNP.x/: Then, there exist Borel measurable selections bi W X ! R
n and

Borel measurable functions �i W X ! Œ0; 1� (i D 1; : : : ; n C 1) such that for each
x 2 X , we have

nC1X
iD1

�i .x/ D 1 and b.x/ D

nC1X
iD1

�i .x/bi .x/:

Similarly as in Nowak and Raghavan (1992), from Filippov’s measurable implicit
function theorem, we conclude the following facts.

Proposition 3. Let p W X ! R
n be a Borel measurable selection of the mapping

x ! NP.x/: Then, there exists a Borel measurable selection  of the mapping
x ! N .x/ such that
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p.x/ D .P 1.x;  .x//; : : : ; P n.x;  .x/// for all x 2 X:

Proposition 4. If b W X ! R
n is a Borel measurable selection of the mapping

x ! coNP.x/, then there exist Borel measurable selections  i of the mapping
x ! N .x/ and Borel measurable functions �i W X ! Œ0; 1� (i D 1; : : : ; n C 1)
such that for each x 2 X , we have

PnC1
iD1 �

i .x/ D 1 and

b.x/ D

nC1X
iD1

�i .x/.P 1.x;  i .x//; : : : ; P n.x;  i .x///:

The following result plays an important role in studying Nash equilibria in
stochastic games with Borel state spaces and can be deduced from Theorem 2 in
Mertens (2003) and Filippov’s measurable implicit function theorem. It is related
to Lyapunov’s theorem on the range of nonatomic measures and also has some
predecessors in control theory; see Artstein (1989).

Proposition 5. Let � be a nonatomic Borel probability measure onX . Assume that
qj (j D 1; : : : ; l) are Borel measurable transition probabilities from X to X and
for every j and x 2 X , qj .�jx/ � �, i.e., qj .�jx/ is dominated by �: Let w0 W

X ! R
n be a Borel measurable mapping such that w0.x/ 2 coNP.x/ for each

x 2 X: Then there exists a Borel measurable mapping v0 W X � X ! R
n such that

v0.x; y/ 2 NP.x/ for all x; y 2 X and

Z
X

w0.y/qj .dyjx/ D

Z
X

v0.x; y/qj .dyjx/; j D 1; : : : ; l:

Moreover, there exists a Borel measurable mapping � W X � X ! Pr.A/ such that
�.x; y/ 2 N .x/ for all x; y 2 X:

LetL be a lattice contained in Euclidean space Rk equipped with the component-
wise order �. For any x; y 2 L, x _ y (x ^ y) denotes the join (meet) of x and y.
A function � W L ! R is supermodular if for any x; y 2 L, it holds

�.x _ y/C �.x ^ y/ � �.x/C �.y/:

Clearly, if k D 1, then any function � is supermodular. Let L1 � R
k , L2 � R

l

be lattices. A function  W L1 � L2 ! R has increasing differences in .x; y/ if
for every x0 � x in L1,  .x0; y/ �  .x; y/ is non-decreasing in y: Let the set Ai
of pure strategies of player i 2 N be a compact convex subset of Euclidean space
R
mi : An element ai of Ai is denoted by ai D .ai1; ai2; : : : ; aimi /: We consider an

n-person game G0 in which Ri W A ! R is the payoff function of player i 2 N and
A WD A1 � � � � � An: As usual, any strategy profile a D .a1; a2; : : : ; an/ can also be
denoted as .ai ; a�i / for i 2 N:
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Assume that every Ai is a lattice. The game G0 is called supermodular if for
every player i 2 N and a�i , the function ai ! Ri.ai ; a�i / is supermodular and Ri
has increasing differences in .ai ; a�i /:

It is well known that any supermodular game with continuous utility functions
and compact strategy sets Ai has a pure Nash equilibrium; see Topkis (1998) or
Theorems 4 and 5 in Milgrom and Roberts (1990).

The game G0 is called smooth if every Ri can be extended from A to an open
superset Ao in such a way that its second-order partial derivatives exist and are
continuous on Ao:

A game G0 is called a smooth supermodular game if for every player i 2 N ,

(a) Ai is a compact interval in R
mi ,

(b) @2Ri
@aij @aik

� 0 on A for all 1 � j < k � mi ,

(c) @2Ri
@aij @akl

� 0 on A for each k 6D i and all 1 � j � mi , 1 � l � mk:

It is well known that any game satisfying conditions (a)–(c) is supermodular.
Conditions (a) and (b) imply that Ri is a supermodular function with respect to ai
for fixed a�i , while conditions (a) and (c) imply that Ri has increasing differences
in .ai ; a�i /: For a detailed discussion of these issues, see Topkis (1978, 1998) or
Theorem 4 in Milgrom and Roberts (1990).

In order to obtain a uniqueness of an equilibrium in a smooth supermodular game
G0, one needs an additional assumption, often called a strict diagonal dominance
condition, see page 1271 in Milgrom and Roberts (1990) or Rosen (1965). As noted
by Curtat (1996), this condition can be described for smooth supermodular games
as follows. Let Mi WD f1; 2; : : : ; mig:

(C1) For every i 2 N and j 2 Mi ,

@2Ri

@a2ij
C

X
l2Minfj g

@2Ri

@aij @ail
C

X
k2Nnfig

X
l2Mk

@2Ri

@aij @akl
< 0:

From Milgrom and Roberts (1990) and page 187 in Curtat (1996), we obtain the
following auxiliary result.

Proposition 6. Any smooth supermodular game G0 satisfying condition (C1) has a
unique pure Nash equilibrium.

Assume now that the payoff functions Ri are parameterized by � in some
partially ordered set T , i.e., Ri W A � T ! R: We introduce a new condition.

(C2) @2Ri
@aij @�

� 0 for all 1 � j � mi , and i 2 N:
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It is known that the set of Nash equilibria in any supermodular game G0 is a
lattice and has the smallest and the largest elements. The following result follows
from Theorem 7 in Milgrom and Roberts (1990).

Proposition 7. Suppose that a smooth supermodular game satisfies (C2). Then, the
largest and smallest pure Nash equilibria are non-decreasing functions of �:

3 Subgame-Perfect Equilibria in Stochastic Games with
General State Space

We consider an n-person nonzero-sum discounted stochastic game G as defined
below.

• .X;B.X// is a nonempty Borel state space with its Borel � -algebra B.X/:
• Ai is a Borel space of actions for player i 2 N WD f1; : : : ; ng:

• Ai.x/ � Ai is a set of actions available to player i 2 N in state x 2 X: The
correspondence x ! Ai.x/ is lower measurable and compact-valued. Define

A WD A1 � : : : � An and A.x/ D A1.x/ � : : : � An.x/; x 2 X:

• ui W X � A ! R is a Borel measurable bounded utility (or payoff ) function for
player i 2 N: It is assumed that ui .x; �/ is continuous on A for every x 2 X:

• q W X �A� B.X/ ! Œ0; 1� is a transition probability. We assume that q.Djx; �/

is continuous on A for each x 2 X and D 2 B.X/:
• ˇ 2 .0; 1/ is a discount factor.

Every stage of the game begins with a state x 2 X , and after observing x; the
players simultaneously choose their actions ai 2 Ai.x/ (i 2 N ) and obtain payoffs
ui .x; a/, where a D .a1; : : : ; an/: A new state x0 is realized from the distribution
q.�jx; a/ and new period begins with payoffs discounted by ˇ: Let H1 D X and Ht

be the set of all plays ht D .x1; a
1; : : : ; xt�1; a

t�1; xt /, where ak D .ak1 ; : : : ; a
k
n/ 2

A.xk/, k D 1; : : : ; t �1: A strategy for player i 2 N is a sequence 	i D .	it /t2N of
Borel measurable transition probabilities from Ht to Ai such that 	it .Ai .xt // D 1

for each ht 2 Ht : The set of strategies for player i 2 N is denoted by ˘i : We let
˘ WD ˘1 � : : : � ˘n: Let Fi (F 0

i ) be the set of all Borel measurable mappings
fi W X � X ! Pr.Ai / (�i W X ! Pr.Ai /) such that fi .x�; x/ 2 Pr.Ai .x//
(�i .x/ 2 Pr.Ai .x//) for each x�; x 2 X: A stationary almost Markov strategy for
player i 2 N is a constant sequence .	it /t2N where 	it D fi for some fi 2 Fi
and for all t 2 N: If xt is a state of the game on its t -stage with t � 2, then player
i chooses an action using the mixed strategy fi .xt�1; xt /: The mixed strategy used
at an initial state x1 is fi .x1; x1/: The set of all stationary almost Markov strategies
for player i 2 N is identified with the set Fi : A stationary Markov strategy for
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player i 2 N is identified with a Borel measurable mapping fi 2 F 0
i : We say that

	i D .	i1; 	i2; : : :/ 2 ˘i is a Markov strategy for player i if 	it 2 F 0
i for all t 2 N:

Any strategy profile 	 D .	1; : : : ; 	n/ 2 ˘ together with an initial state
x D x1 2 X determines a unique probability measure P	

x on the space H1 of all
plays h1 D .x1; a

1; x2; a
2; : : :/ endowed with the product � -algebra. The expected

discounted payoff or utility function for player i 2 N is

J
i;T
ˇ .x; 	/ D E	

x

 
TX
tD1

ˇt�1ui .xt ; a
t /

!
where T � 1:

We shall write J iˇ.x; 	/, if T D 1:

A profile of strategies 	� 2 ˘ is called a Nash equilibrium, if

J
i;T
ˇ .x; 	�/ � J

i;T
ˇ .x; .	�

�i ; 	i // for all x 2 X; 	i 2 ˘i and i 2 N:

A stationary almost Markov (stationary Markov) perfect equilibrium is a Nash
equilibrium that belongs to the class of strategy profiles F WD F1 � : : : � Fn
(F 0 WD F 0

1 � : : : � F 0
n ). A Markov perfect equilibrium, on the other hand, is a

Nash equilibrium 	�, in which 	�
i t D fit and fit 2 F 0

i for every t 2 N and every
player i 2 N: The strategies involved in such an equilibrium are called “markovian,”
“state-contigent,” or “payoff-relevant”; see Maskin and Tirole (2001). Clearly, every
stationary Markov perfect equilibrium is also a Markov perfect equilibrium.

Let 	 D .	1; : : : ; 	n/ 2 ˘ and ht 2 Ht : By 	i Œht � we denote the conditional
strategy for player i that can be applied from stage t onward. Let 	Œht � D

.	1Œht �; : : : ; 	nŒht �/: Using this notation, one can say that 	� is a subgame-perfect
equilibrium in the stochastic game if for any t 2 N and every partial history ht 2 Ht ,
	�Œht � is a Nash equilibrium in the subgame starting at xt , where xt is the last
coordinate in ht : This definition refers to the classical idea of Selten (1975).

Let B.X/ be the space of all bounded Borel measurable real-valued functions on
X and Bn.X/ WD B.X/ � � � � � B.X/ (n times). Similarly define B.X � X/ and
Bn.X � X/: With any x 2 X and v D .v1; : : : ; vn/ 2 Bn.X/, we associate the
one-shot game 
v.x/ in which the payoff function to player i 2 N is

U i
ˇ.vi ; x; a/ WD ui .x; a/C ˇ

Z
X

vi .y/q.dyjx; a/; a 2 A.x/: (6.1)

If � D .�1; : : : ; �n/ 2 Pr.A.x//, then

U i
ˇ.vi ; x; �/ D

Z
An.x/

: : :

Z
A1.x/

U i
ˇ.vi ; x; a1; : : : ; an/�1.da1/ � � � � � �n.dan/

and if f D .f1; : : : ; fn/ 2 F 0, then U i
ˇ.vi ; x; f / D U i

ˇ.vi ; x; �/ with � D

.f1.x/; : : : ; fn.x//: Further, U i
ˇ.vi ; x; .�i ; f�i // D U i

ˇ.vi ; x; �/ with �i D �i ,
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�j D fj .x/ for j 6D i: Under our assumptions, a ! U i
ˇ.vi ; x; a/ is continuous on

A.x/ for every vi 2 B.X/, x 2 X , i 2 N: Let Nv.x/ be the set of all Nash equilibria
in the game 
v.x/: By NPv.x/ we denote the set of payoff vectors corresponding
to all Nash equilibria in Nv.x/: Let Mv be the set of all Borel measurable selections
of the set-valued mapping x ! Nv.x/: We know from Proposition 1 that Mv 6D ;:

Consider a T -stage game (2 � T < 1). Assume that the .T �1/-stage subgame
starting at any state x2 2 X has a Markov perfect equilibrium, say 	�

T�1: Let v�
T�1

be the vector payoff function in Bn.X/ determined by 	�
T�1: Then we can get some

f � 2 Mv�

T�1
and define 	�

T WD .f �; 	�
T�1/: It is obvious that 	�

T is a Markov
perfect equilibrium in the T -stage game. This fact was proved by Rieder (1979) and
we state it below.

Theorem 1. Every finite-stage nonzero-sum discounted stochastic game satisfying
the above conditions has a subgame-perfect equilibrium. For any " > 0, there exists
an "-equilibrium 	" in Markov strategies, i.e.,

J iˇ.x; 	
"/C " � J iˇ.x; .	i ; 	

"
�i // for all x 2 X; 	i 2 ˘i and i 2 N:

Note that "-equilibrium in the second part of this theorem has no subgame-
perfection property.

We now make an additional assumption.

(A1) The transition probability q is norm continuous in actions, i.e., for each x 2 X ,
ak ! a0 in A.x/ as k ! 1, it follows that

sup
D2B.X/

jq.Djx; ak/ � q.Djx; a0/j ! 0:

Condition (A1) is quite restrictive, but it is satisfied, if q has a continuous in
actions conditional density with respect to some probability measure on X:

Theorem 2. Every discounted nonzero-sum stochastic game G satisfying (A1) has
a subgame-perfect equilibrium.

Theorem 2 was proved in a more general form by Mertens and Parthasarathy
(2003), where the payoffs and discount factors may depend on time and the state
space is a general measurable space. A special case was considered by Mertens
and Parthasarathy (1991), who assumed that the action sets are finite and state
independent and transitions are dominated by some probability measure on X:

The proofs given in Mertens and Parthasarathy (1991, 2003) are based upon
studying a specified fixed point property of an operator defined in the class of
measurable selections of compact set-valued mappings from the state space to
the payoff space. The fixed point obtained in that class is used to define in a
recursive way a subgame-perfect equilibrium that consists of history-dependent
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strategies (unbounded memory is assumed). For further comments on possible
extensions of Theorem 2, the reader is referred to Mertens (2002) and Mertens
et al. (2015). A modified proof of their results was provided by Solan (1998),
who analyzed accumulation points of �-equilibria (as � ! 0) obtained in Theo-
rem 1.

Assume that Ai.x/ D Ai for each x 2 X and i 2 N and that every space Ai is
compact. LetX and A1; : : : ; An be given the discrete topology. According to Maitra
and Sudderth (2007), a function g W H1 ! R is DS -continuous on H1 if it is
continuous on H1 endowed with the product topology. It is easy to see that g is
DS -continuous on H1 if and only if, for any � > 0 and y D .y1; y2; : : :/ 2 H1,
there exists m such that jg.y/ � g.y0/j < � for each y0 D .y0

1; y
0
2; : : :/ 2 H1

such that yl D y0
l for 1 � l � m: Suppose that gi W H1 ! R is a bounded

Borel measurable payoff function for player i 2 N: For any strategy profile 	 2 ˘

and every initial state x D x1, the expected payoff to player i is E	
x .gi /: The

subgame-perfect equilibrium can be defined for this game in the usual way. Maitra
and Sudderth (2007) (see Theorem 1.2) obtained a general theorem on the existence
of subgame-perfect equilibria for stochastic games.

Theorem 3. Let the payoff functions gi , i 2 N be bounded, Borel measurable, and
DS -continuous onH1 and let the action spaces Ai , i 2 N be finite. Then the game
has a subgame-perfect equilibrium.

The proof of Theorem 3 applies some techniques from gambling theory described
in Dubins and Savage (2014), i.e., approximations of DS -continuous functions
by “finitary functions”. Theorem 3 extends a result due to Fudenberg and Levine
(1983). An example given in Harris et al. (1995) shows that Theorem 3 is false,
if the action spaces are compact metric and the transition probability q is weakly
continuous.

The next result was proved by Maitra and Sudderth (2007) (see Theorem 1.3) for
“additive games” and sounds as follows.

Theorem 4. Assume that every action space is compact and the transition prob-
ability satisfies (A1). Assume that gi .h1/ D

P1
tD1 rit .xt ; a

t / and this series
converges uniformly onH1: If, in addition, every function rit is bounded, rit .�; a/ is
Borel measurable on X for each a 2 A WD A1 � � � � �An and rit .x; �/ is continuous
on A for each x 2 X , then the game has a subgame-perfect equilibrium.

It is worth to emphasize that stationary Markov perfect equilibria may not exist
in games considered in this section. Namely, Levy (2013) gave a counterexample of
a discounted game with uncountable state space, finite action sets and deterministic
transitions. Then, Levy and McLennan (2015) showed that stationary Markov
perfect equilibria may not exist even if the action spaces are finite, X D Œ0; 1�

and the transition probability has a density function with respect to some measure
� 2 Pr.X/: A simple modification of the example given in Levy and McLennan
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(2015) shows that a new game (with X D Œ0; 2�) need not have a stationary Markov
perfect equilibrium, when the measure � (dominating the transition probability q)
is nonatomic.

4 Correlated Equilibria with Public Signals in Games with
Borel State Spaces

Correlated equilibria for normal form games were first studied by Aumann (1974,
1987). In this section we describe an extensive-form correlated equilibrium with
public randomization inspired by the work of Forges (1986). A further discussion of
correlated equilibria and communication in games can be found in Forges (2009).
The sets of all equilibrium payoffs in extended form games that include a general
communication device are characterized by Solan (2001).

We now extend the sets of strategies available to the players in the sense that
we allow them to correlate their choices in some natural way. Suppose that .�t /t2N
is a sequence of so-called signals, drawn independently from Œ0; 1� according to
the uniform distribution. Suppose that at the beginning of each period t of the
game the players are informed not only of the outcome of the preceding period
and the current state xt , but also of �t : Then, the information available to them is
a vector ht D .x1; �1; a

1; : : : ; xt�1; �t�1; a
t�1; xt ; �t /, where x� 2 X , �� 2 Œ0; 1�,

a� 2 A.x�/, 1 � � � t � 1: We denote the set of such vectors by Ht : An extended
strategy for player i is a sequence 	i D .	it /t2N, where 	it is a Borel measurable
transition probability fromHt toAi such that 	it .Ai .xt /jht / D 1 for each ht 2 Ht :

An extended stationary strategy for player i 2 N can be identified with a Borel
measurable mapping f W X � Œ0; 1� ! Pr.Ai / such that f .Ai .x/jx; �/ D 1

for all .x; �/ 2 X � Œ0; 1�: Assuming that the players use extended strategies we
actually assume that they play the stochastic game with the extended state space
X � Œ0; 1�: The law of motion, say p, in the extended state space model is obviously
the product of the original law of motion q and the uniform distribution  on Œ0; 1�:
More precisely, for any x 2 X , � 2 Œ0; 1�, a 2 A.x/, Borel sets C � X and
D � Œ0; 1�, p.C � Djx; �; a/ D q.C jx; a/.D/: For any profile of extended
strategies 	 D .	1; : : : ; 	n/ of the players, the expected discounted payoff to player
i 2 N is a function of the initial state x1 D x and the first signal �1 D � and
is denoted by J iˇ.x; �; 	/: We say that f � D .f �

1 ; : : : ; f
�
n / is a Nash equilibrium

in the ˇ-discounted stochastic game in the class of extended strategies if for each
initial state x1 D x, i 2 N and every extended strategy 	i of player i , we have

Z 1

0

J iˇ.x; �; f
�/d� �

Z 1

0

J iˇ.x; �; .	i ; f
�

�i //d�:

The Nash equilibrium in extended strategies is also called a correlated equilibrium
with public signals. The reason is that after the outcome of any period of the game,
the players can coordinate their next choices by exploiting the next (known to all
of them, i.e., public) signal and using some coordination mechanism telling which
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(pure or mixed) action is to be played by everyone. In many applications, we
are particularly interested in stationary equilibria. In such a case the coordination
mechanism can be represented by a family of n C 1 Borel measurable functions
�j W X ! Œ0; 1� such that

PnC1
jD1 �

j .x/ D 1 for each x 2 X: A stationary correlated
equilibrium can be constructed then by using a family of nC 1 stationary strategies
f 1
i ; : : : ; f

nC1
i given for every player i , and the following coordination rule. If the

game is in state xt D x on stage t and a random number �t D � is selected, then
player i 2 N is suggested to use f k

i .�jx/ where k is the least index for whichPk
jD1 �

j .x/ � �: The functions �j and f j
i induce an extended stationary strategy

f �
i for every player i as follows

f �
i .�jx; �/ WD f 1

i .�jx/ if � � �1.x/; x 2 X;

and

f �
i .�jx; �/ WD f k

i .�jx/ if
k�1X
jD1

�j .x/ < � �

kX
jD1

�j .x/

for x 2 X , 2 � k � n C 1: Because the signals are independent and uniformly
distributed in Œ0; 1�, it follows that at any period of the game and for any current state
x, the number �j .x/ can be interpreted as the probability that player i is suggested
to use f j

i .�jx/ as a mixed action.

(A2) Let� 2 Pr.X/: There exists a conditional density function � for q with respect
to � such that if ak ! a0 in A.x/, x 2 X , as k ! 1, then

lim
k!1

Z
X

j�.x; ak; y/ � �.x; a0; y/j�.dy/ D 0:

Theorem 5. Any discounted stochastic game G satisfying (A2) has a stationary
correlated equilibrium with public signals.

Theorem 5 was proved by Nowak and Raghavan (1992). First it is shown by
making use of a theorem in Glicksberg (1952) that the correspondence v ! Mv

has a fixed point, i.e., there exists w� 2 Bn.X/ such that w�.x/ 2 coNPw�.x/ for
all x 2 X: Then, applying Propositions 2 and 4, one can prove the existence of a
stationary correlated equilibrium with public signals for the game with the payoff
functions U i

ˇ.w
�
i ; x; a/ defined in (6.1). A verification that f � obtained in this way

is indeed a Nash equilibrium in the game with the extended state space X � Œ0; 1�

relies on using standard Bellman equations for discounted dynamic programming;
see Blackwell (1965) or Puterman (1994). Observe also that the set of all atoms Da

for � is countable. A refinement of the above result is Theorem 2 in Jaśkiewicz and
Nowak (2016), where it is shown that public signals are important only in states
belonging to the set X n Da: A similar result on correlated equilibria was given in
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Nowak and Jaśkiewicz (2005) for semi-Markov games with Borel state spaces and
the expected average payoffs. This result, in turn, was proved under geometric drift
conditions (GE1)–(GE3) formulated in Sect. 5 in Jaśkiewicz and Nowak (2018a).

Condition (A2) can be replaced in the proof (with minor changes) by assumption
(A1) on norm continuity of q with respect to actions. A similar result to Theorem 5
was given by Duffie et al. (1994), where it was assumed that for any x; x0 2 X ,
a 2 A.x/, a0 2 A.x0/, we have

q.�jx; a/ � q.�jx0; a0/ and q.�jx0; a0/ � q.�jx; a/:

In addition, Duffie et al. (1994) required the continuity of the payoffs and transitions
with respect to actions. Thus, the result in Duffie et al. (1994) is weaker than
Theorem 5. Moreover, they also established the ergodicity of the Markov chain
induced by a stationary correlated equilibrium. Their proof is different from that
of Nowak and Raghavan (1992). Subgame-perfect correlated equilibria were also
studied by Harris et al. (1995) for games with weakly continuous transitions and
general continuous payoff functions on the space of infinite plays endowed with
the product topology. Harris et al. (1995) gave an example showing that public
signals play an important role. They proved that the subgame-perfect equilibrium
path correspondence is upper hemicontinuous. Later, Reny and Robson (2002)
provided a shorter and simpler proof of existence that focuses on considerations
of equilibrium payoffs rather than paths. Some comments on correlated equilibria
for games with finitely many states or different payoff evaluation will be given in
the sequel.

5 Stationary Equilibria in Discounted Stochastic Games with
Borel State Spaces

In this section, we introduce the following condition.

(A3) There exist l Carathéodory functions ˛j W X � A ! Œ0; 1� such thatPl
jD1 ˛j .x; a/ D 1 for every .x; a/ 2 X �A and Borel measurable transition

probabilities qj W X � B.X/ ! Œ0; 1� such that

q.�jx; a/ D

lX
jD1

˛j .x; a/qj .�jx/; .x; a/ 2 X � A:

Additionally, every qj .�jx/ is dominated by some � 2 Pr.X/:

We can now state a result due to Jaśkiewicz and Nowak (2016).

Theorem 6. Assume that game G satisfies (A3). Then, G has a stationary almost
Markov perfect equilibrium.
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We outline the proof of Theorem 6 for nonatomic measure �. The general case
needs an additional notation. First, we show that there exists a Borel measurable
mapping w� 2 Bn.X/ such that w�.x/ 2 coNPw�.x/ for all x 2 X: This result
is obtained by applying a generalization of the Kakutani fixed point theorem due
to Glicksberg (1952). (Note that closed balls in Bn.X/ are compact in the weak-
star topology due to Banach-Alaoglu’s theorem.) Second, applying Proposition 5
we conclude that there exists some v� 2 Bn.X �X/ such that

Z
X

w�.y/qj .dyjx/ D

Z
X

v�.x; y/qj .dyjx/; j D 1; : : : ; l:

Hence, by (A3) we infer that

Z
X

w�.y/q.dyjx; a/ D

Z
X

v�.x; y/q.dyjx; a/; .x; a/ 2 X � A:

Moreover, we know that v�.x; y/ 2 NPv�.y/ for all states x and y: Furthermore,
making use of Filippov’s measurable implicit function theorem (as in Proposition 5),
we claim that v�.x; y/ is the vector of equilibrium payoffs corresponding to some
stationary almost Markov strategy profile. Finally, we utilize the system of n
Bellman equations to provide a characterization of stationary equilibrium and to
deduce that this profile is indeed a stationary almost Markov perfect equilibrium.
For details the reader is referred to Jaśkiewicz and Nowak (2016).

Corollary 1. Consider a game where the set A is finite and the transition probabil-
ity q is Borel measurable. Then, the game has a stationary almost Markov perfect
equilibrium.

Proof. We show that the game meets (A3). Let m 2 N be such that A D

fa1; : : : ; amg: Now, for j D 1; : : : ; m, define

˛j .s; a/ WD

�
1; if a 2 A.x/; a D aj

0; otherwise,
and

qj .�jx/ WD

�
q.�jx; a/; if a 2 A.x/; a D aj

�.�/; otherwise.

Then, q.�js; a/ D
Pl

jD1 gj .s; a/qj .�js/ for l D m and the conclusion follows from
Theorem 6.

Remark 1. Corollary 1 extends the result of Mertens and Parthasarathy (1991),
where it is additionally assumed that Ai.x/ D Ai for all x 2 X , i 2 N and that
� is nonatomic; see Comment on page 147 in Mertens and Parthasarathy (1991) or
Theorem VII.1.8 on page 398 in Mertens et al. (2015). If � admits some atoms, then
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they proved the existence of a subgame-perfect equilibrium in which the strategy of
player i 2 N is of the form .fi1; fi2; : : :/ with fit 2 F 0

i for each t 2 N: Thus, the
equilibrium strategy of player i 2 N is stage-dependent.

Remark 2. It is worth to emphasize that equilibria established in Theorem 6 are
subgame-perfect. A related result to Theorem 6 is given in Barelli and Duggan
(2014). The assumption imposed on the transition probability in their paper is
weaker, but an equilibrium is shown to exist in the class of stationary semi-Markov
strategies, where the players take into account the current state, the previous state
and the actions chosen by the players in the previous state.

Remark 3. As already mentioned in Sect. 3, Levy and McLennan (2015) con-
structed a stochastic game that does not have a stationary Markov perfect equi-
librium. In their model, each set Ai is finite, Ai.x/ D Ai for every i 2 N , x 2 X ,
and the transition law is a convex combination of a probability measure (depending
on the current state) and the Dirac measure concentrated at some state. Such a
model satisfies the absolute continuity condition. Hence, their example confirms
that one cannot expect to obtain an equilibrium in stationary Markov strategies even
for games with finite action spaces. Therefore, Corollary 1 is meaningful.

Remark 4. By Urysohn’s metrization theorem (see Theorem 3.40 in Aliprantis and
Border 2006), every action space Ai can be embedded homeomorphically in the
Hilbert cube. The action correspondences remain measurable and compact-valued
after the embedding. Therefore, one can assume without loss of generality as in
Jaśkiewicz and Nowak (2016) that the action spaces are compact metric.

A stochastic game with additive reward and additive transitions (ARAT for
short) satisfies some separability condition for the actions of the players. To simplify
presentation, we assume that N D f1; 2g: The payoff function for player i 2 N is
of the form

ui .x; a1; a2/ D ui1.x; a1/C ui2.x; a2/;

where x 2 X; a1 2 A1.x/; a2 2 A2.x/ and similarly

q.�jx; a1; a2/ D q1.�jx; a1/C q2.�jx; a2/;

where q1 and q2 are Borel measurable subtransition probabilities dominated by some
� 2 Pr.X/:

The following result was proved in Jaśkiewicz and Nowak (2015a).

Theorem 7. If � is a nonatomic probability measure and the action sets A1 and A2

are finite, then the ARAT stochastic game has a Nash equilibrium in pure stationary
almost Markov strategies.
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The separability condition as in ARAT games can be easily generalized to n-
person case. Assumptions of similar type are often used in differential games; see
Başar and Olsder (1995). ARAT stochastic games with Borel state and finite action
spaces were first studied by Himmelberg et al. (1976), who showed the existence of
stationary Markov equilibria for �-almost all initial states with � 2 Pr.X/: Their
result was strengthened by Nowak (1987), who considered compact metric action
spaces and obtained stationary equilibria for all initial states. Pure stationary Markov
perfect equilibria may not exist in ARAT stochastic games if � has atoms; see
Example 3.1 (a game with 4 states) in Raghavan et al. (1985) or counterexample (a
game with 2 states) in Jaśkiewicz and Nowak (2015a). Küenle (1999) studied ARAT
stochastic games with a Borel state space and compact metric action spaces and
established the existence of non-stationary history-dependent pure Nash equilibria.
In order to construct subgame-perfect equilibria, he used the well-known idea of
threats (frequently used in repeated games). The result of Küenle (1999) is stated for
two-person games only. Theorem 7 can also be proved for n-person games under a
similar additivity assumption. An almost Markov equilibrium is obviously subgame-
perfect.

Stationary Markov perfect equilibria exist in discounted stochastic games with
state-independent transitions (SIT games) studied by Parthasarathy and Sinha
(1989). They assumed that Ai.x/ D Ai for all x 2 X and i 2 N , the action sets
Ai are finite, and q.�jx; a/ D q.�ja/ are nonatomic for all a 2 A: A more general
class of games with additive transitions satisfying (A3) but with all qj independent
of state x 2 X (AT games) was examined by Nowak (2003b). A stationary Markov
perfect equilibrium f � 2 F 0 was shown to exist in that class of stochastic games.
Additional special classes of discounted stochastic games with uncountable state
space having stationary Markov perfect equilibrium are described in Krishnamurthy
et al. (2012). Some of them are related to AT games studied by Nowak (2003b).

Let X D Y � Z where Y and Z are Borel spaces. In a noisy stochastic game
considered by Duggan (2012), the states are of the form x D .y; z/ 2 X , where
z is called a noise variable. The payoffs depend measurably on x D .y; z/ and
are continuous in actions of the players. The transition probability q is defined as
follows:

q.Djx; a/ D

Z
Y

Z
Z

1D.y
0; z0/q2.d z0jy0/q1.dy

0jx; a/; a 2 A.x/; D 2 B.Y �Z/:

Moreover, it is assumed that q1 is dominated by some �1 2 Pr.Y / and q2 is
absolutely continuous with respect to some nonatomic measure �2 2 Pr.Z/:
Additionally, q1.�jx; a/ is norm continuous in actions a 2 A, for each x 2 X:

This form of q implies that conditional on y0 the next shock z0 is independent of
the current state and actions. In applications, .y; z/may represent a pair: the price of
some good and the realization of random demand. By choosing actions, the players
can determine (stochastically) the next period price y0, which in turn, has some
influence on the next demand shock. Other applications are discussed by Duggan
(2012), who obtained the following result.
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Theorem 8. Every noisy stochastic game has a stationary Markov perfect equilib-
rium.

Let X be a Borel space, � 2 Pr.X/ and let G � B.X/ be a sub-� -algebra. A
set D 2 B.X/ is said to be a (conditional) G-atom if �.D/ > 0 and for any Borel
set B � D, there exists some D0 2 G such that �.B4.D \ D0// D 0: Assume
that the transition probability q is dominated by some probability measure �, and �
denotes a conditional density function. Following He and Sun (2017), we say that
a discounted stochastic game has a decomposable coarser transition kernel if there
exists a sub-� -algebra G � B.X/ such that B.X/ has no G-atom and there exist
Borel measurable nonnegative functions �j and dj (j D 1; : : : ; l) such that, for
every x 2 X , a 2 A, each function �j .�; x; a/ is G-measurable and the transition
probability density � is of the form

�.y; x; a/ D

lX
jD1

�j .y; x; a/dj .y/; x; y 2 X; a 2 A:

Using a theorem of Dynkin and Evstigneev (1977) on conditional expectations
of measurable correspondences and a fixed point property proved in Nowak and
Raghavan (1992), He and Sun (2017) established the following result.

Theorem 9. Every discounted stochastic game having decomposable coarser tran-
sition kernel with respect to a nonatomic probability measure � on X has a
stationary Markov perfect equilibrium.

A slight extension of the above theorem, given in He and Sun (2017), contains
as special cases the results proved by Parthasarathy and Sinha (1989), Nowak
(2003b), Nowak and Raghavan (1992). However, the form of the equilibrium
strategy obtained by Nowak and Raghavan (1992) does not follow from He and Sun
(2017). The result of He and Sun (2017) also covers the class of noisy stochastic
games examined in Duggan (2012). In this case, it suffices to take G � B.Y � Z/

that consists of the sets D � Z, D 2 B.Y /: Finally, we wish to point out that
ARAT discounted stochastic games as well as games considered in Jaśkiewicz and
Nowak (2016) (see Theorem 6) are not included in the class of models mentioned
in Theorem 9.

Remark 5. A key tool in proving the existence of a stationary Markov perfect equi-
librium in a discounted stochastic game that has no ARAT structure is Lyapunov’s
theorem on the range of a nonatomic vector measure. Since the Lyapunov theorem
is false for infinitely many measures, the counterexample of Levy’s eight-person
game is of some importance (see Levy and McLennan 2015). There is another
reason for which the existence of an equilibrium in the class of stationary Markov
strategies F 0 is difficult to obtain. One can recognize strategies from the sets



298 A. Jaśkiewicz and A. S. Nowak

F 0
i as “Young measures” and consider natural in that class weak-star topology;

see Valadier (1994). Young measures are often called relaxed controls in control
theory. With the help of Example 3.16 from Elliott et al. (1973), one can easily
construct a stochastic game withX D Œ0; 1�, finite action spaces and trivial transition
probability q being a Lebesgue measure on X , where the expected discounted
payoffs J iˇ.x; f / are discontinuous on F 0 endowed with the product topology.

The continuity of f ! J iˇ.x; f / (for fixed initial state) can only be proved for
ARAT games. Generally, it is difficult to obtain compact families of continuous
strategies. This property requires very strong conditions in order to get, for instance,
equicontinuous family of functions (see Sect. 6).

6 Special Classes of Stochastic Games with Uncountable
State Space and Their Applications in Economics

In a number of applications of discrete-time dynamic games in economics, the state
space is an interval in Euclidean space. An illustrative example is the “fish war
game” studied by Levhari and Mirman (1980), where the state space X D Œ0; 1�,
Ai.x/ D Œ0; x=n� for each i 2 N . Usually, X is interpreted as the set of common
property renewable resources. If xt is a resource stock at the beginning of period
t 2 N and player i 2 N extracts ait 2 Ai.xt / for consumption, then the new

state is xtC1 D
�
xt �

Pn
jD1 ajt

�˛
with ˛ 2 .0; 1/: The game is symmetric

in the sense that the utility function of player i 2 N is: ui .x; a/ WD ln ai
with a D .a1; : : : ; an/ being a pure strategy profile chosen by the players in
state x 2 X: Levhari and Mirman (1980) constructed a symmetric stationary
Markov perfect equilibrium for the two-player ˇ-discounted game that consists of
linear strategies. For the arbitrary n-player case, the equilibrium strategy profile
is f ˇ D .f

ˇ
1 ; : : : ; f

ˇ
n / where f

ˇ
i .x/ D .1�˛ˇ/x

nC.1�n/˛ˇ
, x 2 X , i 2 N ; see

Nowak (2006c). Levhari and Mirman (1980) concluded that, in equilibrium, the
fish population will be smaller than the population that would have resulted if the
players had cooperated and had maximized their joint utility. The phenomenon
of overexploitation of a common property resource is known in economics as the
“tragedy of the commons.” Dutta and Sundaram (1993) showed that there may
exist equilibria (that consist of discontinuous consumption functions), in which
the common resource is underexploited, so that the tragedy of the commons need
not occur. A characterization of the set of equilibria in this model has been given
by Chiarella et al. (1984). If ˇ ! 1, then f ˇ ! f � D .f �

1 ; : : : ; f
�
n / where

f �
i .x/ D .1�˛/x

nC.1�n/˛
, x 2 X , i 2 N: As shown in Nowak (2008), f � is a Nash

equilibrium in the class of all strategies of the players in the fish war game under
the overtaking optimality criterion. Such a criterion was examined in economics
by Ramsey (1928), von Weizsäcker (1965), and Gale (1967), and its application
to repeated games was pointed out by Rubinstein (1979). Generally, finding an
equilibrium under the overtaking optimality criterion in the class of all strategies
is a difficult task; see Carlson and Haurie (1996).
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Dutta and Sundaram (1992) considered a stochastic game of resource extraction
with state space X D Œ0;1/, Ai.x/ D Œ0; x=n� for each i 2 N , x 2 X and the
same nonnegative utility function u for each player. Their model includes both the
dynamic game with deterministic transitions studied by Sundaram (1989a,b) and the
stochastic game with nonatomic transition probabilities considered by Majumdar
and Sundaram (1991). Now we list the assumptions used by Dutta and Sundaram
(1992). For any y; z 2 X , let Q.yjz/ WD q.Œ0; y�jz/ and for any y > 0 set
Q.y�jz/ WD limy0"y Q.y

0jz/:

(D1) For any x 2 X , a D .a1; : : : ; an/ 2 A.x/ and i 2 N , ui .x; a/ D

u.ai / � 0: The utility function u is strictly concave, increasing and
continuously differentiable. Moreover, lima#0 u0.a/ D 1:

(D2) Q.0j0/ D 1 and for each z > 0, there exists a compact interval I .z/ � .0;1/

such that q.I .z/jz/ D 1:

(D3) There exists z1 > 0 such that if 0 < z < z1, then Q.z�jz/ D 0, i.e.,
q.Œz;1/jz/ D 1:

(D4) There exists Oz > 0 such that for each z � Oz, Q.zjz/ D 1, i.e., q.Œ0; z�jz/ D 1:

(D5) If zm ! z as m ! 1, then q.�jzm/ ! q.�jz/ in the weak topology on Pr.X/:
(D6) If z < z0, then for each y > 0, Q.y�jz/ � Q.yjz0/:

Assumption (D6) is a “strong stochastic dominance” condition that requires
larger investments to obtain probabilistically higher stock levels. This assumption
and the fact that the players have identical utility functions play a crucial role in the
proof of Theorem 1 in Dutta and Sundaram (1992) that can be stated as follows.

Theorem 10. Every discounted stochastic game satisfying conditions (D1)–(D6)
has a pure stationary Markov perfect equilibrium.

Remark 6. The equilibrium strategies obtained by Dutta and Sundaram (1992)
are identical for all the players, and the corresponding equilibrium functions
are nondecreasing and upper semicontinuous on X: One can observe that the
assumptions on the transition probability functions include the usual deterministic
case with an increasing continuous production function. A slightly more general
model was recently studied by Jaśkiewicz and Nowak (2018b), who dealt with
unbounded utilities.

Transition probabilities considered in other papers on equilibria in stochastic
games are assumed to satisfy much stronger continuity conditions, e.g., the norm
continuity in actions.

The problem of proving the existence of a Nash equilibrium in a stochastic game
of resource extraction with different utility functions for the players seems to be
difficult. Partial results were reported by Amir (1996a), Nowak (2003b), Balbus
and Nowak (2008) and Jaśkiewicz and Nowak (2015b), where specific transition
structures were assumed. Below we give an example, where the assumptions are
relatively simple to list.
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(S1) X D Œ0;1/ and Ai.x/ D Œ0; bi .x/� with
Pn

jD1 bj .x/ � x for all x 2 X ,
where each bj is a continuous increasing function.

(S2) ui W Œ0;1/ ! R is a nonnegative increasing twice differentiable utility
function for player i 2 N such that ui .0/ D 0:

(S3) If a D .a1; : : : ; an/ 2 A.x/ and s.a/ D
Pn

iD1 ai , then

q.�jx; a/ D h.x � s.a//q0.�jx/C .1 � h.x � s.a///ı0.�/;

where h W X ! Œ0; 1� is an increasing twice differentiable function such that
h00 < 0 and h.0/ D 0, ı0 is the Dirac measure concentrated at the point 0 2 X:

Moreover, q0..0;1/jx/ D 1 for each x > 0, q0.f0gj0/ D 1 and q0.�jx/ has a
density function �.x; �/ with respect to a � -finite measure � defined onX: The
function x ! �.x; y/ is continuous for each y 2 X:

The following result is a special case of Theorem 2 in Jaśkiewicz and Nowak
(2015b).

Theorem 11. Every discounted stochastic game satisfying assumptions (S1)–(S3)
has a pure stationary Markov perfect equilibrium.

The proof of Theorem 11 uses the fact that the auxiliary game 
v.x/ has a unique
Nash equilibrium for any vector v D .v1; : : : ; vn/ of nonnegative continuation
payoffs vi such that vi .0/ D 0: The uniqueness follows from page 1476 in
Balbus and Nowak (2008) or can be deduced from the classical theorem of Rosen
(1965) (see also Theorem 3.6 in Haurie et al. 2012). The game 
v.x/ is not
supermodular since for increasing continuation payoffs vi such that vi .0/ D 0,

we have
@2U iˇ.vi ;x;a/

@ai @aj
< 0, for i 6D j: A stronger version of Theorem 11 and related

results can be found in Jaśkiewicz and Nowak (2015b).
Transition probabilities presented in (S3) were first used in Balbus and Nowak

(2004). They dealt with the symmetric discounted stochastic games of resource
extraction and proved that the sequence of Nash equilibrium payoffs in the n-
stage games converges monotonically as n ! 1: Stochastic games of resource
extraction without the symmetry condition were first examined by Amir (1996a),
who considered so-called convex transitions. More precisely, he assumed that the
conditional cumulative distribution function Q.yjz/ is strictly convex with respect
to z 2 X for every fixed y > 0: He proved the existence of pure stationary Markov
perfect equilibria, which are Lipschitz continuous functions in the state variable.
Although the result obtained is strong, a careful analysis of various examples
suggests that the convexity assumption imposed by Amir (1996a) is satisfied very
rarely. Usually, the cumulative distribution Q.yjz/ is neither convex nor concave
with respect to z: A further discussion on this condition is provided in Remarks 7–8
in Jaśkiewicz and Nowak (2015b). The function Q.yjz/ induced by the transition
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probability q of the form considered in (S3) is strictly concave in z D x � s.a/ only
when q0 is independent of x 2 X: Such transition probabilities that are “mixtures”
of finitely many probability measures on X were considered in Nowak (2003b)
and Balbus and Nowak (2008). A survey of various game theoretic approaches to
resource extraction models can be found in Van Long (2011).

In many other examples, the one-shot game 
v.x/ has also nonempty compact set
of pure Nash equilibria. Therefore, a counterpart of Theorem 6 can be formulated
for the class of pure strategies of the players. We now describe some examples
presented in Jaśkiewicz and Nowak (2016).

Example 1 (Dynamic Cournot oligopoly). Let X D Œ0; Nx� and x 2 X represent a
realization of a random demand shock that is modified at each period of the game.
Player i 2 N (oligopolist) sets a production quantity ai 2 Ai.x/ D Œ0; 1�: If

P
�
x;
Pn

jD1 aj

�
is the inverse demand function, and ci .x; ai / is the cost function

for player i , then

ui .x; a/ WD aiP

0
@x;

nX
jD1

aj

1
A � ci .x; ai /; a D .a1; : : : ; an/:

A simple example of the inverse demand function is

P

0
@x;

nX
jD1

aj

1
A D x

0
@n �

nX
jD1

aj

1
A :

The function ai ! aiP
�
x;
Pn

jD1 aj

�
is usually concave and ai ! ci .x; ai / is

often convex. Assume that

q.�jx; a/ D .1 � a/q1.�jx/C aq2.�jx/; a WD
1

n

nX
jD1

aj ;

where q1.�jx/ and q2.�jx/ are dominated by some probability measure � on X for
all x 2 X: In order to provide an interpretation of q, we observe that

q.�jx; a/ D q1.�jx/C a.q2.�jx/ � q1.�jx//: (6.2)

Let

Eq.x; a/ WD

Z
X

yq.dyjx; a/ and Eqj .x/ WD

Z
X

yqj .dyjx/
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be the mean values of the distributions q.�jx; a/ and qj .�jx/, respectively. By (6.2),
we have Eq.x; a/ WD Eq1.x/ C a.Eq2.x/ � Eq1.x//: Assume that Eq1.x/ � x �

Eq2.x/: This condition implies that

Eq2.x/ �Eq1.x/ � 0:

Thus, the expectation of the next demand shock Eq.x; a/ decreases if the total
sale na in the current state x 2 X increases. Observe that the game 
v.x/ is
concave. From Nash (1950), it follows that the game 
v.x/ has a pure equilibrium
point. However, the set of Nash equilibria in 
v.x/ may contain many points. A
modification of the proof of Theorem 1 given in Jaśkiewicz and Nowak (2016)
implies that this game has a pure stationary almost Markov perfect equilibrium.

Example 2 (Cournot competition with substituting goods in differentiated markets).
This model is inspired by a dynamic game with complementary goods studied by

Curtat (1996). Related static games were already discussed in Spence (1976) and
Vives (1990). There are n firms on the market and firm i 2 N produces a quantity
ai 2 Ai.x/ D Œ0; 1� of a differentiated product. The inverse demand function is
given by a twice differentiable function Pi.a/, where a D .a1; : : : ; an/: The goods
are substitutes, i.e., @Pi .a/

@aj
< 0 for all i; j 2 N , see Spence (1976). In other words,

consumption of one good will decrease consumption of the others. We assume that
X D Œ0; 1�n, where i -th coordinate xi 2 Œ0; 1� is a measure of the cumulative
experience of firm i 2 N: If ci .xi / is the marginal cost for firm i 2 N , then

ui .x; a/ WD ai ŒPi .a/ � ci .xi /� ; a D .a1; : : : ; an/; x D .x1; : : : ; xn/ 2 X:

(6.3)

The transition probability of the next state (experience vector) is of the form:

q.�jx; a/ D h

0
@ nX
jD1

.xj C aj /

1
A q2.�jx/C

0
@1 � h

0
@ nX
jD1

.xj C aj /

1
A
1
A q1.�jx/;

(6.4)
where

h

0
@ nX
jD1

.xj C aj /

1
A D

Pn
jD1 xj C

Pn
jD1 aj

2n
(6.5)

and q1.�jx/, q2.�jx/ are dominated by some probability measure � on X for all
x 2 X: In Curtat (1996) it is assumed that q1 and q2 are independent of x 2 X

and also that q2 stochastically dominates q1: Then, the underlying Markov process
governed by q captures the ideas of learning-by-doing and spillover (see page 197
in Curtat 1996). Here, this stochastic dominance condition can be dropped, although
it is quite natural. It is easy to see that the game 
v.x/ is concave, if ui .x; .�; a�i //

is concave on Œ0; 1�: Clearly, this is satisfied, if for each i 2 N , we have
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2
@Pi .a/

@ai
C
@2Pi .a/

@a2i
ai < 0:

If the goods are substitutes, this condition holds, when @2Pi .a/

@a2i
� 0 for all i 2 N:

The game 
v.x/ may have multiple pure Nash equilibria. Using the methods from
Jaśkiewicz and Nowak (2016), one can show that any concave game discussed here
has a pure stationary almost Markov perfect equilibrium.

Supermodular static games were extensively studied by Milgrom and Roberts
(1990) and Topkis (1998). This class of games finds applications in dynamic
economic models with complementarities. Our next illustration refers to Example 2,
but with products that are complements. The state space and action spaces for firms
are the same as in Example 2. We endow both X and A D Œ0; 1�n with the usual
component-wise ordering. Then, X and A are complete lattices. We assume that the
transition probability is defined as in (6.4) and q1.�jx/ and q2.�jx/ are for all x 2 X

dominated by some probability measure � on S: The payoff function for every firm
is given in (6.3).

Example 3 (Cournot oligopoly with complementary goods in differentiated mar-
kets). Let h be defined as in (6.5). Suppose that the payoff function in the game

v.x/ satisfies the following condition:

@2U i
ˇ.vi ; x; a/

@ai@aj
� 0 for j 6D i:

Then, by Theorem 4 in Milgrom and Roberts (1990), the game 
v.x/ is supermodu-
lar. Note that within our framework, it is sufficient to prove that for ui .x; a/, defined

in (6.3), it holds @2ui .s;a/
@ai @aj

� 0, j 6D i: But

@2ui .x; a/

@ai@aj
D ai

@2Pi .a/

@ai@aj
C
@Pi .a/

@aj
; j 6D i

and @2ui .x;a/
@ai @aj

are likely to be nonnegative, if the goods are complements, i.e., @Pi .a/
@aj

�

0 for j 6D i ; see Vives (1990). From Theorem 5 in Milgrom and Roberts (1990), it
follows that the game 
v.x/ has a pure Nash equilibrium. Therefore, the arguments
used in Jaśkiewicz and Nowak (2016) imply that the stochastic game has a pure
stationary almost Markov perfect equilibrium.

Remark 7. The game described in Example 3 is also studied in Curtat (1996),
but with additional restrictive assumptions that q1 and q2 are independent of
x 2 X: Then, the transition probability q has so-called increasing differences in
.x; a/. This fact implies that the functions U i

ˇ.vi ; �; �/ satisfy the assumptions in
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Proposition 7. Other condition imposed by Curtat (1996) states that the payoff
functions ui .x; a/ are increasing in a�i and, more importantly, satisfy the so-called
strict diagonal dominance condition for each x 2 X: For details the reader is referred
to Curtat (1996) and Rosen (1965). This additional condition entails the uniqueness
of a pure Nash equilibrium in every auxiliary game 
v.x/ under consideration;
see Proposition 6. The advantage is that Curtat (1996) can directly work with
Lipschitz continuous strategies for the players and find a stationary Markov perfect
equilibrium in that class using Schauder’s fixed point theorem. Without the strict
diagonal dominance condition, 
v.x/ may have many pure Nash equilibria and
Curtat’s approach cannot be applied. The coefficients of the convex combination
in (6.4) are affine functions of a 2 A: This requirement can slightly be generalized;
see, for instance, Example 4 in Jaśkiewicz and Nowak (2016). If q1 or q2 depends on
x 2 X , then the increasing differences property of q does not hold and the method
of Curtat (1996) does not work. Additional comments on supermodular stochastic
games can be found in Amir (2003).

The result in Curtat (1996) on the existence of stationary Markov perfect
equilibria for supermodular discounted stochastic games is based upon the lattice
theoretic arguments and on complementarity and monotonicity assumptions. The
state and action spaces are assumed to be compact intervals in Euclidean space,
and the transition probability is assumed to be norm continuous in state and action
variables. Moreover, the strict diagonal dominance condition (see (C1) in Sect. 2)
applied to the auxiliary one-shot games 
v.x/ for any increasing Lipschitz con-
tinuous continuation vector payoff v plays a crucial role. Namely, this assumption
together with others implies that NPv.x/ is a singleton. In addition, the function
x ! NPv.x/ is increasing and Lipschitz continuous. Thus, his proof is comprised
of two steps. First, he shows that there exists an increasing Lipschitz continuous
vector payoff function v� such that v�.x/ D NPv�.x/ for all x 2 X: Second, he
makes use of a theorem on the Lipschitz property of the unique equilibrium in 
v� :

Horst (2005) provided a different and more unified approach to stationary
Markov perfect equilibria that can be applied beyond the setting of supermodular
games. Instead of imposing monotonicity conditions on the players’ utility func-
tions, he considered stochastic games in which the interaction between different
players is sufficiently weak. For instance, certain “production games” satisfy this
property. The method of his proof is based on a selection theorem of Montrucchio
(1987) and the Schauder fixed point theorem applied to the space of Lipschitz
continuous strategy profiles of the players. The assumptions imposed by Horst
(2005) are rather complicated. For example, they may enforce a number of players
in the game or the upper bound for a discount factor. Such limitations do not occur
in the approach of Curtat (1996).

Balbus et al. (2014a) considered supermodular stochastic games with an absorb-
ing state and the transition probabilities of the form q.�jx; a/ D g.x; a/q0.�jx/C.1�

g.x; a//ı0.�/. Under some strong monotonicity conditions on the utility functions
and transitions, they showed that the Nash equilibrium payoffs in the n-stage games
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monotonically converge as n ! 1. This fact yields the existence of pure stationary
Markov perfect equilibrium. A related result is given in Balbus et al. (2013b) for
a similar class of dynamic games. The state space X in Balbus et al. (2014a) is
one-dimensional, and their results do not apply to the games of resource extraction
discussed earlier. If, on the other hand, the transition probability is a “mixture” of
finitely many probability measures, then a stationary Markov perfect equilibrium
can be obtained, in certain models, by solving a system of non-linear equations.
This method was discussed in Sect. 5 of Nowak (2007). The next example is not
a supermodular game in the sense of Balbus et al. (2014a), but it belongs to the
class of production games examined by Horst (2005). Generally, there are only few
examples of games with continuum states, for which Nash equilibria can be given
in a closed form.

Example 4. Let X D Œ0; 1�, Ai.x/ D Œ0; 1� for all x 2 X and i 2 N D f1; 2g. We
consider the symmetric game where the stage utility of player i is

ui .x; a1; a2/ D a1 C a2 C 2xa1a2 � a2i : (6.6)

The state variable x in (6.6) is a complementarity coefficient of the players’ actions.
The transition probabilities are of the form

q.�jx; a1; a2/ WD
x C a1 C a2

3
�1.�/C

3 � x � a1 � a2

3
�2.�/:

We assume that �1 has the density �1.y/ D 2y and �2 has the density �2.y/ D

2 � 2y, y 2 X . Note that �1 stochastically dominates �2. From the definition
of q, it follows that higher states x 2 X or high actions a1, a2 (efforts) of the
players induce a distribution of the next state having a higher mean value. Assume
that v� D .v�

1 ; v
�
2 / is an equilibrium payoff vector in the ˇ-discounted stochastic

game. As shown in Example 1 of Nowak (2007), it is possible to construct a
system of non-linear equations with unknown z1 and z2, whose solution z�

1 , z�
2 is

z�
i D

R
X
v�
i .y/�i .dy/. This fact, in turn, gives the possibility finding of a symmetric

stationary Markov perfect equilibrium .f �
1 ; f

�
2 / and v�

1 D v�
2 . It is of the form

f �
i .x/ D 1Cz�

4�2x
: x 2 X; i 2 N , where

z� D
�8 � 6p.ˇ � 1/ �

p
.8C 6p.ˇ � 1//2 � 36

6
and p D

9C 2ˇ ln 2 � 2ˇ

ˇ.1 � ˇ/.6 ln 2 � 3/
:

Moreover, we have

v�
i .x/ D .pˇ C x/z� C

.1C z�/2.3 � x/

2.2 � x/2
:
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Ericson and Pakes (1995) provided a model of firm and industry dynamics that
allows for entry, exit and uncertainty generating variability in the fortunes of firms.
They considered the ergodicity of the stochastic process resulting from a Markov
perfect industry equilibrium. A dynamic competition in an oligopolistic industry
with investment, entry and exit was also extensively studied by Doraszelski and
Satterthwaite (2010). Computational methods for the class of games studied by
Ericson and Pakes (1995) are presented in Doraszelski and Pakes (2007). Further
applications of discounted stochastic games with countably many states to models in
industrial organization including models of industry dynamics are given in Escobar
(2013).

Shubik and Whitt (1973) considered a non-stochastic model of sequential
strategic market game, where the state includes a current stocks of capital. At each
period of the game, one unit of a consumer good is put up for sale, and players
bid some amounts of fiat money for it. A stochastic counterpart of this game was
first presented in Secchi and Sudderth (2005). Więcek (2009), on the other hand,
obtained a general structure of equilibrium policies in two-person games, where bids
gradually decrease with increase of the discount factor. Moreover, Więcek (2012)
proved that a Nash equilibrium, where all the players use “aggressive strategies”,
emerges in the game for any value of the discount factor as the number of players
is sufficiently large. This fact corresponds to a similar result for a deterministic
economy given in Shubik and Whitt (1973) as well as being consistent with
existing results about economies with continuum of players. Other applications
of nonzero-sum stochastic games to economic models can be found in Duggan
(2012) and He and Sun (2017). Although the concept of mean field equilibrium in
dynamic games is not directly inspired by Nash, the influence of the theory of non-
cooperative stochastic games on this area of research is obvious. Also the notion
of supermodularity is used in studying the mean field equilibria in dynamic games.
The reader is referred to Adlakha and Johari (2013) where some applications to
computer science and operations research are given.

7 Special Classes of Stochastic Games with Countably Many
States

Assume that the state space X is countable. Then every F 0
i can be recognized as a

compact convex subset of a linear topological space. A sequence .f k
i /k2N converges

to fi 2 F 0
i if for every x 2 X f k

i .�jx/ ! fi .�jx/ in the weak-star topology on the
space of probability measures on Ai.x/. The weak or weak-star convergence of
probability measures on metric spaces is fully described in Aliprantis and Border
(2006) or Billingsley (1968). Since X is countable, every space F 0

i is sequentially
compact (it suffices to use the standard diagonal method for selecting convergent
subsequences) and, therefore, F 0 is sequentially compact when endowed with the
product topology. IfX is finite and the sets of actions are finite, then F 0 can actually
be viewed as a convex compact subset of Euclidean space. In the finite state space
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case, it is easy to prove that the discounted payoffs J iˇ.x; f / are continuous on F 0:

If X is countable and the payoff functions are uniformly bounded, and q.yjx; a/ is
continuous in a 2 A.x/ for all x; y 2 X , then showing the continuity of J iˇ.x; f /

on F 0 requires a little more work; see Federgruen (1978). From the Bellman
equation in discounted dynamic programming (see Puterman 1994), it follows that
f � D .f �

1 ; : : : ; f
�
n / is a stationary Markov perfect equilibrium in the discounted

stochastic game if and only if there exist bounded functions v�
i W X ! R such that

for each x 2 X and i 2 N we have

v�
i .x/ D max

�i2Pr.Ai .x//
U i
ˇ.v

�
i ; x; .�i ; f

�
�i // D U i

ˇ.v
�
i ; x; f

�/: (6.7)

From (6.7), it follows that v�
i .x/ D J iˇ.x; f

�/. Using the continuity of the

expected discounted payoffs in f 2 F 0 and (6.7), one can define the best
response correspondence in the space of strategies, show its upper semicontinuity
and conclude from the fixed point theorem due to Glicksberg (1952) (or due to
Kakutani (1941) in the case of finite state and action space) that the game has a
stationary Markov perfect equilibrium f � 2 F 0. This fact was proved for finite
state space discounted stochastic games by Fink (1964) and Takahashi (1964).
An extension to games with countable state spaces was reported in Parthasarathy
(1973) and Federgruen (1978). Some results for a class of discounted games with
discontinuous payoff functions can be found in Nowak and Wiȩcek (2007).

The fundamental results in the theory of regular Nash equilibria in normal form
games concerning genericity (see Harsanyi 1973a) and purification (see Harsanyi
1973b) were extended to dynamic games by Doraszelski and Escobar (2010). A
discounted stochastic game possessing equilibria that are all regular in the sense
of Doraszelski and Escobar (2010) has a compact equilibrium set that consists of
isolated points. Hence, it follows that the equilibrium set is finite. They proved that
the set of discounted stochastic games (with finite sets of states and actions) having
Markov perfect equilibria that all are regular is open and has full Lebesgue measure.
Related results were given by Haller and Lagunoff (2000), but their definition of
regular equilibrium is different and may not be purifiable.

The payoff function for player i 2 N in the limit-average stochastic game can be
defined as follows:

NJ i .x; 	/ WD lim inf
T!1

E	
x

 
1

T

TX
tD1

ui .xt ; a
t /

!
; x 2 X; 	 2 ˘:

The equilibrium solutions for this class of games are defined similarly as in
the discounted case. The existence of stationary Markov perfect equilibria for
games with finite state and action spaces and the limit-average payoffs was proved
independently by Rogers (1969) and Sobel (1971). They assumed that the Markov
chain induced by any stationary strategy profile and the transition probability q
is irreducible . It is shown under the irreducibility condition that the equilibrium
payoffs w�

i of the players are independent of the initial state. Moreover, it is proved
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that there exists a sequence of equilibria .f k/k2N in ˇk-discounted games (with
ˇk ! 1 as k ! 1) such that w�

i D limk!1.1�ˇk/J
i
ˇk
.x; f k/. Later, Federgruen

(1978) extended these results to limit-average stochastic games with countably
many states satisfying some uniform ergodicity conditions. Other cases of similar
type were mentioned by Nowak (2003a). Below we provide a result due to Altman
et al. (1997), which has some potential for applications in queueing models. The
stage payoffs in their approach may be unbounded. We start with a formulation of
their assumptions.

Let m W X ! Œ1;1/ be a function for which the following conditions hold.

(A4) For each x; y 2 X , i 2 N , the functions ui .x; �/ and q.yjx; �/ are continuous
on A.x/. Moreover,

sup
x2X

max
a2A.x/

jui .x; a/j=m.x/ < 1 and

lim
k!1

X
y2X

jq.yjx; ak/ � q.yjx; a/jm.y/ D 0

for any ak ! a 2 A.x/.
(A5) There exist a finite set Y � X and � 2 .0; 1/ such that

X
y2XnY

q.yjx; a/m.y/ � �m.x/ for all x 2 X; a 2 A.x/:

(A6) The function f ! n.f / is continuous with respect to stationary strategy
profiles f 2 F 0, where n.f / denotes the number of closed classes in the
Markov chain induced by the transition probability q.yjx; f /, x; y 2 X .

Property (A5) is called m-uniform geometric recurrence; see Altman et al.
(1997). Condition (A6) is quite restrictive and implies that the number of positive
recurrent classes is a constant function of the stationary strategies. If the Markov
chains resulting from the stationary policies are all unichain, the limit-average
payoff functions are constant, i.e., independent of the initial state. For a detailed
discussion, we refer the reader to Altman et al. (1997) and the references cited
therein.

Theorem 12. If conditions (A4)–(A6) are satisfied, then the limit-average payoff
n-person stochastic game has a stationary Markov perfect equilibrium.

The above result follows from Theorem 2.6 in Altman et al. (1997), where it
is also shown that under (A4)–(A6) any limit of stationary Markov equilibria in
ˇ-discounted games (as ˇ ! 1) is an equilibrium in the limit-average game.
A related result was established by Borkar and Ghosh (1993) under a stochastic
stability condition. More precisely, they assumed that the Markov chain induced by
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any stationary strategy profile is unichain and the transition probability from any
fixed state has a finite support.

Stochastic games with countably many states are usually studied under some
recurrence or ergodicity conditions. Without these conditions n-person nonzero-
sum limit-average payoff stochastic games with countable state spaces are very
difficult to deal with. Nevertheless, the results obtained in the literature have some
interesting applications, especially to queueing systems; see, for example, Altman
(1996) and Altman et al. (1997).

Now assume that X is a Borel space and � is a probability measure on X .
Consider an n-person discounted stochastic game G, where Ai.x/ D Ai for all
i 2 N and x 2 X , the payoff functions are uniformly bounded and continuous in
actions.

(A7) The transition probability q has a conditional density function �, which is
continuous in actions and such that

Z
X

max
a2A

�.x; a; y/�.dy/ < 1:

Let C.A/ be the Banach space of all real-valued continuous functions on the
compact space A endowed with the supremum norm k � k1. By L1.X;C .A// we
denote the Banach space of all C.A/-valued measurable functions � on X such
that k�k1 WD

R
X

k�.y/k1�.dy/ < 1. Let fXkgk2N0 be a measurable partition
of the state space (N0 � N), fui;kgk2N0 be a family of functions ui;k 2 C.A/ and
f�kgk2N0 be a family of functions �k 2 L1.X;C .A// such that �k.x/.a; y/ � 0 andR
X
�k.x/.a; y/�.dy/ D 1 for each k 2 N0; a 2 A. Consider a game QG where the

payoff function for player i is Qui .x; a/ D uk.a/ if x 2 Xk . The transition density
is Q�.x; a; y/ D �k.x/.a; y/ if x 2 Xk . Let QF 0

i be the set of all fi 2 F 0
i that are

constant on every set Xk . Let QF 0 WD QF 0
1 � � � � � QF 0

n . The game QG resembles a game
with countably many states and if the payoff functions Qui are uniformly bounded,
then QG with the discounted payoff criterion has an equilibrium in QF 0. Denote by
QJ iˇ.x; 	/ the discounted expected payoff to player i 2 N in the game QG. It is well

known that C.A/ is separable. The Banach space L1.X;C .A// is also separable.
Note that x ! ui .x; �/ is a measurable mapping from X to C.A/. By, (A7) the
mapping x ! �.x; �; �/ from X to L1.X;C .A// is also measurable. Using these
facts Nowak (1985) proved the following result.

Theorem 13. Assume that G satisfies (A7). For any � > 0, there exists a game QG

such that jJ iˇ.x; 	/� QJ iˇ.x; 	/j < �=2 for all x 2 X , i 2 N and 	 2 ˘ . Moreover,
the game G has a stationary Markov �-equilibrium.

A related result on approximation of discounted nonzero-sum games and exis-
tence of �-equilibria was given by Whitt (1980), who used stronger uniform
continuity conditions and used a different technique. Approximations of discounted
and also limit-average stochastic games with general state spaces and unbounded
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stage functions were studied in Nowak and Altman (2002). They used the weighted
norm approach and imposed some geometric ergodicity conditions while examining
the limit-average case. An extension with simpler and more transparent proof
for semi-Markov games satisfying a geometric drift condition and a majorization
property, similar to (GE1)–(GE3) in Sect. 5 in Jaśkiewicz and Nowak (2018a), was
given in Jaśkiewicz and Nowak (2006).

8 Algorithms for Nonzero-Sum Stochastic Games

In this section, we assume that the state spaceX and the sets of actions Ai are finite.
In the 2-player case, we let for notational convenience A1.x/ D A1, A2.x/ D A2
and a D a1 2 A1, b D a2 2 A2. Further, for any fi 2 F 0

i , i D 1; 2, we set

q.yjx; f1; f2/ WD
X
a2A1

X
b2A2

q.yjx; a; b/f1.ajx/f2.bjx/;

q.yjx; f1; b/ WD
X
a2A1

q.yjx; a; b/f1.ajx/;

ui .x; f1; f2/ WD
X
a2A1

X
b2A2

ui .x; a; b/f1.ajx/f2.bjx/;

ui .x; f1; b/ WD
X
a2A1

ui .x; a; b/f1.ajx/:

In a similar way, we define q.yjx; a; f2/ and ui .x; a; f2/. Note that every fi 2 F 0
i

can be recognized as a compact convex subset of Euclidean space. Also every
function � W X ! R can be viewed as a vector in Euclidean space. Below we
describe two results of Filar et al. (1991) about characterization of stationary equi-
libria in stochastic games by constrained nonlinear programming. However, due to
the fact that the constraint sets are not convex, the results are not straightforward in
numerical implementation. Although it is common in mathematical programming
to use matrix notation, we follow the one introduced in previous sections.

Let c D .v1; v2; f1; f2/. Consider the following problem (OPˇ):

min O1.c/ WD

2X
iD1

X
x2X

0
@vi .x/ � ui .x; f1; f2/ � ˇ

X
y2X

vi .y/q.yjx; f1; f2/

1
A

subject to .f1; f2/ 2 F 0
1 � F 0

2 and

u1.x; a; f2/C ˇ
X
x2X

v1.y/q.yjx; a; f2/ � v1.x/; for all x 2 X; a 2 A1;

and
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u2.x; f1; b/C ˇ
X
x2X

v2.y/q.yjx; f1; b/ � v2.x/; for all x 2 X; b 2 A2:

Theorem 14. Consider a feasible point c� D .v�
1 ; v

�
2 ; f

�
1 ; f

�
2 / in (OPˇ). Then

.f �
1 ; f

�
2 / 2 F 0

1 � F 0
2 is a stationary Nash equilibrium in the discounted stochastic

game if and only if c� is a solution to problem (OPˇ) with O1.c�/ D 0.

Let c D .z1; v1;w1; f2; z2; v2;w2; f1/. Now consider the following problem
(OPa):

min O2.c/ WD

2X
iD1

X
x2X

0
@vi .x/ �

X
y2X

vi .y/q.yjx; f1; f2/

1
A

subject to .f1; f2/ 2 F 0
1 � F 0

2 and

X
y2X

v1.y/q.yjx; a; f2/ � v1.x/;

u1.x; a; f2/C
X
y2X

z1.y/q.yjx; a; f2/ � v1.x/C z1.x/

for all x 2 X; a 2 A1 and

X
y2X

v2.y/q.yjx; f1; b/ � v2.x/;

u2.x; f1; b/C
X
y2X

z2.y/q.yjx; f1; b/ � v2.x/C z2.x/

for all x 2 X; b 2 A2 and

ui .x; f1; f2/C
X
y2X

wi .y/q.yjx; f1; f2/ D vi .x/C wi .x/

for all x 2 X and i D 1; 2.

Theorem 15. Consider a feasible point c� D .z�
1 ; v

�
1 ;w

�
1 ; f

�
2 ; z

�
2 ; v

�
2 ;w

�
2 ; f

�
1 / in

(OPa). Then .f �
1 ; f

�
2 / 2 F 0

1 � F 0
2 is a stationary Nash equilibrium in the limit-

average payoff stochastic game if and only if c� is a solution to problem (OPa) with
O2.c

�/ D 0.

Theorems 14 and 15 were stated and proved in Filar et al. (1991); see also
Theorems 3.8.2 and 3.8.4 in Filar and Vrieze (1997).
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As in the zero-sum case, when one player controls the transitions, it is possible
to construct finite-step algorithms to compute Nash equilibria. The linear comple-
mentarity problem (LCP) is defined as follows. Given a square matrix M of orderm
and a (column) vector Q 2 R

m, we find two vectors Z D Œz1; : : : ; zm�T 2 R
m and

W D Œw1; : : : ;wm�T 2 R
m such that

MZ CQ D W and wj � 0; zj � 0; zjwj D 0 for all j D 1; : : : ; m:

Lemke (1965) proposed some pivoting finite-step algorithms to solve the LCP
for a large class of matrices M and vectors Q. Further research on the LCP can be
found in Cottle et al. (1992).

Finding a Nash equilibrium in any bimatrix game .A;B/ is equivalent to solving
the LCP with

M D

�
B
T
O

O A

�
where O is the matrix with zero entries, Q D Œ�1; : : : ;�1�T :

A finite-step algorithm for this LCP was given by Lemke and Howson (1964). If
Z

�
D ŒZ

�

1 ; Z
�

2 � is a part of the solution of the above LCP, then the normalization of
Z

�

i is an equilibrium strategy for player i .
Suppose that only player 2 controls the transitions in a discounted stochas-

tic game, i.e., q.yjx; a; b/ is independent of a 2 A. Let ff1; : : : ; fm1g and
fg1; : : : ; gm2g be the families of all pure stationary strategies for players 1 and 2,
respectively. Consider the bimatrix game .A;B/, where the entries aij of A and bij
of B are

aij WD
X
x2X

u1.x; fi .x/; gj .x// and bij WD
X
x2X

J 2ˇ .x; fi ; gj /:

Then, making use of the Lemke-Howson algorithm, Nowak and Raghavan (1993)
proved the following result.

Theorem 16. Let �� D .��
1 ; : : : ; �

�
m1
/ and �� D .��

1 ; : : : ; �
�
m2
/ and assume that

.��; ��/ is a Nash equilibrium in the bimatrix game .A;B/ defined above. Then the
stationary strategies

f �.x/ D

m1X
jD1

��
j ıfj .x/ and g�.x/ D

m2X
jD1

��
j ıgj .x/

form a Nash equilibrium in the discounted stochastic game.

It should be noted that a similar result does not hold for stochastic games with
the limit-average payoffs. Note that the entries of the matrix B can be computed
in finitely many steps, but the order of the associated LCP is very high. Therefore,
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a natural question arises as to whether the single-controller stochastic game can
be solved with the help of LCP formulation with appropriately defined matrix M

(with lower dimension) and vector Q. Since the payoffs and transitions depend on
states and stationary equilibria which are characterized by the systems of Bellman
equations, the dimension of the LCP must be high. However, it should be essentially
smaller than in the case of Theorem 16. Such an LCP formulation for discounted
single-controller stochastic games was given by Mohan et al. (1997) and further
developed in Mohan et al. (2001). In the case of the limit-average payoff and
single-controller stochastic game, Raghavan and Syed (2002) provided an analogous
algorithm. Further studies on specific classes of stochastic games (acyclic 3-person
switching control games, polystochastic games) can be found in Krishnamurthy
et al. (2012).

Let us recall that a Nash equilibrium in an n-person game is a fixed point of some
mapping. A fixed point theorem of certain deformations of continuous mappings
proved by Browder (1960) turned out to be basic for developing so-called homotopy
methods in computing equilibria in nonzero-sum games. It reads as follows.

Theorem 17. Assume that C � R
d is a nonempty compact convex set. Let � W

Œ0; 1� � C ! C be a continuous mapping and F .�/ WD f.t; c/ 2 Œ0; 1� � C W c D

�.t; c/g. Then F .�/ contains a connected subset Fc.�/ such that Fc.�/ \ .f0g �

C/ 6D ; and Fc.�/ \ .f1g � C/ 6D ;.

This result was extended to upper semicontinuous correspondences by Mas-
Colell (1974). Consider an n-person game and assume that �1 is a continuous
mapping whose fixed points in the set C of strategy profiles correspond to Nash
equilibria in this game. The basic idea in the homotopy methods is to define a
“deformation” � of �1 such that �.1; c/ D �1.c/ for all c 2 C and such
that �.0; c/ has a unique fixed point, say c�

0 , that is relatively simple to find. By
Theorem 17, Fc.�/ is a connected set. Thus, c�

0 is connected via Fc.�/ with
a fixed point c�

1 of �1. Hence, the idea is to consider the connected set Fc.�/.
Since the dimension of the domain of � is one higher than the dimension of
its range, one can formulate regularity conditions under which the approximation
path is a compact, piecewise differentiable one-dimensional manifold, i.e., it is a
finite collection of arcs and loops. In the case of bimatrix games, a nondegeneracy
condition is sufficient to guarantee that the aforementioned properties are satisfied.
A comprehensive discussion of the homotopy algorithms applied to n-person games
is provided by Herings and Peeters (2010) and references cited therein. According to
the authors, “advantages of homotopy algorithms include their numerical stability,
their ability to locate multiple solutions, and the insight they provide in the
properties of solutions”. Various examples show that implementation of homotopy
methods is rather straightforward with the aid of available professional software. It
is worth recalling the known fact that the Lemke-Howson algorithm can be applied
to bimatrix games only. An issue of finding Nash equilibria in concave n-person
games comprises a non-linear complementarity problem. Therefore, one can only
expect to obtain approximate equilibria by different numerical methods.



314 A. Jaśkiewicz and A. S. Nowak

The homotopy methods, as noted by Herings and Peeters (2004), are also useful
in the study of stationary equilibria, their structure and computation in nonzero-sum
stochastic games. Their results can be applied to n-person discounted stochastic
games with finite state and action spaces.

Recently, Govindan and Wilson (2003) proposed a new algorithm to compute
Nash equilibria in finite games. Their algorithm combines the global Newton
method (see Smale 1976)) and a homotopy method for finding fixed points of
continuous mappings developed by Eaves (1972, 1984). In the construction of a
Nash equilibrium, a fundamental topological property of the graph of the Nash
equilibrium correspondence discovered by Kohlberg and Mertens (1986) plays an
important role. Being more precise, the authors show that making use of the global
Newton method, it is possible to trace the path of the homotopy by a dynamical
system. The same method can be applied to a construction of an algorithm for n-
person discounted stochastic games with finite action and state sets; see Govindan
and Wilson (2009). Strategic n-person games with a potential function having pure
Nash equilibria were considered by Monderer and Shapley (1996). Potters et al.
(2009), on the other hand, examined certain classes of discounted stochastic games
via the potential function approach and constructed pure stationary Nash equilibria
by solving a finite number of finite strategic games.

Solan and Vieille (2010) pointed out that the methods based on formal logic,
successfully applied to zero-sum games, are also useful in the examination of certain
classes of nonzero-sum stochastic games with the limit-average payoff criterion.

9 Uniform Equilibrium, Subgame Perfection, and
Correlation in Stochastic Games with Finite State and
Action Spaces

In this section, we consider stochastic games with finite state space X D f1; : : : ; sg

and finite sets of actions. We deal with “normalized discounted payoffs” and use
notation which is more consistent with the surveyed literature. We let ˇ D 1 � �

and multiply all current payoffs by � 2 .0; 1/. Thus, we consider

J i�.x; 	/ WD E	
x

 
1X
tD1

�.1 � �/t�1ui .xt ; a
t /

!
; x D x1 2 X; 	 2 ˘; i 2 N:

For any T 2 N and x D x1 2 X , 	 2 ˘ , the T -stage average payoff for player
i 2 N is

J iT .x; 	/ WD E	
x

 
1

T

TX
tD1

ui .xt ; a
t /

!
:

A vector Ng 2 R
n is called a uniform equilibrium payoff at the initial state x 2 X

if for every � > 0 there exist �0 2 .0; 1�, T 0 2 N and a strategy profile 	0 2 ˘
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such that for every player i 2 N and every strategy 	i 2 ˘i , we have

Ngi C � � J i�.x; 	
0/ � Ngi � � � J i�.x; .	i ; 	

0
�i // � 2� for � 2 .0; �0�

and

Ngi C � � J iT .x; 	
0/ � Ngi � � � J iT .x; .	i ; 	

0
�i // � 2� for T � T 0:

Any profile 	0 that has the above two properties is a called a uniform
�-equilibrium. In other words, the game has a uniform equilibrium payoff if for
every � > 0 there is a strategy profile 	0 which is an �-equilibrium in every
discounted game with a sufficiently small discount factor � and in every finite-stage
game with sufficiently long time horizon.

A stochastic game is called absorbing if all states but one are absorbing. Assume
that X D f1; 2; 3g and only state x D 1 is nonabsorbing. Let E0 denote the set
of all uniform equilibrium payoffs. Since the payoffs are determined in states 2
and 3, in a two-person game, the set E0 can be viewed as a subset of R

2. Let
�k ! 0 as k ! 1, and let f �

k be a stationary Markov perfect equilibrium in
the �k-discounted two-person game. A question arises as to whether the sequence
.J 1�k .x; f

�
k /; J

2
�k
.x; f �

k //k2N with x D 1 has an accumulation point Ng 2 E0.
That is the case in the zero-sum case (see Mertens and Neyman 1981). Sorin
(1986) provided a nonzero-sum modification of the “Big Match,” where only state
x D 1 is nonabsorbing in which limk!1.J

1
�k
.1; f �

k /; J
2
�k
.1; f �

k // 62 E0. A similar
phenomenon occurs for the limit of T -stage equilibrium payoffs. Sorin (1986) gave
a full description of the set E0 in his example. His observations were generalized
by Vrieze and Thuijsman (1989) to all 2-person absorbing games. They proved the
following result.

Theorem 18. Any two-person absorbing stochastic game has a uniform equilib-
rium payoff.

We now state the fundamental result of Vieille (2000a,b).

Theorem 19. Every two-person stochastic game has a uniform equilibrium payoff.

The proof of Vrieze and Thuijsman (1989) is based on the “vanishing discount
factor approach” combined with the idea of “punishment” successfully used in
repeated games. The assumption that there are only two players is important in the
proof. The �-equilibrium strategies that they construct need unbounded memory.
The proof of Vieille (2000a,b) is involved. One of the reasons is that the ergodic
classes do not depend continuously on strategy profiles. Following Vieille (2002)
one can briefly say that “the basic idea is to devise an �-equilibrium profile that
takes the form of a stationary-like strategy vector, supplemented by threats of
indefinite punishment”. The construction of uniform equilibrium payoff consists
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of two independent steps. First, a class of solvable states is recognized and some
controlled sets are considered. Second, the problem is reduced to the existence
of equilibria in a class of recursive games. The punishment component is crucial
in the construction and therefore the fact that the game is 2-person is important.
Neither of the two parts of the proof can be extended to games with more than
two players. The �-equilibrium profiles have no subgame-perfection property and
require unbounded memory for the players. For a heuristic description of the proof,
the reader is referred to Vieille (2002). In a recent paper Solan (2017) proposed a
new solution concept for multiplayer stochastic games called acceptable strategy
profiles. It is relatively simpler than uniform equilibrium and has some interesting
properties. A suitable adaptation of the notion of uniform equilibrium is studied
by Neyman (2017) in the class of continuous-time stochastic games with a small
imprecision in the specification of players’ evaluations of streams of payoffs.

Flesch et al. (1997) proposed a three-person game with absorbing states where
only a cyclic Markov equilibrium exists. No examples of this type were found in
the 2-person case. This example inspired Solan (1999), who making use of certain
arguments from Vrieze and Thuijsman (1989), proved the following result.

Theorem 20. Every 3-person absorbing stochastic game has a uniform equilib-
rium payoff.

In a quitting game, every player has only two actions, c for continue and q for
quit. As soon as one or more of the players at any stage chooses q, the game stops
and the players receive their payoffs, which are determined by the subset of players,
say S , that choose simultaneously the action q. If nobody chooses q throughout all
stages of play, then all players receive zero. The payoffs are defined as follows. For
every nonempty subset S � N of players, there is a payoff vector v.S/ 2 R

n.
The first stage on which S is the subset of players that choose q at this stage, every
player i 2 N receives the payoff v.S/i . A quitting game is a special limit-average-
absorbing stochastic game. The example of Flesch et al. (1997) belongs to this class.
We now state the result due to Solan and Vieille (2001).

Theorem 21. Consider a quitting game satisfying the following assumptions: if
player i alone quits, then i receives 1, and if player i quits with some other players,
then i receives at most 1. Then the game has a subgame-perfect �-equilibrium.
Moreover, there is a cyclic �-equilibrium strategy profile.

Quitting games are special cases of “escape games” studied by Simon (2007). As
shown by Simon (2012), a study of quitting games can be based on some methods
of topological dynamics and homotopy theory. More comments on this issue can be
found in Simon (2016).

Thuijsman and Raghavan (1997) studied n-person perfect information stochastic
games and n-person ARAT stochastic games and showed the existence of pure
equilibria in the limit-average payoff case. They also derived the existence of
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�-equilibria for 2-person switching control stochastic games with the same payoff
criterion. A class of n-person stochastic games with the limit-average payoff
criterion and additive transitions as in the ARAT case (see Sect. 5) was studied
by Flesch et al. (2007). The payoff functions do not satisfy any separability in
actions assumption. They established the existence of Nash equilibria that are
history dependent. For 2-person absorbing games, they showed the existence of
stationary �-equilibria. In Flesch et al. (2008, 2009), the authors studied stochastic
games with the limit-average payoffs where the state space X is the Cartesian
product of some finite sets Xi , i 2 N . For any state x D .x1; : : : ; xn/ 2 X and
any profile of actions a D .a1; : : : ; an/, the transition probability is of the form
q.yjx; a/ D q1.y1jx1; a1/ � � � qn.ynjxn; an/ where y D .y1; : : : ; yn/ 2 X . In both
aperiodic and periodic cases, they established the existence of Nash equilibria for
n-person games. In the two-person zero-sum case, there exists a stationary Markov
perfect equilibrium.

A stochastic game is recursive if the payoffs at all nonabsorbing states are zero.
The class of recursive stochastic games is important. The payoffs in any absorbing
state can be interpreted as limit averages of stage payoffs as soon as the absorbing
state is reached. If no absorbing state is reached, then the average payoff is zero.
Moreover, as noted by Simon (2016), “by expanding the state space of any normal
stochastic game so that there is a one-to-one relationship between the finite histories
of play and the states, any state corresponds to a clopen (open and closed) subset of
the infinite histories of play and every open subset of the infinite histories of play
will correspond to some collection of states. A stochastic game where all non-zero
payoffs are determined by membership in an open set of the infinite histories of
play becomes in this way equivalent to a recursive game. Notice that if all absorbing
payoffs are positive then the payoffs are lower semicontinuous, and if all absorbing
payoffs are negative then the payoffs are upper semicontinuous (as functions on
the infinite histories of play).” Flesch et al. (2010b) considered a class of n-person
stochastic perfect information games assuming that in every state, the transitions
are controlled by one player. The payoffs are equal to zero in every nonabsorbing
state and are nonnegative in every absorbing state. They proposed a new iterative
method to analyse these games under the expected limit-average payoff criterion
and proved the existence of a subgame-perfect �-equilibrium in pure strategies. They
also showed the existence of the uniform equilibrium payoffs. Recursive n-person
perfect information games, where each player controls one nonabsorbing state and
the transitions are deterministic, were studied in Kuipers et al. (2016). Allowing
also for negative payoffs in absorbing states (in contrast to Flesch et al. 2010b), the
authors showed the existence of a subgame-perfect �-equilibrium by a combinatorial
method.

Correlated equilibria were introduced by Aumann (1974, 1987) for games in
normal form. Correlation devices may be of different types; see Forges (2009). In
Sect. 4 we considered a correlation device using public randomization. They are
also called stationary, because at every stage a signal is generated according to the
same probability distribution, independent of any data. There are also devices based
on past signals that were sent to the players, but not on the past play. They are
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called “autonomous correlation devices” (see Forges 2009). An �-equilibrium in
an extended game that includes an autonomous correlation device is also called
an extensive-form correlated �-equilibrium in a multistage game. Solan (2001)
characterized the set of extensive-form correlated �-equilibria in stochastic games.
He showed that every feasible and individually rational payoff in a stochastic game
is an extensive-form correlated equilibrium payoff constructed with the help of an
appropriately chosen device.

The following two results are due to Solan and Vieille (2002).

Theorem 22. Every n-person stochastic game with finite state and action spaces
has a uniform correlated equilibrium payoff using an autonomous correlation
device.

The construction of an equilibrium profile is based on the method of Mertens
and Neyman (1981) applied to zero-sum games. The equilibrium path is sustained
by the use of threat strategies. However, punishment occurs only if a player disobeys
the recommendation of the correlation device. The second result is stronger in some
sense but concerns positive recursive games, where the payoffs in absorbing states
are nonnegative for all players.

Theorem 23. Every positive recursive stochastic game with finite sets of states and
actions has a uniform correlated equilibrium payoff and the correlation device can
be taken to be stationary.

The proof of the above result makes use of a variant of the method of Vieille
(2000b).

In a recent paper, Mashiah-Yaakovi (2015) considered stochastic games with
countable state spaces, finite sets of actions and Borel measurable bounded payoffs,
defined on the spaceH1 of all plays. This class includes theGı-games of Blackwell
(1969). The concept of uniform �-equilibrium does not apply to this class of games,
because the payoffs are not additive. She proved that these games have extensive-
form correlated �-equilibria.

Secchi and Sudderth (2002a) considered a special class of n-person stochastic
“stay-in-a-set games” defined as follows. Let Gi be a fixed subset of X for each
i 2 N . Define Gi

1 WD f.x1; a
1; x2; a

2; : : :/g, where xt 2 Gi for every t . The
payoff function for player i 2 N is the characteristic function of the set G1

i . They
proved the existence of an �-equilibrium (equilibrium) assuming that the state space
is countable (finite) and the sets of actions are finite. Maitra and Sudderth (2003)
generalized this result to the Borel state stay-in-a-set games with compact action
sets using standard continuity assumption on the transition probability with respect
to actions. Secchi and Sudderth (2002b) proved that every n-person stochastic game
with countably many states, finite action sets and bounded upper semicontinuous
payoff functions on H1 has an �-equilibrium. All proofs in the aforementioned
papers are partially based on the methods from gambling theory; see Dubins and
Savage (2014).
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Nonzero-sum infinite horizon games with perfect information are special cases
of stochastic games. Flesch et al. (2010a) established the existence of subgame-
perfect �-equilibria in pure strategies in perfect information games with lower
semicontinuous payoff functions on the space H1 of all plays. A similar result
for games with upper semicontinuous payoffs was proved by Purves and Sudderth
(2011). It is worth mentioning that the aforementioned results also hold for games
with arbitrary nonempty action spaces and deterministic transitions. Solan and
Vieille (2003) provided an example of a two-person game with perfect information
that has no subgame-perfect �-equilibrium in pure strategies, but does have a
subgame-perfect �-equilibrium in behavior strategies. Their game belongs to the
class of deterministic stopping games. Recently, Flesch et al. (2014) showed that
a subgame-perfect �-equilibrium (in behavioral strategies) may not exist in perfect
information games if the payoff functions are bounded and Borel measurable.

Additional general results on subgame-perfect equilibria in games of perfect
information can be found in Alós-Ferrer and Ritzberger (2015, 2016). Two refine-
ments of subgame-perfect �-equilibrium concept were introduced and studied in
continuous games of perfect information by Flesch and Predtetchinski (2015).

Two-person discounted stochastic games of perfect information with finite state
and action spaces were treated in Küenle (1994). Making use of threat strategies,
he constructed a history-dependent pure Nash equilibrium. However, it is worth to
point out that pure stationary Nash equilibria need not exist in this class of games.
A similar remark applies to irreducible stochastic games of perfect information with
the limiting average payoff criterion. Counterexamples are described in Federgruen
(1978) and Küenle (1994).

We close this section with a remark on “folk theorems” for stochastic games.
It is worth mentioning that the techniques, based on threat strategies utilized very
often in repeated games, cannot be immediately adapted to stochastic games,
where the players use randomized (behavioral) strategies. Deviations are difficult
to discover when the actions are selected at random. However, some folk theorems
for various classes of stochastic games were proved in Dutta (1995), Fudenberg
and Yamamoto (2011), Hörner et al. (2011, 2014), and Pęski and Wiseman (2015).
Further comments can be found in Solan and Zillotto (2016).

Abreu et al. (1986, 1990) applied a method for analysing subgame-perfect
equilibria in discounted repeated games that resembles the dynamic programming
technique. The set of equilibrium payoffs is a set-valued fixed points of some
naturally defined operator. A similar idea was used in stochastic games by Mertens
and Parthasarathy (1991). The fixed point property for subgame-perfect equilibrium
payoffs can be used to develop algorithms. Berg (2016) and Kitti (2016) considered
some modifications of the aforementioned methods for discounted stochastic games
with finite state spaces. They also demonstrated some techniques for computing
(non-stationary) subgame-perfect equilibria in pure strategies provided that they
exist. Sleet and Yeltekin (2016) applied the methods of Abreu et al. (1986, 1990) to
some classes of dynamic games and provided a new approach for computing equilib-
rium value correspondences. Their idea is based on outer and inner approximations
of the equilibrium value correspondence via step set-valued functions.
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10 Nonzero-Sum Stochastic Games with Imperfect
Monitoring

There are only a few papers on nonzero-sum stochastic games with imperfect
monitoring (or incomplete information). Although in many models an equilibrium
does not exist, some positive results were obtained for repeated games; see Forges
(1992), Chap. IX in Mertens et al. (2015) and references cited therein. Altman
et al. (2005, 2008) studied stochastic games, in which every player can only observe
and control his “private state” and the state of the world is composed of the vector
of private states. Moreover, the players do not observe the actions of their partners
in the game. Such models of games are motivated by certain examples in wireless
communications.

In the model of Altman et al. (2008), the state space X D
Qn
iD1 Xi , where Xi

is a finite set of private states of player i 2 N . The action space Ai.xi / of player
i 2 N depends on xi 2 Xi and is finite. It is assumed that player i 2 N has no
information about the payoffs called costs. Hence, player i only knows the history
of his private state process and the action chosen by himself in the past. Thus, a
strategy 	i of player i 2 N is independent of realizations of state processes of
other players and their actions. If x D .x1; : : : ; xn/ 2 X is a state at some period
of the game and a D .a1; : : : ; an/ is the action profile selected independently by
the players at that state, then the probability of going to state y D .y1; : : : ; yn/ is
q.yjx; a/ D q1.y1jx1; a1/ � � � qn.ynjxn; an/, where qi .�jxi ; ai / 2 Pr.Ai .xi //. Thus
the coordinate (or private) state processes are independent. It is assumed that every
player i has a probability distribution �i of the initial state xi 2 Xi and that the
initial private states are independent. The initial distribution � of the state x 2 X is
determined by �1; : : : ; �n in an obvious way and is known by the players. Further,
it is supposed that player i 2 N is given some stage cost functions cji .x; a/ (j D

0; 1; : : : ; ni ) depending on x 2 X and action profiles a available in that state. The
cost function c0i is to be minimized by player i in the long run, and cji (for j > 0)
are the costs that must satisfy some constraints described below.

Any strategy profile 	 together with the initial distribution � and the transition
probability q induces a unique probability measure on the space of all infinite
plays. The expectation operator with respect to this measure is denoted by E	

� . The
expected limit-average cost Cj

i .	/ is defined as follows:

C
j
i .	/ WD lim sup

T!1

1

T
E	
�

 
TX
tD1

c
j
i .x

t ; at /

!
:

Note that xt 2 X and at is an action profile of all the players.
Let bji > 0 (j D 1; : : : ; ni ) be bounds used to define constraints below. A

strategy profile 	 is i -feasible if

C
j
i .	/ � b

j
i for each j D 1; : : : ; ni :
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Thus, 	 is feasible if it is i -feasible for every player i 2 N .
A strategy profile 	� is called a constrained Nash equilibrium, if 	� is feasible

and for every player i 2 N and his strategy 	i such that the profile .	i ; 	�
�i / is

i -feasible, we have

C0
i .	/ � C0

i .	i ; 	
�
�i /:

Note that a unilateral deviation of player i may increase his cost or it may violate
his constraints. The aforementioned fact is illustrated in Altman et al. (2008) by an
example in wireless communications.

Altman et al. (2008) made the following assumptions.

(I1) (Ergodicity) For every player i 2 N and any stationary strategy the state
process on Xi is an irreducible Markov chain with one ergodic class and
possibly some transient states.

(I2) (Strong Slater condition) There exists some  > 0 such that every player i 2 N

has a strategy 	i with the property that for any strategy profile 	�i of other
players

C
j
i .	


i ; 	�i / � b

j
i �  for all j D 1; : : : ; ni :

(I3) (Information) The players do not observe their costs.

Theorem 24. Consider the game model that satisfies conditions (I1)–(I3). Then
there exists a stationary constrained Nash equilibrium.

Stochastic games with finite sets of states and actions and imperfect public
monitoring were studied in Fudenberg and Yamamoto (2011) and Hörner et al.
(2011). The players, in their models, observe states and receive only public signals
on the chosen actions by the partners in the game. Fudenberg and Yamamoto (2011)
and Hörner et al. (2011) established “folk theorems” for stochastic games under
assumptions that relate to “irreducibility” conditions on the transition probability
function. Moreover, Hörner et al. (2011, 2014) also studied algorithms for both
computing the sets of all equilibrium payoffs in the normalized discounted games
and for finding their limit as the discount factor tends to one. As shown in
counterexamples in Flesch et al. (2003) an n-person stochastic game with non-
observable actions of the players (and no public signals), observable payoffs and
the expected limit-average payoff criterion does not possess �-equilibrium. Cole
and Kocherlakota (2001) studied discounted stochastic games with hidden states
and actions. They provided an algorithm for finding a sequential equilibrium, where
strategies depend on private information only through the privately observed state.
Imperfect monitoring is also assumed in the model of the supermodular stochastic
game studied by Balbus et al. (2013b), where the monotone convergence of Nash
equilibrium payoffs in finite-stage games is proved.
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11 Intergenerational Stochastic Games

This section develops a concept of equilibrium behavior and establishes its existence
in various intergenerational games. Both paternalistic and non-paternalistic altruism
cases are discussed. Consider an infinite sequence of generations labelled by t 2 N.
There is a single good (called also a renewable resource) that can be used for
consumption or productive investment. The set of all resource stocks S is an interval
in R. It is assumed that 0 2 S . Every generation lives one period and derives
utility from its own consumption and consumptions of some or all its descendants.
Generation t observes the current stock st 2 S and chooses at 2 A.st / WD Œ0; st �

for consumption. The remaining part yt D st � at is left as an investment for
its descendants. The next generation’s inheritance or endowment is determined by
a weakly continuous transition probability q from S to S (stochastic production
function), which depends on yt 2 A.st / � S . Recall that the weak continuity of q
means that q.�jym/ ) q.�jy0/ if ym ! y0 in S (as m ! 1). Usually, it is assumed
that state 0 is absorbing, i.e., q.f0gj0/ D 1. Let ˚ be the set of all Borel functions
� W S ! S such that �.s/ 2 A.s/ for each s 2 S . A strategy for generation t is
a function �t 2 ˚ . If �t D � for all t 2 N and some � 2 ˚ , then we say that the
generations employ a stationary strategy.

Suppose that all generations from t C 1 onward use a consumption strategy
c 2 ˚ . Then, in the paternalistic model generation t ’s utility when it consumes
at 2 A.st / equals to H.at ; c/.st /, where H is some real-valued function used
for measurement of the satisfaction level of the generation. This implies that in
models with paternalistic altruism each generation derives its utility from its own
consumption and the consumptions of its successor or successors.

Such a game model reveals a time inconsistency. Strotz (1956) and Pollak (1968)
were among the first, who noted this fact in the model of an economic agent whose
preferences change over time. In related works, Phelps and Pollak (1968) and Peleg
and Yaari (1973) observed that this situation is formally equivalent to one, in which
decisions are made by a sequence of heterogeneous planners. They investigated
the existence of consistent plans, what we shall call (stationary) Markov perfect
equilibria. The solution concept is in fact a symmetric Nash equilibrium .c�; c�; : : :/

in a game played by countably many short-lived players having the same utility
functions. Therefore, we can say that a stationary Markov perfect equilibrium
.c�; c�; : : :/ corresponds to a strategy c� 2 ˚ such that

H.c�.s/; c�/.s/ D sup
a2A.s/

H.a; c�/.s/

for every s 2 S . We identify this equilibrium with c�.
In other words, c� 2 ˚ is a stationary Markov perfect equilibrium if

c�.s/ 2 arg max
a2A.s/

H.a; c�/.s/ for each s 2 S:
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There is now a substantial body of work on paternalistic models, see for instance,
Alj and Haurie (1983), Harris and Laibson (2001), and Nowak (2010) and the results
presented below in this section. At the beginning we consider three types of games,
in which the existence of a stationary Markov perfect equilibrium was proved in
a sequence of papers: Balbus et al. (2015a,b,c). Game (G1) describes a purely
deterministic case, while games (G2) and (G3) deal with a stochastic production
function. However, (G2) concerns a model with one descendant, whereas (G3)
examines a model with infinitely many descendants. Let us mention that by an
intergenerational game with k (k is finite or infinite) descendants (successors or
followers), we mean a game in which each generation derives its utility from its
own consumption and consumptions of its k descendants.

(G1) Let S WD Œ0;C1/. Assume that q.�jyt / D ıp.yt /.�/, where p W S ! S is a
continuous and increasing production function such that p.0/ D 0. We also
assume that

H.a; c/.s/ D Ou.a; c.p.s � a///

for some continuous and increasing in each variable function Ou W R
2
C !

R [ f�1g. Moreover, we allow Ou to be unbounded from below. Hence, we
assume that Ou.0; y/ � �1 for all y � 0 and Ou.x; 0/ > �1 for all x > 0.
Furthermore, for any y1 > y2 in S and h > 0, we assume that the function
�h Ou.x/ WD Ou.x; y1/ � Ou.x C h; y2/ has the strict single crossing property on
.0;C1/, i.e., �h Ou.x/ � 0 implies that �h Ou.x0/ > 0 for each x0 > x (see
Milgrom and Shannon 1994).

(G2) Let S WD Œ0;C1/. We study a model with a utility that reflects a generation’s
attitude toward risk. This fact is reflected by a positive risk coefficient r . In
this setup, H takes the following form:

H.a; c/.s/ D

�
u.a/C ˇ

R
S
v.c.s0//q.ds0js � a/; for r D 0

u.a/ � ˇ

r
ln
R
S
e�rv.c.s0//q.ds0js � a/; for r > 0;

where u W S ! R [ f�1g is increasing, strictly concave, continuous on
.0;C1/ and u.0/ � �1. In addition, the function v W S ! R is bounded,
continuous and increasing. Further assumptions are as follows: for every s 2

S , the set Zs WD fy 2 S W q.fsgjy/ > 0g is countable and the transition law
q is stochastically increasing. The latter fact means that, if z ! Q.zjy/ is the
cumulative distribution function for q.�jy/, then for all y1 < y2 and z 2 S , we
have Q.zjy1/ � Q.zjy2/.

(G3) Let S WD Œ0; Ns� for some Ns > 0. In this case, we assume that the utility function
of current generation t is as follows:

H.a; c/.s/ D Qu.a/CEc
s Œw.atC1; atC2; : : :/�;
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where w W S1 ! R is continuous and Qu W S 7! R is continuous,
strictly concave and increasing. Here, Ec

s is an expectation operator with
respect to the unique probability measure on the space of all feasible future
histories (starting from the endowment s of generation t ) of the consumption-
investment process induced by the stationary strategy c 2 ˚ used by each
generation � (� > t ) and the transition probability q. The function Qu is also
assumed to be continuous and strictly concave. Defining

QJ .c/.s/ D Ec
s Œw.ak; akC1; akC2; : : :/�

for every k 2 N, we obtain that

H.a; c/.s/ D Qu.a/C

Z
S

QJ .c/.s0/q.ds0js � a/:

In addition, q.�jy/ is assumed to be nonatomic for y > 0.

Let I denote the set of nondecreasing lower semicontinuous functions i W S ! R

such that i.s/ 2 A.s/ for each s 2 S . Note that every i 2 I is continuous from the
left and has at most a countable number of discontinuity points. Put

F WD fc 2 ˚ W c.s/ D s � i.s/; i 2 I; s 2 Sg:

Clearly, any c 2 F is upper semicontinuous and continuous from the left. The
idea of using the class F of strategies for analysing equilibria in deterministic
bequest games comes from Bernheim and Ray (1983). Further, it was successfully
applied to the study of other classes of dynamic games with simultaneous moves;
see Sundaram (1989a) and Majumdar and Sundaram (1991).

Theorem 25. Every intergenerational game (G1), (G2) and (G3) possesses a
stationary Markov perfect equilibrium c� 2 F .

The main idea of the proof is based upon the consideration of an operator L
defined as follows: to each consumption strategy c 2 F used by descendant (or
descendants) the function L assigns the maximal element c0 from the set of best
responses to c. It is shown that c0 2 F . Moreover, F can be viewed as a convex
subset of the vector space Y of real-valued continuous from the left functions
 W S 7! R of bounded variation on every interval Sn WD Œ0; n�, n 2 N, thus in
particular on Œ0; Ns�. We further equip Y with the topology of weak convergence. We
assume that .m/ converges weakly to some 0 2 Y , if lim

m!1
m.s/ D 0.s/ for

every continuity point s of 0. Then, due to Lemma 2 in Balbus et al. (2015c), F is
compact and metrizable. Finally, the equilibrium point is obtained via the Schauder-
Tychonoff fixed point theorem applied to the operator L.
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Theorem 25 for game (G1) was proved in Balbus et al. (2015c). Related results
for the purely deterministic case were considered by Bernheim and Ray (1983)
and Leininger (1986). For instance, Leininger (1986) studied a class U of bounded
from below utility functions for which every selector of the best response corre-
spondence is nondecreasing. In particular, he noticed that this class is nonempty
and it includes, for instance, the separable case, i.e., u.x; y/ D v.x/ C bv.y/,
where v is strictly increasing and concave and b > 0. Bernheim and Ray (1983),
on the other hand, showed that the functions u that are strictly concave in their first
argument and satisfying the so-called increasing differences property (see Sect. 2)
also belong to U : Other functions u that meet conditions imposed by Bernheim
and Ray (1983) and Leininger (1986) are of the form u.x; y/ D v1.x/v2.y/,
where v1 is strictly concave and v2 � 0 is continuous and increasing. The class
U is not fully characterized. The class (G1) of games includes all above-mentioned
examples and some new ones. Our result is also valid for a larger class of utilities
that can be unbounded from below. Therefore, Theorem 25 is a generalization of
Theorem 4.2 in Bernheim and Ray (1983) and Theorem 3 in Leininger (1986).
The proofs given by Bernheim and Ray (1983) and Leininger (1986) do not work
for unbounded utility functions. Indeed, Leininger (1986) uses a transformation of
upper semicontinuous consumption strategies into the set of Lipschitz functions
with constant 1. This clever “levelling” operation enables him to equip the space of
continuous functions on the interval Œ0; Ny�with the topology of uniform convergence
and to apply the Schauder fixed point theorem. His proof strongly makes use of
the uniform continuity of u. This is the case, when the production function crosses
the 45ı line. If the production function does not cross the 45ı line, a stationary
equilibrium is then obtained as a limit of equilibria corresponding to the truncations
of the production function. However, this part of the proof is descriptive and sketchy.
Bernheim and Ray (1983), on the other hand, identify with the maximal best
response consumption strategy, which is upper semicontinuous, a convex-valued
upper hemicontinuous correspondence. Then, such a space of upper hemicontinuous
correspondences is equipped with the Hausdorff topology. This fact implies the
strategy space is compact, if endowments have an upper bound, i.e., when the
production function p crosses the 45ı line. If this is not satisfied, then a similar
approximation technique as in Leininger (1986) is employed. Our proof does not
follow the above-mentioned approximation methods. The weak topology introduced
in the space Y implies that F is compact and allows to use an elementary but
non-trivial analysis. For examples of deterministic bequest games with stationary
Markov perfect equilibria given in closed form the reader is referred to Fudenberg
and Tirole (1991) and Nowak (2006b, 2010).

Theorem 25 for game (G2) was proved by Balbus et al. (2015b), whereas for
game (G3) by Balbus et al. (2015a). Within the stochastic framework, Theorem 25
is an attempt of saving the result reported by Bernheim and Ray (1989) on the
existence of stationary Markov perfect equilibria in games with very general utility
function and nonatomic shocks. If q is allowed to possess atoms, then a stationary
Markov perfect equilibrium exists in the bequest games with one follower (see
Theorems 1–2 in Balbus et al. 2015b). The latter result also embraces the purely
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deterministic case; see Example 1 in Balbus et al. (2015b), where the nature and
role of assumptions are discussed. However, as shown in Example 3 in Balbus et al.
(2015a), the existence of stationary Markov perfect equilibria in the class of F
cannot be proved in intergenerational games where q has atoms and there are more
than one descendant.

The result in Bernheim and Ray (1986) concerns “consistent plans” in models
with finite time horizon. The problem is then simpler. The results of Bernheim
and Ray (1986) were considerably extended by Harris (1985) in his paper on
perfect equilibria in some classes of games of perfect information. It should be
noted that there are other papers that contain certain results for bequest games with
stochastic production function. Amir (1996b) studied games with one descendant
for every generation and the transition probability such that the induced cumulative
distribution function Q.zjy/ is convex in y 2 S . This condition is rather restrictive.
Nowak (2006a) considered similar games in which the transition probability is
a convex combination of the Dirac measure at state s D 0 and some transition
probability from S to S with coefficients depending on investments. Similar models
were considered by Balbus et al. (2012, 2013a). The latter paper also studies some
computational issues for stationary Markov perfect equilibria. One should note,
however, that the transition probabilities in the aforementioned works are specific.
However, the transition structure in Balbus et al. (2015a,b) is consistent with the
transitions used in the theory of economic growth; see Bhattacharya and Majumdar
(2007) and Stokey et al. (1989).

The interesting issue studied in the economics literature concerns the limiting
behavior of the state process induced by a stationary Markov perfect equilibrium.
Below we formulate a steady state result for a stationary Markov perfect equilibrium
obtained for the game (G1). Under slightly more restrictive conditions it was shown
by Bernheim and Ray (1987) that the equilibrium capital stock never exceeds the
optimal planning stock in any period. Namely, it is assumed that

(B1) p is strictly concave, continuously differentiable and limy!0C p0.y/ > 1,
limy!1 p0.y/ < 1=ˇ, where ˇ 2 .0; 1� is a discount factor;

(B2) Ou.at ; atC1/ D Ov.at /Cˇ Ov.atC1/, where Ov W S ! R is increasing, continuously
differentiable, strictly concave and Ov.a/ ! 1 as a ! 1.

An optimal consumption program Oa WD . Oat /t2N is the one which maximizesP1
tD1 ˇ

t�1 Ov. Oat / subject to all feasibility constraints described in the model. The
following result is stated as Theorems 3.2 and 3.3 in Bernheim and Ray (1987).

Theorem 26. Assume (B1)–(B2) and consider game (G1). If c� is a stationary
Markov perfect equilibrium, then i�.s/ D s � c�.s/ � Oy, where Oy 2 Œ0;1/

is the limit of the sequence .st � Oat /t2N. If Oy > 0, it solves ˇp0.y/ D 1. If
limy!0C p0.y/ > 1=ˇ, then Oy > 0.

For further properties of stationary Markov perfect equilibria such as efficiency,
and Pareto optimality, the reader is referred to Sect. 4 in Bernheim and Ray (1987).
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For stochastic models it is of some interest to know whether a stationary Markov
perfect equilibrium induces a Markov process having an invariant distribution.
It turns out that the answer is positive if an additional stochastic monotonicity
requirement is met:

(B3) If y1 < y2, then for any nondecreasing Borel measurable function h W S ! R,

Z
S

h.s/q.dsjy1/ �

Z
S

h.s/q.dsjy2/:

By Theorem 25 for game (G3), there exists c� 2 F . Then s ! i�.s/ D s�c�.s/

is nondecreasing on S . Put q�.Bjs/ WD q.Bji�.s// where B is a Borel subset of S
and s 2 S . From (B3), it follows that s ! q�.�js/ is nondecreasing. Define the
mapping � W Pr.S/ ! Pr.S/ by

��.B/ WD

Z
S

q�.Bjs/�.ds/

where B 2 B.S/. An invariant distribution for the Markov process induced by the
transition probability q� determined by i� (and thus by c�) is any fixed point of � .
Let �.q�/ be the set of invariant distributions for the process induced by q�. In
Sect. 4 in Balbus et al. (2015a), the following result was proved.

Theorem 27. Assume (B3) and consider game (G3). Then, the set of invariant
distributions �.q�/ is compact in the weak topology on Pr.S/.

For each � 2 �.q�/, M.�/ WD
R
S
s�.ds/ is the mean of distribution � . By

Theorem 27, there exists ��� with the highest mean over the set �.q�/.
One can ask for the uniqueness of invariant distribution. Theorem 4 in Balbus

et al. (2015a) yields a positive answer to this question. However, this result concerns
the model with multiplicative shocks, i.e., q is induced by the equation

stC1 D f .yt /�t ; t 2 N;

where f W S ! S is a continuous increasing function such that f .0/ > 0. In
addition, there is a state Os 2 .0;1/ such that f .y/ > y for y 2 .0; Os/ and
f .y/ < y for y 2 .Os;1/. Here .�t /t2N is an i.i.d. sequence with the nonatomic
distribution 	 . Assuming additionally the monotone mixing condition, we conclude
from Theorem 4 in Balbus et al. (2015a) the uniqueness of the invariant distribution.
Further discussion on these issues can be found in Stokey et al. (1989), Hopenhayn
and Prescott (1992), Stachurski (2009), Balbus et al. (2015a) and the references
cited therein.

In contrast to the paternalistic model one can also think of a non-paternalistic
altruism. This notion is concerned with a model, in which each generation’s utility
is derived from its own consumption and the utilities of its all successors. The



328 A. Jaśkiewicz and A. S. Nowak

most general model with non-paternalistic altruism was formulated by Ray (1987).
His work is of some importance, because it provides a proper definition of an
equilibrium for the non-paternalistic case. According to Ray (1987), a stationary
equilibrium consists of a pair of two functions: a saving policy (or strategy) and an
indirect utility function. Such a pair constitutes an equilibrium if it is optimal for the
current generation, provided its descendants use the same saving strategy and the
same indirect utility function.

Assume that the generations from t onward use a consumption strategy c 2 ˚ .
Then, the expected utility of generation t , that inherits an endowment st D s 2

S WD Œ0; Ns�, is of the form

Wt.c; v/.s/ WD .1 � ˇ/Qu.c.s//C ˇEc
s Œw.v.stC1/; v.stC2/; : : :/�: (6.8)

where Qu W S ! K and w W K1 ! K are continuous functions andK WD Œ0; Nk� with
some Nk � Ns. The function v W S ! K is called an indirect utility and is assumed to
be Borel measurable. Similarly, for any c 2 ˚ and s D stC1 2 S , we can define

J .c; v/.s/ WD Ec
s Œw.v.stC2/; v.stC3/; : : :/�;

which yields

W .c; v/.s/ WD Wt.c; v/.s/ D .1 � ˇ/Qu.c.s//C ˇ

Z
S

J .c; v/.s0/q.ds0js � c.s//:

Let us define

P .a; c; v/.s/ WD .1 � ˇ/Qu.a/C ˇ

Z
S

J .c; v/.s0/q.ds0js � a/;

where s 2 S , a 2 A.s/ and c 2 ˚ . If st D s, then P .a; c; v/.s/ is the utility
for generation t choosing the consumption level a 2 A.st / in this state under the
assumption that all future generations will employ a stationary strategy c 2 ˚ and
the indirect utility is v.

A stationary equilibrium in the sense of Ray (1987) is a pair .c�; v�/, with
c� 2 ˚ , and v� W S ! K being a bounded Borel measurable function such
that for every s 2 S , we have that

v�.s/ D sup
a2A.s/

P .a; c�; v�/.s/ D P .c�.s/; c�; v�/.s/ D W .c�; v�/.s/: (6.9)

Note that equality (6.9) says that there exist an indirect utility function v� and
a consumption strategy c�, both depending on the current endowment, such that
each generation finds it optimal to adopt this consumption strategy provided its
descendants use the same strategy and exhibit the given indirect utility.
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Let V be the set of all nondecreasing upper semicontinuous functions v W

S ! K. Note that every v 2 V is continuous from the right and has at most a
countable number of discontinuity points. By I we denote the subset of all functions
' 2 V such that '.s/ 2 A.s/ for each s 2 S . Let F D fc W c.s/ D s � i.s/; s 2 S;

i 2 I g. We impose similar conditions to those imposed on model (G3). Namely,
we shall assume that Qu is strictly concave and increasing. Then, the following result
holds.

Theorem 28. In a non-paternalistic game as described above with nonatomic
transitions, there exists a stationary equilibrium .c�; v�/ 2 F � V .

Theorem 28 was established as Theorem 1 in Balbus et al. (2016). Ray
(1987) analysed games with non-paternalistic altruism and deterministic production
functions. Unfortunately, his proof contains a mistake. The above result is strongly
based on the assumption that the transitions are nonatomic and weakly continuous.
The problem in the deterministic model of Ray (1987) remains open. However,
Theorem 28 implies that an equilibrium exists if a “small nonatomic noise” is added
to the deterministic transition function.

There is a great deal of work devoted to the so-called hyperbolic decision makers,
in which the function w in (G3) has a specific form. Namely,

w.ak; akC1; akC2; : : :/ D ˛ˇ

1X
mDk

ˇm�k Qu.am/; (6.10)

where ˛ > 0 and is interpreted as a short-run discount factor and ˇ < 1 is known
as a long-run discount coefficient. This model was studied by Harris and Laibson
(2001) with the transition function defined via the difference equation

stC1 D R.st � at /C �t ; R � 0 and t 2 N:

The random variables .�t /t2N are nonnegative, Independent, and identically dis-
tributed with respect to a nonatomic probability measure. The function Qu satisfies
some restrictive condition concerning the risk aversion of the decisionmaker, but
it may be unbounded from above. Working in the class of strategies with locally
bounded variation, Harris and Laibson (2001) showed the existence of a stationary
Markov perfect equilibrium in their model with concave utility function Qu. They
also derived a strong hyperbolic Euler relation. The model considered by Harris and
Laibson (2001) can also be viewed as a game between generations; see Balbus and
Nowak (2008), Nowak (2010), and Jaśkiewicz and Nowak (2014a) where related
versions are studied. However, its main interpretation in the economics literature
says that it is a decision problem where the utility of an economic agent changes over
time. Thus, the agent is represented by a sequence of selves and the problem is to
find a time-consistent solution . This solution is actually a stationary Markov perfect
equilibrium obtained by thinking about selves as players in an intergenerational
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game. For further details and references, the reader is referred to Harris and Laibson
(2001) and Jaśkiewicz and Nowak (2014a). A decision model with time-inconsistent
preferences involving selves who can stop the process at any stage was recently
studied by Cingiz et al. (2016)

The model with the function w defined in (6.10) can be extended by adding to the
transition probabilities an unknown parameter � . Then, the natural solution for such
a model is a robust Markov perfect equilibrium. Roughly speaking, this solution is
based on the assumption that the generations involved in the game are risk-sensitive
and accept a maxmin utility. More precisely, let � be a nonempty Borel subset of
Euclidean space R

m (m � 1). Then, the endowment stC1 for generation t C 1 is
determined by the transition q from S � � to S that depends on the investment
yt 2 A.st / and a parameter �t 2 �. This parameter is chosen according to a certain
probability measure �t 2 P , where P denotes the action set of nature and it is
assumed to be a Borel subset of Pr.�/.

Let 
 be the set of all sequences .�t /t2N of Borel measurable mappings �t W

D ! P , where D D f.s; a/ W s 2 S; a 2 A.s/g. For any t 2 N and � D

.�t /t2N 2 
 , we set �t WD .�� /��t . Clearly, �t 2 
 . A Markov strategy for nature
is a sequence � D .�t /t2N 2 
 . Note that �t can be called a Markov strategy used
by nature from period t onward.

For any t 2 N, define Ht as the set of all sequences

ht D .at ; �t ; stC1; atC1; �tC1; : : :/; where .sk; ak/ 2 D; �k 2 � and k � t:

H t is the set of all feasible future histories of the process from period t onward.
Endow Ht with the product � -algebra. Assume in addition that Qu � 0, the
generations employ a stationary strategy c 2 ˚ and nature chooses some � 2 
 .

Then the choice of nature is a probability measure depending on .st ; c.st //. LetEc;�t

st

denote as usual the expectation operator corresponding to the unique probability
measure on Ht induced by a stationary strategy c 2 ˚ used by each generation
� (� � t ), a Markov strategy of nature �t 2 
 and the transition probability q.
Assume that all generations from t onward use c 2 ˚ and nature applies a strategy
�t 2 
 . Then, the generation t ’s expected utility is of the following form:

OW .c/.st / WD inf
�t2


Ec;�t

st

 
Qu.c.st //C ˛ˇ

1X
mDtC1

ˇm�t�1 Qu.c.s� //

!
:

This definition of utility in an intergenerational game provides an intuitive notion
of ambiguity aversion, which can be regarded as the generations’ diffidence for
any lack of precise definition of uncertainty, something that provides room for the
malevolent influence of nature. Letting

OJ .c/.sj / D inf
�j2


Ec;�j

sj

0
@ 1X
mDj

ˇm�j Qu.c.s� //

1
A
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we one can show that

OW .c/.st / D Qu.c.s//C inf
�2P

˛ˇ

Z
S

OJ .c/.stC1/q.dstC1jst � c.st /; �/:

For any s 2 S , a 2 A.s/, and c 2 ˚ , we set

OP .a; c/.s/ D Qu.a/C inf
�2P

˛ˇ

Z
S

OJ .c/.s0/q.ds0js � a; �/:

If s D st , then OP .a; c/.s/ is the utility for generation t choosing a 2 A.st / in this
state when all future generations employ a stationary strategy c 2 ˚ .

A robust Markov perfect equilibrium is a function c� 2 ˚ such that for every
s 2 S we have

sup
a2A.s/

OP .a; c�/.s/ D OP .c�.s/; c�/.s/ D OW .c�/.s/:

The existence of a robust Markov perfect equilibrium in the aforementioned model
was proved by Balbus et al. (2014) under the assumption that the transition
probability is a convex combination of probability measures �1; : : : ; �l on S

with coefficients depending on investments y D s � a. A robust Markov perfect
equilibrium was obtained in the class of functions F under the condition that all
measures �1; : : : ; �l are nonatomic. If �1; : : : ; �l have atoms, then some stochastic
dominance conditions are imposed, but the equilibrium was obtained in the class of
Lipschitz continuous functions with constant 1. A different approach was presented
in the work of Jaśkiewicz and Nowak (2014b), where the set of endowments S and
the set of consumptions are Borel and the parameter set � is finite. Assuming again
that the transition probability is a finite convex combination of probability measures
�1; : : : ; �l on S depending on the parameter � with coefficients depending on
the inheritance s and consumption level a, they have established a twofold result.
First, they proved the existence of a robust Markov perfect equilibrium in the class
of randomized strategies. Second, assuming that �1; : : : ; �l are nonatomic, and
making use of the purification theorem of Dvoretzky-Wald-Wolfowitz, they replaced
a randomized equilibrium by a pure one.

The models of intergenerational games with general spaces of consumptions and
endowments were also examined by Jaśkiewicz and Nowak (2014a). A novel feature
in this approach is the fact that generation t can employ the entropic risk measure to
calculate its utilities. More precisely, if Z is a random variable with the distribution
	 , then its entropic risk measure is E.Z/ D 1

r
ln
R
˝
erZ.!/	.d!/, where r < 0 is

a risk coefficient. If r is sufficiently close to zero, then making use of the Taylor
expansion one can see that

E.Z/ 	 EZ C
r

2
Var.Z/:
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This means that a generation which uses the entropic risk measure to calculate
its utility is risk averse and takes into account not only the expected value of
a random future successors’ utilities derived from consumptions but also their
variance. Assuming that each generation cares only about its m descendants and
assuming that the transition probability is a convex combination of finitely many
nonatomic measures on the endowment space with coefficients that may depend on
s and a, Jaśkiewicz and Nowak (2014a) proved the existence of stationary Markov
perfect equilibrium in pure strategies. The same result was shown for games with
infinitely many descendants in the case of hyperbolic preferences. In both cases
the proof consists of two parts. First, a randomized stationary Markov perfect
equilibrium was shown to exist. Second, making use of the specific structure of
the transition probability and applying the Dvoretzky-Wald-Wolfowitz theorem a
desired pure stationary Markov perfect equilibrium was obtained.

A related game to the above mentioned models is the one with quasi-geometric
discounting from the dynamic consumer theory; see Chatterjee and Eyigungor
(2016). Particularly, the authors showed that in natural cases such a game does not
possess a Markov perfect equilibrium in the class of continuous strategies. However,
a continuous Markov perfect equilibrium exists, if the model was reformulated
involving lotteries. These two models were then numerically compared. It is
known that the numerical analysis of equilibrium in models with hyperbolic (quasi-
geometric) discounting shows difficulties in achieving convergence even in a simple,
deterministic optimal growth problem that has a smooth closed-form solution.
Maliar and Maliar (2016) defined some restrictions on the equilibrium strategies
under which the numerical methods studied deliver a unique smooth solution for
many deterministic and stochastic models.

Finally, we wish to point out that Markov Perfect Equilibria for stochastic
bequest games with transition probabilities and utilities depending on time were
shown to exist in Balbus et al. (2017, 2018).

12 Stopping Games

Stopping games were introduced by Dynkin (1969) as a generalization of optimal
stopping problems. They were used in several models in economics and operations
research, for example, in equipment replacement, job search, and consumer pur-
chase behavior; see Heller (2012).

Dynkin (1969) dealt with the following problem. Two players observe a bivariate
sequence of adapted random variables .X.k/; Y .k//k2N0 , where N0 D N [ f0g.
Player 1 chooses a stopping time �1 such that f�1 D kg � fX.k/ � 0g, whereas
player 2 selects �2 such that f�2 D kg � fX.k/ < 0g. If �1 ^ �2 is finite, then
player 2 pays Y .�/ to player 1 and the game terminates. Hence, the objective of
player 1 (respectively 2) is to maximize (minimize) R.�1; �2/ D EŒY .�1 ^ �2/�.
Dynkin (1969) characterized �-optimal stopping times and proved that the game has
a value provided that supk2N0

jY .k/j is integrable. This model was later extended by
Kiefer (1971) and Neveu (1975). In particular, Neveu (1975) showed the existence
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of a game value in a slightly modified model. Namely, he dealt with the following
expected payoff function:

R.�1; �2/ D EŒX.�1/1Œ�1 < �2�C Y .�2/1Œ�2 � �1��;

where .X.k//k2N0 and .Y .k//k2N0 are R-valued adapted stochastic processes such
that supk2N0

.XC.k/CY �.k// are integrable and X.k/ � Y .k/ for all k 2 N0. The
game considered by Neveu (1975) was generalized by Yasuda (1985), who dropped
the latter assumption on monotonicity. In his model, the expected payoff function
takes the following form:

R.�1; �2/ D EŒX.�1/1Œ�1 < �2�C Y .�2/1Œ�2 < �1�CZ.�1/1Œ�1 D �2��;

where as usual .X.k//k2N0 , .Y .k//k2N0 and .Z.k//k2N0 are adapted integrable
random variables. Yasuda (1985) considered randomized strategies instead of pure
ones. According to Yasuda (1985) a strategy for a player is an adapted random
sequence p D .pk/k2N0 (or q D .qk/k2N0) such that 0 � pk; qk � 1 with
probability one. Here, pk (or qk) stands for the probability that the player stops
the game at time k conditional on the event that the game was not stopped before.
In computing the payoff induced by a pair of strategies .p; q/, one assumes that the
randomizations performed by the players in various stages are mutually independent
and independent of the payoff processes. Thus, a strategy that corresponds to a
stopping time � is pk D 0 on the event Œ� > k� and pk D 1 on the event Œ� � k�.
Yasuda (1985) proved the existence of the value in the set of randomized strategies
in finite and discounted infinite time horizon problems.

Before formulating the next result, we define the stopping stages for players
1 and 2 by �1 WD inffk 2 N0 W P .k/ � pkg, and �2 WD inffk 2 N0 W Q.k/ � qkg;

where .P .k/;Q.k//k2N0 is a double sequence of i.i.d. random variables uniformly
distributed over Œ0; 1� satisfying certain independence assumptions imposed in
Rosenberg et al. (2001). Set � D �1 ^ �2: Clearly, � is the stage at which the game
stops. Let us define

R.p; q/ D EŒX.�1/1Œ�1 < �2�C Y .�2/1Œ�2 < �1�CZ.�1/1Œ�1 D �2 < C1��

and its ˇ-discounted evaluation

Rˇ.p; q/ D .1 � ˇ/E
�
ˇ�C1.X.�1/1Œ�1 < �2�C Y .�2/1Œ�2 < �1�

CZ.�1/1Œ�1 D �2 < C1�/
�
:

The following result was proved by Rosenberg et al. (2001).

Theorem 29. Assume that EŒsupk2N0
.jX.k/j C jY .k/j C jZ.k/j/� < C1. Then

the stopping games with the payoffs R.p; q/ and Rˇ.p; q/ have values, say v and
vˇ , respectively. Moreover, limˇ!1 vˇ D v.
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Let us now turn to nonzero-sum Dynkin games. They were considered in several
papers; see, for instance, Ferenstein (2007), Krasnosielska-Kobos (2016), Morimoto
(1986), Nowak and Szajowski (1999), Ohtsubo (1987), Ohtsubo (1991), Solan
and Vieille (2001), and Szajowski (1994). Obviously, the list of references is by
no means exhaustive. We start with presenting a result for two-player nonzero-
sum stopping games. Assume that the aforementioned sequences .X.k//k2N0 ,
.Y .k//k2N0 and .Z.k//k2N0 are bounded in R

2 and let � be a uniform bound on
the payoffs. The payoff of the game is R.p; q/ except that R.p; q/ 2 R

2. Shmaya
and Solan (2004) proved the following result.

Theorem 30. For each � > 0, the stopping game has an �-equilibrium .p�
� ; q

�
� /.

Theorem 30 does not hold, if the payoffs are not uniformly bounded. Its proof
is based upon a stochastic version of the Ramsey theorem that was also proved
by Shmaya and Solan (2004). It states that for every colouring of a complete
infinite graph by finitely many colours, there is a complete infinite monochromatic
subgraph. Shmaya and Solan (2004) applied a variation of this result to reduce the
problem of the existence of an �-equilibrium in a general stopping game to that of
studying properties of �-equilibria in a simple class of stochastic games with finite
state space. A similar result for deterministic 2-player nonzero-sum stopping games
was reported by Shmaya et al. (2003).

All the aforementioned works deal with the two-player case and/or assume some
special structure of the payoffs. Recently, Hamadène and Hassani (2014) studied n-
person nonzero-sum Dynkin games. Such a game is terminated at � WD �1^ : : :^�n,
where �i is a stopping time chosen by player i . Then, the corresponding payoff for
player i is given by

Ri.�1; : : : ; �n/ D W i;I
� ;

where Is denotes the set of players who make the decision to stop, that is, Is D

fm 2 f1; : : : ; ng W � D �mg and W i;Is is the payoff stochastic process of player i .
The main assumption says that the payoff is less when the player belongs to the
group involved in the decision to stop than when he is not. Hamadène and Hassani
(2014) showed that the game has a Nash equilibrium in pure strategies. The proof is
based on the approximation scheme whose limit provides a Nash equilibrium.

Krasnosielska-Kobos and Ferenstein (2013) is another paper that is concerned
with multi-person stopping games. More precisely, they consider a game in which
players sequentially observe the offers X.1/;X.2/; : : : at jump times T1; T2; : : : of
a Poisson process. It is assumed that the random variables X.1/;X.2/; : : : form an
i.i.d. sequence. Each accepted offer results in a reward R.k/ D X.k/r.Tk/, where
r is a non-increasing discount function. If more than one player accepts the offer,
then the player with the highest priority gets the reward. By making use of the
solution to the multiple optimal stopping time problem with above reward structure,
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Krasnosielska-Kobos and Ferenstein (2013) constructed a Nash equilibrium which
is Pareto efficient.

Mashiah-Yaakovi (2014), on the other hand, studied subgame-perfect equilibria
in stopping games. It is assumed that at every stage one of the players is chosen
according to a stochastic process, and that player decides whether to continue the
interaction or to stop it. The terminal payoff vector is obtained by another stochastic
process. Mashiah-Yaakovi (2014) defines a weaker concept of subgame-perfect
equilibrium, namely, a ı-approximate subgame-perfect �-equilibrium. A strat-
egy profile is a ı-approximate subgame-perfect �-equilibrium if it induces an
�-equilibrium in every subgame, except perhaps a set of subgames that occur
with probability at most ı. A 0-approximate subgame-perfect �-equilibrium is
actually a subgame-perfect �-equilibrium. The concept of approximate subgame-
perfect equilibrium relates to the concept of “trembling-hand perfect equilibrium”
introduced by Selten (1975). A stopping game in which, at every stage, one player
who decides to stop or continue the game is chosen according to a (periodic in
some sense) stochastic process is also studied in Mashiah-Yaakovi (2009). This
assumption extends the random priority in stopping games considered, for example,
in Szajowski (1994, 1995). Once the chosen player decides to stop, the players
receive terminal payoffs that are determined by a second stochastic process. Periodic
subgame-perfect �-equilibria in pure strategies are studied under some quite general
conditions. Some bases for stopping n-person games with fixed priorities were
provided by Enns and Ferenstein (1987).

Finally, it is worth pointing out that there are three notions of random stop-
ping times. The above mentioned randomized strategies used by Yasuda (1985)
and Rosenberg et al. (2001) are also called behavioral stopping times. A randomized
stopping time, on the other hand, is a nonnegative adapted real-valued process � D

.�k/k2N[f1g that satisfies
P

k2N[f1g �k D 1. The third concept allows to define
mixed stopping times �. Roughly speaking, they are product measurable functions
in which the first coordinate r is chosen according to the uniform distribution over
the interval Œ0; 1� at the outset. Then, the stopping time is �.r; �/. For more details,
the reader is referred to Rosenberg et al. (2001). As communicated to us by Eilon
Solan, the classes of mixed and randomized stopping times are equivalent by a
proper generalization of Kuhn’s theorem.
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Balbus Ł, Jaśkiewicz A, Nowak AS (2014) Robust Markov perfect equilibria in a dynamic

choice model with quasi-hyperbolic discounting. In: Haunschmied J et al (eds) Dynamic games
in economics, dynamic modeling and econometrics in economics and finance 16. Springer,
Berlin/Heidelberg, pp 1–22
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Balbus Ł, Reffett K, Woźny Ł (2013b) Markov stationary equilibria in stochastic supermodular
games with imperfect private and public information. Dyn Games Appl 3:187–206



6 Nonzero-Sum Stochastic Games 337
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Pęski M, Wiseman T (2015) A folk theorem for stochastic games with infrequent state changes.
Theoret Econ 10:131–173

Phelps E, Pollak R (1968) On second best national savings and game equilibrium growth. Rev
Econ Stud 35:195–199

Pollak R (1968) Consistent planning. Rev Econ Stud 35:201–208
Potters JAM, Raghavan TES, Tijs SH (2009) Pure equilibrium strategies for stochastic games

via potential functions. In: Advances in dynamic games and their applications. Annals of the
international society of dynamic games, vol 10. Birkhäuser, Boston, pp 433–444

Purves RA, Sudderth WD (2011) Perfect information games with upper semicontinuous payoffs.
Math Oper Res 36:468–473

Puterman ML (1994) Markov decision processes: discrete stochastic dynamic programming.
Wiley, Hoboken

Raghavan TES, Syed Z (2002) Computing stationary Nash equilibria of undiscounted single-
controller stochastic games. Math Oper Res 27:384–400

Raghavan TES, Tijs SH, Vrieze OJ (1985) On stochastic games with additive reward and transition
structure. J Optim Theory Appl 47:451–464

Ramsey FP (1928) A mathematical theory of savings. Econ J 38:543–559
Ray D (1987) Nonpaternalistic intergenerational altruism. J Econ Theory 40:112–132
Reny PJ, Robson A (2002) Existence of subgame-perfect equilibrium with public randomization:

a short proof. Econ Bull 3(24):1–8
Rieder U (1979) Equilibrium plans for non-zero sum Markov games. In: Moeschlin O, Pallaschke

D (eds) Game theory and related topics. North-Holland, Amsterdam, pp 91–102
Rogers PD (1969) Non-zero-sum stochastic games. Ph.D. dissertation, report 69–8, Univ of

California
Rosen JB (1965) Existence and uniqueness of equilibrium points for concave n-person games.

Econometrica 33:520–534
Rosenberg D, Solan E, Vieille N (2001) Stopping games with randomized strategies. Probab

Theory Relat Fields 119:433–451



6 Nonzero-Sum Stochastic Games 343

Rubinstein A (1979) Equilibrium in supergames with the overtaking criterion. J Econ Theory
21:1–9

Secchi P, Sudderth WD (2002a) Stay-in-a-set games. Int J Game Theory 30:479–490
Secchi P, Sudderth WD (2002b) N -person stochastic games with upper semi-continuous payoffs.

Int J Game Theory 30:491–502
Secchi P, Sudderth.WD (2005) A simple two-person stochastic game with money. In: Annals of

the international society of dynamic games, vol 7. Birkhäuser, Boston, pp 39–66
Selten R (1975) Re-examination of the perfectness concept for equilibrium points in extensive

games. Int J Game Theory 4:25–55
Shapley LS (1953) Stochastic games. Proc Nat Acad Sci USA 39:1095–1100
Shubik M, Whitt W (1973) Fiat money in an economy with one non-durable good and no credit:

a non-cooperative sequential game. In: Blaquière A (ed) Topics in differential games. North-
Holland, Amsterdam, pp 401–448

Shmaya E, Solan E (2004) Two player non-zero sum stopping games in discrete time. Ann Probab
32:2733–2764

Shmaya E, Solan E, Vieille N (2003) An applications of Ramsey theorem to stopping games.
Games Econ Behavior 42:300–306

Simon RS (2007) The structure of nonzero-sum stochastic games. Adv Appl Math 38:1–26
Simon R (2012) A topological approach to quitting games. Math Oper Res 37:180–195
Simon RS (2016) The challenge of nonzero-sum stochastic games. Int J Game Theory 45:191–204
Sleet C, Yeltekin S (2016) On the computation of value correspondences for dynamic games. Dyn

Games Appl 6:174–186
Smale S (1976) A convergent process of price adjustment and global Newton methods. J Math

Econ 3:107–120
Sobel MJ (1871) Non-cooperative stochastic games. Ann Math Stat 42:1930–1935
Solan E (1998) Discounted stochastic games. Math Oper Res 23:1010–1021
Solan E (1999) Three-person absorbing games. Math Oper Res 24:669–698
Solan E (2001) Characterization of correlated equilibria in stochastic games. Int J Game Theory

30:259–277
Solan E (2017, in press) Acceptable strategy profiles in stochastic games. Games Econ Behavior
Solan E, Vieille N (2001) Quitting games. Math Oper Res 26:265–285
Solan E, Vieille N (2002) Correlated equilibrium in stochastic games. Games Econ Behavior

38:362–399
Solan E, Vieille N (2003) Deterministic multi-player Dynkin games. J Math Econ 39:911–929
Solan E, Vieille N (2010) Computing uniformly optimal strategies in two-player stochastic games.

Econ Theory 42:237–253
Solan E, Ziliotto B (2016) Stochastic games with signals. In: Annals of the international society of

dynamic games, vol 14. Birkhäuser, Boston, pp 77–94
Sorin S (1986) Asymptotic properties of a nonzero-sum stochastic games. Int J Game Theory

15:101–107
Spence M (1976) Product selection, fixed costs, and monopolistic competition. Rev Econ Stud

43:217–235
Stachurski J (2009) Economic dynamics: theory and computation. MIT Press, Cambridge, MA
Stokey NL, Lucas RE, Prescott E (1989) Recursive methods in economic dynamics. Harvard

University Press, Cambridge
Strotz RH (1956) Myopia and inconsistency in dynamic utility maximization. Rev Econ Stud

23:165–180
Sundaram RK (1989a) Perfect equilibrium in a class of symmetric dynamic games. J Econ Theory

47:153–177
Sundaram RK (1989b) Perfect equilibrium in a class of symmetric dynamic games. Corrigendum.

J Econ Theory 49:385–187
Szajowski K (1994) Markov stopping game with random priority. Z Oper Res 39:69–84
Szajowski K (1995) Optimal stopping of a discrete Markov process by two decision makers. SIAM

J Control Optim 33:1392–1410
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Abstract

Mean field game (MFG) theory studies the existence of Nash equilibria, together
with the individual strategies which generate them, in games involving a large
number of asymptotically negligible agents modeled by controlled stochastic
dynamical systems. This is achieved by exploiting the relationship between the
finite and corresponding infinite limit population problems. The solution to the
infinite population problem is given by (i) the Hamilton-Jacobi-Bellman (HJB)
equation of optimal control for a generic agent and (ii) the Fokker-Planck-
Kolmogorov (FPK) equation for that agent, where these equations are linked
by the probability distribution of the state of the generic agent, otherwise known
as the system’s mean field. Moreover, (i) and (ii) have an equivalent expression
in terms of the stochastic maximum principle together with a McKean-Vlasov
stochastic differential equation, and yet a third characterization is in terms of
the so-called master equation. The chapter first describes problem areas which
motivate the development of MFG theory and then presents the theory’s basic
mathematical formalization. The main results of MFG theory are then presented,
namely the existence and uniqueness of infinite population Nash equilibiria,
their approximating finite population "-Nash equilibria, and the associated
best response strategies. This is followed by a presentation of the three main
mathematical methodologies for the derivation of the principal results of the
theory. Next, the particular topics of major-minor agent MFG theory and the
common noise problem are briefly described and then the final section concisely
presents three application areas of MFG theory.

Keywords
Mean field games � MFG � MFG equilibria � Mean field game equations �

MFG PDEs � MFG analytic methods � MFG probabilistic methods � Major
minor agent and common noise games � Non-linear Markov processes � MFG
applications

1 Introduction

1.1 The Fundamental Idea of Mean Field Game Theory

Mean field game (MFG) theory studies the existence of Nash equilibria, together
with the individual strategies which generate them, in games involving a large
number of asymptotically negligible agents modeled by controlled stochastic
dynamical systems. This is achieved by exploiting the relationship between the finite
and corresponding infinite limit population problems. The solution to the infinite
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population problem is given by (i) the Hamilton-Jacobi-Bellman (HJB) equation of
optimal control for a generic agent and (ii) the Fokker-Planck-Kolmogorov (FPK)
equation for that agent, where these equations are linked by the distribution of the
state of the generic agent, otherwise known as the system’s mean field. Moreover,
(i) and (ii) have an equivalent expression in terms of the stochastic maximum
principle together with a McKean-Vlasov stochastic differential equation, and yet
a third characterization is in terms of the so-called master equation. An important
feature of MFG solutions is that they have fixed-point properties regarding the
individual responses to and the formation of the mean field which conceptually
correspond to equilibrium solutions of the associated games.

1.2 Background

Large population dynamical multi-agent noncooperative and cooperative phenom-
ena occur in a wide range of designed and natural settings such as communi-
cation, environmental, epidemiological, transportation, and energy systems, and
they underlie much economic and financial behavior. Here, large is taken to mean
numerically large with respect to some implied normal range or infinite (as a discrete
or uncountable set). Analysis of such systems with even a moderate number of
agents is regarded as being extremely difficult using the finite population game
theoretic methods which were developed over several decades for multi-agent
control systems (see, e.g., Basar and Ho 1974; Ho 1980; Basar and Olsder 1999; and
Bensoussan and Frehse 1984). In contrast to the dynamical system formulation of
multi-agent games, the continuum population game theoretic models of economics
(Aumann and Shapley 1974; Neyman 2002) are static, as, in general, are the large
population models employed in network games (Altman et al. 2002) and classical
transportation analysis (Correa and Stier-Moses 2010; Haurie 1985; Wardrop 1952).
However, dynamical (also termed sequential) stochastic games were analyzed in the
continuum limit in the work of Jovanovic and Rosenthal (1988) and Bergin and
Bernhardt (1992), where a form of the mean field equations can be recognized in a
discrete-time dynamic programming equation linked with an evolution equation for
the population state distribution.

Subsequently, what is now called MFG theory originated in the equations for
dynamical games with (i) large finite populations of asymptotically negligible
agents together with (ii) their infinite limits, in the work of (Huang et al. 2003, 2007),
Huang et al. (2006) (where the framework was called the Nash certainty equivalence
principle; see Caines (2014)) and independently in that of Lasry and Lions (2006a,b,
2007), where the now standard terminology of mean field games (MFGs) was
introduced. The closely related notion of oblivious equilibria for large population
dynamic games was also independently introduced by Weintraub et al. (2005, 2008)
within the framework of discrete-time Markov decision processes (MDP).

1.3 Scope

The theory and methodology of MFG has rapidly developed since its inception
and is still advancing. Consequently, the objective of this article is only to present
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the fundamental conceptual framework of MFG in the continuous time setting and
the main techniques that are currently available. Moreover, the important topic of
numerical methods will not be included, but it is addressed elsewhere in this volume
by other contributors.

2 Problem Areas and Motivating Examples

Topics which motivate MFG theory or form potential areas of applications include
the following:

2.1 Engineering

In the domain of power grid network control, an MFG methodology is being
applied to create decentralized schemes for power network peak load reduction and
compensation of fluctuations originating in renewable sources (see Sect. 7). Vast
numbers of individual electric water-heating devices are planned to be coordinated
in a decentralized way using an MFG architecture which would limit the required
flows of information, such that individual controls give rise to a desired mean
consumption.

For cell phone communication networks where coded signals can overlap in the
frequency spectrum (called CDMA networks), a degradation of individual reception
can occur when multiple users emit in the same frequency band. Compensation
for this by users increasing their individual signal powers will shorten battery life
and is collectively self-defeating. However, in the resulting dynamic game, a Nash
equilibrium is generated when each cellular user controls its transmitted power as
specified by MFG theory (see Sect. 7). Other applications include decentralized
charging control of large populations of plug-in electric vehicles (Ma et al. 2013).

2.2 Economics and Finance

Human capital growth has been considered in an MFG setting by Guéant et al.
(2011) and Lucas and Moll (2014) where the individuals invest resources (such as
time and money) for the improvement of personal skills to better position themselves
in the labor market when competing with each other.

Chan and Sircar (2015) considered the mean field generalization of Bertrand
and Cournot games in the production of exhaustible resources where the price acts
as a medium for the producers to interact. Furthermore, an MFG formulation has
been used by Carmona et al. (2015) to address systemic risk as characterized by a
large number of banks having reached a default threshold by a given time, where
interbank loaning and lending is regarded as an instrument of control.
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2.3 Social Phenomena

Closely related to the application of MFG theory to economics and finance is its
potential application to a whole range of problems in social dynamics. As a short
list of current examples, we mention:

2.3.1 Opinion Dynamics
The evolution of the density of the opinions of a mass of agents under hypotheses
on the dynamics and stubbornness of the agents is analyzed in an MFG framework
in Bauso et al. (2016).

2.3.2 Vaccination Games
When the cost to each individual is represented as a function of (a) the risk of
side effects, (b) the benefits of being vaccinated, and (c) the proportion of the
population which is vaccinated, as in Bauch and Earn (2004), it is evident that an
MFG formulation is relevant, and this has been pursued in the work of Laguzet and
Turinici (2015).

2.3.3 Congestion Studies
MFG methodology has been employed in the study of crowds and congested flows
in Dogbé (2010) and Lachapelle and Wolfram (2011), where numerical methods
reveal the possibility of lane formation.

3 Mathematical Framework

3.1 Agent Dynamics

In MFG theory individual agents are modeled by controlled stochastic systems
which may be coupled by their dynamics, their cost functions, and their observation
functions.

The principal classes of dynamical models which are used in MFG theory are
sketched below; in all of them, the individual agent controls its own state process
(invariably denoted here by xi or x� ) and is subject to individual and possibly
common stochastic disturbances.

Concerning terminology, throughout this article, the term strategy of an agent
means the functional mapping from an agent’s information set to its control actions
over time, in other words, the control law of that agent.

3.1.1 Diffusion Models
In the diffusion-based models of large population games, the state evolution of a
collection of N agents Ai ; 1 � i � N < 1; is specified by a set of N controlled
stochastic differential equations (SDEs) which in the important linear case take the
form:
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dxi D .Ai xi C Bi ui /dt C Ci dwi ; 1 � i � N; (7.1)

on a finite or infinite time interval, where for the i th agent Ai , xi 2 R
n is the

state, ui 2 R
m the control input, and wi 2 R

r a standard Wiener process and where
fwi ; 1 � i � N g are independent processes. For simplicity, all collections of system
initial conditions are taken to be independent and have finite second moment.

A simplified form of the general case is given by the following set of controlled
SDEs which for each agent Ai includes state coupling with all other agents:

dxi .t/ D
1

N

NX

j D1

f .t; xi .t/; ui .t /; xj .t//dt C �dwi .t / (7.2)

D

Z

Rn

f .t; xi .t/; ui .t /; z/

8
<

:
1

N

NX

j D1

ıxj .d z/

9
=

; dt C �dwi .t /

DW f

2

4t; xi .t/; ui .t /;

8
<

:
1

N

NX

j D1

ıxj

9
=

;

3

5 dt C �dwi .t / (7.3)

D f Œt; xi .t/; ui .t /; �N
t �dt C �dwi .t /; (7.4)

where the function f Œ�; �; �; ��, with the empirical measure of the population states
�N

t WD 1
N

PN
j D1 ıxj at the instant t as its fourth argument, is defined via

f Œt; x.t/; u.t/; �t � WD

Z

Rn

f .t; x.t/; u.t/; z/�t .d z/; (7.5)

for any measure flow �t , as in Cardaliaguet (2012) and Kolokoltsov et al. (2012).
For simplicity, we do not consider diffusion coefficients depending on the system
state or control.

Equation (7.2) is defined on a finite or infinite time interval, where, here, for the
sake of simplicity, only the uniform (i.e., nonparameterized) generic agent case is
presented. The dynamics of a generic agent in the infinite population limit of this
system is then described by the following controlled McKean-Vlasov equation

dxt D f Œxt ; ut ; �t �dt C �dwt ; 1 � i � N; 0 � t � T;

where f Œx; u; �t � D
R
R

f .x; u; y/�t .dy/, �t .�/ denotes the distribution of the state
of the generic agent at t 2 Œ0; T � and the initial condition measure �0 is specified.
(The dynamics used in Lasry and Lions (2006a,b, 2007) and Cardaliaguet (2012)
are of the form dxi .t/ D ui .t /dt C dwi .t /; where ui ; xi ; wi are scalar-valued
processes.)

It is reasonable to speculate that results described below for the case of system
dynamics driven by a Wiener process would hold in the general case of a Wiener
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process plus a point process and ultimately to the general case of Lévy processes;
indeed, in an operator framework, this generalization is carried out in the work of
Kolokoltsov et al. (see below).

3.1.2 Nonlinear Markov Processes
The mean field game dynamic modeling framework has been significantly gener-
alized by Kolokoltsov et al. (2012) via the introduction of controlled nonlinear
Markov processes where, in this framework, instead of diffusion SDEs, the evo-
lution of a typical agent is described by an integrodifferential generator of Lévy-
Khintchine type, where, as in the diffusion models described in the rest of this
paper, the coefficients of the dynamical system of each agent, and its associated
costs, are permitted to depend upon the empirical measure of the population of
agents. As a consequence, by virtue of the Markov property, game theoretic best
response problems in this framework can still be solved within the HJB formalism,
and moreover the sensitivity analysis of the controls and dynamics with respect to
perturbations in the population measure flow is facilitated.

3.1.3 Markov Chains and Other Discrete-Time Processes
The dynamical evolution of the state xi of the i th agent Ai is formulated as a
discrete-time Markov decision process (MDP). The so-called anonymous sequential
games (Bergin and Bernhardt 1992; Jovanovic and Rosenthal 1988) deal with a
continuum of agents, where a generic agent’s cost function depends on its own state
and action, and the joint state-action distribution of the agent population.

In the context of industry dynamics, Weintraub et al. (2005, 2008) adopted a large
finite population, where the dynamics may be described by a Markov transition
kernel model PtC1 WD P .xi .t C 1/jxi .t/; x�i .t /; ui .t //, where x�i denotes the
states of other players; also see Adlakha et al. (2015).

3.1.4 Finite State Models
Within continuous time modeling, Gomes et al. (2013) formulated a mean field
game of switching among finite states and determined the equilibrium by a
coupled system of ordinary differential equations. Finite state mean field games
have applications in social-economic settings and networks (Gomes et al. 2014;
Kolokoltsov and Malafeyev 2017; Kolokoltsov and Bensoussan 2016).

3.2 Agent Cost Functions

Throughout this article we shall only refer to cost functions which are the additive
(or integral) composition over a finite or infinite time interval of instantaneous
(running) costs; in MFG theory these will depend upon the individual state of an
agent along with its control and possibly a function of the states of all other agents
in the system. As usual in stochastic decision problems, the cost function for any
agent will be defined by the expectation of the integrated running costs over all
possible sample paths of the system. An important class of such functions is the
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so-called ergodic cost functions which are defined as the time average of integral
cost functions.

3.2.1 Individual Agent Performance Functions in
Noncooperative Games

The principal types of games considered in MFG theory are, first, noncooperative
games, where each agent seeks to minimize its own loss represented by its cost
function. In the most basic finite population linear-quadratic diffusion case, the
agent Ai ; 1 � i � N; possesses a cost function of the form:

J N
i .ui ; u�i / D E

Z T

0

fkxi .t/ � HmN .t/k2
Q C kui .t /k

2
Rgdt; (7.6)

where k�k2
M denotes the squared (semi-)norm arising from the positive semi-

definite matrix M , where we assume the cost-coupling term to be of the form
mN .t/ WD xN .t/C�; � 2 R

n, where u�i denotes all agents’ control laws except for
that of the i th agent, xN denotes the population average state .1=N /

PN
iD1 xi ; and

where, here and below, the expectation is taken over an underlying sample space
which carries all initial conditions and Wiener processes.

For the nonlinear case introduced in Sect. 3.1.1, a corresponding finite population
mean field cost function is

J N
i .ui ; u�i / WD E

Z T

0

�
.1=N /

NX

j D1

L.xi .t/; ui .t /; xj .t//
�
dt; 1 � i � N;

(7.7)
where L.�/ is the pairwise cost rate function. Setting the infinite population cost
rate LŒx; u; �t � D

R
R

L.x; u; y/�t .dy/; hence the corresponding infinite population
expected cost for a generic agent Ai is given by

Ji .ui ; �/ WD E

Z T

0

LŒx.t/; ui .t /; �t �dt; (7.8)

which is the general expression appearing in Huang et al. (2006) and Nourian
and Caines (2013) and which includes those of Lasry and Lions (2006a,b, 2007),
Cardaliaguet (2012). e��t discounted costs are employed for infinite time horizon
cost functions (Huang et al. 2003, 2007), while the long-run average cost is
used for ergodic MFG problems (Bardi 2012; Lasry and Lions 2006a,b, 2007;
Li and Zhang 2008).

3.2.2 Risk-Sensitive Performance Functions
This article will solely focus on additive type costs although other forms can be
adopted for the individual agents. One important such form is a risk-sensitive cost
function:
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J N
i .ui ; u�i / D E exp

2

4
Z T

0

.1=N /

NX

j D1

L.xi .t/; ui .t /; xj .t//dt

3

5;

which allows the use of dynamic programming to compute the best response. For
related analyses in the linear-exponential-quadratic-Gaussian (LEQG) case, see,
e.g., Tembine et al. (2014).

3.2.3 Performance Functions in Major-Minor Agent Systems
We start with the most basic finite population linear-quadratic case with a major
agent A0 having state x0 and N minor agents Ai , 1 � i � N; with states xi . The
SDEs of A0 and Ai are given by

dx0 D .A0x0 C B0u0 C F0mN /dt C D0dw0;

dxi D .Axi C Bui C F mN C Gx0/dt C Ddwi ; 1 � i � N;

where mN D 1
N

PN
iD1 xi and the initial states are x0.0/ and xi .0/. The major agent

has a cost function of the form:

J N
0 .u0; u�0/ D E

Z T

0

fkx0.t/ � H0mN .t/k2
Q0

C kui .t /k
2
R0

gdt;

and the minor agent Ai possesses a cost function of the form:

J N
i .ui ; u�i / D E

Z T

0

fkxi .t/ � H1mN .t/ � H2x0.t/k2
Q C kui .t /k

2
Rgdt:

Correspondingly, in the nonlinear case with a major agent, the N nonlinear
equations in (7.2) are generalized to include the state of a major agent described
by an additional SDE, giving a system described by N C 1 equations. The cost
functions are given by

J N
0 .u0; u�0/ WD E

Z T

0

.1=N /

NX

j D1

L0.x0.t/; u0.t/; xj .t//dt;

and

J N
i .ui ; u�i / WD E

Z T

0

.1=N /

NX

j D1

L.xi .t/; ui .t /; x0.t/; xj .t//dt:

Consequently, the infinite population mean field cost functions for the major and
minor agents respectively are given by
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J0.u0; �/ WD E

Z T

0

L0Œx0.t/; u0.t/; �t �dt;

and

Ji .ui ; �/ WD E

Z T

0

LŒxi .t/; ui .t /; x0.t/; �t �dt;

where L0Œx0.t/; u0.t/; �t � and LŒxi .t/; ui .t /; x0.t/; �t � correspond to their finite
population versions as in the basic minor agent only case.

3.3 Information Patterns

We now introduce the following definitions and characterizations of information
patterns in dynamic game theory which shall be used in the rest of this article.

The States of a Set of Agents: A state in dynamic games is taken to be either (i)
an individual (agent) state as defined in the Sect. 3.1, in which case it will constitute
a component of the global system state, namely, the union of the individual states,
or (ii) the global state, which is necessarily sufficient to describe the dynamical
evolution of all the agents once the system inputs are specified. We emphasize that
in this setting (see, for instance, (7.2)), only knowledge of the entire system state
(i.e., the union of all the individual states) plus all the system inputs would in general
permit such an extrapolation.

Moreover, in the infinite population case, the (global) system state may refer to
the statistical or probability distribution of the population of individual states, i.e.,
the mean field.

Variety of Information Patterns: Information on dynamical states: For any given
agent, this may constitute (i) the initial state, (ii) the partial past history, or (iii) the
purely current state values of either (i) that individual agent or (ii) a partial set of all
the agents or (iii) the entire set of the agents.

Open-Loop and Closed-Loop Control Laws: The common definition of an open-
loop control law for an agent is that it is solely a function of the information
set consisting of time and the initial state of that agent or of the whole system
(i.e., the global initial state). A closed-loop (i.e., feedback) control law is one which
is a function of time and the current state of that agent or the global state of the
system subject to the given information pattern constraints, where a particular case
of importance is that in which an agent’s strategy at any instant depends only upon
its current state.

A significant modification of the assertion above must be made in the classical
mean field game situation with no common noise or correlating major agent; indeed,
in that case all agents in the population will be employing an infinite population-
based Nash equilibrium strategy. As a result, the probability distribution of the
generic agent, which can be identified with the global state as defined earlier,
becomes deterministically predictable for all future times, provided it is known
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at the initial time. Consequently, for such MFGs, an adequate characterization of
sufficient information is the initial global state. Furthermore, in the MFG framework
among others, an agent lacking complete observations on its own current state may
employ recursive filtering theory to estimate its own state.

Statistical Information on the Population: For any individual agent, information
is typically available on that agent’s own dynamics (i.e., the structure and the
parameters of its own controlled dynamic system); but it is a distinct assumption
that no such information is available to it concerning other individual agents. Fur-
thermore, this information may be available in terms of a distribution (probabilistic
or otherwise) over the population of agents and not associated with any identifiable
individual agent. This is particularly the case in the MFG framework.

Who Knows What About Whom: A vital aspect of information patterns in game
theory is that knowledge concerning (i) other agents’ control actions, or, more
generally, concerning (ii) their strategies (i.e., their control laws), may or may not
be available to any given agent. This is a fundamental issue since the specification
of an agent’s information pattern in terms of knowledge of other agent’s states,
system dynamics, cost functions, and parameters leads to different possible methods
to solve for different types of equilibrium strategies and even for their existence.

In the MFG setting, if the common assumption is adopted that all agents will
compute their best response in reaction to the best responses of all other agents
(through the system dynamics), it is then optimal for each agent to solve for its
strategy through the solution of the MFG equations. The result is that each agent
will know the control strategy of every other agent, but not its control action since
the individual state of any other agent is not available to a given agent. Note however
that the state distribution of any (i.e., other generic) agent is known by any given
generic agent since this is the system’s mean field which is generated by the MFG
equations.

3.4 Solution Concepts: Equilibria and Optima

In contrast to the situation in classical stochastic control, in the game theoretic
context, the notion of an optimal level of performance and associated optimal
control for the entire system is in general not meaningful. The fundamental solution
concept is that of an equilibrium and here we principally consider the notion of a
Nash equilibrium.

3.4.1 Equilibria in Noncooperative Games: Nash Equilibria
For a set of agents Ai ; 1 � i � N < 1; let U N WD U1 � : : : � UN denote the
joint admissible strategy space, where each space Ui consists of a set of strategies
(i.e., control laws) ui which are functions of information specified for Ai via the
underlying information pattern.



356 P. E. Caines et al.

The joint strategy u , .u1; : : : ; uN / (sometimes written as fui ; 1 � i � N g)
lying in U1 � : : : � UN will constitute an input for a specific system in one of the
classes specified in Sects. 3.1 and 3.2.

The joint strategy (or control law) uı;N , fuı
i ; 1 � i � N g 2 U N is said to

generate an "-Nash equilibrium, " � 0; if for each i ,

J N
i .uı

i ; uı
�i / � " � inf

ui 2Ui

J N
i .ui ; uı

�i / � J N
i .uı

i ; uı
�i /: (7.9)

In case " D 0, the equilibrium is called a Nash equilibrium.
This celebrated concept has the evident interpretation that when all agents except

agent Ai employ a set of control laws fuı
j ; j ¤ i; 1 � j � N g, any deviation by

Ai from uı
i can yield a cost reduction of at most ".

In the MFG framework, in its basic noncooperative formulation, the objective of
each agent is to find strategies (i.e., control laws) which are compatible with respect
to the information pattern and other dynamical constraints and which minimize its
individual performance function. Consequently the resulting problem is necessarily
game theoretic and the central results of the topic concern the existence of Nash
Equilibria and their properties.

For a system of N players, under the hypothesis of closed-loop state information
(see Sect. 3.3), we shall define the set of value functions fVi .t; x/; 1 � i � N; g in a
Nash equilibrium, as the set of costs of N agent Ai ; 1 � i � N; with respect to the
time and global state pair .t; x/. The set of value functions and its existence may be
characterized by a set of coupled HJB equations.

Under closed-loop information, the Nash equilibrium, if it exists, is sub-game
perfect in the sense that by restricting to any remaining period of the original game,
the set of strategies is still a Nash equilibrium for the resulting sub-game. In this
case, the strategy of each agent is determined as a function of time and the current
states of the agents and is usually called a Markov strategy.

3.4.2 Pareto Optima
A set of strategies yields a Pareto optimum if a change of strategies which strictly
decreases the cost incurred by one agent strictly increases the cost incurred by at
least one other agent.

3.4.3 Social Optima and Welfare Optimization
Within the framework of this article, a social cost or (negative) welfare function
is defined as the sum of the individual cost functions of a set of agents (Huang
et al. 2012). As a result a cooperative game may be defined which consists of the
agents minimizing the social cost as a cooperative optimal control problem, where
the individual strategies will depend upon the information pattern. We observe that
a social optimum is necessarily a Pareto optimum with respect to the vector of
individual costs since otherwise at least one summand of the social cost function
may be strictly reduced without any other agent’s cost increasing. The so-called
person-by-person optimality is the property that at the social optimum, the strategy
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change of any single agent can yield no improvement of the social cost and so
provides a useful necessary condition for social optimality. The exact solution of
this problem in general requires a centralized information pattern.

3.4.4 Team Optima
Team problems are distinguished from cooperative game problems by the fact that
only one cost function is defined a priori for the entire set of agents while they
have access to different sets of information. A necessary condition for a solution
to be team optimal is that the person-by-person optimality condition is satisfied
(Ho 1980). Team problems do not in general reduce to single agent optimum
problems due to the variety of information patterns that are possible for the set of
agents.

3.4.5 Mean Field Type Control Optimality
Mean field type control deals with optimal control problems where the mean
field of the state process either is involved in the cost functional in a nonlinear
manner, such as being associated with the variance of the state, or appears in
the system dynamics, or both, and is a function of the single agent’s control.
Unlike standard stochastic optimal control problems, mean field type control
problems do not possess an iterated expectation structure due to the mean field
term (i.e., there is time inconsistency), which excludes the direct (i.e., without
state extension) application of dynamic programming. In this case, the stochastic
maximum principle is an effective tool for characterizing the optimal control; see
Andersson and Djehiche (2011) and the monograph of Bensoussan et al. (2013).
Carmona et al. (2013) considered a closely related problem termed the control
of McKean-Vlasov dynamics. Mean field games dealing with mean field type
dynamics and costs and addressing time consistency are considered by Djehiche
and Huang (2016).

4 Analytic Methods: Existence and Uniqueness
of Equilibria

The objective of each agent in the classes of games under consideration is to find
strategies which are admissible with respect to the given dynamic and information
constraints and which achieve one of corresponding types of equilibria or optima
described in the previous section. In this section we present some of the main
analytic methods for establishing the existence, uniqueness, and the nature of the
related control laws and their equilibria.

The fundamental feature of MFG theory is the relation between the game
theoretic behavior (assumed here to be noncooperative) of finite populations of
agents and the infinite population behavior characterized by a small number of
equations in the form of PDEs or SDEs.
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4.1 Linear-Quadratic Systems

The basic mean field problem in the linear-quadratic case has an explicit solution
characterizing a Nash equilibrium (see Huang et al. 2003, 2007). Consider the scalar
infinite time horizon discounted case, with nonuniform parameterized agents A�

(representing a generic agent Ai taking parameter � ) with parameter distribution
F .�/; � 2 ‚ and system parameters identified as A� D a� ; B� D b� ; Q WD 1;

R D r > 0, H D 	 ; the extension to the vector case and more general parameter
dependence on � is straightforward. The so-called Nash certainty equivalence
(NCE) scheme generating the equilibrium solution takes the form:

�s� D
ds�

dt
C a� s� �

b2
�

r
…� s� � x�; (7.10)

dx�

dt
D .a� �

b2
�

r
…� /x� �

b2
�

r
s� ; 0 � t < 1; (7.11)

x.t/ D

Z

‚

x� .t/dF .�/; (7.12)

x�.t/ D 	.x.t/ C �/; (7.13)

�…� D 2a� …� �
b2

�

r
…2

� C 1; …� > 0; Riccati Equation (7.14)

where the control law of the generic parameterized agent A� has been substituted
into the system equation (7.1) and is given by u0

� .t/ D � b�

r
.…� x� .t/ C s� .t//;

0 � t < 1: u0
� is the optimal tracking feedback law with respect to x�.t/ which

is an affine function of the mean field term x.t/; the average with respect to the
parameter distribution F of the � 2 ‚ parameterized state means x� .t/ of the
agents. Subject to the conditions for the NCE scheme to have a solution, each agent
is necessarily in a Nash equilibrium with respect to all full information causal (i.e.,
non-anticipative) feedback laws with respect to the remainder of agents when these
are employing the law u0

� associated with their own parameter.
It is an important feature of the best response control law u0

� that its form depends
only on the parametric distribution F of the entire set of agents, and at any instant it
is a feedback function of only the state of the agent A� itself and the deterministic
mean field-dependent offset s� , and is thus decentralized.

4.2 Nonlinear Systems

For the general nonlinear case, the MFG equations on Œ0; T � are given by the linked
equations for (i) the value function V for each agent in the continuum, (ii) the FPK
equation for the SDE for that agent, and (iii) the specification of the best response
feedback law depending on the mean field measure �t and the agent’s state x.t/: In
the uniform agent scalar case, these take the following form:
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The mean field game HJB-FPK equations are as follows:

[HJB] �
@V .t; x/

@t
D inf

u2U

�
f Œx; u; �t �

@V .t; x/

@x
C LŒx; u; �t �

�
C

�2

2

@2V .t; x/

@x2

(7.15)

V .T; x/ D 0;

[FPK]
@p�.t; x/

@t
D �

@ff Œx; uı.t; x/; �t �p�.t; x/g

@x
C

�2

2

@2p�.t; x/

@x2

(7.16)

.t; x/ 2 Œ0; T � � R

p�.0; x/ D p�0.x/;

[BR] uı.t; x/ D '.t; xj�t /; (7.17)

where p�.t; �/ is the density of the measure �t , which is assumed to exist, and the
function '.t; xj�t / is the infimizer in the HJB equation. The .t; x; �t /-dependent
feedback control gives an optimal control (also known as a best response (BR)
strategy) for the generic individual agent with respect to the infinite population-
dependent performance function (7.8) (where the infinite population is represented
by the generic agent measure �).

By the very definition of the solution to FPK equations, the solution � above will
be the state distribution in the process distribution solution pair .x; �/ in

[SDE] dxt D f Œxt ; uı
t ; �t �dt C �dwt ; 1 � i � N; 0 � t � T: (7.18)

This equivalence of the controlled sample path pair .x; �/ solution to the SDE
and the corresponding FPK PDE is very important from the point of view of
the existence, uniqueness, and game theoretic interpretation of the solution to the
system’s equation.

A solution to the mean field game equations above may be regarded as an
equilibrium solution for an infinite population game in the sense that each BR
feedback control (generated by the HJB equation) enters an FPK equation – and
hence the corresponding SDE – and so generates a pair .x; �/, where each generic
agent in the infinite population with state distribution � solves the same optimization
problem and hence regenerates �.

In this subsection we briefly review the main methods which are currently
available to establish the existence and uniqueness of solutions to various sets of
MFG equations. In certain cases the methods are based upon iterative techniques
which converge subject to various well-defined conditions. The key feature of the
methods is that they yield individual state and mean field-dependent feedback
control laws generating "-Nash equilibria together with an upper bound on the
approximation error.



360 P. E. Caines et al.

The general nonlinear MFG problem is approached by different routes in the
basic sets of papers Huang et al. (2007, 2006), Nourian and Caines (2013), Carmona
and Delarue (2013) on one hand, and Lasry and Lions (2006a,b, 2007), Cardaliaguet
(2012), Cardaliaguet et al. (2015), Fischer (2014), Carmona and Delarue (2014)
on the other. Roughly speaking, the first set uses an infinite to finite population
approach (to be called the top-down approach) where the infinite population game
equations are first analyzed by fixed-point methods and then "-Nash equilibrium
results are obtained for finite populations by an approximation analysis, while the
latter set analyzes the Nash equilibria of the finite population games, with each agent
using only individual state feedback, and then proceeds to the infinite population
limit (to be called the bottom-up approach).

4.3 PDE Methods and the Master Equation

In Lasry and Lions (2006a,b, 2007), it is proposed to obtain the MFG equation
system by a finite N agent to infinite agent (or bottom-up) technique of solving
a sequence of games with an increasing number of agents. Each solution would
then give a Nash equilibrium for the corresponding finite population game. In
this framework there are then two fundamental problems to be tackled: first, the
proof of the convergence, in an appropriate sense, of the finite population Nash
equilibrium solutions to limits which satisfy the infinite population MFG equations
and, second, the demonstration of the existence and uniqueness of solutions to the
MFG equations.

In the expository notes of Cardaliaguet (2012), the analytic properties of
solutions to the infinite population HJB-FPK PDEs of MFG theory are established
for finite time horizon using PDE methods including Schauder fixed-point theory
and the theory of viscosity solutions. The relation to finite population games is then
derived, that is to say an "-Nash equilibrium result is established, predicated upon
the assumption of strictly individual state feedback for the agents in the sequence
of finite games. We observe that the analyses in both cases above will be strongly
dependent upon the hypotheses concerning the functional form of the controlled
dynamics of the individual agents and their cost functions, each of which may
possibly depend upon the mean field measure.

4.3.1 Basic PDE Formulation
In the exposition of the basic analytic MFG theory (Cardaliaguet 2012), agents have
the simple dynamics:

dxi
t D ui

t dt C
p

2dwi
t (7.19)

and the cost function of agent i is given in the form:
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J N
i .ui ; u�i / D E

Z T

0

�
1

2
.ui

t /
2 C F .xi

t ; �
N;�i
t /

�
dt C EG.xi

t ; �
N;�i
t /;

where �
N;�i
t is the empirical distribution of the states of all other agents. This leads

to MFG equations in the simple form:

� @t V � 
V C
1

2
jDV j2 D F .x; m/; .x; t/ 2 R

d � .0; T / (7.20)

@t m � 
m � div.mDV / D 0; (7.21)

m.0/ D m0; V .x; T / D G.x; m.T //; x 2 R
d ; (7.22)

where V .t; x/ and m.t; x/ are the value function and the density of the state
distribution, respectively.

The first step is to consider the HJB equation with some fixed measure �; it
is shown by use of the Hopf-Cole transform that a unique Lipschitz continuous
solution v to the new HJB equation exists for which a certain number of derivatives
are Hölder continuous in space and time and for which the gradient Dv is bounded
over Rn.

The second step is to show that the FPK equation with DV appearing in the
divergence term has a unique solution function which is as smooth as V . Moreover,
as a time-dependent measure, m is Hölder continuous with exponent 1

2
with respect

to the Kantorovich-Rubinstein (KR) metric.
Third, the resulting mapping of � to V and thence to m, denoted ‰, is such that

‰ is a continuous map from the (KR) bounded and complete space of measures
with finite second moment (hence a compact space) into the same. It follows
from Schauder fixed-point theorem that ‰ has a fixed point, which consequently
constitutes a solution to the MFG equations with the properties listed above.

The fourth and final step is to show that the Lasry-Lions monotonicity condition
(a form of strict passivity condition) on F

Z

Rd

F .x; m1/ � F .x; m2/d.m1 � m2/ > 0; 8m1 ¤ m2;

combined with a similar condition for G allowing for equality implies the unique-
ness of the solution to the MFG equations.

Within the PDE setting, in-depth regularity investigation of the HJB-FPK
equation under different growth and convexity conditions on the Hamiltonian have
been developed by Gomes and Saude (2014).

4.3.2 General Theory: The Master Equation Method
The master equation formulation was initially introduced by P-L Lions and has
been investigated by various researchers (Bensoussan et al. 2013; Cardaliaguet et al.
2015; Carmona and Delarue 2014).
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The program of working from the finite population game equations and their
solution to the infinite population MFG equations and their solution has been carried
out in Cardaliaguet et al. (2015) for a class of systems with simple dynamics but
which, in an extension of the standard MFG theory, include a noise process common
to all agents in addition to their individual system noise processes. The basic idea
is to reinterpret the value function of a typical player in a game of N players as
a function U .t; xi ; m/ of time, its own state, and the empirical distribution of the
states of all other players.

The analysis using the master equation begins with a set of equations which may
be interpreted as the dynamic programming equations for the population. Further-
more, the information set permitted for this optimization is the full N agent system
state. The derivation of the master equation is carried out (on an appropriately
dimensioned torus) by arguing that the value function of a representative agent i ,
from a population of N , is a function of time, its own state, and a measure formed
by N � 1 particle states and by taking the limit when N ! 1. In the end, the
state space for the master equation is the joint space of a generic agent state and a
probability distribution.

The main result of the extensive analysis in Cardaliaguet et al. (2015) is the
convergence of the set of Nash value functions V N

i .t0; x/; 1 � i � N , of the set
of agents for the population of size N , with initial condition x D .x1; : : : ; xN / at
time t0, to the set of corresponding infinite population value functions U (given as
solutions to the master equation), evaluated at the corresponding initial state xi and
the empirical measure mN

x . This convergence is in the average sense

1

N
†jV N

i .t0; x/ � U .t0; xi ; mN
x /j ! 0; as N ! 1:

In Bensoussan et al. (2015), following the derivation of the master equation for
mean field type control, the authors apply the standard approach of introducing
the system of HJB-FPK equations as an equilibrium solution, and then the Master
equation is obtained by decoupling the HJB equation from the Fokker-Planck-
Kolmogorov equation. Carmona and Delarue (2014) take a different route by
deriving the master equation from a common optimality principle of dynamic
programming with constraints. Gangbo and Swiech (2015) analyze the existence
and smoothness of the solution for a first-order master equation which corresponds
to a mean field game without involving Wiener processes.

4.4 The Hybrid Approach: PDEs and SDEs, from Infinite to Finite
Populations

The infinite to finite route is top-down: one does not solve the game of N agents
directly. The solution procedure involves four steps. First, one passes directly to
the infinite population situation and formulates the dynamical equation and cost
function for a single agent interacting with an infinite population possessing a
fixed state distribution �. Second, the stochastic optimization problem for that
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generic agent is then solved via dynamic programming using the HJB equation
and the resulting measure for the optimally controlled agent is generated via the
agent’s SDE or equivalently FPK equation. Third, one solves the resulting fixed-
point problem by the use of various methods (e.g., by employing the Banach,
Schauder, or Kakutani fixed-point theorems). Finally, fourth, it is shown that the
infinite population Nash equilibrium control laws are "-Nash equilibrium for finite
populations. This formulation was introduced in the sequence of papers Huang
et al. (2003, 2006, 2007) and used in Nourian and Caines (2013), Sen and Caines
(2016); it corresponds to the “limit first” method employed by Carmona, Delarue,
and Lachapelle (2013) for mean field games.

Specifically, subject to Lipschitz and differentiability conditions on the dynam-
ical and cost functions, and adopting a contraction argument methodology, one
establishes the existence of a solution to the HJB-FPK equations via the Banach
fixed-point theorem; the best response control laws obtained from these MFG
equations are necessarily Nash equilibria within all causal feedback laws for the
infinite population problem. Since the limiting distribution is equal to the original
measure �, a fixed point is obtained; in other words a consistency condition is
satisfied. By construction this must be (i) a self-sustaining population distribution
when all agents in the infinite population apply the corresponding feedback law,
and (ii) by its construction via the HJB equation, it must be a Nash equilibrium for
the infinite population. The resulting equilibrium distribution of a generic agent is
called the mean field of the system.

The infinite population solution is then related to the finite population behavior
by an "-Nash equilibrium theorem which states that the cost of any agent can be
reduced by at most " when it changes from the infinite population feedback law
to another while all other agents stick to their infinite population-based control
strategies. Specifically, it is then shown (Huang et al. 2006) that the set of strategies
fuı

i .t / D 'i .t; xi .t/j�t /; 1 � i � N g yields an "-Nash equilibrium for all ", i.e.,
for all " > 0, there exists N ."/ such that for all N � N ."/

J N
i .uı

i ; uı
�i / � " � inf

ui 2Ui

J N
i .ui ; uı

�i / � J N
i .uı

i ; uı
�i /: (7.23)

4.5 The Probabilistic Approach

4.5.1 Maximum Principle Solutions Within the Probabilistic
Formulation

A different solution framework for the mean field game with nonlinear diffusion
dynamics is to take a stochastic maximum principle approach (Carmona and
Delarue 2013) for determining the best response of a representative agent. The
procedure is carried out in the following steps: (i) A measure flow �t is introduced to
specify the empirical state distribution associated with an infinite population. (ii) An
optimal control problem is solved for that agent by introducing an adjoint process,
which then determines the closed-loop system. (iii) The measure flow �t is then
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required to be equal to the law of the closed-loop state processes. This procedure
yields a McKean-Vlasov forward-backward stochastic differential equation.

Necessary and sufficient conditions are available to establish the validity of
the stochastic maximum (SM) principle approach to MFG theory. In particular,
convexity conditions on the dynamics and the cost function, with respect to the
state and controls, may be taken as sufficient conditions for the main results
characterizing an MFG equilibrium through the solution of the forward-backward
stochastic differential equations (FBSDEs), where the forward equation is that of
the optimally controlled state dynamics and the backward equation is that of the
adjoint process generating the optimal control, where these are linked by the mean
field measure process. Furthermore the Lasry-Lions monotonicity condition on the
cost function with respect to the mean field forms the principal hypothesis yielding
the uniqueness of the solutions.

4.5.2 Weak Solutions Within the Probabilistic Formulation
Under a weak formulation of mean field games (Carmona and Lacker 2015),
the stochastic differential equation in the associated optimal control problem is
interpreted according to a weak solution. This route is closely related to the weak
formulation of stochastic optimal control problems, also known as the martingale
approach.

The solution of the mean field game starts by fixing a mean field, as a measure
to describe the effect of an infinite number of agents, and a nominal measure for the
probability space. Girsanov’s transformation is then used to define a new probability
measure under which one determines a diffusion process with a controlled drift and
a diffusion term. Subsequently, the optimal control problem is solved under this new
measure. Finally the consistency condition is introduced such that the distribution
of the closed-loop state process agrees with the mean field. Hence the existence and
uniqueness of solutions to the MFG equations under the specified conditions are
obtained for weak solutions.

The proof of existence under the weak formulation relies on techniques in set-
valued analysis and a generalized version of Kakutani’s theorem.

4.6 MFG Equilibrium Theory Within the Nonlinear Markov
Framework

The mean field game dynamic modeling framework is significantly generalized
by Kolokoltsov et al. (2012) via the introduction of controlled nonlinear Markov
processes where, instead of diffusion SDEs, the evolution of a typical agent
is described by an integrodifferential generator of Levy-Khintchine type; as a
consequence, by virtue of the Markov property, optimal control problems in this
framework can still be solved within the HJB formalism.

Similar to the diffusion models described in the rest of this paper, the coefficients
of the dynamical system of each agent, and its associated costs, are permitted to
depend upon the empirical measure of the population of agents.
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In the formal analysis, again similar to the procedures in the rest of the paper
(except for Cardaliaguet et al. 2015), this measure flow is initially fixed at the
infinite population limit measure and the agents then optimize their behavior via
the corresponding HJB equations.

Finally, invoking the standard consistency requirement of mean field games, the
MFG equations are obtained when the probability law of the resulting closed-loop
configuration state is set equal to the infinite population distribution (i.e., the limit
of the empirical distributions).

Concerning the methods used by Kolokoltsov et al. (2012), we observe that there
are two methodologies which are employed to ensure the existence of solutions to
the kinetic equations (corresponding to the FPK equations in this generalized setup)
and the HJB equations: First, (i) the continuity of the mapping from the population
measure to the measure generated by the kinetic (i.e., generalized FPK) equations
is proven, and (ii) the compactness of the space of measures is established; then (i)
and (ii) yield the existence (but not necessarily uniqueness) of a solution measure
corresponding to any fixed control law via the Schauder fixed-point theory. Second,
an estimate of the sensitivity of the best response mapping (i.e., control law) with
respect to an a priori fixed measure flow is proven by an application of the Duhamel
principle to the HJB equation. This analysis provides the ingredients which are then
used for an existence theory for the solutions to the joint FPK-HJB equations of the
MFG. Within this framework an "-Nash equilibrium theory is then established in a
straightforward manner.

5 Major and Minor Agents

The basic structure of mean field games can be remarkably enriched by introducing
one or more major agents to interact with a large number of minor agents. A major
agent has significant influence, while a minor agent has negligibly small influence
on others. Such a differentiation of the strength of agents is well motivated by many
practical decision situations, such as a sector consisting of a dominant corporation
and many much smaller firms, the financial market with institutional traders and a
huge number of small traders. The traditional game theoretic literature has studied
such models of mixed populations and coined the name mixed games, but this is
only in the context of static cooperative games (Haimanko 2000; Hart 1973; Milnor
and Shapley 1978).

Huang (2010) introduced a large population LQG game model with mean field
couplings which involves a large number of minor agents and also a major agent.
A distinctive feature of the mixed agent MFG problem is that even asymptotically
(as the population size N approaches infinity), the noise process of the major agent
causes random fluctuation of the mean field behavior of the minor agents. This is
in contrast to the situation in the standard MFG models with only minor agents. A
state-space augmentation approach for the approximation of the mean field behavior
of the minor agents is taken in order to Markovianize the problem and hence to
obtain "-Nash equilibrium strategies. The solution of the mean field game reduces
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to two local optimal control problems, one for the major agent and the other for a
representative minor agent.

Nourian and Caines (2013) extend the LQG model for major and minor (MM)
agents (Huang 2010) to the case of a nonlinear MFG systems. The solution to the
mean field game problem is decomposed into two nonstandard nonlinear stochastic
optimal control problems (SOCPs) with random coefficient processes which yield
forward adapted stochastic best response control processes determined from the
solution of (backward in time) stochastic Hamilton-Jacobi-Bellman (SHJB) equa-
tions. A core idea of the solution is the specification of the conditional distribution of
the minor agent’s state given the sample path information of the major agent’s noise
process. The study of mean field games with major-minor agents and nonlinear
diffusion dynamics has also been developed in Carmona and Zhu (2016) and
Bensoussan et al. (2013) which rely on the machinery of FBSDEs.

An extension of the model in Huang (2010) to the systems of agents with Markov
jump parameters in their dynamics and random parameters in their cost functions is
studied in Wang and Zhang (2012) for a discrete-time setting.

In MFG problems with purely minor agents, the mean field is deterministic, and
this obviates the need for observations on other agents’ states so as to determine the
mean field. However, a new situation arises for systems with a major agent whose
state is partially observed; in this case, best response controls generating equilibria
exist which depend upon estimates of the major agent’s state (Sen and Caines 2016;
Caines and Kizilkale 2017).

6 The Common Noise Problem

An extension of the basic MFG system model occurs when what is called common
noise is present in the global system, that is to say there is a common Wiener process
whose increments appear on the right-hand side of the SDEs of every agent in the
system (Ahuja 2016; Bensoussan et al. 2015; Cardaliaguet et al. 2015; Carmona and
Delarue 2014). Clearly this implies that asymptotically in the population size, the
individual agents cannot be independent even when each is using local state plus
mean field control (which would give rise to independence in the standard case).
The study of this case is well motivated by applications such as economics, finance,
and, for instance, the presence of common climatic conditions in renewable resource
power systems.

There are at least two approaches to this problem. First it may be treated
explicitly in an extension of the master equation formulation of the MFG equations
as indicated above in Sect. 4 and, second, common noise may be taken to be the state
process of a passive (that is to say uncontrolled) major agent whose state process
enters each agent’s dynamical equation (as in Sect. 3.2.3).

This second approach is significantly more general than the former since (i) the
state process of a major agent will typically have nontrivial dynamics, and (ii) the
state of the major agent typically enters the cost function of each agent, which is
not the case in the simplest common noise problem. An important difference in
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these treatments is that in the common noise framework, the control of each agent
will be a function of (i.e., it is measurable with respect to) its own Wiener process
and the common noise, while in the second formulation each minor agent can have
complete, partial, or no observations on the state of the major agent which in this
case is the common noise.

7 Applications of MFG Theory

As indicated in the Introduction, a key feature of MFG theory is the vast scope of its
potential applications of which the following is a sample: Smart grid applications: (i)
Dispersed residential energy storage coordinated as a virtual battery for smoothing
intermittent renewable sources (Kizilkale and Malhamé 2016); (ii) The recharging
control of large populations of plug-in electric vehicles for minimizing system
electricity peaks (Ma et al. 2013). Communication systems: (i) Power control in
cellular networks to maintain information throughput subject to interference (Aziz
and Caines 2017); (ii) Optimization of frequency spectrum utilization in cognitive
wireless networks; (iii) Decentralized control for energy conservation in ad hoc
environmental sensor networks. Collective dynamics: (i) Crowd dynamics with
xenophobia developing between two groups (Lachapelle and Wolfram 2011) and
collective choice models (Salhab et al. 2015); (ii) Synchronization of coupled oscil-
lators (Yin et al. 2012). Public health models: Mean field game-based anticipation
of individual vaccination strategies (Laguzet and Turinici 2015).

For lack of space and in what follows, we further detail only three examples,
respectively, drawn among smart grid applications, communication system applica-
tions, and economic applications as follows.

7.1 Residential Power Storage Control for Integration of
Renewables

The general objective in this work is to coordinate the loads of potentially millions
of dispersed residential energy devices capable of storage, such as electric space
heaters, air conditioners, or electric water heaters; these will act as a virtual battery
whose storage potential is directed at mitigating the potentially destabilizing effect
of the high power system penetration of renewable intermittent energy sources
(e.g., solar and wind). A macroscopic level model produces tracking targets for
the mean temperature of the controlled loads, and then an application of MFG
theory generates microscopic device level decentralized control laws (Kizilkale and
Malhamé 2016).

A scalar linear diffusion model with state xi is used to characterize individual
heated space dynamics and includes user activity-generated noise and a heating
source. A quadratic cost function is associated with each device which is designed
so that (i) pressure is exerted so that devices drift toward z which is set either to
their maximum acceptable comfort temperature H if extra energy storage is desired
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or to their minimum acceptable comfort temperature L < H if load deferral is
desired and (ii) average control effort and temperature excursions away from initial
temperature are penalized. This leads to the cost function:

E

Z 1

0

e�ıt Œqt .xi � z/2 C qx0.xi � xi .0//2 C ru2
i �dt; (7.24)

where qt D �j
R t

0
. Nx.�/ � y/d� j, Nx is the population average state with L < Nx.0/

< H , and L < y < H is the population target. In the design the parameter � > 0

is adjusted to a suitable level so as to generate a stable population behavior.

7.2 Communication Networks

The so-called CDMA communication networks are such that cell phone signals
can interfere by overlapping in the frequency spectrum causing a degradation of
individual signal to noise ratios and hence the quality of service. In a basic version
of the standard model there are two state variables for each agent: the transmitted
power p 2 RC and channel attenuation ˇ 2 R. Conventional power control
algorithms in mobile devices use gradient-type algorithms with bounded step size
for the transmitted power which may be represented by the so-called rate adjustment
model: dpi D ui

pdt C �i
pdW i

p , ui
p � jumaxj; 1 � i � N , where N represents the

number of the users in the network, and W i
p , 1 � i � N , independent standard

Wiener processes. Further, a standard model for time-varying channel attenuation
is the lognormal model, where the channel gain for the i th agent with respect to
the base station is given by eˇi .t/ at the instant t , 0 � t � T and the received
power at the base station from the i the agent is given by the product eˇi

� pi .
The channel state, ˇi .t/, evolves according to the power attenuation dynamics:
dˇi D �ai .ˇi C bi /dt C �i

ˇdW i
ˇ ; t � 0; 1 � i � N . For the generic agent

Ai in the infinite user’s case, the cost function Li .ˇi ; pi / is given by

lim
N !1

E

"Z T

0

(
�

eˇi
pi

1
N

Pn
j D1 pj eˇj

C �
C pi

)
dt

#

D

Z T

0

(
�

eˇi
pi

R
ˇ�p

eˇp�t .ˇ; p/dˇdp C �
C pi

)
dt;

where �t denotes the system mean field. As a result, the power control problem may
be formulated as a dynamic game between the cellular users whereby each agent’s
cost function Li .ˇ; p/ involves both its individual transmitted power and its signal
to noise ratio. The application of MFG theory yields a Nash equilibrium together
with the control laws generated by the system’s MFG equations (Aziz and Caines
2017). Due to the low dimension of the system state in this formulation, and indeed
in that with mobile agents in a planar zone, the MFG PDEs can be solved efficiently.
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7.3 Stochastic Growth Models

The model described below is a large population version of the so-called capital
accumulation games (Amir 1996). Consider N agents (as economic entities). The
capital stock of agent i is xi

t and modeled by

dxi
t D

�
A.xi

t /
˛ � ıxi

t

	
dt � C i

t dt � �xi
t dwi

t ; t � 0; (7.25)

where A > 0, 0 < ˛ < 1, xi
0 > 0, fwi

t ; 1 � i � N g are i.i.d. standard Wiener
processes. The function F .x/ WD Ax˛ is the Cobb-Douglas production function
with capital x and a constant labor size; .ıdt C �dwi

t / is the stochastic capital
depreciation rate; and Ct is the consumption rate.

The utility functional of agent i takes the form:

Ji .C
1; : : : ; C N / D E

�Z T

0

e��t U .C i
t ; C

.N;	/
t /dt C e��T S.XT /

�
; (7.26)

where C
.N;	/
t D 1

N

PN
iD1.C i

t /	 is the population average utility from consumption.

The motivation of taking the utility function U .C i
t ; C

.N;	/
t / is based on relative

performance. We take 	 2 .0; 1/ and the utility function (Huang and Nguyen 2016):

U .C i
t ; C

.N;	/
t / D

1

	
.C i

t /	.1��/

 
.C i

t /	

C
.N;	/
t

!�

; � 2 Œ0; 1�: (7.27)

So U .C i
t ; C

.N;	/
t / may be viewed as a weighted geometric mean of the own utility

U0 D .C i
t /	 =	 and the relative utility U1 D .C i

t /	 =.	C
.N;	/
t /. For a given � ,

U .c; �/ is a hyperbolic absolute risk aversion (HARA) utility since U .c; �/ D c	

	�� ;

where 1 � 	 is usually called the relative risk aversion coefficient. We further take
S.x/ D �x	

	
, where � > 0 is a constant.

Concerning growth theory in economics, human capital growth has been consid-
ered in an MFG setting by Lucas and Moll (2014) and Guéant et al. (2011) where
the individuals invest resources (such as time and money) for the improvement of
personal skills to better position themselves in the labor market when competing
with each other (Guéant et al. 2011).
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Abstract

The chapter is devoted to two-player, zero-sum differential games, with a special
emphasis on the existence of a value and its characterization in terms of a partial
differential equation, the Hamilton-Jacobi-Isaacs equation. We discuss different
classes of games: in finite horizon, in infinite horizon, and pursuit-evasion games.
We also analyze differential games in which the players do not have a full
information on the structure of the game or cannot completely observe the
state. We complete the chapter by a discussion on differential games depending
on a singular parameter: for instance, we provide conditions under which the
differential game has a long-time average.

Keywords
Differential games � Zero-sum games � Viscosity solutions � Hamilton-Jacobi
equations � Bolza problem � Pursuit-evasion games � Search games �

Incomplete information � Long-time average � Homogenization

1 Introduction

Differential game theory investigates conflict problems in systems which are driven
by differential equations. The topic lies at the intersection of game theory (several
players are involved) and of controlled systems (the state is driven by differential
equations and is controlled by the players). This chapter is devoted to the analysis
of two-player, zero-sum differential games.

The typical example of such games is the pursuit-evasion game, in which a
pursuer tries to steer in minimal time an evader to a given target. This kind of
problem appears, for instance, in aerospace problems. Another example is optimal
control with disturbances: the second player is seen as a perturbation against which
the controller has to optimize the behavior of the system; one then looks at a
worst-case design (sometimes also called Knightian uncertainty, in the economics
literature).

We discuss here several aspects of zero-sum differential games. We first present
several examples and explain, through the so-called verification theorem, the main
formal ideas on these games. In Sects. 3 (deterministic dynamics), 4 (stochastic
ones), and 5 (pursuit-evasion games), we explain in a rigorous way when the game
has a value and characterize this value in terms of a partial differential equation, the
Hamilton-Jacobi-Isaacs (HJI) equation. In the games discussed in Sects. 3, 4, and 5,
the players have a perfect knowledge of the game and a perfect observation of the
action of their opponent. In Sect. 6 we describe zero-sum differential games with an
information underpinning. We complete the chapter by the analysis of differential
games with a singular parameter, for instance, defined on a large time interval or
depending on a small parameter (Sect. 7).

This article is intended as a brief introduction to two-player, zero-sum differential
games. It is impossible to give a fair account of this large topic within a few pages:
therefore, we have selected some aspects of the domain, the choice reflecting only
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the taste of the authors. It is also impossible to give even a glimpse of the huge
literature on the subject, because it intersects and motivates researches on partial
differential equations, stochastic processes, and game theory. The interested reader
will find in the Reference part a list of monographs, surveys, and a selection of
pioneering works for further reading. We also quote directly in the text several
authors, either for their general contributions to the topic or for a specific result
(in which case we add the publication date, so that the reader can easily find the
reference).

2 Isaacs’ Approach

We start the analysis of zero-sum differential games by briefly describing some
typical examples (or classes of examples). Then we explain in a simple framework
the basic principle for solving a game in practice. This part is a (modest) tribute to
Isaacs, who introduced most ideas on the subject. Let us stress the point that Isaacs’
theory goes much beyond the few points developed here. In particular, whereas
we will be interested mostly in cases where the value function is smooth, Isaacs
investigated in detail their possible singularities.

2.1 Examples

We present here several classical differential games, from the most emblematic ones
(the pursuit-evasion games) to the classical ones (the Bolza problem or the infinite
horizon problem).

2.1.1 Pursuit-Evasion Games
Pursuit-evasion differential games are a class of differential games in which one of
the players (the pursuer) tries to steer the state to a given target in minimal time,
while his opponent (the evader) is doing his best to postpone the capture. This class
of games is very natural, and it is the first one to have been studied historically:
Isaacs introduced in his famous monograph (Isaacs 1965) a number of examples,
which he contributed to solve (at least partially). It is interesting to quote some of
them, if only to provide a hint of what a differential game is.

1. Lion and Man
A lion and a man are in a circular arena. They observe each other and have

equal maximum speed. The lion tries to catch the man as quickly as possible,
while the man wants to escape the lion for as long as he can, forever if possible.
Capture holds when the position of both players coincides. This game was
originally posed in 1925 by Rado.

A possible strategy for the lion to capture the man is the following: the lion
first moves to the center of the arena and then remains on the radius that passes
through the man’s position. Since the man and the lion have the same maximum
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speed, the lion can remain on the radius and simultaneously move toward the
man. One can show that the lion can get arbitrarily close to the man; Besicovitch
(’52) also proved that the man can postpone forever the capture.

2. Homicidal Chauffeur Game
This is one of the most well-known examples of a differential game. Intro-

duced by Isaacs in a 1951 report for the RAND Corporation, the game consists
of a car striving as quickly as possible to run over a pedestrian. The catch is
that the car has a bounded acceleration and a large maximum speed, while the
pedestrian has no inertia but relatively small maximum speed. A nice survey by
Patsko and Turova (’09) is dedicated to the problem.

3. Princess and Monster
A third very well-known game is princess and monster. It was also introduced

by Isaacs, who described it as follows:

The monster searches for the princess, the time required being the payoff. They are
both in a totally dark room (of any shape), but they are each cognizant of its boundary.
Capture means that the distance between the princess and the monster is within the
capture radius, which is assumed to be small in comparison with the dimension of the
room. The monster, supposed highly intelligent, moves at a known speed. We permit the
princess full freedom of locomotion.

This game is a typical example of “search games” and is discussed in Sect. 6.1.

Let us now try to formalize a little the pursuit-evasion games. In these games,
the state (position of the players and, in the case of the homicidal chauffeur game,
the angular velocity of the chauffeur) is a point X in some Euclidean space R

d . It
evolves in time and we denote by Xt the position at time t . The state Xt moves
according to a differential equation

PXt D f .Xt ; ut ; vt /

where PXt stands for the derivative of the map t ! Xt and f is the evolution law
depending on the controls ut and vt of the players. The first player chooses ut and
the second one vt and both players select their respective controls at each instant of
time according to the position of the state and the control played until then by their
opponent. Both controls are in general restricted to belong to given sets: ut 2 U and
vt 2 V for all t . The capture occurs as the state of the system reaches a given set of
positions C � R

d . If we denote by �C the capture time, then

�C D infft � 0; Xt 2 C g:

The pursuer (i.e., player 1) wants to minimize �C , and the evader (player 2) wants
to maximize it.

For instance, in the lion and man game, X D .x; y/ 2 R
2 � R

2, where x is the
position of the lion (the pursuer) and y the position of the man. The dynamics here
is particularly simple since players are supposed to choose their velocities at each
time:
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Pxt D ut ; Pyt D vt

where ut and vt are bounded (in norm) by the same maximal speed (say 1, to fix
the ideas). So here f is just f .X; u; v/ D .u; v/ and U D V is the unit ball of R2.
Capture occurs as the position of the two players coincide, i.e., as the state reaches
the target C WD fX D .x; y/; x D yg. One also has to take into account the fact
that the lion and the man have to remain in the arena, which leads to constraints on
the state.

2.1.2 The Bolza and the Infinite Horizon Problems
There are two other well-known classes of differential games: the Bolza problem,
where the game is played during a fixed duration, and the infinite horizon problem,
where the game is played forever, but payoff is discounted. In both cases, the state
is a point X in R

d (for some d 2 Nnf0g) which evolves in time according to an
ordinary differential equation of the form

PXt D f .Xt ; ut ; vt /:

As in pursuit-evasion games, the first player chooses ut in a given set U and the
second one vt in a fixed set V . The criterion, however, is different.

• In the Bolza problem, the horizon is fixed, given by a terminal time T > 0. The
cost of the first player (it is a payoff for the second one) is of the form

Z T

0

`.Xt ; ut ; vt / dt C g.XT /

where ` is called the running cost and g the terminal cost.
• In the infinite horizon problem, the cost takes the form

Z 1

0

e�rt `.Xt ; ut ; vt / dt

where r > 0 is a discount rate and where the running cost ` is supposed to be
bounded (to ensure the convergence of the integral).

It often happens that the state is driven by a stochastic differential equation
instead of an ordinary one:

dXt D f .Xt ; ut ; vt /dt C �.Xt ; ut ; vt /dBt ;

where Bt is a Brownian motion and � is a matrix. The costs take the same form, but
in expectation. For instance, for the Bolza problem, it becomes
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E

�Z T

0

`.Xt ; ut ; vt / dt C g.XT /

�
:

2.2 A Verification Theorem for Pursuit-Evasion Games

Let us now start the analysis of two-player zero-sum differential games by present-
ing some ideas due to Isaacs and his followers. Although most of these ideas rely
on an a priori regularity assumption on the value function which does not hold in
general, they shed an invaluable light on the problem by revealing – in an idealized
and simplified framework – many phenomena that will be encountered in a more
technical setting throughout the other sections. Another interesting aspect of these
techniques is that they allow to solve explicitly several games, in contrast with the
subsequent theories which are mainly concerned with theoretical issues and the
numerical approximation of the games.

We restrict ourselves to present the very basic aspects of this theory, a deeper
analysis being beyond the scope of this treatment. The interested reader can find
significant developments in the monographs by Isaacs (1965), Blaquière et al.
(1969), Başar and Olsder (1999), Lewin (1994), and Melikyan (1998).

2.2.1 Definition of the Value Functions
We consider the pursuit-evasion game with dynamics given by

PXt D f .Xt ; ut ; vt /;

where ut belongs for any t to some control set U and is chosen at each time by
the first player and vt belongs to some control set V and is chosen by the second
player. The state of the system Xt lies in R

d , and we will always assume that f W

R
d � U � V ! R

d is smooth and bounded, so that the solution of the above
differential equation will be defined on Œ0;C1/. We denote by C � R

d the target
and we recall that the first player (the pursuer) aims at minimizing the capture time.

We now explain how the players choose their controls at each time.

Definition 1 (Feedback strategies). A feedback strategy for the first player (resp.
for the second player) is a map u W RC � R

d ! U (resp. v W RC � R
d ! V ).

This means that each player chooses at each time t his action as a function of the
time and of the current position of the system. As will be extensively explained later
on, other definitions of strategies are possible (and in fact more appropriate to prove
the existence of the value).

The main issue here is that, given two arbitrary strategies u W RC �R
d ! U and

v W RC � R
d ! V and an initial position x0 2 R

d , the system
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�
PXt D f .Xt ; u.t; Xt /; v.t; Xt //
x.0/ D x0

(8.1)

does not necessarily have a solution. Hence, we have to restrict the choice of
strategies for the players. We suppose that the players choose their strategies in
“sufficiently large” setsU and V of feedback strategies, such that, for any u 2 U and
v 2 V , there exists a unique absolutely continuous solution to (8.1). This solution
is denoted by Xx0;u;v

t .
Let us explain what it means to reach the target: for given a trajectory X W

Œ0;C1/ ! R
d , let

�C .X/ WD infft � 0 j Xt 2 C g:

We set �C .X/ WD C1 if Xt … C for all t � 0.

Definition 2. For a fixed admissible pair .U ; V / of sets of strategies, the upper and
the lower value functions are respectively given by

VC.x0/ WD inf
u2U

sup
v2V

�C .X
x0;u;v/ and V�.x0/ WD sup

v2V

inf
u2U

�C .X
x0;u;v/:

We say that the game has a value if VC D V�. In this case we say that the map
V WD VC D V� is the value of the game. We say that a strategy u� 2 U (resp.
v� 2 V ) is optimal for the first player (resp. the second player) if

V�.x0/ WD sup
v2V

�C .X
x0;u�;v/ .resp:VC.x0/ WD inf

u2U
�C .X

x0;u;v�

//:

Let us note that upper and lower value functions a priori depend on the sets of
strategies .U ; V /. Actually, with this definition of value function, the fact that the
game has a value is an open (but not very interesting) issue. The reason is that the
set of strategies is too restrictive and has to be extended in a suitable way: this issue
will be addressed in the next section. However, we will now see that the approach is
nevertheless useful to understand some crucial ideas on the problem.

2.2.2 The Verification Theorem
The following verification theorem – due to Isaacs – allows us to show that a given
function is indeed the value function of the game: it will be enough to check that
this (supposedly smooth) function is the solution of a partial differential equation
(PDE) called the Hamilton-Jacobi-Isaacs equation (HJI).

We associate with the dynamics of the game a Hamiltonian H . For this we
suppose that the so-called Isaacs’ condition holds, which means that an infinitesimal
game has a value:
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H.x; p/ WD inf
u2U

sup
v2V

hp; f .x; u; v/i D sup
v2V

inf
u2U

hp; f .x; u; v/i 8.x; p/ 2 R
d �R

d :

(8.2)

Let us note that Isaacs’ condition holds, for instance, if the dynamics is separate,
i.e., if f .x; u; v/ D f1.x; u/C f2.x; v/.

For any .x; p/ 2 R
d � R

d , we denote by Qu.x; p/ and Qv.x; p/ the (supposedly
unique) optimal elements in the definition of H :

max
v2V

hp; f .x; Qu.x; p/; v/i D min
u2U

hp; f .x; u; Qv.x; p//i D H.x; p/:

Theorem 1 (Verification Theorem). Let us assume that the target is closed and
that Isaacs’condition (8.2) holds. Suppose that there is a nonnegative map V W

R
d ! R, continuous on R

d and of class C1 over R
dnC , with V.x/ D 0 on C

which satisfies the Hamilton-Jacobi-Isaacs (HJI) equation:

H.x;DV.x//C 1 D 0 8x 2 R
dnC: (8.3)

Let us furthermore assume that the maps x ! u�.x/ WD Qu.x;DV.x// and x !

v�.x/ WD Qv.x;DV.x// belong to U and V , respectively.
Then the game has a value and V is the value of the game: V D V� D VC.

Moreover, the strategies u�.x/ and v�.x/ are optimal, in the sense that

V.x/ D �C .X
x0;u�;v�

/ D inf
u2U

�C .X
x0;u;v�

/ D sup
v2V

�C .X
x0;u�;v/

for all x 2 R
dnC .

This result is quite striking since it reduces the resolution of the game to that of
solving a PDE and furthermore provides at the same time the optimal feedbacks of
the players. Unfortunately it is of limited interest because the value functions V�

and VC are very seldom smooth enough for this result to apply. For this reason
Isaacs’ theory is mainly concerned with the singularities of the value functions, i.e.,
the set of points where they fail to be continuous or differentiable.

The converse also holds true: if the game has a value and if this value has the
regularity described in the theorem, then it satisfies the HJI equation (8.3). We will
explain in the next section that this statement holds also in a much more general
setting.

Sketch of proof: Let us fix x0 2 R
d . We first claim that

inf
u
�C .X

x0;u;v�

/ � V .x0/:

For this, let u 2 U and let us set Xt D Xx0;u;v�

and � WD �C .X
x0;u;v�

/. Then, for
any t 2 Œ0; �/, we have
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d
dt

V.Xt / D hDV.Xt /; f .Xt ; u.t; Xt /; v�.Xt //i

� infu2U hDV.Xt /; f .Xt ; u; v�.Xt //i

D H.Xt ;DV.Xt // D �1:

Integrating the above inequality between 0 and t � � , we get

V.Xt / � V.x0/ � �t:

For t D � , we have V.X�/ D 0 since X� belongs to C and V D 0 on C . So by
continuity of V on R

d ,

V.x0/ � � D �C .X
x0;u;v�

/ :

One can show in a similar way that V.x0/ � �C .X
x0;u�;v/ for any v 2 V . Hence,

�C .X
x0;u�;v/ � V.x0/ � �C .X

x0;u;v�

/;

which shows at the same time that the game has a value, that this value is V, and
that the strategies u� and v� are optimal. �

2.2.3 The Hamiltonian System
We now give some hints about the explicit computation of the value function V.
The key idea is that it is possible to compute V along the characteristics associated
with the HJI equation (8.3). This system of ordinary differential equations is a
Hamiltonian system.

Throughout the rest of this section, we assume that the value function V and the
data are smooth enough to perform the computation.

Theorem 2. Let x0 2 R
dnC be an initial position and u� and v� be the optimal

strategies given in Theorem (1) and let us set Xt D X
x0;u�;v�

t . Then the pair .X; P /,
where Pt WD DV.Xt /, is a solution of the Hamiltonian system

(
PXt D @H

@p
.Xt ; Pt /

PPt D � @H
@x
.Xt ; Pt /

(8.4)

on Œ0;V.x0//.

The variable P is often called the adjoint variable of X . In control theory
(i.e., when f only depends on u or on v), the existence of such an adjoint is
an optimality condition for a given trajectory X . This statement is the famous
Pontryagin maximum principle.

Sketch of proof: The starting point is the remark that one can express the derivative
of H with respect to p in terms of Qu and Qv. Namely,



382 P. Cardaliaguet and C. Rainer

@H

@p
.x; p/ D f .x; Qu.x; p/; Qv.x; p//:

This result is known as the envelope theorem.
As a first consequence, we obtain PXt D @H

@p
.Xt ; Pt /. By definition of P ,

PPt D D2V.Xt / PXt D D2V.Xt /f .Xt ; u�.Xt /; v
�.Xt /// D D2V.Xt /

@H

@p
.Xt ; Pt /:

Differentiating the HJI equation (8.3), we get

@H

@x
.x;DV.x//CD2V.x/

@H

@p
.x;DV.x// D 0 8x 2 R

dnC ;

from which we deduce the equation satisfied by Pt . �

Next we describe the behavior of the value function at the boundary of the target.
For this we assume that the target is the closure of an open set with a smooth
boundary, and we denote by �x the outward unit normal to C at a point x 2 @C .

Proposition 1. If V is of class C1 on RdnC , then

8x 2 @C; H.x; �x/ < 0 and DV.x/ D �
�x

H.x; �x/
:

Note that the pair .X; P / in Theorem 2 has an initial condition for X (namely,
X0 D x0) and a terminal condition for P (namely, PT D �

�XT
H.x;�XT /

where T D

V.x0/). We will see below that the condition H.x; �x/ � 0 in @C is necessary in
order to ensure the value function to be continuous at a point x 2 @C .

Indeed, if x 2 @C and since V D 0 on @C and is nonnegative on R
dnC , it has

a minimum on RdnC at x. The Karush-Kuhn-Tucker condition then implies the
existence of � � 0 with DV.x/ D ��x . Recalling that H.x;DV.x// D �1 gives
the result, thanks to the positive homogeneity of H.x; �/. �
Construction of V: The above result implies that, if we solve the backward system

8̂
<
:̂

PXt D � @H
@p
.Xt ; Pt /

PPt D @H
@x
.Xt ; Pt /

X0 D �; P0 D �
��

H.�;�� /

(8.5)

for � 2 @C , then one should have

V.Xt / D t 8t � 0:
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We can take the above equality as a definition of V. Unfortunately such a definition
seldom defines V unambiguously: there might be a point x0, two initial conditions
� and Q� on the boundary of C , and two times t and Qt such that x0 D Xt D QXQt ,
where . QX; QP / is the solution of (8.5) starting from . Q�;��Q�=H.

Q�; �Q� //. Then it is not
easy to decide if V.x0/ is equal to t or Qt , or even some other value. In this case, the
map V cannot be C1, and one has to study the singularities of V, that is, the set of
points at which V fails to be differentiable or even continuous. We explain ideas in
this direction in the next part.

2.2.4 The Usable Part of the Boundary and Discontinuities
We now discuss the possible discontinuities of the value function V. This will yield
to two important notions: the usable part of the target and the Isaacs equation. These
two notions play an important role in Sect. 5.

Let us start with the behavior at the boundary of the target. We have seen above
(Proposition 1) that a necessary condition for the value to be of class C1 on RdnC

is that

8x 2 @C; H.x; �x/ < 0;

where �x is the outward unit normal to C at x. This leads us to call usable part of
the boundary @C the set of points x 2 @C such that H.x; �x/ < 0. We denote this
set by UP .

Proposition 2. If x 2 UP , then V is continuous and vanishes at x. On the contrary,
if H.x; �x/ > 0, then V is bounded below by a positive constant in a neighborhood
of x in R

dnC .

In particular, if the usable part is the whole boundary @C , then the HJI
equation (8.3) can indeed be supplemented with a boundary condition: V D 0

on @C . We will use this remark in the rigorous analysis of pursuit-evasion games
(Sect. 5).

The proposition states that the pursuer can ensure an almost immediate capture
in a neighborhood of the points of UP. On the contrary, in a neighborhood of a point
x 2 @C such that H.x; �x/ > 0 holds, the evader can postpone the capture at least
for a positive time. What happens at points x 2 @C such thatH.x; �x/ D 0 is much
more intricate. The set of such points – improperly called boundary of the usable
part (BUP) – plays a central role in the computation of the boundary of the domain
of the value function.

Sketch of proof: If x 2 UP, then, from the definition of H ,

H.x; �x/ D inf
u2U

sup
v2V

hf .x; u; v/; �xi < 0:
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Thus, there exists u0 2 U such that, for any v 2 V , hf .x; u0; v/; �x/i < 0: If
player 1 plays u0 in a neighborhood of x, it is intuitively clear that the trajectory is
going to reach the target C almost immediately whatever the action of player 2. The
second part of the proposition can be proved symmetrically. �

We now discuss what can possibly happen when the value has a discontinuity
outside of the target. Let us fix a point x … C and let us assume that there is a
(smooth) hypersurface described by f D 0g along which V is discontinuous. We
suppose that  is a smooth map with D .x/ ¤ 0, and we assume that there exist
two maps V1 and V2 of class C1 such that, in a neighborhood of the point x,

V.y/ D V1.y/ if  .y/ > 0; V.y/ D V2.y/ if  .y/ < 0 and V1 > V2:

In other word, the surface f D 0g separates the part where V is large (i.e., when
V D V1) from the part where V is small (in which case V D V2).

Proposition 3. In the above configuration, one has H.x;D .x// D 0:

One says that the set fx j  .x/ D 0g is a barrier for the game. It is a particular
case of a semipermeable surface which have the property that each player can
prevent the other one from crossing the surface in one direction.

Equation H.x;D .x// D 0 is called Isaacs’ equation. It is a geometric
equation, in the sense that one is interested not in the solution  itself but in the
set fx j  .x/ D 0g.

An important application of the proposition concerns the domain of the value
function (i.e., the set dom.V/ WD fx j V.x/ < C1g). If the boundary of the
domain is smooth, then it satisfies Isaacs’ equation.

Sketch of proof: If on the contrary one had H.x;D .x// > 0; then, from
the very definition of H , there would exist v0 2 V for the second player such that

inf
u2U

hf .x; u; v0/;D .x/i > 0:

This means that the second player can force (by playing v0) the state of the system
to cross the boundary f D 0g from the part where V is small (i.e., f < 0g) to the
part where V is large (i.e., f > 0g). However, if player 1 plays in an optimal way,
the value should not increase along the path and in particular cannot have a positive
jump. This leads to a contradiction. �

3 Approach by Viscosity Solutions

In this section, which is the heart of the chapter, we discuss the existence of the value
function and its characterization. The existence of the value – in pure strategies –
holds under a condition on the structure of the game: the so-called Isaacs’ condition.
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Without this condition, the players have to play in random strategies1: this issue
being a little tricky in continuous time, we describe precisely how to proceed. We
mostly focus on the Bolza problem and then briefly explain how to adapt the ideas
to the infinite horizon problem. The analysis of pursuit-evasion game is postponed
to Sect. 5, as it presents specific features (discontinuity of the value).

3.1 The Bolza Problem: The Value Functions

From now on we concentrate on the Bolza problem. In this framework one can
rigorously show the existence of a value and characterize this value as a viscosity
solution of a Hamilton-Jacobi-Isaacs equation (HJI equation). The results in this
section go back to Evans and Souganidis (1984) (see also Bardi and Capuzzo
Dolcetta 1996, Chap. VIII).

3.1.1 Strategies
The notion of strategy describes how each player reacts to its environment and to
its opponent’s behavior. In this section we assume that the players have a perfect
monitoring, i.e., not only they know perfectly the game (its dynamics and payoffs),
but each one also perfectly observes the control played by its opponent up to that
time. Moreover, they can react (almost) immediately to what they have seen.

Even under this assumption, there is no consensus on the definition of a strategy:
the reason is that there is no concept of strategies which at the same time formalizes
the fact that each player reacts immediately to its opponent’s past action and allows
the strategies of both players to be played together. This issue has led to the
introduction of many different definitions of strategies, which in the end have been
proved to provide the same value function.

Let U and V be metric spaces and �1 < t0 < t1 � C1. We denote by
U.t0;t1/ the set of bounded Lebesgue measurable maps u W Œt0; t1� ! U . We set
Ut0 WD U.t0;C1/ (or, if the game has a fixed horizon T , Ut0 WD U.t0;T /). Elements of
Ut0 are called the open-loop controls of player 1. Similarly we denote by V.t0;t1/ the
set of bounded Lebesgue measurable maps v W Œt0; t1� ! V . We will systematically
call player 1 the player playing with the open-loop control u and player 2 the player
playing with the open-loop control v. If u1; u2 2 Ut0 and t1 � t0, we write u1 � u2
on Œt0; t1� whenever u1 and u2 coincide almost everywhere on Œt0; t1�.

A strategy for player 1 is a map ˛ from Vt0 to Ut0 . This means that player 1
answers to each control v 2 Vt0 of player 2 by a control u D ˛.v/ 2 Ut0 . However,
since we wish to formalize the fact that no player can guess in advance the future
behavior of the other player, we require that such a map ˛ is nonanticipative.

1Unless one allows an information advantage to one player, amounting to letting him know his
opponent’s control at each time (Krasovskii and Subbotin 1988).
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Definition 3 (Nonanticipative strategy). A map ˛ W Vt0 ! Ut0 is nonanticipative
if, for any time t1 > t0 and any pair of controls v1; v2 2 Vt0 such that v1 � v2 on
Œt0; t1�, we have ˛.v1/ � ˛.v2/ on Œt0; t1�.

The notion of nonanticipative strategies (as well as the notion of delay strategies
introduced below) has been introduced in a series of works by Varaiya, Ryll-
Nardzewski, Roxin, Elliott, and Kalton.

We denote by A.t0/ the set of player 1’s nonanticipative strategies ˛ W Vt0 ! Ut0 .
In a symmetric way we denote by B.t0/ the set of player 2’s nonanticipative
strategies, which are the nonanticipative maps ˇ W Ut0 ! Vt0 .

In order to put the game under normal form, one should be able to say that, for
any pair of nonanticipative strategies .˛; ˇ/ 2 A.t0/ � B.t0/, there is a unique pair
of controls .u; v/ 2 Ut0 � Vt0 such that

˛.v/ � u and ˇ.u/ � v: (8.6)

This would mean that, when players play simultaneously the strategies ˛ and ˇ, the
outcome should be the pair of controls .u; v/. Unfortunately this is not possible: for
instance, if U D V D Œ�1; 1� and ˛.v/t D �vt if vt ¤ 0, ˛.v/t D 1 if vt D 0while
ˇ.u/t D ut , then there is no pair of control .u; v/ 2 Ut0 � Vt0 for which (8.6) holds.
Another bad situation is described by a couple .˛; ˇ/ with ˛.v/ � v and ˇ.u/ � u
for all u and v: there are infinitely many solutions to (8.6).

For this reason we are lead to introduce a more restrictive notion of strategy, the
nonanticipative strategies with delay.

Definition 4 (Delay strategies). A nonanticipative strategy with delay (in short
delay strategy) for player 1 is a map ˛ W Vt0 ! Ut0 for which there is a delay � > 0
such that, for any two controls v1; v2 2 Vt0 and for any t � t0, if v1 � v2 on Œt0; t �,
then ˛.v1/ � ˛.v2/ on Œt0; t C ��.

We denote by Ad .t0/ (resp. Bd .t0/) the set of delay strategies for player 1 (resp.
player 2).

Note that the delay � depends on the delay strategy. Delay strategies are
nonanticipative strategies, but the converse is false in general. For instance, if
� W V ! U is Borel measurable, then the map

˛.v/t D �.vt / 8t 2 Œt0;C1/; 8v 2 Vt0

is a nonanticipative strategy but not a delay strategy, unless � is constant.
The key property of delay strategies is given in the following Lemma:

Lemma 1. Let ˛ 2 A.t0/ and ˇ 2 B.t0/. Assume that either ˛ or ˇ is a delay
strategy. Then there is a unique pair of controls .u; v/ 2 Ut0 � Vt0 such that
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˛.v/ � u and ˇ.u/ � v onŒt0;C1/: (8.7)

Sketch of proof: Let us assume, to fix the ideas, that ˛ is a delay strategy with
delay � . We first note that the restriction of u WD ˛.v/ to the interval Œt0; t0 C �� is
independent of v because any two controls v1; v2 2 Vt0 coincide almost everywhere
on Œt0; t0�. Then, as ˇ is nonanticipative, the restriction of v WD ˇ.u/ for Œt0; t0 C ��

is uniquely defined and does not depend on the values on u on Œt0 C �; T �.
Now, on the time interval Œt0 C �; t0 C 2��, the control u WD ˛.v/ depends only

on the restriction of v to Œt0; t0 C ��, which is uniquely defined as we just saw.
This means that ˛.v/ is uniquely defined Œt0; t0 C 2��. We can proceed this way by
induction on the full interval Œt0;C1/. �

3.1.2 Definition of the Value Functions
Let T > 0 be the finite horizon of the game, i.e., the time at which the game ends.

Dynamics: For a fixed initial position .t0; x0/ 2 Œ0; T ��R
d and any pair of controls

.u; v/ 2 Ut0 � Vt0 , we consider the differential equation

(
PXt D f .t; Xt ; ut ; vt / t 2 Œt0; T �;

Xt0 D x0:
(8.8)

In order to ensure the existence and the uniqueness of the solution, we suppose that
f satisfies the following conditions:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

.i/ U and V are compact metric spaces;

.i i/ the mapf W Œ0; T � � R
d � U � V is bounded and continuous

.i i i/ f is uniformly Lipschitz continuous with respect to the space variable W

jf .t; x; u; v/ � f .t; y; u; v/j � Lip.f /jx � yj

8.t; x; y; u; v/ 2 Œ0; T � � R
d � R

d � U � V
(8.9)

The Cauchy-Lipschitz theorem then asserts that Eq. (8.8) has a unique solution,
denoted Xt0;x0;u;v .

Payoffs: The payoff of the players depends on a running payoff ` W Œ0; T � � R
d �

U � V ! R and on a terminal payoff g W Rd ! R. Namely, if the players play the
controls .u; v/ 2 Ut0 � Vt0 , then the cost the first player is trying to minimize (it is a
payoff for the second player who is maximizing) is given by

J .t0; x0; u; v/ D

Z T

t0

`.s; Xt0;x0;u;v
s ; us; vs/ds C g.X

t0;x0;u;v
T /:
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Here are our assumptions on ` and g:

8<
:
.i/ g W Rd ! R is bounded and Lipschitz continuous;
.i i/ ` W Œ0; T � � R

d � U � V ! R is continuous; bounded;
and Lipschitz continuous with respect to the x variable.

(8.10)

Normal form: Let .˛; ˇ/ 2 Ad .t0/ � Bd .t0/ a pair of strategies for each player.
Following Lemma 1, we know that there exists a unique pair of controls .u; v/ 2

Ut0 � Vt0 such that
˛.v/ � u and ˇ.u/ � v: (8.11)

We will always use the notation .˛s; ˇs/ for .us; vs/ and Xt0;x0;˛;ˇ
t for Xt0;x0;u;v

t . The
payoff associated to the two strategies .˛; ˇ/ 2 Ad .t0/ � Bd .t0/ is given by

J .t0; x0; ˛; ˇ/ D

Z T

t0

`.s; Xt0;x0;˛;ˇ
s ; ˛s; ˇs/ds C g.X

t0;x0;˛;ˇ
T /:

Definition 5 (Value functions). The upper value function is given by

VC.t0; x0/ WD inf
˛2Ad .t0/

sup
ˇ2Bd .t0/

J .t0; x0; ˛; ˇ/ (8.12)

while the lower value function is

V�.t0; x0/ WD sup
ˇ2Bd .t0/

inf
˛2Ad .t0/

J .t0; x0; ˛; ˇ/: (8.13)

Remark 1. We note for later use that the following equality holds:

V�.t0; x0/ D sup
ˇ2Bd .t0/

inf
u2Ut0

J .t0; x0; u; ˇ.u//:

Indeed, inequality � is clear because Ut0 � Ad .t0/. For inequality �, we note that,
given ˇ 2 Bd .t0/ and ˛ 2 Ad .t0/, there exists a unique pair .u; v/ 2 Ut0 � Vt0
such that (8.11) holds. Then J .t0; x0; ˛; ˇ/ D J .t0; x0; u; ˇ.u//. Of course the
symmetric formula holds for VC.

The main result in zero-sum differential games is the existence of a value:

Theorem 3. Assume that (8.9) and (8.10) hold, as well as Isaacs’ condition:

inf
u2U

sup
v2V

fhp; f .t; x; u; v/iC`.t; x; u; v/gD sup
v2V

inf
u2U

fhp; f .t; x; u; v/iC`.t; x; u; v/g

(8.14)
for any .t; x; p/ 2 Œ0; T � � R

d � R
d . Then the game has a value:

VC.t; x/ D V�.t; x/ 8.t; x/ 2 Œ0; T � � R
d :
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Remark 2. From the very definition of the value functions, one easily checks that
V� � VC. So the key point is to prove the reverse inequality. The proof is not easy.
It consists in showing that:

1. both value functions satisfy a dynamic programming property and enjoy some
weak regularity property (continuity, for instance);

2. deduce from the previous fact that both value functions satisfy a partial differen-
tial equation – the HJI equation – in a weak sense (the viscosity sense);

3. then infer from the uniqueness of the solution of the HJI equation that the value
functions are equal.

This method of proof also provides a characterization of the value function (see
Theorem 6 below). In the rest of the section, we give some details on the above
points and explain how they are related.

Before doing this, let us compare the value defined in nonanticipative strategies
with delay and without delay:

Proposition 4 (see Bardi and Capuzzo Dolcetta (1996)). Let V� and VC be the
lower and upper value functions as in Definition 5. Then

V�.t0; x0/ D inf
˛2A.t0/

sup
v2Vt0

J .t0; x0; ˛.v/; v/

and

VC.t0; x0/ D sup
ˇ2B.t0/

inf
u2Ut0

J .t0; x0; u; ˇ.u//:

At a first glance the result might seem surprising since, following Remark 1, V�

is equal to:

V�.t0; x0/ D sup
ˇ2Bd .t0/

inf
˛2Ad .t0/

J .t0; x0; ˛; ˇ/ D sup
ˇ2Bd .t0/

inf
u2Ut0

J .t0; x0; u; ˇ.u//:

One sees here the difference between a nonanticipative strategy, which allows to
synchronize exactly with the current value of the opponent’s control and the delay
strategies, where one cannot immediately react to this control: in the first case, one
has an informational advantage, but not in the second one.

The proof of the proposition involves a dynamic programming for the value
functions defined in the proposition in terms of nonanticipative strategies and derive
from this that they satisfy the same HJI equation than VC and V�. Whence the
equality.



390 P. Cardaliaguet and C. Rainer

3.2 The Bolza Problem: Dynamic Programming

The dynamic programming expresses the fact that if one stops the game at an
intermediate time, then one does not lose anything by restarting it afresh with the
only knowledge of the position reached so far.

Theorem 4 (Dynamic programming). Let .t0; x0/ 2 Œ0; T / � R
d and h 2 .0;

T � t0/. Then

VC.t0; x0/ D inf
˛2Ad .t0/

sup
v2Vt0

( Z t0Ch

t0

`.s; Xt0;x0;˛.v/;v
s ; ˛.v/s; vs/ds

C VC.t0 C h;X
t0;x0;˛.v/;v

t0Ch
/

)
(8.15)

while

V�.t0; x0/ D sup
ˇ2Bd .t0/

inf
u2Ut0

( Z t0Ch

t0

`.s; Xt0;x0;u;ˇ.u/
s ; us; ˇ.u/s/ds

C V�.t0 C h;X
t0;x0;u;ˇ.u/
t0Ch

/

)
:

Sketch of proof: Following Remark 1, we have

VC.t0; x0/ D inf
˛2Ad .t0/

sup
v2Vt0

�Z T

t0

`.Xt0;x0;˛.v/;v
s ; ˛.v/s; vs/ds C g.X

t0;x0;˛.v/;v
T /

�

D inf
˛2Ad .t0/

sup
v2Vt0

( Z t0Ch

t0

`.Xt0;x0;˛.v/;v
s ; ˛.vs/; vs/ds

C

Z T

t0Ch

`.Xt0;x0;˛.v/;v
s ; ˛.v/s; vs/ds C g.X

t0;x0;˛.v/;v
T /

�
:

By the semigroup property, one has, for s � t0 C h and any control pair .u; v/ 2

Ut0 � Vt0 ,

Xt0;x0;u;v
s D Xt0Ch;X

t0;x0;u;v ;Qu;Qv
s

where Qu (respectively Qv) is the restriction to Œt0 Ch; T � of u (respectively v). Hence,
the above equality can be rewritten (loosely speaking) as
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VC.t0; x0/ D inf
˛2Ad .t0/

sup
v2Vt0

Z t0Ch

t0

`.Xt0;x0;˛.v/;v
s ; ˛.v/s; vs/ds

C inf
Q̨2Ad .t0Ch/

sup
Qv2Vt0Ch

( Z T

t0Ch

`.X
t0;X

t0;x0;˛.v/;v

t0Ch
; Q̨.v/;Qv

s ; Q̨ .v/s; Qvs/ds

C g.X
t0;X

t0;x0;˛.v/;v

t0Ch
; Q̨.v/;Qv

T /

)

D inf
˛2Ad .t0/

sup
v2Vt0

( Z t0Ch

t0

`.Xt0;x0;˛.v/;v
s ; ˛.v/s; vs/ds C VC.t0 C h;X

t0;x0;˛.v/;v

t0Ch
/

)
:

�

One can also show that the value functions enjoy some space-time regularity:

Proposition 5. The maps VC and V� are bounded and Lipschitz continuous in all
variables.

The Lipschitz regularity in space relies on similar property of the flow of the
differential equation when one translates the space. The time regularity is more
tricky and uses the dynamic programming principle.

The regularity described in the proposition is quite sharp: in general, the value
function has singularities and cannot be of class C1.

3.3 The Bolza Problem: HBI Equation and Viscosity Solutions

We now explain, in a purely heuristic way, how the dynamic programming
property is related with a partial differential equation called Hamilton-Jacobi-Isaacs’
equation (HJI equation). We work with VC. The dynamic programming (8.15) can
be rewritten as

inf
˛2Ad .t0/

sup
v2Vt0

(
1

h

Z t0Ch

t0

`.s; X˛.v/;v
s ; ˛.v/s; vs/ds

C
VC.t0 C h;X

˛;v
t0Ch

/ � VC.t0; x0/

h

)
D 0

(8.16)

where we have used the notation X˛;v
t D X

t0;x0;˛.v/;v
t . As h tends to 0C,

X
˛;v
t0Ch

�x0

h

behaves as f .t0; x0; ˛.v/t0 ; vt0 /. Hence,
VC.t0Ch;X

˛;v
t0Ch

/�VC.t0;x0/

h
is close to
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@tVC.t0; x0/C hDVC; f .t0; x0; ˛.v/t0 ; vt0 /i:

Moreover, 1
h

R t0Ch
t0

`.s; X
˛;ˇ
s ; ˛s; vs/ds “behaves” as `.t0; x0; ˛t0 ; vt0 /. Therefore,

equality (8.16) becomes

inf
u2U

sup
v2V

˚
`.t0; x0; u; v/C @tVC.t0; x0/C hDVC; f .t0; x0; u; v/i

�
D 0

(the difficult part of the proof is to justify that one can pass from the infimum over
strategies to the infimum over the sets U and V ). If we set, for .t; x; p/ 2 Œ0; T � �

R
d � R

d ,

HC.t; x; p/ WD inf
u2U

sup
v2V

fhp; f .t; x; u; v/i C `.t; x; u; v/g ; (8.17)

the map VC should satisfy the HJI equation

�
�@tVC.t; x/ �HC.t; x;DVC.t; x// D 0 in .0; T / � R

d ;

VC.T; x/ D g.x/ in R
d

(8.18)

(The sign convention is discussed below, when we develop the notion of viscosity
solutions.) Applying the similar arguments for V�, we obtain that V� should satisfy
the symmetric equation

�
�@tV�.t; x/ �H�.t; x;DV�.t; x// D 0 in .0; T / � R

d ;

V�.T; x/ D g.x/ in R
d ;

(8.19)

where

H�.t; x; p/ WD sup
v2V

inf
u2U

fhp; f .t; x; u; v/i C `.t; x; u; v/g : (8.20)

Now if Isaacs’ condition holds, i.e., ifHC D H�, then VC and V� satisfy the same
equation, and one can hope that this implies the equality VC D V�. This is indeed
the case, but we have to be careful with the sense we give to Eqs. (8.18) and (8.19).

Let us recall that, since VC is Lipschitz continuous, Rademacher’s theorem
states that VC is differentiable almost everywhere. In fact one can show that VC

indeed satisfies Eq. (8.18) at each point of differentiability. Unfortunately, this is not
enough to characterize the value functions. For instance, one can show the existence
of infinitely many Lipschitz continuous functions satisfying almost everywhere an
equation of the form (8.18).

The idea of “viscosity solutions” is that one should look closely even at points
where the function is not differentiable.
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We now explain the proper meaning for equations of the form:

� @tV.t; x/ �H.t; x;DV.t; x// D 0 in .0; T / � R
d (8.21)

where H W Œ0; T � � R
d � R

d ! R is continuous. Let us point out that this equation
is backward in time, meaning that the natural condition is that V is given at time T .

Definition 6 (Viscosity solution).

• A map V W Œ0; T � � R
d ! R is a viscosity supersolution of (8.21) if V is lower

semicontinuous (l.s.c.) in .0; T /�R
d and if, for any test function 	 2 C1.Œ0; T ��

R
d / such that V � 	 has a local minimum at some point .t; x/ 2 .0; T / � R

d ,
one has

�@t	.t; x/ �H.t; x;D	.t; x// � 0:

• A map V W Œ0; T � � R
d ! R is a viscosity subsolution of (8.21) if V is upper

semicontinuous (u.s.c.) and if, for any test function 	 2 C1.Œ0; T ��R
d / such that

V � 	 has a local maximum at some point .t; x/ 2 .0; T / � R
d , one has

�@t	.t; x/ �H.t; x;D	.t; x// � 0:

• A viscosity solution to (8.21) is a map V which is a viscosity sub- and
supersolution to (8.21).

Note that, with this definition, a solution is a continuous map. One can easily
check that, if V 2 C1.Œ0; T � � R

d /, then V is a supersolution (resp. subsolution)
of (8.21) if and only if, for any .t; x/ 2 .0; T / � R

d ,

�@tV.t; x/ �H.t; x;DV.t; x// � 0 .resp: � 0/:

Finally, note the sign convention: the equations are written in such a way that
supersolutions satisfy the inequality with �0.

The main point in considering viscosity solution is the comparison principle,
which implies that Eq. (8.21), supplemented with a terminal condition, has at most
one solution. For this we assume that H satisfies the following conditions :

jH.t1; x1; p/ �H.t2; x2; p/j � C.1C jpj/j.t1; x1/ � .t2; x2/j (8.22)

and

jH.t; x; p1/ �H.t; x; p2/j � C jp1 � p2j (8.23)
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for some constant C . Note that the Hamiltonians H˙ defined by (8.17) and (8.20)
satisfy the above assumptions.

Theorem 5 (Comparison principle, Crandall et al. (1992)). Under assump-
tions (8.22) and (8.23), let V1 be a subsolution of (8.21) which is u.s.c. on Œ0; T ��R

d

and V2 be a supersolution of (8.21) which is l.s.c. on Œ0; T � � R
d . Let us assume

that V1.T; x/ � V2.T; x/ for any x 2 R
d . Then

V1.t; x/ � V2.t; x/ 8.t; x/ 2 Œ0; T � � R
d :

From this result one easily deduces:

Corollary 1. Let g W R
d ! R be continuous. Then Eq. (8.21) has at most one

continuous viscosity solution which satisfies the terminal condition V.T; x/ D g.x/

for any x 2 R
d .

Proof. Let V1 and V2 be two bounded and Lipschitz continuous viscosity solutions
of (8.21) such that V1.T; x/ D V2.T; x/ D g.x/ for any x 2 R

d . Since, in
particular, V1 is a subsolution and V2 a supersolution and V1.T; �/ D V2.T; �/, we
have by comparison V1 � V2 in Œ0; T �� R

d . Reversing the roles of V1 and V2, one
gets the opposite inequality, whence the equality. �

3.3.1 Existence and Characterization of the Value
We are now ready to state the main result of the section:

Theorem 6. Under conditions (8.9) and (8.10) on f , `, and g and if Isaacs’
assumption holds,

HC.t; x; p/ D H�.t; x; p/ 8.t; x; p/ 2 Œ0; T � � R
d � R

d ; (8.24)

the game has a value:

VC.t; x/ D V�.t; x/ 8.t; x/ 2 Œ0; T � � R
d :

Moreover, VC D V� is the unique viscosity solution of Isaacs’ equa-
tion (8.18) = (8.19).

The key point of the proof of Theorem 6 is the following (half-)characterization
of the value functions:

Lemma 2. The upper and lower value functions VC and V� are respectively
viscosity solutions of equation (8.18) and of (8.19).
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The proof, which is a little intricate, follows more or less the formal argument
described in Sect. 3.3. Let us underline at this point that if Isaacs’ condition does
not hold, there is no reason in general that the upper value function and the lower
one coincide. Actually they do not in general, in the sense that there exists a finite
horizon T > 0 and a terminal condition g for which V� ¤ VC. However, the
statement is misleading: in fact the game can have a value, if we allow the players
to play random strategies.

3.4 Without Isaacs’ Condition

We just discussed the existence of a value for zero-sum differential games when
the players play deterministic strategies. This result holds under Isaacs’ condition,
which expresses the fact that the infinitesimal game has a value.

We discuss here the existence of a value when Isaacs’ condition does not hold.
In this case, simple counterexamples show that there is no value in pure strategies.
However, it is not difficult to guess that the game should have a value in random
strategies, exactly as it is the case in classical game theory. Moreover, the game
should have a dynamics and payoff in which the players randomize at each time
their control. The corresponding Hamiltonian is then expected to be the one where
the saddle point is defined over the sets of probabilities on the control sets, instead
of the control sets themselves.

But giving a precise meaning to this statement turns out to be tricky. The reason is
the continuous time: indeed, if it is easy to build a sequence of independent random
variables with a given law, it is impossible to build a continuum of random variables
which are at each time independent. So one has to discretize the game. The problem
is then to prevent the player who knows his opponent’s strategy to coordinate upon
this strategy. The solution to this issue for games in positional strategies goes back
to Krasovskii and Subbotin (1988). We follow here the presentation for games in
nonanticipative strategies given by Buckdahn, Quincampoix, Rainer, and Xu (’15).

3.4.1 Statement of the Problem
We consider a differential game with deterministic dynamics of the form

PXt D f .t; Xt ; ut ; vt /;

and we denote by .Xt0;x0;u;v
t /t�t0 the solution of this ODE with initial condition

Xt0 D x0. The cost of the first player is defined as usual by

J .t0; x0; u; v/ WD

Z T

t0

`.t; X
t0;x0;u;v
t ; ut ; vt / dt C g.X

t0;x0;u;v
T /

where the map u (resp. v) belongs to the set Ut0 of measurable controls with values
in U (resp. Vt0 with values in V ).
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We now define the notion of random strategies. For this let us first introduce the
probability space

.
;F ;P/ D .Œ0; 1�;B.Œ0; 1�/; dx/

where B.Œ0; 1�/ is the Borel ��field on Œ0; 1� and dx is the Lebesgue measure. Then,
in contrast to the notion of strategies with delay in case where Isaacs’ assumption
holds, we have to fix a partition � D f0 D t0 < t1 < � � � < tN D T g, which is
common to both players.

The idea developed here is to consider random nonanticipative strategies with
delay, for which the randomness is reduced to the dependence on a finite number of
independent random variables .�j;l /jD1;2;l�1 which all have the same uniform law
on Œ0; 1�: one variable for each player on each interval Œtl ; tlC1/:

Definition 7 (Random delay strategies along the partition �). Fix an arbitrary
initial time t 2 Œtk; tkC1/ for some k 2 f0; : : : ; N � 1g. A random delay strategy
along the partition � for player 1 is a mapping ˛ W 
 � Vt ! Ut , such that, for
each .!; v/ 2 
 � Vt , on each time interval Œtl ; tlC1/ with k � l � N � 1, ˛.!; v/
depends on ! only through the l � k C 1 first random variables �k; : : : ; �l and on
v through its restriction to Œt; tl�1/. The set of random delay strategies along � for
player 1 is denoted by A�

r .t/.
Random delay strategies for player 2 are defined in a similar way, and the set of

such strategies is denoted by B�r .t/.

The game can be put into normal form: Let .˛; ˇ/ 2 A�
r .t/�B�r .t/. Then one can

show that, for any ! 2 
, there exists a unique pair of controls .u!; v!/ 2 Ut � Vt
such that

˛.!; v!/ D u! and ˇ.!; u!/ D v! a:e: (8.25)

We may then extend the payoff to the set of strategies:

J .t; x; ˛; ˇ/ WD E

�Z T

t

`.s; Xt;x;u!;v!
s ; u!;s; v!;s/ ds C g.X

t;x;u!;v!
T /

�

where the pair .u!; v!/ is defined by (8.25).
Finally, to each partition � can be associated an upper and a lower value

functions:

V�;C.t; x/ WD inf
˛2A�

r .t/
sup

ˇ2B�r .t/
J .t; x; ˛; ˇ/

and

V�;�.t0; x0/ WD sup
ˇ2B�r .t/

inf
˛2A�

r .t/
J .t; x; ˛; ˇ/:
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3.4.2 Existence and Characterization of the Value
We now assume that conditions (8.9) and (8.10) on the dynamics and the payoff
hold. Let .U / (resp. .V /) denote the set of Borel probabilities on U (resp. V ),
and let us set

H.t; x; p/ WD inf
�2.U /

sup
�2.V /

Z
U�V

.hf .t; x; u; v/; pi C `.t; x; u; v// d�.u/d�.v/

D sup
�2.V /

inf
�2.U /

Z
U�V

.hf .t; x; u; v/; pi C `.t; x; u; v// d�.u/d�.v/:

Remark that there is no need to suppose some supplementary Isaacs’ condition here:
the equality simply holds, thanks to the min-max theorem.

Theorem 7. For all sequences of partitions .�n/ with j�nj ! 0, the sequences
.V�n;C/ and .V�n;�/ converge uniformly on compact sets to a same Lipschitz
continuous function V, which is the unique solution of the HJ equation

�
�@tV.t; x/ �H.t; x;DV.t; x// D 0 in .0; T / � R

d ;

V.T; x/ D g.x/ in R
d :

3.5 The Infinite Horizon Problem

The approach for the Bolza problem can be extended to many other classes of
differential games. We concentrate here on the infinite horizon problem, for which
the associate Hamilton-Jacobi-Isaacs equation is stationary.

3.5.1 Description of the Game
Dynamics: For a fixed initial position x0 2 R

d , we consider the differential
equation

�
PXt D f .Xt ; ut ; vt / t 2 Œ0;C1/

X0 D x0
(8.26)

where f W Rd � U � V ! R
d satisfies the usual assumptions (8.9). The controls

of player 1 and player 2 are now Lebesgue measurable maps u W Œ0;C1/ ! U and
v W Œ0;C1/ ! V . For any pair .u; v/ 2 U0 � V0, Eq. (8.26) has a unique solution,
denoted Xx0;u;v .

Payoffs: The payoff of the players depends on a discount rate � > 0 and on a
running payoff ` W R

d � U � V ! R. Namely, if the players play the controls
.u; v/ 2 U0 � V0, then the first player is trying to minimize his cost:
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J .x0; u; v/ D

Z C1

0

e��s`.Xx0;u;v
s ; us ; vs/ds ;

where ` is assumed to satisfy (8.10).

Strategies: As for the Bolza problem, we consider delay strategies: see Definition 4.
Delay strategies for player 1 (resp. player 2) are denoted by Ad WD Ad .0/ (resp.
Bd WD Bd .0/). We systematically use the fact that if .˛; ˇ/ 2 Ad � Bd is a pair of
strategies, then there is a unique pair of controls .u; v/ 2 U0 � V0 such that

˛.v/ D u and ˇ.u/ D v a:e: in Œ0;C1/: (8.27)

In particular we always use the notation .˛s; ˇs/ for .us; vs/ and Xx0;˛;ˇ
t for Xx0;u;v

t ,
where .us; vs/ is defined by (8.27). The payoff associated to the two strategies
.˛; ˇ/ 2 Ad � Bd is given by

J .x0; ˛; ˇ/ D

Z C1

0

e��s`.Xx0;˛;ˇ
s ; ˛s; ˇs/ds:

Definition 8 (Value functions). The upper value function is given by

VC.x0/ WD inf
˛2Ad

sup
ˇ2Bd

J .x0; ˛; ˇ/ (8.28)

while the lower value function is

V�.x0/ WD sup
ˇ2Bd

inf
˛2Ad

J .x0; ˛; ˇ/: (8.29)

Note that, in contrast with the Bolza problem, the value functions only depend
on the space variable: the idea is that, because the dynamics and the running cost are
independent of time and because the discount is of exponential type, it is no longer
necessary to include time in the definition of the value functions to obtain a dynamic
programming principle. Indeed, in the case of the upper value, for instance, one can
show a dynamic programming principle of the following form: for any h � 0,

VC.x0/ D inf
˛2Ad

sup
ˇ2Bd

( Z h

0

`.Xx0;˛;ˇ
s ; ˛s; ˇs/ds C e��hVC

�
X
x0;˛;ˇ

h

�)
:

It is then clear that the associated Hamilton-Jacobi equation does not involve a time
derivative of the value function. Let us now explicitly write this Hamilton-Jacobi
equation.
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3.5.2 Existence and Characterization of the Value
Because of the dynamic programming given above, the value functions are expected
to satisfy the following Hamilton-Jacobi equations:

�V.t; x/ �HC.x;DV.t; x// D 0 in R
d (8.30)

where HC is defined by

HC.x; p/ D inf
u2U

sup
v2V

fhp; f .x; u; v/i C `.x; u; v/g ; (8.31)

and

�V.t; x/ �H�.x;DV.t; x// D 0 in R
d (8.32)

where H� is defined by

H�.x; p/ D sup
v2V

inf
u2U

fhp; f .x; u; v/i C `.x; u; v/g : (8.33)

Theorem 8. Under the above conditions on f and ` and if Isaacs’ assumption
holds,

HC.x; p/ D H�.x; p/ 8.x; p/ 2 R
d � R

d ; (8.34)

then the game has a value: VC D V�, which is the unique bounded viscosity
solution of Isaacs’ equation (8.30) = (8.32).

Requiring a growth condition on the solution is mandatory for the uniqueness.
For instance, in dimension d D 1, the equation W C Wx D 0 has a unique
bounded solution: W D 0. However, W .x/ D ce�x is of course a solution for any
constant c.

Without Isaacs’ assumption, the game has a value, provided one defines this value
in terms of random strategies as in Sect. 3.4.

As for the Bolza problem, the proof is based on a dynamic programming property
and on the regularity of the value functions.

4 Stochastic Differential Games

Several approaches have been developed to handle stochastic differential games
(SDG). Indeed, for the same result – the existence and the characterization of the
value – there exists not only various techniques of proofs, but even very different
ways to define the actions of the players and therefore the values of the game. We
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discuss three of them: by nonanticipative strategies, by pathwise strategies, and by
backward differential equations.

Even if, in each paragraph, we have to wait for the PDE characterization to be
able to claim that the different definitions of the upper and lower value coincide, we
denote them, from the start, by the same letters VC and V�.

For simplicity, we restrict the presentation to the Bolza problem, the extension to
the infinite horizon problem being straightforward.

4.1 The Value Functions

First, we present the seminal approach by Fleming and Souganidis (1989).

Dynamics: For a fixed initial position .t0; x0/ 2 Œ0; T � � R
d , we consider the

stochastic differential equation

�
dXt D b.t; Xt ; ut ; vt /dt C �.t; Xt ; ut ; vt /dBt ; t 2 Œt0; T �;

Xt0 D x0 :
(8.35)

where, for some M � 1, .Bt /t2Œ0;T � is a standard M -dimensional Brownian motion
defined on the canonical Wiener space. We denote by .Ft /t2Œ0;T � the filtration
generated by .Bt /t2Œ0;T � (completed by all sets of zero probability).

The assumptions on the control sets and the parameters of the system are the
direct generalization of those required for the deterministic setting:

8̂
<̂
ˆ̂:

.i/ U and V are compact metric spaces;
.i i/ the maps b W Œ0; T � � R

d � U � V ! R
d and � W Œ0; T � � R

d � U � V !

R
d�M are bounded and continuous in all their variables

.i i i/ b and � are uniformly Lipschitz continuous in the space variable:
(8.36)

The controls of player 1 and player 2 are measurable maps u W Œt0; T ��
 ! U and
v W Œt0; T ��
 ! V adapted to the filtration .Ft /. This last assumption translate the
intuitive idea that both players observe the Brownian motion, but their controls may
only depend on its past. The sets of such controls are denoted by U.t0/ and V.t0/.

Under assumptions (8.36), it is well known that for any pair .u; v/ 2 U.t0/ �

V.t0/, Eq. (8.35) has a unique solution, denoted by Xt0;x0;u;v .

Payoff: To any pair of controls .u; v/ 2 U.t0/ � V.t0/, we associate the payoff

J .t0; x0; u; v/ D E

�Z T

t0

`.s; Xt0;x0;u;v
s ; us; vs/ds C g.X

t0;x0;u;v
T /

�
;

where we assume that ` and g satisfy the standard conditions (8.10).
Strategies: A nonanticipative strategy for player 1 is a mapping ˛ W V.t0/ to U.t0/
such that, if, with probability 1, two controls v and v0 coincide Lebesgue-a.s. on a
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time interval Œt0; t �, then the same holds for the controls ˛.v/ and ˛.v0/. Strategies
for player 2 are defined in a symmetric way. This assumption is coherent with the
idea that the answer to a control of the opponent depends only on the past. We
denote by A.t0/ the set of nonanticipative strategies for player 1 (resp. B.t0/ the set
of nonanticipative strategies for player 2).

Definition 9 (Value functions). The upper and lower value functions are given
by

VC.t0; x0/ D sup
ˇ2B.t0/

inf
u2U.t0/

J .t0; x0; u; ˇ.u//;

and

V�.t0; x0/ D inf
˛2A.t0/

sup
v2V.t0/

J .t0; x0; ˛.v/; v/:

The main result in this section is that, under a suitable Isaacs’ condition, the game
has a value which can be characterized as the unique viscosity solution of an HJI
equation of second order.

4.2 Viscosity Solutions of Second-Order HJ Equations

The appearance of a random term in the dynamics of the game corresponds to the
addition of a second-order term in the functional equation which characterizes the
value function. The main reference for the theory of second-order Hamilton-Jacobi
equations is the User’s Guide of Crandall-Ishii-Lions (1992). Let us summarize what
we need in the framework of SDG.

We are concerned with the following (backward in time) Hamilton-Jacobi
equation

� @tV.t; x/ �H.t; x;DV.t; x/;D2V.t; x// D 0 in .0; T / � R
d ; (8.37)

whereH W Œ0; T ��R
d �R

d �Sd ! R is a continuous Hamiltonian, which satisfies
the following monotonicity assumption:

for all .t; x; p/ 2 Œ0; T � � R
d � R

d , for all A;B 2 Sd ,
A � B ) H.t; x; p;A/ � H.t; x; p; B/

(8.38)

(Sd denotes the set of symmetric d � d -matrices).
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For instance, we are interested in the following Hamiltonians:

H�.t; x; p; A/ D sup
v2V

inf
u2U

(
hp; b.t; x; u; v/i

C
1

2
trŒ�.t; x; u; v/��.t; x; u; v/A�C `.t; x; u; v/

)
;

and

HC.t; x; p; A/ D inf
u2U

sup
v2V

(
hp; b.t; x; u; v/i

C
1

2
trŒ�.t; x; u; v/��.t; x; u; v/A�C `.t; x; u; v/

)
:

It is easy to see that HC and H� both satisfy assumption (8.38).

Definition 10.

• A map V W Œ0; � � R
d ! R is a viscosity supersolution of (8.37) if V

is lower semicontinuous (l.s.c.) in .0; T / � R
d and if, for any test function

	 2 C1;2.Œ0; T � � R
d / such that V � 	 has a local minimum at some point

.t; x/ 2 .0; T / � R
d , one has

�@t	.t; x/ �H.t; x;D	.t; x/;D2	.t; x// � 0:

• A map V W Œ0; T � � R
d ! R is a viscosity subsolution of (8.37) if V

is upper semicontinuous (u.s.c.) in .0; T / � R
d and if, for any test function

	 2 C1;2.Œ0; T � � R
d / such that V � 	 has a local maximum at some point

.t; x/ 2 .0; T / � R
d , one has

�@t	.t; x/ �H.t; x;D	.t; x/;D2	.t; x// � 0:

• A viscosity solution of (8.37) is a map V which is both a sub- and a supersolution
of (8.37).

Theorem 9 (Comparison principle, Crandall et al. (1992)). Suppose that the
Hamiltonian H is given by HC or H� defined above. Let V1 (resp. V2) be a
subsolution (resp. a supersolution) of (8.37). If, for all x 2 R

d , V1.T; x/ �

V2.T; x/, then V1 � V2 on Œ0; T � � R
d .
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4.3 Existence and Characterization of the Value

The key point is the following statement:

Proposition 6. The lower value function V� is a viscosity subsolution of the HJI
equation

8<
:

�@tV �H�.t; x;DV;D2V/ D 0; .t; x/ 2 .0; T / � R
d ;

V.T; x/ D g.x/; x 2 R
d ;

(8.39)

and the symmetric result holds for VC.

Note that Eq. (8.39) has a unique viscosity solution, thanks to Theorem 9. When
the volatility � is nondegenerate (i.e., ��� � ıI for some ı > 0) and the
Hamiltonian is sufficiently smooth, the value function turns out to be a classical
solution of Eq. (8.39).

The proof of the proposition is extremely tricky and technical: a sub-dynamic
programming principle for the lower value function can be obtained, provided that
the set of strategies for player 1 is replaced by a smaller one, where some additional
measurability condition is required. From this sub-dynamic programming principle,
we deduce in a standard way that this new lower value function – which is larger
than V� – is a subsolution of (8.39). A supersolution of (8.39), which is smaller than
V�, is obtained by discretizing the controls of player 2. The result follows finally
by comparison. Of course, similar arguments lead to the analogous result for VC.

Once the hard work has been done for the upper and lower values, the existence
and characterization of the value of the game follow immediately.

Corollary 2. Suppose that Isaacs’ condition holds: for all .t; x; p; A/ 2 Œ0; T � �

R
d � R

d � Sd ,

H�.t; x; p; A/ D HC.t; x; p; A/ WD H.t; x; p;A/:

Then the game has a value: VC D V� D V which is the unique viscosity solution
of the HJI equation

�
�@tV �H.t; x;DV;D2V/ D 0; .t; x/ 2 .0; T / � R

d ;

V.T; x/ D g.x/; x 2 R
d :

(8.40)

4.4 Pathwise Strategies

When one looks on stochastic differential games with incomplete information, the
precise definition and analysis of what each player knows about the actions of his
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opponent becomes crucial. More precisely, in this framework, it is definitively not
possible to allow the players to observe a whole control process, but only its !-wise
realization. This has motivated the definition of pathwise strategies by Cardaliaguet-
Rainer (’13):

We place us here still in the stochastic game setting defined in Sect. 4.1,
except that we need to consider, for each t0 2 Œ0; T �, .
t0 ;Ft0 ;Pt0 /, the Wiener
space restricted to the time interval Œt0; T �. In the following definition, as in the
deterministic setting, the delay enables the players to play strategy against strategy.

Definition 11. A pathwise nonanticipative strategy with delay at time t0 for
player 1 is a Borel measurable map ˛ W 
t0 � Ut0 ! Vt0 for which there exists
a time grid t0 < t1 < : : : < tN D T such that, for all k � N � 1, for all
v1; v2 2 Vt0 , and for Pt0 -almost any !1; !2 2 
t0 , if .!1; v1/ � .!2; v2/ on Œt0; tk�,
then ˛.!1; v1/ � ˛.!2; v2/ on Œt0; tkC1�.

Pathwise nonanticipative strategies with delay for player 2 are defined in a
symmetric way. We denote by A.t0/ (resp. B.t0/) the set of nonanticipative
strategies with delay for player 1 (resp. player 2).

Note that the time grid is a part of the strategy. In other words, to define a strategy,
one chooses a time grid and then the controls on this grid.

For each pair .˛; ˇ/ 2 A.t0/ � B.t0/, there exists a pair of stochastic controls
.u; v/ 2 U.t0/ � V.t0/ such that

u � ˛.v/ and v � ˇ.u/; Pt0 -a.s., on Œt0; T �: (8.41)

This allows us to define the value functions as

VC.t0; x0/ D inf
˛

sup
ˇ

J .t0; x0; ˛; ˇ/;

and

V�.t0; x0/ D sup
ˇ

inf
˛
J .t0; x0; ˛; ˇ/

where J .t0; x0; ˛; ˇ/ D J .t0; x0; u; v/, for .u; v/ realizing the fix point rela-
tion (8.41). This symmetric definition of the value functions simplifies considerably
the proof of the existence of the value and its characterization as a solution of a HJI
equation:

We avoid here the most difficult part in the approach of Fleming-Souganidis,
namely, the inequality which is not covered by comparison: it follows here from
the universal relation between sup inf and inf sup. However, the technicality of their
proof is replaced here by fine measurable issues upstream.
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4.5 Link with Backward Stochastic Differential Equations

In this section we present an approach introduced by Hamadène-Lepeltier (’95), for
the case where the volatility is uniformly elliptic and uncontrolled: using a weak
formulation (i.e., the players add a controlled drift to the uncontrolled dynamics
by using a change of probability) and backward stochastic differential equation
(BSDE) techniques, the players can use feedback strategies. Its advantage is firstly
its simplicity, given that one is familiar with the BSDE setting. Moreover, it allows
to express the value of the game and some optimal controls in terms of the solution
of a BSDE. Finally, exploiting the wide range of the actual knowledge on BSDEs,
it gives rise to a large class of extensions, which are not directly obtainable by
viscosity methods.

We keep the same notations and assumptions on the dynamics and on the cost
functions as above, but suppose that M D d (i.e., the Brownian motion has the
same dimension as the dynamics).

We start with an uncontrolled stochastic differential equation (SDE): for any
initial position .t0; x0/ 2 Œ0; T ��R

d , let .Xt0;x0
s /s2Œt0;T � be the unique solution of the

SDE

Xs D x0 C

Z s

t0

�.r; Xr/dBr ; s 2 Œt0; T �; (8.42)

where � W Œ0; T � � R
d ! R

d�d , in addition to assumptions (8.36), satisfies, for all
x 2 R

d ,

1

˛
I � �.t; x/��.t; x/ � ˛I;

with I the identity matrix on R
d and ˛ � 1 fixed.

Given a pair of controls .u; v/ 2 U.t0/�V.t0/, the players act on the dynamics by
changing the probability on the state space 
: let Pu;v be the probability on .
;F/
defined by

dPu;v

dP
D exp

( Z T

t0

��1.s; Xt0;x0
s /b.s; Xt0;x0

s ; us; vs/ds

�
1

2

Z T

t0

j��1.s; Xt0;x0
s /b.s; Xt0;x0

s ; us ; vs/j
2ds

)
:

For s 2 Œt0; T � set

Bu;v
s D Bs � Bt0 �

Z s

t0

��1.r; Xt0;x0
r /b.r; Xt0;x0

r ; ur ; vr /dr:
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According to Girsanov’s theorem, Bu;v is a Brownian motion under P u;v , andXt0;x0

is solution to the – now controlled – SDE:

dXs D b.s; Xs; us ; vs/ds C �.s; Xs/dB
u;v
s ; s 2 Œt0; T �:

Denoting by Eu;v the expectation with respect to P u;v , the payoff is now defined by

J .t0; x0; u; v/ D E
u;v

�
g.X

t0;x0
T /C

Z T

t0

`.s; Xt0;x0
s ; us; vs/ds

�
;

and the upper and lower functions can be simply expressed as

VC.t0; x0/ D inf
u2U.t0/

sup
v2V.t0/

J .t0; x0; u; v/;

and

V�.t0; x0/ D sup
v2V.t0/

inf
u2U.t0/

J .t0; x0; u; v/:

The crucial remark here is that, if one considers the family of conditional payoffs

Y
u;v
t WD E

u;v

�
g.X

t0;x0
T /C

Z T

t

`.s; Xt0;x0
s ; us; vs/dsjFt

�
; t 2 Œt0; T �;

then, together with some associated .Zu;v
t /, the process .Y u;v

t /t2Œt0;T � constitutes the
solution of the following BSDE:

Y
u;v
t D Y

u;v
T C

R T
t

	
`.s; Xt0;x0

s ; us ; vs/C hZu;v
s ; b.s; Xt0;x0

s ; us; vs/i


ds

�
R T
t

hZu;v
s ; �.s; Xt0;x0

s /dBsi; t 2 Œt0; T �:

Now let us suppose that Isaacs’ condition holds. Since the volatility � does not
depend on controls, it can be rewritten as, for all .t; x; p/ 2 j0; T � � R

d � R
d ,

inf
u2U

sup
v2V

fhp; b.t; x; u; v/i C `.t; x; u; v/g

D sup
v2V

inf
u2U

fhp; b.t; x; u; v/i C `.t; x; u; v/g WD G.t; x; p/:

(8.43)
Since U and V are compact, this assumption implies the existence of a saddle point:
there exists a couple of measurable maps .u�; v�/ such that

G.t; x; p/ D hp; b.t; x; u�.x; p/; v�.x; p//i C `.t; x; u�.x; p/; v�.x; p//:

(8.44)
Consider finally the BSDE

� dYt D G.t; X
t0;x0
t ; Zt /dt � hZt ; �.X

t0;x0
t /dBt i; t 2 Œt0; T �; (8.45)
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and define the couple of strategies .ut ; vt / 2 U.t0/ � V.t0/ by

ut D u�.X
t0;x0
t ; Zt / and vt D v�.X

t0;x0
t ; Zt /; t 2 Œt0; T �:

It is then easy to show that .Y u;v
t ; Zt / is a solution to (8.45), and, from the

comparison theorem between solutions of BSDEs, it follows that, under Isaacs’
condition (8.43), the couple of controls .u; v/ is optimal for the game problem,
i.e., VC.t0; x0/ D V�.t0; x0/ D J .t0; x0; u; v/. Finally, the characterization of the
value of the game as a viscosity solution of the HJI equation (8.37) corresponds to
a Feynman-Kac formula for BSDEs.

Let us finally mention other approaches to stochastic zero-sum differential
games: Nisio (’88) discretizes the game, Swiech (’96) smoothens the HJ equation
and proceeds by verification, and Buckdahn-Li (’08) uses the stochastic backward
semigroups introduced by Peng (’97) to establish dynamic programming principles
for the value functions – and therefore the existence and characterization of a value
in the case when Isaacs’ condition holds. This later approach allows to extend the
framework to games involving systems of forward-backward SDEs.

5 Games of Kind and Pursuit-Evasion Games

In this section we discuss differential games in which the continuity of the value
function is not ensured by the “natural conditions” on the dynamics and the payoff.
The first class is the games of kind (introduced by Isaacs in contrast with the “games
of degree” described so far): the solution is a set, the victory domains of the players.
The second class is the pursuit-evasion games, for which we saw in Sect. 2 that
the value is naturally discontinuous if the usable part of the target is not the whole
boundary of the target.

5.1 Games of Kind

In this part we consider a zero-sum differential game in which one of the players
wants the state of the system to reach an open target, while the other player wants the
state of the system to avoid this target forever. In contrast with the differential games
with a payoff, the solution of this game is a set: the set of positions from which the
first player (or the second one) can win. In Isaacs’ terminology, this is a game of
kind. The problems described here are often described as a viability problem.

The main result is that the victory domains of the players form a partition
of the complement of the target and that they can be characterized by the mean
of geometric conditions (as a “discriminating domain”). Besides, the common
boundary of the victory domains enjoys a semipermeability property. These results
go back to Krasovskii and Subbotin (1988). We follow here Cardaliaguet (’96) in
order to use nonanticipative strategies.
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5.1.1 The Victory Domains
Dynamics: For an initial position x0 2 R

d , we consider the differential equation
�

PXt D f .Xt ; ut ; vt / t 2 Œ0;C1/;

X0 D x0:
(8.46)

We assume that f satisfies the standard assumptions (8.9), and we use the notations
U0 and V0 for the time measurable controls of the players introduced in Sect. 3.1.
For any pair .u; v/ 2 U0 � V0, Eq. (8.26) has a unique solution, denoted Xx0;u;v .

Strategies: A nonanticipative strategy for the first player is a map ˛ W V0 ! U0
such that for any two controls v1; v2 2 V0 and for any t � 0, if v1 D v2 a.e. in Œ0; t �,
then ˛.v1/ D ˛.v2/ a.e. in Œ0; t �. Nonanticipative strategies for player 1 are denoted
A. Nonanticipative strategies for the second player are defined in a symmetric way
and denoted B.

Let O be an open subset of Rd : it is the target of player 2. It will be convenient
to quantify the points of O which are at a fixed distance of the boundary: for � > 0,
let us set

O� WD fx 2 O; d@O.x/ > �g:

Definition 12. The victory domain of player 1 is the set of initial configurations
x0 2 R

dnO for which there exists a nonanticipative strategy ˛ 2 A (depending on
x0) of player 1 such that, for any control v 2 V0 played by player 2, the trajectory
Xx0;˛;v avoids O forever:

X
x0;˛.v/;v
t … O 8t � 0:

The victory domain of player 2 is the set of initial configurations x0 2 R
dnO

for which there exists a finite time T > 0, � > 0 and a nonanticipative strategy
ˇ 2 B (all depending on x0) of player 2 such that, for any control u 2 U0 played by
player 1, the trajectory Xx0;u;ˇ enters O� within time less than T :

9t 2 Œ0; T �; X
x0;u;ˇ.u/
t 2 O�:

Note that the definition of victory domain is slightly dissymmetric: however, the
fact that the target is open is already dissymmetric.

5.1.2 The Alternative Theorem
In order to proceed, we need a structure condition on the dynamics:

The set ff .x; u; v/; u 2 U g is convex for any .x; v/ 2 R
d � V . (8.47)

Such a convexity condition is standard in the calculus of variation: it guaranties the
existence of optimal solution. It plays the same role in our context, ensuring the
existence of optimal strategies.



8 Zero-Sum Differential Games 409

We now introduce sets with a particular property which will help us to character-
ize the victory domains: these are sets in which the first player can ensure the state
of the system to remain. There are two notions, according to which player 1 plays a
strategy or reacts to a strategy of his opponent.

Definition 13. A closed subset K of R
d is a discriminating domain if, for any

x0 2 K, there exists a nonanticipative strategy ˛ 2 A of player 1 such that, for
any control v 2 V0 played by player 2, the trajectory Xx0;˛;v remains in K forever:

X
x0;˛;v
t 2 K 8t � 0:

A closed subsetK of Rd is a leadership domain if, for any x0 2 K, for any �; T > 0,
and for any nonanticipative strategy ˇ 2 B.0/, there exists a control u 2 U0 such
that the trajectory Xx0;u;ˇ remains in an ��neigbourhood of K on the time interval
Œ0; T �:

X
x0;u;ˇ
t 2 K� 8t 2 Œ0; T �;

where K� WD fx 2 R
d ; 9y 2 K with kx � yk � �g.

The notions of discriminating and leadership domains are strongly related with
the stable bridges of Krasovskii and Subbotin (1988). The interest of the notion is
that, if a discriminating domainK is contained in R

dnO , then clearlyK is contained
in the victory domain of the first player.

Discriminating or leadership domains are in general not smooth. In order to
characterize these sets, we need a suitable notion of generalized normal, the
proximal normal. LetK be a closed subset of Rd . We say that � 2 R

d is a proximal
normal to K at x if the distance to K of x C � is k�k:

inf
y2K

kx C � � yk D k�k:

In other words, x belongs to the projection of x C � onto K. If K is the closure of
an open set with a smooth boundary, then the notion of proximal normal coincides
(up to a positive scalar factor) with the classical notion of normal.

Theorem 10 (Characterization of discriminating and leadership domains).
Under the above assumptions, a closed subset K of Rd is a discriminating domain
(resp. leadership domain) if and only if, for any x 2 K and for any proximal normal
� 2 NK.x/, one has

sup
v2V

inf
u2U

hf .x; u; v/; �i � 0 .resp: inf
u2U

sup
v2V

hf .x; u; v/; �i � 0/: (8.48)
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A given closed set contains the largest discriminating domain:

Proposition 7 (Discriminating kernel). The union of all discriminating domains
contained in R

dnO is itself a closed set and a discriminating domain. It is called
the discriminating kernel of RdnO .

It turns out that, under Isaacs’ condition:

sup
v2V

inf
u2U

hf .x; u; v/; pi D inf
u2U

sup
v2V

hf .x; u; v/; pi 8.x; p/ 2 R
d � R

d ;

(8.49)
the victory domains can be characterized in terms of discriminating kernel.

Theorem 11 (Krasovskii-Subbotin alternative theorem). Under the above
assumptions, the victory domain of player 1 is equal to the discriminating kernel of
R
dnO , while the victory domain of player 2 is its complementary in R

dnO .

In particular, the victory domains of the players form a partition of RdnO .

5.1.3 Semipermeable Surfaces
From now on we setK WD R

dnO and denote by† the common part of the boundary
of the victory domains contained in the interior of K. It will be convenient to
consider (at least formally) that the (proximal) normal vectors to † point toward
the victory domain of player 2. Because of its maximality, the discriminating kernel
(i.e., the victory domain of the first player) enjoys a particular property. As explained
in Sect. 2.2, one expects that its boundary † satisfies Isaacs’ equation

inf
u2U

sup
v2V

hf .x; u; v/; �xi D 0

for any x 2 †, where �x is the outward unit normal. This can be made rigorous in
the following way:

Proposition 8 (Geometric formulation). LetKerf .K/ be the discriminating ker-
nel of K. For any x 2 KnKerf .K/ which lies in the interior of K and for any �
proximal normal to KnKerf .K/, one has

inf
u2U

sup
v2V

hf .x; u; v/;��i � 0:

As explained below, this inequality formally means that player 2 can prevent the
state of the system to enter the interior of the discriminating kernel. Recalling that
the discriminating kernel is a discriminating domain, thus satisfying the geometric
condition (8.48), one concludes that the boundary of the victory domains is a weak
solution of Isaacs’ equation.
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Heuristically, one can also interpret Isaacs’ equation as an equation for a semiper-
meable surface, i.e., each player can prevent the state of the system from crossing
† in one direction. As the victory domain of the first player is a discriminating
domain, Theorem 10 states that the first player can prevent the state of the system
from leaving it. The existence of a strategy for the second player is the aim of the
following proposition:

Proposition 9. Assume that the set f .x; u; V / is convex for any .x; u/. Let x0
belong to the interior of K and to the boundary of Kerf .K/. Then there exists
a nonanticipative strategy ˇ 2 B.0/ and a time T > 0 such that, for any control
u 2 U0, the trajectory .Xx0;u;ˇ

t / remains in the closure of KnKerf .K/ on Œ0; T �.

In other words, the trajectory .Xx0;u;ˇ
t / does not cross † for a while.

5.2 Pursuit-Evasion Games

In this section, we revisit, in the light of the theory of viscosity solutions, the
pursuit-evasion games. In a first part, we consider general dynamics, but without
state constraints and assuming a controllability condition on the boundary of the
target. Then we discuss problems with state constraints and without controllability
condition.

5.2.1 Pursuit-Evasion Games Under a Controllability Condition
We first consider pursuit-evasion games under condition which guaranty the value
function to be continuous. We follow here Soravia (’93).

As in the previous section, the dynamics of the game is given by the ordinary
differential equation (8.46). Let C � R

d be a closed target. Given a continuous
trajectoryX D .Xt / in R

d , we denote by �C .X/ the minimal time forX to reach C :

�C .X/ D infft � 0; X.t/ 2 C g

and set �C .X/ D C1 if X avoids C forever. Given a continuous and positive cost
function ` W R

d � U � V ! R, the first player wants to minimize the quantityZ �C .X/

0

`.Xt ; ut ; vt /dt . We denote as usual by VC and V� the corresponding value

functions (written here for nonanticipative strategies):

VC.x0/ D sup
ˇ2B.0/

inf
u2U0

Z �C .X
x0;u;ˇ.u//

0

`.X
x0;u;ˇ.u/
t ; ut ; ˇ.u/t /dt

and

V�.x0/ D inf
˛2A

sup
v2V0

Z �C .X
x0;˛.v/;v/

0

`.X
x0;˛.v/;v
t ; ˛.v/t ; v/dt:
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Note that in this game, the first player is the pursuer and the second one the evader.
We suppose that f and ` satisfy the standard regularity condition (8.9)

and (8.10). Moreover, we suppose that ` is bounded below by a positive constant:

9ı > 0 such that `.x; u; v/ � ı:

This condition formalizes the fact that the minimizer is a pursuer, i.e., that he wants
the capture to hold quickly. Finally, we assume that Isaacs’ condition holds:

H.x; p/ WD inf
u2U

sup
v2V

fhp; f .x; u; v/i C `.x; u; v/g

D sup
v2V

inf
u2U

fhp; f .x; u; v/i C `.x; u; v/g (8.50)

for any .x; p/ 2 R
d � R

d .
However, without additional assumption, little is known on the problem. Indeed,

because of the exit time, the value functions might be discontinuous (and actually
even not finite), and the standard approach by viscosity solution does not apply.
Recalling the analysis of Sect. 2, we know that we cannot expect the value function
to be continuous at the boundary of the target unless the usable part of the boundary
is the whole set @C . Namely, we suppose that the target C is the closure of an open
subset of Rd with a smooth boundary, and we also assume that

inf
u2U

sup
v2V

hf .x; u; v/; �xi < 0

for any x 2 @C , where �x is the outward unit normal to C at x. In other words, the
pursuer can guaranty the immediate capture when the state of the system is at the
boundary of the target. This assumption is often called a controllability condition.

We denote by dom.V˙/ the domain of the maps V˙, i.e., the set of points where
V˙ are finite.

Theorem 12. Under the above assumptions, the game has a value: V WDVC D V�,
which is continuous on its domain dom.V/ and is the unique viscosity of the
following HJI equation:

8<
:

�H.x;DV.x// D 0 in dom.V/nC;
V.x/ D 0 on @C;
V.x/ ! C1 as x ! @dom.V/nC:

(8.51)

Sketch of proof: Thanks to the controllability condition, one can check that the
V˙ are continuous on @C and vanish on this set. The next step involves using the
regularity of the dynamics and the cost to show that the domains of the V˙ are open
and that V˙ are continuous on their domain. Then one can show that the V˙ satisfy
a dynamic programming principle and the HJI equation (8.51). The remaining issue
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is to prove that this equation has a unique solution. There are two difficulties for
this: the first one is that the HJI equation does not contain 0-order term (in contrast
with the equation for the infinite horizon problem), so even in a formal way, the
comparison principle is not straightforward. Second, the domain of the solution is
also an unknown of the problem, which technically complicates the proofs.

To overcome these two difficulties, one classically uses the Kruzhkov transform:

W ˙.x/ D 1 � exp
˚
�V˙.x/

�
:

The main advantage of the W ˙ compared to the V˙ is that they take finite values
(between 0 and 1). Moreover, theW ˙ satisfy a HJI equation with a zero-order term,
for which the standard tools of viscosity solutions apply. �

5.2.2 Pursuit-Evasion Games with State Constraints
We now turn to the more difficult issue where there are state constraints and no
controllability condition on the boundary of the target. The reader might have in
mind the lion and man game, described at the very beginning.

To fix the ideas, we consider here a game with separate dynamics: we suppose
that the state can be written as a pair .Xt ; Yt /, where .Xt / belongs to R

d1 and is
controlled by the first player (say, the pursuer), while .Yt / is in R

d2 and is controlled
by the second player (the evader). There is a constraint on each state: .Xt / (resp.
.Yt /) is restricted to stay in the set KX � R

d1 (resp. KY � R
d2 ). The dynamics

becomes

8<
:

PXt D f1.Xt ; ut /; Xt 2 KX t 2 Œ0;C1/;
PYt D f2.Xt ; vt /; Yt 2 KY t 2 Œ0;C1/;

X0 D x0 2 KX; Y0 D y0 2 KY :

In contrast with differential games in the whole space, the controls and the strategies
of the players depend here on the initial position. For x0 2 KX , let us denote by Ux0
the set of time measurable controls u W Œ0;C1/ ! U such that the corresponding
solution .Xt / remains in KX . We use the symmetric notion Vy0 for the second
player. A nonanticipative strategy for the first player is then a nonanticipative map
˛ W Vy0 ! Ux0 . We denote by A.x0; y0/ and B.x0; y0/ the set of nonanticipative
strategies for the first and second player, respectively. Under the assumptions stated
below, the sets Ux0 , Vy0 , A.x0; y0/ and B.x0; y0/ are nonempty.

Let C � R
d1Cd2 be the target set, which is assumed to be closed. For a given

trajectory .X; Y / D .Xt ; Yt /, we set

�C .X; Y / D inf ft � 0; .Xt ; Yt / 2 C g

(with �C .X; Y / D C1 if there is no time at which .Xt ; Yt / 2 C ). The value
functions of the game are defined as follows:
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V�.x0; y0/ D inf
˛2A.x0;y0/

sup
v2Vy0

�C .X
x0;˛.v/; Y y0;v/

and

VC.x0; y0/ D lim
�!0C

sup
ˇ2B.x0;y0/

inf
u2Ux0

�C� .X
x0;u; Y y0;ˇ.u//;

where C� is the set of points which are at a distance of C not larger than �. Note
that, as for the games of kind described in the previous section, the definition of the
upper and lower value functions is not symmetric: this will ensure the existence of
a value.

Besides the standard assumption on the dynamics of the game that we do not
recall here, we now assume the sets f1.x; U / and f2.y; V / are convex for any x; y.
Moreover, we suppose of an inward pointing condition on the vector fields f1 and
f2 at the boundary of the constraint sets, so that the players can ensure the state of
their respective system to stay in these sets. We explain this assumption for the first
player, the symmetric one is assumed to hold for the second one. We suppose that
the set KX is the closure of an open set with a C1 boundary and that there exists a
constant ı > 0 such that

inf
u2U

hf1.x; u/; �xi � �ı 8x 2 @KX;

where �x is the outward unit normal to KX at x. This condition not only ensures
that the set Ux0 is non empty for any x0 2 KX but also that it depends on a Lipschitz
continuous way of the initial position x0. For x 2 KX , we denote by U.x/ the set
of actions that the first player has to play at the point x to ensure that the direction
f1.x; u/ points inside KX :

U.x/ WD fu 2 U; hf1.x; u/; �xi � 0g:

We use the symmetric notation V .y/ for the second player. Note that the set-valued
maps x Ý U.x/ and y Ý V .y/ are discontinuous on KX and KY .

Theorem 13 (Cardaliaguet-Quincampoix-Saint Pierre (’01)). Under the above
assumptions, the game has a value, V WD VC D V�, which is the smallest viscosity
supersolution of the HJI inequality:

inf
u2U .x/

hf1.x; y/;DxV.x; y/iC sup
v2V .y/

hf2.y; v/;DyV.x; y/i � �1 in KX �KY :

Moreover, the value is lower semicontinuous, and there exists an optimal strategy
for the first player.
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There are two technical difficulties in this result: the first one is the state
constraints for both players. As a consequence, the HJI equation has discontinuous
coefficients, the discontinuity occurring at the boundary of the constraint sets. The
second difficulty comes from the fact that, since no controllability at the boundary
is assumed, the value functions can be discontinuous (and are discontinuous in
general). To overcome these issues, one rewrites the problem as a game of kind
for a game in higher dimensions.

The result can be extended to the Bolza problems with state constraints and to
the infinite horizon problem.

6 Differential Games with Information Issues

In this section we consider differential games in which at least one of the players
has not a complete knowledge of the state or of the control played so far by his
opponent. This class of game is of course very relevant in practical applications,
where it is seldom the case that the players can observe their opponent’s behavior in
real time or are completely aware of the dynamics of the system.

However, in contrast with the case of complete information, there is no general
theory for this class of differential games: although one could expect the existence
of a value, no general result in this direction is known. More importantly, no general
characterization of the upper and lower values is available. The reason is that the
general methodology described so far does not work, simply because the dynamic
programming principle does not apply: indeed, if the players do not have a complete
knowledge of the dynamics of the system or of their opponent’s action, they cannot
update the state of the system at later times, which prevents a dynamic programming
to hold.

If no general theory is known so far, one has nevertheless identified two important
classes of differential games for which a value is known to exist and for which one
can describe this value: the search games and the game with incomplete information.

In the search games, the players do not observe each other at all. The most
typical example is Isaacs’ princess and monster game in which the monster tracks
the princess in a dark room. In this setting, the players play open-loop controls, and
because of this simple information structure, the existence of a value can be (rather)
easily derived. The difficult part is then to characterize the value or, at least, to obtain
qualitative properties of this value.

In differential games with incomplete information, the players observe each other
perfectly, but at least one of the players has a private knowledge of some parameter
of the game. For instance, one could think of a pursuit-evasion game in which
the pursuer can be of two different types: either he has a bounded speed (but no
bound on the acceleration) or he has a bounded acceleration (but an unbounded
speed). Moreover, we assume that the evader cannot not know a priori which type
the pursuer actually is: he only knows that the pursuer has fifty-fifty chance to be
one of them. He can nevertheless try to guess the type of the pursuer by observing
his behavior. The pursuer, on the contrary, knows which type he is, but has probably
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interest to hide this information in order to deceive the evader. The catch here is to
understand how the pursuer uses (and therefore discloses) his type along the game.

6.1 Search Games

Search games are pursuit-evasion games in the dark: players do not observe each
other at all. The most famous example of such a game is the princess and monster
game, in which the princess and the monster are in a circular room plunged in total
darkness and the monster tries to catch the princess in a minimal time. This part is
borrowed from Alpern and Gal’s monograph (2003).

Let us first fix the notation. Let .Q; d/ be a metric compact set in which the
game takes place (for instance, in the princess and monster game, Q is the room).
We assume that the pursuer can move inQ within a speed less than a fixed constant,
set to 1 to fix the ideas. So a pure strategy for the pursuer is just a curve .Xt / on Q
which satisfies d.Xs;Xt / � jt � sj. The evader has a maximal speed denoted by w,
so a pure strategy for the evader is a curve .Yt / such that d.Ys; Yt / � wjt � sj.

Given a radius r > 0, the capture time � for a pair of trajectories .Xt ; Yt /t�0 is
the smallest time (if any) such that the distance between the evader and pursuer is
not larger than r :

�.X; Y / D infft � 0; d.Xt ; Yt / � rg

(as usual we set � D C1 if there is no time t at which d.Xt ; Yt / � r).
The set of pure strategies for the pursuer (resp. the evader) is denoted by X

(resp. Y) and is endowed with the topology of uniform convergence on any finite
interval. Note that this is a Hausdorff compact space.

A mixed strategy for the pursuer (resp. the evader) is a regular probability
measure on X (resp. Y), and we denote by.X / (resp. .Y/) this set of strategies.

A variant of Sion’s minimax theorem implies the existence of the value:

Theorem 14 (Alpern-Gal (’88)). The game has a value:

inf
�2.X /

sup
�2.Y/

Z
X�Y

�.X; Y / d�.X/d�.Y /

D sup
�2.Y/

inf
�2.X /

Z
X�Y

�.X; Y / d�.X/d�.Y /:

Moreover, there exists an optimal strategy � for the pursuer.

However, the description of this value does not seem to be known. An interesting
question is the behavior of the value as the radius r tends to 0. Here is an answer:
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Theorem 15 (Gal (’79, ’80)). Assume that Q is a compact convex subset of R2,
and let v.r/ be the value of the game for the radius r . Then, as r ! 0C,

v.r/ 	
jQj

2r
;

where jQj is the Lebesgue measure of Q.

6.2 Differential Games with Incomplete Information

Differential games with incomplete information are a class of differential games in
which (at least) one of the players has a private information on the structure of the
game: for instance, he knows perfectly the cost function or the dynamics, while the
opponent has only a probabilistic knowledge on these data (“a belief”). Since in
these games the players observe each other perfectly, the point is to understand how
the players use their information in an optimal way.

This class of problems is the transposition to differential games for Aumann-
Maschler analysis of repeated games with incomplete information (see �Chap. 2,
“Nonzero-Sum Differential Games”).

To summarize, we study here classes of zero-sum differential games in which:

• at least one of the players has some private knowledge on the structure of the
game: for instance, he may know precisely some random parameter of the game,
while his opponent is only aware of the law of this parameter.

• the players observe each other’s control perfectly. In this way they can try to
guess their missing information by observing the behavior of his opponent.

We present here a typical result of this class of games in a simple framework: the
dynamics is deterministic and the lack of information is only on the payoff. To fix
the ideas we consider a finite horizon problem.

Dynamics: As usual, the dynamics is of the form

PXt D f .Xt ; ut ; vt /;

and we denote by .Xt0;x0;u;v
t /t�t0 the solution of this ODE with initial condition

Xt0 D x0 when the controls played by the players are .ut / and .vt /, respectively.

Payoff: We assume that the payoff depends on a parameter i 2 f1; : : : ; I g (where
I � 2): namely, the running payoff `i D `i .x; u; v/ and the terminal payoff gi D

gi .x/ depend on this parameter. When the parameter is i , the cost for the first player
(the gain for the second one) is then

Ji .t0; x0; u; v/ WD

Z T

t0

`i .Xt ; ut ; vt / dt C gi .XT /:
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The key point is that the parameter i is known to the first player, but not to the
second one: player 2 has only a probabilistic knowledge of i . We denote by .I/
the set of probability measures on f1; : : : ; I g. Note that elements of this set can be
written as p D .p1; : : : ; pI / with pi � 0 for any i and

PI
iD1 pi D 1.

The game is played in two steps. At the initial time t0, the random parameter i
is chosen according to some probability p D .p1; : : : ; pI / 2 .I/, and the result
is told to player 1 but not to player 2. Then the game is played as usual; player 1
is trying to minimize his cost. Both players know the probability p, which can be
interpreted as the a priori belief of player 2 on the parameter i .

Strategies: In order to hide their private information, the players are naturally led to
play random strategies, i.e., they choose randomly their strategies. In order to fix the
ideas, we assume that the players build their random parameters on the probability
space .Œ0; 1�;B.Œ0; 1�/;L/, where B.Œ0; 1�/ is the family of Borel sets on Œ0; 1� and
where L is the Lebesgue measure on B.Œ0; 1�/. The players choose their random
parameter independently. To underline that Œ0; 1� is seen here as a probability space,
we denote by!1 an element of the set
1 D Œ0; 1� for player 1 and use the symmetric
notation for player 2.

A random nonanticipative strategy with delay (in short random strategy) for
player 1 is a (Borel measurable) map ˛ W 
1 � Vt0 ! Ut0 for which there is a
delay � > 0 such that for any !1 2 
1 and any two controls v1; v2 2 Vt0 and for
any t � t0, if v1 � v2 on Œt0; t �, then ˛.!1; v1/ � ˛.!1; v2/ on Œt0; t C ��.

Random strategies for player 2 are defined in a symmetric way, and we denote
by Ar .t0/ (resp. Br .t0/) the set of random strategies for player 1 (resp. player 2).

As for delay strategies, one can associate with a pair of strategies a pair of
controls, but, this time, the control is random. More precisely, one can show that,
for any pair .˛; ˇ/ 2 Ar .t0/�Br .t0/, there exists a unique pair of Borel measurable
control .u; v/ W .!1; !2/ ! Ut0 � Vt0 such that

˛.!1; v.!1; !2// D u.!1; !2/ and ˇ.!2; u.!1; !2// D v.!1; !2/:

This leads us to define the cost associated with the strategies .˛; ˇ/ as

Ji .t0; x0; ˛; ˇ/ D

Z 1

0

Z 1

0

Ji .t0; x0; u.!1; !2/; v.!1; !2//d!1d!2:

Value functions: Let us recall that the first player can choose his strategy in function
of i , so as an element of ŒAr .t0/�

I , while the second player does not know i . This
leads to the definition of the upper and lower value functions:

VC.t0; x0; p/ WD inf
.˛i /2.Ar .t0//I

sup
ˇ2Br .t0/

IX
iD1

piJi .t0; x0; ˛i ; ˇ/
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and

V�.t0; x0; p/ WD sup
ˇ2Br .t0/

inf
.˛i /2.Ar .t0//I

IX
iD1

piJi .t0; x0; ˛i ; ˇ/:

Note that the sum
IX
iD1

pi : : : corresponds to the expectation with respect to the

random parameter i .
We assume that dynamics and cost functions satisfy the usual regularity proper-

ties (8.9) and (8.10). We also suppose that a generalized form of Isaacs’ condition
holds: for any .x; �/ 2 R

d � R
d and for any p 2 .I/,

inf
u2U

sup
v2V

 
IX
iD1

pi`i .t; x; u; v/C hf .t; x; u; v/; �i

!

D sup
v2V

inf
u2U

 
IX
iD1

pi`i .t; x; u; v/C hf .t; x; u; v/; �i

!
;

and we denote byH.x; p; �/ the common value. Isaacs’ assumption can be relaxed,
following ideas described in Sect. 3.4.

Theorem 16. Under the above assumption, the game has a value: VC D V�. This
value V WD VC D V� is convex with respect to the p variable and solves in the
viscosity sense the Hamilton-Jacobi equation

8̂
ˆ̂̂<
ˆ̂̂̂
:

max
n
�@tV.t; x; p/ �H.t; x; p;DxV.t; x; p// I �ƒmax.D

2
ppV.t; x; p/; p/

o
D0

in .0; T / � R
d �.I/;

V .T; x; p/ D

IX
iD1

pigi .x/ in R
d �.I/;

(8.52)

whereƒmax.X; p/ is the largest eigenvalue of the symmetric matrix restricted to the
tangent space of .I/ at p.

The result heuristically means that the value function – which is convex in p – is
either “flat” with respect to p or solves the Hamilton-Jacobi equation. Let us point
out that the value function explicitly depends on the parameter p, which becomes a
part of the state space.

The above result has been extended (through a series of works by Cardaliaguet
and Rainer) in several directions: when both players have a private information
(even when this information is correlated; cf. Oliu-Barton (’15)), when there is an
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incomplete information on the dynamics and on the initial condition as well, when
the dynamics is driven by a stochastic differential equation, and when the set of
parameters is a continuum.

Sketch of proof. The main issue is that the dynamic principle does not apply in
a standard way: indeed, the non-informed player (i.e., player 2) might learn at a
part of his missing information by observing his opponent’s control. So one cannot
start afresh the game without taking into account the fact that the information has
changed. Unfortunately, the dynamics of information is quite subtle to quantify in a
continuous time.

One way to overcome this issue is first to note that the upper and lower values
are convex with respect to p: this can be interpreted as the fact that the value of
information is positive.

Then one seeks at showing that the upper value is a subsolution, while the lower
value is a supersolution of the HJ equation (8.52). The first point is easy, since,
if the first player does not use his private information on the time interval Œt0; t1�,
then he plays in a suboptimal way, but, on the other hand, he does not reveal
any information, so that one can start the game afresh at t1 with the new initial
position: one thus gets a subdynamic programming for VC and the fact that VC is a
subsolution.

For the supersolution case, one follows ideas introduced by De Meyer (’95) for
repeated games and considers the convex conjugates of V� with respect to p. It
turns out that this conjugate satisfies a subdynamic programming principle, which
allows in turn to establish that V� is a supersolution to the HJ equation (8.52). One
can conclude thanks to a comparison principle for (8.52). �

As in the case of complete information, it would be interesting to derive from the
value function the optimal strategies of the players. This issue is a little intricate to
formalize in general, and no general answer is known. Heuristically one expects the
set of points at which V is “flat” with respect to p as the set of point for which the
first player can use his information (and therefore can reveal it). On the contrary,
on the points where the HJ equation is fulfilled, the first player should not use his
information at all and play as if he only knew the probability of the parameter.

6.2.1 Optimal Strategies in a Simple Game
This heuristics has been rigorously established in a simple game in which there is no
dynamics and where, for simplicity, the terminal cost vanishes. With the notations
above, the cost functional becomes

Ji .t0; u; v/ WD

Z T

t0

`i .t; ut ; vt / dt:

The expected payoff Ji against random strategies and the value function (which
exists according to Theorem 16) are defined accordingly:
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V.t0; p/ D inf
.˛i /2.Ar .t0//I

sup
ˇ2Br .t0/

IX
iD1

piJi .t0; ˛i ; ˇ/

D sup
ˇ2Br .t0/

inf
.˛i /2.Ar .t0//I

IX
iD1

piJi .t0; ˛i ; ˇ/:

Note that there is no longer an x�dependence in Ji and V. The map V is
characterized by the Hamilton-Jacobi equation

(
maxf�@tV.t; p/ �H.t; p/I �ƒmax.D

2
ppV.t; p/; p/g D 0 in .0; T / �.I/

V .T; p/ D 0 in .I/
(8.53)

with

H.t; p/ WD inf
u2U

sup
v2V

IX
iD1

pi`i .t; u; v/ D sup
v2V

inf
u2U

IX
iD1

pi`i .t; u; v/:

Let us now note that, if there was no information issue (or, more precisely, if
the informed player did not use his information), the value of the game starting

from p0 at time t0 would simply be given by
Z T

t0

H.t; p0/dt . Suppose now that

player 1 uses – at least partially – his information. Then, if player 2 knows player 1’s
strategy, he can update at each time the conditional law of the unknown parameter
i : this leads to a martingale .pt /, which lives in .I/. Somehow the game with
incomplete information can be interpreted as a pure manipulation of the information
through this martingale:

Theorem 17. The following equality holds:

V.t0; p0/ D minE

�Z T

t0

H.s;p.s//ds
�

8.t0; p0/ 2 Œ0; T � �.I/ ; (8.54)

where the minimum is taken over all the (càdlàg) martingales p on .I/ starting
from p0 at time t0.

The martingale process can be interpreted as the information on the index i the
informed player discloses along the time. One can show that the informed player
can use the martingale which is optimal in (8.54) in order to build his strategy. In
particular, this optimal martingale plays a key role in the analysis of the game.

For this reason, it is interesting to characterize such an optimal martingale. For
this let us assume, for simplicity, that the value function is sufficiently smooth. Let
us denote by R the subset of Œ0; T � �.I/ at which the following equality holds:
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�@tV.t; p/ �H.t; p/ D 0:

Let p be a martingale starting from p0 at time t0. Then one can show, under technical
assumptions on p, that p is optimal for (8.54) if and only if, for any t 2 Œt0; T �, the
following two conditions are satisfied:

(i) .t;pt / belongs to R,
(ii) V.t;p.t// � V.t;p.t�// � hDpV.t; p.t�//;p.t/ � p.t�/i D 0.

In some sense the set R is the set on which the information changes very slowly (or
not at all), while it can jump only on the flat parts of V.

We complete this section by discussing two examples.

Example 1. Assume that H D H.p/ does not depend on t . Then we claim that

V.t; p/ D .T � t /VexH.p/ 8.t; p/ 2 Œ0; T � �.I/;

where VexH.p/ is the convex hull of the map H . Indeed let us set W .t; p/ D

.T � t /VexH.p/. Then (at least in a formal way), W is convex in p and satisfies

�@tW .t; p/ �H.p/ � �@tW .t; p/ � VexH.p/ D 0:

So W is a subsolution to (8.53). In order to prove that it is a supersolution, we
consider two cases: either VexH.p/ D H.p/ or VexH.p/ < H.p/, so that
VexH.p/ – and thus W – is “flat” at p. In the first case, one has �@tW .t; p/ �

H.p/ D 0; in the second one, D2W .t; p/ D 0. So W “satisfies” the HJ
equation (8.53) with terminal condition 0 and is therefore equal to the value V.

In this case, an optimal martingale just needs to jump once at time t0 from
the initial position p0 to one of the positions pk0 2 .I/ with probability �k ,
where the pk0 and .�k/ 2 .I/ are such that p0 D

P
k �kp

k
0 and Vex.H/.p0/ DP

k �kH.p
k
0 /.

Let us emphasize that the above statement is very close to the “Cav u theorem”
by Aumann and Maschler.

Example 2. Assume that I D 2, and let us identify p 2 Œ0; 1� with the pair
.p; 1 � p/ 2 .2/. We suppose that there exists h1; h2 W Œ0; T � ! Œ0; 1� continuous,
h1 � h2, h1 decreasing, and h2 increasing, such that

VexH.t; p/ D H.t; p/ , p 2 Œ0; h1.t/� [ Œh2.t/; 1�

(where VexH.t; p/ denote the convex hull of H.t; �/) and

@2H

@p2
.t; p/ > 0 8.t; p/ with p 2 Œ0; h1.t// [ .h2.t/; 1�:
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Then one can show that V can be explicitly computed:

V.t; p/ D

Z T

t

VexH.s; p/ds 8.t; p/ 2 Œ0; T � �.I/:

Moreover, the optimal martingale is unique and can be described as follows: as long
as p0 does not belong to Œh1.t/; h2.t/�, one has pt D p0. As soon as p0 belongs
to the interval Œh1.t0/; h2.t0/�, the martingale .pt / switches randomly between the
graphs of h1 and h2.

7 Long-Time Average and Singular Perturbation

We complete the chapter by a quick presentation of the singular perturbation
problems in differential games. This is a large and fascinating topic, which remains
open in full generality. We present here two typical results: the first one is on the
long-time average and the second one on homogenization.

7.1 Long-Time Average

When one considers differential games with a (large) time horizon or differential
games in infinite horizon but small discount rate, one may wonder to what extent
the value and the strategies strongly depend on the horizon or on the discount
factor. The investigation of this kind of issue started with a seminal paper by Lions-
Papanicolaou-Varadhan (circa ’86).

We discuss here deterministic differential games in which one of the players
can control the game in a suitable sense. To fix the ideas, we work under Isaacs’
condition (but this plays no role in the analysis). Let us denote by VT the value of
the Bolza problem for a horizon T > 0 and V� the value of the infinite horizon
problem with discount factor � > 0. We know that VT is a viscosity solution to

�
�@tVT .t; x/ �H.t; x;DVT .t; x// D 0 in .0; T / � R

d

VT .T; x/ D g.x/ in R
d ;

(8.55)

while V� solves

�V�.x/ �H.x;DV�.x// D 0 in R
d (8.56)

where H is defined by

H.x; p/ D inf
u2U

sup
v2V

fhp; f .x; u; v/i C `.x; u; v/g

D sup
v2V

inf
u2U

fhp; f .x; u; v/i C `.x; u; v/g : (8.57)
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We seek convergence of the quantity VT .0; x/=T or �V�.x/ as T ! C1 or
� ! 0. As this convergence issue is related to ergodicity, one needs conditions
which “confine” the state of the system into a compact set. To fix the ideas, we
assume here that the maps f , g, and ` are periodic in space of period 1: for instance,

f .x C k; u; v/ D f .x; u; v/ 8k 2 Z
d ; 8.x; u; v/ 2 R

d � U � V:

Then H is also periodic in space:

H.x C k; p/ D H.x; p/ 8k 2 Z
d ; 8.x; p/ 2 R

d � R
d :

This means that the game is actually played in the torus R
d =Zd . Moreover, we

assume that the Hamiltonian is coercive with respect to the second variable:

lim
jpj!C1

inf
x2Rd

H.x; p/ D C1: (8.58)

This can be interpreted as a strong control of the second player on the game: indeed
one can show that the second player can drive the system wherever he wants to and
with a finite cost. Note, however, that H need not be convex with respect to p, so
we really deal with a game problem.

Theorem 46 (Lions-Papanicolaou-Varadhan (’86)). Under the above assump-
tions, there exists a constant c 2 R such that

lim
T!C1

VT .0; x/

T
D lim

�!0C

�V�.x/ D c;

the convergence being uniform with respect to x. Moreover, c is the unique constant
for which the following equation has a continuous, periodic solution:

�H.x;D�.x// D c in R
d : (8.59)

The map � is often called a corrector. Equation (8.59) is the cell-problem or the
corrector equation.

As we will see in the next paragraph, the above result plays a key role in
homogenization, i.e., in situations where the dynamics and cost depend on a fast
variable and a slow variable. One can then show that the problem is equivalent to
a differential game with a dynamics and cost depending on the slow variable only:
this approach is called model reduction.

Theorem 46 has been extended to stochastic differential games by Evans (’89):
in this setting, the controllability condition can be replaced by a uniform ellipticity
assumption on the diffusion matrix.

Even for first-order problems, Theorem 46 actually holds in more general
frameworks, and we refer to the monograph by Alvarez and Bardi (2010) for
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details. However, when neither controllability nor uniform ellipticity holds, the
above convergence is not expected: in particular, the limit – even when it exists
– might depend on the space variable. Identifying general configurations for which
a limit exists is however far from understood.

Sketch of proof. We start with V� and first note that V� is Z
d�periodic. We also

note that, thanks to the maximum principle and Eq. (8.56),

inf
x2Rd

H.x; 0/ � �V�.x/ � sup
x2Rd

H.x; 0/:

In particular, still thanks to Eq. (8.56), the quantity H.x;DV�.x// is bounded
independently of �. The coercivity condition (8.58) then ensures that DV� is
uniformly bounded, i.e., V� is Lipschitz continuous, uniformly with respect to �.
We now set ��.x/ D V�.x/�V�.0/ and note that �� is Zd�periodic and uniformly
Lipschitz continuous and vanishes at 0. By the Arzela-Ascoli theorem, there is a
sequence .�n/, which converges to 0, such that ��n uniformly converges to some
continuous and Z

d�periodic map �. We can also assume that the bounded sequence
.�nV�n.0// converges to some constant c. Then it is not difficult to pass to the limit
in (8.56) to get

�H.x;D�.x// D c in R
d :

The above equation has several solutions, but the constant c turns out to be unique.
Let us now explain the convergence of VT .0; �/=T . It is not difficult to show that

the map .t; x/ ! �.x/ C c.T � t / C kgk1 C k�k1 is a supersolution to (8.55).
Thus, by comparison, we have

VT .t; x/ � �.x/C c.T � t /C kgk1:

Dividing by T and letting T ! C1, we get

lim sup
T!C1

sup
x2Rd

VT .0; x/

T
� c:

In the same way, we obtain

lim inf
T!C1

inf
x2Rd

VT .0; x/

T
� c:

This proves the uniform convergence of VT .0; �/=T to c. The convergence of �V�

relies on the same kind of argument. �
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7.2 Singular Perturbation and Homogenization

We can apply the results of the previous section to singular perturbation problems.
We consider situations in which dynamics and cost game depend on several scales:
the state can be split between a variable (the so-called fast variable) which evolves
quickly and on another variable with a much slower motion (the so-called slow
variable). The idea is that one can then break the problem into two simpler
problems, in smaller dimensions.

Let us fix a small parameter � > 0 and let us assume that one can write the
differential game as follows: the state of the system is of the form .X; Y / 2 R

d1 �

R
d2 , with dynamics

8<
:

PX�
t D f1.X

�
t ; Y

�
t ; ut ; vt /

� PY �t D f2.X
�
t ; Y

�
t ; ut ; vt /

X�
0 D x0; Y

�
0 D y0

and a cost of the form
Z T

0

`.X�
t ; Y

�
t ; ut ; vt /dt C g�.X�

T ; Y
�
T /:

As � is a small parameter, the variable Y � evolves in a much faster scale than the
slow variable X� . The whole point is to understand the limit system as � ! 0. It
turns out that the limit does not necessarily consist in taking � D 0 in the system.

We illustrate this point when the dependence with respect to the fast variable is
periodic: the resulting problem is of homogenization type. In order to proceed, let
us make a change of variable by setting QY �t D �Y �t . In these variables the state of
the system has for dynamics:

8̂
<
:̂

PX�
t D f1.X

�
t ;

QY �t =�; ut ; vt /
PQ �Yt D f2.X

�
t ;

QY �t =�; ut ; vt /
X�
0 D x0; QY �0 D y0=�

We define the Hamiltonian of the problem as follows:

H.x; y; px; py/ D inf
u2U

sup
v2V

	
hf .x; y; u; v/; .px; py/i C `.x; y; u; v/



;

where f D .f1; f2/ and for .x; y; px; py/ 2 R
d1 �R

d2 �R
d1 �R

d2 . We also assume
that the terminal cost can be written in the form g�.x; y/ D g.x; �y/. Then, if we
write the value function V� of the game in terms of the variables .X; QY /, it satisfies
the HJI equation

�
�@tV�.t; x; y/ �H.x; y=�;DxV�;DyV�/ D 0 in .0; T / � R

d1 � R
d2

V�.T; x; y/ D g.x; y/ in R
d1 � R

d2



8 Zero-Sum Differential Games 427

Besides the standard assumption on the dynamics and cost, we suppose that H
is Zd�periodic with respect to the y variable and satisfies the coercivity condition

lim
jpy j!C1

inf
y2Rd

H.x; y; px; py/ D C1;

locally uniformly in the .x; px/ variables.
If we freeze the variables .x; px/, we know, from Theorem 46, that, for any py ,

there exists a constant c DW �H.x; px; py/ for which the cell problem

�H.x; y; px;D�.y/C py/ D �H.x; px; py/

has a periodic viscosity solution � D �.y/ in R
d2 .

Theorem 47 (Lions-Papanicolaou-Varadhan (’86)). As � ! 0;V� converges
locally uniformly to V solution to

�
�@tV.t; x; y/ �H.x;DxV;DyV/ D 0 in .0; T / � R

d1 � R
d2

V.T; x; y/ D g.x; y/ in R
d1 � R

d2

As a particular case, if g does not depend on y, then the system is actually in
dimension d1: so there is a reduction of dimension, the price being to compute
the averaged Hamiltonian H . One can also prove a convergence when the terminal
condition g depends on the fast variable Y (and not on �Y ) and is periodic with
respect to that variable. Then there appears a boundary layer at time T .

We described here only a particular instance of singular perturbation problems. A
general introduction to the subject can be found in the monograph by Alvarez-Bardi
(2010).

The heuristics behind the result is the following. Let us assume that V� uniformly
converges to a map V. In order to guess the equation satisfied by V, let us try to write
a first-order expansion in � of V�:

V�.t; x; y/ D V.t; x; y/C ���.t; x; y=�/

Then, recalling the equation for V� and neglecting the terms of order � in the
expansion, one should expect:

�@tV.t; x/ �H.x; y=�;DxV.t; x/;DyV.t; x; y/CDy�
�.t; x; y=�// 
 0:

Since y=� evolves in a faster scale than x and y, the quantity in the Hamiltonian
should be almost constant in y=�. If we denote by �H.x;DxV.t; x/;DyV.t; x; y//
this constant quantity, we find the desired result.

Of course, the actual proof of Theorem 47 is more subtle than the above
reasoning. As the maps are at most Lipschitz continuous, one has to do the proof
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at the level of viscosity solution. For this, a standard tool is Evans’ perturbed test
function method, which consists in perturbing the test function by using in a suitable
way the corrector.

8 Conclusion

The analysis of two-person, zero-sum differential games started in the middle of the
twentieth century with the works of Isaacs (1965) and of Pontryagin (1968). We
have described in Sect. 2 some of Isaacs’ ideas: he introduced tools to compute
explicitly the solution of some games (homicidal chauffeur game, princess and
monster game, the war of attrition and attacks, etc.) by solving the equation denoted
in this text “Hamilton-Jacobi-Isaacs” equation. He also started the analysis of the
possible discontinuities and singularities of the value function. The technique of
resolution was subsequently carried out by several authors (such as Breakwell,
Bernhard, Lewin, Melikyan, and Merz, to cite only a few names).

The first general result on the existence of a value goes back to the early 1960s
with the pioneering work of Fleming (1961). There were subsequently (in the
1960s–1970s) many contributions on the subject, by Berkovitz, Elliot, Friedman,
Kalton, Roxin, Ryll-Nardzewski, and Varaiya (to cite only a few names). Various
notions of strategies were introduced at that time. However, at that stage, the
connection with the HJI equations was not understood. Working with the notion
of positional strategy, Krasovskii and Subbotin (1988) managed to characterize the
value in terms of stable bridges (described in Sect. 5), and Subbotin (1995) later
used Dini derivatives to write the conditions in terms of the HJI equation.

But it is only with the introduction of the notion of viscosity solution (Crandall
and Lions (’81)) that the relation between the value function and HJI equation
became completely clear, thanks to the works of Evans and Souganidis (1984)
for deterministic differential games and of Fleming and Souganidis (1989) for
stochastic ones. A detailed account of the large literature on the “viscosity solution
approach” to zero-sum differential games can be found in Bardi and Capuzzo
Dolcetta (1996). We reported on these ideas in Sects. 3 and 4: there we explained
that zero-sum differential games with complete information and perfect observation
have a value under fairly general conditions; we also characterized this value
as the unique viscosity solution of the Hamilton-Jacobi-Isaacs equation. This
characterization allows us to understand in a crisp way several properties of the
value (long-time average, singular perturbation, as in Sect. 7). Similar ideas can be
used for pursuit-evasion games, with the additional difficulty that the value function
might be discontinuous (Sect. 5) and, to some extent, to games with information
issues (Sect. 6).

We now discuss possible extensions and applications of the problems presented
above.



8 Zero-Sum Differential Games 429

• Other classes of dynamics: We have chosen to discuss differential games with
classical dynamics (ODEs or SDEs). In many practical applications, there is
no clear distinction between systems in discrete time and in continuous time:
the state may alternatively be driven by a continuous motion (an ODE) and a
discontinuous one (jump terms); this leads to the analysis of hybrid systems.
Closely related are the problems with switching controls, where the controllers
can change their controls only at discrete instants of time. These games naturally
lead to the HJI equation with an obstacle problem or to monotone systems of HJI
equations.

• Boundary conditions: For pursuit-evasion games, we explained that the value
function has to vanish at the boundary of the domain. This is only an instance
of the various boundary conditions that can be encountered in differential game
theory. For example, in stochastic problems, the state is often restricted to remain
in a bounded set by a “reflection” term at the boundary. Then the associated HJI
equation has a boundary term, the Neumann boundary condition.

• Applications : Zero-sum differential games are mainly used in optimal control
problems with uncertainty, where the second player is seen as disturbance
against which the controller wants to guaranty himself completely; this leads
to the notion of worst-case design or robust control. Pursuit-evasion games
formalize problems in air traffic management systems and flight control or
ground transportation systems: see �Chap. 22, “Pursuit-Evasion Games” on
aeronautics. Besides these applications, zero-sum differential games have also
been used in less expected areas. We only provide a few examples. Risk-sensitive
control problems study the singular perturbation for a stochastic optimal control
problem when the noise vanishes. It turns out that, at the small noise limit, the
system behaves as if the noise was an opponent: this leads naturally to a zero-
sum differential game (see �Chap. 9, “Robust Control and Dynamic Games”).
Zero-sum differential games also appear in front propagation problems when
the so-called Wulff shape is not convex: they are used to provide an insight
on the evolution of the front. They are also utilized in nonzero-sum differential
games to describe Nash equilibria in games with memory strategies (�Chap. 2,
“Nonzero-Sum Differential Games”).

Further Reading: The interested reader will find in the Bibliography much
more material on zero-sum differential games. Isaacs’ approach has been the
subject of several monographs Başar and Olsder (1999), Blaquière et al. (1969),
Isaacs (1965), and Melikyan (1998); the early existence theories for the value
function are given in Friedman (1971); Krasovskii and Subbotin explained their
approach of positional differential games in Krasovskii and Subbotin (1988); a
classical reference for the theory of viscosity solutions is Crandall et al. (1992),
while the analysis of (deterministic) control and differential games by the viscosity
solution approach is developed in detail in Bardi and Capuzzo Dolcetta (1996);
a reference on pursuit games is Petrosjan (1993) and Alvarez and Bardi (2010)
collects many interesting results on the viscosity solution approach to singularly
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perturbed zero-sum differential games; finally, more recent results on differential
games can be found in the survey paper (Buckdahn et al. 2011).
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1 Introduction

Control theory is concerned with the design of control mechanisms for dynamic
systems that compensate for (a priori) unknown disturbances acting on the system
to be controlled. While early servomechanism techniques did not make use of much
modeling, neither of the plant to be controlled nor of the disturbances, the advent
of multi-input multi-output systems and the drive to more stringent specifications
led researchers to use mathematical models of both. In that process, and most
prominently with the famous Linear Quadratic Gaussian (LQG) design technique,
disturbances were described as unknown inputs to a known plant and usually high-
frequency inputs.

“Robust control” refers to control mechanisms of dynamic systems that are
designed to counter unknowns in the system equations describing the plant rather
than in the inputs. This is also a very old topic. It might be said that a PID controller
is a “robust” controller, since it makes little assumption on the controlled plant.
Such techniques as gain margin and phase margin guarantees and loop shaping
also belong in that class. However, the gap between “classic” and “robust” control
designs became larger with the advent of “modern” control designs.

As soon as the mid-1970s, some control design techniques appeared, often based
upon some sort of Lyapunov function, to address that concern. A most striking
feature is that they made use of bounded uncertainties rather than the prevailing
Gaussian-Markovian model. One may cite Gutman and Leitmann (1976), Gutman
(1979), and Corless and Leitman (1981). This was also true with the introduction of
the so-called H1 control design technique in 1981 (Zames 1981) and will become
such a systematic feature that “robust control” became in many cases synonymous
to control against bounded uncertainties, usually with no probabilistic structure on
the set of possible disturbances.

We stress that this is not the topic of this chapter. It is not an account of system
theory for systems with set description of the uncertainties. Such comprehensive
theories have been developed using set-valued analysis and/or elliptic approxima-
tions. See, e.g., Aubin et al. (2011) and Kurzhanski and Varaiya (2014). We restrict
our scope to control problems, thus ignoring pure state estimation such as developed
in the above references, or in Başar and Bernhard (1995, Chap. 7) or Rapaport and
Gouzé (2003), for instance, and to game theoretic methods in control design, thus
ignoring other approaches of robust control such as the gap metric (Georgiou and
Smith 1997; Qiu 2015; Zames and El-Sakkary 1980), an input-output approach in
the spirit of the original H1 approach of Zames (1981), using transfer functions
and algebraic methods in the ring of rational matrices, or linear matrix inequality
(LMI) approaches (Kang-Zhi 2015), and many other approaches found, e.g., in the
same Encyclopedia of Systems and Control (Samad and Ballieul 2015).

We will first investigate in Sect. 2 the issue of modeling of the disturbances, show
how non-probabilistic set descriptions naturally arise, and describe some specific
tools we will use to deal with them. Section 2.1 is an elementary introduction to
these questions, while Sect. 2.2 is more technical, introducing typical control theo-
retic issues and examples in the discussion. From there on, a good control of linear
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systems theory, optimal control—specifically the Hamilton-Jacobi-Caratheodory-
Isaacs-Bellman (HJCIB) theory—and dynamic games theory is required. Then, in
Sect. 3, we will give a rather complete account of the linear H1-optimal control
design for both continuous time and discrete-time systems. Most of the material of
these two sections can be found in more detail in Başar and Bernhard (1995). In
Sect. 4, we will cover in less detail the so-called “nonlinear H1” control design,
mainly addressing engineering problems, and a nonlinear example in the very
different domain of mathematical finance.

2 Min-Max Problems in Robust Control

2.1 Decision Theoretic Formulation

2.1.1 Worst Case Design
We start this section with a very general setup in terms of decision theory. LetU be a
decision space and W a disturbance space. We may think of W as being a bounded
set in some ad hoc norm, but this is not necessary at this level of generality. Let
J W U �W ! R be a performance index, depending on the decision u 2 U and on
an unknown disturbance w 2 W . The decision maker, choosing u, wants to make J
as small as possible in spite of the a priori unknown disturbance w 2 W . (One may
think of J as a measure, such as the L2 norm, of an error signal.)

The so-called worst case design method is as follows. Let us first emphasize
that there is no “malicious adversary” manipulating the disturbance in the following
description, contrary to many accounts of this method.

The basic concept is that of guaranteed performance of a given decision u 2 U :
any number g such that

8w 2 W ; J .u;w/ � g:

Clearly, the best (smallest) guaranteed performance for a given decision u is

G.u/ D sup
w2W

J .u;w/ :

Hence the phrase “worst case”, which has to do with a guarantee, not any malicious
adversary.

Now, the problem of finding the best possible decision in this context is to find
the smallest guaranteed performance, or

inf
u2U

G.u/ D inf
u2U

sup
w2W

J .u;w/ : (9.1)

If the infimum in u is reached, then the minimizing decision u? deserves the name
of optimal decision in that context.
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2.1.2 Robust Disturbance Rejection or Gain Control
The following approach is mostly justified in the following linear setup, but can be
extended to a nonlinear one (see van der Schaft 1996). We let U and W be normed
vector spaces, Z be an auxiliary normed vector space, and z 2 Z be the output
whose norm is to be kept small in spite of the disturbances w. We assume that for
each decision u 2 U , z depends linearly on w. Therefore, one has an (possibly
nonlinear) application P W U ! L.W ! Z/ and

z D P .u/w :

Clearly, z cannot be kept bounded if w is not. A natural formalization of the problem
of keeping it small is to try and make the operator norm of P .u/ as small as possible.
This may be expressed as follows: let B.W / be the unit ball of W , one seeks

inf
u2U

sup
w2B.W /

kP .u/wk : (9.2)

But we will often prefer another formulation, again in terms of guaranteed perfor-
mance, which can easily be extended to nonlinear systems. Start from the problem of
ensuring that kP .u/k � � for a given positive attenuation level � . This is equivalent
to

8w 2 W ; kzk � �kwk ;

or equivalently (but leading to a smoother problem)

8w 2 W ; kzk2 � �2kwk2 ; (9.3)

or equivalently again

sup
w2W

ŒkP .u/wk2 � �2kwk2� � 0 :

Now, given a number � , this has a solution (there exists a decision u 2 U satisfying
that inequality) if the infimum hereafter is reached or is negative and only if

inf
u2U

sup
w2W

ŒkP .u/wk2 � �2kwk2� � 0 : (9.4)

This is the method of H1-optimal control. Notice, however, that equation (9.3) has
a meaning even for a nonlinear operator P .u/, so that the problem (9.4) is used in
the so-called “nonlinear H1” control.

We will see a particular use of the control of the operator norm in feedback
control when using the “small gain theorem.” Although this could be set in the
abstract context of nonlinear decision theory (see Vidyasagar 1993), we will rather
show it in the more explicit context of control theory.
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Remark 1. The three problems outlined above as equations (9.1), (9.2), and (9.4)
are all of the form infu supw, and therefore, in a dynamic context, are amenable
to dynamic game machinery. They involve no probabilistic description of the
disturbances.

2.1.3 Set Description vs Probabilistic
Two main reasons have driven robust control toward set theoretic, rather than
probabilistic, descriptions of disturbances. On the one hand, the traditional Gauss-
Markov representation is geared toward high-frequency disturbances. When the
main disturbance is, say, a misevaluated parameter in a dynamic equation, it is the
exact opposite of high frequency: zero frequency. And this is typically the type of
unknowns that robust control is meant to deal with.

On the other hand, concerning the coefficients of a differential equation, using
a probabilistic description requires that one deals with differential equations with
random coefficients, a much more difficult theory than that of differential equations
driven by a stochastic process.

Thus, “robust control approaches” to decision problems involve a description of
the unknown disturbances in terms of a set containing all possible disturbances,
often a bounded set, and hence hard bounds on the possible disturbances. As
mentioned in the introduction, systematic theories have been developed to deal with
set descriptions of uncertainties under the name of viability theory (Aubin et al.
2011)—particularly well suited to deal with non-smooth problems in engineering,
environment, economy, and finance (Bernhard et al. 2013, part V)—or trajectory
tubes which, with the use of Hamiltonian formalism and elliptic approximations,
recover more regularity and also lead to a theory of robust control in the presence
of corrupted information (Kurzhanski and Varaiya 2014, Chap. 10). We emphasize
here somewhat different, and more classical, methods, making explicit use of
dynamic game theory.

To practitioners accustomed to Gauss-Markov processes (such as a filtered
“white noise”), hard bounds may seem a rather severe limitation, providing the
mathematical model with too much information. Yet, a probability law is an
extremely rich information itself; in some sense, much richer than a simple set
description. As an example, note that if we model a disturbance function as an
ergodic stochastic process, then we tell the mathematical model that the longtime
average of the disturbance is exactly known. In the case of a Brownian motion,
we say that the total quadratic variation of (almost) all realizations is exactly
known. And these are only instances of the rich information we provide, that
the mathematical machinery will use, may be far beyond what was meant by the
modeler.

2.2 Control Formulation

We want to apply the above ideas to control problems, i.e., problems where the
decision to be taken is a control of a dynamic system. This raises the issues of



436 P. Bernhard

causality and open-loop versus closed-loop control. No control theoretician would
want to rely on open-loop control to overcome uncertainties and disturbances in
a system. But then, the issue of the available information to form one’s control
becomes crucial.

2.2.1 Closed-Loop Control
Let a dynamic system be represented by a differential equation in R

n (we will
therefore ignore the existing extensions of these results to infinite-dimensional
systems; see Bensoussan and Bernhard (1993) for a game theoretic approach):

Px D f .t; x; u;w/ (9.5)

and two outputs, y the observed output and z to be controlled:

z.t/ D g.t; x; u/ ; (9.6)

y.t/ D h.t; x;w/ ; (9.7)

Here, as in the sequel, we have x 2 R
n, u 2 U � R

m, w 2 W � R
`, y 2 R

p ,
z 2 R

q , and u.�/ 2 U , w.�/ 2 W the sets of measurable time functions into U and
W, respectively. Likewise, we let y.�/ 2 Y and z.�/ 2 Z . Moreover, we assume that
f enjoys regularity and growth properties that insure existence and uniqueness of
the solution to (9.5) for any initial condition and any pair of controls .u.�/;w.�// 2

U � W .
Since we are concerned with causality, we introduce the following notation: For

any time function v.�/, let vt denote its restriction Œv.s/js � t �. And if V is the set
of functions v.�/, let V t be the set of their restrictions vt :

V D fv.�/ W Œt0; t1� ! V W s 7! v.s/g H)

8t 2 .t0; t1/ ; V t D fvt W Œt0; t � ! V W s 7! v.s/g :
(9.8)

The control u.t/ will be synthesized as a closed-loop control

u.t/ D �.t; yt / ; (9.9)

typically by a dynamic compensator driven by the observed output y. Therefore, the
operator infu2U in equations (9.1), (9.2), and (9.4) must be replaced by inf�2ˆ. But
then, we must specify the class ˆ of admissible controllers. However, we postpone
that discussion until after we deal with the disturbance w.

The question arises as to whether one should allow closed-loop “disturbance
laws,” some w.t/ D  .t; ut /, or be content with open-loop disturbances w.�/ 2

W . This question is answered by the following lemma, occasionally attributed to
Leonard Berkowitz (1971):
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Fig. 9.1 Disturbance
rejection problem

G
� w

�u
�z

y

φ�

Lemma 1. Let a criterion J .u.�/;w.�// D K.x.�/; u.�/;w.�// be given. Let a
control function � be given and ‰ be a class of closed-loop disturbance strategies
compatible with � (i.e., such that the differential equations of the dynamic system
have a solution when u is generated by � and w by any  2 ‰). Then, (with a
transparent abuse of notation)

sup
w.�/2W

J .�;w.�// � sup
 2‰

J .�;  / :

Therefore, it is never necessary to consider closed-loop disturbance laws. This
greatly simplifies the discussion of the class ˆ of admissible controllers. It only
has to be such that solutions to the differential equations exist against all open-
loop measurable disturbances. This is an important difference with “true” (dynamic)
game theory, arising from the fact that we are not concerned with the existence of a
Value, but only with inf sup operators.

The control form of the disturbance rejection problem of Sect. 2.1.2 may
therefore be stated, for the system G given by (9.5), (9.6), (9.7), and (9.9) over
a time span T , as follows: let ˆ be the class of all causal controllers ensuring the
existence inL2.T / and uniqueness of the solution of the system equations (Fig. 9.1).
Standard problem of H1-optimal control with attenuation level � : Does the
following inequality hold:

inf
�2ˆ

sup
w2L2.T /

�
kzk2

L2
� �2kwk2

L2

�
� 0 ‹ (9.10)

If the infimum is reached or is negative, find an admissible controller � ensuring the
inequality (9.3) in L2 norms.

2.2.2 Minimax Certainty Equivalence Principle
The standard problem as formulated above amounts to a min-sup differential
game with a real-time minimizer’s information both partial and corrupted by the
maximizer, a nonclassical problem. In some favorable cases, including that of
linear systems, the information problem can be solved via the following certainty
equivalence theorem (Başar and Bernhard 1995; Bernhard and Rapaport 1996). Let
a differential game be specified by (9.5) and a criterion:
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J .x0I u.�/;w.�// D M.x.t1//C

Z t1

t0

L.t; x.t/; u.t/;w.t// dt CN.x0/ : (9.11)

Assume that the full state information min-sup problem with N � 0 has a state
feedback solution:

u.t/ D '?.t; x.t// ; (9.12)

leading to a Value function V .t; x/ of class C1.
We now define a partial information mechanism. Since we assume that the

minimizer does not know x.t/, it is consistent to assume that he does not know
x0 either. We therefore allow, in the partial information problem, the added cost
N.x0/. Let ! 2 � D R

n � W be the complete disturbance, i.e., the pair .x0;w.�//.
Recall notation (9.8). An observation process is a device that, at each time instant
t , defines a subset �t � � function of u.�/ and !, which enjoys the following three
properties:

1. It is consistent: 8u 2 U ; 8! 2 � ; 8t ; ! 2 �t .
2. It is perfect recall: 8u 2 U ; 8! 2 � ; 8t 0 � t ; �t 0 � �t .
3. It is nonanticipative: !t 2 �t

t ) ! 2 �t .

In the case of a system (9.5), (9.6), and (9.7),

�t.u.�/; !/ D f.x0;w.�// j 8s � t ; h.s; x.s/;w.s// D y.s/g:

We seek a controller
u.t/ D �.t;�t / : (9.13)

Define the auxiliary criterion :

Gt.u
t ; !t / D V .t; x.t//C

Z t

t0

L.s; x.s/; u.s/;w.s// ds CN.x0/ ;

and the auxiliary problem:

max
!t2�tt

Gt .u
t ; !t / :

Note that in this problem, ut is known, as our own past control.

Theorem 1. If the auxiliary problem admits one or several solutions leading to a
unique state Ox.t/ at time t , then, if the controller

u.t/ D '?.t; Ox.t//

is admissible, it is a min-sup controller in partial information.
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Conversely, if there exists a time t such that sup!t2�tt Gt D 1, then the
criterion (9.11) has an infinite supremum in ! for any admissible feedback
controller (9.13).

Remark 2. The state Ox.t/ may be considered as the worst possible state given the
available information.

One way to proceed in the case of an information such as (9.7) is to solve by forward
dynamic programming (forward Hamilton-Jacobi-Caratheodory-Bellman equation)
the constrained problem:

max
!

�Z t

t0

L.s; x.s/; u.s/;w.s// ds CN.x0/

�

subject to the control constraint w.s/ 2 fw j h.s; x.s/;w/ D y.s/g and the terminal
constraint x.t/ D � . It is convenient to call �W .t; �/ the corresponding Value (or
Bellman function). Assuming that, under the strategy '?, for every t , the whole
space is reachable by some ! 2 �, Ox.t/ is obtained via

max
x2Rn

ŒV .t; x/ �W .t; x/� D V .t; Ox.t// �W .t; Ox.t// : (9.14)

If this max is reached at a unique x D Ox.t/, then the uniqueness condition of the
theorem is satisfied.

Remark 3. In the duality between probability and optimization (see Akian et al.
1998; Baccelli et al. 1992), the function �W .t; �/ is the conditional cost measure
of the state for the measure

R t
t0
Lds C N.x0/ knowing y.�/. The left-hand side of

formula (9.14) is the dual of a mathematical expectation.

2.2.3 Small Gain Theorem
We aim to show classical linear control problems that can be cast into a standard
problem of H1-optimal control. We develop some preliminary tools.

Linear operators and norms
In the case of linear systems, operator norms have concrete forms.
Matrix: A p�mmatrixM represents a linear operator M W Rm ! R

p whose norm
kMk is the maximum singular value �max.M/ of the matrix.
Dynamic system: A stable stationary linear dynamic system with input u.t/ 2 R

m

and output y.t/ 2 R
p will be considered as a linear operator, say G, from

L2.R ! R
m/ to L2.R ! R

p/. It may be represented by its transfer function G.s/,
always a rational proper matrix since we confine ourselves to finite-dimensional
state systems. Moreover, the system being stable (otherwise it would not map L2

into L2), the transfer function has all its poles in the left half complex plane. Thus
it belongs to the Hardy space H1 of functions holomorphic in an open set of the
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complex plane containing the half-plane Re.s/ � 0. In that case, it follows from
Parseval’s equality that

kGk D sup
!2R

�maxG.j!/ DW kG.�/k1 :

The norm kG.�/k1 (or kGk1) is the norm of the transfer function in H1.
Block operator: If the input and output spaces of a linear operator G are represented
as product of two spaces each, the operator takes a block form

G D

�
G11 G12
G21 G22

�
:

We will always consider the norm of product spaces as the Euclidean combination
of the norms in the component spaces. In that case, it holds that kGij k � kGk.
Furthermore, whenever the following operators are defined

����

�
G1
G2

����� �
p

kG1k2 C kG2k2 ; k.G1 G2 /k �
p

kG1k2 C kG2k2 :

Hence

����

�
G11 G12
G21 G22

����� �
p

kG11k2 C kG12k2 C kG21k2 C kG22k2 :

We finally notice that for a block operator G D .Gij /, its norm is related to the
matrix norm of its matrix of norms .kGij k/ by kGk � k.kGij k/k.

Small gain theorem
Let a two input-two output linear system G0 be given by

�
z
y

�
D

�
G11 G10
G01 G00

��
w
u

�
: (9.15)

Assume that it is connected in feedback by a linear operator� according to w D �z,
leading to a composite system y D G�u. (See Fig. 9.2.)

Then, an easy consequence of Banach’s fixed point theorem is

Theorem 2 (Small gain theorem). If k�G11k D ˛ < 1 or kG11�k D ˛ < 1, then
the combined system

G� D G01.I ��G11/�1�G10 C G00 or G� D G01�.I � G11�/�1G10 C G00
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Fig. 9.2 The perturbed
system G�

G0 � u

�w

�y

z

Δ�

is well defined and is stable. Moreover, it holds that

kG�k � kG00k C kG01k kG10k
k�k

1 � ˛
:

Corollary 1. If kG11k < 1, then G� is stable for any � with k�k � 1.

This will be a motivation to try and solve the problem of making the norm of an
operator smaller than 1, or smaller than a given number � .

2.3 Robust Servomechanism Problem

2.3.1 Model Uncertainty
Assume we deal with a linear system

Px D Ax C Bu ;

y D Cx CDu :

But the system matrices are not precisely known. We have an estimate or “nominal
system” .A0; B0; C0;D0/, and we set A D A0C�A, B D B0C�B , C D C0C�C ,
and D D D0 C�D . The four matrices �A, �B , �C , and �D are unknown, but we
know bounds ıA, ıB , ıC , and ıD on their respective norms. We rewrite the same
system as

Px D A0x C B0u C w1 ;

y D C0x CD0y C w2 ;

z D

�
x

u

�
;
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Fig. 9.3 The perturbed
system and its compensator

G0
�

v
� w
�

u

ζ
�z

y

Δ�

K�

and obviously

w D

�
w1
w2

�
D

�
�A �B

�C �D

��
x

u

�
D �z :

We now have a known system G0 connected in feedback by the unknown system �

for which we have a norm bound k�k � .ı2A C ı2B C ı2C C ı2D/
1=2 ; to which we can

apply the small gain theorem.

2.3.2 Robust Stabilization
Indeed, that representation of a partially unknown system can be extended to a
dynamic unknown perturbation �. We rename w and z as v and 	, respectively,
and we add a disturbance input w, an output z to be controlled, and a dynamic
compensator u D Ky (Fig. 9.3). From now on, to make things simpler, we assume
that the signals v and 	 are scalar (see below a short discussion of vector signals).
Assume that a frequency-dependent bound of the modulus of�’s transfer function is
known as j�.j!/j � ı.!/. Then, in a classical “loop-shaping” fashion, we devise a
dynamic filter W1.s/, such that jW1.j!/j � ı.!/, and consider the fictitious control
system with output Q	 D W1	. Stabilization of the system will be guaranteed if we
can keep the transfer function norm from v to Q	 less than one. We may also specify
the disturbance rejection objective as keeping a fictitious output Qz D W0z small for
some prescribed dynamic filterW0. The control objective of the compensatorK will
now be to keep the modulus of the transfer function from v to Q	 less than one at all
frequencies, while holding the norm of the transfer function from w to Qz as small
as possible. This may be cast into a standard problem, for instance, by choosing the
pair ..1=�/v;w/ as the input and . Q	; ˇQz/ as the output and finding ˇ and � as small
as possible while holding inequality (9.10) true. But more clever weightings may
also be tried.
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�+ w� z
K� u

G0
�+

ζ

�Δ

�+

v

�y
�−

Fig. 9.4 The servomechanism

Some remarks are in order.

Remark 4.

1. We might as well have placed the shaping filter W1 on the input channel v. The
two resulting control problems are not equivalent. One may have a solution and
the other one none. Furthermore, the weight ı.!/ might be divided between two
filters, one on the input and one on the output. The same remark applies to the
filter W0 and to the added weights ˇ and � . There is no known simple way to
arbitrate these possibilities.

2. In case of vector signals v and 	, one can use diagonal filters with the weight W1

on each channel. But this is often inefficient. There exists a more elaborate way
to handle that problem, called “
-synthesis.” (See Doyle 1982; Zhou et al. 1996.)

2.3.3 Robust Servomechanism
We describe a particular case of the above problem which was at the inception of
the H1-optimal control problem in Zames (1981). All signals are scalar.

An uncertain system’s transfer function G is described by a multiplicative
uncertainty: G D .I C�/G0. We know G0 and a bound j�.j!/j � ı.!/. However,
it holds that as ! ! 1, G0.j!/ ! 0, and because of a possible fixed offset in
the true plant, ı.!/ ! 1. The aim of the control system is to have the output y
follow an unpredictable, but low frequency, reference signal w thanks to a dynamic
compensator u D K.w � y/. We name z the error signal w � y, 	 the (fictitious)
output of the (fictitious) system G0, and v D �	. (See Fig. 9.4.) We can cast this
problem as a standard problem with input .v;w/ and output .	; z/. However, adding
frequency-dependent weights is now unavoidable. We have

z D �G0u � v C w ;

	 D G0u ;

u D Kz ;
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hence

z D S.w � v/ ; S D .I CG0K/
�1 ;

	 D T .w � v/ ; T D G0K.I CG0K/
�1 :

The control aim is to keep the sensitivity transfer function S small, while robust
stability requires that the complementary sensitivity transfer function T be small.
However, it holds that S C T D I , and hence, both cannot be kept small
simultaneously. We need that

8! 2 R ; ı.!/jT .j!/j � 1 :

And if ı.!/ ! 1 as ! ! 1, this imposes that jT .j!/j ! 0, and therefore
jS.j!/j ! 1. Therefore we cannot follow a high-frequency reference input w.
However, it may be possible to keep jS.j!/j small at low frequencies, where
ı.!/ is small. The solution is to work with dynamic filters and fictitious outputs
Qz D W0z, Q	 D W1	, with jW1.j!/j � ı.!/ (a generalized differentiator). If we can
keep the transfer function from v to Q	 less than one at all frequencies, we ensure
stability of the control system. And we choose a weightW0 large at low frequencies
(a generalized integrator) and investigate the standard problem with the output .Qz; Q	/.

If W0G0 is strictly proper, as it will usually be, there is no throughput from u
to the output Qz. In that case, it is necessary to add a third component Qu D W3u
to the regulated output, with W3 proper but not strictly (may be a multiplicative
constant R). This is to satisfy the condition R > 0 of the next section.

3 H1-Optimal Control

Given a linear system with inputs u and w and outputs y and z, and a desired
attenuation level � , we want to know whether there exist causal control laws
u.t/ D �.t; yt / guaranteeing inequality (9.3) and, if yes, find one. This is the
standard problem of H1-optimal control. We propose here an approach of this
problem based upon dynamic game theory, following Başar and Bernhard (1995).
Others exist. See Doyle et al. (1989), Stoorvogel (1992), and Glover (2015).

We denote by an accent the transposition operation.

3.1 Continuous Time

We start with a state space description of the system. Here x 2 R
n, u 2 R

m, w 2 R
`,

y 2 R
p , and z 2 R

q . This prescribes the dimensions of the various matrices in the
system equations. In the finite horizon problem, they may all be time dependent, say
piecewise continuously. These equations are
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Px D Ax C Bu CDw ; x.t0/ D x0 ; (9.16)

y D Cx CEw ; (9.17)

z D Hx CGu : (9.18)

We will use the system matrix

S D

0

@
A B D

C 0 E

H G 0

1

A : (9.19)

Remark 5.

1. The fact that “the same” input w drives the dynamics (9.16) and corrupts the
output y in (9.17) is not a restriction. Indeed different components of w may
enter the different equations. (Then DE 0 D 0.)

2. The fact that we allowed no throughput from u to y is not restrictive. y is the
measured output used to control the system. If there were a term CF u on the
r.h.s. of (9.17), we could always use Qy D y � F u as measured output.

3. A term CFw in (9.18) would create cross terms in wx and wu in the linear
quadratic differential game to be solved. The problem would remain feasible, but
the equations would be more complicated, which we would rather avoid.

We further let

�
H 0

G0

�
.H G / D

�
Q P

P 0 R

�
and

�
D

E

�
.D0 E 0 / D

�
M L0

L N

�
: (9.20)

All the sequel makes use of the following hypotheses:

Assumption 1.

1. G is one to one or, equivalently, R > 0,
2. E is onto or, equivalently, N > 0.

Duality
Notice that changing S into its transpose S 0 swaps the two block matrices in (9.20)
and also the above two hypotheses. This operation (together with reversal of time),
that we will encounter again, is called duality.

3.1.1 Finite Horizon
As in Sect. 2.2.2, we include initial and terminal costs. For any symmetric nonneg-
ative matrix Z, we write kxk2Z WD x0Zx and likewise for other vectors. Let Q0 be
a symmetric positive definite matrix and Q1 a nonnegative definite one, and
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J�.x0; u.�/;w.�// D kx.t1/k
2
Q1

C

Z t1

t0

�
. x0.t/ u0.t/ /

�
Q P

P 0 R

��
x.t/

u.t/

�
� �2kw.t/k2

�
dt � �2kx0k

2
Q0
: (9.21)

We introduce two Riccati equations for the symmetric matrices S and †, where
we use the feedback gain F and the Kalman gain K appearing in the LQG control
problem:

F D �R�1.B 0S C P 0/ ; K D .†C 0 C L0/N�1 ; (9.22)

� PS D SA C A0S � F 0RF C ��2SMS CQ ; S.t1/ D Q1 ; (9.23)

P† D †A0 C A† �KNK 0 C ��2†Q†CM ; †.t0/ D Q�1
0 : (9.24)

Theorem 3. For a given � , if both equations (9.23) and (9.24) have solutions over
Œt0; t1� satisfying

8t 2 Œt0; t1� ; �.†.t/S.t// � �2 ; (9.25)

the finite horizon standard problem has a solution for that value of � and any larger
one. In that case, a (nonunique) min-sup controller is given by u D u? as defined by
either of the following two systems:

POx D .AC ��2MS/ Ox C Bu? C .I � ��2†S/�1KŒy � .C C ��2LS/ Ox�; Ox.t0/ D 0 ;

u? D F Ox ;

or

PLx D .AC ��2†Q/ Lx C .B C ��2†P /u? CK.y � C Lx/ ; Lx.t0/ D 0 ;

u? D F .I � ��2†S/�1 Lx :

If any one of the above conditions fails to hold, then, for any smaller � , the
criterion (9.21) has an infinite supremum for any causal controller u.t/ D �.t; yt /.

Remark 6.

1. The notation �.X/ stands for the spectral radius of the matrix X . If condi-
tion (9.25) holds, then, indeed, the matrix .I � ��2†S/ is invertible.
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2. The two Riccati equations are dual of each other as in the LQG control problem.
3. The above formulas coincide with the LQG formulas in the limit as � ! 1.
4. The first system above is the “certainty equivalent” form. The second one follows

from placing Lx D .I���2†S/ Ox. The symmetry between these two forms seems
interesting.

5. The solution of the H1-optimal control problem is highly nonunique. The above
one is called the central controller. But use of Başar’s representation theorem
(Başar and Olsder 1982) yields a wide family of admissible controllers. See Başar
and Bernhard (1995).

3.1.2 Infinite Horizon Stationary Problem
In this section, we assume that the matrix S is a constant. The system is then said
to be stationary. The spaces L2 considered are to be understood as L2.R ! R

d /

with the appropriate dimension d . The dynamic equation (9.16) is to be understood
with zero initial condition at �1, and we will be interested in asymptotically
stable solutions. There is no room for the terms in Q0 and Q1 of the finite time
criterion (9.21), and its integral is to be taken from �1 to 1.

We further invoke a last pair of dual hypotheses:

Assumption 2. The pair .A;D/ is stabilizable and the pair .A;H/ is detectable.

The Riccati equations are replaced by their stationary variants, still using (9.22):

SAC A0S � F 0RF C ��2SMS CQ D 0 ; (9.26)

†A0 C A† �KNK 0 C ��2†Q†CM D 0 : (9.27)

Theorem 4. Under condition 2, if the two algebraic Riccati equations (9.26)
and (9.27) have positive definite solutions, the minimal such solutions S? and †?

can be obtained as the limit of the Riccati equations (9.23) when integrating from
S.0/ D 0 backward and, respectively, (9.24) when integrating from †.0/ D 0

forward. If these solutions satisfy the condition �.†?S?/ < �2, then the same
formula as in Theorem 3 replacing S and † by S? and †?, respectively, provides
a solution to the stationary standard problem. If moreover the pair .A;B/ is
stabilizable and the pair .A; C / is detectable, there exists such a solution for
sufficiently small � .

If the existence or the spectral radius condition fails to hold, there is no solution
to the stationary standard problem for any smaller � .

The condition of positive definiteness of S? and †� can be slightly weakened,
leading to a slightly more precise theorem (see Başar and Bernhard 1995). But this
does not seem to be very useful in practice.
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3.2 Discrete Time

We consider now the discrete-time system where t 2 N:

xtC1 D Atxt C Btut CDtwt ; xt0 D x0 (9.28)

yt D Ctxt CEtwt ; (9.29)

zt D Htxt CGtut : (9.30)

where the system matrices may depend on the time t . We use notation (9.20), still
with assumption 1 for all t , and

NAt D At � BtR
�1
t P

0
t ;

eAt D At � L0
tN

�1
t Ct : (9.31)

We also invoke all along the following two dual hypotheses:

Assumption 3.

8t ; rank

�
At
Ht

�
D n ; rank .At Dt / D n :

We want to control the system with a strictly causal controller

ut D �t .t; y
t�1/ :

(See Başar and Bernhard (1995) for a nonstrictly causal controller or delayed
information controllers.)

3.2.1 Finite Horizon
We introduce two positive definite symmetric n � n matrices X and Y . The
augmented criterion is now

J D kxt1k
2
X C

t1�1X

tDt0

.kztk
2 � �2kwtk

2/ � �2kx0k
2
Y : (9.32)

We will not attempt to describe here the (nonlinear) discrete-time certainty equiva-
lence theorem used to solve this problem. (See Başar and Bernhard 1995; Bernhard
1994.) We go directly to the solution of the standard problem.

The various equations needed may take quite different forms. We choose one.
We need the following notation (note that �t and NSt involve StC1):
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�t D .S�1
tC1 C BtR

�1
t B

0
t � ��2Mt/

�1 ;

NSt D NA0
t .StC1 � ��2Mt /

�1 NAt CQt � PtR
�1
t P

0
t ;

�t D .†�1
t C C 0

t N
�1
t Ct � ��2Qt /

�1 :

e†tC1 D eAt.†�1
t � ��2Qt /

�1eA0
t CMt � L0

tN
�1
t Lt :

(9.33)

The two discrete Riccati equations may be written as

St D NA0
t�t

NAt CQt � PtR
�1
t P

0
t ; St1 D X ; (9.34)

†tC1 D eAt�t
eA0
t CMt � L0

tN
�1
t Lt ; †t0 D Y �1 : (9.35)

Theorem 5. Under the hypothesis 3, if both discrete Riccati equations (9.34)
and (9.35) have solutions satisfying either �.MtStC1/ < �

2 and �.e†tC1StC1/ < �2

or �.†tQt / < �2 and �.†t NSt / < �2, then the standard problem has a solution for
that value of � and any larger one, given by

u?t D �R�1
t .B

0
t �t

NAt C P 0
t /.I � ��2†tSt /

�1 Lxt ; (9.36)

LxtC1DAt Lxt C Btu
?
t C ��2eAt�t .Qt Lxt C Ptu

?
t /C .eAt�tC

0
t C L0

t /N
�1
t .yt � Ct Lxt /;

(9.37)

Lxt0D 0 : (9.38)

If any one of the above conditions fails to hold, then for any smaller � , the
criterion (9.32) has an infinite supremum for any strictly causal controller.

Remark 7.

1. Equation (9.37) is a one-step predictor allowing one to get the worst possible
state Oxt D .I � ��2†tSt /

�1 Lxt as a function of past ys up to s � t � 1.
2. Controller (9.36) is therefore a strictly causal, certainty equivalent controller.

3.2.2 Infinite Horizon Stationary Problem
We consider the same system as above, with all system matrices constant and with
the strengthened hypothesis (as compared to Assumption 2):

Assumption 4. The pair .A;D/ is controllable and the pair .A;H/ is observable.

The dynamics is to be understood with zero initial condition at �1, and we seek an
asymptotically stable and stabilizing controller. The criterion (9.32) is replaced by
a sum from �1 to 1, thus with no initial and terminal terms.
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The stationary versions of all the equations in the previous subsection are
obtained by removing the index t or t C 1 to all matrix-valued symbols.

Theorem 6. Under Assumption 4, if the stationary versions of (9.34) and (9.35)
have positive definite solutions, the smallest such solutions S? and †? are obtained
as, respectively, the limit of St when integrating (9.34) backward from S0 D 0 and
the limit of †t when integrating (9.35) forward from †0 D 0. If these limit values
satisfy either of the two spectral conditions in Theorem 5, the standard problem has
a solution for that value of � and any larger one, given by the stationary versions of
equations (9.36) and (9.37).

If any one of these conditions fails to hold, the supremum of J is infinite for all
strictly causal controllers.

4 Nonlinear Problems

4.1 Nonlinear H1 Control

There are many different ways to extend H1-optimal control theory to nonlinear
systems. A driving factor is how much we are willing to parametrize the system and
the controller. If one restricts its scope to a parametrized class of system equations
(see below) and/or to a more or less restricted class of compensators (e.g., finite
dimensional), then some more explicit results may be obtained, e.g., through special
Lyapunov functions and LMI approaches (see Coutinho et al. 2002; El Ghaoui and
Scorletti 1996), or passivity techniques (see Ball et al. 1993).

In this section, partial derivatives are denoted by indices.

4.1.1 A Finite Horizon Problem
As an example, we specialize Didinsky et al. (1993) for a problem slightly more
natural than the standard problem (9.10) in a nonlinear setup (see van der Schaft
1996), i.e., finding a control law such that the controlled system has finite L2-gain:

Definition 1. A system ! 7! z is said to have L2-gain less than or equal to � if
there exists a number ˇ such that

8! 2 � ; kzk2 � �2k!k2 C ˇ2 : (9.39)

We consider a nonlinear system defined by

Px D a.t; x; u/C b.t; x; u/w ; x.0/ D x0 ;

z.t/ D g.t; x; u/ ;

y.t/ D h.t; x/C v :
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We work over the time interval Œ0; T �. We use three symmetric matrices, R positive
definite and P and Q nonnegative definite, and take as the norm of the disturbance:

k!k2 D

Z T

0

�
kw.t/k2R C kv.t/k2P

�
dt C kx0k

2
Q :

Let also

B.t; x; u/ WD
1

4
b.t; x; u/R�1b0.t; x; u/ :

We use the following two HJCIB equations, where O' W Œ0; T � � R
n ! U is a state

feedback and Ou.t/ stands for the control actually used:

Vt .t; x/C Vx.t; x/a.t; x; O'.t; x//C ��2Vx.t; x/B.t; x; O'.t; x//V 0
x.t; x/

Ckg.t; x; O'.t; x//k2 D �p.t; x/ ; V .T; x/ D 0:
(9.40)

Wt.t; x/CWx.t; x/a.t; x; Ou.t//C ��2Wx.t; x/B.t; x; Ou.t//W 0
x.t; x/

Ckg.t; x; Ou.t//k2 D �2ky.t/ � h.t; x/k2 ; W .0; x/ D �2kxk2Q:

(9.41)

Theorem 7.

1. If there exists an admissible state feedback O', a nonnegative C1 function p and
a C1 function V satisfying equation (9.40), then the strategy u.t/ D O'.t; x.t//

solves the state feedback finite gain problem (9.39).
2. If furthermore, V is C2, and there exists for all pairs .Ou.�/; y.�// a C2 functionW

solution of equation (9.41), and Ox.t/ in (9.14) is always unique, then the strategy
u.t/ D O'.t; Ox.t// solves the output feedback finite gain problem (9.39). Moreover,
Ox.t/ may be computed recursively according to the equation

POx D a.t; Ox; O'.t; Ox//C 2��2B.t; Ox; O'.t; Ox//Vx.t; Ox/0

� ŒVxx.t; Ox/ �Wxx.t; Ox/��1
	
2�2hx.t; Ox/0P .y � h.t; Ox// � px.t; Ox/0



;

Ox.0/ D Arg min
x

h
V .0; x/ � �2kxk2Q

i
:

Remark 8. Although Ox is given by this ordinary differential equation, yet this is not
a finite-dimensional controller since the partial differential equation (9.41) must be
integrated in real time.

4.1.2 Stationary Problem
We choose to just show a slight extension of the result of Sect. 2.2.2 applied to
the investigation of the standard problem (9.10), for a more general system, and
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requiring less regularity, than in the previous subsection. Let therefore a system be
defined as in (9.5) with x.0/ D x0, (9.6), and (9.7), but with f , g, and h time
independent. Let also

L.x; u;w/ D kg.x; u/k2 � �2kwk2 : (9.42)

We want to find a nonanticipative control law u.�/ D O�.y.�// that would guarantee
that there exists a number ˇ such that the control Ou.�/ and the state trajectory x.�/
generated always satisfy

8.x0;w.�// 2 � ; J .Ou.�/;w.�// D

Z 1

0

L.x.t/; Ou.t/;w.t// dt � ˇ2 : (9.43)

We leave it to the reader to specialize the result below to the case (9.42), and further
to such system equations as used, e.g., in Ball et al. (1993) and Coutinho et al.
(2002).

We need the following two HJCIB equations, using a control feedback O'.x/ and
the control Ou.t/ actually used:

8x 2 R
n ; inf

w2W
Œ�Vx.x/f .x; O'.x/;w/ � L.x; O'.x/;w/� D 0 ; V .0/ D 0 ;

(9.44)
and, 8x 2 R

n,

inf
wjy.t/

Œ�Wt.t; x/ �Wx.t; x/f .t; Ou.t/;w/ � L.x; Ou.t/;w/� D 0 ; W .0; x/ D 0 ;

(9.45)
(by infwjy.t/ we mean infwjh.t;x;w/Dy.t/). Let X.t/ be the set of reachable states at
time t from any x0 with O' and a minimizing w in (9.45), and Ox.t/ defined as

V . Ox.t// �W .t; Ox.t// D max
x2X.t/

ŒV .x/ �W .t; x/� : (9.46)

Theorem 8.

1. The state feedback problem (9.43) has a solution if and only if there exists an
admissible stabilizing state feedback O'.x/ and a BUC viscosity supersolution1

V .x/ of equation (9.44). Then, u.t/ D O'.x.t// is a solution.
2. If, furthermore, there exists for every pair .Ou.�/; y.�// 2 U � Y a BUC viscosity

solution W .t; x/ of equation (9.45) in Œ0;1/ � R
n, and if, furthermore, there

is for all t � 0 a unique Ox.t/ satisfying equation (9.46), then the controller
u.t/ D O'. Ox.t// solves the output feedback problem (9.43).

1See Barles (1994) and Bardi and Capuzzo-Dolcetta (1997) for a definition and fundamental
properties.
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Remark 9.

1. A supersolution of equation (9.44) may make the left-hand side strictly positive.
2. Equation (9.45), to be integrated in real time, behaves as an observer. More

precisely, it is the counterpart for the conditional cost measure of Kushner’s
equation of nonlinear filtering (see Daum 2015) for the conditional probability
measure.

If equation (9.44) has no finite solution, then the full state information H1 control
problem has no solution, and, not surprisingly, nor does the standard problem
with partial corrupted information considered here. (See van der Schaft 1996.) But
in sufficiently extreme cases, we may also detect problems where the available
information is the reason why there is no solution:

Theorem 9. If equation (9.44) has no finite solution, or, if V is a viscosity solution
of (9.44) and, for all .Ou.�/; y.�//, either (9.45) has no finite solution or V � W is
unbounded by above, then there is no causal controller that can keep the criterion
bounded against all w.�/.

It is due to its special structure that in the linear quadratic problem, either of the
above two theorems applies.

4.2 Option Pricing in Finance

As an example of the use of the ideas of Sect. 2.1.1 in a very different dynamic
context, we sketch here an application to the emblematic problem of mathematical
finance, the problem of option pricing. The present theory is therefore an alternative
to Black and Scholes’ famous one, using a set description of the disturbances instead
of a stochastic one.2 As compared to the latter, the former allows us to include in a
natural fashion transaction costs and also discrete-time trading.

Many types of options are traded on various markets. As an example, we will
emphasize here European “vanilla” buy options, or Call, and sell options, or Put,
with closure in kind. Many other types are covered by several similar or related
methods in Bernhard et al. (2013).

The treatment here follows (Bernhard et al. 2013, Part 3), but it is quite
symptomatic that independent works using similar ideas emerged around the year
2000, although they generally appeared in print much later. See the introduction of
Bernhard et al. (2013).

2See, however, in (Bernhard et al. 2013, Chap. 2) a probability-free derivation of Black and
Scholes’ formula.
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4.2.1 The Problem

Portfolio
For the sake of simplicity, we assume an economy without interest rate nor inflation.
The contract is signed at time 0 and ends at the exercise time T . It bears upon a single
financial security whose price u.t/ varies with time in an unpredictable manner.
We take as the disturbance in this problem its relative rate of growth Pu=u D  .
In the Black and Scholes theory,  is modeled as a stochastic process, the sum
of a deterministic drift and of a “white noise.” In keeping with the topic of this
chapter, we will not make it a stochastic process. Instead, we assume that two
numbers are known, � < 0 and C > 0, and all we assume is boundedness and
measurability:

8t 2 Œ0; T � ; .t/ 2 Œ�; C� and .�/ 2 � D M.Œ0; T � ! Œ�; C�/ :

(9.47)

A portfolio is made of two components: shares of the security for a monetary
amount v.t/ and an amount y.t/ of currency, for a total worth v C y D w. Both v
and y may be positive, of course, but also negative through futures for v, a “short”
portfolio, and borrowing for y. All variables may vary continuously.

A trader manages the portfolio in a self-financed fashion, meaning that he buys
or sells shares of the security, withdrawing the money to buy from the currency part
y of the portfolio, or adding to it the proceeds of the sales. In Merton’s “continuous
trading” fiction, the trader may trade at a continuous rate �.t/, taken positive for a
buy and negative for a sale. But he can also trade a finite block of shares instantly,
resulting in jumps in v.�/, represented by impulses in �.�/. We will therefore allow
a finite sum

�.t/ D �c.t/C
X

k

�kı.t � tk/ , �.�/ 2 „

with �c.�/ a measurable real function and ftkg � Œ0; T � and f�kg � R two finite
sequences, all chosen by the trader. We call „ the set of such distributions.

There are transaction costs incurred in any transaction that we will assume to
be proportional to the amount of the transaction, with proportionality coefficients
C�< 0 for a sale of shares of the security and CC> 0 for a buy. We will write these
transaction costs as C"h�i with the convention that this means that " D sign.�/. The
same convention holds for such notation as "hXi, or later q"hXi.

This results in the following control system, where the disturbance is  and the
control �:

Pu D u ; .�/ 2 � (9.48)

Pv D v C � ; �.�/ 2 „ ; (9.49)

Pw D v � C"h�i ; (9.50)
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which the trader controls through a nonanticipative strategy �.�/ D �.u.�//, which
may in practice take the form of a state feedback �.t/ D '.t; u.t/; v.t// with an
additional rule saying when to make impulses, i.e., jumps in v, and by what amount.

Hedging
A terminal payment by the trader is defined in the contract, in reference to an
exercise priceK. Adding to it the closure transactions costs with rates c� 2 ŒC�; 0�

and cC 2 Œ0; CC�, the total terminal payment can be formulated with the help of two
auxiliary functions Ov.T; u/ and Ow.T; u/ depending on the type of option considered
according to the following table:

Closure in kind u � K

1CcC

K

1CcC
� u � K

1Cc�

K
1Cc�

� u

Call
Ov.T; u/ 0

.1CcC/u�K

cC�c�
u

Ow.T; u/ 0 �c� Ov.T; u/ u �K

Put
Ov.T; u/ �u .1Cc�/u�K

cC�c�
0

Ow.T; u/ K � u �cC Ov.u/ 0

(9.51)

And the total terminal payment is M.u.T /; v.T //, with

M.u; v/ D Ow.T; u/C c"h Ov.T; u/ � vi : (9.52)

Definition 2. An initial portfolio .v.0/;w.0// and a trading strategy � constitute a
hedge at u.0/ if they ensure

8.�/ 2 � ; w.T / � M.u.T /; v.T // ; (9.53)

meaning that the final worth of the portfolio is enough to cover the payment owed
by the trader according to the contract signed. It follows from (9.50) that (9.53) is
equivalent to:

8.�/ 2 � ; M.u.T /; v.T //C

Z T

0

�
�.t/v.t/C C"h�.t/i

�
dt � w.0/ ;

a typical guaranteed value according to Sect. 2.1.1. Moreover, the trader wishes to
construct the cheapest possible hedge and hence solve the problem:

min
�2ˆ

sup
.�/2�

�
M.u.T /; v.T //C

Z T

0

�
�.t/v.t/C C"h�.t/i

�
dt

�
: (9.54)

Let V .t; u; v/ be the Value function associated with the differential game defined
by (9.48), (9.49), and (9.54). The premium to be charged to the buyer of the contract,
if u.0/ D u0, is
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P .u0/ D V .0; u0; 0/ :

This problem defines the so-called robust control approach to option pricing. An
extensive use of differential game theory yields the following results.

4.2.2 The Solution
Because of the impulses allowed in the control, Isaacs’ equation is replaced by the
following differential quasi-variational inequality (DQVI):

8.t; u; v/ 2 Œ0; T / � RC � R ;

max
n
�Vt � "hVuu C .Vv � 1/vi ; �.Vv C CC/ ; Vv C C�

o
D 0 ;

8.u; v/ 2 RC � R ; V .T; u; v/ D M.u; v/ :

9
>>>>=

>>>>;

(9.55)

Theorem 10. The Value function associated with the differential game defined
by equations (9.48) (9.49), and (9.54) is the unique Lipshitz continuous viscosity
solution of the differential variational inequality (9.55).

Solving the DQVI (9.55) may be done with the help of the following auxiliary
functions. We define

q�.t/ D maxf.1C c�/ expŒ�.T � t /� � 1 ; C�g ;

qC.t/ D minf.1C cC/ expŒC.T � t /� � 1 ; CCg :

Note that, for " 2 f�;Cg, q" D C" for t � t" and increases (" D C) or decreases
(" D �) toward c" as t ! T , with:

t" D T �
1

"
ln

�
1C C"

1C c"

�
: (9.56)

We also introduce the constant matrix S and the variable matrix T .t/ defined by

S D

�
1 0

1 0

�
; T D

1

qC � q�

�
CqC � �q� C � �

�.C � �/qCq� �qC � Cq�

�
:

Finally, we name collectively two functions:

W .t; u/ D

�
Ov.t; u/
Ow.t; u/

�

involved in the pair of coupled linear partial differential equations
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Wt C T .Wuu � SW / D 0 : (9.57)

with the boundary conditions (9.51).

Theorem 11.

• The partial differential equation (9.57) with boundary conditions (9.51) has a
unique solution.

• The Value function of the game (9.48), (9.49), and (9.54) (i.e., the unique Lipshitz
continuous viscosity solution of (9.55)) is given by

V .t; u; v/ D Ow.t; u/C q".t/h Ov.t; u/ � vi : (9.58)

• The optimal hedging strategy, starting with an initial wealth w.0/ D P .u.0//, is
to make an initial jump to v D Ov.0; u.0// and keep v.t/ D Ov.t; u.t// as long as
t < t" as given by (9.56) and do nothing for t � t", with " D signŒ Ov.t; u.t// �

v.t/�.

Remark 10.

• In practice, for classic options, T � t" is very small (typically less than one day)
so that a simplified trading strategy is obtained by choosing q" D C", and if T is
not extremely small, P .u0/ D Ow.0; u0/C C"h Ov.0; u0/i.

• The curve P .u/ for realistic Œ�; C� is qualitatively similar to that of the Black
and Scholes theory, usually larger because of the trading costs not accounted for
in the classic theory.

• The larger the interval Œ�; C� chosen, the larger P .u/. Hence the choice of
these bounds is a critical step in applying this theory. The hedge has been found
to be very robust against occasional violations of the bounds in (9.47).

4.2.3 Discrete-Time Trading
One of the advantages to relinquish the traditional “geometric diffusion” stochastic
model for the disturbance .�/ is to allow for a coherent theory of discrete-time
trading. Let therefore h D T =N be a time step, with N 2 N. Assume the trader is
allowed to do some trading only at instants tk D kh, k 2 N. This means that we
keep only the impulsive part of �.�/ and fix the impulse instants tk . We therefore have
restricted the available trader’s choices, thus we will end up with a larger premium.

We need now the parameters

"h D eh
"

� 1 ; " 2 f�;Cg :

We write uk; vk;wk for u.tk/; v.tk/;w.tk/. An exact discretization of our system is
therefore as follows, with k 2 Œ�

h ; 
C
h �:
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ukC1 D .1C k/uk ; (9.59)

vkC1 D .1C k/.vk C �k/ ; (9.60)

wkC1 D wk C k.vk C �k/ � C"h�ki : (9.61)

The Value function of the restricted game is denoted by V h
k .uk; vk/.

Theorem 12. The Value function fV h
k g satisfies the Isaacs recurrence equation:

V h
k .u; v/ D min

�
max

2Œ�

h ;
C

h �

	
V h
kC1..1C /u; .1C /.v C �// � .v C �/C C"h�i



;

8.u; v/ 2 RC � R ; V h
N .u; v/ D M.u; v/ :

(9.62)

Moreover, if one defines V h.t; u; v/ as the Value of the game where the trader
(maximizer) is allowed to make one jump at initial time, and then only at times
tk as above, we have:

Theorem 13. The function V h interpolates the sequence fV h
k g in the sense that, for

all .u; v/, V h.tk; u; v/ D V h
k .u; v/. As the step size is subdivided and goes to zero

(e.g., h D T =2d , d ! 1), the function V h.t; u; v/ decreases and converges to the
function V .t; u; v/ uniformly on any compact in .u; v/.

Finally, one may extend the representation formula (9.58), just replacing Ov and Ow by
Ovhk and Owhk given collectively by a carefully chosen finite difference approximation
of equation (9.57) (but the representation formula is then exact) as follows:

Let q"k D q".tk/ be alternatively given by q"N D c" and the recursion

q"
kC 1

2

D .1C "h/q
"
kC1 C "h ;

q�
k D maxfq�

kC 1
2

; C�g ; qC
k D minfqC

kC 1
2

; CCg :

Also, let

Q"
k D . q"k 1 / ; W h

k .u/ D

�
Ovhk.u/
Owhk.u/

�
:

The following algorithm is derived from a detailed analysis of equation (9.62):

W h
k .u/ D 1

q
C

kC
1
2

�q�

kC
1
2

 
1 �1

�q�
kC 1

2

qC

kC 1
2

!�
QC
kC1W

h
kC1..1C C

h /u/
Q�
kC1W

h
kC1..1C �

h /u/

�
;

W h
N .u/ D W .T; u/ :
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And as previously,

V h
k .u; v/ D Owhk.u/C q"k

˝
Ovhk.u/ � v

˛
;

and for all practical purposes, P .u0/ D Owh0.u0/C C"
˝
Ovh0 .u0/

˛
.

5 Conclusion

As stated in the introduction, game theoretic methods are only one part, may be a
prominent one, of modern robust control. They typically cover a wide spectrum of
potential applications, their limitations being in the difficulty to solve a nonlinear
dynamic game, often with imperfect information. Any advances in this area would
instantly translate into advances in robust control.

The powerful theory of linear quadratic games coupled with the min-max
certainty equivalence principle makes it possible to efficiently solve the linear
H1-optimal control problem, while the last example above shows that some very
nonlinear problems may also receive a rather explicit solution via these game
theoretic methods.
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Başar T, Olsder G-J (1982) Dynamic noncooperative game theory. Academic Press, London/

New York
Bensoussan A, Bernhard P (1993) On the standard problem of H1-optimal control for infinite

dimensional systems. In: Identification and control of systems governed by patial differential
equations (South Hadley, 1992). SIAM, Philadelphia, pp 117–140

Berkowitz L (1971) Lectures on differential games. In: Kuhn HW, Szegö GP (eds) Differential
games and related topics. North Holland, Amsterdam, pp 3–45

Bernhard P (1994) A min-max certainty equivalence principle for nonlinear discrete time control
problems. Syst Control Lett 24:229–234

Bernhard P, Rapaport A (1996) Min-max cetainty equivalence principle and differential games.
Int J Robust Nonlinear Control 6:825–842



460 P. Bernhard

Bernhard P, Engwerda J, Roorda B, Schumacher H, Kolokoltsov V, Aubin J-P, Saint-Pierre
P (2013) The interval market model in mathematical finance: a game theoretic approach.
Birkhaüser, New York

Corless MJ, Leitman G (1981) Continuous state feedback guaranteeing uniform ultimate
boundedness for uncertain dynamic systems. IEEE Trans Autom Control 26:1139–1144

Coutinho DF, Trofino A, Fu M (2002) Nonlinear H-infinity control: an LMI approach. In: 15th
trienal IFAC world congress. IFAC, Barcelona, Spain

Daum FE (2015) Nonlinear filters. In: Samad T, Ballieul J (eds) Encyclopedia of systems and
control. Springer, London, pp 870–876
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with a finite set of pure strategies where payoffs result from random one-time
interactions between pairs of individuals (i.e., on matrix games). The theory
has been extended in many directions (including nonrandom, multiplayer, or
asymmetric interactions and games with continuous strategy (or trait) spaces) and
has become increasingly important for analyzing human and/or social behavior
as well. This chapter initially summarizes features of matrix games before
showing how the theory changes when the two-player game has a continuum
of traits or interactions become asymmetric. Its focus is on the connection
between static game-theoretic solution concepts (e.g., ESS, CSS, NIS) and stable
evolutionary outcomes for deterministic evolutionary game dynamics (e.g., the
replicator equation, adaptive dynamics).

Keywords
ESS � CSS � NIS � Neighborhood superiority � Evolutionary game dynamics �

Replicator equation � Adaptive dynamics � Darwinian dynamics

1 Introduction

Evolutionary game theory developed as a means to predict the expected distribution
of individual behaviors in a biological system with a single species that evolves
under natural selection (Maynard Smith 1974; Maynard Smith and Price 1973). The
theory’s predictions of equilibrium behavior correspond to intuitive static solutions
of the game formed through fitness (i.e., payoff) comparisons of different behaviors
(i.e., strategies). A fundamental result is that, at a stable behavioral distribution, no
individual in the population can increase its fitness by unilaterally changing strategy
(see, e.g., condition (1) below). That is, a stable outcome for natural selection
implies individuals will exhibit Nash equilibrium (NE) behavior (Nash 1950, 1951),
a result that has come to be known as one aspect of the Folk Theorem of evolutionary
game theory (Broom and Rychtar 2013; Cressman 2003; Hofbauer and Sigmund
1998, 2003; Sandholm 2010) given in Theorem 1 below.

However, as we will see, stability requires more than NE. The most common
additional requirement, introduced already by Maynard Smith and Price (1973), is
that of an evolutionarily stable strategy (ESS). According to John Maynard Smith
(1982, page 10) in his influential book, Evolution and the Theory of Games, an ESS
is “a strategy such that, if all members of the population adopt it, then no mutant
strategy could invade the population under the influence of natural selection.” He
goes on to argue that his definition, which seems heuristically related to stability of
a monomorphic resident strategy with respect to the invasion dynamics of mutants,
is equivalent to the standard one (Definition 1 below) given through static payoff
comparisons when the evolutionary game and invasion dynamics are modeled
as in Sect. 2.1 by a symmetric normal form game and the replicator equation,
respectively.
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In fact, as illustrated throughout this article, there is a complex relationship
between the static stability conditions (such as the ESS) and stability with respect to
game dynamics (such as the replicator equation). It is this relationship that formed
the initial basis of what is now known as evolutionary game theory.

Evolutionary game theory has long since expanded beyond its biological roots
and become increasingly important for analyzing human and/or social behavior.
Here, changes in strategy frequencies do not result from natural selection; rather,
individuals (or societies) alter their behavior based on payoff consequences. The
replicator equation then emerges from, for instance, individuals making rational
decisions on how to imitate observed strategies that currently receive higher payoff
(Schlag 1997). Depending on what information these decision-makers have (and
how they use this information), a vast array of other game dynamics are possible
(Hofbauer and Sigmund 2003; Sandholm 2010; Sigmund 2011). Evolutionary game
theory has also become a standard method to choose among the many NE that often
arise in these models of human interactions between players that can be individuals
or other economic entities such as firms or even nations (e.g., Samuelson 1997;
Sandholm 2010). Thus, the ESS can be viewed as an NE refinement or equilibrium
selection technique.

It is in this latter capacity that evolutionary game theory initially gained
prominence in the economic literature when applied to rational decision-making
in classical noncooperative, symmetric games in either normal form or extensive
form (see van Damme (1991) and Samuelson (1997) and the references therein).
From this perspective, evolutionary games often consider other deterministic or
stochastic evolutionary dynamics besides the replicator equation since these are
thought to better represent decision-making applied to economic or learning models
(Cressman 2003; Fudenberg and Levine 1998; Gintis 2000; Hofbauer and Sigmund
1998; Mesterton-Gibbons 2000; Nowak 2006; Sandholm 2010; Vega-Redondo
1996; Weibull 1995; Young 1998).

The biological perspective of evolutionary game theory has been summarized in
several survey monographs and books (e.g., Bomze and Pötscher 1989; Broom and
Rychtar 2013; Cressman 1992; Hines 1987; Hofbauer and Sigmund 1988, 1998;
Mesterton-Gibbons 2000; Sigmund 1993; Vincent and Brown 2005).

Evolutionary game theory and its corresponding game dynamics have also
expanded well beyond their initial emphasis on single-species games with a finite
set of pure strategies where payoffs result from random one-time interactions
between pairs of individuals (i.e., two-player symmetric normal form games or,
more simply, matrix games). In this chapter, we highlight features of matrix games
in the following section before investigating in Sect. 3 how the theory changes
when the symmetric game has a continuum of pure strategies (or traits). Section 4
then generalizes the theory developed in Sects. 2 and 3 to asymmetric games.
Specifically, two-player games with two roles are examined that either have finitely
many pure strategies in each role (in normal or extensive form) or have a one-
dimensional continuous trait space in each role.
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2 Evolutionary Game Theory for Symmetric Normal Form
Games

2.1 The ESS and Invasion Dynamics

The relationship between the ESS and stability of game dynamics is most clear
when individuals in a single species can use only two possible strategies, denoted
p� and p to match notation used later in this article, and payoffs are linear. Suppose
that �.p; Op/ is the payoff to a strategy p used against strategy Op. In biological
terms, �.p; Op/ is the fitness of an individual using strategy p in a large population
exhibiting behavior Op.1 Then, an individual in a monomorphic population where
everyone uses p� cannot improve its fitness by switching to p if

�.p; p�/ � �.p�; p�/ NE condition. (10.1)

If p playing against p� does equally as well as p� playing against p� (i.e., if
�.p; p�/ D �.p�; p�/), then stability requires the extra condition that p� must
do better than p in their rare contests against p. That is,

�.p; p/ < �.p�; p/ if �.p; p�/ D �.p�; p�/ stability condition. (10.2)

For the game with strategies p� and p, p� is defined to be an ESS if it satisfies
conditions (10.1) and (10.2).

To see why both these conditions are necessary for dynamic stability, under the
assumption of Maynard Smith (1982) that “like begets like,” the per capita change
in the number of individuals using strategy p is its expected payoff. This leads
to the following continuous-time invasion dynamics of a resident monomorphic
population p� by a small proportion " of mutants using p.

P" D "
�
�.p; "p C .1 � "/p�/ � �."p C .1 � "/p�; "p C .1 � "/p�/

�

D ".1 � "/
�
�.p; "p C .1 � "/p�/ � �.p�; "p C .1 � "/p�/

�
(10.3)

D ".1 � "/
�
.1 � "/.�.p; p�/ � �.p�; p�// C ".�.p; p/ � �.p�; p//

�

Here, we have used repeatedly that payoffs �.p; Op/ are linear in both p and Op. In
fact, this is the replicator equation of Sect. 2.2 for the matrix game with two pure
strategies, p and p�, and payoff matrix (10.5).

1In the basic biological model for evolutionary games, individuals are assumed to engage in
random pairwise interactions. Moreover, the population is assumed to be large enough that an
individual’s fitness (i.e., reproductive success) �.p; Op/ is the expected payoff of p if the average
strategy in the population is Op. In these circumstances, it is often stated that the population is
effectively infinite in that there are no effects due to finite population size. Such stochastic effects
are discussed briefly in the final section.
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If p� is a strict NE (i.e., the inequality in (10.1) is strict), then P" < 0 for all
positive " that are close to 0 since .1 � "/.�.p; p�/ � �.p�; p�// is the dominant
term corresponding to the common interactions against p�. Furthermore, if this term
is 0 (i.e., if p� is not strict), we still have P" < 0 from the stability condition (10.2)
corresponding to the less common interactions against p. Conversely, if P" < 0

for all positive " that are close to 0, then p� satisfies (10.1) and (10.2). Thus, the
resident population p� (i.e., " D 0) is locally asymptotically stable2 under (10.3)
(i.e., there is dynamic stability at p� under the replicator equation) if and only if p�

satisfies (10.1) and (10.2).
In fact, dynamic stability occurs at such a p� in these two-strategy games for

any game dynamics whereby the proportion (or frequency) of users of strategy Op

increases if and only if its expected payoff is higher than that of the alternative
strategy. We then have the result that p� is an ESS if and only if it satisfies (10.1)
and (10.2) if and only if it is dynamically stable with respect to any such game
dynamics.

These results assume that there is a resident strategy p� and a single mutant
strategy p. If there are other possible mutant strategies, an ESS p� must be locally
asymptotically stable under (10.3) for any such p in keeping with Maynard Smith’s
(1982) dictum that no mutant strategy can invade. That is, p� is an ESS if and only
if it satisfies (10.1) and (10.2) for all mutant strategies p (see also Definition 1 (b)
of Sect. 2.2).

2.2 The ESS and the Replicator Equation for Matrix Games

In an evolutionary game with symmetric normal form, the population consists of
individuals who must all use one of finitely many (say m) possible behaviors at
any particular instant in time. These strategies are denoted ei for i D 1; : : : ; m

and called pure strategies. Moreover, S � fe1; : : : ; emg is called the pure-strategy
set. An individual may also use a mixed strategy in �m � fp D .p1; : : : ; pm/ jPm

iD1 pi D 1; pi � 0g where pi is the proportion of the time this individual uses
pure strategy ei . If population size is large and the components of Op 2 �m are the
current frequencies of strategies used in the population (i.e., Op is the population
state), then the payoff of an individual using p in a random pairwise interaction is
given explicitly through the bilinear payoff function of the (two-player) symmetric
normal form game, �.p; Op/ �

Pm
i;j D1 pi �.ei ; ej / Opj , where, as before, �.ei ; ej / is

the payoff to ei against ej .

2Clearly, the unit interval Œ0; 1� is (forward) invariant under the dynamics (10.3) (i.e., if ".t/ is the
unique solution of (10.3) with initial value ".0/ 2 Œ0; 1�, then ".t/ 2 Œ0; 1� for all t � 0). The rest
point " D 0 is (Lyapunov) stable if, for every neighborhood U of 0 relative to Œ0; 1�, there exists a
neighborhood V of 0 such that ".t/ 2 U for all t � 0 if ".0/ 2 V \ Œ0; 1�. It is attracting if, for
some neighborhood U of 0 relative to Œ0; 1�, ".t/ converges to 0 whenever ".0/ 2 U . It is (locally)
asymptotically stable if it is both stable and attracting. Throughout the chapter, dynamic stability
is equated to local asymptotic stability.
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Based on this linearity, the following notation is commonly used for these games.
Let ei be represented by the ith unit column vector in Rm and �.ei ; ej / by entry Aij

in an m�m payoff matrix A. Then, with vectors in �m thought of as column vectors,
�.p; Op/ is the inner product p � A Op of the two column vectors p and A Op. For this
reason, symmetric normal form games are often called matrix games with payoffs
given in this latter form.

To obtain the continuous-time, pure-strategy replicator equation (10.4) following
the original fitness approach of Taylor and Jonker (1978), individuals are assumed
to use pure strategies and the per capita growth rate in the number ni of individuals
using strategy ei at time t is taken as the expected payoff of ei from a single
interaction with a random individual in the large population. That is, Pni D

ni

Pm
j D1 �.ei ; ej /pj � ni �.ei ; p/ where p is the population state in the (mixed)

strategy simplex �m with components pi D ni =
Pm

j D1 nj the proportion of the
population using strategy ei at time t .3 A straightforward calculus exercise4 yields
the replicator equation on �m

Ppi D pi .�.ei ; p/ � �.p; p// for i D 1; : : : ; m (10.4)

where �.p; p/ D
Pm

j D1 pj �.ej ; p/ is the average payoff of an individual chosen at
random (i.e., the population mean payoff). From the theory of dynamical systems,
trajectories of (10.4) leave the interior of �m forward invariant as well as each of its
faces (Hofbauer and Sigmund 1998).

The replicator equation can be applied to the two-strategy game (on p� and p)
of Sect. 2.1 by taking these as the pure strategies with corresponding payoff matrix

3The approach of Taylor and Jonker (1978) also relies on the population being large enough (or
effectively infinite) so that ni and pi are considered to be continuous variables.
4With N �

Pm
j D1 nj the total population size,

Ppi D
Pni N � ni

Pm
j D1 Pnj

N 2

D
ni �.ei ; p/ � pi

Pm
j D1 nj �.ej ; p/

N

D pi �.ei ; p/ � pi

mX

j D1

pj �.ej ; p/

D pi .�.ei ; p/ � �.p; p//

for i D 1; : : : ; m. This is the replicator equation (10.4) in the main text. Since Ppi D 0 when pi D 0

and
Pm

1D1 Ppi D �.p; p/ � �.p; p/ D 0 when p 2 �m, the interior of �m is invariant as well
as all its (sub)faces under (10.4). Since �m is compact, there is a unique solution of (10.4) for all
t � 0 for a given initial population state p.0/ 2 �m. That is, �m is forward invariant under (10.4).
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p� p

p�

p

�
�.p�; p�/ �.p�; p/

�.p; p�/ �.p; p/

�
: (10.5)

With " the proportion using strategy p (and 1 � " using p�), the one-dimensional
replicator equation is given by (10.3). Then, from Sect. 2.1, p� is an ESS of the
matrix game on �m if and only if it is locally asymptotically stable under (10.3) for
all choices of mutant strategies p 2 �m with p ¤ p� (see also Definition 1 (b)
below).

The replicator equation (10.4) for matrix games is the first and most important
game dynamics studied in connection with evolutionary game theory. It was defined
by Taylor and Jonker (1978) (see also Hofbauer et al. 1979) and named by Schuster
and Sigmund (1983). Important properties of the replicator equation are briefly
summarized for this case in the Folk Theorem and Theorem 2 of the following
section, including the convergence to and stability of the NE and ESS. The theory
has been extended to other game dynamics for symmetric games (e.g., the best
response dynamics and adaptive dynamics). The replicator equation has also been
extended to many other types of symmetric games (e.g., multiplayer, population,
and games with continuous strategy spaces) as well as to corresponding types of
asymmetric games.

To summarize Sects. 2.1 and 2.2, we have the following definition.

Definition 1. Consider a matrix game on �m.

(a) p� 2 �m is a (symmetric) NE if it satisfies (10.1) for all p 2 �m.
(b) p� 2 �m is an ESS if it is an NE that satisfies (10.2) for all p 2 �m with

p ¤ p�.
(c) The (pure strategy) replicator equation on �m is

Ppi D pi .�.ei ; p/ � �.p; p// for i D 1; : : : ; m:

2.3 The Folk Theorem of Evolutionary Game Theory

Theorem 1. The replicator equation for a matrix game on �m satisfies:

(a) A stable rest point is an NE.
(b) A convergent trajectory in the interior of �m evolves to an NE.
(c) A strict NE is locally asymptotically stable.

Theorem 1 is the Folk Theorem of evolutionary game theory (Cressman 2003;
Hofbauer and Sigmund 1998, 2003) applied to the replicator equation. The three
conclusions are true for many matrix game dynamics (in either discrete or contin-
uous time) and serve as a benchmark to test dynamical systems methods applied
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to general game dynamics and to non-matrix evolutionary games such as those
considered in the remaining sections of this chapter.

The Folk Theorem means that biologists can predict the evolutionary outcome of
their stable systems by examining NE behavior of the underlying game. It is as if
individuals in these systems are rational decision-makers when in reality it is natural
selection through reproductive fitness that drives the system to its stable outcome.
This has produced a paradigm shift toward strategic reasoning in population biology.
The profound influence it has had on the analysis of behavioral ecology is greater
than earlier game-theoretic methods applied to biology such as Fisher’s (1930)
argument (see also Darwin 1871; Hamilton 1967; Broom and Krivan (�Chap. 23,
“Biology and Evolutionary Games”, this volume)) for the prevalence of the 50:50
sex ratio in diploid species and Hamilton’s (1964) theory of kin selection.

The importance of strategic reasoning in population biology is further enhanced
by the following result.

Theorem 2. Consider a matrix game on �m.

(a) p� is an ESS of the game if and only if �.p�; p/ > �.p; p/ for all p 2 �m

sufficiently close (but not equal) to p�.
(b) An ESS p� is a locally asymptotically stable rest point of the replicator

equation (10.4).
(c) An ESS p� in the interior of �m is a globally asymptotically stable rest point of

the replicator equation (10.4).

The equivalent condition for an ESS contained in part (a) is the more useful
characterization when generalizing the ESS concept to other evolutionary games.5

It is called locally superior (Weibull 1995), neighborhood invader strategy (Apaloo
2006), or neighborhood superior (Cressman 2010). One reason for different names
for this concept is that there are several ways to generalize local superiority to other
evolutionary games and these have different stability consequences.

From parts (b) and (c), if p� is an ESS with full support (i.e., the support fi j

p�
i > 0g of p� is f1; 2; : : : ; mg), then it is the only ESS. This result easily extends to

the Bishop-Cannings theorem (Bishop and Cannings 1976) that the support of one
ESS cannot be contained in the support of another, an extremely useful property
when classifying the possible ESS structure of matrix games (Broom and Rychtar
2013). Haigh (1975) provides a procedure for finding ESSs in matrix games based
on such results.

Parts (b) and (c) were an early success of evolutionary game theory since stability
of the predicted evolutionary outcome under the replicator equation is assured
at an ESS not only for the invasion of p� by a subpopulation using a single

5The proof of this equivalence relies on the compactness of �m and the bilinearity of the payoff
function �.p; q/ as shown by Hofbauer and Sigmund (1998).
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mutant strategy p but also by multiple pure strategies. In fact, if individuals use
mixed strategies for which some distribution have average strategy p�, then p� is
asymptotically stable under all corresponding mixed-strategy replicator equations if
and only if p� is an ESS (see the strong stability concept of Cressman 1992 and
Hofbauer and Sigmund 1998). That is, stable evolutionary outcomes with respect
to mixed-strategy replicator equations are equivalent to the ESS. Moreover, the
converse of part (b) for the pure-strategy replicator equation (i.e., for (10.4)) is
true when there are two pure strategies (i.e., m D 2). The three categories of such
games (Hawk-Dove, Prisoner’s Dilemma, and Coordination games) are classified
and analyzed in Weibull (1995) (see also Broom and Krivan’s (�Chap. 23, “Biology
and Evolutionary Games”) for the Hawk-Dove and Prisoner’s Dilemma games).

However, there already exist non-ESS strategies p in three-strategy symmetric
normal form games (i.e., for m D 3) that are asymptotically stable under (10.4)
(such strategies p must be NE by the Folk Theorem). Broom and Krivan also pro-
vide a biologically relevant illustration of this phenomenon based on a generalized
Rock-Scissors-Paper (RSP) game that exhibits cyclic dominance since P strictly
dominates in the two-strategy fR; P g game, S strictly dominates in the two-strategy
fP; Sg game, and R strictly dominates in the two-strategy fR; Sg game. These
games always have a unique NE p� (that must be in the interior), but conditions
on payoff matrix entries for p� to be an ESS are different than those for stability
with respect to (10.4).

The most elegant proof (Hofbauer et al. 1979) of the stability statements in

parts (b) and (c) shows that V .p/ �
Q

p
p�

i

i where the product is taken over
fi W p�

i > 0g is a strict local Lyapunov function (i.e., V .p�/ > V .p/ and
PV .p/ D V .p/ .�.p�; p/ � �.p; p// > 0 for all p 2 �m sufficiently close but

not equal to an ESS p�).6 It is tempting to add these stability statements to the Folk
Theorem since they remain valid for many matrix game dynamics through the use of
other Lyapunov functions. Besides the above differences between dynamic stability
and ESS noted above for the RSP example, there are other reasons to avoid this
temptation.

In particular, parts (b) and (c) of Theorem 2 are not true for discrete-time matrix
game dynamics. One such dynamics is the discrete-time replicator equation of
Maynard Smith (1982)

p0
i D pi

�.ei ; p/

�.p; p/
(10.6)

6Under the replicator equation, PV .p/ D
Pm

iD1 p�

i p
p�

i �1

i Ppi

Q
fj jj ¤i;p�

j ¤0g
p

p�

j

j D
Pm

iD1 p�

i

Q
j p

p�

j

j .�.ei ; p/ � �.p; p// D V .p/.�.p�; p/ � �.p; p// > 0 for all p 2 �m

sufficiently close but not equal to an ESS p�. Since V .p/ is a strict local Lyapunov function,
p� is locally asymptotically stable. Global stability (i.e., in addition to local asymptotic stability,
all interior trajectories of (10.4) converge to p�) in part (c) follows from global superiority (i.e.,
�.p�; p/ > �.p; p/ for all p ¤ p�) in this case.
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where p0
i is the frequency of strategy ei one generation later and �.ei ; p/ is the

expected nonnegative number of offspring of each ei -individual. When applied to
matrix games, each entry in the payoff matrix is typically assumed to be positive (or
at least nonnegative), corresponding to the contribution of this pairwise interaction
to expected offspring. It is then straightforward to verify that (10.6) is a forward
invariant dynamic on �m and on each of its faces.

To see that an ESS may not be stable under (10.6), fix j " j< 1 and consider the
generalized RSP game with payoff matrix

A D

R S P

R

S

P

2

4
�" 1 �1

�1 �" 1

1 �1 �"

3

5 (10.7)

that has a unique NE p� D .1=3; 1=3; 1=3/. For " D 0, this is the standard zero-
sum RSP game whose trajectories with respect to the replicator equation (10.4)
form periodic orbits around p� (Fig. 10.1a). For positive ", p� is an interior ESS
and trajectories of (10.4) spiral inward as they cycle around p� (Fig. 10.1b).

It is well known (Hofbauer and Sigmund 1998) that adding a constant c to
every entry of A does not affect either the NE/ESS structure of the game or
the trajectories of the continuous-time replicator equation. The constant c is a
background fitness that is common to all individuals that changes the speed of
continuous-time evolution but not the trajectory. If c � 1, all entries of this new
payoff matrix are nonnegative, and so the discrete-time dynamics (10.6) applies.
Now background fitness does change the discrete-time trajectory. In fact, for the
matrix 1 C A (i.e., if c D 1) where A is the RSP game (10.7), p� is unstable for all
j " j< 1 as can be shown through the linearization of this dynamics about the rest
point p� (specifically, the relevant eigenvalues of this linearization have modulus

R

S P

R

S P

a b

Fig. 10.1 Trajectories of the replicator equation (10.4) for the RSP game. (a) " D 0. (b) " > 0
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greater than 1 (Cressman 2003)). The intuition here is that p0 is far enough along
the tangent at p in Fig. 10.1 that these points spiral outward from p� under (10.6)
instead of inward under (10.4).7

Cyclic behavior is common not only in biology (e.g., predator-prey systems)
but also in human behavior (e.g., business cycles, the emergence and subsequent
disappearance of fads, etc.). Thus, it is not surprising that evolutionary game
dynamics include cycles as well. In fact, as the number of strategies increases, even
more rich dynamical behavior such as chaotic trajectories can emerge (Hofbauer
and Sigmund 1998).

What may be more surprising is the many classes of matrix games (Sandholm
2010) for which these complicated dynamics do not appear (e.g., potential, stable,
supermodular, zero-sum, doubly symmetric games), and for these the evolutionary
outcome is often predicted through rationality arguments underlying Theorems 1
and 2. Furthermore, these arguments are also relevant for other game dynamics
examined in the following section.

Before doing so, it is important to mention that the replicator equation for doubly
symmetric matrix games (i.e., a symmetric game whose payoff matrix is symmetric)
is formally equivalent to the continuous-time model of natural selection at a single
(diploid) locus with m alleles A1; : : : Am (Akin 1982; Cressman 1992; Hines 1987;
Hofbauer and Sigmund 1998). Specifically, if aij is the fitness of genotype Ai Aj

and pi is the frequency of allele Ai in the population, then (10.4) is the continuous-
time selection equation of population genetics (Fisher 1930). It can then be shown
that population mean fitness �.p; p/ is increasing (c.f. one part of the fundamental
theorem of natural selection). Furthermore, the locally asymptotically stable rest
points of (10.4) correspond precisely to the ESSs of the symmetric payoff matrix
A D

�
aij

�m

i:j D1
, and all trajectories in the interior of �m converge to an NE

of A (Cressman 1992, 2003). Analogous results hold for the classical discrete-
time viability selection model with nonoverlapping generations and corresponding
dynamics (10.6) (Nagylaki 1992).

2.4 Other Game Dynamics

A monotone selection dynamics (Samuelson and Zhang 1992) is of the form
Ppi D pi gi .p/ where gi .p/ > gj .p/ if and only if �.ei ; p/ > �.ej ; p/ for i; j D

1; : : : ; m and �m is forward invariant (i.e.,
Pm

j D1 pj gj .p/ D 0). The replicator
equation is the special case where gi .p/ � �.ei ; p/ �

Pm
j D1 pj �.ej ; p/ D

�.ei ; p/ � �.p; p/. For strategies ei and ej that are currently in use, monotone
selection dynamics increase the relative frequency (pi =pj ) of ei compared to ej if
and only if ei has higher expected payoff than ej . For the RSP game (10.7) with

7This intuition is correct for small constants c greater than 1. However, for large c, the discrete-time
trajectories approach the continuous-time ones and so p� D .1=3; 1=3; 1=3/ will be asymptotically
stable under (10.6) when " > 0.
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0 < " < 1 fixed, the gi .p/ can be chosen as continuously differentiable functions
for which the interior ESS p� D .1=3; 1=3; 1=3/ is not globally asymptotically
stable under the corresponding monotone selection dynamics (c.f. Theorem 2(c)).
In particular, Cressman (2003) shows there may be trajectories that spiral outward
from initial points near p� to a stable limit cycle in the interior of �3 for these
games.8

The best response dynamics (10.8) for matrix games was introduced by Gilboa
and Matsui (1991) (see also Matsui 1992) as the continuous-time version of the
fictitious play process, the first game dynamics introduced well before the advent of
evolutionary game theory by Brown (1951) and Robinson (1951).

Pp D BR.p/ � p (10.8)

In general, BR.p/ is the set of best responses to p and so may not be a single
strategy. That is, (10.8) is a differential inclusion (Aubin and Cellina 1984). The
stability properties of this game dynamics were analyzed by (Hofbauer 1995) (see
also Hofbauer and Sigmund 2003) who first showed that there is a solution for all
t � 0 given any initial condition.9

The best response dynamics (10.8) is a special case of a general dynamics of the
form

Pp D I .p/p � p (10.9)

where Iij .p/ is the probability an individual switches from strategy j to strategy i

per unit time if the current state is p. Then the corresponding continuous-time game
dynamics in vector form is then given by (10.9) where I .p/ is the m�m matrix with
entries Iij .p/. The transition matrix I .p/ can also be developed using the revision
protocol approach promoted by Sandholm (2010).

The best response dynamics (10.8) results by always switching to the best
strategy when a revision opportunity arises in that Iij .p/ is given by

Iij .p/ D

�
1 if ei D arg max �.ej ; p/

0 otherwise
: (10.10)

The Folk Theorem is valid when the best response dynamics replaces the replicator
equation (Hofbauer and Sigmund 2003) as are parts (b) and (c) of Theorem 2.

8On the other hand, an ESS remains locally asymptotically stable for all selection dynamics that
are uniformly monotone according to Cressman (2003) (see also Sandholm 2010).
9Since the best response dynamics is a differential inclusion, it is sometimes written as Pp 2
BR.p/ � p, and there may be more than one solution to an initial value problem (Hofbauer
and Sigmund 2003). Due to this, it is difficult to provide an explicit formula for the vector
field corresponding to a particular solution of (10.8) when BR.p/ is multivalued. Since such
complications are beyond the scope of this chapter, the vector field is only given when BR.p/

is a single point for the examples in this section (see, e.g., the formula in (10.10)).
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In contrast to the replicator equation, convergence to the NE may occur in finite
time (compare Fig. 10.2, panels (a) and (c)).

The replicator equation (10.4) can also be expressed in the form (10.9) using the
proportional imitation rule (Schlag 1997) given by

Iij .p/ D

�
kpi .�.ei ; p/ � �.ej ; p// if �.ei ; p/ � �.ej ; p/

0 if �.ei ; p/ < �.ej ; p/

for i ¤ j . Here k is a positive proportionality constant for which
P

i¤j Iij .p/ � 1

for all 1 � j � m and p 2 �m . Then, since I .p/ is a transition matrix, Ijj .p/ D

1�
P

i¤j Iij .p/. This models the situation where information is gained by sampling
a random individual and then switching to the sampled individual’s strategy with
probability proportional to the payoff difference only if the sampled individual has
higher fitness.

An interesting application of these dynamics is to the following single-species
habitat selection game.

Example 1 (Habitat Selection Game and IFD). The foundation of the habitat
selection game for a single species was laid by Fretwell and Lucas (1969) before
evolutionary game theory appeared. They were interested in predicting how a
species (specifically, a bird species) of fixed population size should distribute itself
among several resource patches if individuals would move to patches with higher
fitness. They argued the outcome will be an ideal free distribution (IFD) defined as a
patch distribution whereby the fitness of all individuals in any occupied patch would
be the same and at least as high as what would be their fitness in any unoccupied
patch (otherwise some individuals would move to a different patch). If there are H

patches (or habitats) and an individual’s pure strategy ei corresponds to being in
patch i (for i D 1; 2; : : : ; H ), we have a population game by equating the payoff
of ei to the fitness in this patch. The verbal description of an IFD in this “habitat
selection game” is then none other than that of an NE. Although Fretwell and Lucas
(1969) did not attach any dynamics to their model, movement among patches is
discussed implicitly.

If patch fitness is decreasing in patch density (i.e., in the population size in the
patch), Fretwell and Lucas proved that there is a unique IFD at each fixed total
population size.10 Moreover, the IFD is an ESS that is globally asymptotically stable
under the replicator equation (Cressman and Krivan 2006; Cressman et al. 2004;
Krivan et al. 2008). To see this, let p 2 �H be a distribution among the patches
and �.ei ; p/ be the fitness in patch i . Then �.ei ; p/ depends only on the proportion

10Broom and Krivan (�Chap. 23, “Biology and Evolutionary Games”, this volume) give more
details of this result and use it to produce analytic expressions for the IFD in several important
biological models. They also generalize the IFD concept when the assumptions underlying the
analysis of Fretwell and Lucas (1969) are altered. Here, we concentrate on the dynamic stability
properties of the IFD in its original setting.
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Fig. 10.2 Trajectories for payoffs of the habitat selection game when initially almost all individu-
als are in patch 2 and patch payoff functions are �.e1; p/ D 1 � p1; �.e2; p/ D 0:8.1 �

10p2

9
/ and

�.e3; p/ D 0:6.1 �
10p3

8
/. (a) Best response dynamics with migration matrices of the form I 1.p/;

(b) dynamics for nonideal animals with migration matrices of the form I 2.p/; and (c) the replicator
equation. In all panels, the top curve is the payoff in patch 1, the middle curve in patch 3, and the
bottom curve in patch 2. The IFD (which is approximately .p1; p2; p3/ D .0:51; 0:35; 0:14/ with
payoff 0:49) is reached at the smallest t where all three curves are the same (this takes infinite time
in panel c)

pi in this patch (i.e., has the form �.ei ; pi /). To apply matrix game techniques,
assume this is a linearly decreasing function of pi .11 Then, since the vector field
.�.e1; p1/; : : : ; �.eH ; pH // is the gradient of a real-valued function F .p/ defined
on �H , we have a potential game. Following Sandholm (2010), it is a strictly stable
game and so has a unique ESS p� which is globally asymptotically stable under
the replicator equation. In fact, it is globally asymptotically stable under many
other game dynamics as well that satisfy the intuitive conditions in the following
Theorem.12

Theorem 3. Suppose patch fitness is a decreasing function of patch density in a
single-species habitat selection game. Then any migration dynamics (10.9) that
satisfies the following two conditions evolves to the unique IFD.

(a) Individuals never move to a patch with lower fitness.
(b) If there is a patch with higher fitness than some occupied patch, some individu-

als move to a patch with highest fitness.

11The results summarized in this example do not depend on linearity as shown in Krivan et al.
(2008) (see also Cressman and Tao 2014).
12To see that the habitat selection game is a potential game, take F .p/ �

PH
iD1

R pi

0 �.ei ; ui /dui .

Then @F .p/

@pi
D �.ei ; pi /. If patch payoff decreases as a function of patch density, the habitat

selection game is a strictly stable game (i.e.,
P

.pi � qi / .�.ei ; p/ � �.ei ; q// < 0 for all

p ¤ q in �H ). This follows from the fact that F .p/ is strictly concave since @2F .p/

@pi @pj
D

(
@�.ei ;pi /

@pi
if i D j

0 if i ¤ j
and @�.ei ;pi /

@pi
< 0. Global asymptotic stability of p� for any dynamics (10.9)

that satisfies the conditions of Theorem 3 follows from the fact that W .p/ � max1�i�H �.ei ; p/

is a (decreasing) Lyapunov function (Krivan et al. 2008).
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We illustrate Theorem 3 when there are three patches. Suppose that at p, patch
fitnesses are ordered �.e1; p/ > �.e2; p/ > �.e3; p/ and consider the two
migration matrices

I 1.p/ �

2

4
1 1 1

0 0 0

0 0 0

3

5 I 2.p/ �

2

4
1 1=3 1=3

0 2=3 1=3

0 0 1=3

3

5 :

I 1.p/ corresponds to a situation where individuals who move go to patch 1

since they know it has highest fitness and so is associated with the best response
dynamics (10.8).

On the other hand, I 2.p/ models individuals who only gain fitness information
by sampling one patch at random, moving to this patch if it has higher fitness than its
current patch (e.g., an individual in patch 2 moves if it samples patch 1 and otherwise
stays in its own patch (with probabilities 1=3 and 2=3, respectively)). Trajectories for
each of these two migration dynamics with the same initial conditions are illustrated
in Fig. 10.2a, b, respectively. As can be seen, both converge to the IFD (as they
must by Theorem 3) in finite time, even though their paths to this rational outcome
are quite different. For comparison’s sake, Fig. 10.2c provides the trajectory for the
replicator equation.

Fretwell and Lucas (1969) briefly consider their IFD concept when patch fitness
increases with patch density when density is low (the so-called Allee effect).
Although Theorem 3 no longer applies, these habitat selection games are still
potential games (but not strictly stable). Thus, each interior trajectory under many
game dynamics (including the replicator equation and best response dynamics)
converges to an NE (Sandholm 2010). Several NE are already possible for a given
two-patch model (Morris 2002), some of which are locally asymptotically stable
and some not (Cressman and Tran 2015; Krivan 2014). From these references, it is
clear that there is a difference of opinion whether to define IFD as any of these NEs
or restrict the concept to only those that are locally superior and/or asymptotically
stable.

Habitat selection games also provide a natural setting for the effect of evolving
population sizes, a topic of obvious importance in population biology that has so
far received little attention in models of social behavior. A “population-migration”
dynamics emerges if population size N evolves through fitness taken literally as
reproductive success (Cressman and Krivan 2013; Broom and Krivan’s (�Chap. 23,
“Biology and Evolutionary Games”, this volume)). As discussed there, if patch
fitness is positive when unoccupied, decreases with patch density, and eventually
becomes negative, then the system evolves to carrying capacity whenever the
migration matrix I .pI N / satisfies the two conditions in Theorem 3 for each
population size N . In particular, the evolutionary outcome is independent of the time
scale of migration compared to that of changing population size, a notable result
since it is often not true when two dynamical processes are combined (Cressman
and Krivan 2013).
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3 Symmetric Games with a Continuous Trait Space

It was recognized early on that the relationship between evolutionary outcomes
and the ESS concept is more complex when an individual’s pure strategy (or trait)
is taken from a continuum. As stated by Maynard Smith (1982, Appendix D),
“Eshel (1983) and A. Grafen (personal communication) have independently noticed
a criterion for the stability of an ESS which is different in kind . . . when the strategy
set is a continuous one.” Although Eshel and Grafen (see also Eshel and Motro 1981)
both came to this realization by analyzing examples of evolutionary outcomes for
games from biology (e.g., stable sex ratios; investment in a competitive trait) or
economics (e.g., adaptation of prices to demand), the issues that arise can already
be illustrated by the following elementary mathematical example.

Consider the symmetric game whose pure-strategy set S is parameterized by real
number v in an interval that contains 0 in its interior. Suppose the payoff �.v; u/ of
strategy v against strategy u has the form

�.v; u/ D av2 C buv (10.11)

where a and b are fixed parameters (which are real numbers). It is straightforward
to check that 0 is a strict NE if and only if a < 0.13 Then, with the assumption that
a < 0, u� D 0 is an ESS according to Definition 1 (a) and (b) and so cannot be
invaded.14

On the other hand, a strategy v against a monomorphic population using strategy
u satisfies

�.v; u/ > �.u; u/ if and only if .v � u/Œa.v C u/ C bu� > 0: (10.12)

For v close to u ¤ 0, a.v C u/ C bu Š .2a C b/u. Thus, if 2a C b > 0, then
strategy v close to u ¤ 0 can invade if v is farther from u� D 0 than u (since
�.v; u/ > �.u; u/) but cannot invade if it is closer to u� than u. Thus, if the system
is slightly perturbed from u� D 0 to u ¤ 0, the monomorphic population will evolve
away from u�. That is, although the strict NE u� D 0 when a < 0 cannot be invaded,
it is not attainable as an outcome of evolution when 2a C b > 0.

This result led Eshel (1983) to propose the continuously stable strategy (CSS)
concept that requires more than u� being a strict NE and others to develop (the
canonical equation of) adaptive dynamics (see Definition 2 below and the literature
cited there). Furthermore, although a strict NE is automatically locally superior for

13Specifically, �.v; 0/ D av2 < 0 D �.0; 0/ for all v ¤ 0 if and only if a < 0.
14Much of the literature on evolutionary games for continuous trait space uses the term ESS to
denote a strategy that is uninvadable in this sense. However, this usage is not universal. Since ESS
has in fact several possible connotations for games with continuous trait space (Apaloo et al. 2009),
we prefer to use the more neutral game-theoretic term of strict NE in these circumstances when the
game has a continuous trait space.
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matrix games (as in Theorem 2(a)), this is no longer true for games with continuous
trait space. This discrepancy leads to the concept of a neighborhood invader strategy
(NIS) in Sect. 3.2 below that is closely related to stability with respect to the
replicator equation (see Theorem 2 there).

3.1 The CSS and Adaptive Dynamics

To avoid mathematical technicalities that arise in threshold cases, the following
definition assumes that, if u� is a pure-strategy NE in the interior of an interval
S that is the pure-strategy set of the evolutionary game, then u� is a strict NE.

Definition 2. (a) A strict NE u� in the interior of a one-dimensional continuous
strategy set is a CSS if, for some " > 0 and any u with j u � u� j< " , there is a
ı > 0 such that, for j v � u j< ı, �.v; u/ > �.u; u/ if and only if j v � u� j<j

u � u� j.15

(b) Up to a change in time scale, the canonical equation of adaptive dynamics is

Pu D
@�.v; u/

@v
jvDu� �1.u; u/: (10.13)

(c) An interior u� is called convergence stable if it is locally asymptotically stable
under (10.13).

To paraphrase Eshel (1983), the intuition behind Definition 2(a) is that, if a large
majority of a population chooses a strategy close enough to a CSS, then only those
mutant strategies which are even closer to the CSS will be selectively advantageous.

The canonical equation of adaptive dynamics (10.13) is the most elementary
dynamics to model evolution in a one-dimensional continuous strategy set. It
assumes that the population is always monomorphic at some u 2 S and that u
evolves through trait substitution in the direction v of nearby mutants that can
invade due to their higher payoff than u when playing against this monomorphism.
Adaptive dynamics (10.13) was introduced by Hofbauer and Sigmund (1990)
assuming monomorphic populations. It was given a more solid interpretation when
populations are only approximately monomorphic by Dieckmann and Law (1996)
(see also Dercole and Rinaldi 2008; Vincent and Brown 2005) where Pu D

k.u/�1.u; u/ and k.u/ is a positive function that scales the rate of evolutionary
change. Typically, adaptive dynamics is restricted to models for which �.v; u/ has

15Typically, ı > 0 depends on u (e.g., ı <j u � u� j). Sometimes the assumption that u� is a strict
NE is relaxed to the condition of being a neighborhood (or local) strict NE (i.e., for some " > 0,
�.v; u/ < �.u; u/ for all 0 <j v � u j< ").
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continuous partial derivatives up to (at least) the second order.16 Since invading
strategies are assumed to be close to the current monomorphism, their success can
then be determined through a local analysis.

Historically, convergence stability was introduced earlier than the canonical
equation as a u� that satisfies the second part of Definition 2 (a).17 In particular,
a convergence stable u� may or may not be a strict NE. Furthermore, u� is a CSS
if and only if it is a convergence stable strict NE. These subtleties can be seen by
applying Definition 2 to the game with quadratic payoff function (10.11) whose
corresponding canonical equation is Pu D .2a C b/u . The rest point (often called a
singular point in the adaptive dynamics literature) u� D 0 of (10.13) is a strict NE if
and only if a < 0 and convergence stable if and only if 2a C b < 0. From (10.12),
it is clear that u� is a CSS if and only if it is convergence stable and a strict NE.

That the characterization18 of a CSS as a convergence stable strict NE extends to
general �.v; u/ can be seen from the Taylor expansion of �.u; v/ about .u�; u�/ up
to the second order, namely,

�.u; v/ D �.u�; u�/ C �1.u�; u�/.u � u�/ C �2.u�; u�/.v � u�/

C
1

2
�11.u�; u�/.u � u�/2 C �12.u�; u�/.u � u�/.v � u�/ (10.14)

C
1

2
�22.u�; u�/.v � u�/2 C higher order terms.

That is, u� is convergence stable if and only if �1.u�; u�/ D 0 and �11.u�; u�/ C

�12.u�; u�/ < 0 since
d

du

�
@�.v; u/

@v
jvDu

�
juDu�D �11.u�; u�/ C �12.u�; u�/.

It is a CSS if and only if it is a neighborhood strict NE (i.e., �1.u�; u�/ D 0

and �11.u�; u�/ < 0) that is convergence stable. From now on, assume all partial
derivatives are evaluated at .u�; u�/ (e.g., �11 D �11.u�; u�/).

16In particular, adaptive dynamics is not applied to examples such as the War of Attrition, the
original example of a symmetric evolutionary game with a continuous trait space (Maynard Smith
1974, 1982; Broom and Krivan, (�Chap. 23, “Biology and Evolutionary Games”, this volume),
which have discontinuous payoff functions. In fact, by allowing invading strategies to be far away
or individuals to play mixed strategies, it is shown in these references that the evolutionary outcome
for the War of Attrition is a continuous distribution over the interval S . Distributions also play a
central role in the following section. Note that, in Sect. 3, subscripts on � denote partial derivatives.
For instance, the derivative of � with respect to the first argument is denoted by �1 in (10.13). For
the asymmetric games of Sect. 4, �1 and �2 denote the payoffs to player one and to player two,
respectively.
17This concept was first called m-stability by Taylor (1989) and then convergence stability by
Christiansen (1991), the latter becoming standard usage. It is straightforward to show that the
original definition is equivalent to Definition 2 (c).
18This general characterization of a CSS ignores threshold cases where �11.u�; u�/ D 0 or
�11.u�; u�/ C �12.u�; u�/ D 0. We assume throughout Sect. 3 that these degenerate situations
do not arise for our payoff functions �.v; u/.
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Since conditions for convergence stability are independent of those for strict NE,
there is a diverse classification of singular points. Circumstances where a rest point
u� of (10.13) is convergence stable but not a strict NE (or vice versa) have received
considerable attention in the literature. In particular, u� can be a convergence stable
rest point without being a neighborhood strict NE (i.e., �1 D 0, �11 C �12 < 0

and �11 > 0). These have been called evolutionarily stable minima (Abrams
et al. 1993)19 and bifurcation points (Brown and Pavlovic 1992) that produce
evolutionary branching (Geritz et al. 1998) via adaptive speciation (Cohen et al.
1999; Doebeli and Dieckmann 2000; Ripa et al. 2009). For (10.11), the evolutionary
outcome is then a stable dimorphism supported on the endpoints of the interval
S when (the canonical equation of) adaptive dynamics is generalized beyond the
monomorphic model to either the replicator equation (see Remark 2 in Sect. 3.2) or
to the Darwinian dynamics of Sect. 3.3.

Conversely, u� can be a neighborhood strict NE without being a convergence
stable rest point (i.e., �1 D 0, �11 C �12 > 0 and �11 < 0). We now have
bistability under (10.13) with the monomorphism evolving to one of the endpoints
of the interval S .

3.2 The NIS and the Replicator Equation

The replicator equation (10.4) of Sect. 2 has been generalized to symmetric games
with continuous trait space S by Bomze and Pötscher (1989) (see also Bomze
1991; Oechssler and Riedel 2001). When payoffs result from pairwise interactions
between individuals and �.v; u/ is interpreted as the payoff to v against u, then the
expected payoff to v in a random interaction is �.v; P / �

R
S

�.v; u/P .du/ where
P is the probability measure on S corresponding to the current distribution of the
population’s strategies. With �.P; P / �

R
S

�.v; P /P .dv/ the mean payoff of the
population and B a Borel subset of S , the replicator equation given by

dPt

dt
.B/ D

Z

B

.�.u; Pt / � �.Pt ; Pt // Pt .du/ (10.15)

is well defined on the set of Borel probability measures P 2 �.S/ if the
payoff function is continuous (Oechssler and Riedel 2001). The replicator equation
describes how the population strategy distribution P 2 �.S/ evolves over time.
From this perspective, the canonical equation (10.13) becomes a heuristic tool that
approximates the evolution of the population mean by ignoring effects due to the
diversity of strategies in the population (Cressman and Tao 2014).

For instance, if B is a subinterval of S , (10.15) describes how the proportion
Pt .B/ of the population with strategy in this set evolves over time. In general, B can

19We particularly object to this phrase since it causes great confusion with the ESS concept. We
prefer calling these evolutionary branching points.
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be any Borel subset of S (i.e., any element of the smallest ��algebra that contains
all subintervals of S ). In particular, if B is the finite set fu1; : : : ; umg and P0.B/ D 1

(i.e., the population initially consists of m strategy types), then Pt .B/ D 1 for all
t � 1 and (10.15) becomes the replicator equation (10.4) for the matrix game with
m � m payoff matrix whose entries are Aij D �.ui ; uj /.

Unlike adaptive dynamics, a CSS may no longer be stable for the replicator
equation (10.15). To see this, a topology on �.S/ is needed. In the weak topology,
Q 2 �.S/ is close to a P 2 �.S/ with finite support fu1; : : : ; umg if the
Q�measure of a small neighborhood of each ui is close to P .fui g/ for all i D

1; : : : ; m. In particular, if the population P is monomorphic at a CSS u� (i.e., P is
the Dirac delta distribution ıu� with all of its weight on u�), then any neighborhood
of P will include all populations whose support is close enough to u�. Thus,
stability of (10.15) with respect to the weak topology requires that Pt evolves to
ıu� whenever P0 has support fu; u�g where u is near enough to u�. That is, u� must
be globally asymptotically stable for the replicator equation (10.4) of Sect. 2 applied
to the two-strategy matrix game with payoff matrix (c.f. (10.5))

u� u
u�

u

�
�.u�; u�/ �.u�; u/

�.u; u�/ �.u; u/

�
:

Ignoring threshold circumstances again, u� must strictly dominate u in this game
(i.e., �.u�; u�/ > �.u; u�/ and �.u�; u/ > �.u; u/).

When this dominance condition is applied to the game with payoff func-
tion (10.11), u� D 0 satisfies �.u�; u�/ > �.u; u�/ (respectively, �.u�; u/ >

�.u; u/) if and only if a < 0 (respectively, a C b < 0). Thus, if u� is a strict
NE (i.e., a < 0) and 2a C b < 0 < a C b, then u� is a CSS that is an unstable rest
point of (10.15) with respect to the weak topology.

For general payoff functions, a monomorphic population ıu� is a stable rest point
of (10.15) with respect to the weak topology if and only if �.u�; u�/ > �.u; u�/ and
�.u�; u/ > �.u; u/ for all u sufficiently close but not equal to u�.20 This justifies the
first part of the following definition.

Definition 3. Consider a symmetric game with continuous trait space S .

(a) u� 2 S is a neighborhood invader strategy (NIS) if �.u�; u/ > �.u; u/ for
all u sufficiently close but not equal to u�. It is a neighborhood strict NE if
�.u�; u�/ > �.u; u�/ for all u sufficiently close but not equal to u�.

20Here, stability means that ıu� is neighborhood attracting (i.e., for any initial distribution P0 with
support sufficiently close to u� and with P0.u�/ > 0, Pt converges to ıu� in the weak topology).
As explained in Cressman (2011) (see also Cressman et al. 2006), one cannot assert that ıu�

is locally asymptotically stable under the replicator equation with respect to the weak topology
or consider initial distributions with P0.u�/ D 0. The support of P is the closed set given by
fu 2 S j P .fy Wj y � u j< "g/ > 0 for all " > 0g.
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(b) Suppose 0 � p� < 1 is fixed. Strategy u� 2 S is neighborhood p�-superior
if �.u�; P / > �.P; P / for all P 2 �.S/ with 1 > P .fu�g/ � p� and the
support of P sufficiently close to u�. It is neighborhood superior (respectively,
neighborhood half-superior) if p� D 0 (respectively, p� D 1

2
). Strategy u� 2 S

is globally p�-superior if �.u�; P / > �.P; P / for all P 2 �.S/ with 1 >

P .fu�g/ � p�.

The NIS concept was introduced by Apaloo (1997) (see also McKelvey and
Apaloo (1995), the “good invader” strategy of Kisdi and Meszéna (1995), and
the “invading when rare” strategy of Courteau and Lessard (2000)). Cressman and
Hofbauer (2005) developed the neighborhood superiority concept (they called it
local superiority), showing its essential equivalence to stability under the replicator
equation (10.15). It is neighborhood p�-superiority that unifies the concepts of strict
NE, CSS, and NIS as well as stability with respect to adaptive dynamics and with
respect to the replicator equation for games with a continuous trait space. These
results are summarized in the following theorem.

Theorem 2. Suppose that S is one dimensional and u� 2 int(S ) is a rest point of
adaptive dynamics (10.13) (i.e., �1.u�; u�/ D 0).

(a) u� is an NIS and a neighborhood strict NE if and only if it is neighborhood
superior.

(b) u� is neighborhood attracting with respect to the replicator equation (10.15) if
and only if it is neighborhood superior.

(c) u� is a neighborhood strict NE if and only if it is neighborhood p�-superior for
some 0 � p� < 1.

(d) u� is a CSS if and only if it is neighborhood half-superior if and only if it is
a neighborhood strict NE that is locally asymptotically stable with respect to
adaptive dynamics (10.13).

The proof of Theorem 2 relies on results based on the Taylor expansion (10.14).
For instance, along with the characterizations of a strict NE as �11 < 0 and
convergence stability as �11C�12 < 0 from Sect. 3.1, u� is an NIS if and only if
1
2
�11C�12 < 0. Thus, strict NE, CSS, and NIS are clearly distinct concepts for a

game with a continuous trait space. On the other hand, it is also clear that a strict
NE that is an NIS is automatically CSS.21

Remark 1. When Definition 3 (b) is applied to matrix games with the standard
topology on the mixed-strategy space �m, the bilinearity of the payoff function
implies that p is neighborhood p�-superior for some 0 � p� < 1 if and only if

21This result is often stated as ESS + NIS implies CSS (e.g., Apaloo 1997; Apaloo et al. 2009).
Furthermore, an ESS + NIS is often denoted ESNIS in this literature.
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�.p; p0/ > �.p0; p0/ for all p0 sufficiently close but not equal to p (i.e., if and
only if p is an ESS by Theorem 2 (a)). That is, neighborhood p�-superiority is
independent of the value of p� for 0 � p� < 1. Consequently, the ESS, NIS,
and CSS are identical for matrix games or, to rephrase, NIS and CSS of Sect. 3 are
different generalizations of the matrix game ESS to games with continuous trait
space.

Remark 2. It was shown above that a CSS u� which is not an NIS is unstable with
respect to the replicator equation by restricting the continuous trait space to finitely
many nearby strategies. However, if the replicator equation (10.15) is only applied
to distributions with interval support, Cressman and Hofbauer (2005) have shown,
using an argument based on the iterated elimination of strictly dominated strategies,
that a CSS u� attracts all initial distributions whose support is a small interval
containing u�. This gives a measure-theoretic interpretation of Eshel’s (1983)
original idea that a population would move toward a CSS by successive invasion
and trait substitution. The proof in Cressman and Hofbauer (2005) is most clear for
the game with quadratic payoff function (10.11). In fact, for these games, Cressman
and Hofbauer (2005) give a complete analysis of the evolutionary outcome under
the replicator equation for initial distributions with interval support Œ˛; ˇ� containing
u� D 0. Of particular interest is the outcome when u� is an evolutionary branching
point (i.e., it is convergence stable (2a C b < 0) but not a strict NE (a > 0)). It
can then be shown that a dimorphism P � supported on the endpoints of the interval
attracts all such initial distributions except the unstable ıu�:

22

3.3 Darwinian Dynamics and the Maximum Principle

The processes of biological evolution are inherently dynamic. Of fundamental
importance is the size of the population(s) and how this evolves in the ecological
system. Thus any theory of evolutionary games is incomplete without methods
to address both population dynamics and strategy evolution. Sections 3.1 and 3.2
discuss two dynamics for strategy evolution when the trait space is continuous,
namely, adaptive dynamics and the replicator equation, respectively. Here we
present the so-called Darwinian dynamics (Vincent and Brown 2005; Vincent et al.
1993) that also considers changing population size.23 The development of this
evolutionary and ecological dynamics is informed by Darwin’s postulates. The

22In fact, P � D �
.a C b/˛ C aˇ

b.ˇ � ˛/
ıˇ C

.a C b/ˇ C a˛

b.ˇ � ˛/
ı˛ since this dimorphism satisfies

�.P �; Q/ > �.Q; Q/ for all distributions Q not equal to P � (i.e., P � is globally superior by
the natural extension of Definition 3 (b) to non-monomorphic P � as developed by Cressman and
Hofbauer 2005).
23Although Darwinian dynamics can also be based solely on changing strategy frequency with
population size fixed (Vincent and Brown 2005), the theory developed here considers changing
population size combined with strategy evolution.
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key component of the method is the fitness-generating function (or, for short,
G-function) which is given as follows.

Suppose the incumbent population currently has individuals using traits
u1; : : : ; ur taken from a continuous valued trait v in an interval S . Let ni > 0

be the number of individuals using trait ui . Then the population state is given
by .u; n/ where u D .u1; : : : ; ur / and n D .n1; : : : ; nr /. The fitness-generating
function, G.v; u; n/, gives the expected per capita growth rate of a focal individual
using strategy v 2 S when the population is in state .u; n/. Interpreting this
rate as reproductive success (or fitness), ni evolves according to the population
(or ecological) dynamics, dni

dt
D ni G .v; u; n/ jvDui D ni G .ui ; u; n/. Strategy

evolution follows the adaptive dynamics approach, namely, dui

dt
D ki

@G.v;u;n/

@v
jvDui

for i D 1; � � � ; r , where ki is positive and represents some measure of additive
genetic variance. However we will assume for simplicity that the ki ’s are all the
same and have common value denoted by k. Darwinian dynamics is then modeled
by combining these two processes to produce the following system of differential
equations:

dni

dt
D ni G .ui ; u; n/ for i D 1; : : : ; r .ecological dynamics/ (10.16)

and

dui

dt
D k

@G.v; u; n/

@v
jvDui for i D 1; : : : ; r .evolutionary dynamics/ (10.17)

The rest points .u�; n�/ of this resident system with all components of u� different
and with all components of n� positive that are locally (globally) asymptotically
stable are expected to be the outcomes in a corresponding local (or global) sense for
this r strategy resident system.

As an elementary example, the payoff function (10.11) can be extended to
include population size:

G.v; u; n/ D �

	
v;

u1n1 C u2n2 C : : : C urnr

n1 C n2 C : : : C nr



C 1 � .n1 C n2 C : : : C nr/

D av2 C b

	
u1n1 C u2n2 C : : : C urnr

n1 C n2 C : : : C nr



v C 1 � .n1 C n2 C : : : C nr/ :

(10.18)

The story behind this mathematical example is that v plays one random contest

per unit time and receives an expected payoff �

	
v;

u1n1 C u2n2 C : : : C urnr

n1 C n2 C : : : C nr




since the average strategy in the population is
u1n1 C u2n2 C : : : C urnr

n1 C n2 C : : : C nr

. The term

1�.n1 C n2 C : : : C nr/ is a strategy-independent background fitness so that fitness
decreases with total population size.
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For r D 1, G.v; uI n/ D av2 C buv C 1 � n. From this, the Darwinian dynamics
is

dn

dt
D nG.v; uI n/ jvDuD n

�
.a C b/u2 C 1 � n

�

du

dt
D k

@G.v; uI n/

@v
jvDuD k.2a C b/u: (10.19)

The rest point of the evolutionary dynamics (i.e., du
dt

D 0) is u D 0. With u D 0,
the relevant rest point of the ecological dynamics (i.e., dn

dt
D 0) is n D 1. The rest

point.u�; n�/ D .0; 1/ of (10.19) is globally asymptotically stable for this resident
system if and only if u� is convergence stable for adaptive dynamics (i.e., 2aCb<0)
when population size is fixed at n� D 1.

However, to be a stable evolutionary outcome, .u�; n�/ D .0; 1/ must resist
invasion by any mutant strategy using strategy v ¤ u� D 0. Since the invasion
fitness is G.v; u�; n�/ D av2, this requires that u� is a strict NE (i.e., a < 0) when
population size is fixed at n�. That is, .u�; n�/ D .0; 1/ is a stable evolutionary
outcome for Darwinian dynamics with respect to the G-function (10.18) if and only
if u� is a CSS.24

Now suppose that u� D 0 is convergence stable but not a strict NE (i.e., a >

0 and 2a C b < 0) and so can be invaded by v ¤ 0 since G.v; u�; n�/ > 0.
We then look for a dimorphism .u�; n�/ D .u�

1 ; u�
2 ; n�

1 ; n�
2 / of the resident system

(i.e., r D 2) for Darwinian dynamics with respect to the G-function (10.18). That
is, we consider the four-dimensional dynamical system

dn1

dt
D n1G.v; u1; u2I n1; n2/ jvDu1D n1

	
au2

1 C bu1

u1n1 C u2n2

n1 C n2

C1� .n1 C n2/




dn2

dt
D n2G.v; u1; u2I n1; n2/ jvDu2D n2

	
au2

2 C bu2

u1n1 C u2n2

n1 C n2

C1� .n1 C n2/




du1

dt
D

@G.v; u1; u2I n1; n2/

@v
jvDu1D k

	
2au1 C b

u1n1 C u2n2

n1 C n2




du2

dt
D

@G.v; u1; u2I n1; n2/

@v
jvDu2D k

	
2au2 C b

u1n1 C u2n2

n1 C n2



:

From the evolutionary dynamics, a rest point must satisfy 2au1 D 2au2 and so
u1 D u2 (since we assume that a ¤ 0). That is, this two-strategy resident system
has no relevant stable rest points since this requires u�

1 ¤ u�
2 . However, it also

follows from this dynamics that d.u1�u2/

dt
D 2ka .u1 � u2/, suggesting that the

dimorphic strategies are evolving as far as possible from each other since ka > 0.
Thus, if the strategy space S is restricted to the bounded interval Œ�ˇ; ˇ�, we

24As in Sect. 3.1, we ignore threshold cases. Here, we assume that a and 2a C b are both nonzero.
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might expect that u1 and u2 evolve to the endpoints ˇ and �ˇ, respectively. With
.u�

1 ; u�
2 / D .ˇ; �ˇ/, a positive equilibrium .n�

1 ; n�
2 / of the ecological dynamics

must satisfy u1n1 C u2n2 D 0, and so n�
1 D n�

2 D 1Caˇ2

2
. That is, the rest point is

.u�
1 ; u�

2 ; n�
1 ; n�

2 / D
�
ˇ; �ˇI 1Caˇ2

2
;

1Caˇ2

2

�
and it is locally asymptotically stable.25

Furthermore, it resists invasion by mutant strategies since

G.v; u�
1 ; u�

2 ; n�
1 ; n�

2 / D av2 C bv
u�

1 n�
1 C u�

2 n�
2

n�
1 C n�

2

C 1 �
�
n�

1 C n�
2

�

D a
�
v2 � ˇ2

�
< 0

for all v 2 S different from u�
1 and u�

2 .
To summarize the above discussion of Darwinian dynamics applied to

G-function (10.18) on the interval Œˇ; �ˇ�, .u�; n�/ D .0; 1/ is a stable evolutionary
outcome if and only if u� is a CSS (i.e., a < 0 and 2a C b < 0). On the other hand,
if a > 0 and 2a C b < 0, then there is evolutionary branching and the dimorphism

.u�; n�/ D
�
ˇ; �ˇI 1Caˇ2

2
;

1Caˇ2

2

�
becomes a stable evolutionary outcome. These

two results are shown in Fig. 10.3 (see regions II and III there, respectively) along
with the stable evolutionary outcomes in other regions of parameter space a and b.
For instance, although we do not have a complete analysis of Darwinian dynamics
with r traits initially present, our simulations suggest that, in region I which contains
the first quadrant, a bistable situation arises whereby almost all trajectories converge
to one of the monomorphisms supported at one end of the interval. Similarly, in the
fourth quadrant (which comprises the evolutionary branching region III as well as
region IV), we expect all trajectories to converge to the dimorphism.

In fact, the use of Darwinian dynamics to confirm the results of Fig. 10.3 can
be generalized to find stable evolutionary outcomes when their analysis become
theoretically intractable. That is, if

(i) the Darwinian dynamics for an r strategy system converges to a locally
asymptotically stable equilibrium with all strategies present and

25 Technically, at this rest point, du1

dt
D 2kaˇ > 0 and du2

dt
D �2kaˇ < 0 are not 0. However,

their sign (positive and negative, respectively) means that the dimorphism strategies would evolve
past the endpoints of S , which is impossible given the constraint on the strategy space.

These signs mean that local asymptotic stability follows from the linearization of the ecological
dynamics at the rest point. It is straightforward to confirm this 2 � 2 Jacobian matrix has negative
trace and positive determinant (since a > 0 and b < 0), implying both eigenvalues have negative
real part.

The method can be generalized to show that, if S D Œ˛; ˇ� with ˛ < 0 < ˇ, the stable
evolutionary outcome predicted by Darwinian dynamics is now u�

1 D ˇ; u�

2 D ˛ with n�

1 D

.a˛ˇ � 1/
.aCb/˛Caˇ

b.ˇ�˛/
; n�

2 D .1 � a˛ˇ/
.aCb/ˇCa˛

b.ˇ�˛/
both positive under our assumption that a > 0

and 2a C b < 0. In fact, this is the same stable dimorphism (up to the population size factor
1 � a˛ˇ) given by the replicator equation of Sect. 3.2 (see Remark 2).
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Fig. 10.3 Stable
evolutionary outcomes for
G-function (10.18) on the
interval Œˇ; �ˇ�. From the
theoretical analysis, there are
four regions of parameter
space (given by a and b) of
interest. In region I, there are
two stable evolutionary
outcomes that are
monomorphisms .u�; n�/

given by .ˇ; 1 C .a C b/ˇ2/

and .�ˇ; 1 C .a C b/ˇ2/. In
region II, the only stable
evolutionary outcome is the
CSS .u�; n�/ D .0; 1/. In
region III (evolutionary
branching) and IV, the only
stable evolutionary outcome
is the dimorphism .u�; n�/ D�
ˇ; �ˇI

1Caˇ2

2
;

1Caˇ2

2

�

a

b

2a + b = 0

II

II

II III

IV

(ii) this r strategy equilibrium remains stable when the system is increased to r C 1

strategies by introducing a new strategy (i.e., one strategy dies out), then we
expect this equilibrium to be a stable evolutionary outcome.

On the other hand, the following Maximum Principle can often be used to find
these stable evolutionary outcomes without the dynamics (or, conversely, to check
that an equilibrium outcome found by Darwinian dynamics may in fact be a stable
evolutionary outcome).

Theorem 5 (Maximum Principle). Suppose that .u�; n�/ is an asymptotically
stable rest point for Darwinian dynamics (10.16) and (10.17) applied to a resident
system. If .u�; n�/ is a stable evolutionary outcome, then

max
v2S

G
�
v; u�; n�

�
D G

�
v; u�; n�

�
jvDu�

i
D 0: (10.20)

This fundamental result promoted by Vincent and Brown (see, for instance,
their 2005 book) gives biologists the candidate solutions they should consider
when looking for stable evolutionary outcomes to their biological systems. That
is, by plotting the G-function as a function of v for a fixed candidate .u�; n�/, the
maximum fitness must never be above 0 (otherwise, such a v could invade), and,
furthermore, the fitness at each component strategy u�

i in the r�strategy resident
system u� must be 0 (otherwise, u�

i is not at a rest point of the ecological system).
For many cases, maxv2S G .v; u�; n�/ occurs only at the component strategies u�

i in
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u�. In these circumstances, u� is known as a quasi-strict NE in the game-theoretic
literature (i.e., G .v; u�; n�/ � G .ui ; u�; n�/ for all i D 1; : : : ; r with equality if
and only if v D u�

i for some i ). If r D 1, u� is a strict NE as remarked in Sect. 3.1.
When applied to the above example with G-function (10.18), .u�; n�/ D .0; 1/

satisfies the Maximum Principle if and only if a < 0. Thus, an application of this
principle is entirely consistent with the two cases examined above when 2aCb < 0.
However, one must be cautious in assuming there is an equivalence between .u�; n�/

being a stable evolutionary outcome and it satisfying the Maximum Principle. For
instance, if a < 0 and 2a C b > 0, then .u�; n�/ D .0; 1/ satisfies the Maximum
Principle, but it is not a stable evolutionary outcome. This was realized early on by
Vincent and Brown who called a .u�; n�/ that satisfies the Maximum Principle a
“candidate ESS” (e.g., Vincent and Brown 2005) which we would prefer to label as
a “candidate stable evolutionary outcome.”

As stated at the beginning of Sect. 3, the payoff function (10.11 ) (and its
offshoot (10.18)) are used for mathematical convenience to illustrate the complex
issues that arise for a game with continuous trait space. A more biologically
relevant example is the so-called Lotka-Volterra (LV) competition model, whose
basic G�function is of the form

G.v; u; n/ D
k

K .v/

2

4K.v/ �

rX

j D1

a
�
v; uj

�
nj

3

5 (10.21)

where a
�
v; uj

�
(the competition coefficient) and K.v/ (the carrying capacity) are

given by

a .v; ui / D exp

"

�
.v � ui /

2

2�2
a

#

and K .v/ D Km exp

�
�

v2

2�2
k

�
; (10.22)

respectively, with trait space R.
This particular G�function was already examined by Roughgarden (1979)

from a non-game-theoretic approach.26 who showed that the expected outcome
of evolution for this model is a Gaussian distribution P �.u/ of traits when the
width of the niche axis, �k , and of the competition coefficient, �a, satisfy �a <

�k .27 Recently, Cressman et al. (2016) have reexamined the basic model as an

26Many others (e.g., Barabás and Meszéna 2009; Barabás et al. 2012, 2013; Bulmer 1974;
D’Andrea et al. 2013; Gyllenberg and Meszéna 2005; Meszéna et al. 2006; Parvinen and Meszéna
2009; Sasaki 1997; Sasaki and Ellner 1995; Szabó and Meszéna 2006) have examined the general
LV competition model.
27Specifically, the Gaussian distribution is given by

P �.u/ D
Km�k

�a

q
2�.�2

k � �2
a /

exp.�u2=.2.�2
k � �2

a ///:
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Fig. 10.4 The G�function G .v; u�; n�/ at a stable resident system .u�; n�/ with four traits
where u�

i for i D 1; 2; 3; 4 are the v�intercepts of the G�function (10.21) on the horizontal
axis. (a) For (10.22), .u�; n�/ does not satisfy the Maximum Principle since G .v; u�; n�/ is at
a minimum when v D u�

i . (b) With carrying capacity adjusted so that it is only positive in the
interval .�ˇ; ˇ/, .u�; n�/ does satisfy the Maximum Principle. Parameters: �2

a D 4; �2
k D 200;

Km D 100; k D 0:1 and for (b) ˇ D 6:17

evolutionary game, using the Darwinian dynamics approach of this section. They
show that, for each resident system with r traits, there is a stable equilibrium
.u�; n�/ for Darwinian dynamics (10.16) and (10.17). However, .u�; n�/ does not
satisfy the Maximum Principle (in fact, the components of u� are minima of the
G-function since G .v; u�; n�/ jvDui D 0 < G .v; u�; n�/ for all v ¤ u�

i as in
Fig. 10.4a). The resultant evolutionary branching leads eventually to P �.u/ as the
stable evolutionary outcome. Moreover, they also examined what happens when the
trait space is effectively restricted to the compact interval Œ�ˇ; ˇ� in place of R
by adjusting the carrying capacity so that it is only positive between �ˇ and ˇ.
Now, the stable evolutionary outcome is supported on four strategies (Fig. 10.4b),
satisfying the Maximum Principle (10.20).28

28Cressman et al. (2016) also examined what happens when there is a baseline competition between
all individuals no matter how distant their trait values are. This leads to a stable evolutionary
outcome supported on finitely many strategies as well. That is, modifications of the basic LV
competition model tend to break up its game-theoretic solution P �.u/ with full support to a stable
evolutionary outcome supported on finitely many traits, a result consistent with the general theory
developed by Barabás et al. (2012) (see also Gyllenberg and Meszéna 2005).
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3.4 Symmetric Games with a Multidimensional Continuous Trait
Space

The replicator equation (10.15), neighborhood strict NE, NIS, and neighborhood
p�-superiority developed in Sect. 3.2 have straightforward generalizations to mul-
tidimensional continuous trait spaces. In fact, the definitions there do not assume
that S is a subset of R and Theorem 10.4(b) on stability of u� under the replicator
equation remains valid for general subsets S of Rn (see Theorem 6 (b) below). On
the other hand, the CSS and canonical equation of adaptive dynamics (Definition 2)
from Sect. 3.1 do depend on S being a subinterval of R.

For this reason, our treatment of multidimensional continuous trait spaces will
initially focus on generalizations of the CSS to multidimensional continuous trait
spaces. Since these generalizations depend on the direction(s) in which mutants are
more likely to appear, we assume that S is a compact convex subset of Rn with
u� 2 S in its interior. Following the static approach of Lessard (1990) (see also
Meszéna et al. 2001), u� is a neighborhood CSS if it is a neighborhood strict NE that
satisfies Definition 2 (a) along each line through u�. Furthermore, adaptive dynamics
for the multidimensional trait spaces S has the form (Cressman 2009; Leimar 2009)

du

dt
D C1.u/r1�.v; u/ jvDu (10.23)

generalizing (10.13). Here C1.u/ is an n � n covariance matrix modeling the
mutation process (by scaling the rate of evolutionary change) in different directions
(Leimar 2009).29 We will assume that C1.u/ for u 2 int(S ) depends continuously on
u. System (10.23) is called the canonical equation of adaptive dynamics (when S is
multidimensional). u� in the interior of S is called convergence stable with respect
to C1.u/ if it is a locally asymptotically stable rest point (also called a singular point)
of (10.23).

The statement of the following theorem (and the proof of its various parts given
in Cressman 2009 or Leimar 2009) relies on the Taylor expansion about .u�; u�/ of
the payoff function, namely,

�.u; v/ D �.u�; u�/ C r1�.u�; u�/.u � u�/ C r2�.u�; u�/.v � u�/

C
1

2

�
.u � u�/ � A.u � u�/ C 2.u � u�/ � B.v � u�/ C .v � u�/ � C .v � u�/

�

C higher-order terms.

29 Covariance matrices C1 are assumed to be positive definite (i.e., for all nonzero u 2 Rn,
u � C1u > 0) and symmetric. Similarly, a matrix A is negative definite if, for all nonzero u 2 Rn,
u � Au < 0.
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Here, r1 and r2 are gradient vectors with respect to u and v, respectively (e.g., the
i th component of r1�.u�; u�/ is @�.u0;u�/

@u0

i
ju0Du� ), and A; B; C are the n�n matrices

with ij th entries (all partial derivatives are evaluated at u�):

Aij �

"
@2

@u0
j @u0

i

�.u0; u�/

#

I Bij �

�
@

@u0
i

@

@uj

�.u0; u/

�
I Cij �

"
@

@u0
j

@

@u0
i

�.u�; u0/

#

:

Theorem 6. Suppose u� 2 int(S ) is a rest point of (10.23) (i.e., r1�.u�; u�/ D 0).

(a) u� is a neighborhood strict NE if and only if A is negative definite. It is
convergence stable for all choices of C1.u/ if and only if A C B is negative
definite. It is a CSS if and only if it is neighborhood half-superior if and only
if it is a neighborhood strict NE that is convergence stable for all choices of
C1.u/.

(b) u� is an NIS if and only if 1
2
A C B is negative definite. It is neighborhood

superior if and only if it is neighborhood attracting under the replicator
equation (10.15) if and only if it is an NIS that is a neighborhood strict NE.

Clearly, Theorem 6 generalizes the results on strict NE, CSS and NIS given in
Theorem 2 of Sect. 3.2 to games with a multidimensional continuous trait space. As
we have done throughout Sect. 3, these statements assume threshold cases (e.g., A or
A C B negative semi-definite) do not arise. Based on Theorem 6 (a), Leimar (2009)
defines the concept of strong convergence stability as a u� that is convergence stable
for all choices of C1.u/.30 He goes on to show (see also Leimar 2001) that, in a more
general canonical equation where C1.u/ need not be symmetric but only positive
definite, u� is convergence stable for all such choices (called absolute convergence
stability) if and only if A C B is negative definite and symmetric.

In general, if there is no u� that is a CSS (respectively, neighborhood superior),
the evolutionary outcome under adaptive dynamics (respectively, the replicator
equation) can be quite complex for a multidimensional trait space. This is already
clear for multivariable quadratic payoff functions that generalize (10.11) as seen by
the subtleties that arise for the two-dimensional trait space example analyzed by
Cressman et al. (2006). These complications are beyond the scope of this chapter.

4 Asymmetric Games

Sections 2 and 3 introduced evolutionary game theory for two fundamental classes
of symmetric games (normal form games and games with continuous trait space,

30A similar covariance approach was applied by Hines (1980) (see also Cressman and Hines 1984)
for matrix games to show that p� 2 int.�m/ is an ESS if and only if it is locally asymptotically
stable with respect to the replicator equation (10.4) adjusted to include an arbitrary mutation
process.
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respectively). Evolutionary theory also applies to non-symmetric games. An
asymmetric game is a multiplayer game where the players are assigned one of
N roles with a certain probability, and, to each role, there is a set of strategies. If
it is a two-player game and there is only one role (i.e., N D 1), we then have a
symmetric game as in the previous sections.

This section concentrates on two-player, two-role asymmetric games. These
are also called two-species games (roles correspond to species) with intraspecific
(respectively, interspecific) interactions among players in the same role (respec-
tively, different roles). Sections 4.1 and 4.2 consider games when the players have
finite pure-strategy sets S D fe1; e2; : : : ; emg and T D ff1; f2; : : : ; fng in roles one
and two, respectively, whereas Sect. 4.3 has continuous trait spaces in each role.

4.1 Asymmetric Normal Form Games (Two-Player, Two-Role)

Following Selten (1980) (see also Cressman 2003, 2011; Cressman and Tao 2014;
van Damme 1991), in a two-player asymmetric game with two roles (i.e., N D 2),
the players interact in pairwise contests after they are assigned a pair of roles, k

and `, with probability �fk;`g. In the two-role asymmetric normal form games, it is
assumed that the expected payoffs �1.ei I p; q/ and �2.fj I p; q/ to ei in role one
(or species 1) and to fj in role two (or species 2) are linear in the components of the
population states p 2 �m and q 2 �n. One interpretation of linearity is that each
player engages in one intraspecific and one interspecific random pairwise interaction
per unit time.

A particularly important special class, called truly asymmetric games (Selten
1980), has �f1;2g D �f2;1g D 1

2
and �f1;1g D �f2;2g D 0. The only interactions in

these games are between players in different roles (or equivalently, �1.ei I p; q/ and
�2.fj I p; q/ are independent of p and q, respectively). Then, up to a possible factor
of 1

2
that is irrelevant in our analysis,

�1.ei I p; q/ D

nX

j D1

Aij qj D ei � Aq and �2.fj I p; q/ D

mX

iD1

Bji pi D fj � Bp

where A and B are m � n and n � m (interspecific) payoff matrices. For this reason,
these games are also called bimatrix games .

Evolutionary models based on bimatrix games have been developed to investigate
such biological phenomena as male-female contribution to care of offspring in the
Battle of the Sexes game of Dawkins (1976) and territorial control in the Owner-
Intruder game (Maynard Smith 1982).31 Unlike the biological interpretation of
asymmetric games in most of Sect. 4 that identifies roles with separate species,

31These two games are described more fully in Broom and Krivan’s (�Chap. 23, “Biology and
Evolutionary Games”, this volume).
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the two players in both these examples are from the same species but in different
roles. In general, asymmetric games can be used to model behavior when the same
individual is in each role with a certain probability or when these probabilities
depend on the players’ strategy choices. These generalizations, which are beyond
the scope of this chapter, can affect the expected evolutionary outcome (see, e.g.,
Broom and Rychtar 2013).

To extend the ESS definition developed in Sects. 2.1 and 2.2 to asymmetric
games, the invasion dynamics of the resident monomorphic population .p�; q�/ 2

�m � �n by .p; q/ generalizes (10.3) to become

P"1 D "1.1 � "1/.�1.pI "1p C .1 � "1/p�; "2q C .1 � "2/q�/

��1.p�I "1p C .1 � "1/p�; "2q C .1 � "2/q�//

P"2 D "2.1 � "2/.�2.qI "1p C .1 � "1/p�; "2q C .1 � "2/q�
1 /

��2.q�I "1p C .1 � "1/p�; "2q C .1 � "2/q�//

(10.24)

where �1.pI "1p C .1 � "1/p�; "2q C .1 � "2/q�/ is the payoff to p when the
current states of the population in roles one and two are "1p C .1 � "1/p� and
"2q C .1 � "2/q�, respectively, etc. Here "1 (respectively, "2) is the frequency of the
mutant strategy p in species 1 (respectively, q in species 2).

By Cressman (1992), .p�; q�/ exhibits evolutionary stability under (10.24) (i.e.,
."1; "2/ D .0; 0/ is locally asymptotically stable under the above dynamics for all
choices p ¤ p� and q ¤ q�) if and only if

either �1.pI p; q/ < �1.p�I p; q/ or �2.qI p; q/ < �2.q�I p; q/ (10.25)

for all strategy pairs sufficiently close (but not equal) to .p�; q�/. Condition (10.25)
is the two-role analogue of local superiority for matrix games (see Theorem 2
(a)). If (10.25) holds for all .p; q/ 2 �m � �n sufficiently close (but not
equal) to .p�; q�/, then .p�; q�/ is called a two-species ESS (Cressman 2003) or
neighborhood superior (Cressman 2010).

The two-species ESS .p�; q�/ enjoys similar evolutionary stability properties to
the ESS of symmetric normal form games. It is locally asymptotically stable with
respect to the replicator equation for asymmetric games given by

Ppi D pi Œ�1.ei I p; q/ � �1.pI p; q/� for i D 1; : : : ; m

Pqj D qj

�
�2.fj I p; q/ � �2.qI p; q/

�
for j D 1; : : : ; n

(10.26)

and for all its mixed-strategy counterparts (i.e., .p�; q�/ is strongly stable). Further-
more, if .p�; q�/ is in the interior of �m � �n, then it is globally asymptotically
stable with respect to (10.26) and with respect to the best response dynamics
that generalizes (10.8) to asymmetric games (Cressman 2003). Moreover, the Folk
Theorem (Theorem 1) is valid for the replicator equation (10.26) where an NE is a
strategy pair .p�; q�/ such that �1.pI p�; q�/ � �1.p�I p�; q�/ for all p ¤ p� and
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�2.qI p�; q�/ � �2.q�I p�; q�/ for all q ¤ q� (it is a strict NE if both inequalities
are strict).

For bimatrix games, .p�; q�/ is a two-species ESS if and only if it is a strict
NE (i.e., p � Aq� < p� � Aq� for all p ¤ p� and q � Bp� < q� � Bp� for all
q ¤ q�).32 Furthermore, for these games, .p�; q�/ is locally asymptotically stable
with respect to (10.26) if and only if it is a two-species ESS (i.e., a strict NE). Thus,
in contrast to symmetric games, we have an equivalence between the static two-
species ESS concept (10.25) and stable evolutionary outcomes. However, this is an
unsatisfactory result in the sense that strict NE must be pure-strategy pairs and so
the two-species ESS is a very restrictive concept for bimatrix games.

At the other extreme from bimatrix games, suppose that there are no interspecific
interactions (e.g., �f1;2g D �f2;1g D 0 and �f1;1g D �f2;2g D 1

2
). These are

also called completely symmetric two-role asymmetric games. Then, .p�; q�/ is
a two-species ESS if and only if p� is a single-species ESS for species one and
q� is a single-species ESS for species two. For example, when q D q�, we
need �1.p�I p; q�/ � �1.p�; p/ > �1.p; p/ � �1.pI p; q�/ for all p that are
sufficiently close (but not equal) to p�. From Theorem 2 (a), this last inequality
characterizes the single-species ESS (of species one). From this result, there can be
two-species ESSs that are not strict NE (see also Example 2 below). In particular,
there can be completely mixed ESSs.

From these two extremes, we see that the concept of a two-species ESS combines
and generalizes the concepts of single-species ESS of matrix games and the strict
NE of bimatrix games.

A more biologically relevant example of two-species interactions analyzed by
evolutionary game theory (where there are both interspecific and intraspecific
interactions) is the following two-habitat selection model of Cressman et al. (2004).
Specifically, this model is a Lotka-Volterra competitive two-species system in each
patch where it is assumed that each species’ migration is always toward the patch
with the highest payoff for this species (see Example 1). An ESS always exists in this
model, and, depending on parameters, the ESS is mixed (i.e., both species coexist
in each patch) in some cases, while, in others, one of the species resides only in one
patch at the ESS.

Example 2 (Two-species habitat selection game). Suppose that there are two
species competing in two different habitats (or patches) and that the overall
population size (i.e., density) of each species is fixed. Also assume that the fitness of
an individual depends only on its species, the patch it is in, and the density of both
species in this patch. Then strategies of species one and two can be parameterized
by the proportions p1 and q1, respectively, of these species that are in patch one. If
individual fitness (i.e., payoff) is positive when a patch is unoccupied and linearly

32To see this result first proven by Selten (1980), take .p; q/ D .p; q�/ . Then (10.25) implies
p � Aq� < p� � Aq� or q� � Bp� < q� � Bp� for all p ¤ p�. Thus, p � Aq� < p� � Aq� for all
p ¤ p�. The same method can now be applied to .p; q/ D .p�; q/.
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decreasing in patch densities, then payoff functions have the form

�1.ei I p; q/ D ri

	
1 �

pi M

Ki

�
˛i qi N

Ki




�2.fi I p; q/ D si

	
1 �

qi N

Li

�
ˇi pi M

Li



:

Here, �1.ei I p; q/ (respectively, �2.fi I p; q/) is the fitness of a species one
individual (respectively, species two individual) in patch i , p2 D 1 � p1, and
q2 D 1 � q1. All other parameters are fixed and positive.33

By linearity, these payoffs can be represented by a two-species asymmetric game
with payoff matrices

A D

"
r1 � r1M

K1
r1

r2 r2 � r2M
K2

#

B D

"
� ˛1r1N

K1
0

0 � ˛2r2N
K2

#

C D

"
� ˇ1s1M

L1
0

0 � ˇ2s2M

L2

#

D D

"
s1 � s1N

L1
s1

s2 s2 � s2N
L2

#

:

For example, �1.ei I p; q/ D ei � .Ap C Bq/. At a rest point .p; q/ of the replicator
equation (10.26), all individuals present in species one must have the same fitness
as do all individuals present in species two.

Suppose that both patches are occupied by each species at the rest point .p; q/.
Then .p; q/ is an NE and .p1; q1/ is a point in the interior of the unit square that
satisfies

r1

	
1 �

p1M

K1

�
˛1q1N

K1



D r2

	
1 �

.1 � p1/M

K2

�
˛2.1 � q1/N

K2




s1

	
1 �

q1N

L1

�
ˇ1p1M

L1



D s2

	
1 �

.1 � q1/N

L2

�
ˇ2.1 � p1/M

L2



:

That is, these two “equal fitness" lines (which have negative slopes) intersect at
.p1; q1/ as in Fig. 10.5.

The interior NE .p; q/ is a two-species ESS if and only if the equal fitness line
of species one is steeper than that of species two. That is, .p; q/ is an interior two-

33This game is also considered briefly by Broom and Krivan (�Chap. 23, “Biology (Application
of Evolutionary Game Theory)”, this volume). There the model parameters are given biological
interpretations (e.g., M is the fixed total population size of species one and K1 is its carrying
capacity in patch one, etc.). Linearity then corresponds to Lotka-Volterra type interactions. As in
Example 1 of Sect. 2.4, our analysis again concentrates on the dynamic stability of the evolutionary
outcomes.
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Fig. 10.5 The ESS structure of the two-species habitat selection game. The arrows indicate the
direction of best response. The equal fitness lines of species one (dashed line) and species two
(dotted line) intersect in the unit square. Solid dots are two-species ESSs. (a) A unique ESS in the
interior. (b) Two ESSs on the boundary

species ESS in Fig. 10.5a but not in Fig. 10.5b. The interior two-species ESS in
Fig. 10.5a is globally asymptotically stable under the replicator equation.

Figure 10.5b has two two-species ESSs, both on the boundary of the unit square.
One is a pure-strategy pair strict NE with species one and two occupying separate
patches (p1 D 1; q1 D 0), whereas the other has species two in patch one and
species one split between the two patches (0 < p1 < 1; q1 D 1). Both are locally
asymptotically stable under the replicator equation with basins of attraction whose
interior boundaries form a common invariant separatrix. Only for initial conditions
on this separatrix that joins the two vertices corresponding to both species in the
same patch do trajectories evolve to the interior NE.

If the equal fitness lines do not intersect in the interior of the unit square, then
there is exactly one two-species ESS. This is on the boundary (either a vertex or on
an edge) and is globally asymptotically stable under the replicator equation (Krivan
et al. 2008).

For these two species models, some authors consider an interior NE to be a (two-
species) IFD (see Example 1 for the intuition of a single-species IFD). Example 2
shows such NE may be unstable (Fig. 10.5b) and so justifies the perspective of others
who restrict the IFD concept to two-species ESSs (Krivan et al. 2008).

Remark 3. The generalization of the two-species ESS concept (10.25) to three (or
more) species is a difficult problem (Cressman et al. 2001). It is shown there that
it is possible to characterize a monomorphic three-species ESS as one where, at all
nearby strategy distributions, at least one species does better using its ESS strategy.
However, such an ESS concept does not always imply stability of the three-species
replicator equation that is based on the entire set of pure strategies for each species.
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4.2 Perfect Information Games

Two-player extensive form games whose decision trees describe finite series of
interactions between the same two players (with the set of actions available at
later interactions possibly depending on what choices were made previously) were
introduced alongside normal form games by von Neumann and Morgenstern (1944).
Although (finite, two-player) extensive form games are most helpful when used
to represent a game with long (but finite) series of interactions between the same
two players, differences with normal form intuition already emerge for short games
(Cressman 2003; Cressman and Tao 2014). In fact, from an evolutionary game
perspective, these differences with normal form intuition are apparent for games
of perfect information with short decision trees as illustrated in the remainder of
this section that follows the approach of Cressman (2011).

A (finite, two-player) perfect information game is given by a rooted game tree �

where each nonterminal node is a decision point of one of the players or of nature.
In this latter case, the probabilities of following each of the edges that start at the
decision point and lead away from the root are fixed (by nature). A path to a node x

is a sequence of edges and nodes connecting the root to x. The edges leading away
from the root at each player decision node are this player’s choices (or actions) at
this node. There must be at least two choices at each player decision node. A pure
(behavior) strategy for a player specifies a choice at all of his decision nodes. A
mixed behavior strategy for a player specifies a probability distribution over the set
of actions at each of his decision nodes. Payoffs to both players are specified at each
terminal node z 2 Z. A probability distribution over Z is called an outcome.

Example 3 (Chain Store game). Figure 10.6a is an elementary perfect information
game with no moves by nature. At each terminal node, payoffs to both players
are indicated with the payoff of player 1 above that of player 2. Player 1 has one
decision node u where he chooses between the actions L and R. If he takes action
L, player 1 gets payoff 1 and player 2 gets 4. If he takes action R, then we reach
the decision point v of player 2 who then chooses between ` and r leading to both
players receiving payoff 0 or both payoff 2, respectively.

Fig. 10.6 The Chain Store
game. (a) The extensive form.
(b) Trajectories of the
replicator equation with
respect to the game’s normal
form and the NE structure
given by the NE component
G (shown as a red line
segment) and the solid dot at
the origin corresponding to
the SPNE
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What are the Nash equilibria (NEs) for this example? If players 1 and 2 choose
R and r , respectively, with payoff 2 for both, then

1. player 2 does worse through unilaterally changing his strategy by playing r with
probability 1 � q less than 1 (since 0q C 2.1 � q/ < 2) and

2. player 1 does worse through unilaterally changing his strategy by playing L with
positive probability p (since 1p C 2.1 � p/ < 2).

Thus, the strategy pair .R; r/ is a strict NE corresponding to the outcome .2; 2/.34

In fact, if player 1 plays R with positive probability at an NE, then player 2 must
play r . From this it follows that player 1 must play R with certainty (i.e., p D 0)
(since his payoff of 2 is better than 1 obtained by switching to L). Thus any NE
with p < 1 must be .R; r/. On the other hand, if p D 1 (i.e., player 1 chooses L),
then player 2 is indifferent to what strategy he uses since his payoff is 4 for any
(mixed) behavior. Furthermore, player 1 is no better off by playing R with positive
probability if and only if player 2 plays ` at least half the time (i.e., 1

2
� q � 1).

Thus

G � f.L; q` C .1 � q/r j
1

2
� q � 1g

is a set of NE, all corresponding to the outcome .1; 4/. G is called an NE component
since it is a connected set of NE that is not contained in any larger connected set of
NE.

The NE structure of Example 3 consists of the single strategy pair G� D f.R; r/g

which is a strict NE and the set G. These are indicated as a solid point and line
segment, respectively, in Fig. 10.6b where G� D f.p; q/ j p D 0; q D 0g D

f.0; 0/g.

Remark 4. Example 3 is a famous game known as the Entry Deterrence game or the
Chain Store game introduced by the Nobel laureate Reinhard Selten (Selten 1978;
see also van Damme 1991 and Weibull 1995). Player 2 is a monopolist who wants to
keep the potential entrant (player 1) from entering the market that has a total value
of 4. He does this by threatening to ruin the market (play ` giving payoff 0 to both
players) if player 1 enters (plays R), rather than accepting the entrant (play r and
split the total value of 4 to yield payoff 2 for each player). However, this is often
viewed as an incredible (or unbelievable) threat since the monopolist should accept
the entrant if his decision point is reached (i.e., if player 1 enters) since this gives
the higher payoff to him (i.e., 2 > 0).

34When the outcome is a single node, this is understood by saying the outcome is the payoff pair
at this node.
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Some game theorists argue that a generic perfect information game (see
Remark 6 below for the definition of generic) has only one rational NE equilibrium
outcome and this can be found by backward induction. This procedure starts at a
final player decision point (i.e., a player decision point that has no player decision
points following it) and decides which unique action this player chooses there to
maximize his payoff in the subgame with this as its root. The original game tree
is then truncated at this node by creating a terminal node there with payoffs to the
two players given by this action. The process is continued until the game tree has
no player decision nodes left and yields the subgame perfect NE (SPNE). That is,
the strategy constructed by backward induction produces an NE in each subgame
�u corresponding to the subtree with root at the decision node u (Kuhn 1953). For
generic perfect information games (see Remark 6), the SPNE is a unique pure-
strategy pair and is indicated by the double lines in the game tree of Fig. 10.6a. The
SPNE of Example 3 is G�. If an NE is not subgame perfect, then this perspective
argues that there is at least one player decision node where an incredible threat
would be used.

Example 4 (Continued). Can evolutionary dynamics be used to select one of the
two NE outcomes of the Chain Store game? Suppose players 1 and 2 use mixed
strategies p and q, respectively. The payoffs of pure strategies L and R for player 1
(denoted �1 .L; q/ and �1 .R; q/, respectively) are 1 and 0qC2.1�q/, respectively.
Similarly, the payoffs of pure strategies ` and r for player 2 are �2 .p; `/ D 4p C

.1�p/0 and �2 .p; r/ D 4pC.1�p/2, respectively. Thus, the expected payoffs are
�1 .p; q/ D p C .1�p/2.1�q/ and �2 .p; q/ D q4p C .1�q/.4p C .1�p/2/ for
players 1 and 2, respectively. Under the replicator equation, the probability of using
a pure strategy increases if its payoff is higher than these expected payoffs. For this
example, the replicator equation is (Weibull 1995, see also Remark 5 below)

Pp D p.1 � .p C .1 � p/2.1 � q/// D p.1 � p/.2q � 1/ (10.27)

Pq D q.4p � Œq4p C .1 � q/.4p C .1 � p/2/�/ D �2q.1 � q/.1 � p/:

The rest points are the two vertices f.0; 0/; .0; 1/g and the edge f.1; q/ j 0 � q � 1g

joining the other two vertices. Notice that, for any interior trajectory, q is strictly
decreasing and that p is strictly increasing (decreasing) if and only if q > 1

2
(q < 1

2
).

Trajectories of (10.27) are shown in Fig. 10.6b. The SPNE of the Chain Store
game G� is the only asymptotically stable NE.35 That is, asymptotic stability of the
evolutionary dynamics selects a unique outcome for this example whereby player 1
enters the market and the monopolist is forced to accept this.

35This is clear for the replicator equation (10.27). For this example with two strategies for each
player, it continues to hold for all other game dynamics that satisfy the basic assumption that the
frequency of one strategy increases if and only if its payoff is higher than that of the player’s other
strategy.
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Remark 5. Extensive form games can always be represented in normal form. The
bimatrix normal form of Example 3 is

Ruin (`) Accept (r)
Not Enter (L)

Enter (R)

�
1; 4 1; 4

0; 0 2; 2

�
:

By convention, player 1 is the row player and player 2 the column player. Each
bimatrix entry specifies payoffs received (with player 1’s given first) when the two
players use their corresponding pure-strategy pair. That is, the bimatrix normal form,
also denoted

�
A; BT

�
, is given by

A D

�
1 1

0 2

�
and B D

�
4 4

0 2

�T

D

�
4 0

4 2

�

where A and B are the payoff matrices for player 1 and 2, respectively. With these
payoff matrices, the replicator equation (10.26) becomes (10.27).

This elementary example already shows a common feature of the normal form
approach for such games, namely, that some payoff entries are repeated in the
bimatrix. As a normal form, this means the game is nongeneric (in the sense that
at least two payoff entries in A (or in B) are the same) even though it arose from a
generic perfect information game. For this reason, most normal form games cannot
be represented as perfect information games.

To generalize the evolutionary analysis of Example 3 to other perfect information
games, the following results for Example 3 are straightforward to prove. By
Theorem 7 below, these results continue to hold for most perfect information games.

1. Every NE outcome is a single terminal node.36

2. Every NE component G includes a pure-strategy pair.
3. The outcomes of all elements of G are the same.
4. Every interior trajectory of the replicator equation converges to an NE.
5. Every pure-strategy NE is stable but not necessarily asymptotically stable.
6. Every NE that has a neighborhood whose only rest points are NE is stable.
7. If an NE component is interior attracting, it includes the SPNE.
8. Suppose .p; q/ is an NE. It is asymptotically stable if and only if it is strict.

Furthermore, .p; q/ is asymptotically stable if and only if playing this strategy
pair reaches every player decision point with positive probability (i.e., .p; q/ is
pervasive).

36For Example 3, this is either .2; 2/ or .1; 4/.
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Theorem 7 (Cressman 2003). Results 2 to 8 are true for all generic perfect
information games. Result 1 holds for generic perfect information games without
moves by nature.

Remark 6. By definition, an extensive form game � is generic if no two pure-
strategy pairs that yield different outcomes have the same payoff for one of the
players. For a perfect information game � with no moves by nature, � is generic
if and only if no two terminal nodes have the same payoff for one of the players.
If � is not generic, the SPNE outcome may not be unique since several choices
may arise at some player decision point in the backward induction process when
there are payoff ties. Some of the results of Theorem 7 are true for general perfect
information games and some are not. For instance, Result 1 is not true for some
nongeneric games or for generic games with moves by nature. Result 4, which
provides the basis to connect dynamics with NE in Results 5 to 8, remains an open
problem for nongeneric perfect information games. On the other hand, Result 4 has
recently been extended to other game dynamics. Specifically, every trajectory of
the best response dynamics37 converges to an NE component for all generic perfect
information games (Xu 2016).

Theorem 7 applies to all generic perfect information games such as that given
in Fig. 10.7. Since no pure-strategy pair in Fig. 10.7 can reach both the left-side
subgame and the right-side subgame, none are pervasive. Thus, no NE can be
asymptotically stable by Theorem 7 (Results 1 and 8), and so no single strategy
pair can be selected on dynamic grounds by the replicator equation.

However, it is still possible that an NE outcome is selected on the basis of its
NE component being locally asymptotically stable as a set. By Result 7, the NE
component containing the SPNE is the only one that can be selected in this manner.
In this regard, Fig. 10.7 is probably the easiest example (Cressman 2003) of a perfect
information game where the NE component G� of the SPNE outcome .2; 3/ is
not interior attracting (i.e., there are interior initial points arbitrarily close to G�

Fig. 10.7 The extensive
form of a perfect information
game with unstable SPNE
component

2

2

1

2

l m r

–2
–23 2

0 1
0

3
1

L R

T B

37This is the obvious extension to bimatrix games of the best response dynamics (10.8) for
symmetric (matrix) games.
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whose interior trajectory under the replicator equation does not converge to this NE
component). That is, Fig. 10.7 illustrates that the converse of Result 7 (Theorem 7)
is not true and so the SPNE outcome is not always selected on dynamic grounds.

To see this, some notation is needed. The (mixed) strategy space of player 1
is the one-dimensional strategy simplex �.fT; Bg/ D f.pT ; pB/ j pT C pB D

1; 0 � pT ; pB � 1g. This is also denoted �2 � f.p1; p2/ j p1 C p2 D

1; 0 � pi � 1g. Similarly, the strategy simplex for player 2 is the five-dimensional
set �.fL`; Lm; Lr; R`; Rm; Rrg/ D f.qL`; qLm; qLr ; qR`; qRm; qRr/ 2 �6g. The
replicator equation is then a dynamics on the 6�dimensional space �.fT; Bg/ �

�.fL`; Lm; Lr; R`; Rm; Rrg/. The SPNE component (i.e., the NE component
containing the SPNE .T; L`/) is

G� D f.T; q/ j qL` C qLm C qLr D 1; qLm C 3qLr � 2g

corresponding to the set of strategy pairs with outcome .2; 3/ where neither player
can improve his payoff by unilaterally changing his strategy (Cressman 2003). For
example, if player 1 switches to B , his payoff of 2 changes to 0qL` C 1qLm C

3qLr � 2. The only other pure-strategy NE is fB; R`g with outcome .0; 2/ and
corresponding NE component G D f.B; q/ j qL` C qR` D 1; 1

2
� qR` � 1g. In

particular, .T; 1
2
qLm C 1

2
qLr / 2 G� and .B; R`/ 2 G.

Using the fact that the face �.fT; Bg/ � �.fLm; Lrg/ has the same structure as
the Chain Store game of Example 1 (where p corresponds to the probability player
1 uses T and q the probability player 2 uses Lr), points in the interior of this face
with qLr > 1

2
that start close to .T; 1

2
qLm C 1

2
qLr / converge to .B; Lr/. From this,

Cressman (2011) shows that there are trajectories in the interior of the full game
that start arbitrarily close to G� that converge to a point in the NE component G. In
particular, G� is not interior attracting.

Remark 7. The partial dynamic analysis of Fig. 10.7 given in the preceding two
paragraphs illustrates nicely how the extensive form structure (i.e., the game tree
for this perfect information game) helps with properties of NE and the replicator
equation. Similar considerations become even more important for extensive form
games that are not of perfect information. For instance, all matrix games can
be represented in extensive form (c.f. Remark 5), but these never have perfect
information.38 Thus, for these symmetric extensive form games (Selten 1983), the
eight Results of Theorem 7 are no longer true, as we know from Sect. 2. However,
the backward induction procedure can be generalized to the subgame structure of
a symmetric extensive form game � to produce an SPNE (Selten 1983). When the

38An extensive form game that is not of perfect information has at least one player “information
set” containing more than one decision point of this player. This player must take the same action
at all these decision points. Matrix games then correspond to symmetric extensive form games
(Selten 1983) where there is a bijection from the information sets of player 1 to those of player 2.
Bimatrix games can also be represented in extensive form.
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process is applied to NE of the (symmetric) subgames that are locally asymptotically
stable under the replicator equation (10.4), a locally asymptotically stable SPNE
p� of � emerges (Cressman 2003) when .p�; p�/ is pervasive (c.f. Result 8,
Theorem 7). As Selten (1988) showed, this result is no longer true when local
asymptotic stability is replaced by the ESS structure of the subgames. A description
of the issues that arise in these games is beyond the scope of this chapter. The
interested reader is directed to van Damme (1991) and Cressman (2003) as well
as Selten (1983, 1988) for further details.

4.3 Asymmetric Games with One-Dimensional Continuous Trait
Spaces

In this section, we will assume that the trait spaces S and T for the two roles are
both one-dimensional compact intervals and that payoff functions have continuous
partial derivatives up to the second order so that we avoid technical and/or notational
complications. For .u; v/ 2 S � T , let �1.u0I u; v/ (respectively, �2.v0I u; v/) be
the payoff to a player in role 1 (respectively, in role 2) using strategy u0 2 S

(respectively, v0 2 T ) when the population is monomorphic at .u; v/. Note that
�1 has a different meaning here than in Sect. 3 where it was used to denote a partial
derivative (e.g., equation (10.13)). Here, we extend the concepts of Sect. 3 (CSS,
adaptive dynamics, NIS, replicator equation, neighborhood superior, Darwinian
dynamics) to asymmetric games.

To start, the canonical equation of adaptive dynamics (c.f. (10.13)) becomes

Pu D k1.u; v/
@

@u0
�1.u0I u; v/ ju0Du

(10.28)

Pv D k2.u; v/
@

@v0
�2.v0I u; v/ jv0Dv

where ki .u; v/ for i D 1; 2 are positive continuous functions of .u; v/ . At an interior
rest point .u�; v�/ of (10.28),

@�1

@u0
D

@�2

@v0
D 0:

Following Cressman (2009), .u�; v�/ is called convergence stable if it is locally
asymptotically stable under (10.28) for any choice of k1 and k2. Furthermore,
.u�; v�/ is a neighborhood strict NE if �1.u0I u�; v�/ < �1.u�I u�; v�/ and
�2.v0I u�; v�/ < �2.v�I u�; v�/ for all u0 and v0 sufficiently close but not equal
to u� and v�, respectively. Clearly, a neighborhood strict NE .u�; v�/ in the interior
of S � T is a rest point of (10.28).

The characterizations of convergence stability and strict NE in the following
theorem are given in terms of the linearization of (10.28) about .u�; v�/, namely,
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�
Pu
Pv

�
D

�
k1.u�; v�/ 0

0 k2.u�; v�/

� �
A C B C

D E C F

� �
u � u�

v � v�

�
(10.29)

where

A �
@2

@u0@u0
�1.u0I u�; v�/I B �

@

@u0

@

@u
�1.u0I u; v�/I C �

@

@u0

@

@v
�1.u0I u�; v/

D �
@

@v0

@

@u
�2.v0I u; v�/I E �

@

@v0

@

@v
�2.v0I u�; v/I F �

@2

@v0@v0
�2.v0I u�; v�/

and all partial derivatives are evaluated at the equilibrium. If threshold values involv-
ing these six second-order partial derivatives are ignored throughout this section,
the following result is proved by Cressman (2010, 2011) using the Taylor series
expansions of �1.u0I u; v/ and �2.v0I u; v/ about .u�; v�/ that generalize (10.14) to
three variable functions.

Theorem 6. Suppose .u�; v�/ is a rest point of (10.28) in the interior of S � T .

(a) .u�; v�/ is a neighborhood strict NE if and only if A and F are negative.
(b) .u�; v�/ is convergence stable if and only if, for all nonzero .u; v/ 2 R2, either

u..ACB/ u C C v/ < 0 or v .Du C .E C F / v/ < 0 if and only if ACB < 0,
E C F < 0 and .A C B/ .E C F / > CD.39

In Sects. 3.1 and 3.4, it was shown that a CSS for symmetric games is a
neighborhood strict NE that is convergence stable under all adaptive dynamics (e.g.,
Theorem 6 (a)). For asymmetric games, we define a CSS as a neighborhood strict
NE that is convergence stable. That is, .u�; v�/ is a CSS if it satisfies both parts of
Theorem 6. Although the inequalities in the latter part of (b) are the easiest to use to
confirm convergence stability in practical examples, it is the first set of inequalities
that is most directly tied to the theory of CSS, NIS, and neighborhood p�-superiority
(as well as stability under evolutionary dynamics), especially as the trait spaces
become multidimensional. It is again neighborhood superiority according to the
following definition that unifies this theory (see Theorem 9 below).

Definition 4. Suppose .u�; v�/ is in the interior of S � T .

(a) Fix 0 � p� < 1. Strategy pair .u�; v�/ is neighborhood p�-superior if

either �1.u�I P; Q/ > �1.P I P; Q/ or �2.v�I P; Q/ > �2.QI P; Q/

(10.30)

39These equivalences are also shown by Leimar (2009) who called the concept strong convergence
stability.
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for all .P; Q/ 2 �.S/��.T / with 1 � P .fu�g/ � p�, 1 � Q.fv�g/ � p� and
the support of .P; Q/ sufficiently close (but not equal) to .u�; v�/. .u�; v�/ is
neighborhood half-superior if p� D 1

2
.40 .u�; v�/ is neighborhood superior if

p� D 0. .u�; v�/ is (globally) p��superior if the support of .P; Q/ in (10.30)
is an arbitrary subset of S � T (other than f.u�; v�/g ).

(b) Strategy pair .u�; v�/ is a neighborhood invader strategy (NIS) if, for all .u; v/

sufficiently close (but not equal) to .u�; v�/, either �1.u�I u; v/ > �1.uI u; v/ or
�2.v�I u; v/ > �2.vI u; v/.

Definition 4 from Cressman (2010, 2011) is the generalization to asymmetric
games of Definition 3 in Sect. 3.2. It is also clear that the concept of neighborhood
p��superior in (10.30) is close to that of two-species ESS given in (10.25). In fact,
for asymmetric normal form games (i.e., with S and T finite strategy spaces and
payoff linearity), a strategy pair is a two-species ESS if and only if it is neighborhood
p��superior according to Definition 4 for some 0 � p� < 1 (c.f. Remark 1 in
Sect. 3.2). The following result then generalizes Theorem 2 in Sect. 3.2 (see also
Theorem 6 in Sect. 3.4) to asymmetric games (Cressman 2010, 2011).

Theorem 9. Suppose that .u�; v�/ is in the interior of S � T .

(a) .u�; v�/ is a neighborhood CSS if and only if it is neighborhood half-superior.
(b) .u�; v�/ is an NIS if and only if, for all nonzero .u; v/ 2 R2, either

u..A C 2B/ u C 2C v/ < 0 or v .2Du C .2E C F / v/ < 0.
(c) .u�; v�/ is a neighborhood strict NE and NIS if and only if it is neighborhood

superior.
(d) Consider evolution under the replicator equation (10.31) that general-

izes (10.15) to asymmetric games. .u�; v�/ is neighborhood attracting if and
only if it is neighborhood superior.41

The replicator equation for an asymmetric game with continuous trait spaces is
given by

dPt

dt
.U / D

R
U

.�1.u0I Pt ; Qt / � �1.Pt I Pt ; Qt // Pt .du0/

d; Qt

dt
.V / D

R
V

.�2.v0I Pt ; Qt / � �2.Qt I Pt ; Qt // Qt .dv0/

(10.31)

where U and V are Borel subsets of S and T , respectively.

40In (10.30), we assume payoff linearity in the distributions P and Q. For example, the expected
payoff to u0 in a random interaction is �.u0I P; Q/ �

R
S

R
T �1.u0I u; v/Q.dv/P .du/ where P

(Q) is the probability measure on S (T ) corresponding to the current distribution of the population
one’s (two’s) strategies. Furthermore, �.P I P; Q/ �

R
S �.u0I P; Q/P .du0/, etc.

41Note that .u�; v�/ is neighborhood attracting if .Pt ; Qt / converges to .ıu� ; ıv� / in the weak
topology whenever the support of .P0; Q0/ is sufficiently close to .u�; v�/ and .P0; Q0/ 2 �.S/�
�.T / satisfies P0.fu�g/Q0.fv�g/ > 0.
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Remark 8. The above theory for asymmetric games with one-dimensional contin-
uous trait spaces has been extended to multidimensional trait spaces (Cressman
2009, 2010). Essentially, the results from Sect. 3.4 for symmetric games with
multidimensional trait space carry over with the understanding that CSS, NIS, and
neighborhood p�-superiority are now given in terms of Definition 4 and Theorem 9.

Darwinian dynamics for asymmetric games have also been studied (Abrams and
Matsuda 1997; Brown and Vincent 1987, 1992; Marrow et al. 1992; Pintor et al.
2011). For instance, in predator-prey systems, the G-function for predators will
most likely be different from that of the prey (Brown and Vincent 1987, 1992).
Darwinian dynamics, which combines ecological and evolutionary dynamics (c.f.
Sect. 3.3), will now model strategy and population size evolution in both species.
The advantage to this approach to evolutionary games is that, as in Sect. 3.3,
stable evolutionary outcomes can be found that do not correspond to monomorphic
populations (Brown and Vincent 1992; Pintor et al. 2011).

5 Conclusion

This chapter has summarized evolutionary game theory for two-player symmetric
and asymmetric games based on random pairwise interactions. In particular, it has
focused on the connection between static game-theoretic solution concepts (e.g.,
ESS, CSS, NIS) and stable evolutionary outcomes for deterministic evolutionary
game dynamics (e.g., the replicator equation, adaptive dynamics).42 As we have
seen, the unifying principle of local superiority (or neighborhood p�-superiority)
has emerged in the process. These game-theoretic solutions then provide a definition
of stability that does not rely on an explicit dynamical model of behavioral
evolution. When such a solution corresponds to a stable evolutionary outcome, the
detailed analysis of the underlying dynamical system can be ignored. Instead, it
is the heuristic static conditions of evolutionary stability that become central to
understanding behavioral evolution when complications such as genetic, spatial, and
population size effects are added to the evolutionary dynamics.

In fact, stable evolutionary outcomes are of much current interest for other, often
non-deterministic, game-dynamic models that incorporate stochastic effects due to
finite populations or models with assortative (i.e., nonrandom) interactions (e.g.,
games on graphs). These additional features, summarized ably by Nowak (2006),
are beyond the scope of this chapter. So too are models investigating the evolution
of human cooperation whose underlying games are either the two-player Prisoner’s
Dilemma game or the multiplayer Public Goods game (Binmore 2007). This is

42 These deterministic dynamics all rely on the assumption that the population size is large enough
(sometimes stated as “effectively infinite”) so that changes in strategy frequency can be given
through the payoff function (i.e., through the strategy’s expected payoff in a random interaction).
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another area where there is a great deal of interest, both theoretically and through
game experiments.

As the evolutionary theory behind these models is a rapidly expanding area of
current research, it is impossible to know in what guise the conditions for stable
evolutionary outcomes will emerge in future applications. On the other hand, it is
certain that Maynard Smith’s original idea underlying evolutionary game theory will
continue to play a central role.

6 Cross-References
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Abstract

In distributed architecture control problems, there is a collection of inter-
connected decision-making components that seek to realize desirable collec-
tive behaviors through local interactions and by processing local information.
Applications range from autonomous vehicles to energy to transportation. One
approach to control of such distributed architectures is to view the components
as players in a game. In this approach, two design considerations are the
components’ incentives and the rules that dictate how components react to the
decisions of other components. In game-theoretic language, the incentives are
defined through utility functions, and the reaction rules are online learning
dynamics. This chapter presents an overview of this approach, covering basic
concepts in game theory, special game classes, measures of distributed efficiency,
utility design, and online learning rules, all with the interpretation of using game
theory as a prescriptive paradigm for distributed control design.

Keywords
Learning in games � Evolutionary games � Multiagent systems � Distributed
decision systems

1 Introduction

There is growing interest in distributed architecture or networked control systems,
with emergent applications ranging from smart grid to autonomous vehicle networks
to mobile sensor platforms. As opposed to a traditional control system architecture,
there is no single decision-making entity with full information and full authority that
acts as an overall system controller. Rather, decisions are made by a collective of
interacting entities with local information and limited communication capabilities.
The challenge is to derive distributed controllers to induce desirable collective
behaviors.

One approach to distributed architecture systems is to view the decision-making
components as individual players in a game and to formulate the distributed control
problem in terms of game theory. The basic elements of what constitutes a game
are (i) a set of players or agents; (ii) for each player, a set of choices; and (iii) for
each player, preferences over the collective choices of agents, typically expressed in
the form of a utility function. In traditional game theory (e.g., Fudenberg and Tirole
1991), these elements are a model of a collection of decision-makers, typically in
a societal context (e.g., competing firms, voters, bidders in an auction, etc.). In the
context of distributed control, these elements are design considerations in that one
has the degree of freedom on how to decompose a distributed control problem and
how to design the preferences/utility functions to properly incentivize agents. Stated
differently, game theory in this context is being used as a prescriptive paradigm,
rather than a descriptive paradigm (Marden and Shamma 2015; Shoham et al. 2007).
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Formulating a distributed control problem in game-theoretic terms implicitly
suggests that the outcome – or, more appropriately, the solution concept – of the
resulting game is a desirable collective configuration. The most well-known solution
concept is Nash equilibrium, in which each player’s choice is optimal with respect
to the choices of other agents. Other solution concepts, which are generalizations of
Nash equilibrium, are correlated and coarse correlated equilibrium (Young 2004).
Typically, a solution concept does not uniquely specify the outcome of a game
(e.g., a game can have multiple Nash equilibria), and so there is the issue that some
outcomes are better than others.

A remaining concern is how a solution concept emerges at all. Given the
complete description of a game, an outside party can proceed to compute (mod-
ulo computational complexity considerations Daskalakis et al. 2009) a proposed
solution concept realization. In actuality, the data of a game (e.g., specific utility
functions) is distributed among the players and not necessarily shared or commu-
nicated. Rather, over time players might make observations of the choices of the
other players and eventually the collective play converges to some limiting structure.
This latter scenario is the topic of game-theoretic learning, for which there are
multiple survey articles and monographs (e.g., Fudenberg and Levine 1998; Hart
2005; Shamma 2014; Young 2004). Under the descriptive paradigm, the learning in
games discussion provides a plausibility argument of how players may arrive at a
specified solution concept realization. Under the prescriptive paradigm, the learning
in games discussion suggests an online algorithm that can lead agents to a desirable
solution concept realization.

This article will provide an overview of approaching distributed control from the
perspective of game theory. The presentation will touch on each of the aforemen-
tioned aspects of problem formulation, game design, and game-theoretic learning.

2 Game-Theoretic Distributed Resource Utilization

2.1 Setup

Various problems of interest take the form of allocating a collection of assets to
utilize a set of resources to a desired effect. In sensor coverage problems (e.g., Cortes
et al. 2002), the “assets” are mobile sensors, and the “resources” are the regions to be
covered by the sensors. For any given allocation, there is an overall score reflecting
the quality of the coverage. In traffic routing problems (e.g., Roughgarden 2005), the
“assets” are vehicles (or packets in a communication setting), and the “resources”
are roads (or channels). The objective is to route traffic from origins to destinations
in order to minimize a global cost such as congestion.

It will be instructive to interpret the forthcoming discussion on distributed
control in the framework of such distributed resource utilization problems. As
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previously mentioned, the framework captures a variety of applications of interest.
Furthermore, focusing on this specific setting will enhance the clarity of exposition.

More formally, the problem is to allocate a collection of assets N D f1; 2; : : : ; ng

over a collection of resources R D f1; 2; : : : ; mg in order to optimize a given
system-level objective. The set Ai � 2R is the allowable resource selections by
asset i . In terms of the previous examples, an allowable resource selection is an area
covered by a sensor or a set of roads used by vehicle. The system-level objective is
a mapping W W A ! R where A D A1 � � � � � An denotes the set of joint resource
selections. We denote a collective configuration by the tuple a D .a1; a2; : : : ; an/

where ai 2 Ai is the choice, or action, of agent i .
Moving toward a game-theoretic model, we will identify the set of assets as the

set of agents or players. Likewise, we will identify Ai as the choice set of agent i .
We defer for now specifying a utility function for agent i .

Looking forward to the application of game-theoretic learning, we will consider
agents selecting actions iteratively over an infinite time horizon t 2 f1; 2; : : :g.
Depending on the update rules of the agents, the outcome is a sequence of joint
actions a.1/; a.2/; a.3/; : : :. The action of agent i at time t is chosen according to
some update policy, �i .�/, i.e.,

ai .t/ D �i .information available to agent i at time t / : (11.1)

The update policy �i .�/ specifies how agent i processes available information to
formulate a decision. We will be more explicit about the argument of the �i .�/’s
in the forthcoming discussion. For now, the information available to an agent can
include both knowledge regarding previous action choices of other agents and
certain system-level information that is propagated throughout the system.

The main goal is to design both the agents’ utility functions and the agents’ local
policies f�i gi2N to ensure that the emergent collective behavior optimizes the global
objective W in terms of the asymptotic properties of W .a.t// as t ! 1.

2.2 Prescriptive Paradigm

Once the players and their choices have been set, the remaining elements in the
prescriptive paradigm that are yet to be designed are (i) the agent utility functions
and (ii) the update policies, f�i gi2N . One can view this specification in terms of the
following two-step design procedure:

Step #1: Game Design. The first step of the design involves defining the underly-
ing interaction structure in a game-theoretic environment. In particular, this choice
involves defining a utility function for each agent i 2 N of the form Ui W A ! R.
The utility of agent i for an action profile a D .a1; a2; : : : ; an/ is expressed as Ui .a/

or alternatively Ui .ai ; a�i / where a�i denotes the collection of actions other than
player i in the joint action a, i.e., a�i D .a1; : : : ; ai�1; aiC1; : : : ; an/. A key feature
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of this design choice is the coupling of the agents’ utility functions where the utility,
or payoff, of one agent is affected by the actions of other agents.

Step #2: Learning Design. The second step involves defining the decision-making
rules for the agents. That is, how does each agent process available information to
formulate a decision. A typical assumption in the framework of learning in games
is that each agent uses historical information from previous actions of itself and
other players. Accordingly, at each time t the decision of each agent i 2 N is made
independently through a learning rule of the form

ai .t/ D �i

�
fa.�/g�D1;:::;t�1 I Ui .�/

�
: (11.2)

There are two important considerations in the above formulation. First, we
stated for simplicity that agents can observe the actions of all other agents. In
games with a graphical structure (Kearns et al. 2001), one only requires historical
information from a subset of other players. Other reductions are also possible, such
as aggregate information of other players of even just measurements of one’s own
utility (Fudenberg and Levine 1998; Hart 2005; Shamma 2014; Young 2004).1

Second, implicit in the above construction is that the learning rule is defined
independently of the utility function, and an agent’s utility function then enters as a
parameter of a specified learning rule.

This second consideration offers a distinction between conventional distributed
control and game-theoretic distributed control in the role of the utility function
for the individual agents fUi gi2N . An agent may be using a specific learning
rule, but the realized behavior depends on the specified utility function. In a
more conventional approach, there need not be such a decomposition. Rather,
one might directly specify the agents’ control policies f�i gi2N and perform an
analysis regarding the emergent properties of the given design, e.g., as is done in
models of flocking or bio-inspired controls (Olfati-Saber 2006). An advantage of
the decomposition is that one can analyze learning rules for classes of games and
separately examine whether or not specified utility functions conform to such an
assumed game class.

The following example demonstrates how a given distributed control policy
f�gi2N can be reinterpreted as a game-theoretic control approach with appropriately
defined agent utility functions fUi gi2N .

Example 1 (Consensus). Consider the well-studied consensus/rendezvous problem
(Blondel et al. 2005b; Jadbabaie et al. 2003; Olfati-Saber and Murray 2003; Touri
and Nedic 2011) where the goal is to drive the agents to agreement on a state x� 2 R

when each agent has limited information regarding the state of other agents in the

1Alternative agent control policies where the policy of agent i also depends on previous actions of
agent i or auxiliary “side information” could also be replicated by introducing an underlying state
in the game-theoretic environment. The framework of state-based games, introduced in Marden
(2012), represents one such framework that could accomplish this goal.
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systems. Specifically, we will say that the set of admissible states (or actions) of
each agent i 2 N is Ai D R and agent i at stage t can observe the previous state
choices at stage t � 1 of a set of neighboring agents denoted by Ni .t / � N n fig.
Consider the following localized averaging dynamics where the decision of an agent
i 2 N at time t is of the form

ai .t/ D
1

Ni .t /

X

j 2Ni .t/

aj .t � 1/: (11.3)

Given an initial state profile a.0/, the dynamics in (11.3) produces a sequence of
state profiles a.1/, a.2/, : : : . Whether or not the state profiles converge to consensus
under the above dynamics (or variants thereof) has been extensively studied in the
existing literature (Blondel et al. 2005a; Olfati-Saber and Murray 2003; Tsitsiklis
et al. 1986).

Now we will present a game-theoretic design that leads to the same collective
behavior. More formally, consider a game-theoretic model where each agent i 2 N

is assigned an action set Ai D R and a utility function of the form

Ui .ai ; a�i / D �
1

2 jNi .t /j

X

j 2Ni .t/

.ai � aj /2; (11.4)

where jNi .t /j denotes the cardinality of the set Ni .t /. Now, suppose each agent
follows the well-known best-response learning rule of the form

ai .t/ 2 Bi .a�i .t // D arg max
ai 2Ai

Ui .ai ; a�i .t � 1//;

where Bi .a�i .t // is referred to as the best-response set of agent i to the action
profile a�i .t /. Given an initial state profile a.0/, it is straightforward to show that
the ensuing action or state profiles a.1/, a.2/, : : : , will be equivalent for both design
choices.

The above example illustrates the separation between the learning rule and the
utility function. The learning rule is best-response dynamics. When the utility
function is the above quadratic form, then the combination leads to the usual
distributed averaging algorithm. If the utility function is changed (e.g., weighted,
non-quadratic, etc.), then the realization of best-response learning is altered, as well
as the structure of the game defined by the collection of the utility functions, but the
learning rule remains best-response dynamics.

An important property of best-response dynamics and other learning rules of
interest is that the actions of agent i can depend explicitly on the utility function of
agent i but not (explicitly) on the utility functions of other agents. This property
of learning rules in the learning in games literature is called being uncoupled
(Babichenko 2012; Hart and Mansour 2010; Hart and Mas-Colell 2003; Young
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2004). Of course, the action stream of agent i , i.e., ai .0/; ai .1/; : : :, does depend
on the actions of other agents, but not the utility functions behind those actions.

It turns out that there are many instances in which control policies not derived
from a game-theoretic perspective can be reinterpreted as the realization of an
uncoupled learning rule from a game-theoretic perspective. These include control
policies that have been widely studied in the cooperative control literature with
application domains such as consensus and flocking (Olfati-Saber et al. 2007;
Tsitsiklis 1987), sensor coverage (Martinez et al. 2007; Murphey 1999), and routing
information over networks (Roughgarden 2005), among many others.

While the design of such control policies can be approached in either a traditional
perspective or a game-theoretic perspective, there are potential advantages associ-
ated with viewing control design from a game-theoretic perspective. In particular,
a game-theoretic perspective allows for a modularized design architecture, i.e.,
the separation of game design and learning design, that can be exploited in a
plug-and-play fashion to provide control algorithms with automatic performance
guarantees:

Game Design Methodologies. There are several established methodologies for the
design of agent objective functions, e.g., Shapley value and marginal contribution
(Marden and Wierman 2013). The methodologies, which will be briefly reviewed
in Sect. 3.6, are systematic procedures for deriving the agent objective functions
fUi gi2N from a given system-level objective function G. These methodologies
often provide structural guarantees on the resulting game, e.g., existence of a pure
Nash equilibrium or a potential game structure, that can be exploited in distributed
learning.

Learning Design Methodologies. The field of learning in games has sought out
to establish decision-making rules that lead to Nash equilibrium or other solution
concepts in strategic form games. In general, it has been shown (see Hart and Mas-
Colell 2003) that there are no “natural” dynamics that converge to Nash equilibria
for all games, where natural refers to dynamics that do not rely on some form of
centralized coordination, e.g., exhaustive search of the joint action profiles. For
example, there are no rules of the form (11.2) that provide convergence to a Nash
equilibrium in any game. However, the same limitations do not hold when we
transition from “all games” to “all games of a given structure.” In particular, there
are several positive results in the context of learning in games for special classes
of games (e.g., potential games and variants thereof). These results, which will be
discussed in Sect. 4, identify learning dynamics that yield desirable performance
guarantees when applied to the realm of potential games.

Performance Guarantees. Merging a game design methodology with an appro-
priate learning design methodology can often result in agent control policies with
automatic performance guarantees. For example, employing a game design where
agent utility functions constitute a potential game coupled with a learning algorithm
that ensures convergence to a pure Nash equilibrium in potential games provides
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agent control policies that converge to the Nash equilibrium of the derived game.
Furthermore, additional structure on the agents’ utility functions can often be
exploited to provide efficiency bounds on the Nash equilibria, cf., price of anarchy
(Nisan et al. 2007), as well as approximations for the underlying convergence rates
(Borowski et al. 2013; Montanari and Saberi 2009; Shah and Shin 2010).

Human-Agent Collaborative Systems. Game theory constitutes a design choice
for control policies in distributed systems comprised purely of engineering compo-
nents. However, when a networked system consists of both engineering and human
decision-making entities, e.g., the smart grid, game theory transitions from a design
choice to a necessity. The involvement of human decision-making entities in a
system requires that the system operator utilizes game theory for the purpose of
modeling and influencing the human decision-making entities to optimize system
performance.

3 Solution Concepts, Game Structures, and Efficiency

Recall that an important metric in the game-theoretic approach to distributed control
is the asymptotic properties of a system-level objective function, i.e., W .a.t// as
t ! 1. These asymptotic properties depend on both aspects of the prescriptive
paradigm, i.e., the utility functions and learning rule. The specification of utility
functions in itself defines an underlying game that is repeatedly played over stages.
In this section, we review properties related to this underlying game in terms of
solution concepts, game structures, and measures of efficiency.

In this section we will temporarily distance ourselves from the design objectives
set forth in this manuscript with the purpose of identifying properties of games that
are relevant to our mission. To that end, we will consider a finite strategic form
game G with agent set N D f1; 2; : : : ; ng where each agent i 2 N has an action
set Ai and a utility function Ui W A ! R. Further, there exists a system-level
objective W W A ! R that a system designer is interested in maximizing. We will
often denote such a game by the tuple G D fN; fAi g; fUi g; W g where we use the
shorthand notation f�g instead of f�gi2N to denote the agents’ action sets or utility
functions.

3.1 Solution Concepts

The most widely known solution concept in game theory is a pure Nash equilibrium,
defined as follows.

Definition 1. An action profile ane 2 A is a pure Nash equilibrium if for any agent
i 2 N

Ui .a
ne
i ; ane

�i / � Ui .ai ; ane
�i /; 8ai 2 Ai : (11.5)
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A pure Nash equilibrium represents an action profile where no agent has a unilateral
incentive to alter its action provided that the behavior of the remaining agents is
unchanged. A pure Nash equilibrium need not exist for any game G.

The definition of Nash equilibrium also extends to scenarios where the agents can
probabilistically choose their actions. Define a strategy of agent i as pi 2 �.Ai /

where �.Ai / denotes the simplex over the finite action set Ai . We will express
a strategy pi by the tuple fpai

i gai 2Ai where p
ai

i � 0 for any ai 2 Ai andP
ai 2Ai

p
ai

i D 1. We will evaluate the utility of an agent i 2 N for a strategy
profile p D .p1; : : : ; pn/ as

Ui .pi ; p�i / D
X

a2A
Ui .a/ � p

a1

1 � � � � � pan
n : (11.6)

which has the usual interpretation of the expected utility under independent
randomized actions.

We can now state the definition of Nash equilibrium when extended to mixed (or
probabilistic) strategies.

Definition 2. A strategy profile pne 2 �.A1/ � � � � � �.An/ is a mixed Nash
equilibrium if for any agent i 2 N

Ui .p
ne
i ; pne

�i / � Ui .pi ; pne
�i /; 8pi 2 �.Ai /: (11.7)

Unlike pure Nash equilibria, a mixed Nash equilibrium is guaranteed to exist in any2

game G.
A common critique regarding the viability of pure or mixed Nash equilibria as a

characterization of achievable behavior in multiagent systems is that the complexity
associated with computing such equilibria is often prohibitive (Daskalakis et al.
2009). We now introduce a weaker solution concept, which is defined relative to a
joint distribution z 2 �.A/, that does not suffer from such issues.

Definition 3. A joint distribution z D fzaga2A 2 �.A/ is a coarse correlated
equilibrium if for any agent i 2 N

X

a2A
Ui .ai ; a�i /z

.ai ;a�i / �
X

a2A
Ui .a

0
i ; a�i /z

.ai ;a�i /; 8a0
i 2 Ai : (11.8)

A coarse correlated equilibrium is a joint distribution z such that each agent’s
expected utility according to that distribution is at least as high as the agent’s
expected utility for committing to any fixed action a0

i 2 A, while all the other agents
play according to their marginal distribution of z. It is straightforward to verify that

2Recall that we are assuming a finite set of players, each with a finite set of actions.
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pure Nash
equilibria

mixed Nash
equilibria

coarse correlated 
equilibria

Fig. 11.1 The relationship between the three solution concepts: pure Nash equilibrium, mixed
Nash equilibrium, and coarse correlated equilibrium

any mixed Nash equilibrium is a coarse correlated equilibrium; hence, the set of
coarse correlated equilibria is nonempty for any game, G. Furthermore, as we will
see in Sect. 4.4, there are simple learning algorithms that ensure that the empirical
frequency of play will approach the set of coarse correlated equilibria in a reasonable
period of time. We will discuss techniques for characterizing the efficiency of this
type of collective behavior in Sect. 3.3.3

Figure 11.1 highlights the relationship between the three solution concepts
discussed above.

3.2 Measures of Efficiency

It is important to highlight that the above equilibrium definitions have no depen-
dence on the system-level objective function. The goal here is to understand how
the efficiency associated with such equilibria compares to the optimal behavior
with respect to a system-level objective function. Here, we investigate two common
worst-case measures, termed price of anarchy and price of stability (Nisan et al.
2007), for characterizing the inefficiency associated with equilibria in games.

The first measure that we consider is the price of anarchy, which is defined as the
worst-case ratio between the performance of the worst equilibrium and the optimal
system behavior. We use the terminology worst equilibrium as the price of anarchy
could be defined by restricting attention to any of the aforementioned equilibrium
sets. Focusing on pure Nash equilibria for simplicity, the price of anarchy associated
with a game G is defined as

PoA.G/ D min
ane2PNE.G/

�
W .ane/

W .aopt/

�
� 1; (11.9)

3Another common equilibrium set, termed correlated equilibrium, is similar to coarse correlated
equilibrium where the difference lies in the consideration of conditional deviations as opposed to
the unconditional deviations considered in (11.8). A formal definition of correlated equilibrium
can be found in Young (2004).
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where aopt 2 arg maxa2A W .a/ and PNE.G/ denotes the set of pure Nash equilibria
in the game G. Note that the price of anarchy given in (11.9) provides a lower bound
on the performance associated with any pure Nash equilibrium in the game G.

The second measure that we consider is the price of stability, which is defined
as the best-case ratio between the performance of the best equilibrium and the
optimal system behavior. Focusing on pure Nash equilibria for simplicity, the price
of stability associated with a game G is defined as

PoS.G/ D max
ane2PNE.G/

�
W .ane/

W .aopt/

�
� 1: (11.10)

By definition, PoS.G/ � PoA.G/. The price of stability is a more optimistic
measure of the efficiency loss associated with pure Nash equilibrium. When
analyzing dynamics that converge to specific types of equilibrium, e.g., the best
Nash equilibrium, the price of stability may be a more reasonable characterization
of the efficiency associated with the limiting behavior.

The above definition of price of anarchy and price of stability also extend to
situations where there is uncertainty regarding the structure of the specific game. To
that end, let G denote a family of possible games. The price of anarchy and price
of stability associated with the family of games is then defined as the worst-case
performance of all games within that family, i.e.,

PoA.G/ D min
G2G

fPoA.G/g ; (11.11)

PoS.G/ D min
G2G

fPoS.G/g : (11.12)

Clearly, 1 � PoS.G/ � PoA.G/. For clarity, a PoA.G/ D 0:5 implies that regardless
of the underlying game G 2 G, any pure Nash equilibrium is at least 50% efficient
when compared to the performance of the optimal allocation for that game.

The definitions of price of anarchy and price of stability given in (11.9)
and (11.10) can be extended to broader classes of equilibria, i.e., mixed Nash
equilibria or coarse correlated equilibria, in the logical manner. To perform the
above analysis for broader equilibrium sets, we extend the definition of the welfare
function to a distribution z 2 �.A/ as W .z/ D

P
a2A W .a/za. Note that for a given

family of games G, the price of anarchy associated with pure Nash equilibria would
be better (closer to 1) than the price of anarchy associated with coarse correlated
equilibrium. Since coarse correlated equilibria contain Nash equilibria, one would
naturally expect that the efficiency associated with equilibria could be far worse
than the efficiency associated with Nash equilibria. Surprisingly, it often turns out
that this is not the case as we will see below.
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3.3 Smoothness

Charactering the inefficiency of equilibria often is challenging and often involves a
nontrivial domain specific analysis. One attempt at providing a universal approach
to characterizing efficiency loss in distributed systems, termed smoothness (Rough-
garden 2015), is given in the following theorem.

Theorem 1. Consider any game G where the agents’ utility functions satisfyP
i2N Ui .a/ � W .a/ for any a 2 A. If there exists parameters � > 0 and � > �1

such that for any two action profiles a; a� 2 A
X

i

Ui .a
�
i ; a�i / � � � W .a�/ � � � W .a/; (11.13)

then the efficiency associated with any coarse correlated equilibrium zcce 2 �.A/

of G must satisfy

W .zcce/

W .aopt/
�

�

1 C �
: (11.14)

We will refer to a game G as .�; �/�smooth if the game satisfies (11.13).

Theorem 1 demonstrates that the problem of evaluating the price of anarchy in
a given game can effectively be recast as a problem of solving for the appropriate
coefficients .�; �/ that satisfy (11.13) and maximize �

1C�
. This analysis naturally

extends to guarantees over a family of games G,

PoA.G/ � inf
�>0;�>�1

�
�

1 C �
W G is .�; �/ smooth for all G 2 G

�
; (11.15)

where the above expression is referred to as the robust price of anarchy (Roughgar-
den 2015). In line with the forthcoming discussion (cf., Sect. 4.4), implementing
a learning rule that leads to the set of coarse correlated equilibria provides
performance guarantees that conform to this robust price of anarchy.

One example of an entire class of games with known price of anarchy bounds
is congestion games with affine congestion functions (Roughgarden 2005) (see also
Example 2). Another class is valid utility games, introduced in Vetta (2002), which
is very relevant to distributed resource utilization problems. A critical property of
valid utility games is a system-level objective that is submodular. Submodularity
corresponds to a notion of decreasing marginal returns that is a common feature of
many objective function in engineering systems. A set-based function f W 2N ! R

is submodular if for any S � T � N n fig, we have

f .S [ fig/ � f .S/ � f .T [ fig/ � f .T /: (11.16)
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In each of these settings, Roughgarden (2015) has derived the appropriate smooth-
ness parameters hence providing the price of anarchy guarantees. Accordingly, the
resulting price of anarchy holds for coarse correlated equilibrium as well as Nash
equilibrium.

Theorem 2 (Roughgarden 2015; Vetta 2002). Consider any game G D

.N; fAi g; fUi g; W / that satisfies the following three properties:

(i) The objective function W is submodular;
(ii) For any agent i 2 N and any action profile a 2 A,

Ui .a/ � W .a/ � W .ai D ;; a�i /;

where ai D ; is when player i is removed from the game;
(iii) For any action profile a 2 A, the sum of the agents’ utilities satisfies

X

i2N

Ui .a/ � W .a/:

We will refer to such a game as a valid utility game. Any valid utility game G is
smooth with parameters � D 1 and � D 1; hence, the robust price of anarchy
is 1=2 for the class of valid utility games. Accordingly, the efficiency guarantees
associated with any coarse correlated equilibrium zcce 2 �.A/ in a valid utility
game satisfies

W .zcce/ �

�
1

2

�
W .aopt/:

One example of a valid utility game is the vehicle-target assignment problem
which will be presented in Example 4. Here, the system-level objective function is
submodular and Condition (ii) in Theorem 2 is satisfied by the given design. Further,
it is straightforward to verify that Condition (iii) is also satisfied. Accordingly, all
coarse correlated equilibria in the designed game for the vehicle-target assignment
problem are at least 50% efficient. Consequently, the application of learning rules
that lead to coarse correlated equilibria (cf., Sect. 4.4) will lead to a collective
behavior in line with these efficiency guarantees.

3.4 Game Structures

The two components associated with a game-theoretic design are the agent utility
functions, which define an underlying game, and the learning rule. Both components
impact various performance objectives associated with the distributed control
design. The specification of the agent utility functions directly impacts the price
of anarchy, which can be viewed as the efficiency associated with the asymptotic
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collective behavior. On the other hand, the specification of the learning algorithm
dictates the transient behavior in its attempt to drive the collective behavior to the
solution concept of interest.

At first glance it appears that the objectives associated with these two components
are unrelated to one another. For example, one could employ a design where
(i) the agents’ utility functions are chosen to optimize the price of anarchy of
pure Nash equilibria and (ii) a learning algorithm is employed that drives the
collective behavior to a pure Nash equilibrium. Unfortunately, such decoupling
is not necessarily possible due to limitations associated with (ii). As previously
discussed, there are no “natural dynamics” of the form

ai .t/ D …i .a.0/; a.1/; : : : ; a.t � 1/I Ui / (11.17)

that lead to a (pure or mixed) Nash equilibrium in every game (Hart and Mas-Colell
2003), where “natural” refers to uncoupled dynamics (i.e., agents are uninformed
of the utility functions of other agents) and rules out behaviors such as exhaustive
search or centralized coordination.

Given such impossibility results, it is imperative that the game design component
addresses objectives beyond just price of anarchy. In particular, it is of paramount
importance that the resulting game has properties that can be exploited in distributed
learning. In this section we will review such game structures. Each of these game
structures provides a degree of alignment between the agents’ utility functions fUi g

and a system-level potential function � W A ! R.
The first class of games we introduce, termed potential games (Monderer and

Shapley 1996), exhibits perfect alignment between the agents’ utility functions and
the potential function �.

Definition 4 (Potential Game). A game G is an (exact) potential game if there
exists a potential function � W A ! R such that for any action profile a 2 A, agent
i 2 N , and action choice a0

i 2 Ai , we have

Ui .a
0
i ; a�i / � Ui .ai ; a�i / D �.a0

i ; a�i / � �.ai ; a�i /: (11.18)

Note that any maximizing action profile a 2 arg maxa2A �.a/ is a pure Nash
equilibrium; hence, a pure Nash equilibrium is guaranteed to exist in any potential
game. Further, as we will see in the forthcoming Sect. 4, the structure inherent
to potential games can be exploited to bypass the impossibility result highlighted
above. In other words, there are natural dynamics that lead to a Nash equilibrium in
any potential game. We will survey some of these dynamics in Sect. 4.

There are several variants of potential games that seek to relax the equality given
in (11.18) while preserving the exploitability of the game structure for distributed
learning. One of the properties that is commonly exploited in distributed learning is
the monotonicity of the potential function along a better reply path, which is defined
as follows:
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Definition 5 (Better Reply Path). A better reply path is a sequence of joint actions
a1; a2; : : : ; am such that for each k 2 f1; : : : ; m � 1g (i) akC1 D .ai ; ak

�i / for some
agent i 2 N with action ai 2 Ai , ai ¤ ak

i , and (ii) Ui .a
kC1/ > Ui .a

k/.

Informally, a better reply path is a sequence of joint actions where each subsequent
joint action is the result of an advantageous unilateral deviation. In a potential game,
the potential function is monotonically increasing along a better reply path. Since
the joint action set A is finite, any better reply will lead to a pure Nash equilibrium
in a finite number of iterations. This property is known as the finite improvement
property (Monderer and Shapley 1996).4

We now introduce the class of weakly acyclic games which relaxes the finite
improvement property condition.

Definition 6 (Weakly Acyclic Game). A game G is weakly acyclic under better
replies if for any joint action a 2 A there exists a better reply path from a to a pure
Nash equilibrium of G.

As with potential games, a pure Nash equilibrium is guaranteed to exist in any
weakly acyclic game. One advantage of considering broader game classes as a
mediating layer for game-theoretic control designs is the expansion of available
game design methodologies for designing agent utility functions within that class.

3.5 Illustrative Examples

At first glance it may appear that the framework of potential games (or weakly
acyclic games) is overly restrictive as a framework for the design of networked
control systems. Here, we provide three examples of potential games, which
illustrates the breadth of the problem domains that can be modeled and analyzed
within this framework.

The first example focuses on distributed routing and highlights how a reasonable
model of user behavior, i.e., users seeking to minimize their experienced congestion,
constitutes a potential game.

Example 2 (Distributed Routing). A routing problem consists of a collection of
self-interested agents that need to utilize a common network to satisfy their
individual demands. The network is characterized by a collection of edges E D

fe1; : : : ; emg where each edge e 2 E is associated with an anonymous congestion
function ce W f1; 2; : : : g ! R that defines the congestion associated with that edge as
a function of the number of agents using that edge. That is, ce.k/ is the congestion on
edge e when there are k � 1 agents using that edge. Each agent i 2 N is associated

4Commonly studied variants of exact potential games, e.g., ordinal or weighted potential games,
also possess the finite improvement property.
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with an action set Ai � 2E , which satisfies the agent’s underlying demands, as well
as a local cost function Ji W A ! R of the form

Ji .ai ; a�i / D
X

e2ai

ce.jaje/;

where jaje D jfi 2 N W e 2 ai gj denotes the number of agents using edge e in the
allocation a.5 In general, a system designer would like to allocate the agents over
the network to minimize the aggregate congestion given by

C .a/ D
X

e2E

jaje � ce .jaje/ :

It is well known that any routing game of the above form, which is commonly
referred to as an anonymous congestion game, is a potential game with a potential
function � W A ! R of the form

�.a/ D
X

e2E

jajeX

kD1

ce .k/ :

This implies that a pure Nash equilibrium is guaranteed to exist in any anonymous
congestion, namely, any action profile that minimizes �.a/. Furthermore, it is often
the case that this is unique pure Nash equilibrium with regard to aggregate behavior,
i.e., ane 2 arg mina2A �.a/. The fact that the potential function and the system cost
are not equivalent, i.e., �.�/ ¤ C .�/, can lead to inefficiencies of the resulting Nash
equilibria.

The second example focuses on coordination games over graphs. A coordination
game is typically posed between two agents where each agent’s utility function
favors agreement on an action choice over disagreement. However, the agents may
have different preferences over which action is agreed upon. Graphical coordination
games, or coordination games over graphs, extend such two agent scenarios to n

agent scenarios where the underlying graph depicts the population that each agent
is seeking to coordinate with.

Example 3 (Graphical Coordination Games). Graphical coordination games char-
acterize a class of strategic interactions where the agents’ utility functions are
derived from local interactions with neighboring agents. In a graphical coordination
game, each agent i 2 N is associated with a common action set Ai D NA, a neighbor
set Ni � N , and a utility function of the form

5Here, we use cost functions Ji .�/ instead of utility functions Ui .�/ in situation where the agents
are minimizers instead of maximizers.
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Ui .a/ D
X

j 2Ni

U.ai ; aj / (11.19)

where U W NA � NA ! R captures the (symmetric) utility associated with a
pairwise interaction. As an example, U.ai ; aj / designates the payoff for agent i

selecting action ai that results from the interaction with agent j selecting action aj .
Throughout, we adopt the convention that the payoff U.ai ; aj / is associated with
the player i whose action ai is the first in the tuple .ai ; aj /.

In the case where the common action set has two actions, i.e., NA D fx; yg, and
the interaction graph is undirected, i.e., j 2 Ni , i 2 Nj , it is straightforward to
show that this utility structure gives rise to a potential game with a potential function
of the form

�.a/ D
1

2

X

.i;j /2E

�pw.ai ; aj / (11.20)

where �pw W NA � NA ! R is a local potential function. One choice for this local
potential function is the following:

�pw.x; x/ D 0;

�pw.y; x/ D U.y; x/ � U.x; x/;

�pw.x; y/ D U.y; x/ � U.x; x/;

�pw.y; y/ D .U.y; y/ � U.x; y// � .U.y; x/ � U.x; x// :

Observe that any potential function �0
pw D �pw C ˛ where ˛ 2 R also leads to a

potential function for the given graphical coordination game.

The first two examples show how potential games could naturally emerge in
two different types of strategic scenarios. The last example we present focuses
on an engineering-inspired resource allocation problem, termed the vehicle-target
assignment problem (Murphey 1999), where the vehicles’ utility functions are
engineered so that the resulting game is a potential game.

Example 4 (Vehicle-Target Assignment Problem). In the well-studied vehicle-target
assignment problem, there is a finite set of targets T , and each target t 2 T has
a relative value of importance vt � 0. Further, there are a set of vehicles N D

f1; 2; : : : ; ng where each vehicle i 2 N has an invariant success/destroy probability
satisfying 0 � pi � 1 and a set of possible assignment Ai � 2T . The goal of
vehicle-target assignment problem is to find an allocation of vehicles to targets a 2

A to optimize a global objective W W A ! R of the form
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W .a/ D
X

t2T .a/

vt �

0

@1 �
Y

j Wt2aj

.1 � pj /

1

A

where T .a/ � T denotes the collection of targets that are assigned to at least one
agent, i.e., T .a/ D [i2N ai .

Note that in this engineering-based application, there is no appropriate model
of utility functions of the engineered vehicles. Rather, vehicle utility functions are
designed with the goal of engineering desirable system-wide behavior. Consider
one such design where the utility functions of the vehicles are set as the marginal
contribution of the vehicles to the system-level objective, i.e., for each vehicle i 2 N

and allocation a 2 A we have

Ui .a/ D
X

t2ai

vt �

0

@1 �
Y

j Wt2aj

.1 � pj /

1

A � vt �

0

@1 �
Y

j ¤i Wt2aj

.1 � pj /

1

A ;

D
X

t2ai

vt �

0

@pi

Y

j ¤i Wt2aj

.1 � pj /

1

A :

Given this design of utility functions, it is straightforward to verify that the resulting
game is a potential game with potential function �.a/ D W .a/. This immediately
implies that any optimal allocation, aopt 2 arg maxa2A W .a/, is a pure Nash
equilibrium. However, other inefficient Nash equilibria may also exist due to the
lack of uniqueness of Nash equilibrium for such scenarios.

3.6 A Brief Review of Game Design Methodologies

The examples in the previous section illustrate various settings that happen to
fall under the special category of potential games. Given that utility function
specification is a design degree of freedom in the prescriptive paradigm, it is possible
to exploit this degree of freedom to design utility functions to induce desirable
structural properties.

There are several objectives that a system designer needs to consider when
designing the game that defines the interaction framework of the agents in a
multiagent system (Marden and Wierman 2013). These goals could include (i)
ensuring the existence of a pure Nash equilibrium, (ii) ensuring that the agents’
utility functions fit into the realm of potential games, or (iii) ensuring that the agents’
utility functions optimize the price of anarchy/price of stability over an admissible
class of agent utility functions, e.g., local utility functions. While recent research has
identified the full space of methodologies that guarantee (i) and (ii) (Gopalakrishnan
et al. 2014), the existing research has yet to provide mechanisms for optimizing the
price of anarchy.
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The following theorem provides one methodology for the design of agent utility
functions with guarantees on the resulting game structure (Marden and Wierman
2013; Wolpert and Tumor 1999).

Theorem 3. Consider the class of resource utilization problems defined in Sect. 2.1
with agent set N , action sets fAi g, and a global objective W W A ! R. Define the
marginal contribution utility function for each agent i 2 N and allocation a 2 A as

Ui .a/ D �.a/ � �.ab
i ; a�i /; (11.21)

where � W A ! R is any system-level function and ab
i 2 Ai is the fixed baseline

action for agent i . Then the resulting game G D fN; fAi g; fUi g; W g is an exact
potential game where the potential function is �.

A few notes are in order regarding Theorem 3. First, the assignment of the agents’
utility functions is a byproduct of the chosen system-level design function � and the
transformation of � into the agents’ utility functions, which is given by (11.21) and
the choice of the baseline action ab

i for each agent i 2 N . Observe that the utility
design presented in Example 4 is precisely the design detailed in Theorem 3 where
� D W and ab

i D ; for each agent i 2 N . While a system designer could clearly
set � D W , judging whether this design choice is effective centers on a detailed
analysis regarding the properties of the resulting game, e.g., price of anarchy. In
fact, recent research has demonstrated that setting � D W does not optimize the
price of anarchy for a large class of objective functions W . Furthermore, there
are also alternative mechanisms for transforming the system-level function � to
agent utility functions fUi g, as opposed to (11.21), that provide similar guarantees
on the structure of the resulting game, e.g., Shapley and weighted Shapley values
(Gopalakrishnan et al. 2014). It remains an open question as to what combination,
i.e., the transformation and system-level design function that the transformation
operates on, gives rise to the optimal utility design.

4 Distributed Learning Rules

We now turn our attention toward distributed learning rules. We can categorize the
learning algorithms into the following four areas:

Model-Based Learning. In model-based learning, each agent observes the past
behavior of the other agents and uses this information to develop a model for the
action choice of the other agents at the ensuing period. Equipped with this model,
each agent can then optimally select its actions based on its expected utility at the
ensuing time step. As the play evolves, so do the models of other agents.
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Robust Learning. A learning algorithm of the form (11.2) defines a systematic
rule for how individual agents process available information to formulate a decision.
Many of the learning algorithms in the existing literature provide guarantees on the
asymptotic collective behavior provided that the agents follow these rules precisely.
Here, we explore the robustness of such learning algorithms, i.e., the asymptotic
guarantees on the collective behavior preserved when agents follow variations of
the prescribed learning rules stemming from delays in information or asynchronous
clock rates.

Equilibrium Selection. The price of anarchy and price of stability are two
measures characterizing the inefficiency associated with Nash equilibria. The
differences between these two measures follow from the fact that Nash equilibria are
often not unique. This lack of uniqueness of Nash equilibria prompts the question
of whether deriving distributed learning that favor certain types of Nash equilibria
is attainable. Focusing on the framework of potential games, we will review one
such algorithm that guarantees the collective behavior will lead to the specific Nash
equilibria that optimize the potential function. Note that when utility functions are
engineered, as in Example 4, a system designer can often ensure that the resulting
game is a potential game where the action profiles that optimize the potential
function coincide with the action profiles that optimize the system-level objective.
(We reviewed one such methodology in Sect. 3.6.)

Universal Learning. All of the above learning algorithms provide asymptotic
guarantees when attention is restricted to specific game structures, e.g., potential
games or weakly acyclic games. Here, we focus on the derivation of learning algo-
rithms that provide desirable asymptotic guarantees irrespective of the underlying
game structure. Recognizing the previously discussed impossibility of natural and
universal dynamics leading to Nash equilibria (Hart and Mas-Colell 2003), we
shift our emphasis from convergence to Nash equilibria to convergence to the set
of coarse correlated equilibrium. We introduce one such algorithm, termed regret
matching, that guarantees convergence to the set of coarse correlated equilibrium
irrespective of the underlying game structure. Lastly, we discuss the implications of
such learning algorithms on the efficiency of the resulting collective behavior.

We will primarily gauge the quality of a learning algorithm by characterizing the
collective behavior as time t ! 1. When merging a particular distributed learning
algorithm with an underlying game, the efficiency analysis techniques presented in
Sect. 3.2 can then be employed to characterize the quality of the emergent collective
behavior with regard to a given system-level objective.

4.1 Model-Based Learning

The central challenge in distributed learning is dealing with the fact that each
agent’s environment is inherently nonstationary in that the environment from the
perspective of any agent consists of the behaviors of other agents, which are
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evolving. A common approach in distributed learning is to have agents make
decisions in a myopic fashion, thereby neglecting the ramifications of an agent’s
current decision on the future behavior of the other agents. In this section we review
two learning algorithms of this form that we categorize as model-based learning
algorithms. In model-based learning, each agent observes the past behavior of the
other agents and utilizes this information to develop a behavioral model of the other
agents. Equipped with this behavioral model, each agent then performs a myopic
best response seeking to optimize its expected utility. It is important to stress here
that the goal is not to accurately model the behavior of the other agents in ensuing
period. Rather, the goal is to derive systematic agent responses that will guide the
collective behavior to a desired equilibrium.

4.1.1 Fictitious Play
One of the most well-studied algorithms of this form is fictitious play (Monderer
and Shapley 1996). Here, each agent uses the empirical frequency of past play as
a model for the behavior of the other agents at the ensuing time step. To that end,
define the empirical frequency of play for each player i 2 N at time t 2 f1; 2; : : : g

as qi .t/ D fqai

i gai 2Ai 2 �.Ai / where

q
ai

i .t/ D
1

t

t�1X

�D0

I fai .�/ D ai g; (11.22)

and I f�g is the usual indicator function. At time t , each agent seeks to myopically
maximize its expected utility given the belief that each agent j ¤ i will select its
action independently according to a strategy qj .t/. This update rule takes on the
form

ai .t/ 2 arg max
ai 2Ai

X

a
�i 2A�i

Ui .ai ; a�i /
Y

j ¤i

q
aj

j .t/: (11.23)

The following theorem provided in Monderer and Shapley (1996) characterizes
the long run behavior associated with fictitious play in potential games.

Theorem 4. Consider any exact potential game G. If all players follow the
fictitious play learning rule, then the players’ empirical frequencies of play
q1.t/; : : : ; qn.t/ will converge to a Nash equilibrium of the game G.

The fictitious play learning rule provides a mechanism to guide individual agent
behavior in distributed control systems when the agents (i) can observe the previous
action choices of the other agents in the system and (ii) have access to the structural
form of their utility function. Further, fictitious play provides provable guarantees
on the emergent collective behavior provided that the system can be modeled by an
exact potential game. For example, consider the distributed routing problem given
in Example 2 which can be modeled as a potential game irrespective of the number
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of agents, the number of edges, the topology of the network, or the edge-specific
latency functions. Regardless of the structure of the routing problem, the fictitious
play algorithm can be employed to drive the collective system behavior to a Nash
equilibrium.

While the asymptotic guarantees associated with fictitious play in distributed
routing problems is appealing, the implementation of fictitious play in such settings
is problematic. First, each agent must be able to observe the specific behavior of all
other agents in the network each period. Second, the choice of each agent at any time
given in (11.23) requires (i) knowledge of the structural form of the agent’s utility
function and (ii) computing an expectation of its utility function, which involves
evaluating a weighted summation over jA�i j terms. In large-scale systems, such as
distributed routing, each of these requirements could be prohibitive. Accordingly,
research has attempted to alter the fictitious play algorithm to minimize such
requirements while preserving the desirable asymptotic guarantees.

4.1.2 Variants of Fictitious Play
One of the first attempts to relax the implementation requirements associated with
fictitious play centered on the computation of a best response given in (11.23).
In Lambert et al. (2005), the authors proposed a sample-based approach for
computing this best response, where each agent randomly drew samples of the
other agents’ behavior using their empirical frequencies of play and evaluated
the average performance of each possible routing decision against the drawn
samples. The choice with the best average performance was then substituted for the
choice that maximized the agent’s expected utility in (11.23), and the process was
repeated. While simulations demonstrated reasonable performance even for limited
samples, unfortunately preserving the theoretical asymptotic guarantees associated
with fictitious play required that the number of samples drawn each period grew
prohibitively large.

A second variant of fictitious play focused on the underlying asymptotic
guarantees given in Theorem 4, which state that the empirical frequency of play
converges to a Nash equilibrium. It is important to highlight this does not imply
that the day-to-day behavior of the agents converges to a Nash equilibrium, e.g., the
agents’ day-to-day behavior could oscillate yielding a frequency of play consistent
with a Nash equilibrium. Furthermore, the cumulative payoff may be less than the
payoff associated with the limiting empirical frequencies. With this issue in mind,
Fudenberg and Levine (1995) introduced a variant of fictitious play that assures
a specific payoff consistency property against arbitrary environments, i.e., not just
when other agents employ fictitious play.

4.1.3 Joint Strategy Fictitious Play with Inertia
The focus in model-based learning is not whether such models accurately reflect
the behavior of the other agents. Rather, the focus is on whether systematic
responses to potentially inaccurate models can guide the collective behavior to a
desired equilibrium. The behavioral models used in fictitious play, i.e., assuming
each agent will play a strategy independently according to the agent’s empirical
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frequency of play, provided nice asymptotic guarantees but was prohibitive from an
implementations perspective. Here, we consider a variant of fictitious play, termed
joint strategy fictitious play (JSFP), which provides similar asymptotic guarantees
while alleviating many of the computational and observational challenges associated
with fictitious play (Marden et al. 2009). The main difference between fictitious
play and joint strategy fictitious play resides in the behavioral model of the other
agents. In joint strategy fictitious play, each agent presumes that the other players
will select an action collectively in accordance with their empirical frequency of
their past joint play. In two-player games, fictitious play and joint strategy fictitious
play are equivalent. However, the learning algorithms yield fundamentally different
behavior beyond two-player games.

We begin by defining the average hypothetical utility of agent i 2 N for each
action ai 2 A as

NU ai

i .t/ D
1

t

t�1X

�D0

Ui .ai ; a�i .�// D
t � 1

t
NU ai

i .t � 1/ C
1

t
Ui .ai ; a�i .t � 1//:

(11.24)
Note that this average hypothetical utility is computed under the belief that
the action choices of the other agents remain unchanged. Now, consider the
decision-making rule where each agent i 2 N independently selects its action
probabilistically according to the rule

ai .t/ D

�
arg maxai 2Ai

NU ai

i .t/ with probability .1 � �/;

ai .t � 1/ with probability �;
(11.25)

where � > 0 is referred to as the agent’s inertia or probabilistic reluctance to change
actions. Hence, with high probability, i.e., probability .1 � �/, each agent selects the
action that maximizes the agent’s hypothetic utility.

The following theorem from Marden et al. (2009) characterizes the long run
behavior of joint strategy fictitious play in potential games.

Theorem 5. Consider any exact potential game G. If all players following the
learning algorithm joint strategy fictitious play defined above, then the joint action
profile will converge almost surely to a pure Nash equilibrium of the game G.

Hence, JFSP with inertia provides similar asymptotic guarantees to fictitious
play while minimizing the computational and observational burden on the agents.
The name “joint strategy fictitious play” is derived from the fact that maximizing
the average hypothetical utility in (11.24) is equivalent to maximizing an expected
utility under the belief that all agents will play collectively according to the
empirical frequency of their past joint play.
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4.2 Robust Distributed Learning

Both fictitious play and joint strategy fictitious play are intricate decision-making
rules that provide guarantees regarding the emergent collective behavior. A natural
question that emerges when considering the practicality of such rules for control of
networked systems is the robustness of these guarantees to common implementation
issues including asynchronous clocks, noisy payoffs, and delays in information,
among others. This section highlights that the framework of potential games, or
more generally weakly acyclic games, is inherently robust to such issues.

We review the result in Young (2004) that deals with this exact issue. In
particular, Young (2004) demonstrates the robustness of weakly acyclic games by
identifying a broad family of learning rules, termed finite memory better response
processes, with the property that any rule within this family will probably guide the
collective behavior to a pure Nash equilibrium in any weakly acyclic game.

A finite memory better reply process with inertia is any learning algorithm of the
following form: at each time t , each agent selects its action independently according
to the rule

ai .t/ D

�
Bm

i .hm.t// with probability .1 � �/;

ai .t � 1/ with probability �;
(11.26)

where m � 1 is the size of the agent’s memory, � > 0 is the agent’s inertia, hm.t/ D

fa.t � 1/; a.t � 2/; : : : ; a.t � m/g denotes the previous m action profiles, and Bm
i W

Am ! �.Ai / is the finite memory better reply process.6 A finite memory better
reply process Bm

i .�/ can be any process that satisfies the following properties:

• If the history is saturated, i.e., hm.t/ D fNa; Na; : : : ; Na; Nag for some action profile
Na 2 A, then the strategy pi D Bm

i .hm.t// must satisfy
– If Nai 2 arg maxai 2Ai Ui .ai ; Na�i /, then p

Nai

i D 1 and p
ai

i D 0 for all ai ¤ Nai .
– Otherwise, if Nai … arg maxai 2Ai Ui .ai ; Na�i /, then p

ai

i > 0 if and only if
Ui .ai ; Na�i / � Ui . Nai ; Na�i /.

• If the history is not saturated, then the strategy pi D Bm
i .hm.t// can be any

probability distribution in �.Ai /.7

In summary, the only constraint imposed on a finite memory better reply process is
that a better reply to saturated memory fa; : : : ; a} is consistent with a better reply
to the single action profile a.

6We write ai .t/ D Bm
i .hm.t// with the understanding that this implies that the action profile ai .t/

is chosen randomly according to the probability distribution specified by Bm
i .hm.t//.

7The actual definition of a finite better reply process considered in Young (2004) puts a further
condition on the structure of Bm

i under the case where the memory is not saturated, i.e., the strategy
assigns positive probability to any action with strictly positive regret. However, an identical proof
holds for any Bm

i that satisfies the weaker conditions set forth in this chapter.
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The following theorem from Young (2004) (Theorem 6.2) demonstrates the
inherent robustness of weakly acyclic games.

Theorem 6. Consider any weakly acyclic game G. If all agents follow a finite
memory better reply process defined above, then the joint action profile will
converge almost surely to a pure Nash equilibrium of the game G.

One can view this result from two perspectives. The first perspective is that
the system designer has extreme flexibility in designing learning rules for weakly
acyclic games that guarantee the agents’ collective behavior will converge to a pure
Nash equilibrium. The second perspective is that perturbations of a nominal learning
rule, e.g., agents updating asynchronously or responding to delayed or inaccurate
histories, will also satisfy the conditions above and ultimately lead behavior to a
Nash equilibrium as well. These perspectives provide the basis for our claim of
robust distributed learning.

4.3 Equilibrium Selection in Potential Games

The preceding discussion focused largely on algorithms that ensured the emergent
collective behavior constitutes a (pure) Nash equilibrium. In the case where there
are multiple Nash equilibria, these algorithms provide no guarantees on which equi-
librium is likely to emerge. Accordingly, characterizing the efficiency associated
with the emergent collective behavior is equivalent to characterizing the efficiency
associated with the worst performing Nash equilibrium, i.e., the price of anarchy.

In this section we explore the notion of equilibrium selection in distributed
learning. That is, are there classes of distributed learning algorithms that converge
to specific classes of equilibria? One motivation for pursuing such developments is
the marginal cost utility, given in Theorem 3 with the design choice � D W, which
ensures that the optimal allocation is a Nash equilibrium, i.e., the price of stability is
1. Accordingly, the focus of this section will be on learning dynamics that converge
to the most efficient action profile in potential games, i.e., the action profile that
maximizes the potential function.

4.3.1 Log-Linear Learning
We begin this subsection by describing a simple asynchronous best-reply process,
where each agent chooses a best reply when given the opportunity to revise its
strategy. Let a.t/ represent the action profile at time t . The action profile at time
t C 1 is chosen as follows:

(i) An agent i 2 N is randomly picked to update its action according to a uniform
distribution.

(ii) Agent i selects an action that is a best response to the action profile played by
the other agents in the previous period, i.e.,
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ai .t C 1/ 2 arg max
ai 2Ai

Ui .ai ; a�i .t //: (11.27)

(iii) All other agents j ¤ i play their previous actions, i.e., a�i .t C 1/ D a�i .t /.
(iv) The process is then repeated.

It is straightforward to see that the above process will converge almost surely to
a pure Nash equilibrium in any potential game by observing that �.a.t C 1// �

�.a.t// for all times t . Accordingly, the efficiency guarantees associated with the
application of this algorithm to a potential game are in line with the price of anarchy
of the game.

Here, a slight modification, or perturbation, is introduced of the above best-reply
dynamics that ensures that the resulting behavior leads to the pure Nash equilibrium
that optimizes the potential function, i.e., aopt 2 arg maxa2A �.a/. The algorithm,
known as log-linear learning or the logit response dynamics (Alos-Ferrer and Netzer
2010; Blume 1993, 1997; Marden and Shamma 2012; Young 1998), follows the
best-reply process highlighted above where step (ii) is replaced by a noisy best
response. More formally, step (ii) is now of the form:

(ii) Agent i selects an action ai .tC1/ according to a probability distribution pi .t/ D

fpai

i .t/gai 2Ai 2 �.Ai / that is of the form

p
ai

i .t/ D
e.1=T /�Ui .ai ;a�i .t//

P
Qai 2Ai

e.1=T /�Ui .Qai ;a�i .t//
; (11.28)

where the parameter T > 0 is referred to as the temperature.

A few remarks are in order regarding the update protocol specified in (11.28).
First, when T ! 1, the agent’s strategy is effectively a uniform distribution over
the agent’s action set. Second, when T ! 0C, the agent’s strategy is effectively
the best response strategy given in (11.27). Lastly, we present this algorithm (and
the forthcoming Binary Log-Linear Learning) with regard to a fixed temperature
parameter that is common to all agents. However, there are variations of this
algorithm which allow for annealing of this temperature parameter that preserve
the resulting asymptotic guarantees, e.g., Zhu and Martínez (2013).

The following theorem establishes the asymptotic guarantees associated with
the learning algorithm log-linear learning in potential games (Blume 1993, 1997;
Young 1998).

Theorem 7. Consider any potential game G with potential function �. If all players
follow the learning algorithm log-linear learning with temperature T > 0, then the
resulting process has a unique stationary distribution � D f�aga2A 2 �.A/ of the
form
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�a D
e.1=T /��.a/

P
Qa2A e.1=T /��.Qa/

: (11.29)

The stationary distribution of the process given in (11.29) follows the same
intuition as presented for the update protocol in (11.28). That is, when T ! 1

the stationary distribution is effectively a uniform distribution over the joint action
set A. However, when T ! 0C, all of the weight of the stationary distribution
is concentrated on the action profiles that maximize the potential function �.
The above stationary distribution provides an accurate assessment of the resulting
asymptotic behavior due to the fact that the log-linear learning process is both
irreducible and aperiodic, hence (11.29) is the unique stationary distribution.

Merging log-linear learning with the marginal contribution utility design given
in Theorem 3 leads to the following corollary.

Corollary 1. Consider the class of resource allocation problems defined in Sect. 2.1
with agent set N , action sets fAi g, and a global objective W W A ! R. Consider
the following game-theoretic control design:

(i) Assign each agent a utility function that captures the agent’s marginal contri-
bution to the global objective, i.e.,

Ui .a/ D W .a/ � W .ab
i ; a�i /; (11.30)

where ab
i 2 Ai is any fixed baseline action for agent i .

(ii) Each agent follows the log-linear learning rule with temperature parameter
T > 0.

Then the resulting process has a unique stationary distribution �.T / D

f�a.T /ga2A 2 �.A/ of the form

�a.T / D
e.1=T /�W .a/

P
Qa2A e.1=T /�W .Qa/

: (11.31)

Observe that this design rule ensures that the resulting asymptotic behavior will
be concentrated around the allocations that maximize the global objective W . This
fact has made this design methodology an attractive option for several domains
including wind farms, sensor networks, and coordination of unmanned vehicles,
among others.

4.3.2 Binary Log-Linear Learning
The framework of log-linear learning imposes a fairly rigid structure on the update
process of the agents. This structure mandates that (i) only one agent updates the
action choice at any iteration, (ii) agents are able to select any action in their action
set, and (iii) agents are able to assess their utility for any alternative action choice
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given the observed behavior of the other agents. In general, Alos-Ferrer and Netzer
(2010) demonstrates that relaxing these structures arbitrarily can significantly alter
the resulting asymptotic guarantees associated with log-linear learning. However, in
each of the scenarios variations of log-linear learning can preserve the asymptotic
guarantees while making the structure more amenable to engineering systems
(Marden and Shamma 2012).

Here, we present a variation of log-linear learning that preserves the asymptotic
guarantees associated with log-linear learning while accommodating restrictions in
the agents’ action sets. By restrictions in action sets, we mean that the set of actions
available to a given agent is dependent on the agent’s current action choice, and we
express this dependence by the function Ri W Ai ! 2Ai where ai 2 Ri .ai / for all
ai . That is, if the choice of agent i at time t is ai .t/, then the ensuing choice of the
agent ai .t C 1/ must be contained in the set Ri .ai .t//. Throughout this section, we
consider restricted action sets that satisfy two properties:

(i) Reversibility: Let ai ; a0
i be any two action choices in Ai . If a0

i 2 Ri .ai / then
ai 2 Ri .a

0
i /.

(ii) Completeness: Let ai ; a0
i be any two action choices in Ai . There exists a

sequence of actions ai D a0
i ; a1

i ; : : : ; am
i D a0

i with the property that akC1
i 2

Ri .a
k
i / for all k 2 f0; : : : ; m � 1g.

One motivation for considering restricted action sets of the above form is when the
individual agents have mobility limitations, e.g., mobile sensor networks.

Note that the log-linear learning update rule given in (11.28) has full support on
the agent’s action set Ai thereby disqualifying this algorithm for use in the case
where there are restrictions in action sets. Here, we seek to address the question
of how to alter the algorithm so as to preserve the asymptotic guarantees, i.e.,
convergence in the stationary distribution to the action profile that maximizes the
potential function. One natural variation would be to replace (11.28) with a strategy
of the form: for any ai 2 Ri .ai .t//

p
ai

i .t/ D
e.1=T /�Ui .ai ;a�i .t//

P
Qai 2Ri .ai .t//

e.1=T /�Ui .Qai ;a�i .t//
; (11.32)

and p
ai

i .t/ D 0 for any ai … Ri .ai .t//. However, such modifications can have
drastic consequences on the resulting asymptotic guarantees. In fact, such a rule is
not even able to guarantee that the potential function maximizer is in the support of
the limiting distribution as T ! 0C (Marden and Shamma 2012).

Here, we introduce a variation of log-linear learning, termed binary log-linear
learning with restricted action sets (Marden and Shamma 2012), that preserves these
asymptotic guarantees. Binary log-linear learning follows the same setup as log-
linear learning where step (ii) is now of the form:
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(ii) Agent i selects a trial action at
i 2 Ri .ai .t// according to any distribution with

full support on the set Ri .ai .t//. Conditioned on the selection of this trial action,
the agent selects the action ai .t C 1/ according to a probability distribution
pi .t/ D fpai

i .t/gai 2Ai 2 �.Ai / of the form

p
ai

i .t/ D

8
<̂

:̂

ai .t/ with probability e.1=T /�Ui .a.t//

e.1=T /�Ui .a.t//Ce.1=T /�Ui .at
i ;a

�i .t//
;

at
i with probability e.1=T /�Ui .at

i ;a
�i .t//

e.1=T /�Ui .a.t//Ce.1=T /�Ui .at
i ;a

�i .t//
;

(11.33)

where p
ai

i .t/ D 0 for any ai … fai .t/; at
i g.

Much like log-linear learning, for any temperature T > 0 binary log-linear
learning can be modeled by an irreducible and aperiodic Markov chain over the
state space A; hence, there is a unique stationary distribution which we denote
by �.T / D f�a.T /ga2A. While log-linear learning provides the explicit form of
the stationary distribution �.T /, the value of log-linear learning centers on the fact
that the support of the limiting distribution is precisely the set of potential function
maximizers, i.e.,

lim
T !0C

�a.T / > 0 , a 2 arg max
a2A

�.a/

The action profiles contained in the support of the limiting distribution are termed
the stochastically stable states. Accordingly, log-linear learning ensures that an
action profile is stochastically stable if and only if it is a potential function
maximizer.

The following theorem from Marden and Shamma (2012) characterizes the long
run behavior of binary log-linear learning.

Theorem 8. Consider any potential game G with potential function �. If all players
follow the learning algorithm binary log-linear learning with restricted action set
and temperature T > 0, then an action profile is stochastically stable if and only if
it is a potential function maximizer.

This theorem demonstrates that a system designer can effectively deal with
restrictions in action sets by appropriately modifying the learning rule. However,
a consequence of this is that we are no longer able to provide a precise charac-
terization of the stationary distribution as a function of the temperature parameter
T . Unlike log-linear learning, binary log-linear learning applied to such a game
does not satisfy reversibility unless there are additional constraints imposed on the
agents’ restricted action sets, i.e., jRi .ai /j D jRi .a

0
i /j for all i 2 N and ai ; a0

i 2 Ai .
Hence, in this theorem we forgo a precise analysis of the stationary distribution in
favor of a coarse analysis of the stationary distribution that demonstrates roughly
the same asymptotic guarantees.
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4.3.3 Beyond Asymptotic Guarantees
In potential games, both log-linear learning and binary log-linear learning ensure
that the resulting collective behavior can be characterized by the action profiles that
maximize the potential function when the temperature T ! 0C. Here, we focus
on the question of characterizing the convergence rates of this process. That is, how
long does it take for the collective behavior to reach these desired equilibrium points.

Several negative results have emerged regarding the convergence rates of such
algorithms (Daskalakis et al. 2009; Hart and Mansour 2010; Shah and Shin 2010).
In particular, Hart and Mansour (2010) and Shah and Shin (2010) demonstrates that
in general the amount of time that it may take to reach such an equilibrium could
be exponential in both the number of agents and the cardinality of their action sets.
Accordingly, research has shifted to identifying whether there are classes of games
and variants of the above dynamics that exhibit more desirable guarantees on the
convergence rates.

The following briefly highlights three domains where such positive results exist.

Symmetric Parallel Congestion Games. Consider the class of congestion games
introduced in Example 2. A symmetric parallel congestion game is a congestion
game where each agent i 2 N has an action set Ai D R; that is, any agent can
choose any single edge from the set of available roads R. In Shah and Shin (2010),
the authors demonstrate that the mixing times associated with log-linear learning
could grow exponentially with regard to the number of players n even in such limited
scenarios. However, the authors introduce a variant of log-linear learning, which
effectively replaces Step (i) of the algorithm (pick an updating player uniformly)
with a new procedure which biases the selection rate of certain agents based on the
current action profile a. This modification of log-linear learning provides similar
asymptotic guarantees with far superior transient guarantees. In particular, this
variant of log-linear learning provides a mixing time that is nearly linear in the
number of agents for this class of congestion games.

Semi-Anonymous Potential Games. In symmetric parallel congestion games, all
of the agents are anonymous (or identical) with regard to their impact on the
potential function and their available action choices. More formally, we will call
two agents i; j 2 N anonymous in a potential game if (i) Ai D Aj and (ii)
�.a/ D �.a0/ for any action profiles a; a0 where a0

i D aj , a0
j D ai , and a0

k D ak

for all k ¤ i; j . Accordingly, let C1; : : : Cm represent a minimal partition of N

such that each set of agents Ck , k 2 f1; : : : ; mg is anonymous with respect to one
another, i.e., any agents i; j 2 Ck are anonymous with respect to each other. The
authors in Borowski et al. (2013) derive a variant of log-linear learning algorithm,
similar to the algorithm for symmetric parallel congestion games in Shah and Shin
(2010) highlighted above, that provides mixing times that are nearly linear in the
number of agents n, but exponential in the number of indistinguishable groups of
agents, m.
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Graphical Coordination Games. Consider the family of graphical coordination
games introduced in Example 3. In Montanari and Saberi (2009), the authors study
the mixing times associated with log-linear learning in a special class of graphical
coordination games where the underlying pairwise utility function constitutes a 2�2

symmetric utility function. In particular, the authors demonstrate that the structure of
the network, in particular the min-cut of graph, is intimately related to the underlying
speed of convergence. A consequence of this characterization is that the mixing
times associated with log-linear learning is effectively linear in the number of agents
when the underlying graph is sparse.

4.4 Universal Learning

The preceding sections presented algorithms that guarantee convergence to Nash
equilibria (or potential function maximizers) for specific game structures, e.g.,
potential games or weakly acyclic games. Here, we focus on the question of
whether there are universal algorithms that provide convergence to an equilibrium
irrespective of the underlying game structure. With regard to Nash equilibrium,
it turns out that such an objective is impossible as demonstrated by Hart and
Mas-Colell (2003) which establishes that no natural dynamics converge to a Nash
equilibrium in all games. Here, the phrase natural seeks to disqualify dynamics
that can be thought of as an exhaustive search or utilizing a central coordinator.
Nonetheless, by relaxing our equilibrium requirements focus from Nash equilibria
to coarse correlated equilibria, such universal algorithms do exists. In the following,
we survey the most well-known algorithm that achieves this objective and discuss
its implications on the efficiency of this broader class of equilibria.

In this section we present an algorithm proposed in Hart and Mas-Colell (2000),
referred to as regret matching, that guarantees convergence to the set of coarse
correlated equilibrium. The informational demands and computations associated
with the decision-making rule regret matching is very similar to those presented
for the algorithm joint strategy fictitious play with inertia highlighted above. The
main driver for each agent’s strategy selection is the regret associated with each of
its actions. For any time t 2 f1; 2 : : : g, the regret of agent i 2 N for action ai 2 Ai

is defined as

R
ai

i .t/ D NU ai

i .t/ � NUi .t/; (11.34)

where NUi .t/ D 1
t

Pt�1
�D0 Ui .a.�// is the average utility received by agent i up to time

t and NU ai

i .t/ D 1
t

Pt�1
�D0 Ui .ai ; a�i .�// is the average utility that would have been

received by agent i up to time t if the agent committed to action ai all time steps and
the behavior of the other agents were unchanged. Observe that R

ai

i .t/ > 0 implies
that agent i could have received a higher average utility if the agent had committed
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to the action ai for all previous time steps and the action choices of the other agents
was unchanged.

The regret matching algorithm proceeds as follows: at each time t 2 f1; 2; : : : g,
each agent i 2 N independently selects its action according to the strategy pi .t/ 2

�.Ai / of the form

p
ai

i .t/ D

�
R

ai

i .t/
	

C
P

Qai 2Ai

h
R

Qai

i .t/
i

C

(11.35)

where Œ�	C denotes the projection to the positive orthant, i.e., Œx	C D maxfx; 0g.
The following theorem characterizes the long run behavior of regret matching in

any game.

Theorem 9. Consider any finite game G. If all players follow the learning algo-
rithm regret matching defined above, then the positive regret for any agent i 2 N

and action ai 2 Ai asymptotically vanishes, i.e.,

lim
t!1

ŒR
ai

i .t/	C D 0: (11.36)

Alternatively, the empirical frequency of play converges to the set of coarse
correlated equilibria.

The connection between the condition (11.36) and the definition of coarse
correlated equilibria stems from the fact that an agent’s regret and average utility
can also be computed using the empirical frequency of play z.t/ D fza.t/ga2A
where

za.t/ D
1

t

t�1X

�D0

I fa.�/ D ag: (11.37)

In particular, at any time t 2 f1; 2; : : : g we have that

Ui .z.t// D
X

a2A
Ui .a/za.t/ D NUi .t/: (11.38)

Further, defining the marginal distribution of the empirical frequency of play of all
agents j ¤ i as za

�i

�i .t / D
P

ai 2Ai
z.ai ;a�i /.t /, we have

Ui .ai ; z�i .t // D
X

a
�i 2A�i

Ui .ai ; a�i /z
a

�i

�i .t / D NU ai

i .t/: (11.39)

Accordingly, if a sequence of play a.0/, a.1/, : : : , a.t � 1/, satisfies (11.36), then
we know that the empirical frequency of play z.t/ satisfies
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lim
t!1

fUi .z.t// � Ui .ai ; z�i .t //g � 0; 8i 2 N; ai 2 Ai : (11.40)

Hence, the limiting empirical frequency of play z.t/ is contained in the set of coarse
correlated equilibria. Note that the convergence highlighted above does not state that
the empirical frequency of play will converge to any specific correlated equilibrium;
rather, it merely states that the empirical frequency of play will approach the set of
coarse correlated equilibria.

Lastly, we presented a version of regret matching that provides convergence to
the set of coarse correlated equilibria. Variants of the presented regret matching
could also ensure convergence to the set of correlated equilibrium, which is a
more rigid solution concept than presented in Definition 3. We direct the readers
to Hart and Mas-Colell (2000) and Young (2004) for the details associated with this
variation.

4.4.1 Equilibrium Selection of Correlated Equilibrium
The set of correlated equilibria is much larger than the set of Nash equilibria and
can potentially be exploited to provide systems with better performance guarantees.
One example of such a system is the Shapley game, which is a two-player game
with utility functions of the form

Agent 1

Agent 2
A B C

A 0; 0 0; 1 1; 0

B 1; 0 0; 0 0; 1

C 0; 1 1; 0 0; 0

Payoff Matrix

There are no pure Nash equilibria in this game and the unique (mixed) Nash
equilibrium is when each agent i employs a strategy pi D .1=3; 1=3; 1=3/, which
yields an expected payoff of 1=3 to each agent. However, there is also a coarse
correlated equilibrium where the distribution z has a value 1=6 on each of the
six joint actions where some agent receives nonzero payoff; z has a value 0 for
the other three joint actions. This coarse correlated equilibrium yields an expected
utility of 1=2 to each agent and is clearly more desirable. One could easily imagine
other scenarios, e.g., team versus team games, where specific coarse correlated
equilibrium could provide significant performance improvements over any Nash
equilibrium.

The problem with regret matching for exploiting this potential opportunity is that
behavior is not guaranteed to converge to any specific coarse correlated equilibrium.
Accordingly, the efficiency guarantees associated with coarse correlated equilibria
cannot be better than the efficiency bounds associated with pure Nash equilibria and
can often be quite worse. With this issue in mind, recent work in Marden (2015)
and Borowski et al. (2014) has sought to develop learning algorithms that converge
to the efficient coarse correlated equilibrium, where efficiency is measured by the
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sum of the agents’ expected utilities. Here, the algorithm introduced in Marden
(2015) ensures that the empirical frequency of play will converge to the most
efficient coarse correlated equilibrium, while Borowski et al. (2014) provides an
algorithm that guarantees that the day-to-day behavior of the agents will converge to
the most efficient correlated equilibrium. Both of these algorithms view convergence
in a stochastic stability sense.

The motivation for these developments centers on the fact that joint randomiza-
tion, which can potentially be characterized by correlated equilibria, can be key to
providing desirable system-level behavior. One example of such a system is a peer-
to-peer file sharing system where users engage in interactions with other users to
transfer files of interest and satisfy demands (Wang et al. 2009). Here, Wang et al.
(2009) demonstrates that the optimal system performance is actually characterized
by the most efficient correlated equilibrium as defined above. Another example
of such a system is the problem of access control for wireless communications,
where there are a collection of mobile terminals that compete over access to a
common channel (Altman et al. 2006). Optimizing system throughput requires a
level of correlation between the transmission strategies of the mobiles so as to
minimize the chance of simultaneous transmissions and failures. The authors in
Altman et al. (2006) study the efficiency of correlated equilibria in this context.
Identifying the role of correlated equilibrium (and learning strategies for attaining
specific correlated equilibrium) warrants further research attention.

5 Conclusion

The goal of this chapter has been to highlight a potential role of game-theoretic
learning in the design of networked control systems. We reviewed several classes
of learning algorithms accentuating their performance guarantees and reliance on
game structures.

It is important to reemphasize that game-theoretic learning represents just a
single dimension of a game-theoretic control design. The other dimension centers on
the assignment of objective functions to the individual agents. The structure of these
agent objective functions not only dictate convergence guarantees associated with
various game-theoretic learning algorithms but can also be exploited to characterize
the efficiency of the resulting behavior. To that end, consider the assignment of
agent objective functions that yields a potential game and has a given price of
anarchy. Marrying this design with a learning algorithm that guarantees convergence
to a pure Nash equilibrium in potential games yields a game-theoretic control
design that ensures that the collective behavior will converge to a specific allocation
(in particular a Nash equilibrium associated with the designed agent objective
functions) and the efficiency of this allocation will be in line with the given price of
anarchy.

Taking full advantage of this game-theoretic approach requires assigning agent
objective functions that yield a potential game and optimize the price of anarchy
over all such objective functions. Unfortunately, the existing literature provides no
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mechanism for accomplishing this goal as utility design for distributed engineering
systems is currently not well understood. A reason for this gap is that agent
objective function are traditionally modeled to reflect agent preferences in a given
social system, e.g., a reasonable objective for drivers on a transportation network
is minimizing experienced congestion. Hence, efficiency measures in games, such
as the price of anarchy, are traditionally viewed from an analysis perspective
with virtually no design component. Reversing this trend and deriving systematic
methodologies for utility design in multiagent systems represents a significant
opportunity for game-theoretic control moving forward.
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major types of games, namely, congestion games, resource allocation games,
diffusion games, and network formation games. Several algorithmic aspects and
methodologies for analyzing such games are discussed, and connections between
network games and other relevant topical areas are identified.

Keywords
Network games � Congestion games � Diffusion games � Potential games �

Resource allocation � Network formation � Nash equilibrium � Price of
anarchy

1 Introduction

Network games broadly refer to a class of games where the players and/or their
actions are linked through an underlying network structure. Here, the network can
capture a wide range of applications such as communication links, social relations,
or even transportation roads. In many applications the network structure is not
necessarily fixed and may dynamically change based on players’ interactions. As
an example, in certain social events such as political elections, individuals can be
viewed as players whose individual goals are to vote (take an action) so as to select
their favorite candidates. However, the vote of each player is a consequence of his1

social interactions with his friends. Such social ties define the network structure
among the players with an edge (or a link) between two players if and only if they
are each other’s friends. Once the players take their actions, it is possible that friends
drift away from each other (as they vote differently and have less in common), or
strangers become each other’s friends (as now they have the same opinion about the
candidates, which is a good starting point for friendship). As it is evident in this
example, one of the key features of network games is the role of the network on the
structure of the game which puts additional constraints on players’ interactions;
it determines which players can have direct influence on the payoff, and hence
decision of a particular player.

Typically networks represent the interconnections between the players; however,
there are many scenarios where the network describes the underlying structure on
players’ actions (rather than their payoffs directly). As an example, in a chess game,
the players are not part of the network; however, at each possible move, their admis-
sible actions can be described using an 8 � 8 lattice. In this chapter we will consider
network games of both types and discuss several methods for analyzing them. One
typical approach for studying network games is to translate them into the normal
or extensive form by considering the set of all possible pure strategies which can be
realized by players given the network constraints. While in some cases this approach
can be helpful, in most cases such a representation is neither practical nor efficient.

1Throughout this chapter, we refer to players as “he,” “she,” or “it” (“his,” “her,” or “its”)
interchangeably, somewhat context dependent.
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This is because in practice, the number of parameters that need to be specified
for the normal or extensive representation grows exponentially with the size of the
game, i.e., number of players, pure strategies, etc. In addition, games in normal form
usually fail to capture directly and in a transparent way the network structure that is
present in the strategic interactions. Such limitations mandate developing new tools
and techniques which are more suitable for analyzing network games and yet keep
the representation of the game as succinct and transparent as possible.

Network games have been extensively studied in the past literature and under var-
ious settings. To name a few, we mention here congestion games (Ackermann et al.
2008; Anantharam 2004; Awerbuch et al. 2008; Fabrikant et al. 2004; Milchtaich
1996; Rosenthal 1973; Tekin et al. 2012) with a wide range of applications in selfish
routing (Blum et al. 2006; Correa et al. 2004; Menache and Ozdaglar 2011;
Roughgarden 2002) where the network traffic congestion is selfishly controlled
by vehicle owners who seek to minimize their travel costs; caching and resource
allocation games (Chun et al. 2004; Etesami and Başar 2017a,b; Gopalakrishnan
et al. 2012; Laoutaris et al. 2006; Maheswaran and Başar 2001; Marden and
Roughgarden 2014; Menache and Ozdaglar 2011; Pacifici and Dan 2012; Pollatos
et al. 2008), where a set of agents compete for the same set of resources over a
network; and cost sharing games, where the objective is to share the costs among
agents (e.g., the costs of creating a network or serving a market) while incentivizing
them to cooperate despite their self-interests (Goemans et al. 2006; Nisan et al.
2007; Roughgarden and Schrijvers 2016).

Furthermore, network games have also been studied under the framework of
graphical games where the players are located on the nodes of an underlying
network and their payoffs are determined based on their own actions and neighbors’
(Daskalakis and Papadimitriou 2006; Kearns et al. 2001; Nisan et al. 2007).
Diffusion games constitute another type of well-studied network games in which the
players’ objective is to propagate a certain type of product or behavior in a desired
way through the network (Alon et al. 2010; Goyal et al. 2014; Jackson and Yariv
2007; Montanari and Saberi 2010; Singer 2012; Small and Mason 2013; Tzoumas
et al. 2012; Young 2006), with applications in product advertising, immunization,
and virus spreading. Moreover, network formation games provide a popular frame-
work for studying social and economic networks in order to understand how real-
world networks (such as the Internet) develop when multiple selfish independent
agents (e.g., ISPs) build pieces of the network to improve their own objective
functions (Alon et al. 2013; Demaine et al. 2007; Fabrikant et al. 2003; Goyal
and Vega-Redondo 2000; Jackson and Watts 2002; Kawald and Lenzner 2013).
In addition, network games have proven quite useful for studying cyber-security
networks (Alpcan and Başar 2010; Grossklags et al. 2008; Liang and Xiao 2012),
opinion dynamics in social networks (Etesami and Başar 2015; Gionis et al. 2013),
and distributed control (Li and Marden 2013), among many others (Dürr and Thang
2007; Eksin et al. 2013; Galeotti et al. 2010; Panagopoulou and Spirakis 2008).

As the class of network games covers a wide range of topics, in this chapter
we mainly focus on four well-studied types of such games by presenting several key
results in each area. More specifically, we consider in the chapter congestion games,



550 S. R. Etesami and T. Başar

resource allocation games, diffusion games, and network formation games and
present some of the existing results from both a formulation side and an algorithmic
aspect. We have left out of this overview a number of topics which would naturally
fall under the heading of network games, the reason being that several of them have
been covered exclusively in some other chapters of this Handbook. Four examples
of routing games (Menache and Ozdaglar 2011; Roughgarden 2002), which would
naturally fall under network games, and specifically under congestion games,
have been discussed extensively in Chaps. 25 and 26 of the Handbook (Krichene
et al. 2017; Shakkottai and Srikant 2017), including the Pigou network, Wardrop
equilibrium, Braess paradox, flow control games, and Stackelberg equilibria in
routing games. We will therefore not be covering these topics in this chapter. Some
other topics in network games, not covered by the four main types this chapter is
devoted to, are briefly mentioned in a section toward the end of the chapter.

2 Congestion Games

Congestion games are arguably one of the most studied types of network games
first introduced by Rosenthal (1973). In the simplest form, congestion games are
composed of a set of players and resources such that the payoff to a player depends
on his choice of resource and the number of players that choose that specific
resource. Since then, congestion games have been extensively used for modeling
strategic problems where a set of players compete for the same set of resources
such that the players’ costs for using the same resource monotonically increase with
the congestion on that resource. A simple example for such a scenario is the cost
of traffic congestion for vehicle drivers (players), where in this case the resources
can be interpreted as roads of the traffic network. As more vehicles decide to use
a specific road, the congestion cost for the vehicles in that road increases.2 In what
follows, we formally introduce the class of congestion games and their specification
to network congestion games.

Definition 1 (Congestion game). Let E be a finite set of resources and consider a
set of n players, with action sets Ai � 2E ; i 2 Œn� WD f1; 2; : : : ; ng. For every e 2 E ,
a delay function de.�/ W Œn� ! Z is a nondecreasing integer-valued function. Given
an action profile a WD .a1; : : : ; an/ 2 A1 � � � � �An, let ne.a/ D jfi 2 Œn� W e 2 ai gj

be the number of players in the action profile a who choose the resource e. The cost
of player i for the action profile a is given by ci .a/ D

P
e2ai

de.ne.a//.

In other words, the total delay (cost) that player i incurs is the sum of delays of
resources used by player i , where the delay of a resource depends on the congestion

2Another example arises in the transmission of pockets in communication networks, where because
of fixed bandwidth, an increase in the rate leads to increase in transmission time (i.e., delay) and
thus increase in cost.
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ne.a/, the total number of players using that resource. The above formulation
provides a general framework for modeling a wide range of problems as long as
the players’ costs depend only on the congestion in each resource and not on the
specific type of players choosing that resource. In particular, such formulation can
be easily adapted to incorporate the role of network structure into the game as is
described in the following example.

Example 1 (Network congestion games). Let G D .V; E/ be a directed network
with vertex set V and edge set E , such that each player i 2 Œn� is associated with
a pair of nodes .si ; ti / 2 V � V who aims to travel from the source node si to the
terminal node ti . Therefore, the action set Ai for player i is given by all possible
paths from si to ti . Note that each path in G can be viewed as a subset of edges in
E , which means that one can view the resources in the network congestion game
to be the set of all the edges, E . Again by assuming proper delay functions on the
edges (resources), one can view the network congestion game as a special case of
the congestion game given in Definition 1, in which each player wants to choose a
path which has the least traffic congestion along its edges.

In fact, congestion games (and in particular network congestion games) feature
many nice properties, perhaps the most remarkable one being that they admit at least
one pure-strategy Nash equilibrium (NE),3 which is mainly due to their structure.
More generally, congestion games are known to belong to the class of exact potential
games which are guaranteed to have at least one pure-strategy Nash equilibrium
(Monderer and Shapley 1996). Intuitively, a game is said to be an exact potential
game if the incentive of all players to change (improve) their strategy can be
captured through a single global function called the potential function.

Definition 2. Given an n-player game � D .Œn�; fAi g; fci g/, let A D A1 �� � ��An

be the set of action profiles of the players. The game is an exact potential game if
there is an exact potential function ˆ W A ! R such that 8a�i 2 A�i , 8ai ; Oai 2 Ai

we have ˆ.ai ; a�i / � ˆ. Oai ; a�i / D ci .ai ; a�i / � ci . Oai ; a�i /; 8i 2 Œn�.

Note that based on Definition 2, any exact potential game admits at least one
pure-strategy NE. This is simply because any minimizer of the exact potential
function ˆ.�/ delivers an action profile in which no player can decrease its cost
further (otherwise that profile is not a minimizer anymore). It was first shown by
Rosenthal (1973) that congestion games always admit an exact potential function
and hence a pure-strategy NE. To see why this is true, let us consider the following
potential function:

3A pure-strategy Nash equilibrium is an action profile from which no player has a unilateral
incentive to change his strategy.
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ˆ.a/ D
X

e2E

ne.a/X

j D1

de.j /:

Note that ˆ.a/ has no intuitive interpretation as “social cost”; it just accurately
captures the definition of an exact potential function. To see this more clearly, let
us assume that player i changes its action from ai � E to Oai � E , while all other
players keep their actions unchanged. We can write

ˆ.ai ; a�i / � ˆ. Oai ; a�i / D
X

e2ai nOai

ne.a/X

j D1

de.j / C
X

e2Oai nai

ne.a/X

j D1

de.j /

�
X

e2ai nOai

ne. Oai ;a�i /X

j D1

de.j / �
X

e2Oai nai

ne. Oai ;a�i /X

j D1

de.j /; (12.1)

where the equality is due the fact that if a resource e belongs to both or neither
of the actions ai ; Oai , then its contributions to ˆ.ai ; a�i / and ˆ. Oai ; a�i / are the
same. Moreover, e 2 ai n Oai implies ne. Oai ; a�i / D ne.a/ � 1, and e 2 Oai n ai

implies ne. Oai ; a�i / D ne.a/ C 1. Substituting these two relations into (12.1), and
simplifying the terms, we get

ˆ.ai ; a�i / � ˆ. Oai ; a�i / D
X

e2ai nOai

de.ne.a// �
X

e2Oai nai

de.ne.a/ C 1/

D
X

e2ai nOai

de.ne.a// �
X

e2Oai nai

de.ne. Oai ; a�i //

D ci .ai ; a�i / � ci . Oai ; a�i /;

where the last equality is due to the definition of cost functions in the congestion
game (Definition 1). This shows that ˆ.�/ is an exact potential function for the
congestion game, and hence it admits a pure-strategy NE.

In their seminal work, Monderer and Shapley (1996) proved the converse of
the above result; namely, they proved that for any exact potential game, there is
a congestion game with the same exact potential function.

Theorem 1. Any exact potential game is isomorphic to a congestion game.

The main idea behind establishing the result of Theorem 1 is to show that for
a game with an exact potential function ˆ.�/, one can construct an equivalent
congestion game in which the players are the same, and the resources are interpreted
as all possible subsets of actions which can be taken jointly by the players in the
original exact potential game. Then, one can leverage the potential function ˆ.�/ to
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construct well-defined delay and cost functions for the equivalent congestion game.
More details can be found in Monderer and Shapley (1996).

2.1 Computing Pure-Strategy NE in Congestion Games

As we saw earlier, congestion games are guaranteed to have a pure-strategy
NE. Therefore, one of the immediate questions is how to compute one of these
equilibrium points efficiently. One way of doing that is to let the players in the
congestion game reduce their costs by playing better actions in response to the most
recent actions picked, and in some arbitrary order. Since a reduction in the cost of
any player results in the same reduction in the value of the potential function ˆ.�/

(which is nonnegative and bounded above), this process must eventually terminate
in finite time to an action profile which is necessarily a pure-strategy NE. Otherwise,
there must exist at least one player who can still reduce his cost and, hence, results
in further reduction in the potential function which is a contradiction. Such a kind of
argument where after finitely many improvements in the players’ utilities (reduction
in their cost) the sequence of action profiles will terminate to a pure-strategy NE
is known as the finite improvement path property. Therefore, congestion games
(or equivalently exact potential games) with finite action space possess the finite
improvement path property, which can be used to find or approximate their pure-
strategy NE points.

An important question now is to see whether the number of steps in a finite
improvement path efficiently scales with the parameters of the game. In other words,
it might be possible that the length of such improvement path can be exponentially
large in terms of game parameters, which renders the applicability of such a
method for finding pure-strategy NE points. Unfortunately, congestion games in
their general form of Definition 1 can attain exponentially long improvement paths
to their NE points, and the complexity of finding a pure-strategy NE in general
congestion games is PLS complete4 (Fabrikant et al. 2004). This means in plain
terms that finding a pure-strategy NE in general congestion games is “as hard to
compute as any object whose existence is guaranteed by a potential function”.
However, if we restrict our attention to a special subclass of congestion games,
namely, symmetric network congestion games, then a pure-strategy NE can be found
in polynomial time.

Definition 3. A symmetric network congestion game is a network congestion game
(see Example 1) in which all the players have the same source-terminal pairs, i.e.,
9 .s; t/ 2 V � V such that .si ; ti / D .s; t/; 8i 2 Œn�.

4Polynomial local search (PLS) is a complexity class that models the difficulty of finding a
locally optimal solution to an optimization problem. A PLS-complete problem refers to a “hardest”
problem in this complexity class.
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Note that from Definition 3, it immediately follows that in the symmetric network
congestion game, all the players share the same action set which is the edge set of
all possible paths from source s to terminal t . Before we show how one can obtain a
pure-strategy NE of the symmetric network congestion game, we first consider the
following network optimization problem known as min-cost flow problem.

Min-cost Flow: In the min-cost flow problem, we are given a directed network
G D .V; E/, with a source s 2 V and a terminal t 2 V , where each edge e D

.u; v/ 2 E has a capacity c.u; v/ > 0. A feasible flow of capacity l > 0 from the
source s to the terminal t is a nonnegative vector f W E ! R

�0 with support E ,
which satisfies the following flow constraints:

• capacity constraints: f .u; v/ � c.u; v/

• flow conservation:
P

v2V f .u; v/ D 0; 8u ¤ s; t

• skew symmetry: f .u; v/ D �f .v; u/

• required flow:
P

v2V f .s; v/ D
P

v2V f .v; t/ D l .

For an edge .u; v/ we let b.u; v/ be that edge flow cost and
P

.u;v/2E b.u; v/f .u; v/

be the total flow cost. The objective of the min-cost flow problem is to find a feasible
flow f with capacity l from s to t which has the minimum total cost. An important
property of the min-cost-flow problem is that if edge capacities c.u; v/; .u; v/ 2 E
and flow capacity l are integer valued, then the min-cost flow problem admits an
optimal integer flow f � W E ! Z

�0 which can be obtained efficiently in polynomial
time. Using this property of the min-cost flow problem, the following theorem can
be established.

Theorem 2. There is a polynomial algorithm for finding a pure-strategy NE in
symmetric network congestion games.

This result is established by showing that for the symmetric network congestion
games, finding an action profile which minimizes the potential function ˆ.a/ D
P

e2E
Pne.a/

j D1 de.j / (and hence constitutes a pure-strategy NE) can be reduced to
solving the min-cost flow problem in polynomial time. Let G D .V; E/ be the
graph of a symmetric network congestion game with n players, source-terminal
pair .s; t/, and edge delay functions fdege2E . We replace each edge e in G by
n parallel edges between the same nodes, each with capacity 1 and with flow
costs de.1/; de.2/; : : : ; de.n/. We then claim that the optimal integer flow f � with
capacity n for this expanded network is a minimizer of the potential function ˆ.�/.
To see this clearly, let f � be the optimal integer flow with capacity n. Since each
edge of the new network has capacity 1, f � can be split into n distinct routes
from s to t . Consider every route as the action of a single player in the original
symmetric network congestion game, and define the action profile a� as some
ordered collection of these routes (due to symmetry of the players, the order does
not matter). Thus, ne.a

�/ represents the number of edges e1; e2; : : : ; en on the new
network which represent edge e on G and are used in the flow f �. Since f � is
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minimal, it must first use the cheapest edges in which case the contribution of
the edges e1; : : : ; en to the total cost of f � equals

Pne.a�/
j D1 de.j /. Therefore, the

total cost of f � equals ˆ.a�/ D
P

e2E
Pne.a�/

j D1 de.j /, which minimizes ˆ.�/

(otherwise, the flow corresponding to minimizer of ˆ.�/ will have a lower cost
than f �).

Theorem 2 provides a positive result on how to find a pure-strategy NE in a
special class of congestion games, namely, symmetric network congestion games.
Unfortunately, this class constitutes a very small subclass of congestion games,
where the latter itself is a small subclass of games which admit pure-strategy NE.
In fact, it has been shown in Fabrikant et al. (2004) that it is PLS complete to find a
pure-strategy NE in:

• general congestion games,
• symmetric congestion games where the players share the same action sets,
• asymmetric network congestion games where the players have different pairs of

source-terminal nodes (Example 1).

This again leaves open the question of existence of a polynomial time algorithm for
finding a pure-strategy NE in congestion games.

Finally, we mention here that one can consider different variants of congestion
games by modifying some of their underlying assumptions. As an example, in
the definition of congestion games (Definition 1), it is assumed that players share
the same delay functions. However, one can relax this assumption by introducing
“player-specific” congestion games where the delay functions not only depend
on resources but also are player specific. It was shown in Milchtaich (1996) that
while such player-specific congestion games with identical action sets do not admit
an exact potential function, they still possess a pure-strategy NE which can be
constructed inductively in polynomial time.

2.2 Application of Congestion Games in Market Sharing

In this subsection, we provide an application of congestion games in market sharing.
Broadly speaking, in market sharing games, there is a set of agents who want to
provide service to their customers with a limited set of resources, while there are
different request rates for different resources and providers. In this regard, one of
the main challenges is to determine whether the outcome of interactions between
service providers modeled as a repeated game converges to any stable outcome such
as a Nash equilibrium and how long it will take to converge. In this subsection we
consider a special form of market sharing game, first introduced by Goemans et al.
(2006):

Market Sharing Game: Consider a market sharing game in which there are a set
Œn� of n players each having a limited amount of budget Bi ; i 2 Œn�, and a set H of



556 S. R. Etesami and T. Başar

m markets. Each market j 2 H is characterized by two parameters: qj which is the
query rate that market j is requested by its customers and Cj which is the cost of
servicing that market. The connection between markets and players is captured by
an undirected bipartite graph G D .Œn�[H; E/, in which an edge fi; j g 2 E between
player i 2 Œn� and market j 2 E shows that player i is interested in (serving) market
j . Each player i must decide what subset of markets to serve subject to its budget
and network constraints. Therefore, a feasible action for player i , denoted by ai , is
a subset of markets that player i is interested in, so that

P
j 2ai

Cj � Bi . We denote
the set of all feasible actions of player i by Ai and the set of feasible action profiles
of all the players by A D A1 � � � � � An. Finally, given an action profile a 2 A, the
payoff received by player i is given by

ui .a/ D
X

j 2ai

qj

nj

; (12.2)

where nj denotes the number of players in a who serve market j . The rationale
behind such a payoff function is that all the players who are serving market j will
share the total value of that market qj equally among themselves. In this game, each
agent wants to selfishly maximize its own payoff. An immediate consequence of
this formulation is the following theorem.

Theorem 3. Market sharing game is a special case of congestion games and hence
admits a pure-strategy NE.

The above theorem simply holds by noting that the Rosenthal potential function
ˆ.a/ D

Pm
j D1

Pnj

kD1

qj

k
adapted for the market sharing game serves as an exact

potential function for this game. In fact, in the market sharing game, the market
queries fqj ; j 2 Hg can be viewed as the resources, and the delay function
associated with resource qj is given by dqj .k/ D �

qj

k
(here we are using minus

since we are working with utilities rather than costs).
In practice, finding the best response for a player in the market sharing game is

an NP-hard problem. This is because, given the set of actions of other players, a�i ,
the best action of player i can be obtained by solving a knapsack problem where the
value of market (item) j is equal to qj

nj
or qj

nj C1
depending on whether market j is

currently being serviced by player i or not. The size of j in the knapsack instance
is Cj , and the knapsack capacity equals to Bi . Therefore, even in the simplest case
when we have only one player, finding a pure-strategy NE is equivalent to solving a
general knapsack problem, which is NP-hard (although the existence of such a NE
is guaranteed by Theorem 3). However, it turns out that if we restrict our attention
to a special case of market sharing games where all markets have equal cost, then
finding the best response action for each player reduces to a simple optimization
problem.
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Definition 4. The above game is a uniform market sharing game if all the markets
have a uniform cost Cj D C; 8j 2 H.

It is easy to see that in the uniform market sharing game, given the actions of
other players, a�i , player i can find its best response by simply serving the highest
b Bi

C
c rewarding markets. In this case, one can find a pure-strategy NE of the uniform

market sharing game efficiently as stated in the following theorem:

Theorem 4. In the uniform market sharing game, a pure-strategy NE can be found
after at most m2n steps, where m is the total number of markets and n is the number
of players.

The idea behind proving Theorem 4 is to iteratively add and exchange markets
to the action sets of players until a pure-strategy NE is achieved. This process
is based on several rounds. The first stage of each round corresponds to adding
only one new market to the action set of one player. The round then continues by
a sequence of exchange stages where at each stage, a player exchanges only one
market in his action set with another one in order to improve his payoff. A round
ends when no player can further improve its payoff by this exchanging operation.
More precisely:

• Start from the empty action profile where ai D ;; 8i 2 Œn�.
• At the beginning of each round, select a player i who can serve an additional

market, and let him add only one new market to his action set, i.e., player i

changes his action from ai to ai [ fj g, for some market j … ai .
• After the adding stage at the very first stage of a round, the exchange stages

start. At each exchange step, one player i updates his action by evicting a market
j 2 ai and inserting another market of his interest k … ai in order to maximize
his payoff. Hence his action set will change from ai to ai n fj g [ fkg. The round
ends when no further exchange step is possible.

Following these steps one can see that when neither adding nor exchanging stage
is possible, the final action profile must be a pure-strategy NE, This implicitly uses
the fact that we are dealing with a uniform market sharing game, and therefore any
maximal action for a player can be obtained from any other maximal action by
exchanging in and out two markets at a time. To bound the number of stages in the
above iterative process, we note that since one player adds a market at the beginning
of each round, the number of rounds cannot be greater than nm. Finally, one can
show that each round can have at most m � 1 exchange stages which together with
the initial adding stage implies that the length of each round is at most m. Thus, the
total number of stages until the whole process terminates to a pure-strategy NE is at
most m2n.

Now that existence of a pure-strategy NE in the market sharing game is
guaranteed, we next turn our attention to “efficiency” of such equilibrium points.
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In other words, we want to see how much lack of coordination among the players
degrades the social optimality of the system. In this regard, one of the widely used
metrics to measure the inefficiency of the Nash equilibrium points is known as the
price of anarchy (PoA) which is the ratio of the optimal social welfare to the social
welfare of the “worst” pure-strategy NE (Koutsoupias and Papadimitriou 1999).
More precisely:

Definition 5. Given an n-player game with at least one pure-strategy NE over the
finite action space A D A1 � � � � � An, and utility functions ui .�/; i 2 Œn�, let
u W A ! R be the social welfare function defined by u.a/ WD

Pn
iD1 ui .a/. Then,

the price of anarchy of this game is defined to be

PoA D
maxa2A u.a/

mina�2NE u.a�/
;

where NE denotes the set of all pure-strategy NE points of the game. Note that we
always have PoA � 1.5

In the following we show how to bound the PoA of the (not necessarily uniform)
market sharing game. Let a� and ao be, respectively, a pure-strategy NE and an
optimal action profile (i.e., the one which maximizes the social welfare over all
action profiles). Now for any i 2 Œn�, let us define Xi to be the sum of all the market
queries which are served by player i in the optimal action profile, but are not served
by any player in the NE profile, i.e.,

Xi WD
X

j 2ao
i n[ka�

k

qj :

Then, we have ui .a
�/ � Xi . Otherwise, player i can deviate by changing his action

from a�
i to ao

i n [ka�
k , in which case its utility will increase to Xi , contradicting the

fact that a� is a NE. Next, we note that given any arbitrary action profile a, by the
definition of payoff function (12.2), the sum of the utility functions of all players
(i.e., the social welfare) equals to u.a/ D

P
j 2[kak

qj . Thus, we can write

u.ao/ � u.a�/ D
X

j 2[kao
k

qj �
X

j 2[ka�

k

qj

�
X

j 2.[kao
kn[ka�

k /

qj

5If instead of utility functions we were working with cost functions ci .�/; i 2 Œn�, then the definition

of PoA will change to PoA D
maxa�

2NE c.a�/

mina2A c.a/
, where c W A ! R denotes the social cost function

defined by c.a/ D
Pn

iD1 ci .a/.
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�

nX

iD1

X

j 2ao
i n[ka�

k

qj D

nX

iD1

Xi

�

nX

iD1

ui .a
�/ D u.a�/:

This shows that u.ao/

u.a�/
� 2. As this relation holds for any Nash equilibrium profile

a�, we have the following theorem:

Theorem 5. The PoA in the market sharing game is bounded above by 2.

In fact, the result of Theorem 5 can be viewed as a special case of PoA bounds
for so-called valid utility games (Vetta 2002). Valid utility games are a class of
games where the utility functions satisfy certain conditions with sub-modular social
welfare function.6 In general it is known that the PoA of valid utility games is always
bounded above by 2. Therefore, another way of proving Theorem 5 would be to
show that the market sharing game is indeed a valid utility game.

3 Resource Allocation Games

As we saw in the previous section, congestion games constitute a subclass of games
in which the existence of a pure-strategy NE is guaranteed. However there are
many other types of games which are not congestion games and yet admit pure-
strategy NE. In this section we provide three types of problems on network resource
allocation to illustrate this matter further. The first two problems use a constructive
argument to find a pure-strategy NE, while the last one uses a generalized ordinal
potential function. In general, network resource allocation games are defined in
terms of a set of available resources for each player, where the players are allowed to
communicate through an undirected communication graph. Such a communication
graph identifies the access cost among the players or the set of their feasible actions.
We start by describing the following graphical resource allocation game proposed
by Pacifici and Dan (2012):

3.1 A Graphical Resource Allocation

Consider a set of n nodes (players) and a set of resources R. Every node is located at
a vertex of an undirected graph G D .Œn�; E/, called the influence graph. Each node i

6For a finite set S, a set function f .�/ W 2S ! R is called sub-modular if f .X [ fsg/ � f .X / �
f .Y [ fsg/ � f .Y/ for any X � Y � S, s 2 S.
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allocates ki 2 Z
>0 resources. The set of resources allocated by player i is described

by its jRj dimensional incident vector ai D .a1
i ; : : : ; a

jRj
i / 2 f0; 1gjRj, where ar

i D

1 if resource r is allocated by player i , and ar
i D 0, otherwise. Therefore, one

can view ai as the action taken by player i which belongs to the action set Ai D

fai j
P

r ar
i � ki g. A resource r 2 R is called i -busy if it is allocated by at least

one of player i ’s neighbors; otherwise it is called i -free. Moreover, we let vir be
the value of resource r for player i . The payoff that a player i gets from allocating
a resource r is influenced by the resource allocation of its neighboring nodes N .i/

and is given by

ur
i .1; ar

�i / D

(
vir if r is i -free;

ıi vir if r is i -busy;

where 0 � ıi < 1 is the cost of sharing for player i . A player i does not get any
payoff from a resource r that it does not allocate, i.e., ur

i .0; ar
�i / D 0. Therefore,

a player i gets the full value of a resource r if it allocates r while none of its
neighbors allocates that resource. But, if resource r is already allocated by some of
i ’s neighbors, then player i only receives a ıi portion of the full value vir . Finally,
the total payoff of player i equals the sum of payoffs over all possible resources, i.e.,
ui .ai ; a�i / D

P
r2R ur

i .a
r
i ; ar

�i /. Such a model has applications in selfish object
replication on graphs, distributed radio spectrum allocation, and medium access
control.

Remark 1. In the above graphical resource allocation game, the utility of a player
is entirely specified by the actions of its neighbors. In the next subsection, we shall
see a more complex resource allocation game where a player’s action can depend
heterogeneously on all others’ in the network.

One can easily construct an example of the above graphical resource allocation
game in which the sequential best replies of the players cycle. In other words, there
are scenarios where starting from an initial action profile, there exists a sequence
of players who sequentially play their best replies, and yet the game returns to its
initial action profile. This eliminates the possibility of the existence of a potential
function for this game as potential games have finite path improvement property
(every sequence of best replies must be acyclic and converge to a pure-strategy NE).
However, it seems that the requirement of having an exact potential function or hav-
ing finite path improvement property for all sequences of best replies is far too strict
to guarantee the existence of a NE. What if there exists at least one best reply path
which can take us to a NE? This motivates introduction of the following definition:

Definition 6. A game is weakly acyclic under best replies if from every action
profile a, there is a best reply improvement path starting from a and ending in a
pure-strategy NE.
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Based on this definition, it has been shown by Pacifici and Dan (2012) that the
graphical resource allocation game admits a pure-strategy NE:

Theorem 6. The graphical resource allocation game is weakly acyclic and hence
possesses a pure-strategy NE. Furthermore, from an arbitrary action profile, there
exists a sequence of best replies by the players that reaches a NE in at mostPn

iD1

P
j 2N .i/[fig kj steps.

The main idea behind establishing Theorem 6 is to prioritize the players who first
play their best responses. If there is no specific ordering of the players’ best replies,
it is possible that the generated sequence of action profiles along the best response
sequence cycle without leading to a NE. To avoid such a situation, let ai .t/ be a
best response of player i at time step t and Ei .t/ and Ii .t/ be the sets of resources
that player i evicts and inserts as a result of its best action ai .t/, i.e., Ei .t/ D

fr jar
i .t � 1/ D 1; ar

i .t/ D 0g, and Ii .t/ D fr jar
i .t � 1/ D 0; ar

i .t/ D 1g. Then, one
can define four not mutually exclusive properties of ai .t/, depending on whether
the involved resources are i -busy or not as follows:

(1) 9r 2 Ei .t/, r is i -busy & 9r 0 2 Ii .t/, r 0 is i -busy
(2) 9r 2 Ei .t/, r is i -busy & 9r 0 2 Ii .t/, r 0 is i -free
(3) 9r 2 Ei .t/, r is i -free & 9r 0 2 Ii .t/, r 0 is i -busy
(4) 9r 2 Ei .t/, r is i -free & 9r 0 2 Ii .t/, r 0 is i -free

For instance, ai .t/ having property (1) means that the best response of player i

at time instant t results in evicting an i -busy resource r and inserting an i -busy
resource r 0. The rest of the proof follows by showing the following four steps: (i)
Starting from an arbitrary initial action profile a.0/, we let the players sequentially
perform best responses of type (1) only. (ii) It can be shown that after performing
at most

Pn
j D1 kj best replies with property (1), we reach an action profile a.t/ in

which there is no player that can perform a best reply that has property (1). (iii)
Starting from the action profile a.t/ obtained at the end of stage (ii), one can show
that the only possibly best responses available for a player are those which have
property (2) or (4). (iv) Finally, one can argue that a best reply of a player with
property (2) or (4) strictly increases the utility of that player without decreasing any
other player’s utility. Since the players’ utilities cannot increase indefinitely, this
process will terminate after at most an extra

Pn
iD1

P
j 2N .i/ kj best replies of types

(2) or (4) to an action profile where no player can play a strict best response, i.e., a
pure-strategy NE.

Weakly acyclic games are especially interesting from a probabilistic and learning
perspective. For example, it can be shown that random selection of players for
performing best responses will converge in an expected finite time to a pure-strategy
NE, even though the expected convergence time may be very long. In particular,
weakly acyclic games are quite suitable for adopting distributed learning algorithms
such as regret-based dynamics for finding their NE points (Marden et al. 2007).
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3.2 Uncapacitated Selfish Caching Game

Caching files by the server nodes in a replication system is an effective method for
improving the performance, availability of the files, and reliability of the systems.
However, in many practical situations for obvious reasons, the server nodes are
selfish elements who only wish to maximize their own utilities, regardless of the
overall performance of the system (e.g., servers in different administrative domains
utilize their local resources to better support their own clients). In this regard, one
of the basic, yet descriptive, models for caching under competitive environment was
given by Chun et al. (2004) as is described next.

Selfish Caching Game: Consider an undirected weighted network topology G D

.Œn�; E/ where each node represents a server (player). We assume that the distances
on this network are symmetric and satisfy the triangle inequality, i.e., dij C djk �

dik , where dij denotes the distance of two nodes i and j on the network G. Each
player i has a feasible set of actions, Ai , where an action ai 2 Ai is a set of objects
that player i can cache. Given the action profile a D .a1; : : : ; an/ chosen by all the
players, the cost of player i is defined by

ci .a/ D
X

o2ai

˛o C
X

o…ai

wiodi�i .a;o/ (12.3)

where ˛o is the cost of caching object o, wio is the demand rate that server i receives
from its clients for object o, and �i .a; o/ is the closest server to i that caches object o

given the action profile a. When no server caches the object, we define distance cost
di�i .a;o/ to be very large so that at least one server will choose to cache the object o.
This defines a noncooperative game among the players where each player wants to
cache a subset of objects in order to minimize its own cost. Thus, the first question of
interest here is to see whether this selfish caching game admits a pure-strategy NE.

There are often scenarios where analyzing the game as a whole is a challenging
task. However, a closer look into the structure of the game reveals simple patterns
which allows us to analyze the game for a basic case and build upon that to derive
some conclusions for the general model. In fact, selfish caching game provides one
of such instances. By a closer look into this game, one can easily see that since there
is no capacity limit on cache size of the servers, one can look at each single object
as a separate game and combine the pure-strategy Nash equilibria of these games
to obtain a pure-strategy NE for the original multi-object game. More generally, it
is known that if two games have pure-strategy NE, and their payoff functions are
(in some precise sense not defined here) cross monotonic, then their union (same
players, the union of the strategy spaces, and the same payoffs) is also guaranteed
to have pure-strategy NE (Fabrikant et al. 2004). Therefore, we can first analyze the
basic version of the selfish caching game with a single object and then glue their
equilibrium points (if there exists any) to recover a NE for the multi-object game.
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For the single object selfish caching game, which henceforth we refer to as the
basic game, each server i has two strategies, namely, to cache or not to cache. Also,
assume that the object under consideration is o. For simplicity we can represent the
action of player i by a binary variable:

ai D

(
1 if player i caches object o;

0 otherwise;

in which case the cost (12.3) adapted for the basic game can be written as

ci .a/ D ˛oai C wiodi�i .a;o/.1 � ai /: (12.4)

Note that in the basic game, we have a 2 f0; 1gn. One can easily check that for
the basic game with the cost function (12.4), an action profile a� D .a�

i ; a�
�i /

constitutes a pure-strategy NE if and only if the following two conditions are
satisfied:

(1) If a�
i D 0 for some i , then 9j such that a�

j D 1 and dij � ˛o

wio
.

(2) If a�
i D 1 for some i , then 8j; a�

j D 1 we have dij � ˛o

wjo
.

The first condition guarantees that if object o is not cached by player i , it is because
there is another server in his close vicinity who has the object (hence player i has
no incentive to deviate). The second condition guarantees that if player i has object
o in his cache, he has no incentive to drop the object because the object is not
available in any of the other servers in his close vicinity. Having this characterization
at hand, one can use an inductive argument to construct a pure-strategy NE for the
basic game.

Theorem 7. Pure-strategy Nash equilibria exist in the basic game.

The idea is to inductively allocate object o to a new player while assuring that both
conditions (1) and (2) are satisfied. For this purpose, let ˇi D ˛o

wio
; i 2 Œn�, and

consider the following iterative process:

• Initialize T D Œn�.
• Pick a server j 2 T such that ˇj � ˇi ; 8i 2 T , and set aj D 1.
• Let Z.j / D fi 2 T W dij � ˇi g, and set T D T n Z.j /.
• Iterate until T D ;. Set all ai which are not assigned 1 in the above process to 0.

Output a D .a1; : : : ; an/ as a pure-strategy NE.

The key idea in the above process is that at each time, we allocate the object o to
a player j and eliminate all others who can access o through j with a lower cost.
This set is precisely Z.j /. Moreover, because at each iteration j is the remaining
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node with the minimum ˇ, no replica will be placed within distance ˇj of any such
j by this process. Therefore, at each stage of the above process, both conditions (1)
and (2) are held, and the process terminates with a valid pure-strategy NE.

Now that existence of a pure-strategy NE in the selfish caching game is
guaranteed, we next turn our attention to “efficiency” of such equilibrium points.
To analyze PoA, let us further assume that all the demand rates are equal to 1, i.e.,
wio D 1; 8i 2 Œn�. To keep the analysis simple, we analyze PoA for the basic game.
However the results can easily be generalized to multi-object selfish caching game
as the basic games corresponding to different objects are uncorrelated due to no
capacity constraints. Using the cost function (12.4), one can express the cost of the
worst pure-strategy NE in a more closed form as

max
a�2NE

c.a�/ D max
a�2NE

f˛oja�j C

nX

iD1

min
j Wa�

j D1
dij g;

where ja�j denotes the number of players who cache object o (i.e., the number of 1’s
in the action profile a�), minj Wa�

j D1 dij represents the distance to the closest replica
(including i itself) from player i , and the set NE contains all pure-strategy NE
profiles a� characterized by conditions (1) and (2). Now using some case-dependent
analysis based on parameter ˛o or the network structure, one can derive general
upper bounds on the PoA. In the following we provide two instances of such an
analysis.

Let dmin D mini¤j dij and dmax D maxi¤j dij be, respectively, the minimum
and maximum possible distances between servers in the network.

• ˛o < dmin: Every server caches object o for both NE and social optimum, i.e.,
PoA D 1.

• ˛o > dmax: Since the placement cost is greater than any distance cost, in any NE
only one server caches the object and other servers access it remotely. Therefore,
the worst cost of a NE equals ˛o C maxj

P
i dij . However, the social optimum

may still place multiple replicas. Since the optimal social cost always satisfies

˛o � mina2A c.a/ � ˛o C minj

P
i dij , in this case we have ˛oCmaxj

P
i dij

˛oCminj

P
i dij

�

PoA �
˛oCmaxj

P
i dij

˛o
; depending on the underlying network, we can even have

PoA D �.n/.

Such case-dependent analysis can be carried over for other range of parameters or
network topologies. For instance, it has been shown in Chun et al. (2004) that for
the complete graph, star, line, and D-dimensional grid, the PoA is bounded above

by 1, 2, O.
p

n/, and O.n
D

DC1 /, respectively. As it can be seen, depending on the
underlying parameters, the equilibrium points of the selfish caching game can be
quite efficient or inefficient. In general, games which benefit from having a low
PoA are quite valuable for modeling chaotic allocation systems where the players
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act completely in a selfish manner. In the next subsection, we provide one of such
class of games, with a richer structure to guarantee a very low PoA.

3.3 Capacitated Selfish Replication Game

In the previous two subsections, we discussed two types of games which are
not exact potential games but still admit pure-strategy NE. In this section, we
provide a larger class of games known as generalized ordinal potential games which
include exact potential games as a special subclass. We provide an instance of
such games in the context of selfish network resource allocation and study some
of their algorithmic aspects such as finding (approximating) the equilibrium points
or bounding the PoA. We begin with the following definition:

Definition 7. An n-player game � D .Œn�; fAi g; fci g/ is called a generalized
ordinal potential game if there exists a function ˆ W A1 � � � � � An ! R such
that 8a�i 2 A�i , 8ai ; Oai 2 Ai , we have

ci .ai ; a�i / � ci . Oai ; a�i / > 0 ) ˆ.ai ; a�i / � ˆ. Oai ; a�i / > 0; 8i 2 Œn�:

An immediate consequence of the above definition is that every generalized ordinal
potential game with finite action space admits a pure-strategy NE. This is because
starting from an arbitrary action profile, after a finite number of steps of single player
improvement, we will reach a local minima of the generalized ordinal potential
function which is a pure-strategy NE. Note that the existence of an exact potential
function is a special case of the existence of a generalized ordinal potential function.
While having generalized ordinal potential function is sufficient to guarantee exis-
tence of a pure-strategy NE, it usually does not provide an efficient way to find one
of such equilibrium points. Therefore, an important open question is to see whether
generalized ordinal potential games admit polynomial time algorithms for finding
their pure-strategy NE points. To provide a more concrete example, we consider
the following game known as capacitated selfish replication (CSR) game (Etesami
and Başar 2017a,b; Gopalakrishnan et al. 2012). This game can be viewed as a
capacitated version of the uncapacitated selfish caching game studied in the previous
section, where the servers have limited capacity on their cache sizes. As we will see,
this introduces more complication into the game as the cache constraints couple the
players’ actions much more than in the uncapacitated selfish caching game.

CSR Game: We start with a set Œn� D f1; 2; : : : ; ng of nodes (players) which are
connected by an undirected unweighted graph G D .Œn�; E/. We denote the set of all
objects by O D fo1; o2; : : : ; okg. For simplicity, but without much loss of generality,
we assume that each node can hold only one resource in its cache. In other words,
the action of player i , denoted by ai , is a single element subset of O, where the
content of ai is the object cached by player i . However, all the results can in fact
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be extended quite readily to CSR games with different capacities where ai can be
an arbitrary subset of O of a certain size (see Remark 2). Further, we assume that
each node has access to all the objects. For a particular action profile (allocation)
a D .a1; a2; : : : ; an/, we define the sum cost function ci .a/ of the i th player as
follows:

ci .a/ D
X

o2Onai

dG.i; �i .a; o//; (12.5)

where as before �i .a; o/ is i ’s nearest node holding o in a, and dG.�; �/ denotes the
graphical distance between two nodes in the graph G. Finally, if some resource o is
missing in an allocation profile a, we define the cost of each player for that specific
resource to be very large. Therefore, for n � jOj, this incentivizes at least one of the
players to allocate the missing resources in the network. In the case where n < jOj,
all the players will allocate different resources and the game becomes trivial; hence,
we can simply assume that n � jOj. In Fig. 12.1 we have illustrated the CSR game
for n D 11 players and jOj D 3 resources.

Remark 2. For the CSR game with different capacities, one can introduce a new
undirected network which transfers games with different cache sizes to one with unit
size caches. This can be done simply by replacing each player i with capacity Li

with Li new sub-nodes as a clique, namely, i1; i2; : : : ; iLi , each with cache size 1. We
treat all of these sub-nodes in the clique as node i and very naturally connect them

a8 = {O1}

a4 = {O3}

a5 = {O1}

a2 = {O1}

a1 = {O1}
a6 = {O2}

a7 = {O3}

a11 = {O3}

a10 = {O2}

a9 = {O2}

a3 = {O2}

Fig. 12.1 CSR game with n D 11 players and O D fo1; o2; o3g resources
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to all the other sub-nodes where i was connected before. This makes an equivalence
between the CRG games with different cache sizes and that with unit cache sizes;
see (Etesami and Başar 2017b, Sect. VI).

Based on Remark 2, we analyze here only the CSR game with unit cache size.
Let us first consider a simple case where the network G has a tree structure, i.e.,
there is no cycle in the network. In this case, the following simple iterative process
can deliver a pure-strategy NE of the CSR game after only n steps (Etesami and
Başar 2017a).

Constructing NE on a Tree: Start from an arbitrary node of G as a root and label
it by 1. Define `th level to be the set of all nodes in G which are at a distance ` from
node 1. At the i th step of the algorithm, we choose a player at the highest level who
has not been chosen before; we label it by i , and let her allocate one resource based
on her best response with respect to all the agents who have updated before, i.e.,
1; 2; : : : ; i � 1. Ties are broken arbitrarily.

However, when the network G has a cycle, the situation becomes more com-
plicated. In this case, we argue that CSR game is a generalized ordinal potential
game and hence admits a pure strategy NE. To this end, for a given allocation
profile a, let the radius of agent i , denoted by ri .a/, be the distance between
node i and the nearest node other than her holding the same resource as i , i.e.,
ri .a/ D minj ¤i;aj Dai

dG.i; j /. If there does not exist such a node, we simply
define ri .a/ D D, where D is the diameter of the network (i.e., the maximum
graphical distance between any pair of nodes in G). Using this convention, one can
see an equivalence between decrease in cost and increase in radius for player i ,
when the actions of the remaining players are fixed. This is because given two
allocation profiles a and Qa, which only differ in the i th coordinate, using (12.5)
and the definition of radius, one can easily see that ci .a/ � ci . Qa/ D ri . Qa/ � ri .a/.
In addition, for ` D 1; 2; : : : ; D, let n`.a/ be the number of players whose radii
are `, i.e., n`.a/ D jfi W ri .a/ D `gj, and define the radius vector n.a/ to be
n.a/ WD .n1.a/; : : : ; nD.a//. Then we have the following theorem:

Theorem 8. The radius vector n.a/ lexicographically decreases after every strictly
better response by a player. In particular, ˆ.a/ WD

PD
`D1 n`.a/ � nD�` serves as a

generalized ordinal potential function for the CSR game, where its value decreases
after each strictly better response of a player.

As a result of Theorem 8, the CSR game always admits a pure-strategy
NE. However, note that the generalized ordinal potential function ˆ.a/ can take
exponentially large values (up to O.nD/) and hence cannot be used to obtain or
characterize the NE points efficiently. Therefore, in the following and motivated by
the structure of ˆ.a/, we provide two simple algorithms where the first one finds a
pure-strategy NE in O.n2/ when the network structure is dense with respect to the
number of objects, while the second one provides a constant approximation of a NE
in quasi-polynomial time O.nln D/ over general networks.



568 S. R. Etesami and T. Başar

A closer look into the structure of the generalized ordinal potential function
ˆ.a/ WD

PD
`D1 n`.a/ � nD�` shows that if the players were updating based

on their best responses at each stage, then the speed of convergence of the best
response dynamics would highly depend on the radius of the updating agent at
each time instant. In particular, the lower the radius of updating player, the steeper
would be the decrease in the value of the function ˆ.�/. Since such a function is
always nonnegative, the iterations of the best response dynamics must terminate to
a minimizer of this function which is a valid NE. Based on this observation, and
in order to incorporate the role of updating radii into the algorithm, we introduce
a slightly different version of the best response dynamics as shown in Algorithm 1.
Based on this algorithm, one can establish the following result (Etesami and Başar
2017b):

Algorithm 1 Least best response
Given a CSR game, at each time t D 1; 2; : : :, and from the set of all players who
want to update, select a player with the least radius and let her update be based on
her strictly best response. Ties are broken arbitrarily.

Theorem 9. Let dm denote the minimum degree of the graph in the CSR game with
n players. Then, the least best response dynamics will converge to a pure-strategy
NE in no longer than T steps, where

T D

(
n2 if dm � jOj;

3n if jOj � 4:

The idea of establishing the above bounds is to show that once players start to play
their best responses based on Algorithm 1, those who have radii smaller than the
current updating player will still play their best responses. As a result, after at most
every constant number of stages, one more player will play his best response, and
the dynamics must terminate to a pure-strategy NE. Now if none of the conditions
in Theorem 9 are satisfied, the following algorithm proves useful to find an �-
approximation of a pure-strategy NE.

Algorithm 2 �-best response
Given a network G D .Œn�; E/, a real number � > 1, a set of available resources O,
and an arbitrary initial allocation profile a.0/, at every time instance t select an agent
i who can increase its radius ri .a.t// by a factor of at least �, i.e., ri .a.t C 1// �

�ri .a.0//, and let her play her best response. Ties are broken arbitrarily.

Theorem 10. Given a real number � > 1, the �-best response algorithm terminates

after at most O
�
n2Dlog� n

�
steps with an allocation profile Oa which is an �-

approximation of a pure-strategy NE, i.e., an allocation profile in which no player
can reduce its cost by a factor of more than 1

�
.
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Using the equivalence between reduction in cost and increase in the radius, and
by the definition of the �-best response dynamics, it is not hard to see that if the �-
best response algorithm terminates, it must end at an action profile where no player
can further increase its cost by a factor more than � (hence, reduce its cost by a factor
more than 1

�
), i.e., an �-approximated NE. Therefore, the key part of the argument in

establishing Theorem 10 is to bound the number of iterations in Algorithm 2. This
can be done using the following nonnegative potential function:

R.a.t// WD

DX

kD1

nk.a.t//

klog� n
;

where D is the diameter of the network and a.t/ denotes the action profile at the t -th
iteration of Algorithm 2. One can show that after each time of running the �-best
response dynamics, the value of R.�/ decreases by at least 1

nDlog� n . Since R.�/ is
upper bounded by n, it cannot decrease by more than n2Dlog� n times, which shows
that the dynamics must terminate after at most these many steps.

Next, we turn our attention to the efficiency of the Nash equilibrium points of the
CSR game. As we saw in the previous subsection, the uncapacitated selfish caching
game could have a wide range of PoA, depending on the parameters of the problem.
Surprisingly, the following theorem shows that this is not the case for the capacitated
selfish replication game:

Theorem 11. In the CSR game, we have PoA � 3.

To see how we can upper bound the PoA in CSR game, we need to somehow connect
the social cost of a NE with that of the optimal one. Therefore, we first seek to find
a characterization for an arbitrary NE. Let a� be an arbitrary NE and consider a
specific node i with equilibrium radius ri .a

�/. We note that all the objects must
appear at least once in BG.i; ri .a

�// which is a graphical ball containing all the
nodes whose graphical distances to i are less than or equal to ri .a

�/. In fact, if a
specific object is missing in BG.i; ri .a

�//, then node i can increase its radius by
updating its current object to that specific missing object, thereby decreasing its
cost. But this is in contradiction with a� being a NE. Now, given the equilibrium
profile a�, let us define Ori to be the smallest integer such that BG.i; Ori / contains at
least two resources of the same type, i.e.,

Ori Dmin
n
r 2 N W 8j; k 2 BG.i; r �1/; a�

j ¤ a�
k ; and 9j0; k0 2 BG.i; r/; a�

j0
Da�

k0

o
:

Now we claim that all the resources must appear at least once in BG.i; 3 Ori /.
To see this and by the above definition, let j0 ¤ k0 2 BG.i; Ori / be such that
a�

j0
D a�

k0
. This means that the equilibrium radius of node j0, i.e., ri .a

�/j0 is at most
dG.j0; i/ C dG.i; k0/ � 2 Ori . On the other hand, by the argument at the beginning
of the proof, all the resources must appear at least once in BG.j0; 2 Ori /. But since
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BG.j0; 2 Ori / � BG.i; 3 Ori /, this shows that BG.i; 3 Ori / must include all the resources
at least once.

Next, let us denote an optimal allocation profile by ao and the cost of node i in the
optimal allocation and at NE by ci .a

o/ and ci .a
�/, respectively. Now for the Nash

equilibrium a�, and since by the definition of Ori there are no two similar resources
in BG.i; Ori�1/, and all the resources appear at least once in BG.i; 3 Ori /, we can write

ci .a
�/ D

X

o2Onfai g

dG.i; �i .a
�; o// �

X

j 2BG.i;Ori�1/

dG.i; j /C3 Ori .jOj � 1 � jBG.i; Ori � 1/j/ :

(12.6)

On the other hand, for the cost of node i in the optimal allocation P o, we have

ci .a
o/ D

X

o2Onfai g

dG.i; �i .a
o; o// �

X

j 2BG.i;Ori�1/

dG.i; j / C Ori .jOj � 1 � jBG.i; Ori � 1/j/ ;

(12.7)

where the inequality holds since node i has to pay at least
P

j 2BG.i;Ori�1/ dG.i; j /

for the first jBG.i; Ori �1/j closest objects and to pay at least Ori for the remaining
.jOj � 1 � jBG.i; Ori �1/j/ resources. Comparing relations (12.6) and (12.7), we get

ci .a
�/

ci .ao/
�

P
j 2BG.i;Ori�1/ dG.i; j / C 3 Ori .jOj � 1 � jBG.i; Ori �1/j/

P
j 2BG.i;Ori�1/ dG.i; j / C Ori .jOj � 1 � jBG.i; Ori �1/j/

;

which is bounded from above by 3. Thus, for every equilibrium a� and for all i 2

Œn�, we have ci .a
�/ � 3ci .a

o/. Summing both sides of this inequality over all i 2

Œn�, we get c.a�/ � 3c.ao/, i.e., PoA � 3.
As we mentioned earlier, PoA is an important metric to evaluate the efficiency

of the NE points of a game. Therefore, Theorem 11 shows that CSR game has
highly efficient equilibrium points despite the complete selfish nature of its players.
In the next sections, we shall use the PoA metric to evaluate the efficiency of the
equilibrium points for other types of network games and derive analogous bounds
for their PoA.

4 Diffusion Games

One of the widely studied models in network games, and in particular within the
context of social networks, is the diffusion model, where the goal is to propagate a
certain type of product or behavior in a desired way through the network. Examples
include online advertising for companies’ products, propagation of rumors and
computer viruses, and epidemics. One of the challenges within this area is to
understand how to control the diffusion process in a proper way by possibly
targeting and investing on the most influential entities in the underlying social
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network. This problem becomes even more complicated when there are several
parties who plan to maximize their benefits by spreading their own products. This
brings up the notion of competitive diffusion over networks, where game theoretic
tools seem quite appealing and effective. However, depending on the objective
and the complex nature of social networks which might be woven with rational
decisions, one can find various models aimed at capturing the idea of competition
diffusion over networks. In this section we overview some of the earlier important
models within this context and elaborate on the analytic tools for analyzing them.
We shall start by describing the following deterministic diffusion game model first
proposed by Alon et al. (2010).

4.1 Deterministic Competitive Diffusion Game

Consider an undirected network G D .Œn�; E/ of n nodes and two players (types) A

and B with positive integer budgets lA and lB , respectively. Initially at time t D 0,
each player decides to choose a subset of nodes with size equal to its budget and
place his own seeds. In other words, the action of each player i 2 fA; Bg is a subset
of nodes ai � Œn� initially selected by that player such that jai j D li . After that, a
discrete time diffusion process unfolds among uninfected nodes as follows:

• If at some time step t an uninfected node is neighbor to infected nodes of only
one type (A or B), it will adopt that type at the next time step t C 1.

• If an uninfected node is connected to nodes of both types at some time step t , it
will change to a gray node at the next time step t C1 and does not adopt any type
afterward.

This process continues until no new adoption happens. Finally, the utility of each
player will be the total number of infected nodes of its own type at the end of the
process. We assume that if both players initially place their seeds on the same node,
that node will change to gray (hence, no one will benefit from it). We want to
emphasize the fact that when a node changes to gray, not only will it not adopt
any type at the next time step but also may block the streams of diffusion to other
uninfected nodes. In fact, the existence of such gray nodes in the evolution of
the process makes any prediction about the outcome of the diffusion process very
difficult.

Remark 3. In fact, the above model can readily be extended to the case when there
are more than two players. In this case, one can introduce the same process as above
such that an uninfected node will adopt type i at time t C 1 if and only if type i is
the only existing type among its neighbors at time step t .

It has been shown in Alon et al. (2010) and Small and Mason (2013) that the
deterministic competitive diffusion game may or may not admit pure-strategy NE
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depending on the topology of the network G and the number of the players. For
instance, one can easily check that if the underlying graph G has a tree structure, the
deterministic diffusion game with two players admits a pure-strategy NE; this result
no longer holds when there are three or more players even with the tree network
structure. Therefore, one of the immediate questions with regard to the deterministic
diffusion game is to see under what network structures such a game admits a pure-
strategy NE. The following theorem provides a somehow negative response to this
question:

Theorem 12. Given a graph G and m � 2 players, deciding whether the
deterministic diffusion game admits a pure-strategy NE on G is NP complete.

The above theorem suggests that unless P = NP, there is no efficient way of
deciding whether the deterministic diffusion game admits a pure-strategy NE. The
idea behind establishing the result of Theorem 12 is to reduce the existence of
a pure-strategy NE in diffusion game to a solution of the 3-partitioning problem
which is known to be an NP-complete problem. In the 3-partitioning problem,
we are given integers ˛1; ˛2; : : : ; ˛3m and a ˇ such that ˇ

4
< ˛i <

ˇ

2
for every

1 � i � 3m,
P3m

iD1 ˛i D mˇ and have to partition them into disjoint sets
P1; : : : ; Pm � f1; 2; : : : ; 3mg such that for every 1 � j � m, we have

P
i2Pj

˛i D

ˇ. Therefore, one can carefully design a network which encodes the structures of
the 3-partitioning problem such that the existence of a pure-strategy NE of the m-
player (single seed) deterministic diffusion game over such a network is equivalent
to a solution of the encoded 3-partitioning problem. For more details, see Etesami
and Başar (2016).

While Theorem 12 provides a hardness result on the existence of a pure-strategy
NE, if we restrict our attention to specific networks, it is still possible to obtain
some positive results. To provide some examples, let us first consider the following
networks: (i) An r � s lattice is a graph Lr�s with vertex set V D f.x; y/ 2 Z

2 W

0 � x � r; 0 � y � sg such that each node is adjacent to those whose Euclidean
distances are 1 from it. (ii) A k-dimensional hypercube is a graph Qk with vertex set
f0; 1gk such that two k-tuples are adjacent if and only if they differ in exactly one
coordinate. (iii) An Erdos-Renyi graph G.n; p/ is an n node random graph where
the edges emerge independently with probability p 2 .0; 1/. Based on the above
network structures, we have the following result:

Proposition 1. For the two-player deterministic diffusion game with single seed
placement (i.e., l1 D l2 D 1), we have

• An action profile .a1; a2/ is a NE over the lattice if and only if a1 and a2 are
adjacent nodes in the most centric square or edges of the lattice.

• An action profile .a1; a2/ is a NE over the hypercube Qk if and only if the
graphical distance between a1 and a2 is an odd number.
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• Given arbitrary constants ˛; c > 1, let p 2 Œ c ln n
n

;

q
.1Cc/ ln n

n˛ �. Then, as n ! 1,
for every random seed placement over G.n; p/, we have EŒU1� D EŒU2� �
1

5p
, where EŒU1� and EŒU2� denote the expected utilities of players 1 and 2,

respectively. In particular, U1

EŒU1�
D U2

EŒU2�
! 1, almost surely.

While Proposition 1 characterizes the set of pure-strategy NE for two special
types of networks, it is still interesting to identify broader classes of networks which
are guaranteed to admit pure-strategy NE. In particular, it would be interesting
to see how imbalance of the initial budgets will affect the final outcomes. For
instance, while for single seed placement over Erdos-Renyi networks both players
can obtain a payoff of at least 1

5p
, it seems that slightly increasing a player’s budget

can substantially favor him in winning the whole set of nodes. Finally, we want to
mention that one of the main reasons that makes the analysis of pure-strategy NE
in deterministic diffusion game more difficult is the deterministic adoption rule in
the structure of the game. In the subsequent subsections, we shall see other types
of network diffusion games with probabilistic adoption rules that will allow us to
analyze such games in more detail.

4.2 Competitive Contagion in Networks

In this subsection, we provide a rich class of competitive strategies, which depend
in subtle ways on the stochastic dynamics of adoption, the relative budgets of the
players, and the underlying structure of the network.

Initial Seed Allocation: Consider a game with two players R(ed) and B(lue) on
a (possibly directed) network G D .Œn�; E/. Each player p 2 fR; Bg has a budget
kp 2 Z

�0 and initially chooses an allocation of his budget over the set of vertices.
Hence, the action of player p can be expressed as a vector ap D .ap1; : : : ; apn/,
where api 2 Z

�0 and
Pn

iD1 api D kp . Therefore, the set of all pure strategies of
player p, denoted by Ap , equals to the set of all such integer-valued vectors. A
mixed strategy for player p is a probability distribution �p on Ap . We denote the set
of all possible mixed strategies for player p by Mp . The two players initially choose
their mixed strategies .�R; �B/ and, based on that, select their actions. Denoting any
realized initial allocation (action) of the players by .aR; aB/, let V.aR/ WD fi 2 Œn� W

aRi > 0g, V.aB/ WD fi 2 Œn� W aBi > 0g, and V.aR; aB/ D V.aR/ [ V.aB/ be the
set of vertices invested by player R, player B , and both players, respectively. For
any fixed initial budget allocation .aR; aB/, the initial state si of vertex i 2 Œn� is in
fB; Rg, if and only if si 2 V.aR [ aB/. Moreover, si D R with probability aRi

aRi CaBi
,

and si D B with probability aBi

aRi CaBi
. Following the initial allocation of seeds, the

stochastic diffusion rule determines how these R and B infections propagate over
the network G. The adoption process is based on a discrete finite time model, where
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the state of a vertex i at time instant t D 1; 2; : : : ; T is denoted by sit 2 fU; R; Bg,
where U stands for Uninfected, R stands for infection by red player, and B stands
for infection by blue player.

Stochastic Adoption Rule: There is an update schedule which determines the
order in which vertices are considered for state updates, assuming that once an
uninfected node becomes infected, it will not change its state in the future. While
one can consider a variety of updating rules within this framework, the one which
we consider here is based on the so-called switching-selection model (Goyal et al.
2014). This is a two-stage adoption rule where first it is determined whether an
uninfected node will switch to an infected node, and if yes, the type of infection will
be selected. More precisely, let us denote the fraction of node i ’s neighbors infected
by R and B at the time of update by ˛R and ˛B , respectively. Moreover, let us
consider two functions: An increasing function f .�/ (the switching function) which
maps ˛R C ˛B to Œ0; 1� with f .0/ D 0; f .1/ D 1. A selection function g.�/ which
maps ˛R

˛RC˛B
to Œ0; 1� such that g.0/ D 0; g.1/ D 1, and g.y/Cg.1�y/ D 1; 8y 2

Œ0; 1�. One can think of the switching function f as specifying how rapidly adoption
increases with the fraction of neighbors who have adopted, regardless of their type
R or B , while the selection function g specifies the probability of infection by each
type given that a node is susceptible to infection. Given these switching-selection
functions which are the same across all the vertices, the stochastic adoption process
takes place as follows:

• With probability f .˛R C ˛B/, node i becomes infected, and with probability
1 � f .˛R C ˛B/ node i remains uninfected and the update ends.

• If node i is determined to be infected, it will adopt type R with probability
g. ˛R

˛RC˛B
/ and type B with probability g. ˛B

˛RC˛B
/.

Remark 4. One can describe the two-step adoption rule using switching-selection
functions f and g by only a single-step update rule and using a generalized adoption
function h with range Œ0; 1�. This is because for local fractions of red and blue
neighbors ˛R and ˛B , if we denote the probability of adopting R by h.˛R; ˛B/

(symmetrically the probability of adopting B by h.˛B; ˛R/), then we simply have
f .˛R C ˛B/ D h.˛R; ˛B/ C h.˛B; ˛R/, and g. ˛R

˛RC˛B
/ D h.˛R;˛B /

h.˛B ;˛R/Ch.˛R;˛B /
. In

other words, having the generalized adoption function h, one can always decompose
h into a two-step process by defining the switching-selection functions as above.
Therefore, from now we only work with a single-step update rule using the
generalized adoption function h.

Payoff Functions: As we described above, the two players simultaneously choose
some number of vertices to initially invest (seed). After that, the above stochastic
adoption rule unfolds which determines how each player’s type spreads over the
network. Here, the final goal for each player is to find the best initial investment
strategy in order to maximize its (expected) total number of final adoptions. More
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precisely, for p 2 fR; Bg, let Xp be a random variable denoting the number of
infected nodes by player p at the end of the process. Given the initial seeding
strategy .�R; �B/, the expected payoff of player p is given by up.�R; �B/ D

EŒXpj.�R; �B/�, where the expectation is with respect to all the randomization in
the players’ strategies for choosing initial seeds, as well as the randomization of the
stochastic adoption process. Finally, a mixed-strategy profile .��

R; ��
B/ constitutes

a mixed-strategy Nash equilibrium for the competitive contagion game if ��
p ; p 2

fR; Bg maximizes player p’s payoff given the strategy of the other player ��
�p .

Note that here we are considering mixed-strategy NE whose existence is already
guaranteed by Nash’s theorem (Başar and Olsder 1999).

One of our goals for studying the above competitive contagion game is to see how
the choice of generalized adoption function (or switching-selection functions) will
affect the efficiency of the resulting Nash equilibrium points. To this end, we again
leverage the notion of PoA adapted for the competitive contagion game given by

PoA WD
max.aR;aB /2AR�AB EŒXR C XB j.aR; aB/�

min.�R;�B /2NE EŒXR C XB j.�R; �B/�
;

where NE denotes the set of all mixed-strategy Nash equilibria of the contagion
game.

Definition 8. We say a generalized adoption function h is competitive if for all
˛R; ˛B 2 Œ0; 1�, we have h.˛R; ˛B/ � h.˛R; 0/. In other words, a player always has
equal or higher infection probability in the absence of the other player. Moreover,
we say it is additive if h.˛R; ˛B/ C h.˛B; ˛R/ D f .˛R C ˛B/ for some increasing
function f , i.e., h permits interpretation as a switching function.

It is worth noting that based on the above definition, switching-selection
formulation as a special case of generalized adoption formulation always satisfies
the additivity property. As an example, in the switching-selection formulation, if
f is concave and g is a linear function, we automatically get both additivity
and competitiveness. We only need to check the competitiveness of h. Since
f .˛R C ˛B/ D h.˛B; ˛R/ C h.˛R; ˛B/, we can write

˛R

˛R C ˛B

D g.
˛R

˛R C ˛B

/ D
h.˛R; ˛B/

h.˛B; ˛R/ C h.˛R; ˛B/
D

h.˛R; ˛B/

f .˛R C ˛B/
;

where the first equality is by linearity of g and the second equality is due to
Remark 4. Thus we have h.˛R; ˛B/ D ˛Rf .˛RC˛B /

˛RC˛B
. Therefore, competitiveness of h

is equivalent to showing that

h.˛R; ˛B/ D
˛Rf .˛R C ˛B/

˛R C ˛B

� f .˛R/ D h.˛R; 0/; 8˛R; ˛B 2 Œ0; 1�;
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or f .˛RC˛B /

˛RC˛B
� f .˛R/

˛R
which clearly holds by concavity of f . Now we are ready to

state the main result of this subsection:

Theorem 13. Given any network G with an additive and competitive generalized
adoption function h.�/, the PoA of the competitive contagion game is at most 4.

We only sketch here the main steps in proving the above theorem. The result uses
the following two intermediate statements which can be shown using a coupling
technique between two random processes:

(1) Given an additive and competitive generalized adoption function h, for any
initial seeding profile aR; aB , we have EŒXRj.aR; aB/� � EŒXRj.aR; ;/� and
EŒXB j.aR; aB/� � EŒXB j.;; aB/�. In other words, the utility of each player
without the presence of the other one is nondecreasing. Thus, by linearity of
expectation, EŒXR C XB j.aR; aB/� � EŒXB j.;; aB/� C EŒXRj.aR; ;/�.

(2) For an additive generalized adoption function h and any initial seeding profile
aR; aB , the total payoffs for both players must be at least that for the red player
alone, i.e., EŒXR C XB j.aR; aB/� � EŒXRj.aR; ;/�.

Now using (1) and (2), we argue how to show PoA � 4. Let .ao
R; ao

B/ be the optimal
initial seeding action and .a�

R; a�
B/ be an arbitrary pure-strategy NE (the extension

to the mixed-strategy NE can be done analogously). Also, without loss of generality,
assume that the red player has the larger budget, i.e., kR D jao

Rj D ja�
Rj � ja�

B j D

jao
B j D kB . Then

EŒXRj.ao
R; a�

B/� C EŒXB j.ao
R; a�

B/� D EŒXR C XB j.ao
R; a�

B/�

� EŒXRj.ao
R; ;/� �

1

2
EŒXR C XB j.ao

R; ao
B/�;

where equality is by linearity of expectation, the first inequality is by (2), and the
last inequality is by (1) and the fact that EŒXRj.ao

R; ;/� � EŒXB j.;; ao
B/� (as red

player has the larger initial budget). Therefore, we have either EŒXRj.ao
R; a�

B/� �
1
4
EŒXR C XB j.ao

R; ao
B/� or EŒXB j.ao

R; a�
B/� � 1

4
EŒXR C XB j.ao

R; ao
B/�. If the first

case holds, then using the definition of a NE, we have

EŒXR CXB j.a�
R; a�

B/� � EŒXRj.ao
R; a�

B/� �
1

4
EŒXR C XB j.ao

R; ao
B/�

which shows PoA � 4. Otherwise, if EŒXB j.ao
R; a�

B/� � 1
4
EŒXR C XB j.ao

R; ao
B/�,

we can write

EŒXR CXB j.a�
R; a�

B/� �EŒXB j.;; a�
B/� �EŒXB j.ao

R; a�
B/� �

1

4
EŒXR CXB j.ao

R; ao
B/�
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where the first inequality is by property (2) and the second inequality is due to
property (1). This again shows that PoA � 4.

Finally, we briefly describe how one can establish the statements in (1) or (2).
This can be done using a coupling argument, where the idea is to consider two
independent different random processes and couple them together such that at each
stage, the coupled process mimics the adoption dynamics of each of the individual
processes. The key point is that while such a coupling generates the same marginal
sample paths as the individual processes, it will allow us to compare their outcomes.
For instance, to show that EŒXRj.aR; aB/� � EŒXRj.aR; ;/�, let the solo red process
simulate the adoption process when only the red player with initial seeding aR is
present in the game. Moreover, let the joint process be the one in which both red
and blue players with initial seeding actions .aR; aB/ are present. Define a coupled
process < Uv; Wv > where Uv faithfully represents the state of a vertex v in the
solo red process and Wv represents the state of a vertex in the joint process and such
that Wv D R implies Uv D R. Existence of such a coupling guarantees that for
any update-by-update basis in any run or sample path of the coupled dynamics,
the number of red-infected nodes of the solo red process is not less than that
in the joint process which must also hold in expectation over runs, yielding the
statement. In fact, the additive and competitiveness properties of the generalized
adoption function h allow one to show the existence of such a coupling. All the
other statements in (1) or (2) can also be shown using a similar coupling argument
where more details can be found in Goyal et al. (2014).

Although Theorem 13 provides a positive result which shows that under additive
and competitive adoption rule, the lack of coordination between the two players
does not hurt much the social welfare; unfortunately this property no longer holds
once we consider more general adoption functions. The following theorem provides
one such negative result:

Theorem 14. Let the selection function be linear g.y/ D y and ı 2 .0; 1/. Then
for any M > 0 and either of the following non-concave switching functions

f .x/ D

(
0 if x � ı;

1 if x > ı;
f .x/ D xr ; r > 1;

there exists a network G for which PoA > M .

In fact, Theorem 14 suggests that concavity of the switching function is very
critical for having a bounded PoA. In other words, even a slight convexity in the
structure of the switching function can result in an unbounded PoA. Therefore,
understanding the influence of switching/selection functions on the PoA of the
contagion game would be an interesting problem. In particular, it would be useful to
understand the structural properties of the NE points for the competitive contagion
game in further detail. Further, the competitive contagion game is given for only
two players, namely, red and blue. However, multiplicity of players will bring more
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complications into the analysis which deserves further investigation to see how the
PoA bounds might chance.

4.3 Coordination-Based Diffusion Game

In the previous two models for the network diffusion game, we considered a
scenario where the diffusion process at each run is the result of a fixed deterministic
or probabilistic law. Situations will arise where the diffusion process itself is a
consequence of strategic interactions of the players. In other words, the players
themselves are part of the diffusion process. In the following, we consider a
coordination-based diffusion game where the agents play a coordination game with
their local neighbors in order to decide what product to choose.

Game Model: A game is played in periods t D 1; 2; : : : among a set Œn� of
players over an undirected weighted network G D .Œn�; E ; fwij g/, where each
node represents a player. Each edge i; j 2 E has a weight wij which shows the
influence magnitude of player i on player j , and vice versa. Each player has two
alternative actions fA; Bg. As before, we denote player i ’s action by ai 2 fA; Bg

and the entire actions profile (state) of the game by a 2 fA; Bgn. Given an action
profile a, the utility of player i is composed of two components: (i) the individual
component of payoff vi .ai / which results from the agent’s idiosyncratic preferences
for A or B irrespective of other agents and (ii) the social component of payoffP

j 2Ni
wij uj .ai ; aj / resulting from the externalities created by the choices of other

agents. Here, Ni denotes the set of neighbors of player i in the network, and
uj .ai ; aj / can be viewed as the payoff function of a two-person coordination game
between player i and its neighbor j in which each player has the actions A and B .
The symmetric payoff matrix of this 2 � 2 coordination game which is the same for
all pairs of players is shown in Fig. 12.2 where we assume that there are increasing
returns from coordination. This means that matching the partner’s choice is better
than not matching, i.e., ˛2 > ˛3, and ˛1 > ˛4. Finally, the total payoff to player i

for a given state a equals to

Ui .a/ D
X

j 2Ni

wij uj .ai ; aj / C vi .ai /: (12.8)

Fig. 12.2 Coordination
game matrix between pair of
players with ˛2 > ˛3 and
˛1 > ˛4

A α1, α1

α4, α3 α2, α2

α3, α4

A B

B
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Our goal for analyzing such a game is to understand how each action type A or
B propagates as a result of players’ interactions over time or whether we can say
anything about the limiting behavior and convergence time of their dynamics. Such
a coordination-based diffusion game has been addressed in several past works such
as Young (2006) or Montanari and Saberi (2010), with proposed solutions mainly
based on Ising model in statistical mechanics (to be defined soon).

Example 2. Consider a social network capturing friendship relations among indi-
viduals (players) where edge weights represent the strength or weakness of friend-
ships. Assume that each player wants to choose a cell phone contract with either
AT&T (A) or Verizon (B). People have different tastes about choosing either of such
cell phone service providers. Moreover, as AT&T or Verizon has special offers for
their own customers (e.g., free text message between their customers), individuals
have more incentive to choose the service provider that most of their friends are
using. This determines the social component of players’ payoffs which is due
to the externalities created by others’ decisions. Therefore, the trade-off between
individual and social components determines what service provider will be more
widespread and how fast it will take place.

Before we get into analysis of the dynamics of the iterative coordination-based
diffusion game, we first note that the single-stage game is an exact potential game.
This is because for a given state of the game a, if we define

WAA.a/ WD
X

fi;j g2EWai Daj DA

wij ;

WBB.a/ WD
X

fi;j g2EWai Daj DB

wij ;

v.a/ D

nX

iD1

vi .ai /;

then the function

ˆ.a/ WD .˛1 � ˛4/WAA.a/ C .˛2 � ˛3/WBB.a/ C v.a/ (12.9)

serves as an exact potential function for the single-stage coordination-based dif-
fusion game (one can easily check that Ui .A; a�i / � Ui .B; a�i / D ˆ.A; a�i / �

ˆ.B; a�i /; 8i 2 Œn�). Now in order to study the action adoption dynamics over the
course of the time t D 1; 2; : : :, let us assume that each player updates his action at
random times following a Poisson arrival process. Hence, without loss of generality,
we may assume that each player on the average updates once per unit time. These
updating processes are assumed to be independent among the players, so that the
probability that two players update at the same time is negligible.
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We study noisy best response dynamics in this environment, in which when a
player updates his action in the next time step he will play his best response with
probability close to 1. However, there is still a small probability that the player
makes a mistake and chooses the alternative action. More precisely, if a�i denotes
the current choice of players other than i , then the probability that i plays action A

in the next time step is given by

Pfi chooses Ag D
eˇŒUi .A;a

�i /�Ui .B;a
�i /�

1 C eˇŒUi .A;a
�i /�Ui .B;a

�i /�
; (12.10)

and Pfi chooses Bg D 1 � Pfi chooses Ag. Here, ˇ is the noise parameter where
the larger ˇ means the higher chance that the player chooses his best response (i.e.,
the action with a higher payoff). For instance, ˇ D 1 corresponds to the strict best
response dynamics. Note that using the potential function (12.9), one can rewrite
the updating rule (12.10) as

Pfi chooses Ag D
eˇŒˆ.A;a

�i /�ˆ.B;a
�i /�

1 C eˇŒˆ.A;a
�i /�ˆ.B;a

�i /�
; (12.11)

which does not depend on the specific payoff function of player i , but rather a global
potential function ˆ. Therefore, one can view the evolution of the game dynamics
based on update rule (12.10) as the evolution of a discrete time Markov chain,
where the states correspond to all possible 2n action profiles a 2 fA; Bgn and the
transition probability of going from state .ai ; a�i / to .A; a�i / is given by (12.10) (or
equivalently (12.11)). It is known that the stationary distribution of such a Markov
chain with logistic transition probabilities (12.11) is given by the following Gibbs
distribution:

�ˇ.a/ WD
eˇˆ.a/

P
Oa2fA;Bgn eˇˆ.Oa/

;

which is the long-run relative frequency of each state a. In fact, one can show that
when ˇ is sufficiently large (i.e., there is little noise in the adjustment process), the
long-run distribution will be concentrated almost entirely on the states with high
potential, which are referred to as stochastically stable states (Young 2006).

In what follows, we study the convergence time of the game dynamics to its
Gibbs stationary distribution. In other words, we want to see, starting from any
arbitrary initial state of the game, how long it will take until the diffusion process
comes close to the stochastically stable states. In fact, one can show that the
convergence time to stochastically stable states heavily depends on the structure
of the underlying network. Therefore, in order to provide more concrete results, we
restrict our attention to a special class of graphs known as close-knit family which
is defined next:
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Definition 9. Let S � Œn� be a nonempty subset of nodes of a graph G without any
isolated vertex. S is called r-close-knit if

min
S0�S

d.S;S 0/
P

i2S0

di

� r;

where r > 0 is a positive constant, d.S;S 0/ denotes the number of edges fi; j g in
G such that i 2 S and j 2 S , and di denotes the degree of node i in graph G.

Definition 10. Given r 2 .0; 1
2
/ and k 2 Z

>0, a graph G is .r; k/-close-knit if every
node belongs to a subset of nodes of size at most k that is at least r-close-knit. A
family of graphs F is close-knit if for every r 2 .0; 1

2
/, there exists a positive integer

kr such that every graph in F is .r; kr /-close-knit.

As an example one can easily check that the families of cycles or square lattices
are close-knit. Since the sizes of graphs in a close-knit family are different, to
provide a general convergence time bound for all the graphs in such a family, in
the following we shall assume that all the graph edges have unit weight and the
individual components of all the payoffs are zero. This means that players have
no individual preference over A or B , and the externalities determine the final
outcome. In such a case, the potential function becomes ˆ.a/ D .˛1�˛4/WAA.a/C

.˛2 � ˛3/WBB.a/, which is maximized in a state where all the players choose A if
˛1 � ˛4 > ˛2 � ˛3 or in a state where all the players choose B if ˛2 � ˛3 > ˛1 � ˛4.
That is, the adoption process will select either of these two states in the long run,
which are called risk-dominant equilibrium. Next, the following definition provides
a metric to measure the convergence time to stochastically stable risk-dominant
equilibria.

Definition 11. Given ı 2 .0; 1/, noise parameter ˇ, graph G, and the initial state of
the game a.0/, we let T .ˇ;G; a.0/; ı/ be the expected value of the first time t such
that, starting from the initial state a.0/, with probability of at least 1 � ı, at least
1�ı fraction of the players are using risk-dominant strategy at time t and thereafter.
Finally, the ı-inertia of the process is the maximum of the above expected time over
all initial states, i.e., T .ˇ;G; ı/ WD maxa.0/2fA;Bgn T .ˇ;G; a.0/; ı/.

Based on the above definition of ı-inertia, the following theorem provides a
uniform upper bound on the waiting time until the adoption process comes close
to a risk-dominant equilibrium (the state having maximum potential), provided that
the network belongs to a close-knit family.

Theorem 15. Given ı > 0, a close-knit family of graphs F , and a 2 � 2

coordination matrix game with risk-dominant equilibrium, there exists ˇı such that
for every ˇ � ˇı , the ı-inertia of the adoption process in the coordination-based
diffusion game is uniformly bounded from above for all the graphs in family F .
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In fact, a more generalized version of the above theorem for a slightly different
setting has been given in Montanari and Saberi (2010) where the convergence rate
of the adoption process to the risk-dominant equilibrium has been characterized as
a function of the network structure. For instance, it has been shown that innovation
spreads much more slowly on well-connected network structures dominated by
long-range links than in low-dimensional ones dominated, for example, by geo-
graphic proximity.

As we close this subsection, we discuss briefly an alternative way of capturing
the network structure into the diffusion game process. There are many situations in
which the network structure is not fully known, but some of its statistics (e.g., the
degree distribution) is a common knowledge to all the players. In such cases one can
again define coordination-based adoption rules for propagation of innovation over
this abstract network of players in which the individuals only have access to the
common statistics of the network. Under such a setting, Bayesian Nash equilibrium
seems to be a more appropriate solution concept to determine the long-run behavior
of the diffusion process, as now the players are also faced with the uncertainty of
their neighbors and of their numbers. We refer to Jackson and Yariv (2007) for one
such formulation, with several results on the stability and other properties of the
equilibrium points.

5 Network Formation Games

In all the network games that we have seen so far, the underlying assumption
has been that the network has a fixed topology, and the players pick their actions
over that topology. In other words, the players’ actions over the course of game
dynamics do not change the network structure. In this section, we relax this
assumption by considering a class of network games where the network structure
itself is a consequence of players’ actions. Such games are especially valuable in
understanding the nature of social, economic, and Internet-like networks where
the connections between individuals are subject to change as a result of their
interactions. The concept of network formation game was first introduced by
Jackson and Wolinsky (1996) (see also Jackson and Watts 2002). Since then various
models have been proposed to capture the essence of network evolution in the
presence of strategic agents. In the following we consider a basic model for network
formation games, which was first proposed by Fabrikant et al. (2003) and has
received considerable attention in the past decade.

A Basic Network Creation Game: Consider a set Œn� D f1; 2; : : : ; ng of n players
where an action for player i , denoted by ai is a subset of Œn� n fig. Therefore, the
action set of player i is Ai D 2Œn�nfig. Given an action profile a D .a1; : : : ; an/,
we let the graph GŒa� be an undirected network with vertex set Œn� and edge set
[n

iD1fig � ai . In other words, a player’s action determines the set of nodes that
player i is connected to in GŒa�. Given a network structure GŒa� formed as a result
of players’ actions a, the cost of player i is given by



12 Network Games 583

ci .a/ D ˛jai j C

nX

j D1

dGŒa�.i; j /; (12.12)

where dGŒa�.i; j / denotes the graphical distance between players i and j in the
graph GŒa� and ˛ > 0 is the cost of creating an extra edge. The idea behind this
formulation is that agents aim to bear the cost of least possible number of edges, but
at the same time, they want to achieve a good connection to all other agents in the
network.

As we will see soon, the network creation game always admits a pure-strategy
NE, although due to the nonconstructiveness of the Nash equilibrium, no distributed
algorithm for finding such networks is known (later we will take a more constructive
approach to find pure-strategy NE points by restricting the players’ feasible actions).
In fact, despite the simple structure of this game, even computing the best response
for a player is an NP-hard problem. To see this more clearly, let us assume that
˛ 2 .1; 2/ and consider the network formed by all other players other than i .
Assuming that player i has no incoming edge, he has to decide what subset of
nodes to choose and connect to in order to minimize his cost ci . Since ˛ < 2,
in the best response of player i , every node j must be at most two hops away from
i . Otherwise, player i can make a link with j and reduce his cost. This means that
the best response of player i must be a dominating set for the rest of the graph.7

Moreover, since ˛ > 1, having more than the required number of edges would
only increase player i ’s cost. Therefore, the best response for player i is to choose
a minimum size dominating set of the rest of the graph and connect to them. As
finding the minimum size domination set is an NP-complete problem, so is finding
the best response for player i .

Despite the hardness of computing best response strategies, one can easily check
that the following networks form a pure-strategy NE for different ranges of ˛ > 0.

• ˛ < 1: In this case the complete graph is the unique NE.
• ˛ � 1: In this case the star graph is a NE (although not the only one).

5.1 PoA of the Network Creation Game

Here, we turn our attention to the PoA analysis of this basic network creation game.
Let us first consider a simple case when ˛ � n2 is very large. In this case, one
can easily check that every pure-strategy NE must have a tree structure. This is
because first of all, the equilibrium network must be connected; otherwise, two
players belonging to different components will have infinite cost which incentivize
them to form a link. Moreover, no player will be involved in a cycle; otherwise,

7A dominating set of a graph is a subset of its vertices such that each edge has at least one end
point in that set.
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that player can deviate by severing one of his links to exit that cycle and reduce
his cost by at least ˛ � .1 C 2 C : : : C .n � 1// > 0. This shows that for a wide
range of parameters, the equilibrium structure is a tree. Therefore, it is important to
understand the PoA for tree structures. The following theorem says that indeed tree
Nash equilibrium structures have small PoA (Fabrikant et al. 2003).

Theorem 16. For any tree Nash equilibrium, we have PoA � 5.

Now that we know that the PoA for the tree Nash equilibrium points is bounded
above by a constant, we may use this fact to obtain constant PoA for other ranges
of ˛ in which the pure-strategy NE is not necessarily a tree structure. In fact, it
seems feasible to establish constant upper bounds for a wide range of values for the
parameter ˛, where the idea is to upper bound the social cost of an arbitrary Nash
equilibrium graph by its underlying breadth-first search (BFS) trees which we know
has a small cost. In the following theorem, we provide one such result for the case
when ˛ �

p
n
2
, which was given by Demaine et al. (2007):

Theorem 17. For ˛ �
p

n
2
, the PoA of the network creation game is at most 6.

To see how one can show a constant upper bound for this range of values of ˛,
let us consider an arbitrary NE of the network formation game, a�. We show that
for any arbitrary vertex v0 in GŒa��, we have

c.a�/ � 2˛.n � 1/ C nDista�.v0/ C .n � 1/2; (12.13)

where Dista�.v0/ WD
Pn

j D1 dGŒa��.v0; j /. In the equilibrium graph GŒa��, let us
consider a breadth-first search (BFS) tree with root v0 and denote it by T .v0/. This
tree is one that starts at the root v0 and explores the neighbor nodes first, before
moving to the next level; it is just a layered version of GŒa�� with distinguished
tree edges. Let us consider an arbitrary vertex i ¤ v0 and denote the number of
tree edges built by i by ni . Now if player i deviates by severing all of its non-tree
edges in the equilibrium and connect itself to the root v0, its cost will be at most
.ni C 1/˛ C Dista�.v0/ C .n � 1/. This is because node i has exactly ni C 1

neighbors in this new strategy. Moreover, since only non-tree edges were deleted,
Dista�.v0/ is not affected by i ’s new strategy. The new edge between i and v0

ensures that the shortest path distance between i and any other vertex j is by at
most 1 larger than the shortest path distance between v0 and j . Hence, the distance
cost of i to all other nodes after its deviation is at most Dista�.v0/ C .n � 1/. Now,
since the deviated cost of player i cannot be more than its equilibrium cost, we have
ci .a

�/ � .ni C1/˛ CDista�.v0/C .n�1/. Summing this inequality for all i ¤ v0,
and noting that

P
i¤v0

.ni C 1/ C nv0 D 2.n � 1/ (since it counts the edges of T .v0/

exactly twice), we arrive at the inequality (12.13). Now given this inequality, one
can show that if the BFS tree T .v0/ has depth d , i.e., it has d different levels, then
the PoA of the GŒa�� is at most d C1 (i.e., one more than the depth of its underlying
BFS tree). This is simply because for a d -depth tree, Dista�.v0/ � .n � 1/d . On
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the other hand, for ˛ �
p

n
2
, one can easily check that the optimal social cost is

achieved for the star graph, which is at least ˛.n � 1/ C n.n � 1/. Thus, the PoA is
at most

2˛.n � 1/ C n.n � 1/d C .n � 1/2

˛.n � 1/ C n.n � 1/
� d C 1:

Therefore, we only need to show that for ˛ �
p

n
2
, the depth of the BFS tree in

GŒa�� is at most 5. For this purpose, denote the set of all vertices in the equilibrium
graph GŒa�� that have distances at most 2 from v0 by N2.v0/. One can then show that
jN2.v0/j > n

2˛
, since, otherwise, player v0 can connect itself to one of the nodes in

N2.v0/ and reduce its cost. Now suppose that, to the contrary, there is a vertex i at a
distance of at least 6 from v0. Then i can connect to player v0 to decrease its distance
to all the nodes in N2.v0/ by at least 1. Because player i has not established such
a link, we conclude that ˛ > jN2.v0/j. Since we already know that jN2.v0/j > n

2˛
,

we must have ˛ > n
2˛

, which implies ˛ >
p

n
2
. This contradiction shows that node

v0 is at a distance of at most 5 from every other node in the equilibrium network
GŒa��. Thus, the depth of T .v0/ is at most 5, which implies that PoA � 5 C 1 D 6.

In fact there have been substantial work to study the PoA of the network creation
game for other range of values of the parameter ˛, which mainly uses the BFS tree
structure in the Nash equilibrium graph to upper bound its social cost. Without going
into more details, we only mention here that constant upper bound for the PoA of the
network creation game is known for all range of ˛ 2 R

�0 n .n1��; 12n log n/, where
� can be any fixed number in .0; 1/. However, for the range ˛ 2 .n1��; 12n log n/,
the best known upper bound on the PoA is the sublinear bound of O.2

p
log n/ given

by Demaine et al. (2007).

5.2 Local Search for Network Creation Game

As we have seen in the previous subsection, one of the limitations of the network
creation game is nonexistence of a constructive method for finding its pure-strategy
NE structures. In this subsection we study the dynamic behavior of a slightly
different version of this game with local search action space and show that under
specific assumptions, players can selfishly improve upon their actions until a pure-
strategy NE is achieved. The results of this section are based on Alon et al.
(2013), Lenzner (2011), and Kawald and Lenzner (2013).

Definition 12. In the swap network creation game or simply swap game (SG), an
admissible action for player i in the network GŒa� is to choose a subset of verticies
Oai such that jai j D j Oai j and jai \ Oai j D jai j.

Intuitively, admissible actions in the SG are actions which replace one neighbor j

of i in the graph GŒa� by another vertex k. This corresponds to “swapping” the edge
fi; j g from j toward k, which constitutes replacement of edge fi; j g by edge fi; kg.
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Note that in the SG game, the costs of the players are defined as before (12.12), and
the only difference between the SG game and the basic network creation game is
the restriction on the feasible moves of the players.

Theorem 18. Starting from a tree network, the SG game is a generalized ordinal
potential game. In particular, any sequence of better responses by players will
converge after at most O.n3/ steps to a pure-strategy NE.

First, we note that starting from a tree T as the initial network, after each swap
action by a player, the resulting network will still be a tree. Now, let us consider an
arbitrary player i and assume that he swaps one of his edges from fi; j g to fi; kg.
Let T 0 and T 00 be the two sub-trees obtained after removing the edge fi; j g from T

such that j 2 T 0 and i 2 T 00. Then one can see that �ci , the difference in player i ’s
cost after and before this swap, equals to

�ci D
X

v2T 0

dT 0.j; v/ �
X

v2T 0

dT 0.k; v/: (12.14)

This is simply because player i has the same number of edges in both T and T n

fi; j g [ fi; kg, and hence his edge self-costs before and after this deviation are the
same. The only difference is in the distance term of his cost which precisely equals
to (12.14).

Next let us define a generalized ordinal potential function ˆ WD
Pn

iD1 ci to be the
social cost. We invoke how the edge swapping of player i affects this function. Note
that any node in the sub-tree, T 0 will feel the same distance cost before and after
this swap. However, any node in the sub-tree T 00 will feel a difference of exactly
�ci in its cost after the swap. Therefore, denoting the number of vertices in T 00 by
jT 00j, one can see that the difference in the potential function after and before the
swap, denoted by �ˆ, equals to �ˆ D jT 00j�ci . This shows that ˆ is a generalized
ordinal potential function for the SG, and hence any sequence of better responses
must terminate at a pure-strategy NE. Moreover, from all initial trees with n nodes, a
path of length n�1 has the maximum potential of 2˛.n�1/C n3�n

3
. Since after every

strictly better response by a player the value of the potential function decreases by
at least 1, and this function is bounded below by 2˛.n � 1/, after at most O.n3/

steps, the better response dynamics will terminate at a pure-strategy NE.
In fact, one can take one step further to show that starting from a tree network,

the only unique equilibrium in the SG must be the star network. Otherwise, in the
equilibrium tree, there exist four nodes i1; i2; i3, and i4 connected with a path such
that the distance between i1 and i4 is exactly 3. Now one can show that either i1
can swap its edge from fi1; i2g to fi1; i3g and reduce its cost, or if not, i4 can reduce
its cost by swapping fi4; i3g and fi4; i2g. This shows that any NE must be a tree of
diameter 2, i.e., a star graph.

It is worth noting that Theorem 18 holds only if the game is played over the tree.
However, for general networks this result no longer holds, as one can show that the
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sequence of best responses may cycle. Therefore, the SG over general networks does
not admit a generalized potential function. Thus, any treatment of the SG dynamics
on general graphs requires fundamentally different techniques. We also mention
here that one can use similar analysis as in the case of basic network creation game
to obtain upper bounds for the PoA of the SG within various ranges of values of
˛, (Alon et al. 2013). As a final remark, one can relax the swapping assumption in
the SG to the case where players are allowed to swap multiple edges at a time. In
this case, and starting from a tree network, one can use structural insights to obtain
a linear-time algorithm for computing the best response of players. By contrast,
computing a best response in general graphs can be shown to be an NP-hard problem
(by reduction to p-median problem Lenzner 2011), if more than one edge can be
swapped at a time.

5.3 Coordination-Based Network Formation Game

In this subsection we discuss an alternative formulation for network formation
games. In the basic network creation game or SG that we have addressed earlier,
the action set of the players were restricted to the subset of nodes that they want to
form a link with. However, one can generalize these action sets to the case when not
only a player selects who to be connected with, but also they will play a game with
those neighbors to maximize their payoffs (Goyal and Vega-Redondo 2000; Jackson
and Watts 2002). The following formulation proposed by Jackson and Watts (2002)
provides one of such instances.

Coordination & Network formation: Consider a set Œn� of n players where each
player i has an action set of the form Ai WD 2Œn�nfig � fA; Bg, where A and B

are two alternatives for each player. These n players play over a network which is
determined by the first coordinate of their actions. More precisely, let us denote the
action profile of player i by ai D .si ; ri /, where si � Œn� n fig, and ri 2 fA; Bg.
Given the action profile a, the game network is defined to be Ga WD .Œn�; [n

iD1fig �

si /, and the payoff to player i 2 Œn� is given by

ui .a/ D
X

j ¤i

Iij .Ga/Œvi .ri ; rj / � f .ni /�; (12.15)

where vi .ri ; rj / is a payoff that depends on the actions chosen (for instance, it can
be determined based on a two-player coordination game with a 2 � 2 symmetric
payoff matrix as in Fig. 12.2). Iij .Ga/ is the edge indicator function where Iij .Ga/ D

1 if there exists an edge between i and j in the network Ga, and Iij .Ga/ D 0,
otherwise. Finally, ni denotes the degree of node i in the formed network Ga, and
f .�/ is a nondecreasing function. In this game, the players first choose who to play
with and then play a coordination game with their neighbors in order to maximize
their utilities. As an example, in the context of social networks, people not only
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have freedom to choose their friends, but also they interact with them somehow to
maximize their own payoffs.

Now one can consider various dynamics for studying the behavior of such a
game when it is played repeatedly by the players. For instance, denoting the action
profile of players at time t by at , at the next period, one player is chosen uniformly
at random and updates his strategy myopically, best responding to what the other
players with whom he interacts did in the previous period. Also, there is a small
probability � 2 .0; 1/ that the player chooses another action other than his best
response. This induces a Markov chain over the game action profiles (states),
which converges to a unique stationary distribution for any initial action profile a0.
Following this setting, one can study the stochastically stable equilibrium points of
the game, which are the game states having nonzero probability in the steady-state
distribution, for arbitrarily small probabilities of trembles �. In the following, we
provide one such result which is due to Jackson and Watts (2002):

Proposition 2. Let f .�/ be the constant function, i.e., f .ni / D k; 8ni , and
assume that the payoff functions vi .�; �/ are determined based on the two-player
coordination game with payoff matrix given in Fig. 12.2. Then

• If .˛1 �k/.˛2 �k/ < 0, then the unique stochastically stable state is the complete
graph with all players playing A or B , except when ˛2�˛3

˛1�˛4C˛2�˛3
� 2

n�1
; ˛1 �k <

0, and ˛2 � k < 0 in which case, the empty graph with all players playing A is
also stochastically stable.

• If ˛3 � k > 0 and ˛4 � k > 0, then the unique stochastically stable state is the
complete graph with all players playing A.

As a final remark, we mention here that one can consider different application
arena for network formation games. For example, network formation games also
arise in wireless communications, where relay stations (RSs) form tree structures
interconnecting them for most efficient connection to a base station Saad et al.
(2011). In particular, in this network formation process, RSs may also take into
account security considerations (see Saad et al. 2012), where the RSs interact and
choose their secure communication paths in the uplink of a wireless multi-hop
network, in the presence of eavesdroppers.

6 Some Other Types of Network Games

In this section, we provide a brief overview on various other types of network
games. Network games have been widely used in studying traffic assignment
problems as well as flow congestion control within the general framework of routing
games. Such games have been frequently addressed in the earlier literature (Başar
2007; Menache and Ozdaglar 2011) with many applications in telecommunications
(Altman et al. 2006), load balancing (Nisan et al. 2007), smart grid (Etesami et al.
2017), and transportation networks (Krichene et al. 2017). In fact, several important
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concepts and solutions in routing games such as the Pigou network, Wardrop
equilibrium, and Braess paradox have been discussed extensively in another chapter
of this Handbook related to communication networks (Shakkottai and Srikant 2017).

Network games have also been studied within the context of aggregative games
in engineering as well as economic literatures (Koshal et al. 2016; Parise et al. 2015).
Aggregative games generally refer to a class of games in which every player’s payoff
is a function of its own strategy and the aggregate (e.g., sum) of all others’. In fact,
it can be shown that under certain conditions, the aggregative games are potential
games and, hence, admit pure-strategy Nash equilibria (Jensen 2010). Rent-seeking
games constitute another application domain for network games in which players
manipulate or utilize the underlying social or political networks in order to derive
the economic activities toward their own benefits (Murray 2012). We also refer to
Bramoullé et al. (2014) and Jackson (2005, 2010), and the references therein, for
other applications of network games in social and economic networks.

Finally, network games have recently emerged under a new research thrust, that
of bioengineering. Such bio-networked games refer to a class of games which are
inspired from biological systems. For instance, as we saw earlier in this chapter,
one of the motivations for studying diffusion games was epidemics or virus spread,
which have biological origins. For more information on such bio-inspired network
games and an overview of their applications, we refer interested reader to Altman
(2014).

7 Conclusions

This chapter has presented an overview of noncooperative network games with
various formulations and applications in different fields. The focus in the chapter
has been mainly on algorithmic and computational aspects and for four major
types of network games: congestion games, resource allocation games, diffusion
games, and network formation games. Connections between these different classes
of games as well as to other network games have been discussed. Existence
and uniqueness of pure-strategy Nash equilibria have been studied, and whenever
possible efficient algorithms for obtaining one such equilibrium point have been
provided. In particular, the efficiency of Nash equilibrium under various settings has
been studied. The methodologies provided in this chapter provide a rich collection
of tools and techniques for analyzing other similar types of network games.

As it has been mentioned in the Introduction, there are many other types of
network games which are quite relevant to the subject of this chapter. Here we have
mainly focused on network games with a finite number of players and discrete action
spaces. However, most of the models can be extended to games with continuum
action spaces or with a large population (continuum) of players. Some of these
topics, and others as pointed out in the chapter, and particularly in the previous
section, have been discussed on other chapters of the Handbook. We mention in this
context the applications of network games in opinion dynamics and social networks
(Bolouki et al. 2017), routing games in communication networks (Shakkottai and
Srikant 2017), and mean field games (Caines et al. 2017).
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Abstract

In many instances, players find it individually and collectively rational to sign a
long-term cooperative agreement. A major concern in such a setting is how to
ensure that each player will abide by her commitment as time goes by. This will
occur if each player still finds it individually rational at any intermediate instant
of time to continue to implement her cooperative control rather than switch to
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a noncooperative control. If this condition is satisfied for all players, then we
say that the agreement is time consistent. This chapter deals with the design of
schemes that guarantee time consistency in deterministic differential games with
transferable payoffs.

Keywords
Cooperative differential games � Time consistency � Strong time consistency �

Imputation distribution procedure � Shapley value � Core

1 Introduction

Solving a static cooperative game is typically done using a two-step procedure.
First, one determines the collectively optimal solution, and next, one distributes
the total payoff among the players, using one of the many available cooperative
game solutions, e.g., core, Shapley value, nucleolus. A common denominator to
all these solutions is the axiom of individual rationality, which states that no
player will accept an allocation that leaves her with less than what she could
secure by not participating in the agreement.1 In a dynamic cooperative game,
one must ensure that all parties will abide by the agreement as time goes by. This
will occur if each player’s cooperative payoff-to-go dominates the noncooperative
payoff-to-go at any intermediate instant of time. This property is known as dynamic
individual rationality (DIR) or time consistency. The sustainability of cooperation
in differential games is the focus of this chapter.

It frequently happens that players (e.g., partners in a supply chain; union and
management; political parties; countries; spouses; etc.) agree to cooperate over a
long-term horizon, say Œt0; T �. By cooperation, we mean that the parties coordinate
their strategies in view of optimizing a collective performance index (profit, cost,
welfare, happiness, etc.). Although coordination may imply some loss of freedom
for the parties in terms of their choice of actions, the rationale for coordination
stems, on balance, from the collective and individual gains it generates compared to
noncooperation.

A relevant question is why economic and social agents bind themselves in
long-term contracts instead of keeping all their options open and cooperating one
period at a time? A first answer to this question is that negotiating to reach an
acceptable arrangement is costly (not only in monetary terms but also in time,
emotion, effort, etc.), and therefore, it makes sense to avoid frequent renegotiation
whenever feasible. Second, some problems are inherently dynamic. For instance,
curbing polluting emissions in the industrial and transport sectors requires making
heavy investments in cleaner technologies, changing consumption habits, etc.,
which clearly cannot be achieved overnight. Any environmental agreement between
players (countries, regions, etc.) must be long-lived to allow for such adjustments to
take place.

1This property has also been referred to as the stand-alone test.
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Despite the fact that long-term cooperation can potentially bring high collective
dividends, it is an empirical fact that some agreements are abandoned before their
maturity date. In a dynamic game setting, if a cooperative contract breaks down
before its intended end date, we say that it is time inconsistent. Suppose that a
game has been played cooperatively until some instant of time � 2 .t0; T /. Haurie
(1976) offered two reasons why an initially agreed-upon solution may become
unacceptable to one or more players at time � :

(i) If the players agree to renegotiate the original agreement at time � , it is not
certain that they will want to continue with the agreement. In fact, they will
not choose to go on with the original agreement if it is not a solution to the
cooperative game that starts out at time � .

(ii) Suppose that a player considers deviating, that is, as of time � she will use a
strategy that is different from the cooperative one. Actually, a player should do
this if deviating gives her a payoff in the continuation game that is greater than
the one she stands to receive through continued cooperative play.

Such instabilities arise simply because, in general, the position of the game at
an intermediate instant of time will differ from the initial position. In particular,
individual rationality may fail to apply when the game reaches a certain position,
despite the fact that it was satisfied at the outset. This phenomenon is notable in
differential games and in state-space games as such, but not in repeated games.
Once the reason behind such instabilities is well understood, the research agenda
becomes to attempt to find mechanisms, incentives, side payments, etc., that can
help prevent breakdowns from taking place. This is our aim here.

The rest of the chapter is organized as follows: In Sect. 2 we briefly review
the relevant literature, and in Sect. 3 we introduce the ingredients of deterministic
differential games. Section 4 is a refresher on cooperative games. Section 5 deals
with time consistency, and Sect. 6 with strong time consistency. In Sect. 7 we treat
the case of random terminal time, and we briefly conclude in Sect. 8.

2 Brief Literature Background

Broadly, two approaches have been developed to sustain cooperation over time in
differential games, namely, seeking a cooperative equilibrium and designing time-
consistent solutions.2

In the cooperative equilibrium approach, the aim, as the name suggests, is to
embed the cooperative solution with an equilibrium property that renders it self-

2This chapter focuses on how a cooperative solution in a differential game can be sustained over
time. There is a large literature that looks at the dynamics of a cooperative solution, especially the
core, in different game settings, but not in differential games. Here, the environment of the game
changes when a coalition deviates; for instance, the set of players may vary over time. We refrain
from reviewing this literature and direct the interested reader to Lehrer and Scarsini (2013) and the
references therein.
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enforcing (stable). Studies in repeated games have developed conditions under
which individually rational outcomes can be sustained as equilibria over time.
One folk theorem result states that any individually rational payoff vector can be
supported as a Nash equilibrium outcome in an infinitely repeated game if players
are sufficiently farsighted (Friedman 1986). This raises the question of whether
individually rational outcomes exist. In repeated games with complete information
and perfect monitoring, the answer is yes since the players face the same game at
every stage. In state-space games, the situation is different. In a discrete-time setup,
a stochastic game includes a state variable that evolves over time, as a product
of the initial conditions, the players’ actions, and a transition law. The latter may
be deterministic, in which case the game is a multistage game (or a difference
game). A folk theorem for stochastic games is given in Dutta (1995), but no general
theorems seem to exist for differential games. The reason is that the presence of
a state variable complicates folk theorem analysis: a deviation by a player yields
a one-shot gain (as in a repeated game), but it also changes the state, now and in
all future periods. However, particular results exist for situations in which Pareto-
optimal outcomes are supported by trigger strategies in differential games (Dockner
et al. 2000; Haurie et al. 2012).3 Such strategies embody (effective) punishments
that deprive any player the benefits of a defection, and the threats of punishments
are credible which ensures that it is in the best interest of the player(s) who did
not defect to implement a punishment. Early examples of contributions in this area
include Haurie and Tolwinski (1985), Tolwinski et al. (1986), Haurie and Pohjola
(1987), and Haurie et al. (1994). The books by Dockner et al. (2000) and Haurie
et al. (2012) provide a comprehensive introduction to cooperative equilibria in
differential games.

Note that the folk theorems are for infinite-horizon games. Enforcing cooperation
in finite-horizon games is more difficult, not to say generally elusive. The reason
is that defection from the agreement at the last stage is individually rational and
this deviation cannot be punished. Using a backward-induction argument, it is easy
to show that the unique subgame-perfect equilibrium in repeated and multistage
games is to implement Nash equilibrium controls at each stage of the finite game.
This clear-cut theoretical result has not always received empirical support, and in
fact, experiments show that cooperation may be realized, at least partially, in finite-
horizon games (see, e.g., Angelova et al. 2013). The literature has came out with
different ways to cope with the difficulties in enforcing cooperation in finite-horizon
dynamic games. See, e.g., Radner (1980), Benoit and Krishna (1985), Eswaran and
Lewis (1986), Mailath et al. (2005), Flesch et al. (2014), Flesch and Predtetchinski
(2015), and Parilina and Zaccour (2015a).

3There are (rare) cases in which a cooperative outcome “by construction” is in equilibrium.This
occurs if a game has a Nash equilibrium that is also an efficient outcome. However, very few
differential games have this property. The fishery game of Chiarella et al. (1984) is an example.
Martín-Herrán and Rincón-Zapatero (2005) and Rincón-Zapatero et al. (2000) state conditions for
Markov-perfect equilibria to be Pareto optimal in a special class of differential games.



13 Cooperative Differential Games with Transferable Payoffs 599

Having in mind the same objective of embedding the cooperative solution with an
equilibrium property, a series of papers considered incentives within a Stackelberg
dynamic game context (deterministic and stochastic). In this setting, the incentive
problem is one-sided, that is, the follower is incentivized to align its objective
with that of the leader (hence enforcement of cooperation). Early contributions
include Başar and Olsder (1980), Zheng and Başar (1982), Başar (1984, 1985), and
Cansever and Başar (1985). Ehtamo and Hämäläinen (1986, 1989, 1993) considered
two-sided incentive strategies in two-player differential games. A player’s incentive
strategy is a function of the other player’s action. In an incentive equilibrium,
each player implements her part of the agreement if the other player also does. In
terms of computation, the determination of an incentive equilibrium requires solving
a pair of optimal control problems, which is in general relatively easy to do. A
main concern with incentive strategies is their credibility, since it may happen that
the best response to a deviation from cooperation is to stick to cooperation rather
than also deviating. In such a situation, the threat of punishment for a deviation
is an empty one. In applications, one can derive the conditions that the parameter
values must satisfy to have credible incentive strategies. For a discussion of the
credibility of incentive strategies in differential games with special structures, see
Martín-Herrán and Zaccour (2005, 2009). In the absence of a hierarchy in the
game, a further drawback of incentive equilibria is that the concept is defined for
only two players. An early reference for incentive design problems with one leader
and n followers, as well as design problems with multiple levels of hierarchy is
Başar (1983). See also Başar (1989) for stochastic incentive design multiple levels
problems. Incentive strategies and equilibria have been applied in a number of areas,
including environmental economics (see, e.g., Breton et al. 2008 and De Frutos et al.
2015), marketing (see, e.g., Martín-Herrán et al. 2005, Buratto and Zaccour 2009,
and Jørgensen and Zaccour 2002b), and closed-loop supply chains (De Giovanni
et al. 2016).

The second line of research, which was originally active in differential games
before moving on to other classes of games, is to request that the cooperative
agreement be time consistent, i.e., it satisfies the dynamic individual rationality
property. The issue here is: will a cooperative outcome that is individually rational
at the start of the game continue to be so as the game proceeds? The starting point
is that players negotiate and agree on a cooperative solution and on the actions it
prescribes for the players. Clearly, the agreement must satisfy individual rationality
at the initial position of the game, since otherwise, there would be no scope for
cooperation at all.

In a nutshell, we say that a cooperative solution is time consistent at the initial
position of the game if, at any intermediate position, the cooperative payoff-to-go
of each player dominates her noncooperative payoff-to-go. It is important to note
here that the comparison between payoffs-to-go is carried out along the cooperative
state trajectory, which means that the game has evolved cooperatively till the time of
comparison. Kaitala and Pohjola (1990, 1995) proposed the concept of agreeability,
which requires cooperative payoff-to-go dominance along any state trajectory, that
is, not only the cooperative state trajectory. From the definitions of time consistency
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and agreeability, it is clear that the latter implies the former. In the class of linear-
state differential games, Jørgensen et al. (2003) show that if the cooperative solution
is time consistent, then it is also agreeable. Further, Jørgensen et al. (2005) show that
there is also equivalence between time consistency and agreeability in the class of
homogenous linear-quadratic differential games (HLQDG).4

There exists a large applied and theoretical literature on time consistency
in cooperative differential games. The concept itself was initially proposed in
Petrosyan (1977); see also Petrosjan and Danilov (1979, 1982, 1986). In these
publications in Russian, as well as in subsequent books in English (Petrosyan 1993;
Petrosjan and Zenkevich 1996), and in Petrosyan (1977), time consistency was
termed dynamic stability. For an implementation of a time-consistent solution in
different deterministic differential game applications, see, e.g., Gao et al. (1989),
Haurie and Zaccour (1986, 1991), Jørgensen and Zaccour (2001, 2002a), Petrosjan
and Zaccour (2003), Petrosjan and Mamkina (2006), Yeung and Petrosjan (2001,
2006), Kozlovskaya et al. (2010), and Petrosyan and Gromova (2014). Interestingly,
whereas all these authors are proposing a time-consistent solution in a differential
game, the terminology may vary between papers. For a tutorial on time consistency
in differential games, see Zaccour (2008). Finally, time consistency in differential
games with a random terminal duration is the subject of Petrosyan and Shevkoplyas
(2000, 2003) and Marín-Solano and Shevkoplyas (2011).

3 A Differential Game

The description of a deterministic differential game played on a time interval Œt0; T �

involves the following elements:

1. A set of players N D f1; : : : ; ng :

2. For each player i 2 N; a control variable ui 2 Ui , where Ui is a compact set of
admissible control values for player i . Let u .t/ D .u1 .t/ ; : : : ; un .t//.

3. A state variable x 2 R
n.5 The evolution of the state is governed by the following

differential equation:

Px D f .x; u1; : : : ; un/; x.t0/ D x0; (13.1)

where x0 2 R
n is the initial given state value.

4Such games have the following two characteristics: (i) The instantaneous-payoff function and the
salvage-value function are quadratic with no linear terms in the state and control variables; (ii) the
state dynamics are linear in the state and control variables.
5Typically, one considers x.t/ 2 X � R

n, where X is the set of admissible states. To avoid
unecessary complications for what we are attempting to achieve here, we assume that the state
space is Rn.
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4. A payoff functional for player i; i 2 N;

Ki .x0; T � t0I u1; : : : ; un/ D

TZ

t0

hi .x.t/; u1.t/; : : : ; un.t//dt C Hi .x.T //;

(13.2)

where hi .�/ is player i ’s instantaneous payoff and function Hi .�/ is her terminal
payoff (or reward or salvage value).

5. An information structure, that is, the piece of information that players consider
when making their decisions. Here, we retain a feedback information structure,
which means that the players base their decisions on the position of the game
.t; x.t//.

We make the following assumptions:

Assumption 1. For each feasible players’ strategy, there exists a unique, and
extensible on Œt0; 1/; solution of the system (13.1).

Assumption 2. Functions hi and f are continuously differentiable in x and u. The
function Hi; i 2 N; is continuously differentiable in x.

Assumption 3. Functions hi and Hi are positive for all values of u and x.

Assumptions 1 and 2 are made to avoid dealing with the case where the feedback
strategies are nonsmooth functions of x, which implies that we may lose the
uniqueness property of the trajectory generated by such strategies, according to
the state equations. Although this case is clearly of interest, we wish to focus
here on the issues directly related to sustainability of cooperation rather than being
forced to deal with technicalities that would deviate the reader’s attention from
the main messages. Assumption 3 is made to simplify the presentation of some
of the results. It is, by no means, a restrictive assumption, as it is always possible
to add a large positive number to each player’s objective without altering the
results.

We shall refer to the differential game described above by �.x0; T � t0/, with
T � t0 being the duration of the game. We suppose that there is no inherent obstacle
to cooperation between the players and that their payoffs are transferable. More
specifically, we assume that before the game actually starts, the players agree to
play the control vector u� D

�
u�

1 ; : : : ; u�
n

�
;which is given by

u� D arg max
u

nX
iD1

Ki .x0; T � t0I u1; : : : ; un/:
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We shall refer to u� as the cooperative control vector and to the resulting x� as the
cooperative state and to x� .t/ as the cooperative state trajectory. The corresponding
total cooperative payoff is given by

T CP D

nX
iD1

0
@

TZ

t0

hi .x
�.t/; u�

1 .t/; : : : ; u�
n.t//dt C Hi .x

�.T //

1
A :

A pending issue is how to divide T CP among the players. As mentioned in the
introduction, this can be done by using one of the available solutions of a cooperative
game. We recall the basics of cooperative games below. Further, we note that the
amount Ki .x0; T � t0I u�

1 ; : : : ; u�
n/ is player i ’s payoff before any side payment is

made, which does not correspond in general to the outcome that this player will
indeed pocket in the game.

For a comprehensive coverage of differential games, the interested reader may
consult one of the available textbooks on the subject, e.g., Başar and Olsder (1995),
Dockner et al. (2000), Engwerda (2005), and Haurie et al. (2012).

4 A Refresher on Cooperative Games

We recall in this section some basic elements of cooperative game theory. These are
presented while keeping in mind what is needed in the sequel.

A dynamic cooperative game of duration T � t0 is a triplet .N; v; Lv/, where N

is the set of players; v is the characteristic function that assigns to each coalition
S; S � N , a numerical value,

v .S I x0; T � t0/ W P .N / ! R; v .¿I x0; T � t0/ D 0;

where P .N / is the power set of N and Lv .x0; T � t0/ is the set of imputations, that
is:

Lv .x0; T � t0/ D

�
.�1 .x0; T � t0/ ; : : : ; �m .x0; T � t0//

such that �i .x0; T � t0/ � v .fig I x0; T � t0/

and
X
i2N

�i .x0; T � t0/ D v .N I x0; T � t0/

�
:

The definition of the set of imputations involves two conditions, namely,

individual rationality W .�i .x0; T � t0/ � v .fig I x0; T � t0//;



13 Cooperative Differential Games with Transferable Payoffs 603

and

collective rationality W

 X
i2N

�i .x0; T � t0/ D v .N I x0; T � t0/

!
:

Individual rationality means that no player will accept an allocation or imputation
that gives her less than what she could secure by acting alone. Collective rationality
means that the total collective gain should be allocated, that is, no deficits or
subsidies are considered. To make the connection with what we wrote earlier,
observe that

v .N I x0; T � t0/ D

nX
iD1

Ki .x0; T � t0I u�
1 ; : : : ; u�

n/;

and that player i will get some �i .x0; T � t0/, which will not necessarily be equal
to Ki .x0; T � t0I u�

1 ; : : : ; u�
n/.

The characteristic function (CF) measures the power or the strength of a
coalition. Its precise definition depends on the assumption made about what the
left-out players—that is, the complement subset of players N nS—will do (see, e.g.,
Ordeshook 1986 and Osborne and Rubinstein 1994). A number of approaches have
been proposed in the literature to compute v .�/. We briefly recall some of these
approaches.

˛-CF: In their seminal book, Von Neumann and Morgenstern (1944) defined the
characteristic function as follows:

v˛ .S I x0; T � t0/ WD max
uS D.ui Wi2S/

min
uN nS D.uj Wj 2N nS/

X
i2S

Ki

�
x0; T � t0I uS ; uN nS

�

That is, v˛.�/ represents the maximum payoff that coalition S can guarantee for
itself irrespective of the strategies used by the players in N nS .

ˇ-CF: The ˇ characteristic function is defined as

vˇ .S I x0; T � t0/ WD min
uN nS D.uj Wj 2N nS/

max
uS D.ui Wi2S/

X
i2S

Ki

�
x0; T � t0I uS ; uN nS

�
;

that is, vˇ.�/ gives the maximum payoff that coalition S cannot be prevented
from getting by the players in N nS .

� -CF: The � characteristic function, which is attributed to Chander and Tulkens
(1997), is defined as the partial equilibrium outcome of the noncooperative
game between coalition S and left-out players acting individually, that is, each
player not belonging to the coalition best-replies to the other players’ strategies.
Formally, for any coalition S � N , we have
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v� .S I x0; T � t0/ WD
X
i2S

Ki

�
x0; T � t0I uS ; fuj gj 2N nK

�
(13.3)

uS WD argmaxuS

X
i2S

Ki

�
x0; T � t0I uS ; fuj gj 2N nK

�

uj WD argmaxuj
Kj

�
x0; T � t0I uS ; uj ; fulgl2N nfS[j g

�
;

for all j 2 N nK:

ı-CF: The ı characteristic function, which is attributed to Petrosjan and Zaccour
(2003), assumes that the left-out players do not react strategically to the forma-
tion of the coalition, but implement their Nash equilibrium actions determined in
the n-player noncooperative game (or any other fixed actions). Formally, for any
coalition S � N;

vı .S I x0; T � t0/ WD
X
i2S

Ki

�
x0; T � t0I uS ; fQuj gj 2N nS

�
(13.4)

uS WD argmaxuS

X
i2S

Ki

�
x0; T � t0I uS ; fQuj gj 2N nS

�

Quj WD argmaxuj
Kj

�
x0; T � t0I uj ; fulgl2N nfj g

�
; for all j 2 N:

Remark 1. We make the following observations:

1. The ˛ and ˇ characteristic functions assume that left-out players form an anti-
coalition. The � and ı characteristic functions do not make such assumption, but
suppose that these players act individually.

2. The ˛ and ˇ characteristic functions are superadditive, that is,

v .S [ Q; x0; T � t0/ � v .S; x0; T � t0/ C v .Q; x0; T � t0/ ;

for al S; Q � N; S \ Q D ¿:

The � and ı characteristic functions were introduced in the context of games
with negative externalities and have been shown to be superadditive in this
context (see Reddy and Zaccour 2016).

3. The � and ı characteristic functions coincide for linear-state differential games
(see Zaccour 2003).

4. In the absence of externalities, i.e., if the payoffs to the members of coalition S

are independent of the actions of the nonmembers (N nS ), then v .S I x0; T � t0/

would be the result of an optimization problem and not an equilibrium
one.
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5. The positiveness of payoff functions Ki , i D 1; : : : ; n implies positiveness of the
characteristic function. If v .�/ is superadditive, then

v.S 0I x0; T � t0/ � v.S I x0; T � t0/;

for any S; S 0 � N such that S � S 0, i.e., the superadditivity of the function v in
S implies that this function is monotone in S .

4.1 Solution Concepts

The set of imputations Lv .x0; T � t0/ can be interpreted as the set of admissible
solutions (allocations). Once it is defined, the next step is to choose a particular
imputation from that set or to select a subset of Lv .x0; T � t0/. To do so, game
theorists have proposed different solution concepts, which are typically defined by a
series of axioms or requirements that the allocation(s) must satisfy, e.g., fairness and
stability. We distinguish between solution concepts that select a unique imputation
in Lv .x0; T � t0/, e.g., Shapley value and the nucleolus, and those that select a
subset of imputations, e.g., the core and stable set. The two most used solution
concepts in applications of cooperative games are the Shapley value and the core.
We recall their definitions and use them later on. Denote by s the number of players
in coalition S .

Definition 1. The Shapley value is an imputation Sh D .Sh1; : : : Shn/ defined by

Shi .x0; T � t0/

D
X
S�N
i2S

.n � s/Š.s � 1/Š

nŠ
.v .S I x0; T � t0/ � v .Sn fig I x0; T � t0//: (13.5)

Being an imputation, the Shapley value satisfies individual rationality, i.e.,
Shi .x0; T � t0/ � v .fig I x0; T � t0// for all i 2 N . The term .v .S I x0; T � t0/

�v .Sn fig I x0; T � t0// measures the marginal contribution of player i to coalition
S . Thus, the Shapley value allocates to each player the weighted sum of her marginal
contributions to all coalitions that she may join. The Shapley value is the unique
imputation satisfying three axioms: fairness (identical players are treated in the

same way), efficiency

�P
i2N

Shi .x0; T � t0/ D v .N I x0; T � t0/

�
, and linearity (if

v and w are two characteristic functions defined for the same set of players, then
Shi .v C w/ D Shi .v/ C Shi .w/ for all i 2 N ).

The core is the set of all undominated imputations. Gillies (1953) showed that
for an imputation � .x0; T � t0/ D .�1 .x0; T � t0/ ; : : : ; �n .x0; T � t0// to be in the
core, it must satisfy the condition
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X
i2S

�i .x0; T � t0/ � v.S I x0; T � t0/; 8S � N:

In other words, the above condition states that an imputation is in the core if it
allocates to each possible coalition an outcome that is at least equal to what this
coalition can secure by acting alone. Consequently, the core is defined by

C D

(
� .x0; T � t0/ ; such that

X
i2S

�i .x0; T � t0/ � v.S I x0; T � t0/; 8S � N;

and
X
i2N

�i .x0; T � t0/ D v.N I x0; T � t0/

)
:

Note that the core may be empty, may be a singleton, or may contain many
imputations.

Remark 2. Note that the Shapley value and the core were introduced for the whole
game, that is, the game with initial state x0 and duration T � t0. Clearly, we can
define them for any subgame �.xt ; T � t /.

5 Time Consistency of the Cooperative Solution

5.1 Preliminaries

To implement a time-consistent solution, we need to keep track of what happens
at any position

�
x�

t ; T � t
�

of the game. From now on, we shall use �v.x0; T �

t0/ to refer to the overall cooperative game and �v.xt ; T � t / for the cooperative
subgame starting out in state xt and of duration T � t: The subscript v refers to
the characteristic function, which can be any of those defined above. We denote
by Wv.x0; T � t0/ � �v.x0; T � t0/, the subset of imputations selected according
to the chosen solution, e.g., core and Shapley value. Similarly, Wv.xt ; T � t / will
refer to a subset of �v.xt ; T � t /: Let x�.t/, t 2 Œt0; T � be the trajectory resulting
from cooperation. As this trajectory is generated by joint optimization, we shall
refer to it as the optimal trajectory. (For simplicity, we henceforth assume that such
a trajectory exists.)

We assume that Wv.x0; T � t0/ ¤ ;; otherwise, the problem of time consistency
is emptied. Note that this condition is always fulfilled for some cooperative game
solutions, such as the Shapley value or the nucleolus, but not necessarily for the
core.

Now, we consider the behavior of the set Wv.x0; T � t0/ along the optimal
state trajectory x�.t/. Toward this end, in each current state x�.t/, we define the
characteristic function v.S I x�.t/; T � t / using any one of the approaches recalled
in the previous section.
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The imputation set in the current cooperative game �v.x�.t/; T � t / is of the
form

Lv.x�.t/; T � t / D

�
� 2 Rn j �i � v.figI x�.t/; T � t /; i D 1; : : : ; nI

X
i2N

�i D v.N I x�.t/; T � t /

�
:

Consider the family of current games

f�v.x�.t/; T � t / D hN; v.S I x�.t/; T � t /i; t0 � t � T g;

determined along the optimal state trajectory x�.t/ and their solutions Wv.x�.t/; T �

t / � Lv.x�.t/; T � t / generated by the same cooperative game solution (or
principle of optimality) as the one agreed upon at initial position .x0; T � t0/, that
is, Wv.x0; T � t0/.

It is obvious that the set Wv.x�.T /; 0/ is a solution of the terminal game
�v.x�.T /; 0/ and contains the unique imputation H.x�.T // D fHi .x

�.T //;

i D 1; : : : ; ng, where Hi .x
�.T // is the terminal payoff of player i along the

trajectory x�.t/.

5.2 Designing a Time-Consistent Solution

Assume that, at initial state x0, the players agree upon the imputation �0 2

Wv.x0; T � t0/, with �0 D
�
�0

1 ; : : : ; �0
n

�
. Denote by �i .x

�.t// player i 0s share on
the time interval Œt0; t �, where t is any intermediate date in the planning horizon.
By writing �i .x

�.t//, we wish to highlight that this payoff is computed along the
cooperative state trajectory and, more specifically, that cooperation has prevailed
from t0 till t . If cooperation remains in force for the rest of the game, then player i

will receive her remaining due �t
i D �0

i ��i .x
�.t// during the time interval Œt; T �. In

order for the original agreement (the imputation �0) to be maintained, it is necessary
that the vector �t D .�t

i ; : : : ; �t
n/ belong to the set Wv.x�.t/; T � t /, i.e., that it be

a solution of the current subgame �v.x�.t/; T � t /. If such a condition is satisfied
at each instant of time t 2 Œt0; T � along the trajectory x�.t/, then the imputation
�0 is realized. This is the conceptual meaning of the imputation’s time consistency
(Petrosyan 1977; Petrosjan and Danilov 1982).

Along the trajectory x�.t/ on the time interval Œt; T �, t0 � t � T , the grand
coalition N obtains the payoff

v.N I x�.t/; T � t / D
X
i2N

� TZ

t

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//d� C Hi .x

�.T //

	
:
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Then, the difference

v.N I x0; T � t0/ � v.N I x�.t/; T � t / D

tZ

t0

X
i2N

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//d�;

is the payoff that the grand coalition N realizes on the time interval Œt0; t �. Under our
assumption of transferable payoffs, the share of the i th player in the above payoff
can be represented as

�i .t/ D

tZ

t0

ˇi .�/

nX
iD1

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//d� D �i .x

�.t/; ˇ/; (13.6)

where ˇi .�/; i 2 N; is the Œt0; T � integrable function satisfying the condition

nX
iD1

ˇi .t/ D 1; t0 � t � T: (13.7)

Differentiating (13.6) with respect to time, we get

P�i .t/ D
d�i

dt
.t/ D ˇi .t/

X
i2N

hi .x
�.t/; u�

1 .�/; : : : ; u�
n.�//:

This quantity can be interpreted as the instantaneous gain of player i at time t .
Hence, the vector ˇ.t/ D .ˇ1.t/; : : : ; ˇn.t// prescribes a distribution of the total
gain among the members of N . The point here is that by properly choosing ˇ.t/,
the players could implement the desirable outcome, i.e., the agreed-upon imputation
�0. This is achieved by distributing the players’ payoffs over time, so that, at each
instant t 2 Œt0; T �, no player wishes to deviate from cooperation (or no objection is
raised) against the original agreement (the imputation �0).

Definition 2. The imputation �0 2 Wv.x0; T � t0/ is called time consistent in the
game �v.x0; T � t0/ if the following conditions are satisfied:

(1) There exists an optimal trajectory x�.t/ along which

Wv.x�.t/; T � t / ¤ ;; t0 � t � T:

(2) There exists an integrable vector function ˇ.t/ D .ˇ1.t/; : : : ; ˇn.t// on Œt0; T �

such that, for each t0 � t � T ,
nP

iD1

ˇi .t/ D 1 and

�0 2
\

t0�t�T

Œ�.x�.t/; ˇ/ ˚ Wv.x�.t/; T � t /�; (13.8)
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where

�.x�.t/; ˇ/ D .�1.x�.t/; ˇ/; : : : ; �n.x�.t/; ˇ//;

it holds that Wv.x�.t/; T � t / is a solution of the current game �v.x�.t/; T � t /:

Remark 3. In the above definition, the set Œ�.x�.t/; ˇ/ ˚ Wv.x�.t/; T � t /� is
defined as

Œ�.x�.t/; ˇ/ ˚ Wv.x�.t/; T � t /� D f�.x�.t/; ˇ/ C a W a 2 Wv.x�.t/; T � t /g:

Definition 3. We say that the cooperative differential game �v.x0; T � t0/ with
side payments has a time-consistent solution Wv.x0; T � t0/ if all imputations � 2

Wv.x0; T � t0/ are time consistent.

From the definition of time consistency, at instant t D T; we have �0 2

�.x�.T /; ˇ/˚Wv.x�.T /; 0/, where Wv.x�.T /; 0/ is a solution of the current game
�v.x�.T /; 0/ played on the trajectory x�.t/, t 2 Œt0; T �, and has the only imputation
�T D H.x�.T // D fHi .x

�.T //g. The imputation �0 may be represented as

�0 D �.x�.T /; ˇ/ C H.x�.T //;

or

�0 D

TZ

t0

ˇ.�/
X
i2N

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//d� C H.x�.T //:

The time-consistent imputation �0 2 Wv.x0; T � t0/ may be realized as follows:
From (13.8), at any instant t0 � t � T; we have

�0 2 Œ�.x�.t/; ˇ/ ˚ Wv.x�.t/; T � t /�; (13.9)

where

�.x�.t/; ˇ/ D

tZ

t0

ˇ.�/
X
i2N

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//d� (13.10)

is the payoff on the time interval Œt0; t �, with player i ’s share in the gain on the same
interval being

�i .x
�.t/; ˇ/ D

tZ

t0

ˇi .�/
X
i2N

hi .x
�.�; u�

1 .�/; : : : ; u�
n.�///d�: (13.11)
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When the game proceeds along the optimal trajectory, on each time interval Œt0; t �

the players share the total gain

tZ

t0

X
i2N

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//d�;

and the following inclusion must be satisfied:

�0 � �.x�.t/; ˇ/ 2 Wv.x�.t/; T � t /: (13.12)

Furthermore, (13.12) implies the existence of a vector �t 2 Wv.x�.t/; T � t / such
that �0 D �.x�.t/; ˇ/ C �t. Following the choice of ˇ.t/, the vector of gains to be
obtained by the players in the remaining stage of the game is given by

�t D �0 � �.x�.t/; ˇ/ D

TZ

t

ˇ.�/
X
i2N

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//d� C H.x�.T //;

and belongs to the set Wv.x�.t/; T � t /.

Definition 4. The vector function

˛i .�/ D ˇi .�/
X
i2N

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//; i 2 N; (13.13)

is called an imputation distribution procedure (IDP).

It is clearly seen from the above definition that an IDP redistributes over time to
player i the total payoff to which she is entitled in the whole game. The definition
of IDP was introduced first in Petrosjan and Danilov (1979); see also Petrosjan
and Danilov (1982). Note that for any vector ˇ.�/ satisfying conditions (13.6) and
(13.7), at each time instant t0 � t � T; the players are guided by the imputation �t 2

Wv.x�.t/; T �t / and by the same cooperative game solution concept throughout the
game.

To gain some additional insight into the construction of a time-consistent
solution, let us make the following additional assumption:

Assumption 4. The vector �t 2 Wv.x�.t/; T � t / is continuously differentiable
in t .

Under the above assumption, we can always ensure the time consistency of the
imputation �0 2 Wv.x0; T � t0/ by properly choosing the time function ˇ.t/. To
show this, let �t 2 Wv.x�.t/; T � t / be a continuously differentiable function of t .
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Construct the difference �0 � �t D �.t/ to get

�t C �.t/ 2 Wv.x0; T � t0/:

Let ˇ.t/ D .ˇ1.t/; : : : ; ˇn.t// be the Œt0; T � integrable vector function satisfying
conditions (13.6), (13.7). Instead of writing �.x�.t/; ˇ/, we will for simplicity write
�.t/. Rewriting (13.6) in vector form, we get

tZ

t0

ˇ.�/
X
i2N

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//d� D �.t/:

Differentiating with respect to t and rearranging terms, we get the following
expression for ˇ.t/:

ˇ.t/ D
1P

i2N

hi .x�.t/; u�
1 .t/; : : : ; u�

n.t//
�

d�.t/

dt

D �
1P

i2N

hi .x�.t/; u�
1 .t/; : : : ; u�

n.t//
�

d�t

dt
; (13.14)

where the last expression follows from equality

�0 D �.t/ C �t:

We check that ˇ.t/ satisfies the condition (13.7). Indeed,

X
i2N

ˇi .t/ D �

P
i2N

d�t
i

dtP
i2N

hi .x�.t//
D �

d
dt

v.N I x�.t/; T � t /P
i2N

hi .x�.t//
;

D �

d
dt

� P
i2N

�
TR
t

hi .x
�.�//d� C Hi .x

�.T //

�	

P
i2N

hi .x�.t//
D

P
i2N

hi .x
�.t//

P
i2N

hi .x�.t//
D 1;

since
P
i2N

�t
i D v.N I x�.t/; T � t /.

We see that, if the above assumption is satisfied and

Wv.x�.t/; T � t / ¤ ;; t 2 Œt0; T �; (13.15)

then the solution Wv.x0; T � t0/ is time consistent.
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If the solution Wv.x0.t/; T � t0/ contains many imputations, additional require-
ments must be added to eliminate some of these imputations, or even better, to
select one of them. For instance, Yeung (2006) introduced the following irrational-
behavior-proofness condition:

v.figI x0; T � t0/ �

tZ

t0

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//d� C v.figI x�.t/; T �t /; i2N;

(13.16)

where x�.�/, � 2 Œt0; T � is the cooperative trajectory and v.figI x�.t/; T � t /

is the value of characteristic function for a one-player coalition in the subgame
�.x�.t/; T � t ). If this condition holds, then it is always better to cooperate even if
the grand coalition will break at an intermediate moment t 2 Œt0; T �. It is easily seen
that if, instead of hi .x

�.�/; u�
1 .�/; : : : ; u�

n.�//; the time-consistent IDP is used, this
condition will always hold.

5.3 An Environmental Management Example

To illustrate the different steps involved in the design of time-consistent imputation
distribution procedure, we consider a simple example.

Consider a 3-player differential game of pollution control. Denote by yi .t/

the industrial production of player i; i D 1; 2; 3 and t 2 Œ0; 1/. Pollution is an
inevitable by-product of production. Let us assume that there exists a monotone
increasing relationship between production and pollution emissions, which we
denote ei .t/. Consequently, the benefit from production for player i can be
expressed as a function of emissions, that is, Bi .ei /.

Pollution accumulates over time. We denote by x .t/ the stock of pollution at
time t and assume that its evolution over time is governed by the following linear
differential equation:

Px .t/ D
X
i2N

ei .t/ � ıx.t/; x .t0/ D 0; (13.17)

where ı > 0 is the absorption rate of pollution by nature.6

Denote by Di .x/ the environmental damage cost of player i caused by the
pollution stock. In the environmental economics literature, the typical assumptions
are that the benefit function Bi .ei / is concave increasing, satisfying Bi .0/ D 0,
and the damage cost Di .x/ is convex increasing. To perform some calculations
explicitly, we retain the following functional forms:

6We have assumed the initial stock to be zero, which is not a severe simplifying assumption.
Indeed, if this was not the case, then x .0/ D 0 can be imposed and everything can be rescaled
consequently.
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Bi .ei / D ˛ei �
1

2
e2

i ;

Di .x/ D 'i x;

where ˛ and 'i are positive parameters. To keep the calculations as parsimonious as
possible, while still being able to show how to determine a time-consistent solution,
we have assumed that the players differ only in terms of their marginal damage cost
(parameter 'i ).

Denoting by r 2 .0; 1/ the common discount rate and assuming welfare
maximization behavior, then player i ’s optimization problem can be formulated as
follows:

max
ei

Wi D

Z 1

t0

e�rt .Bi .ei .t/ � Di .x .t//// dt;

D

Z 1

t0

e�rt

�
˛ei �

1

2
e2

i � 'i x

�
dt;

subject to the pollution dynamics in (13.17).
To start with, let us make the following assumptions:

Assumption 5. The players agree on cooperating throughout the planning horizon
and on adopting the Shapley value to share the cooperative payoffs.

Assumption 6. If cooperation breaks down at a certain time, then a feedback Nash
equilibrium will be implemented for the remaining time.

Remark 4. The differential game defined above is of the linear-state variety, which
implies the following:

1. Feedback and open-loop Nash equilibrium strategies coincide;
2. � -CF and ı-CF values coincide (see Zaccour 2003).

5.3.1 Cooperative Outcomes
To determine the value of the grand coalition, we solve the following joint
optimization problem:

max
X
i2N

Wi D max
Z 1

t0

X
i2N

e�rt

�
˛ei �

1

2
e2

i � 'i x

�
dt:

It is easy to verify that the optimal emissions control of player i is given by

e�
i D

˛ .r C ı/ � .'1 C '2 C '3/

r C ı
; i D 1; 2; 3: (13.18)
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The fact that the emissions are constant over time is a by-product of the game’s
linear-state structure. Further, we see that each player internalizes the damage costs
of all coalition members, when selecting the optimal emissions level. To obtain the
cooperative state trajectory, it suffices to insert e�

i in the dynamics and to solve the
differential equation to get

x� .t/ D 3

�
˛ .r C ı/ � .'1 C '2 C '3/

ı .r C ı/

� �
1 � e�ıt

�
: (13.19)

Substituting for e�
i and x� .t/ in the objective function, we get the following grand

coalition outcome:

vı .N I x .0// D
3

2r .r C ı/2
.˛ .r C ı/ � .'1 C '2 C '3//2;

where the superscript ı is to highlight that here we are using the ı-CF. This is
the total gain to be shared between the players if they play cooperatively during
the whole (infinite-horizon) game. To simplify the notation, we write vı .N I x .0//

instead of vı .N I x .0/ ; T � t0/ as in this infinite-horizon game, any subgame is also
of infinite horizon, and the only thing that matters is the value of state at the start of
a subgame.

Next, we determine the emissions, pollution stock, and payoffs for all other
possible coalitions. Consider a coalition K, with left-out players being N nK. For
K D fig, which is a singleton, its value is given by its Nash outcome in the
three-player noncooperative game. It can easily be checked that Nash equilibrium
emissions are constant (i.e., independent of the pollution stock) and are given by

enc
i D

˛ .r C ı/ � 'i

r C ı
; i D 1; 2; 3;

where the superscript nc stands for noncooperation. Here, each player takes only
her damage cost when deciding upon emissions. Solving the state equation, we get
the following trajectory

xnc .t/ D

�
3˛ .r C ı/ � .'1 C '2 C '3/

ı .r C ı/

� �
1 � e�ıt

�
:

Substituting in the payoff functions of the players, we get their equilibrium payoff,
which corresponds to vı .fig/, that is,

vı .fig I x .0// D
1

2r .r C ı/2



.˛ .r C ı/ � 'i /

2 � 2'i

�
2˛ .r C ı/ �

�
'j C 'k

���
:

We still need to determine the two-player coalition values. According to the �

characteristic function, the value of a two-player coalition is given by its outcome
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in a noncooperative game between the coalition and the remaining player. As the
� and ı characteristic function values coincide for the linear-state game, then the
value of a coalition K is given by

vı .KI x .0// D max
Z 1

t0

X
i2K

e�rt

�
˛ei �

1

2
e2

i � 'i x

�
dt;

Px D
X
i2K

ei C enc
j � ıx, x .t0/ D 0; j 2 N nK:

Solving the above optimization problem yields the following emissions levels:

eK
i D

˛ .r C ı/ �
P

l2K 'l

r C ı
; i 2 K;

eK
j D

˛ .r C ı/ � 'j

r C ı
; j 2 N nK:

Inserting in the state dynamics and solving, we get

xK .t/ D

 
3˛ .r C ı/ � 2

�P
l2K 'l

�
� 'j

ı .r C ı/

! �
1 � e�ıt

�
:

The coalition’s payoff is given by

vı .KI x .0// D
1

r .r C ı/2

0
@
 

˛ .r C ı/ �
X
l2K

'l

!2

�

 �
˛ .r C ı/ � 'j

�X
l2K

'l

!!
, j 2 N nK:

Once we have computed the characteristic function values for all possible coalitions,
we can define the set of imputations

Lı .x0; T � t0/ D

�
.�1 .x0; T � t0/ ; : : : ; �m .x0; T � t0//

such that �i .x0; T � t0/ � vı .fig I x0; T � t0/

and
X
i2N

�i .x0; T � t0/ D vı .N I x0; T � t0/

�
;
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If the players adopt the Shapley value to allocate the total cooperative game, then

Sh .x0; T � t0/ D .Sh1 .x0; T � t0/ ; : : : ; Shn .x0; T � t0//

is the unique imputation in Wv.x0; T � t0/, where

Sh1 .x0; T � t0/ D
1

12r .r C ı/2

�
6˛2 .r C ı/2 � 36˛'1 .r C ı/

C 12'2
1 C 3'2

2 C 3'2
3 C 4 .4'1 .'2 C '3/ C '2'3/

�
;

Sh2 .x0; T � t0/ D
1

12r .r C ı/2

�
6˛2 .r C ı/2 � 36˛'2 .r C ı/

C 12'2
2 C 3'2

3 C 3'2
1 C 4 .4'2 .'3 C '1/ C '3'1/

�
;

Sh3 .x0; T � t0/ D
1

12r .r C ı/2

�
6˛2 .r C ı/2 � 36˛'3 .r C ı/

C 12'2
3 C 3'2

1 C 3'2
2 C 4 .4'3 .'1 C '2/ C '1'2/

�
;

where Shi .x0; T � t0/ D �i .x0; T � t0/.
The cooperative game considered here is of the negative-externalities variety,

to use the terminology of Chander and Tulkens (1997), and therefore, the core
is nonempty. Further, it can easily be shown that this game is convex7 and,
consequently, that the Shapley value is in the core. In our case, the core is given
by

C .x0; T � t0/ D

�
� .x0; T � t0/ ; such that

1

2r .r C ı/2



.˛ .r C ı/ � '1/2 � 2'1 .2˛ .r C ı/ � .'2 C '3//

�
� �1 .x0; T � t0/

�
1

2r .r C ı/2



.˛ .r C ı/ � '1/2 � 4'1 .˛ .r C ı/ � .'2 C '3//

C 2'2
1 C .'2 C '3/2

�
;

7A cooperative game is convex if

v.K [ L/ C v .K \ L/ � v.K/ C v.L/; 8K; L � I:
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1

2r .r C ı/2



.˛ .r C ı/ � '2/2 � 2'2 .2˛ .r C ı/ � .'1 C '3//

�
� �2 .x0; T � t0/

�
1

2r .r C ı/2



.˛ .r C ı/ � '2/2 � 4'2 .˛ .r C ı/ � .'1 C '3//

C 2'2
2 C .'1 C '3/2

�
;

1

2r .r C ı/2



.˛ .r C ı/ � '3/2 � 2'3 .2˛ .r C ı/ � .'1 C '2//

�
� �2 .x0; T � t0/

�
1

2r .r C ı/2



.˛ .r C ı/ � '3/2 � 4'3 .˛ .r C ı/ � .'1 C '2//

C 2'2
3 C .'1 C '2/2

�

and
3X

iD1

�i .x0; T � t0/ D
3

2r .r C ı/2
.˛ .r C ı/ � .'1 C '2 C '3//2

�
:

Following a similar procedure, we can compute the Shapley value in the subgame
starting at x� .t/ and determine the imputations in the core of that subgame, but it
is not necessary to provide the details.

5.3.2 Noncooperative Outcomes
If at some intermediate instant of time �; � 2 .t0; 1/, cooperation breaks down,
then the players implement their Nash equilibrium strategies in the noncooperative
game on .t0; 1/, with the initial pollution stock value given by

x� .�/ D 3

�
˛ .r C ı/ � .'1 C '2 C '3/

ı .r C ı/

� �
1 � e�ı�

�
;

that is, the value that would result from cooperation on Œt0; � �. Since the emission
strategies are constant, i.e., they are state independent, their values are the same as
computed above, namely,

enc
i D

˛ .r C ı/ � 'i

r C ı
; i D 1; 2; 3:

The resulting state trajectory is obtained by solving on Œ� ; 1/ the following
differential equation:

Px .t/ D
X
i2N

�
˛ .r C ı/ � 'i

r C ı

�
� ıx.t/;



618 L. A. Petrosyan and G. Zaccour

with the initial condition

x� D x� .�/ D 3

�
˛ .r C ı/ � .'1 C '2 C '3/

ı .r C ı/

� �
1 � e�ı�

�
:

We get

xnc .t/ D x� eı.��t/ C

�
3˛ .r C ı/ � .'1 C '2 C '3/

ı .r C ı/

�

1 � eı.��t/

�
:

The Nash equilibrium outcome of player i in the noncooperative game starting at
x� D x� .�/ is then given by

W nc
i

�
x� .�/

�
D

Z 1

�

e�r.��t/

�
˛enc

i �
1

2

�
enc

i

�2
� 'i x

nc .t/

�
dt:

5.3.3 Time-Consistent Shapley Value
To design a time-consistent decomposition over time of the Shapley value, that is, to
determine the value of ˛i .t/ in (13.13), we make the following observations. First,
the two relevant quantities to be compared by player i at any � 2 .t0; 1/ along the
cooperative trajectory are W nc

i .x� .�// and Shi .x� .�//, that is, her noncooperative
payoff-to-go and Shapley value outcomes in the subgame starting at x� .�/. As the
Shapley value is an imputation in this subgame, then clearly,

Shi

�
x� .�/

�
� W nc

i

�
x� .�/

�
; 8� 2 .t0; 1/:

Second, along the trajectory x�.t/ on the time interval Œt; 1/, t0 � t � T , the grand
coalition N obtains the payoff

v.N I x�.t// D

� 1Z

t

X
i2N

e�r.��t/

�
˛e�

i �
1

2

�
e�

i

�2
� 'i x

� .�/

�
d�

	
;

where e�
i and x� are given in (13.18)�(13.19). Then, the difference

v.N I x0/ � v.N I x�.t// D

tZ

t0

X
i2N

e�r�

�
˛e�

i �
1

2

�
e�

i

�2
� 'i x

� .�/

�
d�;

is the payoff that the grand coalition N realizes on the time interval Œt0; t �. The share
of the i th player in the above payoff is given by
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�i .t/ D

tZ

t0

ˇi .�/

 X
i2N

e�r�

�
˛e�

i �
1

2

�
e�

i

�2
� 'i x

� .�/

�!
d� D �i .x

�.t/; ˇ/;

(13.20)
where ˇi .�/; i 2 N; is the Œt0; 1/ integrable function satisfying the condition

nX
iD1

ˇi .t/ D 1; t0 � t � T: (13.21)

Third, any time-consistent Shapley value distribution procedure must satisfy the
two following conditions:

Shi .x0; T � t0/ D

Z 1

t0

e�rt ˛i .t/dt;

Shi .x0; T � t0/ D �i .x
�.t/; ˇ/ C e�rt Shi

�
x� .t/

�
;

D

Z t

t0

e�r� ˛i .�/d� C e�rt Shi

�
x� .t/

�
:

The first condition states that the total discounted IDP outcome to player i must
be equal to her Shapley value in the whole game. The second condition ensures
time consistency of this allocation, namely, that at any intermediate instant of time
t along the cooperative state trajectory x� .t/, the amount already allocated plus the
Shapley value in the subgame at that time must be equal to the Shapley value in the
whole game.

The final step is to determine a time function ˛i .t/; i 2 N that satisfies the above
two conditions. It is easy to verify that the following formula does so:

˛i .t/ D r � Shi

�
x� .t/

�
�

d

dt
Shi

�
x� .t/

�
:

The above IDP allocates at instant of time t to player i a payoff corresponding to
the interest payment (interest rate times her payoff-to-go under cooperation given
by her Shapley value) minus the variation over time of this payoff-to-go. We note
that the above formula holds true independently of the functional forms involved in
the problem.

6 Strongly Time-Consistent Solutions

In the previous section, we established that, for a time-consistent imputation
�0 2 Wv.x0; T � t0/, there is (by construction) an integrable vector function
ˇ.t/ and an imputation �t from the solution Wv.x�.t/; T �t / of the current game
�v.x�.t/; T �t /, neither of which, in general, is unique, such that:

�0 D �.x�.t/; ˇ/ C �t;
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for each t 2 Œt0; T �, where �.x�.t/; ˇ/ is the vector of total payoffs to the players
up to time t .

In this section, we raise the following question: If at any instant t 2 Œt0; T �,
the players decide along the cooperative state trajectory to select any imputation
.�t /0 2 Wv.x�.t/; T � t /, then will the new imputation .�0/0 D �.x�.t/; ˇ/ C

.�t /0 be optimal in �v.x.t0/; T � t0/? In other words, will .�0/0 2 Wv.x0; T �

t0/? Unfortunately, this does not hold true in general. Still, it is interesting from
both a theoretical and practical perspective to verify the conditions under which the
response is affirmative. In fact, this will be the case if �0 2 Wv.x0; T � t0/ is a
time-consistent imputation and if, for every �t 2 Wv.x�.t/; T � t /; the condition

�.x�.t/; ˇ/ C �t 2 Wv.x0; T � t0/

is satisfied. By slightly strengthening this requirement, we obtain the concept of
strong time consistency.

Definition 5. The imputation �0 2 Wv.x0; T � t0/ is called strongly time consistent
(STC) in the game �v.x0; T � t0/, if the following conditions are satisfied:

(1) The imputation �0 is time consistent;
(2) For any t0 � t1 � t2 � T and ˇ.t/ corresponding to the imputation �0; we have:

�.x�.t2/; ˇ// ˚ Wv.x�.t2/; T � t2/ � �.x�.t1/; ˇ// ˚ Wv.x�.t1/; T � t1/:

(13.22)

Definition 6. The cooperative differential game �v.x0; T � t0/ with side payments
has a strongly time-consistent solution Wv.x0; T � t0/ if all imputations from
Wv.x0; T � t0/ are strongly time consistent.

To illustrate, let us first consider the simplest case where the players have only
terminal payoffs, that is,

Ki .x0; T � t0I u1; : : : ; un/ D Hi .x.T // i D 1; : : : ; n;

which is obtained from (13.2) by setting hi � 0 for all i . The resulting cooperative
differential game with terminal payoffs is again denoted by �v.x0; T � t0/, and we
write

H.x�.T // D .H1.x�.T //; � � � ; Hn.x�.T ///;

for the vector whose components are the payoffs resulting from the implementation
of the optimal state trajectory. It is clear that, in the cooperative differential game
�v.x0; T � t0/ with terminal payoffs Hi .x.T //, i D 1; : : : ; n; only the vector
H.x�/ D fHi .x

�/; i D 1; : : : ; ng may be time consistent.
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It follows from the time consistency of the imputation �0 2 Wv.x0; T � t0/ that

�0 2
\

t0�t�T

Wv.x�.t/; T � t /:

But since the current game �v.x�.T /; 0/ is of zero duration, then

Lv.x�.T /; 0/ D Wv.x�.T /; 0/ D H.x�.T // D H.x�/:

Hence, \
t0�t�T

Wv.x�.t/; T � t / D H.x�.T //;

i.e., �0 D H.x�.T // and there are no other imputations.
Thus, for the existence of a time-consistent solution in the game with terminal

payoffs, it is necessary and sufficient that, for all t0 � t � T;

H.x�.T // 2 Wv.x�.t/; T � t /:

Therefore, if, in the game with terminal payoffs, there is a time-consistent impu-
tation, then the players at the initial state x0 have to agree upon the realization of
the vector (imputation) H.x�/ 2 Wv.x0; T � t0/, and, with the motion along the
optimal trajectory x�.t/, at each instant t0 � t � T; this imputation H.x�/ belongs
to the solution of the current game �v.x�.t/; T � t /.

This shows that, in the game with terminal payoffs, only one imputation from
the set Wv.x0; T � t0/ may be time consistent. This is very demanding since it
requires that the imputation H.x�.T // belongs to the solutions of all subgames
along the optimal state trajectory. Consequently, there is no point in such games in
distinguishing between time-consistent and strongly time-consistent solutions.

Now, let us turn to the more general case where the payoffs are not collected only
at the end of the game. It can easily be seen that the optimality principle Wv.x0; T �

t0/ is strongly time consistent if for any N� 2 Wv.x0; T � t0/ there exists an IDP Q̨ .t/,
t 2 Œt0; T � such that

tZ

t0

Q̨ .�/d� ˚ Wv.x�.t/; T � t / � Wv.x0; T � t0/;

for all t 2 Œt0; T � (here, a ˚ A, where a 2 Rn, A � Rn, means the set of vectors
a C b, b 2 A) and

Q̨ .�/ D ˇ.�/

nX
iD1

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//:
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If the IDP Q̨ .t/ is implemented, then, on the time interval Œt0; t �; player i would
collect the amount

tZ

t0

ęi .�/d�; i D 1; : : : ; n:

Strong time consistency means that, if the imputation � 2 Wv.x0; T � t0/ and an
IDP Q̨ .t/ of � are selected, then after cashing the above, any optimal income (in the
sense of the current optimality principle Wv.x�.t/; T � t /) on the time interval

Œt; T � in the subgame �v.x�.t/; T � t / together with
tR

t0

ęi .�/d� constitutes an

imputation belonging to the optimality principle Wv.x0; T � t0/ in the original game
�v.x0; T � t0/. To get a clearer picture here, think of the optimality principle as a
particular solution of a cooperative game, e.g., the core. The condition of strong time
consistency requires that the players stick to the same solution concept throughout
the game. Of course, if the retained optimality principle (solution of a cooperative
game) has a unique imputation, as in, e.g., the Shapley value and the nucleolus, then
the two notions coincide. When this is not the case, as for, e.g., the core or stable
set, then strong time consistency is a desirable feature. However, the existence of at
least one strongly time-consistent imputation is far from being a given.

In the rest of this section, we show that, by making a linear transformation of
the characteristic function, we can construct a strongly time-consistent solution.
Let v.S I x�.t/; T � t /, S � N be any characteristic function in the subgame
�v.x�.t/; T �t / with an initial condition on the cooperative trajectory. Define a new
characteristic function Nv.S I x�.t/; T � t / in the game �v.x�.t/; T � t / obtained by
the following transformation:

Nv.S I x0; T � t0/ D �

TZ

t0

v.S I x�.�/; T � �/
v0�.x.�/; T � �/

v.N I x�.�/; T � �/
d�;

where

v0�.�/; T � �/ D
d

d�
v.N I x�.�/; T � �/ D �

"
nX

iD1

hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�//

#
:

Here hi .x
�.�/; u�

1 .�/; : : : ; u�
n.�// is the instantaneous payoff of player i 2 N along

the cooperative trajectory at time � 2 Œt0; T �.

Remark 5. We make the following observations regarding this transformation:

1. The characteristic functions v .�/ and Nv .�/ have the same value for the grand
coalition in the whole game, that is,

Nv.N I x0; T � t0/ D v.N I x0; T � t0/:
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2. If v.S I x0; T � t0/ is superadditive, then Nv.S I x0; T � t0/ is also superadditive.

Similarly, in the subgame �v.x�.t/; T � t / we have

Nv.S I x�.t/; T � t / D �

TZ

t

v.S I x�.�/; T � �/
v0� .x.�/; T � �/

v.N I x�.�/; T � �/
d�:

Let Lv.x�.t/; T � t / be the set of imputations defined in the game �v.x�.t/;

T � t / with characteristic function v.S I x�.t/; T � t /. Choose a selector
�.t/ 2 Lv.x�.t/; T � t / and define the following quantities:

� D �

TZ

t0

�.�/
v0� .x.�/; T � �/

v.N I x�.�/; T � �/
d�;

�.t/ D �

TZ

t

�.�/
v0� .x.�/; T � �/

v.N I x�.�/; T � �/
d�; t 2 Œt0; T �:

Now define the transformed imputation set Lv.x�.t/; T � t / in �v.x0; T � t0/ as
the set of all �.t/ for all possible measurable selectors �.�/ 2 Lv.x�.�/; T � �/,
� 2 Œt; T �. Let W v.x�.�/; T � �/ in �v.x�.�/; T � �/ be the set of all imputations
�.t/ such that

�.t/ D �

TZ

t

�.�/
v0� .x.�/; T � �/

v.N I x�.�/; T � �/
d�;

where �.�/ is a measurable selector �.�/ 2 Wv.x�.�/; T � �/. Consequently, if
Wv.x�.�/; T � �/ is the core in �v.x�.�/; T � �/, W v.x�.�/; T � �/; then it is also
the core in �v.x�.�/; T � �/ but defined for the linearly transformed characteristic
function Nv.S I x0; T � t0/. It can be easily seen that this new “regularized” core is
strongly time consistent (Petrosyan 1993, 1995).

7 Cooperative Differential Games with Random Duration

In this section, we deal with the case where the terminal date of the differential game
is random. This scenario is meant to represent a situation where a drastic exogenous
event, e.g., a natural catastrophe, would force the players to stop playing the game
at hand. Note that the probability of occurrence of such an event is independent of
the players’ actions.
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A two-player zero-sum pursuit-evasion differential game with random terminal
time was first studied in Petrosjan and Murzov (1966). The authors assumed that
the probability distribution of the terminal date is known, and they derived the
Bellman-Isaacs equation for this problem. Nonzero-sum differential games with
random duration were analyzed in Petrosyan and Shevkoplyas (2000, 2003), and
a Hamilton-Jacobi-Bellman (HJB) equation was obtained. The case of nonconstant
discounting was considered in Marín-Solano and Shevkoplyas (2011).8

Consider an n-player differential game �.x0/, starting at instant of time t0 with
the dynamics given by

Px D g.x; u1; : : : ; un/; x 2 Rn; ui 2 U � comp Rl; (13.23)

x.t0/ D x0: (13.24)

As in Petrosjan and Murzov (1966) and Petrosyan and Shevkoplyas (2003), the
terminal time T of the game is random, with a known probability distribution
function F .t/; t 2 Œt0; 1/ . The function hi .�/ is Riemann integrable on every
interval Œt0; t �, that is, for every t 2 Œt0; 1/ there exists an integral

R t

t0
hi .�/d� .

The expected integral payoff of player i can be represented by the following
Lebesgue-Stieltjes integral:

Ki .x0; t0; u1; : : : ; un/D

Z 1

t0

�Z t

t0

hi .� ; x.�/; u1; : : : ; un/d�

	
dF .t/; i D 1; : : : ; n:

(13.25)

For all admissible player strategies (controls), let the instantaneous payoff be a
nonnegative function:

hi .�; x.�/; u1; : : : ; u2/ � 0; 8 � 2 Œt0; 1/: (13.26)

Then, the following proposition holds true (see Kostyunin and Shevkoplyas 2011):
Let the instantaneous payoff hi .t/ be a bounded, piecewise continuous function of
time, and let it satisfy the condition of nonnegativity (13.26). Then, the expectation
of the integral payoff of player i (13.25) can be expressed in the following simple
form:

Ki .t0; x0; u1; : : : ; un/ D

1Z

t0

hi .�/.1 � F .�//d�; i D 1; : : : ; n: (13.27)

Moreover, integrals in (13.25) and (13.27) exist or do not exist simultaneously.
Let the game �.x0/ evolve along the trajectory x.t/. Then at each time instant

# , # 2 .t0I 1/ players enter a new game (subgame) �.x.#// with initial state

8For an analysis of an optimal control problem with random duration, see, e.g., Boukas et al. (1990)
and Chang (2004).
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x.#/ D x. Clearly, there is a probability F .#/ that the game �.x0/ will be
terminated before # . Then, the probability of starting the subgame �.x.#// is equal
to .1 � F .#//. Consequently, the expected total payoff of player i is given by the
following formula:

Ki .x; #; u1; : : : ; un/ D

Z 1

#

�Z t

#

hi .�; x.�/; u1; : : : ; un/d�

	
dF#.t/; (13.28)

where F#.t/, t � # is the conditional probability distribution function of the
random terminal time in game �.x.#//. Restricting ourselves to only stationary
processes, the expression of F#.t/ reduces to

F#.t/ D
F .t/ � F .#/

1 � F .#/
; t 2 Œ#; 1/: (13.29)

Further, let us assume that there exists a density function f .t/ D F 0.t/. The
conditional density function is then given by the following formula:

f#.t/ D
f .t/

1 � F .#/
: (13.30)

Using (13.30), the total payoff for player i in the subgame �.x.#// can then be
expressed as follows:

Ki .x; #; u1; : : : ; un/ D
1

1 � F .#/

Z 1

#

�Z t

#

hi .�; x.�/; u1; : : : ; un/d�/

	
f .t/dt:

Taking stock of the results in Kostyunin and Shevkoplyas (2011), equation (13.28)
can be written equivalently as

Ki .x; #; u1; : : : ; un/ D
1

1 � F .#/

Z 1

#

�
.1 � F .�//hi .�; x.�/; u1; : : : ; un//

�
d�:

Denote by W .x; t/ the value function for the considered problem. The Hamilton-
Jacobi-Bellman equation for the problem at hand is as follows (see Shevkoplyas
2009 and Marín-Solano and Shevkoplyas 2011):

f .t/

1 � F .t/
W D

@W

@t
C max

u

�
hi .x; u; t / C

@W

@x
g.x; u/

�
: (13.31)

Equation (13.31) can be used for finding feedback solutions for both the
noncooperative and the cooperative game with corresponding subintegral function
hi .x; u; t /.
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To illustrate in a simple way the determination of a time-consistent solution, let
us assume an exponential distribution for the random terminal time T , i.e.,

f .t/ D �e��.t�t0/I F .t/ D 1 � e��.��t0/I
f .t/

1 � F .t/
D �; (13.32)

where � is the rate parameter. The integral payoff Ki .�/ of player i is equivalent
to the integral payoff of that player in the game with an infinite time horizon and
constant discount rate �, that is,

Ki .x0; t0; u1; : : : ; un/ D

Z 1

t0

h.�/.1 � F .�//d� D

Z 1

t0

h.�/e��.��t0/d�:

It can readily be shown that the derived HJB equation (13.31) in the case of
exponential distribution of the terminal time is the same as the well-known HJB
equation for the problem with constant discounting with rate �. In particular, one
can see that for f .t/

1�F .t/
D �, the HJB equation (13.31) takes the following form (see

Dockner et al. 2000):

�W .x; t/ D
@W .x; t/

@t
C max

u

�
hi .x; u; t / C

@W .x; t/

@x
g.x; u/

�
: (13.33)

The conclusion is that a problem with a random duration and an exponential
distribution of T is equivalent to a deterministic problem with a constant discounting
of payoffs. This fact was noted in Haurie (2005) for a multigenerational game model
with a random game duration; see also Wrzaczek et al. (2014).

We remark that the term f .t/

1�F .t/
on the left-hand side of equation (13.31) is the

well-known hazard function (or failure rate) in reliability theory, which is denoted
by

�.t/ D
f .t/

1 � F .t/
: (13.34)

Using the definition of the hazard function (13.34), we get the following new form
for the HJB equation in (13.31):

�.t/W .x; t/ D
@W .x; t/

@t
C max

u

�
hi .x; u; t / C �.t/Si .x.t// C

@W .x; t/

@x
g.x; u/

	
;

(13.35)

For exponential distribution (13.32), the hazard function is constant, that is,
�.t/ D �. So, inserting � instead of �.t/ into (13.35), we easily get the standard
HJB equation for a deterministic game with a constant discounting rate � of the
utility function in (13.33); see Dockner et al. (2000).
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7.1 A Time-Consistent Shapley Value

Suppose that the players agree to cooperate and coordinate their strategies to
maximize their joint payoffs. Further, assume that the players adopt the Shapley
value, which we denote by Sh D fShi giD1;:::;n. Let ˛.t/ D f˛i .t/ � 0giD1;:::;n be
the corresponding IDP during the game �.x0; t0/, that is,

Shi D

Z 1

t0

.1 � F .t//˛i .t/dt; i D 1; : : : ; n: (13.36)

If there exists an IDP ˛.t/ D f˛i .t/ � 0giD1;:::;n such that for any # 2 Œt0; 1/

the Shapley value NSh
#

D f NSh
#

i g in the subgame �.x�.#/; #/, # 2 Œt0; 1/ can be
written as

NSh
#

i D
1

.1 � F .#//

Z 1

#

.1 � F .t//˛i .t/dt; i D 1; : : : ; n; (13.37)

then the Shapley value in the game �.x0; t0/ can be represented in the following
form:

NShi D

Z #

t0

.1 � F .�//ˇi .�/d� C .1 � F .#// NShi
#
; 8 # 2 Œt0; 1/; i D 1; : : : ; n:

(13.38)

Differentiating (13.38) with respect to # , we obtain the following expression for the
IDP:

˛i .#/ D
f .#/

.1 � F .#//
NShi

#
� . NShi

#
/0; # 2 Œt0; 1/; i D 1; : : : ; n:

(13.39)

Using the hazard function, (13.39) can be rewritten in a simple form:

˛i .#/ D �.#/ NShi
#

� . NShi
#
/0; # 2 Œt0; 1/; i D 1; : : : ; n: (13.40)

To sum up, the IDP (13.40) allows us to allocate over time, in a time-consistent
manner, the respective Shapley values.

For a detailed analysis of a similar setting, see Shevkoplyas (2011). The
described model with a random time horizon has been extended in other ways. In
Kostyunin et al. (2014), the case of asymmetric players was considered. Namely,
it was assumed that the players may leave the game at different instants of time.
For this case, the HJB equation was derived and solved for a specific application
of resource extraction. Furthermore, in Gromova and Lopez-Barrientos (2015), the
problem was considered with random initial times for asymmetric players.

In Gromov and Gromova (2014), a new class of differential games with regime
switches was considered. This formulation generalizes the notion of differential
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games with a random terminal time by considering composite probability distri-
bution functions. It was shown that the optimal solutions for this class of games can
be obtained using the methods of hybrid optimal control theory (see also Gromov
and Gromova 2016).

8 Concluding Remarks

The sustainability of a cooperative agreement over time is a challenging issue both
in theory and in applications of dynamic games in many areas, e.g., economics,
environmental agreements, and management science. This chapter reviewed how a
time-consistent solution can be constructed in deterministic differential games with
transferable payoffs. The only stochastic aspect we dealt with is the case where
the terminal time is random. Time consistency in stochastic dynamic games is the
subject of Petrosyan et al. (2004), Baranova and Petrosjan (2006), and Parilina
(2014, 2015). For a comprehensive coverage of cooperative stochastic differential
games, see the books by Yeung and Petrosjan (2005a, 2012). For examples of an
implementation of time-consistent solutions in this class of games, see, e.g., Yeung
and Petrosjan (2004, 2005b) and Yeung et al. (2007). Recently, some attention
has been devoted to the class of dynamic games played over event trees, that is,
stochastic games where the transition between states is not affected by players’
actions. Reddy et al. (2013) proposed a node-consistent Shapley value, and Parilina
and Zaccour (2015b) a node-consistent core for this class of games. Finally, we note
a notable surge of applications of dynamic cooperative game theory in areas such as
telecommunications, social networks, and power systems, where time consistency
may be an interesting topic to study; see, e.g., Bauso and Basar (in print), Bayens
et al. (2013), Opathella et al. (2013), Saad et al. (2009, 2012), and Zhang et al.
(2015).

References

Angelova V, Bruttel LV, Güth W, Kamecke U (2013) Can subgame perfect equilibrium threats
foster cooperation? An experimental test of finite-horizon folk theorems. Econ Inq 51:
1345–1356

Baranova EM, Petrosjan LA (2006) Cooperative stochasyic games in stationary strategies. Game
Theory Appl XI:1–7
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Zheng YP, Başar T, Cruz JB (1982) Incentive Stackelberg strategies for deterministic multi-stage
decision processes. IEEE Trans Syst Man Cybern SMC-14(1):10–20



14Nontransferable Utility Cooperative
Dynamic Games

David W. K. Yeung and Leon A. Petrosyan

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
2 NTU Cooperative Differential Game Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

2.1 Individual Rationality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
2.2 Group Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

3 Pareto Optimal and Individually Rational Outcomes: An Illustration . . . . . . . . . . . . . . . . 639
3.1 Noncooperative Outcome and Pareto Optimal Trajectories . . . . . . . . . . . . . . . . . . . . 640
3.2 An Individual Player’s Payoff Under Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

4 Monitoring and Threat Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
4.1 Bargaining Solution in a Cooperative Game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
4.2 Threats and Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

5 Notion of Subgame Consistency in NTU Differential Games . . . . . . . . . . . . . . . . . . . . . . 648
6 A Subgame Consistent NTU Cooperative Differential Game . . . . . . . . . . . . . . . . . . . . . . . 650
7 Discrete-Time Analysis and Variable Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

7.1 NTU Cooperative Dynamic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
7.2 Subgame Consistent Cooperation with Variable Weights . . . . . . . . . . . . . . . . . . . . . 656
7.3 Subgame Consistent Solution: A Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

8 A Public Good Provision Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
8.1 Game Formulation and Noncooperative Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
8.2 Cooperative Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

D. W. K. Yeung (�)
SRS Consortium for Advanced Study in Dynamic Games, Hong Kong Shue Yan University,
Hong Kong, China
e-mail: dwkyeung@hksyu.edu

L. A. Petrosyan
Faculty of Applied Mathematics-Control Processes, St Petersburg State University, St Petersburg,
Russia
e-mail: spbuoasis7@petrlink.ru

© Springer International Publishing AG, part of Springer Nature 2018
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Abstract

Cooperation in an inter-temporal framework under nontransferable utility/pay-
offs (NTU) presents a highly challenging and extremely intriguing task to game
theorists. This chapter provides a coherent analysis on NTU cooperative dynamic
games. The formulations of NTU cooperative dynamic games in continuous time
and in discrete time are provided. The issues of individual rationality, Pareto
optimality, and an individual player’s payoff under cooperation are presented.
Monitoring and threat strategies preventing the breakup of the cooperative
scheme are presented. Maintaining the agreed-upon optimality principle in effect
throughout the game horizon plays an important role in the sustainability of coop-
erative schemes. The notion of time (subgame optimal trajectory) consistency in
NTU differential games is expounded. Subgame consistent solutions in NTU
cooperative differential games and subgame consistent solutions via variable
payoff weights in NTU cooperative dynamic games are provided.

Keywords
Cooperative games � Nontransferable utility � Differential games � Dynamic
games � Time consistency � Group optimality � Individual rationality �

Subgame consistency � Variable weights � Optimality principle

1 Introduction

Cooperation suggests the possibility of socially optimal and group-efficient solu-
tions to decisions involving strategic actions, including dynamic game problems.
However, in some cases utilities/payoffs of the players may not be transferable.
It is well known that utilities or payoffs in areas like economics and national
security are nontransferable or noncomparable among the participating agents.
Game theoretic decisions concerning utility/payoff from consumption, national
defense, social development, coalition building, and political establishments often
fall into the category of nontransferable payoffs. For instance, national (or social)
planning is used to optimize the system-wide efficiency and well-being of multi-
operator systems. It tries to maximize the system’s benefits by coordinating different
operators’ strategies and managing externalities under some policy resolutions. The
common practice of planning by gaining group optimality and neglecting individual
rationality limits the applicability of national planning solutions. Recognizing that
decisions are required to satisfy individual rationality in a real world system,
cooperative game theory – which accounts for group optimality and individual
rationality – can be used to resolve the limitation in the application of national
planning. However, in national planning the well-being of the various operators
may not be transferable or comparable. In a static framework, various cooperative
solutions satisfying group optimality and individual rationality for nontransferable
utility (NTU) games had been developed, like the Nash (1950, 1953) bargaining
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solution, the Kalai and Smorodinsky (1975) bargaining solution, Kalai’s (1977)
proportional solution, and the core by Edgeworth (1881).

Since human beings live in time, and decisions generally lead to effects over time,
it is by no means an exaggeration to claim that life is a dynamic game. Very often,
real-life games are of dynamic nature. In nontransferable utility/payoffs (NTU)
cooperative dynamic games, transfer payments are not possible, and the cooperative
payoffs are generated directly by the agreed-upon cooperative strategies. The
identification of the conditions satisfying individual rationality throughout the
cooperation period becomes extremely strenuous. This makes the derivation of an
acceptable solution in nontransferable utility games much more difficult. To prevent
deviant behaviors of players as the game evolves, monitoring and threat strategies
are needed to reach a cooperative solution (see Hämäläinen et al. 1985). On top of
the crucial factors of individual rationality and Pareto optimality, maintaining the
agreed-upon solution throughout the game horizon plays an important role in the
sustainability of the cooperative scheme. A stringent condition for sustainable coop-
eration is time (subgame optimal trajectory) consistency. A cooperative solution
is time (subgame optimal trajectory) consistent if the optimality principle agreed
upon at the outset remains in effect in any subgame starting at a later time with a
state brought about by prior optimal behavior. Hence, the players do not have any
incentive to deviate from the cooperation scheme.

While in cooperative dynamic games with transferrable payoffs the time (sub-
game optimal trajectory) consistency problem can be resolved by transfer payment
(see Yeung and Petrosyan (2004 and 2012)), the NTU games face a much more
challenging task. There is only a small literature on cooperative dynamic games
with nontransferable payoffs. Leitmann (1974), Dockner and Jorgensen (1984),
Hämäläinen et al. (1985), and Yeung and Petrosyan (2005), Yeung et al. (2007),
de-Paz et al. (2013), and Marin-Solano (2014) studied continuous-time cooperative
differential games with nontransferable payoffs. Haurie (1976) examined the prop-
erty of dynamic consistency of direct application of the Nash bargaining solution in
NTU cooperative differential games. Sorger (2006) and Yeung and Petrosyan (2015)
presented discrete-time cooperative dynamic games with nontransferable payoffs.

This chapter provides a comprehensive analysis on NTU cooperative dynamic
games. Sect. 2 provides the basic formulation of NTU cooperative differential
games. The issues of individual rationality, Pareto optimal strategies, and an individ-
ual player’s payoff under cooperation are presented. An illustration of the derivation
of the Pareto optimal frontier and the identification of individually rational outcomes
are given in Sect. 3. The formulation of a cooperative solution with monitoring and
credible threats preventing deviant behaviors of the players is provided in Sect. 4.
The notion of subgame consistency in NTU differential games is expounded in
Sect. 5. A subgame consistent NTU resource extraction game is provided in the
following section. In Sect. 7, discrete-time NTU cooperative dynamic games and
the use of variable payoff weights to maintain subgame consistency are presented.
In particular, a theorem for the derivation of cooperative strategies leading to a
subgame consistent solution using variable weights is provided. Sect. 8 presents an
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example of a subgame consistent solution with variable weights in a NTU dynamic
game in public good provision. Concluding remarks are given in Sect. 9.

2 NTU Cooperative Differential Game Formulation

Consider the general form of an n-person cooperative differential game with initial
state x0 and duration Œ0; T �. Player i 2 f1; 2; : : : ; ng � N seeks to maximize the
objective: Z T

0

gi Œs; x.s/; u1.s/; u2.s/; : : : ; un.s/�ds C qi .x.T //; (14.1)

where x.s/ 2 X � Rm denotes the state variables of the game at time s, qi .x.T //
is player i ’s valuation of the state at terminal time T , and ui 2 U i is the control of
player i , for i 2 N . The payoffs of the players are nontransferable.

The state variable evolves according to the dynamics:

Px.s/ D f Œs; x.s/; u1.s/; u2.s/; : : : ; un.s/�; x.0/ D x0: (14.2)

The functions f Œs; x; u1; u2; : : : ; un�, gi Œs; �; u1; u2; : : : ; un�, and qi .�/, for i 2 N

and s 2 Œ0; T � are differentiable functions.
To analyze the cooperative outcome, we first state the noncooperative equilib-

rium (if it exists) as a benchmark for negotiation in a cooperative scheme. If a
noncooperative equilibrium exists, we let fu�

i .t / D ��
i .t; x/ 2 U i , for i 2 N g

denote a set of feedback Nash equilibrium strategies and fV i .t; x/; i 2 N g denote
the Nash equilibrium payoffs of the players at time t 2 Œ0; T � given that state at time
t is x.t/ D x.

While noncooperative outcomes are (in general) not Pareto optimal, the players
would consider cooperation to enhance their payoffs. Since payoffs are nontransfer-
able, the cooperative payoff for an individual player is generated directly by the
agreed-upon cooperative strategies. We use �c.x0; T / to denote the cooperative
differential game (14.1) and (14.2). Let fuc1.s/; u

c
2.s/; : : : ; u

c
n.s/g denote a set of

cooperative strategies agreed upon by the players, then the state dynamics becomes:

Px.s/ D f Œs; x.s/; uc1.s/; u
c
2.s/; : : : ; u

c
n.s/�; x.0/ D x0; (14.3)

and we use fxc.s/gTsD0 to denote the resulting cooperative state trajectory derived
from (14.3). We also use the terms xc.s/ and xcs along the cooperative trajectory
interchangeably when there is no ambiguity.

The payoff of player i under cooperation, and from time t on becomes:

W i.t; x/ D

Z T

t

gi Œs; xc.s/; uc1.s/; u
c
2.s/; : : : ; u

c
n.s/�ds C qi .xc.T //; (14.4)

for xc.t/ D x, i 2 N and t 2 Œ0; T �.
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If at least one player deviates from the cooperative strategies, the game would
revert back to a noncooperative game.

2.1 Individual Rationality

An essential factor for successful cooperation is individual rationality, which means
that the payoff incurred to a player under cooperation will be no less than his
payoff under noncooperation. Failure to guarantee individual rationality leads
to the condition where the concerned participants would reject the agreed-upon
cooperative scheme and play noncooperatively. In the case of cooperative dynamic
games, individual rationality has to be satisfied for every player throughout the game
horizon. Hence it is required that:

W i.t; xc.t// = V i .t; xc.t//; (14.5)

for i 2 N and t 2 Œ0; T �, along the cooperative state trajectory fxc.T /gTtD0.
In general there exist cooperative strategies fuc1.s/; u

c
2.s/; : : : ; u

c
n.s/g such that:

W i.0; x0.t// � V i .0; x0.t//; for i 2 N: (14.6)

However, there is no guarantee that there exist cooperative strategies fuc1.s/;
uc2.s/; : : : ; u

c
n.s/g such that (14.5) is satisfied. At any time t , if player j ’s noncooper-

ative payoff V j .t; xc.t// is greater than his cooperative payoffW j .t; xc.t//, he has
the incentive to play noncooperatively. This raises the issue of dynamic instability
in cooperative differential games. Haurie (1976) discussed the problem of dynamic
instability in extending the Nash bargaining solution to differential games.

2.2 Group Optimality

Another factor for successful cooperation is group optimality. Group optimality
ensures that all potential gains from cooperation are captured. Failure to fulfill
group optimality leads to the condition where the participants prefer to deviate
from the agreed-upon solution plan in order to extract the unexploited gains. Group
rationality requires the players to seek a set of cooperative strategies/controls that
yields a Pareto optimal solution.

2.2.1 Pareto Optimal Strategies
Under cooperation, the players negotiate to establish an agreement on how to play
the cooperative game that includes the adoption of a set of cooperative strategies
and hence yields the cooperative payoffs to individual players. Pareto optimal
outcomes for �c.x0; T / can be identified by choosing a vector of payoff weights



638 D. W. K. Yeung and L. A. Petrosyan

˛ D .˛1; ˛2; : : : ˛n/, for
nP

jD1

˛j D 1 and ˛j > 0, that solves the following control

problem of maximizing weighted sum of payoffs (See Leitmann (1974)):

max
u1.s/;u2.s/;:::;un

(
nP

jD1

˛j
�Z T

t

gj Œs; x.s/; u1.s/; u2.s/; : : : ; un.s/�ds C qj .x.T //

�)
;

(14.7)
subject to the dynamics (14.2).

Theorem 1. A set of controls
˚�
 ˛
1 .t; x/;  

˛
2 .t; x/; : : : ;  

˛
n .t; x/

�
; for t 2 Œ0; T �

�
provides an optimal solution to the control problem (14.2) and (14.7) if there exists
a continuously differentiable function W ˛.t; x/ W Œ0; T � � Rm ! R satisfying the
following partial differential equation:

�W ˛
t .t; x/ D max

u1.s/;u2.s/;:::;un.s/

(
nP

jD1

˛j gj .t; x; u1; u2; : : : ; un/

CW ˛
x .t; x/f .t; x; u1; u2; : : : ; un/g ;

W ˛.T; x/ D
nP

jD1

qj .x/: (14.8)

Proof. The result follows directly from dynamic programming. �

Substituting
�
 ˛
1 .t; x/;  

˛
2 .t; x/; : : : ;  

˛
n .t; x/

�
for t 2 Œ0; T � into (14.2) yields

the dynamics of the Pareto optimal trajectory associated with payoff weight ˛:

Px.s/ D f Œs; x.s/;  ˛
1 .s; x/;  

˛
2 .s; x/; : : : ;  

˛
n .s; x/�; x.0/ D x0: (14.9)

We use fx˛.s/gTsD0 to denote the Pareto optimal cooperative state trajectory under
the payoff weights ˛. Again the terms x˛.s/ and x˛s will be used interchangeably if
there is no ambiguity.

2.2.2 An Individual Player’s Payoff Under Cooperation
In order to verify individual rationality in a cooperative scheme, we have to derive
individual players’ payoff functions under cooperation. To do this, we first substitute
the optimal controls

�
 ˛
1 .t; x/;  

˛
2 .t; x/; : : : ;  

˛
n .t; x/

�
into the objective functions

(14.1) to derive the players’ payoffs with ˛ being chosen as the cooperative weights
as:

W .˛/i .t; x/ D

Z T

t

gi Œs; x˛.s/;  ˛
1 .s; x

˛.s//;  ˛
2 .s; x

˛.s//; : : : ;  ˛
n .s; x

˛.s//�ds

Cqi .x˛.T //; (14.10)

for i 2 N where x˛.t/ D x.
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The following theorem characterizes individual cooperative payoffs, when the
weights are given by ˛.

Theorem 2. If there exist continuously differentiable functions
W .˛/i .t; x/ W Œ0; T � �Rm �! R, for i 2 N , satisfying

�W
.˛/i
t .t; x/ D gi Œt; x;  ˛

1 .t; x/;  
˛
2 .t; x/; : : : ;  

˛
n .t; x/�

CW .˛/i
x .t; x/f Œt; x;  ˛

1 .t; x/;  
˛
2 .t; x/; : : : ;  

˛
n .t; x/�;

W .˛/i .T; x/ D qi .x/; for i 2 N I (14.11)

then W .˛/i .t; x/ yields player i ’s cooperative payoff over the interval Œt; T � with ˛
being the cooperative weight and x˛.t/ D x.

Proof. See Yeung (2004). �

Theorem 2 is a deterministic version of the theorem in Yeung (2004). To maintain
individual rationality throughout the game, the chosen ˛ has to satisfy:

W .˛/i .T; x/ � V i .t; x/; for t 2 Œ0; T � and all i 2 N I (14.12)

with x being picked as a vector on the cooperative state trajectory fx˛.s/gTsD0.
In general, there always exist Pareto optimal payoff weights ˛ such that

W .˛/i .0; x0/ = V i .0; x0/. However, there is no guarantee that there would exist
any Pareto optimal payoff weights ˛ such that individual rationality is satisfied
throughout the game horizon as indicated in (14.12). We use ƒ to denote the set
of ˛ such that (14.12) is satisfied, andƒmay be an empty set. Ifƒ is nonempty and
if the players agree to choose a vector ˛ 2 ƒ in their cooperation, a Pareto optimal
cooperative scheme satisfying individual rationality will result.

3 Pareto Optimal and Individually Rational Outcomes:
An Illustration

In this section an explicit NTU cooperative game is used to illustrate the derivation
of the cooperative state trajectory, individual rationality, and Pareto optimality
described in Sect. 2. We adopt a deterministic version of the renewable resource
extraction game by Yeung et al. (2007) and consider a two-person nonzero-sum
differential game with initial state x0 and duration Œ0; T �. The state space of the
game isX � RC. The state dynamics of the game is characterized by the differential
equation:

Px.s/ D Œa � bx.s/ � u1.s/ � u2.s/�; x.0/ D x0 2 X; (14.13)
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where ui 2 RC is the control of player i , for i 2 f1; 2g, a, b, and � are positive
constants. Equation (14.13) could be interpreted as the stock dynamics of a biomass
of a renewable resource like fish or forest. The state x.s/ represents the resource
size, ui .s/ is the (nonnegative) amount of resource extracted by player i , a is the
natural growth of the resource, and b is the rate of degradation.

At initial time 0, the payoff of player i 2 f1; 2g is:

J i .0; x0/ D

Z T

0

Œhiui .s/ � ciui .s/
2x.s/�1 C kix.s/�e

�rtds C e�rT qix.T /;

(14.14)

where hi , ci , ki , and qi are positive parameters and r is the discount rate.
The term hiui .s/ reflects player i ’s satisfaction level obtained from the con-

sumption of the resource extracted, and ciui .s/
2x.s/�1 measures the dissatisfaction

created in the extraction process. kix.s/ is the benefit to player i related to the
existing level of the resource. Total utility of player i is the aggregate level of
satisfaction. Payoffs in the form of utility are not transferable between the players.
There exists a time discount rate r , and utility received at time t has to be discounted
by the factor e�rt . At time T , player i will receive a terminal benefit qix.T /, where
qi is a nonnegative constant.

3.1 Noncooperative Outcome and Pareto Optimal Trajectories

Invoking the standard techniques for solving differential games, a set of feedback
strategies fu�

i .t / D ��
i .t; x/, for i 2 f1; 2g and t 2 Œ0; T �g, provides a

Nash equilibrium solution to the game (14.13)–(14.14) if there exist continuously
differentiable functions V i .t; x/ W Œ0; T � � R �! R, i 2 f1; 2g, satisfying the
following partial differential equations:

V i .t; x/ D e�rt qix; for i 2 f1; 2g; and j ¤ i;

�V i
t .t; x/ D max

ui

˚
Œhiui � ciu

2
i x

�1 C kix�e
�rt

CV i
x .t; x/Œa � bx � ui � ��

i .t; x/�
�
: (14.15)

Performing the indicated maximization in (14.15) yields:

��
i .t; x/ D

Œhi � V i
x .t; x/e

rt �x

2c
; for i 2 f1; 2g and x 2 X: (14.16)

Proposition 1. The value function of the non cooperative payoff of player i in the
game (14.13) and (14.14) is:

V i .t; x/ D e�rt ŒAi .t/x C Bi.t/�; for i 2 f1; 2g and t 2 Œ� ; T �; (14.17)
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where Ai.t/ and Bi.t/, for i 2 f1; 2g, satisfy:

PAi.t/ D .r C b/Ai .t/ � ki � Œhi�Ai .t/�
2

4ci
C

Ai .t/Œhj�Aj .t/�

2cj
,

PBi.t/ D rBi .t/ � aAi .t/, for i; j 2 f1; 2g and i ¤ j ,
Ai.T / D qi ; Bi .T / D 0.

Proof. Upon substitution of ��
i .t; x/ from (14.16) into (14.15) yields a set of partial

differential equations. One can readily verify that (14.17) is a solution to the set of
equations (14.15). �

Consider the case where the players agree to cooperate in order to enhance
their payoffs. If the players agree to adopt a weight ˛ D .˛1; ˛2/, Pareto optimal
strategies can be identified by solving the following optimal control problem:

max
u1;u2

˚
˛1J 1.t0; x0/C ˛2J 2.t0; x0/

�

� max
u1;u2

�Z T

0

.˛1Œh1u1.s/ � c1u1.s/
2x.s/�1 C k1x.s/�

C˛2Œh2u2.s/ � c2u2.s/
2x.s/�1 C k2x.s/�/e

�rtds

Ce�rt Œ˛1q1x.T /C ˛2q2x.T /�jx.t0/
�
; (14.18)

subject to dynamics (14.13).
Invoking Theorem 1 in Sect. 2, the optimal solution of the control problem

(14.13) and (14.18) can be characterized as.

Corollary 1. A set of controls { Œ ˛
1 .t; x/;  

˛
2 .t; x/�, for t 2 Œ0; T �} provides

an optimal solution to the control problem (14.13) and (14.18), if there exists a
continuously differentiable function W .˛/.t; x/ W Œ0; T � � R �! R satisfying the
partial differential equation:

�W ˛
t .t; x/ D max

u1;u2
f.˛1Œh1u1 � c1u

2
1x

�1 C k1x�

C˛2Œh2u2 � c2u
2
2x

�1 C k2x�/e
�rt

CW ˛
x .t; x/Œa � bx � ui � uj �;

W ˛.T; x/ D e�rt Œ˛1q1x.T /C ˛2q2x.T /�: (14.19)

Performing the indicated maximization in Corollary 1 yields:

 ˛
1 .t; x/ D

Œ˛1h1 �W ˛
x .t; x/e

rt �x

2˛2c1
; and
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 ˛
2 .t; x/ D

Œ˛22h2 �W ˛
x .t; x/e

rt �x

2˛2c2
; (14.20)

for t 2 Œt0; T �.

Proposition 2. The maximized value function of the optimal control problem
(14.13) and (14.18) is:

W ˛.t; x/ D expŒ�r.t � t0/�ŒA
˛.t/x C B˛.t/�; (14.21)

for t 2 Œ0; T �, where A˛.t/ and B˛.t/ satisfy:

PA˛.t/ D .r C b/A˛.t/ �
Œ˛1h1 � A˛.t/�2

4˛1c1
�
Œ˛2h2 � A˛.t/�2

4˛2c2
� k1 � k2;

PB˛.t/ D rB˛.t/ � A˛.t/a;

A˛.T / D ˛1q1 C ˛2q2 and B˛.T / D 0:

Proof. Upon substitution of  ˛
1 .t; x/ and  ˛

2 .t; x/ from (14.20) into (14.19) yields
a partial differential equation. One can readily verify that (14.21) is a solution to
equation (14.19). �

Substituting the partial derivativesW ˛
x .t; x/ into ˛

1 .t; x/ and ˛
2 .t; x/ yields the

optimal controls of the problem (14.13) and (14.18) as:

 ˛
1 .t; x/ D

Œ˛1h1 � A˛.t/�x

2˛1c1
;

and

 ˛
2 .t; x/ D

Œ˛2h2 � A˛.t/�x

2˛2c2
; for t 2 Œ0; T �: (14.22)

Substituting these controls into (14.13) yields the dynamics of the Pareto optimal
trajectory associated with a weight ˛ as:

Px.s/ D a � bx.s/ �
Œ˛1h1 � A˛.s/�x.s/

2˛1c1
�
Œ˛2h2 � A˛.s/�x.s/

2˛2c2
; x.0/ D x0 2 X:

(14.23)

Equation (14.23) is a first-order linear differential equation, whose solution
fx˛.s/gTsD0 can be obtained explicitly using standard solution techniques.
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3.2 An Individual Player’s Payoff Under Cooperation

In order to verify individual rationality, we have to derive the players’ payoffs under
cooperation. Substituting the cooperative controls in (14.22) into the players’ payoff
functions yields the payoff of player 1 as:

W .˛/1.t; x/

D

Z T

t

�
h1Œ˛

1h1 � A˛.s/�x˛.s/

2˛1c1
�
Œ˛1h1 � A˛.s/�2x˛.s/

4.˛1/2c1
C k1x

˛.s/

	
e�rsds

Ce�rT q1x
˛.T /jx˛.t/;

and the payoff of player 2 as:

W .˛/2.t; x/

D

Z T

t

�
h2Œ˛

2h2 � A˛.s/�x˛.s/

2˛2c2
�
Œ˛2h2 � A˛.s/�2x˛.s/

4.˛2/2c2
C k2x

˛.s/

	
e�rsds

Ce�rT q2x.T /jx
˛.t/: (14.24)

Invoking Theorem 2 in Sect. 2, the value function W .˛/1.t; x/ can be character-
ized as:

�W
.˛/1
t .t; x/ D

�
h1Œ˛

1h1 � A˛.t/�x

2˛1c1
�
Œ˛1h1 � A˛.t/�2x

4.˛1/2c1
C k1x

	
e�rt (14.25)

CW .˛/1
x .t; x/

�
a � bx �

Œ˛1h1 � A˛.t/�x

2˛1c1
�
Œ˛2h2 � A˛.t/�x

2˛2c2

	
;

for x D x˛.t/.
Boundary conditions require:

W .˛/1.T; x/ D e�rT q1x: (14.26)

If there exist continuously differentiable functionsW .˛/1.t; x/ W Œ0; T ��R �! R

satisfying (14.25) and (14.26), then player 1’s payoff in the cooperative game under
the cooperation scheme with weight ˛ is indeed W .˛/1.t; x/.

Proposition 3. The function W .˛/1.t; x/ satisfying (14.25) and (14.26) can be
solved as:

W .˛/1.t; x/ D e�rt ŒA˛1 .t/x C B˛
1 .t/�; (14.27)
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where A˛1 .t/ and B˛
1 .t/ satisfy:

PA˛1 .t/ D

�
r C b C

Œ˛1h1 � A˛.t/�

2˛1c1
C
Œ˛2h2 � A˛.t/�

2˛2c2

	
A˛1 .t/

�
Œ˛1h1 � A˛.t/�Œh1 C A˛.t/�

4.˛1/2c1
� k1;

PB˛
1 .t/ D rB˛

1 .t/ � aA˛1 .t/, A
˛
1 .T / D q1 and B˛

1 .T / D 0:

Proof. Upon calculating the derivatives W .˛/1
t .t; x/ and W .˛/1

x .t; x/ from (14.27)
and then substituting them into (14.25)–(14.26) yield Proposition 3. �

Following a similar analysis, player 2’s cooperative payoff under payoff weights
˛ can be obtained as:

Proposition 4. The function W .˛/2.t; x/ can be solved as:

W .˛/2.t; x/ D e�rt ŒA˛2 .t/x C B˛
2 .t/�; (14.28)

where A˛2 .t/ and B˛
2 .t/ satisfy:

PA˛2 .t/ D
h
r C b C Œ˛1h1�A

˛.t/�

2˛1c1
C Œ˛2h2�A

˛.t/�

2˛2c2

i
OA
˛�1
2 .t/

� Œ˛2h2�A
˛.t/�Œ˛2h2CA

˛.t/�

4˛2c2
� k2;

PB˛
2 .t/ D rB˛

2 .t/ � aA˛2 .t/, A
˛
2 .T / D q2 and B˛

2 .T / D 0:

Proof. The proof follows that of Proposition 3. �

For Pareto optimality and individual rationality to hold simultaneously the set of
payoff weights ˛, they must satisfy W .˛/i .0; x0/ � V i .0; x0/.

4 Monitoring and Threat Strategies

For games that are played over time and the payoffs are nontransferable, the
derivation of a cooperative solution satisfying individual rationality throughout
the cooperation duration becomes extremely difficult. To avoid the breakup of the
scheme as the game evolves, monitoring and threats to prevent deviant behaviors of
players will be adopted.

4.1 Bargaining Solution in a Cooperative Game

Consider the two-country fishery management game in Hämäläinen et al. (1985) in
which the accumulation dynamics of the fish biomass x.s/ 2 X � RC is:
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Px.s/ D x.s/Œ� � ˇ ln x.s/ � u1.s/ � u2.s/�; x.0/ D x0; (14.29)

where � and ˇ are constants and ui .s/ is the fishing effort of country i .
The payoff to country i is:

Z �

0

lnŒui .s/x.s/�e
�rtds; for i 2 f1; 2g: (14.30)

In particular, the payoffs of the countries are not transferrable. By the transfor-
mation of variable z.s/ D ln x.s/, (14.29)–(14.30) becomes:

Pz.s/ D Œ� � ˇz.s/ � u1.s/ � u2.s/�; z.0/ D z0;

Z �

0

Œln.ui .s//C z.s/�e�rtds; for i 2 f1; 2g: (14.31)

First consider an open-loop Nash equilibrium of the game (14.31). Detailed
analysis of open-loop solutions can be found in Başar and Olsder (1999). The
corresponding current-value Hamiltonians can be expressed as:

Hi.z; 	; u1; u2/ � Œln.ui .s//C z.s/�

C	i .s/Œ� � ˇz.s/ � u1.s/ � u2.s/�; (14.32)

for i 2 f1; 2g, where 	i .s/ is the costate variable.
Necessary conditions for an open-loop equilibrium include the optimal controls:

ui .s/ D
1

	i .s/
; (14.33)

and the adjoint equations:

P	i .s/ D �1C 	i .s/.ˇ C r/; for i 2 f1; 2g: (14.34)

A constant solution to (14.34) is:

N	i D
1

.ˇ C r/

which yields the constant equilibrium strategy:

Nui D
1

N	i
D ˇ C r; for i 2 f1; 2g: (14.35)
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The constant costate vectors suggest a Bellman value function linear in the state
variable, that is, e�rtVi .z/ D e�rt . NAi C NBi z/, for i 2 f1; 2g, where

NBi D
1

.ˇ C r/
;

and

NAi D
1

r

�
�2C ln.ˇ C r/C

�

ˇ C r

	
; for i 2 f1; 2g: (14.36)

In this case the open-loop equilibrium is also a feedback Nash equilibrium
because the players’ strategies are independent of the state variable. One can readily
verify the linear Bellman function by invoking the corresponding HJB equation for
a feedback equilibrium solution as:

�
@V i

t .z/e
�rt

@t
D max

ui

˚
Œln.ui /C z�e�rt C V i

z .z/e
�rt .� � ˇz � ui � Nuj /

�
;

(14.37)
for i 2 f1; 2g.

Performing the indicated maximization, one obtains the Bellman value function
e�rtV i .z/ D e�rt . NAi C NBi z/.

Taking the Nash equilibrium outcome as the status quo with state z0 at time t0,
one obtains the non cooperative payoff of player i as e�rt0 . NAiC NBi z0/, for i 2 f1; 2g.

Now consider a Pareto optimal outcome obtained by solving the control problem
with performance criterion:

J �˛ D

Z �

t0

e�rt Œ˛1 ln.u1.s/x.s//C ˛2 ln.u2.s/x.s//�ds; (14.38)

and state equation (14.29), where ˛1 > 0, ˛2 > 0, and ˛1 C ˛2 D 1.
Again by the variable transformation z.s/ D ln x.s/, (14.38) can be expressed

as:

J �˛ �

Z �

t0

e�rt Œ˛1 ln.u1.s/C z.s//C ˛2 ln.u2.s/C z.s//�ds: (14.39)

The maximum principle yields the adjoint differential equation:

Pq.s/ D �.˛1 C ˛2/C q.s/.ˇ C r/

and the optimal cooperative controls:

ui .s/ D
˛i

q.s/
; for i 2 f1; 2g: (14.40)
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A constant costate variable solution can be obtained as:

Nq D
1

.ˇ C r/

which yields the constant cooperative optimal controls:

Nu�
i D

1

Nq
D ˛i .ˇ C r/; for i 2 f1; 2g: (14.41)

The Bellman value function reflecting the payoff for each player under coopera-
tion can be obtained as:
e�rtV �

i .z/ D e�rt . NA�
i C NB�

i z/, where NB�
i D 1

.ˇCr/
, and

NA�
i D

1

r

�
�1C ln.ˇ C r/C

�

ˇ C r
C ln.˛i /

	
; (14.42)

for i 2 f1; 2g.
The agreed-upon optimality principle to allocation of the players’ payoffs is to

follow the Kalai-Smorodinsky bargaining solution (1975). In this case of symmetric
players, the bargaining point corresponds to ˛1 D ˛2 D 1=2. Notice that the
weighting ˛1 D ˛2 D 1=2 is not affected by the initial state z0 at which the
bargaining occurs. This property is due to the special structure of the model and
will not be observed in more complicated systems.

4.2 Threats and Equilibria

If an arbitrator could enforce the agreement at .t0; z0/ with player i getting the
cooperative payoff y�

i D e�rt0 . NA�
i C NB�

i z0/; then the two players would use a fishing
effort Nu�

i D 1
2
.ˇ C r/, which is half of the noncooperative equilibrium effort. In the

absence of an enforcement mechanism, one player may be tempted to deviate at
some time from the cooperative agreement. It is assumed that the deviation by a
player will be noticed by the other player after a delay of ı. This will be called the
cheating period. The non-deviating player will then have the possibility to retaliate
by deviating from the cooperative behavior for a length of time of h. This can be
regarded as the punishment period. At the end of this period, a new bargaining
process will start, and a new cooperative solution will be obtained through an
appropriate scheme. Therefore, each player may announce a threat corresponding
to the control he will use in a certain punishment period if he detects cheating by
the other player.

Consider the situation where country i announces that if country j deviates then
it will use a fishing effort umi � ˇ C r for a period of length h as retaliation. At
.t; z�.t//, country j expects an outcome e�rtV �

j .z
�.t// D e�rt . NA�

j C NB�
j z.t// if

it continues to cooperate. Thus V �
j .z

�.t// denotes the infinite-horizon bargaining
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game from the initial stock level z�.t/ at time t for country j . If country j deviates,
the best outcome it can expect is the solution of the following optimal control
problem:

Cj .t; z
�.t// D max

uj

Z tCıCh

t

e�rsŒln.uj .s/C z.s//�ds

Ce�r.tCıCh/V �
j .z

�.t C ı C h// (14.43)

subject to:

Pz.s/ D

�
� � ˇz.s/ � uj .s/ � ˇCr

2
; if t 	 s 	 t C ı

� � ˇz.s/ � uj .s/ � umi ; if t C ı 	 s 	 t C ı C h
; (14.44)

z.t/ D z�.t/:

The threat umi and the punishment period h will be effective at .t; z�.t// if:

Cj .t; z
�.t// 	 e�rtV �

j .z
�.t//: (14.45)

The values ı, h and umi appear as design parameters in the optimal control
problem (14.43) and (14.44). For some values of these parameters, the inequality
(14.45) will be achieved. Then the threat of country i will prevent cheating at the
point .t; z�.t// by country j . If the inequality (14.45) is not satisfied, then either the
threat must be made more powerful or the agreement must be changed.

Any threat, to be effective in practice, must be credible. The credibility of a
threat is a complicated matter. The threat of adopting noncooperative strategies
after cheating has been detected provides an upper limit for the credible loss due
to the implementation of punishment. Any threat which yields a payoff lower
than that under a one-sided optimization by the threatening player will not be
credible. Another necessary condition for a credible threat is that the payoff with
the implementation of the punishment strategy will not be lower than the initially
noncooperative solution. As pointed out in Hämäläinen et al. (1985), the use of
this principle in developing general credibility conditions is difficult because the
outcome of a noncooperative equilibrium generally depends on the value of the
state in the system (with state-dependent control strategies).

5 Notion of Subgame Consistency in NTU Differential Games

In addition to individual rationality and Pareto efficiency, the sustainability of the
agreed-upon solution is also of concern to the participating players. Haurie (1976)
pointed out that the property of dynamic consistency, which is crucial in maintaining
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sustainability in cooperation, is absent in the direct application of the Nash
bargaining solution in differential games. One of the ways to uphold sustainability
of a cooperation scheme is to maintain the condition of time (subgame optimal
trajectory) consistency. In particular, a cooperative solution is subgame consistent
if the optimality principle agreed upon at the outset remains in effect in any
subgame starting at a later time with a state brought about by prior optimal behavior.
Hence the players do not have incentives to deviate from the previously adopted
optimal behavior along the cooperative path. Subgame consistent solutions for
differential games and dynamic games with transferable payoffs under deterministic
and stochastic dynamics can be found in Petrosyan and Zenkevich (1996), Petrosyan
(1997), Yeung and Petrosyan (2004, 2010).

In nontransferable payoff cooperative differential games, transfer payments
among players are not possible, and the cooperative payoffs are generated directly
by the agreed-upon cooperative strategies. This makes the derivation of a time-
consistent solution in nontransferable games much more difficult. Moreover, in
the case of subgame consistent solutions for dynamic games with transferable
payoffs, full Pareto optimality can be achieved with the use of transfer payments.
In the case of nontransferable payoffs, very often there do not exist cooperative
strategies satisfying individual rationality which are also Pareto optimal. Yeung and
Petrosyan (2005 and 2016) and Yeung et al. (2007) presented subgame consistent
solutions in cooperative stochastic differential games with nontransferable payoffs
for a restricted class of optimality principles.

Under cooperation with nontransferable payoffs, the players negotiate to estab-
lish an agreement (optimality principle) on how to play the cooperative game and
how to distribute the resulting payoff. In particular, the chosen optimality principle
has to satisfy group optimality and individual rationality. Subgame consistency
requires that the optimality principle agreed upon at the outset remains in effect
in any subgame starting at a later time with a state brought about by prior optimal
behavior. Hence the players do not have incentives to deviate from the cooperation
scheme.

Consider the cooperative differential game �c.x0; T /with game structures (14.1)
and (14.2) in which the players agree to an optimality principle. According to the
agree-upon optimality principle, the players will:

(i) Adopt cooperative controls fuc1.s/; u
c
2.s/; : : : ; u

c
n.s/g, for s 2 Œ0; T �, and the cor-

responding state dynamics Px.s/ D f Œs; x.s/; uc1.s/; u
c
2.s/; : : : ; u

c
n.s/�, x.t0/ D

x0, with the resulting cooperative state trajectory
fxc.s/gTsD0

(ii) Receive an imputation W i.t; x/ D
R T
t
gi Œs; xc.s/; uc1.s/; u

c
2.s/; : : : ; u

c
n.s/�ds C

qi .xc.T //, for xc.t/ D x, i 2 N and t 2 Œ0; T �, where Pxc.s/ D

f Œs; xc.s/; uc1.s/; u
c
2.s/; : : : ; u

c
n.s/�, x

c.t0/ D x0

Now consider the game �c.x� ; T � �/ at time � where x� D xc� and � 2 Œ0; T �,
and under the same optimality principle, the players will:
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(i) Adopt cooperative controls fOuc1.s/; Ouc2.s/; : : : ; Oucn.s/g, for s 2 Œ� ; T �, and the
cooperative trajectory generated is Oxc.s/ D f Œs; Oxc.s/; Ouc1.s/; Ouc2.s/; : : : ; Oucn.s/�,
Oxc.�/ D xc.�/

(ii) Receive an imputation OW i.t; x/ D
R T
t
gi Œs; Oxc.s/; Ouc1.s/; Ouc2.s/; : : : ; Oucn.s/�ds C

qi . Oxc.T //, for x D Oxc.t/, i 2 N and t 2 Œ� ; T �

A necessary condition is that the cooperative payoff is no less than the
noncooperative payoff, that is, W i.t; xct / � V i .t; xct / and OW i.t; Oxct / �

V i .t; Oxct /.

A formal definition of time (subgame optimal trajectory) consistency can be
stated as:

Definition 1. A cooperative solution is time (subgame optimal trajectory) consis-
tent if fuc1.s/; u

c
2.s/; : : : ; u

c
n.s/� D fOuc1.s/; Ouc2.s/; : : : ; Oucn.s/g; for s 2 Œ� ; T � and

� 2 Œ0; T �; which implies that W i.t; xct / D OW i.t; Oxct / for t 2 Œ� ; T �.

Note that if Definition 1 is satisfied, the imputation agreed upon at the outset of
the game will be in any subgame Œ� ; T �.

6 A Subgame Consistent NTU Cooperative Differential Game

Consider the renewable resource extraction game in Sect. 3 with the resource stock
dynamics:

Px.s/ D Œa � bx.s/ � u1.s/ � u2.s/�; x.0/ D x0 2 X; (14.46)

and the payoff of players:

J i .0; x0/ D

Z T

0

Œhiui .s/ � ciui .s/
2x.s/�1 C kix.s/�e

�rtds C e�rT qix.T /;

(14.47)
for i 2 f1; 2g.

To derive a subgame consistent solution, we have to invoke the results concerning
the noncooperative and cooperative payoffs provided in Sect. 3. Invoking Proposi-
tion 1, the noncooperative payoff of player i in the game (14.46) and (14.47) is a
linear value function:

V i .t; x/ D e�rt ŒAi .t/x C Bi.t/�; (14.48)

for i 2 f1; 2g and t 2 Œ� ; T �:
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Invoking Proposition 3 and Proposition 4, the payoff of player i under coopera-
tion with payoff weight ˛1 is given by the value function:

W .˛1/i .t; x/ D e�rt ŒA
˛1
i .t/x C B

˛1
i .t/�; (14.49)

for i 2 f1; 2g and t 2 Œ� ; T �.
To obtain a subgame consistent solutions to the cooperative game (14.46)

and (14.47), we first note that group optimality will be maintained only if the
optimality principle selects the same weight ˛1 throughout the game interval Œt0; T �.
For subgame consistency to hold, the chosen ˛1 must also maintain individual
rationality throughout the game interval. Therefore the payoff weight ˛1 must
satisfy:

W .˛1/i .t; x/ D e�rt ŒA
˛1
2 .t/x C B

˛1
2 .t/�

� V i .t; x/ D e�rt ŒAi .t/x C Bi.t/�; (14.50)

for i 2 f1; 2g and t 2 Œt0; T �.

Definition 2. We define the set ST� D
T

��t�T

St , for � 2 Œt0; T /, where St represents

the set of ˛1 satisfying individual rationality at time t 2 Œt0; T / and ST� represents
the set of ˛1 satisfying individual rationality throughout the interval Œ� ; T /.

In general ST� ¤ STt for �; t 2 Œt0; T /. If STt0 is an empty set, there does not
exist any weight ˛1 such that condition (14.50) is satisfied. To find out typical
configurations of the set St for t 2 Œt0; T / of the game �c.x0; T � t0/, we perform
extensive numerical simulations with a wide range of parameter specifications for
a, b, � , h1, h2, k1, k2, c1, c2, q1, q2, T , r , and x0. We denote the locus of the values
of ˛t1

�

along t 2 Œt0; T / as curve ˛1 and the locus of the values N̨ t1 as curve N̨1. In

particular, typical patterns include:

(i) The curves ˛1 and N̨1 are continuous and move in the same direction over
the entire game duration: either both increase monotonically or both decrease
monotonically (see Fig. 14.1).

(ii) The curve ˛1 declines continuously, and the curve N̨1 rises continuously (see
Fig. 14.2).

(iii) The curves ˛1 and N̨1 are continuous. One of these curves would rise/fall to a
peak/trough and then fall/rise (see Fig. 14.3).

(iv) The set STt0 can be nonempty or empty.

A subgame consistent solution will be reached when the players agree to adopt a
weight ˛1 2 STt0 ¤ � throughout the game interval Œt0; T �.
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a1 curve
a1 curve

a1 curve

a1 curve

a1 curve

a1 curve

a1 curve

a1 curve

t0 t0T T

t0 t0T T

a

c

b

d

Fig. 14.1 (a–d) Loci of ˛1 and N̨1: Monotonic and same direction

Fig. 14.2 Loci of ˛1
declines continuously and N̨1
rises continuously

t0 T

a1 curve

a1 curve

In the case when STt0 is empty for the game with horizon Œ0; T �, the players
may have to shorten the duration of cooperation to a range Œ0; NT1� in which a

nonempty S
NT1
t0 exists. To accomplish this, one has to identify the terminal conditions

at time NT1 and examine the subgame in the time interval Œ NT1; T � after the duration of
cooperation.



14 Nontransferable Utility Cooperative Dynamic Games 653

t0 T t0 T

a1 curve

a1 curve
a1 curve

a1 curve

a
b

Fig. 14.3 (a, b) Loci of ˛1 and N̨1: rise/fall to a peak/trough and then fall/rise

7 Discrete-Time Analysis and Variable Weights

In this section, we study discrete-time NTU cooperative dynamic games.

7.1 NTU Cooperative Dynamic Games

Consider the general T�stage n�person nonzero-sum discrete-time dynamic game
with initial state x01 . The state space of the game is X � Rm and the state dynamics
of the game is characterized by the difference equation:

xkC1 D fk.xk; u
1
k; u

2
k; : : : ; u

n
k/; (14.51)

for k 2 f1; 2; : : : ; T g � 
 and x1 D x01 , where uik 2 Rmi is the control vector of
player i at stage k and xk 2 X is the state of the game. The payoff that player i
seeks to maximize is:

TP
kD1

gik.xk; u
1
k; u

2
k; : : : ; u

n
k/C qi .xTC1/; (14.52)

where i 2 f1; 2; : : : ; ng � N and qi .xTC1/ is the terminal payoff that player i will
receive at stage T C 1.

The payoffs of the players are not transferable. Let f�ik.x/, for k 2 
 and i 2 N g

denote a set of strategies that provides a feedback Nash equilibrium solution (if it
exists) to the game (14.51) and (14.52) and fV i .k; x/, for k 2 
 and i 2 N g denote
the value functions yielding the payoff to player i over the stages from k to T .

To improve their payoffs, the players agree to cooperate and act according to
an agreed-upon cooperative scheme. Since payoffs are nontransferable, the payoffs
of individual players are directly determined by the optimal cooperative strategies
adopted. Consider the case in which the players agree to adopt a vector of payoff
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weights ˛ D .˛1; ˛2; : : : ; ˛n/ in all stages, where
nP

jD1

˛j D 1. Conditional upon

the vector of weights ˛, the agents’ Pareto optimal cooperative strategies can
be generated by solving the dynamic programming problem of maximizing the
weighted sum of payoffs:

nP
jD1

�
TP
kD1

˛j g
j

k .xk; u
1
k; u

2
k; : : : ; u

n
k/C ˛j qj .xTC1/

	
(14.53)

subject to (14.51).
An optimal solution to the problem (14.51) and (14.53) can be characterized by

the following Theorem.

Theorem 3. A set of strategies f 
.˛/i

k .x/, for k 2 
 and i 2 N g provides
an optimal solution to the problem (14.51) and (14.53) if there exist functions
W .˛/.k; x/, for k 2 K, such that the following recursive relations are satisfied:

W .˛/.T C 1; x/ D
nP

jD1

˛j qj .xTC1/; (14.54)

W .˛/.k; x/ D max
u1k ;u

2
k ;:::;u

n
n

(
nP

jD1

˛j g
j

k



xk; u

k
1 ; u

k
2 ; : : : ; u

k
n

�

CW .˛/Œk C 1; fk.xk; u
k
1 ; u

k
2 ; : : : ; u

k
n/�

)

D
nP

jD1

˛j g
j

k Œx;  
.˛/1

k .x/;  
.˛/2

k .x/; : : : ;  
.˛/n

k .x/�

CW .˛/Œk C 1; fk.x;  
.˛/1

k .x/;  
.˛/2

k .x/; : : : ;  
.˛/n

k .x//�:

(14.55)

Proof. The conditions in (14.54)–(14.55) follow directly from dynamic program-
ming. �

Substituting the optimal control f 
.˛/i

k .x/, for k 2 
 and i 2 N g into the state
dynamics (14.51), one can obtain the dynamics of the cooperative trajectory as:

xkC1 D fk.xk;  
.˛/1

k .xk/;  
.˛/2

k .xk/; : : : ;  
.˛/n

k .xk//; (14.56)

for k 2 
 and x1 D x0.
We use x.˛/k 2 X

.˛/

k to denote the value of the state at stage k generated by
(14.56). The termW .˛/.k; x/ yields the weighted cooperative payoff over the stages
from k to T .
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Given that all players are adopting the cooperative strategies in Sect. 2.1, the
payoff of player i under cooperation can be obtained as:

W .˛/i .t; x/ D

�
TP
kDt

gikŒx
.˛/

k ;  
.˛/1

k .x
.˛/

k /;  
.˛/2

k .x
.˛/

k /; : : : ;  
.˛/n

k .x
.˛/

k /�

Cqi .x
.˛/
TC1/jx

.˛/
t D x

o
; (14.57)

for i 2 N and t 2 
.
To allow the derivation of the functions W .˛/i .t; K/ in a more direct way, we

derive a deterministic counterpart of the Yeung (2013) analysis and characterize
individual players’ payoffs under cooperation as follows.

Theorem 4. The payoff of player i at stage k can be characterized as the value
function W .˛/i .k; x/ satisfying the following recursive system of equations:

W .˛/i .T C 1; x/ D qi .xTC1/;

W .˛/i .k; x/ D gikŒx
.˛/

k ;  
.˛/1

k .x/;  
.˛/2

k .x/; : : : ;  
.˛/n

k .x/� (14.58)

CW .˛/i Œk C 1; fk.x;  
.˛/1

k .x/;  
.˛/2

k .x/; : : : ;  
.˛/n

k .x//�;

for i 2 N and k 2 
.

Proof. See Yeung (2013). �

For individual rationality to be maintained throughout all the stages k 2 
, it is
required that:

W .˛/i .k; x
.˛/

k / � V i .k; x
.˛/

k /; (14.59)

for i 2 N and k 2 
.
Let the set of ˛ weights that satisfies (14.59) be denoted byƒ. Ifƒ is not empty,

a vector Ǫ D . Ǫ 1; Ǫ 2; : : : ; Ǫ n/ 2 ƒ agreed upon by all players would yield a
cooperative solution that satisfies both individual rationality and Pareto optimality
throughout the duration of cooperation.

Remark 1. The pros of the constant payoff weights scheme are that full Pareto
efficiency is satisfied in the sense that there does not exist any strategy path which
would enhance the payoff of a player without lowering the payoff of at least one of
the other players in all stages.

The cons of the constant payoff weights scheme include the inflexibility in
accommodating the preferences of the players in a cooperative agreement and the
high possibility of the nonexistence of a set of weights that satisfies individual
rationality throughout the duration of cooperation .



656 D. W. K. Yeung and L. A. Petrosyan

7.2 Subgame Consistent Cooperation with Variable Weights

As shown in Sect. 6.1, constant weights schemes in NTU cooperative dynamic
games often would not be able to guarantee individual rationality throughout
the game horizon. To resolve this difficulty, time varying payoff weights can
be adopted. Sorger (2006) presented a recursive Nash bargaining solution for a
discrete-time NTU cooperative dynamic game by allowing the payoff weights to be
re-negotiated. Yeung and Petrosyan (2015) considered the derivation of subgame
consistent solutions for NTU cooperative dynamic games with variable payoff
weights. A salient property of a subgame consistent solution is that the agreed-upon
optimality principle remains in effect for the subgame starting at each stage of the
original game, and hence the players do not have any incentive to deviate from the
solution plan. Let �.t; xt / denote the cooperative game in which the objective of
player i is:

TP
kDt

gik


xk; u

1
k; u

2
k; : : : ; u

n
k

�
C qi .xTC1/; for i 2 N; (14.60)

and the state dynamics is:

xkC1 D fk.xk; u
1
k; u

2
k; : : : ; u

n
k/; (14.61)

for k 2 ft; t C 1; : : : ; T g and the state at stage t is xt .
Let the agreed-upon optimality principle be denoted by P .t; xt /. The optimality

principle P .t; xt / may include:

(i) The allotment of the players’ payoffs satisfying the condition that the propor-
tion of cooperative payoff to noncooperative payoff for each player is the same

(ii) The allotment of the players’ payoffs according to the Nash bargaining solution
(iii) The allotment of the players’ payoffs according to the Kalai-Smorodinsky

bargaining solution

For subgame consistency to be maintained, the agreed-upon optimality principle
P .t; xt / must be satisfied in the subgame �.t; xt / for t 2 f1; 2; : : : ; T g. Hence,
when the game proceeds to any stage t , the agreed-upon solution policy remains
effective.

A time-invariant weight scheme is often hardly applicable for the derivation of a
subgame consistent solution for various reasons. First, the set ƒ, for which individ-
ual rationality holds throughout the duration of the game, is often empty. Second,
the existing set of time-invariant weights which satisfy individual rationality may
put some players in relatively favorable positions and some in relatively unfavorable
positions. This may not be acceptable to the relatively disfavored players. Finally,
the original agreed-upon optimality principle could not be maintained as the game
proceeds under a time-invariant payoff weight cooperative scheme. In dynamic
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games with nontransferable payoffs, it is often very difficult (if not impossible) to
reach a cooperative solution using constant payoff weights. In general, to derive a
set of subgame consistent strategies under a cooperative solution with optimality
principle P .t; xt /, a variable payoff weight scheme has to be adopted. In particular,
at each stage t 2 
 the players would adopt a vector of payoff weights Ǫ D

. Ǫ 1; Ǫ 2; : : : ; Ǫ n/ for
nP

jD1

Ǫ
j
t D 1 which leads to satisfaction of the agreed-upon

optimality principle. The chosen sets of weights Ǫ D . Ǫ 1; Ǫ 2; : : : ; Ǫ n/ must lead
to the satisfaction of the optimality principle P .t; xt / in the subgame �.t; xt / for
t 2 f1; 2; : : : ; T g.

7.2.1 Cooperative Strategies in the Terminal Stages
To derive the optimal cooperative strategies in a subgame consistent solution for
cooperative dynamic games with nontransferable payoffs, we invoke the principle
of optimality in dynamic programming and begin with the final stages of the
cooperative game. Consider first the last stage, that is, stage T , with the state
xT D x 2 X . The players will select a set of payoff weights ˛T D .˛1T ; ˛

2
T ; : : : ; ˛

n
T /

which leads to satisfaction of the optimality principle P .T; x/. Optimal cooperative
strategies can be generated by solving the following dynamic programming problem
of maximizing the weighted sum of their payoffs:

nP
jD1

h
˛
j
T g

j
T



xT ; u

1
T ; u

2
T ; : : : ; u

n
T

�
C ˛

j
T q

i .xTC1/
i

(14.62)

subject to:

xTC1 D fT D


xT ; u

1
T ; u

2
T ; : : : ; u

n
T

�
; xT D x: (14.63)

Invoking Theorem 3, given the payoff weights being ˛T , the optimal cooperative
strategies fuiT D  

.˛T /i
T , for i 2 N g in stage T are characterized by the conditions:

W .˛/.T C 1; x/ D
nP

jD1

˛
j
T q

j .xTC1/;

W .˛T /.T; x/ D max
u1T ;u

2
T ;:::;u

n
T

(
nP

jD1

˛
j
T g

j
T



xT ; u

1
T ; u

2
T ; : : : ; u

n
T

�

CW .˛T /ŒT C 1; fT .xT ; u
1
T ; u

2
T ; : : : ; u

n
T /�
�
: (14.64)

Given that all players are adopting the cooperative strategies, the payoff of player
i under cooperation covering stages T and T C 1 can be obtained as:

W .˛T /.T; x/ D cŒx;  
.˛T /1

k .x/;  
.˛T /2

k .x/; : : : ;  
.˛T /n

k .x/�C qi .x
.˛T /
TC1/; (14.65)

for i 2 N .
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Invoking Theorem 4, one can characterize W .˛T /i .T; x/ by the following equa-
tions:

W .˛T /i .T C 1; x/ D qi .x/;

W .˛T /i .T; x/ D giT Œx;  
.˛T /1
T .x/;  

.˛T /2
T .x/; : : : ;  

.˛T /n
T .x/�

CW .˛T /i ŒT C 1; fT .x;  
.˛T /1
T .x/;  

.˛T /2
T .x/; : : :

: : : ;  
.˛T /n
T .x//�; (14.66)

for i 2 N .
For individual rationality to be maintained, it is required that:

W .˛T /i .T; x/ � V i .T; x/; (14.67)

for i 2 N .
We use ƒT to denote the set of weights ˛T that satisfies (14.67). Let ǪT D

. Ǫ 1T ; Ǫ 2T ; : : : ; Ǫ nT / 2 ƒT denote the payoff weights at stage T that leads to the
satisfaction of the optimality principle P .T; x/.

Now we proceed to cooperative scheme in the second to last stage. Given that
the payoff of player i at stage T is W . ǪT /i .T; x/, his payoff at stage T � 1 can be
expressed as:

giT�1.xT�1; u
1
T�1; u

2
T�1; : : : ; u

n
T�1/

CgiT ŒxT ;  
. ǪT /1
T .xT /;  

. ǪT /2
T .xT /; : : : ;  

. ǪT /n
T .xT /�C qi .xTC1/

D giT�1.xT�1; u
1
T�1; u

2
T�1; : : : ; u

n
T�1/CW . ǪT /i .T; xT /; (14.68)

for i 2 N .
At this stage, the players will select payoff weights ˛T�1 D .˛1T�1; ˛

2
T�1; : : : ;

˛nT�1/ which lead to satisfaction of the optimality principle P .T � 1; x/. The
players’ optimal cooperative strategies can be generated by solving the following
dynamic programming problem of maximizing the weighted sum of payoffs:

nP
jD1

˛
j
T�1

h
g
j
T�1



xT�1; u

1
T�1; u

2
T�1; : : : ; u

n
T�1

�
CW . ǪT /j .T; xT /

i
(14.69)

subject to:

xT D fT�1.xT�1; u
1
T�1; u

2
T�1; : : : ; u

n
T�1/; xT�1 D x: (14.70)

Invoking Theorem 3, given the payoff weights being ˛T�1, the optimal coopera-
tive strategies fuiT�1 D  

.˛T�1/i
T�1 , for i 2 N g at stage T � 1 are characterized by the

conditions:
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W .˛T�1/.T; x/ D
nP

jD1

˛
j
T�1W

. ǪT /j .T; x/;

W .˛T�1/.T�1; x/ D max
u1T�1;u

2
T�1;:::;u

n
T�1

(
nP

jD1

˛
j
T�1g

j
T�1



xT�1; u

1
T�1; u

2
T�1; : : : ; u

n
T�1

�

CW .˛T�1/ŒT; fT�1.xT�1; u
1
T�1; u

2
T�1; : : : ; u

n
T�1/�

�
: (14.71)

Invoking Theorem 4, one can characterize the payoff of player i under coopera-
tion covering the stages T � 1 to T C 1 by:

W .˛T�1/i .T; x/ D W . ǪT /i .T; xT /;

W .˛T�1/i .T � 1; x/ D g
j
T�1Œx;  

.˛T�1/1
T�1 .x/;  

.˛T�1/2
T�1 .x/; : : : ;  

.˛T�1/n
T�1 .x/�

CW .˛T�1/i ŒT; fT�1.x;  
.˛T�1/1
T�1 .x/;  

.˛T�1/2
T�1 .x/; : : :

: : : ;  
.˛T�1/n
T�1 .x//�; (14.72)

for i 2 N .
For individual rationality to be maintained, it is required that:

W .˛T�1/i .T � 1; x/ � V i .T � 1; x/; (14.73)

for i 2 N .
We use ƒT�1 to denote the set of weights ˛T�1 that leads to satisfaction of

(14.73). Let the vector ǪT�1 D . Ǫ 1T�1; Ǫ 2T�1; : : : ; Ǫ nT�1/ 2 ƒT�1 be the set of payoff
weights that leads to satisfaction of the optimality principle �.T � 1; x/.

7.2.2 Optimal Cooperative Strategies in Preceding Stages
Now we proceed to characterize the cooperative scheme at stage k2f1; 2; : : : ; T � 1g.
Following the analysis in Sect. 4.1, the payoff of player i at stage k C 1 is
W . ǪkC1/i .k C 1; x/, and his payoff at stage k can be expressed as:

gik


xk; u

1
k; u

2
k; : : : ; u

n
k

�

C
TP
hDk

gihŒxh;  
. ǪT /1
h .xh/;  

. ǪT /2
h .xh/; : : : ;  

. ǪT /n
h .xh/�C qi .xTC1/

D gik.xk; u
1
k; u

2
k; : : : ; u

n
k/CW . ǪkC1/i .k; xkC1/; (14.74)

for i 2 N .
At this stage, the players will select a set of weights ˛k D .˛1k; ˛

2
k; : : : ; ˛

n
k/

which leads to satisfaction of the optimality principle P .k; x/. The players’
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optimal cooperative strategies can be generated by solving the following dynamic
programming problem of maximizing the weighted sum of payoffs:

nP
jD1

˛
j

k

h
g
j

k .xk; u
1
k; u

2
k; : : : ; u

n
k/CW . ǪkC1/j .k C 1; xkC1/

i
; (14.75)

subject to:

xkC1 D fk.xk; u
1
k; u

2
k; : : : ; u

n
k/; xk D x: (14.76)

Invoking Theorem 3, given the payoff weights being ˛k; the optimal cooperative
strategies fuik D  

.˛k/i

k , for i 2 N g at stage k are characterized by the conditions:

W .˛k/.k C 1; x/ D
nP

jD1

˛
j

kW
. ǪkC1/j .k C 1; xkC1/;

W .˛k/.k; x/ D max
u1k ;u

2
k ;:::;u

n
k

(
nP

jD1

˛
j

k g
j

k



xk; u

1
k; u

2
k; : : : ; u

n
k

�

CW .˛k/Œk C 1; fk.xk; u
1
k; u

2
k; : : : ; u

n
k/�
�
: (14.77)

The payoff of player i under cooperation can be obtained as:

W .˛k/i .k; x/ D gikŒx;  
.˛k/1

k .x/;  
.˛k/2

k .x/; : : : ;  
.˛k/n

k .x/�

CW . ǪkC1/.k C 1; xkC1/; (14.78)

for i 2 N .
Invoking Theorem 4, one can characterize W .˛k/i .k; x/ by the following equa-

tions:

W .˛k/i .k C 1; x/ D W . ǪkC1/i .k C 1; x/;

W .˛k/i .k; x/ D gikŒx;  
.˛k/1

k .x/;  
.˛k/2

k .x/; : : : ;  
.˛k/n

k .x/� (14.79)

CW .˛k/i Œk C 1; fk.x;  
.˛k/1

k .x/;  
.˛k/2

k .x/; : : : ;  
.˛k/n

k .x//�;

for i 2 N .
For individual rationality to be maintained at stage k, it is required that:

W .˛k/i .k; x/ � V i .k; x/; (14.80)

for i 2 N .
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We use ƒk to denote the set of weights ˛k that satisfies (14.80). Again, we use
Ǫk D . Ǫ 1k; Ǫ 2k; : : : ; Ǫ nk/ 2 ƒk to denote the set of payoff weights that leads to the
satisfaction of the optimality principle P .k; x/, for k 2 
.

7.3 Subgame Consistent Solution: A Theorem

We provide below a theorem characterizing a subgame consistent solution of
the cooperative dynamic game (14.51) and (14.52) with the optimality principle
P .k; xk/.

Theorem 5. A set of payoff weights f Ǫk D . Ǫ 1k; Ǫ 2k; : : : ; Ǫ nk/, for k 2 
g and a set of

strategies f 
. Ǫk/i
k .x/, for k 2 
 and i 2 N g provide a subgame consistent solution

to the cooperative dynamic game (14.51) and (14.52) with the optimality principle
P .k; x/ if there exist functions W . Ǫk/.k; x/ and W . Ǫk/i .k; x/, for k 2 
 and i 2 N ,
which satisfy the following recursive relations:

W . ǪTC1/.T C 1; x/ D qi .xTC1/;

W . Ǫk/i .k; x/ D max
u1k ;u

2
k ;:::;u

n
k

(
nP

jD1

Ǫ j g
j

k



xk; u

1
k; u

2
k; : : : ; u

n
k

�

C
nP

jD1

Ǫ
j

kW
. ǪkC1/j Œk C 1; fk.x; u

1
k; u

2
k; : : : ; u

n
k/�

)
I

W . Ǫk/i .k; x/ D gikŒx;  
. Ǫk/1
k .x/;  

. Ǫk/2
k .x/; : : : ;  

. Ǫk/n
k .x/� (14.81)

CW . ǪkC1/i Œk C 1; fk.x;  
. Ǫk/1
k .x/;  

. Ǫk/2
k .x/; : : : ;  

. Ǫk/n
k .x//�;

for i 2 N and k 2 
; and the optimality principle

P .k; x/ in all stages k 2 
: (14.82)

Proof. See the exposition from equation (14.62) to equation (14.80) in Sects. 6.2.1
and 6.2.2. �

Substituting the optimal control f 
. Ǫk/i
k .x/, for i 2 N and k 2 
g into the state

dynamics (14.51), one can obtain the dynamics of the cooperative trajectory as:

xkC1 D fk.xk;  
. Ǫk/1
k .xk/;  

. Ǫk/2
k .xk/; : : : ;  

. Ǫk/n
k .xk//; (14.83)

x1 D x01 and k 2 
.
The cooperative trajectory fx�

k for k 2 
g is the solution generated by (14.83).
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Remark 2. The subgame consistent solution presented in Theorem 5 is conditional
Pareto efficient in the sense that the solution is a Pareto-efficient outcome satisfying
the condition that the agreed-upon optimality principle is maintained at all stages.

The conditional Pareto efficiency of subgame consistent solution is not fully
Pareto efficient in the sense that there may exist payoff patterns which are Pareto
superior for some strategy paths not satisfying the agreed-upon optimality principle
in all stages. However, there do not exist any strategy paths satisfying the agreed-
upon optimality principle at every stage that would lead to the payoff for any player
i W i .t; x/ > W . Ǫt /i .t; x/ , while the payoffs of other players remain no less than
W . Ǫt /j .t; x/, for i; j 2 N and j ¤ i .

Remark 3. A subgame consistent solution is fully Pareto efficient only if the
optimality principle P .t; x/ requires the choice of a set of time-invariant payoff
weights.

In NTU dynamic games, it is often not possible to reach a cooperative solution
satisfying full Pareto efficiency and individual rationality because of the absence of
side payments. Since the issue of full Pareto efficiency is of less importance than
that of reaching a cooperative solution, achieving the latter at the expense of the
former is a practical way out.

8 A Public Good Provision Example

To illustrate the solution mechanism with explicit game structures, we provide the
derivation of subgame consistent solutions of public goods provision in a two-player
cooperative dynamic game with nontransferable payoffs.

8.1 Game Formulation and Noncooperative Outcome

Consider an economic region with two asymmetric agents from the game example in
Yeung and Petrosyan (2015). These agents receive benefits from an existing public
capital stock xt at each stage t 2 f1; 2; : : : ; 4g. The accumulation dynamics of the
public capital stock is governed by the difference equation:

xkC1 D xk C
2P

jD1

ujk � ıxk; x1 D x01; (14.84)

for t 2 f1; 2; 3g, where ujk is the physical amount of investment in the public good
and ı is the rate of depreciation.
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The objective of agent i 2 f1; 2g is to maximize the payoff:

3P
kD1

Œaikxk � cik.u
i
k/
2�.1C r/�.k�1/ C .qix4 Cmi/.1C r/�3; (14.85)

subject to the dynamics (14.84), where aikxk gives the gain that agent i derives from
the public capital at stage t 2 f1; 2; 3g, cik.u

i
k/
2 is the cost of investing uik in the

public capital, r is the discount rate, and .qix4 Cmi/ is the terminal payoff of agent
i at stage 4.

The payoffs of the agents are not transferable. We first derive the noncooperative
outcome of the game. Invoking the standard analysis in dynamic games (see
Başar and Olsder 1999 and Yeung and Petrosyan 2012), one can characterize the
noncooperative Nash equilibrium for the game (14.84) and (14.85) as follows. A
set of strategies fui�t D �it .x/, for t 2 f1; 2; 3g and i 2 f1; 2gg provides a
Nash equilibrium solution to the game (14.84) and (14.85) if there exist functions
V i .t; x/, for i 2 f1; 2g and t 2 f1; 2; 3g, such that the following recursive relations
are satisfied:

V i .t; x/ D max
uit

˚
Œait x � cit .u

i
t /
2�.1C r/�.t�1/

CV i Œt C 1; x C �
j
t .x/C uit � ıx�

o
; (14.86)

for t 2 f1; 2; 3g;

V i .4; x/ D .qix Cmi/.1C r/�3; (14.87)

for i 2 f1; 2g.
Performing the indicated maximization in (14.86) yields:

�it .x/ D
.1C r/t�1

2cit
V i
xtC1

"
t C 1; x C

2P
jD1

�
j
t .x/ � ıx

#
; (14.88)

for i 2 f1; 2g and t 2 f1; 2; 3g.

Proposition 5. The value function which represents the payoff of agent i can be
obtained as:

V i .t; x/ D ŒAit x C C i
t �.1C r/�.t�1/; (14.89)

for i 2 f1; 2g and t 2 f1; 2; 3g, where

Ai3 D ai3 C qi .1 � ı/.1C r/�1;
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C i
3 D �

.qi /2.1C r/�2

4ci3
C

"
qi

2P
jD1

qj .1C r/�1

2c
j
3

Cmi

#
.1C r/�1I

Ai2 D ai2 C Ai3.1 � ı/.1C r/�1;

C i
2 D �

1

4ci2



Ai3.1C r/�1

�2
C

"
A
.�3/i
3

 
2P

jD1

A
j
3 .1C r/�1

2c
j
2

C C i
3

!#
.1C r/�1I

Ai1 D ai1 C A
.�2/i
2 .1 � ı/.1C r/�1;

and

C i
1 D �

1

4ci1



Ai2.1C r/�1

�2
C

"
Ai2

 
2P

jD1

A
j
2 .1C r/�1

2c
j
2

C C i
2

!#
.1C r/�1I

(14.90)

for i 2 f1; 2g.

Proof. Using (14.88) and (14.89) to evaluate the system (14.86) and (14.87) yields
the results in (14.89) and (14.90). �

8.2 Cooperative Solution

Now consider first the case when the agents agree to cooperate and maintain
an optimality principle P .t; xt / requiring the adoption of the mid values of the
maximum and minimum of the payoff weight ˛it in the set ƒt , for i 2 f1; 2g and
t 2 f1; 2; 3g.

In view of Theorem 5, to obtain the maximum and minimum values of ˛iT , we
first consider deriving the optimal cooperative strategies at stage T D 3 by solving
the problem:

W .˛4/i .4; x/ D .qix Cmi/.1C r/�3;

for i 2 f1; 2g,

W .˛3/.3; x/ D max
u13;u

2
3

(
2P

jD1

˛
j
3 Œ˛

j
3 x � c

j
3 .u

j
3 /
2�.1C r/�2

C
2P

jD1

˛
j
3 Œq

j .x C
2P

jD1

uj3 � ıx/Cmj �.1C r/�3

)
: (14.91)
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Performing the indicated maximization in (14.91) yields:

 
.˛3/
3 .x/ D

.1C r/�1

2˛i3c
i
3

nP
jD1

˛
j
3 q

j ; (14.92)

for i 2 f1; 2g.

Proposition 6. The value function can be obtained as:

W .˛3/.3; x/ D ŒA
.˛3/
3 x C C

.˛3/
3 �.1C r/�2; (14.93)

where

A
.˛3/
3 D

2P
jD1

˛
j
3 Œ˛

j
3 C qj .1 � ı/.1C r/�1�;

and

C
.˛3/
3 D �

2P
jD1

˛
j
3

"
.1C r/�2

4˛
j
3 c

j
3

�
2P
lD1

˛l3q
l
3

�2#

C
2P

jD1

˛
j
3

"
qj

 
2P

jD1

.1C r/�1

2˛
j
3 c

j
3

�
2P
lD1

˛l3q
l
3

�!
Cmj

#
.1C r/�1: (14.94)

Proof. Substituting the cooperative strategies from (14.92) into (14.91) yields the
function W .˛3/.3; x/ in (14.93). �

The payoff of player i under cooperation can be characterized as:

W .˛3/i .3; x/

D

"
˛i3x �

.1C r/�2

4˛i3c
i
3

�
2P
lD1

˛l3q
l
3

�2#
.1C r/�2

C

"
qi

 
x C

2P
jD1

.1C r/�1

2˛
j
3 c

j
3

�
2P
lD1

˛l3q
l
3

�
� ıx

!
Cmi

#
.1C r/�3; (14.95)

for i 2 f1; 2g.
Invoking Theorem 4, the payoff functions of the players in the subgame starting

at stage 3 can be obtained as follows.

Proposition 7. The value function W .˛3/i .3; x/ in (14.95) can be obtained as:

W .˛3/i .3; x/ D ŒA
.˛3/i
3 x C C

.˛3/i
3 �.1C r/�2; (14.96)
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for i 2 f1; 2g, where

A
.˛3/i
3 D Œ˛

j
3 C qj .1 � ı/.1C r/�1�;

and

C
.˛3/i
3 D �

"
.1C r/�2

4˛
j
3 c

j
3

�
2P
lD1

˛l3q
l
3

�2#

C

"
qj

 
2P

jD1

.1C r/�1

2˛
j
3 c

j
3

�
2P
lD1

˛l3q
l
3

�!
Cmj

#
.1C r/�1: (14.97)

Proof. The right-hand side of the equation (14.95) is a linear function with
coefficients A.˛3/i3 and C .˛3/i

3 in (14.97). Hence Proposition 7 follows. �

To identify the range of ˛3 that satisfies individual rationality, we examine the
functions which give the excess of agent i ’s cooperative over his noncooperative
payoff:

W .˛3/i .3; x/ � V i .3; x/ D ŒC
.˛3/i
3 � C i

3 �.1C r/�2; (14.98)

for i 2 f1; 2g.
For individual rationality to be satisfied, it is required that W .˛3/i .3; x/ �

V i .3; x/ � 0 for i 2 f1; 2g. Using ˛j3 D 1 � ˛i3 and upon rearranging terms,

C
.˛3/i
3 can be expressed as:

C
.˛3/i
3 D qi

�
.1C r/�2

2ci3

�
˛i3q

i C .1 � ˛i3/q
j

˛13

�

C
.1C r/�2

2c
j
3

�
˛i3q

i C .1 � ˛i3/q
j

1 � ˛i3

�#
Cmi.1C r/�1

�
.1C r/�2

4ci3

�
˛i3q

i C .1 � ˛i3/q
j

˛i3

�2
; (14.99)

for i; j 2 f1; 2g and i ¤ j .
Differentiating C .˛3/i

3 with respect to ˛i3 yields:

@C
.˛3/i
3

@˛i3
D
.1C r/�2

2c
j
3

�
.qi /2

.1 � ˛i3/
2

�
C
.1C r/�2

2ci3

�
.1 � ˛i3/q

j

˛i3

��
.qi /2

.˛i3/
2

�
;

(14.100)
which is positive for ˛i3 2 .0; 1/.



14 Nontransferable Utility Cooperative Dynamic Games 667

One can readily observe that lim˛i3�>0
C
.˛3/i
3 � > �1 and lim˛i3�>1

C
.˛3/i
3 � > 1.

Therefore an ˛i3 2 .0; 1/ can be obtained such that W .˛i3;1�˛
i
3/i .3; x/ D V i .3; x/

and yields agent i ’s minimum payoff weight value satisfying his own individual
rationality. Similarly there exists an N̨ i3 2 .0; 1/ such that W . N̨ i3;1� N̨ i3/j .3; x/ D

V j .3; x/ and yields agent i ’s maximum payoff weight value while maintaining
agent j ’s individual rationality.

Since the maximization of the sum of weighted payoffs at stage 3 yields a
Pareto optimum, there exist a nonempty set of ˛3 satisfying individual rationality
for both agents. Given that the agreed-upon optimality principle P .t; xt / requires
the adoption of the mid values of the maximum and minimum of the payoff
weight ˛it in the set ƒt , for t 2 f1; 2; 3g, the cooperative weights in stage 3 is

Ǫ3 D
�
˛i3C N̨ i3
2
; 1 �

˛i3C N̨ i3
2


.

Now consider stage 2 problem. We derive the optimal cooperative strategies at
stage 2 by solving the problem:

W .˛2/.2; x/ D max
u12;u

2
2

(
2P

jD1

˛
j
2 Œ˛

j
2 x � c

j
2 .u

j
2 /
2�.1C r/�1

C
2P

jD1

˛
j
2W

. Ǫ3/j Œ3; x C
2P

jD1

uj2 � ıx�

)
: (14.101)

Performing the indicated maximization in (101) yields:

 
.˛2/i
2 .x/ D

.1C r/�1

2˛i2c
i
2

nP
jD1

˛
j
2 A

. Ǫ3/i
3 ; for i 2 f1; 2g:

Following the analysis at stage 3, one can obtain:

W .˛2/.2; x/ D ŒA
.˛2/
2 x C C

.˛2/
2 �.1C r/�1;

W .˛2/i .2; x/ D ŒA
.˛2/i
2 x C C

.˛2/i
2 �.1C r/�1; (14.102)

for i 2 f1; 2g, where A.˛2/2 , C .˛2/
2 , A.˛2/i2 , and C .˛2/i

2 are functions that depend on ˛2.

Similarly, one can readily show that @C
.˛2/i

2

@˛i2
is positive and lim˛i2�>0

C
.˛2/i
2 � >

�1 and lim˛i2�>1
C
.˛2/i
2 � > 1. Agent i ’s minimum payoff weight is ˛i2 2 .0; 1/

which leads to W .˛i2;1�˛
i
2/i .2; x/ D V i .2; x/, and his maximum payoff weight is

N̨ i2 2 .0; 1/, which leads to W . N̨ i2;1� N̨ i2/j .2; x/ D V j .2; x/.
Invoking the agreed-upon optimality principle P .t; xt /, the cooperative weights

at stage 2 are Ǫ2 D
�
˛i2C N̨ i2
2
; 1 �

˛i2C N̨ i2
2


.
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Finally, following the analysis at stages 2 and 3, one can obtain the cooperative

weights at stage 1 as Ǫ1 D
�
˛i1C N̨ i1
2
; 1 �

˛i1C N̨ i1
2


.

The use of variable weights allows the derivation of dynamically stable coopera-
tive solutions for a wide range of optimality principles in NTU cooperative dynamic
games. It resolves the problem of lack of guarantee for the agreed-upon optimality
principle to be maintained throughout the planning duration.

9 Concluding Remarks

The chapter has provided a coherent account of continuous-time and discrete-time
NTU dynamic games. The topics covered include the basic formulation of NTU
cooperative differential games, Pareto optimality, optimal cooperative trajectory,
individual players’ payoffs under cooperation, individual rationality, monitoring
and threat strategies, subgame consistency, discrete-time NTU cooperative dynamic
games, and subgame consistent solution via variable payoff weights. Potential
applications of the NTU cooperative game analysis in existing NTU dynamic game
studies are prevalent. The range of coverage of these potential applications is rather
wide which include Wirl (1994), Rubio and Escriche (2001), and Dockner and Long
(1993) in environmental dynamic games; Clark and Munro (1975), Levhari and
Mirman (1980), and Clemhout and Wan (1985) in resource games; Karp (1984)
in Trade and tariff games; Wirl (1996), Itaya and Shimomura (2001), and Kessing
(2007) in public economics; and Cohen and Michel (1988) and Sorger (2002)
in macroeconomics. As interactions among people and globalization increased
rapidly in the past few decades, it has become more common to realize that
dynamic cooperation is needed to improve the outcomes of human interactions
like management of global warming, worldwide financial reform, and epidemics
control. The complexity of the problems often involves certain degrees of non-
transferability of payoffs. NTU cooperative dynamics games would likely emerge
as an important paradigm in interactive decision-making. Finally, there is still a
number of challenging issues to be tackled, like the optimal variable weight schemes
in differential games, irrational behavior proof conditions, and credible threats.
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1 Introduction

Natural resources play an important role in economic activities. Many resources
are essential inputs in production. Moreover, according to the World Trade Report
of the WTO (2010, p. 40), “natural resources represent a significant and growing
share of world trade and amounted to some 24 per cent of total merchandise
trade in 2008.” The importance of natural resources was acknowledged by classical
economists. Smith (1776) points out that the desire to possess more natural
resources was one of the motives behind the European conquest of the New
World and the establishment of colonies around the globe. Throughout human
history, many conflicts between nations or between social classes within a nation
(e.g., the “elite” versus the “citizens”) are attributable to attempts of possession
or expropriation of natural resources (Long 1975; van der Ploeg 2010). Many
renewable resources are at risk because of overexploitation. For example, in the case
of fishery, according to the Food and Agriculture Organization, in 2007, 80 % of
stocks are fished at or beyond their maximum sustainable yield (FAO 2009). Recent
empirical work by McWhinnie (2009) found that shared fish stocks are indeed more
prone to overexploitation, confirming the theoretical prediction that an increase
in the number of agents that exploit a resource will reduce the equilibrium stock
level.

Some natural resources, such as gold, silver, oil, and natural gas, are nonrenew-
able. They are sometimes called “exhaustible resources.” Other resources, such as
fish and forest, are renewable. Water is renewable in regions with adequate rainfall,
but certain aquifers can be considered as nonrenewable, because the rate of recharge
is very slow.1 Conflicts often arise because of lack of well-defined property rights in
the extraction of resources. In fact, the word “rivals” was derived from the Latin
word “rivales” which designated people who drew water from the same stream
(rivus).2 Couttenier and Soubeyran (2014, 2015) found that natural resources are
often causes of civil conflicts and documented the empirical relationship between
water shortage on civil wars in sub-Saharan Africa.

Economists emphasize an essential feature of natural resource exploitation: the
rates of change in their stocks are influenced by human action. In situations where
the number of key players is not too large, the appropriate way of analyzing the
rivalrous exploitation of natural resources is to formulate a dynamic game. This
chapter provides a selective survey of dynamic game models of exploitation of
natural resources. In relation to earlier surveys (Long 2010, 2011), the present work

1For a review of the game theoretic approach to water resources, see Dinar and Hogarth (2015).
For some recent models of differential games involving water transfer between two countries,
see Cabo et al. (2014) and in particular Cabo and Tidball (2016) where countries cooperate in
the infrastructure investment stage but play a noncooperative game of water transfer in a second
stage. Cabo and Tidball (2016) design a time-consistent imputation distribution procedure to ensure
cooperation, along the lines of Jørgensen and Zaccour (2001).
2Dictionnaire LE ROBERT, Société du Nouveau Littré, Paris: 1979.
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includes many references to new developments that appeared since 2011. Moreover,
this chapter places a greater emphasis on intuitive explanation.

The next section reviews critical issues and dynamic game models in the
exploitation of renewable resources. Section 3 is devoted to exhaustible resources.
The final section offers some thoughts on future directions of research.

2 Renewable Resources

Renewable resources are natural resources for which a positive steady-state stock
level can be maintained while exploitation can remain at a positive level for
ever. Some examples of renewable resources are forests, aquifers, fish stocks, and
other animal species. Without careful management, some renewable resources may
become extinct. The problem of overexploitation of natural resources is known as
the “Tragedy of the commons” (Hardin 1968).3 There is a large literature on the
dynamic tragedy of the commons. While some papers focus on the case where
players use open-loop strategies (e.g., Clark and Munro 1975; Kemp and Long 1984;
Kaitala et al. 1985; Long and McWhinnie 2012), most papers assume that players
use feedback strategies (e.g., Dinar and Zaccour 2013; Long and Sorger 2006). In
what follows, we review both approaches.4

2.1 The Tragedy of the Commons: Exploitation of Renewable
Natural Assets

The standard fishery model is Clark and Munro (1975). There are m fishermen who
have access to a common fish stock, denoted by S.t/ � 0. The quantity of fish
that fisherman i harvests at time t is hi .t/ D �Li .t/S.t/ where Li .t/ is his effort
and � is called the catchability coefficient. In the absence of human exploitation,
the natural rate of reproduction of the fish stock is dS=dt D G.S.t//, where it is
assumed that G.S/ is a hump-shaped and strictly concave function, with G.0/ D 0

and G0.0/ > 0. Taking into account the harvests, the transition equation for the
stock is

dS

dt
D G.S.t// �

mX

iD1

�Li .t/S.t/

By assumption, there exists a unique stock level SM such that G0.SM / D 0. The
stock level SM is called the maximum sustainable yield stock level. The quantity

3However, as pointed out by Ostrom (1990), in some societies, thanks to good institutions, the
commons are efficiently managed.
4See Fudenberg and Tirole (1991) on the comparison of the concepts of open-loop equilibrium and
feedback or Markov-perfect equilibrium.
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G.SM / is called the maximum sustainable yield.5 A common functional form for
G.S/ is rS.1 � S=K/ where r and K are positive parameters. The parameter r

is called the intrinsic growth rate, and K is called the carrying capacity, because
when the stock S is greater than the carrying capacity level K, the fish population
declines.

2.1.1 Open-Loop Games of Fishery
Clark and Munro (1975) propose an open-loop differential game of exploiting a
common access fish stock. For simplicity, assume that the market price of fish, P ,
is exogenous and constant over time. The total effort cost of fisherman i at time t is
cLi .t/, where c is a positive parameter, assumed to be small relative to P . Assume
that Li must belong to the interval

�
0; L

�
where L is player i ’s maximum possible

effort level. Each fisherman i chooses a time path Li .t/ 2
�
0; L

�
to maximize the

integral of his discounted stream of profit,

Ji D

Z 1

0

e��t Œp�Li .t/S.t/ � cLi .t/� dt

where � > 0 is the discount rate, while taking into account the transition equation

PS.t/ D G.S/ � �Li .t/S.t/ � �
X

j ¤i

Lj .t/S.t/

If the fishermen were able and willing to cooperate, they would coordinate their
efforts, and it is easy to show that this would result in a socially efficient steady-state
stock, denoted by SE

1, which satisfies the following equation6:

� D G0.SE
1/ C

G.SE
1/

SE
1

�
c

P �SE
1 � c

�
(15.1)

The intuition behind this equation is as follows. The left-hand side is the market
rate of interest which producers use to discount the future profits. The right-hand
side is the net rate of return of leaving a marginal fish in the pool instead of catching
it. It is the sum of two terms: the first term, G0.SE

1/, is the marginal natural growth
rate of the stock (the biological rate of interest), and the second term is the gain that
results from the reduction (brought about by a marginal increase in stock level) in
the required aggregate effort to achieve the steady-state catch level. In an efficient
solution, the two rates of return must be equalized, for otherwise further gains would
be achievable by arbitrage.

5It has been estimated that about 80 % of fish stocks are exploited at or beyond their maximum
sustainable yields. See FAO (2009).
6We assume that the upper bound constraint on effort is not binding at the steady state.
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What happens if agents do not cooperate? Clark and Munro (1975) focus on
the open-loop Nash equilibrium, i.e., each agent i determines her own time path of
effort and takes the time path of efforts of other agents as given. Agent i believes that
all agents j ¤ i are pre-committed to their time paths of effort Lj .t/, regardless
of what may happen to the time path of the fish stock when i deviates from her
plan. Assuming that L is sufficiently large, it can be shown that the open-loop Nash
equilibrium results in a steady-state stock SOL

1 that satisfies the equation

� D G0.SOL
1 / C

1

m

G.SOL
1 /

SOL
1

�
c

P �SOL
1 � c

� .m � 1/

�
(15.2)

The steady-state stock SOL
1 is socially inefficient. It is equal to the socially efficient

stock level SE
1 only if m D 1. This inefficiency result is a consequence of a dynamic

overcrowding production externality: when a fisherman catches more fish today, this
will reduce level of tomorrow’s stock of fish, which increases tomorrow’s effort cost
of all fishermen at any intended harvest level.7

A weakness of the concept of open-loop Nash equilibrium is that it assumes that
players do not use any information acquired during the game and consequently do
not respond to deviations that affect the anticipated path of the stock. Commenting
on this property, Clemhout and Wan (1991) write: “for resource games at least, the
open-loop solution is neither an equally acceptable alternative to the closed loop
solution nor a safe approximation to it.” For this reason, we now turn to models that
focus on closed-loop (or feedback) solution.

2.1.2 Feedback Games of Exploitation of Renewable Natural Assets
The simplest fishery model where agents use feedback strategies is the Great Fish
War model of Levhari and Mirman (1980). We present below a slightly modified
version of that model. Thanks to the assumed special functional forms (logarithmic
utility functions and a net reproduction function that is log-linear), it is possible to
derive a closed-form solution of the equilibrium harvesting strategies. However, the
essence of the results of Levhari and Mirman (1980) can be preserved under more
general functional specifications (e.g., Dutta and Sundaram 1993b).

The model is formulated in discrete time. Consider the case of n identical
countries that have common access to a fish stock St . Let hit denote country i ’s
harvest in period t . Define the total harvest in period t by Ht D

Pn
iD1 hit . (We will

show that Ht � St in equilibrium.) Assume that the next period’s fish stock is given
by the difference equation StC1 D .St � Ht /

� where 0 < � < 1. The parameter �

may be regarded as an index of the future availability of the resource. An increase
in � represents a low future availability.

7If the amount harvested depends only on the effort level and not on the level of the stock, i.e.,
hi D �Li , then in an open-loop equilibrium, there is no dynamic overcrowding production
externality. In that case, it is possible that open-loop exploitation is Pareto efficient; see Chiarella
et al. (1984).
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Harvesting is costless, and the utility of consuming hit is � ln hit , where � > 0

is a parameter which is interpreted as the quality of the resource. For the moment,
assume � D 1. Let ˇ denote the discount factor, where 0 < ˇ < 1. The payoff
to country i is

P1
tD0 ˇt ln hit . It is simple to verify that if the countries cooperate,

the optimal common feedback policy is hC
it .St / D .1 � ˇ�/St n

�1. The resulting
cooperative steady-state stock is S1 D .ˇ�/�=.1��/.

Turning to the noncooperative game, the Bellman equation for country i is

Vi .S/ D max
hi

fln .hi / C ˇVi ..S � H�i � hi /
�/g

where H�i D H � hi . Levhari and Mirman find that there exists a Markov-perfect
Nash equilibrium in which countries use the linear feedback strategy

hM
it .St / D

1 � ˇ�

n � ˇ�.n � 1/
S

Thus, at each level of the stock, the noncooperative harvest rate exceeds the
cooperative one. The resulting steady-state stock level is lower.

The Levhari-Mirman result of overexploitation confirms the general presumption
that common access leads to inefficient outcome. The intuition is simple: if each
player believes that the unit it chooses not to harvest today will be in part harvested
by other players tomorrow, then no player will have a strong incentive to conserve
the resource. This result was also found by Clemhout and Wan (1985), who used a
continuous-time formulation. The Levhari-Mirman overexploitation result has been
extended to the case of a coalitional fish war (Breton and Keoula 2012; Kwon 2006),
using the same functional forms for the utility function and the net reproduction
function. Kwon (2006) assumes that there are n ex ante identical countries, and m

of them form a coalition, so that the number of players is � D n�mC1. A coalition
is called profitable if the payoff of a coalition member is greater than what it would
obtain in the absence of the coalition. The coalitional Great Fish War game is the
game involving a coalition and the n � m outsiders. A coalition is said to be stable
under Nash conjectures (as defined in d’Aspremont et al. 1983) if two “stability
conditions” are satisfied. First is internal stability, which means that if a member
drops out of the coalition, assuming that the other m � 1 members stay put, it will
obtain a lower payoff. Second is external stability, which means that if an outsider
joins the coalition, assuming that the existing m members will continue their
membership, its payoff will be lower than its status quo payoff. Kwon (2006) shows
that the only stable coalition (under the Nash conjectures) is of size two. Thus, when
n is large, the overexploitation is not significantly mitigated when such a small stable
coalition is formed. Breton and Keoula (2012) investigate a coalitional war model
that departs from the Nash conjectures: they replace the Nash conjectures with what
they call “rational conjectures,” which relies on the farsightedness assumption. As
they aptly put it, “the farsightedness assumption in a coalitional game acknowledges
the fact that a deviation from a single player will lead to the formation of another
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coalition structure, as the result of possibly successive moves of her rivals in order to
improve their payoff” (p. 298).8 Breton and Keoula (2012) find that under plausible
values of parameters, there is a wide scope for cooperation under the farsightedness
assumption. For example, with n D 20, ˇ D 0:95, and � D 0:82, a coalition of size
m D 18 is farsightedly stable (p. 305).

Fesselmeyer and Santugini (2013) extend the Levhari-Mirman fish war model
to the case where there are exogenous environmental risks concerning quality and
availability.9 The risks are modeled as follows. Let xt denote the “state of the
environment” at date t . Assume that xt can take on one of two values in the set
f1; 2g. If xt D 1, then the probability that xtC1 D 2 is �, where 0 < � < 1, and
the probability that xtC1 D 1 is 1 � �. If xt D 2, then xtC1 D 2 with probability 1.
Assume that x0 D 1. Then, since � > 0, there will be an environmental change
at some time in the future. The authors find that if there is the risk that an
environmental change (an increase in xt from 1 to 2) will lead to lower renewability
(i.e., �2 � �1/, then rivalrous agents tend to reduce their exposure to this risk by
harvesting less, as would the social planner; however, the risk worsens the tragedy
of the commons in the sense that, at any given stock level, the ratio of Markov-
perfect Nash equilibrium exploitation to the socially optimal harvest increases. In
contrast, when the only risk is a possible deterioration in the quality of the fish (i.e.,
�2 < �1), this tends to mitigate the tragedy of the commons.

Other discrete-time models of dynamic games on renewable natural assets
include Amir (1989) and Sundaram (1989), where some existence theorems are
provided. Sundaram’s model is a generalization of the model of Levhari and
Mirman (1980): Sundaram replaces the utility function ln hi with a more general
strictly concave function u.hi / with u0.0/ D 1, and the transition function
StC1 D .St � Ht /

� is replaced by StC1 D f .St � Ht / where f .0/ D 0 and
f .:/ is continuous, strictly increasing, and crosses the 45 degree line exactly
once. Assuming that all players are identical, Sundaram (1989) proves that there
exists a Markov-perfect Nash equilibrium (MPNE) in which all players use the
same strategy. Another result is that along any equilibrium path where players
use stationary strategies, the time path of the stock is monotone. Sundaram
(1989) also shows that in any symmetric Markov-perfect Nash equilibrium, the
MPNE stationary strategy cannot be the same as the cooperative harvesting
strategy hC .S/.

Dutta and Sundaram (1993a) provide a further generalization of the model of
Levhari and Mirman (1980). They allow the period payoff function to be dependent
on the stock S in an additively separable way: Ui .hi ; S/ D ui .hi / C w.S/ where
w.:/ is continuous and increasing. For example, if the resource stock is a forest,
consumers derive not only utility ui .hi / from using the harvested timber but also

8The farsightedness concept was formalized in Greenberg (1990) and Chwe (1994) and has been
applied to the literature on public goods (Ray and Vohra 2001) and international environmental
agreements (de Zeeuw 2008; Diamantoudi and Sartzetakis 2015).
9For ownership risks, see Bohn and Deacon (2000).
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pleasure w.S/ when they hike in a large forested area or when a larger forest ensure
greater biodiversity than a smaller one. They show that a cooperative equilibrium
exists. For a game with only three periods, they construct an example in which
there is no Markov-perfect Nash equilibrium, if one player’s utility is linear in
consumption while his opponent has a strictly concave utility function. When the
function w.S/ is strictly convex, they show by example that the dynamics of the
stock along an equilibrium path can be very irregular. One may argue that in some
contexts, the strict convexity of w.S/ (within a certain range) may be a plausible
assumption. For example, within a certain range, as the size of a forest doubles,
biodiversity may triple.10 Finally, they consider the case of an infinite horizon game
with a zero rate of discount. In this case, they assume that each player cares only
about the long-run average (LRA) payoff, so that the utilities that accrue in the
present (or over any finite time interval) do not count. For example, a “player” may
be a government of a country in which the majority of voters adhere to Sidgwick’s
view that it is immoral to discount the welfare of the future generations (Sidgwick
1874). With zero discounting, the LRA criterion is consistent with the axiom that
social choice should display “non-dictatorship of the present” (Chichilnisky 1996).
Under the LRA criterion, Dutta and Sundaram (1993a) define the “tragedy” of the
commons as the situation where the stock converges to a level lower than the golden
rule stock level. They show that under the LRA criterion, there exists an MPNE
that does not exhibit this “tragedy” property. This result is not very surprising,
because, unlike the formulation of Clark and Munro (1975) where harvest depends
on the product of effort and stock, �Li .t/S.t/, the model of Dutta and Sundaram
assumes that the stock has no effect on the marginal product of labor, and thus,
the only incentive to grab excessively comes from the wish to grab earlier than
one’s rivals, and this incentive may disappear under the LRA criterion, as the
present consumption levels do not count.11 However, whether a tragedy occurs
or not, it can be shown that any MPNE is suboptimal from any initial state.12

It follows that, in a broad sense, the tragedy of the commons is a very robust
result.

While the model of Levhari and Mirman (1980) shows that the Markov-perfect
equilibrium is generically not Pareto efficient, inefficiency need not hold at every
initial stock level. In fact, Dockner and Sorger (1996) provide an example of a
fishery model in which there is a continuum of Markov-perfect equilibria, and they
show that in the limit, as the discount rate approaches zero, the MPNE stationary

10In contrast, in the standard models, where all utility functions are concave, it can be shown that
the equilibrium trajectory of the state variable must eventually become monotone. See Dutta and
Sundaram (1993b).
11Sundaram and Dutta (1993b) extend this “no tragedy” result to the case with mild discounting:
as long as the discount rate is low enough, if players use discontinuous strategies that threaten to
make a drastic increase in consumption when the stock falls below a certain level, they may be able
to lock each other into a stock level that is dynamically inefficient and greater than the cooperative
steady state.
12Except possibly the cooperative steady state (Dutta and Sundaram 1993b, Theorem 3).
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steady-state stock converges to the steady-state stock of the (efficient) cooperative
solution. This result is of course a local result. It does not imply that the MPNE
harvesting rule coincides with the socially optimal one, for all stock levels. A
special feature of Dockner and Sorger (1996) model is that they assume a square
root utility function. The reproduction function for the stock x is F .x/, a strictly
concave, hump-shaped function, with F .0/ D F .1/ D 0. There is a constant,
exogenous upper bound u on harvest rates that is independent of the stock level.
They show that the cooperative solution is unique and leads to the steady-state
stock x1 2 .0; 1/, where the effect of the stock on the rate of reproduction, F 0.x1/,
is equal to the discount rate r , a familiar result (Long 1977). In contrast, when
two players behave noncooperatively, Dockner and Sorger (1996) show that there
is a continuum of symmetric equilibria, which differ from each other in terms of
the interval of stock levels such that both players harvest at the maximum rate u.
For each of these equilibria, the harvesting rate when u < u is found to be an
increasing function of the discount rate r . The intuition behind the multiplicity of
equilibria is simple: if one player believes that the other exploits at the maximum
rate over a given interval of stock, then she has no incentive to conserve the stock,
and thus its best response is to do likewise. Therefore, there is a continuum of
intervals of stock with maximum exploitation. The corresponding Markov-perfect
exploitation strategy displays a jump discontinuity at the lower bound of each such
interval.13 An interesting property of the model is that as the rate of discount tends
to zero, the steady state of the noncooperative common access game coincides with
the steady state of the cooperative game.14 This result is in sharp contrast with
Levhari and Mirman (1980), where the tragedy of the commons does not vanish
when the discount rate becomes arbitrarily small. This discrepancy can be attributed
to two factors. First, there is no exogenous upper bound on harvests in Levhari
and Mirman (1980). Second, the discrete-time formulation of the net reproduction
function in Levhari and Mirman (1980) is quite different from the continuous-time
formulation in Dockner and Sorger (1996), as the discrete-time formulation implies
that agents are able to make some short-term commitment to their intended harvest
levels.15 While there may exist many MPNEs, some of which can be discontinuous,
it can be shown that there exists a class of utility functions that yield MPNE
strategies that are linear in the stock, provided that the resource growth function
has parameters that are suitably related to the parameters of the utility function. See
Gaudet and Lohoues (2008) and Long (2011). For existence theorems on MPNEs in
resource exploitation games, see Amir (1987, 1987).

13Dockner and Sorger (1996), Lemma 1.
14Dockner and Long (1993) find similar results in a pollution game.
15Efficiency can also be ensured if players can resort to trigger strategies, see Cave (1987) and
Benhabib and Radner (1992), or if there exist countervailing externalities, as in Martin-Herrán G,
Rincón-Zapareto J (2005).
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2.2 Renewable Resource Exploitation Under Oligopoly

While most models of renewable resource extraction assume price-taking behavior,
there has been a recent increase in interest on the implications of oligopolistic
behavior for renewable resources. Most authors rely on specific demand functions
in order to derive closed-form solutions (Benchekroun 2008; Dockner et al. 1989;
Fujiwara 2011; Jørgensen and Yeung 1996). Jørgensen and Yeung (1996) assume
that the demand function is of the form P D 1=

p
Hwhere H is the aggregate

harvest while the cost of harvesting hi is chi =
p

S where S is the resource stock.
Combining with a square root function for the resource growth rate, the model yields
MPNE strategies that are linear in the stock. Long (2011) provides a generalization
of the model. More recent contributions discuss the role of property rights (Colombo
and Labrecciosa 2013a,b), Bertrand rivalry versus Cournot rivalry (Colombo and
Labrecciosa 2015), the role of nonlinear strategies (Colombo and Labrecciosa
2015; Lambertini and Mantovani 2014), and the impact of market integration in
an international trade framework (Fujiwara 2011).

Benchekroun (2008) assumes the linear demand function P D A � BH , with an
arbitrary number of firms. To derive closed-form value functions, he approximates
the logistic growth function with a tent-shaped function. The slope of the tent at
the zero stock level is called the inherent growth rate of the resource. He finds that
there exists an MPNE where fishing firms use a piecewise linear strategy: when
the stock is small, firms do not harvest at all, until a threshold level of stock is
reached. Beyond that threshold, the equilibrium harvesting rate is linear in the stock,
until an upper threshold stock level is reached. For stock levels higher than this
upper threshold, firms behave as if they had no concern for the stock dynamics.
Myopia becomes individually optimal in this range. Benchekroun (2008) obtains
a number of interesting results. First, an increase in the inherent growth rate of the
resource may result in a lower steady-state stock. This is similar to the voracity effect
discussed in Tornell and Lane (1999). Second, reducing the number of oligopolists
can lead to higher steady-state output of the industry, in contrast to the results of the
model of oligopoly without a resource stock. This result, at first surprising, can be
explained by Solow’s idea that a monopolist is the conservationist’s best friend.

Benchekroun’s 2008 model of oligopolistic exploitation of a renewable resource
has been modified and extended in several directions, to examine a number of related
issues, such as asymmetry among firms (Benchekroun et al. 2014) and mergers
(Benchekroun and Gaudet 2015). In Benchekroun et al. (2014), it is found that the
simple piecewise linear strategies in Benchekroun (2008) cannot survive a small
departure from the symmetric cost assumption. In Benchekroun and Gaudet (2015),
the authors show that there exists an interval of asset stock size such that when the
common property stock is inside that interval, any merger is profitable, contrary
to the standard static model of merger which asserts that any merger involving
less than 80 % of the industry will be unprofitable (Salant et al. 1983). Intuitively,
the difference is due to the role of the resource stock (an asset) which constraint
cumulative output in a resource oligopoly, while in the standard model of Salant
et al. (1983), production is not constrained by assets.
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2.3 The Effects of Status Concern on the Exploitation of
Renewable Resources

While the standard economic theory emphasizes rationality leading to profit max-
imization and maximization of the utility of consumption, it is well known that
there are other psychological factors that are also driving forces behind our
actions.16 Perceptive economists such as Veblen (1899) and noneconomists, such
as Kahneman and Tversky (1984), have stressed these factors. Unfortunately, the
“Standard Model of Economic Behavior” does not take into account psychological
factors such as emulation, envy, status concerns, and so on. Fortunately, in the
past two decades, there has been a growing economic literature that examines the
implications of relaxing the standard economic assumptions on preferences (see,
e.g., Frey and Stutzer 2007).

The utility that an economic agent derives from her consumption, income, or
wealth tends to be affected by how these compare to other economic agents’ con-
sumption, income, or wealth. The impact of status concern on resource exploitation
has recently been investigated in the natural resource literature. Alvarez-Cuadrado
and Long (2011) model status concern by assuming that the utility function of the
representative individual depends not only on her own level of consumption ci

and effort Li but also on the average consumption level in the economy, C , such
that ui D U .ci ; C; Li /. This specification captures the intuition that lies behind
the growing body of empirical evidence that places interpersonal comparisons as
a key determinant of individual well-being. Denote the marginal utility of own
consumption, average consumption, and effort by U1, U2, and UL, respectively. The
level of utility achieved by the representative individual is increasing in her own
consumption but at a decreasing rate, U1 > 0 and U11 < 0, and decreasing in
effort, UL < 0. In addition, it is assumed that the utility function is jointly concave
in individual consumption and effort with U1L � 0, so the marginal utility of
consumption decreases with effort. Under this fairly general specification, Alvarez-
Cuadrado and Long (2011) show that relative consumption concerns can cause
agents to overexploit renewable resources even when these are private properties.
Situations where status-conscious agents exploiting a common pool resource behave
strategically are analyzed in Long and Wang (2009), Katayama and Long (2010),
and Long and McWhinnie (2012).

Long and McWhinnie (2012) consider a finite number of agents playing a
Cournot dynamic fishery game, taking into account the effect of the fishing effort
of other agents on the evolution of the stock. In other words, they are dealing with
a differential game of fishery with status concerns. Long and McWhinnie (2012)
show that the overharvesting associated with the standard tragedy of the commons
problem becomes intensified by the desire for higher relative performance, leading
to a smaller steady-state fish stock and smaller steady-state profit for all the
fishermen. This result is quite robust with respect to the way status is modeled.

16See e.g. Fudenberg and Levine (2006, 2012).
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The authors consider two alternative specifications of relative performance. In the
first specification, relative performance is equated to relative after-tax profits. In
the second specification, it is relative harvests that matter. The authors examine
a tax package (consisting of a tax on relative profit and a tax on effort) and
an individual quota as alternative policy tools to implement the socially efficient
equilibrium.

The analysis of Long and McWhinnie (2012) relies on two key assumptions: first,
each agent takes as given the time paths of resource exploitation of other agents
(i.e., the authors restrict attention to open-loop strategies), and second, the agents
take the market price of the extracted resource as given (i.e., the goods markets
are perfectly competitive). Those assumptions have been relaxed by Benchekroun
and Long (2016). Interestingly, they show that when agents use feedback strategies
and the transition phase is taken into account, the well-established result that status
concern exacerbates the tragedy of the commons must be seriously qualified. More
specifically, when agents are concerned about their relative profit, the authors find
that there exists an interval of the stock size of the resource for which the extraction
policy under status concern is less aggressive than the extraction policy in the
absence of status concern.

2.4 Regime-Switching Strategies and Resource Exploitation

Rivalry in the exploitation of common property resources can motivate players to
take additional action (other than the choice of the rates of extraction) in order to
get an upper hand. The enclosure of the commons is one way of affecting a regime
change (Smith 1776, Book 1, Chap. 11), though it may lead to a loss of social
welfare when the enclosing costs are high (Long 1994). As Long (1994) points out,
the party that encloses the commons is affecting the other parties’ production sets
(their ability to transform their labor into food). This is itself a kind of externalities
that might be more severe than the overcrowding externalities.

Crabbé and Long (1993) study a fishery game where a dominant player deters
entry of poachers by creating excessive overcrowding, driving their profits to zero.
Tornell (1997) models the game between two infinitely lived agents who fight
over the choice over property rights regime: sharing versus exclusive ownership.
He shows that a potential equilibrium of the game involves multiple switching
between regimes. Thus Tornell’s model sheds light on the political instability of
some resource-rich economies.

Long et al. (2014) model the choice of switching from one exploitation technol-
ogy to another when two infinitely lived agents with different costs of technology
adoption have common access to a resource stock. They find that the player with low
investment cost is the first player to adopt a new harvesting technology. She faces
two countervailing incentives: on the one hand, an early switch to a more efficient
technology enables her to exploit the resources more cheaply; on the other hand, by
inducing the regime change, which tends to result in a faster depletion, she might
give her opponent an incentive to hasten the date of his technology adoption, if the
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opponent investment cost decreases as the stock decreases. As a consequence, in a
Markov-perfect equilibrium, the balance of these strategic considerations may make
the low-cost player delay technology adoption even if her fixed cost of adoption is
zero, contrary to what she would do (namely, immediate adoption) if she were the
sole player.

3 Exhaustible Resources

Exhaustible resources (also called nonrenewable resources) are resources for which
the rate of change of the individual stocks is never positive (even though the
aggregate stock may increase through discovery of additional stocks). In the
simplest formulation, the transition equation for an exhaustible resource stock S is

dS

dt
D �

mX

iD1

Ei .t/, with S.0/ D S0 > 0

where Ei .t/ � 0 denotes the extraction rate of player i . If m D 1, the stock is
extracted by a single firm. In the case of a shared resource stock, we have m � 2.
There are two different meanings of resource exhaustion. Physical exhaustion means
that extractions continue until the stock becomes zero at some finite time T (or
possibly asymptotically). In contrast, economic exhaustion means that at some
stage, the firm finds it optimal to abandon the stock because the extraction cost
becomes too high, even though extraction is still feasible. Depending on the types
of questions the researcher is asking, one formulation of exhaustion may be more
appropriate than the other.17 In the case of eventual physical exhaustion, it is most
transparent that the opportunity cost of extracting one more unit of the resource this
period is the foregone marginal profit next period as that unit would no longer be
available for extraction in the next period. Thus, intertemporal arbitrage implies that
along an equilibrium extraction path, the discounted marginal profits from extraction
must be the same between any two adjacent periods. This is known as the Hotelling
Rule.18 Observed extraction paths are not necessarily equilibrium paths because of
unanticipated supply shocks or demand shocks. In fact, models of dynamic games
involving exhaustible resources were developed after the unanticipated quadrupling
in the world price of petroleum between late 1973 and early 1974, “engineered
by the newly assertive Organization of Petroleum Exporting Countries (OPEC),
an international cartel that includes most large oil producers” (Krugman et al.
2015, p. 572). Not surprisingly, a major emphasis of this literature is on cartel and
oligopolies.

17See Salo and Tahvonen (2001) for the modeling of economic exhaustion in a duopoly.
18See Gaudet (2007) for the theory and empirics related to the Hotelling Rule.
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3.1 Exhaustible Resource Extraction Under Different Market
Structures

Salant (1976) considers an open-loop game between an exhaustible resource cartel
and a competitive fringe, under Nash-Cournot behavior: the cartel takes the time
path of extraction of the fringe as given and determines its own time path, knowing
that it can influence the market price. Salant finds that the formation of a cartel
raises the profits of its members, compared to the case where all firms are price
takers. However, nonmembers gain more than cartel members. This result suggests
that an exhaustible resource cartel is likely to face defection or cheating by its
members. This might well explain the instability of oil prices in the recent history.
Ulph and Folie (1980) extend Salant’s model to allow for differences in marginal
costs. Gilbert (1978) considers instead the case where the cartel is an open-loop
Stackelberg leader: it announces to the fringe its time path of future output before
the fringe firms make their output decision. However, it can be shown that an open-
loop Stackelberg equilibrium is time inconsistent: at a later stage, if the cartel can
renege on its preannounced path, it will find it profitable to do so.19 Benchekroun
and Withagen (2012) provide a theoretical justification for the price-taking behavior
of the fringe.

To overcome the time-inconsistency problem, Groot et al. (2003) propose a
feedback Stackelberg formulation. This formulation assumes that each fringe firm
believes its value function to be a linear function of its stock, with a constant slope,
which it takes as given. However, this slope is not given: it is in fact influenced by
the cartel’s extraction policy.

An alternative market structure is oligopoly. Loury (1986) studies a model of
oil oligopolists that use open-loop strategies.20 He finds that under identical and
constant extraction costs, smaller firms exhaust their stocks before larger ones and
that industry production maximizes a weighted average of profits and consumers’
welfare. Benchekroun et al. (2009, 2010) find that under open-loop oligopoly, firms
with different costs may produce at the same time, and additional stocks of the
resource can result in a lower social welfare. The latter result has a counterpart in
the theory of static oligopoly: a small reduction in the marginal cost of higher cost
firms may reduce welfare (Lahiri and Ono 1988; Long and Soubeyran 2001). It
is also related to Gaudet and Long (1994), who find that a marginal redistribution
of resource stocks between two oligopolists to make their reserves more unequal
can increase the industry’s profit. Models of oligopoly with feedback extraction
strategies include Salo and Tahvonen (2001) and Benchekroun and Long (2006).
The latter paper shows that a windfall gain (a stock discovery) can be harmful to
firms in a nonrenewable resource oligopoly.

19For a proof of the time inconsistency of open-loop Stackelberg equilibrium, see, for example,
Dockner et al. (2000), or Long (2010).
20See also Lewis and Schmalensee (1980).
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3.2 Dynamic Resource Games Between Countries

The world markets for gas and oils consist mainly of a small number of large sellers
and buyers. For instance, the US Energy Information Administration reports that
the major energy exporters concentrate on the Middle East and Russia, whereas
the United States, Japan, and China have a substantial share in the imports. These
data suggest that bilateral monopoly roughly prevails in the oil market in which
both parties exercise market power. What are the implications of market power for
welfare of importing and exporting countries and the world?

Kemp and Long (1979) consider an asymmetric two-country world. They assume
that the resource-rich economy can only extract the resource, while the resource-
poor economy imports the resource as an input in the production of the consumption
goods. They study the implications of market power in the resource market by com-
paring a competitive equilibrium path of extraction and final good production with
the outcome under two scenarios where market power is exercised by only one of the
countries. If the resource-rich country is aggressive, it will set a time path of oil price
so that the marginal revenue from oil exports rises a rate equal to the endogenously
determined rate of interest. In the special case where the production function of
the final good is Cobb-Douglas, the resource-rich country is not better off relative
to the competitive equilibrium.21 If the resource-poor country is aggressive, it will
set a specific tariff path that makes oil producers’s price equal to extraction cost,
thus effectively appropriating all the resource rents. Kemp and Long (1979) point
out that this result will be attenuated if the resource-rich country can also produce
the consumption good.22 Bergstrom (1982) considers a model with many resource-
importing countries. He assumes that the international market is integrated so that
all importing countries pay the same price for the resource. He shows that if the
resource-poor countries can commit to a time-invariant ad valorem tariff rate on oil,
they can extract a sizable gain at the expense of resource-rich economies.

Kemp and Long (1980) present a three-country model where there is a dominant
resource-poor economy that acts as an open-loop Stackelberg leader in announcing
a time path of per-unit tariff rate, while the resource-rich country and the rest of the
world are passive. They show that such a time path is time inconsistent, because at
a later stage, having been able to induce the resource-rich country to supply more
earlier on, the leader will have an incentive to reduce the tariff rate so as to capture
a larger share of the world’s oil imports.23

Karp and Newbery (1992) numerically compute time-consistent tariff policies
in a game where several resource-poor economies noncooperatively impose tariffs

21This corresponds to the result that, in a closed economy, the market power of an oil monopolist
with zero extraction cost disappears when the elasticity of demand is constant. See, e.g., Stiglitz
(1976).
22This is confirmed in Brander and Djajic (1983), who consider a two-country world in which both
countries use oil to produce a consumption good, but only one of them is endowed with oil.
23See also Karp (1984) and Maskin and Newbery (1990) for the time-inconsistency issue.
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on oil. Assuming that oil producers are price takers and plan their future outputs
according to some Markovian price-expectation rule, the authors report their
numerical results that is possible for oil-importing countries to be worse off relative
to the free trade case. In a different paper, Karp and Newbery (1991) consider two
different orders of move in each infinitesimal time period. In their importer-move-
first model, they assume that two importing countries noncooperatively choose the
quantity to be imported. In the exporter-move-first model, the competitive exporting
firms choose how much to export before they know the tariff rates for the period.
The authors report their numerical findings that for small values of the initial
resource stock, the importer-move-first model yields lower welfare for the importers
compared to the exporter-move-first model.

Rubio and Estriche (2001) consider a two-country model where a resource-
importing country can tax the polluting fossil fuels imported from the resource-
exporting country. Revisiting that model, Liski and Tahvonen (2004) show that
there are two incentives for the resource-importing country to intervene in the trade:
taxing the imports of fossil fuels serves to improve the importing country’s terms
of trade, while imposing a carbon tax is the Pigouvian response to climate-change
externalities. They show that the gap between the price received by fossil-fuel
exporters and the price faced by consumers in the importing country can be
decomposed into two components, reflecting the terms-of-trade motive and the
Pigouvian motive.

Chou and Long (2009) set up a model with three countries: two resource-
importing countries set tariff rates on imported oil, and a resource-exporting country
controls the producer’s price. It is found that, in a Markov-perfect Nash equilibrium,
as the asymmetry between the importing countries increases, the aggregate welfare
of the importing countries tends to be higher than under global free trade. The
intuition is as follows. With two equally large buyers, the rivalry between them
dilutes their market power. In contrast, when one buyer is small and the other is
large, the large buyer is practically a monopsonist and can improve its welfare
substantially, which means the sum of the welfare levels of both buyers is also larger.
Rubio (2011) examines Markov-perfect Nash equilibriums in a dynamic game
between a resource-exporting country and n identical noncooperative importing
countries that set tariff rates. Rubio (2011) compares the case where the exporting
country sets price and the case where it sets quantity. Using a numerical example,
he finds that consumers are better off when the seller sets quantity.

Fujiwara and Long (2011) propose a dynamic game model of bilateral monopoly
in a resource market where one of the country acts as a global Markovian
Stackelberg leader in the sense that the leader announces a stock-dependent
(i.e., Markovian) decision rule at the outset of the game, and then the follower
chooses its response, also in the form of a stock-dependent decision rule.24

24For discussions of the concept of global feedback Stackelberg equilibrium, see Basar and Olsder
(1982) and Long and Sorger (2010). An alternative notion is the stagewise Stackelberg leadership,
which will be explained in more detail in Sect. 3.3 below.
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The resource-exporting country posts a price using a Markovian decision rule,
p D p.S/, where S is the current level of the resource stock. The importing
country sets a per-unit tariff rate � which comes from a decision rule �.S/.
The authors impose a time-consistency requirement which effectively restricts the
set of strategies the leader can choose from. They show that the presence of a
global Stackelberg leader leaves the follower worse off compared with its payoff
in a Markov-perfect Nash equilibrium. Moreover, world welfare is highest in the
Markov-perfect Nash equilibrium. These results are in sharp contrast with the results
of Tahvonen (1996) and Rubio and Estriche (2001) who, using the concept of
stagewise Stackelberg equilibrium, find that when the resource-exporting country is
the leader, the stagewise Stackelberg equilibrium coincides with the Markov-perfect
Nash equilibrium.25

In a companion paper, Fujiwara and Long (2012) consider the case where
the resource-exporting country (called Foreign) determines the quantity to sell
in each period. There are two resource-importing countries: a strategic, active
country, called Home, and a passive country, called ROW (i.e., the rest of the
world). The market for the extracted resource is integrated. Therefore Foreign’s
resource owners receive the same world price whether they export to Home or
to ROW. Moreover, Home’s consumers must pay a tax � on top of the world
price, while consumers in ROW only pay the world price. Home chooses � to
maximize Home’s welfare. Fujiwara and Long (2012) show that, compared with
the Markov-perfect Nash equilibrium, both countries are better off if Home is the
global Markovian Stackelberg leader. However, if the resource-exporting country
is the global Markovian Stackelberg leader, Home is worse off compared to its
Markov-perfect Nash equilibrium welfare.

Finally, in managing international trade in fossil fuels, resource-exporting coun-
tries should take into account the fact that importing countries cannot be forced
to pay a higher price than the cost of alternative energy sources that a backstop
technology can provide. Hoel (1978) shows how a fossil-fuel monopolist’s market
power is constrained by the existence of a backstop technology that competitive
firms can use to produce a substitute for the fossil fuels. This result has been
generalized to the case with two markets (van der Meijden 2016). Hoel (2011)
demonstrates that when different countries have different costs of using a backstop
technology, the imposition of a carbon tax by one country may result in a “Green
Paradox,” i.e., in response to the carbon tax, the near-future extraction of fossil fuels
may increase, bringing climate change damages closer to the present. Long and
Staehler (2014) find that a technological advance in the backstop technology may
result in a similar Green Paradox outcome. For a survey of the literature on the
Green Paradox in open economies, see Long (2015b).

25In a stagewise Stackelberg equilibrium, no commitment of any significant length is possible. The
leader can only commit to the current period decision.
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3.3 Fossil Resources and Pollution

Among the most important economic issues of the twenty-first century is the
impending risk of substantial damages caused by climate change, which is inher-
ently linked to an important class of exhaustible resources: fossil fuels, such as
oil, natural gas, and coal. The publication of the Stern Review (2006) has provided
impetus to economic analysis of climate change and policies toward fossil fuels. For
a small sample of this large literature, see Heal (2009) and Haurie et al. (2011).

Wirl (1994) considers a dynamic game between a resource-exporting country and
an importing country that suffers from the accumulated pollution which arises from
the consumption of the resource, y.t/. Let Z.t/ denote the stock of pollution and
S.t/ denote the stock of the exhaustible resource. Assume for simplicity that the
natural rate of pollution decay is zero. Then PZ.t/ D y.t/ D � PS.t/, and hence
S.0/ � S.t/ D Z.t/ � Z.0/. The stock of pollution gives rise to the damage
cost DZ.t/2. The importing country imposes a carbon tax rate � according to
some Markovian rule �.t/ D g.Z.t//. The exporting country follows a pricing
rule p.t/ D 	.S.t// D 	.Z.0/ � Z.t/ C S.0//. Along the Markov-perfect
Nash equilibrium, where g.:/ and 	.:/ are noncooperative chosen by the importing
country and the exporting country, it is found that the carbon tax rate will rise,
and if S.0/ is sufficiently large, eventually the consumption of the exhaustible
resource tends to zero while the remaining resource stock tends to some positive
level SL > 0. This is the case of economic exhaustion, because the equilibrium
producer price falls to zero due to rising carbon taxation.

Tahvonen (1996) modifies the model of Wirl (1994) by allowing the exporting
country to be a stagewise Stackelberg leader. As explained in Long (2011), if the
time horizon is finite and time is discrete, stagewise leadership by the exporter
means that in each period, the resource-exporting country moves first by announcing
the well-head price pt for that period. The government of the importing country (the
stagewise follower) reacts to that price by imposing a carbon tax �t for that period.
Working backward, each party’s payoff for period T � 1 can then be expressed as a
function of the opening pollution stock, ZT �1. Then, in period T �2, the price pT �2

is chosen and so on. For tractability, Tahvonen (1996) works with a model involving
continuous time and an infinite horizon, which derives its justification by shrinking
the length of each period and taking the limit as the time horizon becomes arbitrarily
large. He finds that the stagewise Stackelberg equilibrium of this model coincides
with the Markov-perfect Nash equilibrium.26 Liski and Tahvonen (2004) decompose
the carbon tax into a Pigouvian component and an optimal tariff component.

Different from the stagewise Stackelberg approach of Tahvonen (1996),
Katayama et al. (2014) consider the implication of global Markovian Stackelberg
leadership in a model a dynamic game involving a fossil-fuel-exporting cartel and

26This result is confirmed by Rubio and Estriche (2001) who modify the model of Tahvonen (1996)
by assuming that the per-unit extraction cost in period t is c � .S.0/ � S.t//, where c is a positive
parameter.
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a coalition of importing countries that suffer from accumulated emissions and
impose a carbon tax on the fossil fuel. Referring to Fujiwara and Long (2011),
who do not consider pollution, Katayama et al. (2014) impose a time-consistency
requirement on the Markovian strategy of the global Stackelberg leader. They find
that world welfare under the social planner is strictly greater than world welfare
under the Markov-perfect Nash equilibrium, which in turn dominates world welfare
when the exporting country is the global Stackelberg leader. When the coalition of
the importing countries is the global Stackelberg leader, world welfare is lowest
compared to the other scenarios. Finally, while the linear-quadratic structure is
conducive to analytical solution, there is a need to go beyond that structure. Bearing
this in mind, Kagan et al. (2015) take a big step forward in the analysis of resource
depletion and climate change, with the help of advanced numerical techniques.

3.4 Extraction of Exhaustible Resources Under Common Access

In the preceding subsections, we have assumed that the property rights of the
exhaustible resource stocks are well defined and well enforced. However, there
are instances where some exhaustible resources are under common access. For
examples, many oil fields are interconnected. Because of seepage, the owner of
each oil field in fact can “steal” the oil of his neighbors. Under these conditions, the
incentive for each owner to conserve his resource is not strong enough to ensure an
efficient outcome. The belief that common access resources are extracted too fast
has resulted in various regulations on extraction (McDonald 1971; Watkins 1977).

Khalatbary (1977) presents a model of m oligopolistic firms extracting from m

interconnected oil fields. It is assumed that there is an exogenous seepage parameter
ˇ > 0 such that, if Ei .t/ denotes extraction from stock Si .t/, the rate of change in
Si .t/ is

PSi .t/ D �Ei .t/ � ˇSi .t/ C
ˇ

m � 1

X

j ¤i

Sj .t/

The price of the extracted resource is P D P
�P

Ej

�
. Khalatbary (1977) assumes

that firm i maximizes its integral of the flow of discounted profits, subject to a
single transition equation, while taking the time paths of both Ej .t/ and Sj .t/ and
as given, for all j ¤ i . He shows that at the open-loop Nash equilibrium, the firms
extract at a faster rate than they would if there were no seepage.27 Kemp and Long
(1980, p. 132) point out that firm i should realize that Sj .t/ is indirectly dependent
on the time path of firm i ’s extraction, because PSj .t/ depends on Si .t/ which in
turn is affected by firm i ’s path of extraction from time 0 up to time t . Thus, firm i ’s

27Dasgupta and Heal (1979, Ch. 12) consider the open-loop Nash equilibrium of a similar seepage
problem, with just two firms, and reach similar results.
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dynamic optimization problem should include m transition equations, not just one,
and thus, firm i can influence Sj .t/ indirectly.28 Under this formulation, Kemp and
Long (1980) find that the open-loop Nash equilibrium can be efficient.29

McMillan and Sinn (1984) propose that each firm conjectures that the extraction
of other firms obeys a Markovian rule of the form ˛.t/ C �S.t/ where S.t/ is the
aggregate stock. Their objective is to determine ˛.t/ and � such that the expectations
are fulfilled. They find that there are many equilibria. They obtain the open-loop
results of Khalatbary (1977), Dasgupta and Heal (1979), Kemp and Long (1980),
Bolle (1980), and Sinn (1984) as special cases: if � D 0 and ˛.t/ is the extraction
path, one obtains an open-loop Nash equilibrium.

Laurent-Lucchetti and Santugini (2012) combine common property exhaustible
resources with uncertainty about expropriation, as in Long (1975). Consider a host
country that allows two firms to exploit a common resource stock under a contract
that requires each firm to pay the host country a fraction � of its profit. Under
the initial agreement, � D �L. However, there is uncertainty about how long
the agreement will last. The host country can legislate a change in � to a higher
value, �H . It can also evict one of the firms. The probability that these changes
occur is exogenous. Formulating the problem as a dynamic game between the two
firms, in which the risk of expropriation is exogenous and the identity of the firm to
be expropriated is unknown ex ante, the authors find that weak property rights have
an ambiguous effect on present extraction. Their theoretical finding is consistent
with the empirical evidence provided by in Deacon and Bohn (2000).

3.5 Effectiveness of Antibiotics as an Exhaustible Resource

The exhaustible resource model can be modified to study the Markov-perfect
equilibrium rate of decrease in the effectiveness of drugs such as antibiotics, when
users fail to take into account the externalities of their actions on the payoff of other
users. In an editorial on 21 December 2013, titled “The Perils of Antibiotic Use on
Farms,” the New York Times reported that:

The rampant use of antibiotics in agriculture has been alarming. The drugs are given not just
to treat sick animals, but added in low doses to animal feed or water to speed the growth
of cattle, pigs and chickens, thus reducing costs for the producers. Such widespread use
of antibiotics in healthy animals has stimulated the emergence of bacterial strains that are
resistant to antibiotics and capable of passing their resistance to human pathogens, many of
which can no longer be treated by drugs that were once effective against them.

Each year, at least two million Americans fall ill — and 23,000 die — from antibiotic-
resistant infections. Doctors are partly to blame because many prescribe antibiotics for
conditions like colds that can’t be cured with such drugs. The Centers for Disease Control

28Sinn (1984) considers a different concept of equilibrium in the seepage model: each firm is
committed to achieve a given time path of its stock.
29Bolle (1980) obtains a similar result, assuming that there is only one common stock that all m

firms have equal access.
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and Prevention estimated in September that up to half of the antibiotics prescribed for
humans are not needed or are used inappropriately. It added, however, that overuse of
antibiotics on farms contributed to the problem.

This raises the question of how to regulate the use of antibiotics in an economy,
given that other economies may have weaker regulations which help their farmers
realize more profits in the short run, as compared with the profits in economies
with stronger regulations. Cornes et al. (2001) consider two models of dynamic
game on the use of antibiotics: a discrete-time model and a continuous-time model.
Assume n players share a common pool, namely, the effectiveness of an antibiotic.
Their accumulated use of the antibiotic decreases its effectiveness: the more they use
the drug, the quicker the bacteria develop their resistance. The discrete-time model
yields the result that there are several Markov-perfect Nash equilibria, with different
time path of effectiveness. For the continuous-time model, there is a continuum of
Markov-perfect Nash equilibria.

There are n � 2 countries. Let S.t/ denote the effectiveness of the antibiotic
and Ei .t/ denote its rate of use in country i . The rate of decline of effectiveness is
described in the following equation:

PS.t/ D �ˇ
Xn

iD1
Ei .t/, ˇ > 0; S.0/ D S0 > 0:

Assume that the benefit to country i of using Ei .t/ is Bi .t/ D .S.t/Ei .t//
˛ ,

where 0 < ˛ < 1. Call Ei .t/ the nominal dose and S.t/Ei .t/ the effective dose.
If the countries coordinate their policies, the cooperative problem is to maximize
the integral of discounted benefits, where r > 0 is the discount rate. The optimal
cooperative policy rule is linear: Ei .t/ D rS.t/=2ˇn.1 � ˛/. In the noncooperative
scenario, each country uses a feedback strategy Ei D 	i .S/. Assuming that
˛ < 1=n, Cornes et al. (2001) find that there is a Markov-perfect Nash equilibrium
where all countries use the linear strategy Ei .t/ D rS.t/=2ˇn.n�1 � ˛/. Thus,
the effectiveness of the antibiotic declines at a faster rate than is socially optimal.
Interestingly, in addition to the above linear strategy equilibrium, Cornes et al.
(2001) show that there is a continuum of Markov-perfect Nash equilibria where
all countries use nonlinear strategies, and S becomes zero at some finite time. Non-
uniqueness has also been reported in Clemhout and Wan (1995).

Thus, when countries do not coordinate their policies on the use of biological
assets, the result is overexploitation. Another problem of rivalry in a broader
biological context is the biological arms race between species, as discussed in
Dawkins and Krebs (1979). The lesson is that whatever biological techniques
humans may devise in their efforts to exploit and utilize the resources that nature
has to offer, we are likely to find ourselves in an arena in which our competitors
will fight back. The continuing struggle is as old as life itself and indeed inseparable
from it.

Herrmann and Gaudet (2009) also analyze the exploitation of antibiotic effec-
tiveness in terms of a common pool problem. They think of a generic product which
takes over once a patent has expired. The authors take into account the interaction
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between the level of efficacy of the drug and the level of infection in the population.
The model is based on an epidemiological model from the biology literature. Unlike
Cornes et al. (2001) and Herrmann and Gaudet (2009) do not formulate a differential
game model, because they assume that no economic agent takes into account the
dynamic effects of their decision.

4 Directions for Future Research

There are a number of issues in resource economics that remain under-explored.
The first issue is the spatial dimension. Exhaustible resource stocks are unevenly
distributed around the globe, and this fact necessitates the transportation of the
extracted resources to consumers. How do resource-exporting firms located at
different places compete with each other for customers over time and space? What
would be the properties of Markov-perfect equilibrium involving spatially separated
resource-extracting oligopolists?30

Similarly, renewable resources, such as fish stocks, are also dispersed in space.
Harvesting fleets are not stationary: they typically have to travel and fish at many
locations. Behringer and Upman (2014) model a fleet that moves along a circle
to catch fishes. Their model involves both space and time. However, they do not
address the issue of dynamic games (across space and time) among different fleets,
and they assume that fish do not move from one pool to another. Modeling dynamic
fishing strategies when fish move from one place to another is surely a challenging
research topic.31

The second topic that deserves exploring is learning about the properties of
resources that one exploit, for example, discovering more precise information about
the growth function of a resource stock. Mirman and Santugini (2014) have made
a useful step in this direction. A third topic is how to provide incentives for
cooperation. In this context, we note that de Frutos and Martín-Herrán (2015)
provide useful analysis of a generalized concept of incentive equilibrium such that
players’ behavior (including a Markovian type of punishment) ensures that the
system is sufficiently close to the fully cooperative equilibrium outcome. They also
give a very clear definition of the concept of incentive equilibrium, an informative
historical account of the development and application of this concept, and show how
to compute such equilibria numerically. However, since in their example, de Frutos
and Martín-Herrán (2015) restrict attention to the linear-quadratic case, much work
remains to be done for a general treatment.

The fourth issue is the political economy of resource conservation. The major-
ity of the current electorate may have very little interest in conserving natural
resources. Governments may have to balance the need of future generations with the

30The case of open-loop Nash equilibrium was addressed by Kolstad (1994) and Keutiben (2014).
31This is related to the so-called SLOSS debate in ecology, in which authors disagree as to whether
a single large or several small (SLOSS) reserves would be better for conservation.
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impatience of the current voters. What would be an appropriate formulation of the
dynamic games among generations? One possible way of addressing this problem
is to think of the political process as the dual-self problem, as in Fudenberg and
Levine (2002, 2012).

Finally, it is high time to depart from the assumption that all players are
selfish. Dynamic game models of natural resource exploitation typically rely on
that assumption, which clearly leads to the prediction of overexploitation of many
resource stocks. However, as Ostrom (1990) points out, in some societies, good
social norms are sufficiently developed to avoid the tragedy of the commons. What
would be the dynamic evolution of resource stocks if some kinds of social norms
are developed to guide the behavior of economic agents?32 The importance of
social norms was recognized by classical economists. Adam Smith (1790) finds
that cooperation and mutual help are incorporated in established norms of behavior
and that

upon the tolerable observance of these duties, depend the very existence of human society,
which would crumble into nothing if mankind were not generally impressed with a
reverence for those important rules of conduct. (Smith 1790, Part III, Chap. V, p. 190)

Clearly, Smith’s view is that for societies to prosper, there is a need for two invis-
ible hands, not just one. First is the moral invisible hand that encourages the obser-
vance of duties; second is the invisible hand of the price system, which guides the
allocation of resources. Along the same lines, Roemer (2010, 2015) formulates the
concept of Kantian equilibrium, for games in which players are imbued with Kantian
ethics (Russell 1945). By definition, this equilibrium is a state of affairs in which
players of a common property resource game would not deviate when each finds
that if she was to deviate and everyone else would do likewise, she would be worse
off. However, Roemer (2010, 2015) restricts attention to static games, as does Long
(2016a,b) for the case of mixed strategy Kantian equilibria. Dynamic extension of
the concept of Kantian equilibrium has been explored by Long (2015a) and Grafton
et al. (2016), who also defined the concept of dynamic Kant-Nash equilibrium to
account for the coexistence of Kantian agents and Nashian agents. However, Long
(2015a) and Grafton et al. (2016) did not deal with the issue of how the proportion
of Kantian agents may change over time, due to learning or social influence.
Introducing evolutionary elements into this type of model remains a challenge.33
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Abstract

A differential game is the natural framework of analysis for many problems in
environmental economics. This chapter focuses on the game of international
pollution control and more specifically on the game of climate change with
one global stock of pollutants. The chapter has two main themes. First, the
different noncooperative Nash equilibria (open loop, feedback, linear, nonlinear)
are derived. In order to assess efficiency, the steady states are compared with the
steady state of the full-cooperative outcome. The open-loop Nash equilibrium is
better than the linear feedback Nash equilibrium, but a nonlinear feedback Nash
equilibrium exists that is better than the open-loop Nash equilibrium. Second,
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the stability of international environmental agreements (or partial-cooperation
Nash equilibria) is investigated, from different angles. The result in the static
models that the membership game leads to a small stable coalition is confirmed
in a dynamic model with an open-loop Nash equilibrium. The result that in an
asymmetric situation transfers exist that sustain full cooperation under the threat
that the coalition falls apart in case of deviations is extended to the dynamic
context. The result in the static model that farsighted stability leads to a set of
stable coalitions does not hold in the dynamic context if detection of a deviation
takes time and climate damage is relatively important.

Keywords
Differential games � Multiple Nash equilibria � International pollution control �

Climate change � Partial cooperation � International environmental
agreements � Stability � Non-cooperative games � Cooperative games �

Evolutionary games

JEL classification: C61; C72; Q20

1 Introduction

Differential game theory extends optimal control theory to situations with more than
one decision maker. The controls of each decision maker affect the development
of the state of the system, given by a set of differential equations. The objectives
of the decision makers are integrals of functions that depend on the state of the
system, so that the controls of each decision maker affect the objectives of the
other decision makers which turns the problem into a game. A differential game
is a natural framework of analysis for many problems in environmental economics.
Usually these problems extend over time and have externalities in the sense that the
actions of one agent affect welfare of the other agents. For example, emissions of
all agents accumulate into a pollution stock, and this pollution stock is damaging to
all agents.

The problem of international pollution control is a very good example of an
application of differential games. Pollution crosses national borders and affects
welfare in other countries. However, there is no world government that can correct
these externalities in the usual way, with a tax or with some other policy. At the
international level, countries play a game and cooperation with the purpose to
internalize the externalities is voluntary. This chapter focuses on the problem of
international pollution control and more specifically on the problem of climate
change. Greenhouse gas emissions from all countries accumulate into a global stock
of atmospheric carbon (the state of the system) that leads to climate change which
is damaging to all countries.
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In this differential game, time enters indirectly through state and controls but
directly only through discounting, so that the optimality conditions are stationary
in current values. The chapter will start with a short summary of the Pontryagin
conditions and the Hamilton-Jacobi-Bellman equations for the basic infinite-horizon
continuous-time differential game. The theory provides two remarkable results.
First, the resulting Nash equilibria differ. They are called the open-loop and the
feedback Nash equilibrium, respectively, referring to the information structure that
is implicitly assumed (Başar et al. 1982). Most applications of differential games
focus on comparing the open-loop and feedback Nash equilibria (Dockner et al.
2000). Second, even the simple linear-quadratic structure allows for a multiplicity
of (nonlinear) feedback Nash equilibria. This is shown for the game of international
pollution control with one global stock of pollutants. In case of climate change, this
is the stock of atmospheric carbon.

Full cooperation is better for the world as a whole, but incentives to deviate
arise, and therefore a noncooperative Nash equilibrium will result in which no
country has an incentive to deviate. In case of multiple Nash equilibria, the question
arises which one is better. It is shown that the steady-state stock of atmospheric
carbon in the open-loop Nash equilibrium is closer to the full-cooperative one
than in the linear feedback Nash equilibrium. However, a nonlinear feedback Nash
equilibrium exists with the opposite result. In the linear case, the emission policies
are negative functions of the stock so that an increase in emissions is partly offset by
a future decrease in emissions by the other countries. It follows that with feedback
controls, emissions in the Nash equilibrium are higher. However, in the nonlinear
case, the emission policies are, in a neighborhood of the steady state, a positive
function of the stock so that an increase in emissions is met by even higher future
emissions. This threat keeps emissions down. Observations on the state of the
system are only beneficial if the countries can coordinate on a nonlinear Nash
equilibrium.

The second part of the chapter focuses on international environmental agree-
ments. An agreement is difficult to maintain because of the incentives to deviate.
The question is whether these incentives can be suppressed. The first idea is that
the countries remaining in the coalition do not take the country that deviates into
account anymore so that the deviator loses some benefits of cooperation. This
definition of stability leads to small stable agreements. The chapter shows this by
analyzing a partial-cooperation open-loop Nash equilibrium between the coalition
of countries and the individual outsiders. A second idea is that a deviation triggers
more deviations which yields a set of stable agreements. This is called farsighted
stability and gives the possibility of a large stable agreement. However, the chapter
shows that in a dynamic context, where detection of a deviation takes time and where
climate damage is relatively more important than the costs of emission reductions,
only the small stable agreement remains. The third idea is that after a deviation, the
remaining coalition falls apart completely. It is clear that in the symmetric case, this
threat is sufficiently strong to prevent deviations. However, in the asymmetric case,
transfers between the coalition members are needed. The chapter shows how these
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transfers develop over time in a dynamic context. The basic models used to analyze
these questions are not all infinite-horizon continuous-time differential games, with
the global stock of pollutants as the state of the system. In some of these models,
the horizon is finite, the time is discrete, or the state is the level of excess emissions,
but all the models are dynamic games with a state transition.

Cooperative game theory not only provides transfers or allocation rules to
achieve stability but also to satisfy certain axioms such as fairness. The most
common allocation rule is the Shapley value. The question is whether this allocation
rule is time consistent in a dynamic context. The chapter shows that an allocation
over time exists such that reconsidering the allocation rule at some point in
time will not change it. Finally, an evolutionary game approach to the issue of
stability is considered. Based on a simple partial-cooperation differential game, with
punishments imposed on the outsiders, the chapter shows that replicator dynamics
leads to full cooperation for sufficiently high punishments and a sufficiently high
initial level of cooperation.

The chapter only focuses on a number of analyses that fit in a coherent story.
This also allows to provide some details. A wider range of applications in this
area can be found in other surveys on dynamic games and pollution control (e.g.,
Jorgensen et al. 2010; Calvo and Rubio 2013; Long 2012). Section 2 gives a short
summary of the main techniques of differential games. Section 3 analyzes the
game of international pollution control. Section 4 introduces partial cooperation and
discusses different angles on the stability of international environmental agreements.
Section 5 concludes.

2 Differential Games

It was remarkable to find that the equivalent of Bellman’s principle of optimality
does not generally hold in differential games (Starr and Ho 1969). It follows
that the Nash equilibrium in strategies that depend only on time (and the initial
state of the system) usually differs from the Nash equilibrium that is found by
dynamic programming. The first Nash equilibrium is called the open-loop Nash
equilibrium, because information on the state is not used or not available. The
second Nash equilibrium is called the feedback Nash or Markov perfect equilibrium:
by construction, using dynamic programming, the controls depend on the state of
the system, and backward induction yields Markov perfectness. The open-loop Nash
equilibrium results from using Pontryagin’s maximum principle under the standard
assumption that the strategies depend only on time (and the initial state of the
system). It is also possible to find a feedback Nash equilibrium with Pontryagin’s
maximum principle, assuming that the strategies in some way depend on the state
of the system (e.g., Long 2006; Tornell and Velasco 1992), but this is usually
less convenient than applying dynamic programming. In general, many more Nash
equilibria exist, for example, by considering extended information structures (Başar
et al. 1982), but most of the applications are restricted to comparing open-loop and
feedback Nash equilibria (Dockner et al. 2000). The same applies for applications
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in environmental economics. Before we discuss some of these applications, we will
first summarize the formal model that will be used in the sequel.

2.1 Formal Model

An important class of differential games is given by

max
ui .:/

Wi D

Z 1

0

e�rtFi Œx.t/; ui .t /�dt; i D 1; 2; : : : ; n; (16.1)

subject to

Px.t/ D f Œx.t/; u1.t/; u2.t/; : : : ; un.t/�; x.0/ D x0; (16.2)

where i indexes the n players, x denotes the state of the system, u the controls, r the
discount rate,W the total welfare, F the welfare at time t , and f the state transition.
Note that the players only interact through the state dynamics. The problem has an
infinite horizon, and the welfare function and the state transition do not explicitly
depend on time, except for the discount rate. This implies that the problem can be
cast into a stationary problem.

In the open-loop Nash equilibrium, the controls only depend on time: ui .t /.
This implies that for each player i , an optimal control problem has to be solved
using Pontryagin’s maximum principle, with the strategies of the other players
as exogenous inputs. This results in an optimal control strategy for player i as a
function of time and the strategies of the other players. This is in fact the rational
reaction or best response of player i . The open-loop Nash equilibrium simply
requires consistency of these best responses. Pontryagin’s maximum principle yields
a necessary condition in terms of a differential equation in the co-state �i . If the
optimal solution for player i can be characterized by the set of differential equations
in x and �i , then the open-loop Nash equilibrium can be characterized by the set of
differential equations in x and �1; �2; : : : ; �n. This is usually the best way to find
the open-loop Nash equilibrium. The necessary conditions for player i in terms of
the current-value Hamiltonian function

Hi.x; ui ; �i / D Fi.x; ui /C �if Œx; u1.t/; ::; ui ; ::; un.t/� (16.3)

are that the optimal u�
i .t / maximizes Hi and that the state x and the co-state �i

satisfy the set of differential equations

Px.t/ D f Œx.t/; u1.t/; ::; u
�
i .t /; ::; un.t/�; x.0/ D x0; (16.4)

P�i .t/ D r�i .t/ �HixŒx.t/; u
�
i .t /; �i .t/�; (16.5)
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with a transversality condition on �i . Note that the actions of the other players uj .t/,
j ¤ i are exogenous to player i . If sufficiency conditions are satisfied and if u�

i .t /

can be explicitly solved from the first-order conditions of optimization, the open-
loop Nash equilibrium can be found by solving the set of differential equations in x
and �1; �2; : : : ; �n given by

Px.t/ D f Œx.t/; u�
1 .t/; u

�
2 .t/; ::; u

�
n.t/�; x.0/ D x0; (16.6)

P�i .t/ D r�i .t/ �HixŒx.t/; u
�
i .t /; �i .t/�; i D 1; 2; : : : ; n; (16.7)

with transversality conditions on �1; �2; : : : ; �n.
In the feedback Nash equilibrium, the controls depend on the current state

of the system, and since the problem is basically stationary, they do not depend
explicitly on time: ui .x/. The Hamilton-Jacobi-Bellman equations in the current-
value functions Vi are given by

rVi .x/ D max
ui

fFi.x; ui /C V 0
i .x/f Œx; u1.x/; ::; ui ; ::; un.x/�g; i D 1; 2; : : : ; n:

(16.8)

If sufficiency conditions are satisfied and if u�
i .x/ can be explicitly solved from the

first-order conditions of optimization, the feedback Nash equilibrium can be found
by solving the set of equations in the current-value functions Vi given by

rVi .x/ D Fi.x; u
�
i .x//C V 0

i .x/f Œx; u
�
1 .x/; u

�
2 .x/; : : : ; u

�
n.x/�; i D 1; 2; : : : ; n:

(16.9)

An important question is whether one or the other Nash equilibrium yields higher
welfare to the players. The benchmark for answering this question is the full-
cooperative outcome in which the countries maximize their joint welfare

P
Wi . This

is a standard optimal control problem that can be solved using either Pontryagin’s
maximum principle or dynamic programming.

We will now turn to typical applications in environmental economics.

3 International Pollution Control

A typical situation in environmental economics that requires a differential game
analysis is as follows. The players are countries. Economic activities in these
countries generate emissions of some sort. These emissions accumulate into a
stock of pollutants that is damaging. If these emissions cross national borders or
if these emissions accumulate into a global stock of pollutants, stock externalities
between the players occur. An example of the first situation is the acid rain game
(Kaitala et al. 1992; Mäler et al. 1998). Certain industries and traffic generate
emissions of sulfur dioxide and nitrogen oxides, and the wet and dry depositions
of these substances cause acidification of soils, which is a dynamic process.
Soils can assimilate this pollution up to what is called the critical load, but the
depositions above this critical load lower the pH level of the soils which damages
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their productivity. Reducing emissions is costly so that a trade-off occurs between
the costs of emission reductions and damage of acidification. Winds take these
substances across borders so that emissions in one country may lead to depositions
in other countries. A differential game results with a transportation matrix in the
linear state equation that indicates which fractions of the emissions in each country
are transported to the other countries. In steady state, the depositions are equal to the
critical loads, but the open-loop Nash equilibrium, the feedback Nash equilibrium,
and the full-cooperative outcome differ in their speed of convergence to the steady
state and in their level of acidification. General analytical conclusions are hard to
derive, but availability of data in Europe on the transportation matrix and the costs
of emission reductions allow for some conclusions in terms of the possible gains of
cooperation (Mäler et al. 1998).

The second situation in which emissions accumulate into a global stock of
pollutants allows for more general analytical conclusions. Climate change is the
obvious example. Greenhouse gas emissions accumulate into a stock of atmospheric
carbon that causes climate change. The rise in temperature has a number of
damaging effects. Melting of ice caps leads to sea level rise which causes flooding
or requires expensive protection measures. Precipitation patterns will change which
will lead to desertification in some parts of the world and extensive rainfall in other
parts. An increase in extreme weather is to be expected with more severe storms
and draughts. In general, living conditions will change as well as conditions for
agriculture and other production activities. Greenhouse gas emissions E are a by-
product of production, and the benefits of production can therefore be modeled as
B.E/, but the stock of atmospheric carbon S yields costs D.S/. This leads to the
following differential game:

max
Ei .:/

Wi D

Z 1

0

e�rt ŒB.Ei .t// �D.S.t//�dt; i D 1; 2; : : : ; n; (16.10)

with

B.E/ D ˇE �
1

2
E2;D.S/ D

1

2
�S2; (16.11)

subject to

PS.t/ D

nX
iD1

Ei .t/ � ıS.t/; S.0/ D S0; (16.12)

where i indexes the n countries, W denotes total welfare, r the discount rate,
ı the decay rate of carbon, and ˇ and � are parameters of the benefit and cost
functions. Note that in this model, the countries are assumed to have identical
benefit and cost functions. When the costs D are ignored, emission levels E are at
the business-as-usual level ˇ yielding maximal benefits, but in the optimum lower
emission levels with lower benefits B are traded off against lower costs D. It is
standard to assume decreasing marginal benefits and increasing marginal costs, and
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the quadratic functional forms with the linear state equation (16.12) are convenient
for the analysis.

Climatologists, however, predict that an important part of climate change damage
will be caused by tipping points in the climate system (Lenton and Ciscar 2013). At
some point the system may shift to another domain of attraction with substantial
costs to the economy. The tipping point is uncertain, and therefore tipping points
are usually labeled as large, abrupt, and persistent changes. The damage function
D.S/ D 1

2
�S2 does not reflect this aspect, but there is a way in which this can be

handled without losing the linear-quadratic structure. Tipping can be modeled as an
uncertain point in time where the damage function switches from D1.S/ D 1

2
�1S

2

to D2.S/ D 1
2
�2S

2 with �2 > �1. The problem can now be split into problems
before the event and after the event and can be solved backward in time, so that the
linear-quadratic structure is preserved. This has been done for the optimal control
problem (de Zeeuw and Zemel 2012), but the differential game is still open for
further research. In the optimal control solution, the main result is that optimal
policy becomes precautionary in the sense that the emissions have to decrease when
potential tipping is taken into account.

Climate tipping can also be modeled as a shock to total factor productivity
in the Ramsey growth model (van der Ploeg and de Zeeuw 2016). Because the
stock of atmospheric carbon increases the probability of tipping, externalities occur
between the countries. Furthermore, countries may differ in their vulnerability to
climate change (i.e., their shock to total factor productivity) and in their stage
of development (i.e., their initial capital stock). Typically, the “South” is more
vulnerable to climate change and starts at a lower stage of development than the
“North”. The open-loop Nash equilibrium of the resulting asymmetric differential
game has been derived, but the feedback Nash equilibrium is still open for further
research. The main conclusion is that taxes on emissions in the full-cooperative
outcome differ in two respects, as compared to the open-loop Nash equilibrium. In
the long run, taxes in the North and the South converge to high and similar levels
when they cooperate, whereas in the absence of cooperation, the tax in the South is
lower and in the North much lower. Furthermore, initially the tax is high in the North
and low in the South when they cooperate, so that the South can catch up, whereas in
the absence of cooperation, the taxes are both low. In this chapter we will only focus
on the open-loop and feedback Nash equilibria of the linear-quadratic differential
game (16.10), (16.11), and (16.12) and compare the results (see Dockner and Long
1993; Hoel 1993; Long 1992; van der Ploeg and de Zeeuw 1992).

3.1 Open-Loop Nash Equilibrium

Using Pontryagin’s maximum principle, the current-value Hamiltonian functions
become

Hi.S;Ei ; t; �i / D ˇEi �
1

2
E2
i �

1

2
�S2 C �i .Ei C

nX
j¤i

Ej .t/ � ıS/ (16.13)
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and since sufficiency conditions are satisfied, the open-loop Nash equilibrium
conditions become

Ei.t/ D ˇ C �i .t/; i D 1; 2; : : : ; n; (16.14)

PS.t/ D

nX
iD1

Ei .t/ � ıS.t/; S.0/ D S0; (16.15)

P�i .t/ D .r C ı/�i .t/C �S.t/; i D 1; 2; : : : ; n; (16.16)

with transversality conditions on �1; �2; : : : ; �n. The symmetric open-loop Nash
equilibrium can therefore be characterized by the set of differential equations

PSOL.t/ D n.ˇ C �OL.t// � ıSOL.t/; SOL.0/ D S0; (16.17)

P�OL.t/ D .r C ı/�OL.t/C �SOL.t/; (16.18)

with a transversality condition on �OL, where OL denotes open loop. This yields a
standard phase diagram in the state/co-state plane for an optimal control problem,
with a stable manifold, and the saddle-point-stable steady state is given by

S�
OL D

nˇ.r C ı/

ı.r C ı/C n�
: (16.19)

The negative of the shadow value ��OL can be interpreted as the tax on emissions
that is required in each country to implement the open-loop Nash equilibrium.
Note that this tax only internalizes the externalities within the countries but not
the transboundary externalities. This would require a higher tax that can be found
from the full-cooperative outcome of the game.

In the full-cooperative outcome, the countries maximize their joint welfareP
Wi which is a standard optimal control problem. Using Pontryagin’s maximum

principle, the current-value Hamiltonian function becomes

H.S;E1;E2; : : : ; En; �/ D

nX
iD1

.ˇEi �
1

2
E2
i / �

1

2
�nS2 C �

 
nX
iD1

Ei � ıS

!

(16.20)

and since sufficiency conditions are satisfied, the optimality conditions become

Ei.t/ D ˇ C �.t/; i D 1; 2; : : : ; n; (16.21)

PS.t/ D

nX
iD1

Ei .t/ � ıS.t/; S.0/ D S0; (16.22)

P�.t/ D .r C ı/�.t/C n�S.t/; (16.23)
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with a transversality condition on �. The full-cooperative outcome can therefore be
characterized by the set of differential equations

PSC .t/ D n.ˇ C �C .t// � ıSC .t/; SC .0/ D S0; (16.24)

P�C .t/ D .r C ı/�C .t/C n�SC .t/; (16.25)

with a transversality condition on �C , where C denotes cooperative. This yields a
standard phase diagram in the state/co-state plane for an optimal control problem,
with a stable manifold, and the saddle-point-stable steady state is given by

S�
C D

nˇ.r C ı/

ı.r C ı/C n2�
< S�

OL: (16.26)

The negative of the shadow value ��C can be interpreted again as the tax on
emissions that is required in each country to implement the full-cooperative outcome
and it is easy to see that this tax is indeed higher than the tax in the open-loop Nash
equilibrium, because now the transboundary externalities are internalized as well.
The steady state of the full-cooperative outcome S�

C is lower than the steady state
of the open-loop Nash equilibrium S�

OL, as is to be expected. The interesting case
arises when we include the steady state of the feedback Nash equilibrium in the next
section.

3.2 Feedback Nash Equilibrium

The Hamilton-Jacobi-Bellman equations in the current-value functions Vi .S/

become

rVi .S/ D max
Ei

8<
:ˇEi �

1

2
E2
i �

1

2
�S2 C V 0

i .S/

0
@Ei C

nX
j¤i

Ej .S/ � ıS

1
A
9=
; ;

i D 1; 2; : : : ; n; (16.27)

with first-order conditions

E�
i .S/ D ˇ C V 0

i .S/; i D 1; 2; : : : ; n: (16.28)

Since sufficiency conditions are satisfied, the symmetric feedback Nash equilibrium
can be found by solving the following differential equation in V D Vi , i D

1; 2; ::; n:

rV .S/ D ˇ.ˇC V 0.S//�
1

2
.ˇC V 0.S//2 �

1

2
�S2 C V 0.S/Œn.ˇC V 0.S//� ıS�:

(16.29)
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The linear-quadratic structure of the problem suggests that the value function is
quadratic (but we come back to this issue below). Therefore, the usual way to
solve this differential equation is to assume that the current-value function V has
the general quadratic form

V .S/ D �0 � �1S �
1

2
�2S

2; �2 > 0; (16.30)

so that a quadratic equation in the state S results. Since this equation has to hold for
all S , the coefficients of S2 and S on the left-hand side and the right-hand side have
to be equal. It follows that

�2 D
�.r C 2ı/C

p
.r C 2ı/2 C 4.2n � 1/�

2.2n � 1/
; (16.31)

�1 D
nˇ�2

.r C ı/C .2n � 1/�2
: (16.32)

The feedback Nash equilibrium becomes

E�
i .S/ D ˇ � �1 � �2S; i D 1; 2; : : : ; n; (16.33)

and the controlled state transition becomes

PS.t/ D n.ˇ � �1 � �2S.t// � ıS.t/; (16.34)

which is stable and yields the steady state

S�
FB D

n.ˇ � �1/

ı C n�2
; (16.35)

where FB denotes feedback.
It is tedious but straightforward to show that

S�
C < S

�
OL < S

�
FB: (16.36)

This is interesting because it implies that in the feedback Nash equilibrium, the
countries approach a higher steady-state stock of atmospheric carbon than in
the open-loop Nash equilibrium. It turns out that for the feedback information
structure, the noncooperative outcome is worse in this respect than for the open-
loop information structure. The intuition is as follows. A country argues that when
it will increase its emissions, this will increase the stock of atmospheric carbon
and this will induce the other countries to lower their emissions, so that part of the
increase in emissions will be offset by the other countries. Each country argues
the same way so that in the Nash equilibrium emissions will be higher than in
case the stock of atmospheric carbon is not observed. Since the feedback model
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(in which the countries observe the state of the system and are not committed to
future actions) is the more realistic model, the “tragedy of the commons” (Hardin
1968) is more severe than one would think when the open-loop model is used.
To put it differently, the possible gains of cooperation prove to be higher when
the more realistic feedback model is used as the noncooperative model. However,
this is not the whole story. Based on a paper by Tsutsui and Mino (1990) that
extends one of the first differential game applications in economics by Fershtman
and Kamien (1987) on dynamic duopolistic competition, Dockner and Long (1993)
show that also nonlinear feedback Nash equilibria (with non-quadratic current-value
functions) for this problem exist which lead to the opposite result. This will be the
topic of the next section.

3.3 Nonlinear Feedback Nash Equilibria

Recall that the symmetric feedback Nash equilibrium (16.28) is given by

E�
i .S/ D ˇ C V 0.S/ WD h.S/; i D 1; 2; : : : ; n; (16.37)

where h denotes the feedback equilibrium control. It follows that the Hamilton-
Jacobi-Bellman equation (16.27) can be written as

rV .S/ D ˇh.S/ �
1

2
.h.S//2 �

1

2
�S2 C Œh.S/ � ˇ�Œnh.S/ � ıS�: (16.38)

Assuming that h is differentiable, differentiating this equation with respect to S and
again substituting V 0.S/ D h.S/� ˇ yields an ordinary differential equation in the
feedback equilibrium control h that is given by

Œ.2n�1/h.S/C .1�n/ˇ� ıS�h0.S/ D .rC ı/h.S/C�S �ˇ.rC ı/: (16.39)

The linear feedback Nash equilibrium (16.33) with steady state (16.35) is a solution
of this differential equation, but it is not the only one. The differential equation
may have multiple solutions because the boundary condition is not specified. The
steady-state condition

h.S�/ D
ıS�

n
(16.40)

can serve as a boundary condition, but the steady state S� is not predetermined
and can take different values. One can also say that the multiplicity of nonlinear
feedback Nash equilibria results from the indeterminacy of the steady state in
differential games. The solutions of the differential equation (16.39) in the feedback
equilibrium control h must lead to a stable system where the state S converges to
the steady state S�. Dockner and Long (1993) show that for n D 2, the set of
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stable solutions is represented by a set of hyperbolas in the .S; h/-plane that cut the
steady-state line 1

2
ıS in the interval

2ˇ.2r C ı/

ı.2r C ı/C 4�
� S� <

2ˇ

ı
: (16.41)

Rubio and Casino (2002) indicate that this result has to be modified in the sense
that it does not hold for all initial states S0 but it holds for intervals of initial states
S0 above the steady state S�. The upper edge of the interval (16.41) represents
the situation where both countries ignore the costs of climate change and choose
E D ˇ. The endpoint to the left of the interval (16.41) is the lowest steady state
that can be achieved with a feedback Nash equilibrium. We will call this the “best
feedback Nash equilibrium” and denote the steady state by S�

BFB . In this equilibrium
the hyperbola h.S/ is tangent to the steady-state line, so that h.S�

BFB/ D 1
2
ıS�

BFB

and h0.S�
BFB/ D 1

2
ı.

Using (16.19) and (16.26), it is easy to show that

S�
C D

2ˇ.r C ı/

ı.r C ı/C 4�
< S�

BFB D
2ˇ.2r C ı/

ı.2r C ı/C 4�
< S�

OL D
2ˇ.r C ı/

ı.r C ı/C 2�
:

(16.42)

This means that if we allow for nonlinear equilibria in this linear-quadratic
framework, the feedback Nash equilibrium can be better (in terms of steady states)
than the open-loop Nash equilibrium, opposite to what we found for the linear case
in the previous section. The reason is that close to S�

BFB , the feedback equilibrium
controls h are increasing because h0.S�

BFB/ D 1
2
ı. This means that now each

country argues that when it will increase its emissions, this will increase the stock
of atmospheric carbon and this will induce the other countries to increase their
emissions as well. By coordinating on the best feedback Nash equilibrium, the
countries build in some sort of threat which keeps emissions and thus the stock
of atmospheric carbon down. Moreover, if the discount rate r converges to zero,
the steady state of the best feedback Nash equilibrium S�

BFB converges to the steady
state S�

C of the cooperative outcome. This result can be interpreted as a folk theorem
in this differential game, although a general folk theorem for differential games is
not available (Dockner and Long 1993; Rowat 2007).

The last result does not necessarily mean that welfare in the best feedback Nash
equilibrium also converges to welfare in the cooperative outcome, if the discount
rate r converges to zero. The analysis does not show how the paths toward the
steady states in both outcomes compare. Kossioris et al. (2008) use the same
approach to derive the best feedback Nash equilibrium for a differential game
with a nonlinear state transition (representing the eutrophication of a lake). In
this case the ordinary differential equation in the feedback equilibrium control h
becomes more complicated (i.e., an Abel differential equation of the second kind).
It can only be solved with numerical methods. They show that in this case, the
steady state of the best feedback Nash equilibrium not always converges to the



716 A. de Zeeuw

steady state of the cooperative outcome, if the discount rate r converges to zero.
Moreover, welfare in the best feedback Nash equilibrium is generally worse than
in the cooperative outcome. Finally, this approach has only been developed for
one-dimensional systems, and we have to wait and see how it works out in higher
dimensions. All these issues are open for further research.

4 International Environmental Agreements

The game of international pollution control with a global stock of pollutants is a so-
called prisoners’ dilemma. The full-cooperative outcome yields higher welfare than
the noncooperative outcome, but each country has an incentive to deviate and to free
ride on the efforts of the other countries. In that sense, the full-cooperative outcome
is not stable. However, if the group of remaining countries adjust their emission
levels when a country deviates, the deviating country also loses welfare because the
externalities between this country and the group are not taken into account anymore.
The interesting question arises whether some level of cooperation can be stable in
the sense that the free-rider benefits are outweighed by these losses. In the context
of cartel theory, d’Aspremont et al. (1983) have introduced the concept of cartel
stability. Carraro et al. (1993) and Barrett (1994) have developed it further in the
context of international environmental agreements. An agreement is stable if it is
both internally and externally stable. Internal stability means that a member of the
agreement does not have an incentive to leave the agreement, and external stability
means that an outsider does not have an incentive to join the agreement. This can
be modeled as a two-stage game. In stage one the countries choose to be a member
or not, and in stage two, the coalition and the outsiders decide noncooperatively on
their levels of emissions. The basic result of this approach is that the size of the
stable coalition is small. Rubio and Casino (2005) show this for the dynamic model
with a global stock of pollutants, using an extension of the differential game in the
previous sections. This will be the topic of the next section.

4.1 Stable Partial Cooperation

In the first stage of the game, the coalition of size k 5 n is formed, and in the
second stage of the game, this coalition and the n� k outsiders play the differential
game (16.10), (16.11), and (16.12) where the objective of the coalition is given by

max
E1.:/;:::;Ek.:/

kX
iD1

Wi : (16.43)

The first stage of the game leads to two types of players in the second stage of the
game: members of the coalition and outsiders. It is easy to see that the open-loop
partial-cooperation Nash equilibrium in the second stage
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Ei.t/ D ˇC�m.t/; i D 1; : : : ; kIEi.t/ D ˇC�o.t/; i D kC1; : : : ; n; (16.44)

where m denotes member of the coalition and o denotes outsider, can be character-
ized by the set of differential equations

PS.t/ D k.ˇ C �m.t//C .n � k/.ˇ C �o.t// � ıS.t/; S.0/ D S0; (16.45)

P�m.t/ D .r C ı/�m.t/C k�S.t/; (16.46)

P�o.t/ D .r C ı/�o.t/C �S.t/; (16.47)

with transversality condition on �m and �o. This yields a standard phase diagram in
the state/co-state plane for an optimal control problem, with a stable manifold, and
the saddle-point-stable steady state is given by

S� D
nˇ.r C ı/

ı.r C ı/C .k2 C n � k/�
: (16.48)

For k D 1 the steady state S� is equal to the steady state S�
OL of the open-loop Nash

equilibrium, given by (16.19), and for k D n it is equal to the steady state S�
C of the

full-cooperative outcome, given by (16.26).
Since there are two types of players, there are also two welfare levels, W m for

a member of the coalition and W o for an outsider. An outsider is better off than
a member of the coalition, i.e., W o > W m, because outsiders emit more and are
confronted with the same global level of pollution. However, if a country in stage
one considers to stay out of the coalition, it should not compare these welfare levels
but the welfare level of a member of the coalition of size k, i.e., W m.k/, with the
welfare level of an outsider to a coalition of size k�1, i.e.,W o.k�1/. This is in fact
the concept of internal stability. In the same way, the concept of external stability
can be formalized, so that the conditions of internal and external stability are given
by

W o.k � 1/ 5 W m.k/; k = 1; (16.49)

W m.k C 1/ 5 W o.k/; k 5 n � 1: (16.50)

The question is for which size k these conditions hold. It is not possible to check
these conditions analytically, but it can be shown numerically that the size k� of the
stable coalition is equal to 2, regardless of the total number of countries n (Rubio and
Casino 2005). This confirms the results in the static literature with a flow pollutant.
It shows that the free-rider incentive is stronger than the incentive to cooperate.

In this model it is assumed that the membership decision in stage one is taken
once and for all. Membership is fixed in the differential game in stage two.
The question is what happens if membership can change over time. Rubio and
Ulph (2007) construct an infinite-horizon discrete-time model, with a stock of
atmospheric carbon, in which the membership decision is taken at each point in
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time. A difficulty is that countries do not know whether they will be members of the
coalition or outsiders in the next periods, so that they do not know their future value
functions. Therefore, it is assumed that each country takes the average future value
function into account which allows to set up the dynamic-programming equations
for each type of country in the current period. Then the two-stage game can be
solved in each time period, for each level of the stock. Rubio and Ulph (2007)
show numerically that on the path towards the steady state, an increasing stock of
atmospheric carbon is accompanied by a decreasing size of the stable coalition.
We will now switch to alternative stability concepts for international environmental
agreements.

4.2 An Alternative Stability Concept

The approach with internal/external stability was challenged by Chander and
Tulkens (1995) who define a stable coalition differently. They assume that if a
country or a group of countries deviates, the group of remaining countries falls apart
and plays as individual countries noncooperatively against the deviator. This can
be seen as a threat that may prevent deviations. A coalition is stable if deviations
of individual countries or groups of countries are prevented in this way. This is
the idea of the core in cooperative game theory, and in fact the � -core concept is
applied here. In the symmetric case, it is obvious that the grand coalition is stable,
because full-cooperative welfare is higher than noncooperative welfare. However, in
the asymmetric case, transfers between the coalition members are needed in order
to achieve stability of the grand coalition in this respect.

In a dynamic game, with a stock of atmospheric carbon, the question is how these
transfers develop over time. In order to investigate this, Germain et al. (2003) use
the asymmetric finite-horizon discrete-time version of the differential game (16.10),
(16.11), and (16.12) which is given by

min
Ei .:/

TX
tD1

d t ŒCi .Ei .t//CDi.S.t//�; i D 1; 2; : : : ; n; (16.51)

subject to

S.t/ D .1 � ı/S.t � 1/C

nX
iD1

Ei .t/; S.0/ D S0; (16.52)

where C D B.ˇ/ � B.E/ denotes the costs of emission reductions, T the time
horizon, and d the discount factor.

In the final period T , the level of the stock S.T � 1/ is given, and a static
game is played. The grand coalition minimizes the sum of the total costs over all
n countries. Suppose that the minimum is realized by EC

i .T / leading to SC .T /.
Furthermore, suppose that the Nash equilibrium is unique and is given by EN

i .T /
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leading to SN .T /. It follows that the full-cooperative and Nash-equilibrium total
costs, TCC

i and TCN
i , for each country i are given by

TCC
i .S.T � 1// D Ci.E

C
i .T //CDi.S

C .T //; (16.53)

TCN
i .S.T � 1// D Ci.E

N
i .T //CDi.S

N .T //: (16.54)

It is clear that the sum of the total costs in the full-cooperative outcome are lower
than in the Nash equilibrium which creates the gain of cooperation G that is
given by

G.S.T � 1// D

nX
iD1

TCN
i .S.T � 1// �

nX
iD1

TCC
i .S.T � 1//: (16.55)

Suppose that the grand coalition chooses budget-neutral transfers �i of the form

�i .S.T �1// D TCN
i .S.T �1//�TCC

i .S.T �1//��iG.S.T �1//; (16.56)

with 0 < �i < 1,
Pn

iD1 �i D 1, so that country i ends up with total costs

T QCC
i .S.T � 1// D TCN

i .S.T � 1// � �iG.S.T � 1//; 0 < �i < 1;

nX
iD1

�i D 1:

(16.57)

This implies that the grand coalition allocates the costs in such a way that the
total noncooperative costs of each country are decreased with a share in the gain
of cooperation. This immediately guarantees that full cooperation is individually
rational for each country. Chander and Tulkens (1995) show that in case of linear
damages D, a proper choice of the �i also yields coalitional rationality so that
the grand coalition is in the � -core of the game. Each �i is simply equal to
the marginal damage of country i divided by the sum of the marginal damages.
Chander and Tulkens (1997) show that this result, under reasonable conditions, can
be generalized to convex costs and damages.

In the penultimate period T � 1, the level of the stock S.T � 2/ is given, and a
similar static game is played with objectives given by

min
Ei .T�1/

ŒCi .Ei .T � 1//CDi.S.T � 1//C dT QCC
i .S.T � 1//�; i D 1; 2; : : : ; n:

(16.58)

The same steps can be followed as in the final period T with the damage functionDi

replaced byDiCdT QCC
i . Again the full-cooperative outcome, the Nash equilibrium,

the gain of cooperation, the transfers, and the resulting total costs for each country
in period T � 1 can be determined, as functions of the stock S.T � 2/. Backward
induction (or dynamic programming) unravels the solution for all time periods
down to t D 1 with S.0/ D S0. Note that the resulting trajectory of the stock
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of atmospheric carbon is the full-cooperative trajectory. Note also that convexity
of the function Di C dT QCC

i is not guaranteed by convexity of the cost and
damage functions, so that second-order conditions and coalitional rationality have
to checked. Germain et al. (2003) develop a numerical algorithm that calculates
the transfers over time that are needed for stability of the grand coalition. This
algorithm is applied to a climate change model with three regions and 30 periods.
In that model, transfers are needed from the industrialized countries to China and at
the end also a bit to the rest of the world. Below we will consider a third idea for
stability of international environmental agreements, but first we will step aside and
consider a dynamic allocation rule with another purpose than stability.

4.3 A Time-Consistent Allocation Rule

The analysis in the previous section focuses on the question of how the grand
coalition should allocate the costs with the purpose to prevent deviations by any
group of countries. However, cooperative game theory also provides allocation rules
with other purposes, namely, to satisfy some set of axioms such as fairness. The
Shapley value is the most simple and intuitive allocation rule (Shapley 1953). In a
dynamic context, with a stock of atmospheric carbon, the question arises how the
total costs should be allocated over time. Petrosjan and Zaccour (2003) argue that the
allocation over time should be time consistent and show how this can be achieved,
in case the Shapley value is the basis for allocation of costs. In this way the initial
agreement is still valid if it is reconsidered at some point in time. The asymmetric
infinite-horizon continuous-time version of the differential game (16.10) is used,
with total costs as objective. This is given by

min
Ei .:/

Z 1

0

e�rt ŒCi .Ei .t//CDi.S.t//�dt; i D 1; 2; : : : ; n; (16.59)

subject to (16.12).
The feedback Nash equilibrium can be found with the Hamilton-Jacobi-Bellman

equations in the current-value functions V N
i .S/ given by

rV N
i .S/ D min

Ei
fCi.Ei /CDi.S/CV

N 0
i .S/.EiC

nX
j¤i

Ej .S/�ıS/g; i D 1; 2; : : : ; n;

(16.60)

and the full-cooperative outcome can be found with the Hamilton-Jacobi-Bellman
equation in the current-value function V C .S/ given by

rV C .S/ D min
E1;:::;En

(
nX
iD1

ŒCi .Ei /CDi.S/�C V C 0.S/

 
nX
iD1

Ei � ıS

!)
:

(16.61)
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This yields values Vi .S/ for individual countries and a value V C .S/ for the grand
coalition. Petrosjan and Zaccour (2003) suggest to derive values for a group of
countriesK by solving the Hamilton-Jacobi-Bellman equations in the current-value
functions V .K; S/ given by

rV .K; S/ D min
Ei ;i2K

(X
i2K

ŒCi .Ei /

CDi.S/�C V 0.K; S/
�X
i2K

Ei C
X
i…K

EN
i .S/ � ıS

�9=
; ; (16.62)

where EN
i .S/ denotes the emissions in the feedback Nash equilibrium. Note that

this is not the feedback partial-cooperation Nash equilibrium because the emissions
of the outsiders are fixed at the levels in the feedback Nash equilibrium. This
simplification is made because the computational burden would otherwise be very
high. This yields values V .K; S/ for groups of countries. Note that V .fig; S/ D

Vi .S/ and V .K; S/ D V C .S/ if K is the grand coalition. The Shapley value
�.S/ WD Œ�1.S/; : : : ; �n.S/� is now given by

�i .S/ WD
X
i2K

.n � k/Š.k � 1/Š

nŠ
ŒV .K; S/ � V .Knfig; S/�; i D 1; 2; : : : ; n;

(16.63)
where k is the size of the group of countries K.

The question is how the initial Shapley value �.S0/ should be allocated over
time. An allocation  .t/ WD Œ 1.t/; : : : ;  n.t/� over time needs to satisfy

�i .S0/ D

Z 1

0

e�rt i .t/dt; i D 1; 2; : : : ; n: (16.64)

The allocation  .t/ yields the required time consistency if for all points in time t
the following condition holds:

�i .S0/ D

Z t

0

e�rs i .s/ds C e�rt�i .S
C .t//; i D 1; 2; : : : ; n; (16.65)

where SC denotes the stock of atmospheric carbon in the full-cooperative outcome.
It is easy to show that this condition holds for

 i.t/ D r�i .S
C .t// �

d

dt
�i .S

C .t//; i D 1; 2; : : : ; n: (16.66)

If the stock of atmospheric carbon SC is constant so that the Shapley value �.SC / is
constant, the allocation (16.66) over time simply requires to pay the interest r�.SC /
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at each point in time. However, if the stock SC changes over time, the allocation
(16.66) has to be adjusted with the time derivative of the Shapley value �.SC .t// at
the current stock of atmospheric carbon. In the next section, we return to the issue
of stability.

4.4 Farsightedness

A third approach is provided by the concept of farsightedness (Chwe 1994) which is
in a way connecting the two stability concepts above. Internal stability is “too weak,”
because it assumes no further deviations, but the � -core approach is “too strong,”
because it assumes that the coalition falls apart completely. Farsightedness allows
that deviations trigger further deviations, but this process comes to an end when
a new stable coalition is reached. A set of farsighted stable coalitions can be built,
starting at the small-size coalition that is internally and externally stable. The largest
stable coalition in this set is usually close in size to the grand coalition. Deviations
are prevented because a member of a farsighted stable coalition is better off than
an outsider to the next-in-size farsighted stable coalition. This approach is used in
a number of papers on international environmental agreements (e.g., Diamantoudi
and Sartzetakis 2015; Osmani and Tol 2009).

An interesting issue in a dynamic context is that detection of a deviation may
take time and that during that time the situation may have changed. In such a
case, it may happen that a deviation is not deterred whereas it would have been
deterred in a static context. Using farsighted stability, de Zeeuw (2008) investigates
this in a model that is slightly different from the model above. The countries set a
target for the total level of emissions, for example, because this level does not cause
further temperature rise and prevents climate tipping. Each country can contribute
to reducing excess emissions from the current total level E0. Excess emissions
E are costly to all countries, but reduction of emissions Ai (for “abatement”) is
costly as well. This yields an infinite-horizon discrete-time differential game which
is given by

min
Ai .:/

1X
tD1

d t
�
1

2
pE2.t/C

1

2
A2i .t/

�
; i D 1; 2; : : : ; n; (16.67)

subject to

E.t/ D E.t � 1/ �

nX
iD1

Ai .t/; E.0/ D E0; (16.68)

where p denotes the relative weight of the two cost components and d the discount
factor. The level of the excess emissions E is the state of the system. The initial
level E0 has to be brought down to zero. In the full-cooperative outcome, this target
is reached faster and with lower costs than in the Nash equilibrium.
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Suppose again that the size of the coalition is equal to k 5 n. Dynamic
programming yields the feedback partial-cooperation Nash equilibrium. If the value
functions are denoted by V m.E/ WD 1

2
cmE2 and V o.E/ WD 1

2
coE2 for a member

of the coalition and for an outsider, respectively, it is tedious but straightforward to
show that the stationary feedback partial-cooperation Nash equilibrium becomes

Am.E/ D
dkcmE

1C d.k2cm C .n � k/co/
; Ao.E/ D

dcoE

1C d.k2cm C .n � k/co/
;

(16.69)

where the cost parameters cm and co of the value functions have to satisfy the set of
equations

cm D p C
dcm.1C dk2cm/

Œ1C d.k2cm C .n � k/co/�2
; co D p C

dco.1C dco/

Œ1C d.k2cm C .n � k/co/�2
:

(16.70)

Internal stability requires that co.k� 1/ 5 cm.k/ and it is easy to show that this can
again only hold for k D 2. However, farsighted stability requires that co.k � l/ 5
cm.k/ for some l > 1 such that k � l is a stable coalition (e.g., k � l D 2). In this
way a set of farsighted stable coalitions can be build.

In a dynamic context, however, it is reasonable to assume that detection of a
deviation takes time. This gives rise to the concept of dynamic farsighted stability.
The idea is that the deviator becomes an outsider to the smaller stable coalition
in the next period. This implies that the deviator has free-rider benefits for one
period without losing the cooperative benefits. The question is whether large stable
coalitions can be sustained in this case. It is tedious but straightforward to derive the
value function V d .E/ WD 1

2
cdE2 of the deviator. The cost parameter cd is given by

cd D p C
dcoC

1C dcoC
.1C dkcm/2

Œ1C d.k2cm C .n � k/co/�2
; (16.71)

where coC is the cost parameter of the value function of an outsider to the smaller
stable coalition in the next period. Deviations are deterred if cm < cd but the
analysis is complicated. The cost parameters cm and co and the corresponding stable
set have to be simultaneously solved, and this can only be done numerically. In de
Zeeuw (2008) the whole spectrum of results is presented. The main message is that
large stable coalitions can only be sustained if the weighing parameter p is very
small. The intuition is that a large p implies relatively large costs of the excess
emissions E, so that the emissions and the costs are quickly reduced. In such a case,
the threat of triggering a smaller stable coalition, at the low level of excess emissions
in the next period, is not sufficiently strong to deter deviations. In the last section,
we briefly consider evolutionary aspects of international environmental agreements.
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4.5 Evolutionary Games

Evolutionary game theory provides a completely different perspective on the stable
size of an international environmental agreement. The idea is that countries behave
cooperatively (as members of the coalition) or noncooperatively (as deviators) but
that they change their behavior when they observe that the other type of behavior
is more successful. If this dynamic behavioral adjustment process converges, the
resulting size of the coalition is called the evolutionary stable size.

In order to investigate this, Breton et al. (2010) use a discrete-time version of the
differential game (16.10) which is given by

max
Ei ./

Wi D

1X
tD1

d t ŒB.Ei .t// �D.S.t//�; i D 1; 2; : : : ; n; (16.72)

with B.E/ D ˇE � 1
2
E2 and linear damage function D.S/ D �S , subject

to (16.52). The linearity assumption simplifies the analysis, because emissions
become independent of the stock and the emissions of the other countries. A
coalition of size k jointly maximizes

Pk
iD1 Wi . The idea driving the result is

that each member of the coalition inflicts a punishment on each outsider (a trade
restriction or a carbon tax on exports from the outsider) for irresponsible behavior.
The punishment ˛S is proportional to the level of the stock. Each outsider thus
incurs a punishment k˛S , so that the cost function of an outsider becomes coS with
co D � C k˛. Each punishment is costly for the punisher as well, so that the cost
function of a member of the coalition becomes cmS with cm D � C .n � k/	˛,
where 	 denotes how costly. In this way the spectrum of possible stable coalitions
is enlarged.

First the feedback partial-cooperation Nash equilibrium of this dynamic game in
discrete time is derived. The dynamic-programming equations in the value functions
V m.S/ and V o.S/ are given by

V m.S/ D max
E1;:::;Ek

(
kX
iD1

ŒˇEi �
1

2
E2
i � cmSC�C dV m.SC/

)
; (16.73)

V o.S/ D max
Ei

fˇEi �
1

2
E2
i � coSC C dV o.SC/g; i D k C 1; : : : ; n; (16.74)

SC D .1 � ı/S C

nX
iD1

Ei : (16.75)

It is easy to show, using linear value functions V m.S/ D �m0 � �m1 S and V o.S/ D

�o0 � �o1 S , that the feedback partial-cooperation Nash equilibrium does not depend
on the stock S and is given by
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Em D ˇ �
kcm

1 � d.1 � ı/
; Eo D ˇ �

co

1 � d.1 � ı/
: (16.76)

Solving the parameters of the value functions, the welfare levels of an individual
member of the coalition and an outsider become

ˇEm � 1
2
Em2

1 � d
�

cm

1 � d.1 � ı/

�
.1 � ı/S C

kEm C .n � k/Eo

1 � d

�
; (16.77)

ˇEo � 1
2
Eo2

1 � d
�

co

1 � d.1 � ı/

�
.1 � ı/S C

kEm C .n � k/Eo

1 � d

�
: (16.78)

It is common in evolutionary game theory to denote the numbers for each type of
behavior as fractions of the total population. The fraction of coalition members is
given by q WD k=n, so that the fraction of outsiders becomes 1 � q. The level of
cooperation is indicated by q, and k and n � k are replaced by qn and .1�q/n,
respectively. Note that cm and co also depend on k and n � k and therefore on
q. The welfare levels (16.77)–(16.78) are denoted by W m.S; q/ and W o.S; q/,
respectively.

The basic idea of evolutionary game theory is that the fraction q of coalition
members increases if they are more successful than deviators, and vice versa. This
is modeled with the so-called replicator dynamics given by

qC D
W m.S; q/

qW m.S; q/C .1 � q/W o.S; q � 1=n/
q: (16.79)

The denominator of (16.79) is the weighted average of the welfare of a coalition
member and that of a country deviating from the agreement. The weights are the
current fractions of coalition members and outsiders. If the welfare of a coalition
member is higher than this average, the fraction of coalition members increases, and
vice versa. This gives rise to a dynamic system consisting of (16.79) and (16.52).
The steady state of this system is given by W m.S; q/ D W o.S; q � 1=n/ and
qnEm C .1 � q/nEo D ıS .

The interesting question is what the evolutionary stable fraction of coalition
members is and how this depends on the punishment parameters ˛ and 	. This
requires a numerical analysis. Breton et al. (2010) first vary the parameter ˛ and
fix all other parameters. It is shown that below a certain value of ˛, there are no
steady states, and therefore no cooperation arises. However, slightly increasing ˛
yields two steady states. The higher one is the stable steady state and this yields a
substantial level of cooperation. The lower one indicates the minimal initial level
of cooperation that is needed to reach the stable steady state. Further increasing ˛
leads to full cooperation and extends the area of initial levels of cooperation from
where it can be reached. Decreasing the cost of punishment 	 improves the situation
in the same way.
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Ochea and de Zeeuw (2015) have a similar result but formulate a different
evolutionary game that is not based on a differential game. Cooperating countries
are conditional cooperators in the sense that they only continue cooperating if
sufficiently many other countries are cooperating (“tit-for-tat” strategies). The other
countries are free riders. Replicator dynamics is used as well. It is shown that full
cooperation arises if the conditional thresholds and the initial set of cooperators are
sufficiently high. Apparently, the cooperators have to be tough and have to start off
with a sufficiently high number in order to reach full cooperation.

5 Conclusion

International pollution control with a global stock externality (e.g., climate change)
is a typical example of a differential game. The countries are the players and
emissions, as by-products of economic activities, accumulate into the global stock
of pollutants that is damaging to all countries. In the first part, this chapter
compares the steady states of the open-loop, linear feedback and nonlinear feedback
Nash equilibria of this symmetric linear-quadratic differential game with the full-
cooperative steady state. It is shown that the linear feedback Nash equilibrium
performs worse than the open-loop Nash equilibrium in this respect, but a nonlinear
feedback Nash equilibrium exists that performs better.

The second part of this chapter focuses on partial cooperation, representing an
international environmental agreement. Different stability concepts are considered
that may sustain partial or even full cooperation. Internal and external stability
allows for only a small stable coalition, as in the static context. Farsighted stability
allows for large stable coalitions in the static context, but this breaks down in the
dynamic context if detection of a deviation takes time and the costs of pollution
are relatively high. On the other hand, the threat of all cooperation falling apart, as
is usually assumed in cooperative game theory, prevents deviations and can sustain
the grand coalition. In the asymmetric case, transfers between the coalition members
are needed for stability. In the dynamic context, these transfers have to change over
time, as is shown in this chapter. Cooperative game theory also suggests transfers
that satisfy some set of axioms such as fairness. It is shown how transfers yielding
the Shapley value have to be allocated over time in order to achieve time consistency
of these transfers. Finally, stability in the evolutionary sense is investigated. It is
shown that the grand coalition is evolutionary stable if the coalition members start
out with a sufficiently high number and inflict a sufficiently high punishment on the
outsiders.

This chapter has presented only a selection of the analyses that can be found
in the literature on this topic. It has attempted to fit everything into a coherent story
and to give examples of the different ways in which differential games are used. The
selection was small enough to be able to provide some detail in each of the analyses
but large enough to cover the main angles of approaching the problems. The subject
is very important, the tool is very powerful, a lot of work is still ahead of us, and
therefore it is to be expected that this topic will continue to attract attention.
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Abstract

In this chapter, we survey how the methods of dynamic and stochastic games
have been applied in macroeconomic research. In our discussion of methods for
constructing dynamic equilibria in such models, we focus on strategic dynamic
programming, which has found extensive application for solving macroeconomic
models. We first start by presenting some prototypes of dynamic and stochastic
games that have arisen in macroeconomics and their main challenges related
to both their theoretical and numerical analysis. Then, we discuss the strategic
dynamic programming method with states, which is useful for proving existence
of sequential or subgame perfect equilibrium of a dynamic game. We then
discuss how these methods have been applied to some canonical examples in
macroeconomics, varying from sequential equilibria of dynamic nonoptimal
economies to time-consistent policies or policy games. We conclude with a
brief discussion and survey of alternative methods that are useful for some
macroeconomic problems.

Keywords
Strategic dynamic programming � Sequential equilibria � Markov equilibria �

Perfect public equilibria � Non-optimal economies � Time-consistency
problems � Policy games � Numerical methods � Approximating sets �

Computing correspondences

1 Introduction

The seminal work of Kydland and Prescott (1977) on time-consistent policy design
initiated a new and vast literature applying the methods of dynamic and stochastic
games in macroeconomics and has become an important landmark in modern
macroeconomics.1 In their paper, the authors describe a very simple optimal policy
design problem in the context of a dynamic general equilibrium model, where
government policymakers are tasked with choosing an optimal mixture of policy
instruments to maximize a common social objective function. In this simple model,
they show that the consistent policy of the policymaker is not optimal because it does
not take account of the effect of his future policy instrument on economic agents’
present decision. In fact, Kydland and Prescott (1977) make the point that a policy
problem cannot be dealt with just optimal control theory since there a policymaker
is interacting with economic agents having rational expectations. In other words, as
the successive generations of policymakers cannot commit to the future announced
plans of the current generation, they argue that one cannot assume that optimal plans

1Of course, there was prior work in economics using the language of dynamic games that was
related to macroeconomic models (e.g., Phelps and Pollak 1968; Pollak 1968; Strotz 1955) but the
paper of Kydland and Prescott changed the entire direction of the conversation on macroeconomic
policy design.
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that are designed by any current generation of government policymakers will ever
be followed if they are not required to be additionally dynamically consistent. This
observation gave rise to a new and very important question of how to construct
credible government policies, as well as raising the question of whether discretion
vs. rules were more important to the design of optimal policy, and the study of
dynamic macroeconomic models with strategically interacting agents and limited
commitment begun (and has continued for the last four decades).

In subsequent work, Kydland and Prescott (1980) proposed a new set of
recursive methods for constructing time-consistent optimal policies in decentralized
dynamic equilibrium models with capital and labor. Their methods actually were
an integration of new dynamic optimization techniques under additional constraints
(i.e., constraints that were added to guarantee decision-makers would look forward
or backward in a manner that the resulting optimal decisions for future policy were
time consistent). Their methods in this paper introduced the idea of using set-valued
operators to construct time-consistent sequential equilibrium solutions defined
recursively on an expanded set of endogenous state variables that could be used to
provide the needed dynamic incentives for them to choose time-consistent solutions.

Their methods, although not explicitly game theoretic, provided an important
preamble to the introduction of more general, powerful, and systematic game
theoretic approaches that are now central to much work in macroeconomics. These
new methods are referred in the literature as “strategic dynamic programming
methods” and are built upon the seminal work of Abreu et al. (1986, 1990)
(APS) for solving for the equilibrium value set of very general classes of repeated
games. As in the original Kydland-Prescott approach (e.g., Kydland and Prescott
1980), they introduce new state variables (in this case, either value functions
or envelope theorems) and in essence are set-valued generalizations of standard
dynamic programming methods. This approach (especially since the pioneering
paper of Atkeson 1991) has found many important implementations to solve
macroeconomic models with limited commitment or dynamically inconsistent
preferences and is (in their structure) basically APS method extended to models
with state variables.2 These methods both verify the existence of subgame perfect
equilibrium in a large class of dynamic/stochastic games, and they provide a
systematic method for constructing all the sequential or subgame perfect equi-
libria in many dynamic macroeconomic models that can be formulated as a
dynamic game.

In this chapter, we survey some of the important literature on macroeconomic
models that use the methods of dynamic and stochastic games. We first discuss
the literature and how dynamic and stochastic games naturally arise in dynamic

2Strategic dynamic programming methods were first described in the seminal papers of Abreu
(1988) and Abreu et al. (1986, 1990), and they were used to construct the entire set of sequential
equilibrium values for repeated games with discounting. These methods have been subsequently
extended in the work of Atkeson (1991), Judd et al. (2003), and Sleet and Yeltekin (2016), among
others.
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general equilibrium models that are the workhorse of macroeconomic modeling. We
then discuss strategic dynamic programming methods extending to setting with state
variables that are very important for solving these models. We focus on strategic
dynamic programming with states, as when these methods apply, they provide a
systematic method for constructing all dynamic equilibria in the models. At the end
of the chapter, we also discuss alternative optimization and Euler equation-based
methods for solving these models, which have also been studied in the literature.
These latter methods, although in some cases not explicitly game theoretic, provide
powerful alternatives to the set-theoretic approaches that APS methods with state
variables provide.

There are many prototype problems in macroeconomics that require the tools
of dynamic game theory, and there are a number of alternative methods for
studying these models. Take, for example, the paper of Phelan and Stacchetti
(2001), where they consider optimal taxation in a model first described in Kydland
and Prescott (1980), where the structure of optimal taxation in their model was
studied as a sequential equilibrium of a dynamic game played between overlapping
generations of government policymakers who are collectively tasked with choosing
an optimal sequence of capital and/or labor taxes to finance a stream of government
spending over an infinite horizon, where government policymakers maximize the
representative agent’s lifetime utility function in a sequential equilibrium. Further,
as Kydland and Prescott (1980) showed, as labor and capital decisions in the
private economy are made endogenously by households and firms, the resulting
dynastic social objective function for the collective government is not dynamically
consistent. This raised the interesting question of studying sustainable (or credible)
optimal taxation policies, where constraints forcing the government to make time-
consistent choices further restricted the set of optimal government policies (i.e.,
forced optimal government policies to satisfy a further restriction that all current
plans about decisions by future generations of government policymakers are actually
optimal for those successor generations of policymakers when their decisions have
to be made). This situation was distinct from previous work in dynamic general
equilibrium theory (as well as much of the subsequent work on optimal policy
design over the decade after their paper) which assumed perfect commitment on the
part of government policymakers.3 In showing this (far from innocuous) assumption
of perfect commitment in dynamic economies, Kydland and Prescott (1980) asked
the question of how to resolve this fundamental credibility issue for optimal policy
design. Their construction of dynamic equilibria incorporated explicitly the strategic
considerations between current and future policy agents into the design of sequential
equilibrium optimal plans.

The papers of Kydland and Prescott (1980) and Phelan and Stacchetti (2001) also
provide a nice comparison and contrast of methods for studying macroeconomic

3The model they studied turned out to be closely related to the important work on optimal dynamic
taxation in models with perfect commitment in the papers of Judd (1985) and Chamley (1986). For
a recent discussion, see Straub and Werning (2014).
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models with dynamic strategic interaction, dynamically inconsistent preferences, or
limited commitment. Basically, the authors study very related dynamic economies
(i.e., so-called „Ramsey optimal taxation models”), but their approaches to con-
structing time-consistent solutions are very different. Kydland and Prescott (1980)
viewed the problem of constructing time-consistent optimal plans from the vantage
point of optimization theory (with a side condition that is a fixed point problem
that is used to guarantee time consistency). That is, they forced the decision-maker
to respect the additional implicit constraint of time consistency by adding new
endogenous state variables to further restrict the set of optimal plans from which
government policymakers could choose, and the structure of that new endogenous
state variable is determined by a (set-valued) fixed point problem. This “recursive
optimization” approach has a long legacy in the theory of consistent plans and time-
consistent optimization.4

Phelan and Stacchetti (2001) view the problem somewhat differently, as a
dynamic game between successive generations of government policymakers. When
viewing the problem this way, in the macroeconomics literature, the role for
strategic dynamic programming provided the author a systematic methodology
for both proving existence of, and potentially computing, sequential equilibria in
macroeconomic models formulated as a dynamic/stochastic game.5 As we shall
discuss in the chapter, this difference in viewpoint has its roots in an old literature
in economics on models with dynamically inconsistent preference beginning with
Strotz (1955) and subsequent papers by Pollak (1968), Phelps and Pollak (1968),
and Peleg and Yaari (1973).

One interesting feature of this particular application is that the methods differ
in a sense from the standard strategic dynamic programming approach of APS
for dynamic games with states. In particular, they differ by choice of expanded
state variables, and this difference in choice is intimately related to the structure
of dynamic macroeconomic models with strategically interacting agents. Phelan
and Stacchetti (2001) note, as do Dominguez and Feng (2016a,b) and Feng (2015)
subsequently, that an important technical feature of the optimal taxation problem is
the presence of Euler equations for the private economy. This allows them to develop
for optimal taxation problems a hybrid of the strategic dynamic programming
methods of APS. That is, like APS, the recursive methods these authors develop
employ enlarged states spaces, but unlike APS, in this particular case, these

4Indeed, in the original work of Strotz (1955), this was the approach taken. This approach was
somehow criticized in the work of Pollak (1968), Phelps and Pollak (1968), and Peleg and Yaari
(1973). See also Caplin and Leahy (2006) for a very nice discussion of this tradition.
5In some cases, researchers also seek further restrictions of the set of dynamic equilibria studied
in these models, and they focus on Markov perfect equilibria. Hence, the question of memory
in strategic dynamic programming methods has also been brought up. To answer this question,
researchers have sought to generate the value correspondence in APS type methods using
nonstationary Markov perfect equilibria. See Doraszelski and Escobar (2012) and Balbus and
Woźny (2016) for discussion of these methods.
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additional state variables are Karush-Kuhn-Tucker (KKT) multipliers or envelope
theorems (e.g., as is also done by Feng et al. 2014).

These enlarged state space methods have also given rise to a new class of recur-
sive optimization methods that incorporate strategic considerations and dynamic
incentive constraints explicitly into dynamic optimization problems faced by social
planners. For early work using this recursive optimization approach, see Rustichini
(1998a) for a description of so-called primal optimization methods and also
Rustichini (1998b) and Marcet and Marimon (1998) for related “dual” recursive
optimization methods using recursive Lagrangian approaches.

Since Kydland and Prescott’s work was published, over the last four decades, it
had become clear that issues related to time inconsistency and limited commitment
can play a key role in understanding many interesting issues in macroeconomics.
For example, although the original papers of Kydland and Prescott focused on
optimal fiscal policy primarily, the early papers by Fischer (1980a) and Barro
and Gordon (1983) showed that similar problems arise in very simple monetary
economies, when the question of optimal monetary policy design is studied. In such
models, again, the sequential equilibrium of the private economy can create similar
issues with dynamic consistency of objective functions used to study the optimal
monetary policy rule question, and therefore the sequential optimization problem
facing successive generations of central bankers generates optimal solutions that
are not time consistent. In Barro and Gordon (1983), and subsequent important
work by Chang (1998), Sleet (2001), Athey et al. (2005), and Sleet and Yeltekin
(2007), one can then view the problem of designing optimal monetary policy as
a dynamic game, with sequential equilibrium in the game implementing time-
consistent optimal monetary policy.

But such strategic considerations have also appeared outside the realm of policy
design and have become increasingly important in explaining many important phe-
nomena observed in macroeconomic data. The recent work studying consumption-
savings puzzles in the empirical data (e.g., why do people save so little?) has
focused on hyperbolic discounting and dynamically inconsistent choice as a basis
for an explanation. Following the pioneering paper by Strotz (1955), where he
studied the question of time-consistent plans for decision-makers whose preferences
are changing overtime, many researchers have attempted to study dynamic models
where agents are endowed with preferences that are dynamically inconsistent (e.g.,
Harris and Laibson 2001, 2013; Krusell and Smith 2003, 2008; Laibson 1997). In
such models, at any point in time, agents make decisions on current and future
consumption-savings decisions, but their preferences exhibit the so-called present-
bias. These models have also been used to explain sources of poverty (e.g., see
Banerjee and Mullainathan 2010; Bernheim et al. 2015). More generally, the ques-
tion of delay, procrastination, and the optimal timing of dynamic choices have been
studied in O’Donoghue and Rabin (1999, 2001), which has started an important
discussion of how to use models with dynamically inconsistent payoffs to explain
observed behavior in a wide array of applications, including dynamic asset choice.

Additionally, when trying to explain the plethora of defaults that we observe
in actual macroeconomies, and further address the question of how to sustain
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sovereign debt arrangements and debt repudiation, a new theory of asset markets
with strategic default has emerged, where the role of limited commitment has
generated a wide array of new models of dynamic insurance under incomplete
markets with strategic default. These models have been applied to many important
problems in international lending, where limited commitment plays a key role in
understanding financial arrangements. Strategic default also plays a key role in
the construction of dynamic models with endogenous borrowing constraints. These
models have played a critical role in explaining various asset pricing puzzles in the
macroeconomics literature. This literature began with the important early paper by
Atkeson (1991) which studies international lending and debt repudiation; but the
problem of sustainable debt under limited commitment has been studied in the early
work of Kehoe and Levine (1993, 2001), as well as in Alvarez and Jermann (2000),
and Hellwig and Lorenzoni (2009). Further, the issue of sovereign debt repudiation
has been studied in a number of papers including Arellano (2008), Benjamin and
Wright (2009), Yue (2010), and Broner et al. (2014, 2010).

One final prototype of a dynamic game in macroeconomics arises in models of
economic growth with limited commitment. One common version of this sort of
model arises in models of strategic altruism, where a dynastic household faces a
collective choice problem between successive generations of families. Models in
this spirit were first introduced in Phelps and Pollak (1968) and subsequently studied
in Bernheim and Ray (1983), Leininger (1986), Amir (1996b), Nowak (2006c),
Balbus et al. (2012, 2014, 2015a,b,c) and Woźny and Growiec (2012), among
others. Another classic example of strategic growth models arises in the seminal
work of Levhari and Mirman (1980), where the “great fishwar” was originally
studied. In this model, a collection of agents face the problem of managing a
common resource pool, where each period agents can consume from the existing
stock of resources, with the remainder of that stock being used as input to a
regeneration process (i.e., as investment into a social production function) that
produces next period stock of resources. This problem has been extensively studied
(e.g., Mirman (1979), Sundaram (1989a), Amir (1996b), Balbus and Nowak (2004),
Nowak (2006a,b), Jaśkiewicz and Nowak (2015), and Fesselmeyer et al. (2016)
among others).

As dynamic games have been introduced more extensively into macroeconomics,
researchers have developed some very powerful methods for studying sequential
or Markovian equilibrium in such models. For example, in the macroeconomic
models where sequential optimization problems for agents have preferences that
are changing over time, when searching for time-consistent optimal solutions,
since the work of Strotz (1955) it has been known that additional constraints on
the recursive optimization problem must be imposed. These constraints can be
formulated as either backward- or forward-looking constraints. In Kydland and
Prescott (1980), they proposed a very interesting resolution to the problem. In
particular, they reformulate the optimal policy design problem recursively in the
presence of additional endogenous state variables that are used to force optimal
plans of the government decision-makers to be time consistent. That is, one can
formulate an agent’s incentive to deviate from a candidate dynamic equilibrium
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future choices by imposing a sequence of incentive constraints on current choices.
Given these additional incentive constraints, one is led to a natural choice for a set
of new endogenous state variables (e.g., value functions, Kuhn-Tucker multipliers,
envelope theorems, etc.). Such added state variables also allow one to represent
sequential equilibrium problems recursively. That is, they force optimal policies
to condition on lagged values of Kuhn-Tucker multipliers. In these papers, one
constructs the new state variable as the fixed point of a set-valued operator (similar,
in spirit, to the methods discussed in Abreu et al. (1986, 1990) adapted to dynamic
games. See Atkeson (1991) and Sleet and Yeltekin (2016)).6

The methods of Kydland and Prescott (1980) have been extended substantially
using dynamic optimization techniques, where the presence of strategic interaction
creates the need to further constrain these optimization problems with period-by-
period dynamic incentive constraints. These problems have led to the development
of “incentive-constrained” dynamic programming techniques (e.g., see Rustichini
(1998a) for an early version of “primal” incentive-constrained dynamic program-
ming methods and Rustichini (1998b) and Marcet and Marimon (1998) for early
discussions of “dual” methods). Indeed, Kydland and Prescott’s methodological
approach was essentially the first “recursive dual” approach to a dynamic consis-
tency problem. Unfortunately, in either formulation of the incentive-constrained
dynamic programming approach, these optimization methods have some serious
methodological issues associated with their implementation. For example, in some
problems, these additional incentive constraints are often difficult to formulate (e.g.,
for models with quasi-hyperbolic discounting. See Pollak 1968). Further, when
these constraints can be formulated, they often involve punishment schemes that
are ad hoc (e.g., see Marcet and Marimon 1998).

Now, additionally, in “dual formulations” of these dynamic optimization
approaches, problems with dual solutions not being primal feasible can arise even
in convex formulations of these problems (e.g., see Messner and Pavoni 2016), dual
variables can be very poorly behaved (e.g., see Rustichini 1998b), and the programs
are not necessarily convex (hence, the existence of recursive saddle points is not
known, and the existing duality theory is poorly developed. See Rustichini (1998a)
for an early discussion and Messner et al. (2012, 2014) for a discussion of problems
with recursive dual approaches). It bears mentioning, all these duality issues also
arise in the methods proposed by Kydland and Prescott (1980). This dual approach
has been extended in a number of recent papers to related problems, including
Marcet and Marimon (2011), Cole and Kubler (2012), and Messner et al. (2012,
2014).

In addition to recursive dual approaches, incentive-constrained dynamic pro-
gramming methods using “primal” formulations have been also proposed, and these

6The key difference between the standard APS methods and those using dual variables such as in
Kydland and Prescott (1980), and Feng et al. (2014) is that in the former literature, value functions
are used as the new state variables; hence, APS methods are closely related to “primal” methods,
not dual methods.
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methods do not exploit the dynamic structure of the set of Karush-Kuhn-Tucker
multipliers associated with the recursive dual approach. As with dual dynamic
optimization approaches, these primal methods also suffer from the problem that
they are not concave programs. Further, characterizing optimal solutions can be
very problematic.

Because of issues related to these “dynamic optimization” approaches, strategic
dynamic programming has emerged as a systematic approach to this problem
of constructing sequential equilibrium in dynamic macroeconomic models that
can be formulated as a dynamic (or stochastic) game. For example, for the
optimal taxation economy in Kydland and Prescott, where time-consistent optimal
policies are viewed as subgame perfect equilibrium in a dynamic game played
by successive generations of government policymakers, one can first construct a
sequential equilibrium for the private economy for each sequential path for policy
and then considers in the second stage a dynamic game played between successive
generations of short-lived policymakers assuming no commitment (e.g., Dominguez
and Feng 2016b; Phelan and Stacchetti 2001). This method, in some broad sense,
can be thought of as a generalization of a “primal” incentive-constrained dynamic
programming method, and this method has played a key role in the study of
sustainable optimal government policy (e.g., see Sleet (2001) for an early discussion
of using strategic dynamic programming methods for studying optimal monetary
policy). In either case, one can additionally consider the role of reputation in the
sustainability of optimal government plans (e.g., see Rogoff (1987) for an early
discussion of this approach). In this latter approach, strategic dynamic programming
methods that extend the seminal work of Abreu (1988) and Abreu et al. (1986, 1990)
have been typically employed. We shall focus primarily on these strategic dynamic
programming methods for studying strategic interaction in macroeconomic models
that are formulated as a dynamic game in this chapter.

The rest of this chapter is laid out as follows: in the next section, we survey
the application of dynamic and stochastic games in macroeconomics. In Sect. 3,
we discuss the strategic dynamic programming approach to studying sequential
equilibrium (and subgame perfect equilibrium) in these models more formally.
We discuss both the extension of APS methods to models with states, as well
as in Sect. 4 discuss some computational issues associated with strategic dynamic
programming methods. In Sect. 5, we return to particular versions of the models
discussed in Sect. 2 and discuss how to formulate sequential equilibrium in these
models using strategic dynamic programming. In Sect. 6, we briefly discuss some
alternative approaches to dynamic games in macroeconomics, and in the last section,
we conclude.

2 Dynamic and Stochastic Games in Macroeconomics

The literature on dynamic and stochastic games in macroeconomics is extensive.
These models often share a common structure and are dynamic general equilibrium
models where some (or all) of the economic agents have dynamically inconsistent



738 Ł. Balbus et al.

preferences or limited commitment generating a source of strategic interaction. In
some models, the dynamic inconsistency problems stem from the primitive data
of the model (e.g., models where agents have lifetime preferences that exhibit
hyperbolic discounting). In other models, strategic interactions emerge because of
the lack of commitment (i.e., as in dynastic models of economic growth where
current generations care about future generations, but cannot control what future
generations actually decide, or asset accumulations models with strategic default
where one cannot assume borrowers will reply unless it is in their incentive to
do so). Still in other models, the source of dynamic inconsistency comes from
the structure of sequential equilibrium (e.g., preferences for government decision-
makers designing optimal fiscal or monetary policy which are time inconsistent
because of how the private economy responses in a sequential equilibrium to
government policy). We now describe few prototypes of these models that we shall
discuss in Sect. 4 of the chapter.

2.1 Hyperbolic Discounting

One prototype for dynamic games in macroeconomics is infinite horizon model of
optimal economic growth or asset allocation where households have dynamically
inconsistent preferences. The most studied version of this problem is economy
where agents have preferences that exhibit hyperbolic discounting. This problem
was first studied in Strotz (1955), subsequently by Pollak (1968) and Phelps and
Pollak (1968), and has become the focus of an extensive literature in macroeco-
nomics (e.g., see Barro 1999; Bernheim et al. 2015; Harris and Laibson 2001, 2013;
Krusell et al. 2010; Krusell and Smith 2003; Laibson 1997).

The classical approach to studying the existence of time-consistent optimal plans
for these problems has emphasized the language of recursive decision theory, as was
discussed in the original paper by Strotz (1955). Unfortunately, as is well known,
optimal dynamically consistent (including Markov) plans for such models need not
exist, so the question of sufficient conditions for the existence of time-consistent
optimal plans is a question of a great deal of study (e.g., see Pollak (1968), Peleg
and Yaari (1973), and Caplin and Leahy (2006) for discussions of the nonexistence
question).

One reason time-consistent plans may be nonexistent lies in the seemingly
inherent presence of discontinuities in intertemporal preferences that arise very
naturally in these problems when the recursive decision theory approach is applied.
The reason for this lack of continuity is found in the inherent lack of commit-
ment between the current “versions” of the dynamic decision-maker and all her
continuation “selves.” For example, from a decision theoretic perspective, when a
“current” decision-maker is indifferent between some alternatives in the future, the
earlier decision-maker (“planner”) can still strictly prefer one of such alternatives
in advance. As a result, he is willing to commit, yet lack access to a reasonable
“commitment device” that would impose discipline on the choices of her future
“selves” when tomorrow actually arrives. Due to this discontinuity, the optimal level
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of “commitment” may be nonexistent, and the dynamic maximization problem can
turn out to be poorly defined (see, for example, Caplin and Leahy (2006) for an
excellent discussion of this point).

An alternative way of obtaining a set of consistent plans for a dynamic choice
problem with hyperbolic discounting is to view the dynamic choice problem as
a dynamic game among different generations of “selves.” In this formulation of
the decision problem, at any current period, the current “self” takes as given
a set of continuation strategies of all her “future selves” and best responds to
this continuation structure in the game. For example, in the context of optimal
growth, one could search for Markov perfect equilibrium in this dynamic game
played between successive “selves.” This is the approach advocated in the early
work of Peleg and Yaari (1973) and in subsequent work by Laibson (1997), Barro
(1999), Harris and Laibson (2001, 2013), Krusell and Smith (2003), Krusell et al.
(2010), Balbus et al. (2015d), Balbus and Woźny (2016), and Bernheim et al.
(2015). In this setting, one could take a candidate pure strategy continuation
policy for savings/investment of one’s future “self” as given, generate a value
from the program from tomorrow onward, and given this value function could
determine an optimal savings/investment decision problem for the current self. A
fixed point in this mapping between continuation savings/investment and current
savings/investment would be a Markov perfect equilibrium.

The problem is finding a space with sufficient continuity to study this fixed point
problem. For example, if you take the continuation decision on savings/investment
as continuous, the value function it generates need not be concave in the income
state; this then means the current decision problem is not concave (hence, the
best reply correspondence does not generally admit a continuous selection). If
the continuation policy is only semicontinuous, then the current generations best
reply correspondence need not contain a semicontinuous selection. So finding
sufficient continuity for the existence of even pure strategy Markov perfect plans is
problematic. Similar issues arise when considering subgame perfect equilibrium.7

Finally, when Markovian time-consistent plans do exist, they are difficult to
characterize and compute, as these models often suffer from an indeterminacy of
equilibria (e.g., Krusell and Smith 2003).

Perhaps the most well-studied version of hyperbolic discounting involves models
where preferences exhibit quasi-hyperbolic discounting. In the quasi-hyperbolic
model, agents have “ˇ � ı” preferences, where they have a “long-run” discount
rate of ı 2 .0; 1/; and a “short-run” discount rate of ˇ 2 .0; 1/: In such
models, agents have changing preferences, where at each period the preferences
exhibit a bias toward current consumption. Such preferences often lead to an

7It bears mentioning that this continuity problem is related to difficulties that one finds in looking
for continuity in best reply maps of the stage game given a continuation value function. It was
explained nicely in the survey by Mirman (1979) for a related dynamic game in the context of
equilibrium economic growth without commitment. See also the non-paternalistic altruism model
first discussed in Ray (1987).
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important role for public policy (e.g., Krusell et al. 2002, 2010). One class of
models where the introduction of quasi-hyperbolic discounting has been shown to
be important are models of asset accumulation (e.g., see the series of papers by
Laibson (1994, 1997), Harris and Laibson (2001, 2013), as well as the recent paper
by Bernheim et al. 2015). In these papers, the authors have shown using various
methods that Markovian equilibrium savings behavior of models where agents have
dynamically inconsistent preferences differ a great deal from models with standard
time separable, dynamically consistent preferences. It is well known that in models
with present-bias, savers consume more as a fraction of income than in models with
dynamically consistent, time-separable preferences (also, see Diamond and Koszegi
(2003) for examples of this in overlapping generations/life cycle models). In a very
important paper, Laibson (1997) showed that in a standard asset accumulation model
where agents possess preferences with quasi-hyperbolic preferences, and models
enhanced with illiquid assets, the impact of present-bias preference can be mitigated
by the presence of the illiquid asset. Indeed, illiquidity of assets can help constrain
time-inconsistent behavior by working as a commitment device. His work suggests
that financial innovation, therefore, can have a profound influence on equilibrium
savings rates.

These models have also been used in the study of equilibrium economic growth.
For example, Barro (1999) shows that in a version of the optimal growth model,
under full commitment, and isoelastic period utility, agents save more and consume
less; under imperfect commitment, saving rates and capital accumulation are lower.
Krusell and Smith (2003) study a version of the optimal growth model and
find additionally there exists a continuum of Markovian equilibria in their model
without commitment. Krusell et al. (2002) produce a very interesting result for a
particular parametric class of models. In particular, they show that for this particular
parametric case, social planning solutions are strictly worse in welfare terms than a
recursive equilibrium solution.

Extensions of this work of dynamic inconsistency in dynamic models have been
numerous. The paper by O’Donoghue and Rabin (1999) extends class of Strotzian
models to encompass models of procrastination. In their model, decision-makers
are sophisticated or naive about their future structure of preferences (i.e., the nature
of their future self-control problem), must undertake a single activity, and face
intermediate costs and rewards associated with this activity. In the baseline model,
“naive” decision-makers suffer procrastination (“acting too late”) about undertaking
a future activities with intermediate cost, while they act too soon relative to activities
with intermediate future rewards. Sophistication about future self-control problems
mitigates procrastination problems associated with dynamic inconsistency, while it
makes the problem of preproperation (“acting too early”) worse. In O’Donoghue
and Rabin (2001), they extend this model to more general choice problems (with
“menus” of choices).

In another line of related work, Fudenberg and Levine (2006) develop a “dual-
selves” model of dynamically inconsistent choice and show that this model can
explain both the choice in models with dynamically inconsistent preferences
(e.g., Strotz/Laibson “ˇ � ı” models) and the O’Donoghue/Rabin models of
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procrastination. In their paper, they model the decision-maker as a “dual self,” one
being a long-run decision-maker, and a sequence of short-run myopic decision-
makers, the dual self sharing preferences and playing a stage game.

There have been many different approaches in the literature to solve this problem.
One approach is a recursive decision theory (Caplin and Leahy 2006; Kydland and
Prescott 1980). In this approach, one attempts to introduce additional (implicit)
constraints on dynamic decisions in a way that enforces time consistency. It is
known that such decision theoretic resolutions in general can fail in some cases (e.g.,
time-consistent solutions do not necessarily exist).8 Alternatively, one can view
time-consistent plans as sequential (or subgame perfect) equilibrium in a dynamic
game between successive generations of “selves.” This was the approach first
proposed in Pollak (1968) and Peleg and Yaari (1973). The set of subgame perfect
equilibria in the resulting game using strategic dynamic programming methods is
studied in the papers of Bernheim et al. (2015) and Balbus and Woźny (2016). The
existence and characterization of Markov perfect stationary equilibria is studied in
Harris and Laibson (2001), Balbus and Nowak (2008), and Balbus et al. (2015d,
2016). In the setting of risk-sensitive control, Jaśkiewicz and Nowak (2014) have
studied the existence of Markov perfect stationary equilibria.

2.2 Economic Growth Without Commitment

Models of economic growth without commitment provide another important exam-
ple of dynamic and stochastic games in macroeconomics. These models have arisen
in many forms since the pioneering papers of Phelps and Pollak (1968), Peleg and
Yaari (1973), Ray (1987), and Levhari and Mirman (1980).9 For example, consider
the model of altruistic growth without commitment as first described in Phelps and
Pollak (1968) and Peleg and Yaari (1973) and extended in the work of Bernheim
and Ray (1983), Leininger (1986), Amir (1996b), and Nowak (2006c). The model
consists of a sequence of identical generations, each living one period, deriving
utility from its own consumption, as well as the consumption of its successor
generations. In any period of the economy, the current generation begins the
period with a stock of output goods which it must either consume or invest in a
technology that reproduces the output good tomorrow. The reproduction problem
can be either deterministic or stochastic. Finally, because of the demographic
structure of the model, there is no commitment assumed between generations. In
this model, each generation of the dynastic household cares about the consumption

8For example, see Peleg and Yaari (1973), Bernheim and Ray (1983), and Caplin and Leahy (2006).
9For example, models of economic growth with strategic altruism under perfect commitment have
also been studied extensively in the literature. For example, see Laitner (1979a,b, 1980, 2002),
Loury (1981), and including more recent work of Alvarez (1999). Models of infinite-horizon
growth with strategic interaction (e.g., “fishwars”) are essentially versions of the seminal models
of Cass (1965) and Brock and Mirman (1972), but without commitment.
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of the continuation generation of the household, but it cannot control what the future
generations choose. Further, as the current generation only lives a single period, it
has an incentive to deviate from a given sequence of bequests to the next generation
by consuming relatively more of the current wealth of the household (relative to, say,
past generations) and leaving little (or nothing) of the dynastic wealth for subsequent
generations. So the dynastic household faces a time-consistent planning problem.

Within this class of economies, conditions are known for the existence of
semicontinuous Markov perfect stationary equilibria, and these conditions have
been established under very general conditions via nonconstructive topological
arguments (e.g., for deterministic versions of the game, in Bernheim and Ray 1987;
Leininger 1986), and for stochastic versions of the game, by Amir (1996b), Nowak
(2006c), and Balbus et al. (2015b,c). It bears mentioning that for stochastic games,
existence results in spaces of continuous functions have been obtained in these latter
papers. In recent work by Balbus et al. (2013), the authors give further conditions
under which sharp characterizations of the set of pure strategy Markov stationary
Nash equilibria (MSNE, henceforth) can be obtained. In particular, they show that
the set of pure strategy MSNE forms an antichain, as well as develop sufficient
conditions for the uniqueness of Markov perfect stationary equilibrium. This latter
paper also provides sufficient conditions for globally stable approximate solutions
relative to a unique nontrivial Markov equilibrium within a class of Lipschitz
continuous functions. Finally, in Balbus et al. (2012), these models are extended
to settings with elastic labor supply.

It turns out that relative to the set of subgame perfect equilibria, strategic dynamic
programming methods can also be developed for these types of models (e.g., see
Balbus and Woźny 2016).10 This is interesting as APS type methods are typically
only used in situations where players live an infinite number of periods. Although
the promised utility approach has proven very useful in even this context, for models
with altruistic growth without commitment, they suffer from some well-known
limitations and complications. First, they need to impose discounting typically in
this context. When studying the class of Markov perfect equilibria using more direct
(fixed point) methods, one does not require this. Second, and more significantly, the
presence of “continuous” noise in our class of dynamic games proves problematic
for existing promised utility methods. In particular, this noise introduces significant
complications associated with the measurability of value correspondences that
represent continuation structures (as well as the possibility of constructing and
characterizing measurable selections which are either equilibrium value function or
pure strategies). We will discuss how this can be handled in versions of this model
with discounting. Finally, characterizations of pure strategy equilibrium values
(as well as implied pure strategies) is also difficult to obtain. So in this context,
more direct methods studying the set of Markov perfect stationary equilibria can
provide sharper characterizations of equilibria. Finally, it can be difficult to use
promised utility continuation methods to obtain any characterization of the long-run

10Also see Balbus et al. (2012) section 5 for a discussion of these methods for this class of models.
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stochastic properties of stochastic games (i.e., equilibrium invariant distributions or
ergodic distributions).11

There are many other related models of economic growth without commitment
that have also appeared in the literature. For example, in the paper of Levhari and
Mirman (1980), the authors study a standard model of economic growth with many
consumers but without commitment (the so-called great fishwar). In this model, in
each period, there is a collective stock of output that a finite number of players can
consume, with the remaining stock of output being used as an input into a productive
process that regenerates output for the next period. This regeneration process can be
either deterministic (e.g., as in Levhari and Mirman 1980 or Sundaram 1989a) or
stochastic (as in Amir 1996a; Nowak 2006c).

As for results on these games in the literature, in Levhari and Mirman (1980),
the authors study a parametric version of this dynamic game and prove existence of
unique Cournot-Nash equilibrium. In this case, they obtain unique smooth Markov
perfect stationary equilibria. In Sundaram (1989a), these results are extended to
symmetric semicontinuous Markov perfect stationary equilibria in the game, but
with more standard preferences and technologies.12 Many of these results have
been extended to more general versions of this game, including those in Fischer and
Mirman (1992) and Fesselmeyer et al. (2016). In the papers of Dutta and Sundaram
(1992) or Amir (1996a), the authors study stochastic versions of these games. In this
setting, they are able to obtain the existence of continuous Markov perfect stationary
Nash equilibrium under some additional conditions on the stochastic transitions of
the game.

2.3 Optimal Policy Design Without Commitment

Another macroeconomic model where the tools of dynamic game theory play a
critical role are models of optimal policy design where the government has limited
commitment. In these models, again the issue of dynamic inconsistency appears.
For example, there is a large literature studying optimal taxation problem in models
under perfect commitment (e.g., Chamley 1986; Judd 1985. See also Straub and
Werning 2014). In this problem, the government is faced with the problem of
financing dynamic fiscal expenditures by choosing history-contingent paths for
future taxation policies over capital and labor income under balanced budget
constraints. When viewing the government as a dynastic family of policymakers,
they collectively face a common agreed upon social objective (e.g., maximizing
the representative agent’s objective function along sequential equilibrium paths
for the private economy). As mentioned in the introduction, this problem is often
studied under limited commitment (e.g., in Kydland and Prescott 1980; Pearce and
Stacchetti 1997; Phelan and Stacchetti 2001, and more recently Dominguez and

11For competitive economies, progress has been made. See Peralta-Alva and Santos (2010).
12See also the correction in Sundaram (1989b).



744 Ł. Balbus et al.

Feng 2016a,b, and Feng 2015). As the objective function in this class of models is
generally not time consistent, the question of credible optimal government policy
immediately arises.

The existence of time-consistent optimal plans for capital and labor income
taxes was first studied in Kydland and Prescott (1980). In their formulation of
the problem, the game was essentially a dynamic Stackelberg game, that is,
in the “first stage,” the agents in the private economy take sequences of tax
instruments and government spending as given, and a sequential equilibrium for
the private economy is determined. Then, in the second stage, this sequential
equilibrium induces dynastic social preferences of government policymakers over
these sequences of tax instruments and government spending (under a balanced
budget rule). These preferences are essentially the discounted lifetime utility of
a representative agent, and are maximized over the government’s fiscal choice,
which is not time consistent (therefore, as successive generations of government
policymakers possess limited commitment across time, announced future plans will
not necessarily be implemented by future government policymakers). To illustrate
the basic problems of their model, we consider the following example:

Example 1. Consider a two-period economy with preferences given by

u.c1/ C ı.u.c2/ C �u.g//;

with linear production, full depreciation, and initial capital k0 > 0. Then the
economy’s resource constraint is c1 C k D k0 and c2 C g D k, where g is a
public good level. Suppose that ı D 1, � D 1, and u.c/ D log.˛ C c/ for some
˛ > 0.

The optimal, dictatorial solution (benevolent government choosing nonnegative
k and g) to the welfare maximization problem is given by FOC:

u0.k0 � k/ D u0.k � g/ D u0.g/;

which gives 2g D k D 2
3
k0 with c1 D c2 D g D 1

3
k0.

Now consider a competitive equilibrium economy, where the government
finances public good g by levying a linear tax � 2 Œ0; 1� on capital income. The
household budget is c1 C k D k0 and c2 D .1 � �/k. Suppose that consumers
have rational expectations and we look for a credible tax level � under the balanced
budget condition g D �k. For this reason suppose that � is given and solve for
competitive equilibrium investment k. The FOC gives:

u0.k0 � k/ D .1 � �/u0..1 � �/k/;

which gives

k.�/ D
.1 � �/.˛ C k0/ � ˛

2.1 � �/
;
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with k0.�/ < 0. Now, knowing this reaction curve, the government chooses
the optimal tax level solving the competitive equilibrium welfare maximization
problem:

max
�2Œ0;1�

u.k0 � k.�// C u..1 � �/k.�// C u.�k.�//:

Here the first-order condition requires

Œ�u0.k0 � k.�// C .1 � �/u0..1 � �/k.�//�k0.�/ C Œ�u0..1 � �/k.�//

Cu0.�k.�//�k.�/ C �u0.�k.�//k0.�/ D 0:

The last term (strictly negative) is the credibility adjustment which distorts the
dynamically consistent solution from the optimal one. It indicates that in the
dynamically consistent solution, when setting the tax level in the second period,
the government must look backward for its impact on the first-period investment
decision.

Comment: to achieve the optimal, dictatorial solution the government would
need to promise � D 0 in the first period (so as not to distort investment) but then
impose � D 1

2
to finance the public good. Clearly it is a dynamically inconsistent

solution.

This problem has led to a number of different approaches to solving it. One
idea, found in the original paper of Kydland and Prescott (1980), was to construct
optimal policy rules that respect a “backward”-looking endogenous constraint on
future policy. This, in turn, implies optimal taxation policies must be defined
on an enlarged set of (endogenous) state variables. That is, without access to a
“commitment device” for the government policymakers, for future announcements
about optimal policy to be credible, fiscal agents must constrain their policies to
depend on additional endogenous state variables. This is the approach that is also
related to the recursive optimization approaches of Rustichini (1998a), Marcet and
Marimon (1998), and Messner et al. (2012), as well as the generalization of the
original Kydland and Prescott method found in Feng et al. (2014) that is used to
solve this problem in the recent work of Feng (2015).

Time-consistent polices can also be studied as a sequential equilibrium of a
dynamic game between successive generations to determine the optimal mixture of
policy instruments, where commitment to planned future policies is guaranteed in a
sequential equilibrium in this dynamic game between generations of policymakers.
These policies are credible optimal policies because these policies are subgame
perfect equilibrium in this dynamic game. See also Chari et al. (1991, 1994) for
a related discussion of this problem. This is the approach taken in Pearce and
Stacchetti (1997), Phelan and Stacchetti (2001), Dominguez and Feng (2016a,b),
among others.
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Simple optimal policy problems also arise in the literature that studies optimal
monetary policy rules; similar papers have been written in related macroeconomic
models. This literature began with the important papers of Fischer (1980b) and
Barro and Gordon (1983) (e.g., see also Rogoff (1987) for a nice survey of this
work). More recent work studying the optimal design of monetary policy under
limited commitment includes the papers of Chang (1998), Sleet (2001), Athey et al.
(2005), and Sleet and Yeltekin (2007).

3 Strategic Dynamic Programming Methods

In this section, we lay out in detail the theoretical foundations of strategic dynamic
programming methods for repeated and dynamic/stochastic games.

3.1 Repeated Models

An original strategic dynamic programming method was proposed by Abreu et al.
(1986) and further developed in Abreu et al. (1990) for a class of repeated games
with imperfect public information and perfect public equilibria. As the game is
repeated, the original APS methods did not have “states” (e.g., in addition to
promised utility). These methods have been used in macroeconomics (especially
in dynamic contract theory, but also in policy games when considering the question
of sustainable optimal monetary policy (e.g., see Chang 1998).13

Consider an infinitely repeated game between n-players with imperfect public
information. Let N D f1; 2; : : : ; ng be a set of players. In each period, each of
n-players chooses simultaneously a strategy so that the strategy profile is a D

.a1; a2; : : : ; an/ 2 A, where A D �n
iD1Ai , i.e., a Cartesian product of individual

action sets. Each a 2 A induces a distribution over the realization of publicly
observable signals y 2 Y , where Y � R

k .k 2 N/ given by Q.dyja/. Each
player i 2 N has a one-stage payoff given by ui .y; ai /, and its expectation is
gi .a/ WD

R
Y

ui .y; ai /Q.dyja/.

Remark 1. A repeated game with observable actions is a special case of this model,
if Y D A and Q.fagja/ D 1 and zero otherwise.

For each t > 1, let Ht be a public history at the beginning of period t .
Mathematically, it is a sequence of the signals before t; i.e., Ht WD Y t with generic
element ht WD .y0; y1; : : : ; yt�1/. A public strategy of player i is a sequence
of functions �i WD .�i;t /

1
tD0, where each �i;t maps histories Ht to probability

13Also, for repeated games with quasi-hyperbolic discounting, see Chade et al. (2008) and Obara
and Park (2013).
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distributions on Ai . A strategy �i;t is pure if it maps histories Ht into Ai . A strategy
profile is a product of strategies, i.e., � WD .�t /

1
tD0, where �t WD .�1;t ; : : : ; �n;t /.

Let H WD Y 1 be a set of all public histories with generic element h WD

.y0; y1; : : :/. By Ionescu-Tulcea theorem, a transition probability Q and strategy
� induce the unique Borel probability measure on H . Let E� be an expectation
associated with this measure.

Assume a common discount factor ı 2 .0; 1/; then the player i ’s expected payoff
from the repeated game is given by:

Ui .�/ WD .1 � ı/E�

 
1X

tD0

ıt gi .�t .h
t //

!

;

where .1�ı/ normalization is used to make payoffs of the stage game and infinitely
repeated game comparable.

We impose the following set of assumptions:

Assumption 1. (i) Ai is finite for each i 2 N ,
(ii) for each a 2 A, Q.�ja/ is absolutely continuous probability measure with

density q.�; a/,
(iii) the support of Q.�ja/ is independent of a, and without loss of generality assume

that it is Y . That is

Y WD fy 2 Y W q.yja/ > 0; for all a 2 Ag;

(iv) for each i 2 N and ai 2 Ai , ui .�; ai / is a continuous function,
(v) the one-shot strategic form game .N; .Ai ; gi /i2N / has a pure strategy Nash

equilibrium.

Let V WD L1 .Y;Rn/ be a set of all equivalence classes of essentially bounded
Lebesgue measurable functions from Y into R

n: Endow V with its weak star
topology. Similarly, denote the measurable functions from Y to any subsets of Rn.
Moreover, with a slight abuse of notation, we will denote the i -th component of
v 2 V by vi W Y ! R, and hence v D .v1; v2; : : : ; vn/ 2 V .

A standard tool to deal with discounted n-player repeated games is the class of
one-shot auxiliary (strategic form) games �.v/ D .N; .Ai ; …i .vi //i2N /, where

…i .a/.vi / D .1 � ı/gi .a/ C ı

Z

Y

vi .y/Q.dyja/

is player i ’s payoff. Let W � R
n. By B.W / denote the set of all Nash equilibrium

payoffs of the auxiliary game for some vector function v 2 V having image in W .
Formally:
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B.W / WD fw 2 R
n W there is a� 2 A; v 2 V such that

…i .a
�/.vi / � …i .a

�
�i ; ai /.vi /;

for all ai 2 Ai ; i 2 N; and v.y/ 2 W; for almost all y 2 Y g:

By the axiom of the choice, there is an operator � W B.W / ! L1.Y; W / and
� W W ! A such that for each i 2 N it holds

wi D …i .�.w//.�.w; �// � …i .��i .w/; ai /.�.w; �//:

Modifying on null sets if necessary, we may assume that �.w; y/ 2 W for all y. We
say that W � R

n is self-generating if W � B.W /. Denoting by V � � R
n the set

of all public perfect equilibrium vector payoffs and using self-generation argument
one can show that B.V �/ D V �. To see that we proceed in steps.

Lemma 1. If W is self-generating, then W � V �.

Self-generation is an extension of the basic principle of optimality from dynamic
programming. Let W be some self-generating set. Then, if w 2 W , by self-
generation, w 2 B.W /. Consequently, we may find a sequence of functions .vt /1

tD1

such that vt W Y t ! W , for each t > 1 such that v1.y/ WD �.w; y/ and for t > 1

vt .y1; y2; : : : ; yt / WD �.vt�1.y1; : : : ; yt�1/; yt / and a sequence of functions .�t /
1
tD0

such that �1 WD �.w/ and for t > 0 �tC1.y1; : : : ; yt / WD �.�.vt .y1; : : : ; yt ///.
We claim that � WD .�t /

1
tD0 is a perfect Nash equilibrium in public strategies and

wi D Ui .�/. Indeed, if player i deviates from � until time T , choosing Qat
i instead

of at
i , then by definition of � and �:

wi D Ui .�/ � .1 � ı/

TX

tD1

ıt gi . Qat
i / C ıT C1Ui

�
J T .�/

�
:

Here J T .�/ WD .�T C1; �T C2; : : :/. Taking a limit with T ! 1, we may conclude
� is a perfect Nash equilibrium in public strategies and w 2 V �. To formalize this
thinking, we state the next theorem. Let V � R

n be some large set of possible
payoffs, such that V � � V . Then:

Theorem 1. Suppose that Assumption 1 holds. Then,

(i)
1T

tD1

Bt .V / ¤ ;,

(ii)
1T

tD1

Bt .V / is the greatest fixed point of B ,

(iii)
1T

tD1

Bt .V / D V �.
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To see (i) of the aforementioned theorem, observe that V is a nonempty
compact set. By Assumption 1 (ii), (iv) and (v), we may conclude that B.V /

is nonempty compact set and consequently that each Bt .V / is nonempty and
compact. Obviously, B is an increasing operator, mapping V into itself. Bt .V /

is a decreasing sequence; hence, its intersection is not empty. To see (ii) and (iii)
of this theorem, observe that all sets Bt .V / include any fixed point of B and,

consequently, its intersection also. On the other hand,
1T

tD1

Bt .V / is self-generating,

hence by Lemma 1

1\

tD1

Bt .V / � V �: (17.1)

By Assumption 1 (iii), we may conclude that V � is self-generating; hence, B.V �/ �

V �. Consequently, V � D B.V �/; hence, V � �
1T

tD1

Bt .V /. Together with (17.1),

we have points (ii) and (iii). Moreover, observe that V � is compact. To see that,
observe that V � is bounded and its closure cl.V �/ is compact. On the other hand,
V � D B.V �/ � B.cl.V �//. By Assumption 1 (ii) and (iv), we have compactness
of B.cl.V �// and consequently cl.V �/ � B.cl.V �//; hence, by Lemma 1,
cl.V �/ � V �. As a result, V � is closed and hence compact.

An interesting property of the method is that the equilibrium value set can be
characterized using some extremal elements of the equilibrium value set only. Abreu
et al. (1990) call it a bang-bang property. Cronshaw and Luenberger (1994) (and
Abreu (1988) for some early examples) push this fact to the extreme and show that
the equilibrium value set of a strongly symmetric subgame perfect equilibrium can
be characterized using the worst punishment only. This observation has important
implications on computation algorithms and applications.14

For each W � R
n, let co.W / be a convex hull of W . By ext.W /, we denote the

set of extreme points of co.W /.

Definition 1. We say that the function v 2 L1.Y; W / has bang-bang property if
v.y/ 2 ext.W / for almost all y 2 Y .

Using Proposition 6.2 in Aumann (1965), we have:

Theorem 2. Let W � R
n be a compact set. Let a� 2 A and v 2 L1.Y; co.W //

be chosen such that a� is Nash equilibrium in the game �.v/. Then, there exists a
function Qv 2 L1.Y; ext.W // such that a� is Nash equilibrium of �. Qv/.

14See Dominguez (2005) for an application to models with public dept and time-consistency issues,
for example.
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Corollary 1. If W � R
n is compact, then B.W / D B.ext.W //.

Theorem 2 and its corollary show that we may choose �.w; �/ to have bang-bang
property. Moreover, if that continuation function has bang-bang properties, then we
may easily calculate continuation function in any step. Especially, if Y is a subset
of the real line, the set of extreme points is at most countable.

Finally, Abreu et al. (1990) present a monotone comparative statics result in
the discount factor. The equilibrium value set V � is increasing in the set inclusion
order in ı. That is, the higher the discount factor, the larger is the set of attainable
equilibrium values (as cooperation becomes easier).

3.2 Dynamic and Stochastic Models with States

We now consider an n-player, discounted, infinite horizon, stochastic game in
discrete time. This is the basic APS tool used in numerous applications in macroe-
conomics (e.g., all the examples discussed in Sect. 2, but others too). Along these
lines, consider the primitives of a class of stochastic games given by the tuple:

˚
S; .Ai ; QAi ; ıi ; ui /

N
iD1; Q; s0

�
;

where S is the state space, Ai � R
ki is player i ’s action space with A D �i Ai , QAi .s/

the set of actions feasible for player i in state s, ıi is the discount factor for player i ,
ui W S � A ! R is the one-period payoff function, Q denotes a transition function
that specifies for any current state s 2 S and current action a 2 A, a probability
distribution over the realizations of the next period state s0 2 S , and finally s0 2 S

is the initial state of the game. We assume that S D Œ0; NS� � R and that QAi .s/ is a
compact Euclidean subset of Rki for each s; i .

Remark 2. A dynamic game is a special case of this model, if Q is a deterministic
transition.

Using this notation, a formal definition of a (Markov, stationary) strategy, payoff,
and a Nash equilibrium can be stated as follows. A set of all possible histories
of player i till period t is denoted by H t

i . An element ht
i 2 H t

i is of the form
ht

i D .s0; a0; s1; a1; : : : ; at�1; st /. A pure strategy for a player i is denoted by
�i D .�i;t /

1
tD0 where �i;t W H t

i ! Ai is a measurable mapping specifying an action
to be taken at stage t as a function of history, such that �i;t .h

t
i / 2 QAi .st /. If, for some

t and history ht
i 2 H t

i , �i;t .h
t
i / is a probability distribution on QA.st /, then we say �i

is a behavior strategy. If a strategy depends on a partition of histories limited to the
current state st , then the resulting strategy is referred to as Markov. If for all stages
t; we have a Markov strategy given as �i;t D �i , then a strategy identified with �i

for player i is called a Markov stationary strategy and denoted simply by �i . For a
strategy profile � D .�1; �2; : : : ; �n/; and initial state s 2 S; the expected payoff for
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player i can be denoted by:

Ui .�; s0/ D .1 � ıi /

1X

tD0

ıt
i

Z
ui .st ; �t .h

t //dmt
i .�; s0/;

where mt
i is the stage t marginal on Ai of the unique probability distribution (given

by Ionescu-Tulcea theorem) induced on the space of all histories for � . A strategy
profile �� D .��

�i ; ��
i / is a Nash equilibrium if and only if �� is feasible, and for

any i , and all feasible �i , we have

Ui .�
�
�i ; ��

i ; s0/ � Ui .�
�
�i ; �i ; s0/:

Assumption 2. (i) S is a standard Borel space,
(ii) Ai is a separable metric space and QA is a compact-valued measurable

correspondence,
(iii) Each ui is a uniformly bounded and jointly measurable function such that for

each s 2 S , ui .s; �/ is continuous on QA.s/,
(iv) For each Borel measurable subset D of S , .s; a/ 7! Q.Djs; a/ is jointly

measurable and for each s 2 S

lim
n!1

sup
D

jQ.Djs; an/ � Q.Djs; a/j D 0

whenever an ! a.

When dealing with discounted n-player dynamic or stochastic games, the main
tool is again the class of one-shot auxiliary (strategic form) games �s.v/ D

.N; .Ai ; …i .s; �/.vi //i2N /, where s 2 S � R
n is the current state, while v D

.v1; v2; : : : ; vn/, where each vi W S ! R is the integrable continuation value and the
payoffs are given by:

…i .s; a/.vi / D .1 � ıi /ui .s; a/ C ıi

Z

S

vi .s
0/Q.ds0js; a/:

Then, by K � R
n denote some initial compact set of attainable payoff vectors and

consider the large compact valued correspondence V W S � K. Let W W S � K be
any correspondence. By B.W /.s/ denote the set of all payoff vectors of �s.v/ in K,
letting v varying through all integrable selections from W . Then showing that B.W /

is a measurable correspondence, and denoting by a�.s/.v/ a Nash equilibrium of
�s.v/, one can define an operator B such that:

B.W /.s/ WD fw 2 K W there is integrable selection v of W

and a measurable Nash equilibrium a�.s/.v/ of �s.v/ such that

for each i 2 N it holds wi D …i .s; a�.s/.v//.v/g:
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It can be shown that B is an increasing operator; hence, starting from some large
initial correspondence V0, one can generate a decreasing sequence of sets .Vt /t

(whose graphs are ordered under set inclusion) with VtC1 D B.Vt /. Then, one can
show using self-generation arguments that there exists the greatest fixed point of B ,
say V �. Obviously, as V is a measurable correspondence, B.V / is a measurable
correspondence. By induction, one can then show that all correspondences Vt are
measurable (as well as nonempty and compact valued). Hence, by the Kuratowski
and Ryll-Nardzewski selection theorem (Theorem 18.13 in Aliprantis and Border
2005), all of these sets admit measurable selections. By definition, B.V �/ D V �;
hence, for each state s 2 S and w 2 B.V �/.s/ � K; there exists an integrable
selection v0� such that w D ….s; a�.s/.v0//.v0/. Repeating this procedure in the
obvious (measurable) way, one can construct an equilibrium strategy of the initial
stochastic game. To summarize, we state the next theorem:

Theorem 3. Suppose that Assumption 2 holds. Then,

(i)
1T

tD1

Bt .V / ¤ ;,

(ii)
1T

tD1

Bt .V / is the greatest fixed point of B ,

(iii)
1T

tD1

Bt .V / D V �,

where V � is the set of all values of subgame perfect behavior strategies.
The details of the argument are developed in Mertens and Parthasarathy (1987),

restated in Mertens and Parthasarathy (2003), and nicely summarized by Mertens
et al. (2015) (pages 397–398). See also Fudenberg and Yamamoto (2011) for
similar concepts used in the study of irreducible stochastic games with imperfect
monitoring, or Hörner et al. (2011) with a specific and intuitive characterization of
equilibria payoffs of irreducible stochastic games, when discount factor tends to 1.
See also Baldauf et al. (2015) for the case of a finite number of states.

3.3 Extensions and Discussion

The constructions presented in Sects 3.1 and 3.2 offer the tools needed to analyze
appropriate equilibria of repeated, dynamic, or stochastic games. The intuition,
assumptions, and possible extensions require some comments, however.

The method is useful to prove existence of a sequential or subgame perfect
equilibrium in a dynamic or stochastic economy. Further, when applied to macroe-
conomic models, where Euler equations for the agents in the private economy are
available, in other fields like in economics (e.g., industrial organization, political
economy, etc.), the structure of their application can be modified (e.g., see Feng
et al. (2014) for an extensive discussion of alternative choices of state variables). In
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all cases, when the method is available, it allows one to characterize the entire set of
equilibrium values, as well as giving a constructive method to compute them.

Specifically, the existence of some fixed point of B is clear from Tarski fixed
point theorem. That is, an increasing self-map on a nonempty complete lattice
has a nonempty complete lattice of fixed points. In the case of strategic dynamic
programming, B is monotone by construction under set inclusion, while the
appropriate nonempty complete lattice is a set of all bounded correspondences
ordered by set inclusion on their graphs (or simply value sets for a repeated game).15

Further, under self-generation, it is only the largest fixed point of this operator that
is of interest. So the real value added of the theorems, when it comes to applications,
is characterization and computation of the greatest fixed point of B . Again, it exists
by Tarski fixed point theorem.

However, to obtain convergence of iterations on B , one needs to have stronger
continuity type conditions. This is easily obtained, if the number of states S (or
Y for a repeated game) is countable, but typically requires some convexification
by sunspots of the equilibrium values, when dealing with uncountably many states.
This is not because of the fixed point argument (which does not rely on convexity);
rather, it is because the weak star limit belongs pointwise only to the convex hull of
the pointwise limits. Next, if the number of states S is uncountable, then one needs
to work with correspondences having measurable selections. Moreover, one needs
to show that B maps into the space of correspondences having some measurable
selection. This can complicate matters a good bit for the case with uncountable
states (e.g, see Balbus and Woźny (2016) for a discussion of this point). Finally,
some Assumptions in 1 for a repeated game or Assumption 2 for a stochastic game
are superfluous if one analyzes particular examples or equilibrium concepts.

As already mentioned, the convexification step is critical in many examples
and applications of strategic dynamic programming. In particular, convexification
is important not only to prove existence in models with uncountably many states
but also to compute the equilibrium set (among other important issues). We
refer the reader to Yamamoto (2010) for an extensive discussion of a role of
public randomization in the strategic dynamic programming method. The paper is
important not only for discussing the role of convexification in these methods but
also provides an example with a non-convex set of equilibrium values (where the
result on monotone comparative statics under set inclusion relative to increases in
the discount rate found in the original APS papers does not hold as well).

Next, the characterization of the entire set of (particular) equilibrium values is
important as it allows one to rule out behaviors that are not supported by any
equilibrium strategy. However, in particular games and applications, one has to
construct carefully the greatest fixed point of B that characterizes the set of all
equilibrium values obtained in the public perfect, subgame perfect, or sequential
equilibrium. This requires assumptions on the information structure (for example,

15See Baldauf et al. (2015) for a discussion of this fact.
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assumptions on the structure of private signals, the observability of chosen actions,
etc.). We shall return to this discussion shortly.

In particular, for the argument to work, and for the definition of operator B

to make sense, one needs to guarantee that for every continuation value v, and
every state s, there exists a Nash equilibrium of one-shot game �s.v/. This can be
done, for example, by using mixed strategies in each period (and hence mapping to
behavior strategies of the extensive form game). Extensive form mixed strategies in
general, when players do possess some private information in sequential or subgame
perfect equilibria, cannot always be characterized in this way (as they do not possess
recursive characterization). To see that, observe that in such equilibria, the strategic
possibilities at every stage of the game is not necessarily common knowledge (as
they can depend arbitrarily on private histories of particular players). This, for
example, is not the case of public perfect equilibria (or sequential equilibrium with
full support assumption as required by Assumption 1 (iii)) or for subgame perfect
equilibria in stochastic games with no observability of players’ past moves.

Another important extension of the methods applied to repeated games with
public monitoring and public perfect equilibria was proposed by Ely et al. (2005).
They analyze the class of repeated games with private information but study only
the so called “belief-free” equilibria. Specifically, they consider a strong notion of
sequential equilibrium, such that the strategy is constant with respect to the beliefs
on others players’ private information. Similarly, as Abreu et al. (1990), they provide
a recursive formulation of all the belief-free equilibrium values of the repeated game
under study and provide its characterizations. Important to mention, general payoff
sets of repeated games with private information lack such recursive characterization
(see Kandori 2002).

It is important to emphasize that the presented method is also very useful
when dealing with nonstationary equilibrium in macroeconomic models, where
an easy extension of the abovementioned procedure allows to obtain comparable
existence results (see Bernheim and Ray (1983) for an early example of this fact
for an economic growth model with altruism and limited commitment). But even in
stationary economies, the equilibria obtained using APS method are only stationary
as a function of the current state and future continuation value. Put differently,
the equilibrium condition is satisfied for a set or correspondence of values, but
not necessarily its particular selection, 16 say fv�g D B.fv�g/. To map it on the
histories of the game and obtain stronger stationarity results, one needs to either
consider (extensive form) correlated equilibria or sunspot equilibria or semi-Markov
equilibria (where the equilibrium strategy depends on both current and the previous
period states). To obtain Markov stationary equilibrium, one needs to either assume
that the number of states and actions is essentially finite or transitions are nonatomic
or concentrate on specific classes of games.

16However, Berg and Kitti (2014) show that this characterization is satisfied for (elementary) paths
of action profiles.



17 Dynamic Games in Macroeconomics 755

One way of restricting to a class of nonstationary Markov (or conditional
Markov) strategies is possible by a careful redefinition of an operator B to
work in function spaces. Such extensions were applied in the context of various
macroeconomic models in the papers of Cole and Kocherlakota (2001), Doraszelski
and Escobar (2012), or Kitti (2013) for countable number of states and Balbus and
Woźny (2016) for uncountably many states. To see that, let us first redefine operator
B to map the set of bounded measurable functions V (mapping S ! R

N ) the
following way. If W � V , then

Bf .W / WD f.w1; w2; : : : ; wn/ 2 V and

for all s; i we have wi .s/ D …i .s; a�.s/.v//.vi /; where

v D .v1; v2; : : : ; vn/ 2 W and each vi is an integrable functiong:

Again one can easily prove the existence of and approximate the greatest fixed
point of Bf , say V �

f . The difference between B and Bf is that Bf maps between

spaces of functions not spaces of correspondences. The operator Bf is, hence,
not defined pointwise as operator B . This difference implies that the constructed
equilibrium strategy depends on the current state and future continuation value, but
the future continuation value selection is constant among current states. This can be
potentially very useful when concentrating on strategies that have more stationarity
structure, i.e., in this case, they are Markov but not necessarily Markov stationary,
so the construction of the APS value correspondence is generated by sequential or
subgame perfect equilibria with short memory.

To see that formally, observe that from the definition of B and characterization
of V �, we have the following:

.8s 2 S/.8 number w 2 V �.s//.9 measurable function

v0� s.t. w D ….s; a�.s/.v0//.v0//:

Specifically, observe that continuation function v0 can depend on w and s, and hence
we shall denote it by v0

w;s . Now, consider operator Bf and its fixed point V �
f . We

have the following property:

.8 function w 2 V �/.9 measurable function v0�
f s.t. .8s 2 S/ w.s/

D ….s; a�.s/.v0//.v0//:

Hence, the continuation v0 depends on w only, and we can denote it by v0
w.

Observe that in both methods, the profile of equilibrium decision rules: a�.s/.v0/

is generalized Markov, as it is enough to know state s and continuation function
v0 to make an optimal choice. In some cases in macroeconomic applications,
this generalized Markov equilibrium can be defined using envelope theorems of
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continuation values (not the value function itself).17 In construction of Bf , however,
the dependence on the current state is direct: s ! a�.s/.v0

w/. So we can easily
verify properties of the generalized Markov policy, such as whether it is continuous
or monotone in s. In the definition of operator B , however, one has the following:
s ! a�.s/.v0

w;s/. So even if the Nash equilibrium is continuous in both variables,
(generally) there is no way to control continuity of s ! v0

w;s . The best example
of such discontinuous continuation selection in macroeconomics application of
strategic dynamic programming is, perhaps, the time-consistency model (see Caplin
and Leahy 2006) discussed later in the application section. These technical issues
are also important when developing a computational technique that uses specific
properties of (the profile) the equilibrium decision rules with respect to s (important
especially when the state space is uncountable).

4 Numerical Implementations

4.1 Set Approximation Techniques

Judd et al. (2003) propose a set approximation techniques to compute the greatest
fixed point of operator B of the APS paper. In order to accomplish this task, they
introduce public randomization that technically convexifies each iteration on the
operator B , which allows them to select and coordinate on one of the future values
that should be played. This enhances the computational procedure substantially.

More specifically, they propose to compute the inner V I and outer V O approx-
imation of V �, where V I � V � � V O . Both approximations use a particular
approximation of values of operator B , i.e., an inner approximation BI and an outer
approximation BO that are both monotone. Further, for any set W , the approximate
operators preserve the order under set inclusion, i.e., BI .W / � B.W / � BO.W /.
Having such lower and upper approximating sets, Judd et al. (2003) are able to
compute the error bounds (and a stopping criterion) using the Hausdorff distance on
bounded sets in R

n, i.e.:

d.W O; W I / D max
wO 2W O

min
wI 2W I

jjwI � wO jj:

Their method is particularly useful as they work with convex sets at every iteration
and map them on R

m by using its m extremal points. That is, if one takes m points,
say Z � W � R

n; define W I D coZ. Next, for the outer approximation, take m

points for Z on the boundary of a convex set W , and let W O D
Tm

lD1fz 2 R
n W

gl � z � gl � zlg for a vector of m subgradients oriented such that .zl � w/ � gl > 0. To
start iterating toward the inner approximation, one needs to find some equilibrium

17See Kydland and Prescott (1980), Phelan and Stacchetti (2001), Feng et al. (2014), and Feng
(2015).
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values from V �, while to start iterating toward the outer, one needs to start from
the largest possible set of values, say given by minimal and maximal bounds of the
payoff vector.

Importantly, recent work by Abreu and Sannikov (2014) provides an interesting
technique of limiting the number of extreme points of V � for the finite number
of action repeated games with perfect observability. In principle, this procedure
could easily be incorporated in the methods of Judd et al. (2003). Further, an
alternative procedure to approximate V � was proposed by Chang (1998), who uses
discretization instead of extremal points of the convex set. One final alternative
is given by Cronshaw (1997), who proposes a Newton method for equilibrium
value set approximation, where the mapping of sets W and B.W / on R

m is done
by computing the maximal weighted values of the players’ payoffs (for given
weights).18

Finally, and more recently, Berg and Kitti (2014) developed a method for comput-
ing the subgame perfect equilibrium value of a game with perfect monitoring using
fractal geometry. Specifically, their method is interesting as it allows computation of
the equilibrium value set with no public randomization, sunspot, or convexification.
To obtain their result, they characterize the set V � using (elementary) subpaths, i.e.,
(finite or infinite) paths of repeated action profiles, and compute them using the
Hausdorff distance.19

4.2 Correspondence Approximation Techniques

The method proposed by Judd et al. (2003) was generalized to dynamic games (with
endogenous and exogenous states) by Judd et al. (2015). As already mentioned, an
appropriate version of the strategic dynamic programming method uses correspon-
dences V � defined on the state space to handle equilibrium values. Then authors
propose methods to compute inner and outer (pointwise) approximations of V �,
where for given state s, V �.s/ is approximated using original Judd et al. (2003)
method. In order to convexify the values of V �, the authors introduce sunspots.

Further, Sleet and Yeltekin (2016) consider a class of games with a finite
number of exogenous states S and a compact set of endogenous states K. In their
case, correspondence V � maps on S � K. Again the authors introduce sunspots
to convexify the values of V �; this, however, does not guarantee that V �.s; �/

is convex. Still the authors approximate correspondences by using step (convex-
valued) correspondences applying constructions of Beer (1980).

Similar methods are used by Feng et al. (2014) to study sequential equilibria of
dynamic economies. Here, the focus is often also on equilibrium policy functions (as

18Both of these early proposals suffer from some well-known issues, including curse of dimen-
sionality or lack of convergence.
19See Rockafellar and Wets (2009), chaps. 4 and 5, for theory of approximating sets and
correspondences.
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opposed to value functions). In either case (of approximating values or policies), the
authors concentrate on outer approximation only and discretize both the arguments
and the spaces of values. Interestingly, Feng et al. (2014), based on Santos and
Miao (2005), propose a numerical technique to simulate the moments of invariant
distributions resulting from the set of sequential equilibria. In particular, after
approximating the greatest fixed point of B , they convexify the image of B.V / and
approximate some invariant measure on A � S by selecting some policy functions
from the approximated equilibrium value set V �.

Finally, Balbus and Woźny (2016) propose a step correspondence approximation
method to approximate function sets without the use of convexification for a class
of short-memory equilibria. See also Kitti (2016) for a fractal geometry argument
for computing (pointwise) equilibria in stochastic games without convexification.

5 Macroeconomic Applications of Strategic Dynamic
Programming

In this section, we apply strategic dynamic programming methods to the canonical
examples discussed in Sect. 2.

5.1 Hyperbolic Discounting

As already mentioned in Sect. 2.1, one important application of strategic dynamic
programming methods that is particularly useful in macroeconomics is finding
the time-consistent solutions to the quasi-hyperbolic discounting optimization
problem.20 We now present this application in more detail and provide sufficient
conditions to construct all the consistent plans for this class of models.

Our environment is a version of a ˇ � ı quasi-hyperbolic discounting model that
has been studied extensively in the literature. We envision an agent to be a sequence
of selves indexed in discrete time t 2 N[ f0g. A “current self” or “self t” enters the
period in given state st 2 S , where for some NS 2 RC, S WD Œ0; NS�, and chooses an
action denoted by ct 2 Œ0; st �. This choice determines a transition to the next period
state stC1 given by stC1 D f .st �ct /. The period utility function for the consumer is
given by (bounded) utility function u that satisfies standard conditions. The discount
factor from today (t ) to tomorrow (t C 1) is ˇı; thereafter, it equals ı between any
two future dates t C 	 and t C 	 C 1 for 	 > 0. Thus, preferences (discount factor)
depend on 	 .

Let ht D .s0; s1; : : : ; st�1; st / 2 Ht be the history of states realized up to period
t , with h0 D ;. We can now define preferences and a subgame perfect equilibrium
for the quasi-hyperbolic consumer.

20See, e.g., Harris and Laibson (2001) or Balbus et al. (2015d).
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Definition 2. The sequence of functions � WD .�t /t2N is subgame perfect, if there
is a sequence .vt /t2N, such that for each t 2 N and s 2 S

�t .h
t / 2 arg max

c2Œ0;st �

˚
.1 � ı/u.c/ C ˇıvtC1..ht ; f .st � c///

�
;

and

vt .h
t / D .1 � ı/u.�t .h

t // C ıvtC1..ht ; f .st � �t .h
t ////:

Here, for uniformly bounded vt , we have the following payoffs:

vt .h
t / D

1X

	D1

ı	�1u.�tC	 .htC	 //: (17.2)

Intuitively, current self best responds to the value vtC1 discounted by ˇı and
that continuation value vtC1 summarizes payoffs from future “selfs” strategies
.�	 /1

	DtC1. Such a best response is then used to update vtC1 discounted by ı to vt .
In order to construct a subset of SPNE, we proceed with the following construc-

tion. Put:

…
.s; c/.v/ WD .1 � ı/u.c/ C 
v.f .s � c//

for 
 2 Œ0; 1�. The operator B defined for a correspondence W W S � R is given
by:

B.W /.s/ WD
n
v 2 R W v D …ı.s; a.s//.w/; for some a; w

s.t. a 2 arg max
c2Œ0;s�

…ˇı.s; c/.w/; and w 2 W .s/

�

:

Based on the operator B , one can prove the existence of a subgame perfect equilib-
rium in this intrapersonal game and also compute the equilibrium correspondence.
We should note that this basic approach can be generalized to include nonstationary
transitions fft g or credit constraints (see, e.g., Bernheim et al. (2015), who compute
the greatest fixed point of operator B for a specific example of CIES utility
function). Also, Chade et al. (2008) pursue a similar approach for a version of this
particular game, where at each period n, consumers play a strategic form game. In
this case, the operator B must be adopted to require that a is not the optimal choice,
but rather a Nash equilibrium of the stage game.

Finally, Balbus and Woźny (2016) show how to generalize this method to include
a stochastic transition and concentrate on short-memory (Markov) equilibria (or
Markov perfect Nash equilibria, MPNE henceforth). To illustrate the approach to
short memory discussed in Sect. 3.3, we present an application of the strategic
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dynamic programming method for a class of strategies where each �t depends on
st only, but in the context of a version of the game with stochastic transitions. Let
stC1 � Q.�jst � ct /, and CM be a set of nondecreasing, Lipschitz continuous (with
modulus 1) functions h W S ! S , such that 8s 2 S h.s/ 2 Œ0; s�. Clearly, as CM is
equicontinuous and closed, it is a nonempty, convex, and compact set when endowed
with the topology of uniform convergence. Then the discounted sum in (17.2) is
evaluated under E�

s that is an expectation relative to the unique probability measure
(existence and uniqueness of such a measure follows from standard Ionescu-Tulcea
theorem) on histories ht determined by initial state s0 2 S and a strategy profile � .

For given NS 2 RC, S D Œ0; NS�, define a function space:

V WD fv W S ! RC W v is nondecreasing and u.s.c. bounded by u.0/ and u. NS/g:

And let:

V � D fv 2 V W 9 MPNE .�t /t2N;

where each �t 2 CM; s.t v.s/ D U ..�t /t2N/.s/ 8s 2 Sg.
In such a case, the stage payoff is

…
.s; c/.v/ WD .1 � ı/u.c/ C 


Z

S

v.s0/Q.ds0js � c/;

and operator Bf defined on 2V is given by:

Bf .W / WD
[

w2W

�

v 2 V W .8s 2 S/ v.s/ D …ı.s; a.s//.w/; for some a W S ! S;

s.t. a.s/ 2 arg max
c2Œ0;s�

…ˇı.s; c/.w/ for all s 2 S

�

:

Balbus and Woźny (2016) prove that the greatest fixed point of Bf characterizes
the set of all MPNE values in V generated with short memory, and they also discuss
how to compute the set of all such equilibrium values.

5.2 Optimal Growth Without Commitment

Similar methods for (nonstationary) Markov perfect equilibrium can be developed
for a class of optimal growth models without commitment between consecutive
generations. As discussed in Sect. 2.2, this is often formalized using a class of
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paternalistic bequest games. We now present a detailed application of this class of
models.

For the sake of illustration, consider a simple model of stochastic growth without
commitment where there is an infinite sequence of generations labeled by t 2 N: In
the economy, there is one commodity which may be either consumed or invested.
Every generation lives one period and derives utility u from its own consumption
and utility v from consumption of its immediate descendant. Generation t receives
the endowment st 2 S and chooses consumption level ct 2 A.st / WD Œ0; st �:

The investment of yt WD st � ct determines the endowment of its successor
according to some stochastic transition probability Qt from S to S which depends
on yt .

Let P be the set of (bounded by a common bound) Borel measurable functions
p W S 7! RC. A strategy for generation t is a function �t 2 †, where † is a set
of Borel measurable functions such that �.s/ 2 A.s/ for each s 2 S: The expected
utility of generation t is defined as follows:

u.c/ C

Z

S

v.�tC1.s0//Q.ds0js � c; s/; (17.3)

where u W S 7! RC is a bounded function, whereas v W S 7! RC is bounded and
Borel measurable. We endow P with its weak star topology and order 2P (the set of
all subsets of P ) by set inclusion order.

Then, in sect. 5 of their paper, Balbus et al. (2012) define an operator Bf on 2P :

Bf .W / D
[

p2W

n
p0 2 P W p0.s/ D v.a�

p.s//; where

a�
p.s/ 2 arg max

c2A.s/
fu.c/ C

Z

S

p.s0/Q.ds0js � c/g
o
:

Clearly, each selection of values fv�
t g from the greatest fixed point V � D Bf .V �/

generates a MPNE strategy f��
t g, where ��

t .s/ 2 arg maxfu.c/C
R

S
v�

t .s0/Q.ds0js�

c/g. Hence, using operator Bf , not only is the existence of MPNE established,
but also a direct computational procedure can be used to compute the entire set
of sustainable MPNE values. Here we note that a similar technique was used by
Bernheim and Ray (1983) to study MPNE of a nonstationary bequest game.

Another direct application of the strategic dynamic programming presented
above was proposed by Atkeson (1991) to study the problem of international
lending with moral hazard and risk of repudiation. Specifically, using the currently
available income (net of repayment) as a state variable and correspondences of
possible continuation utilities, he characterizes the set of Pareto optimal allocations
constrained to satisfy individual rationality and incentive compatibility (including
no repudiation constraint), using the techniques advocated in Sect. 3.1.
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5.3 Optimal Fiscal Policy Without Commitment

As already introduced in Sect. 2.3, in their seminal paper, Kydland and Prescott
(1980) have proposed a recursive method to solve for the optimal tax policy of the
dynamic economy. Their approach resembles APS method for dynamic games, but
is different as it incorporates dual variables as states of the dynamic program. Such
a state variable can be constructed because of the dynamic Stackelberg structure of
the game. That is, equilibrium in the private economy is constructed first, and these
agents are “small” players in the game, and take as given sequences of government
tax policies, and simply optimize. As these problems are convex, standard Euler
equations govern the dynamic equilibrium in this economy. Then, in the approach
of Kydland-Prescott, in the second stage of the game, successive generations of
governments design time-consistent policies by forcing successive generations of
governments to condition optimal choices on the lagged values of Lagrange/KKT
multipliers.

To illustrate how this approach works, consider an infinite horizon economy with
a representative consumer solving:

max
fat g

1X

tD0

ıt u.ct ; nt ; gt /;

where at D .ct ; nt ; ktC1/ is choice of consumption, labor, and next period capital,
subject to the budget constraints ktC1 C ct � kt C .1 � �t /rt kt C .1 � 	t /wt nt

and feasibility constraint at � 0, nt � 1. Here, �t and 	t are the government
tax rates and gt their spendings. Formulating Lagrangian and writing the first-
order conditions, together with standard firm’s profit maximization conditions,
one obtains uc.ct ; nt ; gt / D �t , un.ct ; nt ; gt / D ��t .1 � 	t /wt and ıŒ1 C .1 �

�tC1/fk.ktC1; ntC1/��tC1 D �t .21

Next the government solves:

max
f�t g

1X

tD0

ıt u.ct ; nt ; gt /;

where �t D .gt ; 	t ; �t / under the above-given first-order conditions of the consumer
and budget balance constraint: gt � �t fk.kt ; nt /kt C	t fn.kt ; nt /nt . It is well known
that the solution to this problem (on the natural state space kt ) is time inconsistent.
That is, the solution of the problem, e.g., �tCs chosen at time t , is different from the
solution of the same problem at time t C s. Hence, standard dynamic programming
techniques cannot be applied.

21Phelan and Stacchetti (2001) prove that a sequential equilibrium exists in this economy for each
feasible sequence of tax rates and expenditures.
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Kydland and Prescott (1980) then propose, however, a new method to make
the problem recursive by adding a pseudo-state variable �t�1. Relative to this new
state space, one can then develop a recursive optimization approach to the time-
consistency problem that resembles the strategic dynamic programming methods of
APS. To see this, omitting the time subscripts, Kydland and Prescott (1980) rewrite
the problem of the government recursively by

v.k; ��1/ D max
a;�;�

fu.c; n; g/ C ıv.k0; �/g

under the budget balance, the first-order conditions of the consumer, and requiring
that .k0�; ��/ 2 V �. Here V � is the set of such fkt ; �t g, for which there exists an
equilibrium policy fas; �s; �sg

1
sDt consistent with or supportable by these choices.

This formalizes the constraint needed to impose time-consistent solutions on
government choices. To characterize set V �, Kydland and Prescott (1980) use the
following APS type operator:

B.W / D f.k; ��1/ 2 Œ0; kmax� � Œ�min; �max� W there exists

.a; �; �/satisfying budget balance constraints and consumer FOCs, with

.k0; �/ 2 W g:

They show that V � is the largest fixed point of B and this way characterize the set
of all optimal equilibrium policies. Such are time consistent on the expanded state
space .k; ��1/, but not on the natural state space k.

This approach was later extended and formalized by Phelan and Stacchetti
(2001). They study the Ramsey optimal taxation problem in the symmetric sequen-
tial equilibrium of the underlying economy. They consider a dynamic game and
also use Lagrange multipliers to characterize the continuation values. Moreover,
instead of focusing on optimal Ramsey policies, they study symmetric sequential
equilibrium of the economy and hence incorporate some private state variables.
Specifically, in the direct extension of the strategic dynamic programming technique
with private states, one should consider a distribution of private states (say capital)
and (for each state) a possible continuation value function. But as all the households
are ex ante identical, and sharing the same belief about the future continuations,
they have the same functions characterizing the first-order conditions, although
evaluated at different points, in fact only at the values of the Lagrange multipliers
that keep track of the sequential equilibrium dynamics. In order to characterize the
equilibrium conditions by FOCs, Phelan and Stacchetti (2001) add a public sunspot
s 2 Œ0; 1� that allows to convexify the equilibrium set under study. The operator B

in their paper is then defined as follows:

B.W /.k/ D cof.�; v/ W there exists .a; �0; v0/ satisfying consumer equilibrium

FOCs, with .�0; v0/ 2 W .k/ and the government deviation

is punished by the minimax (worst) equilibrium valueg:
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Here, � is the after tax marginal utility of consumption and v is household
equilibrium value. Notice that, as opposed to the methods in Kydland and Prescott
(1980), these authors integrate the household and government problem into one
operator equation. Phelan and Stacchetti (2001) finish with the characterization of
the best steady states of the symmetric sequential equilibrium.

Finally, this approach was more recently extended by Feng et al. (2014) (and
Santos and Miao (2005) earlier), as a generalization of the strategic dynamic
programming method to characterize all sequential equilibria of the more general
dynamic stochastic general equilibrium economy. They follow the Phelan and
Stacchetti (2001) approach and map the sequential equilibrium values to the space
of continuation Lagrange multipliers values. Specifically, they consider a general
economy with many agents in discrete time, with endogenous choices a 2 A and
countably many exogenous shocks s 2 S , drawn each period from distribution
Q.�js/. Denoting the vector of endogenous variables by y, they assume the model
dynamics is given by a condition .a0; a; y; s/ D 0 specifying the budget and
technological constraints. Next, denoting by � 2 ƒ the marginal values of all
the investments of all the agents, they consider a function � D h.a; y; s/. Finally,
the necessary and sufficient first-order conditions for the household problems are
given by

ˆ.a; y; s;
X

s02S

�0.s0/Q.ds0js// D 0;

where �0 is the next period continuation marginal value as a function on S . Next,
they characterize the correspondence V � mapping A � S to ƒ, as the greatest fixed
point of the correspondence-based operator:

B.W /.a; s/ WD f� W � D h.a; y; s/ for some y; a0; �0 with

ˆ.a; y; s;
X

s02S

�0.s0/Q.ds0js// D 0; .a0; a; y; s/ D 0

and �0.s0/ 2 W .a0; s0/g:

To characterize V �; they operate on the set of all upper hemi-continuous correspon-
dences and under standard continuity conditions show that B maps W with compact
graph into correspondence B.W / with compact graph. Using the intersection
theorem, along with a standard measurable selection theorem, they select a policy
function a0 as function of .a; s; �/ (hence, Markovian on the expanded state space
including Lagrange multipliers �/.22

22It bears mentioning that in Phelan and Stacchetti (2001) and Feng et al. (2014) the authors
actually used envelope theorems essentially as the new state variables. But, of course, assuming a
dual representation of the sequential primal problem, this will then be summarized essentially by
the KKT/Lagrange multipliers.
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In order to compute the equilibrium correspondence, they use Beer (1980) algo-
rithm of approximating correspondences by step correspondences on the discretized
domain and co-domain grids as already discussed. Feng et al. (2014) conclude
their paper with applications of the above framework to nonoptimal growth models
with taxes, monetary economies, or asset prices with incomplete markets. See also
Dominguez and Feng (2016b) and Feng (2015) for a recent application of the Feng
et al. (2014) strategic dynamic programing method to a large class of optimal
Ramsey taxation problems with and without constitutional constraints. In these
papers, the authors are able to quantify the value of commitment technologies in
optimal taxation problems (e.g., constitutional constraints) as opposed to imposing
simply time-consistent solutions.

Finally, it is worth mentioning that the Feng et al. (2014) method is also useful
to a class of OLG economies, hence with short-lived agents. See also Sleet (1998)
(chap. 3) for such a model.

5.4 Optimal Monetary Policy Without Commitment

We should briefly mention that an extension of the Kydland and Prescott (1980)
approach in the study of policy games was proposed by Sleet (2001). He ana-
lyzes a game between the private economy and the government or central bank
possessing some private information. Instead of analyzing optimal tax policies like
Kydland and Prescott (1980), he concentrates on optimal, credible, and incentive-
compatible monetary policies. Technically, similar to Kydland and Prescott (1980),
he introduces Lagrange multipliers that, apart from payoffs as state variables, allow
to characterize the equilibrium set. He then applies the computational techniques of
Judd et al. (2003) to compute dynamic equilibrium and then recovers the equilibrium
allocation and prices. This extension of the methods makes it possible to incorporate
private signals, as was later developed by Sleet and Yeltekin (2007).

We should also mention applications of strategic dynamic programming without
states to optimal sustainable monetary policy due to Chang (1998) or Athey et al.
(2005) in their study of optimal discretion of the monetary policy in a more specific
model of monetary policy.

6 Alternative Techniques

We conclude with a few remarks concerning alternative methods to strategic
dynamic programming for constructing dynamic equilibria in the macroeconomic
models with strategically interacting agents. In particular, we focus on two widely
used approaches that have been proposed in the literature, each providing significant
advantages relative to strategic dynamic programming per characterizing some
dynamic equilibrium (when applicable).
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6.1 Incentive-Constrained Dynamic Programming

The first alternative approach to strategic dynamic programming methods are
incentive-constrained dynamic programming methods (and their associated dual
methods, often referred to in the literature as “recursive saddle point” or “recursive
dual” methods). These methods develop recursive representations of sequential
incentive-constrained optimization problems that are used to represent dynamic
equilibria in macroeconomic models that are also dynamic/stochastic games. The
methods are in the spirit of the recursive optimization approaches we discussed
in Sect. 2 (e.g., the recursive optimization approaches to models with dynamically
inconsistent payoffs or limited commitment such as models that are studied as inter-
personal games between successive generations as in models with quasi-hyperbolic
agents or growth models with limited commitment). The seminal early work on
these methods is found in Rustichini (1998a,b) and Marcet and Marimon (1998), but
a wealth of recent work has extended many of their ideas. These methods are used
in models where agents face sequential optimization problems, but have incentives
to change future optimal continuation plans when future states actually arise.
Therefore, incentive-constrained programming methods add further constraints on
sequential optimal decisions that agents face in the form of period-by-period
dynamic incentive and participation constraints. These constraints are imposed to
guarantee optimal decisions are time consistent (or, in some cases, subgame perfect)
along equilibrium paths and therefore further restrict sequential optimal choices
of economic agents. Then, incentive-constrained dynamic programming methods
seek to find recursive primal or dual representations of these sequential incentive-
constrained optimization problems. Such recursive representations help sharpen the
characterization of dynamic equilibria strategies/policies.

Many applications of these incentive-constrained programming methods have
arisen in the macroeconomic literature. For example, in dynamic asset pricing
models with limited commitment and strategic default, where incentive constraints
are used to model endogenous borrowing constraints that restrict current asset-
consumption choices to be consistent with households not defaulting on outstanding
debt obligations in any state the continuation periods (e.g., see Alvarez and Jermann
2000; Hellwig and Lorenzoni 2009; Kehoe and Levine 1993, 2001). Such solvency
constraints force households to make current decisions that are consistent with them
being able to credibly commit to future repayment schemes, and not to default on
their debt obligations, making repayment schemes self-enforcing and sustainable.
Similar recursive optimization approaches to imposing dynamic incentives for
credible commitment to future actions arise in models of sustainable plans for
the government in models in dynamic optimal taxation. Such problems have been
studied extensively in the literature, including models of complete information and
incomplete information (e.g., see the work of Chari et al. 1991; Chari and Kehoe
1990; Farhi et al. 2012; Sleet and Yeltekin 2006a,b).

Unfortunately, the technical limitations of these methods are substantial. In
particular, the presence of dynamic incentive constraints greatly complicates the
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analysis of the resulting incentive-constrained sequential optimization problem (and
hence recursive representation of this sequential incentive-constrained problem).
For example, even in models where the primitive data under perfect commitment
imply the sequential optimization problem generates value functions that are
concave over initial states in models with limited commitment and state variables
(e.g., capital stocks, asset holdings, etc.), the constraint set in such problems is
no longer convex-valued in states. Therefore, as value function in the sequential
problem ends up generally not being concave, it is not in general differentiable,
and so developing useful recursive primal or recursive dual representations of
the optimal incentive-constrained solutions (e.g., Euler inequalities) is challenging
(e.g., see Rustichini (1998a) and Messner et al. (2014) for a discussion). That is,
given this fact, an immediate complication for characterizing incentive-constrained
solutions is that value functions associated with recursive reformulations of these
problems are generally not differentiable (e.g., see Rincón-Zapatero and Santos
(2009) and Morand et al. (2015) for discussion). This implies that standard (smooth)
Euler inequalities, which are always useful for characterizing optimal incentive-
constrained solutions, fail to exist. Further, as the recursive primal/dual is not
concave, even if necessary first-order conditions can be constructed, they are not
sufficient. These facts, together, greatly complicate the development of rigorous
recursive primal methods for construction and characterization of optimal incentive-
constrained sequential solutions (even if conditions for the existence of a value
function in the recursive primal/dual exist). This also implies that even when such
sequential problems can be recursively formulated, they cannot be conjugated with
saddle points using any known recursive dual approach. See Messner et al. (2012,
2014) for a discussion.23

Now, when trying to construct recursive representations of the sequential
incentive-constrained primal problem, new problems emerge. For example, these
problems cannot be solved generally by standard dynamic programming type
arguments (e.g., standard methods for solving Bellman equations in dynamic
programming). In particular, the resulting operator equation that must be solved
is not, in general, a contraction (e.g., see Rustichini 1998a). Rustichini (1998a)
shows that although the standard dynamic programming tools do not apply to
sequential optimization problems with dynamic incentive constraints, one can
develop a monotone iterative method based on a nonlinear operator (that has the
spirit of a Bellman operator) that computes recursive solutions to the sequential
incentive-constrained optimization problems. When sufficient conditions for a fixed
point for the resulting functional equation in the recursive primal problem can
be given, the recursive primal approach provides an alternative to APS/strategic

23It is worth mentioning that Messner et al. (2012, 2014) often do not have sufficient conditions on
primitives to guarantee that dynamic games studied using their recursive dual approaches have
recursive saddle point solutions for models with state variables. Most interesting applications
of game theory in macroeconomics involve states variable (i.e., they are dynamic or stochastic
games).
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dynamic programming methods as some dynamic equilibrium value in the model
can be computed if the Markovian policies can be computed and characterized.
Unfortunately, without a dual method for its implementation, computing the set of
incentive-constrained optimal solutions that achieve this value (i.e., in these models,
dynamic equilibria) is in general very difficult.

One other technical limitation of this method relative to strategic dynamic
programming is often the punishment scheme used to sustain dynamic equilibria
in general is ad hoc. That is, in strategic dynamic programming/APS methods, the
punishment schemes used to construct sequential/subgame values are endogenous;
in the standard version of an incentive-constrained dynamic programming problem,
the punishment schemes are exogenous.

The primal formulation of incentive-constrained dynamic programming has
been applied to many important macroeconomic models. In his original paper,
Rustichini (1998a) shows how by adding period-by-period incentive constraints to
the relevant decision-makers’ problems in some important macroeconomic models
with limited commitment incentive-constrained dynamic programming can be used
to prove the existence of time-consistent or sustainable optimal policies. If the
question is the existence of dynamic equilibria in such models, the primal versions
of these recursive primal methods are very powerful. The problem with these
methods is that it is challenging to compute the incentive-constrained optimal
solutions themselves. Two interesting applications he makes in his paper are to
optimal Ramsey taxation problems under limited commitment and models of
economic growth without commitment. Since the publication of his paper, other
applications of these methods have arisen. For example, they have been applied to
studying optimal solutions to household’s problem in dynamic asset accumulation
models with limited commitment, a government optimal taxation problem with
time inconsistent preferences, sustaining sovereign debt in models of international
finance, and contract enforcement problems in models with human capital. See, for
example, Koeppl (2007), Durdu et al. (2013), and Krebs et al. (2015), among many
others, for a discussion.

To address the question of the computation of incentive-constrained optimal
solutions, an extensive new literature has arisen. This recent work was motivated
by the original paper of Kydland and Prescott (1980), as well as Marcet and
Marimon (1998), where “dual variables” were used as “pseudo-state” variables
to construct time-consistent optimal solutions. Indeed, in these two papers, the
authors show how to apply recursive dual approaches to a plethora of dynamic
macroeconomic and dynamic contracting problems. In the original paper by
Kydland and Prescott (1980), a recursive method for constructing generalized
Markov equilibria was proposed where by adding the lagged values of Karush-
Kuhn-Tucker multipliers to the set of state variables to optimal taxation rules,
which forced the resulting government policymaker’s taxation policies to respect
a “backward-looking” constraint, would in turn force the resulting optimal solution
to the time-inconsistent Euler equations (under the additional implied constraints)
to be time consistent. See also Feng et al. (2014) for a significant extension of this
method.
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In the important paper by Marcet and Marimon (1998), the authors extend the
ideas of Kydland and Prescott (1980) to the setting of a recursive dual optimization
method, where the restrictions implied in the Kydland-Prescott method were
explored more systematically. In the approach of Marcet and Marimon (1998),
this restriction was embedded more formally into an extended dual recursive
optimization approach, where KKT multipliers are added as state variables, and
where in principle sufficient conditions can be developed such that this dual method
will deliver incentive-constrained solutions to the primal recursive optimization
methods ala Rustichini (1998a). The success of this dual approach critically relies on
the existence of a recursive representation of saddle points, and in dynamic models
where their dual recursive saddle point methods remain strictly concave, it can be
proven that the methods of Marcet and Marimon (1998) compute primal incentive-
constrained optimal solutions. The problem with this method is that in very simple
concave problems, serious issues with duality can arise (e.g., see Cole and Kubler
(2012) and Messner and Pavoni (2016) for discussion). The first problem is that in
simple dynamic contracting problems, dual solutions can fail to be primal feasible
(e.g., see the example in Messner and Pavoni 2016). In some cases, this issue can
be resolved by extending the recursive saddle point method to weakly concave
settings by introducing lotteries into the framework. In particular, see Cole and
Kubler (2012). So even when recursive saddle points exist, some technical issues
with the method can arise. Very importantly, Rustichini (1998b) shows even in
concave settings, the dual variables/KKT multipliers can be poorly behaved from
a duality perspective (see also Le Van and Saglam (2004) and Rincón-Zapatero and
Santos (2009) for details).

In a series of recent papers by Messner et al. (2012, 2014), the authors further
develop this recursive dual method. In these papers, they develop sufficient condi-
tions for the equivalence of sequential primal and recursive dual formulations. For
example, similar technical issues arise for recursive dual methods per existence of
value functions that satisfy the functional equation that must be solved to represent
the dual sequential incentive-constrained programming problem with a recursive
dual (e.g., see Messner et al. 2014). Relative to the question of the existence of a
recursive dual version of the recursive primal problem, Messner et al. (2014) provide
the most general conditions under which a recursive dual formulation exists for a
large class of dynamic models with incentive constraints.24 In this paper, also many
important questions concerning the equivalence of recursive primal and recursive
dual solutions are addressed, as well as the question of sequential and recursive dual
equivalence. In Messner et al. (2012), for example, the authors provide equivalence
in models without backward-looking constraints (e.g., constraints generated by
state variables such as capital in time-consistent optimal taxation problems á
la Kydland and Prescott 1980) and many models with linear forward-looking

24For example, it is not a contraction in a the “sup” or “weighted sup” metric. It is a contraction (or
a local contraction) under some reasonable conditions in the Thompson metric. See Messner et al.
(2014) for details.
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incentive constraints (e.g., models with incentive constraints, models with limited
commitment, etc.). In Messner et al. (2014), they give new sufficient conditions
to extend these results to settings with backward-looking states/constraints, as
well as models with general forward-looking constraints (including models with
nonseparabilities across states). In this second paper, they also give new conditions
for the existence of recursive dual value functions using contraction mapping
arguments (in the Thompson metric). This series of papers represents a significant
advancement of the recursive dual approach; yet, many of the results in these papers
still critically hinge upon the existence of recursive saddle point solutions, and
conditions on primitives of the model are not provided for these critical hypotheses.
But critically, in this recursive dual reformulations, the properties of Lagrangians
can be problematic (e.g., see Rustichini 1998b).

6.2 Generalized Euler Equation Methods

A second class of methods that have found use to construct Markov equilibrium
in macroeconomic models that are dynamic games are generalized Euler equation
methods. These methods were pioneered in the important papers by Harris and
Laibson (2001) and Krusell et al. (2002), but have subsequently been used in
a number of other recent papers. In these methods, one develops a so-called
generalized Euler equation that is derived from the local first- and second-order
properties relative to the theory of derivatives of local functions of bounded variation
of an equilibrium value function (or value functions) that govern a recursive
representation of agents’ sequential optimization problem. Then, from these local
representations of the value function, one can construct a generalized first-order
representation of any Markovian equilibrium (i.e., a generalized Euler equation,
which is a natural extension of a standard Euler) using this more general language
of nonsmooth analysis. From this recursive representation of the agents’ sequential
optimization problem, plus this related generalized Euler equation, one can then
construct an approximate solution to the actual pair of functional equations that are
used to characterize a Markov perfect equilibrium, and Markov perfect equilibrium
values and pure strategies can then be computed. The original method based on the
theory of local functions of bounded variation was proposed in Harris and Laibson
(2001) , and this method remains the most general, but some authors have assumed
the Markovian equilibrium being computed is continuously differentiable, which
greatly sharpens the generalized Euler equation method.25

25By “most general”, we mean has the weakest assumptions on the assumed structure of Markov
perfect stationary equilibria. That is, in other implementations of the generalized Euler equation
method, authors often assume smooth Markov perfect stationary equilibria exist. In none of these
cases do the authors actually appear to prove the existence of Markov perfect stationary equilibria
within the class postulated.
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These methods have applied in a large number of papers in the literature.
Relative to the models discussed in Sect. 2, Harris and Laibson (2001), Krusell et al.
(2002), and Maliar and Maliar (2005) (among many others) have used generalized
Euler equation methods to solve dynamic general equilibrium models with a
representative quasi-hyperbolic consumers. In Maliar and Maliar (2006b), a version
of the method is applied to dynamic economies with heterogeneous agents, each
of which has quasi-hyperbolic preferences. In Maliar and Maliar (2006a, 2016),
some important issues with the implementation of generalized Euler equations are
discussed (in particular, they show that there is a continuum of smooth solutions that
arise using these methods for models with quasi-hyperbolic consumers. In Maliar
and Maliar (2016), the authors propose an interesting resolution to this problem by
using the turnpike properties of the dynamic models to pin down the set of dynamic
equilibria being computed.

They have also been applied in the optimal taxation literature.26 For example,
in Klein et al. (2008), the authors study a similar problem to the optimal time-
consistent taxation problem of Kydland and Prescott (1980) and Phelan and
Stacchetti (2001). In their paper, they assume that a differentiable Markov perfect
equilibrium exists, and then proceed to characterize and compute Markov perfect
stationary equilibria using a generalized Euler equation method in the spirit of
Harris and Laibson (2001). Assuming that such smooth Markov perfect equilibria
exist, their characterization of dynamic equilibria is much sharper than those
obtained using the calculus of functions of bounded variation. The methods also
provide a much sharper characterization of dynamic equilibrium than obtained
using strategic dynamic programming. In particular, Markov equilibrium strategies
can be computed and characterized directly. They find that only taxation method
available to the Markovian government is capital income taxation. This appears
in contrast to the findings about optimal time-consistent policies using strategic
dynamic programming methods in Phelan and Stacchetti (2001), as well as the
findings in Klein and Ríos-Rull (2003). In Klein et al. (2005), the results are
extended to two country models with endogenous labor supply and capital mobility.

There are numerous problems with this approach as it has been applied in the
current literature. First and foremost, relative to the work assuming that the Markov
perfect equilibrium is smooth, this assumption seems exceedingly strong as in very
few models of dynamic games in the literature, when Markov equilibria are known
to exist, they are smooth. That is, conditions on the primitives of these games that
guarantee such smooth Markov perfect equilibria exist are never verified. Further,
even relative to applications of these methods using local results for functions of
bounded variation, the problem is, although the method can solve the resulting gen-
eralized Euler equation, that solution cannot be tied to any particular value function
in the actual game that generates this solution as satisfying the sufficient condition
for a best reply map in the actual game. So it is not clear how to relate the solutions
using these methods to the actual solutions in the dynamic or stochastic game.

26 See for example Klein and Ríos-Rull (2003) and Klein et al. (2008).
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In Balbus et al. (2015d), the authors develop sufficient conditions on the
underlying stochastic game that a generalized Bellman approach can be applied
to construct Markov perfect stationary equilibria. In their approach, the Markov
perfect equilibria computing in the stochastic game can be directly related to the
recursive optimization approach first advocated in, for example, Strotz (1955) (and
later, Caplin and Leahy 2006). In Balbus et al. (2016), sufficient conditions for the
uniqueness of Markov perfect equilibria are given. In principle, one could study
if these equilibria are smooth (and hence, rigorously apply the generalized Euler
equation method). Further, of course, in some versions of the quasi-hyperbolic
discounting problem, closed-form solutions are available. But even in such cases, as
Maliar and Maliar (2016) note, numerical solutions using some type of generalized
Euler equation method need not converge to the actual closed-form solution.

7 Conclusion

Strategic interactions play a critical role in many dynamic models in macroeco-
nomics. The introduction of such strategic elements into dynamic general equilib-
rium models has expanded greatly since the seminal work of Kydland and Prescott
(1977), as well as early papers by Phelps and Pollak (1968), Peleg and Yaari (1973),
Bernheim and Ray (1983), and Levhari and Mirman (1980). It is now a common
feature of many models in macro, including models of economic fluctuations,
public policy, asset pricing, models of the behavioral aspects of consumption-
savings problems, models of economic growth with limited commitment or strategic
altruism, among others. In this chapter, we have presented a number of canonical
situations, where strategic considerations arise in the study of dynamic equilibria in
macroeconomics. Then, we have discussed how the tools of dynamic and stochastic
game theory can be used to study equilibria in such problems.

The introduction of such strategic dimensions into macroeconomics greatly com-
plicates the analysis of equilibria. Still, rigorous and general methods are available
for constructing, characterizing, and computing them. We have argued that strategic
dynamic programming methods, first pioneered in Abreu et al. (1986, 1990) for
repeated games, when extended to settings with state variables, provide a powerful
systematic set of tools to construct and compute equilibria in such macroeconomic
models. Also, we have mentioned that in some cases, for particular subclasses of
sequential or subgame perfect equilibria (e.g., Markov perfect equilibria), these
methods can be improved upon using recursive primal/dual methods or generalized
Euler equation methods. Unfortunately, relative to strategic dynamic programming
methods, these methods are known to suffer from serious technical limitations in
some dynamic models with state variables. As the majority of the models studied in
macroeconomics are dynamic, and include states, strategic dynamic programming
offers the most systematic approach to such models; hence, in this chapter, we have
discussed what these methods are and how they can be applied to a number of
interesting models in dynamic macroeconomics.
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Balbus Ł, Jaśkiewicz A, Nowak AS (2015c) Stochastic bequest games. Games Econ Behav

90(C):247–256
Balbus Ł, Nowak AS (2004) Construction of Nash equilibria in symmetric stochastic games of

capital accumulation. Math Meth Oper Res 60:267–277
Balbus Ł, Nowak AS (2008) Existence of perfect equilibria in a class of multigenerational

stochastic games of capital accumulation. Automatica 44(6):1471–1479
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1 Introduction

In the last three decades, dynamic noncooperative game theory has become one of
the main tools of analysis in the field of industrial organization, broadly defined.
The reason is that dynamic games provide a better understanding of the dynamic
strategic interactions among firms than static games, in which the time dimension is
not explicitly taken into account. Many decisions that firms make in a competitive
environment are dynamic in nature: not only they have long-lasting effects but
they also shape the future environment in which firms will operate. In a dynamic
competitive environment, a firm has incentives to behave strategically (e.g., trying
to condition rivals’ responses) so as to make the future environment more profitable.
The importance of a dynamic perspective on oligopoly markets has been stressed in
Cabral (2012), who argues that, “. . . dynamic oligopoly models provide considerable
value added with respect to static models.”

In this chapter, we provide a selective survey of differential game models applied
to industrial organization. Differential games constitute a class of decision problems
wherein the evolution of the state is described by a differential equation and the
players act throughout a time interval (see Başar and Olsder 1995; Dockner et al.
2000; Haurie et al. 2012, Ch. 7). As pointed out in Vives (1999), “Using the tools
provided by differential games, the analysis can be extended to competition in
continuous time.1 The result is a rich theory which explains a variety of dynamic
patterns . . . .” We focus on differential oligopoly games in which firms use Markov
strategies. A Markov strategy is a decision rule that specifies a firm’s action as
a function of the current state (assumed to be observable by all firms), which
encapsulates all the relevant history of the game. This type of strategy permits a
firm’s decision to be responsive to the actual evolution of the state of the system
(unlike open-loop strategies, according to which firms condition their actions only
on calendar time and are able to commit themselves to a pre-announced path over
the remaining planning period). As argued in Maskin and Tirole (2001), the interest
in Markov strategies is motivated by at least three reasons. First, they produce
subgame perfect equilibria. Secondly, they are widely used in applied dynamic game
theory, thus justifying further theoretical attention. Thirdly, their simplicity makes
econometric estimation and inference easier, and they can readily be simulated.
Throughout this chapter, firms are assumed to maximize the discounted sum of their
own profit streams subject to the relevant dynamic constraints, whereas consumers
are static maximizers, and their behavior can be summarized by either a static
demand function (the same for all periods) or a demand function augmented by
a state variable.2

1Continuous time can be interpreted as “discrete time, but with a grid that is infinitely fine” (see
Simon and Stinchcombe 1989, p.1171).
2An interesting area where dynamic games have been fruitfully applied in industrial organization
is where firms face sophisticated customers that can foresee their future needs. For a survey of this
literature, see Long (2015).
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In Sect. 2, we review differential games with adjustment costs. The idea behind
the papers considered in this section is that some payoff relevant variables are
costly to adjust. For instance, capacity can be costly to expand because firms need
to buy new machineries and equipment (and hire extra workers) and re-optimize
the production plan. Or prices can be costly to adjust due to menu costs and costs
associated with providing consumers with information about price reductions and
promotions. Since the open-loop equilibria of these dynamic games coincide with
the equilibria of the corresponding static games (in which state variables become
control variables), and open-loop equilibria are not always subgame perfect, the
lesson that can be drawn is that static models do not capture the long-run stable
relationships among firms in industries where adjustment costs are important.
The degree of competitiveness is either under- or overestimated by static games,
depending on whether Markov control-state substitutability or Markov control-state
complementarity prevails.

In Sect. 3, we present the classical sticky price model of oligopolistic competition
and some important extensions and applications. Price stickiness is relevant in
many real-world markets where firms have control over their output levels but the
market price takes time to adjust to the level indicated by the demand function.
The demand function derives from a utility function that depends on both current
and past consumption levels. The take-away message is that, even in the limiting
case in which the price adjusts instantaneously (therefore dynamics is removed), the
static Cournot equilibrium price does not correspond to the limit of the steady-state
feedback equilibrium price, implying that the static model cannot be considered as
a reduced form of a full-fledged dynamic model with price stickiness. Interestingly,
the most efficient outcome can be supported as a subgame perfect equilibrium of
the dynamic game for some initial conditions, provided that firms use nonlinear
feedback strategies and that the discount rate tends to zero.

In Sect. 4, we deal with productive asset games of oligopolistic competition,
focussing on renewable assets. In this class of games, many of the traditional
results from static oligopoly theory are challenged, giving rise to new policy
implications. For instance, in a dynamic Cournot game where production requires
exploitation of a common-pool renewable productive asset, an increase in market
competition, captured by an increase in the number of firms, could be detrimental
to welfare, with important consequences for merger analysis. Moreover, allowing
for differentiated products, Cournot competition could become more efficient than
Bertrand competition. The main reason for these novel results to arise is the presence
of an intertemporal negative externality (due to the lack of property rights on the
asset), which is not present in static models.

In Sect. 5, we consider games of innovation, either stochastic or deterministic.
In the former, firms compete in R&D for potential markets, in the sense that they
engage in R&D races to make technological breakthrough which enable them to get
monopolistic rents. In the latter, firms compete in R&D in existing markets, meaning
that all firms innovate over time while competing in the market place. From the
collection of papers considered in this section, we learn how incentives for firms to
innovate, either noncooperatively or cooperatively, depend on a number of factors,
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including the length of patent protection, the degree to which own knowledge spills
over to other firms, firms location, as well as the nature and the degree of market
competition.

In Sect. 6, we examine recent contributions that emphasize timing decisions,
following a real options approach. This is a stream of literature which is growing
in size and recognition. It extends traditional real options theory, which studies
investments under uncertainty (without competition), to a competitive environment
where the optimal exercise decision of a firm depends not only on the value of the
underlying economic variables (e.g., the average growth rate and the volatility of
a market) but also on rivals’ actions. Real options models provide new insights
into the evolution of an industry structure, in particular in relation to the entry
process (timing, strategic deterrence, and investment patterns). Concluding remarks
are provided in Sect. 7.

2 Adjustment Costs

In this section, we present a number of differential oligopoly games whose common
denominator is given by the presence of adjustment costs.3 We first consider
costly output adjustments, with and without sluggish demand, and costly price
adjustments. Next, we turn our attention to capacity investments with capital
adjustment costs.

We start from the general dynamic Cournot duopoly model with output adjust-
ment costs analyzed in Dockner (1992), who generalizes Driskill and McCafferty
(1989) to account for asymmetric technologies across firms and explores the rela-
tionship between dynamic duopolistic competition and static conjectural variations
equilibria.4 The product price is related to industry output by means of an inverse
demand function p.Q.t//, decreasing in Q, where p.�/ is the price at time t
and Q.t/ D q1.t/ C q2.t/ is industry output at time t , i.e., the sum of outputs
produced by each firm. The cost of production is given by Ci.qi .t//, with C 00

i > p
0.

In addition, it is assumed that each firm faces adjustment costs when scaling up
(or down) output. Let ui D Pqi denote the rate of change of output of Firm i at
time t . Adjustment costs are described by the cost function Ai.ui .t //, assumed to
be convex. Firms choose their production plans over an infinite time horizon with
the aim to maximize the discounted sum of profits. The common discount factor is
denoted by r .

Under the open-loop information structure, the dynamic game under considera-
tion admits a steady-state equilibrium that coincides with the Cournot equilibrium

3Adjustment costs are important in quite a few industries as evidenced by several empirical studies
(e.g., Hamermesh and Pfann 1996; Karp and Perloff 1989, 1993a,b).
4Driskill and McCafferty (1989) derive a closed-loop equilibrium in the case in which quantity-
setting firms face a linear demand for a homogeneous product and bear symmetric quadratic costs
for changing their output levels.
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of the corresponding static game. This implies that the static Cournot game is able
to capture the long-run stable dynamic interactions between firms, i.e., the static
Cournot outcome is a good prediction of the equilibrium of the infinite horizon
dynamic game. However, as is well-known in the differential game literature,
under the open-loop information structure, firms base their strategies only on the
information available at the beginning of the game, and they do not revise their plans
as new information becomes available. For this reason, the open-loop information
is typically not subgame perfect.

Assuming firms use feedback strategies, Firm i ’s problem can be written as
(i; j D 1; 2, j ¤ i )

8
<

:

max
ui

Z 1

0

e�rt Œp.Q.t//qi .t/ � Ci.qi .t// � Ai.ui .t //� dt

s.t. Pqi D ui .t / , Pqj D uj .q1 .t/ ; q2 .t//, qi .0/ D qi0 � 0,
(18.1)

where uj .q1; q2/ denotes Firm j ’s feedback strategy. In this context, a feedback
strategy is a decision rule that specifies a firm’s current rate of change of its own
output as a function of the current state .q1; q2/. This type of strategy permits a
firm’s decisions to be responsive to the actual evolution of the state of the system
(in contrast to open-loop strategies). A Nash equilibrium in feedback strategies has
the perfectness property. That is, feedback Nash equilibrium (or FNE) strategies are
equilibrium strategies for any subgame that begins from a time t � 0 and associated
state .q1.t/; q2.t//, even if .q1.t/; q2.t// is not on the equilibrium state trajectory
that begins at .q1.0/; q2.0//.

Recall that, in the static Cournot model, when choosing its optimal production,
Firm i takes the production of Firm j as a given. This is referred to as Cournot-
Nash conjecture. Alternatively, we can assume that firms have nonzero conjectural
variations, i.e., dqj =dqi D � ¤ 0. In this case, from the first-order condition for
profit maximization, we obtain

p.Q/

�

1 �
si

�
.1C �/

�

D C
0

i .qi /, (18.2)

where si D qi=Q is the market share of Firm i and � D �p=Œp0Q� is the price
elasticity of industry demand. Equation (18.2) characterizes a conjectural variations
equilibrium. Dockner (1992) shows that the steady-state equilibrium of the dynamic
game with firms playing Markov strategies can be viewed as a conjectural variations
equilibrium of a static game and that the conjectural variation that Firm i has about
the reaction of its rival can be written as

� D
@u�

j

@qi

�

r �
@u�

j

@qj

��1

,

where u�
j denotes Firm j ’s equilibrium strategies. Assuming a linear demand

p D maxfa � Q; 0g, a > 0, quadratic costs Ai D ku2i =2, k > 0, and
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Ci D ciqi C bq2i =2, ci < a, with a; b; ci ; k constants, equilibrium strategies can be
written as

u�
i D

1

k

�
˛i C ˇqi C �qj

�
,

where ˛i , ˇ, and � are equilibrium values of the endogenous parameters that depend
on the exogenous parameters of the model, with ˇ and � satisfying ˇ < � < 0 (for
global asymptotic stability). It follows that

� D
�

rk � ˇ
, (18.3)

which is constant and negative (since ˇ; � < 0). Hence, the steady-state equilibrium
of the dynamic game coincides with a conjectural variations equilibrium of the
corresponding static game with constant and negative conjectures, given in (18.3).
Each firm conjectures that own output expansion will elicit an output contraction by
the rival. This will result in a more competitive behavior than in the static Cournot
game, where firms make their output decision only on the basis of the residual
demand curve, ignoring the reactions of the rivals.

Jun and Vives (2004) extend the symmetric duopoly model with undifferentiated
products and costly output adjustments to a differentiated duopoly. A representative
consumer has a quadratic and symmetric utility function for the differentiated goods
(and utility is linear in money) of the form U.q1; q2/ D A.q1Cq2/� ŒB.q

2
1 Cq22/C

2Cq1q2�=2 (see Singh and Vives 1984). In the region where prices and quantities
are positive, maximization of U.q1; q2/ w.r.t. q1 and q2 yields the following inverse
demandsPi.q1; q2/ D A�Bqi�Cqj , which can be inverted to obtainDi.p1; p2/ D

a�bpiCcpj , with a D A=.BCC/, b D B=.B2�C2/, and c D C=.B2�C2/,B >

jC j � 0. When B D C , the two products are homogeneous (from the consumer’s
view point); when C D 0, the products are independent; and when C < 0, they
are complements. Firms compete either in quantities (à la Cournot) or in prices (à la
Bertrand) over an infinite time horizon. The variable that is costly to adjust for each
firm is either its production or the price level. Adjustment costs are assumed to be
quadratic. The following four cases are considered: (i) output is costly to adjust and
firms compete in quantities, (ii) price is costly to adjust and firms compete in prices,
(iii) output is costly to adjust and firms compete in prices, and (iv) price is costly to
adjust and firms compete in quantities. For all cases, a (linear) feedback equilibrium
is derived.

In (i), Firm i ’s problem can be written as (i; j D 1; 2, j ¤ i )

8
<

:

max
ui

Z 1

0

e�rt

�
�
A � Bqi � Cqj

�
qi �

ˇ

2
u2i

�

dt

s.t. Pqi D ui , Pqj D uj .q1; q2/, qi .0/ D qi0 � 0,
(18.4)

where ˇu2i =2 is the cost of output adjustments, with ˇ > 0, ui is Firm i ’s rate of out-
put adjustments, r > 0 is the discount rate (common to both firms), and uj .q1; q2/ is
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Firm j ’s feedback strategy, which Firm i takes as a given. Let Vi .q1; q2/ denote Firm
i ’s value function, i.e., the discounted value of profits for Firm i for a equilibrium
of the game that begins at .q1; q2/. The pair of strategies .u�

1 .q1; q2/, u�
2 .q1; q2//

constitutes a feedback equilibrium if u�
1 .q1; q2/ is a solution of

rV1.q1; q2/ D max
u1

�

.A � Bq1 � Cq2/ q1 �
ˇ

2
u21 C

@V1

@q1
u1 C

@V1

@q2
u�
2 .q1; q2/

�

,

and u�
2 .q1; q2/ is a solution of

rV2.q1; q2/ D max
u2

�

.A � Bq2 � Cq1/ q2 �
ˇ

2
u22 C

@V2

@q2
u2 C

@V2

@q1
u�
1 .q1; q2/

�

,

and limt!1 e�rtV1.q1.t/; q2.t// D limt!1 e�rtV2.q1.t/; q2.t// D 0, where qi .t/
is the time path of qi induced by .u�

1 .q1; q2/; u
�
2 .q1; q2//. The first-order condition

on the control variable yields

ui D
1

ˇ

@Vi

@qi
. (18.5)

The term @Vi=@qi captures the shadow price of Firm i ’s output, i.e., the impact of
a marginal increase in Firm i ’s output on Firm i ’s discounted sum of profits. Note
that the optimality condition (18.5) holds in the region where Pi.q1; q2/ � 0 and
qi � 0, i D 1; 2 and that ui can take either positive or negative values, i.e., it is
possible for Firm i to either increase or decrease its production level.5

Using (18.5), we obtain (i; j D 1; 2, i ¤ j )

rVi .q1; q2/ D
�
A � Bqi � Cqj

�
qi C

1

2ˇ

�
@Vi

@qi

	2

C
1

ˇ

@Vi

@qj

@Vj

@qj
.

Given the linear-quadratic structure of the game, we guess value functions of the
form

Vi .q1; q2/ D �1q
2
i =2C �2q

2
j =2C �3qi C �4qj C �5qiqj C �6,

which imply that

ui D
1

ˇ

�
�1qi C �3 C �5qj

�
.

5For a discussion about the nature of capacity investments (reversible vs. irreversible) and its
strategic implications in games with adjustment costs, see Dockner et al. (2000, Ch. 9).
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There exist six candidates for a feedback equilibrium. The equilibrium values of the
endogenous parameters �1, �3, and �5 as functions of the exogenous parameters of
the model can be found by identification. Let K D �25 , which turns out to be the
solution of the cubic equation

81K3 C ˛1K
2 C ˛2K C ˛3 D 0, (18.6)

where ˛1 D �18ˇ.8BCˇr2/, ˛2 D ˇ2Œ8C 2C.8BCˇr2/2�, and ˛3 D C2ˇ3.8BC

ˇr2/; the equilibrium values of �1 and �3 are given by

�1 D
1

2



rˇ ˙

p
r2ˇ2 C 8Bˇ � 8K

�
, (18.7)

and

�3 D
Aˇ

rˇ � �1 � �5

�

1C
�25 .�5 � 2�1 C rˇ/

.2�1 � rˇ/ .�1 � rˇ/ .�1 C �5 � rˇ/

��1

. (18.8)

Out of the six candidates for a feedback equilibrium, there exists only one stabilizing
the state .q1; q2/. The coefficients of the equilibrium strategy u�

i satisfy �1 < �5 < 0
and �3 > 0. The couple .u�

1 , u�
2 / induces a trajectory of qi that converges to q1 D

��3=.�1C�5/ for every possible initial conditions. The fact that @u�
j =@qi < 0 (since

�5 < 0) implies that there exists intertemporal strategic substitutability: an output
expansion by Firm i today leads to an output contraction by the rival in the future.6

Since the game is symmetric, each firm has a strategic incentive to expand its own
output so as to make the rival smaller. This incentive is not present in the open-loop
equilibrium, where firms do not take into account the impact of a change in the state
variables on their optimal strategies. At the steady-state, Markovian behavior turns
out to be more aggressive than open-loop (static) behavior.

In (ii), Firm i ’s problem can be written as (i; j D 1; 2, j ¤ i )

8
<

:

max
ui

Z 1

0

e�rt

�
�
a � bpi C cpj

�
pi �

ˇ

2
u2i

�

dt

s.t. Ppi D ui , Ppj D uj .p1; p2/, pi .0/ D pi0 � 0,
(18.9)

which is formally identical to (18.4) once one replaces qi with pi , A with a, B
with b, and C with �c. Indeed, as pointed out in Jun and Vives (2004), Bertrand
competition with costly price adjustment is the dual of Cournot competition with
costly output adjustment. The equilibrium strategy can be found by setting A D a,
B D b, and C D �c in (18.6), (18.7), and (18.8). By exploiting duality, we
can see that @u�

j =@pi > 0, implying that there exists intertemporal strategic
complementarity. A firm has a strategic incentive to price more softly today so as to

6This is also referred to as Markov control-state substitutability (see Long 2010).
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induce a less aggressive price behavior by the rival in the future. The steady-state
price turns out to be higher than the static Bertrand equilibrium price.

In (iii), Firm i ’s problem can be written as (i; j D 1; 2, j ¤ i )

8

<̂

:̂

max
ui

Z 1

0

e�rt

"
�
a � bpi C cpj

�
pi �

ˇ . Pqi /
2

2

#

dt

s.t. Ppi D ui , Ppj D uj .p1; p2/, pi .0/ D pi0 � 0,

(18.10)

where Pqi D �b Ppi C c Ppj , implying that the cost for Firm i to adjust its output is
directly affected by Firm j . This complicates the analysis of the game compared
with (i) and (ii).

Firm i ’s HJB equation is (i; j D 1; 2, j ¤ i )

rVi .p1; p2/ D max
ui

�
�
a � bpi C cpj

�
pi �

ˇ

2

�
bui � cuj .p1; p2/

2

C
@Vi

@pi
ui C

@Vi

@pj
uj .p1; p2/

�

. (18.11)

Performing the maximization indicated in (18.11) gives Firm i ’s instantaneous best
response,

ui D
1

b

�
1

bˇ

@Vi

@pi
C cuj

�

,

which can be used to derive the equilibrium of the instantaneous game given
p1 and p2,

u�
i D

1

bˇ .b2 � c2/

�

b
@Vi

@pi
C c

@Vj

@pj

	

. (18.12)

Using (18.12), (18.11) becomes

rVi .p1; p2/ D
�
a � bpi C cpj

�
pi C

1

2b2ˇ .b2 � c2/

�

(�
@Vi

@pi

	2 �
b2 C c2

�
C 2b

�

b
@Vi

@pj

@Vj

@pj
C c

@Vi

@pi

�
@Vi

@pj
C
@Vj

@pj

	�)

:

Guessing quadratic value functions of the form

Vi .p1; p2/ D �1p
2
i =2C �2p

2
j =2C �3pi C �4pj C �5pipj C �6,

the equilibrium values of the coefficients in u�
i , �1, �3, and �5 can be obtained by

identification. The couple of equilibrium strategies .u�
1 ; u

�
2 / induces a trajectory
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of pi that converges to p1 D ��3=.�1 C �5/. Contrary to the previous case,
@u�

j =@pi < 0, meaning that static strategic complementary is turned into intertempo-
ral strategic substitutability. The intuition is that price cutting by a firm today leads
to an increase in its rival’s marginal cost, thus making the rival less efficient. This
induces the rival to price more softly in the future. Each firm has an incentive to cut
prices today to soften future competition, and this leads to a steady-state price which
is below the static Bertrand equilibrium price. For industries characterized by price
competition and output adjustment costs, the static game tends to overestimate the
long-run price.

In (iv), Firm i ’s problem can be written as (i; j D 1; 2, j ¤ i )

8

<̂

:̂

max
ui

Z 1

0

e�rt

"
�
A � Bqi � Cqj

�
qi �

ˇ . Ppi /
2

2

#

dt

s.t. Pqi D ui , Pqj D uj .q1; q2/, qi .0/ D qi0 � 0,

(18.13)

where Ppi D �B Pqi � C Pqj , implying that the cost for Firm i to adjust its price is
directly affected by Firm j . Note that (18.13) is formally identical to (18.10) once
one replaces pi with qi , a with A, b with B , and c with �C . We obtain the results
for Cournot competition with costly price adjustment by duality.

From the above analysis, we can conclude that whether or not Markovian
behavior turns out to be more aggressive than open-loop/static behavior depends
on the variable that is costly to adjust, not the character of competition (Cournot
or Bertrand). Using the framework presented in Long (2010), when the variable
that is costly to adjust is output, there exists Markov control-state substitutability.
Consequently, Markovian behavior turns out to be more aggressive than open-
loop (static) behavior. The opposite holds true in the case in which the variable
that is costly to adjust is price. In this case, there exists Markov control-state
complementarity, and Markovian behavior turns out to be less aggressive than open-
loop (static) behavior.7

Wirl (2010) considers an interesting variation of the Cournot duopoly game with
costly output adjustment presented above. The following dynamic reduced form
model of demand is assumed,

Px .t/ D s ŒD.p .t// � x .t/� .

The idea is that, for any finite s > 0, demand at time t , x .t/, does not adjust
instantaneously to the level specified by the long-run demand, D.p .t//; only

7Figuières (2009) compares closed-loop and open-loop equilibria of a widely used class of
differential games, showing how the payoff structure of the game leads to Markov substitutability
or Markov complementarity. Focusing on the steady-states equilibria, he shows that compe-
tition intensifies (softens) in games with Markov substitutability (complementarity). Markov
substitutability (complementarity) can be considered as the dynamic counterparts of strategic
substitutability (complementarity) in Bulow et al. (1985).
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when s ! 1, x.t/ adjusts instantaneously to D.p .t//. Sluggishness of demand
characterizes many important real-world nondurable goods markets (e.g., fuels
and electricity) in which current demand depends on (long-lasting) appliances
and equipment. To obtain analytical solutions, Wirl (2010) assumes that D.p/ D

maxf1�p; 0g. Note that there is no product differentiation in this model. Apart from
the demand side, the rest of the model is as in case (i).

Equating demand and supply at t gives

x.t/ D
Xn

iD1
qi .t/, Px.t/ D

Xn

iD1
ui .t /.

The market clearing price is

p.t/ D 1 �
Xn

iD1
qi .t/ �

1

s

Xn

iD1
ui .t /.

Wirl (2010) focusses on a symmetric (qi D q and ui D u 8i ) feedback
equilibrium. Firm i ’s HJB equation can be written as (i; j D 1; 2; : : : ; n, j ¤ i )

rVi .qi ; q/Dmax
ui

��

1�
Xn

iD1
qi�

1

s



ui C

Xn

j¤i
uj .qi ; q/

��

qi�
ˇ

2
u2i C

@Vi

@qi
ui

�

.

(18.14)

Maximization of the RHS of (18.14) yields

ui D
1

ˇ

�
@Vi

@qi
�
1

s
qi

�

,

which can be used to derive the following equilibrium strategy,

u� D � .q1 � q/ ,

with

q1 D
2ˇ

ˇ .2C r�/ .1C n/C .n � 1/ �
�
2 .n � 1/ � �

p
�
 ,

where � is a positive constant that depends on the parameter of the model, � D 1=s,
and � D .ˇr C 2n�/2 C 8ˇ � 4 .2n � 1/ �2. Since u� is decreasing in q then
there exists intertemporal strategic substitutability: higher supply of competitors
reduces own expansion. Markov strategies can lead to long-run supply exceeding
the static Cournot equilibrium, such that preemption due to strategic interactions (if
i increases supply, this deters the expansion of j ) outweighs the impact of demand
sluggishness. If demand adjusts instantaneously (s ! 1), then feedback (and
open-loop) steady-state supply coincides with the static one. Indeed, lim�!0 q1 D

1=.1C n/. Interestingly, the long-run supply is non-monotone in s, first decreasing
then increasing, and can be either higher or lower than the static benchmark. In
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conclusion, what drives the competitiveness of a market in relation to the static
benchmark is the speed of demand adjustment: when s is small (demand adjusts
slowly), the long-run supply is lower than static supply; the opposite holds true
when s is large.

We conclude this section with the case in which capacity rather than output is
costly to adjust. The difference between output and capacity becomes relevant when
capacity is subject to depreciation. Reynolds (1991) assumes that, at any point in
time, Firm i ’s production is equal to its stock of capital, i D 1; 2; : : : ; n, with
capital depreciating over time at a constant rate ı � 0.8 Firms accumulate capacity
according to the following state equations (i D 1; 2; : : : ; n),

Pki .t/ D ui .t / � ıki .t/ , ki .0/ D ki0 � 0,

where ui denotes Firm i ’s rate of capacity investment.9 Note that capacity is
reversible even if ı D 0 since ui may be negative. A linear inverse demand
for homogeneous output is assumed, p.t/ D maxf0; a �

Pn
iD1 ki .t/g, where

a > 0 captures market size. The cost for adjusting the capital stock is given by
Ci.ui / D ˇu2i =2, ˇ > 0.10

Let k D .k1; k2; : : : ; kn/. Firm i ’s HJB equation is

rVi .k/ D max
ui

8
<

:

 

a �

nX

iD1

ki

!

ki �
ˇ

2
u2i C

@Vi

@ki
ui C

nX

j¤i

@Vi

@kj
uj .k/

9
=

;
. (18.15)

Performing the maximization indicated in (18.15) yields

ui D
1

ˇ

@Vi

@ki
. (18.16)

After substituting ui from (18.16) into (18.15), we obtain

rVi .k/ D

 

a �

nX

iD1

ki

!

ki C
1

ˇ

2

4
1

2

�
@Vi

@ki

	2

C

nX

j¤i

@Vi

@kj

@Vj

@kj

3

5 . (18.17)

8The same assumption is made in the duopoly model analyzed in Reynolds (1987).
9A different capital accumulation dynamics is considered in Cellini and Lambertini (1998,
2007a), who assume that firms’ unsold output is transformed into capital, i.e., firms’ capacity is
accumulated à la Ramsey (1928).
10In most of the literature on capacity investments with adjustment costs, it is assumed that
adjustment costs are stock independent. A notable exception is Dockner and Mosburger (2007),
who assume that marginal adjustment costs are either increasing or decreasing in the stock of
capital.
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The value function Vi is specified as a quadratic form in ki and k�i

Vi .ki ; k�i / D �1k
2
i =2C �2 .k�i /

2 =2C �3ki C �4k�i C �5kik�i C �6,

where k�i D
Pn

j¤i ki . If n D 2, 0 < ˇ � 1, and 0 < r C 2ı � 1, then there exists
only one couple of (linear) strategies stabilizing the state .k1; k2/ and inducing a
trajectory of ki that converges to

k1 D
a

3C ˇı .r C ı/ � y�= Œx� � ˇ .r C ı/�
,

for every ki0, where x� and y� are constants that depend on the parameters of the
model satisfying x� < y� < 0. For n � 2 and ı D 0, there exists an Or such that for
r < Or the vector of (linear) strategies stabilizing the state k induces a trajectory that
converges to

k1 D
a

1C n � .n � 1/ y�= Œx� C .n � 2/ y� � ˇr�
,

for every ki0. Note that when ı D 0, the game can be reinterpreted as an n-
firm Cournot game with output adjustment costs (an extension of Driskill and
McCafferty 1989, to an oligopolistic setting). Equilibrium strategies have the
property that each firm’s investment rate is decreasing in capacity held by any
rival (since @u�

j =@ki D y�=ˇ < 0). By expanding its own capacity, a firm
preempts investments by the rivals in the future. As in the duopoly case, the strategic
incentives for investment that are present in the feedback equilibrium lead to a
steady-state outcome that is above the open-loop steady state.

As to the comparison between k1 and the static Cournot equilibrium output
qC D a=.1 C n/, since x� < y� < 0, then k1 > qC . The incentives to preempt
subsequent investment of rivals in the dynamic model lead to a steady state with
capacities and outputs greater than the static Cournot equilibrium output levels. This
holds true also in the limiting case in which adjustment costs tend to zero (ˇ ! 0).
However, as ˇ ! 1, k1 approaches qC . Finally, for large n, Reynolds (1991)
shows that total output is approximately equal to the socially optimal output, not
only at the steady state but also in the transition phase.

3 Sticky Prices

In this section, we review classical papers in industrial organization that belong
to the class of Cournot games with sticky prices, whose roots can be traced
back to Roos (1925, 1927). The main reference is the seminal paper by Fer-
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shtman and Kamien (1987).11 The key feature of sticky price games is that the
price for a homogenous product supplied by oligopolistic firms does not adjust
instantaneously to the level specified by its demand function (for a given level of
output). The demand function can be derived from the maximization of a utility
function that depends on current and past consumption, U.�/D u.q.t/; z.t//Cy.t/,
where q.t/ represents current consumption, z.t/ represents exponentially weighted
accumulated past consumption, and y.t/ D m � p.t/q.t/ represents the money
left over after purchasing q units of the good, with m � 0 denoting con-
sumers’ income (exogenously given). Maximization of U.�/ w.r.t. q yields p.�/ D

@u.q.t/; z.t//=@q.t/. If the marginal utility of current consumption is concentrated
entirely on present consumption, then the price at time t will depend only on current
consumption; otherwise it will depend on both current and past consumption. Fer-
shtman and Kamien (1987) consider the following differential equation governing
the change in price,

Pp.t/ D s Œa � q.t/ � p.t/� , p.0/ D p0 (18.18)

where a � 0 is the demand intercept, q D
Pn

iD1 qi is industry output (the sum of
outputs produced by each firm), and s � 0 denotes the speed at which the price
converges to its level on the demand function, with a � q.t/ being the price on
the demand function for the given level of output.12 (18.18) can be rewritten as a
dynamic demand function of the form

p.t/ D a � q.t/ �
Pp.t/

s
.

In the remainder, we set a D 1. The production cost of Firm i is given by C.qi / D

cqi C q2i =2, with c � 0. Production costs are assumed to be quadratic so as to make
instantaneous profits concave in the control variable.

Firm i ’s problem can be written as (i; j D 1; 2; : : : ; n, j ¤ i )
8

<̂

:̂

max
qi

Z 1

0

e�rt	idt

s.t. Pp D s
h
1 � qi �

Xn

jD1;j¤i
qj .p/ � p

i
, p.0/ D p0,

11Applications of sticky price models of oligopolistic competition with international trade can be
found in Dockner and Haug (1990, 1991), Driskill and McCafferty (1996), and Fujiwara (2009).
12Equation (18.18) can be derived from the inverse demand function p.t/ D a �

s
R t
0 e

�s.t��/q.�/d� . Simaan and Takayama (1978) assume that the speed of price adjustment,
s, is equal to one. Fershtman and Kamien (1987) analyze the duopoly game. For the n-firm
oligopoly game, see Dockner (1988) and Cellini and Lambertini (2004). Differentiated products
are considered in Cellini and Lambertini (2007b).
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where 	i D pqi � C.qi / is Firm i ’s instantaneous profit, r > 0 is the discount
rate, common to all firms, and qj .p/ is Firm j ’s feedback strategy.13 Firm i ’s HJB
equation is

rVi .p/ D max
qi

8
<

:
.p � c/ qi �

q2i
2

C
@Vi

@p
s

2

41 � qi �

nX

jD1;j¤i

qj .p/ � p

3

5

9
=

;
.

(18.19)

Maximization of the RHS of (18.19) yields (assuming inner solutions exist)

qi D p � c � s
@Vi

@p
. (18.20)

Note that when s D 0, the price is constant. Firm i becomes price taker and
thus behaves as a competitive firm, i.e., it chooses a production level such that
the price is equal to its marginal cost (c C qi ). When s > 0, Firm i realizes that
an increase in own production will lead to a decrease in price. The extent of price
reduction is governed by s: a larger s is associated with a larger price reduction.
Using (18.20), (18.19) becomes

rVi D .p � c/

�

p � c � s
@Vi

@p

	

�
1

2

�

p � c � s
@Vi

@p

	2

C
@Vi

@p
s

2

41 �

�

p � c � s
@Vi

@p

	

�

nX

jD1;j¤i

�

p � c � s
@Vj

@p

	

� p

3

5 .

(18.21)

Given the linear-quadratic structure of the game, the “guess” for the value functions
is as follows,

Vi .p/ D
�1

2
p2 C �2p C �3,

yielding the following equilibrium strategies,

q�
i D p .1 � s�1/ � c � s�2,

where

�1 D
r C 2s .1C n/ �

q

Œr C 2s .1C n/�2 � 4s2 .2n � 1/

2s2.2n � 1/
,

13In a finite horizon model, Fershtman and Kamien (1990) analyze the case in which firms use
nonstationary feedback strategies.
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and

�2 D
s�1 .1C cn/ � c

r C s .1C n/C s2�1 .1 � 2n/
.

These equilibrium strategies are admissible as long as p > bp D .cCs�2/=.1�s�1/.
When p � bp, corner solutions prevail. Indeed, there exists a threshold of p below
which firms refrain from producing. Equilibrium strategies are increasing in p (since
1 � s�1 > 0), implying that firms increase their production as the price increases.14

Each firm knows that an increase in own production, by causing the price to
decrease, will lead to a decrease in rivals’ production. This is exactly what happens
in a conjectural variations equilibrium with negative conjectures (see Dockner
1992). Firm i knows that each of its rivals will react by making an opposite move,
and this reaction will be taken into account in the formulation of its optimal strategy.
Any attempt to move along the reaction function will cause the reaction function to
shift. As in the Cournot game with output or capital adjustment costs, for each firm,
there exists a dynamic strategic incentive to expand own production so as to make
the rivals smaller (intertemporal strategic substitutability). Intertemporal strategic
substitutability turns out to be responsible for a lower steady-state equilibrium price
compared with the open-loop case.15

The following holds,

pCL1 D
1C n .c C s�2/

1C n .1 � s�1/
< pOL1 D

r C 2s C cn .r C s/

r C 2s C n .r C s/
< pC D

2C cn

2C n
,

where pCL1 and pOL1 stand for steady-state closed-loop (feedback) and open-
loop equilibrium price, respectively, and pC stands for static Cournot equilibrium
price. The above inequality implies that Markovian behavior turns out to be more
aggressive than open-loop behavior, which turns out to be more aggressive than
static behavior. In the limiting case in which the price jumps instantaneously to the
level indicated by the demand function, we have

lim
s!1

pCL1 < lim
s!1

pOL1 D pC .

Hence, the result that Markovian behavior turns out to be more aggressive than
open-loop behavior persists also in the limiting case s ! 1.16 This is in contrast
with Wirl (2010), in which Markovian behavior turns out to be more aggressive
than open-loop behavior only for a finite s. As s tends to infinity, feedback and

14Firms’ capacity constraints are considered in Tsutsui (1996).
15For an off-steady-state analysis, see Wiszniewska-Matyszkiel et al. (2015).
16Note that when s ! 1, the differential game becomes a continuous time repeated game.
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open-loop steady-state prices converge to the same price, corresponding to the
static Cournot equilibrium price. Intuitively, in Wirl (2010), as s ! 1, the price
does not depend on the control variables anymore; therefore, the preemption effect
vanishes. This is not the case in Fershtman and Kamien (1987), in which the price
depends on the control variables also in the limiting case of instantaneous price
adjustment. In line with Wirl (2010), once price stickiness is removed, open-loop
and static behavior coincide. Finally, as s ! 0 or n ! 1, feedback and open-
loop equilibria converge to perfect competition. The main conclusion of the above
analysis is that, compared with the static benchmark, the presence of price stickiness
makes the oligopoly equilibrium closer to the competitive equilibrium, even when
price stickiness is almost nil. It follows that the static Cournot model tends to
overestimate the long-run price prevailing in industries characterized by price
rigidities.

A question of interest is how an increase in market competition, captured by
an increase in the number of firms, impacts on the equilibrium strategies of the
dynamic Cournot game with sticky prices analyzed in Fershtman and Kamien
(1987). Dockner (1988) shows that, as the number of firms goes to infinity, the
stationary equilibrium price pCL1 approaches the competitive level. This property is
referred to as quasi-competitiveness of the Cournot equilibrium.17 As demonstrated
in Dockner and Gaunersdorfer (2002), such a property holds irrespective of the time
horizon and irrespective of whether firms play open-loop or closed-loop (feedback)
strategies.

Dockner and Gaunersdorfer (2001) analyze the profitability and welfare conse-
quences of a merger, modeled as an exogenous change in the number of firms in the
industry from n to n�mC 1, wherem is the number of merging firms. The merged
entity seeks to maximize the sum of the discounted profits of the participating firms
with the remaining n � m firms playing noncooperatively à la Cournot. The post-
merger equilibrium corresponds to a noncooperative equilibrium of the game played
by n � m C 1 firms. The post-merger equilibrium is the solution of the following
system of HJB equations,

rVM .p/ D max
q1;:::;qm

(

.p � c/

mX

iD1

qi �
1

2

mX

iD1

q2i C
@VM

@p
s Pp

)

,

and

rVj .p/ D max
qj

�

.p � c/ qj �
1

2
q2j C

@Vj

@p
s Pp

�

,

17Classical references on the quasi-competitiveness property for a Cournot oligopoly are Ruffin
(1971) and Okuguchi (1973).
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with j D 1; 2; : : : ; n �m, where VM is the value function of the merged entity and
Vj the value function of a generic firm outside the merger. For any subgame that
starts at p, a merger is profitable if

VM.p/

m
> VNC .p/ ,

where VNC .p/ corresponds to the value function of one of the n firms in the non
cooperative equilibrium (in which no merger takes place). Focussing on the limiting
case in which the speed of adjustment of the price tends to infinity (s ! 1),
Dockner and Gaunersdorfer (2001) show that, in contrast with static oligopoly
theory, according to which the number of merging firms must be sufficiently high
for a merger to be profitable, any merger is profitable, independent of the number
of merging firms.18 Since the equilibrium price after a merger always increases,
consumers’ surplus decreases, and overall welfare decreases.

So far we have focussed on the case in which firms use linear feedback strategies.
However, as shown in Tsutsui and Mino (1990), in addition to the linear strategy
characterized in Fershtman and Kamien (1987), there exists also a continuum of
nonlinear strategies (although the unique strategy that can be defined over the entire
state space is the linear one). Instead of working with the ordinary differential
equations in the value functions, Tsutsui and Mino (1990) derive a system of
differential equations in the shadow prices.19 Assuming twice differentiability of
the value functions, and considering the duopoly case, differentiation of (21) yields
(i; j D 1; 2, j ¤ i )

r
@Vi

@p
D �c � s2

@Vi

@p

@2Vi

@p2
C p C s

�
@2Vi

@p2

�

1 � 3p C 2c C s

�
@Vi

@p
C
@Vj

@p

	�

C
@Vi

@p

�

s

�
@2Vi

@p2
C
@2Vj

@p2

	

� 3

��

.

Solving for the highest derivative and using symmetry gives

@y

@p
D

c � p C y .r C 3s/

s Œ2 .c � p/C 3sy � p C 1�
, (18.22)

where y D @V =@p. Following Tsutsui and Mino (1990), it can be checked that the
lowest and the highest price that can be supported as steady-state prices by nonlinear

18This result can also be found in Benchekroun (2003b)
19On the shadow price system approach, see also Wirl and Dockner (1995), Rincón-Zapatero
et al. (1998), and Dockner and Wagener (2014), among others. Rincón-Zapatero et al. (1998)
and Dockner and Wagener (2014), in particular, develop alternative solution methods that can be
applied to derive symmetric Markov perfect Nash equilibria for games with a single-state variable
and functional forms that can go beyond linear quadratic structures.
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feedback strategies are given by p and p, respectively, with

p D
1C 2c

3
, p D

2 Œc .2r C s/C r C s�C s

2 .3r C 2s/C s
.

For s sufficiently high, both the stationary open-loop and the static Cournot
equilibrium price lie in the interval of steady-state prices that can be supported
by nonlinear feedback strategies, Œp; p�, for some initial conditions. This implies
that, once the assumption of linear strategies is relaxed, Markovian behavior can
be either more or less competitive than open-loop and static behavior.20 For all the
prices between the steady-state price supported by the linear strategy, pCL1 , and the
upper bound p, steady-state profits are higher than those in Fershtman and Kamien
(1987).

Joint profit maximization yields the following steady-state price,

pJ1 D
.1C 2c/ .r C s/C 2s

2 .r C 2s/C r C s
,

which is above p. The fact that pJ1 > p implies that, for any r > 0, it is not
possible to construct a stationary feedback equilibrium which supports the collusive
stationary price, pJ1. However, as firms become infinitely patient, the upper bound
p asymptotically approaches the collusive stationary price pJ1. Indeed,

lim
r!0

pJ1 D lim
r!0

p D
1C 2 .1C c/

5
.

This is in line with the folk theorem, a well-known result in repeated games (see
Friedman 1971 and Fudenberg and Maskin 1986): any individually rational payoff
vector can be supported as a subgame perfect equilibrium of the dynamic game
provided that the discount rate is sufficiently low. As argued in Dockner et al. (1993),
who characterize the continuum of nonlinear feedback equilibria in a differential
game between polluting countries, if the discount rate is sufficiently low, the use of
nonlinear feedback strategies can be considered as a substitute for fully coordinating
behavior. Firms may be able to reach a self-enforcing agreement which performs
almost as good as fully coordinated policies.

4 Productive Assets

The dynamic game literature on productive assets can be partitioned into two
subgroups, according to how players are considered: (i) as direct consumers of
the asset; (ii) as firms using the asset to produce an output to be sold in the

20A similar result is obtained in Wirl (1996) considering nonlinear feedback strategies in a
differential game between agents who voluntarily contribute to the provision of a public good.
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marketplace.21 In this section, we review recent contributions on (ii), focussing on
renewable assets.22

Consider an n-firm oligopolistic industry where firms share access to a common-
pool renewable asset over time t 2 Œ0;1/. The rate of transformation of the asset
into the output is one unit of output per unit of asset employed. Let x.t/ denote the
asset stock available for harvesting at t . The dynamics of the asset stock is given by

Px.t/ D h.x.t// �

nX

iD1

qi .t/; x .0/ D x0, (18.23)

where

h .x/ D

�
ıx for x � x=2

ı .x � x/ for x > x=2.

The growth function h .x/, introduced in Benchekroun (2003a), and generalized
in Benchekroun (2008), can be thought of as a “linearization” of the classical
logistic growth curve.23 ı > 0 represents the implicit growth rate of the asset,
x the maximum habitat carrying capacity, and ıx=2 the maximum sustainable
yield.24 Firms are assumed to sell their harvest in the same output market at a price
p D maxf1 � Q; 0g, where Q D

Pn
iD1 qi . Firm i ’s problem can be written as

(i; j D 1; 2; : : : ; n, j ¤ i )

8

<̂

:̂

max
qi

Z 1

0

e�rt	idt

s.t. Px D h.x/ � qi �
Xn

jD1;j¤i
qj .x/, x.0/ D x0

21Papers belonging to (i) include Levhari and Mirman (1980), Clemhout and Wan (1985), Benhabib
and Radner (1992), Dutta and Sundaram (1993a,b), Fisher and Mirman (1992, 1996), and Dockner
and Sorger (1996). In these papers, agents’ instantaneous payoffs do not depend on rivals’
exploitation rates. The asset is solely used as a consumption good.
22Classical papers on oligopoly exploitation of nonrenewable resources are Lewis and Schmalensee
(1980), Loury (1986), Reinganum and Stokey (1985), Karp (1992a,b), and Gaudet and Long
(1994). For more recent contributions, see Benchekroun and Long (2006) and Benchekroun et al.
(2009, 2010).
23The linearized logistic growth function has been used in several other oligopoly games, including
Benchekroun et al. (2014), Benchekroun and Gaudet (2015), Benchekroun and Long (2016), and
Colombo and Labrecciosa (2013a, 2015). Others have considered only the increasing part of the
“tent”, e.g., Benchekroun and Long (2002), Sorger (2005), Fujiwara (2008, 2011), Colombo and
Labrecciosa (2013b), and Lambertini and Mantovani (2014). A nonlinear dynamics is considered
in Jørgensen and Yeung (1996).
24Classical examples of h .x/ are fishery and forest stand dynamics. As to the former, with a small
population and abundant food supply, the fish population is not limited by any habitat constraint.
As the fish stock increases, limits on food supply and living space slow the rate of population
growth, and beyond a certain threshold the growth of the population starts declining. As to the
latter, the volume of a stand of trees increases at an increasing rate for very young trees. Then it
slows and increases at a decreasing rate. Finally, when the trees are very old, they begin to have
negative growth as they rot, decay, and become subject to disease and pests.
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where 	i D pqi is Firm i ’s instantaneous profit, r > 0 is the common discount rate,
and qj .x/ is Firm j ’s feedback strategy. In order for equilibrium strategies to be
well defined, and induce a trajectory of the asset stock that converges to admissible
steady states, it is assumed that ı > bı, withbı depending on the parameters of the
model. Firm i ’s HJB equation is

rVi .x/Dmax
qi

8
<

:

2

41� qi�

nX

jD1;j¤i

qj .x/

3

5 qiC
@Vi

@x

2

4h.x/ � qi�

nX

jD1;j¤i

qj .x/

3

5

9
=

;
,

(18.24)

where @Vi=@x can be interpreted as the shadow price of the asset for Firm i , which
depends on x, r , ı, and n. A change in n, for instance, will have an impact on
output strategies not only through the usual static channel but also through @Vi=@x.
Maximization of the RHS of (18.24) yields Firm i ’s instantaneous best response
(assuming inner solutions exist),

qi D
1

2

0

@1 �

nX

jD1;j¤i

qj �
@Vi

@x

1

A ,

which, exploiting symmetry, can be used to derive the equilibrium of the instanta-
neous game given x,

q� D
1

1C n

�

1 �
@V

@x

	

.

Note that when @V =@x D 0, q� corresponds to the (per firm) static Cournot
equilibrium output. For @V =@x > 0, any attempt to move along the reaction
function triggers a shift in the reaction function itself, since @V =@x is a function
of x, and x changes as output changes. In Benchekroun (2003a, 2008), it is shown
that equilibrium strategies are given by

q� D

8
<

:

0 for 0 � x � x1
˛x C ˇ for x1 < x � x2
qC for x2 < x,

(18.25)

where ˛, ˇ, x1, and x2 are constants that depend on the parameters of the model
and qC corresponds to the static Cournot equilibrium output. The following holds:
˛ > 0, ˇ < 0, x=2 > x2 > x1 > 0. For asset stocks below x1, firms abstain from
producing, the reason being that the asset is too valuable to be harvested, and firms
are better off waiting for it to grow until reaching the maturity threshold, x1. For
asset stocks above x2, the asset becomes too abundant to have any value, and firms
behave as in the static Cournot game. For x > x2, the static Cournot equilibrium can
be sustained as a subgame perfect equilibrium, either temporarily or permanently,
depending on the implicit growth rate of the asset and the initial asset stock. The
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fact that ˛ > 0 implies that there exists intertemporal strategic substitutability. Each
firm has an incentive to increase output (leading to a decrease in the asset stock),
so as to make the rival smaller in the future (given that equilibrium strategies are
increasing in the asset stock). Benchekroun (2008) shows that there exists a range
of asset stocks such that an increase in the number of firms, n, leads to an increase
in both individual and industry output (in the short-run). This result is in contrast
with traditional static Cournot analysis. In response to an increase in n, although
equilibrium strategies become flatter, exploitation of the asset starts sooner. This
implies that, when the asset stock is relatively scarce, new comparative statics results
are obtained.

From (18.25), it follows that

Px D

8
ˆ̂
<

ˆ̂
:

ıx for 0 � x � x1
.ı � n˛/ x � nˇ for x1 < x � x2
ıx � nqC for x2 < x � x=2

ı .x � x/ � nqC for x=2 < x.

For ı sufficiently large, there exist three steady-state asset stocks, given by

x1 D
nˇ

ı � n˛
2 .x1; x2/ , Ox1 D

nqC

ı
2

�

x2;
x

2

	

, Qx1 D x �
nqC

ı
2

�
x

2
;1

	

.

We can see immediately thatbx1 is unstable and that Qx1 is stable. Since ı�n˛ < 0,
x1 is also stable. For x0 < bx1, the system converges to x1; for x0 > bx1, the
system converges to Qx1. For x0 < x=2, firms always underproduce compared with
static Cournot; for x0 2 .x2;bx1/ firms start by playing the static equilibrium,
and then when x reaches x2, they switch to the nondegenerate feedback strategy;
for x0 2 .bx1;1/, firms always behave as in the static Cournot game. The static
Cournot equilibrium can be sustained ad infinitum as a subgame perfect equilibrium
of the dynamic game. For ı sufficiently small, there exists only one (globally
asymptotically stable) steady state, x1. In this case, even starting with a very
large stock, the static Cournot equilibrium can be sustained only in the short run.
Irrespective of initial conditions, equilibrium strategies induce a trajectory of the
asset stock that converges asymptotically to x1.

A question of interest is how an increase in the number of firms impacts on
p1 D 1 � ıx1.25 In contrast with static oligopoly theory, it turns out that p1

is increasing in n, implying that increased competition is detrimental to long-run
welfare. This has important implications for mergers, modelled as an exogenous

25The impact of an increase in the number of firms on the steady-state equilibrium price is
also analyzed in Colombo and Labrecciosa (2013a), who departs from Benchekroun (2008) by
assuming that, instead of being common property, the asset is parcelled out (before exploitation
begins). The qualitative results of the comparative statics results in Colombo and Labrecciosa
(2013a) are in line with those in Benchekroun (2008).
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change in the number of firms in the industry from n to n �mC 1, where m is the
number of merging firms. Let ….m; n; x/ D V .n �mC 1; x/ be the equilibrium
value of a merger, with V .n �mC 1; x/ denoting the discounted value of profits
of the merged entity with n � m C 1 firms in the industry. Since each member of
the merger receives ….m; n; x/ =m, for any subgame that starts at x, a merger is
profitable if ….m; n; x/ =m > ….1; n; x/. Benchekroun and Gaudet (2015) show
that there exists an interval of initial asset stocks such that any merger is profitable.
This holds true also for mergers otherwise unprofitable in the static model. Recall
from static oligopoly theory that a merger involvingm < n firms in a linear Cournot
game with constant marginal cost is profitable if n < m C

p
m � 1. Let m D ˛n,

where ˛ is the share of firms that merge. We can see that a merger is profitable if
˛ > 1 � .

p
4nC 5 � 3/=.2n/ � 0:8. Hence, a merger involving less than 80% of

the existing firms is never profitable (see Salant et al. 1983). In particular, a merger
of two firms is never profitable, unless it results in a monopoly. In what follows, we
consider an illustrative example of a merger involving two firms that is profitable in
the dynamic game with a productive asset but unprofitable in the static game. We set
n D 3 and m D 2 and assume that x0 2 .x1; x2/ (so that firms play nondegenerate
feedback strategies for all t ). It follows that

….1; 3; x/ D A
x2

2
C Bx C C ,

where A D 8 .r � 2ı/ =9, B D 5 .2ı � r/ =.9ı/, and C D Œ25r .r � 2ı/ C

9ı2�=.144rı2/, and

….2; 3; x/ D bA
x2

2
C bBx C bC ,

where bA D 9 .r � 2ı/ =8, bB D 5 .2ı � r/ =.8ı/, and bC D Œ25r .r � 2ı/ C

16ı2�=.144rı2/. A merger is then profitable if

eA
x2

2
C eBx C eC > 0,

where eA D 47 .2ı � r/ =72, eB D 35 .r � 2ı/ =.72ı/, and eC D Œ25r .2ı � r/ �

2ı2�=.144rı2/. Setting r D 0:1 and ı D 11=9 > bı D 10=9, we can see that a
merger involving two firms is profitable for x 2 .x1; x3/, with x1 D 0:0754 <

x3 D 0:165 8 < x2 D 0:4545.
Colombo and Labrecciosa (2015) extend the duopoly model in Benchekroun

(2003a) to a differentiated duopoly and derive linear and nonlinear feedback
equilibria under the assumption that firms compete either in quantities (à la Cournot)
or in prices (à la Bertrand). The main objective of their analysis is to show that
the traditional static result that the Bertrand equilibrium is more efficient than the
Cournot equilibrium does not necessarily carry over to a Markovian environment.
The inverse demand function for Firm i ’s product at t is given by Pi.qi .t/; qj .t// D
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maxf0; 1 � qi .t/ � �qj .t/g; i; j D 1; 2; j ¤ i , where � 2 Œ0; 1/ denotes the
degree of product substitutability as perceived by the representative consumer: when
� D 0 demands for the two goods are independent, whereas when � ! 1 the
two goods are perceived as identical. For any � 2 .0; 1/ there exists imperfect
product substitutability. In the context of a common-pool resource, imperfect
product substitutability can be attributed to differences in firms’ harvesting practices
impacting on consumer preferences and/or differences in the way the resource is
processed once harvested. The direct demand for Firm i ’s product at t is given
by Di.pi .t/; pj .t// D maxf0; 1=.1 C �/ � pi .t/=.1 � �2/ C �pj .t/=.1 � �2/g.
Colombo and Labrecciosa (2015) show that the Cournot equilibrium can be more
efficient than the Bertrand equilibrium and can lead to a Pareto-superior outcome.
In particular, there exists an interval of initial asset stocks such that the Cournot
equilibrium dominates the Bertrand equilibrium in terms of short-run, stationary,
and discounted consumer surplus (or welfare) and profits.

Focussing on the Bertrand competition case, Firm i ’s problem is

8
<

:

max
pi

Z 1

0

e�rt	idt

s.t. Px D h.x/ �Di.pi ; pj .x// �Dj .pi ; pj .x//, x.0/ D x0

where 	i D Di.pi ; pj .x//pi is Firm i ’s instantaneous profit, r > 0 is the common
discount rate, and pj .x/ is Firm j ’s feedback strategy. Firm i’s HJB equation is

rVi .x/ D max
pi

��

1�
pi

1 � �
C
�pj .x/

1 � �

�
pi

1C �
C
@Vi

@x

�

h.x/�
2 � pi � pj .x/

1C �

��

.

(18.26)

Maximization of the RHS of (18.26) yields Firm i ’s instantaneous best response
(assuming inner solutions exist),

pi D
1 � �

2

�

1C
@Vi

@x
C

�pj

1 � �

	

,

which, exploiting symmetry, can be used to derive the equilibrium of the instanta-
neous game given x,

p� D
1 � �

2 � �

�

1C
@V

@x

	

.

Since @V =@x � 0 then the feedback Bertrand equilibrium is never more competitive
than the static Bertrand equilibrium, given by pB D .1 � �/=.2 � �/. This is in
contrast with the result that Markovian behaviors are systematically more aggressive
than static behaviors, which has been established in various classes of games,
including capital accumulation games and games with production adjustment costs
(e.g., Dockner 1992; Driskill 2001; Driskill and McCafferty 1989; Reynolds 1987,
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1991).26 In the case in which firms use linear feedback strategies, @V =@x is
nonincreasing in x. This has important strategic implications. Specifically, static
strategic complementarity is turned into intertemporal strategic substitutability. A
lower price by Firm i causes the asset stock to decrease thus inducing the rival to
price less aggressively. When the implicit growth rate of the asset is sufficiently
low, linear feedback strategies induce a trajectory of the asset stock that converges
to a steady-state equilibrium price which, in the admissible parameter range, is
above the steady-state equilibrium price of the corresponding Cournot game. This
implies that the Cournot equilibrium turns out to be more efficient than the Bertrand
equilibrium. The new efficiency result is also found when comparing the discounted
sum of welfare in the two games. The intuitive explanation is that price-setting
firms value the resource more than their quantity-setting counterparts and therefore
tend to be more conservative in the exploitation of the asset. Put it differently,
it is more harmful for firms to be resource constrained in Bertrand than in
Cournot.

Proceeding as in Tsutsui and Mino (1990) and Dockner and Long (1993),
Colombo and Labrecciosa (2015) show that there exists a continuum of asset stocks
that can be supported as steady-state asset stocks by nonlinear feedback strategies.
For r > 0, the stationary asset stock associated with the collusive price cannot be
supported by any nonlinear feedback strategy. However, as r ! 0, in line with
the folk theorem, firms are able to sustain the most efficient outcome. Interestingly,
as argued in Dockner and Long (1993), the use of nonlinear strategies can be a
substitute for fully coordinated behaviors. The static Bertrand (Cournot) equilibrium
can never be sustained as a subgame perfect equilibrium of the dynamic Bertrand
(Cournot) game. This is in contrast with the case in which firms use linear strategies.
In this case, the equilibrium of the static game can be sustained ad infinitum,
provided that the initial asset stock is sufficiently large and the asset stock grows
sufficiently fast.

Colombo and Labrecciosa (2013b), analyzing a homogeneous product Cournot
duopoly model in which the asset stocks are privately owned, show that the static
Cournot equilibrium is the limit of the equilibrium output trajectory as time goes to
infinity. This is true irrespective of initial conditions, the implication being that the
static Cournot model can be considered as a reduced form model of a more complex
dynamic model. The asset stocks evolve according to the following differential
equation

Pxi .t/ D ıxi .t/ � qi .t/ ; xi .0/ D xi0, (18.27)

26A notable exception is represented by Jun and Vives (2004), who show that Bertrand competition
with costly price adjustments leads to a steady-state price that is higher than the equilibrium price
arising in the static game.
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where ı > 0 is the growth rate of the asset. Demand is given by p.Q/ D maxf1 �

Q; 0g. Firm i ’s problem can be written as (i; j D 1; 2, j ¤ i )

8
<

:

max
qi

Z 1

0

e�rt	idt

s.t. Pxi D ıxi � qi , Pxj D ıxj � qj .xi ; xj /, xi .0/ D xi0

where 	i D p.Q/qi is Firm i ’s instantaneous profit, r > 0 is the discount rate,
common to both firms, and qj .xi ; xj / is Firm j ’s feedback strategy. Firm i ’s HJB
equation is

rVi .xi ; xj / D max
qi

�
�
1 � qi � qj .xi ; xj /


qi C

@Vi

@xi
.ıxi � qi /

C
@Vi

@xj

�
ıxj � qj .xi ; xj /


�

: (18.28)

The feedback equilibrium trajectory of Firm i ’s quantity turns out to be

qi .t/ D ıx1 C .2ı � r/ .xi0 � x1/ e
�.ı�r/t ,

where x1 indicates the steady-state value of xi . If ı > r , then equilibrium strategies
induce a trajectory of Firm i ’s output that converges asymptotically, for every
possible initial conditions, to the static Cournot equilibrium output. Within the class
of (stationary) linear feedback strategies, other strategies exist that stabilize the state
vector for some initial conditions. Colombo and Labrecciosa (2013b) establish that
there exists one which is more efficient (in that it is associated with higher stationary
profits) than that converging to the static equilibrium, and that, as r ! 0, for some
initial conditions, the feedback equilibrium price converges to a price which is above
the static Cournot equilibrium price. This limiting result is in contrast with the limit
game analyzed in Fershtman and Kamien (1987), in which feedback equilibrium
strategies turn out to be less aggressive than static Cournot equilibrium strategies.

5 Research and Development

In this section, we review differential games of innovation.27 We start by presenting
the classical research and development (R&D) race model analyzed in Reinganum
(1981, 1982), where innovation is modelled as a competitive process (race for
technological breakthrough) among potential innovators that aim to be the first.
Consider n � 2 identical firms competing with each other for the completion of
a research project over a fixed finite time period Œ0; T �. Assume that the time of

27For discrete-time games of innovation, see Petit and Tolwinski (1996, 1999) and Breton et al.
(2006).
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the completion of the project by Firm i is a random variable �i with the probability
distribution function Fi.t/ D Pr f�i � tg. The completion times �i are mutually
independent random variables. The player k with �k D � is called innovator, with
� D miniD1;2;:::;nf�ig. By stochastic independence, we have

F .t/ D Pr f� � tg D 1 �
Yn

iD1
Œ1 � Fi.t/� .

Let ui .t / � 0 denote the intensity of research efforts by Firm i . The hazard rate
corresponding to Fi , i.e., the rate at which the discovery is made at a certain point in
time by Firm i given that it has not been made before, is a linear function of ui .t /,

hi D
PFi

1 � Fi
D 
ui ,

where 
 > 0 measures the effectiveness of current R&D effort in making the
discovery.28 The probability of innovation depends on cumulative R&D efforts.
Denote by V and by V the present value of the innovation to the innovator and
the imitator, respectively, with V > V � 0. The idea is that the firm that makes
the innovation first is awarded a patent of positive value V , to be understood as the
expected net present value of all future revenues from marketing the innovation net
of any costs the firm incurs in doing so. If patent protection is perfect then V D 0. V
and V are constant, therefore independent of the instant of completion of the project.
Assume a quadratic cost function of R&D, C.ui / D u2i =2. Moreover, assume firms
discount future payoffs at a rate equal to r > 0. The expected payoff of Firm i is
given by

Ji D

Z T

0

�


V ui C 
V
Xn

j¤i
uj �

1

2
u2i e

�rt

	Yn

iD1
Œ1 � Fi � dt .

Assume for simplicity that V D 0. Let zi denote the accumulated research efforts
(proxy for knowledge), i.e.,

Pzi .t / D ui .t / ; zi .0/ D zi0,

and let Fi.t/ D 1�expŒ�
zi �, implying that Firm i ’s probability of success depends
on the research efforts accumulated by Firm i by t . Given stochastic independence,
we have

Yn

iD1
Œ1 � Fi � D expŒ�
Z�,

28Choi (1991) and Malueg and Tsutsui (1997) assume that the hazard rate is uncertain, either zero
(in which case the projet is unsolvable) or equal to 
 > 0 (in which case the projet is solvable).
The intensity of R&D activity is fixed in the former paper and variable in the latter. Chang and
Wu (2006) consider a hazard rate that does not depend only on R&D expenditures but also on the
accumulated production experiences, assumed to be proportional to cumulative output.
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whereZ D
Pn

iD1 zi . The expected payoff of Firm i can then be written as a function
of the research efforts accumulated by all the n firms by t ,

Ji D

Z T

0

�


V ui �
1

2
u2i e

�rt

	

expŒ�
Z�dt .

Note that, although firms are assumed to observe the state vector (z1; z2; : : : ; zn),
the only variable that is payoff relevant is Z. Call y D expŒ�
Z�. It follows that
Py D �
yU , where U D

Pn
iD1 ui . Firm i ’s problem can then be written as

max
ui
Ji D

Z T

0

�


V ui �
1

2
u2i e

�rt

	

ydt

s:t: Py D �
yU .

Since the state variable, y, enters both the instantaneous payoff function and the
equation of motion linearly, then, as is well known in the differential game literature,
the open-loop equilibrium coincides with the feedback equilibrium, therefore, it is
subgame perfect. The open-loop equilibrium strategy, derived in Reinganum (1982),
is given by

u�
i D

2
V .n � 1/ ert

.2n � 1/ � expŒ
2 .n � 1/ .ert � erT / V =r�
,

which is independent of firms’ knowledge stocks.29 The implication is that the
leading firm (the one starting with a higher stock of knowledge) invests the same
amount in R&D as the lagging firm. Hence, the distinction between leader and
follower becomes irrelevant, and, as pointed out in Doraszelski (2003), there is no
sense in which one can properly speak of one competitor being ahead of another or
of the two competitors being neck and neck.

Doraszelski (2003) extends Reinganum (1982) by assuming that as a firm invests
in R&D, its chances to immediately make the discovery increase and, in addition,
the firm adds to its knowledge stock, which is subject to depreciation. Firm i ’s
accumulated knowledge evolves according to

Pzi .t / D ui .t / � ızi .t /, ui .0/ D ui0, (18.29)

with ı � 0 denoting the rate at which knowledge depreciates over time. Firm i ’s
hazard rate of successful innovation is given by

hi D 
ui C �z i ,

29As shown in Mehlmann and Willing (1983) and Dockner et al. (1993), there exist also other
equilibria depending on the state.
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with 
 > 0, � > 0,  > 0. 
 measures the effectiveness of current R&D
effort in making the discovery and � the effectiveness of past R&D efforts, with
 determining the marginal impact of past R&D efforts.30 The special case of an
exponential distribution of success time (� D 0) corresponds to the memoryless
R&D race model analyzed in Reinganum (1981, 1982). Relaxing the assumption of
an exponential distribution of success time allows to capture the fact that a firm’s
past experiences add to its current capability. The cost to acquire knowledge is
given by c.ui / D u�i =�, with � > 1, which generalizes the quadratic cost function
considered in Reinganum (1981, 1982).

Firm i’s HJB equation is

rVi .zi ; zj /Dmax
ui

�

hi .ui ; zi / Gi .zi ; zj /C hj .uj ; zj /Li .zi ; zj / � c.ui /C
@Vi

@zi
PziC

@Vi

@zj
Pzj

�

;

(18.30)

where Gi.zi ; zj / D V � Vi .zi ; zj / is the capital gain from winning the race and
Li.zi ; zj / D �Vi .zi ; zj / is the capital loss.

Performing the maximization indicated in (18.30) yields

u�
i D

�


iGi .zi ; zj /C
@Vi

@zi

� 1
��1

.

Using u�
i and focussing on a symmetric equilibrium (the only difference between

firms is the initial stock of knowledge), we obtain the following system of nonlinear
first-order PDEs (i; j D 1; 2, j ¤ i )

rVi D

(




�



�
V � Vi

�
C
@Vi

@zi

� 1
��1

C�z i

)
�
V �Vi

�
�

(




�



�
V �Vj

�
C
@Vj

@zj

� 1
��1

C �z j

)

Vi

�
1

�

�



�
V � Vi

�
C
@Vi

@zi

� �
��1

C
@Vi

@zi

(�



�
V � Vi

�
C
@Vi

@zi

� 1
��1

� ızi

)

C
@Vi

@zj

(�



�
V � Vj

�
C
@Vj

@zj

� 1
��1

� ızj

)

, (18.31)

which, in general, cannot be solved analytically. Using numerical (approximation)
methods, Doraszelski (2003) obtains a number of interesting results.31 First, a firm
has an incentive to reduce its R&D expenditures as its knowledge stock increases.
In contrast with multistage models (e.g., Grossman and Shapiro 1987), in which the
follower devotes less resources to R&D than the leader, the follower tries to catch

30Dawid et al. (2015) analyze the incentives for an incumbent firm to invest in risky R&D projects
aimed to expand its own product range. They employ the same form of the hazard rate as in
Doraszelski (2003), focussing on the case in which  > 1.
31A classical reference on numerical methods is Judd (1998).
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up with the leader. This result holds true irrespective of the shape of the hazard
rate, provided that the follower has sufficient knowledge itself. Also, in contrast
to multistage race models, competition is not necessarily fiercest when firms are
neck and neck. If the hazard rate is concave or linear, competition among firms
is most intense when their knowledge stocks are of unequal size and least intense
when they are of equal size, whereas this need not be the case if the hazard rate is
convex. Firms can either respond aggressively or submissively to an increase in its
rival’s knowledge stock. A firm responds aggressively if it has a sufficiently large
knowledge stock and submissively otherwise. Doraszelski (2003) also finds that the
steady-state value of knowledge is increasing in the effectiveness of current R&D
effort, 
, and the value of the patent, V , and decreasing in the depreciation rate of
knowledge, ı.

Another stream of literature dealing with differential games of innovation
departs from the assumption that firms are engaged in R&D races by assuming
that, at each point in time, all firms in the industry innovate, simultaneously
and noncooperatively, and there are no unsuccessful firms.32 The environment is
typically deterministic. The cost of production decreases with R&D efforts, with
the possibility of technological spillovers being taken into account. The first model
that we consider is analyzed in Breton et al. (2004). They propose two differentiated
oligopoly game models where, at each point in time t 2 Œ0;1/, firms devote
resources to cost-reducing R&D and compete in the output market either in prices
(à la Bertrand) or in quantities (à la Cournot). In what follows, we focus on the
case in which firms are price-setters. Firm i ’s demand is given by Di.pi ; pj / D

1 � pi C spj , where pi denotes the price set by Firm i for its product variety,
and similarly for pj , and s captures the degree of substitutability between the two
varieties, 0 � s < 1. Let zi be Firm i ’s accumulated stock of knowledge, evolving
over time as in (18.29). Firm i ’s production cost at t depends on the quantity
produced by Firm i at t , the stock of knowledge accumulated by Firm i by t , and
also on the stock of knowledge accumulated by Firm j by t (i; j D 1; 2; j ¤ i )

Ci.pi ; pj ; zi ; zj / D
�
ci C ˛Di.pi ; pj / �  .zi C sˇzj /


Di.pi ; pj /,

where ci < A, ˛ � 0, 0 �  � 1, and 0 � ˇ � 1.33 For any given degree
of knowledge spillover, the more substitute firms’ products are, the more each
firm benefits (from the other’s accumulated stock of knowledge) in reducing its

32The assumption that all firms innovate is relaxed in Ben Abdelaziz et al. (2008) and Ben Brahim
et al. (2016). In the former, it is assumed that not all firms in the industry pursue R&D activities.
The presence of non-innovating firms (called surfers) leads to lower individual investments in
R&D, a lower aggregate level of knowledge, and a higher product price. In the latter, it is shown
that the presence of non-innovating firms may lead to higher welfare.
33A cost function with knowledge spillovers is also considered in the homogeneous product
Cournot duopoly model analyzed in Colombo and Labrecciosa (2012) and in the differentiated
Bertrand duopoly model analyzed in El Ouardighi et al. (2014), where it is assumed that the
spillover parameter is independent of the degree of product differentiation. In both papers, costs are
linear in the stock of knowledge. For a hyperbolic cost function, see Janssens and Zaccour (2014).
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costs. In turn, this implies that, even if the degree of knowledge spillover is very
high, if the firms’ products are unrelated, then these firms will not benefit from
each other’s knowledge. Note that this formulation is more general than the one
proposed in the seminal paper by D’Aspremont and Jacquemin (1988) and adopted
in the subsequent multistage game literature on cost-reducing R&D (e.g., Qiu 1997;
Symeonidis 2003). The cost associated with R&D investments is assumed to be
quadratic, Fi.ui / D �iui C �u2i =2. Firm i’s HJB equation is

rVi .zi ; zj / D max
ui ;pi

˚
Di.pi ; pj .zi ; zj //pi � Ci.pi ; pj .zi ; zj /; zi ; zj / � Fi.ui /

C
@Vi

@zi
.ui � ızi /C

@Vi

@zj

�
uj .zi ; zj / � ızj

�
�

. (18.32)

Performing the maximization indicated in (18.32) yields (assuming inner solutions
exist)

u�
i D

1

�

�
@Vi

@zi
� �i

	

,

and

p�
i D

2˛ .1C s/C ci C scj �  
�
zi C szj C sˇ

�
zj C szi

�

2˛ .1 � s2/
,

which can be used to obtain the following system of PDEs,

rVi .zi ; zj / D Di.p
�
i ; p

�
j /p

�
i � Ci.p

�
i ; p

�
j ; zi ; zj /

�Fi.u
�
i /C

@Vi

@zi

�
u�
i � ızi

�
C
@Vi

@zj



u�
j � ızj

�
.

Consider quadratic value functions of the form,

Vi .zi ; zj / D �1z
2
i =2C �2z

2
j =2C �3zi C �4zj C �5zi zj C �6.

Equilibrium strategies can be written as

u�
i D

1

�

�
�3 � �i C �1zi C �5zj

�
,

with �3 > �i , �1 < ı, j�1 � ıj < j�5j, and

p�
i D !1 C !2zi C !3zj ,
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with !1 > 0 and !2; !3 < 0. Equilibrium prices and R&D investments turn out
to be lower in Bertrand than in Cournot competition. Cournot competition becomes
more efficient when R&D productivity is high, products are close substitutes, and
R&D spillovers are not close to zero.

A different approach in modelling spillovers is taken in Colombo and Dawid
(2014), where it is assumed that the unit cost of production of a firm is decreasing in
its stock of accumulated knowledge and it is independent of the stocks of knowledge
accumulated by its rivals. Unlike Breton et al. (2004), the evolution of the stock of
knowledge of a firm depends on the stock of knowledge accumulated not only by
that firm but also on the aggregate stock of knowledge accumulated by the other
firms in the industry, i.e., there are knowledge spillovers. Colombo and Dawid
(2014) analyze an n-firm homogeneous product Cournot oligopoly model where,
at each point in time t 2 Œ0;1/, each firm chooses its output level and the amount
to invest in cost-reducing R&D. At t D 0, Firm i D 1; 2; : : : ; n chooses also where
to locate, whether in a cluster or not. Demand is given by p D maxfa�bQ; 0g, with
Q D

Pn
iD1 qi denoting industry output, a; b > 0. Firm i ’s marginal cost depends

on its stock of knowledge zi in a linear way, i.e.,

ci .t/ D maxfc � �zi .t /; 0g,

with c; � > 0. Knowledge accumulation depends on firms location: if Firm i locates
in the cluster then its stock of knowledge is given by

Pzi .t / D ui .t /C ˇ

m�1X

jD1

zj .t/ � ızi .t /, (18.33)

wherem�1 is the number of firms in the cluster except i , ˇ > 0 captures the degree
of knowledge spillovers in the cluster, and ı � 0 the rate at which knowledge
depreciates. The idea is that, by interacting with the other firms in the cluster,
Firm i is able to add to its stock of knowledge even without investing in R&D.
If Firm i does not locate in the cluster, then ˇ D 0. Firms optimal location choices
are determined by comparing firms’ value functions for different location choices
evaluated at the initial vector of states. R&D efforts are associated with quadratic
costs, Fi.ui / D �iu2i =2, with �i > 0. Colombo and Dawid (2014) make the
assumption that �1 < �i D �, with i D 2; 3; : : : ; n, i.e., Firm 1 is the technological
leader, in the sense that it is able to generate new knowledge at a lower cost than its
competitors; all Firm 1’s rivals have identical costs. The feedback equilibrium can
be fully characterized by three functions: one for the technological leader; one for
a technological laggard located in the cluster; and one for a technological laggard
located outside the cluster. The main result of the analysis is that the optimal strategy
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of a firm is of the threshold type: the firm should locate in isolation only if its
technological advantage relative to its competitors is sufficiently large.34

Kobayashi (2015) considers a symmetric duopoly (�1 D �2 D �) and abstracts
from firms’ location problem. Instead of assuming that spillovers depend on
knowledge stocks, Kobayashi (2015), building on Cellini and Lambertini (2005,
2009), makes the alternative assumption that technological spillovers depend on
firms’ current R&D efforts. The relevant dynamics is given by35

Pzi .t / D ui .t /C ˇuj .t/ � ızi .t /.

The rest of the model is as in Colombo and Dawid (2014). Kobayashi (2015) shows
that the feedback equilibrium of the duopoly game can be characterized analytically.
Attention is confined to a symmetric equilibrium (z1 D z2 D z and x1 D x2 D x,
with xi D ui ; qi /. Firm i ’s HJB equation is (i; j D 1; 2, j ¤ i )

rVi .z1; z2/ D max
ui ;qi

�
˚
a � b

�
qi C qj .z1; z2/


� .c � �zi /

�
qi � �

u2i
2

C
@Vi

@zi

�
ui C ˇuj .z1; z2/ � ızi


C
@Vi

@zj

�
uj .z1; z2/C ˇui � ızj


�

.

(18.34)

Equilibrium strategies are given by

q� D
a � c C �z

3b
, u� D

1

�

"
@Vi

@zi

ˇ
ˇ
ˇ
ˇ
z

C ˇ
@Vi

@zj

ˇ
ˇ
ˇ
ˇ
z

#

.

By comparing equilibrium strategies in the noncooperative case with those in the
cooperative case, Kobayashi (2015) shows that cooperative R&D investments are
larger than noncooperative investments for all possible values of spillovers.36 More-
over, as r approaches infinity, the steady-state open-loop equilibrium converges to
the subgame perfect equilibrium of the two-stage game analyzed in D’Aspremont
and Jacquemin (1988).

34Colombo and Dawid (2014) also consider the case in which all firms have the same R&D cost
parameter �, but there exists one firm which, at t D 0, has a larger stock of knowledge than all the
other firms.
35The case in which knowledge is a public good (ˇ D 1) is considered in Vencatachellum (1998).
In this paper, the cost function depends both on current R&D efforts and accumulated knowledge,
and firms are assumed to be price-taking.
36The literature on R&D cooperation is vast. Influential theoretical (static) papers include
D’Aspremont and Jacquemin (1988), Choi (1993), and Goyal and Joshi (2003). Dynamic games
of R&D competition vs cooperation in continuous time include Cellini and Lambertini (2009) and
Dawid et al. (2013). For a discrete-time analysis, see Petit and Tolwinski (1996, 1999).
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Cellini and Lambertini (2005) make the alternative assumption that the state
variable is the vector of firms’ unit costs, rather than the vector of firms’ stocks
of knowledge. They analyze a homogeneous product Cournot oligopoly with n � 2

firms. At each point in time t 2 Œ0;1/, Firm i D 1; 2; : : : ; n chooses its output level
and the amount to invest in cost-reducing R&D, ui . R&D costs are symmetric and
quadratic. The dynamics of the unit cost of production of Firm i is given by

Pci .t/ D ci .t/

2

4ı � ui .t / � ˇ

nX

j¤i

uj .t/

3

5 ,

where ı � 0 measures the instantaneous decrease in productive efficiency due to
technological obsolescence and ˇ � 0 is the spillover parameter. They focus on the
characterization of an open-loop equilibrium, which can be justified by assuming
that Firm i cannot observe the production costs of its rivals and therefore cannot
condition its actions on the current realization of rivals’ costs. The main result of the
analysis is that the aggregate R&D effort is monotonically increasing in the number
of firms. Consequently, more competition in the market turns out to be beneficial to
innovation.37

Most of the literature on innovation focusses on process innovation. Prominent
exceptions are Dawid et al. (2013, 2015), who analyze a differentiated duopoly
game where firms invest in R&D aimed at the development of a new differentiated
product; Dawid et al. (2009), who analyze a Cournot duopoly game where each
firm can invest in cost-reducing R&D for an existing product and one of the
two firms can also develop a horizontally differentiated new product; and Dawid
et al. (2010), who study the incentives for a firm in a Cournot duopoly to lunch a
new product that is both horizontally and vertically differentiated. Leaving aside
the product proliferation problem, Cellini and Lambertini (2002) consider the
case in which firms invest in R&D aimed at decreasing the degree of product
substitutability between n � 2 existing products. Firm i ’s demand is given by
pi D A�Bqi �D

Pn
j¤i qj , whereD denotes the degree of product substitutability

between any pair of varieties. At each point in time t 2 Œ0;1/, Firm i chooses its
output level and the amount to invest in R&D, ui . Production entails a constant
marginal cost, c. The cost for R&D investments is also linear, Fi.ui / D ui . The
degree of product substitutability is assumed to evolve over time according to the
following differential equation

37Setting n D 2, Cellini and Lambertini (2009) compare private and social incentives toward
cooperation in R&D, showing that R&D cooperation is preferable to noncooperative behavior
from both a private and a social point of view. On R&D cooperation in differential games see also
Navas and Kort (2007), Cellini and Lambertini (2002, 2009), and Dawid et al. (2013). On R&D
cooperation in multistage games, see D’Aspremont and Jacquemin (1988), Kamien et al. (1992),
Salant and Shaffer (1998), Kamien and Zang (2000), Ben Youssef et al. (2013).
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PD .t/ D �D .t/

nX

i

ui .t /

"

1C

nX

i

ui .t /

#�1

, D.0/ D B .

Since D.0/ D B , at the beginning of the game, firms produce the same homo-
geneous product. As

Pn
i ui .t / tends to infinity, D approaches zero, meaning that

products tend to become unrelated. The main result of the analysis is that an increase
in the number of firms leads to a higher aggregate R&D effort and a higher degree of
product differentiation. More intense competition favors innovation, which is also
found in Cellini and Lambertini (2005).

6 Strategic Investments Under Uncertainty: A Real Options
Approach

In this section, we review recent contributions on investment timing in oligopolistic
markets whose developments are uncertain, for instance, because of uncertain
demand growth. Since Dixit and Pindyk (1994), a number of papers have studied
how market competition affects firms’ investment decisions, thus extending the
traditional single investor framework of real option models to a strategic envi-
ronment where the profitability of each firm’s project is affected by other firms’
decision to invest.38 These papers extend the classical literature on timing games
originating from the seminal paper by Fudenberg and Tirole (1985), to shed new
light on preemptive investments, strategic deterrence, dissipation of first-mover
advantages, and investment patterns under irreversibility of investments and demand
uncertainty.39

Before considering a strategic environment, we outline the standard real option
investment model (see Dixit and Pindyk 1994).40 A generic firm (a monopolist)
seeks to determine the optimal timing of an irreversible investment I , knowing that
the value of the investment project follows a geometric Brownian motion

dx.t/ D ˛x.t/dt C x.t/dw, (18.35)

38Studies of investment timing and capacity determination in monopoly include Dangl (1999) and
Decamps et al. (2006). For surveys on strategic real option models where competition between
firms is taken into account, see Chevalier-Roignant et al. (2011), Azevedo and Paxson (2014), and
Huberts et al. (2015).
39The idea that an incumbent has an incentive to hold excess capacity to deter entry dates back to
Spence (1977, 1979).
40Note that the real options approach represents a fundamental departure from the rest of this
survey. Indeed, the dynamic programming problems considered in this section are of the optimal-
stopping time. This implies that investments go in one lump, causing a discontinuity in the
corresponding stock, instead of the more incremental control behavior considered in the previous
sections.
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where ˛ and  are constants corresponding to the instantaneous drift and the
instantaneous standard deviation, respectively, and dw is the standard Wiener
increment. ˛ and  can be interpreted as the industry growth rate and the industry
volatility, respectively. The riskless interest rate is given by r > ˛ (for a discussion
on the consequences of relaxing this assumption, see Dixit and Pindyk 1994). The
threshold value of x at which the investment is made maximizes the value of the
firm, V . The instantaneous profit is given by 	 D xD0 if the firm has not invested
and 	 D xD1 if the firm has invested, with D1 > D0. The investment cost is given
by ıI , ı > 0. In the region of x such that the firm has not invested, the Bellman
equation is given by

rV .x/ D xD0dt CEŒdV .x/�.

From standard real option analysis, it follows that

V .x/ D
xD0

r � ˛
C Axˇ C Bx
,

where A, B , ˇ, 
 are constants. The indifference level x� can be computed by
employing the value-matching and smooth-pasting conditions,

V .x�/ D
x�D1

r � ˛
� ıI ,

@V .x/

@x

ˇ
ˇ
ˇ
ˇ
x�

D
D1

r � ˛
,

and the boundary condition, V .0/ D 0. These conditions yield the optimal
investment threshold,

x� D
.r � ˛/ ˇıI

.D1 �D0/ .ˇ � 1/
,

where

ˇ D
1

2
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˛
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˛

2
�
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	2

C
2r

2
> 1. (18.36)

Given the assumptions, x� is strictly positive. Hence, the value of the firm is
given by

V .x/ D
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<̂

:̂
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r � ˛
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�
x .D1 �D0/
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� ıI

� 
 x

x�

�ˇ
for x � x�
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r � ˛
� ıI for x > x�,
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where the term x=x� can be interpreted as a stochastic discount factor. An increase
in the volatility parameter  , by decreasing ˇ, leads to an increase in x� (since x� is
decreasing in ˇ), thus delaying the investment. The investment is also delayed when
˛ increases and when, not surprisingly, firm becomes more patient (r decreases).

The above framework is applied by Pawlina and Kort (2006) to an asymmetric
duopoly game. The instantaneous payoff of Firm i D A;B can be expressed as
	i .x/ D xD00 if neither firm has invested, 	i .x/ D xD11 if both firms have
invested, 	i .x/ D xD10 if only Firm i has invested, and 	i .x/ D xD01 if
only Firm j has invested, with D10 > D00 > D01 and D10 > D11 > D01.
Assume Firm A is the low-cost firm. Its investment cost is normalized to I , whereas
the investment cost of Firm B is given by ıI , with ı > 1. It is assumed that
x.0/ is sufficiently low to rule out the case in which it is optimal for the low-
cost firm to invest at t D 0 (see Thijssen et al. 2012). As in the standard real
option investment model, I is irreversible and exogenously given. Three types of
equilibria can potentially arise in the game under consideration. First, a preemptive
equilibrium. This equilibrium occurs when both firms have an incentive to become
the leader, i.e., when the cost disadvantage of Firm B is relatively small. In this
equilibrium, unlike in Fudenberg and Tirole (1985), there is no rent equalization
between the leader and the follower: FirmA has always an incentive to take the lead,
even in the presence of the slightest degree of cost asymmetry. Second, a sequential
equilibrium. This equilibrium occurs when Firm B has no incentive to lead. Firm
A behaves as a monopolist that is not threatened by future competition (even if
Firm B investments will affect Firm A’s payoff). Third, a simultaneous equilibrium.
This equilibrium occurs when both firms invest at the same point in time. Pawlina
and Kort (2006) show that the characterization of the equilibrium crucially depends
on the first-mover advantage, defined as the ratio D10=D11, which can result from
improved product characteristics or greater cost efficiency, and the investment cost
asymmetry, ı. Specifically, there exists a threshold of ı, ı�, depending on the first-
mover advantage, the interest rate, and the parameters of the stochastic process,
separating the regions of the preemptive and the sequential equilibrium. For all
ı < ı�, Firm A needs to take into account possible preemption by Firm B , whereas
ı � ı� implies that firms always invest sequentially at their optimal thresholds.
Moreover, there exists another threshold of ı, ı��, depending on the first-mover
advantage, the interest rate, and the parameters of the stochastic process, such that
the resulting equilibrium is of the joint investment type for all ı < ı��, and of the
sequential/preemptive investment type for ı � ı��. When ı > max.ı�; ı��/, the
firms invest sequentially and Firm A can act as a sole holder of the investment
opportunity. Furthermore, a set of parameter values exists for which ı�� D 1,
meaning that simultaneous investment is never optimal.

Boyer et al. (2004, 2012) consider continuous-time duopoly models where
symmetric firms add capacity in lump sums. The former paper assumes Bertrand
competition, whereas the latter deals with Cournot competition. These papers build
on the literature on strategic capacity investments, which includes the seminal
contributions of Gilbert and Harris (1984) and Fudenberg and Tirole (1985), and
the more recent works by Besanko and Doraszelski (2004), Genc et al. (2007), and
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Besanko et al. (2010), and the literature on real option games (e.g., Boyer et al.
2004; Gutiérrez and Ruiz-Aliseda 2011; Huisman and Kort 2004, 2015; Pawlina
and Kort 2006; Ruiz-Aliseda 2012; Weeds 2002).41 In what follows, we get a closer
look at Boyer et al. (2004). The market is described by a price inelastic unit demand

D.p.t// D

8
<

:

0 for p > x
Œ0; 1� for p D x

1 for p < x,

where the total willingness to pay x for the commodity produced by the firms is
subject to aggregate demand shocks described by a geometric Brownian motion,
as in (18.35). Firm i D 1; 2 is risk-neutral and discount future revenues and costs
at a constant risk-free rate, r > ˛. Investment is irreversible and takes place in a
lumpy way. Each unit of capacity allows a firm to cover at most a fraction 1=N of
the market for some positive integer N . The cost of each unit of capacity is constant
and equal to I > 0. Capacity does not depreciate. Within Œt; t C dt/, the timing
of the game is as follows: (i) firstly, each firm chooses how many units of capacity
to invest in, given the realization of x and the existing levels of capacity; (ii) next,
each firm quotes a price given its new level of capacity and that of its rival; (iii)
lastly, consumers choose from which firm to purchase, and production and transfers
take place. Following Boyer et al. (2004), we briefly consider two benchmarks: the
optimal investment of a monopolist and the investment game when N D 1. The
expected discounted value of a monopolist investing N units of capacity is given by

V .x/ D max
T
E

2

4

1Z

tDT

expŒ�rt �x.t/dt �NI expŒ�rt �

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x.0/ D x

3

5 , (18.37)

where T is the time at which the investment is undertaken. An optimal stopping
time for (18.37) is to invest when the state of demand reaches the threshold

x� D
ˇNI .r � ˛/

ˇ � 1
,

where ˇ is given in (18.36). x� is above the threshold at which the value of the firm
is nil, Ox D .r � ˛/NI .

In the investment game with single investment (N D 1), when Firm j has
invested, Firm i ’s expected discounted value is nil; otherwise, it is given by

Vi .x/ D E

2

4

1Z

tD0

expŒ�rt �x.t/dt � I

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x.0/ D x

3

5 D
x

r � ˛
� I .

41Genc et al. (2007), in particular, use the concept of S-adapted equilibrium of Haurie and Zaccour
(2005) to study different types of investment games.
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When x reaches Ox, firms become indifferent between preempting and staying out
of the market. For x < Ox, it is a dominant strategy for both firms not to invest.
There exists another threshold, Qx, corresponding to the monopolistic trigger, above
which firms have no incentives to delay investments. By the logic of undercutting,
for any x 2 . Ox; Qx/, each firm wants to preempt to avoid being preempted in the
future. As a consequence, when x reaches Ox, a firm will invest, and the other
firm will remain inactive forever. For both firms, the resulting expected payoff at
t D 0 is nil. This finding is in line with the classical rent dissipation phenomenon,
described, for instance, in Fudenberg and Tirole (1985). However, in the case of
multiple investments (N D 2), Boyer et al. (2004) show that, in contrast with
standard rent dissipation results, no dissipation of rents occurs in equilibrium,
despite instantaneous price competition. Depending on the importance of the real
option effect, different patterns of equilibria may arise. If the average growth
rate of the market is close to the risk-free rate, or if the volatility of demand
changes is high, then the unique equilibrium acquisition process involves joint
investment at the socially optimal date. Otherwise, the equilibrium investment
timing is suboptimal, and the firms’ long-run capacities depend on the initial market
conditions.

Huisman and Kort (2015) combine investment timing and capacity determination
in a Cournot duopoly model where demand is linear and subject to stochastic
shocks. The stochastic shocks admit a geometric Brownian motion process, as in
the standard real option investment model. The problem of each firm consists in
determining the timing of investment and the capacity to install at the time of
investing. As explained in Huisman and Kort (2015), in a setting with uncertainty
and competition, an interesting trade-off arises: while uncertainty generates a value
of waiting with investment, the presence of competition gives firms the incentive to
preempt their competitor. One would expect the preemption effect to dominate in
a moderately uncertain environment. Closely related papers are Dangl (1999), who
analyzes the joint determination of the timing and the size of the investment but
abstracts from competition, and Yang and Zhou (2007), who consider competition,
but take the incumbent decision as a given.

First, we consider the monopoly setting. The market price at t is given by

p.t/ D x.t/Œ1 �Q.t/�,

where x follows a geometric Brownian motion, as in (18.35), and Q is the industry
output. The firm is risk neutral. It becomes active by investing in capacityQ at a cost
ıQ, ı > 0. It is assumed that the firm always operates at full capacity. The interest
rate is denoted by r > ˛. Let V .x/ denote the value of the firm. The investment
problem of the monopolist is given by

V .x/ D max
T;Q

E

2

4

1Z

tDT

x.t/.1 �Q/Qe�rt dt � ıQe�rT

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
x.0/ D x

3

5 .
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Maximization w.r.t. Q gives

Q.x/ D
1

2

�

1 �
ı.r � ˛/

x

�

.

Solving the corresponding value-matching and smooth-pasting conditions gives x�

and Q�,

x� D
ı .ˇ C 1/ .r � ˛/

ˇ � 1
, Q� D

1

ˇ C 1
,

where ˇ is given in (18.36). A comparative statics analysis reveals that increased
uncertainty delays investment but increases the size of the investment. The invest-
ment timing is socially desirable, in the sense that it corresponds to the investment
timing a benevolent social planner would choose. However, the monopolist chooses
to install a capacity level that is half the socially optimal level.

Next, we consider the case in which there is competition. In this case, Q D

q1Cq2. The investment cost of Firm i D 1; 2 is ıiqi , with ı1 < ı2 (Firm 1 is the low-
cost firm). When Firm 1 has a significant cost advantage, Firm 2’s decision involves
no strategic aspects. The optimal investment decisions of Firm 2 are characterized by

x� .q1/ D
ı2 .ˇ C 1/ .r � ˛/

.ˇ � 1/ .1 � q1/
, q�

2 .q1/ D
1 � q1

ˇ C 1
.

Taking into account the optimal investment decisions of Firm 2, Firm 1 can either
use an entry deterrence strategy, in which case Firm 1 will act as a monopolist as
long as x is low enough, or an entry accommodation strategy, in which case Firm 1

will invest just before Firm 2. In this case, since Firm 1 is the first to invest, and it
is committed to operate at full capacity, Firm 1 will become the Stackelberg leader.
From x� .q1/, entry by Firm 2 will be deterred when q1 > Oq1.x/, with

Oq1.x/ D 1 �
ı2 .ˇ C 1/ .r � ˛/

.ˇ � 1/ x
.

When instead q1 � Oq1.x/, entry by Firm 2 will be accommodated. Huisman and
Kort (2015) show that entry can only be temporarily deterred, the reason being that
at one point in time the market will have grown enough to make it optimal for Firm
2 to enter. Firm 1 will overinvest not only to induce Firm 2 to invest less but also
to induce Firm 2 to delay investment. With moderate uncertainty, the preemption
effect prevails, implying that Firm 1 invests early in a small capacity, with Firm
2 becoming the larger firm. Once investment cost asymmetry is removed, Firm 1

invests relatively late in a larger capacity than Firm 2. In the end, after both firms
have installed capacity, Firm 1 will become the larger firm in the industry.

The above papers on strategic investments under uncertainty assume that invest-
ments are irreversible. In real options models (with or without competition) in
which firms decide when entering (becoming active in) a market, the possibility of
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exit is typically not contemplated. A few exceptions are Murto (2004), considering
firms’ exit in a declining duopoly; Dockner and Siyahhan (2015), where a firm can
abandon an R&D project and leave the market; and Ruiz-Aliseda (2016), where
firms may decide to exit a market that expands up to a random maturity date
and declines thereafter. Firms’ exit decisions are also considered in the seminal
paper by Ericson and Pakes (1995), who provide a discrete-time framework for
numerically analyzing dynamic interactions in imperfectly competitive industries.
Such a framework has been applied in a variety of oligopolistic settings. We refer
the interested reader to the survey in Doraszelski and Pakes (2007).

7 Concluding Remarks

In this chapter, we have provided an overview of differential games applied to
industrial organization. Needless to say, although we have tried to cover as much as
possible, we do not claim to have been exhaustive. Many differential games, which
we have not included in this survey, address problems that are related to industrial
organization but follow different approaches to the study of dynamic competition.
Two examples are differential games in advertising and vertical channels, in which
the focus is upon the study of optimal planning of marketing efforts, rather than
market behavior of firms and consumers. For excellent references on differential
games in marketing, we refer the interested reader to Jørgensen and Zaccour (2004,
2014).

Much work has been done in the field of applications of differential games
to industrial organization. However, it is fair to say that a lot still needs to be
done, especially in regard to uncertainty and industry dynamics. Indeed, mainly for
analytical tractability, the vast majority of contributions abstract from uncertainty
and focus on symmetric (linear) Markov equilibria. If one is willing to abandon
analytical tractability, then it becomes possible to apply the tool box of numerical
methods to the analysis of more complex dynamic (either deterministic or stochas-
tic) models, which can deal with asymmetries, nonlinearities, and multiplicity of
states and controls.
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Abstract

Finance is a discipline that encompasses all the essential ingredients of dynamic
games, through the involvement of investors, managers, and financial interme-
diaries as players who have competing interests and who interact strategically
over time. This chapter presents various applications of dynamic game models
used in the broad area of finance, with the objective of illustrating the scope
of possibilities in this field. Both corporate and investment finance applications

M. Breton (�)
HEC Montréal, Montréal, QC, Canada
e-mail: michele.breton@hec.ca

© Springer International Publishing AG, part of Springer Nature 2018
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are presented. Topics covered include game options and their use as financial
instruments, bankruptcy games and their association with the valuation of debt
and equity, and dynamic game models used to explain empirical observations
about the financial decisions made by firms, for instance, on capital structure,
dividend payments, and investment choices. In each case, the presentation
highlights the game’s various ingredients, the choice of the equilibrium concept,
and the solution approach used. The chapter’s focus is on the contributions made
by dynamic game models to financial theory and practice.

Keywords
Game theory � Finance � Game options � Bankruptcy � Corporate finance �

Dynamic games

1 Introduction

Finance in general is concerned with the dynamics of economies, where savings
are reinvested in the stock of capital, to be used as a production factor. Finance is
usually divided into two main fields: investment finance, which relates to investors’
decisions, and corporate finance, which deals with firms’ decisions. A third area of
interest is financial intermediation or disintermediation, where the focus is on the
proper functioning of the transmission channel between investors and firms.

Consequently, finance is a field that has all the essential ingredients of dynamic
games. Players are investors, firms, and financial intermediaries. Investors lend
funds to firms in anticipation of future benefits. Firms borrow from investors in
order to finance their activities, increase their value, and pay dividends. Funds are
transmitted from lenders to borrowers through markets or financial intermediaries,
such as banks. These players have competing interests and interact strategically over
time. Moreover, time and risk play crucial parts in the way financial decisions are
evaluated by these various players.

Finance game-theoretic models originated with the seminal papers of Leland
and Pyle (1977), Ross (1977), and Bhattacharya (1979), in response to observed
phenomena that could not be explained by classical models relying on assumptions
of the homogeneity of players’ beliefs and information. These early papers assume
information asymmetries and strategic interactions and develop signalling models to
explain corporate decisions such as capital structure and the payment of dividends.
However, even if the Ross (1977) model has two periods and the Bhattacharya
(1979) model is extended to a multiperiod setting, these early game-theoretic models
represent special cases of dynamic games, since they require that players pre-
commit to their strategies and since the players’ beliefs do not adapt as information
is revealed.

Surveys of game theory in finance, covering the first generation of game-theoretic
models, not necessarily dynamic, can be found in Thakor (1991) and in Allen and
Morris (2014). Thakor (1991) offers an in-depth discussion of the importance of
the sequence of moves in signalling games and reviews selected applications in
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corporate finance and financial intermediation. Allen and Morris (2014) offers a
review of some of the important issues in asset pricing and corporate finance that
have been addressed using game theory and an analysis of the role of information
and beliefs in game-theoretic models.

This chapter presents various applications of dynamic game models in the area
of finance in order to illustrate the scope of possibilities in this area. Models are
organized according to application subfields.

Section 2 is mainly concerned with investment finance and introduces a class
of option-bearing derivative securities involving multiple holders with interacting
rights. The valuation of game options corresponds to the solution of a dynamic game
between the multiple holders. An important class of financial instruments involves
game options, namely, debt instruments such as bonds and warrants. The valuation
of game options is therefore also related to the valuation of corporate debt.

Section 3 discusses bankruptcy games as they relate to financial distress and
its resolution. These games involve the various claimants to a firm’s assets, and
the solution indicates how these assets are distributed among them in the case of
bankruptcy. Bankruptcy games are of interest in both investment and corporate
finance, as their solution can be used to assess the value of debt and equity and
to determine the optimal debt structure for firms.

Finally, Sect. 4 pertains to corporate finance; it deals with financial decisions
made by firms, such as the choice between debt and equity when financing opera-
tions, the amount of dividends paid out to shareholders, and decisions about whether
or not to invest in risky projects. These corporate games usually involve managers
or entrepreneurs interacting strategically with investors or financial institutions
(equity or debt holders). As in the first generation of finance game-theoretic models,
corporate games are mainly used to explain or justify generally observed patterns in
management decisions and their impact on claimholders’ responses.

2 Game Options

A contingent claim, or derivative security, is a financial instrument whose value
depends on the value of some basic underlying assets. Among derivative securities,
options are contingent claims giving their holder an optional right, called exercise.
Options are characterized by their maturity, payoff function, and exercise schedule:
European options can be exercised only at the maturity date; Bermudan options can
be exercised at a finite number of predefined dates; and American options can be
exercised at any time during their life.

The main issues involved in analyzing an optional contingent claim are, first,
the purpose it serves as a financial instrument and, second, the determination of its
value. A contingent claim can be replicated by a portfolio of primitive assets and
can be evaluated using no-arbitrage arguments: the value of the security is equal
to the minimum capital required to set up a self-financing portfolio that covers the
payoffs of the claim for any exercise strategy. In complete market models, the value
of the contingent claim is also equal to the discounted expected value of the claim’s
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future cash flows, under a unique martingale measure (the so-called “risk-neutral”
probability measure).

Game options appear when a contingent claim gives interacting optional rights
to more than one holder, that is, when the exercise of an optional right by one holder
modifies the options (e.g., their payoff function or exercise schedule) of the others.
Game options were introduced in Kifer (2000), where a contingent claim, called an
Israeli option, is analyzed. This contract contains two optional clauses that can be
exercised at any time up to a maturity date, by either of two players: Player 1 has the
right to buy (call) or to sell (put) an underlying asset from Player 2 for a contractual
price, while Player 2 has the right to cancel the contract and indemnify Player 1 by
paying a penalty that depends on the price of the underlying asset.

2.1 A General Game Option Model

Consider a contract with an inception date t D 0 and maturity T; where T �.0; T �

is the set of dates where exercise is allowed. Let .Xt /0�t�T denote the stochastic
process describing the price of the underlying asset and .Gi

t /t2T � 0 denote payoff
processes adapted to the filtration generated by Xt , defined for i 2 f1; 2g : An
Israeli option is a contract with stopping features that are introduced through a pair
of stopping times .T 1; T 2/ with respect to the filtration generated by the process
.Xt /0�t�T , so that Player 1 selects T 1 2 T and Player 2 selects T 2 2 T , triggering
a stopping event at date T 1 ^ T 2 D min fT 1; T 2g and leading to an immediate cash
flow received by Player 1 from Player 2, where

R.T 1; T 2/ � G1
T 1
IT 1�T 2

C G2
T 2
IT 2<T 1

is the discounted value of this cash flow at t D 0; and IA denotes the indicator
function of event A: The payoff processes Gi

t thus represent the (discounted) amount
paid by the seller to the buyer if Player i exercises her option first, at date t;

conditional to the observed prices of the underlying asset up to t . The exercise of
her option by either of the two players terminates the contract and therefore cancels
the other player’s option.

In the context of complete markets, Kifer (2000) shows, using a replicating
portfolio argument, that the fair price of an Israeli option is equal to the value V

of a zero-sum optimal stopping game of two players (Dynkin 1969),

V D sup
T 12T

inf
T 22T

ET 1^T 2
ŒR.T 1; T 2/� D inf

T 22T
sup

T 12T
ET 1^T 2

ŒR.T 1; T 2/� ;

and that there exists a unique hedging strategy for this option, where the notation
Et Œ�� represents the expectation, conditional on the information observed up to t .

Kühn (2004) studies the value of game options in incomplete markets. The model
assumes that each player chooses both a trading strategy and a stopping time in order
to maximize the utility of her terminal wealth, where the trading strategy indicates
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the number of shares of the primitive assets held in the portfolio at time t 2 Œ0; T �.
The valuation of a game option contract can then be interpreted as determining the
prices under which neither buyer nor seller can profit from trading the claim and is
then equivalent to the equilibrium solution of a nonzero-sum Dynkin game. Kühn
(2004) shows the existence of an equilibrium for this game in a Markovian context,
when players use discrete stopping times and have exponential utility functions (i.e.,
constant risk aversion). Hamadène and Zhang (2010) generalizes this setting and
shows the existence of a Nash equilibrium in continuous time for general stochastic
processes and arbitrary utility functions.

2.2 Bonds and Embedded Options

The general setting of game options, as defined above, does not address whether
such instruments exist in financial markets or what their purpose is. There is
however an important class of financial instruments that can be modeled as game
options: bonds with interacting embedded options. Bonds are debt instruments
requiring the issuer to repay to the lender the amount borrowed (principal) plus
interest (coupons) over a specified period of time, until maturity, at which time the
principal is due. Bonds are characterized as fixed-income instruments, since the
coupons and principal are known deterministic cash flows from the issuer to the
lender, assuming that the issuer does not default prior to the maturity date. The most
common type of embedded option is the call provision in callable or redeemable
bonds, which gives the issuer the right to retire the debt before the maturity
date. Bonds can also include a put provision (putable bonds), which allows the
bondholder to sell the security back to the issuer before maturity, and/or a conversion
provision (convertible or exchangeable bonds), which gives the bondholder the right
to exchange the bond for a specified number of shares of another security. The call
feature allows the bond issuer to replace the debt by a lower-interest one if interest
rates on the market decline. The put feature allows the bondholder to invest in
higher-interest bonds if market interest rates increase, while the conversion feature
allows her to take advantage of movements in the price of the associated security.

Game options appear when bonds contain provisions available to both the issuer
and the lender. In such cases, the exercise of an embedded option by one of the
players terminates the contract, thereby eliminating both the remaining future cash
flows and the embedded option owned by the other player. No-arbitrage approaches
to evaluating bonds with embedded options were proposed in the literature, prior to
their characterization as Dynkin games. For instance, Brennan and Schwartz (1980)
evaluates a callable convertible bond, and McConnell and Schwartz (1986) looks at
a callable, putable, convertible bond. The following characterization can be found
in Brennan and Schwartz (1980, p. 907): “The equilibrium value of a convertible
bond is defined as that value which offers the potential of arbitrage profit neither to
purchaser nor to short seller, given that the bondholder pursues an optimal strategy
with respect to conversion and that the firm pursues an optimal policy with respect
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to calling the bonds.” This characterization clearly relates the value of a (callable)
convertible bond to the equilibrium value of a two-player game.

2.3 Defaultable Game Options

In the Brennan and Schwartz (1980) model, the stochastic process Xt is two-
dimensional, so the value of the bond depends both on the value of the issuing
firm and on the interest rate; moreover, the model allows for the possibility of
default by the bond issuer. The value of the firm affects the conversion value of
the bond and the probability of default, while the interest rate affects the discounted
value of future cash flows. It is interesting to point out that, contrary to the game
option model in Kifer (2000), the evolution of the underlying stochastic process
Xt is not independent of the solution of the game, since the value of the firm
includes the value of its convertible bonds. Assuming that default happens when the
firm value hits a boundary that depends on the debt principal, and that conversion
by all bondholders is simultaneous, the authors characterize the players’ optimal
(equilibrium) strategies of the players. The value of the bond is governed by a
differential equation with boundary conditions and can be solved numerically.

In fact, considering the possibility that one of the parties defaults on her
obligation, that is, that she fails to provide her contractual payoff to the other
party, amounts to adding an additional stopping time to the game option model. In
the corporate finance literature, the possibility of default is typically characterized
by two ingredients: the way the default event is triggered and the recovery
process describing the payoffs in case of default. Three main avenues are used
to characterize the default stopping time. The first consists of assuming that the
default event is triggered by the underlying assets’ price process, for instance,
when the value of a firm’s assets falls below the value of its liabilities (structural
models)—as in Brennan and Schwartz (1980). A second avenue considers default
to be governed by an exogenous process (intensity-based or reduced-form models).
A third possibility is to assume that the default is decided by one of the strategic
players (optimal default).

The value of a defaultable convertible bond is analyzed in Sîrbu and Shreve
(2006) in the structural model setting, albeit with a single source of risk, where
the bondholder maximizes the value of her claim, while the issuer minimizes the
same. The interest rate is assumed constant, and default occurs when the value of
the firm falls to zero. Accordingly, the decisions to call or to convert the bond are
driven by the firm’s value (the bondholder has an incentive to convert if she expects
her ensuing stake in the firm to be more valuable than the coupon and principal cash
flows), while the firm’s value depends on the players’ strategies. Sîrbu and Shreve
(2006) shows that, depending on the relative values of the coupon rate, interest rate,
and call price, the Dynkin game that characterizes the bond price reduces to an
optimal stopping problem and a fixed point problem, admitting a unique solution.

A reduced-form model is considered in Bielecki et al. (2008) using a general
market model, which is arbitrage-free but possibly incomplete, and allowing for
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uncertainty in the discount rate. The paper characterizes the arbitrage price of
game options with dividends in terms of the solution of Dynkin games, and the
results are extended to defaultable game options by considering that bankruptcy
occurs at an exogenously given random moment. The specific case of defaultable
convertible bonds is analyzed, allowing for commonly included features such as
call and put provisions, a call notice period, and call protection and assuming that
either conversion or recovery (according to some recovery process) is allowed in
case of default.

In Chen et al. (2013), an optimal default model, which is where the firm’s
stockholders decide on the timing of bankruptcy, is used to characterize the
equilibrium strategies of the holders of callable convertible bonds and of the issuing
firm’s stockholders. The model also accounts for tax benefits and liquidation costs,
which makes the game between the two types of players nonzero-sum. Tax benefits
refer to the fact that interest (coupon) payments are tax deductible, while liquidation
costs refer to the losses that are incurred upon default when a firm’s assets are
liquidated in order to reimburse bondholders. The underlying asset is the market
value of equity, and the discount process is assumed constant. Using a nonzero-
sum stochastic game framework, the authors obtain the existence and uniqueness
of the Nash equilibrium between the two players and characterize their equilibrium
strategies. They argue that credit risk and tax benefits may provide an explanation
to empirically observed call and conversion strategies.

2.4 Warrants and Dilutive Claims

Warrants are contingent claims that are similar to options in that they give their
holder an optional right to buy a certain security, at a given price, according to some
exercise schedule, up to their maturity. The key difference between warrants and
options is that the exercise payoff of a warrant consists of a newly issued security.
The exercise of a warrant therefore dilutes the equityholders’ stakes and reduces
their share of the issuing firm’s future dividends. Accordingly, a warrant can be
interpreted as a game option, in the sense that the exercise of a warrant by one
holder modifies the expected payoff of all the other warrantholders that have not
yet exercised their claim, along with that of the equityholders of the issuing firm.
This strategic interaction is pointed out in Emanuel (1983, pp. 211–212), which
states that “. . . when multiple warrants are outstanding, the exercise of some of
the warrants leads to the creation of new shares and to concomitant changes in
the dividend policy and capital structure of the firm. The value accruing to one
warrantholder is therefore not independent of what the other warrantholders do.”

The dilution effect is also extant in other convertible securities, namely, convert-
ible bonds which were presented in Sect. 2.2. However, the models presented in this
section use one of the two following simplifying assumptions: there is a single bond,
or all conversion options are exercised at the same time. A similar approach is taken
in Yagi and Sawaki (2010) to evaluate a callable warrant. When all warrants are
exercised at the same time, the exercise payoff of a warrantholder is the conversion
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value divided by the number of shares after exercise (the initial number of shares
plus the number of warrants issued by the firm).

However, Emanuel (1983) shows that it is optimal for a single warrantholder
holding multiple claims to exercise her warrants sequentially, bringing into question
the assumption of a single equilibrium conversion stopping time for American
warrants and convertible bonds. Constantinides (1984) and Constantinides and
Rosenthal (1984) propose a theory of warrants held by competitive warrantholders
(i.e., who do not collude to determine their exercise strategy) who are not con-
strained to exercise their warrants as a single block. The model is a noncooperative
dynamic game in discrete time between the warrantholders, who maximize their
expected payoffs against known strategies of the firm (e.g., call, coupon, dividend,
investment, and stock issuance policies are exogenous). The players use feedback
strategies that depend on the observation of the vector of underlying asset prices, on
the current number of shares of common stock, and on the number of outstanding
warrants. Constantinides and Rosenthal (1984) demonstrates the existence of at least
one competitive equilibrium, under the assumption that players are atomic, that is,
that they are not aware of the impact of their decisions on the state vector, which
depends on the joint decisions of all players. Constantinides (1984) shows that there
exists an equilibrium (sequential) strategy that results in the same price as under the
block strategy and that this price is the highest one when multiple equilibria exist.

Koziol (2006) analyzes an extension of the warrant game model where firms are
assumed to issue both bonds and warrants and compares the competitive equilibrium
to the optimal block exercise strategy. The model accounts for the possibility of
default at bond maturity if the firm value is not sufficient to cover the principal.
The author finds significant differences between the exercise strategies and warrant
prices, depending on the two exercise variants, and points out that the solution of
the warrant game differs from the exercise strategy of convertible bonds in a levered
firm. This difference is due to the fact that the exercise proceeds from warrants are
invested in the firm, while the conversion of bonds into stock does not affect the
firm’s value.

2.5 Numerical Approaches

Various numerical approaches have been proposed for the valuation of game
options. The evaluation of call, put, and/or conversion provisions embedded in
bonds, and, more specifically, the decomposition of the price of a bond into the
value of an equivalent “straight” bond and the value of all its embedded options,
is of particular interest since such provisions are present in most corporate bonds.
Moreover, the interaction of competing provisions offered to different players in
game options generally implies that the value of these provisions is not additive.

Finite difference methods were introduced in Brennan and Schwartz (1980);
these methods rely on the numerical solution of a stochastic differential equation
(SDE) characterizing the evolution, in continuous time, of the value of the game
option, contingent to the evolution of the underlying stochastic process; for instance,
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in Brennan and Schwartz (1980), the two state variables are the value of the firm and
the interest rate. The stabilization refinement proposed in d’Halluin et al. (2001) for
callable bonds allows for the inclusion of a call notice period.

Dynamic programming approaches have also been proposed to evaluate options
embedded in bonds, e.g., trinomial (Hull and White 1990) and binomial (Kifer
2000) trees. These methods rely on a recursive characterization of the value of the
dynamic game and of the subgame-perfect equilibrium when the exercise schedule
is discrete. A numerical approach combining dynamic programming with finite
element interpolation is proposed in Ben-Ameur et al. (2007). The setting allows for
continuous models of the stochastic interest rate process and evaluates interacting
call and put options with advance notice.

2.6 A Dimensionality Issue and an Identity Crisis

Table 19.1 summarizes the main features of the game-option papers reviewed in this
section. The literature on Israeli options is mainly concerned with existence results,
in increasingly general settings for the underlying market. However, Israeli options
are not commonly traded financial instruments.

On the other hand, warrants and bonds that include embedded options constitute a
very important class of traded financial instruments, and their valuation, which relies
on the characterization of their exercise strategy, is a fundamental issue. In general,
the value of such financial instruments corresponds to the solution of a non-zero
stochastic game where players use feedback strategies. In the case of bonds, one
distinctive difficulty is the dimensionality of the state space, since the value of a
bond depends on the term structure of interest rates (which typically depends on
more than one factor) and could also depend on the value of another security (in the
case of convertible bonds) or on other market risk factors (in the case of defaultable
bonds). For both convertible bonds and warrants, an additional difficulty lies in the
number of players involved. Most models presented in Table 19.1 use simplifying
assumptions to reduce the state to a single factor, to aggregate the players into two
classes, or to attenuate the players’ strategic weight.

Finally, it is interesting to note that, while the general model of a game
option is a straightforward stopping game between an option holder and an option
issuer, the most common finance applications of game options, namely, interacting
provisions in corporate debt and financing instruments, raise an interesting issue:
the classification of players into two distinct categories with opposing interests.
Indeed, abstracting from bankruptcy costs and tax benefits, the value of the firm
is divided between the bondholders (lenders) and the equityholders (borrowers), so
that exercise strategies result in wealth transfers between equity and debtholders. In
reality, individual players may well be both simultaneously; moreover, exercising
a conversion option changes the identity—and point of view—of the player of
the corporate game, from bondholder to equityholder. We refer to Jalan and
Barone-Adesi (1995) where a repeated cooperative game model is proposed to
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analyze callable convertible bonds, where the players are current equityholders and
bondholders.

3 Bankruptcy Games

In game theory, the bankruptcy problem relates to the allocation of a given amount
(the estate) among a group of claimants when this amount is not sufficient to
cover the total of the individual claims. The liquidation of a bankrupt firm and
the distribution of the proceeds to its creditors is an archetypal example of the
bankruptcy problem. The solution of the bankruptcy problem consists of identifying
rules for this allocation and analyzing its properties (see Thomson 2003, 2015 for
a survey); this analysis is usually done within a framework of cooperative game
theory.

We define bankruptcy games as models of the strategic interactions between
various classes of claimants to the assets of a firm. These games are used to
determine the solution of the corresponding bankruptcy problem. Unlike the
classical bankruptcy problem, where claimants are assumed to differ only in the
amount of their claims, bankruptcy games usually involve claims with different
priorities and/or players with different leadership or precedence advantages. In
particular, there exists a rule—the absolute priority rule (APR)—that stipulates the
order in which claims will be paid in the liquidation of a bankrupt firm. Bankruptcy
games are used to address important issues in both corporate and investment finance,
namely, the optimal structure of a firm’s debt, the value of debt and equity, and the
impact of the solution of the bankruptcy problem on players’ incentives to invest
and to borrow.

3.1 Liquidation and Optimal Default

The use of the solution of a bankruptcy problem to evaluate defaultable claims was
introduced in Merton (1974). This seminal work proposes a model that evaluates
debt instruments (bonds) when there is a significant probability of default by the
debt issuer (or equityholders). The Merton (1974) model is, however, not designed
as a bankruptcy game, since both the moment of default and the compensation
received by claimants upon default are defined exogenously. The assumption is that,
at maturity, the debtholders instantly and costlessly liquidate the firm’s assets and
seize the totality of the proceeds if their value does not cover the principal.

Leland (1994) and Leland and Toft (1996) extend the defaultable debt valuation
model by considering additional features (tax benefits, bankruptcy costs, and
covenants) but, more importantly, assume that the moment of default is determined
as an optimal decision by the equityholders. The default decision depends on the
firm’s value, which in turn depends on when bankruptcy occurs; therefore, these
two components must be determined jointly. In such a case, the total value of the
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firm (debt plus equity) depends on the capital structure, that is, on the relative claims
of both types of stakeholders.

These two papers go a step further by using the resulting corporate debt value
to determine the optimal capital structure (in Leland 1994, debt is assumed to
be perpetual, while in Leland and Toft (1996), the debt maturity is finite). The
sequential framework used by the authors can be seen as a two-stage Stackelberg
game, where the first stage is a cooperative game that maximizes the total value of
the firm (i.e., equity plus debt) by taking into account the optimal equityholders’
response, which consists of liquidating the firm when the value of equity reaches
zero.

François and Morellec (2004) and Broadie et al. (2007) propose extensions of
the optimal default model of Leland (1994) by assuming that liquidation is not
immediately triggered by a default decision by the equityholders, that is, that the
default or bankruptcy boundary does not coincide with the liquidation boundary.
In both cases, the model’s essential features are motivated by the U.S. Bankruptcy
Code, which includes both the possibility of liquidation (Chap. 7) and reorganization
(Chap. 11). In François and Morellec (2004), the firm is liquidated if the value of its
assets stays below the bankruptcy boundary longer than a prescribed grace period,
and the cash flows generated during this period are shared among the claimholders.1

In Broadie et al. (2007), two endogenous boundaries are defined, such that the firm
can be liquidated if the value of its assets either reaches the liquidation boundary
or stays below the bankruptcy boundary for longer than the grace period; the firm
does not pay dividends or coupons while it is in default, and it repays a fraction of
the accumulated debt arrears if it exits from the default state. The authors compare
the equilibrium solutions, according to the identity of the player who decides
on the bankruptcy boundary, with the solution maximizing the value of the firm.
Variants are proposed in Bruche and Naqvi (2010), where the equityholder acts as
a Stackelberg leader, knowing that the creditor decides on the liquidation boundary,
and in Bruche (2011), where creditors can eventually coordinate to determine this
boundary.

Wang (2011) proposes a model involving the manager as a third player, in
order to evaluate the impact of agency problems on finite-maturity defaultable debt
valuation. At each stage, the manager decides on the amount of interest and dividend
offered to the debtholder and equityholder, respectively, and retains the rest of the
cash flow as a private rent. If the interest payment is less than the contractual
coupon, the debtholder has the option to liquidate the firm’s assets (which involves a
liquidation cost) according to the APR. If the firm is not liquidated, the equityholder
can accept the dividend payment or dismiss the manager (which involves a loss in
human capital cost). The magnitude of this loss defines management’s entrenchment
power. The equilibrium solution is obtained numerically by backward recursion and

1The sharing rule is not determined according to the APR but rather as a Nash bargaining solution
where the players have exogenously fixed bargaining powers.
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is used to characterize the impact of management entrenchment on corporate debt
and dividend policies.

3.2 Strategic Debt Service

In the models described in the previous section, even if part of the debt arrears
can be forgiven in some cases, the contractual payments remain set according to
the original agreement over the horizon of the game. The notion of strategic debt
service can be ascribed to Hart and Moore (1989, 1997) where a debt contract is
modeled as a multistage game between an entrepreneur and an investor, involving a
possible renegotiation of its terms. In this game, the entrepreneur runs her project as
long as she honors the debt contract, which requires a fixed stream of payments
to the investor. If the entrepreneur defaults, the investor can seize and liquidate
the project’s assets. At this stage, the entrepreneur and investor can renegotiate
the contract. When liquidation is costly, the investor may be better off accepting
a reduced payment rather than seizing the project’s assets.

Within that framework, Anderson and Sundaresan (1996) proposes a dynamic
game model based on the possibility of strategic private negotiations between a
firm’s equityholders and bondholders. The game’s equilibrium between the two
types of players yields the value of the firm’s risky debt. The dynamic game in
Anderson and Sundaresan (1996) assumes that leadership in negotiations is taken
on by the equityholder. At discrete dates (e.g., coupon dates), the equityholder can
propose a reduced debt service. The bondholder then has the option of triggering
bankruptcy procedures, resulting in a costly liquidation of the firm’s assets to
reimburse the outstanding debt. At a given date where such negotiations take place,
the game can be represented by the payoff matrix in Table 19.2 (the equityholder
being the row player and the bondholder, the column player), where f is the portion
of the firms’ assets that is periodically paid out to the shareholders; s is the proposed
debt service; c is the contractual coupon; T 2 .0; 1� is the tax rate; V l D V l

1 C V l
2

is the firm’s liquidation value, which is shared between the two players according
to the priority of their claim (the solution of the bankruptcy problem); and Ec and
Dc are the expected values at the next negotiation date for the equityholders and the
debtholders, respectively. The continuation and liquidation values are contingent on
the underlying process Xt .

In the Anderson and Sundaresan (1996) model, Xt is the value of the firm’s
assets, which are assumed to be observable up to t by both players. Moreover, it
is assumed that cash flows ft are an exogenously fixed proportion of the assets
Xt and that debt service at date t can only be met out of ft ; otherwise, the firm

Table 19.2 Private
negotiation payoff matrix

Accept Liquidate

s ..1 � T / .f � s/ C Ec; s C Dc/
�
V l

1 ; V l
2

�

c ..1 � T / .f � c/ C Ec; c C Dc/ �
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is liquidated. This last assumption makes the evolution of Xt independent of the
debt service choice; therefore, the equilibrium solution is for the equityholder to
propose min

˚
V l

2 � Dc I c
�

to the bondholder—that is, a reduced debt service just
high enough to avoid liquidation—provided this is feasible. The game is then solved
by backward recursion from maturity, where the bondholder’s continuation value
is zero. Notice that, since V l

2 ; Dc , and f are contingent on the asset value, three
regions can be identified according to the value of Xt at a given decision date: when
c < V l

2 �Dc � f , the equityholder pays the contractual coupon; when V l
2 �Dc>f ,

the firm’s assets are liquidated and divided among the claimants; otherwise, the
bondholder agrees to receive an amount V l

2 � Dc , which is less than the contractual
coupon.

The Anderson and Sundaresan (1996) model triggered a sizeable literature on
strategic default, where the value of risky debt is determined from the equilibrium
solution of a dynamic game between shareholders and bondholders.

Anderson et al. (1996) proposes a continuous-time representation of the Ander-
son and Sundaresan (1996) model, leading to a characterization of the value of risky
debt through a Black- and Scholes-type partial differential equation for a general
class of strategic models, where the service flow and the boundary conditions are
determined by the solution of the one-stage game presented in Table 19.2.

Mella-Barral and Perraudin (1997) makes use of a continuous-time model where
the underlying asset is the firm’s output price and the bond contract is perpetual.
By characterizing the strategies used by the players taking a leadership role, the
authors obtain a closed form for the value of risky debt and for the debt service
function. Two contrasting cases are studied: in the first case, equityholders make
take-it-or-leave-it offers to the bondholders regarding debt service; in the second,
the bondholders are the ones who take leadership.

In the abovementioned models, it is assumed that debt can only be serviced out
of cash flows (available liquidity), which allows for the possibility of liquidation
when these cash flows are not sufficient to cover the difference between the
liquidation and the continuation value for the debtholders. The portion of cash flows
that is not used for debt service is then paid out to equityholders as dividends.
Models accounting for dividend policies are proposed in Fan and Sundaresan (2000)
and Acharya et al. (2006).

In Fan and Sundaresan (2000), instead of assuming that one of the players takes
leadership in the negotiation game and can make take-it-or-leave-it offers to the
other player, a Nash bargaining solution (NBS) is used to determine the outcomes
of negotiation games and liquidation, where the claimants’ bargaining powers are
given constants. The players can bargain over the firm’s assets, giving rise to debt-
equity swaps, or over the firm’s value, where the equilibrium outcome is a reduced
debt service. Using the NBS as the solution concept in continuous time allows for
analytical solutions, and the paper characterizes the dividend rate that maximizes
the value of equity, and the circumstances under which it is optimal to issue new
equity to finance contractual coupon payments.

Acharya et al. (2006) proposes an extension of the (discrete-time) Anderson and
Sundaresan (1996) model, where the equityholders have the additional options of
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setting up cash reserves (i.e., of deciding on the amount of the dividends), or of
raising cash by issuing additional equity, in order to avoid liquidity defaults. The
authors use numerical solutions to show that strategic debt service has an important
impact on the debt value when the cost of issuing new equity is low.

3.3 Insolvency and Reorganization

In the models presented in the previous section, the implicit assumption is that of
repeated private and costless negotiations (workouts) between two players: a single
equityholder, or a manager aligned with the interests of the equityholders, and a
single debtholder (e.g., a bank). Moreover, in strategic debt service models, while
temporary relief can be negotiated, the debt structure itself is assumed fixed over
time. The present section briefly reviews dynamic game models that better represent
public debt and negotiations regulated by insolvency laws, possibly involving many
creditors with different claim priorities, and allowing for a restructuring of the debt.

Brown (1989) analyzes the reorganization process of a distressed firm as a game
with successive negotiation rounds, where the rules of the game (e.g., number of
rounds, sequence, voting rules, claim priority) are formalized by the bankruptcy
code. The equilibrium solution of the reorganization game is obtained by backward
induction; still, this is a static solution, in the sense that the firm’s liquidation and
reorganization values are taken as constants.

In Berkovitch and Israel (1998), a two-period game is defined between an
owner/manager and a creditor, where the creditor can decide to liquidate the firm’
assets at date t D 1 after observing an imperfect signal of its profitability. If
the creditor does not decide to liquidate, the equityholder chooses between either
liquidating the firm, paying the debt obligation, and continuing operations or
renegotiating the debt contract privately or under court supervision. If it is still
operating at the end of the second period, the firm is liquidated. The outcome of
the game in this model is shown to be related to asymmetric information and to the
manager’s decision to over- or underinvest during the first period.

Mella-Barral (1999) develops a pricing model with dynamic debt restructuring,
where debt is assumed perpetual, with continuous coupons. The model takes the
form of a differential game with a Stackelberg information structure, where cohesive
players are characterized by their bargaining power, and negotiation is costless.
Debtors are the Stackelberg leaders: they decide on the default event by maximizing
the value of equity, taking into account the optimal reaction of the creditors, who
can choose, in the event of a default, between forcing a liquidation, decreasing
the coupon, and changing the claimants’ shares if the assets are liquidated. The
equilibrium solution yields closed-form pricing formulas for equity and debt. This
model is used to explain debt restructuring and departures from the APR upon
liquidation, both of which can be observed in practice. More specifically, the author
shows that when the firm’s leverage is relatively high, debtors will tend to default
early, and creditors will offer to reduce the coupon in order to defer liquidation;
while, when the firm’s leverage is relatively low, debtors will tend to default late
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so creditors will offer them a larger share of the proceeds than is stipulated by the
APR, in order to precipitate liquidation.

Hege and Mella-Barral (2005) proposes an extension of the model in Mella-
Barral (1999), allowing for multiple creditors who are not coordinating their actions.
Renegotiation is assumed costless (out-of-court). The debtor is the leader in a
Stackelberg differential game; her strategy is to offer a series of new debt contracts,
over time, to a limited number of creditors, in exchange for the voluntary surrender
of old contracts. These new contracts offer more liquidation rights in exchange
for debt service concessions. In each offer, the debtor commits to defaulting
on debt service payments if the offer is rejected, thereby triggering the (costly)
liquidation of the firms’ assets. It is assumed that there is a very large number
of creditors, so that each creditor neglects her impact on the success or failure
of a debt-restructuring proposal. The authors derive closed-form solutions for the
value of equity and defaultable debt. They find that, with respect to single-creditor
debt, creditor dispersion limits the size of concessions that can be obtained by an
opportunistic debtor and typically results in greater optimal leverage for the firm.

Moraux and Silaghi (2014) also extend the model of Mella-Barral (1999) by
incorporating fixed renegotiation costs in a model of multiple renegotiations. As a
result, the model predicts a finite number of renegotiations instead of infinitesimal
coupon reductions and makes it possible to compute the optimal number of
renegotiations. Two polar cases are considered, where either the equityholders or
the creditors are leaders and have all the bargaining power. The leader decides
on the renegotiation thresholds, the coupon reductions, and the optimal number of
renegotiations and is assumed to pay the renegotiation costs.

In Noe and Wang (2000), a three-stage game characterizes strategic behavior
during debt renegotiations involving a manager and two creditors. The latter
differ according to the size of their claim and the amount they can recover from
liquidation. The manager negotiates sequentially with each creditor; she can choose
the sequence and the nature of her restructuring offer, while creditors can accept,
pass, or reject offers. Game dynamics only pertain to the sequence of decisions
during the negotiation process, since cash flows and liquidation values are given
constants. The model is solved by backward induction, yielding a subgame-perfect
Nash equilibrium. The authors show that strategic flexibility is valuable to distressed
firms: they use the claims of the creditor who is in a better position (e.g., with
a smaller loan or a larger recovery) to extract greater concessions from the other
creditor.

Annabi et al. (2012a,b) consider legal bankruptcy procedures and model the
resolution of financial distress as a noncooperative game between claimants under
the supervision of a bankruptcy judge, who is a non-strategic player. The game
is played in discrete time and consists of costly successive negotiation rounds
involving the debtor and two creditors with different seniorities. In each negotiation
round, one of the claimants acts as leader and proposes a debt-restructuring plan,
that is, a vector of new perpetual coupons replacing the existing contractual coupon
pair. The two other players act as followers and play a unanimity game: the plan
is implemented, and the reorganized firm emerges from bankruptcy procedures if
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both agree on the proposed restructuring. There is a positive probability that the
bankruptcy judge intervenes and imposes a “fair and equitable” plan (i.e., an NBS
solution) if the players do not agree. Liquidation occurs when cash flows cannot
cover the cost of negotiation. The game is solved by backward induction, and the
equilibrium solution is obtained numerically. In Annabi et al. (2012b), the context is
Chap. 11 of the U.S. Bankruptcy Code, while Annabi et al. (2012a) consider a more
general setting allowing for various provisions in the legal procedure. These papers
find that the identity of the class of claimants proposing the first reorganization
plan is a key determinant of the time spent under bankruptcy, the likelihood of
liquidation, and the renegotiated value of claims.

Christensen et al. (2014) proposes a continuous-time model where the capital
structure is dynamic, with a single class of callable perpetual debt. Equityholders
continuously decide whether to continue servicing the existing debt or to restructure
the firm’s capital. Restructuring consists of either calling existing debt (and subse-
quently issuing new debt) or making a take-it-or-leave-it offer to the debtholders
to reduce the existing coupon. The model departs from the usual strategic debt
service literature by assuming that debtholders will not accept offers that are not
credible (for instance, threatening to liquidate the firm, since this would normally
leave the equityholders with nothing). Consequently, at equilibrium, the benefits of
renegotiation are shared among the claimants according to their exogenously given
bargaining power. The model also considers an additional state variable by assuming
that the equityholders have a limited number of renegotiation options. Note that
the introduction of the possibility of calling and reissuing the debt when the firm
is in a good position makes the model richer and can be related to the literature
on defaultable game options presented in Sect. 2.3; however, while defaultable
callable bond models consider a liquidation event, in Christensen et al. (2014),
renegotiation ensures that liquidation never occurs. The equilibrium solution is
obtained by backward induction and is used to show that violations of the APR
are to be expected.

3.4 Bridging Investment and Corporate Finance

Table 19.3 presents the main features of the bankruptcy game papers reviewed
in this section. These bankruptcy games typically model the strategic interactions
between creditors and debtors, often aggregated into two representative players, and
sometimes involve management as a third player. Strategies vary in complexity,
from simple decisions, such as defaulting on debt payments or triggering bankruptcy
procedures, to more intricate compromises involving temporary relief of debt
service or changes in the debt contract. In many cases, special consideration is
devoted to the impact of leadership, according to the identity of the player who
moves first.

One important issue in this literature is the possibility that the firm emerge
(or not) from bankruptcy and the circumstances leading to its liquidation. The
interactions between the players are used to define the solution of the bankruptcy
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problem, that is, the amount that various claimants expect to recover, whether
bankruptcy leads to emergence or to the liquidation and redistribution of a firm’s
assets. In some cases, the equilibrium solution can also be used to define how the
cash flows will be shared among players (e.g., coupon vs. dividends) during the life
of the firm.

The equilibrium value of bankruptcy games can be interpreted as the valuation
of debt and equity, expressed as a function of the underlying state variables. For
this reason, bankruptcy games provide an important contribution to investment
finance. Indeed, the possibility of financial distress should be taken into account
when valuing debt instruments, such as bonds, when deciding whether or not to
invest in a given entrepreneurial project, or when determining the market value of a
stock.

The solution of bankruptcy games can also be used at a higher level to decide
on the values of the parameters of these games, such as, for instance, the capital
structure or the dividend payout rate. As will be seen in the next section, bankruptcy
costs and the way financial distress is resolved play a significant role in many
corporate finance models.

4 Corporate Games

A number of theoretical models in corporate finance were developed to explain or
predict the financial decisions firms make, including the following:

1. The choice between debt and equity to finance operations
2. The amount of dividends paid out to shareholders
3. Decisions on whether or not to invest in projects.

In many cases, the predictions made by theoretical models are not in line with
what is actually observed in the corporate world: firms use less debt than expected
given the relative weight of tax advantages vs. bankruptcy costs, and they pay more
dividends than is optimal for shareholders given that personal capital gains are
usually taxed less than dividend revenues.

Many corporate game models have been proposed in the literature to interpret
some puzzling empirical findings in the light of strategic interactions and asym-
metric information, the largest proportion being devoted to capital structure issues.
The following subsections present a selection of dynamic corporate game models
addressing capital structure, dividend payout, and investment policies.

4.1 Capital Structure

There are essentially two ways for a firm to obtain the funds required to finance
its activities: debt contracting involves committing to deterministic payments to the
lenders over a given horizon (debt service), while equity financing implies selling
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part of the firm’s ownership, and, therefore, its claims on future profits, to outside
investors. The models presented in this section address the debt vs. equity mix for
financing a firm’s operations, the choice between bank (private) and bond (public)
debt, the inclusion of contractual rights granted to debtors, and, in some cases, the
choice between different types of investors.

The following sections depict the various classes of games that have been
proposed in the literature to explain such capital structure decisions.

4.1.1 Signalling Games
Myers and Majluf (1984) proposes a two-period game between a firm’s management
and potential investors when the firm needs financing to take advantage of an
investment opportunity. The game is one of asymmetric information about both
asset and project values: At t D 0, the probability distributions for the value of the
firm’s assets and the value of the investment opportunity are known by all players.
At t D 1, management observes the realization of both uncertain variables and
decides whether or not to issue new shares to finance the investment opportunity.
Uncertainty is resolved for the investors at t D 2.

By assuming that management’s interests are aligned with those of the existing
shareholders, the authors show that, in some cases, it is in management’s best
interest not to issue shares for profitable investment opportunities, so that its
decision to not issue shares sends a positive signal to investors and thereby
affects the firm’s market value. Equilibrium results are used to explain empirical
observations, such as the facts that stock prices often fall when an equity issue is
announced and that firms prefer to finance their operations using internal funds or
debt, rather than equity.

Noe (1988) refines the setting in Myers and Majluf (1984) by explicitly modeling
the firm’s financing decision as a sequential signalling game of two periods. Man-
agement strategies are messages (issue debt, issue equity, or request no financing).
Investors respond by refusing to finance or by offering an amount of either debt or
equity. Beliefs about the firm’s quality are revised using Bayes’ rule. As in Myers
and Majluf (1984), debt is preferred to equity financing when management has
perfect information. The author shows that this result does not necessarily hold when
management has imperfect information. However, the choice of financing still has
an informational impact, since higher-quality firms are more likely to choose debt
over equity financing.

Similar two-period sequential signalling games, where management is informed,
while the investors are not and revise their beliefs based on debt-choice messages
sent by management, are also proposed in Constantinides and Grundy (1989), who
investigate the role of straight and convertible debt and of stock repurchasing as
signals, as well as in Kale and Noe (1990), where signals are debt maturity choices
(long or short term).

A multiperiod signalling game is proposed in Gomes (2000) to address the
agency problem between managing shareholders and minority shareholders. The
model is a stochastic dynamic game played over a finite number of periods, where
the management signal consists of its level of effort and the number of shares traded.
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Outsiders use this information to price shares according to their belief about the
type of management. The author uses the features of the signalling equilibrium to
explain why, even when there are no mechanisms to protect minority shareholders,
management will not expropriate them in order to maintain its reputation, which
results in higher stock prices and a gradual divestment of its shares over time.

4.1.2 Bargaining Games
Building on the strategic debt service model of Hart and Moore (1989, 1997),
some dynamic games relate capital structure decisions to the anticipated outcome
of negotiations between the firm and its investors in cases of a default, which can
be triggered under two distinct circumstances (liquidity and strategic defaults) and
which gives creditors the right to liquidate the company’s assets. Bargaining game
models aim to characterize optimal debt contracts that deter strategic defaults and
avoid costly liquidation. Capital structure bargaining games are generally played in
two stages: at t D 1, the parties agree to a financing contract; at t D 2, the firm
decides whether or not to default on its contractual obligations, where, in the case
of default, a bankruptcy game is played.

Berglöf and Von Thadden (1994) proposes a bargaining game where the firm
has all the bargaining power and makes a take-it-or-leave-it offer to investors. The
authors show that choosing a capital structure with multiple investors with different
maturity and seniority claims is better than choosing only one type of claim. They
argue that having a variety of claims reduces the incentive for the firm manager
to renegotiate the initial debt contract. Bolton and Scharfstein (1996) analyzes a
bargaining game under a general contract—specifying the conditions under which
creditors have the right to liquidate a fraction of the assets with a given probability—
in order to look at specific aspects of debt structure. The authors find that firms
with a low credit quality should maximize liquidation values, which translates to
having a single creditor and covenants facilitating asset sales, while firms with a
high credit quality should make strategic default less attractive, which translates to
having multiple creditors and voting rules that allow some creditors to block asset
sales. Park (2000) considers the case where moral hazard is severe and allows for
monitoring by the lenders. The author finds that, under the optimal debt contract,
monitoring is performed by a single senior lender. The model provides a rationale
for prioritizing debt contracts and explains why bank debt is usually short-term and
senior to widely held long-term debt. Berglöf (2000) finds that the optimal debt
contract involves multiple creditors: this simultaneously increases the entrepreneur’s
capacity to raise funds and increases the occurrence of strategic default.

4.1.3 Sequential Games
The papers reviewed in this section use a sequential game framework to analyze
the financing decisions of entrepreneurial firms, where a contract is proposed and
an investment is made at t D 0. At t D 1, the entrepreneur chooses whether or
not to default on her obligations after privately observing output or after deciding
on her level of effort. The lender can then take action at t D 2 (e.g., according
to the contract’s specifications, monitor the project, liquidate the firm, or accept a
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payment offer from the entrepreneur). Returns are distributed at t D 3. Variations of
this general framework are used to propose various determinants of capital structure
related to monitoring, control, and enforcement parameters.

Repullo and Suarez (1998) considers the financing mix (bank loans vs. bonds
and equity) by characterizing lenders according to their monitoring capability.
Entrepreneurs decide on their level of (costly) effort, which determines the prob-
ability of positive returns. They are characterized by their wealth and by the
deterministic liquidation value of their project. The solution of the game between
the entrepreneur and the lender is a contract specifying the amount invested by the
lender and each player’s share of the returns and liquidation proceeds. When lenders
are uninformed, they do not act at t D 2; feasible contracts are then characterized by
the Nash equilibrium of a matrix game, with each player having two pure strategies
(to participate or not). When lenders are informed, they can decide to liquidate the
firm at t D 2; feasible contracts are then characterized by the subgame-perfect
equilibrium of the sequential game, where the lender’s liquidation decision depends
on the observed level of effort by the entrepreneur.

The authors also analyze the optimal contract under mixed finance, which is
characterized by the solution of a sequential game between the entrepreneur and
two different types of lenders, and the possibility of a renegotiation of the original
contract, where the entrepreneur and the informed lender may collude to change
their share of the returns after the effort decision has been made. The analysis yields
a characterization of the circumstances, in the space of entrepreneur wealth and
project liquidation value, under which the various configurations for the financing
mix are optimal. The sequential game model is able to explain a number of empirical
observations, such as the fact that many firms are funded by a mix of informed
lenders (such as banks) and uninformed lenders (such as bondholders) and that
informed debt is senior to uninformed debt in case of liquidation. The model
also predicts that investments involving liquid assets are more likely to be funded
exclusively by informed lenders.

Krasa and Villamil (2000) relates the characteristics of an optimal contract to the
time consistency of enforcement strategies. At t D 0, both players have common
beliefs about the distribution of returns. At t D 1, the entrepreneur privately
observes the outcome and decides on a voluntary payment to the investor. This
payment is used to update the investor’s belief at t D 2, when the investor can
decide to enforce a final payment or not. Enforcement is provided by an outside
agent (e.g., a bankruptcy court) and is costly for both players. The optimal contract,
specifying the final payment as a function of the realized outcome, is obtained by
solving for a perfect Bayesian equilibrium maximizing the agents’ returns. The
authors show that simple debt is the optimal contract when players cannot commit
to open-loop strategies and renegotiation is possible, whereas a stochastic contract
is optimal otherwise.

Krasa et al. (2008) uses a similar framework to analyze the role of bankruptcy
parameters on firm finance and more precisely on loan rate, default probability, and
welfare. The legal enforcement system is characterized by the enforcement costs and
the level of debtor protection. At t D 1, the entrepreneur decides to default or not on
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her contractual payments. At t D 2, the lender can decide to request enforcement
of the contract or not. The authors solve for Pareto-efficient equilibria and show
that the legal enforcement system may have an important impact on financing and
bankruptcy decisions.

Hvide and Leite (2010) also relates financial structure and default behavior to
the cost of enforcement. The model assumes that the entrepreneur can finance her
project using debt, equity, or a mix of both. At t D 1, the entrepreneur decides on
the amount offered to the investors, who can decide to request contract enforcement
or not, at t D 2. Under the assumption that intervention costs are higher for debt
than for equity, the authors show that debt is the preferred security and that equity
is issued in combination with debt when the funding requirements are high.

In von Thadden et al. (2010), strategic interactions between lenders are called
upon to analyze the interrelationship between bankruptcy rights, corporate debt
structure, and debt contracts. The sequential game model involves one firm and two
lenders, and the debt contract is assumed to contain individual foreclosure rights that
may differ from the claimants’ share in bankruptcy proceeds. At t D 1, according
to the cash flow realization, the firm decides on the amount offered to each creditor
separately. At t D 2, if what she is offered is less than the contractual amount, a
creditor chooses between accepting the offer or foreclosing on the firm’s assets. The
outcome of the game depends on the creditors’ joint decision, since bankruptcy
is triggered when both creditors reject the firm’s offer. Contracts are chosen to
maximize the firm’s expected payoff, subject to the investors’ participation at t D 0,
where the players’ strategies are obtained by solving for the subgame-perfect Nash
equilibrium corresponding to a given contract. The solution of the game yields a
number of properties for the optimal contract; in particular, the optimal contract
involves more than one creditor and cannot result in unilateral foreclosure. The game
model is able to generate instances of strategic default or violations of the APR.

Gennaioli and Rossi (2013) suggests that the level of investor protection is a
characteristic of the legal system, which is a determinant of both the capital structure
and the terms of the lending contract achieving the first-best solution for the firm.
The model considers three possible outcomes for cash flow realizations over time
(good, bad, and temporary financial distress) and assumes that liquidation and
reorganization values are known by all players at t D 1. The terms of the contract
specify the amount loaned, the identity of the player controlling liquidation and
reorganization decisions, and the amounts received by claimants according to the
identity of the controlling player. In the single-creditor case, the authors show that
the optimal contract depends on the level of investor protection. They then show that
the optimal capital structure consists of two classes of creditors, where one large
creditor controls the reorganization/liquidation decision and the other class contains
many dispersed small creditors who have no claim in the reorganized firm.

Buehlmaier (2014) proposes that the debt vs. equity choice depends on the
characteristics of the investment project (expected return and risk). The model is an
extension of the one in Krasa and Villamil (2000), offering a larger strategy space to
the investor at t D 2. After updating her beliefs according to the voluntary payment
offered by the entrepreneur, the investor can decide to exercise monitoring rights or
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not. The investor can then either accept the voluntary payment, request enforcement
of the contractual final payment, or initiate a series of renegotiation rounds. A
renegotiation round consists of a payout request from the investor, which can be
accepted or rejected by the entrepreneur, and where the entrepreneur’s response is
used to update the investor’s beliefs.

The optimal contract, specifying the enforceable final payment and whether
or not the investor has monitoring rights, is obtained by solving the sequential
game. The author shows that when expected returns and risk are relatively low,
as compared to the monitoring costs, the optimal contract has the characteristics of
simple debt, whereas, in the opposite case, it has the characteristics of equity.

Meneghetti (2012) proposes a different outlook, linking capital structure choices
to managerial incentive compensation. As in the previous models, the manager’s
compensation depends on the outcome of the project, but it is also assumed to have
an incentive component corresponding to a fraction of the firm’s value. At t D 1, the
manager decides whether to invest in a safe or a risky project, where the safe project
has lower expected returns. It is assumed that banks can (imperfectly) monitor the
manager’s action and liquidate the firm when they receive a signal that the manager
has invested in the risky project. The lenders decide on the parameters of the contract
(interest rate and collateral), while the manager chooses between bonds and bank
debt.

The game’s equilibrium solution depends on the level of the incentive component
in the manager’s compensation. For low values, the manager chooses bonds and
invests in the safe project. As the incentive component increases, the manager
chooses bank debt and invests in the safe project. For high values of incentive
compensation, the manager chooses bank debt when the signal is precise and bonds
when the signal is imprecise. The author uses a sample of bank loans and bond issues
in the USA between 1993 and 2005 to show that model predictions are supported
empirically.

4.1.4 Repeated Games
Fluck (1998) considers a repeated game between an entrepreneur-manager and an
investor, where the investor can hold either debt or equity. The project requires
investment in equipment that has to be replaced every two periods and produces
uncertain (high or low) cash flows, which are observable at the end of the two
periods. When the investment is made by equityholders, the manager decides on the
amount of dividends and the amount of a depreciation allowance used to replace the
equipment. Equityholders can decide to liquidate the company or to replace or keep
the manager at any time. When the investors are debtholders, the manager decides
whether or not to default on her contractual payments, which triggers a bargaining
game as in Hart and Moore (1989).

The author shows that the only sustainable equity contracts have an unlimited
lifespan, while the maturity of equilibrium debt contracts matches the lifespan of the
assets and then characterizes projects that can raise debt, equity, or both, according
to the variability of cash flows. The results are consistent with empirical evidence,
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where lower debt-equity ratios are observed in industries with a higher cash flow
risk.

A similar setting is used in Anderson and Nyborg (2011) where, however,
an additional exogenous event is considered in order to examine how corporate
ownership affects growth. The model assumes that, from some given date, outside
management becomes more efficient than the original entrepreneur. The equilibrium
solution confirms that leverage is inversely related to growth and profitability, as
predicted by empirical evidence.

Another repeated game of corporate ownership and control between management
and equityholders is presented in Fluck (1999), where management decides on the
amount of dividends, while, at each round, dispersed equityholders can decide to
retain or to fire management. In the latter case, the probability of success of a control
challenge depends on the number of outsiders and their strategic value, as computed
using the Shapley value of a majority voting game. Accordingly, management,
existing shareholders, or outsiders can strategically decide to purchase or sell shares
in the company.

The author finds that corporate ownership is related to the cost of capital or to
the investors’ time preference. When the cost of capital is low, management holds a
negligible stake in the company, while it accumulates shares when it is high.

4.1.5 Differential Games
In Hilli et al. (2013), a differential game setting is proposed to explain the observed
tendency of firms to evolve from a concentrated to a dispersed ownership. The model
involves one manager, as well as one large and many atomistic shareholders. As
different types of projects become available over time, the manager decides on her
level of effort, which allows her to obtain information on project types and states
of nature. The large shareholder simultaneously decides on her monitoring level,
which allows her to learn what the manager knows.

The authors show that the large investor should divest her shares over time,
and compare the prior commitment strategy, which is not time consistent, with
the Markov-perfect equilibrium. They find that the divestment rate is related to the
degree of divergence between the interests of the manager and shareholders. When
the divergence is mild, all shares are sold immediately, but when divergence is high,
divestment is gradual, to prevent a fall in the share price.

4.1.6 Financing Decisions
Capital structure papers presented in this section mainly cover two distinct themes.
A first stream of papers is concerned with firm’s ownership. Table 19.4 summarizes
the features of the papers analyzing the decision to issue equity to finance a firm’s
activities. Questions covered in this literature include the decision to issue additional
shares, the choice between debt and equity, and the characteristics of a firm’s
shareholders. A second stream of papers, presented in Table 19.5, is concerned with
debt contracting. The issues analyzed in these papers include the choice between
private and public debt, the concentration of creditors, and the various possible
characteristics of debt contracts, including control and bankruptcy rights.
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As in bankruptcy games, the players involved are creditors and debtors. It
is interesting to note that the possibility of default and bankruptcy is a very
important ingredient of many capital structure games and that most debt contract
characteristics modeled in the debt structure papers relate to the rights that are
granted to the creditor in the case of default and the priority of claims in the case of
bankruptcy.

4.2 Dividend Policies

There are mainly two ways available to corporations for distributing surplus to
stockholders: dividend payments and share repurchases. While the impact for the
firm of the two instruments is equivalent, in many countries, dividends are taxed
at a higher rate than are capital gains, and therefore, share repurchases should
dominate dividend payouts. However, empirical evidence shows that dividends are
consistently more popular than share repurchases in the corporate world. This is one
of the puzzles in corporate finance (see Black 1976).

One of the popular rationalizations for the widespread distribution of dividends is
that they are used by firms to communicate private information to investors, namely,
the expected value of future earnings. Under that assumption, a second puzzling fact
emerges: dividends are often smoothed over time, sticky, and imperfectly correlated
with earnings.

Bhattacharya (1979) is one of the first papers to propose a signalling model to
derive an optimal dividend policy, where the objectives of investors and managers
are aligned. The author also discusses the issue of multiperiod planning horizons,
pointing out the difficulty of accounting for dynamics and learning in dividend
policy signalling models.

In response to this paper, various signalling game models of dividend distribution
under asymmetrical information emerged in the literature, usually in the form of
sequential games of incomplete information over two periods, possibly repeated:
At date t D 1, the manager of the firm decides on the allocation of earnings to
investments and dividends, on the basis of private information (e.g., current earnings
or productivity). At date t D 2, the investor observes the dividend paid and uses
this information to revise her belief about the firm’s value and, in some cases, to
decide whether or not to invest additional funds into it. The total earnings are then
distributed and the game is terminated.

In many of these models, the choice of a dividend level determines the amount
invested in the second period, such that the firm’s dividend and investment policies
are interdependent. This is notably the case in signalling models where the investor
does not act in the second period, as in Miller and Rock (1985), Guttman et al.
(2010), and Baker et al. (2015). In these models, investors use the information
conveyed by the dividend to valuate the stock, and the equilibrium is characterized
by the manager’s choice of a dividend level and the corresponding investors’ belief
regarding the firm’s value. Miller and Rock (1985) establishes the existence of a



19 Dynamic Games in Finance 855

time-consistent equilibrium that leads to lower levels of investment than would
be optimal under full information. Guttman et al. (2010) shows that dividend
stickiness can be explained by a partially pooling equilibrium where dividend policy
is constant over a range of current earnings. The authors show that underinvestment
is lower when investors and management are able to coordinate to select such an
equilibrium. Baker et al. (2015) proposes a multiperiod model where investors
evaluate current dividends against a reference point established by past dividends
and are averse to dividend cuts. This model is able to explain observed patterns of
managers’ dividend policies.

Signalling models where investors are active players include Kumar (1988),
Kumar and Lee (2001), and Allen et al. (2000). Kumar (1988) models a game
between an entrepreneur-manager and a representative shareholder, who differ in
their attitudes toward risk, and where the shareholder does not know the manager’s
productivity. The author shows that, because the two players’ objectives are not
perfectly aligned, no signalling equilibrium exists in pure strategies. Conditions are
derived under which a coarse signalling equilibrium can be found, in the sense that
dividends are expressed as a step function of managerial productivity. This result is
offered as an explanation for dividend smoothing. Kumar and Lee (2001) proposes
an extension of this game to a multiperiod setting, where the manager maximizes
her terminal wealth while the representative investor maximizes her consumption
stream.

Allen et al. (2000) proposes a sequential game between the managers of two types
of firms and two types of investors (institutional and retail investors). Managers
have inside information on the value of their firm and choose a dividend policy
maximizing its expected share price. Investors differ in their risk aversion, tax
rate, and ability to monitor management. Investors trade together and allocate their
wealth between the two types of firms in order to maximize their expected utility.
The authors solve the game by backward induction and obtain conditions for a
separating equilibrium to exist. They also consider an extension to a three-period
game by adding a cooperative stage where institutional investors jointly decide on
the amount of monitoring they will apply to firms, where monitoring is costly but
increases the value of earnings. The authors conclude that the dividend policy can be
related to a clientele effect: more productive firms pay higher dividends and attract
more institutional investors, who are more likely than dispersed retail investors to
monitor management.

The models presented above share the shortcoming identified in Bhattacharya
(1979), whereby dynamics reduce to a sequence of decisions in what are essentially
one-shot games. Kaya (2009) proposes a general model for repeated signalling,
using state variables that can be identified with reputation, and a recursive formula-
tion. The salient characteristics of this model are the persistent use of an informed
player and the observability of the decision history. As pointed out by the author,
this general model can be used to represent the dynamic dividend policy problem.
The main features of the dividend signalling models reviewed in this section are
summarized in Table 19.6.
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Table 19.6 Dividend signalling papers

Paper Features Results

Bhattacharya (1979) Aligned interests Optimal dividend policy

Miller and Rock (1985) Passive investor Underinvestment

Guttman et al. (2010) Equilibrium selection Dividend policy depends

on earnings

Baker et al. (2015) Multiperiod Past dividends provide

reference

Kumar (1988) Asymmetric risk preferences Dividend smoothing

Kumar and Lee (2001) Multiperiod Dividend smoothing

Allen et al. (2000) Multiple asymmetric investors,

monitoring

Clientele effect

Kaya (2009) Dynamic state, decision history General repeated signalling

model

4.3 Investment Policy

One of the important issues of corporate governance is the agency problems that
arise between equityholders (and/or management) and debtholders in the selection
of risky projects. Asset substitution refers to the incentive of equityholders of
a levered firm to increase the risk level of the firm’s investments due to their
limited liability. Underinvestment arises when equityholders do not undertake some
profitable projects because these would mostly benefit debtholders, due to the
priority of their claims in the case of bankruptcy. This section presents a selection
of dynamic game models focusing specifically on agency problems in corporate
investment choices.

John and Nachman (1985) proposes a two-period game between a manager and
bondholders and shows that the underinvestment problem is attenuated when a
sequential game of imperfect information is played. In the model considered by
the authors, underinvestment occurs in the static case because the manager has no
incentive to invest in profitable projects having a net present value that is lower than
the promised debt payments. In a dynamic setting, it is assumed that the profitability
of projects undertaken in the second period is correlated with the realization in
the first period, which is the private information of the manager. The investment,
financing, and dividend decisions made by the manager are used by bondholders
as a signal of the firm’s future prospects, which determines the amount allocated
to debt payments. The authors interpret the equilibrium strategy as an endogenous
reputation effect, giving managers an incentive to invest more when they expect the
profitability of future projects to be high.
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Jørgensen et al. (1989) proposes an open-loop Stackelberg differential game over
a finite horizon, between a manager, who acts as a leader, and two shareholders,
who, as followers, play a Nash game. The manager decides on investment and
financing, while the majority shareholder decides on the dividend rate. The model
is used to study the impact of separating ownership and management on corporate
decisions and firm dynamics.

Hirshleifer and Thakor (1992) uses a two-period game to address agency
problems in investment policies and their impact on capital structure. The model
involves two types of managers (good or bad) and two types of projects (good but
risky or bad). Good managers can obtain better results from good risky projects.
The manager knows her type and chooses the project, while investors determine the
stock price. The two-period setup enables an analysis of the impact of managerial
reputation building on investment choices. The authors compare the two contrasting
cases of a firm with and without outstanding debt and study the impact of possible
takeovers. They find that, in an unlevered firm, reputation building can cause
excessive conservatism in terms of the investment policy, while the reverse is
obtained in the case of a levered firm, leading to an increase in the debt-equity ratio.

Heinkel and Zechner (1990) analyzes the relationship between capital structure
and investment incentives. The game involves equityholders and potential investors
who have asymmetrical information about the quality of an investment project, and
it is played in two periods. At t D 0, equityholders choose the capital structure.
At t D 1, a risky investment opportunity arises, for which cash flows differ in a
good and a bad state. Equityholders privately observe the probability of a good state
and decide to invest, which requires additional financing from the market, or not. At
t D 2, cash flows are distributed and the game ends. The authors show that an all-
equity firm will overinvest, while issuing debt causes underinvestment. They argue
that issuing the “right” mix of securities avoids adverse incentives.

Zwiebel (1996) also links capital structure to corporate agency conflicts. The
model is a finite-horizon multiperiod game between the manager and the equity-
holders of a firm. In each period, there is an investment opportunity that can be
either good or bad, with a known constant probability, identified as the manager’s
type. The equityholders know the manager’s type, but the quality of the investment
opportunity is only known by the manager. In each period, the manager decides
on capital structure (i.e., the debt level) and dividend payout. The equityholders
can decide to take control of the firm after observing the manager’s decision. If
still in control, the manager then decides whether or not to invest in the project,
after observing its quality. Bankruptcy occurs if the firm is not able to service the
debt. Otherwise, the game moves to the next period. The manager’s objective is to
stay in control and undertake projects, while the equityholders care about the firm’s
equity value. The game is solved by backward recursion. The author argues that
capital structure and dividend policy are linked to outside investment opportunities,
so that various equilibrium strategies are obtained depending on the manager’s
type.
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Almazan and Suarez (2003) proposes a hierarchical game between small share-
holders and a manager who controls both investment and financing decisions. The
model involves an investment project that can be good or bad, with a known
probability. The manager chooses the type of financing (bank or public) and her
level of effort (high, low) after privately observing the type of investment project.
The probability of success depends on both decisions, and it is assumed that bank
monitoring induces a high level of effort from managers. The equityholders choose
the contract offered to the manager, taking her reaction into account. The authors
solve the game to obtain the optimal incentive compensation contract and find that,
when the probability of a project being good is sufficiently high, managers will
choose bank monitoring for these good projects.

François et al. (2011) analyzes the role of convertible debt in mitigating the asset
substitution problem. The model assumes the occurrence of an asset substitution
possibility at some random date posterior to the determination of the capital
structure. A dynamic game is played between holders of convertible bonds, who
can decide to exercise their conversion option, and equityholders, who can decide
to increase asset risk. Two possible equilibrium solutions are identified, according
to the identity of the player who has first-mover advantage. The authors conclude
that, in a multiperiod setting, the issuance of convertible debt does not eliminate the
possibility of asset substitution.

Table 19.7 summarizes the features of papers reviewed in this section and shows
that, because of the dynamic agency problems between debt and equity holders,
corporate investment decisions are often closely related to capital structure decisions
and to dividend policies.

Table 19.7 Investment policy papers

Paper Decisions Features Results

John and Nachman

(1985)

I, C, Q Reputation building Signal impacts on the

market value of bonds

Jørgensen et al.

(1989)

I, C, Q Majority shareholder

chooses Q

Impact of separating

ownership and management

Hirshleifer and

Thakor (1992)

I Reputation building Impact of leverage on

investment conservatism

Heinkel and Zechner

(1990)

I, C – Impact of leverage on

investment conservatism

Zwiebel (1996) I, C, Q, X Equityholders can take

control

Impact of agent’s type on

capital structure and

dividends

Almazan and Suarez

(2003)

E, C Equityholders choose

the contract

Optimal compensation

contract

François et al.

(2011)

I, C I occurs after contract

design

Convertible debt does not

eliminate asset substitution
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4.4 Interdependency of Corporate Financial Decisions

A very large body of literature is concerned with corporate finance decisions, and
various theories have been proposed to explain payout policies, capital structure,
and the investment decisions made by firms. Game-theoretic models arise naturally
whenever ownership and control are in separate hands and usually involve asym-
metric information, moral hazard, or imperfectly aligned utility functions.

The models presented in this section show that a wide variety of dynamic game
models have been used to explain corporate finance decisions, ranging from simple
hierarchical models involving active and passive players to stochastic dynamic and
differential games. Most of these models focus on a few aspects or features to
explain empirical observations of corporate behavior. Corporate financial decisions
are, however, closely interrelated, and comprehensive dynamic game models should
continue to be of considerable interest to corporate finance theory.

In a recent paper, Lambrecht and Myers (2016) proposes a general framework
to analyze the dynamics of investment, borrowing, and payout decisions by public
corporations in the context of agency problems in corporate finance (tax and other
financial distortions are not considered). The model is a repeated game between a
manager and dispersed shareholders, where the manager maximizes the expected
net present value of her future rents, while shareholders maximize the market value
of the firm, and the state variable is the (stochastic) periodic operating income. In
each period, the manager proposes a payout to the shareholders and retains the
remaining part of the operating income as rent. Shareholders can either accept
this proposal or reject it and take over the firm. The cost of intervention by the
shareholders is interpreted as a measure of the effectiveness of corporate gover-
nance. This general model is used to analyze contrasting cases where managers are
risk neutral or risk averse, and where shareholders have full or partial information
on the realized cash flows, and to address several problems in corporate finance,
including capital structure and debt policy, investment and abandonment decisions,
dividend smoothing, and takeovers and other external governance mechanisms.

5 Conclusion

This chapter presents a selection of models illustrating the contribution of dynamic
game theory to investment and corporate finance. The topics covered are restricted
to pricing, bankruptcy, and corporate decision issues, where dynamic game theory
plays a prominent role. The examination of the literature covered in this chapter
shows that dynamic game theory has had a meaningful contribution to the appre-
ciation of issues and puzzles in the area of investment and corporate finance over
the last forty years. It is impossible not to notice the predominance of the financial
distress event as an ingredient of the various game models used in this literature.
The recent years have seen the emergence of default risk-transferring instruments,
such as credit default swaps, for instance, whereby the player affected by a default
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event is not necessarily the one negotiating the debt contract. Many of the classical
themes covered in this chapter could be revisited in a game-theoretic framework in
order to assess the impact of the availability of these risk-transferring instruments.
Additional corporate finance decisions involving many players, such as mergers and
acquisitions and initial public offerings, could be analyzed in a dynamic framework.

Other areas in finance can also benefit from the contribution of dynamic game
models, such as intermediation, financial market microstructure, and corporate real
option theory, to name only a few. Intermediation models capture the relationship
between financial intermediaries and their clients, for instance, between banks
and corporations or private investors or among syndicates of lenders. Financial
microstructure models aim at explaining the dynamics of market price formation
from the individual actions of informed and uninformed investors. Finally, real
option models apply to the investment, divestment, and abandonment decisions
of interacting corporate players. Dynamic game models in these areas are less
conspicuous, and these represent interesting avenues that may gain importance in
the future.
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Abstract

Marketing is a functional area within a business firm. It includes all the
activities that the firm has at its disposal to sell products or services to other
firms (wholesalers, retailers) or directly to the final consumers. A marketing
manager needs to decide strategies for pricing (toward consumers and mid-
dlemen), consumer promotions (discounts, coupons, in-store displays), retail
promotions (trade deals), support of retailer activities (advertising allowances),
advertising (television, internet, cinemas, newspapers), personal selling efforts,
product strategy (quality, brand name), and distribution channels. Our objective
is to demonstrate that differential games have proved to be useful for the
study of a variety of problems in marketing, recognizing that most marketing
decision problems are dynamic and involve strategic considerations. Marketing
activities have impacts not only now but also in the future; they affect the
sales and profits of competitors and are carried out in environments that
change.

Keywords
Marketing � Differential games � Advertising � Goodwill � Pricing � Demand
learning � Cost learning � Marketing channels � Channel coordination �

Leadership

1 Introduction

Marketing is a functional area like, e.g., production and finance, in a business
firm. It includes the activities that the firm has at its disposal to sell products or
services to other firms (wholesalers, retailers) or directly to the final consumers.
The main purpose of devoting resources to marketing is to increase sales in order to
generate more revenues. The toolbox of a marketing manager includes a variety of
activities: pricing (consumers and middlemen), consumer promotions (discounts,
coupons, in-store displays), retailer promotions (trade deals), support of retailer
activities (support of retailers’ advertising expenditures), advertising (television,
internet, cinemas, newspapers, outdoor displays), personal selling efforts, product
strategy (quality, brand name), and distribution channels.

The objective of the chapter is to demonstrate that differential games have
proved to be a useful methodology with which one can study decision problems
in marketing in a formal way. Such problems are dynamic and involve strategic
considerations. Marketing activities have impacts now and in the future; they affect
sales, revenues, costs, and profits of competitors and are most often carried out
in environments that change over time. It seems, therefore, to be less advisable to
derive recommendations for a firm’s marketing activities by using a static or a simple
period-by-period framework or assuming a monopolistic market and disregard
existing and/or potential competition.
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1.1 A Brief Assessment of the Literature

The use of differential game theory to study marketing decision problems in a
dynamic, competitive environment started in the 1970s. We will refer to seminal
work in the areas that are covered and give the reader an account of how research
has progressed. There is a literature using optimal control theory that started earlier
than the dynamic game research stream. The control literature deals with marketing
decision-making in dynamic, monopolistic markets. Not surprisingly, many of these
works have formed the basis from which game theoretic studies emanated.

Dynamic game literature in marketing has predominantly been normative,
focusing on the characterization of equilibrium marketing effort strategies. Not
much emphasis has been put on empirical work. The main part of the literature
aims at deriving predictions of what equilibrium behavior would be and to report
these predictions as recommendations and decision support for marketing managers.
Technically speaking, two options have been explored in order to derive game
theoretic equilibria:

• Analytical methods can be used to obtain closed-form characterizations of
equilibrium actions. Analytical methods may provide results of some generality
when they leave parameter values and functional forms – at least partly –
unspecified. A major problem here is that these methods normally work only
in models of low complexity and/or one assumes a “mathematically convenient”
structure. This puts a limit to the applicability of results.

• Numerical methods have their strength when models are complex. Their disad-
vantages are that results cannot be generalized beyond the scenarios considered
in the numerical calculations, functional forms in a model must be specified,
and one may be unable to obtain real-life data for parameter estimations. It
is, however, worthwhile noticing that since the 1990s, a number of empirical
studies in dynamic marketing competition have been published, particularly in
the area of advertising. This research has typically used estimated differential
game models to (a) test the empirical validity of the prescriptions of normative
models or (b) to assess the advantages of using information about the evolution
of the state (e.g., market shares or sales volumes) of a dynamic system.

There are not many textbooks dealing with marketing applications of differential
games. Case (1979) was probably the first who considered many-firm advertising
problems cast as differential games. The book by Jørgensen and Zaccour (2004)
is devoted to differential games in marketing. Dockner et al. (2000) offered some
examples from marketing. See also Haurie et al. (2012). The focus of these books is
noncooperative dynamic games. The reader should be aware that in the last 10–
15 years, there has been a growing interest in applying the theory of dynamic
cooperative games to problems in marketing. Recent surveys of this area are Aust
and Buscher (2014) and Jørgensen and Zaccour (2014).
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At the beginning of the 1980s, most applications of differential games in mar-
keting were in advertising. Jørgensen (1982a) summarized the early developments
in this area. A few papers covered pricing, e.g., Jørgensen (1986a). Taking stock,
Jørgensen and Zaccour (2004) noted that the study of competitive advertising
and pricing strategies had been continued. Moreover, new areas of marketing
have been approached using differential games. As we shall see, research activity
has increased considerably in marketing channels/supply chains where researchers
have approached problems of, e.g., coordinated (cooperative) decision-making and
leadership.1

The following works, covering the period from 1982 to 2014, give an account of
the current state of the art in dynamic games in marketing:

• General: Moorthy (1993), Eliashberg and Chatterjee (1985), Rao (1990), and
Jørgensen and Zaccour (2004)

• Pricing: Jørgensen (1986a), Rao (1988), Kalish (1988), and Chatterjee (2009)
• New-product diffusion models: Dolan et al. (1986), Mahajan et al. (1990, 1993),

Mahajan et al. (2000), and Chatterjee et al. (2000)
• The production-marketing interface: Eliashberg and Steinberg (1993), and Gai-

mon (1998)
• Advertising: Jørgensen (1982a), Erickson (1991, 1995a), Moorthy (1993),

Feichtinger et al. (1994), Huang et al. (2012), Jørgensen and Zaccour (2014),
and Aust and Buscher (2014)

• Marketing channels: He et al. (2007) and Sudhir and Datta (2009).

1.2 Notes for the Reader

1. An overwhelming majority of the literature in the area “dynamic games in
marketing” has used deterministic differential games, and this chapter will focus
on such games. A section deals with the (rather sparse) literature that has used
stochastic games to study marketing problems.

2. There is a literature in economic applications of game theory/microeconomics/in-
dustrial organization that employs repeated games to study oligopolistic markets.
Much work has been devoted to problems of intertemporal competition/collusion
on prices, but also issues concerning, for instance, industrial structure (entry, exit,
and number of firms) are treated.2 The focus and the approach in this literature
are in many respects different from that in literature on differential games in
marketing. In the latter a main emphasis is on providing prescriptions for the
decisions that individual firms should take in a market.

1Aust and Buscher (2014) present a figure showing the number of publications on cooperative
advertising per year, from 1970 to 2013.
2Examples of textbooks that deal with economic applications of repeated games are Tirole (1988),
Friedman (1991), Vives (1999), and Vega-Redondo (2003).
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3. To benefit fully from the chapter, the reader should be familiar with the basics of
nonzero-sum, noncooperative differential game theory.

4. Many of the models we present can be/have been stated for a market with an
arbitrary number of firms. To simplify the presentation, we focus on markets
having two firms only (i.e., duopolistic markets).

5. Our coverage of the literature is not intended to be exhaustive.
6. To save space and avoid redundancies, we only present – for a particular

contribution – the dynamics (the differential equation(s)) being employed. The
dynamics are a key element of any differential game model. Another element is
the objective functionals. For a specific firm, say, firm i; the objective functional
typically is of the form

Ji D

Z T

t0

exp f��i tg ŒRi .t/ � Ci .t/� dt C exp f��i T g ˆt .T /

where Œt0; T � is the planning period which can be finite or infinite. The term
Ri .t/ is a revenue and Ci .t/ is a cost. Function ˆt represents a salvage value to
be earned at the horizon date T: If the planning horizon is infinite, a salvage value
makes no sense and we have ˆt D 0. In games with a finite and short horizon,
discounting may be omitted, i.e., �i D 0:3

2 Advertising Games

2.1 Introduction

Advertising is an important element of a firm’s communication mix. This mix also
includes direct marketing (phone or e-mail), public relations, and personal selling.
The planning of a firm’s advertising activities involves many issues, and differential
game studies have studied a subset of these only. What has gained most interest
is the amount and timing of advertising expenditures, the sharing of the costs of
advertising between a manufacturer and its retailers, and the interaction between
advertising and other marketing activities (typically, pricing).

The literature has employed four main categories of models that are characterized
by their dynamics (state equations in differential game terminology): Lanchester,
Vidale-Wolfe, new-product diffusion, and Nerlove-Arrow models. The state variables
are market shares or sales rates in the Lanchester and Vidale-Wolfe models,
cumulative sales in new-product diffusion models, and advertising goodwill levels
in Nerlove-Arrow models.

3Examples are short-term price promotions or advertising campaigns.
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2.2 Lanchester Models

A century ago, Lanchester (1916) suggested a series of models to describe and
analyze military combat. One of these models can readily be reformulated to
become a simple and intuitive representation of the “battles for market share” that
we observe in real-life markets (Kimball 1957).

To present the Lanchester model of advertising competition, let Xi .t/ 2 Œ0; 1�

be market share at time t for a specific product, manufactured and sold by firm i:

Denote by ai .t/ � 0 the advertising effort (or expenditure) rate of the firm: The
dynamics are, in general,

PXi .t/ D fi .ai .t//Xj .t/ � fj .aj .t//Xi .t/I i; j 2 f1; 2g ; i ¤ j

where function f .a/; called the attraction rate, is increasing and takes positive
values. The right-hand side of the dynamics shows that a firm’s advertising has one
aim only, i.e., to steal market share from the competitor: Because of this purpose,
advertising effort ai is referred to as offensive advertising. In the basic Lanchester
advertising model, and in many differential games using this model, function fi .ai /

is linear. Some authors assume diminishing returns to advertising efforts by using
for fi .ai / the power function ˇi a

˛i

i ; ˛i 2 .0; 1� (e.g., Chintagunta and Jain 1995;
Jarrar et al. 2004).

A seminal contribution is Case (1979) who studied a differential game with the
basic Lanchester dynamics and found a feedback Nash equilibrium (FNE). Many
extensions of the model have been suggested:

1. Multiple types of advertising (e.g., Erickson 1993)
2. Industry sales expansion (e.g., Bass et al. 2005a,b)
3. Multiple advertising media (e.g., Fruchter and Kalish 1998)
4. Multiproduct firms (e.g., Fruchter 2001)

We confine our interest to items 1 and 2. Erickson (1993) suggested that firms use
two kinds of effort, offensive and defensive advertising, denoted di .t/. Defensive
advertising aims at defending a firm’s market share against attacks from the rival
firm. Market share dynamics for firm i are

PXi .t/ D ˇi

ai .t/

dj .t/
Xj .t/ � ˇj

aj .t/

di .t/
Xi .t/

which shows that offensive efforts of firm i can be mitigated by defensive efforts of
firm j . See also Martín-Herrán et al. (2012).

Industry sales are not necessarily constant (as they are in the basic Lanchester
model). They might expand due to generic advertising, paid for by the firms in the
industry. (Industry sales could also grow from other reasons, for instance, increased
consumer incomes or changed consumer preferences.) Generic advertising pro-
motes the product category (e.g., agricultural products), not the individual brands.
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Technically, when industry sales expand, we replace market shares with sales rates
in the Lanchester dynamics. Therefore, let Si .t/ denote the sales rate of firm i: The
following example presents two models that incorporate generic advertising.

Example 1. The dynamics used in Bass et al. (2005a,b) are

PSi .t/ D ˇi ai .t/

q
Sj .t/ � ˇj aj .t/

p
Si .t/ C �i Œk1g1.t/ C k2g2.t/�

where gi .t/ is the rate of generic advertising, paid for by firm i .4 The third term
on the right-hand side is the share of increased industry sales that accrues to firm i .
The authors identified FNE with finite as well as infinite time horizons. Jørgensen
and Sigué (2015) included offensive, defensive, and generic advertising efforts in
the dynamics:

PSi .t/ D
�
ˇai .t/ � �dj .t/

� q
Sj .t/ �

�
ˇaj .t/ � �di .t/

� p
Si .t/

C
k

�
gi .t/ C gj .t/

�
2

and identified FNE with a finite time horizon. Since players in this game are
symmetric (same parameter values) it seems plausible to allocate one half to each
player of the increase in industry sales.

Industry sales may decline as well. This happens if consumers stop using
the product category as such, for example, because of technical obsolescence or
changed preferences. (Examples of the latter are carbonated soft drinks and beer in
Western countries.) A simple way to model decreasing industry sales is to include a
decay term on the right-hand side of the dynamics.

Empirical studies of advertising competition with Lanchester dynamics appeared
in Erickson (1985, 1992, 1996, 1997), Chintagunta and Vilcassim (1992, 1994),
Mesak and Darrat (1993), Chintagunta and Jain (1995), Mesak and Calloway
(1995), Fruchter and Kalish (1997, 1998), and Fruchter et al. (2001). Dynamics
are estimated from empirical data and open-loop and feedback advertising tra-
jectories determined. A comparison of the costs incurred by following each of
these trajectories, using observed advertising expenditures, gives a clue of which
type of strategy provides the better fit (Chintagunta and Vilcassim 1992). An
alternative approach assumes that observed advertising expenditures and market
shares result from decisions made by rational players in a game. The question then is
whether prescriptions derived from the game are consistent with actual advertising
behavior. Some researchers found that feedback strategies provide the better fit to

4Letting sales appear as
p

S instead of linearly turns out to be mathematically expedient, cf. Sorger
(1989).
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observed advertising expenditures. This suggests that firms – not unlikely – act upon
information conveyed by observed market shares when deciding their advertising
expenditures.

Remark 1. The following dynamics are a pricing variation on the Lanchester model:

PXi .t/ D gj .pj .t//Xj .t/ � gi .pi .t//Xi .t/

where pi .t/ is the consumer price charged by firm i: Function gi .pi / takes positive
values and is convex increasing for pi > Npi : If pi � Npi (i.e., price pi is “low”),
then gi .pi / D 0 and firm i does not lose customers to firm j: If pi exceeds Npi ; firm
i starts losing customers to firm j: Note that it is a high price of firm i which drives
away its customers. It is not a low price that attracts customers from the competitor.
This hypothesis is the “opposite” of that in the Lanchester advertising model where
advertising efforts of a firm attract customers from the rival firms: They do not affect
the firm’s own customers. See Feichtinger and Dockner (1985).

2.3 Vidale-Wolfe (V-W) Models

The model of Vidale and Wolfe (1957) describes the evolution of sales of a
monopolistic firm. It was extended by Deal (1979) to a duopoly:

PSi .t/ D ˇi ai .t/Œm � S1.t/ � S2.t/� � ıi Si .t/

in which m is a fixed market potential (upper limit of industry sales). The first
term on the right-hand side reflects that advertising of firm i increases its sales
by inducing some potential buyers, represented by the term m � S1.t/ � S2.t/; to
purchase its brand: The decay term ıi Si .t/ models a loss of sales which occurs
when some of the firm’s customers stop buying its product. These customers leave
the market for good, i.e., they do not switch to firm j: Deal characterized an open-
loop Nash equilibrium (OLNE).

In the V-W model, sales of firm i are not directly affected by advertising efforts
of firm j (in contrast to the Lanchester model). This suggests that a V-W model
would be most appropriate in markets where firms – through advertising effort –
can increase their sales by capturing a part of untapped market potential. It may
happen that the market potential grows over time; this can be modeled by assuming
a time-dependent market potential, m.t/; cf. Erickson (1995b).

Wang and Wu (2001) suggested a straightforward combination of the model
of Deal (1979) and the basic Lanchester model.5 Then the dynamics incorporate
explicitly the rival firm’s advertising effort. The authors made an empirical study

5An early contribution that combined elements of Lanchester and V-W models is Leitmann and
Schmitendorf (1978); see also Jørgensen et al. (2010).
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in which sales dynamics are estimated and compared to state trajectories generated
by the Lanchester model. Data from the US cigarette and beer industries suggest
that the Lanchester model may apply to a market which has reached a steady state.
(Recall that the Lanchester model assumes a fixed market potential.) The combined
model of Wang and Wu (2001) seems to be more appropriate during the transient
market stages.

2.4 New-Product Diffusion Models

Models of this type describe the adoption process of a new durable product in
a group of potential buyers. A good example is electronic products. The market
potential may be fixed or could be influenced by marketing efforts and/or exogenous
factors (e.g., growing consumer incomes). When the process starts out, the majority
of potential consumers are unaware of the new product, but gradually awareness
is created and some consumers purchase the product. These “early adopters” (or
“innovators”) are supposed to communicate their consumption experiences and
recommendations to non-adopters, a phenomenon known as “word of mouth.” With
the rapidly increasing popularity of social media, word-of-mouth communication is
likely to become an important driver of the adoption process of new products and
services.

The seminal new-product diffusion model is Bass (1969) who was concerned
primarily with modeling the adoption process. Suppose that the seller of a product
is a monopolist and the number of potential buyers, m; is fixed. Each adopter buys
one and only one unit of the product. Let Y .t/ 2 Œ0; m� represent the cumulative
sales volume by time t: Bass suggested the following dynamics for a new durable
product, introduced at time t D t0:

PY .t/ D �Œm � Y .t/� C �
Y .t/

m
Œm � Y .t/�; Y .t0/ D 0:

The first term on the right-hand side represents adoptions made by “innovators.” The
second term reflects adoptions by “imitators” who communicate with innovators.
The model features important dynamic demand effects such as innovation, imita-
tion, and saturation. The latter means that the fixed market potential is gradually
exhausted.

In the Bass model, the firm cannot influence the diffusion process as the model
is purely descriptive. Later on, new-product diffusion models have assumed that
the adoption process is influenced by one or more marketing instruments, typically
advertising and price. For a monopolist firm, Horsky and Simon (1983) suggested
that innovators are influenced by advertising:

PY .t/ D Œ� C ˇ ln a.t/� Œm � Y .t/� C �
Y .t/

m
Œm � Y .t/�
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where the effect of advertising is represented by the term ˇ ln a.t/: Using the
logarithm implies that advertising is subject to decreasing returns to scale.

Later on, the Bass model has been extended to multi-firm competition and studied
in a series of papers using differential games. Early examples of this literature are
Teng and Thompson (1983, 1985). Dockner and Jørgensen (1992) characterized an
OLNE in a game with alternative specifications of the dynamics. One example is

PY .t/ D Œ� C ˇ ln ai .t/ C �Z.t/� Œm � Z.t/�

where Z.t/ , Y1.t/ C Y2.t/ denotes industry cumulative sales. Equilibrium adver-
tising rates decrease over time, a result which carries over from the monopoly case
(cf. Horsky and Simon 1983). The reader should note that decreasing advertising
rates often are driven by (i) the saturation effect – due to the fixed and finite market
potential – and/or (ii) the absence of salvage values in the objective functionals.

New-product diffusion models have been studied with prices instead of advertis-
ing efforts as decision variables. An example is Breton et al. (1997) who studied a
discrete-time dynamic game.

2.5 Advertising Goodwill Models

Most brands enjoy some goodwill among consumers – although some brands may
suffer from negative goodwill (badwill). Goodwill can be created, for example,
through good product or service quality, a fair price or brand advertising. Our focus
here is on advertising.

The seminal work in the area is Nerlove and Arrow (1962) who studied a single
firm’s dynamic optimization problem. Goodwill is modeled in a simple way, by
defining a state variable termed “advertising goodwill.” This variable represents a
stock and summarizes the effects of current and past advertising efforts. Goodwill,
denoted G.t/; evolves over time according to the simple dynamics

PG.t/ D 	a.t/ � ıG.t/

that have a straightforward interpretation. The first term on the right-hand side
is the firm’s gross investment in goodwill; the second term reflects decay of
goodwill. Hence the left-hand side of the dynamics represents net investment in
goodwill.

Note that omitting the decay term ıG.t/ has an interesting strategic implication.
When the firm has accumulated goodwill to a certain level, it is locked in and has
two choices only: it can continue to build up goodwill or keep the goodwill level
constant. The latter happens if the advertising rate is chosen as a.t/ D ıG.t/=	;

i.e., the advertising rate at any instant of time is proportional to the current goodwill
level.
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It is a simple matter to extend the Nerlove-Arrow (N-A) dynamics to an
oligopolistic market. The goodwill stock of firm i; Gi .t/, then evolves according to
the dynamics PGi .t/ D ai .t/ � ıGi .t/: Fershtman (1984) identified an OLNE where
– not surprisingly – equilibrium advertising strategies mimic those in Nerlove and
Arrow (1962).

The N-A model has been employed in various contexts. We present two
illustrations.

Example 2. Chintagunta (1993) posed the following question: How sensitive are
a firm’s profits to deviations from equilibrium advertising strategies? After having
characterized an OLNE, goodwill dynamics were estimated using data for a pre-
scription drug manufactured by two firms in the US pharmaceutical industry. Then
estimates of equilibrium advertising paths can be made. Numerical simulations
suggested, for a quite wide range of parameter values, that profits are not particularly
sensitive to deviations from equilibrium advertising levels.6

Example 3. Buratto and Zaccour (2009) analyzed a Stackelberg game played
between a licensor (the leader) and a licensee (the follower), operating in the fashion
industry. The dynamics are variations of the N-A model and a time-consistent open-
loop Stackelberg equilibrium (OLSE) was characterized. Time-consistency means
that the leader has no incentive to deviate from its announced policy: This makes
the announcement credible.7 Coordination of advertising efforts can be achieved if
the licensor uses an incentive strategy which is designed in such a way that if the
licensee sticks to its part of the cooperative agreement, the licensor will do the same
(and vice versa).

As we shall see in Sect. 4, the N-A dynamics have been popular in differential
games played by the firms forming a marketing channel (supply chain).

3 Pricing Games

3.1 Introduction

In the area of pricing, a variety of topics have been studied, for example, pricing
of new products and the effects of cost experience and demand learning (word of
mouth) on pricing strategies. In Sect. 4 we look at the determination of wholesale
and retail prices in a marketing channel.

6This phenomenon, that a profit function is “flat,” has been observed elsewhere. One example is
Wilson’s formula in inventory planning.
7Most often, an OLSE is not time-consistent and the leader’s announcement is incredible. The
problem can be fixed if the leader precommits to its announced strategy.
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Cost experience (or cost learning) is a feature of a firm’s production process
that should be taken into consideration when a firm decides its pricing strategy. In
particular, cost experience has been incorporated in models of new-product adoption
processes. The meaning of cost experience is that the unit production cost of a
product decreases with cumulative output, i.e., there is a learning-by-doing effect.
This applies both to the production of a product and the provision of a service.
Formally, let Yi .t/ represent cumulative output by time t and ci .Yi / be a function
the values of which determine the unit production cost: Cost experience means
that c0

i .Yi / < 0; i.e., the unit cost decreases as cumulative output increases. This
phenomenon has a long history in manufacturing and has been observed in many
industries.

3.2 Demand Learning

The demand learning phenomenon (diffusion effect, word of mouth) was defined in
Sect. 2. Let pi .t/ be the consumer price charged by firm i: Dockner and Jørgensen
(1988a) studied various specifications of sales rate dynamics, for example the
following:

PYi .t/ D
�
˛i � ˇi pi .t/ C 	

�
pj .t/ � pi .t/

��
f .Yi .t/ C Yj .t// (20.1)

where Yi .t/ denotes cumulative sales and f is a function taking positive values. The
“price differential” term pj .t/�pi .t/ is somewhat extreme: if the price pj .t/ is one
cent higher than pi .t/; sales of firm i increase.8 Dockner and Jørgensen identified
an OLNE. It was shown that if f 0 < 0; and under a certain assumption, equilibrium
prices are decreasing for all t . A similar result was obtained by Kalish (1983) in the
case of a monopoly which illustrates the lack of strategic interaction in an OLNE.
Dockner and Gaunersdorfer (1996) used the dynamics in (20.1) with f .Yi .t/ C

Yj .t// D m � ŒY1 .t/ C Y2 .t/�:

A strategy of decreasing prices is known as “skimming.” The idea is to exploit the
segment of customers who are first in the market because these customers often have
the highest willingness to pay. Later on, as firms benefit from cost learning, prices
can be lowered to reach new customer segments. A good example is the marketing
of electronic goods and household appliances where we see that new products often
are introduced at a high price.

Models that incorporate demand learning have been used in various contexts.
Here are two examples:

Example 4. Minowa and Choi (1996) analyzed a model in which each firm sells
two products, one primary and one secondary (or contingent) product. The latter is
useful only if the consumer has the primary product. This is a multiproduct problem

8See also Eliashberg and Jeuland (1986).
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with a diffusion process (including demand learning) of a contingent product that
depends on the diffusion process of the primary product.

Example 5. Breton et al. (1997) studied a Stackelberg differential game. Let the
leader and follower be represented by subscripts l and f; respectively, such that
i 2 fl; f g. The dynamics are (cf. Dockner and Jørgensen 1988a)

PYi .t/ D
�
˛i � ˇi pi .t/ C 	.pj .t/ � pi .t//

�
ŒAi C Bi Yi .t/�

�
m � Yl.t/ � Yf .t/

�
:

Cost experience effects are included and the end result is that the model is quite
complex. An FSE is not analytically tractable, but numerical simulations suggest
that prices decline over time and the firm with the lowest cost charges the lowest
price. The shape of price trajectories seems to be driven mainly by cost experience.

3.3 Government Subsidies of New Technologies

As is well known, governments spend money on a multitude of activities. In some
cases, government funds are granted with the purpose of influencing the behavior
of citizens in one way or another. A specific situation is where a government offers
a price subsidy to consumers if they are willing to adopt a new technology. A good
example is “green energy” such as natural gas, wind power, and solar energy. In
Denmark, for instance, all three types of green energy are subsidized. There are
two main reasons why a government wishes to accelerate the adoption of such
technologies:

1. Increased usage of the technology is believed to benefit of the environment.
2. With increased usage, manufacturers of the technology should benefit from lower

unit production costs, due to cost experience effects. This should, in turn induce
manufacturers to lower their consumer prices.

Note that consumers stand to benefit twofold: They pay a lower price to the
manufacturer and receive a government subsidy.

A seminal paper in the area is Kalish and Lilien (1983) who posed the govern-
ment’s problem as one of optimal control (manufacturers of the new technology are
not decision-makers in a game). Building on this work, Zaccour (1996) considered
an initial stage of the life cycle of a new technology where there still is only
one firm in the market. Firm and government play a differential game in which
government chooses a subsidy rate s.t/, while the firm decides a consumer price
p.t/. Government commits to a subsidy scheme, specified by the time path s.�/;

and has allocated a fixed budget to the program. Its objective is to maximize the
total number of units, denoted Y .T /; that have been sold by time T: The sales rate
dynamics are

PY .t/ D exp f�˛.1 � s.t//p.t/g h.Y .t//
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in which h is a function taking positive values. If h0 < 0 (i.e., there are saturation
effects), the subsidy increases, while the consumer price decreases over time. Both
are beneficial for the diffusion of the new technology. If h0 > 0 (i.e., there are
demand learning effects), the subsidy is decreasing. This makes sense because less
support is needed to stimulate sales and hence production.

With a view to what happens in real life, it may be more plausible to assume
that government is a Stackelberg leader who acts first and announces its subsidy
program. Then the firm makes its decision. This was done in Dockner et al. (1996)
using the sales dynamics PY .t/ D f .p.t// Œm � Y .t/� in which f 0.p/ < 0: In
an FSE, the consumer price is nonincreasing over time if players are sufficiently
farsighted, a result which is driven by the saturation effect.

The reader may have noticed some shortcomings of the above models. For
example, they disregard that existing technologies are available to consumers, gov-
ernment has only one instrument (the subsidy) at its disposal, firm and government
have same time horizon, and the government’s budget is fixed. Attempts have been
made to remedy these shortcomings. We give two illustrations:

Example 6. In Jørgensen and Zaccour (1999b), government is a Stackelberg leader
who offers a price subsidy to consumers and commits to buying from the man-
ufacturer a number of units of the new technology for its own use. The option
of consumers buying an existing technology is also accounted for. It turns out, in
equilibrium, that the subsidy and the consumer price decrease at the same rate. This
implies that the net consumer price remains the same over time. The program thus is
fair, in the sense that a customer pays the same net price no matter when the product
is bought. Janssens and Zaccour (2014) assumed that the firm and government have
different time horizons and the government’s budget is seen as a flexible instrument
(rather than a fixed constraint) with which government can attain a desired target
level of the consumer price.

3.4 Entry of Competitors

In problems where an incumbent firm faces potential entry of competitors, the latter
should be viewed as rational opponents and not as exogenous decision-makers who
implement predetermined actions. A first attempt to do this in a dynamic setup was
Lieber and Barnea (1977) in which an incumbent firm sets the price of its product
while competitors invest in productive capacity. The authors viewed, however, the
problem as an optimal control problem of the incumbent, supposing that potential
entrants believe that the incumbent’s price remains constant. Jørgensen (1982b)
and Dockner (1985) solved the problem as a differential game, and Dockner and
Jørgensen (1984) extended the analysis to Stackelberg and cooperative differential
games. These analyses concluded that – in most cases – the incumbent should
discourage entry by decreasing its price over time.

A more “intuitive” representation of the entry problem was suggested in Eliash-
berg and Jeuland (1986). A monopolist (firm 1) introduces a new durable product,
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anticipating the entry of a competitor (firm 2). The planning period of firm 1 is
Œt0; T2� and that of firm 2 is ŒT1; T2� where T1 is the known date of entry: (An obvious
modification here would be to suppose that T1 is a random variable.) Sales dynamics
in the two time periods are, indexing firms by i D 1; 2 W

PY1.t/ D Œ˛1 � ˇ1p1.t/� Œm � Y1.t/� ; Y1.t0/ D Y2.t0/ D 0; t 2 Œt0; T1�

PYi .t/ D
�
˛i � ˇi pi .t/ C 	.pj .t/ � pi .t//

�
Œm � Z.t/� ; Y2.T1/ D 0; t 2 ŒT1; T2�

where Z.t/ , Y1.t/ C Y2.t/: Three types of incumbents are considered:

• The non-myopic monopolist correctly predicts entry at T1 and has planning
horizon T2 > T1.

• The myopic monopolist disregards the duopoly period and has planning horizon
T1.

• The surprised monopolist has planning horizon T2 but does not foresee entry at
T1 < T2.

It turns out that in an OLNE, the myopic monopolist sets a higher price than a
non-myopic monopolist. This is the price paid for being myopic because a higher
price decreases sales and hence leaves a higher untapped market open to the entrant.
The surprised monopolist charges a price that lies between these two prices.

The next two papers consider entry problems where firms control both advertis-
ing efforts and consumer prices. Fershtman et al. (1990) used the N-A dynamics and
assumed that one firm has an advantage from being the first in a market. Later on, a
competitor enters but starts out with a higher production cost. However, production
costs of the two firms eventually will be the same. Steady-state market shares were
shown to be affected by the order of entry, the size of the initial cost advantage, and
the duration of the monopoly period. Chintagunta et al. (1993) demonstrated that
in an OLNE, the relationship between advertising and price can be expressed as a
generalization of the “Dorfman-Steiner formula” (see, e.g., Jørgensen and Zaccour
2004, pp. 137–138). Prices do not appear in N-A dynamics which make their role
less significant.

Remark 2. Xie and Sirbu (1995) studied entry in a type of market not considered
elsewhere. The market is one in which there are positive network externalities which
means that a consumer’s utility of using a product increases with the number of
other users. Such externalities typically occur in telecommunication and internet
services. To model sales dynamics, a diffusion model was used, assuming that
market potential is a function of consumer prices as well as the size of the installed
bases of the duopolists’ products. The authors asked questions like: Will network
externalities give market power to the incumbent firm? Should an incumbent permit
or prevent compatibility when a competitor enters? How should firms set their
prices?
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3.5 Other Models of Pricing

Some models assume that both price and advertising are control variables of a
firm. A seminal paper, Teng and Thompson (1985), considered a game with new-
product diffusion dynamics. For technical reasons, the authors focused on price
leadership which means that there is only one price in the market, determined by
the price leader (typically, the largest firm). OLNE price and advertising strategies
were characterized by numerical methods. See also Fershtman et al. (1990) and
Chintagunta et al. (1993).

Krishnamoorthy et al. (2010) studied a durable-product oligopoly. Dynamics
were of the V-W type, without a decay term:

PYi .t/ D 	i ai .t/Di .pi .t//
p

m � .Y1.t/ C Y2.t// (20.2)

where the demand function Di is linear or isoelastic. FNE advertising and pricing
strategies were determined. The latter turn out to be constant over time. In Helmes
and Schlosser (2015), firms operating in a durable-product market decide on prices
and advertising efforts. The dynamics are closely related to those in Krishnamoorthy
et al. (2010). Helmes and Schlosser specified the demand function as Di .pi / D

p
�"i

i where "i is the price elasticity of product i . The authors looked for an FNE,
replacing the square root term in the dynamics in (20.2) by general functional forms.

One of the rare applications of stochastic differential games is Chintagunta
and Rao (1996) who supposed that consumers derive value (or utility) from the
consumption of a particular brand. Value is determined by (a function of) price; the
aggregate level of consumer preference for the brand; and a random component: The
authors looked for an OLNE and focused on steady-state equilibrium prices. Given
identical production costs, a brand with high steady-state consumer preferences
should set a high price which is quite intuitive. The authors used data from two
brands of yogurt in the USA to estimate model parameters. Then steady-state prices
can be calculated and compared to actual (average) prices, to see how much firms
“deviated” from steady-state equilibrium prices prescribed by the model.

Gallego and Hu (2014) studied a two-firm game in which each firm has a fixed
initial stock of perishable goods. Firms compete on prices. Letting Ii .t/ denote the
inventory of firm i , the dynamics are

PIi .t/ D �di .t; p.t//; Ii .t0/ D C

where di is a demand function, p.t/ the vector of prices, and C > 0 a fixed
initial inventory. OLNE and FNE strategies were identified. Although this game is
deterministic, it may shed light on situations where demand is random. For example,
given that demand and supply are sufficiently large, equilibria of the deterministic
game can be used to construct heuristic policies that would be asymptotic equilibria
in the stochastic counterpart of the model.
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4 Marketing Channels

4.1 Introduction

A marketing channel (or supply chain) is a system formed by firms that most often
are independent businesses: suppliers, a manufacturer, wholesalers, and retailers.
The last decades have seen a considerable interest in supply chain management
that advocates an integrated view of the system. Major issues in a supply chain
are how to increase efficiency by coordinating decision-making (e.g., on prices,
advertising, and inventories) and information sharing (e.g., on consumer demand
and inventories). These ideas are not new: The study of supply chains has a long
tradition in marketing literature.

Most differential game studies of marketing channels assume a simple structure
having one manufacturer and one retailer, although extensions have been made
to account for vertical and horizontal competition or cooperation. Examples are
a channel consisting of a single manufacturer and multiple (typically competing)
retailers or competition between two channels, viewed as separate entities.

Decision-making in a channel may be classified as uncoordinated (decentralized,
noncooperative) or coordinated (centralized, cooperative). Coordination means that
channel members make decisions (e.g., on prices, advertising, inventories) that will
be in the best interest for the channel as an entity.9 There are various degrees
of coordination, ranging from coordinating on a single decision variable (e.g.,
advertising) to full coordination of all decisions. The reader should be aware that
formal – or informal – agreements to cooperate by making joint decisions (in fact,
creating a cartel) are illegal in many countries. More recent literature in the area has
studied if coordination can be achieved without making such agreements.

A seminal paper by Spengler (1950) identified “the double marginalization
problem” which illustrates lack of coordination. Suppose that a manufacturer sets
the transfer (wholesale) price by adding a profit margin to the unit production cost.
Subsequently, a retailer sets the consumer price by adding a margin to the transfer
price. It is readily shown that the consumer price will be higher and hence consumer
demand lower, than if channel members had coordinated their price decisions. The
reason is that in the latter case, one margin only would be added.

In the sequel, unless explicitly stated, state equations are the N-A advertising
goodwill dynamics (or straightforward variations on that model). We consider the
most popular setup, a one-manufacturer, one-retailer channel, unless otherwise
indicated.

9It may happen that, say, a manufacturer has a strong bargaining position and can induce the
other channel members to make decisions such that the payoff of the manufacturer (not that of
the channel) is maximized.
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4.2 Channel Coordination

4.2.1 Full Cooperation
Full cooperation is understood to mean that channel members wish to maximize
channel profits. Firms remain independent, but act as one firm.10 The literature
on this issue mainly deals with situations in which channel members decide on
advertising efforts, the wholesale, and the consumer prices. The problem is to induce
channel members to make decisions that lead to maximization of the joint profits.

Models with Advertising and Pricing
Chintagunta and Jain (1992) considered a channel in which both manufacturer
and retailer advertise. Firms play OLNE strategies if they do not coordinate their
advertising efforts. It is shown that firms use more advertising effort if they
cooperate and this generates higher channel profits. These results are intuitive and
have often been noted in the literature. In Jørgensen and Zaccour (1999a) firms
decide their respective advertising efforts. The consumer price is set by the retailer,
the transfer price by the manufacturer. In an FNE, the consumer price is higher
than the one which is charged under full cooperation. This is an illustration of the
double marginalization phenomenon. It turns out that for all t; instantaneous channel
profits under cooperation are higher than those without cooperation which gives an
incentive to cooperate at any time during the play of the game.

In the pricing models that we have presented above, the consumer price has an
instantaneous influence on the dynamics and the profit functionals. To allow for
longer-term (“carry-over”) effects of retail pricing, Zhang et al. (2012) included a
consumer reference price, denoted R.t/:11 The hypothesis is that the reference price
can be (positively) affected by channel member advertising. The consumer price p

is assumed constant. Reference price dynamics are given by

PR.t/ D ˇ.p � R.t// C �mA.t/ C �ra.t/ (20.3)

where A.t/ and a.t/ are advertising efforts of manufacturer and retailer, respec-
tively. (N-A goodwill dynamics are also a part of the model.) The manufacturer
is a Stackelberg leader who determines the rate of advertising support to be given
to the retailer. The paper proposes a “nonstandard” coordination mechanism: Each
channel member subsidizes advertising efforts of the other member.

In Martín-Herrán and Taboubi (2015) the consumer reference price is an
exponentially weighted average of past values of the actual price p.t/; as in (20.3),
but without the advertising terms on the right-hand side. Two scenarios were

10An extreme case is vertical integration where channel members merge and become one firm.
11The meaning of a reference price is the following. Suppose that the probability that a consumer
chooses brand X instead of brand Y depends not only on the current prices of the brands but also
on their relative values when compared to historic prices of the brands. These relative values, as
perceived by the consumer, are called reference prices. See, e.g., Rao (2009).
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treated: vertical integration (i.e., joint maximization) and a Stackelberg game with
manufacturer as the leader. It turns out that – at least under certain circumstances –
there exists an initial time period during which cooperation is not beneficial.

Models with Pricing Only
Chiang (2012) focused on a durable product. Retail sales dynamics are of the “new-
product diffusion” variety, with a price-dependent market potential and saturation
effects only:

PY .t/ D ˛ Œm � p.t/ � Y .t/�

where Y .t/ represents cumulative sales and p.t/ the consumer price, set by the
retailer. The term m�p.t/ is the market potential being linearly decreasing in price.
The manufacturer sets the wholesale price: OLNE, FNE, and myopic equilibria are
compared to the full cooperation solution.12 A main result is that both channel
members are better off, at least in the long run, if they ignore the impact of current
prices on future demand and focus on intermediate-term profits.

Zaccour (2008) asked the question whether a two-part tariff can coordinate a
channel. A two-part tariff determines the wholesale price w as w D c C k=Q.t/

where c is the manufacturer’s unit production cost and Q.t/ the quantity ordered by
the retailer. The idea of the scheme clearly is to induce the retailer to order larger
quantities since this will diminish the effect of the fixed ordering (processing) cost
k. In a Stackelberg setup with manufacturer as leader, the answer to the question is
negative: A two-part tariff will not enable the leader to impose the full cooperation
solution even if she precommits to her part of that solution.

4.2.2 Partial Cooperation
In situations where full cooperation (joint profit maximization) is not an option, an
obvious alternative is to cooperate partially. For such cooperation to be acceptable,
it should at least be profit improving for both channel members. A pertinent
research question then is whether there exist coordination schemes that fulfill this
requirement. The answer is yes.

An example is cooperative advertising which is an arrangement where a
manufacturer pays some (or all) of the costs incurred by the retailer who advertises
locally to promote the manufacturer’s product. In addition, the manufacturer may
advertise nationally (at her own expense). The terms “local” and “national” refer
to the type of media that are used for advertising. Local advertising most often
has short-term, promotional purposes, while national advertising has a longer-term
objective: to maintain or enhance brand loyalty.

12Myopic behavior means that a decision-maker disregards the dynamics when solving her
dynamic optimization problem.
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We give below some examples of problems that have been addressed in the area
of cooperative advertising. In the first example, the manufacturer has the option of
supporting the retailer by paying some (or all) of her advertising costs.

Example 7. In Jørgensen et al. (2000) each channel member can use long-term
(typically, national) and/or short-term (typically, local) advertising efforts. The
manufacturer is a Stackelberg leader who chooses the shares that she will pay of
the retailer’s costs of the two types of advertising. Four scenarios are studied: (i) no
support at all, (ii) support of both types of retailer advertising, support of (iii) long-
term advertising only, and (iv) support of short-term advertising only. It turned out
that both firms prefer full support to partial support which, in turn, is preferred to no
support.

Most of the literature assumes that any kind of advertising has a favorable
impact on goodwill. The next example deals with a situation in which excessive
retailer promotions may harm the brand goodwill. The question then is: Should a
manufacturer support retailer advertising?

Example 8. Jørgensen et al. (2003) imagined that frequent retailer promotions
might damage goodwill, for instance, if consumers believe that promotions are a
cover-up for poor product quality. Given this, does it make sense that the manu-
facturer supports retailer promotion costs? An FNE is identified if no advertising
support is provided, an FSE otherwise. An advertising support program is favorable
in terms of profits if (a) the initial goodwill level is “low” or (b) if this level is at an
“intermediate” level and promotions are not “too damaging” to goodwill.

The last example extends our two-firm channel setup to a setting with two
independent and competing retailers.

Example 9. Chutani and Sethi (2012a) assumed that a manufacturer is a Stackelberg
leader who sets the transfer price and supports retailers’ local advertising. Retailers
determine their respective consumer prices and advertising efforts as a Nash
equilibrium outcome in a two-player game. It turns out that a cooperative advertising
program, with certain exceptions, does not benefit the channel as such. Chutani and
Sethi (2012b) studied the same problem as the (2012a) paper. Dynamics now are a
nonlinear variant of those in Deal (1979), and the manufacturer has the option of
offering different support rates to retailers.13

13In practice it may be illegal to discriminate retailers, for example, by offering different advertising
allowances or quoting different wholesale prices.
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4.3 Channel Leadership

Most of the older literature assumed that the manufacturer is the channel leader but
we note that the last decades have seen the emergence of huge retail chains having
substantial bargaining power. Such retail businesses may very well serve as channel
leaders.

Leadership of a marketing channel could act as a coordinating device when a
leader takes actions that induce the follower to decide in the best interest of the
channel.14 A leader can emerge from exogenous reasons, typically because it is
the largest firm in the channel. It may also happen that a firm can gain leadership
endogenously, for the simple reason that such an outcome is desired by all channel
members. In situations like this, some questions arise: Given that leadership is
profitable at all, who will emerge as the leader? Who stands to benefit the most
from leadership? The following example addresses these questions.

Example 10. Jørgensen et al. (2001) studied a differential game with pricing and
advertising. The benchmark outcome, which obtains if no leader can be found, is
an FNE. Two leadership games were studied: one having the manufacturer as leader
and another with the retailer as leader. These games are played a la Stackelberg
and in each of them an FSE was identified. The manufacturer controls his profit
margin and national advertising efforts, while the retailer controls her margin and
local advertising efforts. In the retailer leadership game, the retailer’s margin turns
out be constant (and hence its announcement is credible). The manufacturer has
the lowest margin which might support a conjecture that a leader secures itself
the higher margin. In the manufacturer leadership game, the manufacturer does not
have the higher margin. Taking channel profits, consumer welfare (measured by the
level of the retail price), and individual profits into consideration, the answers to the
questions above are – in this particular model – that (i) the channel should have a
leader and (ii) the leader should be the manufacturer.

4.4 Incentive Strategies

Incentive strategies can be implemented in games with a leader as well as in games
without a leader. The idea probably originated in Stackelberg games where, if a
leader provides the right incentive to the follower, the latter can be induced to behave
in accordance with the leader’s objective. This illustrates the old adage: ‘If you wish
other people to behave in your own interest, then make them see things your way’
(Başar and Olsder 1995, p. 396). First we look at the original setup, i.e., games with
a leader.

14In less altruistic environments, a leader may wish to induce the follower to make decisions that
are in the best interest of the leader.
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4.4.1 Games with Leadership
Suppose that the manufacturer is the channel leader who wishes to induce the retailer
to act, not in the best interest of the leader, but in the best interest of the channel.
Then the retailer should be induced to choose the decisions prescribed for her by a
cooperative solution. We present two examples that illustrate how this can be done.

Example 11. Jørgensen and Zaccour (2003a) considered a game where aggregate
retailer promotions have negative effects on goodwill, cf. Jørgensen et al. (2003),
but in contrast to the latter reference, retailer promotions now have carry-over
effects. Retailers – who are symmetric – determine local promotional efforts, while
the manufacturer determines national advertising, denoted A.t/: The manufacturer
wishes to induce retailers to make promotional decisions according to the fully
cooperative solution and announces the incentive strategy

a.P /.t/ D Ac.t/ C �.t/ ŒP .t/ � Pc.t/� (20.4)

where P .t/ is aggregate retailer promotional effort and the subscript c refers to
cooperation. The strategy in (20.4) works as follows: if retailers do as they are
supposed to do, then we shall have P .t/ D Pc.t/ and the manufacturer will choose
A.t/ D Ac.t/. Technically, to find an equilibrium of the incentive game, retailers
determine their optimal promotion rates under the belief that the manufacturer will
act in accordance with (20.4). This provides P .�.t// and the manufacturer selects
the incentive coefficient �.t/ such that the optimal retailer promotion rate equals the
desired one, i.e., Pc.t/:

Example 12. In Jørgensen et al. (2006) a manufacturer is a Stackelberg leader
who wishes to induce a retailer to increase her local advertising. This can be
accomplished by implementing a promotion allowance scheme such that the
manufacturer pays an amount, denoted D.P /; per unit of retailer promotional effort
P .t/: The incentive strategy is

D.P /.t/ D �P .t/

where � is a constant to be determined by the manufacturer before the start of
the game. Two scenarios were considered. In the first, the manufacturer wishes the
retailer to behave in accordance with the full cooperation outcome. In the second, the
manufacturer is selfish and selects an incentive that will make the retailer maximize
the manufacturer’s profits.

4.4.2 Games Without Leadership
Even if there is no leader of the channel, incentive strategies may still be imple-
mented. The idea is as follows. Suppose that channel members agree upon a
desired outcome (e.g., the full cooperation solution) for the channel. Side payments
(e.g., advertising allowances paid to the retailer) are infeasible. Nevertheless, the
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desired outcome could be realized if channel members play according to equilibrium
incentive strategies. An incentive equilibrium has the following best-response
property: If firm j sticks to its incentive strategy, the best choice of firm i ¤ j

is to use its own incentive strategy. Unilateral deviations are not payoff improving
and the desired outcome is in equilibrium.

The following example shows how the fully cooperative solution can be imple-
mented as an incentive equilibrium. Other solutions than full cooperation can be
implemented as equilibrium outcomes provided that channel members can agree
that such a solution is the desired one.

Example 13. In Jørgensen and Zaccour (2003b) a manufacturer controls the transfer
price pM .t/ and national advertising effort aM .t/, while the retailer controls the
consumer price pR.t/ and local advertising effort aR.t/. As we have seen, an
incentive strategy makes the manufacturer’s decision dependent upon the retailer’s
decision and vice versa. Considering the advertising part, this can be done by using
the strategies

	M .aR/.t/ D ad
M .t/ C �M .t/

�
aR.t/ � ad

R.t/
�

	R.aM /.t/ D ad
R.t/ C �R.t/

�
aM .t/ � ad

M .t/
�

where �M .t/; �R.t/ are incentive parameters and the superscript d refers to the
desired solution. To find the incentive parameters, one needs to solve two optimal
control problems. (A similar procedure is used to determine the price incentive
strategies.) A main message of the paper is that channel coordination can be
achieved without a leader, using the above-incentive strategies. A related paper is
De Giovanni et al. (2015) who considered a supply chain where manufacturer and
retailer invest in a product recovery program.

4.5 Franchise Systems

A franchise system is a business model that may be thought of as a mixture of a
centralized and a decentralized channel. Typically, the franchisor offers a trademark
and supplies a standardized business format to be used by the franchisees. The latter
are obliged to follow the business procedures outlined in their franchise contract.
For instance, all franchisees must charge the same consumer price for a specific
product. The consumer prices essentially are set by the franchisor.

We provide two examples of franchising, dealing with advertising and service
provision in cooperative and noncooperative situations.

Example 14. Sigué (2002) studied a system with a franchisor and two franchisees.
The former takes care of national advertising efforts, while franchisees are in charge
of local advertising and service provision. Franchisees benefit from a high level
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of system goodwill, built up through national advertising and local service.15 Two
scenarios were examined. The first is a benchmark where a noncooperative game
is played by all three players and an FNE is identified. In the second, franchisees
coordinate their advertising and service decisions and act as one player (a coalition)
in a game with the franchisor. Also here an FNE is identified. It turns out that
cooperation among franchisees leads to higher local advertising efforts (which is
expected). If franchisees do not cooperate, free riding will lead to an outcome in
which less service than desirable is provided.

Example 15. Sigué and Chintagunta (2009) asked the following question: Who
should do promotional and brand-image advertising, respectively, if franchisor
and franchisees wish to maximize their individual profits? The problem was
cast as a two-stage game. First, the franchisor selects one out of three different
advertising arrangements, each characterized by its degree of centralization of
advertising decisions. Second, given the franchisor’s choice, franchisees decide
if they should cooperate or not. Martín-Herrán et al. (2011) considered a similar
setup and investigated, among other things, the effects of price competition among
franchisees.

Jørgensen (2011) applied an important element of a franchise system, viz.,
the contract, to the standard two-member marketing channel (not a franchise
system). A franchise contract includes as special cases the classic wholesale-
price contract, a two-part tariff (see above), and a revenue-sharing contract.16 The
retailer determines an ordering rate and the retail price, while the manufacturer
decides a production rate and the parameters of the contract that is offered to the
retailer. Contract parameters are time dependent and the contract period is finite.
Jørgensen characterized the fully cooperative solution and the selfish one in which
the manufacturer wishes to maximize her own profits.

4.6 National Brands, Store Brands, and Shelf Space

Competition among national and store brands, the latter also known as private labels,
is becoming more widespread. A store brand carries a name chosen by a retail chain
with the aim of creating loyalty to the chain. Store brands have existed for many

15Note that there may be a problem of free-riding if franchisees can decide independently on
service. The reason is that a franchisee who spends little effort on service gets the full benefit
of her cost savings but shares the damage to goodwill with the other franchisee.
16A revenue-sharing contract is one in which a retailer pays a certain percentage of her sales
revenue to the supplier who reciprocates by lowering the wholesale price. This enables the retailer
to order more from the supplier and be better prepared to meet demand. A classic example here
is Blockbuster, operating in the video rental industry, that signed revenue-sharing contracts with
movie distributors. These arrangements were very successful (although not among Blockbuster’s
competitors).
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years and recent years, as a consequence of the increasing power of retailer chains,
have seen the emergence of many new store brands.

Example 16. Amrouche et al. (2008a,b) considered a channel where a retailer sells
two brands: one produced by a national manufacturer and a private label. Firms set
their respective prices and advertise to build up goodwill. The authors identified
an FSE in the first paper and an FNE in the second. In the latter it was shown
that creating goodwill for both brands mitigates price competition between the two
types of brands. Karray and Martín-Herrán (2009) used a similar setup and studied
complementary and competitive effects of advertising.

A line of research has addressed the problem of how to allocate shelf space to
brands in a retail outlet. Shelf space is a scarce resource of a retailer who must
allocate space between brands. With the increasing use of private labels, the retailer
also faces a trade-off between space for national and for store brands. Martín-Herrán
et al. (2005) studied a game between two competing manufacturers (who act as
Stackelberg leaders) and a single retailer (the follower). The authors identified a
time-consistent OLSE. See also Martín-Herrán and Taboubi (2005), Amrouche and
Zaccour (2007).

4.7 The Marketing-Manufacturing Interface

Problems that involve multiple functional areas within a business firm are worth-
while addressing from a research point of view and from that of a manager. Some
differential game studies have studied problems lying in the intersection between
the two functional areas “marketing” and “manufacturing.” First we look at some
studies in which pricing and/or advertising games (as those encountered above) are
extended with the determination of production levels, expansion and composition of
manufacturing capacity, and inventories.

4.7.1 Production Capacity
A seminal paper by Thépot (1983) studied pricing, advertising goodwill creation,
and productive capacity expansion. Capacity dynamics follow the standard capital
accumulation equations

PKi .t/ D ui .t / � ıKi .t/

where Ki .t/ is capacity, ui .t / the gross investment rate, and ı a depreciation
factor. The author identified a series of advertising-investment-pricing regimes that
may occur as OLNE. Gaimon (1989) considered two firms that determine prices:
production rates and the levels and composition of productive capacity. Three games
were analyzed: one with feedback strategies, one with open-loop strategies, and
one in which firm i uses an open loop and firm j a feedback strategy. The type
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of strategy critically impacts the outcome of the game, and numerical simulations
suggest that feedback strategies are superior in terms of profit.

Next we consider a branch of research devoted to the two-firm marketing channel
(supply chain). The manufacturer chooses a production rate and the transfer price,
while the retailer decides the consumer price and her ordering rate. Manufacturer
and retailer inventories play a key role.

4.7.2 Production, Pricing, and Ordering
The following example focuses on decisions on transfer and consumer prices,
production, procurement (ordering), and inventories.

Example 17. Jørgensen (1986b) studied a supply chain where a retailer determines
the consumer price and the purchase rate from a manufacturer. The latter decides
a production rate and the transfer price: Both firms carry inventories, and the
manufacturer may choose to backlog retailer’s orders. OLNE strategies were
characterized. Eliashberg and Steinberg (1987) considered a similar setup and
looked for an OLSE with the manufacturer as leader.

Desai (1996) studied a supply chain in which a manufacturer controls the
production rate and the transfer price, while a retailer decides its processing (or
ordering) rate and the consumer price. It was shown that centralized decision-
making leads to a lower consumer price and higher production and processing rates,
results that are expected. The author was right in stressing that channel coordination
and contracting have implications, not only for marketing decisions but also for
production and ordering decisions.

Jørgensen and Kort (2002) studied a system with two serial inventories, one
located at a central warehouse and another at a retail outlet. A special feature is that
the retail inventory is on display in the outlet and the hypothesis is that having a large
displayed inventory will stimulate demand. The retail store manager determines
the consumer price and the ordering rate from the central warehouse. The central
warehouse manager orders from an outside supplier. The authors first analyzed a
noncooperative game played by the two inventory managers, i.e., a situation in
which inventory decisions are decentralized. Next, a centralized system was studied,
cast as the standard problem of joint profit maximization.

Eliashberg and Steinberg (1991) investigated the strategic implications of man-
ufacturers having different types of production and holding cost functions. The
production cost of firm 1, called a “production smoother,” is convex, inventory
holding costs are linear, and the firm determines production, inventory, and pricing
strategies. Production smoothing means that the firm aims at keeping the production
rate close to the ordering rate of the retailer, trying to escape the unfortunate
consequences of the convex production cost function. The production cost of firm 2,
called an “order taker,” is linear. Since this firm produces to order, it does not hold
inventory. The firm determines production and pricing strategies.
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4.7.3 Quality
Good design quality means that a product performs well in terms of durability and
ease of use and “delivers what it promises.” In Mukhopadhyay and Kouvelis (1997),
firm i controls the rate of change of the design quality, denoted ui .t /; of its product
as well as the product price pi .t/: Sales dynamics are given by a modified V-W
model:

PSi .t/ D ˛i Œm.t/ � Si .t/� � ıi Si .t/ C 	i Pm.t/

in which m.t/ is the market potential and the term 	i Pm.t/ is the fraction of new
customers who will purchase from firm i: A firm incurs (i) a cost of changing the
design quality as well as (ii) a cost of providing a certain quality level: In an OLNE,
two things happen during an initial stage of the game: firms use substantial efforts
to increase their quality levels as fast as possible and sales grow fast as prices are
decreased. Later on, the firms can reap the benefits of having products of higher
quality.

Conformance quality measures the extent to which a product conforms to design
specifications. A simple measure is the proportion of non-defective units produced
during some interval of time. In El Ouardighi et al. (2013), a manufacturer decides
the production rate, the rate of conformance quality improvement efforts, and
advertising. Two retailers compete on prices, and channel transactions follow a
wholesale price or a revenue-sharing contract.

Teng and Thompson (1998) considered price and quality decisions for a new
product, taking cost experience effects into account. Nair and Narasimhan (2006)
suggested that product quality, in addition to advertising, affects the creation of
goodwill in a duopoly.

5 Stochastic Games

As in other areas, the literature on stochastic games in marketing was preceded
by optimal control studies of monopolistic firms. Early work on such problems
includes Tapiero (1975), Sethi (1983), and Rishel (1985). See also the book by
Tapiero (1988).

The interest in games of marketing problems played under uncertainty has been
moderate. Among the rather few contributions are the following three:

Horsky (1988) studied a stochastic model of advertising competition with new-
product diffusion dynamics represented by a Markov decision process (discrete
state, continuous time). Firms can influence the transition probabilities through
their advertising efforts. The author identified an FNE with stationary advertising
strategies ai .Y1; Y2/, and numerical simulations suggested that advertising rates are
decreasing in Y1; Y2:

Chintagunta and Rao (1996) considered a stochastic game in which the dynamics
(representing consumer preferences) are deterministic, but the value of the firm’s
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brand depends on the aggregate consumer preference level, product price, and a
random term. They identified steady-state equilibrium prices.

Prasad and Sethi (2004) studied a stochastic differential game using a modified
version of the Lanchester advertising dynamics. Market share dynamics are given
by the stochastic differential equation

dXi D
�
ˇi ai

p
Xj � ˇj aj

p
Xi � ı.2Xi � 1/

�
dt C 


�
Xi ; Xj

�
d!i

in which the term ı.2Xi �1/ is supposed to model decay of individual market shares.
The fourth term on the right-hand side is white noise.

6 Doing the Calculations: An Example

The purpose of this section is, using a simple problem of advertising goodwill
accumulation, to show the reader how a differential game model can be formulated
and, in particular, analyzed: The example appears in Jørgensen and Gromova (2016).
Key elements are the dynamics (state equations) and the objective functionals, as
well as the identification of the relevant constraints. Major tasks of the analysis are
the characterization of equilibrium strategies and the associated state trajectories as
well as the optimal profits to be earned by the players.

Consider an oligopolistic market with three firms, each selling its own particular
brand. For simplicity of exposition, we restrict our analysis to the case of symmetric
firms. The firms play a noncooperative game with an infinite horizon. Let ai .t/ � 0

be the rate of advertising effort of firm i D 1; 2; 3 and suppose that the stock of
advertising goodwill of firm i; denoted Gi .t/; evolves according to the following
Nerlove-Arrow-type dynamics

PGi .t/ D �ai .t/I Gi .0/ , g0 > 0 (20.5)

Due to symmetry, advertising efforts of all firms are equally efficient (same value
of �/, and we normalize � to one. Note, in contrast to the N-A model in Sect. 2.5,
that the dynamics in (20.5) imply that goodwill cannot decrease: Once a firm has
accumulated goodwill up to a certain level, it is locked in. A firm’s only options
are to stay at this level (by refraining from advertising) or to continue to advertise
(which will increase its stock of goodwill).

The dynamics in (20.5) could approximate a situation in which goodwill stocks
decays rather slowly. As in the standard N-A model, the evolution of a firm’s
advertising goodwill depends on its own effort only. Thus the model relies on a
hypothesis that competitors’ advertising has no – or only negligible – impact on the
goodwill level of a firm.17

17A modification would be to include competitors’ advertising efforts on the right-hand side
of (20.5), affecting negatively the goodwill stock of firm i: See Nair and Narasimhan (2006).
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The following assumption is made for technical reasons. Under the assumption
we can restrict attention to strategies for which value functions are continuously
differentiable, and moreover, it will be unnecessary to explore the full state space of
the system.

Assumption 1. Initial values of the goodwill stocks satisfy g0 < ˇ=6 where ˇ is a
constant to be defined below.

Let si .t/ denote the sales rate; required to be nonnegative, of firm i . The sales
rate is supposed to depend on all three stocks of advertising goodwill:

si .t/ D fi .G.t// (20.6)

where G.t/ , .G1.t/; G2.t/; G3.t// : As we have seen, advertising of a firm does
not affect the evolution of goodwill of its rivals, but advertising of a firm affects its
own goodwill and therefore, through (20.6), the sales rates of all the firms in the
industry. As in, e.g., Reynolds (1991) we specify function fi as

fi .G/ D

"
ˇ �

3X
hD1

Gh

#
Gi (20.7)

where ˇ > 0 is the parameter referred to in Assumption 1. All firms must, for any
t > 0; satisfy the path constraints

3X
hD1

Gh.t/ � ˇ (20.8)

ai .t/ � 0:

Partial derivatives of function fi are as follows:

@fi

@Gi

D ˇ � 2Gi � Gj � Gk

@fi

@Gk

D �Gi ; k ¤ i:

Sales of a firm should increase when its goodwill increases, that is, we must require

ˇ � 2Gi � Gj � Gk > 0 for any t > 0: (20.9)

Negativity of @fi =@Gk means that the sales rate of firm i decreases if goodwill of
firm k increases.
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Having described the evolution of goodwill levels and sales rates, it remains to
introduce the economic components of the model. Let � > 0 be the constant profit
margin of firm i: The cost of advertising effort ai is

C .ai / D
c

2
a2

i

in which c > 0 is a parameter determining the curvature of the cost function.18 Let
� > 0 be a discounting rate, employed by all firms. The profit of firm i then is

Ji .ai / D

Z 1

0

e��t

(
�

"
ˇ �

3X
hD1

Gh.t/

#
Gi .t/ �

c

2
a2

i .t/

)
dt: (20.10)

Control and state constraints, to be satisfied by firm i for all t 2 Œ0; 1/; are as
follows:

ai .t/ � 0I ˇ > 2Gi .t/ C Gj .t/ C Gk.t/

where we note that the second inequality implies Gi .t/CGj .t/CGk.t/ < ˇ. Thus,
if sales fi increase as goodwill Gi increases, sales cannot be negative.

The model parameters are time independent and the planning horizon is infinite.
In such a problem, a standard approach in the literature has been to look for sta-
tionary equilibria. Stationarity means that advertising strategies and value functions
will not depend explicitly on time.

We suppose that firms cannot (or will not) cooperate when determining their
advertising efforts and hence consider a noncooperative game. In this game we
shall identify an FNE and let Vi .G/ be a continuously differentiable value function
of firm i . This function must solve the following Hamilton-Jacobi-Bellman (HJB)
equation:

�Vi .G/ D max
ai �0

8<
:�

2
4ˇ �

3X
j D1

Gj

3
5 Gi �

c

2
a2

i C
@Vi

@Gi

ai

9=
; : (20.11)

Performing the maximization on the right-hand side of (20.11) generates candidates
for equilibrium advertising strategies:

ai .G/ D

(
1
c

@Vi

@Gi
> 0 if @Vi

@Gi
> 0

0 if @Vi

@Gi
� 0

18A model with a linear advertising cost, say, cai and where ai on the right-hand side of the
dynamics is replace by, say

p
ai ; will provide the same results, qualitatively speaking, as the

present model. To demonstrate this is left as an exercise for the reader.
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which shows that identical firms use the same type of strategy. Inserting the
candidate strategies into (20.11) provides

Vi .G/ D
1

2�c

�
@Vi

@Gi

	2

C
�

�

2
4ˇ �

3X
j D1

Gj

3
5 Gi if ai > 0 (20.12)

Vi .G/ D
�

�

2
4ˇ �

3X
j D1

Gj

3
5 Gi if ai D 0

from which it follows that

Vi .G/ jai >0 �Vi .G/ jai D0D
1

2�c

�
@Vi

@Gi

	2

� 0:

If the inequality is strict, strategy ai > 0 payoff dominates strategy ai D 0, and all
firms will have a positive advertising rate throughout the game. If the equality sign
holds, any firm is indifferent between advertising and no advertising. This occurs iff
@Vi =@Gi D 0; a highly unusual situation in which a firm essentially has nothing to
decide.

We conjecture that the equation in the first line in (20.12) has the solution

Vi .G/ D ˛ C	AGi C
A

2
G2

i C.�AGi C 	B/ .Gj CGk/C
B

2
.G2

j CG2
k/C�BGj Gk

(20.13)

in which ˛; 	A; 	B; A; B; �A; �B are constants to be determined. From (20.13) we
get the partial derivatives

@Vi

@Gi

D 	A C AGi C �A.Gj C Gk/: (20.14)

Consider the HJB equation in the first line of (20.12) and calculate the left-hand side
of this equation by inserting the value function given by (20.13). This provides

�
�
˛ C 	AGi C 	B.Gj C Gk/ C

A

2
G2

i C
B

2
.G2

j C G2
k/

C �A.Gi Gj C Gi Gk/ C �BGj Gk

�
(20.15)

D
1

2
�AG2

i C ��AGi Gj C ��AGi Gk C �	AGi C
1

2
�BG2

j

C ��BGj Gk C �	BGj C
1

2
�BG2

k C �	BGk C ˛�
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Calculate the two terms on the right-hand side of the HJB equation:

1

2�c

�
@Vi

@Gi

	2

C
�

�

2
4ˇ �

3X
j D1

Gj

3
5 Gi (20.16)

D
1

2c

�
	A C AGi C �A.Gj C Gk/

�2
C �

�
ˇ �

�
Gi C Gj C Gk

��
Gi

D
1

2c
	2

AC
1

2c
2

AG2
i C

1

2c
�2

AG2
j C

1

2c
�2

AG2
k C

1

c
	AAGi C

1

c
	A�AGj C

1

c
	A�AGk

C
1

c
�2

AGj Gk C
1

c
A�AGi Gj C

1

c
A�AGi Gk

C �ˇGi � �G2
i � �Gi Gj � �Gi Gk:

Using (20.15) and (20.16) the HJB equation becomes

1

2
�AG2

i C ��AGi Gj C ��AGi Gk C �	AGi C
1

2
�BG2

j

C ��BGj Gk C �	BGj C
1

2
�BG2

k C �	BGk C ˛�

D
1

2c
	2

A C
1

2c
2

AG2
i C

1

2c
�2

AG2
j C

1

2c
�2

AG2
k C

1

c
	AAGi C

1

c
	A�AGj

C
1

c
	A�AGk C

1

c
�2

AGj Gk C
1

c
A�AGi Gj C

1

c
A�AGi Gk

C �ˇGi � �G2
i � �Gi Gj � �Gi Gk

To satisfy this equation for any triple
�
Gi ; Gj ; Gk

�
, we must have

Constant term W ˛c� D
1

2
	2

A

Gi � terms W �c	A D 	AA C �cˇ

Gj Gk � terms W �c	B D 	A�A

G2
i � terms W c�A D 2

A � 2c�

G2
j and G2

k � terms W �cB D �2
A

Gi Gj and Gi Gk � terms W �c�A D A�A � c�

Gj Gk � terms W �c�B D �2
A:

Disregarding ˛ (which follows from 	A/; the remaining equations admit a unique
solution
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	A D
ˇ

�p
c2�2 C 8c� � c�

�

4
> 0I 	B D �

ˇ
�
c� �

p
c2�2 C 8c�

�2

16c�
< 0

A D
c� �

p
c2�2 C 8c�

2
< 0I B D �B D

�
c� �

p
c2�2 C 8c�

�2

16c�
> 0

�A D
c� �

p
c2�2 C 8c�

4
< 0: (20.17)

It is easy to see that the solution passes the following test of feasibility (cf. Bass et al.
2005a). If the profit margin � is zero, the value function should be zero because the
firm has no revenue and does not advertise.

Knowing that B D �B; the value function can be rewritten as

Vi .G/ D ˛ C 	AGi C
A

2
G2

i C .�AGi C 	B/ .Gj C Gk/ C
B

2
.Gj C Gk/2:

Using (20.17) yields 	A D �ˇ�A and A D 2�A, and the value function has the
partial derivative

@Vi

@Gi

D 	A C AGi C �A.Gj C Gk/ D �A

�
2Gi C Gj C Gk � ˇ

�

which is positive because �A is negative and 2Gi C Gj C Gk < ˇ is imposed as a
state constraint.

It remains to determine the time paths generated by the equilibrium advertising
strategy and the associated goodwill levels. The advertising strategy is given by
a�

i .G/ D c�1@Vi =@Gi and therefore

a�
i .G/ D

�A

c

�
2Gi C Gj C Gk � ˇ

�
: (20.18)

Recalling the state dynamics PGi .t/ D ai .t/, we substitute a�
i .G/ into the dynamics

and obtain a system of linear inhomogeneous differential equations:

PGi .t/ D
2�A

c
Gi .t/ C

�A

c

�
Gj .t/ C Gk.t/

�
�

ˇ�A

c
: (20.19)

Solving the equation in (20.19) yields

Gi .t/ D exp



4 �A

c
t

� �
g0 �

ˇ

4

	
C

ˇ

4
(20.20)

which shows that the goodwill stock of firm i converges to ˇ=4 for t ! 1: Finally,
inserting Gi .t/ from (20.20) into (20.18) yields the time path of the equilibrium
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advertising strategy:

a�
i .t / D exp



4 �A

c
t

�
�A.4g0 � ˇ/

c
> 0:

Remark 3. Note that our calculations have assumed that the conditions g0 < ˇ=6

and, for all t; 2Gi .t/ C Gj .t/ C Gk.t/ < ˇ are satisfied. Using (20.20) it is easy to
see that the second condition is satisfied.

7 Conclusions

This section offers some comments on (i) the modeling approach in differential
games of marketing problems as well as on (ii) the use of numerical methods/algo-
rithms to identify equilibria. Finally, we provide some avenues for future work.

Re (i): Differential game models are stylized representations of real-life, multi-
player decision problems, and they rely – necessarily – on a number of simplifying
assumptions. Preferably, assumptions should be justified theoretically as well as
empirically. A problem here is that most models have not been validated empirically.
Moreover, it is not always clear if the problem being modeled is likely to be a
decision problem that real-life decision-makers might encounter. We give some
examples of model assumptions that may be critical.

1. Almost all of the models that have been surveyed assume deterministic consumer
demand. It would be interesting to see the implications of assuming stochastic
demand, at least for the most important classes of dynamics. Hint: In marketing
channel research, it could be fruitful to turn to the literature in operations and
supply chain management that addresses supply chain incentives, contracting,
and coordination under random consumer demand.

2. In marketing channel research, almost all contributions employed Nerlove-Arrow
dynamics (or straightforward modifications of these). The reason for this choice
most likely is the simplicity (and hence tractability) of the dynamics. It remains,
however, to be seen what would be the conclusions if other dynamics were
used. Moreover, most models consider a simple two-firm setup. A setup with
more resemblance to real life would be one in which a manufacturer sells
to multiple retailers, but this has been considered in a minority of models.
Extending the setup raises pertinent questions, for example, how a channel leader
can align the actions of multiple, asymmetric firms and if coordination requires
tempering retailer competition. Another avenue for new research would be to
study situations in which groups of retailers form coalitions, to stand united vis-
a-vis a manufacturer. The literature on cooperative differential games should be
useful here.

3. Many decisions in marketing affect, and are affected by, actions taken in
other functional areas: procurement, production, quality management, capacity
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investment and utilization, finance, and logistics. Only a small number of studies
have dealt with these intersections

4. Quite many works study games in which firms have an infinite planning horizon.
If, in addition, model parameters are assumed not to vary over time, analytical
tractability is considerably enhanced. Such assumptions may be appropriate in
theoretical work in mathematical economics but seem to be less useful if we insist
that our recommendations should be relevant to real-life managers – who must
face finite planning horizons and need to know how to operate in nonstationary
environments.

Re (ii): In dynamic games it is most often the case that when models become
more complex, the likelihood of obtaining complete analytical solutions (i.e., a full
characterization of equilibrium strategies, the associated state trajectories, and the
optimal profits of players) becomes smaller. In such situations one may resort to the
use of numerical methods. This gives rise to two problems: Is there an appropriate
method/algorithm and are (meaningful) data available.19

There exist numerical methods/algorithms to compute, given the data, equilib-
rium strategies and their time paths, the associated state trajectories, and profit/value
functions. For stochastic control problems in continuous time, various numerical
methods are available, see e.g., Kushner and Dupuis (2001), Miranda and Fackler
(2002), and Falcone (2006). Numerical methods designed for specific problems
are treated in Cardaliaguet et al. (2001, 2002) (pursuit games, state constraints).
Numerical methods for noncooperative as well as cooperative differential games
are dealt with in Engwerda (2005).

The reader should note that new results on numerical methods in dynamic
games regularly appear in Annals of the International Society of Dynamic Games,
published by Birkhäuser.

Example 18. Some studies resorted to numerical methods/algorithms to analyze
differential games with Lanchester dynamics. For instance, Breton et al. (2006)
identified an FSE (using data from the cola industry), while Jarrar et al. (2004)
characterized an FNE. Both papers employed the Lanchester advertising model. See
also Sadigh et al. (2012) who studied a problem of coordination of a two-member
marketing channel. See also Jørgensen and Zaccour (2007).

The differential game literature has left many problems of marketing strategy
untouched. In addition to what has already been said, we point to three:

1. The service sector is undoubtedly gaining increasing importance. However, the
provision of services has received little attention in the literature on differential

19We shall disregard “numerical examples” where solutions are characterized using more or less
randomly chosen data (typically, the values of model parameters).
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games in marketing. An introduction to service marketing and management can
be found in the handbook edited by Swartz and Iacobucci (2000).

2. E-Business shows substantial growth rates, but the area still has attracted little
attention from researchers working with differential games in marketing. An
introduction to marketing channels in the E-business era is provided by the
handbook edited by Simchi-Levi et al. (2004).

3. A broad range of instruments are available to the marketing manager who tries to
affect the decisions made by wholesalers, retailers, and consumers. The literature
has focused on a relatively small number of such instruments. For example, the
area of pricing is much broader than what our survey has shown. In real life we
see various types of price promotions toward consumers and retailers, and there
are interesting issues in, e.g., product line pricing, nonlinear pricing, advance
selling, and price differentiation. An introduction to pricing research in marketing
can be found in the handbook edited by Rao (2009).

The good news, therefore, are that there seems to be no shortage of marketing
problems awaiting to be investigated by dynamic game methods.
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Abstract

In this chapter, some applications of game theory in social network analysis
are presented. We first focus on the opinion dynamics of a social network.
Viewing the individuals as players of a game with appropriately defined action
(opinion) sets and utility functions, we investigate the best response dynamics
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and its variants for the game, which would in effect represent the evolution of
the individuals’ opinions within a social network. The action sets are defined
according to the nature of the opinions, which may be continuous, as for the
political beliefs of the individuals, or discrete, as for the type of technology
adopted by the individuals to use in their daily lives. The utility functions, on
the other hand, are to best capture the social behavior of the individuals such as
conformity and stubbornness. For every formulation of the game, we characterize
the formation of the opinions as time grows. In particular, we determine whether
an agreement among all of the individuals is reached, a clustering of opinions
occurs, or none of the said cases happens. We further investigate the Nash
equilibria of the game and make clear if the game dynamics converges to one
of the Nash equilibria. The rate of convergence to the equilibrium, if it is the
case, is also obtained. We then turn our attention to decision-making processes
(elections) in social networks, where a collective decision (social choice) must
be made by multiple individuals (voters) with different preferences over the
alternatives (candidates). We argue that the nonexistence of a perfectly fair
social choice function that takes all voter preferences into account leads to
the emergence of various strategic games in decision-making processes, most
notably strategic voting, strategic candidacy, and coalition formation. While the
strategic voting would be played among the voters, the other two games would
be played among the candidates. We explicitly discuss the games of strategic
candidacy and coalition formation.

Keywords
Game theory � Social networks � Opinion dynamics � Coordination games �

Potential games � Social choice � Strategic voting � Strategic candidacy �

Coalition formation

1 Introduction

Who should I vote for? What job should I choose? What smartphone should I buy
next? These are only a few out of a wide range of questions whose answers are
influenced significantly by different kinds of social networks surrounding us. Such
undebatable influences on everyone’s life have drawn attention to social networks
and their analysis from a diverse group of researchers including, but not limited
to, mathematicians, social scientists, social psychologists, physicists, and computer
scientists.

The introduction of game theory as an analytical tool to model and study social
behavior dates back to the 1950s. Jessie Bernard in her programmatic work (Bernard
1954) argues that game theory would in many ways contribute to sociology,
particularly in analysis of social conflict and social organization. Since Bernard’s
article, to this date employment of game theory by sociologists and other researchers
interested in social behavior has substantially grown. For a rather historical review
of the relationship between game theory and sociology, the interested reader is
referred to Swedberg (2001).
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This chapter is devoted to applications of game theory to two important concepts
in social networks with finite populations: opinion dynamics and social choice. As
we will see in this chapter, these two concepts are fundamentally different from a
game theoretic perspective, as one is associated with the evolution of the opinions
over an extended period of time, hence resembling a multistage process, while
the other one can be viewed a single-stage process. We further clarify these two
concepts below:

Opinion Dynamics. Every human being has her/his own views of different topics:
political views, religious views, etc. Engaged in conversations, people influence
each other’s opinions. As time goes by, they may reach an agreement about some
topics while split into separate opinion-alike groups about some other topics. An
agreement, as a type of social coordination, about a certain subject in a social
network refers to the convergence of evolving opinions held by the individuals of the
network about the subject. Another type of social coordination is clustering, that is
the convergence of individual opinions, but to possibly different limits. A clustering
thus corresponds to a partitioning of the entire group of individuals into several
subgroups such that within each subgroup an agreement is reached. To investigate
coordination in social networks, one has to first characterize how the individual
opinions evolve over time, i.e., the so-called opinion dynamics of the network. The
method by which the network dynamics is mathematically modeled varies according
to exclusive circumstances of the network as well as the subject of the opinions.

Social Choice. A social choice is a collective decision made by the individuals
in a social network through a decision-making process. Such a process, generally
known as election, is essentially designed for a social network to reach a decision
particularly in the absence of unanimity, that is, when a global agreement is not in
place. A must-have in an election is fairness to all the candidates and the voters.
However, the notion of fairness is as ill-defined as it is crucial. Very different
interpretations of fairness have led to various electoral systems or voting schemes
such as plurality, instant runoff, and Borda rules.

The objective of this chapter, as it pertains to opinion dynamics, is to analyze the
network’s opinion dynamics, particularly the asymptotic formation of the opinions,
via game theoretic approaches. We shall view the individuals as the players of a
game where the individuals’ opinions comprise the player actions. This game would
be played repeatedly among the individuals. A player’s utility function must then be
defined appropriately, in the sense that higher utilities are socially more desirable
for her. The communication structure of the social network must also be taken into
account that translates to a restricted information set for each player in the game. We
will refer to such a game as a coordination game1 since we are generally interested
in situations in which some type of coordination, such as agreement or clustering, is
achieved by the individual in the network. For various formulations of coordination

1This definition of coordination games is specific to this chapter and may be different from other
definitions used in the literature.
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games, we will establish whether the steady-state behavior of the game constitutes
agreement or clustering. Furthermore, we will characterize the Nash equilibria of
the game and determine whether the game dynamics converges to one of the Nash
equilibria. In case convergence occurs, the convergence rate is also of particular
interest. Our formulations of coordination games modeling the opinion dynamics of
a network are split into two parts: one addressing continuous opinions, as carried out
in Sect. 3, and the other one addressing discrete opinions, as carried out in Sect. 4.

Our discussion regarding the notion of social choice is covered in Sect. 5, where
we will first address the fairness of a social choice function by introducing several
fairness criteria. We will argue that no social choice function can meet all the
fairness criteria, which consequently makes it susceptible to strategic voting and
strategic candidacy. We will make explicit the game of strategic candidacy involved
in an election. Finally, we will investigate the game of coalition formation by the
candidates.

To fully comprehend the contents of this chapter, the reader is expected to be
familiar with basic concepts of game theory, graph theory, and probability theory.

2 A Review of Opinion Dynamics

Let P D fP1; : : : ;Png denote the group of individuals in a social network. For every
individual Pi 2 P , we model her opinion at a discrete time t � 0 as xi .t/ 2 Ai �

R
d , where d � 1 is a constant integer. The choice of Ai varies by the particular

problem under consideration. In Sect. 3, we shall deal with the case in which Ai s
are convex subsets of R

d , while in Sect. 4, it is assumed that Ai s are finite sets.
However, for the purposes of this section, we assume that d D 1, i.e., Ai D R,
although the arguments can be carried over to higher dimensional spaces.

Dynamics of a general opinion network, to determine the evolution of individual
opinions, is defined as follows.

Definition 1 (dynamics). Given a network of n individuals P1; : : : ;Pn, a dynamics
refers to a triplet .x; f; X0/ which satisfies:

(
x.t C 1/ D f

�
t; x.t/

�
; t � 0;

x.0/ D X0;
(21.1)

where:

(i) x.t/ 2 R
n, t � 0, denotes the opinion vector;

(ii) f .:; :/ W N [ f0g � R
n ! R

n is called an update rule; and
(iii) X02 R

n is the initial opinion vector.

A global agreement, or simply an agreement, within the social network is
formulated as follows.
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Definition 2 (agreement). Given a dynamics .x; f; X0/, agreement is said to be
achieved if for any X0 2 R

n, there exists a constant c 2 R such that:

lim
t!1

xi .t/ D c; 8Pi 2 P : (21.2)

Furthermore, one defines clustering as follows.

Definition 3 (clustering). Given a dynamics .x; f; X0/, clustering is said to have
occurred if for any X0 2 R

n, limt!1 xi .t/ exists for every individual Pi 2 P .

Notice that, according to Definition 3, agreement can be considered as a special
case of clustering when there is a single cluster. Coordination problems such as
agreement and clustering arise in many research areas. In biology, such problems
are seen in the emergent behavior of bird flocks, fish schools, etc. (Couzin et al.
2005; Cucker and Smale 2007; Flierl et al. 1999). Coordination models are designed
to interpret, analyze, and predict flocking aggregation behavior. In robotics and
control, coordination and cooperation of mobile agents have been studied (Jadbabaie
et al. 2003), which are of great importance in sensor networks for environmental
applications or space exploration. In sociology, the emergence of a common
language in primitive societies (Cucker et al. 2004) indicates the phenomenon of
reaching an agreement within a complex system. Coordination algorithms have
also been extensively studied within the computer science community (Lynch
1996) as well as the management science community (see DeGroot 1974 and
references therein). Applications in physics, biophysics, and neurobiology include
synchronization of coupled oscillators, i.e., reaching a common frequency of
coupled oscillators (Ermentrout 1992; Graver et al. 1984; Strogatz 2001).

An important type of opinion dynamics (21.1) is known as distributed averaging
dynamics or, simply, averaging dynamics. In such dynamics, each individual has a
neighboring set, which is a subset of individuals, and, at each time instant, updates
her opinion to a convex combination of her neighbors’ opinions. Thus, an averaging
dynamics is associated with an update rule defined as:

f .t; x/ , Ax; (21.3)

for some fixed, row-stochastic matrix A D Œaij �. A row-stochastic matrix refers to
a matrix where every row of which sums up to 1. Thus, in view of (21.1), one now
has: (

x.t C 1/ D Ax.t/; t � 0;

x.0/ D X0:
(21.4)

We note that a translation of all elements of X0 by an arbitrary constant c 2 R

simply leads to the same translation of all elements of x.t/ for each t � 0

since the matrix A is row-stochastic. Consequently, this translation preserves major
asymptotic properties of x.t/, such as whether an agreement is achieved or a
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clustering occurs. The same argument is valid for any scaling of X0. Therefore,
without loss of generality, via a proper translation and scaling, we can assume that
the elements of X0 belong to the interval Œ0; 1�. Furthermore, once again, since A

is row-stochastic, it is clear from (21.4) that minPi 2P xi .t/ is nondecreasing with
respect to t . Similarly, maxPi 2P xi .t/ is nonincreasing with respect to t . Therefore,
given an averaging dynamics .x; f; X0/, the interval

�
min
Pi 2P

xi .t/; max
Pi 2P

xi .t/

�
; (21.5)

which represents the range of the individual opinions at time t , is non-expanding
with respect to t and remains a subset of Œ0; 1� at all times. Thus, the following
assumption is standard in the context of opinion dynamics.

Assumption 1. For every individual Pi 2 P: xi .t/ 2 Œ0; 1�.

Averaging dynamics, as a type of opinion dynamics, was first introduced by
DeGroot (1974). He considered a group of individuals in a team or committee who
seeks a common probability distribution for the unknown value of some parameter
� . Each individual is assumed to initially have her own subjective probability
distribution for the unknown parameter. The simple DeGroot model (DeGroot
1974), which is perfectly consistent with dynamics (21.4), is the following: Assume
that Fi .t/ denotes the belief of individual i at a discrete time instant t about
the distribution of � . At any time instant t , individual Pi updates her belief via
the update equation Fi .t C 1/ D

P
Pj 2V aij Fj .t/, where coefficients aij are

nonnegative constants that satisfy
P

Pj 2V aij D 1, 8Pi 2 P . Furthermore, the
coefficients aij are assumed symmetric, i.e., aij D aji for every pair Pi ;Pj 2 P .
Employing properties of Markov chains, DeGroot arrived at a sufficient condition
for the convergence of individual distributions to a common distribution, which
would in essence be the average of the initial distributions since the coefficients
were assumed to be symmetric. In the ensuing years and decades, dynamics (21.4)
has been pursued and generalized by a large number of researchers. Notable works
include Chatterjee and Seneta (1977), for considering a time-varying version of the
model, and Tsitsiklis (1984), for exploring the effect of asymmetric coefficients aij .

The literature on the subject of averaging dynamics has expanded in a number
of directions. Here, we provide a brief overview of a few of those research
directions:

– Bounded confidence models. Roughly speaking, in bounded confidence models,
individuals are influenced only by those who lie in their confidence zone, i.e.,
those who hold beliefs “close” to theirs. The most well-studied bounded confi-
dence models are the Hegselmann-Krause model (Hegselmann and Krause 2002)
and the Deffuant-Weisbuch model (Deffuant et al. 2000; Weisbuch et al. 2002).



21 Social Networks 913

– Gossip models. In a gossip model, at each step, each individual communicates
with only one other individual chosen randomly from a given set of neighbors
or the entire network. Then, the states are updated via a gossip protocol which
is generally viewed as an averaging algorithm (Karp et al. 2000; Kempe and
Kleinberg 2002).

– Models with imperfect information exchange. In practical cases, one has to
account for noise and disturbance in the network. Remarkable works addressing
the presence of noise include (Huang and Manton 2009) for the case of
noisy communication links and Kashyap et al. (2007), Nedić et al. (2009),
and El Chamie et al. for quantized data exchange. A gossip model in the
presence of stubborn individuals, who do not update their beliefs over time,
with its analysis can be found in Acemoğlu et al. (2013).

– Models with time delays. Communication delays in networks are inevitable.
Averaging problems in models with time delays have been widely studied in
literature. For instance, see Lin and Jia (2009) for second-order models with
time delays and Sun and Wang (2009) for time-varying delays.

3 Continuous Opinion Dynamics

Again let P D fP1; : : : ;Png denote the set of individuals in a social network
and Ai D R be the opinion set of individual Pi 2 P . Construct a game played
repeatedly among individuals in which each individual Pi ’s opinion, i.e., xi 2 R, is
viewed as her action. In this game, player Pi 2 P is associated with a time-invariant
utility function ui .xi ; x�i / W Rn ! R, where:

x�i , fxj jPj 2 P; j ¤ ig: (21.6)

If she plays her best response strategy, the opinion dynamics of the social network
can be described by:

xi .t C 1/ D arg max
xi

ui .xi ; x�i .t //; t � 0: (21.7)

The game above will be referred to as .P; x; u/ in the rest of the section.
The utility function ui of an individual Pi 2 P should be formulated in

such a way to best capture her social behavior. We are specifically interested in
coordination games, i.e., those games whose utility functions capture conformity,
which refers to a type of social influence involving a change in belief or behavior in
order to fit in with a group.

In the rest of the section, we formulate utilities ui s in two different ways, and,
for each resulting game, we investigate the formation of opinions as time grows. In
case of agreement or clustering, we also discuss the rate of convergence of opinions
to their final limits.
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3.1 Coordination Game with Stubborn Individuals

In a coordination game .P; x; u/, let the utility function ui of an individual Pi 2 P
be given as (Ghaderi and Srikant 2013):

ui .xi ; x�i / D �
1

2

X
Pj 2Ni

.xi � xj /2 �
1

2
Ki .xi � xi .0//2; (21.8)

where (i) Ni � P is the subset of individuals who interact with Pi , and Pi 62 Ni ,
(ii) the summation term captures conformity as a social behavior, and (iii) Ki � 0

indicates the stubbornness of Pi regarding her initial opinion. We will see that in the
absence of stubbornness, i.e., Ki D 0, 8i , the best response dynamics of the game
with utilities (21.8) becomes a special case of averaging dynamics (21.4), while in
the presence of stubbornness, it takes a non-averaging form of (21.1).

Let an undirected, unweighted graph G.P; E/, referred to as the social graph,
represent the interaction structure of the social network, i.e., for every pair of
individuals Pi ;Pj 2 P:

eij 2 E , Pj 2 Ni : (21.9)

For the best response strategy (21.7) with ui defined by (21.8), we obtain:

xi .t C 1/ D
1

di C Ki

X
Pj 2Ni

xj .t/ C
Ki

di C Ki

xi .0/; (21.10)

where di D jNi j is the degree of node Pi in the social graph G. We point out that,
with a slight abuse of terminology, we also allow infinite stubbornness, i.e., Ki D

1, for which the best response dynamics (21.10) reduces to xi .t C 1/ D xi .0/.
If we define a matrix A 2 R

n�n as:

Aij ,
(

1
di CKi

if eij 2 E ;

0 otherwise;
(21.11)

and a diagonal matrix B 2 R
n�n with Bii D Ki

di CKi
for every Pi 2 P , then the

best response strategies (21.10) of all players can be combined into matrix form as
follows:

x.t C 1/ D Ax.t/ C BX0: (21.12)

In the following, we state results from Ghaderi and Srikant (2013) on the
existence of a Nash equilibrium for the coordination game above, and convergence
of its best response dynamics, by considering two cases: (i) there are no stubborn
individuals, and (ii) there are stubborn individuals.
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No stubborn individuals. Suppose that for each individual Pi 2 P , Ki D 0. In
this case, B D 0 and A becomes row-stochastic since the sum of the elements
of the i th row of A is di :

1
di

D 1. Thus, dynamics (21.12) converts to a time-
invariant distributed averaging algorithm x.t C 1/ D Ax.t/ which can be used
to characterize the asymptotic behavior of individual opinions as follows. Let
us impose the following condition on the social graph G associated with the
network:

Assumption 2. Social graph G is connected and non-bipartite.

We note that the connectedness of G can be assumed without any loss of
generality since otherwise one would proceed with decomposing dynamics (21.12)
into independent subdynamics associated with each connected component of G.
Furthermore, G is assumed to be non-bipartite to ensure consistent influence of each
individual on one another. In other words, if G is connected and non-bipartite, there
exists t0 � 0 such that for each pair of individuals Pi ;Pj 2 P , xi .t C t 0/ depends
on xj .t/ for any t 0 > t0 and t . Assumption 2 can also be interpreted in terms of the
row-stochastic matrix A defined by (21.11). Indeed, G is connected if and only if
A is irreducible, while G is non-bipartite if and only if A is primitive. Finally, we
note that theorems from graph theory can be used to verify whether a given graph is
bipartite or not. In particular, it is well known that a graph is bipartite if and only if
it contains no odd cycles.

Under Assumption 2, an agreement among all individuals is reached as time
increases, that is, all individuals’ opinions asymptotically converge to the same
value. The agreement equilibrium can be characterized as in the following theorem.

Theorem 1. Consider game .P; x; u/ with individuals’ utilities defined by (21.8)
and social graph G satisfying Assumption 2. If there are no stubborn individuals, i.e.,
Ki D 0 for every Pi 2 P , then the best response dynamics (21.10) asymptotically
converges to the following agreement equilibrium:

lim
t!1

xi .t/ D
1

2jE j

nX
j D1

dj xj .0/; 8Pi 2 P : (21.13)

According to Theorem 1, each individual’s impact on the agreement equilibrium
is proportional to the number of her neighbors. We next address the rate of con-
vergence to the equilibrium. Toward that goal, let us first provide an interpretation
of the agreement equilibrium. View matrix A as the transition probability matrix
of an irreducible random walk over G with edge weights equal to one. Stationary
distribution � 2 R

n of such a random walk is the normalized left eigenvector of A

defined as in (21.11), associated with left eigenvalue 1, i.e.,

�j D
dj

2jE j
; Pj 2 P : (21.14)
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Thus, (21.13) can also be written as:

lim
t!1

x.t/ D 1�TX0; (21.15)

where 1 is the vector of all ones. Recalling the goal to address the rate of
convergence in (21.15), let l2.�/ denote the vector space R

n endowed with the
scalar product:

< z; y >� ,
nX

iD1

zi yi �i ; z; y 2 R
n: (21.16)

Consequently, let norm k:k� be defined as:

kzk� ,
 

nX
iD1

z2
i �i

!1=2

: (21.17)

Furthermore, define the error term e.t/ as:

e.t/ , x.t/ � lim
t!1

x.t/; t � 0: (21.18)

Then, the following theorem states that ke.t/k converges to 0 at a geometric rate.

Theorem 2. Consider game .P; x; u/ with individuals’ utilities defined as (21.8)
and social graph G satisfying Assumption 2. If there are no stubborn individuals,
i.e., Ki D 0 for every Pi 2 P , under best response strategies we have:

ke.t/k� � �t
2ke.0/k� ; (21.19)

where �2 is the second largest eigenvalue modulus of A, i.e., �2 , max.j�2j; j�nj/

and 1 D �1 > �2 � � � � � �n comprise the eigenvalues of A defined in (21.11).

Define also convergence time �.�/ for a small positive scalar � as:

�.�/ , infft � 0 j ke.t/k � �g: (21.20)

Based on Theorem 2, one can now conclude that:

�
1

1 � �2

� 1

�
log

�
ke.0/k�

�

�
� �.�/ �

1

1 � �2

log

�
ke.0/k�

�

�
: (21.21)

In particular, the convergence time is 	
�

1
1��2

	
as the number n of individuals

grows.
Let us now address the case in which social graph G is bipartite but still

connected. In this case, under the best response strategies, none of the individuals’
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opinions converge, except for some special choices of X0, as time grows. To see
why, we recall that x.t/ D At X0 for every t � 0 and show that limt!1 At does
not exist. Let the set P of nodes be partitioned into nonempty subsets P1 and
P2 such that there is no link between the nodes in the same subset. Equivalently,
from (21.11), we must have Aij D 0 if Pi ;Pj 2 P1 or Pi ;Pj 2 P2. This implies
that for every odd integer t > 0, .At /ij D 0 if Pi and Pj both belong to the same
subset. In a similar fashion, one obtains that for every even integer t > 0, .At /ij D 0

if Pi and Pj are in different subsets. Thus, if At is to converge as t grows, the limit
must be 0, which is not possible since At is always row-stochastic.

The issue of not converging to an equilibrium for the case of bipartite G can be
overcome assuming that a noisy alternative to best response strategy is played by
every individual:

Oxi .t C 1/ , .1 � 
/

0
@ 1

di

X
Pj 2Ni

Oxj .t/

1
A C 
 Oxi .t/; (21.22)

where 
 > 0 is a constant indicating self-confidence and is common among all
individuals and Ox.0/ , X0. The modified dynamics in essence means that every
individual also accounts for her current opinion while updating. Therefore, if one
defines matrix OA as:

OAij ,

8̂̂<
ˆ̂:

1�

di

if eij 2 E ;


 if i D j;

0 otherwise;

(21.23)

then (21.22) can be written as Ox.t C 1/ D OA Ox.t/; 8t � 0. Therefore, the noisy best
response dynamics (21.22) converges to an equilibrium for which:

lim
t!1

Ox.t/ D 1 O�T Ox.0/ D 1 O�TX0; (21.24)

where O� is the unique stationary distribution of a Markov chain with transition
probability matrix OA. Hence, similar to the non-bipartite case, all opinions converge
to the same value as t grows. Notice also that, due to reversibility of OA, O� is
independent of 
 and is in fact equal to the stationary distribution of a Markov chain
with transition probability A, i.e., O�i D di

2jEj
.

Furthermore, the convergence time to the equilibrium for the noisy best response

dynamics is 	
�

1

1��2. OA/

	
, where �2. OA/ denotes the second largest eigenvalue

modulus of OA, i.e., �2. OA/ D max.�2. OA/; j�n. OA/j/. It is to be noted that since
OA D 
I C .1 � 
/A, eigenvalues of OA are derived as �i . OA/ D 
 C .1 � 
/�i .A/.

Thus:

�2. OA/ D 
 C .1 � 
/�2.A/; (21.25)
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and

�n. OA/ D 
 C .1 � 
/�n.A/ D �1 C 2
: (21.26)

In the last equation, we used the fact that �n.A/ D �1 since G is bipartite.
Relations (21.25) and (21.26) together imply that the convergence time of the noisy

best response dynamics to the equilibrium is 	
�

1
1��2.A/

	
.

Finally, we note that although 
 was assumed to be uniform among all individ-
uals, the convergence to an equilibrium associated with a global agreement would
remain intact even if that were not the case. However, the agreement value, as well
as the convergence time to it, would also depend on the self-confidence indices of
individuals.

Stubborn Individuals. Suppose now that the set S � P of stubborn individuals
is nonempty. Recall that an individual Pi 2 P is called stubborn if Ki ¤ 0.
Thus, according to (21.11), matrix A is substochastic, that is all its elements are
nonnegative and none of its row sums exceeds 1, while at least one of the row
sums is strictly less than 1. Thus, for every eigenvalue �i of A, we have k�i k < 1.
Therefore, limt!1 At D 0. Noticing that for every t � 1,

x.t/ D

 
tX

sD0

As

!
BX0; (21.27)

we have the following theorem.

Theorem 3. Consider game .P; x; u/ with individuals’ utilities defined as in (21.8)
and let social graph G be connected. If there is at least one stubborn individual,
the best response dynamics (21.10) asymptotically converges to the following
equilibrium:

lim
t!1

x.t/ D .I � A/�1BX0: (21.28)

One proves Theorem 3 by simply taking (21.27) into account and using relationP1
sD0 As D .I � A/�1. Notice that

P1
sD0 As converges since each eigenvalue �i of

A satisfies k�i k < 1. Based on (21.28), the following conclusions can be drawn:

(i) Each individual’s opinion converges to a convex combination of the initial
opinions, as in the case of no stubborn individuals. In other words, .I � A/�1B

is row-stochastic. To show this, one first uses induction on t to show that�Pt
sD0 As

�
B is row-stochastic for every t > 0. Then, the row-stochasticity of

.I �A/�1B follows from the fact that the row-stochasticity property is preserved
under the limit.
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(ii) Only the initial opinions of stubborn individuals influence the equilibrium. To
see why, it is sufficient to notice that the i th column of B is 0 if Pi is not
stubborn.

From (21.28) and the conclusions drawn above, we know that for every Pi 2 P:

lim
t!1

xi .t/ D
X
Pj 2S

˛ij xj .0/; (21.29)

where ˛ij � 0 for every Pj 2 S and
P

Pj 2S ˛ij D 1. In what follows, an
interpretation of coefficients ˛ij s in (21.29) is presented via a random walk over
a weighted graph OG built based on the social graph G.

Let S1 � S contain those stubborn individual whose stubbornness indices are
finite, i.e.,

Pi 2 S1 , 0 < Ki < 1: (21.30)

Moreover, let S2 , SnS1 contain those stubborn individuals with infinite stubborn-
ness. Without loss of generality, assume that:

S1 D fP1; : : : ;PjS1jg;

S2 D fPjS1jC1; : : : ;PjSjg
(21.31)

Consequently, PnS D fPjSjC1; : : : ;Png. Construct now weighted graph OG. OP; OE ; w/

from the social graph G.P; E/ as follows: add jS1j nodes to G, namely,
PnC1; : : : ;PnCjS1j, and connect Pi to PnCi for every Pi 2 S1. Then, we have:

OP D P [ fPnCi jPi 2 S1g; (21.32)

OE D E [ fei;nCi jPi 2 S1g: (21.33)

Furthermore, keeping (21.33) in mind, define weight wij of an arbitrary edge eij 2 OE
as:

wij ,
(

1 if eij 2 E
Ki if j D n C i and Pi 2 S1:

(21.34)

Consider a random walk Y over OG for which the probability pij of transition from
Pi 2 OP to Pj 2 OP is defined as:

pij , wijP
eik2 OE wik

: (21.35)
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We recall the goal to interpret ˛ij , Pi 2 P , Pj 2 S D S1 [S2. Let the random walk
start at an arbitrary but fixed Pi 2 P . It is clear that the walk hits the following set
in a finite time with probability 1:

S2 [ . OPnP/ D fPjS1jC1; : : : ;PjSj;PnC1; : : : ;PnCjS1jg: (21.36)

Then, ˛ij , Pj 2 S2, is the probability that Pj is the first node within S2 [ . OPnP/

to be hit by the walk. Moreover, for Pj 2 S1, ˛ij is the probability that PnCj is the
first to be hit within the same set.

To address the rate of convergence to the equilibrium in (21.28), let the error
term e.t/ again be defined as in (21.18). The following theorem addresses the
convergence rate that turns out to be geometric with a rate at least equal to the
largest eigenvalue of A.

Theorem 4. Consider game .P; x; u/ with individuals’ utilities given by (21.8) and
let the social graph G be connected. If there is at least one stubborn individual,
under the best response strategies (21.10), we have:

ke.t/k2 � c�t
1ke.0/k; (21.37)

where c > 0 is constant and �1 is the largest eigenvalue of A.

To recap, in this subsection, we have employed a game theoretic approach to
model concurrently conformity and stubbornness. The opinions (players’ actions)
were assumed to be continuous in nature, as they might take any value in interval
Œ0; 1�. The utility of each player, defined by (21.8), contains two terms: one that
captures conformity and another one capturing stubbornness. It was shown that in
the absence of stubborn individuals, a global agreement is asymptotically achieved
at a geometric rate if the social graph of the network is connected, with an exception
of bipartite social graphs. For the case where the social graph is bipartite, each
individual’s opinion may not converge although the number of accumulation points
of opinions can be proved to be finite. In the presence of at least one stubborn
individual, however, the convergence at a geometric rate of each individual’s
opinion, as time grows, is proved for all social graphs, but the occurrence of a global
agreement is nearly impossible. In fact, even if the social graph is connected, the
existence of at least two stubborn individuals with different initial opinions would
eventually lead to a grouping of the individuals into multiple clusters.

3.2 Coordination Game with Bounded Confidence

In bounded confidence models, an individual communicates with only those who
lie in her area of confidence. Such models were introduced independently in
Hegselmann and Krause (2002), the so-called Hegselmann-Krause (HK) model,
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and in Deffuant et al. (2000) and Weisbuch et al. (2002), the so-called Deffuant-
Weisbuch (DW) model. A thorough survey on both models and their extensions can
be found in Lorenz and Urbig (2007).

In the well-received HK model (Hegselmann and Krause 2002), it is assumed
that opinion xi of an individual Pi 2 P evolves according to the following update
equation:

xi .t C 1/ D
1

ni .t/

X
Pj 2Ni .t/

xj .t/; t � 0; (21.38)

where ni .t/ D jNi .t /j, i.e., the number of players in Ni .t /, and Ni .t / denotes the
neighbor set of individual Pi at time t , which is defined as:

Ni .t / , fPj 2 P j kxj .t/ � xi .t/k � Rg; (21.39)

where R > 0 is a fixed, common confidence bound. Roughly speaking, each
individual modifies her opinion to the arithmetic mean of the current opinions of
her neighbors, i.e., those opinions which are not too far from hers. Notice that,
according to (21.39), each individual belongs to her neighbor set at all times.

Again, let X0 2 R
n represent the vector of initial opinions. It is known that,

under the dynamics (21.38), an individual limit x�
i for each individual’s opinion

xi .t/ exists and the convergence occurs in a finite time. Thus, depending on vector
X0 of initial opinions and confidence bound R, the individuals are split into one or
several clusters, with those in the same cluster reaching an agreement, i.e., sharing
a common limiting opinion.

The classical HK model lies within the category of synchronous models, since
the individual opinions are updated simultaneously. An asynchronous version of
the HK model would be obtained if only one, randomly selected, individual at a
time was able to update her opinion while again using protocol (21.38) to do so.
The asynchronous versions of the HK model demonstrate quite different behaviors
when compared to their synchronous counterparts; most notably, their convergence
times are infinite unless a global agreement had already been in place before the
updates started. The steady-state behavior of asynchronous HK dynamics (21.38)
is of interest and will be addressed in the following via a game theoretic approach
(Etesami and Başar 2015).

In Etesami and Başar (2015), the asynchronous HK model was redesigned as a
game .P; x; u/ for which the opinion set Ai of each individual is Rd , where d � 1

is an integer, and utility ui W .Rd /n ! R of a player Pi 2 P is defined as:

ui .xi ; x�i / D .n � 1/R2 �

nX
j D1

minfkxi � xj k2; R2g; (21.40)

where R > 0 is the fixed common confidence bound as introduced earlier. The
game is played repeatedly in the following manner: at each discrete time t � 0, one
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player is selected at random, who then updates her action. It is assumed that player
Pi is aware of the action of player Pj at time t if and only if kxi .t/ � xj .t/k �

R. Assuming that Pi 2 P is selected at time t to update her action, it turns out
that strategy (21.38) serves as a better, although not necessarily the best, response
strategy for her in the following sense: unless the game is at a Nash equilibrium,
she strictly benefits from adopting strategy (21.38), meaning that her utility would
increase if she updated her action via (21.38). Indeed, utility (21.40) is designed
in such a way that strategy (21.38) becomes a better response strategy. Under the
better response strategy (21.38), the game is now expected to converge to a Nash
equilibrium. Before confirming that, let us first characterize the Nash equilibria of
the game considered.

Proposition 1. For the asynchronous game .P; x; u/, where the action set for every
player is Rd and utilities are defined as (21.40), an action profile .x�

1 ; : : : ; x�
n / is a

Nash equilibrium if and only if for every pair i; j , 1 � i; j � n, either x�
i D x�

j or
kx�

i � x�
j k > R.

The game considered above is a potential game which is defined below:

Definition 4 (potential game). A game .P; x; u/ with action sets Ai , 1 � i �

n, and utility functions ui W A ! R constitute a potential game if there exists a
function � W A ! R such that:

ui .x
00
i ; x�i / � ui .x

0
i ; x�i / D �.x00

i ; x�i / � �.x0
i ; x�i /; (21.41)

for every player Pi 2 P , all actions x00
i ; x0

i 2 Ai , and all x�i 2
Q

j ¤i Aj . The
function � is then called a potential function associated with the game .P; x; u/.

Lemma 1. Asynchronous game .P; x; u/, where action set is R
d and utilities are

defined as (21.40), is a potential game with � W .Rd /n ! R defined as:

�.x/ D �.x1; : : : ; xn/ , 1

2

nX
iD1

ui .xi ; x�i /: (21.42)

In other words,

�.x0
i ; x�i / � �.x00

i ; x�i / D ui .x
0
i ; x�i / � ui .x

00
i ; x�i /; (21.43)

for every Pi 2 P , x0
i x

00
i 2 R

d , and x�i 2 .Rd /n�1.

From the discussion above, we know that playing the better response strat-
egy (21.38), potential function � increases in value unless the game is at a Nash
equilibrium. The following lemma addresses the amount of increase in � at each
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time instant, which is crucial to prove the convergence of the game to a Nash
equilibrium.

Lemma 2. For the asynchronous game .P; x; u/, where the action set for every
player is Rd and utilities are defined as in (21.40), under strategy (21.38), if player
i is selected to update at time t � 0, we have:

�
�
xi .t C1/; x�i .t C1/

�
��

�
xi .t/; x�i .t /

�
� 2ni kxi .t C1/�xi .t/k

2: (21.44)

Consequently:

E

n
�
�
x.t C 1/

�
� �

�
x.t/

�o
� 2

n

Pn
j D1 ni E

n
kxi .t C 1/ � xi .t/k

2
o

� 2
n

Pn
j D1 E

n
kxi .t C 1/ � xi .t/k

o2

:

(21.45)

Inequality (21.45) can comfortably be used to show that the game indeed
converges to a Nash equilibrium. Since we are also interested in the rate of
convergence to the equilibrium, we define a ı-Nash equilibrium of the considered
game as follows:

Definition 5. Consider the asynchronous game .P; x; u/, where the action set for
each player is Rd and utilities are given by (21.40). Given ı > 0, an action profile
.x�

1 ; : : : ; x�
n / is said to be a ı-Nash equilibrium if for a partitioning .C1; : : : ; Cm/ of

P , we have:

(i) diam
�
conv.Ck/

�
< ı, 8k, 1 � k � m, where conv.:/ W Rd ! R

d stands for
the convex hull of a subset of Rd and diam.:/ W Rd ! denotes the diameter of
a subset of Rd , i.e., the longest distance between two points in the subset;

(ii) dist
�
conv.Ci /; conv.Cj /

�
> ı, 8i ¤ j , 1 � i; j � m, where dist.:; :/ W Rd �

R
d ! R denotes the distance between two subsets of Rd , which is the longest

possible distance between two points in different subsets.

Theorem 5. For the asynchronous game .P; x; u/, where the action set for each
player is Rd and utilities are defined as in (21.40), under strategy (21.38), we have:

(i) The game converges to a Nash equilibrium, where the set of all Nash equilibria
of the game is characterized in Proposition 1;

(ii) The expected number of steps for the game to reach a ı-Nash equilibrium is
upper bounded by 2n9.R=ı/2.

To summarize, in this subsection, by employing game theory, we have concluded
that for the given asynchronous HK dynamics (21.40), limt!1 x.t/ exists, which
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means that clustering occurs. The steady-state opinions of those in the same
cluster are equal by definition. Moreover, according to Proposition 1, for any two
individuals in different clusters, their steady-state opinions differ by at least R,
where R is the confidence bound. Furthermore, if we define Tı as the smallest time
such that kx.t/ � limt 0!1 x.t 0/k < ı, for all t � Tı , we have EŒTı� � 2n9.R=ı/2.

4 Discrete Opinion Dynamics

4.1 Coordination Via a Potential Game Model

In this subsection, we discuss a potential game approach from Marden et al.
(2009) inspired by the pioneering work (DeGroot 1974) on opinion dynamics. In
DeGroot (1974), DeGroot considers a committee of individuals, each holding an
initial opinion about the probability distribution of an unknown parameter, seeking
a consensus. In the model, an interaction graph, which is fixed, weighted, and
undirected, is assigned to the committee, based on which the committee members’
opinions evolve. More specifically, at each time instant, each member updates her
opinion to a convex combination of her neighbors’ opinions, where the weights in
the combination coincide with the weights in the graph. It is well known that all the
committee members eventually agree on a common distribution if and only if the
interaction graph is connected.

In the game theoretic framework introduced in Marden et al. (2009), a game
.P; x; u/ is considered in which each player Pi 2 P takes an action from a
predefined, finite action set Ai � R

d , where d is a positive integer. Furthermore,
each player Pi 2 P is assigned a utility function ui W A ! R, with A D

Qn
iD1 Ai ,

given by:

ui .xi ; x�i / D �
X

Pj 2Ni

kxi � xj k; (21.46)

where Ni denotes the neighbor set of player Pi in the social graph G, which is a
fixed, unweighted, and undirected.

Assume that each individual at every time step adopts her best response strategy,
i.e., takes an action in such a way to maximize her utility. Notice that the dynamics
derived by playing the above game differs from the traditional averaging dynamics
in two ways: (i) the action sets are finite in the game, whereas in averaging dynamics,
the opinions can virtually take any real value, (ii) in the game defined, there is a lack
of self-confidence, that is, an individual’s current opinion does not directly influence
her opinion at the next time instant, while in averaging dynamics, the opposite is
generally true.

Recalling Definition 4 of potential games, it can be shown that the game defined
above is a potential game with potential function � W A ! R defined as:
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�.x1; : : : ; xn/ , �
1

2

nX
iD1

X
Pj 2Ni

kxi � xj k: (21.47)

Let us also assume that the action sets Ai s have nonempty intersection, meaning
that an agreement is possible. It is then clear that any agreement maximizes the
potential function. Furthermore, any joint action profiles maximizing the potential
function have to constitute an agreement if G is connected. Two strategies for the
players resulting in an agreement are discussed next.

Spatial Adaptive Play (SAP). Assume that the game is played repeatedly over
time and each player adopts a mixed strategy called Spatial Adaptive Play (SAP)
(Young 2001), which is reminiscent of a Gibbs-based exponential learning algo-
rithm, described as follows: each player Pi 2 P at time t takes an action xi 2 Ai

with probability p
xi

i .t/ defined as:

p
xi

i .t/ , expfˇui .xi ; x�i .t //gP
Nxi 2Ai

expfˇui . Nxi ; Nx�i .t //g
; (21.48)

where ˇ � 0 is the exploration parameter. The larger ˇ is, the more likely it is for
a player Pi to take an action from her best response set with respect to her utility
function ui .xi ; x�i /. The following theorem addresses the stationary distribution of
the joint action profiles under the SAP.

Theorem 6 (Young 2001). In a potential game where players adopt the
SAP (21.48) as their strategies, stationary distribution � W A ! Œ0; 1� of the
joint action profiles is given by:

�.x/ D
expfˇ�.x/gP

Nx2A expfˇ�. Nx/g
: (21.49)

In other words, as t ! 1, x.t/ approaches x with probability �.x/ for any
x 2 A. Consequently, if ˇ is sufficiently large, �.x/ is arbitrarily small for those
joint action profiles which do not maximize the potential function. Thus, we have
the following corollary.

Corollary 1. If G is connected, an agreement is asymptotically reached with an
arbitrarily high probability, provided that ˇ is sufficiently large.

Restricted Spatial Adaptive Play (RSAP). From a social network perspective,
it could be reasonably argued that a player’s action at any time is correlated with
her previous action(s) which is an issue not accounted for in the setting discussed
above. An attempt to resolve this issue leads to a more realistic setting where a
player Pi 2 P takes an action xi with a non-zero probability at time t only if
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xi 2 Ri .xi .t � 1//, where Ri W Ai ! 2Ai and 2Ai denotes the set of all subsets of
Ai . Thus, Ri .xi .t�1// is a restricted action set within Ai . The following reasonable
assumptions are made on Ri , for every player Pi 2 P:

1. For each xi 2 Ai : xi 2 Ri .xi /;
2. For each pair of actions x1

i ; x2
i 2 Ai : x2

i 2 Ri .x
1
i / , x1

i 2 Ri .x
2
i /;

3. For each pair of actions x0
i ; xk

i 2 Ai , there exists a sequence of actions
x0

i ; x1
i ; : : : ; xk

i satisfying xk0

i 2 Ri .x
k0�1
i / for all k0 D 1; : : : ; k.

A modified version of SAP, the so-called Restricted Spatial Adaptive Play
(RSAP), can be described as follows: at each time t , a player, say Pi 2 P , is
selected at random to update her action. She first selects a trial action from within
Ri .xi .t � 1//, excluding her previous action, with probability 1=mi , where mi ,
maxxi 2Ai jRi .xi /j. Her trial action would be her previous action with probability
1 � jRi .xi .t�1//j�1

mi
. She then updates her action to the selected trial action, say Oxi ,

with the following probability:

expfˇui . Oxi ; x�i .t � 1//g

expfˇui . Oxi ; x�i .t � 1//g C expfˇui .x.t � 1//g
; (21.50)

where ˇ � 0 is the exploration parameter, and repeats her previous action xi .t � 1/

with probability one minus the probability (21.50), i.e.,

expfˇui .x.t � 1//g

expfˇui . Oxi ; x�i .t � 1//g C expfˇui .x.t � 1//g
: (21.51)

The following theorem addresses the stationary distribution of the joint action
profiles under the RSAP, which happens to be equal to that under SAP.

Theorem 7. In a potential game where players adopt the RSAP (21.50) and (21.51)
as their strategies, stationary distribution � W A ! Œ0; 1� of the joint action profiles
is given by (21.49).

Hence, similar to the discussion on the SAP, given G is connected and ˇ is
sufficiently large, an agreement is achieved with an arbitrarily high probability.

Thus, to summarize, we have employed a game theoretic approach in this
subsection to model conformity in social networks and to investigate when a global
agreement would be achieved. The opinions (players’ actions) were assumed to be
discrete, i.e., they could take only a finite number of values in R

d . Two strategies,
namely, SAP and RSAP, were introduced, and it was made clear that provided that
the social graph of the network is connected, a global agreement is asymptotically
achieved with high probability if it is feasible in the sense that the action sets have
a nonempty intersection.



21 Social Networks 927

4.2 Coordination Game: Innovation Spread

Coordination games can also be used to model the spread of innovations throughout
a social network. One wonders, for instance, how the use of smartphones grew to
become so widespread as it is today. Addressing this problem is of great importance,
for smartphone companies in particular, since it helps predict the spread. To
investigate the spread of an innovation, we view the individuals as players of a
coordination game. Each individual has two possible actions: whether to adopt the
innovation or not. The players’ utilities are then defined in such a way that the
adoption of a common strategy among the individuals results in higher utilities.
Once the game and its specifications are defined formally, we shall examine whether
the players’ strategies converge to an equilibrium in time. Moreover, in order to
predict finite time behavior of the social network, the rate of convergence to the
equilibrium, if it exists, is of interest.

In this subsection, we cover two outstanding work Ellison (1993) and Montanari
and Saberi (2009) whose game theoretic frameworks are inspired by pioneering
work (Kandori et al. 1993). More recent game models on the subject of innovation
spread and competitive diffusion can be found in Goyal et al. (2014) and Etesami
and Başar (2016).

In Ellison (1993), a game .P; x; u/, where xi 2 f0; 1g for every Pi 2 P , is
considered. Let the utilities be defined as:

ui .xi ; x�i / D
X
Pj 2P
Pj ¤Pi

wij g.xi ; xj /; (21.52)

where W D Œwij � 2 R
n�n is a symmetric weight matrix and payoffs g are

determined according to the underlying 2 � 2 coordination game in Table 21.1.
Before stating the player strategies, let us further assume that a > d and b > c so

that .0; 0/ and (1,1) are the Nash equilibria of the underlying 2 � 2 game. Moreover,
let .a � d/ > .b � c/ so that .0; 0/ is the risk dominant equilibrium (Harsanyi et al.
1988). Therefore, when the strategies have the same security level, i.e., c D d , the
equilibrium .0; 0/ is also the Pareto optimum.

One can view matrix W as the adjacency matrix of the weighted social graph of
the network, which is henceforth assumed to be undirected. Higher weights indicate
larger influences. Incorporating the weight matrix would also enable us to address
random matching games within the same framework. In a random matching game,
players Pi ;Pj 2 P are matched at a given time instant with probability wij .

Table 21.1 Underlying
2 � 2 coordination game

0 1

0 a; a c; d

1 d; c b; b
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Assume now that game .P; x; u/ described above is played synchronously by all
individuals over time. We pursue the following two strategies:

1. Best response strategy: every player Pi 2 P at time t C 1 plays

arg max
xi 2f0;1g

ui .xi ; x�i .t //; (21.53)

for any t � 0.
2. Noisy best response strategy: every player Pi at time t C1 plays her best response

strategy (21.53) with probability 1 � 2
, while with probability 2
 she plays 0 or
1 randomly, where 0 < 
 < 1

2
is fixed. Consequently, at each time instant, she

plays her best response strategy with probability 1 � 
 and the other one with
probability 
.

We shall focus particularly on the following cases representing two specific types
of the social graph:

1. Uniform matching rule: Let the social graph of the network be a complete graph,
i.e., wij be non-zero for every pair Pi ;Pj 2 P . More precisely, assume that

wij D
1

n � 1
; 8Pi ;Pj 2 P : (21.54)

2. Local (2k-neighbor) matching rule: Let the social graph of the network be a
2k-regular graph, with 1 � k � Œ.n � 1/=2�, in which

wij D

(
1

2k
if i � j D ˙1; ˙2; : : : ; ˙k .mod n/;

0 otherwise:
(21.55)

This graph corresponds to the .2k; n/-Harary graph (Harary 1962). In partic-
ular, for the case k D 1, i.e., the so-called 2-neighbor matching rule, the above
graph turns to the ring graph.

In the following, we discuss the limiting behavior of the game under best
response strategies and noisy best response strategies, in particular for uniform and
local matching rules. Our analysis mainly relies on the evolution of the number of
players who take action 0. Thus, we shall use the following notation in the reminder
of this subsection. Given an action profile x 2 f0; 1gn, we denote by xzero the
number of zero elements of x. Subsequently, xzero.t/ denotes the number of players
who play 0 at time t. Obviously, xzero.t/ would be a random variable if x.t/ were a
random variable, as under noisy best response strategies. We also denote by qi .t/,
0 � qi .t/ � 1, the fraction of a player Pi ’s neighbors playing 0 at a given time t .
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Best response strategies. Assuming that x.0/ D X0 2 f0; 1gn is given, action
profile x.t/ is deterministic for each t � 0 if the best response strategies are
played. Let us first consider the uniform matching rule. In view of best response
strategy (21.53), for Pi to play 0 at time t C 1, the following must hold:

ui .0; x�i .t // � ui .1; x�i .t //; (21.56)

which is equivalent to:

qi .t/ �
b � c

.a � d/ C .b � c/
, q�: (21.57)

If condition (21.57) does not hold, Pi plays 1 at time t C 1. Notice that we assumed
that a player plays 0 when she is indifferent between 0 and 1. Notice also that q� < 1

2

since we assumed .a � d/ > .b � c/, i.e., .0; 0/ is the risk dominant equilibrium.
Recalling that X zero

0 is the number of players who play 0 initially, we have:

qi .0/ D

(
Xzero

0 �1

n�1
if xi .0/ D 0;

Xzero
0

n�1
if xi .0/ D 1:

(21.58)

From (21.58) and condition (21.57) for playing 0, one concludes that at time t D 1:
(i) every player plays 0 if Xzero

0 �1

n�1
� q�, (ii) every player switches her action if

Xzero
0

n�1
� q� >

Xzero
0 �1

n�1
, and (iii) every player plays 1 if q� >

Xzero
0

n�1
. In cases (i) and

(iii), no player will ever change her action, and the strategies have thus converged to
an equilibrium where all actions are the same. In case (ii), however, the strategies are
yet to converge. Notice that in case (ii), xzero.1/ D n�X zero

0 . Therefore, by a similar

argument, the strategies converge at time t D 2 unless n�Xzero
0

n�1
� q� >

n�Xzero
0 �1

n�1
.

Recalling that q� < 1
2

and taking the following two inequalities into account,

Xzero
0

n�1
� q� >

Xzero
0 �1

n�1
;

n�Xzero
0

n�1
� q� >

n�Xzero
0 �1

n�1
;

(21.59)

we conclude that:

X zero
0 D n

2
;

1
2

� 1
2.n�1/

< q� < 1
2
:

(21.60)

Hence, the strategies converge to an equilibrium at t D 1 unless the two conditions
of (21.60) hold, for which the strategies will never converge. More precisely, under
(21.60), every player keeps on switching her action at each time instant t > 0.

We now consider the local matching rule (21.55) with k D 1, i.e., the case
where the social graph is a ring graph. We investigate the asymptotic behavior of
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the actions by analyzing the evolution of xzero.t/ as t grows. Assume first that n is
odd. It is easy to show that:

(
xzero.t C 1/ D xzero.t/ if xzero.t/ D 0 or n;

xzero.t C 1/ > xzero.t/ otherwise:
(21.61)

From (21.61), we conclude that xzero.t/ converges after at most n time steps to an
equilibrium where all actions are the same. A crucial difference which an even n

makes is that the social graph becomes bipartite, leading to the possibility of non-
convergence of the actions. For instance, at time t D 0, let all the players in one part
of the social graph play 0 at t D 0, while the players in the other part play 1. Then,
according to the dynamics of the game, every player will switch her action at each
time instant. The limiting behavior of the actions can again be investigated via the
evolution of xzero.t/. One can see that at an arbitrary t � 0, xzero.t C 1/ > xzero.t/

unless the set of players with action 0 at time t form an empty set, either part of
the bipartite social graph or the entire set of players. Therefore, after at most n time
steps, the action profile either converges to an equilibrium, in which all actions are
the same, or enters a limit cycle, in which the players in the same part of the bipartite
social graph take the same action while switching their actions at each time instant.

For a local matching rule with k > 1, the analysis is slightly different, though
it can once again be shown that the game reaches an equilibrium or enters a limit
cycle in a finite time.

Noisy best response strategies. The inclusion of the noise in player strategies turns
out to help the convergence of the game dynamics to an equilibrium. Let the weight
matrix W , i.e., the matching rule, be given and 
, 0 < 
 < 1 be arbitrary but fixed.
Under the noisy strategies, the evolution of x.t/, which is now a random variable
over f0; 1gn, can be viewed as a Markov chain. Let s1; : : : ; s2n be all pure strategy
profiles. Then, there is a fixed transition matrix P D Œpij � of size 2n � 2n such that
for every t � 0 and every pair of pure strategy profiles si ; sj 2 f0; 1gn:

P


x.t C 1/ D sj j x.t/ D si

�
D pij : (21.62)

We note that the Markov chain fx.t/g is irreducible since pij > 0, 1 � i; and j �

2n. In fact, pij � min
�

n; .1 � 
/n

�
. Thus, the distribution of x.t/ over f0; 1gn

converges as t grows. Let row vector � of size 2n denote the corresponding
stationary distribution, i.e., for every 1 � i � 2n:

lim
t!1

P


x.t/ D si

�
D �i : (21.63)

Obviously, the stationary distribution � of x.t/ over f0; 1gn depends on the choice
of 
 and the matching rule. Let �u.
/ and �2k.
/ denote the stationary distributions
of x.t/ over f0; 1gn under uniform and 2k-neighbor matching rules, respectively.
The objective is to characterize �u.
/ and �2k.
/, and the rate of convergence



21 Social Networks 931

to them, when 
 ! 0. Furthermore, we would like to obtain the probability by
which an agreement is achieved asymptotically. Thus, for a stationary distribution
� , let �0 and �1 denote the probability of an asymptotic agreement on 0 and 1,
respectively. The following theorem characterizes �0 and �1 under both uniform
and 2k-matching rules.

Theorem 8. Let �u.
/ and �2k.
/ be the stationary distributions of x.t/ over
f0; 1gn under uniform and 2k-neighbor matching rules, respectively. Then, for n

sufficiently large:

(i) lim
!0 �u
0 .
/ D 1,

lim
!0 �2k
0 .
/ D 1I

(ii) �u
1 .
/ D O.
n�2dq�.n�1/eC1/,

�2k
1 .
/ D

(
O.
n�2/ if n is even;

O.
n�1/ if n is odd:

We point out that n in Theorem 8 above must be sufficiently large so that q� �
1
2
� 1

2.n�1/
holds. As we intuitively explain in the following, this assumption is crucial

when the matching rule is uniform and n is even: Notice in the settings of the game,
action 0 has been favored over action 1 in two ways:

– 0 is played when a player is indifferent between 0 and 1;
– q� < 1

2
, i.e., equilibrium .0; 0/ is the risk dominant equilibrium of the underlying

2 � 2 coordination game in Table 21.1.

The former becomes irrelevant under the uniform matching rule and even n, as
no tie situation can possibly exist. Thus, the condition q� � 1

2
� 1

2.n�1/
in Theorem 8

is there to ensure that the latter is relevant, i.e., the risk dominancy of .0; 0/ counts.
To be more precise, recall that in the game under the uniform matching rule, the
best response strategy of player Pi at time t C 1 is 0 if condition (21.57) holds. For
risk dominancy to count, i.e., for q� < 1

2
to have any impact on the dynamics of

the game, there must exist situations where condition (21.57) is not equivalent to
qi .t/ > 1

2
. There is no such situation unless q� � 1

2
� 1

2.n�1/
.

Hence intuitively, action 0 has been favored over action 1 in the settings of the
game. This, according to Theorem 8 (i), turns out to have significant impact on
the stationary distribution of x.t/ over f0; 1gn. In fact, Theorem 8 (i) says that for
sufficiently small 
 > 0, every player’s strategy is 0 in steady state with an arbitrarily
high probability under either uniform or 2k-neighbor matching rules. Consequently,
as 
 ! 0, the probability of all players’ strategies being 1 in steady state vanishes.
Theorem 8 (ii) clarifies how fast that vanishing happens.

It is noteworthy that the uniform and 2k-neighbor matching rules result in
identical stationary outcomes. However, the same cannot be said once we move
beyond 2�2 games as the underlying coordination game. For instance, consider the
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Table 21.2 Examples of the
underlying 3 � 3 coordination
games.

0 1 2 0 1 2

0 6; 6 0; 5 0; 0 0 6; 6 0; 5 0; 1

1 5; 0 7; 7 5; 5 1 5; 0 7; 7 5; 5

2 0; 0 5; 5 8; 8 2 1; 0 5; 5 8; 8

3� 3 games of Table 21.2. If the one on the left is the underlying coordination game
in the settings of our game, under the uniform matching rule, for sufficiently small

 > 0, every player’s strategy is 1 in steady state with an arbitrarily high probability.
We also assumed that a player favors 1 over 2 when she is indifferent between them.
For the 3 � 3 game on the right in Table 21.2 as the underlying coordination game,
every player’s strategy is 2 in steady state with an arbitrarily high probability as

 ! 0. Let us now consider the 2k-neighbor matching rule for k D 1, i.e., the
case in which every player has two neighbors. Possible actions of the neighbors of
a player are f0; 0g, f0; 1g, f0; 2g, f1; 1g, f1; 2g, and f2; 2g. It turns out that for each
of these possibilities, the player’s best response strategy is the same for both games
of Table 21.2. Therefore, unlike the uniform matching rule, under the 2-neighbor
matching rule, whichever of the 3 � 3 games is the underlying coordination game,
the stationary distribution of x.t/ remains the same. Thus, the stationary outcomes
of the two matching rules are not always the same as 
 ! 0.

In the reminder of this subsection, we focus on the rate of convergence of the
distribution of x.t/ over f0; 1gn to its stationary distribution � . Let row vector � be
the initial distribution. Therefore:

lim
t!t0

�P .
/t D �; (21.64)

or equivalently:

lim
t!t0

k�P .
/t � �k D 0; (21.65)

where for convenience k:k is assumed to be the max norm. From the theory of
Markov chains, we know that the rate of convergence in (21.65) is geometric, i.e.,
there exists some r < 1 such that k�P .
/t � �k D O.rt /. Therefore, regarding the
rate of convergence, we are interested in the value of r . In the following theorem, the
parameter r is characterized for small 
 under the uniform and 2-neighbor matching
rules. It is generally expected that r ! 1 as 
 ! 0.

Theorem 9. Let P u.
/ and P 2.
/ be transition matrices for the uniform and 2-
neighbor matching rules and �u.
/ and �2.
/ be the corresponding associated
stationary distributions of x.t/ over f0; 1gn. Let  be the set of all probability
distributions over f0; 1gn. Assume that q� � 1

2
� 1

2.n�1/
. Defining:
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ru.
/ , sup�2 lim supt!1 k�P u.
/t � �u.
/k1=t ;

r2.
/ , sup�2 lim supt!1 k�P 2.
/t � �2.
/k1=t ;
(21.66)

we have

1 � ru.
/ D O.
dq�.n�1/e/;

1 � r2.
/ D O.
/;
(21.67)

as 
 ! 0.

Theorem 9 implies that, under the uniform matching rule, the convergence to
the stationary distribution becomes drastically slow as it is exponential in n, the
number of players. The 2-neighbor matching rule, however, shows a faster rate of
convergence for small 
.

The results obtained above for the convergence rate were also confirmed in
Montanari and Saberi (2009). However, the framework considered in Montanari
and Saberi (2009) is more general than that of Ellison (1993). Their respective
frameworks are both based on the 2 � 2 coordination game of Table 21.1 and
incorporate identical player utilities and hence identical best response strategies.
What is different between the two frameworks is in how the noise enters the
strategies of the players. In Ellison (1993), as discussed above, for any player, the
probability of not playing her best response strategy, namely 
, is independent of the
potential loss value she would bear. In the more realistic framework of Montanari
and Saberi (2009), however, a player is less likely to not play her best response
strategy if the potential value of her loss in that is higher. More precisely, let
gi W f0; 1gjNi j ! R denote the potential loss value, scaled by the constant factor

2
.a�d/C.b�c/

, of player Pi for not playing her best response strategy given the actions
of her neighbors, i.e., those who form the set Ni . Then, she is assumed to play her
best response strategy with probability:

eˇgi

eˇgi C e�ˇgi
; (21.68)

where ˇ > 0 is a constant noise parameter common among all players. Con-
sequently, she plays the opposite strategy to her best response strategy with
probability:

e�ˇgi

eˇgi C e�ˇgi
: (21.69)

Notice that ˇ D 1 corresponds to noise-free or best response dynamics.
The modified dynamics turns out to be associated with a reversible Markov chain,

yielding a stationary distribution. The convergence time to the stationary distribution
is studied for the following types of networks:
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– random graphs with either a fixed degree sequence with minimum degree 3 or in
preferential-attachment model with minimum degree 2;

– d -dimensional networks, d � 1, which are those whose nodes can be positioned
in R

d in such a way that (i) for a fixed K > 0, any two nodes within a distance
K are connected, and (ii) for any v > 0, any cube of volume v contains no more
than 2v nodes;

– small-world networks, whose nodes are those of a d -dimensional grid of size
n1=d with (i) each node connected to its nearest neighbors and (ii) each node i

connected to k other nodes j .1/; : : : ; j .k/ drawn independently with distribution
C .n/ji � j j�r .

Given ˇ and a graph G representing the matching rule, let TC denote the hitting
time to the state where all players play 0 and define typical hitting time �C as:

�C D sup
X02f0;1gn

inf ft � 0 jP.T C � t / � e�1g: (21.70)

The following theorem addresses �C as an indicator of the convergence time to
the state where all players play 0.

Theorem 10. Let h , .a�d/�.b�c/

.a�d/C.b�c/
. As ˇ ! 1, �C.G/ D expf2ˇ� .G/ C o.ˇ/g

where:

(i) � .G/ D ˝.n/ if h is sufficiently small and G is a random k-regular graph with
k � 3, a random graph with a fixed degree sequence with minimum degree 3
or a preferential-attachment graph with minimum degree 2;

(ii) � .G/ D O.1/ for all h > 0 and d -dimensional graphs G with bounded range;
(iii) � .G/ D ˝.log n= log log n/ if h is sufficiently small and G is a small-world

network with r � d ;
(iv) � .G/ D ˝.n/ if h is sufficiently small and G is a small-world network with

r < d .

A general conclusion from Theorem 10 is that for those well-connected graphs,
i.e., random regular graphs or power-law graphs, the convergence time is high, while
for graphs in which a link is drawn between two nodes if they are geographically
close to each other, the convergence time is expected to be lower.

To recap, in this subsection we have employed game theory to model a social
behavior, namely, conformity, which leads to the spread of a certain innovation
throughout the network. Each individual is assumed to adopt the innovation if
the ratio of her neighbors doing so reaches a certain threshold exclusive to that
individual. If all individuals follow this conformity rule, given that the social graph
is connected, their actions converge to the same value in a finite time, unless the
social graph is bipartite, which results in a periodic behavior. Similar to the case of
Sect. 3.1, however, the introduction of noise, referring to the non-zero probability
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of best response strategies not being played, helps the convergence and eliminates
the possibility of periodicity. Consequently, given that the social graph is connected,
the innovation becomes widespread with a high probability when the thresholds are
less than 1

2
. A similar conclusion was drawn for a more realistic, modified model in

which the noise depends on the current action profile in the sense that an individual
is more likely not to adopt her best response strategy if her threshold is closer to the
ratio of her neighbors adopting the innovation.

5 Social Choice

Whether it is a jury of twelve deliberating on a verdict or a democratic state of
millions choosing its head, it has to convert votes into a decision, a social choice.
The election process that results in a social choice involves three major elements:
voting scheme, candidates, and voters. Let V D fV1; : : : ;Vng and C D fC1; : : : ; Cmg

denote, respectively, the sets of voters and candidates. We shall assume throughout
this section that the preference of each voter Vk 2 V is represented as a binary
relation Pk over the set of candidates, which is both

(i) total, meaning that for each pair of candidates Ci ; Cj 2 C, either Ci Pk Cj or
Cj Pk Ci ; and

(ii) transitive, meaning that for every three candidates Ci ; Cj ; Cl 2 C,

Ci Pk Cj and Cj Pk Cl ) Ci Pk Cl : (21.71)

Let P denote the set of all profiles of such preferences and P denote a generic
preference profile in P . Note that P D Rn, where R denotes the set of all possible
rankings of the candidates. A voting scheme is then characterized by a social choice
function f W P ! C. Thus, a voting scheme in essence returns a winner candidate
taking into account the voter preferences. Some of the well-known voting schemes
are described below where their outcomes, when the voter preferences are according
to Table 21.3, are also given for illustration.

1. Plurality: Each voter votes for its most preferred candidate. Then, the candidate
with the most votes wins. Candidate C3 is the clear winner of the preference
profile of Table 21.3.

2. Instant runoff : Each voter states its complete ranking of candidates. Then, the
winner candidate is the most preferred one by the majority of the voters, if there
exists one. Otherwise, the candidate who is the most preferred one by the least
number of voters is eliminated, and the voter rankings are updated accordingly.
The process continues until a winner candidate emerges. For the preference
profile of Table 21.3, no winner candidate emerges instantly as no candidate is
the most preferred one by the majority. Thus, candidate C1 is eliminated as she is
the most preferred one by the least number of voters and the voter rankings are
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Table 21.3 An example of a
preference profile

24 voters: C1 > C2 > C3

35 voters: C2 > C3 > C1

41 voters: C3 > C1 > C2

updated. Candidate C2 wins the election as she becomes the most preferred by
the majority in the updated rankings.

3. Borda rule: Each voter rates its least preferred candidate 0, its second least
preferred candidate 1, and so on. Then, for each candidate, the rates are
accumulated, and the candidate with the highest total score wins the election.
It can easily be verified that under this rule candidate C3 wins for the preference
profile of Table 21.3.

4. Successive elimination: Each voter states its ranking of the candidates. The
winner candidate is then determined in m � 1 stages based on a predefined list of
candidates. In stage 1, the first two candidates from the list are compared. The one
that is preferred, based on the voter rankings, by the majority is then compared
with the third candidate from the list and so on. The candidate preferred by the
majority in the last stage is the winner candidate of the election. It turns out that
the outcome of an election based on the successive elimination rule may depend
on the predefined order of the candidates list. For instance, in the example of
Table 21.3, the winner candidate is the one who appears last in the predefined
list, whether it is candidate C1, C2, or C3.

5.1 Fair Choice

All constitutional arrangements forming a voting scheme are made to ensure a
fair outcome of the election. Different interpretations of the notion of “fairness”
in an election are the sole reason for the existence of various voting schemes or,
equivalently, various social choice functions. We exploit different fairness criteria
in this subsection.

Condorcet Criterion. Given the voter rankings of candidates, it is possible that
a candidate, referred to as the Condorcet winner, exists, who would win a two-
candidate election against each of the other candidates. It is clear that a Condorcet
winner is unique if it exists. However, not every preference profile admits a
Condorcet winner, a phenomenon known as the Condorcet paradox. In other words,
collective preferences may be non-transitive even though each voter preference
is indeed transitive. For instance, in the example of Table 21.3, in two-candidate
elections, C1 would win against C2, C2 would win against C3, and C3 would win
against C1.

A social choice function is said to meet the Condorcet criterion if it always
returns the Condorcet winner in case it exists. Counterintuitively, most of the social
choice functions that are used in real-world elections do not meet such a criterion.
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Table 21.4 An example of a
preference profile admitting a
Condorcet winner (C1)

3 voters: C1 > C2 > C3 > C4

48 voters: C2 > C1 > C3 > C4

49 voters: C3 > C4 > C1 > C2

Among the voting schemes described in this section, only successive elimination
is associated with a social choice function meeting the Condorcet criteria. As an
illustrative example, for the preference profile of Table 21.4, a Condorcet winner,
namely, C1, exists, but she is not elected under either plurality (C3), or instant run-
off (C2), or Borda (C3) rules.

Contradictory Criteria (Muller and Satterthwaite 1977). Muller and Satterthwaite
argue that an ideally fair social choice function f W P ! C should satisfy the
following three criteria:

(i) Weak Pareto Efficiency (WPE): For every preference profile P 2 P and two
candidates Ci ; Cj 2 C:

Ci Pk Cj ; 8Vk 2 V ) f .P/ ¤ Cj : (21.72)

In other words, if all the voters prefer a candidate Ci over another candidate Cj ,
then Cj must not be elected.

(ii) Monotonicity: Let P 2 P be an arbitrary preference profile and Ci D f .P/. If
a preference profile P0 2 P is such that for every Cj 2 CnfCi g and Vk 2 V:

Ci Pk Cj ) Ci P0
kCj ; (21.73)

then Ci D f .P0/. In other words, the winner candidate for some preference
profile would still win if she enjoyed no less support from any voter.

(iii) Non-dictatorship: There does not exist a voter Vi 2 V such that, for every
P 2 P , f .P/ is the most preferred candidate by Vi . In other words, the winner
candidate must not coincide with the most preferred candidate by a single voter
for all preference profiles.

Although all the three criteria above seem reasonable, they are not all met by
the social choice function associated with any of the well-known voting schemes
discussed in this section. In particular, none of them meets monotonicity. For
instance, if the preference profile of Table 21.3 is modified to that of Table 21.5,
candidate C3 enjoys no less support from any voter, but she no longer wins the
election under plurality or Borda rules. In fact, both plurality and Borda rules now
point to candidate C2 as the winner. One can easily find scenarios in which the social
choice functions associated with instant runoff and successive elimination rules also
violate the monotonicity condition.
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Table 21.5 Modified
preference profile of
Table 21.3

24 voters: C2 > C1 > C3

35 voters: C2 > C3 > C1

41 voters: C3 > C1 > C2

Table 21.6 Successive
elimination by the list
.C2; C1; C4; C3/ returns C3 as
the winner although every
voter prefers C2 over her

3 voters: C1 > C2 > C3 > C4

48 voters: C4 > C1 > C2 > C3

49 voters: C2 > C3 > C4 > C1

Table 21.7 Various voting schemes and fairness criteria

Voting schemes/criteria WPE Monotonicity Non-dictatorship Condorcet criterion

Plurality X X
Instant runoff X X
Borda rule X X
Successive elimination X X

Besides monotonicity, WPE criterion is not met by the successive elimination
rule either. For instance, for the preference profile of Table 21.6, if successive
elimination is done according to the predefined list .C2; C1; C4; C3/, candidate C3

emerges as the winner although every voter prefers C2 over her. Remember, however,
that the successive elimination rule, unlike the other three rules of interest, does meet
the Condorcet criterion.

It is demonstrated in Table 21.7 as to what voting schemes meet what criteria
including the Condorcet criterion.

It now may not come as a surprise that all the three fairness criteria, i.e., WPE,
monotonicity, and non-dictatorship, cannot be met by any social choice function.

Theorem 11 (Muller and Satterthwaite 1977). In an election with more than two
candidates and unrestricted preference profiles, any social choice function which
satisfies WPE and monotonicity is dictatorial.

A crucial assumption in Theorem 11 is that the domain of voter preferences
must be unrestricted. Indeed, by imposing restrictions on the voter preferences, it
is possible to satisfy all the three seemingly contradicting fairness criteria. A well-
known type of restricted preference domain is single-peaked preferences, discussed
below:

Assume that each candidate is associated with a real number in the interval Œ0; 1�.
To create a set of single-peaked preferences, assume also that the ideal choice of
each voter is a real number in Œ0; 1�. Then, each voter ranks the candidates according
to the distances between their numbers and its ideal choice. More precisely, for
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every voter Vk and two candidates Ci and Cj , we have Ci Pk Cj if the ideal choice
of Vk is closer to the number associated with Ci than Cj . It has been proved that
for any profile of single-peaked voter preferences, a Condorcet winner exists and
is elected under the plurality rule. Furthermore, such a voting scheme meets all
the three contradicting fairness criteria. It is also worth mentioning that the winner
candidate turns out to be the most preferred candidate by the voter, whose ideal
choice is the median of the set of voter ideal choices.

In real-world elections, restrictions on the preference profiles cannot be imposed
nor should it be assumed. Therefore, according to Theorem 11, at least one of the
three contradicting fairness criteria must be compromised. A glance at Table 21.7
makes it clear that the favorite option to compromise is the monotonicity criterion.
We shall see that such a compromise is costly as it makes the voting schemes
susceptible to strategic manipulations by both voters and candidates.

Social Welfare. In some elections, not a winner candidate alone but a complete
ranking of the candidates is desired. Recall that R denotes the set of all possible
rankings of the candidates. A social welfare function is a function g W P ! R,
which captures a complete ranking of the candidates taking the voter preferences
into account. Note that most of the voting schemes characterized as social choice
functions can also be viewed as social welfare functions. Some examples include
plurality, instant runoff, and Borda rules.

The crucial concept of fairness appears to be just as ill-defined for social welfare
functions as it is for social choice functions. Arrow (1951, 2nd ed., 1963) argues that
for a social welfare function g W P ! R to ideally, fairly determine the outcome of
an election, it must satisfy the following three conditions:

(i) Pareto Efficiency (PE): For every preference profile P 2 P and two candidates
Ci ; Cj 2 C:

Ci Pk Cj ; 8Vk 2 V ) Ci g.P/ Cj : (21.74)

In other words, if every voter ranks a candidate Ci higher than another candidate
Cj , so does the social welfare function.

(ii) Independence of Irrelevant Alternatives (IIA): Let two preference profiles
P; P0 2 P and two candidates Ci ; Cj 2 C be arbitrary. If for every Vk 2 V ,

Ci Pk Cj , Ci P0
k Cj ; (21.75)

then,

Ci g.P/ Cj , Ci g.P0/ Cj : (21.76)

In other words, the ranking of every pair of candidates Ci and Cj by the social
welfare function only depends on the voters’ rankings of those two candidates
with respect to each other.
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(iii) Non-dictatorship: There does not exist a voter Vi 2 V such that, for every
P 2 P , g.P/ D Pi . In other words, the social welfare function does not mirror
any single voter’s preference.

One can verify that each of plurality, instant runoff, and Borda rules are non-
dictatorial and meet the PE criterion. However, neither meets the IIA criterion. In
fact, Arrow (1951, 2nd ed., 1963) has proved that no fair social welfare function
exists, in the sense of meeting the three criteria above, unless the voter preference
domain is restricted or there are at most two candidates:

Theorem 12 (Arrow 1951, 2nd ed., 1963). In an election with more than two
candidates, if the preference domain of the voters is unrestricted, any social welfare
function which satisfies the PE and IIA criteria is dictatorial.

5.2 Strategic Voting

Recall the voting preferences of Table 21.3. Assume that the winner candidate is
to be elected under the plurality rule. If all voters vote for their most preferred
candidate, then candidate C3 wins the election. Consider now the following two
statements:

(i) If the 24 voters of the first row of Table 21.3 (or at least 7 among them) voted
for their second most preferred candidate, that is, C2, then C2 would be elected;

(ii) All those 24 voters prefer C2 over C3.

Thus, if those 24 voters perceived that their most preferred candidates, that is, C1,
would have little or no chance to be elected, they might vote for their second most
preferred candidates, C2, hoping to get her elected instead of C3, who is their least
preferred candidate. This is an example of what is known as strategic voting or
sophisticated voting.

As it is evident from the example above, strategic voting occurs in elections with
more than two candidates when some voters support a candidate more strongly than
they sincerely should, to prevent a highly undesirable outcome. In numerous real
elections of the past, the outcomes are widely believed to have been influenced by
the voters’ strategic voting. High-profile examples with successful strategic voting
campaigns include the 1997 UK general election and the 2004 Canadian federal
election.

In a groundbreaking work (Myerson and Weber 1993), the authors proposed
a model within a game theoretic framework for strategic voting behavior. The
proposed game model is applicable to various voting schemes such as plurality and
Borda rules. In this game, the set of players is comprised of n voters, fV1; : : : ;Vng.
Each voter Vk has a payoff vector uk of size m whose i th element represents the
payoff which Vk would get if candidate Ci is elected. We assume that the set T of all
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permissible payoff vectors is finite. This payoff vector also indicates the preference
of Vk over the set of all candidates.

Furthermore, Vk casts a vector vk of size m as its vote, whose i th element is its
vote for candidate Ci 2 C D fC1; : : : Cmg. This general vector form for the votes
has been chosen to cover different voting schemes. For instance, in the plurality
voting scheme, vk is either a vector of all zeros, when the voter does not cast a vote,
or a vector with all but one element equal to 0 and one element (corresponding to
the voter’s most preferred candidate) equal to 1. Alternatively, in the Borda rule, vk

is either a vector of all zeros, if the voter does not cast a vote, or a vector whose
elements are a permutation of 0; 1; : : : ; m � 1, where 0 is assigned to the element
corresponding to the least preferable candidate by Vk and m � 1 is assigned to the
element corresponding to the most preferable candidate by Vk . We further assume
that set V of all permissible vote vectors is finite.

Each voter Vk also has a pivot probability .pk/ij for every pair Ci ; Cj 2 C. More
specifically, if Vk casts a vote vk , it perceives that it might change the outcome of
the election from Cj to Ci with probability:

.pk/ij : maxf.vk/i � .vk/j ; 0g:

In the following, we shall drop the indices k keeping in mind that all parameters are
specific to the voter Vk . For instance, we write vi , ui , and pij instead of .vk/i , .uk/i ,
and .pk/ij . The expected utility of Vk , to be maximized, is defined as:

U .p; v; u/ ,
X

fCi ;Cj g�C
pij .vi � vj /.ui � uj /:

Defining

Ri ,
X

Cj ¤Ci

pij .ui � uj /;

as the prospective rating of Ci by Vk , one can write:

U .p; v; u/ D
X
Ci 2C

vi Ri : (21.77)

The expected utility (21.77) is to be maximized by Vk over V , i.e., the set of
all permissible vote vectors. Then, according to Myerson and Weber (1993), to
maximize its utility,

– under the plurality voting scheme, each voter casts a vote for the candidate with
the highest prospective rating; and

– under the Borda rule, each voter ranks the candidates in decreasing order of their
prospective ratings.



942 S. Bolouki et al.

Optimal votes under other voting schemes, such as approval and range, were also
derived in Myerson and Weber (1993). Moreover, the authors define a certain type
of voting equilibrium given all the voters cast their optimal vote vectors and share
common pivotal probabilities. Such equilibria may not necessarily apply to practical
cases and were later refined in De Sinopoli (2000).

Another interesting topic, which has been investigated from a game theoretical
viewpoint, but we do not further discuss herein, is rational voting. This topic mainly
deals with the voter turnout and decisions of the voters to vote or abstain from
voting. A few notable game models and their analyses can be found in Ledyard et al.
(1981), Palfrey and Rosenthal (1985), Feddersen and Pesendorfer (1996), Dhillon
and Peralta (2002), and James and Lahti (2006).

5.3 Strategic Candidacy

Strategic candidacy has long been present in political elections when the voter
preferences can be estimated via opinion polls or the outcome of the first round
in two-round elections. Recall once again the voter preferences of Table 21.3
and assume the plurality rule as the voting scheme, which means that candi-
date C3 is elected. It should be clear that if candidate C1 is dropped out of
the election, candidate C2 would win. This arguably undesirable phenomenon,
in which a losing candidate may have the opportunity to manipulate the out-
come of the election by dropping out, is referred to as susceptibility to strategic
candidacy.

If the preference profile of the voters is known, strategic candidacy is a single-
stage game in which:

(i) The players are represented by the candidates;
(ii) Each candidate’s action is either to enter or exit the election;

(iii) Given an action profile of the candidates and hence given a winner candidate,
each candidate’s utility indicates how she prefers the winner candidate. More
precisely, the candidates, like the voters, are assumed to have preferences over
themselves, and they benefit more if a candidate more preferred by them is
elected.

In this subsection, reporting from Dutta et al. (2001), we argue that, under
the weakest of fairness conditions, namely, non-dictatorship and unanimity, for
all candidates to enter the election, cannot be a Nash equilibrium for all voter
preference profiles, which highlights the importance of strategic candidacy in real-
world elections. In connection with the previous subsection, i.e., strategic voting, the
interested reader is referred to Brill and Conitzer (2015), where both sets of voters
and candidates are assumed to act strategically.

According to Dutta et al. (2001), unanimity requires that if all the voters
have the same most preferred candidate, that candidate must be elected. View set
C D fC1; : : : ; Cmg as the set of potential candidates and assume that an unknown,
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nonempty subset of C is going to enter the election. Assume that the sets of voters
and candidates do not overlap, i.e., V \ C D ;. Let once again the preference of
each voter Vk 2 Vs be represented as a total, transitive binary relation Pk over
the set of potential candidates C. Moreover, for any A � C, let Pk jA denote the
preference, induced by Pk , of Vk over A. Finally, let PjA denote the profile of voter
preferences, induced by P, over A.

Recall that definition of a social choice function requires a fixed set C of
candidates entering the election. Thus, the notion of social choice function has to be
generalized if one is to investigate strategic candidacy for which the set of candidates
is an unknown subset of C. The related generalized notion shall be referred to as a
voting procedure.

Definition 6 (voting procedure). A voting procedure is a function V W 2Cnf;g �

P ! C such that for every subset of candidates A 2 2Cnf;g and preference profile
P 2 P:

(i) V .A; P/ 2 A; and
(ii) V .A; P/ D V .A; P0/ for any preference profile P0 2 P such that PjA D P0jA.

Item (i) above asserts that the outcome of the election must be determined from
the subset of candidates who entered the election. Item (ii) on the other hand, asserts
that the outcome of the election is determined only based on the voter preferences
over the candidates entering the election. We shall see that a voting procedure would
inevitably be susceptible to strategic candidacy if it meets the weakest of fairness
criteria, i.e., non-dictatorship and unanimity.

Definition 7 (unanimity). A voting procedure V W 2Cnf;g � P ! C is said to
satisfy unanimity if V .A; P/ D a for every nonempty subset of candidates A � C,
preference profile P 2 P , and a 2 A such that a is the most preferred candidate by
each voter Vi 2 V .

Formal definition of susceptibility to strategic candidacy can be derived as the
opposite of candidate stability defined below:

Definition 8 (candidate stability). A voting procedure V W 2Cnf;g � P ! C is
said to be candidate stable if for every candidate Ci 2 C and preference profile
P 2 Psuch that Ci ¤ V .C; P/, we have V .C; P/ D V .CnfCi g; P/.

Candidate stability implies that no losing candidate affects the outcome by
exiting the election. In other words, if a voting procedure is candidate stable, all
candidates entering the election make up a Nash equilibrium for all voter preference
profiles in the candidates game described at the beginning of the subsection. The
following theorem says that this situation cannot happen for any non-dictatorial,
unanimous voting procedure.
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Theorem 13. If a voting procedure V W 2Cnf;g � P ! C is unanimous and
candidate stable, it is dictatorial.

Assume now that each candidate, like voters, has preferences over the entire set
of candidates, with herself being the most preferable. Then, weak candidate stability
as an alternative to candidate stability may be defined as follows:

Definition 9 (weak candidate stability). A voting procedure V W 2Cnf;g�P ! C
is said to be weakly candidate stable if for every preference profile P 2 P , every
candidate Ci 2 C prefers V .C; P/ over V .CnfCi g; P/.

If a voting procedure is weakly candidate stable, no candidate gains by exiting
the election. Thus again, all candidates entering the election form a Nash equi-
librium for all voter preference profiles. Similar to Theorem 13, one could show
that any voting procedure which is weakly candidate stable and unanimous is
dictatorial.

5.4 Theory of Coalitions

In this subsection, we consider elections whose winners are coalitions of candidates.
Consider an election where each voter votes for its most preferred candidate. Having
collected the votes, the candidates are allowed to form nonoverlapping coalitions.
The coalition with the majority of the votes then wins the election.

For instance, recall the voting preferences of Table 21.3. The following coalition
formations are possible, where sets represent coalitions:

(1) fC1gfC2gfC3g;
(2) fC1; C2gfC3g;
(3) fC1; C3gfC2g;
(4) fC1gfC2; C3g;
(5) fC1; C2; C3g.

In case (1), there is no winning coalition as none has the majority of the votes. In
each of the cases (2)–(5), the coalition with more than one member candidate wins
the election.

Coalition formation can be viewed as a cooperative game in which:

(i) The players are represented by the candidates;
(ii) An action profile is characterized as a partition of the set of candidates into

coalitions;
(iii) Given an action profile of the candidates, and therefore given a winning

coalition, a candidate’s utility is 0, if she is not part of the winning coalition,
and non-zero otherwise. The total utility of winning coalition members is fixed.
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Note that we did not mention specifically what the utility of a winning coalition
member should be, although their total sum must be fixed. Without loss of
generality, let us assume that the fixed total utility is 1. How to distribute 1 among the
members is determined during the process of forming the coalitions. For instance, if
a candidate Ci has more votes than candidate Cj , she may ask for a greater portion
of the fixed total utility to be part of the same coalition with Cj .

Minimal size coalitions (Gamson 1961). Assume that the fixed total utility 1
is distributed among the candidates in the winning coalition in proportion to the
number of their votes, while the rest of the candidates receive nothing. Thus, the
utility of a candidate in the winning coalition is calculated by her number of votes
divided by the total number of votes of candidates in the winning coalition. It can be
shown that this coalition game among the candidates has at least one strong Nash
equilibrium, of which a definition is given below:

Definition 10 (strong Nash equilibrium). Given a game .V; x; u/, an action
profile .x�

1 ; : : : ; x�
n / is said to be a strong Nash equilibrium if for every S � V

and any action profile .x1; : : : ; xn/ for which

xj D x�
j ; 8Vi 2 VnS; (21.78)

there exists Vj 2 S such that

uj .x/ � uj .x�/: (21.79)

In other words, an action profile is a strong Nash equilibrium if there is not a group
of players who can all benefit by cooperatively changing their actions.

To characterize such equilibria, let us define minimal size coalitions.

Definition 11 (minimal size coalitions). Given the number of each candidate’s
votes, a minimal size coalition is a winning coalition with a minimal number of
total votes.

More specifically, among all coalitions whose members altogether have the
majority of the votes, the one with the least number of total votes is the minimal
size coalition.

Obviously, given any distribution of the votes, there exists at least one minimal
size coalition. We show in the following that any action profile involving a minimal
size coalition is a strong Nash equilibrium. Consider such an action profile A, and
let A0 be an arbitrary action profile. Let Ci be an arbitrary candidate in the winning
(minimal) coalition associated with action profile A. Since the size of the winning
coalition for A is minimal, it is not greater than the size of the winning coalition
for A0. Thus, candidate Ci ’s utility for A is not less than her utility for A0, whether
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Table 21.8 Strong Nash equilibria of a coalition game associated with Caplow’s Theory

Votes distribution Strong Nash equilibria

c1 D c2 D c3 fC1; C2gfC3g; fC1; C3gfC2g; fC1gfC2; C3g

c1 < c2 D c3 fC1; C2gfC3g; fC1; C3gfC2g

c1 > c2 D c3; c1 < c2 C c3 fC1gfC2; C3g

c1 > c2 D c3; c1 D c2 C c3 fC1; C2gfC3g; fC1; C3gfC2g; fC1; C2; C3g

c1 > c2 D c3; c1 > c2 C c3 fC1gfC2gfC3g; fC1gfC2; C3g; fC1; C2; C3g

c1 > c2 > c3; c1 < c2 C c3 fC1; C3gfC2g; fC1gfC2; C3g

c1 > c2 > c3; c1 D c2 C c3 fC1; C2gfC3g; fC1; C3gfC2g; fC1; C2; C3g

c1 > c2 > c3; c1 > c2 C c3 fC1gfC2gfC3g; fC1gfC2; C3g

Ci is in the winning coalition for A0 or not. Therefore, given action profile A, Ci ’s
utility has reached its maximum over all the action profiles. Thus, if a group of
candidates are to strictly increase their utilities by changing their actions, it cannot
involve any of the winning coalition members. Consequently, the winning coalition
remains intact and wins again, meaning that those who updated their actions have
lost again and still have utility 0.

As an example, for the preference profile of Table 21.3, where candidates C1, C2,
and C3 have 24, 35, and 41 votes, respectively, coalition fC1; C2g with a total of 59
votes is a minimal size coalition. Thus, the action profile fC1; C2gfC3g is a strong
Nash equilibrium. Notice that the utilities of C1 and C2 are calculated as 24

59
and 35

59
,

respectively. Neither C1 nor C2 would be willing to form a coalition with C3 since
their utilities would then strictly decrease.

Caplow’s Theory and its generalization (Caplow 1968; Shenoy 1978). Focusing
on the case of three candidates, Caplow does not believe that a minimal size
winning coalition should necessarily have advantage over other winning coalitions.
In particular, out of the five coalition formations for the example of Table 21.3,
Caplow argues that action profiles fC1; C2gfC3g and fC1; C3gfC2g are just as likely
to occur. A mathematical formulation of Caplow’s Theory, reported from Shenoy
(1978), is given below.

Let an action profile A involving a winning coalition be given and assume that Ci

is a candidate in the winning coalition. A candidate Cj is said to be controlled by Ci

if she has fewer votes than Ci or she is not part of the winning coalition. The power
index of Ci is then defined as the number of candidates controlled by her. Finally,
Ci ’s utility is calculated as her power index divided by the total cumulative power
index of the candidates in the winning coalition. Once again, strong Nash equilibria
of the game are of interest. For the case of three candidates C1; C2; and C3 whose
number of votes are c1; c2; and c3, respectively, Table 21.8 demonstrates the game’s
strong Nash equilibria according to how c1; c2; and c3 are related.

In this subsection, we have dealt with the formation of coalitions in an election as
a single-stage game among the candidates. Each candidate was assumed to receive
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a utility if she is a member of a coalition after the game is played. Her utility is not
necessarily uniform over the collection of possible coalitions. The point of interest
now becomes to find the strong Nash equilibria of the game given its associated
utilities. Two approaches toward defining the utilities were introduced, and the
strong Nash equilibria for each case were obtained.

6 Conclusion

In this chapter, we have presented some applications of game theory in social
networks. In particular, two fundamental concepts in social networks, namely,
opinion dynamics and social choice, were modeled as games among the individuals
in a social network. While opinion dynamics is associated with multistage games
in general, as it resembles a time-varying behavior of a social network, the social
choice is modeled as a single-stage game.

Depending on the topic, the set containing all possible opinions may be of
continuous or discrete nature. For instance, political opinions can be viewed
as continuous opinions since political views can range from very extremist to
moderate. When adopting an innovation, however, one has a finite number of
choices from what would be available in the market, which corresponds to a discrete
opinion. Hence, in the games modeling of opinion dynamics, the set of actions may
be finite or infinite, requiring very different techniques to be used in their analysis.

In modeling opinion dynamics via games, one has to define the action set and
utility function of each player in such a way that they reasonably capture the social
behavior. Since there is no single best way to do that, there does not exist an
inclusive game model to address opinion dynamics, whether continuous or discrete.
Therefore, we have discussed a number of very different approaches employing
game theory to model opinion dynamics. For each approach, various playing
strategies, such as best response strategy or a noisy version of it, were investigated;
it was determined whether the game dynamics converges, or equivalently whether
an agreement is reached or a clustering occurs, as time goes by; it was made clear
whether the game dynamics converges to a Nash equilibrium in case it converges at
all; and the convergence rate to the equilibrium was made explicit.

A fundamentally different problem from opinion dynamics is the social choice
process, which corresponds to the voting process. Social choice is generally viewed
as a single-stage game, which is what we adopted in this chapter, although in some
practical cases, two-stage elections are also possible. We argued that any voting
scheme is fundamentally flawed in the sense that it cannot meet all of certain
fairness criteria. This makes a voting scheme prone to manipulation, leading to the
emergence of gaming in elections. Two well-known manipulation games regarding
elections are strategic voting and strategic candidacy, with the latter discussed in the
previous section.

Another type of game emerging in elections is to address the formation of
candidate coalitions. It was assumed herein that the coalitions are to be formed
after the votes are counted and the number of votes of each candidate is known. A
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coalition whose members altogether have the majority of the votes is a winning
coalition. Thus, for the formation of coalitions, one investigates a single-stage
game among the candidates to determine how a winning coalition emerges. Since
the game is a cooperative one, strong Nash equilibria of the game are of great
importance. We have introduced two well-known games of coalition formation and
obtained their strong Nash equilibria.
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Acemoğlu D, Como G, Fagnani F, Ozdaglar A (2013) Opinion fluctuations and disagreement in
social networks. Math Oper Res 38(1):1–27

Arrow KJ (1951, 2nd ed., 1963) Social choice and individual values. Yale University Press, New
Haven/London

Bernard J (1954) The theory of games of strategy as a modern sociology of conflict. Am J Sociol
59(5):411–424

Brill M, Conitzer V (2015) Strategic voting and strategic candidacy. AAAI 15:819–826
Caplow T (1968) Two against one: coalitions in triads. Prentice-Hall, Englewood Cliffs
Chatterjee S, Seneta E (1977) Towards consensus: some convergence theorems on repeated

averaging. J Appl Probab 14(1):89–97
Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in

animal groups on the move. Nature 433(7025):513–516
Cucker F, Smale S (2007) Emergent behavior in flocks. IEEE Trans Autom Control 52(5):852–862
Cucker F, Smale S, Zhou D-X (2004) Modeling language evolution. Found Comput Math

4(3):315–343
De Sinopoli F (2000) Sophisticated voting and equilibrium refinements under plurality rule. Soc

Choice Welf 17(4):655–672
Deffuant G, Neau D, Amblard F, Weisbuch G (2000) Mixing beliefs among interacting agents.

Adv Complex Syst 3(01n04):87–98
DeGroot MH (1974) Reaching a consensus. J Am Stat Assoc 69(345):118–121
Dhillon A, Peralta S (2002) Economic theories of voter turnout. Econ J 112(480):332–352
Dutta B, Jackson MO, Le Breton M (2001) Strategic candidacy and voting procedures.

Econometrica 69(4):1013–1037
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Abstract

Applied problems whose investigation involves methods of pursuit-evasion
differential games are described. The main focus of this chapter is on time-
optimal problems close to R. Isaacs’ “homicidal chauffeur” game and to linear
differential games of fixed terminal time with J. Shinar’s space interception
problem as the major example. These problems are taken because after a
change of variables they can be reduced to models with two state variables.
This allows us to provide adequate graphical representations of the level sets
of the value functions being obtained numerically and emphasize important
peculiarities of these sets. Also, other conflict control problems and control
problems with uncertainties being extensively investigated nowadays are briefly
outlined.

Keywords
Differential game � Homicidal chauffeur � Space interception � Semipermeable
curves � Barriers � Singular surfaces � Maximal stable bridge

1 Introduction

1. Pioneering works on differential games were accomplished by R. Isaacs and
published, starting from 1951, in his reports for the RAND Corporation. Already in
the first of them (1951), R. Isaacs used the term “differential game” and formulated
the “homicidal chauffeur” game, which later became one of the most famous
problems. Note that in the beginning of the 1950s, modern mathematical optimal
control theory relevant to accounting for “geometric constraints” on control had only
just started to develop. The theorem on necessary conditions for optimal open-loop
control, which received the name “Pontryagin maximum principle” was published
in 1956–1957. A little earlier, the works of D. W. Bushaw and A. A. Feldbaum on
construction of optimal feedback control in linear control problems in the plane had
appeared.

In the homicidal chauffeur game a “car” pursues a “pedestrian.” The car (a point
in the plane) has constant velocity magnitude, but the direction of the velocity vector
cannot change instantaneously because the angle velocity is bounded. In other
words, there is a restriction on the turn radius of the car. The pedestrian (another
point in the plane) is a non-inertia object whose velocity magnitude is bounded,
but the direction can change instantaneously. Such non-inertia objects were called
by R. Isaacs as objects with “simple motion.” The pursuer minimizes the time of
capture in a given neighborhood of the evader, while the pedestrian hinders this.

Of course, when considering this game, R. Isaacs kept in mind an applied
problem, in which a torpedo pursues an evading small ship (Breitner 2005). It was
the genius of R. Isaacs to give “catchy names” to applied problems in his reports and
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his book “Differential Games” (Isaacs 1965) and to leave only principal features
in mathematical description, putting away a plenty of details that always exist
when investigating applied problems. Studying differential games (in R. Isaacs’
understanding) is first to model the main important features of complex antagonist
problems and then to solve them using analytical or numerical methods.

2. Isaacs’ method is based on the consideration of a first-order partial differ-
ential equation for the value function, which is analogous to the well-known in
mechanics Hamilton-Jacobi equation. R. Isaacs derived the corresponding equa-
tion by letting feedback controls as admissible classes of controls in zero-sum
games and formulated the “transition principle,” or the “principle of guaranteed
nondeterioration of result in the process of motion.” Nowadays, this is a well-
known principle of backward constructions (dynamic programming), when the
value function is recomputed by going back from the terminal conditions. The
operator of such recalculation implements the operations of minimum over controls
of one player and maximum over controls of another one. Thereby, R. Isaacs
clearly realized that the value function is, as a rule, non-smooth or even discon-
tinuous. The latter is typical for time-optimal games, in which the payoff is the
capture time.

R. Isaacs introduced the notion of “singular” surfaces in the game space and per-
formed a classification of possible types of surfaces. He considered the construction
of singular surfaces as a basis for solving differential games. Correctly constructed
singular surfaces form a skeleton of solution by generating a peculiar separation of
solution into cells. In the interior of each cell a single smooth optimal trajectory goes
through every point. On singular surfaces, kinks of optimal trajectories, violation of
uniqueness, etc. occur.

After the publication of R. Isaacs’ book, theoretical investigation of singu-
lar surfaces, their analysis for particular applied problems were performed by
J. Breakwell and his postgraduate students A. Merz, P. Bernhard, J. Lewin, and
G.-J. Olsder. P. Bernhard in the paper (1977) and A. A. Melikyan in the book
(1998) obtained differential equations for typical singular surfaces. Consideration
of differential games with the use of singular surfaces was done in the book by
J. Lewin (1994). However, one should be clearly aware of the fact that solving
differential games by construction of singular surfaces requires enormous effort
even for problems in the plane. In the latter case, we construct not singular
surfaces but singular lines. Most likely, in high-dimensional differential games,
detecting and classification of singular surfaces are to be appreciated as very useful
research that should, however, be performed after constructing level sets of the value
function.

3. The theory of differential games has been extensively developed in the Soviet
Union in the 1960s–1980s. There existed four centers where differential games were
intensively investigated: The mathematical school of L. S. Pontryagin in Moscow,
the school of N. N. Krasovskii in Sverdlovsk (now Ekaterinburg), the school of
B. N. Pschenichnyi in Kiev, and the school headed by L. A. Petrosyan in Leningrad
(now St.-Petersburg).
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In his works on the pursuit problem, L. S. Pontryagin assumed that the first player
(the pursuer) discriminates the second player (the evader). The discrimination is
reduced to the requirement of informing on a small current time interval about the
second player’s control. In the problem from the side of the second player, on the
contrary, the first player is discriminated.

A similar concept was followed by B. N. Pschenichnyi and partly by
L. A. Petrosyan.

From the very beginning of his investigations, N. N. Krasovskii followed
positional formalization, in which the control is constructed using only current
position of the game but is being applied using a discrete control scheme. The latter
means that the control chosen at some time instant of a given time grid remains
constant until the next time instant of the grid. When solving differential games
in positional formalization, the final result is the generation of (optimal) feedback
strategy that guarantees the best outcome to the respective player, provided the step
width of the discrete control scheme goes to zero.

4. In two papers Pontryagin (1967a,b) devoted to differential games with linear
dynamics, L. S. Pontryagin showed how one can account for the advantage of
the pursuer over the evader using the notion of geometric difference (Minkowski
difference) and how, based on the feedback procedure, the solvability set in the
problem of approaching a given target set by a conflict-controlled system can
be constructed. Among other papers by L. S. Pontryagin, let us note the works
(Pontryagin and Mischenko 1971; Pontryagin 1971) devoted to evasion problem
on an infinite time interval. For objects with linear dynamics, very “fine” condition
of dynamic advantage of the second player over the first player has been formulated.
Once this condition is fulfilled, the evader performs an evading maneuver in
dangerous situations of approach. Then he is waiting for the next dangerous situation
and so on.

In the book (1970), N. N. Krasovskii proposed effective methods for solving
linear differential games based on the notion of reachable sets, i.e., on solving the
problem in the class of open-loop controls. Though these methods give an optimal
result only in the case where some “regularity conditions” are fulfilled, from the
practical point of view, they can be also applied in cases where regularity conditions
are not satisfied, because very often the difference between the optimal result and
the result obtained is unessential. Moreover, these methods are very clear and can
be easily understood by engineers.

Somewhat later, N. N. Krasovskii and A. I. Subbotin introduced (1974, 1988)
for a wide class of differential games with nonlinear dynamics the notions of
stable bridge and maximal stable bridge. The latter is the maximal set in the
space (time � state vector), from which the first player can solve the problem
of approaching a given target set under the assumption of discrimination of his
opponent (the second player). Thus, being absolutely unacceptable from the point
of view of the engineering practice, the idealized assumption on the discrimination
was included into the theoretical construction. It was shown that if the stable
bridge (or the maximal stable bridge) is somehow constructed, then an extremal
to the stable bridge positional strategy of the first player holds trajectories of the
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control system in a sufficiently small neighborhood of the stable bridge, provided
that the discrete control scheme with sufficiently small time step is used. The
concept of stable bridges allowed N. N. Krasovskii and A. I. Subbotin to prove the
existence of the value function for different classes of differential games. Efficient
numerical methods for the construction of maximal stable bridges were developed
in Ekaterinburg (Grigor’eva et al. 2005; Subbotin and Patsko 1984; Taras’yev et al.
1988; Ushakov 1998).

The theory of positional control is developed for differential games with
nonlinear dynamics and separable controls of the players. Thereby, usually local
Lipschitz condition and sublinear growth in state variable, measurability in time,
and continuity in controls are required for the function in the right-hand side.
It is extremely important that the results achieved are generalized (Krasovskii
and Subbotin 1974, 1988; Subbotin and Chentsov 1981) to the case of systems
with inseparable controls, including the case where Isaacs’ condition (equal-
ity of minmax and maxmin-Hamiltonians) is not fulfilled. The above condi-
tions are assumed to be satisfied also in numerical constructions. In numerical
procedures, matching of time and spatial discretization step widths is required
additionally.

First works accomplished by L. A. Petrosyan are related to the “lifeline” game
that was introduced in the book by R. Isaacs. In this game, the evader strives to
reach a given terminal set, whereas the pursuer tries to catch the evader as soon as
possible. In the papers Petrosjan (1965) and Petrosyan and Dutkevich (1972), this
game is completely solved in the case of simple pursuit (i.e., when the objects have
dynamics with simple motion). In addition, it is revealed that for the considered
class of dynamics of the pursuer and evader, in the case of point capture, the
optimal strategy of the pursuer is the well-known in the engineering practice parallel
approach strategy. Among the works by L. A. Petrosyan from the late 1960s, let us
mention the paper Petrosyan (1970) where the problem with the evader information
time lag is considered. Here, it is proved that the optimal strategy of the evader is
mixed. On this topic, see also Petrosyan (1977, 1993). From the middle of 1970s,
the school of L. A. Petrosyan started to pay more attention, along with zero-sum
differential games, to noncooperative and cooperative dynamic games with many
players, which find use in applied economic theory.

5. In the theory of differential games, problems with complete information are
distinguished from those ones with incomplete information. The problems with
complete information assume precise knowledge of the current position of the
game by all participants. This is not the case in the problems with incomplete
information. For example, the pursuer forms his control based not on precise
information on the state of the evader but on information obtained from inexact
measurements only. Moreover, in practice, one should account for information
and processing delays. This creates difficulties even on the problem statement
stage. Problems with incomplete information accomplished at the beginning of
1970s are presented in the books Chernous’ko and Melikyan (1978), Krasovskii
(1970), Krasovskii and Subbotin (1974), Petrosyan (1977), and Kurzhanski (1977).
In the years ahead, numerous attempts were made by the scientific school of
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N. N. Krasovskii to develop a theory of problems with incomplete information in
such a way that it would contain similar elements (maximal stable bridges, extremal
positional strategies) as in the theory of problems with complete information.
These approaches are reflected in the works Kurzhanski (2004), Osipov (2006),
and Kryazhimskiy and Osipov (2010).

As problems with incomplete information, also settings can be considered, in
which one of the conflicting players knows the precise phase state of the game
at some instants only. There exist statements that assume a bounded number of
observation times and that the respective player chooses a future observation instant
based on the information about the phase state being available at the previous
observation. Using the description of the informal problem from Neveu et al. (1995),
let us imagine a helicopter that detected a submarine and tries to approach it (as
projected to the horizontal plane) close enough to deliver a weapon. The submarine
maneuvers in order to escape to a secure zone. The helicopter is only equipped
with a dipping active sonar. Thus, to get information concerning the submarine
position, the helicopter has to choose instant for dip position to detect and localize
the submarine. After this instant, it chooses the next dip instant and so on. No
information is available for the helicopter between the two dips. Therefore, from the
point of view of the first player (helicopter), a problem of the choice of observation
instants and of the construction of an open-loop control between two subsequent
observation points that ensures appropriate result at the end of pursuit occurs.
Considering the problem from the point of view of the second player (submarine)
also yields in a statement with bounded number of observations of the game phase
states but for the submarine.

Similar problems were considered by A. A. Melikyan (1973, 1975) in frames of
differential game theory in the early 1970s. He found model examples, in which
the correct (optimal) choice of the observation instants provides the equality of the
best guaranteed result of the observing player and the optimal result that this player
could guarantee under continuous observation of the current position of the game.
The results obtained are included in the book Chernous’ko and Melikyan (1978).
It occurred that questions on optimal choice of observation instants are closely
connected to important theoretical questions related to the coincidence of the value
of differential game (under condition of continuous observation of the game state)
with the iterations of programming max-min function. Such programmed iterations
were proposed by A. G. Chentsov (1976, 1978a). Corresponding results are included
in the book Subbotin and Chentsov (1981).

At the beginning of the 1990s, topics related to bounded number of observation
instants were further developed in the works by P. Bernhard, O. Pourtallier and their
colleagues (Bernhard and Pourtallier 1994; Neveu et al. 1995; Olsder and Pourtallier
1995). Having in mind some applied problems, they investigated statements, in
which the observing player needs some specified time to determine the phase state,
and this player is immovable during the measurement (helicopter during acting
a dipping active sonar). For games with simple motion and games with linear
dynamics, construction of sets of initial states from which the reach of a given target
set can be guaranteed under a specified number of observation intervals, as well as



22 Pursuit-Evasion Games 957

problems of minimization of the whole observation time, and some others, were
considered.

6. In the 1970s–1990s, in different countries, investigations of pursuit-evasion
games with objects separated into two groups were performed. For example, several
objects collected in one group should capture all evaders combined in another
group in finite time. Of course, from the point of view of existence of the value
function and optimal feedback strategies, problems with many objects, as a rule,
are included into the general theory of differential games. However, what would
be effectively verifiable conditions of successful capture? How can one construct
optimal strategies of the players? The papers Pschenichnyi et al. (1981), Petrov
(1988), and Grigorenko (1989) and the books Chikrii (1997), Grigorenko (1990),
and Blagodatskih and Petrov (2009) are devoted to the investigation of such
questions for different classes of linear differential games. A great stimulating role
in the creation of methods of group pursuit game theory had the work (1976)
by B. N. Pschenichnyi, which considered the problem of the successful capture
of one evader by a group of several pursuers in the case where all objects are
identical and their dynamics are that of simple motion. In the paper Mishchenko
et al. (1977), the local evasion maneuver from the work (1971) by L. S. Pontryagin
and E. F. Mishchenko is extended to the situation of many pursuers. In the work
(1976), for problems with simple motion, F. L. Chernous’ko suggested his method
of preventing the capture of the evader by a group of pursuers. Under assumption of
advantage in velocity of the evader over each pursuer, the method provides a certain
distance evasion from all pursuers with keeping the motion inside a prescribed
neighborhood of a given basic trajectory. Particular problems with evident applied
character were considered in Hagedorn and Breakwell (1976) and Levchenkov
and Pashkov (1990). In Petrosyan (1966) and Petrosyan and Shiryaev (1980), for
differential games with several pursuers and several evaders, the notion of Nash
equilibrium is used. Close results are presented in the book Petrosyan (1993). A
survey of publications on pursuit-evasion games with many players is given in the
paper Kumkov et al. (2017).

7. In the 1980s and early 1990s, the attention of many researchers was drawn
to problems of aircraft control in the presence of wind disturbances. A tremendous
role in the development of this topic played the publications by A. Miele and his
collaborators (Miele et al. 1986, 1987, 1988), in which aircraft take off, landing, and
abort landing problems were formulated for nonlinear system of vertical channel.
These papers were followed by the works of other authors Leitmann and Pandey
(1991), Bulirsch et al. (1991a), Bulirsch et al. (1991b), Botkin et al. (1984),
and Patsko et al. (1994), in which various methods of optimal control theory and
differential games were applied to similar problems.

Of course, the works mentioned were of research nature. The design of autopilots
for different stages of aircraft motion is traditionally based on methods of the
automatic regulation theory being intensively developed in the 1930s–1950s and
relied heavily on achievements of stability theory for linear systems. The outcome
of these algorithms when applied in mathematical modeling in the presence of wind
disturbances is essentially worse compared to algorithms based on comprehensive
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mathematical optimal control theory (including differential game theory) that
directly accounts for geometric bounds on deviations of steering mechanisms.
However, such novel algorithms require as input data almost all state variables,
many of which are difficult or even impossible to measure. The interest to study and
to apply pursuit-evasion games to aircraft problems could be increased nowadays
based on new realistic settings and comprehensive efficient numerical methods of
differential game theory.

Many applied-oriented works accomplished in the 1980s are presented in the
collection (Yavin et al. 1987) edited by Y. Yavin, M. Pachter, and E. Y. Rodin.

8. The presentation in this chapter is as follows. We describe several mathe-
matical problems that should be regarded as model problems assimilating principal
aspects of very important practical problems.

In Sect. 2, we consider the time-optimal homicidal chauffeur game and its
modifications. For each problem, we give the statement and the corresponding
references to journal publications. Then our results on numerical construction of the
level sets of the value function and, for one of the modifications, results of modeling
optimal strategies are presented.

In Sect. 3, a space interception problem with linear dynamics is considered.
Here again, the main attention is paid to the computation of the level sets of the
value function (maximal stable bridges with a given value of miss). It is stressed
that the level sets in the space time � state vector can have narrow throats with
complex geometry. Investigation of such seemingly pure mathematical peculiarities
is important for understanding the structure of the solvability sets of the interception
problem. Significant attention is paid to adaptive control of the first (minimizing)
player, being developed by us for the case where, according to the statement of the
problem, no geometric constraint on the control of the second player is specified.

Thus, our objective is to give a vivid presentation of two canonical classes of
differential games and applied problems, which can be solved using numerical
methods developed for these classes. The presentation is accompanied by a large
number of figures to demonstrate the structure and peculiarities of the value
function.

In the last subsections of Sects. 2 and 3, we mention comprehensive complex
applied problems related to time-optimal games and to games with linear dynamics
and stress that their investigation requires development of new efficient numerical
methods.

The investigation of applied model problems considered in this chapter was
initiated and to a large extent explored by the outstanding mathematicians:
R. Isaacs, J. Breakwell, A. Merz, and J. Shinar. We place their photographs here
(Figs. 22.1 and 22.2).

The Introduction and Sect. 2 of this chapter are written by V. S. Patsko and
V. L. Turova, Sect. 3 and Conclusion are prepared by S. S. Kumkov and V. S. Patsko.
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Fig. 22.1 Rufus Isaacs (1979) and John Valentine Breakwell (� 1986)

Fig. 22.2 Antony Merz (2008) and Josef Shinar (2007)
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2 Time-Optimal Problems: Homicidal Chauffeur Game and
Its Modifications

Among pursuit-evasion games, the most popular ones are time-optimal problems,
where one player wishes to minimize and another wishes to maximize the terminal
time of the game. In turn, the most famous problem among time-optimal problems
is the homicidal chauffeur game. It formed the basis of the book by R. Isaacs. After
the publication of this book, a huge number of applied studies were performed on
the homicidal chauffeur game and its modifications.

The significance of the problem is the following. On one side, many practical
situations fall under this mathematical description, e.g., the abovementioned conflict
situation between a controlled torpedo and an evading small motor boat or an aircraft
pursuing a helicopter in a horizontal plane and so on. On the other hand, the problem
is formulated mathematically in such a way that after passing to reduced coordinates
we deal with two state variables. This was important in the middle of the last century
as numerical investigation of the problem was not yet possible. Thus, intuition
could help here. Also presently, when the application of numerical methods is not
uncommon, systematic numerical analysis for various values of parameters with the
aim to reveal regular and singular parts of solutions can really be performed only
in the case where the problem is reduced to the one with two state variables. A
third thing to mention is that the problem is very interesting as a test example when
developing various numerical methods of differential game theory.

2.1 Dynamics of Conflicting Objects

Two moving objects, a “pedestrian” and a “car,” present in the game.
The pedestrian is a non-inertia point object with coordinates xe; ye in the plane,

which can change the direction of the motion instantaneously. The magnitude of the
velocity v is bounded from above by a given number. Using differential equations,
this can be expressed in the form

Pxe D v1;

Pye D v2; v D .v1; v2/
0; jvj � �:

(22.1)

Such an object was called by R. Isaacs as “object with simple motion.” Here and
below, the prime means transposition.

Dynamics of the car:

Pxp D w sin �;
Pyp D w cos �;
P� D wu=R; juj � 1:

(22.2)

Here xp; yp are the coordinates of the point object, � is the angle specifying the
direction of the velocity vector (measured clockwise from the Cyp-axis), w D const
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is the given velocity magnitude, u is the scalar control (bounded in absolute value
by 1), and R is the minimum turn radius.

By normalizing time and geometric coordinates, one can achieve w D 1, R D 1.
In the new dimensionless variables, the dynamics of the objects is written as follows:

P W Pxp D sin �; E W Pxe D v1;

Pyp D cos �; Pye D v2;
P� D u; juj � 1I v D .v1; v2/

0; jvj � �:

(22.3)

The constraint on v in (22.3) has changed compared to (22.1) because of the joint
normalization for (22.1) and (22.2). In the following, the notationQ D fv W jvj � �g

will be often used.
It was R. Isaacs who introduced the name “car” for the object (22.2). After the

normalization and assuming that the velocity w D 1, the path length run by such an
object is wT D T , where T is the elapsed time. Therefore, minimization of time for
the object (22.2) is equivalent to minimization of the path length.

A. A. Markov addressed in his paper (Markov 1889) four optimization problems
for railway track laying. In the first two of them, he assumed that the movement
along the railway track is performed with constant velocity, the curvature radius of
the railway track is bounded, and the path length is used as an optimum criterion.
This means that he studied practically time-optimal problems for the object with
dynamics (22.2) but using other terms.

L. Dubins published the paper (Dubins 1957) on the line of shortest length,
which connects two points in the plane. The lines whose curvature is bounded
from below by the same number were admitted for comparison; herewith each line
should have the same given outgoing direction at the initial point and the same given
incoming direction at the terminal point. Obviously, movement along such lines is
also described by system (22.2). It came about in works on theoretical robotics that
objects with dynamics (22.2) are often called “Dubins’ car.”

The next in complexity model is the car model from the paper by J. Reeds and
L. Shepp (1990):

Pxp D w sin �
Pyp D w cos �
P� D u; juj � 1; jwj � 1:

(22.4)

The control u determines the angular velocity of motion. The control w is respon-
sible for the instantaneous change of the linear velocity magnitude. In particular, the
car can instantaneously change the direction of motion to the opposite one. A non-
inertia change of the linear velocity magnitude is a mathematical idealization. But,
citing (Reeds and Shepp 1990, p. 373), “for slowly moving vehicles, such as carts,
this seems like a reasonable compromise to achieve tractability.”
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It is natural to consider problems where the range for changing the control w is
Œa; 1�: Here, a 2 Œ�1; 1� is the parameter of the problem. If a D 1; Dubins’ car is
obtained. For a D �1, one arrives at Reeds-Shepp’s car.

2.2 Dynamics in Reduced Coordinates

Place the origin of the reduced coordinates x; y to the position of player P . Let h.t/
be a unit vector in the direction of motion of player P at time t . The orthogonal to
h.t/ unit vector is denoted by k.t/ (see Fig. 22.3). We have

h.t/ D

�

sin �.t/
cos �.t/

�

; k.t/ D

�

cos �.t/
� sin �.t/

�

:

Differentiating the relations

x.t/ D cos �.t/.xe.t/ � xp.t// � sin �.t/.ye.t/ � yp.t//;

y.t/ D sin �.t/.xe.t/ � xp.t//C cos �.t/.ye.t/ � yp.t//;

we turn from system (22.3) to system

Px D �yu C vx;

Py D xu � 1C vy;

juj � 1; v D .vx; vy/
0; jvj � �:

(22.5)

Here vx D v1 cos � � v2 sin � , vy D v1 sin � C v2 cos �: Note that the form of
the circular constraint on the control of player E remains the same in the reduced

Fig. 22.3 Movable reference
system

xp,xe

yp,ye

0

θ (t)

k(t)
E (t)

h(t)

P(t)
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coordinates. However, this might be not the case if the geometric constraint on the
control of player E in (22.3) would be of another kind.

In the case where player P is described by (22.4), let the axis y of the relative
coordinate system be directed toward the forward motion of the car to obtain

Px D �yu C vx;

Py D xu � w C vy;

juj � 1; w 2 Œa; 1�; v D .vx; vy/
0; jvj � �:

(22.6)

2.3 Isaacs’ Method for Games of Kind and Games of Degree.
Iterative Viability Methods

The problems considered in Sects. 2.5 and 2.6 were originally solved using Isaacs’
method. The problem from Sect. 2.7 was initially investigated using an iterative
method based on the concept of viability trajectories. Below, we give a schematic
description of these methods.

1. In classical mathematics, smooth solutions to first-order partial differential
equations are searched using Cauchy characteristics (see, e.g., Courant 1962; Evans
1998; Melikyan 1998).

Consider a partial differential equation

F
�

x; J;
dJ

dx

�

D 0; x 2 Rn: (22.7)

Here, F is a scalar function, J is the unknown function x ! J .x/, and
dJ

dx
is its derivative. Depending on the context, the derivative of the scalar

function of a vector argument will be considered either as a row matrix or a
column matrix. Assume that F 2 C2. Also, let the function J satisfy a given
boundary condition. Typically, values J .x/ are defined on a smooth manifold
of dimension n � 1. With some additional regularity condition, the theorem
on local parametrization of the graph of the function J 2 C2 holds. The
parametrization is performed using the system of ordinary differential equa-
tions:

Px D F .x; s;  /; Ps D h ; F .x; s;  /i; P D �Fx.x; s;  / �  Fs.x; s;  /;

(22.8)

where the angular brackets denote the scalar product of two vectors.
The functions t ! x.t/ and t ! s.t/, being the solution (together with the

function t !  .t/) to system (22.8), define curves carpeting the graph of the
function J . Initial values x.t�/, s.t�/,  .t�/ correspond to the boundary condition
on the function J and depend on some parameter � of dimension n � 1. The scalar
variable t taking values close to t� is also a parameter. The functions t ! x.t/,
t ! s.t/, and t !  .t/ are called characteristics of equation (22.7).
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Necessity. Given a solution J to equation (22.7) H) system (22.8) defines a
parametrization of the graph of the function J . Here, s.t/ D J .x.t//,  .t/ D
dJ

dx
.x.t//.

Sufficiency. Given functions t ! x.t/, t ! s.t/, and t !  .t/, satisfying
system (22.8) and relation F .x.t/; s.t/;  .t// D 0. The initial values x.t�/, s.t�/,
and  .t�/ of these functions, being dependent on a parameter � , have the sense
of a point on some sub-manifold of the initial manifold, the value J .x.t�// of

the unknown function, and the value
dJ

dx
.x.t�// of its derivative, respectively. The

regularity condition ensures that only one x-characteristics goes through each point
x D x.t/ of this characteristics in some neighborhood of the distinguished sub-
manifold. Then, the function J , being a solution to (22.7), is constructed in such
neighborhood. The curves t ! x.t/ and t ! s.t/ D J .x.t// follow the graph of

this function. Here,  .t/ D
dJ

dx
.x.t//.

The proof of the sufficiency is constructive and gives a receipt for constructing
the function J .

If the function F in (22.7) does not depend on J , then the system (22.8) is
simplified as follows:

Px D F .x;  /; Ps D h ; F .x;  /i; P D �Fx.x;  /: (22.9)

The first and third equations in (22.9) are separated from the second equation and
can be integrated independently. Once the functions t ! x.t/ and t !  .t/ are
found, the function t ! s.t/ can be then determined.

2. R. Isaacs applied the Cauchy characteristic method for solving differential
games.

For clarity, let us consider time-optimal differential game in the plane with the
dynamics:

Px D f1.x; u/C f2.x; v/; x 2 R2; u 2 P; v 2 Q; (22.10)

and a closed target set M . The first player has the control u at his disposal and
minimizes the transfer time of system (22.10) to the setM . The second player being
responsible for the control v has the opposite interest. The controls u and v are
bounded by geometric constraints. The differential game is considered in the class
of feedback controls.

In the theory of differential games, existence of the value function x ! V .x/ is
established. Here, we do not go into details of a particular formalization. In typical
examples, the value function is not differentiable or even continuous for x 2 R2nM .
However, there exist regions (cells) in which V 2 C2. In each of such regions, the
derivative of the function t ! V .x.t// along an arbitrary trajectory t ! x.t/ can
be computed:
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dV

dx
.x.t// � Px.t/ D

dV

dx
.x.t// � .f1.x; u.t//C f2.x; v.t///:

Accounting for the nondeterioration principle along optimal trajectories, we obtain

min
u2P

dV

dx
.x/f1.x; u/C max

v2Q

dV

dx
.x/f2.x; v/ D �1: (22.11)

Relation (22.11) is just R. Isaacs’ transition rule (principle) written in terms of
derivatives. Introducing the notation for the Hamiltonian

H.x; ; u; v/ D  0.f1.x; u/C f2.x; v//;

we rewrite relation (22.11) as follows:

1C min
u2P

max
v2Q

H.x;
dV

dx
.x/; u; v/ D 0: (22.12)

Thus, the value function V satisfies the partial differential equation (22.12).
Computing the extremal elements u� and v� in (22.12), assume additionally their
smoothness in x. We obtain

1CH.x;
dV

dx
.x/; u�.x/; v�.x// D 0: (22.13)

The equations of characteristics for (22.13) have the form

Px D H .x; ; u
�.x/; v�.x//; P D �Hx.x;  ; u

�.x/; v�.x//: (22.14)

Having under some boundary conditions a solution to (22.14), we obtain the
functions u�.t/ D u�.x.t/;  .t// and v�.t/ D v�.x.t/;  .t//. With that, rela-
tion (22.13) is fulfilled:

1CH.x; .t/; u�.t/; v�.t// D 0: (22.15)

Thereby,

min
u2P

 0.t/ � f1.x.t/; u/ D  0.t/ � f1.x.t/; u�.t//;

max
v2Q

 0.t/ � f2.x.t/; v/ D  0.t/ � f2.x.t/; v
�.t//:

(22.16)

Relationships (22.16) together with equations

Px D H .x; ; u
�.t/; v�.t//; P D �Hx.x;  ; u

�.t/; v�.t// (22.17)

are similar to Pontryagin’s maximum principle for optimal control problems. Here,
they were derived in the form of necessary conditions based on the Cauchy
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characteristic method and on the assumption about smoothness of the function V
and extremal elements u� and v� in (22.12).

We can also consider the question of constructing the unknown function V . Sup-
pose that values of the function and its derivative are given on some curve. Consider
the trajectories of system (22.10) that satisfy the minimax principle (22.16), (22.17),
and, additionally, together with the function t !  .t/, relation (22.15).

Assume that only a single trajectory satisfying the first equation of system (22.17)
goes through each point x of some region that includes a curve on which values
of the function V and its derivative are given. Then for every point x on the
distinguished curve, we reconstruct the state �.x/ of the corresponding x-trajectory
and the time t .x/ of passing through the point x. For every point x, let u.x/ D u�.t/,
where u�.t/ is defined by �.x/ and t .x/. Similarly, we introduce v.x/ D v�.t/.
Assume that the functions u.x/ and v.x/ are continuously differentiable. Then the
system

Px D f1.x; u.x//C f2.x; v.x// D H .x; ; u.x/; v.x//;
P D �Hx.x;  ; u.x/; v.x//

can be put in correspondence with system (22.16), (22.17). With that,

1CH.x.t/;  .x.t//; u.x.t//; v.x.t/// D 0:

Further, the unknown function V is reconstructed in the region considered using
the same technique as in the proof of sufficiency of the Cauchy characteristic
method.

However, we cannot say that this is the value function of the differential game.
This is merely a function that satisfies the partial differential equation, the given
values, the values of derivatives, and boundary condition on the distinguished curve.
To obtain the value function, a solution in the whole space should be found. If the
reconstruction region spans the whole space, the problem is solved. However, this
is a very rare situation. Typically, finding the value function (and associated with
it optimal strategies) with Isaacs’ method requires subsequent (backward in time)
covering the whole game space with cells filled out with regular x-characteristics.

In more detail, the construction of the value function with the method of
characteristics is described, apart from R. Isaacs’ book, in the paper (Berkovitz
1994) and in the books (Başar and Olsder 1995; Lewin 1994).

3. In R. Isaacs’ approach to differential games with complete information, two
main ideas can be emphasized.

The first idea is related to believing that the solution region of the differential
game typically is divided into cells in which interior the value function is smooth
and can be found using the Cauchy characteristic method for a properly derived
first-order partial differential equation. But how can one set boundary conditions
for each cell? The only possible way is primary analysis of terminal conditions of
the differential game. For example, for time-optimal differential game in the plane
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with the target set M , the parts of the boundary of M which can be penetrated by
optimal trajectories should be determined. We accept that the value function on such
parts is equal to zero and try to compute the derivative of the value function in x on
these parts. Then Cauchy’s characteristics are emitted backward in time for each of
the parts. Analysis of x-characteristics enables to determine where such backward
construction should be stopped, and examination of next cells should be started.

The second idea by R. Isaacs concerns singular lines (in general case, singular
surfaces). Singular lines are the curves on which optimal trajectories lose usual
regularity. For example, the dispersal line is a curve each point of which is
approached by two backward x-characteristics with equal optimal result values. The
universal line is a curve which, to the contrary, is leaved by two backward optimal
trajectories. Hence, the direct time-optimal trajectories approach the universal line.
Thereby, there exists an optimal motion that goes along the universal line, but the
corresponding trajectory (being the universal line itself) is not a regular Cauchy’s
x-characteristic.

R. Isaacs discovered a new type of singular lines (surfaces), which he called
equivocal. Optimal trajectories approach such lines in direct time; then each optimal
trajectory splits into two branches: the first one comes with a kink to the other side
of the singular line, and the second one goes along the singular line. The value
function is continuous but not differentiable on equivocal lines. R. Isaacs mentioned
that equivocal lines are inherent to differential games. In contrast to other singular
lines, curves with such properties cannot exist in problems where only one player
optimizing the dynamic system behavior is present.

One more types of singular lines called barriers are curves where the value
function is discontinuous.

The book Isaacs (1965) contains many remarkable pictures explaining the sense
of singular lines and singular surfaces. R. Isaacs described how singular lines can
arise in the backward constructions.

Detection and construction of singular lines is a key to consideration of the next
cell in Isaacs’ method. Thus, Isaacs’ approach is a backward construction of cells
based on the analysis of arising singular lines (surfaces). The cells are filled with
optimal trajectories. By constructing cells backward in time, we hope to cover
with them the whole game space. The obtaining value function is, as a rule, not
differentiable or even continuous.

4. The theory of differential games essentially influenced the development of
the theory of partial differential equations. In the beginning of the 1980s, new
notions of generalized solutions of the first-order partial differential equations
have been introduced. The generalized solution suggested by M. G. Crandall and
P.-J. Lions was called viscosity solution (Crandall et al. 1984; Crandall and Lions
1983; Lions 1982), whereas the concept proposed by A. I. Subbotin was specified
as minimax solution (Subbotin 1980, 1984). The equivalence of these two notions
was established, and new concepts of generalized solutions were developed to cover
formulations of typical differential games with non-smooth or even discontinuous
value function (Subbotin 1995). Many facts from the theory of singular lines and
surfaces revealed in the theory of differential games earlier were reformulated for
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generalized solutions of partial differential equations. On this way, A. A. Melikyan
developed (Melikyan 1998) a theory of singular surfaces for the first-order partial
differential equations. Numerical methods for solving Hamilton-Jacobi equations
associated with differential games and based on the concept of viscosity solutions
are being developed (see, e.g., Botkin et al. 2011; Chen et al. 2015; Falcone 2006;
Grigor’eva et al. 2000).

5. Considering differential games, R. Isaacs distinguished between games of
kind and games of degree. Let us explain this using differential game with
dynamics (22.10) and a closed target setM . The terminal time of the control process
is not fixed.

In the game of kind, we are interested in finding the set A of all initial states
x0 from which the first player guarantees approaching the set M within a finite
time, using a feedback control u.x/ implemented in a discrete control scheme.
For initial states in the set R2nA, such a guarantee is absent. Surely, in frames of
accurate formalization, one should correctly specify what “approachingM ” means.
Namely, whether “approaching M ” implies precise transition to M or transition to
an arbitrarily small neighborhood of M . We will not do this here. In any case, there
are only two possible (guaranteed) outcomes in the game of kind: yes (approaching
is possible) or no (approaching is not possible).

In the game of degree, the first player minimizes the time of approach M . Here,
compared to the game of kind, one should determine a minimum guaranteed time
of transition to M for each initial state x0 2 A. It is established that this time
coincides with the best guaranteed time of the second player (who maximizes the
time of transition to M ); therefore, one can speak about the value function V .x0/.
For initial states x0 … A, nothing new compared to the game of kind arises.

A common feature for the games of kind and degree is the construction of the
boundary of the set A. In the game of degree, we have V .x0/ < 1 for x0 2 A, and
V .x0/ D 1 for x0 2 R2nA. Therefore, the curves constituting the boundary of the
set A are barrier lines.

R. Isaacs formulated the main property of smooth curves that comprise the
boundary of A. Namely, he considered the following relation:

min
u2P

max
v2Q

`0.x/.f1.x; u/C f2.x; v// D 0: (22.18)

Here `.x/ is the normal to the smooth curve at the point x. Let the side of the
curve to which the normal is directed be referred as negative and the opposite
side be indicated as positive. R. Isaacs called the smooth curves satisfying the
relation (22.18) the semipermeable curves. Families of semipermeable curves are
defined only by dynamics of the game (including constraints on the controls) and
do not depend on the objectives of the players. Having the dynamics of the game,
we can perform an analysis of families of such curves in the plane in advance
to use them later for constructing barriers. Each semipermeable curve is often
bounded. Considering one of the two directions of moving along the curve, one
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can specify its start point and end point. For each point x in the plane, one of the
following possibilities is realized: there is no semipermeable curve, there is only
one semipermeable curve, or there are several semipermeable curves going through
x.

Relation (22.18) can be considered as a partial differential equation with respect
to unknown scalar function x ! J .x/:

min
u2P

max
v2Q

dJ

dx
.x/.f1.x; u/C f2.x; v// D 0: (22.19)

The family of smooth semipermeable curves is a family of x-characteristics of
equation (22.19). On each x-characteristic, the value J .x/ is constant. The whole
family can be found by specifying some (not arbitrary) curve in the plane and values

of derivative
dJ

dx
.x/ in points of this curve, so that (22.19) holds.

It is useful to distinguish families of semipermeable curves of the first and
second type. For families of the first type, when constructing semipermeable curves
backward in time, the vector of moving direction along the curve is related to
the vector ` by a clockwise rotation through the angle �=2. For families of
semipermeable curves of the second type, the corresponding vectors are related by
a counterclockwise rotation through the angle �=2.

Remark. The greater the number of families of semipermeable curves for a given
dynamics is, the more complex the differential game with a particular payoff is.

6. Smooth semipermeable curves are the basis for solving games of kind in
Isaacs’ method. Suppose that the target setM is convex and has a smooth boundary.
Visiting the boundary of M , find those parts of it through which the first player
guarantees the transition of system (22.10) to the interior of the set M for any
counteraction of the second player. R. Isaacs called such pieces “the usable part”
(UP ). Let for simplicity UP consists of a single arc. Taking an arbitrary internal
point x of this arc and denoting by `.x/ the vector of outward normal to the set M
at this point, write down the inequality:

min
u2P

`0.x/f1.x; u/C max
v2Q

`0.x/f2.x; v/ < 0; (22.20)

which provides a guaranteed approach of the interior of the setM by the trajectories
of system (22.10) not only from the point x but also from the points outside M ,
being close to M . For two boundary points x�; x

� of this arc (BUP ), we obtain

min
u2P

`0.x/f1.x; u/C max
v2Q

`0.x/f2.x; v/ D 0: (22.21)

In the coarse case, for any other points x 2 @M outside the arc Œx�; x
��, the

inequality >0 holds for the left part of (22.21). Then the arc Œx�; x
�� is a “gate,”
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through which entering M is only possible. The next step is to construct smooth
barrier lines, being “boards of the way” leading to the arc Œx�; x

��, from the points
x�; x

�. Herewith, with respect to each of the two boards, the first player is able to
prevent the transition of the system from the positive side of the board (faced to
the way) to its negative side, no matter how the second player acts. Conversely, the
second player is able to prevent the transition from the negative side to the positive
side. Thus, one of the boards is smooth semipermeable curve of the first type and
the other one is of the second type.

The most simple situation in the coarse case is realized, when the semipermeable
curves under consideration intersect without tangency. In this case, it can be often
proved that the set A of successful termination of the game of quality with respect
to the first player is the union of the set M and the part of the plane bounded by the
curve UP and by the pieces of two semipermeable curves between their start points
x�, x� and the intersection point.

In the paper Patsko (1975), the game of kind for differential games in the plane
with arbitrary linear dynamics, a point target setM , scalar control of the first player
with a bounded absolute value, and an arbitrary convex polygonal constraint on the
control of the second player is completely solved. An algorithm for constructing the
set A for games of kind in the plane in the case of complex roots of the characteristic
polynomial of linear system and arbitrary polygonal constraints on the controls of
the first and second players is described in Turova (1984).

7. Isaacs’ method for games of kind and games of degree uses constructions that
provide a precise answer without any iterations. The error obtained is determined
by only inaccuracy in the implementation of prescribed operations.

In the middle of the 1970s, A. G. Chentsov proposed the method of programmed
iterations for various classes of differential games (Chentsov 1976, 1978a,b). In this
method, the solution to the problem in the form of some set is obtained as a result of
iterative descent to this set from above. The method is based on the concepts used in
the scientific school of N. N. Krasovskii. As it was mentioned in the Introduction,
the central notion in this school is the notion of maximal stable bridge. For example,
for time-optimal games with stationary dynamics and a closed target set M , the
maximal stable bridge terminating at the time T on the set M is the collection of
all positions .t�; x�/, from which the first player by discriminating the second one
can bring the state vector x to the set M within the time not exceeding T � t�. The
corresponding “tube”W (maximal stable bridge) in the space t; x .t � T / contains
the cylinder f.t; x/ W t � T; x 2 M g. It is known that any t -section W .t/ is the
level set (Lebesgue set) of the value function x ! V .x/ of the time-optimal game,
i.e., W .t/ D fx W V .x/ � T � tg.

For the construction of the setW on some interval Œt ; T �, t < T , A. G. Chentsov
proposed the following iterative procedure. The iterations start from the set W .0/ D

Œt ; T � � Rn, where Rn is the phase space of the dynamic system. Then a closed
subset W .1/ � W .0/ is distinguished by the following property: for any position
.t�; x�/ 2 W .1/, any constant control v 2 Q of the second player on the interval
Œt�; T �, the first player can choose his open-loop control u.�/, so that the trajectory
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.t; x.t// generated by the controls u.�/ and v comes to the cylindric set f.t; x/ W

t� � t � T; x 2 M g. Then the set W .2/ � W .1/ is introduced, so that for any point
.t�; x�/ 2 W .2/ and any constant control v 2 Q, the first player can choose his
open-loop control such that the trajectory of the system generated by the controls
u.�/ and v satisfies the constraint .t; x.t// 2 W .1/. Thus, the set W .1/ plays the role
of a closed state constraint. Further, the set W .3/ � W .2/ is constructed, where the
set W .2/ being the state constraint, and so on. It is proved that W .i/ ! W on Œt ; T �
as i ! 1.

A. G. Chentsov interpreted the method of programmed iterations as a method
explaining the structure of the differential game and helping to establish particular
theoretical facts. The method was formulated and proved for very wide variety
of problems, but A. G. Chentsov did not attempt to develop efficient numerical
procedures based on this approach.

P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre proposed a conceptually
similar iterative method (Cardaliaguet et al. 1995, 1999), which, however, was
directed to the numerical implementation. The method uses ideas of viability theory
developed by J.-P. Aubin (1991). The most clear application of the method is its
employment in the game of kind for the construction of maximal set A�, from every
point of which the second player (by discriminating the first player) guarantees the
evasion of the dynamic system from approaching the set M for infinite time. The
iterations are computed in the set K D RnnM . It is required that this set be closed.
Hence, the set M is supposed to be open.

Let us explain the iterations. Replace the original continuous-time dynamics by
a discrete one. For all x 2 Rn and u 2 P , introduce the set G".x; u/, which is
interpreted in the context of discrete dynamics as a reachable set with respect to v.�/
for a fixed control u of the first player on some small time interval of the length ".
The discrete dynamics is chosen in a way that the setG".x; u/ contains an analogous
reachable set of the original system. The following sequence of sets is introduced:

�

K0
" D K;

KiC1
" D fx 2 Ki

" W 8u 2 P; G".x; u/ \Ki
" ¤ ¿g; i D 0; 1; : : :

(22.22)

The setKiC1
" is the maximal subset of the setKi

" , from any point x of which the first
player, by showing his constant control u 2 P , cannot steer the system away from
the set Ki

" at the end of the interval ". It is proved that the sequence Ki
" converges

from above to some set
���!
DiscG".K/, which is called a discrete discriminating kernel.

This set possesses the following viability (stability) property: if the first player
shows his constant control u for the interval " in advance, then, in frames of discrete
approximating dynamics, the second player holds the motion in the set

���!
DiscG".K/

for infinite time. For points x 2 Kn
���!
DiscG".K/, on the contrary, there exists a

positional control method for choosing control u with the step ", such that the
trajectory will approach the set M within a finite time for any actions of the second
player.
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We described solving the game of kind for discrete approximating dynamics
for a fixed ". Then grids Kh and Ph on the sets K and P with the step size h
are introduced, and a grid approximation �";h.xh; uh/ of the reachable set of the
original system with respect to v.�/ is considered. The approximation �";h depends
on the parameters " and h. For i ! 1, the iterations Ki

";h similar to (22.22) give a

fully discrete discriminating kernel
���!
Disc�";h .Kh/ � Kh. This set converges (under

certain relation between " and h) to the ideal set A� as " ! 0, h ! 0. It is proved
that A D Rn n A�.

In numerical implementations, essential difficulties arise, when the grid Kh

cannot be chosen bounded. Therefore, revealing cases where the gridKh (as well as
Ph) can be taken finite is of great interest.

In time-optimal games (games of degree), the setM is assumed to be closed. The
first player, using the control u, minimizes the time of approaching M , the second
player has the opposite objective. The time t is considered as an additional state
variable (even for a stationary system). A discrete approximating dynamics defined
by the parameter " and grids with the step width h in variables t � 0 and x in
Rn as well as a grid Qh in the set Q are introduced. Let Zh be a grid obtained in
ft � 0g � Rn. A grid approximation �";h.th; xh; vh/ of the reachable set with
respect to u.�/ for the original system is considered, depending on the parameters "
and h.

The following decreasing sequence of sets is introduced:

(

K0
";h D Zh;

KiC1
";h D f.t; x/ 2 Ki

";h W 8vh 2 Qh; �";h.th; xh; vh/ \Ki
";h ¤ ¿g; i D 0; 1; : : :

It is proved that lim
i!1

Ki
";h exists. This limit is denoted as

���!
Disc�";h .Zh/. It is

shown that the set
���!
Disc�";h .Zh/ converges to the epigraph of the value function

of time-optimal game as " ! 0, h ! 0 (under consistent relation between "
and h). In so doing, the problem of constructing the value function of time-optimal
game is solved.

An interesting observation is done in paper (Botkin 1993). Consider a differential
game Px D f .x; u; v/, where f globally possesses standard properties formulated in
Krasovskii and Subbotin (1988). Let a compactK � Rn be the state constraint, and
N D .�1; T � � K. A subset Z � N is called stable if the player “v” can ensure
the inclusion .t; x.t// 2 Z, t 2 Œt0; t0 C "�, whenever

�

t0; x.t0/
�

2 Z, and the
player “u” shows his constant control on the time interval Œt0; t0 C "� (cf. the case of
stable subsets in Rn). If there exists at least one stable subset of N , then there exists
a maximal stable subset, say W , of N . If all time sections, W .t/; t 2 .�1; T �,

are nonempty, then W .t/ converges to the discriminating kernel
���!
Disc.K/ in the

Hausdorff metric as t ! �1. This gives rise (see Botkin 1993) to a recurrent
algorithm resembling (22.22).
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2.4 Families of Semipermeable Curves

When solving differential games in the plane, it is useful (as it was mentioned in
Sect. 2.3) to carry out a preliminary study of families of smooth semipermeable
curves that are determined by the dynamics of the controlled system. The knowledge
of these families for time-optimal problems allows to verify the correctness of the
construction of barrier lines on which the value function is discontinuous.

A smooth semipermeable curve is a line with the following preventing property:
one of the players can prevent crossing the curve from the positive side to the
negative one, the other player can prevent crossing the curve from the negative side
to the positive one.

Let us explain the meaning of semipermeable curves. Introduce the minimax
Hamiltonian of the game as follows:

H.`; z/ D min
u

max
v
`0f .z; u; v/ D max

v
min

u
`0f .z; u; v/; z D .x; y/0 2 R2; ` 2 R2:

Here f .z; u; v/ D p.z/u C v C g; p.z/ D .�y; x/0; g D .0;�1/0: Fix
z 2 R2 and consider ` such that H.`; z/ D 0: Denote u� D arg min

u
`0f .z; u; v/,

v� D arg max
v
`0f .z; u; v/: It holds: `0f .z; u�; v/ � 0 for any v 2 Q and

`0f .z; u; v�/ � 0 for any u 2 Œ�1; 1�: This means that the direction f .z; u�; v�/

which is orthogonal to ` separates the vectograms ˚.v�/ D
S

u2Œ�1;1�

f .z; u; v�/ and

	.u�/ D
S

v2Q

f .z; u�; v/ of the first and the second players (Fig. 22.4). Such a

direction is called semipermeable. Thus, the semipermeable directions are defined
by the roots of the equation H.`; z/ D 0: We will distinguish the roots from “�”
to “C” and the roots from “C” to “�”. When defining these roots, we will suppose
that ` 2 E, where E is a closed polygonal line around the origin. We say that `�

is a root from “�” to “C” if H.`�; z/ D 0 and H.`; z/ < 0 .H.`; z/ > 0/ for
` � `� .` 	 `�/ that are sufficiently close to `�: The notation ` � `� means that the
direction of the vector ` can be obtained from the direction of the vector `� using
the counterclockwise rotation by the angle not exceeding � . The roots from “�” to

Fig. 22.4 Semipermeable
direction

Φ (v∗)

Ξ(u∗)

+ −

z

f(z,u∗,v∗)
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“C” and the roots from “C” to “�” are called the roots of the first and of the second
type, respectively.

One can prove that, in the game considered, the equationH.`; z/ D 0 has at least
one root of the first type and one root of the second type. Moreover, it has two roots
of the first type and two roots of the second type at most. We denote the roots of the
first type by `.1/;i .z/ and the roots of the second type by `.2/;i .z/: One can find the
domains of the functions `.j /;i .�/; j D 1; 2; i D 1; 2: The form of these domains is
shown in Fig. 22.5.

It can be proved that the function `.j /;i .�/ satisfies the Lipschitz condition in any
closed subset of its domain. So, we can consider the following differential equation:

d z

dt
D ˘`.j /;i .z/; (22.23)

where˘ is the matrix of rotation by the angle �=2 (the rotation’s direction depends
on j ). Since the tangent at each point of phase trajectories of this equation is a
semipermeable direction, the trajectories are semipermeable curves. It means that
the first player can keep one side of the curve (say, positive side) and the second
player can keep another side (negative side). So, the equation (22.23) specifies a
family 
.j /;i of semipermeable curves.

In Fig. 22.6, the families of semipermeable curves for dynamics (22.5) are
presented. There are families 
.1/;1 and 
.1/;2 of the first type and families 
.2/;1

and
.2/;2 of the second type. The second upper index in the notation
.j /;i indicates
those of two extremal values of control u that corresponds to this family: i D 1 is
related to curves which are trajectories for u D 1; i D 2 is related to curves which
are trajectories for u D �1. The arrows show the direction of motion in reverse time.
Due to symmetry properties of the dynamics, all families can be obtained from only
one of them (e.g., 
.1/;1) by means of reflections about the horizontal and vertical
axes.

The construction of mentioned four families of smooth semipermeable curves
can be explained as follows.

0

(1),1 (2),2

(2),1 (1),2

(1),1 (1),2

(2),1 (2),2

(1),1 (1),2

(2),1 (2),2

Fig. 22.5 Domains of `.j /;i
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Fig. 22.6 Families of smooth semipermeable curves for the classical homicidal chauffeur dynam-
ics

Assign the set

B� D f.x; y/ W �y C vx D 0; x � 1C vy D 0; v 2 Qg

to the control u D 1, and the set

A� D f.x; y/ W y C vx D 0; �x � 1C vy D 0; v 2 Qg

to the control u D �1. Hence, B� is the set of all points in the plane x; y such that
the velocity vector of system (22.5) vanishes at u D 1 and some v 2 Q. We have
A� D �B�.

Consider two tangents to the sets A�; B� passing through the origin (see
Fig. 22.7), and mark arcs a1a2a3 and b1b2b3 on @A� and @B�, respectively.

Attach an inextensible string of a fixed length to the point b1 and wind it up on
the arc b1b2b3. Then wind the string down keeping it taut in the clockwise direction.
The end of the string traces an involute, which is a semipermeable curve of the
family 
.1/;1. The complete family 
.1/;1 is obtained by changing the length of the
string.



976 V. Patsko et al.

A∗ B∗
0

a1

a2

a3

b3

b2

b1

x

y

Fig. 22.7 Auxiliary arcs generating the families of smooth semipermeable curves for dynam-
ics (22.5)

The family 
.2/;2 is obtained as the collection of the counterclockwise involutes
of the arc a1a2a3 by attaching the string to the point a3 .

The family 
.2/;1 is generated by the clockwise involutes of the arc b1b2b3
provided the string is attached to the point b3.

The family 
.1/;2 is composed of the counterclockwise involutes of the arc
a1a2a3 provided the string is attached to the point a1.

The curves of different families belonging to the same type can be sewed in
some cases so that the semipermeability property will be preserved. The procedure
for computing the solvability set of the game of kind is based on the issuing two
semipermeable curves (which are faced each to other with positive sides) from end
points of M ’s usable part, on the analysis of their mutual disposition, and on the
sewing semipermeable curves of different families belonging to the same type.

Families of semipermeable curves corresponding to dynamics (22.6) are arranged
in a more complicated way (see Patsko and Turova 2009), and we do not present
them here.

2.5 Classical Homicidal Chauffeur Problem

In the homicidal chauffeur problem described in the book by R. Isaacs, player P
strives as soon as possible to bring the state vector of system (22.5) to a given closed
bounded set M , whereas player E strives to prevent this.

2.5.1 Statement by R. Isaacs
Isaacs supposed that the terminal set M is a circle of radius r with the center at the
origin. Thus, the description of the problem involves two independent parameters �
and r .

R. Isaacs investigated the problem for some parameter values using his method
for solving differential games. The basis of the method is the backward computation
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Fig. 22.8 Pictures by R. Isaacs from Isaacs (1965) explaining the solution to the homicidal
chauffeur game

of characteristics for an appropriate partial differential equation. First, some primary
region is filled out with regular characteristics, then secondary region is filled out,
and so on. The final characteristics in the plane of state variables coincide with
optimal trajectories.

Figure 22.8a shows a drawing from the book (Isaacs 1965) by R. Isaacs. The
solution is symmetric with respect to the vertical axis. The upper part of the vertical
axis is a singular line. Forward time-optimal trajectories meet this line at some angle
and then go along it toward the target set M . According to the terminology by
R. Isaacs, the line is called universal. The part of the vertical axis adjoining the target
set from below is also a universal singular line. Optimal trajectories go down along
it. The rest of the vertical axis below this universal part is dispersal: two optimal
paths emanate from every point of it. On the barrier line B, the value function is
discontinuous. The side of the barrier line where the value of the game is smaller
will be called positive. The opposite side is negative. One can see in Fig. 22.8a that
the barrier line is a semipermeable curve of the first type. There is a similar line, but
of the second type, in the left symmetric part.

The equivocal singular line ES emanates tangentially from the terminal point of
the barrier (Fig. 22.8b). It separates two regular regions. Optimal trajectories that
come to the equivocal curve split into two paths: the first one goes along the curve,
and the second one leaves it and comes to the regular region on the right (optimal
trajectories in this region are shown in Fig. 22.8a).

The equivocal curve is described through a differential equation which cannot be
integrated explicitly. Therefore, any explicit description of the value function in the
region between the equivocal and barrier lines is absent. The most difficult for the
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investigation is the “rear” part (Fig. 22.8b, shaded region) denoted by R. Isaacs with
a question mark. He could not obtain a solution for this region.

The arising of singular lines (resp. singular surfaces in the case of higher
dimension) that have no explicit description is a typical difficulty when investigating
particular differential games. Having explicit formulas on initial stages of the
backward construction of solution, we cannot come over a singular line and continue
explicit description. Only qualitative investigation is possible. Because of that,
development of numerical methods even for problems in the plane is necessary.

2.5.2 Brief Description of Numerical Algorithm for the Construction of
Level Sets of the Value Function

In this subsection, we give a schematic description of the algorithm for the backward
construction of level sets of the time-optimal value function. One can also say that,
using the backward procedure, we construct the solvability sets of the game by a
given time on some time grid. The equivalent term occurring in the literature is the
backward (guaranteed) reachable set.

Primarily, the algorithm was developed (Patsko and Turova 1995, 1997) for linear
time-optimal game problems in the plane. However, it turned out that the linearity
of dynamics for time-optimal differential games does not give essential advantages
in construction of level sets of the value function, since the level sets are often
non-convex, which is typical for nonlinear dynamics. Therefore, for time-optimal
games, nonlinear case is equivalent in difficulty to linear one. Hence, after some
modernization, the algorithm have been used for nonlinear dynamics too (Patsko
and Turova 2001).

The basic idea of the algorithm for approximate construction of the level sets
WM.�/ D f.x; y/ W V .x; y/ � �g of the value function V is explained in the
following.

We replace the set M by its polygonal approximation. Similarly, the geometric
constraint Q on the control v is substituted by a polygon. The set WM.�/ is formed
via step-by-step backward procedure giving a sequence of embedded sets:

WM.�/ � WM.2�/ � WM.3�/ � : : : � WM.i�/ � : : : � WM.�/: (22.24)

Here � is the step of the backward procedure. Each set WM.i�/ consists of all
initial points such that the first player brings system (22.5) into the setWM..i� 1/�/

within the time duration � (we put WM.0/ D M ).
The crucial point of the algorithm is the computation of “fronts.” The front Fi

(Fig. 22.9) is the set of all points of @WM.i�/ for which the minimum guaranteeing
time of reaching WM..i � 1/�/ is equal to �: For other points of @WM.i�/ the
optimal time is less than �: The line @WM.i�/ n Fi possesses the properties of the
barrier. The front Fi is constructed using the previous front Fi�1: For the first step
of the backward procedure, F0 coincides with the usable part �0 of the boundary
of M .
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Fig. 22.9 Construction of
the sets WM.i�/

M
Γ0

Fi−1

Fi
WM(iΔ)

Let us explain how the fronts can be constructed. Suppose the front Fi�1 is a
smooth curve. Let z� be an arbitrary point of Fi�1 and ` is the normal vector to the
front at z�: Let uı D arg min

juj�1
`0p.z�/u; vı D arg max

v2Q
`0v:

We call uı; vı the extremal controls. The controls uı and vı are chosen from
the conditions of minimizing and, respectively, maximizing the projection of the
velocity vector of (22.5) onto the direction `: If the vector pointed to z� is collinear
to `; then any control u 2 Œ�1; 1� is extremal. If Q is a polygon in the plane, and
` is collinear to some normal vector to an edge Œq1; q2� of Q; then any control q 2

Œq1; q2� is extremal.
After computing the extremal controls, the extremal trajectories of system (22.5)

issued from the front’s points backward in time are considered: z.�/ D z� �

�.p.z�/uı C vı C g/: The ends of these trajectories at � D � form the next
front Fi : If the extremal control uı is not unique at some point z� 2 Fi�1, then
the segment ˚.z�/ D f

S

uı2Œ�1;1�

.z� �� .p.z�/uı C vı C g//g is considered instead

of the single point. Similarly, if the extremal control vı is not unique, the segment
	.z�/ D f

S

vı2Œq1;q2�

.z� �� .p.z�/uı C vı C g//g is considered.

For each front, we distinguish points of the local convexity and points of the
local concavity. In Fig. 22.10, d is a point of the local convexity, and e is a point of
the local concavity. If z� is a point of the local convexity and the extremal control
uı is not unique, we obtain a local picture like the one shown in Fig. 22.11a after
issuing the extremal trajectories from the point z�: Here, the additional segment
˚.z�/ appears on the new front Fi : If the extremal control vı is not unique, we
obtain a local picture similar to the one shown in Fig. 22.11b: the “swallow tail”
ˇ1�ˇ2 does not belong to the new front Fi and it is taken away. For points of the
local concavity, there is an inverse situation: if the extremal control uı is not unique,
a swallow tail that should be removed appears; if the extremal control vı is not
unique, an additional segment 	.z�/ appears on the new front Fi : If both uı and
vı are nonunique, the insertion or the swallow tail arises depending on which of
segments ˚.z�/ or 	.z�/ is greater.

In the course of numerical computations, we operate with polygonal lines instead
of smooth curves. Two normal vectors to the links Œa; b�; Œb; c� of the polygonal
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Fig. 22.10 Local convexity
and concavity
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Fig. 22.11 Nonuniqueness
of extremal controls in the
case of local convexity
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line are considered at each vertex b (Fig. 22.12). The algorithm treats all possible
variants of disposition of the vectors `Œab�; `Œbc�, normals to the edges of Q; and the
vector b: In Fig. 22.12, for instance, the case is shown where the vector b is between
the vectors `Œab�; `Œbc�; and the normals n1; n2 to the set Q are between the vectors
b and `Œbc�: The extremal controls of the players are computed for each of these
vectors, and the extremal trajectories are issued from the points a; b; c: The ends of
these trajectories computed at � D � give a local picture shown in Fig. 22.12. In the
case considered, four extremal trajectories were issued from the point b: Their ends
are ˇ1; ˇ2; ˇ3, and ˇ4: The segment Œˇ1; ˇ2� appears due to nonuniqueness of the
extremal control uı for the vector b: The segments Œˇ2; ˇ3� and Œˇ3; ˇ4� arise due to
nonuniqueness of the extremal control vı for the vectors n1 and n2: After removing
the swallow tail �ˇ4ˇ3ˇ2�; the polygonal line ˛ˇ1� is obtained to be a fragment
of the next front.

2.5.3 Two Examples of Numerical Solution of Classical Problem
Figure 22.13 shows level sets WM.�/ D f.x; y/ W V .x; y/ � �g of the value
function V .x; y/ for � D 0:3; r D 0:3. The numerical results presented in Fig. 22.13
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Fig. 22.13 Level sets of the value function for the classical problem; game parameters � D 0:3

and r D 0:3; backward computation is done till the time �f D 10:3 with the time step � D 0:01,
output step for fronts ı D 0:1

are obtained using the algorithm, which is described in the previous subsection. The
lines on the boundary of the sets WM.�/, � > 0, consisting of points .x; y/ where
the equality V .x; y/ D � holds, are fronts (isochrones). For the visualization of
graphs of the value function in time-optimal differential games, a special computer
program has been developed (Averbukh et al. 2000).

The computation for Fig. 22.13 is done with the time step � D 0:01 till the time
�f D 10:3. The output step for fronts is ı D 0:1. The set M is approximated by an
inscribed regular 20-polygon and the set Q by a 24-polygon. Figure 22.14 presents
the graph of the value function. The value function is discontinuous on the two
barrier lines and on a part of the boundary of the target set. The barrier lines are arcs
of semipermeable curves of the families 
.1/;1 and 
.2/;2. In the case considered,
the value function is smooth in the abovementioned rear region.

If the center of the target circle is shifted from the y-axis, the symmetry of
the solution with respect to y-axis is destroyed. The arising front structure to the
negative side of barrier lines can be very complicated. One of such examples is
presented in Fig. 22.15. The target circle of radius 0:075 is centered at the point
with the coordinates mx D 1;my D 1:5. The computation time step � D 0:01.
The maximal value of the game for computed fronts is 9:5, and it is attained at a
point in the second quadrant. The fronts are depicted with the time step ı D 0:08.
Figure 22.16 presents the graph of the value function.

The real situation corresponding to a shifted target set M may be the following.
Assume that the pursuer is able to create a small circular killing zone in some
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Fig. 22.14 Graph of the
value function; � D 0:3,
r D 0:3
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Fig. 22.15 Nontrivial structure of fronts for shifted target circle; � D 0:3, �f D 9:5, � D 0:01,
ı D 0:08. Target set is a circle of radius r D 0:075 centered at point .1; 1:5/
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Fig. 22.16 Graph of the
value function for shifted
target circle; � D 0:3,
r D 0:075

distance and at some angle to the velocity vector direction in front of himself. Then
the pursuer minimizes the time of capture of the evader in such killing zone.

2.5.4 Investigations by J. Breakwell and A. Merz
J. Breakwell and A. Merz continued the investigation of the homicidal chauffeur
game in the setting by R. Isaacs. Their results are partly and very briefly described in
the papers (Breakwell and Merz 1969; Merz 1974). A complete solution is obtained
by A. Merz in his PhD thesis (1971) at Stanford University.

A. Merz divided the two-dimensional parameter space into 20 subregions.
He investigated the qualitative structure of the optimal paths and the type of
singular lines for every subregion. All types of singular curves (dispersal, universal,
equivocal, and switch lines) described by R. Isaacs for differential games in the
plane appear in the homicidal chauffeur game for certain values of parameters. In
his thesis, A. Merz suggested to distinguish some new types of singular lines and
consider them separately. Namely, he introduced the notion of focal singular lines
which are universal ones but with tangential approach of optimal paths. The value
function is non-differentiable on the focal lines.

Figure 22.17 presents a picture and a table from the thesis by A. Merz that
demonstrate the partition of two-dimensional parameter space �; r into subregions
with certain system of singular lines (A. Merz used symbols  , ˇ for the notation of
parameters. He called singular lines as exceptional lines).

The thesis contains many pictures explaining the type of singular lines and the
structure of optimal paths. By studying them, one can easily detect tendencies in the
behavior of the solution depending on the change of the parameters.



984 V. Patsko et al.

Fig. 22.17 Decomposition of two-dimensional parameter space into subregions
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Fig. 22.18 Structure of
optimal paths in the rear part
for subregion IIe

In Fig. 22.18, the structure of optimal paths in that part of the plane that adjoins
the negative side of the barrier is shown for the parameters corresponding to
subregion IIe. This is the rear part denoted by R. Isaacs with a question mark. For
subregion IIe, very complicated situation takes place.

PDL denotes the dispersal line controlled by player P . Two optimal trajectories
emanate from every point of this line. Player P controls the choice of the side to
which trajectories come down. Singular curve SE (the switch envelope) is specified
as follows. Optimal trajectories approach it tangentially. Then one trajectory goes
along this curve, and the other (equivalent) one leaves it at some angle. Therefore,
line SE is similar to an equivocal singular line. The thesis contains arguments
according to which the switch envelope should be better considered as an individual
type of singular line.

FL denotes the focal line. The dotted curves mark boundaries of level sets (in
other words, isochrones or fronts) of the value function.
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The value function is not differentiable on the line composed of the curves PDL,
SE, FL, and SE.

The authors of this chapter undertook many efforts to compute the value function
for parameters from subregion IIe. But it was not successful, since we could not
obtain corner points that must be present on fronts to the negative side of the
barrier. One of the possible explanations to this failure can be the following: the
effect is so subtle that it cannot be detected even for very fine discretizations. The
computation of level sets of the value function for the subregions where the solution
structure changes very rapidly, dependent on the parameters, can be considered as
a challenge for differential game numerical methods being presently developed by
different scientific teams.

Figure 22.19 demonstrates computation results for the case where fronts have
corner points in the rear region. However, the values of parameters correspond not
to subregion IIe but to subregion IId. For the latter case, singular curve SE remains,
but focal line FL disappears.

For some subregions of parameters, barrier lines on which the value function is
discontinuous disappear. A. Merz described a very interesting transformation of the
barrier line into two close to each other dispersal curves of players P and E. In
this case, there exist both optimal paths that go up and those that go down along

Fig. 22.19 Level sets of the
value function for parameters
from subregion IId; � D 0:7,
r D 0:3; �f D 35:94,
� D 0:006, ı D 0:12
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Fig. 22.20 Structure of
optimal trajectories in
subregion IVc

the boundary of the target set. The investigation of such a phenomenon is of great
theoretical interest.

Figure 22.20 presents a picture from the thesis by A. Merz that corresponds to
subregion IVc (A. Merz as well as R. Isaacs used the symbol ' for the notation of
the control of player P . In this text, the corresponding notation is u). Numerically
constructed level sets of the value function are shown in Fig. 22.21. When examining
Fig. 22.21, it might seem that some barrier line exists. But this is not true. This
again underlines the importance of theoretical investigation of particular differential
games. Without the work completed by A. Merz, the presence of some barrier line
in that place could erroneously be established based on the numerical outcome.
Accounting for the results by A. Merz (obtained mainly analytically) enables
refining our numerical constructions. Here, we have exactly the case like the one
shown in Fig. 22.20. In Fig. 22.22, an enlarged fragment of Fig. 22.21 is given.
The curve consisting of fronts’ corner points above the accumulation region of
fronts is the dispersal line of player E. The curve composed of corner points below
the accumulation region is the dispersal line of player P . The value function is
continuous in the accumulation region. To see where (in the considered part of the
plane) the point of a maximal value of the game is located, additional fronts are
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Fig. 22.21 Level sets of the
value function; � D 0:7,
r D 1:2; �f D 24:22,
� D 0:005, ı D 0:1
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Fig. 22.22 Enlarged fragment of Fig. 22.21; �f D 24:22. Output step for fronts close to the time
�f is decreased up to ı D 0:005
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Fig. 22.23 Graph of the value function; � D 0:7, r D 1:2. Level lines are plotted. Salient curve
corresponding to the line PDL from Fig. 22.20 is seen

shown. The point of the maximal value has coordinates x D 1:1, y D 0:92. The
value function at this point is equal to 24:22.

The graph of the value function for the example considered is shown in
Fig. 22.23. The level lines are plotted to make visible two curves consisting of
salient points. Taking into account the symmetry with respect to the y-axis, the
curves correspond to the dispersal singular lines EDL and PDL in the plane x, y
(see Fig. 22.20).

2.6 Surveillance-Evasion Game

In the PhD thesis by J. Lewin (1973) (performed as well under the supervision of
J. Breakwell), in the joint paper by J. Breakwell and J. Lewin (1975), and also in
the paper by J. Lewin and G.-J. Olsder (1979), both dynamics and constraints on
the controls of the players are the same as in Isaacs’ setting but the objectives of
the players differ from those in the classic statement. Namely, player E tries to
decrease the time of reaching the target set M by the state vector, whereas player
P strives to increase that time. In the first and second works, the target set is the
complement (with respect to the plane) of an open circle centered at the origin. In
the third publication, the target set is the complement of an open cone with the apex
at the origin.
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The meaning related to the original context concerning two moving objects is the
following: player E tries, as soon as possible, to escape from some detection zone
attached to the geometric position of player P , whereas player P strives to keep
his opponent in the detection zone as long as possible. Such a problem was called
the surveillance-evasion game. To solve it, J. Breakwell, J. Lewin, and G.-J. Olsder
used Isaacs’ method.

Below, level sets of the value function computed for the game with conic terminal
set with the backward procedure from Sect. 2.5.2 are presented. Herewith, the
extremal controls of the pursuer P and the evaderE are determined via the relations
uı D argmaxf`0p.z�/u W juj � 1g and vı D argminf`0v W v 2 Qg for every
point z� of local convexity and outer normal ` to the front at z�: For the points
of local concavity, the extremal controls of P and E are defined by the formulae
uı D argminf`0p.z�/u W juj � 1g and vı D argmaxf`0v W v 2 Qg; where ` is
an inner normal to the front at z�. So, the local constructions described earlier for
the points of local convexity are now true for the points of local concavity and vice
versa. In the results presented, the circle constraint of radius � D 0:588 on the
control v of player E is substituted by an inscribed regular hexagon.

In the surveillance-evasion game with the conic target set M (the detection zone
is the cone R2nM of semi-angle ˛), examples of transition from finite values of the
game to infinite values are of interest and can be easily constructed.

Figure 22.24 shows level sets of the value function for five values of parameter
˛ D 143ı; 136:3ı; 130ı; 125:6ı; 121ı. Since the solution to the problem is symmet-
ric with respect to y-axis, only the right half-plane is shown for four of five figures.
The pictures are ordered from greater to smaller ˛.

In the first picture, the value function is finite in the set that adjoins the target
cone and is bounded by the curve a0b0cba. This set is filled out with the fronts
(isochrones). The value function is zero within the target set. Outside the union of
the target set and the set filled out with the fronts, the value function is infinite.

In the third picture, a situation of the accumulation of fronts is presented. Here,
the value function is infinite on the line fe and finite on the arc ea. The value
function has a finite discontinuity on the arc be.

The second picture demonstrates a transition case from the first to the third
picture.

In the fifth picture, the fronts propagate slowly to the right and fill out (outside the
target set) the right half-plane as the backward time � goes to infinity. Figure 22.25
gives a graph of the value function for this case.

The fourth picture shows a transition case between the third and fifth pictures.
Note that all lines on which the value function is discontinuous (barrier lines) are

arcs of families of semipermeable curves described in Sect. 2.4.

2.7 Acoustic Game

Let us return to problems where player P minimizes and player E maximizes
the time of reaching the target set M . In papers (Cardaliaguet et al. 1995, 1999),
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Fig. 22.24 Surveillance-evasion game. Change of the front structure depending on the semi-angle
˛ of the nonconvex detection cone; � D 0:588, � D 0:017, ı D 0:17

P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre have considered an “acoustic”
variant of the homicidal chauffeur problem. It is supposed that the constraint � on
the control of player E depends on the state .x; y/: Namely,
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Fig. 22.25 Value function in
the surveillance-evasion
game: � D 0:588, ˛ D 121ı
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Fig. 22.26 Level sets of the value function in the acoustic problem; �� D 1:5, s D 0:9375;
� D 0:00625, ı D 0:0625

�.x; y/ D �� min
n

1;
p

x2 C y2=s
o

; s > 0:

Here, �� and s are the parameters of the problem.
The applied aspect of the acoustic game: object E should not be very loud if

the distance between him and object P becomes less than a given value s: Such
an applied aspect and its interpretation were suggested by P. Bernhard. Let us
cite here work (Bernhard and Larrouturou 1989): “Emitted noise is a function of
evader’s speed, while perceived noise is also a function of the distance between the
opponents.”
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Fig. 22.27 Graph of the
value function in the acoustic
problem; �� D 1:5,
s D 0:9375

P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre investigated the acoustic
problem using their method for numerical solving of differential games that was
briefly described in Sect. 2.3 (item 7). It was revealed that one can choose the values
of the parameters in such a way that the set of states where the value function is
finite will contain a hole in which points the value function is infinite. Especially
easy such a case can be obtained when the target set is a rectangle stretched along
the horizontal axis.

Figures 22.26 and 22.27 demonstrate an example of the acoustic problem with
the hole. The level sets of the value function and the graph of the value function are
shown. The value of the game is infinite outside the set filled out with the fronts.

Let us underline that the abovementioned hole is separated from the target set.
In Fig. 22.28, level sets for the parameters �� D 1:4, s D 2:5 are presented. The
graph of the value function is shown in Fig. 22.29. Also here, a hole with infinite
magnitudes of the value function arises. But this hole touches the target set, which
allows one to compute it easily through the barrier lines emanated from some points
on the boundary of the target set.

The acoustic homicidal chauffeur problem is carefully investigated in Patsko
and Turova (2001, 2004). These works also contain findings on families of
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semipermeable curves of the first and second types arising in this problem under
various values of parameters ��; s. With the help of semipermeable curves, the
appearance of the hole with infinite value of the game (see Figs. 22.26 and 22.27) is
explained.

2.8 Game with a More Agile Player P

Consider the homicidal chauffeur problem, in which player P controls the car
that can change his linear velocity instantaneously. Here, we use dynamics equa-
tions (22.6). Accordingly, numerical procedures of Sect. 2.5.2 for the computation
of level sets of the value function become more complicated. In more detail, the
problem with a more agile player P is investigated in Patsko and Turova (2009).

2.8.1 Level Sets of the Value Function
In Fig. 22.30, the level sets of the value function which correspond to one and the
same time � D 3 but to different values of the parameter a from �1 to 1 are
presented. For all computations, the radius of the target set is r D 0:3 and the
constraint on the control of player E is � D 0:3. In case a D �1, player P controls
a Reeds-Shepp’s car, and the obtained level set is symmetric with respect to both
y-axis and x-axis. If a D 1, the level set for the classical homicidal chauffeur game
is obtained.

Figure 22.31 shows the level sets of the value function for a D �0:1, � D 0:3,
r D 0:3. The computation is done backward in time till �f D 4:89. Precisely this
value of the game corresponds to the last outer front and to the last inner front
adjoining to the lower part of the boundary of the target circleM . The front structure
is well seen in Fig. 22.32 showing an enlarged fragment of Fig. 22.31. One can see a
nontrivial character of changing the fronts near the lower border of the accumulation
region. The value function is discontinuous on the arc dhc. It is also discontinuous
outside M on two short barrier lines emanating tangentially from the boundary
of M . The right barrier is denoted by ce.

2.8.2 Optimal Strategies
When solving time-optimal differential games of the homicidal chauffeur type
(with discontinuous value function), the most difficult task is the construction of
the optimal (or "-optimal) strategies of the players. Let us demonstrate such a
construction using the last example.

We construct "-optimal strategies using the extremal aiming procedure
(Krasovskii 1985; Krasovskii and Subbotin 1988). The computed control remains
unchanged during the next step of the discrete control scheme. The step of the
control procedure is a modeling parameter. The strategy of player P (E) is defined
using the extremal shift to the nearest point (extremal repulsion from the nearest
point) of the corresponding front. If the trajectory comes to a prescribed layer
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Fig. 22.32 Enlarged fragment of Fig. 22.31

attached to the positive (negative) side of the discontinuity line of the value function,
then a control which pushes away from the discontinuity line is utilized.

Let us choose two initial points a D .0:3;�0:4/ and b D .0:29; 0:1/. The first
point is located in the right half-plane below the front accumulation region, the
second one is close to the barrier line on its negative side. The values of the game in
the points a and b are V .a/ D 4:225 and V .b/ D 1:918, respectively.

In Fig. 22.33, the trajectories for "-optimal strategies of the players are shown.
The time step of the control procedure is 0:01. We obtain that the time of reaching
the target set M is equal to 4:230 for the point a and 1:860 for the point b.
Figure 22.33c demonstrates an enlarged fragment of the trajectory emanating from
the initial point b. One can see a sliding mode along the negative side of the barrier.

Figure 22.34 presents trajectories for nonoptimal behavior of player E and
optimal behavior of player P . The control of player E is computed using a random
number generator (random choice of vertices of the polygon approximating the
circle constraint of player E). The reaching time is 2:590 for the point a and 0:300
for the point b. One can see how the second trajectory penetrates the barrier line. In
this case, the value of the game calculated along the trajectory drops jump-wise.

In Fig. 22.35, the trajectories for nonoptimal behavior of player P and optimal
behavior of player E are shown. The control u of player P acts in optimal way,
whereas the control w is nonoptimal. For Fig. 22.35a, w 
 1. The time of reaching
the target set is 7.36. For Fig. 22.35b, c, w 
 �1 until the trajectory comes to the
vertical axis, after that w 
 1. Figure 22.35c demonstrates an enlarged fragment of
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Fig. 22.35 Homicidal
chauffeur game with more
agile pursuer. Optimal
behavior of player E and
non-optimal control w of
player P . Initial point
a D .0:3;�0:4/. (a) w � 1.
(b) w D �0:1 until the
trajectory comes to the
vertical axis, after that w D 1.
(c) Enlarged fragment of the
trajectory on the left
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the trajectory from Fig. 22.35b. The trajectory goes very close to the terminal set.
The reaching time is 5.06.

2.9 Homicidal Chauffeur Game as a Test Example and a Stimulus
for Investigation of New Comprehensive Problems

Presently, numerical methods and algorithms for solving zero-sum differential
games are intensively developed. Often, the homicidal chauffeur game is used as
a test or demonstration example (see, e.g., Botkin et al. 2011, 2013; Dvurechenskii
2013; Dvurechenskii and Ivanov 2012; Meyer et al. 2005; Mikhalev and Ushakov
2007; Mitchell 2002; Raivio and Ehtamo 2000).
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In the reference coordinate frame, the game is of the second order in phase
variables. Therefore, one can apply both general algorithms and algorithms taking
into account the specifics of the plane. The nontriviality of the dynamics is in that
the control u enters the right hand side of the two-dimensional control system as a
factor by the state variables, and the constraint on the control v can depend on the
phase state. Moreover, the control of player P can be two-dimensional, as it is in
the modification discussed in Sect. 2.8.

Speaking about applied problems whose investigation was motivated by time-
optimal differential games and, in particular, by the homicidal chauffeur problem,
let us note the following:

1. There exist publications (see, e.g., Bakolas and Tsiotras 2012, 2013) related to
the minimization of the traveling time of an object in the presence of drift field. In
idealized settings, the spatial and velocity characteristics of such field are supposed
to be known. A more realistic approach assumes the presence of uncertainties in
the representation of drift field. The velocity field can be generated by the wind if
the object is moving in the air, or by the undertow if movement of some deep-sea
vehicle is considered.

2. Very important are problems in which a controlled object (an aircraft or a
ship) should avoid collision with some other moving object. If our information on
the movement of the second object is incomplete, we are again in the scope of
differential game theory methods. For example, in the paper Exarchos et al. (2015),
an object with car-like dynamics should avoid from a given circular neighborhood of
an object with dynamics of simple motion. Here, at least locally, on some interval of
possible collision, it is appropriate to consider the “homicidal pedestrian” problem.

3. Let a third object known as a “defender” join to the pursuer and the evader.
Suppose that an aircraft performing its task is attacked by a missile. At the same
time, the second missile begins to defend the aircraft. Hence, on a small time
interval, an interaction between the evader (the aircraft), the pursuer (the first
missile), and the defender (the second missile) takes place. The evader and the
defender can share information on the current position of all objects, completely
or in part. Conceptual formulation of such problems and some approaches to their
analytic analysis are considered in Shaferman and Shima (2010), Shima (2011),
and Pachter et al. (2014). It should be noted that in such problems, it is even
not completely clear if the problem can be formulated as a zero-sum differential
game and whether the value function of this game (being defined by equating
guaranteed result of the evader and defender with the guaranteed result of the
pursuer) exists. Moreover, it is desirable to account for the state constraints imposed
on the movement of every of the three objects. Here, a new, very interesting direction
of research arises. Of course, accurate solving of such problems is impossible
without appropriate numerical methods. Issues related to the formulation of such
problems and to numerical solution methods are discussed in Fisac and Sastry
(2015).

4. In the book Blaquière et al. (1969), two-player differential games with two
target sets are considered. Each of the players strives to steer the control system to
his own target set prior to his opponent. The applied interpretation of such problems
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can be a combat between two aircraft or between two ships (Getz and Pachter 1981).
Who is the pursuer and who is the evader, if each of the combatants should hit his
opponent? In the context of objects like those ones in the homicidal chauffeur game,
the problem is considered in Davidovitz and Shinar (1989), Merz (1985), and Olsder
and Breakwell (1974).

5. In addition to the homicidal chauffeur game, the book of R. Isaacs contains,
among basic time-optimal problems, the game of “two cars” and the “isotropic
rocket” game. The meaning of the first game is clear from its name. In the second
game, the pursuer with the dynamics of a material point in the plane in the presence
of a drag force (which depends on the magnitude of velocity) pursuers the evader
with the dynamics of simple motion. Using some transformation of coordinates,
both problems can be reduced to differential games with a three-dimensional state
vector. Among publications on the game of two cars, let us mention the works
Simakova (1967, 1968), Merz (1972), and Pachter and Getz (1980) and the works
Bernhard (1970, 1979) on the isotropic rocket game. Time-optimal problem for a
material point (isotropic rocket) in a resistant medium with a partially given drift
field is investigated in Selvakumar and Bakolas (2015). However, these problems are
not yet completely solved (including dependence of solution on parameters). In this
connection, let us stress the necessity of invoking careful numerical modeling. For
an example of application of numerical methods to the game of two cars, we refer
to the paper Mitchell et al. (2005), in which, for some set of parameters, the game
of two cars is used as a fragment of collision-avoidance problem of two aircraft.

6. It should be clearly understood that such problems as the “homicidal chauffeur
game,” the “game of two cars,” and the “isotropic rockets” are problems which
reflect, at the model level, typical features of applied problems. One should be
careful when considering the opportunity to use solutions of model mathematical
problems in real practical applications. We refer to Bolonkin and Murphey (2005)
as an example of rational approach to solving the problem of avoiding encounter.
In this work, the counteraction of two objects with car-like dynamics is considered.
For given initial states, the question being asked is: Can the second object avoid an
encounter with the first one? On some time grid, the reachable sets of each object are
constructed. Using them, it is analyzed if there exists a motion of the second object,
which, at every time grid point, is located outside the corresponding reachable set
of the first object. By constructing such a motion, we wish to bring it to the position,
starting from which the further avoidance of the second object from the first one
becomes evident. If this is possible, the avoidance maneuver is found. Thus, the
conclusion on the construction (in approximate, engineering sense) of an avoidance
maneuver using an open-loop control is drawn merely on the base of computing
reachable sets on a time grid. Fast construction of reachable sets for objects with
car-like dynamics is well realizable on current onboard computers. If the problem
with one pursuer and several evaders is considered and we are interested in the
behavior of the pursuer, then, after the above described analysis, only those evaders
for whom the avoidance maneuver is impossible will be left. The pursuer’s control
law that guarantees the capture of the evader is designed by choosing a single evader
from the remaining ones. However, the realization of subtle mathematical results
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of the differential games theory related to the construction of optimal feedback
controls that guarantee the interception of the second object by the first one is hardly
possible at this time. So, we should agree with simplifications dropping the attempt
to compute optimal solutions.

7. Mathematical results on the problem, in which the moving car should, as
soon as possible, intercept more than one moving object are published in Berdyshev
(2002, 2008) and being included into the book Berdyshev (2015). Similar problems
but in the game formulation are considered in Shevchenko (2012). As an application,
the problem with false targets, in which an attacking vehicle that does not distinct
between the true and false targets should visit several moving targets and hit each
of them can be mentioned. Very important are also the problems, in which, on the
contrary, several moving objects with car-like dynamics (e.g., unmanned vehicles)
perform coordinated pursuit of a single moving target (see Shaferman and Shima
2008).

8. Consider one more variant of a pursuit-evasion problem with a false target.
There are a pursuer and an evader. Dynamic abilities of the pursuer exceed the
ones of the evader. At the initial instant, the pursuer knows only the area where
the evader is located. Using this information, the pursuer begins the search. At
some instant, the evader creates a false target, and the pursuer encounters with
the problem of two targets: the ones is true and another is false. The pursuer’s
detection means work effectively only when the distance between the pursuer and
the observed object is not larger than a given value. Moreover, it is possible to
identify the target (true or false) only when the pursuer comes within a given small
distance from the target. Generally, the pursuer seeks to minimize the guaranteed
capture time of the true target. Some such problems for objects with the dynamics
of simple motion in the plane and in three-dimensional space were formulated and
investigated in Abramyants et al. (1981, 2007), Shevchenko (1997), Zheleznov et al.
(1993). The books Kim (1993) and Petrosyan and Garnaev (1993) are devoted to
search problems under uncertainty conditions.

9. Extremely hard are pursuit-evasion problems with two or several groups of
interacting objects with car-like (aircraft) dynamics. Here, various problem settings
are possible. For instance, which objects can share information on their states and so
on. For an example of mathematical works related to this direction, see Stipanović
et al. (2010, 2012). Numerical algorithms for such problems are considered in Chen
et al. (2015).

10. One of the popular methods in the mathematical control theory is approxima-
tion of complex sets by ellipsoids (Chernous’ko 1993; Kurzhanski and Valyi 1997).
In Kurzhanski (2015, 2016), ellipsoids whose orientation and size are changed
with time are used to describe virtual containers enclosing a group of moving
objects. These small objects (little ships) should not collide, whereas the container
having them inside should solve his task of transfer from some initial position to
a given position, passing through “straits” and rounding “islands.” The presence of
uncertainties transforms this problem to a very sophisticated pursuit-evasion game.

11. When designing wheel robots, one of the main criteria for the choice
of robot dynamics is the following. Assume that the robot should track some
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prescribed trajectory in the plane in the presence of disturbances. It turned out
that dynamics of simplest car (Dubins’ car) are poorly suited for such a problem.
The reason is that, for such dynamics, for small time intervals, the reachable
set (in geometric coordinates) at fixed time does not contain the initial point. In
other words, the reachable set of Dubins’ car at fixed final time does not coincide
with his time-limited reachable set. For Reeds-Shepp’s vehicle, this property is
fulfilled. Therefore, it is better to have the dynamics of the robot to be similar
to the dynamics of Reeds-Shepp’s car. This example shows why comprehensive
mathematical control theory and, in, particular, its branch related to time-optimal
games finds application in robotics (Laumond 1998; Laumond et al. 2014).

12. Among many contemporary applied problems, in which researchers are
trying to apply methods of time-optimal games, it is worthy to mention those
ones related to a jamming attack on the communication network of a team of
moving objects. These problems are investigated by T. Başar and his collaborators
(Bhattacharya and Başar 2012; Han et al. 2011). The simplest task is formulated
in the following way. Two aircrafts (maybe, unmanned air vehicles) move in the
horizontal plane. Communication requirements demand that the distance between
them had to be not larger than a given value. At the initial instant, this condition is
fulfilled. After that, the third object, a jammer aircraft, appears. This one tries to jam
the connection between the mentioned pair of aircraft. To do this, the jammer uses
its special equipment. The time-optimal zero-sum game is formulated as follows:
the aerial jammer moves in a way to maximize the connection interruption time,
whereas the team of the first and second aircraft tries to minimize this time by
changing configuration of their motions.

3 Linear Differential Games with Fixed Termination Instant

Let the dynamics of a controlled object be described by a vector differential equation

Pz D A.t/z C B.t/u C C.t/v; u 2 P � Rp; v 2 Q � Rq: (22.25)

Here, z 2 Rn is the phase vector, A.t/ is a square matrix n � n, u is the vector
control of the first player constrained by a compact set P , and v is the vector control
of the second player constrained by a compact setQ. The matrices B.t/, C.t/ have
appropriate sizes. All matrix functions are assumed to be continuous in time.

Let the termination instant tf of the process be fixed and given. A scalar
continuous function ' of the terminal payoff is defined. It can depend not on the
entire phase vector z, but only on some m its components. The vector consisting of
these components is denoted by zm. The magnitude '

�

zm.tf /
�

at the terminal point
of a system trajectory is minimized by the first player and maximized by the second
one.

Thus, we have a differential game with linear dynamics, fixed termination instant
and terminal payoff function. Such game has a continuous value function .t; z/ 7!

V.t; z/.
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3.1 Passage to Dynamics Without Phase Variable in the
Right-Hand Side

Let Z.tf ; t/ be the fundamental Cauchy matrix corresponding to the matrix A.t/
participating in system (22.25). The symbol Zm.tf ; t/ denotes a submatrix of
the matrix Z.tf ; t/ composed of the m rows that correspond to the components
of the phase vector z, which define the payoff function '. The position of
system (22.25) computed to the terminal instant tf from the current instant t and
current position z.t/ under zero players’ controls u 
 0, v 
 0 is defined by the
formula Z.tf ; t/z.t/. Respectively, the forecast value of the chosen m components
is computed as Zm.tf ; t/z.t/.

Introduce a new variable y.t/ D Zm.tf ; t/z.t/. Then

Py.t/ D
d

dt

�

Zm.tf ; t/z.t/
�

D Zm.tf ; t/B.t/u CZm.tf ; t/C .t/v:

Denote

D.t/ D Zm.tf ; t/B.t/; E.t/ D Zm.tf ; t/C .t/

and consider a game with the following dynamics

Py.t/ D D.t/u CE.t/v; u 2 P; v 2 Q; (22.26)

fixed termination instant tf and the terminal payoff function '. If in some
interval Œt�; tf �, the players’ controls t 7! u.t/ and t 7! v.t/ in systems (22.25)
and (22.26) are the same and y.t�/ D Zm.tf ; t�/z.t�/, then y.tf / D zm.tf /.
This fact is the basis for the proof of equivalence of games (22.25) and (22.26):
the magnitudes of the value function V.t; z/ in game (22.25) and the value
function V .t; y/ in game (22.26) are connected by relation

V.t; z/ D V
�

t; Zm.tf ; t/z
�

:

The benefits of dynamics (22.26) are the following:

(1) In the right-hand side of dynamics (22.26), there is no phase variable; this
permits to solve problem (22.26) by simpler numerical methods;

(2) The dimension of the phase vector of system (22.26) equals m; if m < n,
then it can simplify constructions. Often, in applied problems, one has m D 2,
therefore, y 2 R2, and one should make constructions in the plane.

Replacement of dynamics (22.25) by dynamics (22.26) in linear differential
games with fixed termination instant is used actively in mathematical and engineer-
ing literature since the end of the 1960s (Bryson and Ho 1975; Krasovskii 1970,
1971).
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3.2 Lebesgue Sets of Value Function

Let Mc D
˚

y W '.y/ 6 c
	

be a Lebesgue set (a level set) of the payoff function
that corresponds to the number c. Denote Wc D

˚

.t; y/ W t � tf ; V .t; y/ � c
	

.
The set Wc is the Lebesgue set of the value function that corresponds to the
number c. Let Wc.t/ D

˚

y W V .t; y/ � c
	

, t � tf , be a time section (a t -section)
of the tube Wc at the instant t. A remarkable property of the tube is that Wc is
the set maximal by inclusion in the space t � y, which possesses the stability
property (weak-invariant set): for any initial position .t�; y�/ 2 Wc for any constant
control t 7! v.t/ 
 v� 2 Q of the second player, there is a measurable
control t 7! u.t/ of the first player that has its values in P and such that the
trajectory t 7! y

�

t I t�; y�; u.�/; v�
�

of system (22.26) at any instant t 2 Œt�; tf �

stays in the set Wc.t/. A set that possesses such a property is called also u-stable
bridge. Thus, Wc is the maximal stable bridge that stops at the set Mc .

Here, we must involve measurable controls of the first player (not piecewise-
continuous) because only measurable controls provide closure of the trajectory
bundle. From ideological point of view, one can imagine piecewise-continuous
controls that are easier to understand.

Discriminating the second player (since he shows his further control in some
future time interval), the first player can guide system (22.26) through the sec-
tionWc.t/, and at the instant tf , the system is delivered to the setMc . If to reject the
discrimination of the second player, then the positional strategy of the first player
extremal to the set Wc (Krasovskii 1985; Krasovskii and Subbotin 1974, 1988) and
applied in a discrete control scheme with some sufficiently small time step keeps
any trajectory of system (22.26) near the tube Wc up to the instant tf .

The maximal stable bridge is (Krasovskii and Subbotin 1974, 1988) a closed set.
If the set Mc is convex, then any t -section Wc.t/ is convex too (see Krasovskii and
Subbotin 1988, p. 87) due to linearity of system (22.26).

The closure of the set f.t; y/ W t � tf g n Wc has analogous property but under
discrimination of the first player and is called the maximal v-stable bridge.

Applying analytic or numerical procedures for constructing setsWc in some grid
of values of the parameter c, one can obtain a collection of exact or approximate
Lebesgue sets of the value function of game (22.26). On the basis of such a collec-
tion, optimal positional controls of the players can be constructed approximately:
being at some position .t; y/, we choose the first player’s control u.t; y/ that
maximally pulls the system to the closest smaller set Wc.t/ and the second player’s
control v.t; y/ that maximally pulls the system from this set.

3.3 Backward Procedure for Constructing Sets Wc.t/ in the
Convex Case

Now, let us describe the method for constructing level sets of the value function
(maximal stable bridges) of games of the type (22.26) in the case of continuous
quasiconvex payoff '. (A function is called quasiconvex if all its Lebesgue sets are
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convex.) The procedure is of the backward type and can be treated as the dynamic
programming principle applied to differential games.

To do the numerical construction, let us take a sequence of instants t0 < t1 <

t2 < : : : < tN�1 < tN D tf in the time interval Œt0; tf � of the game. Uniformity
of the grid is unessential. For a given constant c, the result of the procedure is a
collection of sets, each corresponding to a chosen time instant ti and approximating
the time section Wc.ti / of the level set Wc D

˚

.t; y/ W V .t; y/ � c
	

of the value
function V of the game (22.26) at this instant. The symbol eW c.ti / will denote the
set approximating the original time section Wc.ti /.

Change the dynamics of the game (22.26) by a piecewise-constant dynamics:

Py D eD.t/u C eE.t/v; eD.t/ D D.ti /; eE.t/ D E.ti /; t 2 Œti ; tiC1/: (22.27)

Instead of the original constraints P and Q for the controls of the players, let us

consider their polyhedral approximations eP and eQ. Let e' be the approximating

payoff function. It is defined so that for any number c, its level set fMc D
˚

y W

e'.y/ � c
	

is a convex polyhedron close in Hausdorff metrics to the level set Mc of
the original payoff function.

The approximating game (22.27) is chosen such that in each step Œti ; tiC1� of
the backward procedure we deal with a game with simple motion and polyhedral
convex constraints for the players’ controls. At the first step ŒtN�1; tN � D ŒtN�1; tf �,
a solvability set eW c.tN�1/ for a game of homing with target set eW c.tN / D fMc

is constructed. Here, the first player tries to guide the system to the set eW c.tN /

at the instant tN , and the second one opposes this. Continuing in the same way,
a set eW c.tN�2/ is constructed on the base of eW c.tN�1/, and so on. As a result,
we obtain a collection of convex polyhedra eW c.ti / approximating (Botkin 1982;
Polovinkin et al. 2001; Ponomarev and Rozov 1978) the sections Wc.ti / of the
original level setWc of the value function of the game (22.26) in Hausdorff metrics.

The procedure of moving from the section eW c.tiC1/ to the next one eW c.ti / is
described in terms of support functions of the sets under consideration. Recall that
the value �.l; A/ of the support function of a bounded closed set A on the vector l
is calculated by formula

�.l; A/ D max
a2A

hl; ai:

Here, the symbol h�; �i denotes the dot product of two vectors.
Introduce denotations P.ti / D D.ti /eP , Q.ti / D E.ti /eQ for vectograms of the

players (i.e., for the sets of velocities, which the players can give to the system).
One knows (Pontryagin 1967b; Pschenichnyi and Sagaidak 1970) that in the convex
case the set eW c.ti / is represented as

eW c.ti / D
�

eW c.tiC1/C .tiC1 � ti / �
�

� P.ti /
�

�

�� .tiC1 � ti / � Q.ti /:
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Here, the symbol “C” denotes the Minkowski sum (the algebraic sum), and the

symbol “ �� ” denotes the Minkowski difference (the geometric difference). These
operations are defined as

A C B D faC b W a 2 A ; b 2 Bg; A ��B D
\

b2B

.A � b/:

The support function of the Minkowski sum of two sets equals the sum of the
support functions of these sets. For two convex compact sets, the support function
of their Minkowski difference coincides with the convex hull of the difference of
the support functions of these sets. Therefore, �

�

�; eW c.ti /
�

D co .�; ti /, where the
value of the function .�; ti / on a vector l is defined by the formula

.l; ti / D �
�

l; eW c.tiC1/
�

C .tiC1 � ti / � �
�

l;�P.ti /
�

� .tiC1 � ti / � �
�

l;Q.ti /
�

:

(22.28)

The symbol “co” denotes the operation of taking the convex hull of a function.
The function .�; ti / is positively homogeneous and piecewise-linear (because the

support functions of the polyhedra eW c.tiC1/, �P.ti / and Q.ti / are of this type).
The property of local convexity can be violated only on the boundary of the linearity
cones of the function �

�

�;Q.ti /
�

, that is, on the boundary of the cones generated by
normals to the neighboring faces of the polyhedron Q.ti /. This can be taken into
account during construction of the convex hull of the function .�; ti /.

As a result of the backward procedure in the interval Œt0; tf �, one obtains a
collection of the sets eW c.ti / for a value of the parameter c.

3.4 Constructing Sets eWc.t/ in the Two-Dimensional Case

When the phase vector is two-dimensional, constructions described in the pre-
vious subsection can be realized very effectively. The procedure of convex hull
construction is very fast because we have information about places of possible
violation of local convexity. In Fig. 22.36, the structure of the function  graph
is shown schematically. Dash lines point out “corrections” of the function during
convexification process. Herewith, this process stops after a few steps.

Below, the argument ti of the function  is omitted to simplify denotations.
Cones of linearity of the function  are defined by the outer normals to edges

of the convex polygons eW c.tiC1/, �P.ti /, Q.ti /. Gathering these normals and
ordering them clockwise, we obtain a collection L of vectors. The collection of
magnitudes .l/ of the function  (22.28) on the vectors l 2 L is denoted as ˚ .
The collections L, ˚ define completely the function  (with taking into account its
positive homogeneity).

The set of outer normals to edges of the polygon Q.ti / ordered clockwise is
denoted S . The collection S is called set of “suspicious” vectors. This name is due
to the fact that the function  is certainly convex in any cone whose interior does
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l1

l2

γ(l)

Local convexity

Local concavity

Fig. 22.36 A scheme of constructing convex hull of a positively homogeneous piecewise-linear
function

not include any vector from the set S . And, respectively, violation of convexity can
happen only in cones that do include at least one of such vectors.

AssumeL.1/ D L,˚.1/ D ˚ , S.1/ D S . The .kC1/th step of the convexification
process is made by replacing sets L.k/, ˚.k/ by some other collections L.kC1/ �

L.k/, ˚.kC1/ � ˚.k/. With that, S.k/ is also changed by a new collection S.kC1/.
Now, let us describe one step of the convexification procedure. Suppose that the

angle between any two neighbor vectors from the collection L.k/ counted clockwise
is less then � . Let l 7! .k/.l/ be a piecewise-linear positively homogeneous
function described by the collections L.k/, ˚.k/. Since

L.k/ � L.k�1/ � � � � � L.1/; ˚.k/ � ˚.k�1/ � � � � � ˚.1/;

then for any vector l 2 L.k/ the magnitude .k/.l/ equals .l/.
Take any vector l� 2 S.k/ and two its neighboring in L.k/ vectors l� (taken

counterclockwise from l�) and lC (taken clockwise from l�). Check whether the
inequality hl�; yi 6 .k/.l�/ is essential in the triple of inequalities hl�; yi 6
.k/.l�/, hl�; yi 6 .k/.l�/, hlC; yi 6 .k/.lC/. The inequality hl�; yi 6 .k/.l�/ is
essential, if for the set

A D fy W hl�; yi 6 .k/.l�/; hlC; yi 6 .k/.lC/g

the following relation holds:

A ¤ A
\

fy W hl�; yi 6 .k/.l�/g:
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From essentiality of the inequality hl�; yi 6 .k/.l�/, it follows that the
positively homogeneous function .k/ is locally convex in the cone produced by
the vectors l�, l�, lC.

The algorithm for checking essentiality: find the point y� of intersection of lines
hl�; yi D .k/.l�/ and hl�; yi D .k/.l�/. Further, check the inequality hlC; y�i <

.k/.lC/. If it holds, then the middle inequality is essential. Therefore, the local
convexity takes place.

If the local convexity holds, the vector l� is excluded from the collection S.k/.
The new collection is denoted S.kC1/. With that, L.kC1/ D L.k/, ˚.kC1/ D ˚.k/.

If the local convexity is violated, there are two situations. Let ˛ be the angle
between vectors l� and lC counted clockwise. If

• ˛ < � , then the vector l� is excluded from the collection S.k/ and simultaneously
the vectors l� and lC are added there. (One or both can be in the collection S.k/.)
The collection obtained after these operations is the new set of “suspicious”
vectors and is denoted by S.kC1/. The new collection L.kC1/ is obtained
from L.k/ by excluding the vector l�. In the same, to get ˚.kC1/ from ˚.k/ we
exclude the value .k/.l�/ D .l�/;

• ˛ > � , then either the considered triple of inequalities is inconsistent (the convex
hull of the initial function does not exist) and, therefore, eW c.ti / D ¿. Or eW c.ti /

is a degenerated polygon, that is eW c.ti / is a point or a segment. In both these
cases, further constructions are ceased.

These are the actions made during one step of convex hull construction.
The process is stopped at some step j , when S.j / D ¿, that is, when there
is no “suspicious” vectors. This means that the function .j / defined by the
collections L.j / and ˚.j / is locally convex on all vectors, that is, it is convex.
Therefore, it is the convex hull of the initial function  . Also stop can be caused
by ceasing constructions; in this case, either eW c.ti / D ¿ or the polygon eW c.ti / is
degenerated.

The collection of sets eW c.ti / is used by a visualization software to construct a
solid tube to be drawn.

The algorithm for constructing t -sections eW c.ti / is described in more details
in Isakova et al. (1984) and Patsko (1996). The algorithm is very effective because
before constructing the convex hull of a function  we know places where its
local convexity can be violated. Proof of convergence of the algorithm and some
approximational schemes close to it are given in Botkin (1982) and Ponomarev and
Rozov (1978). Convergence of analogous schemes is justified in Ponomarev and
Rozov (1978). An algorithm for a posteriori estimating the numerical construction
error is developed in Botkin and Zarkh (1984).

Let us give an example of numerical construction of maximal stable bridges for
the following game:



1010 V. Patsko et al.

Pz1 D z2 C v; Pz2 D �z1 C u; t 2 Œ0; 8�;

juj 6 1; jvj 6 0:9; '.z1; z2/ D z21 C z22:
(22.29)

In this case, n D m D 2. So, when the value function V is constructed in the
coordinates y, we can pass back to the original coordinates z taking into account the
relation z D Z�1.tf ; t/y.

In Fig. 22.37, three Lebesgue sets of the value function (maximal stable bridges)
are shown in the coordinates � , z1, z2. They are computed in the interval Œ0; 8� of
the backward time � D tf � t and correspond to the values c D 1:05, 1:4, 2:7 of the
payoff function. In Fig. 22.37b, two external bridges are cut off by a plane parallel
to the axes z1, � . In Fig. 22.37a, all three are cut off.

The break of the internal bridge is sharp. But for other examples, there are
magnitudes of the payoff such that the corresponding Lebesgue set of the value
function has a degenerated t -sectionWc. N�/ at some instant N� (e.g., the section has no
interior). Further, for � > N� , the sections grow and have interior. Below, tubes of this
type are called critical. At the beginning of numerical studies of linear differential
games, it seemed that critical tubes can appear in rare model examples only, but not
in practical problems. But further, it have turned out that such a point of view is
incorrect. J. Shinar found that critical tubes and connected to them narrow throats
are quite typical for problems of space interception.

Fig. 22.37 Three maximal
stable bridges for
game (22.29)

a

b



22 Pursuit-Evasion Games 1011

3.5 J. Shinar’s Problem of Space Interception

3.5.1 Problem Formulation
In the works Shinar et al. (1984), Shinar and Zarkh (1996), and Melikyan and Shinar
(2000), a three-dimensional air-to-air interception problems has been formulated as
a pursuit-evasion game by J. Shinar. The study by J. Shinar was based on earlier
works Gutman and Leitmann (1975, 1976), Gutman (1979), and Shinar and Gutman
(1980).

The pursuer is the interceptor missile, while the evader is a maneuverable aerial
target (an aircraft or another missile). The natural payoff function of the game is
the distance of closest approach, the miss distance, to be minimized by the pursuer
and maximized by the evader. For the sake of simplicity, point mass models with
velocities of constant magnitudes VP , VE were selected. The lateral accelerations
of both players, normal to the respective velocity vectors, have constant bounds aP
and aE . The evader controls its maneuver with ideal dynamics, while the pursuer’s
maneuver dynamics is represented by a first-order transfer function with the time
constant �P .

In Fig. 22.38, the origin of the Cartesian coordinate system is collocated with
the pursuer. The direction of the X -axis is along the initial line of sight. The XY
plane is the nominal “collision plane” determined by the initial velocity vector of
the evader .VE/0 and the initial line of sight. The Z-axis completes a right-handed
coordinate system.

It is assumed the initial conditions are near to a “collision course,” defined by

VP sin.�P /col D VE sin.�E/0; (22.30)

and the actual velocity vector VP .t/ of the pursuer remains close to the collision
requirement .VP /col, satisfying

Fig. 22.38 The system of coordinates in the problem of three-dimensional pursuit. The actual
vectors of VP .t/ and VE.t/ differ only slightly during the engagement from the nominal vectors
.VP /col and .VE/0, respectively
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sin
�

�P .t/�.�P /col

�

� �P .t/�.�P /col; cos
�

�P .t/�.�P /col

�

� 1: (22.31)

It is also assumed that the actual velocity vector VE.t/ of the evader will remain
close enough to its initial direction satisfying

sin
�

�E.t/ � .�E/0

�

� �E.t/ � .�E/0; cos
�

�E.t/ � .�E/0

�

� 1: (22.32)

Based on the small angle assumptions (22.31) and (22.32), the relative trajecto-
ries can be linearized with respect to the initial line of sight. Moreover, the relative
motion in the X direction can be considered as uniform. Thus, this coordinate can
be replaced by the time, transforming the original three-dimensional motion to a
two-dimensional motion in the YZ plane. For a given initial range, the uniform
closing velocity determines the final time tf of the engagement. Therefore, the
problem of minimizing (maximizing) the three-dimensional miss distance at a free
terminal time can be changed by the minimization (maximization) of the distance in
the YZ plane at the fixed terminal time of the nominal collision (two-dimensional
miss).

Since in general the velocity vectors .VP /col and .VE/0 of the players are not
aligned with the initial line of sight, the projections of the originally circular control
constraints, normal to the respective velocity vectors, become elliptical.

The equations of motion of the linearized pursuit-evasion game are

R�P D F;
PF D .u � F /=�P ;
R�E D v;

t 2 Œ0; tf �; �P ; �E 2 R2; u 2 P; v 2 Q;

'
�

�P .tf /; �E.tf /
�

D
ˇ

ˇ�P .tf / � �E.tf /
ˇ

ˇ;
(22.33)

where �P and �E are the positions of the players in the plane normal to the initial
line of sight, and u and v are their respective acceleration command signals.

To reduce dynamics (22.33) to form (22.25), a variable change

z1 D �P;1 � �E;1; z2 D P�P;1 � P�E;1; z3 D R�P;1;

z4 D �P;2 � �E;2; z5 D P�P;2 � P�E;2; z6 D R�P;2

can be applied, leading to the following standard form of the game

Pz D Az C Bu C Cv;

A D

"

A1 0

0 A1

#

; A1 D

2

4

0 1 0

0 0 1

0 0 �1=�P

3

5 ;

B 0 D .1=�P /

"

0 0 1 0 0 0

0 0 0 0 0 1

#

; C 0 D

"

0 �1 0 0 0 0

0 0 0 0 �1 0

#

(22.34)

with constraints for the players’ controls taken as ellipses
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u 2 P D

�

u W u0




1= cos2.�P /col 0

0 1

�

u � a2P

�

;

v 2 Q D

�

v W v0




1= cos2.�E/0 0
0 1

�

v � a2E

�

;

and the payoff function '
�

z1.tf /; z4.tf /
�

D
q

z21.tf /C z24.tf /.
The passage to the equivalent game yields

Py D D.t/u CE.t/v; t 2 Œ0; tf �; y 2 R2; u 2 P; v 2 Q; '
�

y.tf /
�

D
ˇ

ˇy.tf /
ˇ

ˇ;

where

D.t/ D �.t/ � I2; �.t/ D .tf � t /C �P e
�.tf �t/=�P � �P ; (22.35)

E.t/ D �.t/ � I2; �.t/ D �.tf � t / (22.36)

and I2 is the 2 � 2 unit matrix.
In order that achieving a small miss distance be feasible, in all realistic pursuit-

evasion examples, the pursuer must have some advantage in maximum lateral
acceleration in every direction. This means that the control constraint set P of the
pursuer has to cover completely the control constraint set Q of the evader. In other
words, the inequalities

aP =aE > 1; aP j cos.�P /colj > aE j cos.�E/0j; (22.37)

describing the relations of the semiaxes of the ellipses P and Q have to be valid.
Such an advantage allows reducing an initial launching error and overcoming long
duration constant evader maneuvers. However, due to the first-order dynamics of the
pursuer’s control function and the ideal dynamics of the evader, zero miss distance
cannot be achieved against an optimally maneuvering evader.

In Shinar et al. (1984) as well as in Melikyan and Shinar (2000), the parameters
of the problem were of an interception of a manned aircraft, assuming that VP > VE .
Thus using (22.30), one obtains

ˇ

ˇ cos.�P /col

ˇ

ˇ >
ˇ

ˇ cos.�E/0
ˇ

ˇ.
In Shinar and Zarkh (1996), an interception of a tactical ballistic missile was

considered with VP < VE , leading to
ˇ

ˇ cos.�P /col

ˇ

ˇ <
ˇ

ˇ cos.�E/0
ˇ

ˇ.
This difference influences considerably the form of the critical tube in the

equivalent game and the associated singular surfaces.

3.5.2 Maximal Stable Bridges: Case of Fast Pursuer
Let us start with the results of numerical investigations for the case when the
pursuer’s velocity VP is greater than the velocity VE of the evader.

Relation (22.30) of the nominal collision and the relation VP > VE of the
players’ velocities yield that the eccentricity of the ellipse P is smaller than the
eccentricity of the ellipse Q (see Fig. 22.39).
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Fig. 22.39 Elliptical
constraints of the players’
controls in the case of a faster
pursuer. The ellipse P is
drawn by a solid line, and Q
is drawn by a dashed one. The
eccentricity of P is smaller
than the eccentricity of Q

aP

aE

aP |cos(  P)col|χ

aE |cos(χE )0|

In the numerical investigation, the following data were chosen:

VE

VP
D 0:666;

aP

aE
D 5:0; jcos.�P /colj D 0:87; jcos.�E/0j D 0:66; �P D 1 s:

Consequently, the elliptical control constraints are

P D

�

u 2 R2 W
u21
0:872

C
u22
1:002

� 5:02
�

; Q D

�

v 2 R2 W
v21
0:662

C
v22
1:002

� 1

�

:

This example has been computed in the interval � 2 Œ0; 2� s of backward time.
The time step � was taken equal to 0:025 s. The circles of the level sets of the
payoff function and the ellipses P and Q of constraints for the players’ controls
were approximated by 100-gons (polygons with 100 vertices).

In Fig. 22.40, the vectogram tubes for this example are shown. The first player’s
tube is light gray, the second one’s is dark gray.

An enlarged part of the previous picture from another point of view can be seen
in Fig. 22.41. On the vectogram tube of the second player, the contours of some time
sections are shown.

Since Q.t/ D E.t/Q D �.t/I2Q D �.t/Q, where �.�/ is described by (22.36),
the dark gray tube grows linearly with � . For the tube P , we have P.t/ D �.t/P ,
where �.�/ is taken from (22.35). So, initially (for small values of � ), the light gray
tube grows slower than linearly, but for large values of � , it becomes almost linear
and starts to grow faster than the tube Q does. This faster growth is provided by
inequalities (22.37).
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Fig. 22.40 Vectogram tubes
for the case of a faster pursuer

Fig. 22.41 An enlarged fragment of the vectogram tubes. The first player gains advantage in
horizontal direction at the instant �� and a complete advantage at the instant ��

So, for � < ��, the second player (the maximizer) has a complete advantage, that
is, the vectogram Q.�/ of the second player completely covers the vectogram P.�/

of the first player (Fig. 22.42a). The instant �� is characterized by the fact that the
horizontal size of the ellipses P.��/ and Q.��/ are equal (Fig. 22.42b). In the
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Fig. 22.42 Sections of the vectogram tubes at some time instants. The vectograms of the first
player are shown by the solid lines, the dashed lines denote the vectograms of the second player

interval �� < � < ��, none of the players has a complete advantage: the first
player is stronger in horizontal direction, the second player is stronger in directions
near to the vertical (Fig. 22.42c). When � D ��, the vertical sizes of the ellipses
become equal (Fig. 22.42d) and for � > �� the first player has complete advantage
(Fig. 22.42e). This change in the relationship of the vectograms P.�/ and Q.�/
can be explained by the difference between the eccentricities and the sizes of the
ellipses P and Q and the form of the functions �.t/ and �.t/.

Such a shift of the advantage from the maximizing player to the minimizer leads
to creating a narrow throat. Figure 22.43 shows a level set close to the critical
one. This level set is computed for c D 0:141m. The narrow throat is located
at �� D 0:925 s. Contours of some time sections of the level set are shown.
One can see that the t -sections eW c.t/ of the level set near the narrow throat
are elongated horizontally. This is due to the relation of the players’ capabilities.
For � < ��, the second player is stronger in the vertical direction than horizontally.
According to this, the sections eW c.t/ are compressed more in the vertical direction.
When � is slightly greater than ��, the first player’s advantage is stronger in the
horizontal direction (Fig. 22.42e), which leads to a horizontal expansion of the
sections. For sufficiently large values of � the first player’s advantage in vertical
direction becomes greater than in the horizontal one, so, the t -sections start to grow
vertically faster than in the horizontal direction, and at some instant, the elongation
becomes vertical. For the presented example, this happens outside the time interval
of Fig. 22.43.

In Fig. 22.44, scene is given that contains a level set close to the critical one. The
� -axis goes from the right to left, and the axis y2 is directed upward. The axis y1 is
orthogonal to the sheet. Both vectogram tubes are transparent now. Such an overlap
demonstrates clearly the influence of the players’ vectograms on the geometry of the
level set surface. For example, one can easily see that, when the first player gains
complete advantage (at �� D 0:925 s), the narrow throat ends (the tube of the level
set starts to enlarge). In addition, it is seen that before that instant, the tube contracts
due to the advantage of the second player.
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Fig. 22.43 A level set close
to the critical one,
c D 0:141m. The instant of
the most narrow
place �� D 0:925 s

Fig. 22.44 Superposition of
the vectogram tubes and the
level set close to the critical
one. The players’ vectogram
tubes are transparent

The results shown here agree qualitatively with the ones obtained in an analytical
investigation of the problem with a faster pursuer made in Shinar et al. (1984)
and Melikyan and Shinar (2000). In these papers, it is shown that in the case of a
faster pursuer the geometry of the critical level set is the same for any combination
of parameters of the problem.

3.5.3 Maximal Stable Bridges: Case of Slow Pursuer
In this subsection, the results with a slower pursuer VP < VE are presented. The
eccentricity of the ellipse P is greater than the eccentricity of the ellipse Q (see
Fig. 22.45).
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Fig. 22.45 Elliptical control
constraints of the players in
the case of a slower pursuer.
The ellipse P is drawn by a
solid line, Q is drawn by a
dashed one. The eccentricity
of P is greater than the
eccentricity of Q

aP

aE

aP |cos(χP)col|

aE |cos(χE)0|

Based on the data of the original problem

VE

VP
D 1:054;

aP

aE
D 1:3;

ˇ

ˇ cos.�P /col

ˇ

ˇ D 0:67;
ˇ

ˇ cos.�E/0
ˇ

ˇ D 0:71; �P D 1 s

in the construction, the following data were used:

P D

�

u 2 R2 W
u21
0:672

C
u22
1:002

� 1:302
�

; Q D

�

v 2 R2 W
v21
0:712

C
v22
1:002

� 1

�

:

This example has been computed in the interval � 2 Œ0; 7� s with the time
step � D 0:01 s. The circles of the level sets of the payoff function and the ellipses
of the players’ control constraints, P and Q, were approximated by 100-gons.

Like in the example of the previous subsection, there is a narrow throat also
here. Figure 22.46 shows a general view of the level set eW c computed for the
parameter c D 1:546m, which is slightly greater than the critical one. But unlike
the example described above, here the narrow throat has a much more complex
structure: the orientation of the t -sections’ elongation changes very tricky near the
throat. An enlarged view of the throat is shown in Fig. 22.47.

Let us use the players’ vectogram tubes for this problem to explain the shape of
the level set. The vectogram tubes are shown in Fig. 22.48. The tube of vectograms
of the first player (P) is drawn in red, and the tube of the second player (Q) is
in green. Here also, the tube Q grows linearly with � , whereas the tube P grows
slower than linearly at small values of � and becomes almost linear later. Eventually,
for large values of � , it will grow faster than the tube Q, because (22.37).
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Fig. 22.46 General view of the level set of the value function with a narrow throat

Fig. 22.47 Enlarged view of the narrow throat

Since the ellipses P and Q have different eccentricities, the first player’s
ellipse P.�/ starts to cover the ellipse Q.�/ of the second player in different
directions at different instants. So, for � < �� D 4:18 s, the ellipse Q.�/ includes
the ellipse P.�/ completely (see Fig. 22.49a). At � D ��, the first player’s ellipse
reaches the ellipse of the second player in the vertical direction (see Fig. 22.49b). In
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Fig. 22.48 General view of
the vectogram tubes of the
first (1) and second (2)
players. The vectogram tube
of the second player is
transparent, showing contours
of some sections

Fig. 22.49 Sections of the vectogram tubes at some time instants. The vectograms of the first
player are shown by the red lines; the green lines denote the vectograms of the second player

the interval �� < � < �
�, the ellipse P.�/ covers more and more the ellipse Q.�/.

Finally, at � D �� D 5:3 s the set P.�/ covers the set Q.�/ even in the horizontal
direction (see Fig. 22.49c). And for � > ��, P.�/ covers Q.�/ completely (see
Fig. 22.49d).

The relationship between the players’ vectograms leads to an intricate chang-
ing of the level set’s t -sections near the narrow throat, as it can be seen in
Figs. 22.46, 22.47, and 22.50. The latter shows groups of sections in different
intervals of � to demonstrate the different phases of the sections’ changing.

For � < ��, the second player has complete advantage over the first one. Since
in backward time the second player tries to contract the sections of the level sets
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Fig. 22.50 Groups of time sections of a level set close to the critical tube in some intervals of the
backward time: (a) � 2 Œ0; 3:8� s; (b) � 2 Œ��; N��; (c) � 2 ŒN�; ���; (d) � 2 Œ5:41; 7:0� s
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as much as possible, the t -sections of the tube eW c are reduced in the interval 0 <
� < ��. In Fig. 22.50a, the sections are shown in the interval � 2 Œ0; 3:8� s. Since
the second player’s advantage is greater in the vertical direction, the tube starts to
contract more in the vertical direction than in the horizontal one. Therefore, at � D

�� the t -section of the level set is elongated horizontally.
In the interval �� < � < ��, the first player gains advantage gradually, starting

in the vertical direction, while the second player keeps its horizontal advantage.
For this reason the t -sections of the level set start expanding vertically while being
reduced in the horizontal direction. This interval can be subdivided into two parts.

Between �� and N� D 4:95 s the time sections have the shape of “curvilinear
rectangles” as it can be seen in Fig. 22.50b. Their form is gradually changing from
a horizontal elongation to a vertical one.

At N� the horizontal arcs disappear, and the t -sections start having a vertical
lens shape. Simultaneously, the vertical expansion becomes a contraction despite
of the vertical advantage of the first player (Fig. 22.50c), because the horizontal
contraction enforces a contraction due to the lens shape.

Finally, at � D ��, when the first player gains a complete advantage, one obtains
the narrowest section of the throat (Figs. 22.47 and 22.50c) with vertical elongation.
For � > �� the first player keeps the complete advantage and the t -sections
start to expand in all directions monotonically. The rate of expansion is, however,
nonuniform, but the direction of elongation remains vertical (see Fig. 22.50d).

Fig. 22.51 The level set with narrow throat for the parameter c D 1:546m (yellow transparent)
and the level set for a less value of the parameter c D 1:48m (red)
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Fig. 22.52 The level set with narrow throat for the parameter c D 1:546m (red) and the level set
for a greater value of the parameter c D 1:67m (yellow transparent)

The following two figures show the critical level set in comparison with level
sets close to it. Figure 22.51 shows the critical tube (drawn in transparent yellow)
and the tube computed for the value of c D 1:48m of the payoff function, which is
less than the critical one. This tube is finite in time and drawn in red. In Fig. 22.52,
the critical level set (in red) and the one computed for c D 1:67m (in transparent
yellow) are presented. One can see that the latter has smooth boundary. These figures
demonstrate that the majority of peculiarities of the value function are found near
the narrow throat, emphasizing the necessity of extremely accurate computations
near the throat.

The analytical results of the paper Shinar and Zarkh (1996) shows that in the case
of a slower pursuer the geometry of the critical tube differs qualitatively for different
combinations of the parameters of the problem. The dependence of the critical tube
geometry on the parameters of the problem (and how it affects the singular surfaces)
is investigated in that paper. The example computed numerically in this subsection
corresponds to the case of the most complicated structure of the narrow throat.

3.6 Adaptive Control on the Basis of Differential Game Methods

In the framework of linear differential games, let us describe a method for
constructing the first player’s control, which can be reasonably called adaptive.

Consider a system with linear dynamics
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Pz D A.t/z C B.t/u C C.t/v;

z 2 Rn; t 2 T; u 2 P � Rp; v 2 Rq;
(22.38)

analogous to system (22.25) except that here there is no any compact constraint for
the second player’s control v. Here, T D Œt0; tf � is the time interval of process.
Assume that the set P contains the origin of the space Rp . Also, assume that the
matrix function B is Lipschitzian in the interval T .

The first player tries to guide m chosen components of the phase vector of
system (22.38) at the instant tf to the given terminal set M . The set M is assumed
to be a convex compactum in the set of these m coordinates of the phase vector z.
Suppose also that the interior of M is not empty and contains the origin, which will
be considered as a “center” of M . An additional objective of the first player is to
guide these m components of the vector z as closer to the center of M as possible.

As it is described in Sect. 3.1, let us pass to a system without the phase variable
in the right-hand side of the dynamics:

Py D D.t/u CE.t/v;

y 2 Rm; t 2 T; u 2 P � Rp; v 2 Rq:
(22.39)

The first player tries to guide the phase vector of system (22.39) at the instant tf
to the set M as closer to its center as possible.

All constructions below are for system (22.39). The obtained adaptive con-
trol U.t; y/ can be applied to system (22.38) too as U

�

t; Zm.tf ; t/z
�

.

3.6.1 System of Stable Bridges
Let the symbol S.t/ D

˚

y 2 Rm W .t; y/ 2 S
	

denote the time section of the
set S � T � Rm at the instant t 2 T . Denote by O."/ D fy 2 Rm W jyj 6 "g the
ball with the radius " and center at the origin of the space Rm.

Stable bridges. Consider in the interval Œt0; tf � a zero-sum differential game with
a terminal set M and geometric constraints P, Q for the players’ controls:

Py D D.t/u CE.t/v;

y 2 Rm; t 2 T; M; u 2 P; v 2 Q:
(22.40)

Here, the matrices D.t/, E.t/ are the same as in system (22.39). The sets M, P, Q
are assumed to be convex compacta. They are regarded as parameters of the game.

Let u.�/ and v.�/ be measurable functions with their values in the compact sets P
and Q, respectively. A motion of system (22.40) (and, therefore, of system (22.39))
emanated from the point y� at the instant t� under controls u.�/ and v.�/ is denoted
by y

�

�I t�; y�; u.�/; v.�/
�

.
Below, the symbol WM denotes the maximal stable bridge in game (22.40) that

stops at the set M at the instant tf .
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3.6.2 Constructing System of Stable Bridges

1ı. Take a set Qmax � Rq , which is regarded as the maximal constraint for the
second player’s control can be treated as “reasonable” by the first player when
guiding system (22.39) to the terminal setM . Assume that the setQmax contains the
origin of its space. Denote by Wmain the maximal stable bridge for system (22.40)
that corresponds to the parameters P D P , Q D Qmax, M D M . Below, it is called
the main bridge for brevity.

Suppose additionally that the set Qmax is chosen in such a way that for some
" > 0 for every t 2 T , the following inclusion holds:

O."/ � Wmain.t/: (22.41)

The value of " is fixed for further reasonings.
Thus, Wmain is a closed tube in the space T � Rn that stops at the set M at the

instant tf . Any t -section Wmain.t/ is convex and contains the origin of the space Rn

with some neighborhood.

2ı. Introduce some additional closed tube Wadd � T � Rn such that any
t -sectionWadd.t/ is the reachable set of system (22.40) at the instant t with the initial
set O."/ taken at the instant t0. That is, constructing the tube Wadd, we assume that
in dynamics (22.40) the first player is absent (u 
 0) and the control of the second
player is constrained by Qmax. One can easily see that Wadd is the maximal stable
bridge for system (22.40) with

P D f0g; Q D Qmax; M D Wadd.tf /:

For any t 2 T , the t -section Wadd.t/ is convex, and the following inclusion holds:

O."/ � Wadd.t/: (22.42)

3ı. Consider a collection of tubes Wk � T � Rm, k > 0, whose t -section Wk.t/

are defined as

Wk.t/ D

�

kWmain.t/; 0 6 k 6 1;

Wmain.t/C .k � 1/Wadd.t/; k > 1:

The setsWk.t/ are compact and convex. For any numbers 0 6 k1 < k2 6 1 < k3 <

k4 due to relations (22.41), (22.42) strict inclusions hold

Wk1.t/ � Wk2.t/ � Wk3.t/ � Wk4.t/:

In works Ganebny et al. (2006, 2007), the following important properties have
been justified. A tube Wk for 0 6 k 6 1 is the maximal stable bridge for
system (22.40) that corresponds to a constraint kP for the first player’s control, a



1026 V. Patsko et al.

constraint kQmax for the second player’s control, and a terminal set kM . For k > 1,
a set Wk is a stable bridge (but, generally speaking, not the maximal one) for the
parameters

P D P; Q D kQmax; M D M C .k � 1/Wadd.tf /:

Thus, one has a growing system of stable bridges, where each greater bridge
corresponds to a greater constraints for the second player’s control. This system is
generated only by two tubes Wmain and Wadd by means of operation of Minkowski
sum and multiplication by a nonnegative number parameter.

Feedback control. The adaptive control .t; y/ 7! U.t; y/ itself is constructed in
the following way.

Fix a number r > 0. Consider a position .t; y/. If jyj � r , assume U.t; y/ D 0.
If jyj > r , find the minimal number k� such that the distance between the point y
and the t -section Wk�.t/ of the bridge Wk� equals r . On the boundary of the
set Wk�.t/ find the point y� closest to y. One has jy� � yj D r . Define a
vector u� 2 Pk� from the extremum condition

.y� � y/0D.t/u� D max
˚

.y� � y/0D.t/u W u 2 Pk�

	

:

Assume U.t; y/ D u�.
Thus, the control U is generated on the basis of the extremal shift rule (i.e.,

well known in the theory of differential games) and is applied in the discrete
scheme (Krasovskii 1985; Krasovskii and Subbotin 1974, 1988) with the time
step �U . The control is chosen at the beginning of each time step of length �U and
kept during the step. In Ganebny et al. (2009), a theorem about the result guaranteed
by the control U is formulated and proved.

3.7 Adaptive Control in J. Shinar’s Problem

To apply the adaptive method of control, one should introduce an auxiliary
constraintQmax. To do this, let us take a reasonable value aE max bounding the lateral
acceleration of the evader. This value defines the constraint Qmax as an ellipse

Qmax D

�

v 2 R2 W
v21
A2E

C
v22
B2
E

� 1

�

where the semiaxes AE , BE are parallel to the coordinate axes and are computed on
the basis of the value aE max and cosine of the angle .�E/nom.

Let us show the simulation results for the case

�P D 1:0 s; tf D 10:0 s; aP D 1:3m/s2; .�P /nom D 47:94ı; .�E/nom D 45ı:
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The ellipse P , therefore, has the semiaxes equal to AP D 1:3, BP D 0:87. The
radius of the terminal circle is taken to be equal to 2.

Let us choose the value aE max D 1:0m/s2. Then, the ellipse Qmax has semiaxes
AE D 1:0, BE D 0:71. To construct the adaptive control, one should introduce also
the parameter r . Let us take r D 0:01. The adaptive control U is applied in the
discrete scheme with the time step �U D 0:01 s.

The initial phase vector in the difference coordinates is taken as .z01; z
0
4/

0 D �0P �

�0E D .�3 m; 0 m), .z02; z
0
5/

0 D P�0P � P�0E D .0 m/s; 2 m/s), .z03; z
0
6/

0 D F 0 D 0.
The disturbance control is generated as a piecewise-constant function, which values
are in the ellipse 1:5Qmax and which stays constant for a random time periods not
longer than 3 s. The random procedure for choosing the next value from the ellipse
is the following: at first, uniformly we choose an angle from the interval Œ0; 2�/,
then also uniformly in the radius-vector a point is chosen between the origin and the
boundary of ellipse.

In Fig. 22.53a, the phase trajectory of system (22.34) is shown in difference
coordinates z1, z4. The initial point is denoted by an asterisk and the final one by
a black circle. The circle of the terminal set is shown.

In Fig. 22.53b, c, one can see hodographs of the realizations of the controls u.t/
and v.t/. The hodograph of the control u.t/ is inside the ellipse P , the initial and
final points are also marked by an asterisk and a black circle. The hodograph of the
control v.t/ in some time intervals goes outside the ellipse Qmax.

Figure 22.54a, b shows graphs of levels of the vector control u.t/ with respect
to the ellipse P and of the vector disturbance v.t/ with respect to the ellipse Qmax.
There are two intervals of maximality of the useful control: at the beginning of the

Fig. 22.53 Simulation results: (a) the phase trajectory of the system in difference geometric
coordinates; (b) the hodograph of the useful control u; (c) the hodograph of the disturbance v,
the ellipse Qmax is shown
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Fig. 22.54 Realizations of controls: (a) the graph of the level of the useful control u; (b) the graph
of the level of the disturbance v with respect to the chosen constraint Qmax (the level 1.0)

process, when the initial deviation is diminished, and in the middle of the process,
when the disturbance is sufficiently outside the forecasted ellipse Qmax. In other
intervals, the useful control level is less then maximally possible. One can see how
the useful control reaches a level, which corresponds to the level of the disturbance
in the next time interval.

Looking at Fig. 22.53a, one can also see that despite the disturbance realization is
greater than the chosen levelQmax, the process termination is successful: the system
is guided inside the terminal set.

3.8 One-Dimensional Differential Games. Linear Problems with
Positional Functional. Linear-Quadratic Problems

Differential games with linear dynamics and fixed terminal time permit to reduce
the dimension of the phase vector when constructing u-stable bridges; the new
phase vector has a dimension equal to the dimension of the target set. Moreover, the
t -sections of the bridges in the new coordinates keep the convexity property if the
target set is convex. In J. Shinar’s problem (Sect. 3.5), a two-dimensional geometric
miss is measured at the terminal instant; therefore, the new phase variable is two-
dimensional.

1. In problems dealing with space pursuit of one weak-maneuvering object
by another one, it is quite reasonable to disjoin the two-dimensional miss in the
plane orthogonal to the nominal line-of-sight to two orthogonal components and
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to consider two problems each having a one-dimensional miss. In this case, both
new problems have one-dimensional phase variable, and maximal stable bridges are
constructed in the space time � phase variable of dimension 1�1. The construction
actually is reduced to one-dimensional integrating to obtain two lines that are upper
and lower boundaries of the bridge. Moreover, all upper boundaries as well as lower
ones differ from each other by a vertical shift.

J. Shinar and his group used these facts effectively to study dependence of the
problem solution on the parameters of the game in the case of one-dimensional
miss. Since the maximal u-stable bridge can be regarded as the solvability set of the
problem with a given level of the miss (or as a Lebesgue set of the value function),
the analysis of its peculiarities is significant both from theoretical and practical
points of view.

In particular, in works by J. Shinar and his collaborators, the following questions
have been studied. (1) If the object has both air rudders and jet engine, what period
of the final stage of the pursuit is more suitable for spending the jet impulse (at the
beginning, in the middle, or at the end)? How does it influence to enlargement of the
solvability set (Shinar et al. 2012)? (2) What part of the object is more suitable for
locating the air rudders (head, middle or rear part) (Shima 2005; Shima and Golan
2006)?

The shape of the solvability set depends significantly on the character of transient
processes in the servomechanisms. A study of this question is made in Shinar et al.
(2013).

2. In applied problems, the miss distance is often measured not at the terminal
instant only but also at some prescribed intermediate ones. With that, the first
player minimizes and the second one maximizes some functional that depends on
all these misses. The differential games that involve such nonterminal functionals
are studied in book A.N.Krasovskii and N.N.Krasovskii (1995). In this book, the
concept of positional functional is introduced for which the optimal strategies of
the first and second players do not depend on the history of the process as it is
for the case of the terminal payoff. For systems with linear dynamics with convex
positional functional, the book suggests a constructive method for computing the
value function based on a convex hull construction operation. In works Lukoyanov
(1998), Kornev (2012), and Gomoyunov et al. (2015), the main stages of this
method, proofs, and corresponding numerical procedures are considered in details.

3. In Sect. 3, we consider differential games with linear dynamics, fixed terminal
instant, and geometric constraints on the players’ controls. Taking into account such
“hard-bounded control limits” complicates sufficiently optimal feedback control
laws in comparison with linear-quadratic (LQ) formulations, where constraints on
the players’ controls are introduced “softly” by means of integral quadratic func-
tionals. Linear feedback control laws obtained in the framework of LQ formulations
are very popular in engineering practice. Among a large number of works, we would
like to mention book (1998) by J.Z. Ben-Asher and I. Yaesh. This book is oriented
to students and engineers specializing in missile guidance. It is written in informal
mathematical style. There are a lot of topics and examples from the simplest LQ
classical optimal control problems to game LQ methods under inexact parameters
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or inexact time-to-go of the control process. The book includes listings of MAPLE
and MATLAB subroutines for certain problems of missile guidance.

4 Conclusion

The theory of differential games is very lucky because its first author and founder
R. Isaacs being an excellent mathematician (the number theory was his first area of
interests in young age) turned to the new work at the beginning of the 1950s having
before his eyes a bundle of practical problems. His book “Differential Games” is an
enthusiastic anthem to problems of this type. With that, as well as L.S. Pontryagin
in the theory of optimal control, he started to investigate one of the most difficult
classes, the time-optimal problems. The object that R. Isaacs called “car” is now
extremely widespread in works on aviation, robotics, sea navigation, etc.

Just a time-optimal game including exactly this object (the “homicidal chauffeur”
game) is chosen by us as the central one for the first part of this chapter (Sect. 2).
We have collected some applied problems (first of all, those have been considered
in works by J.V. Breakwell and A.W. Merz) to show how deeply they can be studied
and how various they can be.

In the second part of this chapter (Sect. 3), we have concentrated on differential
games with linear dynamics and fixed terminal instant. J. Shinar showed plenty of
problems from the aerospace navigation, in which linearization of the dynamics and
fixation of the terminal instant are relevant. The presence of both these factors allows
one to pass to an equivalent differential game with the phase variable having the
dimension, possibly, sufficiently lower than in the original game. Moreover, if the
terminal payoff is convex, then the level sets of the value function (the solvability
sets, the maximal stable bridges) of such a problem have convex t -sections. This
simplifies greatly the solution of the game.

Choosing such topics for our chapter, we have tried to solve numerically several
problems taken from these areas. The numerical method used for solving time-
optimal problems in the first part is heuristic in many respects. Computation of
each problem needs an “individual supervision” of the program execution. That is
why the method is set forth very schematically, only its main idea is described. Our
major objective is to give quite exact pictures of the value function, which is often
discontinuous and, generally speaking, has non-convex level sets. Also, there can
be places of fast change of the value function that are expressed in condensation of
contour curves, which is a difficult situation from the computational point of view.
Our results have been checked on the basis of many examples computed by other
methods and by other authors.

Numerical constructions in the second part are mainly connected with convexi-
fication operation (construction of the convex hull). If the problems are of optimal
control type, that is, if they do not include the second player, then in the situation
of convex payoff, the t -sections of the level sets would be convex automatically
without any additional convexifications. In the game problems, even if the payoff is
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convex, at each step we should involve the convex hull construction procedure that
complicates the algorithm. At the same time, our procedure is much faster in com-
parison with general convex hull construction methods because in the framework of
our algorithm we have information about places of possible local convexity violation
of the processed function. If the phase variable of the game is two-dimensional,
this information can be effectively used. The convexification algorithm is given in
sufficient details, but descriptively, not in a strict programmatic manner. As in the
first part, we use our own visualization software when demonstrating the results of
numerical constructions.

In the last subsections of both parts, we touch upon some publications on
applied problems close to those have been considered but much more difficult. The
corresponding text includes short descriptions of these problems and some remarks
on them.
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Başar T, Olsder GJ (1995) Dynamic noncooperative game theory. Academic Press, London
Bakolas E, Tsiotras P (2012) Feedback navigation in an uncertain flow-field and connections with

pursuit strategies. J Guid Control Dyn 35(4):1268–1279
Bakolas E, Tsiotras P (2013) Optimal synthesis of the Zermelo-Markov-Dubins problem in a

constant drift field. JOTA 156:469–492
Ben-Asher JZ, Yaesh I (1998) Advances in missile guidance theory. Progress in astronautics and

aeronautics. AIAA, New York
Berdyshev YI (2002) A problem of the sequential approach to a group of moving points by a

third-order non-linear control system. J Appl Math Mech 66(5):709–718
Berdyshev YI (2008) On a nonlinear problem of a sequential control with a parameter. J Comput

Syst Sci Int 47(3):380–385
Berdyshev YI (2015) Nonlinear problems of sequential control and their application. UrO RAN,

Ekaterinburg (in Russian)



1032 V. Patsko et al.

Berkovitz LD (1994) A theory of differential games. In: Başar T, Haurie A (eds) Annals of the
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Han Z, Niyato D, Saad W, Başar T, Hjorungnes A (2011) Game theory in wireless and commu-

nication networks: theory, models, and applications. Cambridge University Press, Cambridge/
New York

Isaacs R (1951) Games of pursuit. Scientific Report of the RAND Corporation. Technical report,
RAND Corporation, Santa Monica

Isaacs R (1965) Differential games. John Wiley and Sons, New York
Isakova EA, Logunova GV, Patsko VS Computation of stable bridges for linear differential games

with fixed time of termination. In: Subbotin and Patsko (1984), pp 127–158 (in Russian)
Kim DP (1993) Methods of search and pursuit of mobile objects. Nauka, Moscow (in Russian)
Kornev DV (2012) On numerical solution of positional differential game with nonterminal payoff.

Autom Remote Control 73:1808–1821
Krasovskii AN, Krasovskii NN (1995) Control under lack of information. Birkhäuser, Berlin
Krasovskii NN (1970) Game-theoretic problems on the encounter of motions. Nauka, Moscow (in

Russian)
Krasovskii NN (1971) Rendezvous game problems. National Technical Information Service,

Springfield
Krasovskii NN (1985) Control of a dynamic system. The minimum problem of a guaranteed result.

Nauka, Moscow (in Russian)
Krasovskii NN, Subbotin AI (1974) Positional differential games. Nauka, Moscow (in Russian)
Krasovskii NN, Subbotin AI (1988) Game-theoretical control problems. Springer, New York
Kryazhimskiy AV, Osipov YS (2010) Idealized program packages and problems of positional

control with incomplete information. Proc Steklov Inst Math 268:155–174
Kumkov SS, Le Ménec S, Patsko VS (2017) Zero-sum pursuit-evasion differential games with

many objects: survey of publications. Dyn Games Appl 7(4):609–633
Kurzhanski AB (2015) On a team control problem under obstacles. Proc Steklov Inst Math

291:128–142
Kurzhanski AB (2016) Problem of collision avoidance for a team motion with obstacles. Proc

Steklov Inst Math 293:120–136
Kurzhanski AB, Valyi I (1997) Ellipsoidal calculus for estimation and control. Birkhäuser, Boston
Kurzhanski AB (1977) Control and observation under uncertainty. Nauka, Moscow (in Russian)
Kurzhanski AB (2004) The problem of measurement feedback control. J Appl Math Mech

68(4):487–501
Laumond JP (ed) (1998) Robot motion planning and control. Lecture notes in control and

information science, vol 229. Springer, New York
Laumond JP, Mansard N, Lasserre JB (2014) Optimality in robot motion: optimal versus optimized

motion. Commun ACM 57(9):82–89
Leitmann G, Pandey S (1991) Aircraft control for flight in an uncertain environment: take-off in

windshear. JOTA 70(1):25–55
Levchenkov AY, Pashkov AG (1990) Differential game of optimal approach of two inertial pursuers

to a noninertial evader. JOTA 65(3):501–518
Lewin J (1973) Decoy in pursuit-evasion games. Ph.D. thesis, Stanford University
Lewin J (1994) Differential games. Springer, London
Lewin J, Breakwell JV (1975) The surveillance-evasion game of degree. JOTA 16(3–4):339–353



22 Pursuit-Evasion Games 1035

Lewin J, Olsder GJ (1979) Conic surveillance evasion. JOTA 27(1):107–125
Lions PL (1982) Generalized solutions of Hamilton-Jacobi equations. Research notes in mathe-

matics, vol 69. Pitman, Boston
Lukoyanov NY (1998) The problem of computing the value of a differential game for a positional

functional. J Appl Math Mech 62(2):177–186
Markov AA (1889) Some examples of the solution of a special kind of problem on greatest and

least quantities. Soobscenija Charkovskogo matematiceskogo obscestva 2, 1(5, 6):250–276 (in
Russian)

Melikian AA (1975) On optimum selection of noise intervals in differential games of encounter.
J Appl Math Mech 39(2):195–203

Melikyan AA (1973) On minimal observations in a game of encounter. J Appl Math Mech
37(3):407–414

Melikyan AA (1998) Generalized characteristics of first order PDEs. Birkhäuser, Boston
Melikyan AA, Shinar J (2000) Identification and construction of singular surface in pursuit-evasion

games. In: Filar JA, Gaitsgory V, Mizukami K (eds) Annals of the international society of
dynamic games, vol 5. Birkhäuser, Boston, pp 151–176

Merz AW (1971) The homicidal chauffeur – a differential game. Ph.D. thesis, Stanford University
Merz AW (1972) The game of two identical cars. JOTA 9(5):324–343
Merz AW (1974) The homicidal chauffeur. AIAA J 12(3):259–260
Merz AW (1985) To pursue or to evade – that is the question. J Guid Control Dyn 8(2):

161–166
Meyer A, Breitner MH, Kriesell M (2005) A pictured memorandum on synthesis phenomena

occurring in the homicidal chauffeur game. In: Martin-Herran G, Zaccour G (eds) Proceedings
of the Fifth International ISDG Workshop, Segovia, 21–24 Sept 2005, pp 17–32

Miele A, Wang T, Melvin WW (1986) Optimal take-off trajectories in the presence of windshear.
JOTA 49(1):1–45

Miele A, Wang T, Tzeng CY, Melvin WW (1987) Optimal abort landing trajectories in the presence
of windshear. JOTA 55(2):165–202

Miele A, Wang T, Wang H, Melvin WW (1988) Optimal penetration landing trajectories in the
presence of windshear. JOTA 57(1):1–40

Mikhalev DK, Ushakov VN (2007) Two algorithms for approximate construction of the set
of positional absorption in the game problem of pursuit. Autom Remote Control 68(11):
2056–2070

Mishchenko EF, Nikol’skii MS, Satimov NYu (1977) The problem of avoiding encounter in
n-person differential games. Trudy Mat Inst Steklov 143:105–128

Mitchell I (2002) Application of level set methods to control and reachability problems in
continuous and hybrid systems. Ph.D. thesis, Stanford University

Mitchell I, Bayen A, Tomlin C (2005) A time-dependent Hamilton-Jacobi formulation of reachable
sets for continuous dynamic games. IEEE Trans Autom Control 50(7):947–957

Neveu D, Pignon JP, Raimondo A, Nicolas JM, Pourtallier O (1995) Pursuit games with costly
information: application to the ASW helicopter versus submarine game. In: Olsder GJ (ed)
New trends in dynamic games and applications. Annals of the international society of dynamic
games, vol 3. Birkhäuser, Boston, pp 247–257

Olsder GJ, Breakwell JV (1974) Role determination in aerial dogfight. Int J Game Theory 3:47–66
Olsder GJ, Pourtallier O (1995) Optimal selection of observation times in a costly information

game. In: Olsder GJ (ed) New trends in dynamic games and applications. Annals of the
interantional society of dynamic games, vol 3. Birkhäuser, Boston, pp 227–246

Osipov YS (2006) Program packages: an approach to the solution of positional control problems
with incomplete information. Russ Math Surv 61(4):611–661

Pachter M, Garcia E, Casbeer D (2014) Active target defense differential game. In: Proceedings
of the 52nd Allerton Conference on Communication, Control and Computing, Monticello,
pp 46–53

Pachter M, Getz W (1980) The geometry of the barrier in the game of two cars. Optim Control
Appl Met 1(2):103–118



1036 V. Patsko et al.

Patsko VS (1975) Problem of quality in linear differential games of the second order. In:
Kurzhanski AB (ed) Differential games and control problems. UrSC AS USSR, Sverdlovsk,
pp 167–227 (in Russian)

Patsko VS (1996) Special aspects of convex hull constructing in linear differential games of small
dimension. In: Control applications of optimization 1995. A Postprint Volume from the IFAC
Workshop, Haifa, 19–21 Dec 1995. Pergamon, New York, pp 19–24

Patsko VS, Botkin ND, Kein VM, Turova VL, Zarkh MA (1994) Control of an aircraft landing in
windshear. JOTA 83(2):237–267

Patsko VS, Turova VL (1995) Numerical solution of two-dimensional differential games. Technical
report, UrO RAN. Institute of Mathematics and Mechanics, Ekaterinburg, Ekaterinburg

Patsko VS, Turova VL (1997) Numerical solutions to the minimum-time problem for linear second-
order conflict-controlled systems. In: Bainov D (ed) Proceedings of the Seventh International
Colloquium on Differential Equations, Plovdiv, 18–23 Aug 1996, pp 329–338

Patsko VS, Turova VL (2001) Level sets of the value function in differential games with the
homicidal chauffeur dynamics. IGTR 3(1):67–112

Patsko VS, Turova VL (2004) Families of semipermeable curves in differential games with the
homicidal chauffeur dynamics. Automatica 40(12):2059–2068

Patsko VS, Turova VL (2009) Numerical investigation of the value function for the homicidal
chauffeur problem with a more agile pursuer. In: Bernhard P, Gaitsgory V, Pourtallier O (eds)
Advances in dynamic games and their applications: analytical and numerical developments.
Annals of the international society of dynamic games, vol 10. Birkhäuser, Boston, pp 231–258

Petrosjan LA (1965) A family of differential survival games in the space Rn. Soviet Math Dokl
6(2):377–380

Petrosyan LA (1966) Pursuit lifeline games with many participants. Proc Armen Acad Sci Ser
Math 1:331–340

Petrosyan LA (1970) Differential games with incomplete information. Soviet Math Dokl
11(6):1524–1528

Petrosyan LA (1977) Differential games of pursuit. Leningrad State University, Leningrad, USSR
(in Russian)

Petrosyan LA (1993) Differential games of pursuit. World Scientific Publisher, London
Petrosyan LA, Dutkevich YG (1972) Games with a “lifeline”. The case of l-capture. SIAM J

Control 10(1):40–47
Petrosyan LA, Garnaev AY (1993) Search games. St. Petersburg Gos. University, St.-Petersburg

(in Russian)
Petrosyan LA, Shiryaev VD (1980) Group pursuit by one pursuer of many evaders. Viestn Leningr

Univ 13(3):50–59
Petrov NN (1988) A group pursuit problem with phase constraints. J Appl Math Mech 52(6):

803–806
Polovinkin ES, Ivanov GE, Balashov MV, Konstantiov RV, Khorev AV (2001) An algorithm for

the numerical solution of linear differential games. Sb Math 192(10):1515–1542
Ponomarev AP, Rozov NH (1978) Stability and convergence of alternating Pontrjagin sums. Univ,

Ser. 15: Vycisl. Mat. i Kibernet 1:82–90 (in Russian)
Pontryagin LS, Mischenko EF (1971) The problem of evasion in linear differential games. Diff

Urav 7(2):436–445 (in Russian)
Pontryagin LS (1967) Linear differential games, 1. Soviet Math Dokl 8:769–771
Pontryagin LS (1967) Linear differential games, 2. Soviet Math Dokl 8:910–912
Pontryagin LS (1971) A linear differential escape game. Proc Steklov Inst Math 112:27–60
Pschenichnyi BN (1976) Simple pursuit by several objects. Cybern Syst Anal 12(3):484–485
Pschenichnyi BN, Chikrii AA, Rappoport IS (1981) An efficient method of solving differential

games with many pursuers. Soviet Math Dokl 23(1):104–109
Pschenichnyi BN, Sagaidak MI (1970) Differential games of prescribed duration. Cybernetics

6(2):72–83
Raivio T, Ehtamo H (2000) On the numerical solution of a class of pursuit-evasion games. In: Filar

JA, Gaitsgory V, Mizukami K (eds) Advances in dynamic games and applications. Annals of
the international society of dynamic games, vol 5. Birkhäuser, Boston, pp 177–192



22 Pursuit-Evasion Games 1037

Reeds JA, Shepp LA (1990) Optimal paths for a car that goes both forwards and backwards. Pac J
Math 145(2):367–393

Selvakumar J, Bakolas E (2015) Optimal guidance of the isotropic rocket in a partially uncertain
flow. In: Proceedings of European Control Conference, Linz, pp 3328–3333

Shaferman V, Shima T (2008) Unmanned aerial vehicles cooperative tracking of moving ground
target in urban environments. J Guid Control Dyn 31(5):1360–1371

Shaferman V, Shima T (2010) Cooperative multiple model adaptive guidance for an aircraft
defending missile. J Guid Control Dyn 33(6):1801–1813

Shevchenko I (1997) Successive pursuit with a bounded detection domain. JOTA 95(1):25–48
Shevchenko I (2012) Locally optimizing strategies for approaching the furthest evader. In:

Petrosyan LA, Zenkevich NA (eds) Contributions to game theory and management, vol 5.
Graduate School of Management, St. Petersburg State University, St.Petersburg, pp 293–303

Shima T (2005) Capture conditions in a pursuit-evasion game between players with biproper
dynamics. JOTA 126(3):503–528. https://doi.org/10.1007/s10957-005-5495-3

Shima T (2011) Optimal cooperative pursuit and evasion strategies against a homing missile.
J Guid Control Dyn 34(2):414–425

Shima T, Golan OM (2006) Bounded differential games guidance law for dual-controlled missiles.
IEEE Trans Control Syst Tech 14(4):719–724

Shinar J, Glizer VY, Turetsky V (2012) Complete solution of a pursuit-evasion differential game
with hybrid evader dynamics. IGTR 14(3):1–31

Shinar J, Glizer VY, Turetsky V (2013) The effect of pursuer dynamics on the value of linear
pursuit-evasion games with bounded controls. In: Krivan V, Zaccour G (eds) Annals of the
international society of dynamic games, vol 13. Dynamic games – theory, applications, and
numerical methods. Birkhäuser, Basel, pp 313–350. https://doi.org/10.1007/978-3-319-02690-
9_15

Shinar J, Gutman S (1980) Three-dimensional optimal pursuit and evasion with bounded controls.
IEEE Trans Autom Control AC-25(3):492–496

Shinar J, Medinah M, Biton M (1984) Singular surfaces in a linear pursuit-evasion game with
elliptical vectograms. J Optim Theory Appl 43(3):431–456

Shinar J, Zarkh M (1996) Pursuit of a faster evader – a linear game with elliptical vectograms.
In: Proceedings of the Seventh International Symposium on Dynamic Games, Yokosuka,
pp 855–868

Simakova EN (1967) On one differential pursuit game. Autom Remote Control 2:173–181
Simakova EN (1968) Concerning certain problem of persuit on the plane. Autom Remote Control

29(7):1031–1034
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Abstract

This chapter surveys some evolutionary games used in biological sciences. These
include the Hawk–Dove game, the Prisoner’s Dilemma, Rock–Paper–Scissors,
the war of attrition, the Habitat Selection game, predator–prey games, and
signaling games.

Keywords
Battle of the Sexes � Foraging games � Habitat Selection game � Hawk–Dove
game � Prisoner’s Dilemma � Rock–Paper–Scissors � Signaling games � War
of attrition

1 Introduction

Evolutionarily game theory (EGT) as conceived by Maynard Smith and Price (1973)
was motivated by evolution. Several authors (e.g., Lorenz 1963; Wynne-Edwards
1962) at that time argued that animal behavior patterns were “for the good of
the species” and that natural selection acts at the group level. This point of view
was at odds with the Darwinian viewpoint where natural selection operates on the
individual level. In particular, adaptive mechanisms that maximize a group benefit
do not necessarily maximize individual benefit. This led Maynard Smith and Price
(1973) to develop a mathematical model of animal behavior, called the Hawk–Dove
game, that clearly shows the difference between group selection and individual
selection. We thus start this chapter with the Hawk–Dove game.

Today, evolutionary game theory is one of the milestones of evolutionary ecology
as it put the concept of Darwinian evolution on solid mathematical grounds. Evolu-
tionary game theory has spread quickly in behavioral and evolutionary biology with
many influential models that change the way that scientists look at evolution today.
As evolutionary game theory is noncooperative, where each individual maximizes
its own fitness, it seemed that it cannot explain cooperative or altruistic behavior
that was easy to explain on the grounds of the group selection argument. Perhaps
the most influential model in this respect is the Prisoner’s Dilemma (Poundstone
1992), where the evolutionarily stable strategy leads to a collective payoff that
is lower than the maximal payoff the two individuals can achieve if they were
cooperating. Several models within evolutionary game theory have been developed
that show how mutual cooperation can evolve. We discuss some of these models in
Sect. 3. A popular game played by human players across the world, which can also
be used to model some biological populations, is the Rock–Paper–Scissors game
(RPS; Sect. 4). All of these games are single-species matrix games, so that their
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payoffs are linear, with a finite number of strategies. An example of a game that
cannot be described by a matrix and that has a continuum of strategies is the war
of attrition in Sect. 5.1 (or alternatively the Sir Philip Sidney game mentioned in
Sect. 10). A game with nonlinear payoffs which examines an important biological
phenomenon is the sex-ratio game in Sect. 5.2.

Although evolutionary game theory started with consideration of a single species,
it was soon extended to two interacting species. This extension was not straightfor-
ward, because the crucial mechanism of a (single-species) EGT, that is, negative
frequency dependence that stabilizes phenotype frequencies at an equilibrium, is
missing if individuals of one species interact with individuals of another species.
These games are asymmetric, because the two contestants are in different roles
(such asymmetric games also occur within a single species). Such games that can
be described by two matrices are called bimatrix games. Representative examples
include the Battle of the Sexes (Sect. 6.1) and the Owner–Intruder game (Sect. 6.2).
Animal spatial distribution that is evolutionarily stable is called the Ideal Free
Distribution (Sect. 7). We discuss first the IFD for a single species and then for
two species. The resulting model is described by four matrices, so it is no longer a
bimatrix game. The IFD, as an outcome of animal dispersal, is related to the question
of under which conditions animal dispersal can evolve (Sect. 8). Section 9 focuses
on foraging games. We discuss two models that use EGT. The first model, that uses
decision trees, is used to derive the diet selection model of optimal foraging. This
model asks what the optimal diet of a generalist predator is in an environment that
has two (or more) prey species. We show that this problem can be solved using
the so-called agent normal form of an extensive game. We then consider a game
between prey individuals that try to avoid their predators and predators that aim to
capture prey individuals. The last game we consider in some detail is a signaling
game of mate quality, which was developed to help explain the presence of costly
ornaments, such as the peacock’s tail.

We conclude with a brief section discussing a few other areas where evolutionary
game theory has been applied. However, a large variety of models that use EGT have
been developed in the literature, and it is virtually impossible to survey all of them.

2 The Hawk–Dove Game: Selection at the Individual Level
vs. Selection at the Population Level

One of the first evolutionary games was introduced to understand evolution of
aggressiveness among animals (Maynard Smith and Price 1973). Although many
species have strong weapons (e.g., teeth or horns), it is a puzzling observation
that in many cases antagonistic encounters do not result in a fight. In fact, such
encounters often result in a complicated series of behaviors, but without causing
serious injuries. For example, in contests between two male red deer, the contestants
first approach each other, and provided one does not withdraw, the contest escalates
to a roaring contest and then to the so-called parallel walk. Only if this does not lead
to the withdrawal of one deer does a fight follow. It was observed (Maynard Smith
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1982) that out of 50 encounters, only 14 resulted in a fight. The obvious question is
why animals do not always end up in a fight? As it is good for an individual to get the
resource (in the case of the deer, the resources are females for mating), Darwinian
selection seems to suggest that individuals should fight whenever possible. One
possible answer why this is not the case is that such a behavior is for the good
of the species, because any species following this aggressive strategy would die out
quickly. If so, then we should accept that the unit of selection is not an individual
and abandon H. Spencer’s “survival of the fittest” (Spencer 1864).

The Hawk–Dove model explains animal contest behavior from the Darwinian
point of view. The model considers interactions between two individuals from the
same population that meet in a pairwise contest. Each individual uses one of the
two strategies called Hawk and Dove. An individual playing Hawk is ready to fight
when meeting an opponent, while an individual playing Dove does not escalate the
conflict. The game is characterized by two positive parameters where V denotes the
value of the contested resource and C is the cost of the fight measured as the damage
one individual can cause to his opponent. The payoffs for the row player describe
the increase/decrease in the player’s fitness after an encounter with an opponent.
The game matrix is

�Hawk Dove

Hawk V �C
2

V

Dove 0 V
2

�

and the model predicts that when the cost of the fight is lower than the reward
obtained from getting the resource, C < V , all individuals should play the Hawk
strategy that is the strict Nash equilibrium (NE) (thus an evolutionarily stable
strategy (ESS)) of the game. When the cost of a fight is larger than the reward
obtained from getting the resource, C > V , then p D V =C .0 < p < 1/ is the
corresponding monomorphic ESS. In other words, each individual will play Hawk
when encountering an opponent with probability p and Dove with probability 1�p.
Thus, the model predicts that aggressiveness in the population decreases with the
cost of fighting. In other words, the species that possess strong weapons (e.g., antlers
in deer) should solve conflicts with very little fighting.

Can individuals obtain a higher fitness when using a different strategy? In a
monomorphic population where all individuals use a mixed strategy 0 < p < 1,
the individual fitness and the average fitness in the population are the same and
equal to

E.p; p/ D
V

2
�

C

2
p2:

This fitness is maximized for p D 0, i.e., when the level of aggressiveness in the
population is zero, all individuals play the Dove strategy, and individual fitness
equals V =2. Thus, if selection operated on a population or a species level, all
individuals should be phenotypically Doves who never fight. However, the strategy



23 Biology and Evolutionary Games 1043

p D 0 cannot be an equilibrium from an evolutionary point of view, because in
a Dove-only population, Hawks will always have a higher fitness (V ) than Doves
(V =2) and will invade. In other words, the Dove strategy is not resistant to invasion
by Hawkish individuals. Thus, securing all individuals to play the strategy D, which
is beneficial from the population point of view, requires some higher organizational
level that promotes cooperation between animals (Dugatkin and Reeve 1998, see
also Sect. 3).

On the contrary, at the evolutionarily stable equilibrium p� D V =C , individual
fitness

E.p�; p�/ D
V

2

�
1 �

V

C

�

is always lower than V =2. However, the ESS cannot be invaded by any other single
mutant strategy.

Darwinism assumes that selection operates at the level of an individual, which
is then consistent with noncooperative game theory. However, this is not the only
possibility. Some biologists (e.g., Gilpin 1975) postulated that selection operates on
a larger unit, a group (e.g., a population, a species etc.), maximizing the benefit of
this unit. This approach was termed group selection. Alternatively, Dawkins (1976)
suggested that selection operates on a gene level. The Hawk–Dove game allows us
to show clearly the difference between the group and Darwinian selections.

Group selection vs. individual selection also nicely illustrates the so-called
tragedy of the commons (Hardin 1968) (based on an example given by the English
economist William Forster Lloyd) that predicts deterioration of the environment,
measured by fitness, in an unconstrained situation where each individual maximizes
its profit. For example, when a common resource (e.g., fish) is over-harvested, the
whole fishery collapses. To maintain a sustainable yield, regulation is needed that
prevents over-exploitation (i.e., which does not allow Hawks that would over-exploit
the resource to enter). Effectively, such a regulatory body keeps p at zero (or close
to it), to maximize the benefits for all fishermen. Without such a regulatory body,
Hawks would invade and necessarily decrease the profit for all. In fact, as the cost
C increases (due to scarcity of resources), fitness at the ESS decreases, and when C

equals V, fitness is zero.

2.1 Replicator Dynamics for the Hawk–Dove Game

In the previous section, we have assumed that all individuals play the same strategy,
either pure or mixed. If the strategy is mixed, each individual randomly chooses
one of its elementary strategies on any given encounter according to some given
probability. In this monomorphic interpretation of the game, the population mean
strategy coincides with the individual strategy. Now we will consider a distinct
situation where n phenotypes exist in the population. In this polymorphic setting
we say that a population is in state p 2 �n (where �n D fp 2 R

n j pi � 0; p1 C
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� � �Cpn D 1g is a probability simplex) if pi is the proportion of the population using
strategy i . As opposed to the monomorphic case, in this polymorphic interpretation,
the individual strategies and the mean population strategy are different, because the
mean strategy characterizes the population, not a single individual.

The ESS definition does not provide us with a mechanistic description of
phenotype frequency dynamics that would converge to an ESS. One of the frequency
dynamics often used in evolutionary game theory is the replicator dynamics (Taylor
and Jonker 1978). Replicator dynamics assume that the population growth rate of
each phenotype is given by its fitness, and they focus on changes in phenotypic
frequencies in the population (see Volume I, �Chap. 6, “Evolutionary Game
Theory”). Let us consider the replicator equation for the Hawk–Dove game. Let
x be the frequency of Hawks in the population. The fitness of a Hawk is

E.H; x/ D
V � C

2
x C V .1 � x/

and, similarly, the fitness of a Dove is

E.D; x/ D .1 � x/
V

2
:

Then the average fitness in the population is

E.x; x/ D xE.H; x/ C .1 � x/E.D; x/ D
V � Cx2

2
;

and the replicator equation is

dx

dt
D x .E.H; x/ � E.x; x// D

1

2
x.1 � x/.V � Cx/:

Assuming C > V; we remark that the interior distribution equilibrium of this
equation, x D V =C , corresponds to the mixed ESS for the underlying game. In
this example phenotypes correspond to elementary strategies of the game. It may be
that phenotypes also correspond to mixed strategies.

3 The Prisoner’s Dilemma and the Evolution of Cooperation

The Prisoner’s Dilemma (see Flood 1952; Poundstone 1992) is perhaps the most
famous game in all of game theory, with applications from areas including eco-
nomics, biology, and psychology. Two players play a game where they can Defect
or Cooperate, yielding the payoff matrix
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�Cooperate Defect

Cooperate R S

Defect T P

�
:

These abbreviations are derived from Reward (reward for cooperating), Temptation
(temptation for defecting when the other player cooperates), Sucker (paying the
cost of cooperation when the other player defects), and Punishment (paying the
cost of defecting). The rewards satisfy the conditions T > R > P > S . Thus while
Cooperate is Pareto efficient (in the sense that it is impossible to make any of the two
players better off without making the other player worse off), Defect row dominates
Cooperate and so is the unique ESS, even though mutual cooperation would yield
the greater payoff. Real human (and animal) populations, however, involve a lot of
cooperation; how is that enforced?

There are many mechanisms for enabling cooperation, see for example Nowak
(2006). These can be divided into six types as follows:

1. Kin selection, that occurs when the donor and recipient of some apparently
altruistic act are genetic relatives.

2. Direct reciprocity, requiring repeated encounters between two individuals.
3. Indirect reciprocity, based upon reputation. An altruistic individual gains a

good reputation, which means in turn that others are more willing to help that
individual.

4. Punishment, as a way to enforce cooperation.
5. Network reciprocity, where there is not random mixing in the population and

cooperators are more likely to interact with other cooperators.
6. Multi-level selection, alternatively called group selection, where evolution occurs

on more than one level.

We discuss some of these concepts below.

3.1 Direct Reciprocity

Direct reciprocity requires repeated interaction and can be modeled by the Iterated
Prisoner’s Dilemma (IPD). The IPD involves playing the Prisoner’s Dilemma over
a (usually large) number of rounds and thus being able to condition choices in
later rounds on what the other player played before. This game was popularized by
Axelrod (1981, 1984) who held two tournaments where individuals could submit
computer programs to play the IPD. The winner of both tournaments was the
simplest program submitted, called Tit for Tat (TFT), which simply cooperates on
the first move and then copies its opponent’s previous move.

TFT here has three important properties: it is nice so it never defects first; it is
retaliatory so it meets defection with a defection next move; it is forgiving so even
after previous defections, it meets cooperation with cooperation next move. TFT
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effectively has a memory of one place, and it was shown in Axelrod and Hamilton
(1981) that TFT can resist invasion by any strategy that is not nice if it can resist
both Always Defect ALLD and Alternative ALT, which defects (cooperates) on
odd (even) moves. However, this does not mean that TFT is an ESS, because nice
strategies can invade by drift as they receive identical payoffs to TFT in a TFT
population (Bendorf and Swistak 1995). We note that TFT is not the only strategy
that can promote cooperation in the IPD; others include Tit for Two Tats (TF2T
which defects only after two successive defections of its opponent), Grim (which
defects on all moves after its opponent’s first defection), and win stay/lose shift
(which changes its choice if and only if its opponent defected on the previous move).

Games between TFT, ALLD, and ALT against TFT have the following sequence
of moves:

TF T CCCCCC : : :

TF T CCCCCC : : :

ALLD DDDDDD : : :

TF T CDDDDD : : :

ALT DCDCDC : : :

TF T CDCDCD : : :

(23.1)

We assume that the number of rounds is not fixed and that there is always the
possibility of a later round (otherwise the game can be solved by backwards
induction, yielding ALLD as the unique NE strategy). At each stage, there is a
further round with probability w (as in the second computer tournament); the payoffs
are then

E.TF T; TF T / D R C Rw C Rw2 C : : : D
R

1 � w
; (23.2)

E.ALLD; TF T / D T C P w C P w2 C : : : D T C
P w

1 � w
; (23.3)

E.ALT; TF T / D T C Sw C T w2 C Sw3 C : : : D
T C Sw

1 � w2
: (23.4)

Thus TFT resists invasion if and only if

R

1 � w
> max

�
T C

P w

1 � w
;

T C Sw

1 � w2

�

i.e., if and only if

w > max

�
T � R

T � P
;

T � R

R � S

�
; (23.5)

i.e., when the probability of another contest is sufficiently large (Axelrod 1981,
1984). We thus see that for cooperation to evolve here, the extra condition 2R >
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S C T is required, since otherwise the right-hand side of inequality (23.5) would be
at least 1.

While TFT proved successful at promoting cooperation above, what if errors
occur, so that an intention to cooperate becomes a defection (or is perceived as
such)? After a single mistake, a pair of interacting TFT players will be locked
in an alternating cycle of Defect versus Cooperation and then mutual defection
after a second mistake when C was intended. Under such circumstances, TF2T
can maintain cooperation, whereas TFT cannot. In fact a better strategy (in the
sense that it maintains cooperation when playing against itself but resists invasion
from defecting strategies) is GTFT (generous tit for tat; see Komorita et al. 1968),
which combines pure cooperation with TFT by cooperating after a cooperation, but
meeting a defection with a defection with probability

min

�
1 �

T � R

R � S
;

R � P

T � P

�
:

3.2 Kin Selection and Hamilton’s Rule

In most evolutionary game theoretical models, the aim of each individual is to
maximize its own fitness, irrespective of the fitness of other individuals. However,
if individuals are related, then the fitnesses of others should be taken into account.

Let us consider two interacting individuals, with coefficient of relatedness r ,
which is the probability that they share a copy of a given allele. For example, father
and son will have r D 1=2. One individual acts as a potential donor, the other
as a recipient, which receives a benefit b from the donor at the donor’s cost c.
The donating individual pays the full cost but also indirectly receives the benefit
b multiplied by the above factor r . Thus donation is worthwhile provided that

rb > c i.e., r >
c

b

which is known as Hamilton’s rule (Hamilton 1964).
Note that this condition is analogous to the condition for cooperation to resist

invasion in the IPD above, where a commonly used special class of the PD matrix
has payoffs representing cooperation as making a donation and defecting as not.
Then TFT resists invasion when w > c=b.

3.3 Indirect Reciprocity and Punishment

The IPD is an example of direct reciprocity. Suppose now we have a population of
individuals who play many contests, but these are not in long sequences against a
single “opponent” as above? If faced with a series of single-shot games, how can
cooperation be achieved?
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Such situations are often investigated by the use of public goods games involving
experiments with groups of real people, as in the work of Fehr and Gachter (2002).
In these experiments individuals play a series of games, each game involving a
new group. In each game there were four individuals, each of them receiving an
initial endowment of 20 dollars, and each had to choose a level of investment into
a common pool. Any money that was invested increased by a factor of 1.6 and was
then shared between the four individuals, meaning that the return for each dollar
invested was 40 cents to each of the players. In particular the individual making the
investment of one dollar only receives 40 cents and so makes a loss of 60 cents.
Thus, like the Prisoner’s Dilemma, it is clear that the best strategy is to make no
investment but simply to share rewards from the investments of other players. In
these experiments, investment levels began reasonably high, but slowly declined, as
players saw others cheat.

In later experiments, each game was played over two rounds, an investment round
and a punishment round, where players were allowed to punish others. In particular
every dollar “invested” in punishment levied a fine of three dollars on the target of
the punishment. This led to investments which increased from their initial level, as
punishment brought cheating individuals into line. It should be noted that in a popu-
lation of individuals many, but not all of whom, punish, optimal play for individuals
in this case should not be to punish, but to be a second-order free rider who invests
but does not punish, and therefore saves the punishment fee. Such a population
would collapse down to no investment after some number of rounds. Thus it is clear
that the people in the experiments were not behaving completely rationally.

Thus we could develop the game to have repeated rounds of punishment. An
aggressive punishing strategy would then in round 1, punish all defectors; in round
2, punish all cooperators who did not punish defectors in round 1; in round 3, punish
all cooperators who did not punish in round 2 as above; and so on. Thus such players
not only punish cheats, but anyone who does not play exactly as they do. Imagine a
group of m individuals with k cooperators (who invest and punish), ` defectors and
m � k � ` � 1 investors (who do not punish). This game, with this available set of
strategies, requires two rounds of punishment as described above. The rewards to
our focal individual in this case will be

R D

8̂
<̂
ˆ̂:

.m�`/cV

m
� kP if an investor,

.m�`/cV

m
� .m � k � 1/ if a cooperator,

.m�`�1/cV

m
C V � kP if a defector;

where V is the initial level of resources of each individual, c < m is the return on
investment (every dollar becomes 1 C c dollars), and P is the punishment multiple
(every dollar invested in punishment generates a fine of P dollars). The optimal play
for our focal individual is

Defect if V
�
1 � c

m

�
> kP � .m � k � 1/;

Cooperate otherwise.
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Thus defect is always stable and invest and punish is stable if V .1 � c=m/ <

.m � 1/P .
We note that there are still issues on how such punishment can emerge in the first

place (Sigmund 2007).

4 The Rock–Paper–Scissors Game

The Rock–Paper–Scissors game is a three-strategy matrix game, which people
commonly play recreationally. In human competition, the game dates back at least
to seventeenth-century China. There is a lot of potential psychology involved in
playing the game, and there are numerous tournaments involving it. The important
feature of the game is that Rock beats Scissors, Scissors beats Paper, and Paper beats
Rock. The payoff matrix is

0
@

Rock Scissors Paper

Rock 0 a3 �b2

Scissors �b3 0 a1

Paper a2 �b1 0

1
A;

where all a’s and b’s are positive. For the conventional game played between people
ai D bi D 1 for i D 1; 2; 3.

There is a unique internal NE of the above game given by the vector

p D
1

K
.a1a3 C b1b2 C a1b1; a1a2 C b2b3 C a2b2; a2a3 C b1b3 C a3b3/;

where the constant K is just the sum of the three terms to ensure that p is a
probability vector. In addition, p is a globally asymptotically stable equilibrium of
the replicator dynamics if and only if a1a2a3 > b1b2b3. It is an ESS if and only if
a1 � b1; a2 � b2, and a3 � b3 are all positive, and the largest of their square roots is
smaller than the sum of the other two square roots (Hofbauer and Sigmund 1998).
Thus if p is an ESS of the RPS game, then it is globally asymptotically stable under
the replicator dynamics. However, since the converse is not true, the RPS game
provides an example illustrating that while all internal ESSs are global attractors of
the replicator dynamics, not all global attractors are ESSs.

We note that the case when a1a2a3 D b1b2b3 (including the conventional game
with ai D bi D 1) leads to closed orbits of the replicator dynamics, and a stable (but
not asymptotically stable) internal equilibrium. This is an example of a nongeneric
game, where minor perturbations of the parameter values can lead to large changes
in the nature of the game solution.

This game is a good representation for a number of real populations. The most
well known of these is among the common side-blotched lizard Uta stansburiana.
This lizard has three types of distinctive throat coloration, which correspond to very
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different types of behavior. Males with orange throats are very aggressive and have
large territories which they defend against intruders. Males with dark blue throats
are less aggressive and hold smaller territories. Males with yellow stripes do not
have a territory at all but bear a strong resemblance to females and use a sneaky
mating strategy. It was observed in Sinervo and Lively (1996) that if the Blue
strategy is the most prevalent, Orange can invade; if Yellow is prevalent, Blue can
invade; and if Orange is prevalent, then Yellow can invade.

An alternative real scenario is that of Escherichia coli bacteria, involving three
strains of bacteria (Kerr et al. 2002). One strain produces the antibiotic colicin. This
strain is immune to it, as is a second strain, but the third is not. When only the first
two strains are present, the second strain outcompetes the first, since it forgoes the
cost of colicin production. Similarly the third outcompetes the second, as it forgoes
costly immunity, which without the first strain is unnecessary. Finally, the first strain
outcompetes the third, as the latter has no immunity to the colicin.

5 Non-matrix Games

We have seen that matrix games involve a finite number of strategies with a payoff
function that is linear in the strategy of both the focal player and that of the
population. This leads to a number of important simplifying results (see Volume I,
�Chap. 6, “Evolutionary Game Theory”). All of the ESSs of a matrix can be found
in a straightforward way using the procedure of Haigh (1975). Further, adding a
constant to all entries in a column of a payoff matrix leaves the collection of ESSs
(and the trajectories of the replicator dynamics) of the matrix unchanged. Haigh’s
procedure can potentially be shortened, using the important Bishop–Cannings
theorem (Bishop and Cannings 1976), a consequence of which is that if p1 is an
ESS, no strategy p2 whose support is either a superset or a subset of the support of
p1 can be an ESS.

However, there are a number of ways that games can involve nonlinear payoff
functions. Firstly, playing the field games yield payoffs that are linear in the focal
player but not in the population (e.g., see Sects. 7.1 and 9.1). Another way this can
happen is to have individual games of the matrix type, but where opponents are not
selected with equal probability from the population, for instance, if there is some
spatial element. Thirdly, the payoffs can be nonlinear in both components. Here
strategies do not refer to a probabilistic mix of pure strategies, but a unique trait,
such as the height of a tree as in Kokko (2007) or a volume of sperm; see, e.g., Ball
and Parker (2007). This happens in particular in the context of adaptive dynamics
(see Volume I, �Chap. 6, “Evolutionary Game Theory”).

Alternatively a non-matrix game can involve linear payoffs, but this time with
a continuum of strategies (we note that the cases with nonlinear payoffs above can
also involve such a continuum, especially the third type). A classical example of this
is the war of attrition (Maynard Smith 1974).
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5.1 The War of Attrition

We consider a Hawk–Dove game, where both individuals play Dove, but that instead
of the reward being allocated instantly, they become involved in a potentially long
displaying contest where a winner will be decided by one player conceding, and
there is a cost proportional to the length of the contest. An individual’s strategy is
thus the length of time it is prepared to wait. Pure strategies are all values of t on the
non-negative part of the real line, and mixed strategies are corresponding probability
distributions. These kinds of contests are for example observed in dung flies (Parker
and Thompson 1980).

Choosing the cost to be simply the length of time spent, the payoff for a game
between two pure strategies St (wait until time t ) and Ss (wait until time s) for the
player that uses strategy St is

E.St ; Ss/ D

8̂̂
<
ˆ̂:

V � s t > s;

V =2 � t t D s;

�t t < s:

and the corresponding payoff from a game involving two mixed strategists playing
the probability distributions f .t/ and g.s/ to the f .t/ player is

Z 1

0

Z 1

0

f .t/g.s/E.St ; Ss/dtds:

It is clear that no pure strategy can be an ESS, since Ss is invaded by St (i.e.,
E.St ; Ss/ > E.Ss; Ss/) for any t > s, or any positive t < s � V =2. There is a
unique ESS which is found by first considering (analogous to the Bishop–Cannings
theorem; see Volume I, �Chap. 6, “Evolutionary Game Theory”) a probability
distribution p.s/ that gives equal payoffs to all pure strategies that could be played
by an opponent. This is required, since otherwise some potential invading strategies
could do better than others, and since p.s/ is simply a weighted average of such
strategies, it would then be invaded by at least one type of opponent. Payoff of a pure
strategy St played against a mixed strategy Sp.s/ given by a probability distribution
p.s/ over the time interval is

E.St ; Sp.s// D

Z t

0

.V � s/p.s/ds C

Z 1

t

.�t /p.s/ds: (23.6)

Differentiating equation (23.6) with respect to t (assuming that such a derivative
exists) gives

.V � t /p.t/ �

Z 1

t

p.s/ds C tp.t/ D 0: (23.7)
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If P .t/ is the associated distribution function, so that p.t/ D P 0.t/ for all t � 0,
then Eq. (23.7) becomes

VP 0.t/ C P .t/ � 1 D 0

and we obtain

p.t/ D
1

V
exp

�
�

t

V

�
: (23.8)

It should be noted that we have glossed over certain issues in the above, for example,
consideration of strategies without full support or with atoms of probability. This is
discussed in more detail in Broom and Rychtar (2013). The above solution was
shown to be an ESS in Bishop and Cannings (1976).

5.2 The Sex-Ratio Game

Why is it that the sex ratio in most animals is close to a half? This was the first
problem to be considered using evolutionary game theory (Hamilton 1967), and
its consideration, including the essential nature of the solution, dates right back to
Darwin (1871). To maximize the overall birth rate of the species, in most animals
there should be far more females than males, given that females usually make a
much more significant investment in bringing up offspring than males. This, as
mentioned before, is the wrong perspective, and we need to consider the problem
from the viewpoint of the individual.

Suppose that in a given population, an individual female will have a fixed number
of offspring, but that she can allocate the proportion of these that are male. This
proportion is thus the strategy of our individual. As each female (irrespective of
its strategy) has the same number of offspring, this number does not help us in
deciding which strategy is the best. The effect of a given strategy can be measured
as the number of grandchildren of the focal female. Assume that the number of
individuals in a large population in the next generation is N1 and in the following
generation is N2. Further assume that all other females in the population play the
strategy m and that our focal individual plays strategy p.

As N1 is large, the total number of males in the next generation is mN1 and
so the total number of females is .1 � m/N1. We shall assume that all females
(males) are equally likely to be the mother (father) of any particular member of the
following generation of N2 individuals. This means that a female offspring will be
the mother of N2=..1 � m/N1/ of the following generation of N2 individuals, and a
male offspring will be the father of N2=.mN1/ of these individuals. Thus our focal
individual will have the following number of grandchildren

E.p; m/ D p
N2

mN1

C .1 � p/
N2

.1 � m/N1

D
N2

N1

�
p

m
C

1 � p

1 � m

�
: (23.9)
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To find the best p, we maximize E.p; m/. For m < 0:5 the best response is p D 1,
and for m > 0:5 we obtain p D 0. Thus m D 0:5 is the interior NE at which all
values of p obtain the same payoff. This NE satisfies the stability condition in that
E.0:5; m0/ � E.m0; m0/ > 0 for all m0 ¤ 0:5 (Broom and Rychtar 2013).

Thus from the individual perspective, it is best to have half your offspring as
male. In real populations, it is often the case that relatively few males are the parents
of many individuals, for instance, in social groups often only the dominant male
fathers offspring. Sometimes other males are actually excluded from the group; lion
prides generally consist of a number of females, but only one or two males, for
example. From a group perspective, these extra males perform no function, but there
is a chance that any male will become the father of many.

6 Asymmetric Games

The games we have considered above all involve populations of identical indi-
viduals. What if individuals are not identical? Maynard Smith and Parker (1976)
considered two main types of difference between individuals. The first type
was correlated asymmetries where there were real differences between them, for
instance, in strength or need for resources, which would mean their probability of
success, cost levels, valuation of rewards, set of available strategies, etc., may be
different, i.e., the payoffs “correlate” with the type of the player. Examples of such
games are the predator–prey games of Sect. 9.2 and the Battle of the Sexes below in
Sect. 6.1.

The second type, uncorrelated asymmetries, occurred when the individuals were
physically identical, but nevertheless occupied different roles; for example, one was
the owner of a territory and the other was an intruder, which we shall see in Sect. 6.2.
For uncorrelated asymmetries, even though individuals do not have different payoff
matrices, it is possible to base their strategy upon the role that they occupy. As we
shall see, this completely changes the character of the solutions that we obtain.

We note that the allocation of distinct roles can apply to games in general; for
example, there has been significant work on the asymmetric war of attrition (see,
e.g., Hammerstein and Parker 1982; Maynard Smith and Parker 1976), involving
cases with both correlated and uncorrelated asymmetries.

The ESS was defined for a single population only, and the stability condition of
the original definition cannot be easily extended for bimatrix games. This is because
bimatrix games assume that individuals of one species interact with individuals of
the other species only, so there is no frequency-dependent mechanism that could
prevent mutants of one population from invading residents of that population at
the two-species NE. In fact, it was shown (Selten 1980) that requiring the stability
condition of the ESS definition to hold in bimatrix games restricts the ESSs to strict
NEs, i.e., to pairs of pure strategies. Two key assumptions behind Selten’s theorem
are that the probability that an individual occupies a given role is not affected by
the strategies that it employs, and that payoffs within a given role are linear, as in
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matrix games. If either of these assumptions are violated, then mixed strategy ESSs
can result (see, e.g., Broom and Rychtar 2013; Webb et al. 1999).

There are interior NE in bimatrix games that deserve to be called “stable,” albeit
in a weaker sense than was used in the (single-species) ESS definition. For example,
some of the NEs are stable with respect to some evolutionary dynamics (e.g., with
respect to the replicator dynamics, or the best response dynamics). A static concept
that captures such stability that proved useful for bimatrix games is the Nash–Pareto
equilibrium (Hofbauer and Sigmund 1998). The Nash-Pareto equilibrium is an NE
which satisfies an additional condition that says that it is impossible for both players
to increase their fitness by deviating from this equilibrium. For two-species games
that cannot be described by a bimatrix (e.g., see Sect. 7.4), this concept of two-
species evolutionary stability was generalized by Cressman (2003) (see Volume I,
�Chap. 6, “Evolutionary Game Theory”) who defined a two-species ESS .p�; q�/

as an NE such that, if the population distributions of the two species are slightly
perturbed, then an individual in at least one species does better by playing its ESS
strategy than by playing the slightly perturbed strategy of this species. We illustrate
these concepts in the next section.

6.1 The Battle of the Sexes

A classical example of an asymmetric game is the Battle of the Sexes (Dawkins
1976), where a population contains females with two strategies, Coy and Fast, and
males with two strategies, Faithful and Philanderer. A Coy female needs a period
of courtship, whereas a Fast female will mate with a male as soon as they meet.
Faithful males are willing to engage in long courtships and after mating will care for
the offspring. A Philanderer male will not engage in courtship and so cannot mate
with a Coy female and also leaves immediately after mating with a Fast female.

Clearly in this case, any particular individual always occupies a given role (i.e.,
male or female) and cannot switch roles as is the case in the Owner–Intruder game in
Sect. 6.2 below. Thus, males and females each have their own payoff matrix which
are often represented as a bimatrix. The payoff bimatrix for the Battle of the Sexes is

0
@

MalenFemale Coy Fast

Faithful .B � CR

2
� CC ; B � CR

2
� CC / .B � CR

2
; B � CR

2
/

Philanderer .0; 0/ .B; B � CR/

1
A:

(23.10)

Here B is the fitness gained by having an offspring, CR is the (potentially shared)
cost of raising the offspring, and CC is the cost of engaging in a courtship. All
three of these terms are clearly positive. The above bimatrix is written in the form
.A1; AT

2 /, where matrix A1 is the payoff matrix for males (player 1) and matrix A2

is the payoff matrix for females (player 2), respectively.
For such games, to define a two-species NE, we study the position of the two

equal payoff lines, one for each sex. The equal payoff line for males (see the
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horizontal dashed line in Fig. 23.1) is defined to be those .p; q/ 2 �2 ��2 for which
the payoff when playing Faithful equals the payoff when playing the Philanderer
strategy, i.e.,

.1; 0/A1qT D .0; 1/A1qT

which yields q1 D CR

2.B�CC /
. Similarly, along the equal payoff line for females (see

the vertical dashed line in Fig. 23.1), the payoff when playing strategy Coy must
equal the payoff when playing strategy Fast, i.e.,

.1; 0/A2pT D .0; 1/A2pT :

If the two equal payoff lines do not intersect in the unit square, no completely mixed
strategy (both for males and females) is an NE (Fig. 23.1A, B). In fact, there is a
unique ESS (Philanderer, Coy), i.e., with no mating (clearly not appropriate for a
real population), for sufficiently small B (Fig. 23.1A), B < min.CR=2 C CC ; CR/,
a unique ESS (Philanderer, Fast) for sufficiently high B (Fig. 23.1B), when B > CR.
For intermediate B satisfying CR=2 C CC < B < CR, there is a two-species weak
ESS

p D

�
CR � B

CC C CR � B
;

CC

CC C CR � B

�
; q D

�
CR

2.B � CC /
; 1 �

CR

2.B � CC /

�
;

where at least the fitness of one species increases toward this equilibrium, except
when p1 D CR�B

CC CCR�B
or q1 D CR

2.B�CC /
(Fig. 23.1C). In all three cases of

A

p1

q1

10

1
B

p1

q1

10

1
C

p1

q1

10

1

Fig. 23.1 The ESS for the Battle of the Sexes game. Panel A assumes small B and the only ESS
is .p1; q1/ D .0; 1/ D (Philanderer, Coy). Panel B assumes large B and the only ESS is .p1; q1/ D
.0; 0/ D (Philanderer, Fast). For intermediate values of B (panel C), there is an interior NE. The
dashed lines are the two equal payoff lines for males (horizontal line) and females (vertical line).
The direction in which the male and female payoffs increase are shown by arrows (e.g., a horizontal
arrow to the right means the first strategy (Faithful) has the higher payoff for males, whereas a
downward arrow means the second strategy (Fast) has the higher payoff for females). We observe
that in panel C these arrows are such that at least the payoff of one player increases toward the
Nash–Pareto pair, with the exception of the points that lie on the equal payoff lines. This qualifies
the interior NE as a two-species weak ESS
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Fig. 23.1, the NE is a Nash-Pareto pair, because it is impossible for both players
to simultaneously deviate from the Nash equilibrium and increase their payoffs. In
panels A and B, both arrows point in the direction of the NE. In panel C at least
one arrow is pointing to the NE .p; q/ if both players deviate from that equilibrium.
However, this interior NE is not a two-species ESS since, when only one player
(e.g., player one) deviates, no arrow points in the direction of .p; q/. This happens
on the equal payoff lines (dashed lines). For example, let us consider points on
the vertical dashed line above the NE. Here vertical arrows are zero vectors and
horizontal arrows point away from p. Excluding points on the vertical and horizontal
line from the definition of a two-species ESS leads to a two-species weak ESS.

6.2 The Owner–Intruder Game

The Owner–Intruder game is an extension of the Hawk–Dove game, where player
1 (the owner) and player 2 (the intruder) have distinct roles (i.e., they cannot be
interchanged as is the case of symmetric games). In particular an individual can
play either of Hawk or Dove in either of the two roles. This leads to the bimatrix
representation of the Hawk–Dove game below, which cannot be collapsed down to
the single 2 � 2 matrix from Sect. 2, because the strategy that an individual plays
may be conditional upon the role that it occupies (in Sect. 2 there are no such distinct
roles). The bimatrix of the game is

�OwnernIntruder Hawk Dove

Hawk . V �C
2

; V �C
2

/ .V; 0/

Dove .0; V / .V =2; V =2/

�
:

Provided we assume that each individual has the same chance to be an owner or
an intruder, the game can be symmetrized with the payoffs to the symmetrized game
given in the following payoff matrix,

0
BB@

Hawk Dove Bourgeois Anti-Bourgeois

Hawk .V � C /=2 V .3V � C /=4 .3V � C /=4

Dove 0 V =2 V =4 V =4

Bourgeois .V � C /=4 3V =4 V =2 .2V � C /=4

Anti-Bourgeois .V � C /=4 3V =4 .2V � C /=4 V =2

1
CCA

where

Hawk � play Hawk when both owner and intruder,
Dove � play Dove when both owner and intruder,
Bourgeois � play Hawk when owner and Dove when intruder,
Anti-Bourgeois � play Dove when owner and Hawk when intruder.

It is straightforward to show that if V � C , then Hawk is the unique ESS
(Fig. 23.2A), and that if V < C , then Bourgeois and Anti-Bourgeois (alternatively
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A

p1

q1

10

1
B

p1

q1

10

1

Fig. 23.2 The ESS for the Owner–Intruder game. Panel A assumes V > C and the only ESS is to
be Hawk at both roles (i.e., .p1; q1/ D .1; 1/ D .Hawk; Hawk/). If V < C (Panel B), there are two
boundary ESSs (black dots) corresponding to the Bourgeois (.p1; q1/ D .1; 0/ D .Hawk; Dove/)
and Anti-Bourgeois (.p1; q1/ D .0; 1/ D .Dove; Hawk/) strategies. The directions in which the
owner and intruder payoffs increase are shown by arrows (e.g., a horizontal arrow to the right
means the Hawk strategy has the higher payoff for owner, whereas a downward arrow means
the Dove strategy has the higher payoff for intruder). The interior NE (the light gray dot at the
intersection of the two equal payoff lines) is not a two-species ESS as there are regions (the upper-
left and lower-right corners) where both arrows point in directions away from this point

called Marauder) are the only ESSs (Fig. 23.2B). As we see, there are only pure
strategy solutions, as opposed to the case of the Hawk–Dove game, which had a
mixed ESS V =C for V < C , because the interior NE in Fig. 23.2B is not a Nash–
Pareto pair as in the upper-left and lower-right regions both arrows are pointing
away from the NE. Thus, if both players simultaneously deviate from the Nash
equilibrium, their payoffs increase. Consequently, this NE is not a two-species
(weak) ESS.

Important recent work on this model and its ramifications for the part that
respecting ownership plays has been carried out by Mesterton Gibbons, Sherratt
and coworkers (see Mesterton-Gibbons and Sherratt 2014; Sherratt and Mesterton-
Gibbons 2015). In particular, why in real populations is the Bourgeois respect for
ownership strategy so common and the Anti-Bourgeois strategy so rare? One expla-
nation offered by Maynard Smith (1982) was “infinite regress.” In this argument,
immediately after a contest, the winner becomes the owner of the territory, and
the loser becomes a potential intruder which could immediately rechallenge the
individual that has just displaced it. In an Anti-Bourgeois population, this would
result in the new owner conceding and the new intruder (the previous owner) once
again being the owner, but then the displaced owner could immediately rechallenge,
and the process would continue indefinitely. It is shown in Mesterton-Gibbons
and Sherratt (2014) that under certain circumstances, but not always, this allows
Bourgeois to be the unique ESS. Sherratt and Mesterton-Gibbons (2015) discuss
many issues, such as uncertainty of ownership, asymmetry of resource value,
continuous contest investment (as in the war of attrition), and potential signaling
of intentions (what they call “secret handshakes,” similar to some of the signals we
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Fig. 23.3 (Continued)
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discuss in Sect. 10) in detail. There are many reasons that can make evolution of
Anti-Bourgeois unlikely, and it is probably a combination of these that make it so
rare.

6.3 Bimatrix Replicator Dynamics

The single-species replicator dynamics such as those for the Hawk–Dove game
(Sect. 2.1) can be extended to two roles as follows (Hofbauer and Sigmund 1998).
Note that here this is interpreted as two completely separate populations, i.e., any
individual can only ever occupy one of the roles, and its offspring occupy that same
role. If A D .aij / iD1;:::;n

j D1;:::;m
and B D .bij /iD1;:::;m

j D1;:::;n
are the payoff matrices to an

individual in role 1 and role 2, respectively, the corresponding replicator dynamics
are

d
dt

p1i .t/ D p1i

�
.Ap2

T /i � p1Ap2
T
�

i D 1; : : : ; nI

d
dt

p2j .t/ D p2j

�
.Bp1

T /j � p2Bp1
T
�

j D 1; : : : ; mI

where p1 2 �n and p2 2 �m are the population mixtures of individuals in role 1
and 2, respectively. For example, for the two-role, two-strategy game, where without
loss of generality we can set a11 D a22 D b11 D b22 D 0 (since as for matrix games,
adding a constant to all of the payoffs an individual gets against a given strategy does
not affect the NEs/ ESSs), we obtain

dx

dt
D x.1 � x/.a12 � .a12 C a21/y/;

dy

dt
D y.1 � y/.b12 � .b12 C b21/x/;

(23.11)

where x is the frequency of the first strategy players in the role 1 population and
y is the corresponding frequency for role 2. Hofbauer and Sigmund (1998) show
that orbits converge to the boundary in all cases except if a12a21 > 0; b12b21 > 0,
and a12b12 < 0, which yield closed periodic orbits around the internal equilibrium.
Replicator dynamics for the Battle of the Sexes and the Owner–Intruder game are
shown in Fig. 23.3.

J
Fig. 23.3 Bimatrix replicator dynamics (23.11) for the Battle of the Sexes game (A–C) and the
Owner–Intruder game (D, E), respectively. Panels A–C correspond to panels given in Fig. 23.1,
and panels D and E correspond to those of Fig. 23.2. This figure shows that trajectories of the
bimatrix replicator dynamics converge to a two-species ESS as defined in Sects. 6.1 and 6.2. In
particular, the interior NE in panel E is not a two-species ESS, and it is an unstable equilibrium
for the bimatrix replicator dynamics. In panel C the interior NE is two-species weak ESS, and it is
(neutrally) stable for the bimatrix replicator dynamics
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Note there are some problems with the interpretation of the dynamics of
two populations in this way, related to the assumption of exponential growth of
populations, since the above dynamics effectively assume that the relative size of
the two populations remains constant (Argasinski 2006).

7 The Habitat Selection Game

Fretwell and Lucas (1969) introduced the Ideal Free Distribution (IFD) to describe
a distribution of animals in a heterogeneous environment consisting of discrete
patches i D 1; : : : ; n. The IFD assumes that animals are free to move between
several patches, travel is cost-free, each individual knows perfectly the quality of all
patches, and all individuals have the same competitive abilities. Assuming that these
patches differ in their basic quality Bi (i.e., their quality when unoccupied), the IFD
model predicts that the best patch will always be occupied.

Let us assume that patches are arranged in descending order (B1 > � � � > Bn > 0)
and mi is the animal abundance in patch i . Let pi D mi =.m1 C � � � C mn/ be the
proportion of animals in patch i , so that p D .p1; : : : ; pn/ describes the spatial
distribution of the population. For a monomorphic population, pi also specifies the
individual strategy as the proportion of the lifetime an average animal spends in
patch i . We assume that the payoff in each patch, Vi .pi /, is a decreasing function
of animal abundance in that patch, i.e., the patch payoffs are negatively density
dependent. Then, fitness of a mutant with strategy Qp D . Qp1; : : : ; Qpn/ in the resident
monomorphic population with distribution p D .p1; : : : ; pn/ is

E. Qp; p/ D

nX
iD1

Qpi Vi .pi /:

However, we do not need to make the assumption that the population is monomor-
phic, because what really matters in calculating E. Qp; p/ above is the animal
distribution p: If the population is not monomorphic, this distribution can be
different from strategies animals use, and we call it the population mean strategy.
Thus, in the Habitat Selection game, individuals do not enter pairwise conflicts, but
they play against the population mean strategy (referred to as a “playing the field”
or “population” game).

Fretwell and Lucas (1969) introduced the concept of the Ideal Free Distribution
which is a population distribution p D .p1; : : : ; pn/ that satisfies two conditions:

1. There exists a number 1 � k � n such that p1 > 0; : : : ; pk > 0 and pkC1 D

� � � D pn D 0

2. V1.p1/ D � � � D Vk.pk/ D V � and V � � Vi .pi / for i D k C 1; : : : ; n:

They proved that provided patch payoffs are negatively density dependent (i.e.,
decreasing functions of the number of individuals in a patch), then there exists a
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unique IFD which Cressman and Křivan (2006) later showed is an ESS. In the next
section, we will discuss two commonly used types of patch payoff functions.

7.1 Parker’s Matching Principle

Parker (1978) considered the case where resource input rates ri ; i D 1; : : : ; n

are constant and resources are consumed immediately when they enter the patch
and so there is no standing crop. This leads to a particularly simple definition of
animal patch payoffs as the ratio of the resource input rate divided by the number of
individuals there, i.e.,

Vi D
ri

mi

D
ri

pi M
(23.12)

where M D m1 C � � � C mn is the overall population abundance. The matching
principle then says that animals distribute themselves so that their abundance in
each patch is proportional to the rate with which resources arrive into the patch,
pi =pj D ri =rj : This is nothing other than the IFD for payoff functions (23.12).
It is interesting to notice that all patches will be occupied independently of the
total population abundance. Indeed, as the consumer density in the i�th patch
decreases, payoff ri =.pi M/ increases, which attracts some animals, and there
cannot be unoccupied patches. There is an important difference between this
(nonlinear) payoff function (23.12) and the linear payoff function that we consider
in the following Eq. (23.13), because as the local population abundance in a patch
decreases, then (23.12) tends to infinity, but (23.13) tends to ri . This means that in
the first case there cannot be unoccupied patches (irrespective of their basic patch
quality ri ) because the payoffs in occupied patches are finite, but the payoff in
unoccupied patches would be infinite (provided all ri > 0). This argument does not
apply in the case of the logistic payoff (23.13). This concept successfully predicts
the distribution of house flies that arrive at a cow pat where they immediately mate
(Blanckenhorn et al. 2000; Parker 1978, 1984) or of fish that are fed at two feeders
in a tank (Berec et al. 2006; Milinski 1979, 1988).

In the next section, we consider the situation where resources are not consumed
immediately upon entering the system.

7.2 Patch Payoffs are Linear

Here we consider two patches only, and we assume that the payoff in habitat
i.D 1; 2/ is a linearly decreasing function of population abundance:

Vi D ri

�
1 �

mi

Ki

�
D ri

�
1 �

pi M

Ki

�
(23.13)
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where mi is the population density in habitat i , ri is the intrinsic per capita
population growth rate in habitat i , and Ki is its carrying capacity. The total
population size in the two-habitat environment is denoted by M (D m1 C m2), and
the proportion of the population in habitat i is pi D mi =M . Payoff (23.13) is often
used in population dynamics where it describes the logistic population growth.

Let us consider an individual which spends proportion Qp1 of its lifetime in habitat
1 and Qp2 in habitat 2. Provided total population density is fixed at M , then its fitness
in the population with mean strategy p D .p1; p2/ is

E. Qp; p/ D Qp1V1.p1/ C Qp2V2.p2/ D Qp U pT ;

where

U D

 
r1.1 � M

K1
/ r1

r2 r2.1 � M
K2

/

!

is the payoff matrix with two strategies, where strategy i represents staying in patch
i (i D 1; 2). This shows that the Habitat Selection game with a linear payoff can
be written for a fixed population size as a matrix game. If the per capita intrinsic
population growth rate in habitat 1 is higher than that in habitat 2 (r1 > r2), the IFD
is (Křivan and Sirot 2002)

p1 D

8<
:

1 if M < K1
r1�r2

r1

r2K1

r2K1 C r1K2

C
K1K2.r1 � r2/

.r2K1 C r1K2/M
otherwise:

(23.14)

When the total population abundance is low, the payoff in habitat 1 is higher than the
payoff in habitat 2 for all possible population distributions because the competition
in patch 1 is low due to low population densities. For higher population abundances,
neither of the two habitats is always better than the other, and under the IFD payoffs
in both habitats must be the same (V1.p1/ D V2.p2/). Once again, it is important
to emphasize here that the IFD concept is different from maximization of the mean
animal fitness

W .p; p/ D p1V1.p1/ C p2V2.p2/

which would lead to

p1 D

8̂<
:̂

1 if M < K1

r1 � r2

2r1
r2K1

r1K2 C r2K1

C
K1K2.r1 � r2/

2.r1K2 C r2K1/M
otherwise:

(23.15)

The two expressions (23.14) and (23.15) are the same if and only if r1 D r2.
Interestingly, by comparing (23.14) and (23.15), we see that maximizing mean
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fitness leads to fewer animals than the IFD in the patch with higher basic quality
ri (i.e., in patch 1).

7.3 Some Extensions of the Habitat Selection Game

The Habitat Selection game as described makes several assumptions that were
relaxed in the literature. One assumption is that patch payoffs are decreasing func-
tions of population abundance. This assumption is important because it guarantees
that a unique IFD exists. However, patch payoffs can also be increasing functions
of population abundance. In particular, at low population densities, payoffs can
increase as more individuals enter a patch, and competition is initially weak. For
example, more individuals in a patch can increase the probability of finding a mate.
This is called the Allee effect. The IFD for the Allee effect has been studied in the
literature (Cressman and Tran 2015; Fretwell and Lucas 1969; Křivan 2014; Morris
2002). It has been shown that for hump-shaped patch payoffs, up to three IFDs
can exist for a given overall population abundance. At very low overall population
abundances, only the most profitable patch will be occupied. At intermediate
population densities, there are two IFDs corresponding to pure strategies where all
individuals occupy patch 1 only, or patch 2 only. As population abundance increases,
competition becomes more severe, and an interior IFD appears exactly as in the case
of negative density-dependent payoff functions. At high overall population abun-
dances, only the interior IFD exists due to strong competition among individuals.
It is interesting to note that as the population numbers change, there can be sudden
(discontinuous) changes in the population distribution. Such erratic changes in the
distribution of deer mice were observed and analyzed by Morris (2002).

Another complication that leads to multiple IFDs is the cost of dispersal. Let us
consider a positive migration cost c between two patches. An individual currently
in patch 1 will migrate to patch 2 only if the payoff there is such that V2.p2/ �

c � V1.p1/: Similarly, an individual currently in patch 2 will migrate to patch 1
only if its payoff does not decrease by doing so, i.e., V1.p1/ � c � V2.p2/: Thus,
all distributions .p1; p2/ that satisfy these two inequalities form the set of IFDs
(Mariani et al. 2016).

The Habitat Selection game was also extended to situations where individuals
perceive space as a continuum (e.g., Cantrell et al. 2007, 2012; Cosner 2005). The
movement by diffusion is then combined, or replaced, by a movement along the
gradient of animal fitness.

7.4 Habitat Selection for Two Species

Instead of a single species, we now consider two species with population densities
M and N dispersing between two patches. We assume that individuals of these
species compete in each patch both intra- and inter-specifically. Following our
single-species Habitat Selection game, we assume that individual payoffs are linear
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functions of species distribution (Křivan and Sirot 2002; Křivan et al. 2008)

Vi .p; q/ D ri

�
1 �

pi M

Ki

�
˛i qi N

Ki

�
;

Wi .p; q/ D si

�
1 �

qi N

Li

�
ˇi pi M

Li

�
;

where p D .p1; p2/ denotes the distribution of species one and q D .q1; q2/

the distribution of species two. Here, positive parameters ˛i (respectively ˇi ) are
interspecific competition coefficients, ri (respectively si ) are the intrinsic per capita
population growth rates, and Ki (respectively Li ) are the environmental carrying
capacities. The two-species Habitat Selection game cannot be represented in a bima-
trix form (to represent it in a matrix form, we would need four matrices), because the
payoff in patch i for a given species depends not only on the distribution (strategy) of
its competitors but also on the distribution of its own conspecifics. The equal payoff
line for species one (two) are those .p; q/ 2 �2 � �2 for which V1.p; q/ D V2.p; q/

(W1.p; q/ D W2.p; q/). Since payoffs are linear functions, these are lines in the
coordinates p1 and q1, but as opposed to the case of bimatrix games in Sects. 6.1
and 6.2, they are neither horizontal nor vertical. If they do not intersect in the unit
square, the two species cannot coexist in both patches at an NE. The most interesting
case is when the two equal payoff lines intersect inside the unit square. Křivan et al.
(2008) showed that the interior intersection is the two-species ESS provided

r1s1K2L2.1 � ˛1ˇ1/ C r1s2K2L1.1 � ˛1ˇ2/C

r2s1K1L2.1 � ˛2ˇ1/ C r2s2K1L1.1 � ˛2ˇ2/ > 0:

Geometrically, this condition states that the equal payoff line for species one has
a more negative slope than that for species two. This allows us to extend the
concept of the single-species Habitat Selection game to two species that compete
in two patches. In this case the two-species IFD is defined as a two-species ESS.
We remark that the best response dynamics do converge to such two-species IFD
(Křivan et al. 2008).

One of the predictions of the Habitat Selection game for two species is that as
competition gets stronger, the two species will spatially segregate (e.g., Křivan and
Sirot 2002; Morris 1999). Such spatial segregation was observed in experiments
with two bacterial strains in a microhabitat system with nutrient-poor and nutrient-
rich patches (Lambert et al. 2011).

8 Dispersal and Evolution of Dispersal

Organisms often move from one habitat to another, which is referred to as dispersal.
We focus here on dispersal and its relation to the IFD discussed in the previous
section.
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Here we consider n habitat patches and a population of individuals that disperse
between them. In what follows we will assume that the patches are either adjacent
(in particular when there are just two patches) or that the travel time between them
is negligible when compared to the time individuals spend in these patches. There
are two basic questions:

1. When is dispersal an adaptive strategy, i.e., when does individual fitness increase
for dispersing animals compared to those who are sedentary?

2. Where should individuals disperse?

To describe changes in population densities, we will consider demographic
population growth in each patch and dispersal between patches. Dispersal is
described by the propensity of individuals to disperse (ı � 0) and by a dispersal
matrix D: The entries of this matrix (Dij ) describe the transition probabilities that
an individual currently in patch j moves to patch i per unit of time. We remark
that Dii is the probability of staying in patch i . Per capita population growth rates
in patches are given by fi (e.g., fi can be the logistic growth rate Vi (23.13) in
Sect. 7.2). The changes in population numbers are then described by population–
dispersal dynamics

dmi

dt
D mi fi .mi / C ı

nX
j D1

�
Dij .m/mj � Dji .m/mi

�
for i D 1; : : : ; n (23.16)

where m D .m1; � � � ; mn/ is the vector of population densities in n patches.
Thus, the first term in the above summation describes immigration to patch i from
other patches, and the second term describes emigration from patch i to other
patches. In addition, we assume that D is irreducible, i.e., there are no isolated
patches.

The case that corresponds to the passive diffusion between patches assumes that
entries of the dispersal matrix are constant and the matrix is symmetric. It was
shown (Takeuchi 1996) that when functions fi are decreasing with fi .0/ > 0 and
fi .Ki / D 0 for some Ki > 0, then model (23.16) has an interior equilibrium
which is globally asymptotically stable. However this does not answer the question
of whether such an equilibrium is evolutionarily stable, i.e., whether it is resistant to
invasion of mutants with the same traits (parameters) as the resident population, but
different propensity to disperse ı: The answer to this question depends on the entries
of the dispersal matrix. An interior population distribution m� D .m�

1 ; : : : ; m�
n/ will

be the IFD provided patch payoffs in all patches are the same, i.e., f1.m�
1 / D � � � D

fn.m�
n/: This implies that at the population equilibrium, there is no net dispersal,

i.e.,

ı

nX
j D1

�
Dij m�

j � Djim
�
i

�
D 0:
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There are two possibilities. Either

nX
j D1

�
Dij m�

j � Dji m
�
i

�
D 0; (23.17)

or ı D 0. The pattern of equalized immigration and emigration satisfying (23.17)
is called “balanced dispersal” (Doncaster et al. 1997; Holt and Barfield 2001;
McPeek and Holt 1992). Under balanced dispersal, there is an inverse relation
between local population size and its dispersal rate. In other words, individuals at
good sites are less likely to disperse than those from poor sites. When dispersal is
unbalanced, Hastings (1983) showed that mutants with lower propensity to disperse
will outcompete the residents and no dispersal (ı D 0) is the only evolutionarily
stable strategy.

However, dispersal can be favored even when it is not balanced. Hamilton and
May (1977) showed that unconditional and costly dispersal among very many
patches can be promoted because it reduces competition between relatives. Their
model was generalized by Comins et al. (1980) who assumed that because of
stochastic effects, a proportion e of patches can become empty at any time step. A
proportion p of migrants survives migration and re-distributes at random (assuming
the Poisson distribution) among the patches. These authors derived analytically
the evolutionarily stable dispersal strategy that is given by a complicated implicit
formula (see formula (3) in Comins et al. 1980). As population abundance
increases, the evolutionarily stable dispersal rate converges to a simpler formula

ı D
e

1 � p.1 � e/
:

Here the advantage of dispersal results from the possibility of colonizing an extinct
patch.

Evolution of mobility in predator–prey systems was also studied by Xu et al.
(2014). These authors showed how interaction strength between mobile vs. sessile
prey and predators influences the evolution of dispersal.

9 Foraging Games

Foraging games describe interactions between prey, their predators, or both. These
games assume that either predator or prey behave in order to maximize their fitness.
Typically, the prey strategy is to avoid predators while predators try to track their
prey. Several models that focus on various aspects of predator–prey interactions
were developed in the literature (e.g., Brown and Vincent 1987; Brown et al. 1999,
2001; Vincent and Brown 2005).

An important component of predation is the functional response defined as the
per predator rate of prey consumption (Holling 1959). It also serves as a basis for
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models of optimal foraging (Stephens and Krebs 1986) that aim to predict diet
selection of predators in environments with multiple prey types. In this section we
start with a model of optimal foraging, and we show how it can be derived using
extensive form games (see Volume I, �Chap. 6, “Evolutionary Game Theory”). As
an example of a predator–prey game, we then discuss predator–prey distribution in
a two-patch environment.

9.1 Optimal Foraging as an Agent Normal Form of an Extensive
Game

Often it is assumed that a predator’s fitness is proportional to its prey intake
rate, and the functional response serves as a proxy of fitness. In the case of two
or more prey types, the multi-prey functional response is the basis of the diet
choice model (Charnov 1976; Stephens and Krebs 1986) that predicts the predator’s
optimal diet as a function of prey densities in the environment. Here we show how
functional responses can be derived using decision trees of games given in extensive
form (Cressman 2003; Cressman et al. 2014; see also Broom et al. 2004, for an
example of where this methodology was used in a model of food stealing). Let us
consider a decision tree in Fig. 23.4 describing a single predator feeding on two
prey types. This decision tree assumes that a searching predator meets prey type
1 with probability p1 and prey type 2 with probability p2 during the search time
�s . For simplicity we will assume that p1 C p2 D 1: Upon an encounter with a
prey individual, the predator decides whether to attack the prey (prey type 1 with

1 2

p1 p2

q1 1− q1 q2 1− q2

e2e1 0 0

τs + h1

p1q1

τs

p1(1 − q1)

τs + h2

p2q2

τs

p2(1 − q2)

Level 1

Level 2

Fig. 23.4 The decision tree for two prey types. The first level gives the prey encounter distribution.
The second level gives the predator activity distribution. The final row of the diagram gives the
probability of each predator activity event and so sums to 1. If prey 1 is the more profitable type,
the edge in the decision tree corresponding to not attacking this type of prey is never followed at
optimal foraging (indicated by the dashed edge in the tree)
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probability q1 and prey type 2 with probability q2) or not. When a prey individual is
captured, the energy that the predator receives is denoted by e1 or e2. The predator’s
cost is measured by the time lost. This time consists of the search time �s and the
time needed to handle the prey (h1 for prey type 1 and h2 for prey type 2).

Calculation of functional responses is based on renewal theory which proves that
the long-term intake rate of a given prey type can be calculated as the mean energy
intake during one renewal cycle divided by the mean duration of the renewal cycle
(Houston and McNamara 1999; Stephens and Krebs 1986). A single renewal cycle is
given by a predator passing through the decision tree in Fig. 23.4. Since type i prey
are only killed when the path denoted by pi and then qi is followed, the functional
response to prey i.D 1; 2/ is

fi .q1; q2/ D
pi qi

p1 .q1.�s C h1/ C .1 � q1/�s/ C p2 .q2.�s C h2/ C .1 � q2/�s/

D
pi qi

�s C p1q1h1 C p2q2h2

:

When xi denotes density of prey type i in the environment and the predator meets
prey at random, pi D xi =x; where x D x1 C x2: Setting � D 1=.�sx/ leads to

fi .q1; q2/ D
�xi qi

1 C �x1q1h1 C �x2q2h2

:

These are the functional responses assumed in standard two prey type models. The
predator’s rate of energy gain is given by

E.q1; q2/ D e1f1.q1; q2/ C e2f2.q1; q2/ D
e1p1q1 C e2p2q2

�s C p1q1h1 C p2q2h2

: (23.18)

This is the proxy of the predator’s fitness which is maximized over the predator’s
diet .q1; q2/, (0 � qi � 1, i D 1; 2).

Here, using the agent normal form of extensive form game theory (Cressman
2003), we show an alternative, game theoretical approach to find the optimal
foraging strategy. This method assigns a separate player (called an agent) to each
decision node (here 1 or 2). The possible decisions at this node become the agent’s
strategies, and its payoff is given by the total energy intake rate of the predator
it represents. Thus, all of the virtual agents have the same common payoff. The
optimal foraging strategy of the single predator is then a solution to this game. In
our example, player 1 corresponds to decision node 1 with strategy set �1 D fq1 j

0 � q1 � 1g and player 2 to node 2 with strategy set �2 D fq2 j 0 � q2 � 1g.
Their common payoff E.q1; q2/ is given by (23.18), and we seek the NE of the two-
player game. Assuming that prey type 1 is the more profitable for the predator, as its
energy content per unit handling time is higher than the profitability of the second
prey type (i.e., e1=h1 > e2=h2) we get E.1; q2/ > E.q1; q2/ for all 0 � q1 < 1 and
0 � q2 � 1. Thus, at any NE, player 1 must play q1 D 1. The NE strategy of player
2 is then any best response to q1 D 1 (i.e., any q2 that satisfies E.1; q0

2/ � E.1; q2/
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for all 0 � q0
2 � 1) which yields

q2 D

8<
:

0 if p1 > p�
1

1 if p1 < p�
1

Œ0; 1� if p1 D p�
1 ;

(23.19)

where

p�
1 D

e2�s

e1h2 � e2h1

: (23.20)

This NE coincides with the optimal strategy derived by maximization of (23.18).
It makes quite striking predictions. While the more profitable prey type is always
included in the predator’s diet, inclusion of the less profitable prey type is indepen-
dent of its own density and depends on the more profitable prey type density only.
This prediction was experimentally tested with great tits (e.g., Berec et al. 2003;
Krebs et al. 1977). That the Nash equilibrium coincides with the optimal foraging
strategy (i.e., with the maximum of E) in this model is not a coincidence. Cressman
et al. (2014) proved that this is so for all foraging games with a 2-level decision
tree. For decision tress with more levels, they showed that the optimal foraging
strategy is always an NE of the corresponding agent normal form game and that
other, nonoptimal, NE may also appear.

9.2 A Predator-Prey Foraging Game

As an example we consider here a predator–prey foraging game between prey and
predators in a two-patch environment. If xi denotes the abundance of prey in patch
i.D 1; 2/, the total abundance of prey is x D x1 C x2 and, similarly, the total
abundance of predators is y D y1 C y2: Let u D .u1; u2/ be the distribution of
prey and v D .v1; v2/ be the distribution of predators. We neglect the travel time
between patches so that u1 C u2 D v1 C v2 D 1 (i.e., each animal is either in
patch 1 or patch 2). We assume that the prey population grows exponentially at each
patch with the per capita population growth rate ri and it is consumed by predators.
The killing rate is given by the functional response. For simplicity we neglect the
handling time so that the functional response in patch i is fi D �i xi ; i.e., the per
prey per predator killing rate is �i . The prey payoff in patch i is given by the per
capita prey population growth rate in that patch, i.e., ri � �i vi y as there are vi y

predators in patch i . The fitness of a prey individual is

V .u; v/ D .r1 � �1v1y/u1 C .r2 � �2v2y/u2: (23.21)

The predator payoff in patch i is given by the per capita predator population growth
rate ei ui x � mi , where ei is a coefficient by which the energy gained by feeding on
prey is transformed into new predators and mi is the per capita predator mortality
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rate in patch i . The fitness of a predator with strategy v D .v1; v2/ when the prey
use strategy u D .u1; u2/ is

W .v; u/ D .e1�1u1x � m1/v1 C .e2�2u2x � m2/v2: (23.22)

This predator–prey game can be represented by the following payoff bimatrix

�PreynPredator Patch 1 Patch 2

Patch 1 .r1 � �1y; e1�1x � m1/ .r1; �m2/

Patch 2 .r2; �m1/ .r2 � �2y; e2�2x � m2/

�
:

That is, the rows in this bimatrix correspond to the prey strategy (the first row means
the prey are in patch 1; the second row means the prey are in patch 2), and similarly
columns represent the predator strategy. The first of the two expressions in the
entries of the bimatrix is the payoff for the prey, and the second is the payoff for
the predators.

For example, we will assume that for prey patch 1 has a higher basic patch quality
when compared to patch 2 (i.e., r1 � r2) while for predators patch 1 has a higher
mortality rate (m1 > m2). The corresponding NE is (Křivan 1997)

(a) .u�
1 ; v�

1 / if x >
m1 � m2

e1�1

; y >
r1 � r2

�1

,

(b) .1; 1/ if x >
m1 � m2

e1�1

; y <
r1 � r2

�1

,

(c) .1; 0/ if x <
m1 � m2

e1�1

;

where

.u�
1 ; v�

1 / D

�
m1 � m2 C e2�2x

.e1�1 C e2�2/x
;

r1 � r2 C �2y

.�1 C �2/y

�
:

If prey abundance is low (case (c)), all prey will be in patch 1, while predators
will stay in patch 2. Because the mortality rate for predators in patch 1 is higher
than in patch 2 and prey abundance is low, patch 2 is a refuge for predators. If
predator abundance is low and prey abundance is high (case (b)), both predators
and prey will aggregate in patch 1. When the NE is strict (cases (b) and (c) above),
it is also the ESS because there is no alternative strategy with the same payoff.
However, when the NE is mixed (case (a)), there exist alternative best replies to it.
This mixed NE is the two-species weak ESS. It is globally asymptotically stable
for the continuous-time best response dynamics (Křivan et al. 2008) that model
dispersal behavior whereby individuals move to the patch with the higher payoff.
We remark that for some population densities (x D m1�m2

e1�1
and y D r1�r2

�1
), the NE

is not uniquely defined, which is a general property of matrix games (the game is
nongeneric in this case).
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10 Signaling Games

Signaling between animals occurs in a number of contexts. This can be signals,
often but not necessarily between conspecifics, warning of approaching predators.
This situation can be game theoretic, as the signaler runs a potentially higher risk
of being targeted by the predator. There are also cases of false signals being given
when no predator is approaching to force food to be abandoned which can then be
consumed by the signaler (Flower 2011). Alternatively within a group of animals,
each individual may need to decide how to divide their time between vigilance and
feeding, where each individual benefits from the vigilance of others as well as itself,
and this has been modeled game-theoretically (e.g., Brown 1999; McNamara and
Houston 1992; Sirot 2012).

Another situation occurs between relatives over items of food, for example, a par-
ent bird feeding its offspring. Young birds beg aggressively for food, and the parent
must decide which to feed, if any (it can instead consume the item itself). The most
well-known model of this situation is the Sir Philip Sidney game (Maynard Smith
1991) and is a model of cost-free signaling (Bergstrom and Lachmann 1998).

The classic example of a signaling game is between potential mates. Males
of differing quality advertise this quality to females, often in a way that is
costly, and the females choose who to mate with based upon the strength of the
signal. Examples are the tail of the peacock or the elaborate bowers created by
bowerbirds. There is obviously a large incentive to cheat, and so how are such
signals kept honest? A signal that is not at least partly correlated to quality would
be meaningless, and so would eventually be ignored. The solution as developed by
Zahavi (1975, 1977), the handicap principle, is that these costly signals are easier to
bear by higher-quality mates and that evolution leads to a completely honest signal,
where each quality level has a unique signal.

10.1 Grafen’s Signaling Game

The following signaling model is due to (Grafen 1990a,b). Consider a population
with a continuum of male quality types q and a single type of female. Assume
that a male of quality q gives a signal a D A.q/ of this quality, where higher
values of a are more costly. It is assumed that there is both a minimum quality
level q0 > 0 (there may or may not be a maximum quality level) and a minimum
signal level a0 � 0 (which can be thought of as giving no signal). When a female
receives a signal, she allocates a quality level to the signal P .a/. We have a nonlinear
asymmetric game with sequential decisions; in particular the nonlinearity makes this
game considerably more complicated than asymmetric games such as the Battle of
the Sexes of Sect. 6.1. The female pays a cost for misassessing a male of quality q

as being of quality p of D.q; p/, which is positive for p ¤ q, with D.q; q/ D 0.
Assuming that the probability density of males of quality q is g.q/, the payoff to
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the female, which is simply minus the expected cost, is

�

Z 1

q0

D.q; p/g.q/dq:

An honest signaling system with strategies A� and P � occurs if and only if
P �.A�.q// D q, for all q. We note that here the female never misassesses a
male and so pays zero cost. Clearly any alternative female assessment strategy
would do worse. But how can we obtain stability against alternative (cheating) male
strategies?

The fitness of a male of quality q, W .a; p; q/, depends upon his true quality, the
quality assigned to him by the female and the cost of his signal. W .a; p; q/ will be
increasing in p and decreasing in a. For stability of the honest signal, we need that
the incremental advantage of a higher level of signaling is greater for a high-quality
male than for a low-quality one, so that

�
@
@a

W .a; p; q/

@
@p

W .a; p; q/
(23.23)

is strictly decreasing in q (note that the ratio is negative, so minus this ratio is
positive), i.e., the higher quality the male, the lower the ratio of the marginal cost
to the marginal benefit for an increase in the level of advertising. This ensures that
completely honest signaling cannot be invaded by cheating, since costs to cheats to
copy the signals of better quality males would be explicitly higher than for the better
quality males, who could always thus achieve a cost they were willing to pay that
the lower quality cheats would not.

The following example male fitness function is given in Grafen (1990a) (the
precise fitness function to the female does not affect the solution provided that
correct assessment yields 0, and any misassessment yields a negative payoff)

W .a; p; q/ D prqa; (23.24)

with qualities in the range q0 � q < 1 and signals of strength a � a0, for some
r > 0.

We can see that the function from (23.24) satisfies the above conditions on
W .a; p; q/. In particular consider the condition from expression (23.23)

�
@

@a
W .a; p; q/ D �prqa ln q;

@

@p
W .a; p; q/ D rpr�1qa

which are the increase in cost per unit increase in the signal level and the increase
in the payoff per unit increase in the female’s perception (which in turn is directly
caused by increases in signal level), respectively. The ratio from (23.23), which
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is proportional to the increase in cost per unit of benefit that this would yield,
becomes �p ln q=r , takes a larger value for lower values of q. Thus there is an
honest signaling solution. This is shown in Grafen (1990a) to be given by

A.q/ D a0 � r ln

�
ln.q/

ln.q0/

�
; P .a/ D q

exp.�.a�a0/=r/
0 :

11 Conclusion

In this chapter we have covered some of the important evolutionary game models
applied to biological situations. We should note that we have left out a number of
important theoretical topics as well as areas of application. We briefly touch on a
number of those below.

All of the games that we have considered involved either pairwise games,
or playing the field games, where individuals effectively play against the whole
population. In reality contests will sometimes involve groups of individuals. Such
models were developed in Broom et al. (1997), for a recent review see Gokhale and
Traulsen (2014). In addition the populations were all both effectively infinite and
well-mixed in the sense that for any direct contest involving individuals, each pair
was equally likely to meet. In reality populations are finite and have (e.g., spatial)
structure. The modeling of evolution in finite populations often uses the Moran
process (Moran 1958), but more recently games in finite populations have received
significant attention (Nowak 2006). These models have been extended to include
population structure by considering evolution on graphs (Lieberman et al. 2005),
and there has been an explosion of such model applications, especially to consider
the evolution of cooperation. Another feature of realistic populations that we have
ignored is the state of the individual. A hungry individual may behave differently to
one that has recently eaten, and nesting behavior may be different at the start of the
breeding season to later on. A theory of state-based models has been developed in
Houston and McNamara (1999).

In terms of applications, we have focused on classical biological problems,
but game theory has also been applied to medical scenarios more recently. This
includes the modeling of epidemics, especially with the intention of developing
defense strategies. One important class of models (see, e.g., Nowak and May
1994) considers the evolution of the virulence of a disease as the epidemic
spreads. An exciting new line of research has recently been developed which
considers the development of cancer as an evolutionary game, where the pop-
ulation of cancer cells evolves in the environment of the individual person or
animal (Gatenby et al. 2010). A survey of alternative approaches is considered in
Durrett (2014).
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Křivan V (1997) Dynamic ideal free distribution: effects of optimal patch choice on predator-prey
dynamics. Am Nat 149:164–178
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Abstract

The development of a homing missile guidance law against an intelligent
adversary requires the solution to a differential game. First, we formulate
the deterministic homing guidance problem as a linear dynamic system with
an indefinite quadratic performance criterion (LQ). This formulation allows
the navigation ratio to be greater than three, which is obtained by the one-
sided linear-quadratic regulator and appears to be more realistic. However, this
formulation does not allow for saturation in the actuators. A deterministic game
allowing saturation is formulated and shown to be superior to the LQ guidance
law, even though there is no control penalty. To improve the performance of
the quadratic differential game solution in the presence of saturation, trajectory-
shaping feature is added. Finally, if there are uncertainties in the measurements
and process noise, a disturbance attenuation function is formulated that is
converted into a differential game. Since only the terminal state enters the cost
criterion, the resulting estimator is a Kalman filter, but the guidance gains are a
function of the assumed system variances.

Keywords
Pursuit-evasion games � Homing missile guidance � Disturbance attenuation

1 Motivation and Objectives

Homing missiles are characterized by high requirements in terms of small miss
distances against fast moving and possibly maneuvering targets. Modern defense
systems are typically equipped with highly sophisticated subsystems, both on board
the intercepting missiles and as part of the supporting systems (e.g., radar systems),
enabling good estimates of the target’s flying parameters. Guidance methods which
exploit such real-time measurements are more likely to become candidates for
homing missiles, while simple proportional-navigation-based guidance methods
will usually fall short with respect to satisfying the tough requirements. Advanced
methods based on one-sided optimization problems and on differential game
problems are explored in Ben-Asher and Yaesh (1998), Zarchan (1997), Bryson
and Ho (1975), and Nesline and Zarchan (1981). In the present chapter, we will
present this approach and its applicability to homing missile applications. This
will be accomplished by introducing a representative guidance scheme that may
or may not use the target’s acceleration estimates in order to improve the end-
game performance against possible target’s maneuvers. It should be emphasized that
we elaborate here several candidates from the set of possible end-game guidance
schemes and this choice is by no means claimed to be the best. In practice, one
should design a guidance system in accordance with its own specific requirements.
However, the lessons learned here with respect to design considerations, as well as
the optimization and simulation approaches, are of a general type and may serve as
guidelines for improved methodology.
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This chapter begins with a short history of homing guidance in Sect. 2. In
Sect. 3, some of the assumptions and models of the missile and target dynamics
are presented. In Sect. 4, a missile guidance law is developed based on the solution
to a linear-quadratic, differential game. Given the importance of actuator saturation
on homing missile performance, a differential game which includes saturation is
presented in Sect. 5. To improve the performance of the quadratic differential game
solution in the presence of saturation, trajectory-shaping feature is added in Sect. 6.
In Sect. 7, measurement uncertainty is included in the linear-quadratic, differential
game formulation. Conclusions are drawn in Sect. 8

2 Historical Background

Since the first successful test of the Lark missile (Zarchan 1997) in December 1950,
proportional navigation (PN in the sequel) has come to be widely employed by
homing missiles. Under this scheme, the missile is governed by

nc D N 0Vc P� (24.1)

where nc is the missile’s normal acceleration, P� is the change rate of the line of
sight (the dot represents time derivative), Vc is the closing velocity, and N 0 is the
so-called navigation constant or navigation ratio (N 0 > 2).

In the mid-1960s, it was realized that PN with N 0 D 3 is, in fact, an optimal
strategy for the linearized problem, when the cost J is the control effort, as follows:

J D

Z tf

0

n2
c.t/dt (24.2)

subject to y.tf / D 0, where y is the relative interceptor-target separation and tf
is the collision time (the elapsed time from the beginning of the end game till
interception). For this case, P� may be expressed as (the derivation is given in the
next section Eq. (24.18))

P� D
y C Pytgo

Vc.tgo/2
; tgo D tf � t (24.3)

and hence

nc D
3.y C Pytgo/

t2
go

(24.4)

In cases where target maneuvers are significant, extensions of the PN law have
been developed such as augmented proportional navigation (APN, see Nesline and
Zarchan 1981) where the commanded interceptor’s acceleration nc depends on the
target acceleration nT , so that:

nc D N 0Vc P� C
N 0

2
nT (24.5)



1082 J. Z. Ben-Asher and J. L. Speyer

It was also realized that when the transfer function relating the commanded and
actual accelerations nc and nL, respectively, has a significant time lag (which is
typical for aerodynamically controlled missiles at high altitudes), the augmented
proportional navigation law can lead to a significant miss distance. To overcome
this difficulty, the optimal guidance law (OGL, see Zarchan 1997) was proposed
whereby J (Eq. (24.2)) is minimized, subject to state equation constraints which
include the missile’s dynamics of the form

nL

nc

D
1

1 C T s
(24.6)

where s is the Laplace transformed differentiation operator and T – the missile’s
time lag (which depends on the flight conditions at the end game). The resulting
guidance law easily overcomes the large time-lag problem, but is strongly dependent
on the time constant and the time-to-go, namely:

nc D
N 0.y C Pytgo/

t2
go

C
N 0

2
nT � KN 0nL D N 0Vc P� C

N 0

2
nT � KN 0nL (24.7)

The gains N 0 and K are defined as follows:

N 0 D
6h2

�
e�h � 1 C h

�
2h3 C 3 C 6h � 6h2 � 12he�h � 3e�2h

(24.8)

and

K D
1

h2

�
e�h C h � 1

�
(24.9)

where h D tgo=T . Improved guidance schemes can be obtained with an appropriate
selection of a cost function that replaces J of (24.2). To this end, we next present the
preliminary assumptions that render this derivation feasible and realizable.

3 Mathematical Modeling

We shall make the following assumptions:

1. The end game is two-dimensional and gravity is compensated independently.
2. The speeds of the pursuer (the missile) P and the evader (the target) E are constant

during the end game (approximately true for short end games).
3. The trajectories of P and E can be linearized around their collision course.
4. The pursuer is more maneuverable than the evader.
5. The pursuer and the evader can measure their own accelerations in addition to

the line-of-sight rate and have an estimate of the time-to-go.
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Fig. 24.1 Geometry for homing missile guidance

6. Maneuvering dynamics of the pursuer is approximated by first-order transfer
functions with the respective time constants T.

We assume that the collision condition is satisfied (Fig. 24.1), namely,

Vp sin.�p0/ � Ve sin.�e0/ D 0 (24.10)

where .Vp; Ve/ and .�p0; �e0/ are the pursuer’s and evader’s velocities and nominal
heading angles, respectively. In this case, the nominal closing velocity Vc is given
by

Vc D � PR D Vp cos
�
�p0

�
� Ve cos.�e0/ (24.11)

and the (nominal) terminal time is given by

tf D
R

Vc

(24.12)

where R is the nominal length of the line of sight.
If we allow Ye and Yp to be the separation (see Fig. 24.1) of the pursuer and

the evader, respectively, from the nominal line of sight, and let y be the relative
separation (i.e., y D Ye � Yp), we obtain the following dynamic equation:

Py D PYe � PYp D Ve sin.�e0 C �e/ � Vp sin.�p0 C �p/ (24.13)

where �p; �e are the deviations from the base line of the pursuer’s and evader’s
headings, respectively, as a result of control actions applied. If these deviations are
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small enough, we may use small angles approximation to obtain

sin.�p0 C �p/ � sin.�p0/ C cos.�p0/�p (24.14)

sin.�e0 C �e/ � sin.�e0/ C cos.�e0/�e (24.15)

Substituting the results into (24.10) and (24.13), we find (using (24.10)) that Py

becomes

Py D PYe � PYp D Ve cos.�e0/�e � Vp cos.�p0/�p (24.16)

We can also find an expression for the line-of-sight (LOS) angle and its rate of
change. Recall that � is the line-of-sight angle, and, without loss of generality, let
�.0/ D 0. We observe that �.t/ is

�.t/ D
y

R
(24.17)

hence

P�.t/ D
d

dt

� y

R

�
D

y

Vc.tf � t /2
C

Py

Vc.tf � t /
(24.18)

and we have thus obtained Eq. (24.3).

4 Linear-Quadratic Differential Game

4.1 Problem Formulation

Define:

x1 D y; x2 D
dy

dt
; x3 D �Vp cos.�p0/

d�p

dt
(24.19)

u D �Vp cos.�p0/
d�pc

dt
; w D Ve cos.�e0/

d�e

dt
(24.20)

where x3 is the pursuer’s actual acceleration and is the corresponding command.
The problem then has the following state space representation

Px D Ax C Bu C Dw (24.21)

A D

2
4 0 1 0

0 0 1

0 0 � 1
T

3
5 B D

2
4 0

0
1
T

3
5 D D

2
4 0

1

0

3
5
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where u and w are the normal accelerations of the pursuer and the evader,
respectively, which play as the adversaries in the following minimax problem:

min
u

max
w

J D
a

2
x2

1.tf / C
b

2
x2

2.tf / C
c

2
x2

3.tf / C
1

2

Z tf

0

�
u2.t/ � �2w2.t/

�
dt

(24.22)

The coefficient a weights the miss distance and is always positive. The coeffi-
cients b and c weight the terminal velocity and acceleration, respectively, and are
nonnegative. The former is used to obtain the desired sensitivity reduction to time-
to-go errors, while the latter can be used to control the terminal acceleration. The
constant � penalizes evasive maneuvers and therefore, by assumption 4 of Sect. 1,
is required to be � > 1.

Notice that other possible formulations are employed in the next section, namely,
hard bounding the control actions rather than penalizing them in the cost. The basic
ideas concerning the terminal cost components, however, are widely applicable.

4.2 Optimal Control Law

The theory of linear-quadratic differential games is covered in many textbooks (e.g.,
Bryson and Ho 1975, Chap. 10 and Ben-Asher and Yaesh 1998, Chap. 2) as well
as elsewhere in this handbook; thus, we shall not cover it here. The solution to our
problem can be obtained by solving the following Riccati equation

� PP D PA C AT P � PBBT P C ��2PDDT P (24.23)

where the terminal conditions are

P .tf / D

2
4 a 0 0

0 b 0

0 0 c

3
5 (24.24)

and the optimal pursuer strategy includes state feedback as well as feedforward of
the target maneuvers (Ben-Asher and Yaesh 1998, Chap. 2). It is of the form

u D �BT P x (24.25)

Let

S � P �1 (24.26)

and define

S D

2
4 S1 S2 S3

S2 S4 S5

S3 S5 S6

3
5 (24.27)
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Thus,

PS D AS C SAT � BBT C ��2DDT (24.28)

and

S.tf / D

2
4 a�1 0 0

0 b�1 0

0 0 c�1

3
5 (24.29)

Equation (24.28) can be rewritten explicitly as

PS D

2
4 �2S2 �S4 � S3 �S5 C S3=T

�2S5 � 1=�2 �S6 C S5=T

2S6=T C 1=T 2

3
5 (24.30)

Since the equation for PS6 is independent of the others, the solution for S6 can be
easily obtained

S6.t/ D �
1

2T
C e2h

�
1

2T
C

1

c

	
(24.31)

where h D �
T

and � D tf � t: We can now continue to solve sequentially for S5–S1.
The following results have been obtained by Maple symbolic code.

S5.t/ D �
1

2
�

1

2
e2h �

Te2h

c
C

eh.c C T /

c
(24.32)

S4.t/ D � C
T

2
e2h C

T 2

c
e2h � 2Teh �

2T 2

c
eh �

�

�2
C

3T

2
C

T 2

c
C

1

b
(24.33)

S3.t/ D
T

2
C

T

2
e2h C

T 2e2h

c
� eh� �

ehT �

c
�

T 2eh

c
(24.34)

S2.t/ D
�2

2
� �

�
T 2

2
C

T 3

c

	
e2h �

T 2c C 2T 3

2c
C

�
T 2 �

2T 3

c
CT � C

T 2�

c

	
eh

C
�2

2�2
� T � �

T 2�

c
�

�

b
(24.35)

S1.t/ D
�3

3
C

�
T 3

2
C

T 4

c

	
e2h �

�
2T 2� �

2T 4

c
C

2T 3�

c

	
eh �

�3

3�2
C T �2

C T 2� C
T 4 C 2T 3�

c
C

T 2�2

c
C

�2

b
C

1

a
(24.36)
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The feedback gains can now be obtained by inverting S and by using Eqs. (24.26)
and (24.25). Due to the complexity of the results, this stage is best performed
numerically, rather than symbolically.

For the special case b D 0; c D 0, we obtain (see Ben-Asher and Yaesh 1998)

u D N 0Vc P� � KN 0nL (24.37)

The gain N 0 is defined as follows:

N 0 D
6h2.e�h � 1 C h/

6
aT 3 C 2.1 � ��2/h3 C 3 C 6h � 6h2 � 12he�h � 3e�2h

(24.38)

and K is as in (24.9)

K D
1

h2
.e�h C h � 1/ (24.39)

Notice that Eq. (24.8) is obtained from (24.38) for the case a ! 1; � ! 1

– a case of non-maneuvering target. When T ! 0 (ideal pursuers’ dynamics; see
Bryson and Ho 1975) one readily obtains from (24.38):

N 0 D
6h3

6
aT 3 C 2.1 � ��2/h3

D
3�3

3
a

C .1 � ��2/�3
I K D 0 (24.40)

For a ! 1; � ! 1, we recover Eq. (24.4), i.e., proportional navigation. Notice
that for (24.38) and (24.40), with a given weighting factor a, there is a minimum
value � D �cr . Below this value, there is a finite escape time for the controls and
the solution ceases to exist.

4.3 Numerical Results

In this section, we consider a numerical example that illustrates the merits of the
differential-game guidance law. The time-constant T of a hit-to-kill (HTK) missile
is taken to be 0.23 s and its maximal acceleration is 10 g. The conflict is assumed to
be a nearly head on with a closing velocity of 200 m/s. We analyze the effect on the
miss distance of a 1.5 g constant acceleration target maneuver which takes place at
an arbitrary time-to-go between 0 and 4T (with 0.1 s time increments). The effect of
four guidance laws will be analyzed:

1. Proportional navigation (PN) – Eq. (24.4)
2. Optimal control guidance law (OGL) – Eq. (24.8)
3. Linear-quadratic differential game guidance law based on ideal dynamics

(LQDG0) – Eq. (24.40). In the implementation, we will employ the following
parameters (with the appropriate units): a D 106I � D 1:5
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4. Linear-quadratic differential game guidance law based on realistic dynam-
ics (LQDG1) – Eq. (24.38). In the implementation, we will employ the following
parameters (with the appropriate units): a D 106I � D 7

The histograms for all four cases are depicted in Fig. 24.2a, b. Table 24.1 sum-
marizes the expected miss and the median (also known as a CEP – circular error
probability). In practice, the latter is the more common performance measure.

Clearly the guidance laws that consider the time delay (OGL and LQDG1) out-
perform the guidance laws which neglect it (PN and LQDG0). The differential game
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Fig. 24.2 Histograms of miss distance for four cases. (a) Miss distance for PN. (b) Miss distance
for OGL. (c) Miss distance for LQDG0. (d) Miss distance for LQDG1

Table 24.1 Miss distance
for various guidance law

Guidance laws Expected miss Median (CEP)

PN 0.564 m 0.513 m

OGL 0.339 m 0.177 m

LQDG0 0.477 m 0.226 m

LQDG1 0.290 m 0.102 m
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approach further improves the performance under both assumptions, especially for
the CEP performance measure.

5 Differential Games with Hard Bounds

This section is based on the works of Gutman and Shinar (Gutman 1979; Shinar
1981, 1989).

5.1 Problem Formulation

In this formulation, we make the following assumptions:

1. The end game is two-dimensional and gravity is compensated independently.
2. The speeds of the pursuer (the missile) P and the evader (the target) E are

constant during the end game (approximately true for short end games).
3. The trajectories of P and E can be linearized around their collision course.
4. Both missiles have and bounded lateral accelerations aP m and aEm, respectively.

The pursuer is more maneuverable than the evader .aP m > aEm/.
5. Maneuvering dynamics of both missiles are approximated by first-order transfer

functions with the respective time constants TE and TP . The evader is more agile
than the pursuer such that TE=aEm < TP =aP m

6. The pursuer and the evader can measure their own accelerations in addition to
the line-of-sight rate and have an estimate of the time-to-go.

The problem then has the following state space representation

Px D Ax C Bu � aPm C Dw � aem (24.41)

A D

2
6664

0 1 0 0

0 0 1 0

0 0 � 1
Tp

0

0 0 0 � 1
Te

3
7775 B D

2
6664

0

0
1

Tp

0

3
7775 D D

2
6664

0

0

0
1
Te

3
7775

where x3 is the pursuer’s actual acceleration, x4 is the evader’s actual acceleration,
and u .juj � 1/ and w .jwj � 1/ are the commanded normal accelerations of the
pursuer and the evader, respectively, which play as the adversaries in the following
minimax problem:

min
juj�1

max
jwj�1

J D jx1.tf /j D jET x.tf /j

ET D
�
1 0 0 0

�
(24.42)
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The problem involves two nondimensional parameters of physical significance:
the pursuer/evader maximum maneuverability ratio

� D
apm

aem

(24.43)

and the ratio of evader/pursuer time constants

" D
Te

Tp

(24.44)

Based on our assumptions, � > 1 and "� < 1. The transformation

Z.t/ D ET ˆ.tf ; t/x.t/ (24.45)

where ˆ.tf ; t/ is the transition matrix of the original homogeneous system, reduces
the vector equation (24.41) to a scalar one. It is easy to see from (24.42) and (24.45)
that the new state variable is the zero-effort miss distance. We will use as an
independent variable the normalized time-to-go

h D
tf � t

Tp

(24.46)

Define the normalized miss distance

Z.h/ D
Z.t/

T 2
p aEm

(24.47)

We obtain

Z.h/ D
�
x1 C x2Tph C x3T 2

E‰.h="/ � x4T 2
p ‰.h/

�
=T 2

p aEm (24.48)

where

‰.h/ D
�
e�h C h � 1

�
(24.49)

Eq. (24.48) imbeds the assumption of perfect information, meaning that all the
original state variables (x1, x2, as well as the lateral accelerations x3 and x4) are
known to both players. Using the nondimensional variables, the normalized game
dynamics become

dZ.h/

dh
D �‰.h/u � "‰.h="/w (24.50)

The nondimensional payoff function of the game is the normalized miss distance

J D Z.0/ (24.51)

to be minimized by the pursuer and maximized by the evader.
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5.2 Optimal Control Law

The Hamiltonian of the game is

H D �Z.�‰.h/u � "‰.h="/w/ (24.52)

where �Z is the costate variable, satisfying the adjoint equation

d�Z

dh
D �

@H

@Z
D 0 (24.53)

and the transversality condition

�Z.0/ D
@J

@Z

ˇ̌
ˇ̌
hD0

D sign.Z.0// (24.54)

The candidates for the optimal strategies are

u� D �sign.�‰.h/Z.0//w� D �sign."‰.h="/Z.0// (24.55)

Let us define

�.h/ D �.�‰.h/ � "‰.h="// (24.56)

The state equation becomes:

dZ�

dh
D �.h/sgn.Z.0// (24.57)

�.h/ is a continuous function, and since � > 1 and "� < 1, we get

�.h/ � .� � 1/h > 0 for h � 1

�.h/ � .�" � 1/
h2

2"
< 0 for h � 1 (24.58)

Thus, there is a solution to �.h/ D 0 for sufficiently large h.
A family of regular optimal trajectories are generated by integrating (24.57) from

h D 0. These trajectories do not cover the entire .Z; h/. In fact, the game solution
consists of decomposing the plane .Z; h/ into two regions (see Fig. 24.3). In the
regular region, D1 the optimal strategies are of bang-bang type given by (24.55), and
the value of the game is a unique function of the initial conditions. The boundaries
of this region are the pair of optimal trajectories Z�

C.h/ and Z�
�.h/, reaching

tangentially the h axis .Z D 0/, as shown in Fig. 24.3, at hs which is the solution of
the tangency equation �.h/ D 0. In the other region D0, enclosed by the boundaries
Z�

C.h/ and Z�
�.h/, the optimal control strategies are arbitrary. All the trajectories
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Fig. 24.3 Game space decomposition

starting in D0 must go through the point .Z D 0; h D hs/ where D0 terminates.
Therefore, the value of the game for the entire region of D0 is the finite integral of
�.h/ between h D 0 and h D hs:

Miss D

�
�.1 � "/‰.hs/ �

1

2
.� � 1/h2

s

	
(24.59)

When a trajectory starting in D0 reaches .Z D 0; h D hs/, the evader must
select the direction of its maximal maneuver (either to the right or to the left)
and the pursuer has to follow it. Therefore, the optimal evasive maneuver that
guarantees J � is a maximal maneuver in a fixed direction for the duration of at
least hs .

The important case of ideal evader dynamics .TE D " D 0/ was solved
first by Gutman (1979). Note that as the pursuer in practice does not know
TE , it may be a worst-case assumption. More importantly, the evader’s lateral
acceleration is not required, because it becomes a control variable; hence, the term
multiplying the actual lateral acceleration of the evader in Eq. (24.48) vanishes and
the implementation of the guidance law becomes simpler. In this case by letting
" ! 0 in (24.56), we obtain

�.h/ D �.�‰.h/ � h/ (24.60)
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Thus solving �.h/ D 0 leads to

hs D �‰.hs/ (24.61)

And from (24.58) and (24.61), the normalized miss is simply

Miss D

�
hs �

1

2
.� � 1/h2

s

	
(24.62)

Using the numerical example of the last section .� D 6:667; Tp D 0:23s; aE D

15/, we solve (24.61) to obtain hs � 0:335. With this value, we achieve from (24.62)
a miss of about 1.4 cm, i.e., nearly perfect hit. The values of the guaranteed
normalized miss distance for other values of the maneuverability ratio are depicted
in Fig. 24.4.

6 Trajectory Shaping in Linear-Quadratic Games

6.1 Objectives

An advantage of the linear-quadratic differential game (LQDG) formulation is its
flexibility, which enables it not only to include in the cost function additional
weights on other terminal variables but also to introduce some “trajectory shaping”
by augmenting the cost function with a running-cost (quadratic-integral) term on the
state variables. This term affects the trajectory and minimizes its deviations from
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zero. In Ben-Asher et al. (2004), it was discovered that the trajectory-shaping term
also leads to attenuation of the disturbances created by random maneuvering of the
evader.

6.2 Problem Formulation

Using the model of Sect. 2, we formulate the following minimax problem:

Px D Ax C Bu C Dw

A D

2
4 0 1 0

0 0 1

0 0 � 1
T

3
5 B D

2
4 0

0
1
T

3
5 D D

2
4 0

1

0

3
5 (24.63)

min
u

max
w

J D
b

2
x2

1.tf / C
1

2

Z tf

0

�
xT .t/Qx.t/ C u2.t/ � �2w2.t/

�
dt (24.64)

Q is a semi-positive-definite trajectory-shaping penalty matrix that penalizes the
state deviation from the nominal collision path. For simplicity, we restrict this case
to the following form:

Q D

2
4 q 0 0

0 0 0

0 0 0

3
5 (24.65)

Other forms of Q may also be of interest but are beyond the scope of our
treatment here.

6.3 Optimal Solution

The optimal pursuer strategy includes state feedback of the form (see Sect. 6 below)

u D �BT P x (24.66)

where

� PP D AT P C PA � PBT BP C ��2PDT DP C Q (24.67)

P .tf / D

2
4 b 0 0

0 0 0

0 0 0

3
5 (24.68)



24 Games in Aerospace: Homing Missile Guidance 1095

3.5

3

2.5

γcr

2

1.5

1
0 0.5 1 1.5 2 2.5

q
3 3.5

b=0
b=1000
b=10000

4 4.5 5

× 104

Fig. 24.5 Critical �

Notice that for a given interval Œ0; tf �, there exists a (minimal) �cr such that for
� � �cr the solution does exist (finite escape time). The search for this critical value
is the subject of the next subsection.

6.4 Asymptotic Values of �cr

For the sequel, we will consider an example with T D 0:25 s, tf D 4 s. Figure 24.5
depicts �cr as a function of q for three values of b, namely, 0, 1000, 10,000 as
obtained by searching the values of � where the solution for the DRE (24.67) ceases
to exist (finite escape times). There are two obvious limit cases for our problem,
namely, q D 0 and b D 0. The first case, q D 0, has the closed-form solution given
in Sect. 2. Thus, we require that the positive roots of the function

6

bT 3
C 2.1 � ��2/h3 C 3 C 6h � 6h2 � 12he�h � 3e�2h (24.69)

should not lie in Œ0; tf =T � (recall that h is the normalized time-to-go). Adding the
trajectory-shaping term with positive q to the cost J would require a higher �cr. The
second limit case results from Theorem 4.8 of Basar and Bernhard (1995) which
states that the problem (24.63) and (24.64) with b D 0 has a solution if and only if
the corresponding algebraic Riccati equation (ARE):

0 D AT P C PA � PBT BP C ��2PDT DP C Q (24.70)
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has a nonnegative definite solution. Thus, the intersection in Fig. 24.5 with the �cr

axis (i.e., q D 0) is also the critical result of Eq. (24.69) when its positive roots lie in
the game duration. On the other hand, the values for b D 0 (lower curve) coincide
with the �cr values of the ARE (Eq. (24.70)), the minimal values with nonnegative
solutions. As expected, increasing b and/or q (positive parameters in the cost) results
with monotone increase of �cr . Notice the interesting asymptotic phenomenon that
for very high q, the �cr values approach the AREs. The above observations can help
us to estimate lower and upper bounds for �cr . For a given problem – formulated
with a given pair .b; q/ – we can first solve Eq. (24.38) to find the critical values for
the case q D 0. This will provide a lower bound for the problem. We then can solve
the ARE with very high q .q � max.q; b//. The critical value of the ARE problem
provides an estimate for the upper value of �cr. Having obtained lower and upper
estimates, one should search in the relevant segment and solve the DRE (Eq. (24.67))
with varying � until a finite escape time occurs within the game duration.

6.5 Numerical Results

In this section, we consider a numerical example that illustrates the merits of the
differential-game guidance law with those of trajectory shaping. The time-constant
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T of the missile is taken to be 0.25 s and its maximal acceleration is 15 g. The conflict
is assumed to be a nearly head on and to last 4 s, with a closing velocity of 1500 m/s.
We analyze the effect on the miss distance of a 7.5 g constant acceleration target
maneuver which takes place at an arbitrary time. Because it is not advisable to work
at (or very close to) the true conjugate value of Fig. 24.5, we use � D �cr C0:1. The
effect of the parameter q is shown in Fig. 24.6 which presents the miss distance as
function of the target maneuvering time. As q increases, smaller miss distances are
obtained, up to a certain value of q for which the miss distance approaches a minimal
value almost independent of the switch point in the major (initial) part of the end
game. Larger miss distances are obtained only for a limited interval of switch points
tgo 2 ŒT; 3T �. Figure 24.7 compares the miss distances of the linear-quadratic game
(LQDG) with the bounded-control game (DGL) of Sect. 5. The pursuer control in
DGL is obtained by using the discontinuous control:

u D umaxsign.Z.tf // (24.71)

Z.tf / is

Z.h/ D .x1 C x2Tph C x3T 2‰.h// (24.72)
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Fig. 24.7 Miss distance for LQDG and hard bounded DG
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Fig. 24.8 Trajectories

where, as before

‰.h/ D .e�h C h � 1/ (24.73)

For most cases, the results of LQDG are slightly better. Only for evasive
maneuvers that take place in the time frame tf � t D T to tf � t D 3T is the
performance of the bounded-control game solution superior. Assuming a uniformly
distributed ts switch, between 0 and 4 s (as we did in Sect. 2), we get average miss
distances of 1.4 and 1.6 m for LQDG and DGL, respectively.

A heuristic explanation for the contribution of the trajectory-shaping term is as
follows. Figures 24.8 and 24.9 are representative results for a 9 g target at t D 0 (the
missile has a 30 g maneuverability). PN guidance and the classical linear-quadratic
game (q D 0; Sect. 3) avoid maneuvering at early stages because the integral of
the control term is negatively affected and deferring the maneuver is profitable.
It trades off early control effort for terminal miss. Adding the new term (with
q D 105) forces the missile to react earlier to evasive maneuvers at the expense
of a larger control effort, in order to remain closer to the collision course. This, in
fact, is the underlying philosophy of the hard-bound differential-game approach that
counteracts the instantaneous zero-effort miss.
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Fig. 24.9 Controls

7 Disturbance Attenuation Approach to Missile Guidance
with Measurement Uncertainty

In this section, we extend the linear-quadratic-game problem to include uncertainty
in the measurement. This is done by constructing a disturbance attenuation function,
which is converted into an indefinite cost criterion to be minimized by the control
and maximized by the measurement uncertainty, the process uncertainty, which
act like an intelligent adversary, and the initial conditions (Basar and Bernhard
1995; Rhee and Speyer 1991; Speyer and Jacobson 2010). The original formulation
was using the linear-quadratic-Gaussian problem Speyer (1976) and presented in
a general form in Speyer and Chung (2008), whose solutions reduce to the same
linear-quadratic-game problem that includes uncertainty in the measurement. This
formulation generalizes the results of Sect. 3 and allows greater latitude in the
guidance law design. We first present the general disturbance attenuation problem
and then specialize it to the missile guidance problem.

7.1 The General Disturbance Attenuation Problem

The objective is to design a compensator based only on the measurement history,
such that the transmission from the disturbances to the performance outputs are
limited in some sense. To make these statements more explicit, consider the
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dynamical system

Px D Ax C Bu C �w; x.t0/ D xo; (24.74)

z D Hx C v; (24.75)

where z 2 Rq is the measurement, w is the process disturbance error, v is
the measurement disturbance error, and x0 is an unknown initial condition. The
performance outputs are measures of desired system performance, such as good
tracking error or low actuation inputs to avoid saturation. The general measure can
be written as

y D Cx C Du; (24.76)

where y 2 R
p .

A general representation of the input-output relationship between disturbances
.v; w; x0/ and output performance measure y is the disturbance attenuation function

Da D
kyk2

2

k Qwk2
2

; (24.77)

where

kyk2
2

	
D

1

2



xT .tf /Qf xT .tf / C

Z tf

t0

.xT Qx C uT Ru/dt

�
; (24.78)

kyk2 	
D yT yDxT C T CxCuT DT Du; C T C DQ; C T DD0; DT DDR; (24.79)

and Qw D ŒwT ; vT ; xT
0 �T , with

k Qwk2
2 D

1

2


Z tf

t0

.wT W �1w C vT V �1v/dt C xT
0 P �1

0 x0

�
: (24.80)

In this formulation, the disturbances w and v are not dependent (thus, the cross terms
in Eq. (24.80) are zero), and W and V are the associated weighings, respectively,
that represent the spectral densities of the disturbances.

The disturbance attenuation problem is to find a controller u D u.Zt / 2 U where
the measurement history Zt D fz.s/ W 0 � s � tg so that the disturbance attenuation
problem is bounded as

Da � �2; (24.81)

for all admissible sequences of w and v, x0
Rn. The choice of �2 cannot be
completely arbitrary. There exists a �2

c where if �2 � �2
c , the solution to the problem,

has a finite escape time. This problem is converted to a differential game problem
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with performance index obtained from manipulating Eqs. (24.77) and (24.81) as

J .u; Qw W t0; tf / D kyk2
2 � �2k Qwk2

2: (24.82)

For convenience, define a process for a function Ow.t/ as

Owb
a

	
D f Ow.t/ W a � t � bg : (24.83)

The differential game is then to find the minimax solution as

J ı.uı; Qwı W t0; tf / D min
u

tf
t0

max
w

tf
t0

;v
tf
t0

;x0

J .u; Qw W t0; tf /: (24.84)

Assume that the min and max operations are interchangeable. Let t be the “current”
time. This problem is solved by dividing the problem into a future part, � > t , and
past part, � < t , and joining them together with a connection condition. Therefore,
expand Eq. (24.84) as

J ı.uı; Qwı W t0; tf / D min
ut

t0

max
wt

t0
;vt

t0
;x0

"
J .u; Qw W t0; t/ C min

u
tf
t

max
w

tf
t ;v

tf
t

J .u; Qw W t; tf /

#
:

(24.85)

Note that for the future time interval no measurements are available. Therefore,
minimizing with respect to v

tf
t , given the form of the performance index (24.82),

produces the worst future process for v
tf
t as

v.�/ D 0; t < � � tf: (24.86)

Therefore, the game problem associated with the future reduces to a game between
only u and w. The controller of Eq. (24.25) is

uı.t/ D �R�1BT SG.tf ; t I Qf /x.t/; (24.87)

where x is not known and SG.tf ; t I Qf / is propagated in (24.90) and is also given
in (24.23). The objective is to determine x as a function of the measurement history
by solving the problem associated with the past, where t is the current time and
t D t0 is the initial time.

The optimal controller u D u.Zt / is now written as

uıD � R�1BT SG.tf ; t I Qf /.I � ��2P .t0; t I P0/SG.tf ; t I Qf //�1 Ox.t/Dƒ.t/ Ox.t/:

(24.88)
where

POx.t/ D A.t/ Ox.t/ C B.t/u.t/ C ��2P .t0; t I P0/Q.t/ Ox.t/
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C P .t0; t I P0/H T .t/V �1.t/.z.t/ � H.t/ Ox.t//; Ox.t0/ D 0; (24.89)

SG.tf ; t I Qf / is propagated backward by the matrix Riccati differential equation
(RDE)

� PSG.tf ; t I Qf / D Q.t/ C SG.tf ; t I Qf /A.t/ C AT .t/SG.tf ; t I Qf /

�SG.tf ; t I Qf /.B.t/R�1.t/BT .t/ � ��2�.t/W .t/�T .t//SG.tf ; t I Qf /;

SG.tf ; tf I Qf / D Qf; (24.90)

and P .t0; t I P0/ is propagated forward

PP .t0; t I P0/ D A.t/P .t0; t I P0/ C P .t0; t I P0/AT .t/ C �.t/W .t/�T .t/

�P .t0; t I P0/.H T .t/V �1.t/H.t/ � ��2Q.t//P .t0; t I P0/;

P .t0; t0I P0/ D P0; (24.91)

The controller (24.88) is optimal if and only if

1. There exists a solution P .t0; t I P0/ to the RDE (24.91) over the interval Œt0; tf �.
2. There exists a solution SG.tf ; t I Qf / to the RDE (24.90) over the interval Œt0; tf �.
3. P �1.t0; t I P0/ � ��2SG.tf ; t I Qf / > 0 over the interval Œt0; tf �.

The third condition is known as the spectral radius condition.

7.2 Disturbance Attenuation Controller Specialized to Missile
Guidance

As considered in Sect. 4.1 in the cost criterion (24.22), there is no weighting on the
state except at the terminal time, i.e., Q.t/ D 0. As shown in Speyer (1976), the
guidance gains can be determined in closed form, since the RDE (24.90), which is
solved backward in time, can be determined in closed form. Therefore, the guidance
gains are similar to those of (24.25) where SG.tf ; t I Qf /, which is propagated
by (24.90) and is similar to (24.23), and the filter in (24.89) reduces to the Kalman
filter, where P .t0; t I P0/ in (24.91) is the variance of the error in the state estimate.
However, the worst state, .I � ��2P .t0; t I P0/SG.tf ; t I Qf //�1 Ox.t/, rather than
just the state estimate, Ox.t/, operating on the guidance gains (24.88), can have a
significant effect, depending on the value chosen for ��2.

It has been found useful in designing homing guidance systems to idealize the
equations of motion of a symmetric missile to lie in a plane. In this space using
very simple linear dynamics, the linear quadratic problem produces a controller
equivalent to the proportional navigation guidance law of Sect. 4, used in most
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homing guidance systems. The geometry for this homing problem is given in
Fig. 24.1 where the missile pursuer is to intercept the target.

The guidance system includes an active radar and gyro instrumentation for
measuring the line-of-sight (LOS) angle � , a digital computer, and autopilot
instrumentation such as accelerometers, gyros, etc. The lateral motion of the missile
and target perpendicular to the initial LOS is idealized by the following four state
models using (24.19) and (24.20):

2
664

Px1

Px2

PnT

PAM

3
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2
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0 1 0 0
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3
775 C

2
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0
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3
775 u C

2
664

0

0

1

0

3
775 w (24.92)

where the state x D
�
x1 x2 nT AM

�T
, with x1 is the lateral position perpendicular to

the initial LOS, x2 is the relative lateral velocity, nT is the target acceleration normal
to the initial LOS, AM is the missile acceleration normal to the initial LOS, u is the
missile acceleration command normal to the initial LOS, W1 is the dominant pole
location of the autopilot, Wz is the non-minimal phase zero location of the autopilot,
2aT is the assumed target lag, and w is the adversary command weighted in the
cost criterion by W . The missile autopilot and target acceleration are approximately
included in the guidance formulation in order to include their effect in the guidance
gains. Therefore, (24.92) is represented by (24.75). Note that (24.92) includes a zero
and a lag, somewhat extending (24.21), which has only the lag.

The measurement sequence, for small line-of-sight angles, is approximately

y D � C v � x1=Vc�g C v (24.93)

where Vc is the closing velocity, �g D tf � t is the time-to-go, and v is measurement
noise with weighting V . The weighting V may not be known a priori and may
be estimated online. v is the noise into the radar and is composed of scintillation,
glint, receiver, and jamming noise. Vc�g is estimated online by using an active radar.
Therefore, (24.92) and (24.93) are represented by (24.75).

A useful gain to calculate is the navigation ratio (NR) which operates on the
estimated line-of-sight rate OP� . The gains are the row vector ƒ in (24.88) where the
scalar R is renamed N� . This navigation ratio is calculated directly from the gain ƒx1

operating on Ox1

NR D �2
gƒx1 : (24.94)

Note that ƒx1 D ƒx2=�g where ƒx2 is the gain operating on OPx1 D Ox2 and OP� D

� Ox1=Vc�2
g C Ox2=Vc�g . The guidance law, sometimes called “biased proportional

navigation,” is

u D NRVc
OP� C ƒnT On C ƒAM AM : (24.95)
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where OP� is the estimated line-of-sight rate, ƒnT is the gain on target acceleration,
and ƒAM is the gain on missile acceleration. The missile acceleration AM is not
obtained from the Kalman filter but directly from the accelerometer on the missile
and is assumed to be very accurate. Note that the guidance law (24.95) for the system
with disturbances generalizes the deterministic law given in (24.37).

7.3 Numerical Results

The results reported here were first reported in Speyer (1976) for the guidance
law determined by solving the linear exponential Gaussian problem. The guidance
law given by (24.95) was programmed into a high-fidelity digital simulation. This
nonlinear digital simulation models in three dimensions a realistic engagement
between missile and target. The parameter �2 is chosen so that the gains of the
disturbance attenuation guidance scheme are close to those of the baseline guidance
gains designed on LQG theory when there is no jamming noise entering the
active radar of the missile. This cannot be made precise because of the presence
of scintillation, fading, and radar receiver noise. Intuitively, the advantage of the
adaptive guidance is that during engagements when the missile has a large energy
advantage over the target, the disturbance attenuation formulation is used (�2 > 0).
This allows the gains to increase over the baseline gain when jamming noise is
present since the measurement variance will increase. This variance is estimated
online Speyer (1976). With increased gains, a trade-off is made between control
effort and decreased terminal variance of the miss. The objective of the guidance
scheme is to arrive at a small miss distance. Since this is tested on a nonlinear
simulation, the added control effort is seen to bring in the tails of the distribution of
the terminal miss distance as shown by Monte Carlo analysis.

All shots were against a standard target maneuver of about 1.25 gs at an altitude
(H ) of about 24.0 km and at 15 km down range (R). In Table 24.2, a comparison
is made between relative miss distances of the baseline (LQG) and the disturbance
attenuation guidance with the guidance based on the disturbance attenuation in the
form of a ratio with the LQG miss distances in the numerator. The relative misses
between the LQG and the disturbance attenuation guidance laws for 40, 66, and
90 % of the runs are found to lie below 1:0 as well as some of the relative largest
misses.

That is, with a large jamming power of 50,000 W and a Monte Carlo average of
50 runs, it is seen that the baseline performs slightly better than the new controller.
However, for a few runs, large misses were experienced by the baseline guidance (cf.
Table 24.2); the worst having a relative miss of 4.13. Placed in a standard jamming
power environment of 2500 W, over 25 runs the new controller and the baseline
are almost identical although the relative maximum miss of the baseline to the
new controller is 0.58. This relative miss by the disturbance attenuation controller
is smaller than the largest miss experienced by the baseline guidance which falls
within the 90th percentile when large jamming power occurs. The important
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Table 24.2 Ratio of miss distances between baseline LQG controller and disturbance attenuation
controller

High jamming power Standard jamming power

Percentile (50,000 W) (2500 W)

40th 0.88 0.98

66th 0.80 1.01

90th 0.99 0.92

Largest misses 4.13, 1.63, 1.13, 1.06 0.58

0
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Fig. 24.10 Navigation ratio using disturbance attenuation gains

contribution of the disturbance attenuation controller is in its ability to pull in the
tails of the miss distance distribution especially for high jamming while achieving
similar performance as the baseline under standard jamming. The variations in the
navigation ratio (NR) due to different jamming environments is plotted for a typical
run in Fig. 24.10 against time-to-go (�g). This gain increases proportionally to the
jamming noise environment which is estimated online. The LQG gain forms a lower
bound on the disturbance attenuation gain. Note that the navigation ratio increases
even for large �g as the jamming power increases. The baseline gains are essentially
the adaptive gains when no jamming noise is present. Fine tuning the disturbance
attenuation gain is quite critical since negative gain can occur if P is too large
because the spectral radius condition, P �1.t0; t I P0/���2SG.tf ; t I Qf / > 0, can be
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violated. Bounds on the largest acceptable P should be imposed. Note that the gains
below the terminal time constant of the autopilot (see Fig. 24.10) are not effective.

8 Conclusions

Missile guidance appears to be the premier example in aerospace where differential
games has been an enabling technology. Presented here are algorithms for the
real-time application of differential games with important physical constraints. The
homing missile problem is only approximately solved. Time-to-go estimates are
heuristic, and system observability is dependent on the trajectory. In essence, the
homing missile guidance problem is a dual-control differential game. Approxi-
mately solving this problem will allow much new innovation.
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Abstract

This chapter presents a game theoretic framework for studying Stackelberg rout-
ing games on parallel transportation networks. A new class of latency functions is
introduced to model congestion due to the formation of physical queues, inspired
from the fundamental diagram of traffic. For this new class, some results from
the classical congestion games literature (in which latency is assumed to be a
nondecreasing function of the flow) do not hold. A characterization of Nash
equilibria is given, and it is shown, in particular, that there may exist multiple
equilibria that have different total costs. A simple polynomial-time algorithm is
provided, for computing the best Nash equilibrium, i.e., the one which achieves
minimal total cost. In the Stackelberg routing game, a central authority (leader)
is assumed to have control over a fraction of the flow on the network (compliant
flow), and the remaining flow responds selfishly. The leader seeks to route
the compliant flow in order to minimize the total cost. A simple Stackelberg
strategy, the non-compliant first (NCF) strategy, is introduced, which can be
computed in polynomial time, and it is shown to be optimal for this new class
of latency on parallel networks. This work is applied to modeling and simulating
congestion mitigation on transportation networks, in which a coordinator (traffic
management agency) can choose to route a fraction of compliant drivers, while
the rest of the drivers choose their routes selfishly.

Keywords
Transportation networks � Non-atomic routing game � Stackelberg routing
game � Nash equilibrium � Fundamental diagram of traffic � Price of stability

1 Introduction

1.1 Motivation and Related Work

Routing games model the interaction between players on a network, where the
cost for each player on an edge depends on the total congestion of that edge.
Extensive work has been dedicated to the study of Nash equilibria for routing
games (or Wardrop equilibria in the transportation literature, Wardrop 1952), in
which players selfishly choose the routes that minimize their individual costs
(latencies) (Beckmann et al. 1956; Dafermos 1980; Dafermos and Sparrow 1969).
In general, Nash equilibria are inefficient compared to a system optimal assignment
that minimizes the total cost on the network (Koutsoupias and Papadimitriou 1999).
This inefficiency has been characterized for different classes of latency functions
and network topologies (Roughgarden and Tardos 2004; Swamy 2007). This helps
understand the inefficiencies caused by congestion in communication networks and
transportation networks. In order to reduce the inefficiencies due to selfish routing,
many instruments have been studied, including congestion pricing (Farokhi and
Johansson 2015; Ozdaglar and Srikant 2007), capacity allocation (Korilis et al.
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1997b), and Stackelberg routing (Aswani and Tomlin 2011; Korilis et al. 1997a;
Roughgarden 2001; Swamy 2007).

1.1.1 Online Learning and Decision Dynamics
in the Routing Game

The Nash equilibrium concept gives a characterization of the state of a network at
equilibrium but does not specify how players arrive to the equilibrium. The study of
decision dynamics provides an answer to this question and has been a fundamental
topic in economics (Blume 1993), game theory (Shamma 2015; Weibull 1997),
and online learning theory (Cesa-Bianchi and Lugosi 2006). These models usually
assume that the game is played repeatedly (as opposed to a one-shot game) and
that each player faces a sequential decision problem: At each iteration, the player
takes an action and observes an outcome (which is also affected by the decisions of
other players). The player can then use the outcome to update her decision on the
next iteration. One of the natural questions that can be studied is whether the joint
player decisions converge to an invariant set (typically, the Nash equilibrium of the
one-shot game, or some other equilibrium concept). This question has a long history
that dates back to Hannan (1957) who defined the regret and Blackwell (1956) who
defined approachability, which became essential tools in the modeling and analysis
of repeated games and convergence of player dynamics.

Decision dynamics have since been studied for several classes of games, such
as potential games (Monderer and Shapley 1996), and many results provide
convergence guarantees under different classes of decision dynamics (Benaïm 2015;
Fox and Shamma 2013; Hofbauer and Sandholm 2009; Sandholm 2001). Although
we do not study decision dynamics in this chapter, we review some of the work most
relevant to routing games.

Routing games are a special case of potential games (Sandholm 2010), and
decisions dynamics have been studied in the context of routing games: Blum et al.
(2006) study general no-regret dynamics, Kleinberg et al. (2009) and Krichene
et al. (2015a,b) study other classes of dynamics for which they give stronger
convergence guarantees, and Fischer et al. (2010) studies a similar, sampling-based
model. Several of these results relate the discrete algorithm to a continuous-time
limit known as the replicator ODE, which is well studied in evolutionary game
theory in general (Weibull 1997), and in routing games in particular (Drighès et al.
2014; Fischer and Vöcking 2004). Several studies build on these models of decision
dynamics, to pose and solve estimation and control problems, such as estimating
the latency functions on the network (Thai et al. 2015), estimating the learning
rates of the dynamics (Lam et al. 2016), and solving optimal routing under selfish
response (Krichene et al. 2016).

1.1.2 Stackelberg Routing Games
In the Stackelberg routing game, a subset of the players, corresponding to a fraction
of the total flow, hereafter called the compliant flow, is centrally assigned by a
coordinator (leader), then the remaining players (followers) choose their routes
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selfishly. The objective of the leader is to assign the compliant flow in a manner
that minimizes a system-wide cost function, while anticipating the followers’ selfish
response. This setting is relevant in the planning and operation of transportation
and communication networks. In transportation networks, advances in traveler
information systems have made it possible to interact with individual drivers and
exchange information through GPS-enabled smartphone applications or vehicular
navigation systems (Work et al. 2010). These devices can be used by a traffic
control center to provide routing advice that can improve the overall efficiency of
the network. Naturally, the question arises on how the traffic control center should
coordinate with the compliant drivers while accounting for the selfish response of
other drivers, hence the importance of the Stackelberg routing framework. One
might argue that the drivers who are offered routing advice are not guaranteed
to follow the suggested routes, especially when these routes do not have minimal
latency (in order to improve the system-wide efficiency, some drivers will be
assigned routes that are suboptimal in the Nash sense). However, in some cases,
it can be reasonably assumed that a fraction of the drivers will choose the routes
suggested by the coordinator, despite immediate fairness concerns. For example,
some drivers may have sufficient external incentives to be compliant with the
coordinator. In addition, the compliant flow may also include drivers who care about
the system-wide efficiency.

Stackelberg routing on parallel networks has been studied for the class of
nondecreasing latency functions, and it is known that computing the optimal
Stackelberg strategy is NP-hard (Roughgarden 2001). This led to the design of
polynomial time approximate strategies such as largest latency first (Roughgarden
2001; Swamy 2007). While this class of latency functions provides a good model of
congestion for a broad range of networks such as communication networks, it does
not fully capture congestion phenomena in transportation. The main difference is
that in transportation networks, the queuing of traffic results in an increase in density
of vehicles (Daganzo 1994; Lebacque 1996; Lighthill and Whitham 1955; Richards
1956; Work et al. 2010), which in turn affects the latency. This phenomenon is
sometimes referred to as horizontal queueing, since the queuing of vehicles takes
physical space, as opposed to vertical queuing, such as queuing of packets in a
communication link, which does not take physical space, and the notion of density
is absent. Several authors have proposed different models of congestion to capture
congestion phenomena specific to horizontal queuing and characterized the Nash
equilibria under these models (Boulogne et al. 2001; Friesz and Mookherjee 2006;
Lo and Szeto 2002; Wang et al. 2001). We introduce a new class of latency functions
for congestion with horizontal queuing and study Nash and Stackelberg equilibria
under this class. We restrict our study to parallel networks. Although simple, the
parallel topology can be of practical importance in several situations, such as traffic
planning and analysis. Even though transportation networks are rarely parallel,
they can be approximated by a parallel network, for example, by only considering
highways that connect two highly populated areas (Caltrans 2010). Figure 25.9
shows one such network that connects San Francisco to San Jose. We consider this
network in Sect. 6.
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1.2 Congestion on Horizontal Queues

The classical model for vertical queues assumes that the latency `n.xn/ on a link n is
a nondecreasing function of the flow xn on that link (Babaioff et al. 2009; Beckmann
et al. 1956; Dafermos and Sparrow 1969; Roughgarden and Tardos 2002; Swamy
2007). However, for networks with horizontal queues (Lebacque 1996; Lighthill and
Whitham 1955; Richards 1956), the latency not only depends on the flow but also
on the density. For example, on a transportation network, the latency depends on
the density of cars on the road (e.g., in cars per meter), and not only on the flow
(e.g., in cars per second), since for a fixed value of flow, a lower density means
higher velocity, hence lower latency. In order to capture this dependence on density,
we introduce and discuss a simplified model of congestion that takes into account
both flow and density. Let �n be the density on link n, assumed to be uniform, for
simplicity, and let the flow xn be given by a continuous, concave function of the
density:

x�
n W Œ0; �max

n � ! Œ0; xmax
n �

�n 7! xn D x�
n.�n/

Here, xmax
n > 0 is the maximum flow or capacity of the link, and �max

n is the
maximum density that the link can hold. The function x

�
n is determined by the

physical properties of the link. It is termed the flux function in conservation law
theory (Evans 1998; LeVeque 2007) and the fundamental diagram in traffic flow
theory (Daganzo 1994; Greenshields 1935; Papageorgiou et al. 1989). In general, it
is a non-injective function. We make the following assumptions:

• There exists a unique density �crit
n 2 .0; �max

n / such that x
�
n.�crit

n / D xmax
n , called

critical density. When �n 2 Œ0; �crit
n �, the link is said to be in free-flow, and when

�n 2 .�crit
n ; �max

n /, it is said to be congested.
• In the congested regime, x

�
n is continuous decreasing from .�crit

n ; �max
n / onto

.0; xmax
n /. In particular, lim�n!�max

n
x

�
n.�n/ D 0 (the flow reduces to zero when

the density approaches the maximum density).

These are standard assumptions on the flux function, following traffic flow the-
ory (Daganzo 1994; Greenshields 1935; Papageorgiou et al. 1989). Additionally,
we assume that in the free-flow regime, x

�
n is linearly increasing in �n, and

since x
�
n.�crit

n / D xmax
n , we have in the free-flow regime x

�
n.�n/ D xmax

n �n=�crit
n .

The assumption of linearity in free-flow is the only restrictive assumption, and
it is essential in deriving the results on optimal Stackelberg strategies. Although
somewhat restrictive, this assumption is common, and the resulting flux model
is widely used in modeling transportation networks, such as in (Daganzo 1994;
Papageorgiou et al. 1990). Figure 25.1 shows examples of such flux functions.

Since the density �n and the flow xn are assumed to be uniform on the link,
the velocity vn of vehicles on the link is given by vn D xn=�n, and the latency is
simply Ln=vn D Ln�n=xn where Ln is the length of link n. Thus to a given value
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xmax
n

ρn

xρ
n

ρmax
nρcrit

n

xmax
n

ρn

�ρ
n

an

ρcrit
n

ρmax
n xn

�n

an

xmax
n

Fig. 25.1 Examples of flux functions for horizontal queues (left) and corresponding latency
as a function of the density `

�
n.�n/ (middle) and as a function of the flow and the congestion

state `n.xn; mn/ (right). The free-flow (respectively congested) regime is shaded in green
(respectively red)

of the flow, there may correspond more than one value of the latency, since the flux
function is non-injective in general. In other words, a given value xn of flow of cars
on a road segment can correspond to:

• Either a large concentration of cars moving slowly (high density, the road is
congested), in which case the latency is large

• Or few cars moving fast (low density, the road is in free-flow), in which case the
latency is small

1.3 Latency Function for Horizontal Queues

Given a flux function x
�
n , the latency can be easily expressed as a nondecreasing

function of the density:

`�
n W Œ0; �max

n � ! RC

�n 7! `�
n.�n/ D

Ln�n

x
�
n.�n/

(25.1)
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From the assumptions on the flux function, we have:

• In the free-flow regime, the flux function is linearly increasing, xn.�n/ D
xmax

n

�crit
n

�n.

Thus the latency is constant in free-flow, `
�
n.�n/ D

Ln�crit
n

xmax
n

. We will denote its

value by an
�
D

Ln�crit
n

xmax
n

, called henceforth the free-flow latency.

• In the congested regime, x
�
n is bijective from .�crit

n ; �max
n / to .0; xmax

n /. Let

�cong
n W .0; xmax

n / ! .�crit
n ; �max

n /

xn 7! �cong
n .xn/

be its inverse. It maps the flow xn to the unique congestion density that
corresponds to that flow. Thus in the congested regime, latency can be expressed
as a function of the flow, xn 7! `

�
n.�

cong
n .xn//. This function is decreasing as the

composition of the decreasing function �
cong
n and the increasing function `

�
n.

We can therefore express the latency as a function of the flow in each of the
separate regimes: free-flow (low density) and congested (high density). This leads
to the following definition of HQSF latencies (horizontal queues, single-valued in
free-flow). We introduce a binary variable mn 2 f0; 1g which specifies whether the
link is in the free-flow or the congested regime.

Definition 1 (HQSF latency class) A function

`n W Dn ! RC

.xn; mn/ 7! `n.xn; mn/
(25.2)

defined on the domain1

Dn D Œ0; xmax
n � � f0g [ .0; xmax

n / � f1g

is a HQSF latency function if it satisfies the following properties:

(A1) In the free-flow regime, the latency `n.�; 0/ is single valued (i.e., constant).
(A2) In the congested regime, the latency xn 7! `n.xn; 1/ is decreasing on

.0; xmax
n /.

(A3) limxn!xmax
n

`n.xn; 1/ D an D `n.xmax
n ; 0/.

1The latency in congestion `n.�; 1/ is defined on the open interval .0; xmax
n /. In particular, if xn D

0 or xn D xmax
n then the link is always considered to be in free-flow. When the link is empty

(xn D 0), it is naturally in free-flow. When it is at maximum capacity (xn D xmax
n ) it is in fact on

the boundary of the free-flow and congestion regions, and we say by convention that the link is in
free-flow.
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Property (A1) is equivalent to the assumption that the flux function is linear
in free-flow. Property (A2) results from the expression of the latency as the
composition `

�
n.�

cong
n .xn//, where `

�
n is increasing and �

cong
n is decreasing. Property

(A3) is equivalent to the continuity of the underlying flux function x
�
n .

Although it may be more natural to think of the latency as a nondecreasing
function of the density, the above representation in terms of flow xn and congestion
state mn will be useful in deriving properties of the Nash equilibria of the routing
game. Finally, we observe, as an immediate consequence of these properties, that the
latency in congestion is always greater than the free-flow latency: 8xn 2 .0; xmax

n /,
`n.xn; 1/ > an. Some examples of HQSF latency functions (and the underlying flux
functions) are illustrated in Fig. 25.1. We now give a more detailed derivation of a
latency function from a macroscopic fundamental diagram of traffic.

1.4 A HQSF Latency Function from a Triangular Fundamental
Diagram of Traffic

In this section we derive one example of an HQSF latency function `n from the
fundamental diagram of traffic, corresponding to the top row in Fig. 25.1. We
consider a triangular fundamental diagram, used to model traffic flow, for example,
in (Daganzo 1994, 1995), i.e., a piecewise affine flux function x

�
n , given by

x�
n.�n/ D

(
v

f
n �n if �n 2 Œ0; �crit

n �

xmax
n

�n��max
n

�crit
n ��max

n
if �n 2 .�crit

n ; �max
n �

The flux function is linear in free-flow with positive slope v
f
n called free-

flow speed, affine in congestion with negative slope vc
n

�
D xmax

n =.�crit
n � �max

n /,
and continuous (thus v

f
n �crit

n D xmax
n ). By definition, it satisfies the assumptions in

Sect. 1.2. The latency is given by Ln�n=x
�
n.�n/ where Ln is the length of link n. It

is then a simple function of the density

`�
n.�n/ D

8<
:

Ln

v
f
n

�n 2 Œ0; �crit
n �

Ln�n

vc
n.�n��max

n /
�n 2 .�crit

n ; �max
n �

which can be expressed as two functions of flow: a constant function `n.�; 0/ when
the link is in free-flow and a decreasing function `n.�; 1/ when the link is congested

`n.xn; 0/ D
Ln

v
f
n

`n.xn; 1/ D Ln

�
�max

n

xn

C
1

vc
n

�
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This defines a function `n that satisfies the assumptions of Definition 1 and thus
belongs to the HQSF latency class. Figure 25.1 shows one example of a triangular
fundamental diagram (top left) and the corresponding latency function `n (top right).

2 Game Model and Main Results

2.1 The Routing Game

We consider a non-atomic routing game on a parallel network, shown in Fig. 25.2.
Here non-atomic means that the game involves a continuum of players, where each
player corresponds to an infinitesimal (non-atomic) amount of flow (Roughgarden
and Tardos 2004; Schmeidler 1973). The network has a single source and a
single sink. Connecting the source and sink are N parallel links indexed by n 2

f1; : : : ; N g. We assume, without loss of generality, that the links are ordered by
increasing free-flow latencies. To simplify the discussion, we further assume that
free-flow latencies are distinct. Therefore we have a1 < a2 < � � � < aN . The
network is subject to a constant positive flow demand r at the source. We will denote
by .N; r/ an instance of the routing game played on a network with N parallel links
subject to demand r . The state of the network is given by a feasible flow assignment
vector x 2 R

N
C such that

PN
nD1 xn D r where xn is the flow on link n and a

congestion state vector m 2 f0; 1gN where mn D 0 if the link is in free-flow and
mn D 1 if the link is congested, as defined above. All physical quantities (density
and flow) are assumed to be static and uniform on the link.

Every non-atomic player chooses a route in order to minimize his/her individual
latency (Roughgarden and Tardos 2002). If a player chooses link n, his/her latency is
given by `n.xn; mn/, where `n is a HQSF latency function. We assume that players
know the latency functions.

Pure Nash equilibria of the game (which we will simply refer to as Nash
equilibria) are assignments .x; m/ such that every player cannot improve his/her
latency by switching to a different link.

Definition 2 (Nash Equilibrium) A feasible assignment .x; m/ 2 R
N
C � f0; 1gN

is a Nash equilibrium of the routing game instance .N; r/ if 8n 2 supp .x/, 8k 2

f1; : : : ; N g, `n.xn; mn/ � `k.xk; mk/.

Here supp .x/ D
n
n 2 f1; : : : ; N gjxn > 0

o
denotes the support of x. As a

consequence of this definition, all links in the support of x have the same latency

Fig. 25.2 Network with N

parallel links under demand r

O D
r

1
2
...
N

r
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Fig. 25.3 Example of Nash equilibria for a three-link network. One equilibrium (left) has one link
in free-flow and one congested link. A second equilibrium (right) has three congested links

`0, and links that are not in the support have latency greater than or equal to `0.
We will denote by NE.N; r/ the set of Nash equilibria of the instance .N; r/. We
note that a Nash equilibrium for the routing game is a static equilibrium; we do not
model dynamics of density or flow. Figure 25.3 shows an example of a routing game
instance and resulting Nash equilibria.

While a Nash equilibrium achieves minimal individual latencies, it does not
minimize, in general, the system cost or total cost defined as follows:

Definition 3 The total cost of an assignment .x; m/ is the total latency experienced
by all players:

C .x; m/ D

NX
nD1

xn`n.xn; mn/: (25.3)

As detailed in Sect. 3, under the HQSF latency class, the routing game may
have multiple Nash equilibria that have different total costs. We are interested, in
particular, in Nash equilibria that have minimal cost, which are referred to as best
Nash equilibria (BNE).

Definition 4 (Best Nash Equilibria) The set of best Nash equilibria is the set of
equilibria that minimize the total cost, i.e.,

BNE.N; r/ D arg min
.x;m/2NE.N;r/

C .x; m/: (25.4)

2.2 Stackelberg Routing Game

In the Stackelberg routing game, a coordinator (a central authority) is assumed to
have control over a positive fraction ˛ of the total flow demand r . We call ˛ the
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compliance rate. The coordinator wants to route the compliant flow ˛r in a way
that minimizes the system cost, while anticipating the response of the rest of the
players, assumed to choose their routes selfishly after the strategy of the coordinator
is revealed. We will refer to the flow of selfish players .1�˛/r as the non-compliant
flow. More precisely, the game is played as follows:

• First, the coordinator (the leader) chooses a Stackelberg strategy, i.e., an assign-
ment s 2 R

N
C of the compliant flow (such that

PN
nD1 sn D ˛r).

• Then, the Stackelberg strategy s of the leader is revealed, and the non-compliant
players (followers) choose their routes selfishly and form a Nash equilibrium
.t.s/; m.s//, induced2 by strategy s. By definition, the induced equilibrium
.t.s/; m.s// satisfies

8n 2 supp .t.s//; 8k 2 f1; : : : ; N g;

`n.sn C tn.s/; mn.s// � `k.sk C tk.s/; mk.s// (25.5)

The total flow on the network is sCt.s/; thus the total cost is C .s C t.s/; m.s//.
Note that a Stackelberg strategy s may induce multiple Nash equilibria in general.
However, we define .t.s/; m.s// to be the best such equilibrium (the one with
minimal total cost, which will be shown to be unique in Sect. 4).

We will use the following notation:

• .N; r; ˛/ is an instance of the Stackelberg routing game played on a parallel
network with N links under flow demand r with compliance rate ˛. Note that
the routing game .N; r/ is a special case of the Stackelberg routing game with
˛ D 0.

• S.N; r; ˛/ � R
N
C is the set of Stackelberg strategies for the Stackelberg instance

.N; r; ˛/.
• S?.N; r; ˛/ is the set of optimal Stackelberg strategies defined as

S?.N; r; ˛/ D arg min
s2S.N;r;˛/

C .s C t.s/; m.s//: (25.6)

2.3 Optimal Stackelberg Strategy

We now define a candidate Stackelberg strategy, which we call the non-compliant
first strategy (NCF) and which we will prove to be optimal. The NCF strategy
corresponds to first computing the best Nash equilibrium .Nt; Nm/ of the non-

2We note that a feasible flow assignment s of compliant flow may fail to induce a Nash equilibrium
.t; m/ and therefore is not considered to be a valid Stackelberg strategy.
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compliant flow for the routing game instance
�
N; .1 � ˛/r

�
, then finding a particular

strategy s that induces .Nt; Nm/.

Definition 5 (The non-compliant first (NCF) strategy) Consider the Stackelberg
instance .N; r; ˛/. Let .Nt; Nm/ be the best Nash equilibrium of the non-compliant
flow, f.Nt; Nm/g D BNE.N; .1 � ˛/r/, and Nk D max supp.Nt/ be the last link in its
support. Then the non-compliant first strategy, denoted by NCF.N; r; ˛/, is defined
as follows:

NCF.N; r; ˛/D

�
0; : : : ;

Nk�1

0;

Nk

xmax
Nk

� Nt Nk; xmax
NkC1

; : : : ; xmax
l�1 ; ˛r�

� l�1X
nD Nk

xmax
n � Nt Nk

�
; 0; : : : ; 0

�

(25.7)

where l is the maximal index in f NkC1; : : : ; N g such that ˛r �
�Pl�1

nD Nk
xmax

n � Nt Nk

�
� 0.

In words, the NCF strategy saturates links one by one, by increasing index
starting from link Nk, the last link used by the non-compliant flow in the best Nash
equilibrium of .N; .1 � ˛/r/. Thus it will assign xmax

Nk
� Nt Nk to link Nk, then xmax

NkC1
to

link NkC1, xmax
NkC2

to link NkC2, and so on, until the compliant flow is assigned entirely
(see Fig. 25.4). The following theorem states the main result.

Theorem 1 Under the class of HQSF latency functions, NCF.N; r; ˛/ is an optimal
Stackelberg strategy for the Stackelberg instance .N; r; ˛/.

We give a proof of Theorem 1 in Sect. 4. We will also show that for the class of
HQSF latency functions, the best Nash equilibria can be computed in polynomial
time in the size N of the network, and as a consequence, the NCF strategy can
also be computed in polynomial time. This stands in contrast to previous results
under the class of nondecreasing latency functions, for which computing the optimal
Stackelberg strategy is NP-hard (Roughgarden 2001).

3 Nash Equilibria

In this section, we study Nash equilibria of the routing game. We show that under the
class of HQSF latency functions, there may exist multiple Nash equilibria that have
different costs. Then we partition the set of equilibria into congested equilibria and
single-link-free-flow equilibria. Finally, we characterize the best Nash equilibrium
and show that it can be computed in quadratic time in the number of links.
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Fig. 25.4 Non-compliant first (NCF) strategy Ns and its induced equilibrium. Circles show the
best Nash equilibrium .Nt; Nm/ of the non-compliant flow .1 � ˛/r : link Nk is in free-flow, and
links f1; : : : ; Nk � 1g are congested. The Stackelberg strategy Ns D NCF.N; r; ˛/ is highlighted in
blue

3.1 Structure and Properties of Nash Equilibria

We first give some properties of Nash equilibria.

Proposition 1 (Total cost of a Nash Equilibrium) Let .x; m/ 2 NE.N; r/ be
a Nash equilibrium for the instance .N; r/. Then there exists `0 > 0 such that
8n 2 supp .x/, `n.xn; mn/ D `0, and 8n … supp .x/, `n.0; 0/ � `0. The total cost
of the equilibrium is then C .x; m/ D r`0.

Proposition 2 Let .x; m/ 2 NE.N; r/ be a Nash equilibrium. Then k 2 supp .x/ )

8n < k, link n is congested.

Proof By contradiction, if mn D 0, then `n.xn; mn/ D an < ak � `k.xk; mk/,
which contradicts Definition 2 of a Nash equilibrium.

Corollary 1 (Support of a Nash equilibrium) Let .x; m/ 2 NE.N; r/ be a Nash
equilibrium and k D max supp .x/ be the last link in the support of x (i.e., the one
with the largest free-flow latency). Then we have supp .x/ D f1; : : : ; kg.
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Proof Since k 2 supp .x/, we have by Proposition 2 that 8n < k, link n is
congested, thus n 2 supp .x/ (by definition, a congested link cannot be empty).

3.1.1 No Essential Uniqueness
For the HQSF latency class, the essential uniqueness property3 does not hold, i.e.,
there may exist multiple Nash equilibria that have different costs; an example is
given in Fig. 25.3.

3.1.2 Single-Link-Free-Flow Equilibria and Congested Equilibria
The example shows that in general, there may exist multiple Nash equilibria that
have different costs, different congestion state vectors, and different supports.
However, not every congestion state vector m 2 f0; 1gN can be that of a Nash equi-
librium: let .x; m/ 2 NE.N; r/ be a Nash equilibrium, and let k D max supp .x/ be
the index of the last link in the support of x. Then by Proposition 2, we have that
8i < k, mi D 1, and 8i > k, mi D 0. Thus we have

• Either m D
�
1; : : : ; 1;

k

0; 0; : : : ; 0/, i.e., the last link in the support is in free-flow,
all other links in the support are congested. In this case we call .x; m/ a single-
link-free-flow equilibrium and denote the set of such equilibria by NEf.N; r/.

• Or m D
�
1; : : : ; 1;

k

1; 0; : : : ; 0/, i.e., all links in the support are congested. In this
case we call .x; m/ a congested equilibrium and denote the set of such equilibria
by NEc.N; r/.

3.2 Existence of Single-Link-Free-Flow Equilibria

Let .x; m/ be a single-link-free-flow equilibrium, and let k D max supp .x/. We
have from Proposition 2 that links f1; : : : ; k � 1g are congested and link k is in free-
flow. Therefore we must have 8n 2 f1; : : : ; k � 1g, `n.xn; 1/ D `k.xk; 0/ D ak .
This uniquely determines the flow on the congested links:

Definition 6 (Congestion flow) Let k 2 f2; : : : ; N g. Then 8n 2 f1; : : : ; k � 1g,
there exists a unique flow xn such that `n.xn; mn/ D ak . We denote this flow by
Oxn.k/ and call it k-congestion flow on link n. It is given by

Oxn.k/ D `n.�; 1/�1.ak/: (25.8)

We note that Oxn.k/ is decreasing in k, since `n.�; 1/�1 is decreasing.

3The essential uniqueness property states that for the class of non-decreasing latency functions, all
Nash equilibria have the same total cost. See for example (Beckmann et al. 1956; Dafermos and
Sparrow 1969; Roughgarden and Tardos 2002).
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Fig. 25.5 Example of a single-link-free-flow equilibrium. Link 3 is in free-flow, and links 1 and 2

are congested. The common latency on all links in the support is a3

Proposition 3 (Single-link-free-flow equilibria) .x; m/ is a single-link-free-flow
equilibrium if and only if 9k 2 f1; : : : ; N g such that 0 < r �

Pk�1
nD1 Oxn.k/ � xmax

k ,
and

x
�
D

 
Ox1.k/; : : : ; Oxk�1.k/; r �

k�1X
nD1

Oxn.k/; 0; : : : ; 0

!
(25.9)

m
�
D

0
@1; : : : ; 1;

k

0; : : : ; 0

1
A (25.10)

Illustrations of Eqs. (25.10) and (25.9) are shown in Fig. 25.5.
Next, we give a necessary and sufficient condition for the existence of single-

link-free-flow equilibria.
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Lemma 1 Existence of single-link-free-flow equilibria
Let

rNE.N /
�
D max

k2f1;:::;N g

(
xmax

k C

k�1X
nD1

Oxn.k/

)
(25.11)

A single-link-free-flow equilibrium exists for the instance .N; r/ if and only if r �

rNE.N /.

Proof If a single-link-free-flow equilibrium exists, then by Proposition 3, it is of the
form given by Eqs. (25.10) and (25.9) for some k. The flow on link k is then given
by r �

Pk�1
nD1 Oxn.k/ � xmax

k . Therefore r � xmax
k C

Pk�1
nD1 Oxn.k/ � rNE.N /.

We prove the converse by induction on the size N of the network. Let PN denote
the property: 8r 2 .0; rNE.N /�, there exists a single-link-free-flow equilibrium for
the instance .N; r/.

For N D 1, it is clear that if 0 < r � xmax
1 , there is a single-link-free-flow

equilibrium simply given by .x1; m1/ D .r; 0/.
Now let N � 1, assume PN holds and let us show PN C1. Let 0 < r �

rNE.N C 1/, and consider an instance .N C 1; r/.

Case 1 If r � rNE.N /, then by the induction hypothesis PN , there exists a single-
link-free-flow equilibrium .x; m/ for the instance .N; r/. Then .x0; m0/ defined as
x0 D .x1; : : : ; xN ; 0/ and m0 D .m1; : : : ; mN ; 0/ is clearly a single-link-free-flow
equilibrium for the instance .N C 1; r/.

Case 2 If rNE.N / < r � rNE.N C 1/, then by Proposition 3, an equilibrium exists
if

0 < r �

NX
nD1

Oxn.N C 1/ � xmax
N C1: (25.12)

First, we note that since rNE.N / < rNE.N C 1/, then

rNE.N C 1/ D xmax
N C1 C

NX
nD1

Oxn.N C 1/;

thus

r � rNE.N C 1/ D xmax
N C1 C

NX
nD1

Oxn.N C 1/;
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which proves the second inequality in (25.12). To show the first inequality, we have

r > rNE.N / � xmax
N C

N �1X
nD1

Oxn.N /

� OxN .N C 1/ C

N �1X
nD1

Oxn.N C 1/;

where the last inequality results from the fact that Oxn.N / � Oxn.N C 1/ and xmax
N �

OxN .N C 1/ by Definition 6 of congestion flow. This completes the induction.

Corollary 2 The maximum demand r such that the set of Nash equilibria NE.N; r/

is nonempty is rNE.N /.

Proof By the previous Lemma, rNE.N / is a lower bound on the maximum demand.
To show that it is also an upper bound, suppose that NE.N; r/ is nonempty
and let .x; m/ 2 NE.N; r/ and k D max supp .x/. Then we have supp .x/ D

f1; : : : ; kg by Corollary 1, and by Definition 2 of a Nash equilibrium, 8n � k,
`n.xn; mn/ D `k.xk; mk/ � ak , and therefore xn � Oxn.k/. We also have xk � xmax

k .
Combining the inequalities, we have

r D

kX
nD1

xn � xmax
k C

k�1X
nD1

Oxn.k/ � rNE.N /:

3.3 Number of Equilibria

Proposition 4 (An upper bound on the number of equilibria) Consider a rout-
ing game instance .N; r/. For any given k 2 f1; : : : ; N g, there is at most one single-
link-free-flow equilibrium and one congested equilibrium with support f1; : : : ; kg.
As a consequence, by Corollary 1, the instance .N; r/ has at most N single-link-
free-flow equilibria and N congested equilibria.

Proof We prove the result for single-link-free-flow equilibria, the proof for con-
gested equilibria is similar. Let k 2 f1; : : : ; N g, and assume .x; m/ and .x0; m0/

are single-link-free-flow equilibria such that max supp .x/ D max supp .x0/ D k.
We first observe that by Corollary 1, x and x0 have the same support f1; : : : ; kg,
and by Proposition 2, m D m0. Since link k is in free-flow under both equilibria,
we have `k.xk; mk/ D `k.x0

k; m0
k/ D ak , and by Definition 2 of a Nash equilibrium,

any link in the support of both equilibria has the same latency ak , i.e., 8n < k,
`n.xn; 1/ D `n.x0

n; 1/ D ak . Since the latency in congestion is injective, we have
8n < k, xn D x0

n, therefore x D x0.
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3.4 Best Nash Equilibrium

In order to study the inefficiency of Nash equilibria, and the improvement of
performance that we can achieve using optimal Stackelberg routing, we focus our
attention on best Nash equilibria and price of stability (Anshelevich et al. 2004) as
a measure of their inefficiency.

Lemma 2 (Best Nash Equilibrium) For a routing game instance .N; r/, r �

rNE.N /, the unique best Nash equilibrium is the single-link-free-flow equilibrium
that has the smallest support

BNE.N; r/ D arg min
.x;m/2NEf.N;r/

fmax supp .x/g:

Proof We first show that a congested equilibrium cannot be a best Nash equilibrium.
Let .x; m/ 2 NE.N; r/ be a congested equilibrium, and let k D max supp .x/.
By Proposition 1, the cost of .x; m/ is C .x; m/ D `k.xk; 1/r > akr . We observe
that .x; m/ restricted to f1; : : : ; kg is an equilibrium for the instance .k; r/;
thus by Corollary 2, r � rNE.k/, and by Lemma 1, there exists a single-link-
free-flow equilibrium .x0; m0/ for .k; r/, with cost C .x0; m0/ � akr . Clearly,
.x00; m00/, defined as x00 D .x0

1; : : : ; x0
k; 0; : : : ; 0/ and m00 D .m0

1; : : : ; m0
k; 0; : : : ; 0/,

is a single-link-free-flow equilibrium for the original instance .N; r/, with cost
C .x00; m00/ D C .x0; m0/ � akr < C .x; m/, which proves that .x; m/ is not
a best Nash equilibrium. Therefore best Nash equilibria are single-link-free-flow
equilibria. And since the cost of a single-link-free-flow equilibrium .x; m/ is simply
C .x; m/ D akr where k D max supp .x/, it is clear that the smaller the support, the
lower the total cost. Uniqueness follows from Proposition 4.

3.4.1 Complexity of Computing the Best Nash Equilibrium
Lemma 2 gives a simple algorithm for computing the best Nash equilibrium for
any instance .N; r/: simply enumerate all single-link-free-flow equilibria (there are
at most N such equilibria by Proposition 4), and select the one with the smallest
support. This is detailed in Algorithm 3.

The congestion flow values f Oxn.k/; 1 � n < k � N g can be precomputed
in O.N 2/. There are at most N calls to freeFlowConfig, which runs in O.N /

time; thus bestNE runs in O.N 2/ time. This shows that the best Nash equilibrium
can be computed in quadratic time.

4 Optimal Stackelberg Strategies

In this section, we prove our main result that the NCF strategy is an optimal
Stackelberg strategy (Theorem 1). Furthermore, we show that the entire set of
optimal strategies S?.N; r; ˛/ can be computed in a simple way from the NCF
strategy.
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Algorithm 3 Best Nash equilibrium

procedure bestNE(N; r)
Inputs: Size of the network N, demand r

Outputs: Best Nash equilibrium .x; m/

for k 2 f1; : : : ; N g
let .x; m/ = freeFlowConfig(k)
if xk 2 Œ0; xmax

k �

return .x; m/

return No-Solution

procedure freeFlowConfig(k)
Inputs: Free-flow link index k

Outputs: Assignment .x; m/ D .xr;k ; mk/

for n 2 f1; : : : ; N g
if n < k

xn D Oxn.k/, mn D 1

elseif n == k

xk D r �
Pk�1

nD1 xn, mk D 0

else
xn D 0, mn D 0

return .x; m/

Let .Nt; Nm/ be the best Nash equilibrium for the instance .N; .1 � ˛/r/. It
represents the best Nash equilibrium of the non-compliant flow .1 � ˛/r when it
is not sharing the network with the compliant flow. Let Nk D max supp

�
Nt
�

be the last
link in the support of Nt. Let Ns be the NCF strategy defined by Eq. (25.7). Then the
total flow Nx D Ns C Nt is given by

Nx D

0
@Ox1. Nk/; : : : ; Ox Nk�1. Nk/; xmax

Nk
; xmax

NkC1
; : : : ; xmax

l�1 ; r �

Nk�1X
nD1

Oxn. Nk/�

l�1X
nD Nk

xmax
n ; 0; : : : ; 0

1
A ;

(25.13)

and the corresponding latencies are

0
BB@a Nk; : : : ;

Nk

a Nk; a NkC1; : : : ; aN

1
CCA : (25.14)

Figure 25.4 shows the total flow Nxn D Nsn C Ntn on each link. Under . Nx; Nm/, links˚
1; : : : ; Nk � 1

�
are congested and have latency a Nk , links

˚
Nk; : : : ; l � 1

�
are in free-

flow and at maximum capacity, and the remaining flow is assigned to link l .
We observe that for any Stackelberg strategy s 2 S.N; r; ˛/, the induced best

Nash equilibrium .t.s/; m.s// is a single-link-free-flow equilibrium by Lemma 2,
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since .t.s/; m.s// is the best Nash equilibrium for the instance .N; ˛r/ and latencies

Q̀
n W QDn ! RC

.xn; mn/ 7! `n.sn C xn; mn/
(25.15)

where QDn
�
D Œ0; Qxmax

n � � f0g [ .0; Qxmax
n / � f1g and Qxmax

n

�
D xmax

n � sn.

4.1 Proof of Theorem 1: The NCF Strategy Is an Optimal
Stackelberg Strategy

Let s 2 S.N; r; ˛/ be any Stackelberg strategy and .t; m/ D .t.s/; m.s// be the best
Nash equilibrium of the non-compliant flow, induced by s. To prove that the NCF
startegy Ns is optimal, we will compare the costs induced by s and Ns. Let x D sCt.s/

and Nx D Ns C Nt be the total flows induced by each strategy. To prove Theorem 1, we
seek to show that C .x; m/ � C . Nx; Nm/.

The proof is organized as follows: we first compare the supports of the induced
equilibria (Lemma 3) and then show that links f1; : : : ; l � 1g are more congested
under .x; m/ than under . Nx; Nm/, in the following sense - they hold less flow and have
greater latency (Lemma 4). Then we conclude by showing the desired inequality.

Lemma 3 Let k D max supp .t/ and Nk D max supp
�
Nt
�
. Then k � Nk.

In other words, the last link in the support of t.s/ has higher free-flow latency than
the last link in the support of Nt.

Proof We first note that .sCt.s/; m/ restricted to supp .t.s// is a Nash equilibrium.
Then since link k is in free-flow, we have `k.sk C tk.s/; mk/ D ak , and since
k 2 supp .t.s//, we have by definition that any other link has greater or equal
latency. In particular, 8n 2 f1; : : : k � 1g, `n.snCtn.s/; mn/ � ak , thus snCtn.s/ �

Oxn.k/. Therefore we have
Pk

nD1 sn C tn.s/ �
Pk�1

nD1 Oxn.k/ C xmax
k . But

Pk
nD1.sn C

tn.s// �
P

n2supp.t/ tn.s/ D .1 � ˛/r since supp .t/ � f1; : : : ; kg. Therefore

.1 � ˛/r �
Pk�1

nD1 Oxn.k/ C xmax
k . By Lemma 1, there exists a single-link-free-flow

equilibrium for the instance .N; .1 � ˛/r/ supported on the first k links. Let .Qt; Qm/

be such an equilibrium. The cost of this equilibrium is .1 � ˛/r`0 where `0 � ak is
the free-flow latency of the last link in the support of Qt. Thus C .Qt; Qm/ � .1 � ˛/rak .
Since by definition .Nt; Nm/ is the best Nash equilibrium for the instance .N; .1 � ˛/r/

and has cost .1 � ˛/ra Nk , we must have .1 � ˛/ra Nk � .1 � ˛/rak , i.e., a Nk � ak .
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Lemma 4 Under .x; m/, the links f1; : : : ; l�1g have greater (or equal) latency and
hold less (or equal) flow than under . Nx; Nm/, i.e., 8n 2 f1; : : : ; l � 1g, `n.xn; mn/ �

`n. Nxn; Nmn/ and xn � Nxn.

Proof Since k 2 supp .t/, we have by definition of a Stackelberg strategy and its
induced equilibrium that 8n 2 f1; : : : ; k � 1g, `n.xn; mn/ � `k.xk; mk/ � ak , see
Eq. (25.5). We also have by definition of . Nx; Nm/ and the resulting latencies given by
Eq. (25.14), 8n 2 f1; : : : ; Nk � 1g, n is congested, and `n.xn; mn/ D a Nk . Thus using
the fact that k � Nk, we have 8n2f1; : : : ; Nk � 1g, `n.xn; mn/�ak�a NkD`n. Nxn; Nmn/,
and xn � Oxn.k/ � Oxn. Nk/ D Nxn.

We have from Eq. (25.13) that 8n 2 f Nk; : : : ; l � 1g, n is in free-flow and at
maximum capacity under . Nx; Nm/ (i.e., Nxn D xmax

n and `n. Nxn/ D an). Thus
8n 2 f Nk; : : : ; l � 1g, `n.xn; mn/ � an D `n. Nxn; Nmn/ and xn � xmax

n D Nxn. This
completes the proof of the Lemma.

We can now show the desired inequality. We have

C .x; m/ D

NX
nD1

xn`n.xn; mn/

D

l�1X
nD1

xn`n.xn; mn/ C

NX
nDl

xn`n.xn; mn/

�

l�1X
nD1

xn`n. Nxn; Nmn/ C

NX
nDl

xnal (25.16)

where the last inequality is obtained using Lemma 4 and the fact that
8n 2 fl; : : : ; N g, `n.xn; mn/ � an � al . Then rearranging the terms, we have

C .x; m/ �

l�1X
nD1

.xn � Nxn/`n. Nxn; Nmn/ C

l�1X
nD1

Nxn`n. Nxn; Nmn/ C

NX
nDl

xnal:

Then we have 8n 2 f1; : : : ; l � 1g,

.xn � Nxn/.`n. Nxn; Nmn/ � al / � 0;

(by Lemma 4, xn � Nxn � 0, and we have `n. Nxn; Nmn/ � al by Eq. (25.14)). Thus

l�1X
nD1

.xn � Nxn/`n. Nxn; Nmn/ �

l�1X
nD1

.xn � Nxn/al; (25.17)
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and we have

C .x; m/ �

l�1X
nD1

.xn � Nxn/al C

l�1X
nD1

Nxn`n. Nxn; Nmn/ C

NX
nDl

xnal

D al

 
NX

nD1

xn �

l�1X
nD1

Nxn

!
C

l�1X
nD1

Nxn`n. Nxn; Nmn/

D al

 
r �

l�1X
nD1

Nxn

!
C

l�1X
nD1

Nxn`n. Nxn; Nmn/:

But al

�
r �

Pl�1
nD1 Nxn

�
D Nxl`l . Nxl ; Nml/ since supp . Nx/ D f1; : : : ; lg and `l . Nxl ; Nml/ D

al . Therefore

C .x; m/ � Nxl`l . Nxl ; Nml/ C

l�1X
nD1

Nxn`n. Nxn; Nmn/ D C . Nx; Nm/:

This completes the proof of Theorem 1. ut

Therefore the NCF strategy is an optimal Stackelberg strategy, and it can be
computed in polynomial time since it is generated in linear time after computing
the best Nash equilibrium BNE.N; .1 � ˛/r/, which can be computed in O.N 2/.

The NCF strategy is, in general, not the unique optimal Stackelberg strategy. In
the next section, we show that any optimal Stackelberg strategy can in fact be easily
expressed in terms of the NCF strategy.

4.2 The Set of Optimal Stackelberg Strategies

In this section, we show that the set of optimal Stackelberg strategies S?.N; r; ˛/ can
be generated from the NCF strategy. This shows in particular that the NCF strategy
is robust, in a sense explained below.

Let Ns D NCF.N; r; ˛/ be the non-compliant first strategy, f.Nt; Nm/g D

BNE.N; .1 � ˛/r/ be the Nash equilibrium induced by Ns, and Nk D max supp
�
Nt
�

the
last link in the support of the induced equilibrium, as defined above. By definition,
the NCF strategy Ns assigns zero compliant flow to links

˚
1; : : : ; Nk � 1

�
and saturates

links one by one, starting from Nk (see Eq. (25.7) and Fig. 25.4).
To give an example of an optimal Stackelberg strategy other than the NCF

strategy, consider a strategy s defined by s D Ns C ", where

" D

0
B@"1; 0; : : : ; 0;

Nk

� "1; 0; : : : ; 0

1
CA
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xn

�n

a1

t1

s1 = ε1

...
ak̄−1

ak̄

tk̄

sk̄ = s̄k̄ − ε1ε1

...

al−1

sl−1

al

sl

...

aN

Fig. 25.6 Example of an optimal Stackelberg strategy s D Ns � ". The circles show the best Nash
equilibrium .Nt; Nm/. The strategy s is highlighted in green

and is such that s1 D "1 2 Œ0; Ox1. Nk/� and s Nk D Ns Nk � "1 � 0 (See Fig. 25.6). Strategy
s will induce t.s/ D Nt � ", and the resulting total cost is minimal since C .s C

t.s// D C .Ns C " C Nt � "/ D C .Ns C Nt/. This shows that s is an optimal Stackelberg
strategy. More generally, the following holds:

Lemma 5 Consider a Stackelberg strategy s of the form s D Ns C ", where

" D

0
BB@"1; "2; : : : ; " Nk�1; �

Nk�1X
nD1

"n;

NkC1

0; : : : ; 0

1
CCA (25.18)

and " is such that

"n 2 Œ0; Oxn. Nk/� 8n 2
˚
1; : : : ; Nk � 1

�
(25.19)

Ns Nk �

Nk�1X
nD1

"n: (25.20)

Then s is an optimal Stackelberg strategy.
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Proof We show that s D Ns C " is a feasible assignment of the compliant flow ˛r

and that the induced equilibrium of the followers is .t.s/; m.s// D .Nt � "; Nm/.
Since

PN
nD1 "n D 0 by definition (25.18) of ", we have

PN
nD1 sn D

PN
nD1 Nsn D

˛r . We also have

• 8n 2 f1; : : : ; Nk � 1g, sn D "n 2 Œ0; Oxn. Nk/� by Eq. (25.19). Thus sn 2 Œ0; xmax
n �.

• s Nk D Ns Nk C " Nk � 0 by Eq. (25.20), and s Nk � Ns Nk � xmax
Nk

.

• 8n 2 f Nk C 1; : : : ; N g, sn D Nsn 2 Œ0; xmax
n �.

This shows that s is a feasible assignment. To show that s induces .Nt � "; Nm/, we
need to show that 8n 2 supp

�
Nt � "

�
, 8k 2 f1; : : : ; N g,

`n.Nsn C "n C Ntn � "n; Nmn/ � `k.Nsk C "k C Ntk � "k; Nmk/

This is true 8n 2 supp
�
Nt
�
, by definition of .Nt; Nm/ and Eq. (25.5). To conclude, we

observe that supp
�
Nt � "

�
� supp

�
Nt
�
.

This shows that the NCF strategy is robust to perturbations: even if the strategy Ns

is not realized exactly, it may still be optimal if the perturbation " satisfies the
conditions given above.

The converse of the previous lemma is true. This gives a necessary and sufficient
condition for optimal Stackelberg strategies, given in the following theorem.

Theorem 2 (Characterization of optimal Stackelberg strategies) The set of
optimal Stackelberg strategies S?.N; r; ˛/ is the set of strategies s of the form
s D Ns C " where Ns D NCF.N; r; ˛/ is the non-compliant first strategy, and "

satisfies Eqs. (25.18), (25.19), and (25.20).

Proof We prove the converse of Lemma 5. Let s 2 S?.N; r; ˛/ be an optimal
Stackelberg strategy, .t; m/ D .t.s/; m.s// the equilibrium of non-compliant flow
induced by s, k D max supp .t/ the last link in the support of t, and x D s C t the
total flow assignment.

We first show that x D Nx. By optimality of both s and Ns, we have C .x; m/ D

C . Nx; Nm/, and therefore inequalities (25.16) and (25.17) in the proof of Theorem 1
must hold with equality. In particular, to have equality in (25.16), we need to have

l�1X
nD1

xn.`n.xn; mn/ � `n. Nxn; Nmn// C

NX
nDl

xn.`n.xn; mn/ � al / D 0: (25.21)

The terms in both sums are nonnegative, therefore

xn.`n.xn; mn/ � `n. Nxn; Nmn// D 0 8n 2 f1; : : : ; l � 1g (25.22)

xn.`n.xn; mn/ � al / D 0 8n 2 fl; : : : ; N g; (25.23)
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and to have equality in (25.17), we need to have

.xn � Nxn/.`n. Nxn; Nmn/ � al / D 0 8n 2 f1; : : : ; l � 1g: (25.24)

Let n 2 f1; : : : ; l � 1g. From the expression (25.14) of the latencies under Nx,
we have `n. Nxn; Nmn/ < al ; thus from equality (25.24), we have xn � Nxn D 0.
Now let n 2 fl C 1; : : :N g. We have by definition of the latency functions,
`n.xn; mn/ � an > al , thus from equality (25.23), xn D 0. We also have from
the expression (25.13), Nxn D 0. Therefore xn D Nxn 8n ¤ l , but since x and Nx

are both assignments of the same total flow r , we also have xl D Nxl , which proves
x D Nx.

Next we show that k D Nk. We have from the proof of Theorem 1 that k � Nk.
Assume by contradiction that k > Nk. Then since k 2 supp .t/, we have by
definition of the induced followers’ assignment in Eq. (25.5), 8n 2 f1; : : : ; N g,
`n.xn; mn/ � `k.xk; mk/. And since `k.xk; mk/ � ak > a Nk , we have (in particular
for n D Nk) ` Nk.x Nk; m Nk/ > a Nk , i.e., link Nk is congested under . Nx; Nm/, thus x Nk > 0.
Finally, since ` Nk. Nx Nk; Nm Nk/ D a Nk , we have ` Nk. Nx Nk; Nm Nk/ > ` Nk. Nx Nk; Nm Nk/. Therefore
x Nk.` Nk.x Nk; m Nk/ � ` Nk. Nx Nk; Nm Nk// > 0, since Nk < k � l ; this contradicts (25.22).

Now let " D s � Ns. We want to show that " satisfies Eq. (25.18), (25.19),
and (25.20).

First, we have 8n 2
˚
1; : : : ; Nk � 1

�
, Nsn D 0, thus "n D sn � Nsn D sn. We also

have 8n 2
˚
1; : : : ; Nk � 1

�
, 0 � sn � xn, xn D Nxn (since x D Nx), and Nxn D Oxn. Nk/

(by Eq. (25.13)); therefore 0 � sn � Oxn. Nk/. This proves (25.19).
Second, we have 8n 2

˚
Nk C 1; : : : ; N

�
, tn D Ntn D 0 (since k D Nk), and xn D

Nxn (since x D Nx); thus "n D sn � Nsn D xn � tn � Nxn C Ntn D 0. We also havePN
nD1 "n D 0 since s and Ns are assignments of the same compliant flow ˛r ; thus

" Nk D �
P

n¤ Nk "n D �
P Nk�1

nD1 "n. This proves (25.18).
Finally, we readily have (25.20) since s Nk � 0 by definition of s.

5 Price of Stability Under Optimal Stackelberg Routing

To quantify the inefficiency of Nash equilibria, and the improvement that can
be achieved using Stackelberg routing, several metrics have been used including
price of anarchy (Roughgarden and Tardos 2002, 2004) and price of stability
(Anshelevich et al. 2004). We use price of stability as a metric, which is defined
as the ratio between the cost of the best Nash equilibrium and the cost of the social
optimum.4 We start by characterizing the social optimum.

4Price of anarchy is defined as the ratio between the costs of the worst Nash equilibrium and the
social optimum. For the case of nondecreasing latency functions, the price of anarchy and the
price of stability coincide since all Nash equilibria have the same cost by the essential uniqueness
property.
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5.1 Characterization of Social Optima

Consider an instance .N; r/ where the flow demand r does not exceed the maximum
capacity of the network, i.e., r �

P
n xmax

n . A social optimal assignment is an
assignment that minimizes the total cost function C .x; m/ D

P
n xn`n.xn; mn/, i.e.,

it is a solution to the following social optimum (SO) optimization problem:

minimize
x2
QN

nD1Œ0;xmax
n �

m2f0;1gN

NX
nD1

xn`n.xn; mn/ .SO/

subject to
NX

nD1

xn D r

Proposition 5 .x?; m?/ is optimal for .SO/ only if 8n 2 f1; : : : ; N g, m?
n D 0.

Proof This follows immediately from the fact the latency on a link in congestion
is always greater than the latency of the link in free-flow `n.xn; 1/ > `n.xn; 0/

8xn 2 .0; xmax
n /.

As a consequence of the previous proposition, and using the fact that the latency
is constant in free-flow, `n.xn; 0/ D an, the social optimum can be computed by
solving the following equivalent linear program:

minimize
x2
QN

nD1Œ0;xmax
n �

NX
nD1

xnan

subject to
NX

nD1

xn D r

Then since the links are ordered by increasing free-flow latency a1 < � � � < aN , the
social optimum is simply given by the assignment that saturates most efficient links
first. Formally, if k0 D max

˚
kjr �

Pk
nD1 xmax

n

�
, then the social optimal assignment

is given by x? D

�
xmax

1 ; : : : ; xmax
k0

; r �
Pk0

nD1 xmax
n ; 0; : : : ; 0

�
.

5.2 Price of Stability and Value of Altruism

We are now ready to derive the price of stability. Let .x?; 0/ denote the social opti-
mum of the instance .N; r/. Let Ns be the non-compliant first strategy NCF.N; r; ˛/

and .t.Ns/; m.Ns// the induced equilibrium of the followers. The price of stability of
the Stackelberg instance NCF.N; r; ˛/ is
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POS.N; r; ˛/ D
C .Ns C t.Ns/; m.Ns//

C .x?; 0/
;

where Ns is the NCF strategy and .Nt; Nm/ its induced equilibrium. The improvement
achieved by optimal Stackelberg routing with respect to the Nash equilibrium (˛ D

0) can be measured using the value of altruism (Aswani and Tomlin 2011), defined
as

VOA .N; r; ˛/ D
POS.N; r; 0/

POS.N; r; ˛/
:

This terminology refers to the improvement achieved by having a fraction ˛ of
altruistic (or compliant) players, compared to a situation where everyone is selfish.
We give the expressions of price of stability and value of altruism in the case of a
two-link network, as a function of the compliance rate ˛ 2 Œ0; 1� and demand r .

5.2.1 Case 1: 0 � .1 � ˛/r � xmax
1

In this case, link 1 can accommodate all the non-compliant flow; thus the induced
equilibrium of the followers is

.t.Ns/; m.Ns// D
�
..1 � ˛/r; 0/; .0; 0/

�
;

and by Eq. (25.7), the total flow induced by Ns is Ns C t.Ns/ D .xmax
1 ; r � xmax

1 / and
coincides with the social optimum. Therefore, the price of stability is one.

5.2.2 Case 2: xmax
1 < .1 � ˛/r � xmax

2 C Ox1.2/

Observe that this case can only occur if xmax
2 C Ox1.2/ > xmax

1 . In this
case, link 1 cannot accommodate all the non-compliant flow, and the induced
Nash equilibrium .t.Ns/; m.Ns// is then supported on both links. It is equal to
.x2;.1�˛/r ; m2/ D

�
. Ox1.2/; .1 � ˛/r � Ox1.2//; .1; 0/

�
, and the total flow is

Ns C t.Ns/ D . Ox1.2/; r � Ox1.2//, with total cost a2r (Fig. 25.7b). The social optimum

xn

�n

a1

xmax
1

a2

r − xmax
1

xn

�n

a1

x̂1(2)

a2

r − x̂1(2)

a b

Fig. 25.7 Social optimum and best Nash equilibrium when the demand exceeds the capacity of the
first link (r > xmax

1 ). The area of the shaded regions represents the total costs of each assignment.
(a) Social optimum. (b) Best Nash equilibrium
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is .x?; m?/ D
�
.xmax

1 ; r � xmax
1 /; .0; 0/

�
, with total cost a1xmax

1 C a2.r � xmax
1 /

(Fig. 25.7a). Therefore the price of stability is

POS.2; r; ˛/ D
ra2

ra2 � xmax
1 .a2 � a1/

D
1

1 �
xmax

1

r

�
1 � a1

a2

� :

We observe that for a fixed flow demand r > xmax
1 , the price of stability is

an increasing function of a2=a1. Intuitively, the inefficiency of Nash equilibria
increases when the difference in free-flow latency between the links increases. And
as a2 ! a1, the price of stability goes to 1.

When the compliance rate is ˛ D 0, the price of stability attains a supremum
equal to a2=a1, at r D .xmax

1 /C (Fig. 25.8a). This shows that selfish routing is most
costly when the demand is slightly above critical value rNE.1/ D xmax

1 . This also
shows that for the general class of HQSF latencies on parallel networks, the price of
stability is unbounded, since one can design an instance .2; r/ such that the maximal
price of stability a2=a1 is arbitrarily large. Under optimal Stackelberg routing
(˛>0), the price of stability attains a supremum equal to 1=.˛ C .1 � ˛/.a1=a2//

at r D
�
xmax

1 =.1 � ˛/
�C

. We observe in particular that the supremum is decreasing
in ˛ and that when ˛ D 1 (total control), the price of stability is identically one.

Therefore optimal Stackelberg routing can significantly decrease price of stabil-
ity when r 2 .xmax

1 ; xmax
1 =.1�˛//. This can occur for small values of the compliance

rate in situations where the demand slightly exceeds the capacity of the first link
(Fig. 25.8c).

The same analysis can be done for a general network: given the latency functions
on the links, one can compute the price of stability as a function of the flow demand
r and the compliance rate ˛, using the form of the NCF strategy together with
Algorithm 1 to compute the BNE. Computing the price of stability function reveals
critical values of demand, for which optimal Stackelberg routing can lead to a
significant improvement. This is discussed in further detail in the next section, using
an example network with four links.

r

POS

1

xmax
1

a2/a1

xmax
2 + x̂1(2)

Price of stability, a = 0, Price of stability, a = 0.2 Value of altruism, a = 0.2

r

POS

1

xmax
1 /(1− α)

a2/a1

xmax
2 + x̂1(2) r

VOA

1

xmax
1 /(1− α)

a2/a1

xmax
2 + x̂1(2)

a b c

Fig. 25.8 Price of stability and value of altruism on a two-link network. Here we assume that
Ox1.2/ C xmax

2 > xmax
1 . (a) Price of stability, ˛ D 0. (b) Price of stability, ˛ D 0:2. (c) Value of

altruism, ˛ D 0:2
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6 Numerical Results

In this section, we apply the previous results to a scenario of freeway traffic from
the San Francisco Bay Area. Four parallel highways are chosen starting in San
Francisco and ending in San Jose: I-101, I-280, I-880, and I-580 (Fig. 25.9). We
analyze the inefficiency of Nash equilibria and show how optimal Stackelberg
routing (using the NCF strategy) can improve the efficiency.

Figure 25.10 shows the latency functions for the highway network, assuming a
triangular fundamental diagram for each highway. Under free-flow conditions, I-
101 is the fastest route available between San Francisco and San Jose. When I-101
becomes congested, other routes represent viable alternatives.

We computed price of stability and value of altruism (defined in the previous
section) as a function of the demand r for different compliance rates. The results
are shown in Fig. 25.11. We observe that for a fixed compliance rate, the price of
stability is piecewise continuous in the demand (Fig. 25.11a), with discontinuities
corresponding to an increase in the cardinality of the equilibrium’s support (and a
link transitioning from free-flow to congestion). If a transition exists for link n, it
occurs at critical demand r D r.˛/.n/, defined to be the infimum demand r such
that n is congested under the equilibrium induced by NCF.N; r; ˛/.

It can be shown that r.˛/.n/ D rNE.n/=.1 � ˛/, and we have in particular
rNE.n/ D r.0/.n/. Therefore if a link n is congested under best Nash equilibrium
(r > rNE.n/), optimal Stackelberg routing can decongest n if r.˛/.n/ � r . In
particular, when the demand is slightly above critical demand r.0/.n/, link n can
be decongested with a small compliance rate. This is illustrated by the numerical
values of price of stability on Fig. 25.11a, where a small compliance rate (˛ D 0:05)
achieves high value of altruism when the demand is slightly above the critical values.

101
280

280

101

92

84 880

680

580

580

Oakland

880

2480

80

101

San Francisco
Bay

Menlo Park

San Jose

San Francisco

Marin

237

101
85

280

Fig. 25.9 Map of a simplified parallel highway network model, connecting San Francisco to San
Jose
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Fig. 25.10 Latency functions on an example highway network. Latency is in minutes, and
demand is in cars/minute
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Fig. 25.11 Price of stability and value of altruism as a function of the demand r for different
values of compliance rate ˛. (a) Price of stability. (b) Value of altruism

This shows that optimal Stackelberg routing can achieve a significant improvement
in efficiency, especially when the demand is near one of the critical values r.˛/.n/.

Figure 25.12 shows price of stability and value of altruism as a function of the
demand r 2 Œ0; rNE.N /� and compliance rate ˛ 2 Œ0; 1�. We observe in particular
that for a fixed value of demand, price of stability is a piecewise constant function
of ˛. Computing this function can be useful for efficient planning and control,
since it informs the central coordinator of the critical compliance rates that can
achieve a strict improvement. For instance, if the demand on the example network
is 1100 cars/min, price of stability is constant for compliance rates ˛ 2 Œ0:14; 0:46�.
Therefore if a compliance rate greater than 0:46 is not feasible, the controller may
prefer to implement a control strategy with ˛ D 0:14, since further increasing the
compliance rate will not improve efficiency and may incur additional external cost
(due to incentivizing more drivers, for example).
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Fig. 25.12 Price of stability (a) and value of altruism (b) as a function of the compliance rate ˛

and demand r . Iso-˛ lines are plotted for ˛ D 0:03 (dashed), ˛ D 0:15 (dot-dashed), and ˛ D 0:5

(solid)

7 Summary and Concluding Remarks

Motivated by the fundamental diagram of traffic for transportation networks, this
chapter has introduced a new class of latency functions (HQSF) to model congestion
with horizontal queues and studied the resulting Nash equilibria for non-atomic
routing games on parallel networks. We showed that the essential uniqueness
property does not hold for HQSF latencies and that the number of equilibria is
at most 2N . We also characterized the best Nash equilibrium. In the Stackelberg
routing game, we proved that the non-compliant first (NCF) strategy is optimal
and that it can be computed in polynomial time. Table 25.1 summarizes the main
differences between the classical setting (vertical queues) and the HQSF setting.

We illustrated these results using an example network for which we computed
the decrease in inefficiency that can be achieved using optimal Stackelberg routing.
This example showed that when the demand is near critical values rNE.n/, optimal
Stackelberg routing can achieve a significant improvement in efficiency, even for
small values of compliance rate.

On the one hand, these results show that careful routing of a small compliant
population can dramatically improve the efficiency of the network. On the other
hand, they also indicate that for certain demand and compliance values, Stackelberg
routing can be completely ineffective. Therefore identifying the ranges where
optimal Stackelberg routing does improve the efficiency of the network is crucial
for effective planning and control.

This framework offers several directions for future research: the work presented
here only considers parallel networks under static assumptions (constant flow
demand r and static equilibria), and one question is whether these equilibria are
stable in the dynamic sense and how one may steer the system from one equilibrium
to a better one – consider, for example, the case where the players are in a congested
equilibrium and assume a coordinator has control over a fraction of the flow. Can the
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coordinator steer the system to a single-link-free-flow equilibrium by decongesting
a link? And what is the minimal compliance rate needed to achieve this?

References

Anshelevich E, Dasgupta A, Kleinberg J, Tardos E, Wexler T, Roughgarden T (2004) The price
of stability for network design with fair cost allocation. In: 45th annual IEEE symposium on
foundations of computer science, Berkeley, pp 295–304

Aswani A, Tomlin C (2011) Game-theoretic routing of GPS-assisted vehicles for energy efficiency.
In: American control conference (ACC). IEEE, San Francisco, pp 3375–3380

Babaioff M, Kleinberg R, Papadimitriou CH (2009) Congestion games with malicious players.
Games Econ Behav 67(1):22–35

Beckmann M, McGuire CB, Winsten CB (1956) Studies in the economics of transportation. Yale
University Press, New Haven

Benaïm M (2015) On gradient like properties of population games, learning models and self
reinforced processes. Springer, Cham, pp 117–152

Blackwell D (1956) An analog of the minimax theorem for vector payoffs. Pac J Math 6(1):1–8
Blum A, Even-Dar E, Ligett K (2006) Routing without regret: on convergence to Nash equilibria of

regret-minimizing algorithms in routing games. In: Proceedings of the twenty-fifth annual ACM
symposium on principles of distributed computing (PODC’06). ACM, New York, pp 45–52

Blume LE (1993) The statistical mechanics of strategic interaction. Games Econ Behav 5(3):
387–424

Boulogne T, Altman E, Kameda H, Pourtallier O (2001) Mixed equilibrium for multiclass routing
games. IEEE Trans Autom Control 47:58–74

Caltrans (2010) US 101 South, corridor system management plan. http://www.dot.ca.gov/hq/tpp/
offices/ocp/pp_files/new_ppe/corridor_planning_csmp/CSMP_outreach/US-101-south/2_US-10
1_south_CSMP_Exec_Summ_final_22511.pdf

Cesa-Bianchi N, Lugosi G (2006) Prediction, learning, and games. Cambridge University Press,
Cambridge

Dafermos S (1980) Traffic equilibrium and variational inequalities. Transp Sci 14(1):42–54
Dafermos SC, Sparrow FT (1969) The traffic assignment problem for a general network. J Res

Natl Bur Stand 73B(2):91–118
Daganzo CF (1994) The cell transmission model: a dynamic representation of highway traffic

consistent with the hydrodynamic theory. Transp Res B Methodol 28(4):269–287
Daganzo CF (1995) The cell transmission model, part II: network traffic. Transp Res B Methodol

29(2):79–93
Drighès B, Krichene W, Bayen A (2014) Stability of Nash equilibria in the congestion game under

replicator dynamics. In: 53rd IEEE conference on decision and control (CDC), Los Angeles,
pp 1923–1929

Evans CL (1998) Partial differential equations. Graduate studies in mathematics. American
Mathematical Society, Providence

Farokhi F, Johansson HK (2015) A piecewise-constant congestion taxing policy for repeated
routing games. Transp Res B Methodol 78:123–143

Fischer S, Vöcking B (2004) On the evolution of selfish routing. In: Algorithms–ESA 2004.
Springer, Berlin, pp 323–334

Fischer S, Räcke H, Vöcking B (2010) Fast convergence to Wardrop equilibria by adaptive
sampling methods. SIAM J Comput 39(8):3700–3735

Fox MJ, Shamma JS (2013) Population games, stable games, and passivity. Games 4(4):561–583
Friesz TL, Mookherjee R (2006) Solving the dynamic network user equilibrium problem with

state-dependent time shifts. Transp Res B Methodol 40(3):207–229
Greenshields BD (1935) A study of traffic capacity. Highw Res Board Proc 14:448–477
Hannan J (1957) Approximation to Bayes risk in repeated plays. Contrib Theory Games 3:97–139

http://www.dot.ca.gov/hq/tpp/offices/ocp/pp_files/new_ppe/corridor_planning_csmp/CSMP_outreach/US-101-south/2_US-101_south_CSMP_Exec_Summ_final_22511.pdf


1140 W. Krichene et al.

Hofbauer J, Sandholm WH (2009) Stable games and their dynamics. J Econ Theory 144(4):1665–
1693.e4

Kleinberg R, Piliouras G, Tardos E (2009) Multiplicative updates outperform generic no-regret
learning in congestion games. In: Proceedings of the 41st annual ACM symposium on theory of
computing, Bethesda, pp 533–542. ACM

Korilis YA, Lazar AA, Orda A (1997a) Achieving network optima using Stackelberg routing
strategies. IEEE/ACM Trans Netw 5:161–173

Korilis YA, Lazar AA, Orda A (1997b) Capacity allocation under noncooperative routing. IEEE
Trans Autom Control 42:309–325

Koutsoupias E, Papadimitriou C (1999) Worst-case equilibria. In: Proceedings of the 16th annual
conference on theoretical aspects of computer science. Springer, Heidelberg, pp 404–413

Krichene S, Krichene W, Dong R, Bayen A (2015a) Convergence of heterogeneous distributed
learning in stochastic routing games. In: 53rd annual allerton conference on communication,
control and computing, Monticello

Krichene W, Drighès B, Bayen A (2015b) Online learning of Nash equilibria in congestion games.
SIAM J Control Optim (SICON) 53(2):1056–1081

Krichene W, Castillo MS, Bayen A (2016) On social optimal routing under selfish learning. IEEE
Trans Control Netw Syst PP(99):1–1

Lam K, Krichene W, Bayen A (2016) On learning how players learn: estimation of learning
dynamics in the routing game. In: 7th international conference on cyber-physical systems
(ICCPS), Vienna

Lebacque JP (1996) The Godunov scheme and what it means for first order traffic flow models. In:
International symposium on transportation and traffic theory, Lyon, pp 647–677

LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations:
steady-state and time-dependent problems. Classics in applied mathematics. Society for Indus-
trial and Applied Mathematics, Philadelphia

Lighthill MJ, Whitham GB (1955) On kinematic waves. II. A theory of traffic flow on long crowded
roads. Proc R Soc Lond A Math Phys Sci 229(1178):317

Lo HK, Szeto WY (2002) A cell-based variational inequality formulation of the dynamic user
optimal assignment problem. Transp Res B Methodol 36(5):421–443

Monderer D, Shapley LS (1996) Potential games. Games Econ Behav 14(1):124–143
Ozdaglar A, Srikant R (2007) Incentives and pricing in communication networks. In: Nisan N,

Roughgarden T, Tardos E, Vazirani V (eds) Algorithmic game theory. Cambridge University
Press, Cambridge

Papageorgiou M, Blosseville JM, Hadj-Salem H (1989) Macroscopic modelling of traffic flow on
the Boulevard Périphérique in Paris. Transp Res B Methodol 23(1):29–47

Papageorgiou M, Blosseville J, Hadj-Salem H (1990) Modelling and real-time control of traffic
flow on the southern part of boulevard peripherique in paris: part I: modelling. Transp Res A
Gen 24(5):345–359

Richards PI (1956) Shock waves on the highway. Oper Res 4(1):42–51
Roughgarden T (2001) Stackelberg scheduling strategies. In: Proceedings of the thirty-third annual

ACM symposium on theory of computing, Heraklion, pp 104–113. ACM
Roughgarden T, Tardos E (2002) How bad is selfish routing? J ACM (JACM) 49(2):236–259
Roughgarden T, Tardos E (2004) Bounding the inefficiency of equilibria in nonatomic congestion

games. Games Econ Behav 47(2):389–403
Sandholm WH (2001) Potential games with continuous player sets. J Econ Theory 97(1):81–108
Sandholm WH (2010) Population games and evolutionary dynamics. MIT Press, Cambridge
Schmeidler D (1973) Equilibrium points of nonatomic games. J Stat Phys 7(4):295–300
Shamma JS (2015) Learning in games. Springer, London, pp 620–628
Swamy C (2007) The effectiveness of Stackelberg strategies and tolls for network congestion

games. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms
(SODA’01), New Orleans. Society for Industrial and Applied Mathematics, Philadelphia, pp
1133–1142



25 Stackelberg Routing on Parallel Transportation Networks 1141

Thai J, Hariss R, Bayen A (2015) A multi-convex approach to latency inference and control
in traffic equilibria from sparse data. In: American control conference (ACC), Chicago,
pp 689–695

Wang Y, Messmer A, Papageorgiou M (2001) Freeway network simulation and dynamic traffic
assignment with METANET tools. Transp Res Rec J Transp Res Board 1776(-1):178–188

Wardrop JG (1952) Some theoretical aspects of road traffic research. In: ICE proceedings:
engineering divisions, vol 1, pp 325–362

Weibull JW (1997) Evolutionary game theory. MIT Press, Cambridge
Work DB, Blandin S, Tossavainen OP, Piccoli B, Bayen AM (2010) A traffic model for velocity

data assimilation. Appl Math Res eXpress 2010(1):1



26Communication Networks: Pricing,
Congestion Control, Routing,
and Scheduling

Srinivas Shakkottai and R. Srikant

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144
2 Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146

2.1 VCG Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
2.2 Kelly Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
2.3 Strategic or Price-Anticipating Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152

3 Flow Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158
3.1 Braess’ Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
3.2 Flow Routing Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161

4 Pricing Approach to Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166
4.1 Mean Field Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
4.2 Mean Field Auction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168
4.3 Properties of Optimal Bid Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172
4.4 Existence of MFE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
4.5 Properties of MFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181

5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183

Abstract

This chapter considers three fundamental problems in the general area of
communication networks and their relationship to game theory. These problems
are (i) allocation of shared bandwidth resources, (ii) routing across shared
links, and (iii) scheduling across shared spectrum. Each problem inherently
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involves agents that experience negative externalities under which the presence
of one degrades the utility perceived by others. Two approaches to solving such
problems are (i) to find a globally optimal allocation and simply implement it in
a fait accompli fashion, and (ii) request information from the competing agents
(traffic flows) and construct a mechanism to allocate resources. Often, only the
second option is viable, since a centralized solution using complete information
might be impractical (or impossible) with many millions of competing flows,
each one having private information about the application that it corresponds to.
Hence, a game theoretical analysis of these problems is natural. In what follows,
we will present results on each problem and characterize the efficiency loss that
results from the mechanism employed.

Keywords
Communication networks � Utility maximization � Congestion control � Traffic
routing � Packet scheduling

1 Introduction

Communication networks are possibly the largest control systems in existence. They
consist of many millions of flows interacting with each other as well as the network
infrastructure, and competing for available capacity on wired and wireless links.
The most commonly used communication network today is the Internet, which is
illustrated in schematic form in Fig. 26.1. Here, we have flows, each of which is
between two hosts, commonly a Web server and an end user. A flow typically
consists of data packets from the server end, and acknowledgements back from
the end user. The packets traverse a route that consists of communication links,
with the direction of packet forwarding being determined by routers. The network
infrastructure itself is owned by several different Internet service providers, each of
which implements different traffic shaping, scheduling, and pricing policies in their
particular network.

In Fig. 26.1, the server must choose the rate of transmission of packets to each
of the flows based on the available capacity in the end-to-end route of the flow. It
obtains information on the state of the links though feedback from the routers that
could either mark or drop packets if the rate of packet arrivals on a particular link is
too high. This feedback is returned back to the server using the acknowledgement
packets, which then results in the server reducing or increasing the rate based on the
feedback received.

Control actions at different network routers are generally implemented via simple
algorithms. The individual routers usually do not maintain per-flow information and
take decisions on which packets to forward at each instant of time based on their
perception of fairness and stability across packets arriving from different directions.
These decisions result in packets being dropped or marked, which forms the
feedback returned to the server. With the increasing prevalence of software-defined
networking, however, it is increasingly possible to take decisions on a per-flow basis.
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Fig. 26.1 Internet flows between a server and end users

Wireless links usually form the last hop of flow. The number of competing users
in the case of WiFi is usually low, and simple randomized access is employed.
However, in the cellular data context, the usage of wireless links across competing
flows is carefully scheduled due to the limited availability of wireless spectrum.
However, such scheduling decisions again may result in dropped or marked
packets.

Communication networks have usually been designed with the idea of distribut-
edly achieving an overall goal of fair resource allocation and good quality of service
to all flows assuming a cooperative setup. For a more comprehensive study of
Internet control systems, the reader is referred to Srikant (2004) and Shakkottai
and Srikant (2007). However, given the inherent resource constraints in the system
and the desire for each end user to get the best possible quality of service, it is
natural to try to understand the system from a game theoretic perspective. This
approach is becoming increasingly popular, particularly in the case of wireless
resource allocation due to the perceived scarcity of the resource.

This chapter deals with the analysis of communication networks from the
perspective of strategic agents. Our focus is on two main problems, namely,
(i) allocation of capacity to competing flows and (ii) routing decisions by flows.
We consider three questions with different interaction models between the users as
follows:

1. Nash equilibrium. Resource allocation across a finite number of agents. Here, we
consider the problem of resource sharing via an auction mechanism that requests
bids from a finite set of agents and performs an allocation based on the responses.
The efficient solution is to allocate resources in such a way that overall utility of
the system is maximized. Our objective will be to quantify the efficiency loss
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in this system where the agents are nonstrategic in that they do not consider the
existence of other agents versus the case that they are strategic.

2. Wardrop equilibrium. Routing with infinite agents. Here, we consider the problem
encountered in choosing between different routes on a per-packet basis. A single
packet has effectively no impact on any other packet, but the total traffic along
each route would impact the delay seen by each packet using that route. Each
packet desires to reach the destination in the shortest possible time, while the
overall efficient solution is to minimize the total delay in the system.

3. Mean Field Equilibrium. Repeated resource allocation with infinite agents.
Finally, we consider the problem of a repeated auction of resources between
agents that only compete against random subsets of other agents for any
particular resource. Here, agents are unaware of whom they would compete
against in the next auction, and hence model their competitors via a belief about
what they are likely to bid. As before, we are interested in the question of whether
an efficient allocation can be achieved at each step.

2 Congestion Control

As we described in the previous section, a communication network can be identified
with a set of sources of traffic (or users) R and a set of links L. Each link l 2 L has
a finite capacity cl . Each source desires to communicate with a destination in the
network and uses a route r � L to reach its destination. Thus, we can equivalently
associate each source with the route it uses, and we will interchangeably refer to
both by r 2 R: We denote the utility that a user obtains from transmitting data on
route r at rate xr by Ur.xr/. The typical assumption is that the utility function is
continuously differentiable, nondecreasing, and strictly concave. We further assume
that U .0/ � 0: The assumption on concavity of the utility function represents
the fact that a user quality of experience has diminishing returns to per unit rate
allocated on the links that it uses. For instance, the perceived value of a rate increase
by 1 Mbps is much greater when the user has a low rate than at a high rate.

Consider a network planner who is interested in allocating resources to users
with the goal of maximizing the sum of the users’ utilities. The network planner can
do this only if he knows the utility functions of all the users in the network, or if
there is an incentive for the users to reveal their utility functions truthfully. In this
section, we will first discuss an incentive mechanism called the Vickrey-Clarke-
Groves (VCG) which makes it profitable for the users to reveal their true utilities
to the central network planner. However, the amount of information that needs to
be conveyed by the users and the amount of computation required on the part of
the network planner make it difficult to implement the VCG mechanism. One can
design a mechanism based on the idea of distributed resource allocation using a
gradient approach. We call this the Kelly mechanism. However, this mechanism is
truth-revealing only under the assumption that the network is very large so that it
is difficult for each user to estimate its impact on the price decided by the network.
Users that are unaware of their effect on the price are called price taking. On the
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other hand, in a small network such as a single link, a user may be able to assess
its impact on the network price. In such a case, the user may act strategically, i.e.,
act in such a manner that influences the price to maximize its own benefit. We will
review results that show that the inefficiency of the Kelly mechanism with strategic
users is bounded by 25%, i.e., the Kelly mechanism loses at the most a factor of 1=4

compared to the maximum possible network utility.

2.1 VCG Mechanism

Consider a network planner who wants to solve a utility maximization problem,
where each user r is associated with a route r :

max
x�0

X

r

Ur.xr /

subject to

X

rWl2r

xr � cl ; 8l:

Here, xr is the rate allocated to user r , who has a strictly concave utility function
given by Ur and cl is the capacity of link l: Also, we use the notation l 2 r to denote
the fact that link l is part of route r:

Suppose that the network planner asks each user to reveal their utilities and user r

reveals its utility function as QUr.xr/; which may or may not be the same as Ur.xr/:

Users may choose to lie about their utility function to get a higher rate than they
would get by revealing their true utility function. Let us suppose that the network
solves the maximization problem

max
x�0

X

r

QUr.xr/

subject to

X

rWl2r

xr � cl ; 8l

and allocates the resulting optimal solution Qxr to user r: In return for allocating
this rate to user r; the network charges a certain price pr : The price is calculated
as follows. The network planner calculates the reduction in the sum of the utilities
obtained by other users in the network due to the presence of user r and collects this
amount as the price from user r: Specifically, the network planner first obtains the
optimal solution f Nxsg to the following problem:
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max
x�0

X

s¤r

QUs.xs/

subject to

X

s¤rWl2s

xs � cl ; 8l:

In other words, the network planner first solves the utility maximization problem
without including user r: The price pr is then computed as

pr D
X

s¤r

QU . Nxs/ �
X

s¤r

QU . Qxs/;

which is the difference of sum utilities of all other users without (f Nxg) and with
(f Qxg/ the presence of user r: The network planner announces this mechanism to the
users of the network, i.e., the network planner states that once the users reveal their
utilities, it will allocate resources by solving the utility maximization problem and
will charge a price pr to user r: Now the question for the users is the following:
what utility function should user r announce to maximize its payoff ? The payoff is
the utility minus the price:

Ur. Qxr/ � pr :

We will now see that an optimal strategy for each user is to truthfully reveal its
utility function. We will show this by proving that announcing a false utility function
cannot increase the payoff for user r:

Suppose user r reveals its utility function truthfully, while the other users may or
may not. In this case, the payoff for user r is given by

U t D Ur. Qxt
r / �

0

@
X

s¤r

QUs. Nxt
s/ �

X

s¤r

QUs. Qxt
s/

1

A ;

where f Qxt
sg is the allocation given to the users by the network planner and f Nxt

sg is the
solution of the network utility maximization problem when user r is excluded from
the network. The superscript t indicates that user r has revealed its utility function
truthfully. Next, suppose that user r lies about its utility function and denote the
network planner’s allocation by Qxl : The superscript l indicates that user r has lied.
Now, the payoff for user r is given by

U l D Ur. Qxl
r / �

0

@
X

s¤r

QUs. Nxt
s/ �

X

s¤r

QUs. Qxl
s/

1

A :
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If truth-telling were not optimal, U l > U t : If this were true, by comparing the
two expressions for U t and U l , we get

Ur. Qxl
r / C

X

s¤r

QUs. Qxl
s/ > Ur. Qxt

r / C
X

s¤r

QUs. Qxt
s/;

which contradicts the fact that Qxt is the optimal solution to

max
x�0

Ur.xr/ C
X

s¤r

QUs.xs/

subject to the capacity constraints. Thus, truth-telling is optimal under the VCG
mechanism. Note that truth-telling is optimal for user r independent of the strategies
of the other users. A strategy which is optimal for a user independent of the strategies
of other users is called a dominant strategy in game theory. Thus, truth-telling is a
dominant strategy under the VCG mechanism.

In the above discussion, note that Nx is somewhat irrelevant to the pricing
mechanism. One could have chosen any Nx that is a function of the strategies of
all users other than r in computing the price for user r; and the result would still
hold, i.e., truth-telling would still be a dominant strategy. The reason for this is that
the expression for U t � U l is independent of Nx since the computation of Nx does not
use either Ur.:/ or QUr.:/: Another point to note is that truth-telling is an optimal
strategy. Given the strategies of all the other users, there may be other strategies for
user r that are optimal as well. Such user strategies may result in allocations that are
not optimal from the point of view of the network planner.

We have thus established that truth-telling is optimal under a VCG mechanism.
However, the VCG mechanism is not used in networks. The reason for this is
twofold:

• Each user is asked to reveal its utility function. Thus, an entire function has to be
revealed by each user, which imposes a significant communication complexity in
the information exchange required between the users and the network planner.

• The network planner has to solve many maximization problems: one to compute
the resource allocation and one for user to compute the user’s price. Each of
these optimization problems can be computationally quite expensive to solve in
a centralized manner.

In the next subsection, we show how one can design a distributed mechanism for
utility maximization.
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2.2 Kelly Mechanism

One simple method to reduce the communication burden required to exchange
information between the users and the network planner is to ask the users to submit
bids which are amounts that the users are willing to pay for the resource, i.e., the
link capacities in the network. We refer to the mechanism of submitting bids for
resource in the context of network resource allocation as the Kelly mechanism. We
will describe the Kelly mechanism only for the case of a single link with capacity c:

Let the bid of user r be denoted by wr : Given the bids, suppose that the network
computes a price per unit amount of the resource as

q ,
P

k wk

c
: (26.1)

and allocates an amount of resource xr to user r according to xr D wr=q: This
is a weighted proportionally fair allocation since it is equivalent to maximizingP

r wr log xr subject to the resource constraint.
The payoff that the user obtains is given by

Ur

�
wr

q

�
� wr (26.2)

Since the user is rational, it would try to maximize the payoff. We assume that
users are price taking and hence are unaware of the effect that their bids have on the
price per unit resource. As far as they know, the central authority is selling them a
resource at a price q, regardless of what their bid might be. The system is illustrated
in Fig. 26.2.

What would a user bid given that the price per unit resource is q? Clearly, the
user would try to maximize the payoff and try to solve the problem:

Fig. 26.2 In the price-taking
paradigm, users are unaware
of both how the price is
calculated and of each others’
bids. As far as the users are
concerned, the system is a fair
black box that accepts bids
and outputs the price and
their respective allocations
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max
wr �0

Ur

�
wr

q

�
� wr :

Assuming, as we did earlier, that Ur.xr/ ! �1 as xr ! 0; the optimal value
of wr is strictly greater than zero and is given by

U 0
r

�
wr

q

�
D q: (26.3)

Since we know that xr D wr=q, the above equation can be equivalently written
in two other forms:

q D U 0
r .xr / (26.4)

and

wr D xrU
0
r .xr /: (26.5)

Now the utility maximization problem that the network planner wants to solve is
given by

max
x�0

X

r

Ur.xr /;

subject to
P

r xr � c: The solution to the problem satisfies the KKT optimality
conditions given by

U 0
r .xr / D q;

X

r

xr D c (26.6)

The weighted proportionally fair mechanism ensures that (26.6) is satisfied (we
do not allocate more resource than is available). Also, we have just seen that
coupled with rational price-taking users, the mechanism results in an allocation
that satisfies (26.4), which is identical to (26.6). Thus, there exists a solution to
the system of price-taking users that we call xT ; qT (using T to denote “taking”)
that achieves the desired utility maximization by using the weighted proportionally
fair mechanism.

2.2.1 Relation to Decentralized Utility Maximization
Now, suppose that the network wants to reduce its computational burden. Then, it
can compute the price according to the following dual algorithm:

Pq D

 
X

r

xr � c

!C

q

:
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Here, .g.x//C
y denotes

.g.x//C
y D

�
g.x/; y > 0;

max.g.x/; 0/; y D 0;

We use projection above to ensure that pl never goes negative. The algorithm can
be interpretted as the system responding to resource usage by giving back a price,
which it increases or decreases depending on whether the resource is overutilized
or underutilized, respectively. User r is then allocated a rate wr=q in proportion to
its bid wr : Given the price, we have already seen that the user r’s rational bid wr

assuming that it is a price-taking user is given by

U 0
r

�
wr

q

�
D q;

which is the same as U 0.xr / D q:

It is easy to show that the price update along with such a user response
converges to the optimal solution of the network utility maximization problem.
Hence, the algorithm can be thought of as a decentralized implementation of the
Kelly mechanism. In summary, the Lagrange multiplier is a pricing incentive for
users to behave in a socially responsible manner assuming that they are price taking.

2.3 Strategic or Price-Anticipating Users

In the price-anticipating paradigm, the users are aware of the effect that their bid
has on the price of the resource. In this case the problem faced by the users is a
game in which they attempt to maximize their individual payoffs anticipating the
price change that their bid would cause. Each user strategically tries to maximize its
payoff given by

Pr.wr I w�r / D

(
Ur

�
wrP
k wk

c
�

� wr if wr > 0

Ur.0/ if wr D 0;
(26.7)

where w�r is the vector of all bids, except wr :

Our game is a system wherein there are R users and each user r can make a
bid wr 2 R

C [ f0g; i.e., the game consists of deciding a nonnegative real number.
A strategy is a rule by which a user would make his bid. In our case, the strategy
that users might use could be Sr D“set the bid wr D wS

r ”, where wS
r 2 R

C [

f0g is some constant. Since the strategy recommends playing the same bid all the
time, it is called a pure strategy. A strategy profile is an element of the product-
space of strategy spaces of each user, denoted by S . We denote the strategy profile
corresponding to all users using the strategy of setting their bids based on the vector
wG by S 2 S . We would like to know if a particular strategy profile is stable in some
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sense. For example, we might be interested in knowing if everyone knows everyone
else’s strategy, would they want to change in some way. The concept of the Nash
equilibrium formally defines one kind of stability.

Definition 1. A pure strategy Nash equilibrium is a strategy profile from which no
user has a unilateral incentive to change his strategy.

Note the term “unilateral”. This means that users do not collude with each other
– they are interested solely in their own payoffs. If they find that there is no point
changing from the strategy that they are currently using, they would continue to use
it and so remain at equilibrium. How do we tell if the strategy profile S defined
above is actually a Nash equilibrium? The answer is to check the payoff obtained
by using it. We denote the bid recommended by strategy Sr to user r as wS

r and
similarly the bid recommended by any other strategy G by wG

r . So the users would
not unilaterally deviate from the strategy profile S if

Pr.w
S
r I wS

�r / � Pr.w
G
r I wS

�r /; (26.8)

which would imply that the strategy profile S is a Nash equilibrium. We would like
to know if there exists a vector wS such that strategy profile S that recommends
playing that vector would be a Nash equilibrium, i.e., whether there exists wS that
satisfies (26.8). We first find the conditions that need to be satisfied by the desired
wS and then show that there indeed exists a unique such vector.

Now, our first observation is that wS must have at least two positive components.
On the one hand, if there were exactly one user with a positive bid, it would want
to decrease the bid towards zero and yet have the whole resource to itself (so there
can’t be exactly one positive bid). On the other hand, if there were no users with a
positive bid, there would be an incentive for all users to increase their bids to some
nonzero value to capture the resource. The next observation is that since wS has at
least two positive components, and since wr=.

P
k¤r wk C wr / is strictly increasing

in wr if there are, the payoff function is strictly concave in wr . Assuming that the
utility functions are continuously differentiable, so this means that for each user k,
the maximizer wS of (26.7) satisfies the conditions

U 0
r

�
wS

P
k wS

k

c

��
1 �

wS
rP

k wS
k

�
D

P
k wS

k

c
; if wS

k > 0 (26.9)

U 0
r .0/ �

P
k wS

k

c
; if wS

k D 0; (26.10)

which are obtained by simply differentiating (26.7) and setting to 0 (or �0 if wS
r D0)

and multiplying by
P

k wS
k =c.

We now have the set of conditions (26.9) and (26.10) that must be satisfied by the
bids that the Nash strategy profile suggests. But we don’t know yet if there actually
exists any such vector wS that would satisfy the conditions. How do we go about
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showing that such a vector actually exists? Consider the conditions again. They
look just like the KKT first-order conditions of a constrained optimization problem.
Perhaps we could construct the equivalent optimization problem to which these are
indeed the KKT conditions? Then if the optimization problem has a unique solution,
the solution would be the desired vector of bids wS . Consider the constrained
optimization problem of maximizing

X

k

OUk.xk/; (26.11)

subject to the constraints

X

k

xk � c; xk � 0 8k D 1; 2; 3 : : : ; R (26.12)

where the utility function OU .:/ is defined as

OUk.xk/ D
�
1 �

xk

c

�
Uk.xk/ C

�xk

c

�� 1

xk

Z xk

0

Uk.z/d z

�
: (26.13)

It easy to see that OU .:/ is concave and increasing in 0 � xk � c by differentiating
it, which yields OU 0

k.xk/ D U 0
k.xk/.1 � xk=c/. Since Uk.:/ is concave and strictly

increasing, we know that U 0
k.xk/ > 0 and that U 0

k.:/ is nonincreasing. Hence, we
conclude that OU 0

k.xk/ is nonnegative and strictly decreasing in k over the region
0 � xk � c as required.

We verify that the KKT first-order conditions are identical in form to the
conditions (26.9) and (26.10). Directly from the optimization problem above, we
have that there exists a unique vector w and a scalar (the Lagrange multiplier) �

such that

U 0
r .xk/

�
1 �

xk

c

�
D �; if xk > 0 (26.14)

U 0
k.0/ � �; if xk D 0 (26.15)

X

k

xk D c (26.16)

We check that at least two components of x above are positive. We have
from (26.16), at least one of the xk > 0. If only a single component xr > 0

with all others being 0, then from (26.14) we have � D 0, which in turn means
from (26.15) that U 0

k.0/ � 0 for some k. This is impossible since Uk.:/ was
assumed to be concave, strictly increasing for all k. Then we see that as desired,
the above conditions are identical to the Nash conditions with � D

P
k wS

k =c and
xk D cwk=

P
k wk . Thus, we see that even in the case of price-anticipating users,
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there exists unique solution. We will denote the resulting allocation xS , the S being
used to denote “strategy.”

Notice that the solution found applies to an optimization problem that is different
to the one in the price-taking case, so we would expect that in terms of utility
maximization, the price-anticipating solution would probably be worse than the
price-taking case. We will show how to bound the worst-case performance of the
price-anticipating case in the next subsection. Since in the price-anticipating case,
all users play strategically with complete knowledge, and what the central authority
does is to allocate resources in a weighted proportionally fair manner, the system
can be likened to anarchy with users operating with minimal control. We refer to the
inefficiency in such a system as the price of anarchy.

We now examine the impact of price-anticipating users on the network utility,
i.e., the sum of the utilities of all the users in the network. We use the superscript T

to denote solution to the network utility maximization problem (we use T since the
optimal network utility is also the network utility assuming price-taking users), and
the superscript S to denote the solution for the case of price-anticipating users. We
will show the following result.

Theorem 1. Under the assumptions on the utility function given at the beginning
of Sect. 2,

X

r

Ur

�
xS

r

�
�

3

4

X

r

Ur

�
xT

r

�
: (26.17)

Hence, the price of playing a game versus the optimal solution is no greater than
1=4 of the optimal solution.

Proof. The proof of this theorem consists of two steps:

• Showing that the worst-case scenario for the price-anticipating paradigm is when
the utility functions Ur are all linear.

• Minimizing the value of the game under the above condition.

Step 1
Using concavity of Ur.:/ for any user k, we have for the general allocation vector z
with

P
k zk � c, that Ur

�
xT

k

�
� Uk.zr / C U 0

k.zk/
�
xT

k � zk

�
. This means that

P
r Ur.zr /P

r Ur .xT
r /

�

P
r .Ur.zr / � U 0

r .zr /zr / C
P

r U 0
r .zr /zrP

r .Ur.zr / � U 0
r .zr /zr / C

P
r U 0

r .zr /xT
r

Since we know that
P

k xT
k D c, we know that

P
k U 0

k.zk/xT
k � .maxk U 0

r .zk//c.
Using this fact in the above equation, we obtain
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P
k Uk.zk/P
k Uk.xT

r /
�

P
k.Uk.zk/ � U 0

k.zk/zk/ C
P

k U 0
k.zk/zkP

k.Uk.zk/ � U 0
k.zk/zk/ C .maxk U 0

k.zk//c

The term
P

k.Uk.zk/ � U 0
k.zk/zk/ is nonnegative by concavity of Uk; and the

assumption that U .0/ � 0; which means that

P
k Uk.zk/P
k Uk.xT

k /
�

P
k U 0

k.zk/zk

.maxk U 0
k.zk//c

(26.18)

The above inequality is of interest as it compares the utility function with its linear
equivalent. If we substitute z D xS in (26.18), we obtain

P
k Uk.xS

k /
P

k Uk.xT
k /

�

P
k U 0

k.xS
k /xS

k

.maxk U 0
k.xS

k //c
(26.19)

Now, we notice that the left-hand side of the expression above is the price of anarchy
that we are interested in, while the right-hand side of the expression looks like the
price of anarchy for the case where the utility function is linear, i.e., when Ur.xr/ D

U 0
r .xS

r /xr , NUr.xr/. We verify this observation by noting that since the conditions
in (26.14), (26.15), and (26.16) are linear, the numerator is the aggregate utility with
price-anticipating users when the utility function is NU .:/. Also, the denominator is
the maximum aggregate that can be achieved with the utility function NU .:/, which
means that it corresponds to the price-taking case for utility NU .:/. Thus, we see that
the linear utility function of the sort described above necessarily has a lower total
utility than any other type of utility function.

Step 2
Since the worst-case scenario is for linear utility functions, we may take Ur.xr/ D

˛rxr . From Step 1, the price of anarchy, i.e., the ratio of aggregate utility at the Nash
equilibrium to the aggregate utility at social optimum is then given by

P
k ˛kxS

k

fmaxk ˛kgc
: (26.20)

Without loss of generality, we may take the maxk ˛k D 1 and c D 1. Since
this means that the denominator of the above expression is 1, to find the worst-case
ratio, we need to find ˛2; ˛3; : : : ; ˛R such that the numerator is minimized. This
would directly give the price of anarchy. So the objective is to

min
fxS ;˛g

xS
1 C

RX

rD2

˛rx
S
r (26.21)

subject to ˛k

�
1 � xS

k

�
D 1 � xS

1 ; if xS
k > 0 (26.22)
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˛k � 1 � xS
1 ; if xS

k D 0 (26.23)
X

k

xS
k D 1 (26.24)

0 � ˛k � 1; k D 2; : : : R (26.25)

xS
k � 0; k D 1; : : : ; R (26.26)

Notice that the constraints on the above optimization problem follow
from (26.14), (26.15), and (26.16) to ensure that xS is a allocation vector that a
Nash strategy profile would suggest. Since only the users with nonzero allocations
contribute to the utility, we can consider the system with N � R users, with
every user getting a nonzero allocation. Equivalently, we could just assume that
all R users get a nonzero allocation and observe what happens as R increases.
Then ˛k.1 � xS

k / D 1 � xS
1 holds for all users in the new system, which implies

˛k D .1 � xS
1 /=.1 � xS

k /. Let us fix xS
1 for now and minimize over the remaining

xS
r . Then we have

min
fxS

r Wr¤1g
xS

1 C

RX

kD2

xS
k .1 � xS

1 /

1 � xS
k

(26.27)

subject to
RX

kD2

xS
r D 1 � xS

1 (26.28)

0 � xS
k � xS

1 ; k D 2; : : : ; R (26.29)

The above problem is well defined only if xS
1 � 1=R (otherwise the last

constraint will be violated upon minimization). If we assume this condition, by
symmetry, the minimum value occurs for all users 2; : : : ; R getting the same
allocation equal to .1 � xS

1 /=.R � 1/. Substituting this value into the problem, we
only have to minimize over xS

1 , i.e., the problem is now given by

min
xS

1

xS
1 C .1 � xS

1 /2

�
1 �

1 � xS
1

R � 1

��1

(26.30)

subject to 0 � xS
1 � 1: (26.31)

The objective function above is decreasing in R and so the lowest value would
occur as R ! 1. So we finally have very simple problem to solve, namely,

min
xS

1

xS
1 C .1 � xS

1 /2 (26.32)

subject to 0 � xS
1 � 1 (26.33)
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By differentiation we can easily see that the solution to the above problem is
for d S

1 D 1=2, which yields a worst-case aggregate of 3=4. Thus, we see that the
aggregate utility falls by no more than 25% when the users are price anticipating. �

3 Flow Routing

In the last section, we considered the problem of strategic agents that try to
maximize their individual throughputs, and saw that the the price of anarchy can be
tightly upper bounded in a game of such strategic behavior. We consider a different
game involving routing of flows though a network in this section. As we saw in
the last section, the load on a link can be thought of as imposing a cost on all the
flows on that link. This cost can be thought of as the delay experienced by each
packet of the flow, which in turn causes a reduction in the quality of the service
being supported by that flow. Suppose that a set of routes is available between a
source and destination and each packet makes a decision on which route to take
based on the perceived delay on each alternative. What would be the effects of such
per-packet selfish routing?

Figure 26.3 illustrates the setup of an example routing problem proposed by
Pigou. Here, there is a total flow of 1 unit, between S and D. We can think of
this flow as the total number of packets per second that are being injected into the
network. Let the delay per unit flow function on link A be pA.yA/ D 1; where yA is
flow on link A: Similarly, the delay per unit flow on link B is pB.yB/ D yB; with
the corresponding flow being yB: Thus, the upper route has a fixed delay regardless
of the flow on it, whereas the lower one has a delay proportional to the flow on it.
The total flow is yA C yB D 1:

We can characterize the total delay experienced by an average packet under
selfish routing by deriving the equilibrium flows on the links under such selfish
dynamics. We make the assumption that the flows are infinitely divisible, in which
case the decision of each infinitesimal unit of flow’s decision has a vanishingly
small impact on the delay on any link. Effectively, this is as if each packet is price
taking and simply greedily chooses the route that shows the smallest delay. Then the
equilibrium conditions would simply be that any routes that are in use would have
the same per-unit delay, since otherwise some of the flow would be diverted to a

Fig. 26.3 A Pigovian
Network

S D
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route that shows a smaller delay until equalization occurs. Hence, for selfish routing
at equilibrium

• if A and B are both used then pA.yA/ D pB.yB/:

• if only A is used, pA.yA/ � pB.yB/:

• if only B is used, pB.yB/ � pA.yA/:

Such a pair .yA; yB/ is said to be in Wardrop equilibrium. In this example, the
Wardrop equilibrium is .yA; yB/ D .0; 1/. The average delay experienced by a
packet is

yApA.yA/ C yBpB.yB/

yA C yB

D yApA.yA/ C yBpB.yB/ D 1: (26.34)

Now, let us consider what would happen if a network planner were to route the
flows in such a way that the average delay of the system as a whole is minimized. We
refer to this case as socially optimal routing. We can determine the socially optimal
flow assignment by choosing .yA; yB/ to solve

min yA C y2
B

subject to
yA C yB D 1; yA � 0; yB � 0

The problem is easy to solve by differentiating the objective function and setting
it equal to zero as follows:

min
0�yB �1

.1 � yB/ C y2
B (26.35)

) �1 C 2yB D 0 ) yB D 1=2 (26.36)

) optimal cost D 1=2 C 1=4 D 3=4 (26.37)

Combining the two results in (26.34) and (26.37), we have a characterization of
the PoA (price of anarchy) as

Optimal cost

Cost under selfish routing
D

4

3
:

The question arises as to whether the same kind of result would apply in the
case of flow routing in a general network? For instance, one might think that in a
network with a large number of routes to choose from, perhaps the delay incurred
even with selfish routing might be comparatively small. We next present an example
that shows that the intuition that adding links, even if the cost function of the
additional link is zero can actually increase the delay of a system with selfish
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routing. This apparently paradoxical result is known as Braess’ paradox, named
after its discoverer.

3.1 Braess’ Paradox

Consider the network shown in Fig. 26.4. We have the typical problem of routing
a unit flow in a network with four links and a combination of fixed and linear link
delay functions. Using the same logic that we used earlier, the Wardrop equilibrium
must be such that all routes with a nonzero flow must have the same unit delay.
By symmetry, we have that the Wardrop equilibrium is .y1; y2/ D .1=2; 1=2/: The
average delay per packet is 3=2� 1=2 C 3=2� 1=2 D 3=2:

Now, let us add a link with zero delay (regardless of flow on it) between A and
B; as shown in Fig. 26.5. We see immediately that Wardrop equilibrium is to route
all the flow on S ! A ! B ! D. The average delay corresponding to this flow
routing is 1 C 1 D 2. We observe that the addition of a link with zero delay has
increased the average delay under selfish routing!

Fig. 26.4 A flow routing
example with four links

S D

1

1

A

B

Fig. 26.5 Braess’ Paradox.
Adding a link with zero delay
increases average delay

S D

1

0

1

A

B
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3.2 Flow Routing Game

We now consider the problem of tightly bounding the price of anarchy of selfish
flow routing in a general network. We will focus only on linear cost functions.
Surprisingly, it turns out that the bound of 4=3 that we derived for the Pigovian
network with some specific cost functions not only turns out to be accurate for a
Pigovian network with general affine cost functions but also turns out to be the
bound for a general network with affine cost functions. This subsection is devoted
to proving that result.

Let F be the total flow between source, S and destination, D in a network. Let
R be the set of routes between S and D. As before, we will use the notation l 2 r

to indicate that link l is a part of route r . Also, xr denotes the flow on route r; while
yl denotes flow on link l with

yl D
X

rWl2r

xr :

The cost (or delay) of a route r per unit of flow on it is denoted by

qr.y/ D
X

l2r

pl .yl /;

where pl is the cost of link l , and is a nondecreasing function and y D

.y1; y2; � � � yl ; � � � /.
We define the Socially optimal routing problem as follows:

min
X

r

 
X

l

pl .yl /

!
xr (26.38)

s:t: (26.39)
X

rWl2r

xr D yl (26.40)

X

r

xr D F (26.41)

xr ; yl � 0 8r; l (26.42)

Definition 2. A Wardrop equilibrium is a vector y D fylg such that, if xr > 0 for
some r 2 R; then qr.y/ � q0

r .y/; 8r 0 2 R:

In other words, a route has nonzero flow only if it is a minimum-cost route.
Does a Wardrop equilibrium exist in the flow routing game? In order to answer this
question, we will rewrite the conditions of the Wardrop equilibrium as the solution
of a convex optimization problem to which a solution has to exist. First, according
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to the definition, the Wardrop equilibrium is equivalent to the condition that there
exists a � � 0 such that

qr.y/ D � if xr > 0 (26.43)

and qr.y/ � � if xr D 0 (26.44)

We will now show that the above condition is identical to solving the following
problem.

min
X

l

Z yl

0

pl .y/dy (26.45)

s:t:
X

rWl2r

xr D yl (26.46)

X

r2R

xr D F (26.47)

xr � 0; yl � 0 (26.48)

In order to show the equivalence between the conditions defined by (26.43),
(26.44) and (26.45), (26.46), (26.47), (26.48), we will characterize the solution of
the latter problem and show that it exactly satisfies the former. Using (26.46), yl can
be eliminated from the problem yielding

min
X

l

Z P
rWl2r xr

0

pl .y/dy (26.49)

s:t:
X

r2R

xr D F (26.50)

xr � 0 8r: (26.51)

First, we note that since pl.y/ is a nondecreasing function of y

Z yl

0

pl .y/dy

is a convex function. Hence, the above formulation is a convex optimization
problem. The Lagrange dual of the above problem is

min
xr �0

X

l

Z P
rWl2r xr

0

pl .y/dy

„ ƒ‚ …
V .x/

� �

 
X

r

xr � F

!
; (26.52)
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where we have used the notation x D .x1; x2; � � � ; xr ; � � � /. The first-order KKT
conditions corresponding to the solution are, therefore,

@V

@xr

D � if xr � 0 (26.53)

@V

@xr

� � if xr D 0 (26.54)

@V

@xr

D
X

l2r

pl .yl //; (26.55)

which are identical to the definition of the Wardrop equilibrium in (26.43) and
(26.44). Thus, (26.45), (26.46), (26.47), and (26.48) can be used as an alternative
definition of a Wardrop equilibrium.

3.2.1 PoA for Linear Latency Functions: Pigovian Network
We now reconsider the Pigovian network with two routes that we saw earlier, except
with more general (but still affine) cost functions and any nonnegative flow F; as
shown in Fig. 26.6. Let yl be the flow on any link l in a graph. Assume that pl.yl / D

alyl C bl .al ; bl � 0/: Also, let ˛ be the worst-case PoA in a Pigou network. It is
easily seen that the Wardrop equilibrium places all the flow on the top link and the
cost is .aF C b/F D aF 2 C bF:

In order to find the socially optimal flows, we need to solve

min
0�y�F

.ay C b/y C .aF C b/.F � y/: (26.56)

Note that we immediately have min0�y�F , miny�0 in this case. Let us ignore
the fact that y � 0 and simply try to find the global minimum. Differentiating, we
have

)2ay C b � aF � b D 0 (26.57)

)y D F =2; (26.58)

Fig. 26.6 A Pigovian
network with linear delay
functions

S D



1164 S. Shakkottai and R. Srikant

i.e., the solution satisfies y � 0: The cost of the social optimal is

D .aF =2 C b/F =2 C .aF C b/F =2 (26.59)

D 3aF =4 C b: (26.60)

Finally, we can identify the Price of Anarchy as

˛ D max
F �0;a�0;b�0

.aF C b/F

F
�

3aF
4

C b
� (26.61)

D 4=3: (26.62)

Note that the PoA is achieved when F ! 1:

3.2.2 PoA for Linear Latency Functions: General Network
We now extend the results of the Pigovian network to a general network. The main
result is stated below.

Theorem 2. Consider any network with affine link delay costs, with al ; bl � 0. The
PoA is upper bounded by 4=3.

Proof. Let Ox be the WE and x� be socially optimal for a network with a flow
between a source and destination of F . If Oxr > 0, qr.Ox/ � qr 0.Ox/ 8r 0; which implies
that for all used routes qr. Oxr/ are equal. Call this value as M: Thus,

X

r

qr .Ox/ Oxp D
X

rW Oxr 6D0

qr .Ox/ Oxr D MF: (26.63)

Now, since the allocation x� might use routes not used in Ox;

X

r

qr . Oxr/x
�
r � M

X

r

x�
r D MF (26.64)

)
X

r

qr . Ox/.x�
r � Oxr/ � 0; (26.65)

i.e., if all route costs are fixed as qr. Ox/, then Wardrop equilibrium is the smallest
cost.

Recall from our discussion on the Pigovian network that

4

3
D max

F �0;a�0;b�0

Fp.F /

min0�y�F yp.y/ C .F � y/p.F /
(26.66)

D max
F �0;a�0;b�0

max
0�y�F

Fp.F /

yp.y/ C .F � y/p.F /
(26.67)
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Recall that the upper bound on y is slack, and hence we can equivalently write

4

3
D max

F �0;a�0;b�0;y�0

Fp.F /

yp.y/ C .F � y/p.F /
(26.68)

Since the above inequality is true in general, we can substitute Oyl for F and y�
l

for y to obtain

4

3
�

Oylpl . Oyl/

y�
l pl .y

�
l / C . Oyl � y�

l /pl . Oyl/
(26.69)

) y�
l pl .y

�
l / �

3

4
Oylpl . Oyl/ C .y�

l � Oyl/pl . Oyl/ (26.70)

Now, summing over all links we get

X

l

y�
l pl .y

�
l / �

3

4

X

l

Oylpl . Oyl/ C
X

l

.y�
l � Oyl/pl . Oyl/

„ ƒ‚ …
.A/

(26.71)

If the term labelled .A/ above is nonnegative, the theorem immediately follows.
In order to show that this is indeed the case, we use the following argument. We
have

X

l

.y�
l � Oyl/pl . Oyl/ (26.72)

D
X

l

pl . Oyl/

 
X

l2r

x�
r �

X

l2r

Oxr

!
(26.73)

D
X

r

 
X

l2r

pl . Oyl/

!
.x�

r � Oxr/ (26.74)

D
X

r

qr . Ox/.x�
r � Oxr/ (26.75)

� 0; (26.76)

where the final inequality follows from (26.65). Hence, from (26.71)

PoA �
4

3
:

We may note in conclusion that the socially optimal solution, and WE both
may have multiple solutions but have unique costs since they are both convex
programs. �
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4 Pricing Approach to Scheduling

In the last two sections, we considered two kinds of agent models in resource
sharing games and characterized the efficiency loss incurred in each case. In Sect. 2,
the focus was on a finite set of agents, with each having an impact on others’
payoffs, whereas in Sect. 3, the number of agents was infinite, and each agent had
an infinitesimal impact on the payoffs of others. In this section, we will consider a
model in which the number of agents is infinitely large, but each agent only interacts
with a finite subset of these agents at each time. Further, we now consider a repeated
game in which an agent’s state changes at each step according to a discrete time
Markov process.

Our context is a system consisting of smartphone users whose apps are modeled
as queues that come into existence when the user starts the app and vanish when the
user terminates that app. The app generates packets (either uplink or downlink) that
get buffered in the corresponding queue and which need to be served by a cellular
base station. If a user is scheduled for service, the queue is decremented by a unit
amount. We can associate a cost with the instantaneous queue length, which captures
the idea that the quality of service of the app suffers with increasing packet delays.
The user moves around, meaning that it changes the cell that it is present in. The
shared resource across users in a particular cell is the spectrum allocated to that cell,
and we assume for simplicity that this is such that only one queue can be served at
any time. Then a question arises as to how to schedule queues in each cell in such a
way that a good performance is obtained.

It is well known that the longest-queue-first (LQF) algorithm has attractive
properties, such as minimizing the expected value of the longest queue in the system.
One would expect that such an algorithm would ensure good performance across all
apps. While the queues corresponding to downlink are present at the base station
itself, the uplink queues are present at the user devices themselves. However, if
the base station announces an LQF policy and then polls the queues seeking their
lengths, there is clearly an incentive for each queue to try and receive additional
service by misreporting its value. How should we design a system wherein the
queues accurately reveal their information to the base stations?

Suppose that we hold an auction in which each queue placed a bid and the highest
bidder gets service. The mechanism used can be chosen as a second-price scheme in
which the winning bidder pays the value of the second highest bid. It is well known
that such an auction promotes truth-telling about valuation in the single-step case.
But in our system, the queue makes bids in each time step during its lifetime, and
so we have a repeated game setting. Further, the queue has to estimate the likely
bids made by the other queues at each step and choose its bid by trading off the
value of winning (in terms of decrementing its queue length) and the payment to be
made. What kind of bids would be seen in such as system? Would conducting such
an auction repeatedly over time with queues arriving and departing result in some
form of equilibrium? Would the scheduling decisions resulting from such auctions
resemble that of LQF?
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4.1 Mean Field Games

We will investigate the existence of an equilibrium using the theory of mean field
games (MFGs). In this setup, the players assume that each opponent would play
an action drawn independently from a fixed distribution over its action space. This
distribution is called the belief of the players. The player then chooses an action
that, given its own state, is the best response against actions drawn in this fashion.
We say that the system is at Mean Field Equilibrium (MFE) if this best response
action is itself a sample drawn from the assumed distribution. Thus, the player’s
action should be consistent with the assumed distribution.

The MFG framework offers a structure to approximate so-called Perfect
Bayesian Equilibrium (PBE) in dynamic games. PBE requires each player to keep
track of their beliefs on the future plays of every other opponent in the system and
play the best response to that belief. This makes the computation of PBE intractable
when the number of players is large. In our case, the state of each player is the
current queue length, while the action is the bid made to the base station in which
the phone is currently located. A PBE would require each app to estimate the queue
lengths and the associated bids of every other queue that it is competing against –
something that is clearly quite hard. The MFG approximation would assume that
the bids made by the opponents are drawn independently from some bid distribution
and to place a bid in response. The MFG framework simplifies computation of the
best response and often turns out to be asymptotically optimal.

Analysis of a typical mean field game problem involves the following
steps:

1. Characterization of the best response policy under a fixed belief. We view the
system from the perspective of a single agent that takes an action at each time
step based on its state, its belief about other agents’ actions, and its knowledge
about the transition probabilities of its state. In the repeated game case, this
process involves characterizing the optimal action in a Markov decision process
(MDP).

2. Showing the existence of the MFE using fixed point arguments. This step
involves verifying that the map between the belief distribution and the invariant
distribution of the mean field agent’s actions has a fixed point. In general, the
properties to be verified are continuity of the map and compactness of the range
space.

3. Showing asymptotic independence of the queues. One of the assumptions in
computing the MFE is that, when a given agent interacts with another agent,
their queue length distributions are independent. The first step in justifying this
assumption is to prove that the queue lengths of any finite set of queues are
independent when the numbers of users goes to infinity. This independence result
is proved for a class of policies which includes the policy obtained using the MFE
assumption. Then, the result is extended to show that independence continues to
hold in steady state.
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4. Showing that the MFE is an �-Nash equilibrium asymptotically. Here, the idea
is that if the mean field policy were employed by all agents except a particular
agent, that agent would gain no more than � payoff by a unilateral deviation
employing any other policy.

5. Dynamics of the many particle system. One hurdle to implementing the policy
obtained from the MFE approach is that the equilibrium distribution of each
user’s queue length distribution is unknown. In principle, this is estimated by
the stations from a histogram of the users’ queue lengths. Indeed, simulations
indicate that a policy computed from such an empirical estimate of the distribu-
tion converges to the MFE policy when the number of users is large. However,
proving such a result is an open problem at this time.

In what follows, we will focus only on Steps 1 and 2 above and will provide
full results on the first and a sketch of the second. In the problem that we consider,
Step 4 and the independence result in Step 3 over finite time horizons follow in
a straightforward fashion, while research into independence assumption in steady
state in Step 3 and all of Step 5 is ongoing. We provide some references into these
aspects at the end of the chapter.

4.2 Mean Field Auction Model

We consider a system consisting of N cells, each with a base station, and a total of
NM agents. The agents are the smartphone apps, in which each one is associated
with a queue. These agents are randomly permuted in the cells at each discrete time
instant k, with each cell having exactly M agents. The model can be thought of as
representing the idea that each cell in a cellular system typically has about 1000

devices, of which about 10 devices might be active at any time. The devices are
mobile, which means that the pool from which active devices appear is constantly
changing. Each cell contains a base station, which conducts a second-price auction
to choose which agent to serve. Each agent must choose its bid in response to its
state and its belief over the bids of its competitors.

Figure 26.7 illustrates the MFG approximation, which is accurate in the limit as
N becomes large. As mentioned earlier, an MFG is described from the perspective
of a single agent, which assumes that the actions of all its competitors are drawn
independently from some distribution called the belief.

Auction system: The agent of interest competes in a second-price auction against
M � 1 other agents, whose bids are assumed to be independently drawn from a
continuous, finite mean (cumulative) bid distribution �; with support RC: The state
of the agent is its current queue length q (the random variable is represented by Q).
The queue length induces a holding cost C .q/; where C .:/ is a strictly convex and
increasing function. Suppose that the agent bids an amount w 2 R

C: The outcomes
of the auction are that the agent would obtain a unit of service with probability
p�.w/ and would have to pay an expected amount of r�.w/ when all the other bids
are drawn independently from �: Further, the queue has future job arrivals according
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Fig. 26.7 The game consists of an auction part (inner loop) and a queue dynamics part (outer
loop). The system is at MFE if the resultant bid distribution � is the same as the assumed bid
distribution �

to distribution ˆ; with the random job size being denoted by A: Finally, the app can
terminate at any time instant with probability 1�ˇ: Based on these inputs, the agent
needs to determine the value of its current state OV�.q/; and the best response bid to
make w D O��.q/.

Queueing system: The queueing dynamics are driven by the arrival process ˆ and
the probability of obtaining service being p�.w/ as described above. When the user
terminates an app, he/she immediately starts a fresh app, i.e., a new queue takes
the place of a departing queue. The initial condition of this new queue is drawn
from a regeneration distribution ‰; whose support is RC: The invariant distribution
associated with this queueing system (if it exists) is denoted by …�:

Mean field equilibrium: The probability that the agent’s bid (represented by
the random variable W ) lies in the interval Œ0; w� is equal to the probability that
the agent’s queue length lies in some set whose best response is to bid between
Œ0; w�: Thus, the probability of the bid lying in the interval Œ0; w�; denoted by
the cumulative probability distribution �.w/; is …�. O��1

� .Œ0; w�//: According to the
assumed (cumulative) bid distribution, the probability of the same event is �.w/: If
�.w/ D �.w/, it means that the assumed bid distribution is consistent with the best
response bid distribution, and we have an MFE.

4.2.1 Agent’s Decision Problem
Under the mean field regime, we are interested in the decision and state evolution
a particular agent i that has a belief that the bid of each other agent (opponent) has
cumulative distribution �; independent of each other. We assume that � 2 P where,
P is the set of distributions with a continuous c.d.f. and a finite mean, upper bounded
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by some E < 1. Suppose that the random variable representing the bid made by
agent i at time k is denoted by Wi;k; with the realized value being w: Also, let

NW�i;k D max
j 2Mi;k

Wj;k;

represent the maximum value of M � 1 draws from the distribution �: Thus, NW�i;k

is the value of the highest opposing bid.
Since the time of regeneration T k

i is a geometric random variable, the expected
cost of agent i can be can be written as

Vi;�.Hi;k I �i / D E

"
1X

tDk

ˇt ŒC .Qi;t / C r�.Wi;t /�

#
; (26.77)

where Hi;k is the history observed by agent i until time k; �i is the bid function that
it employs, and the expectation is over future state evolutions. Also,

r�.w/ D EŒ NW�i;kIf NW�i;k � wg�

is the expected payment when i bids w under the assumption that the bids of other
agents are distributed according to �. Hence, given �, the probability that agent i

wins in the auction is

p�.w/ D P. NW�i;k � w/ D �.w/M�1: (26.78)

The expected payment when bidding w is

r�.w/ D EŒ NW�i;kIf NW�i;k � wg�

D wp�.w/ �

Z w

0

p�.u/du: (26.79)

The state process Qi;k is Markov and has a transition kernel

P.Qi;kC1 2 BjQi;k D q; Wi;k D w/ D ˇp�.w/P..q � 1/C C Ak 2 B/

C ˇ.1 � p�.w//P.q C Ak 2 B/ C .1 � ˇ/‰.B/; (26.80)

where B � R
C is a Borel set and xC , max.x; 0/. Recall that Ak � ˆ is the arrival

between .k/th and .k C 1/th auction and ‰ is density function of the regeneration
process. In the above expression, the first term corresponds to the event that agent
wins the auction at time k; while the second corresponds to the event that it does
not. The last term captures the event that the agent regenerates after auction k. The
agent’s decision problem can be modeled as an infinite horizon discounted cost
MDP. Standard results can be used to show that there exists an optimal Markov
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deterministic policy for our MDP; (Strauch 1966). Then, from (26.77), the optimal
value function of the agent can be written as

OVi;�.q/ D inf
�i 2‚

E

"
1X

tD1

ˇt ŒC .Qi;t / C r�.Wi;t /� jQi;0 D q

#
; (26.81)

where ‚ is the space of Markov deterministic policies. Once we have the above
formulation, the index of the agent is redundant as we are concerned with a single
agent’s decision problem. Hence, we will omit the agent subscript i in what follows.

4.2.2 Existence of a Stationary Distribution
Given cumulative bid distribution � and a Markov policy � 2 ‚, the transition
kernel given by (26.80) can be rewritten as,

P.QkC1 2 BjQk D q/ D ˇp�.�.q//P..q � 1/C C Ak 2 B/

C ˇ.1 � p�.�.q///P.q C Ak 2 B/ C .1 � ˇ/‰.B/: (26.82)

A basic question is whether a stationary distribution …� exists under an arbitrary
Markov policy �: This is critical if we are to characterize the map between the
assumed bid distribution and � and the resultant bid distribution �: It turns out
that under our formulation, the existence of the invariant state distribution follows
immediately from Meyn et al. (2009).

4.2.3 Mean Field Equilibrium
The mean field equilibrium is essentially a consistency check that the bid distribu-
tion � induced by the stationary distribution …�;�� is identical to the bid distribution
that forms the belief of the agent, i.e., �. Hence, we have the following definition of
MFE:

Definition 3 (Mean field equilibrium). Let � be a bid distribution and �� be a
stationary policy for an agent. Then, we say that .�; ��/ constitutes a mean field
equilibrium if

1. �� is an optimal policy of the decision problem in (26.81), given bid distribution
�.

2. �.x/ D �.w/ , …�.��1
� .Œ0; w�//; 8w 2 R

C, where …� D …�;�� .

We now characterize the best response policy and describe the steps involved in
proving existence of the MFE.
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4.3 Properties of Optimal Bid Function

The decision problem given by (26.81) is an infinite horizon, discounted Markov
decision problem (MDP). The optimality equation or Bellman equation correspond-
ing to the decision problem is

OV�.q/ D C .q/ C ˇEA. OV�.q C A//

C inf
x2RC

h
r�.w/ � p�.w/ˇEA

�
OV�.q C A/ � OV �..q � 1/C C A/

�i
;

(26.83)

where A � ˆ; and we use the notation max.0; z/ D zC:

We define the set of functions

V D

(
f W RC 7! R

C W sup
q2RC

ˇ̌
ˇ̌f .q/

�.q/

ˇ̌
ˇ̌ < 1

)
; (26.84)

where �.q/ D maxfC .q/; 1g. Clearly, V is a Banach space with �-norm,

kf k� D sup
q2RC

ˇ̌
ˇ̌f .q/

�.q/

ˇ̌
ˇ̌ < 1:

We define the Bellman operator T� as

.T�f /.q/ D C .q/ C ˇEAf .q C A/

C inf
w2RC

	
r�.w/ � p�.w/ˇ.EA.f .q C A/ � f ..q � 1/C C A///



;

(26.85)

where f 2 V . It is straightforward to show that the infimum in the above operator
occurs at

ˇ	f .q/C; (26.86)

where 	f .q/ D EA.f .q C A/ � f ..q � 1/C C A//: Then, substituting
from (26.78), (26.79) and (26.86), (26.85) can be rewritten as

.T�f /.q/ D C .q/ C ˇEAf .q C A/ �

Z ˇ	f .q/C

0

p�.u/du: (26.87)

Our first step is to show that an optimal solution exists for this problem. The
MDP is in discrete time, but state consists of all nonnegative real numbers. There
exist standard regularity conditions under which such an MDP has a solution. For
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instance, our problem setup can be posed as a slightly modified version of that in
Theorem 8:3:6 of Hernández-Lerma and de Ozak (1992). The result is as follows:

Lemma 1. Given a cumulative bid distribution �,

1. There exists a j 2 N such that T
j
� W V ! V is a contraction mapping. Hence,

there exists a unique f �
� 2 V such that T�f �

� D f �
� , and for any f 2 V ,

T n
� f ! f �

� as n ! 1.
2. The fixed point f �

� of operator T� is the unique solution to the optimality

Eq. (26.83), i.e., f �
� D OV�.

3. Letting O��.q/ D ˇ	 OV�.q/C; O�� is an optimal policy.

Corollary 1. An optimal policy of the agent’s decision problem (26.81) is given by

O��.q/ D ˇEA

h
OV�.q C A/ � OV�..q � 1/C C A/

i
:

We now establish that OV� and O�� are continuous and increasing functions.

Lemma 2. Given a cumulative bid distribution function �

1. OV� is a continuous increasing function.

2. O�� is a continuous strictly increasing function.

Proof. Let f 2 V . Suppose f is a continuous monotone increasing function. We
first prove that T�f is also continuous monotone increasing function. Since, the
n � step Bellman operator T n

� f ! OV� according to Statement 2 of Lemma 1, we

conclude that OV� also has the same property.
Let q > q0. Then,

T�f .q/ � T�f .q0/ D C .q/ � C .q0/ C ˇEA.f .q C A/ � f .q0 C A//

C inf
w

Œr�.w/ � ˇp�.w/EA.f .q C A/ � f ..q � 1/C C A//�

� inf
w

Œr�.w/ � ˇp�.w/EA.f .q0 C A/ � f ..q0 � 1/C C A//�

.a/

� ˇEA.f .q C A/ � f .q0 C A// C ˇ inf
w

	
p�.w/EA.f .q0 C A/

�f ..q0 � 1/C C A/ � f .q C A/ C f ..q � 1/C C A//



� ˇ min
˚
EA.f .q C A/ � f .q0 C A//;EA.f ..q � 1/C C A/

�f ..q0 � 1/C C A//
�

.b/

� 0;
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where (a) follows from the assumption that C .:/ is an increasing function, and (b)
follows from the assumption that f .:/ is an increasing function.

To prove that T�f is continuous consider a sequence fqng such that qn ! q.
Since f is a continuous function, f .qnCa/ ! f .qCa/. Then, by using dominated
convergence theorem, we have EAf .qn CA/ ! EAf .qCA/ and EAf ..qn �1/C C

A/ ! EAf ..q �1/C CA/. Also, 	f .qn/ � 0 as f is an increasing function. Then,
from (26.87), we get that

T�f .qn/ D C .qn/ C ˇEAf .qn C A/ �

Z ˇ	f .qn/

0

p�.u/du

! C .q/ C ˇEAf .q C A/ �

Z ˇ	f .q/

0

p�.u/du D T�f .q/:

Hence, T�f is a continuous function. This yields Statement 1 in the lemma.
Now, to prove the second part, assume that 	f is an increasing function. First,

we show that 	T�f is an increasing function. Let q > q0. From (26.87), for any
a < NA we can write

.T�f /.q C a/ � .T�f /..q � 1/C C a/ � .T�f /.q0 C a/ C .T�f /..q0 � 1/C C a/

D C .q C a/ � C ..q � 1/C C a/ � C .q0 C a/ C C ..q0 � 1/C C a/

C ˇEAf .q C a C A/ � ˇEAf ..q � 1/C C a C A/

� ˇEAf .q0 C a C A/ C ˇEAf ..q0 � 1/C C a C A/

�

Z ˇ	f .qCa/

ˇ	f .q0Ca/

p�.u/ du C

Z ˇ	f ..q�1/CCa/

ˇ	f ..q0�1/CCa/

p�.u/ du

D C .q C a/ � C ..q � 1/C C a/

� C .q0 C a/ C C ..q0 � 1/C C a/

C ˇEAf ..q C a � 1/C C A/ � ˇEAf ..q � 1/C C a C A/

� ˇEAf ..q0 C a � 1/C C A/ C ˇEAf ..q0 � 1/C C a C A/

C

Z ˇ	f .qCa/

ˇ	f .q0Ca/

1 � p�.u/ du C

Z ˇ	f ..q�1/CCa/

ˇ	f ..q0�1/CCa/

p�.u/ du

It can be easily verified that

EA.f .q C a � 1/C C A/ � EA.f .q � 1/C C a C A/ � EA.f .q0 C a � 1/C C A/

C EA.f .q0 � 1/C C a C A/ � 0;
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as f is increasing (due to Statement 1 of this lemma). From the assumption that 	f

is increasing, the last two terms in the above expression are also nonnegative. Now,
taking expectation on both sides, we obtain 	T�f .q/ � 	T�f .q0/ � 	C .q/ �

	C .q0/ > 0. Therefore, from Statements 2 and 3 of Lemma 1, we have

O��.q/ � O��.q0/ D 	 OV�.q/ � 	 OV�.q0/ � 	C .q/ � 	C .q0/ > 0:

Here, the last inequality holds since C is a strictly convex increasing function.�

4.4 Existence of MFE

We now describe the steps involved in showing the existence of the MFE. In many
cases we will only provide proof sketches to show how the argument proceeds.

Theorem 3. There exists an MFE
�
�; O��

�
such that

�.x/ D �.x/ , …�

�
O��1
� Œ0; x�

�
; 8x 2 R

C:

We first introduce some useful notation. Let ‚ D f� W R 7! R; supq2RC

ˇ̌
ˇ �.q/

w.q/

ˇ̌
ˇ <

1g: Note that ‚ is a normed space with w-norm. Also, let 
 be the space of
absolutely continuous probability measures on R

C. We endow this probability space
with the topology of weak convergence.

We define �� W P 7! ‚ as .��.�//.q/ D O��.q/, where O��.q/ is the optimal bid
given by Corollary 1. It can be easily verified that O�� 2 ‚. Also, define the mapping
…� that takes a bid distribution � to the invariant workload distribution …�.�/. Later,
using Lemma 3 we will show that …�.�/ 2 
. Therefore, …� W P ! 
. Finally,
define F as .F.�//.x/ D �.x/ D …�. O��1

� .Œ0; x�//. Lemma 5 will show that F
maps P into itself.

In order to prove the above theorem, we need to show that F has a fixed point,
i.e., F.�/ D �.

Theorem 4 (Schauder Fixed Point Theorem). Suppose F.P/ � P . If F.�/ is
continuous and F.P/ is contained in a convex and compact subset of P , then F.�/

has a fixed point.

We will show that the mapping F satisfies the conditions of the above theorem, and
hence it has a fixed point. Note that P is a convex set. Therefore, we only need to
verify the other two conditions.

To prove the continuity of mapping F , we first show that �� and …� are
continuous mappings. To that end, we will show that for any sequence �n ! �

in uniform norm, we have ��.�n/ ! ��.�/ in w-norm and …�.�n/ ) …�.�/
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(where ) denotes weak convergence). Finally, we use the continuity of �� and …�

to prove that F.�n/ ! F.�/:

Step 1: Continuity of the map ��

Theorem 5. The map �� is continuous.

Proof. Define the map V � W P 7! V that takes � to OV�.�/. We begin by showing
that k O��1 � O��2k� � Kk OV�1 � OV�2k�, which means that the continuity of the map V �

implies the continuity of the map ��. Next, we show two simple properties of the
Bellman operator. The first is that for any � 2 P and f1; f2 2 V ,

kT�f1 � T�f2k� � OKkf1 � f2k� (26.88)

for some large OK, independent of �.
Second, let T�1 and T�2 be the Bellman operators corresponding to �1; �2 2 P

and let f 2 V . We show that

kT�1f � T�2f k� � 2.M � 1/K1kf k�k�1 � �2k: (26.89)

We then have

kT j
�1

OV�2 � T j
�2

OV�2k� � (26.90)

kT j
�1

OV�2 � T j �1
�1

T�2
OV�2k�

C kT j �1
�1

T�2
OV�2 � T j �2

�1
T 2

�2
OV�2k� C � � �

C kT�1T
j �1
�2

OV�2 � T j
�2

OV�2k�

� OKj �1kT�1
OV�2 � T�2

OV�2k� C � � �

C kT�1T
j �1
�2

OV�2 � T j
�2

OV�2k� (26.91)

� . OKj �1 C � � � C 1/kT�1
OV�2 � T�2

OV�2k�

� 2.M � 1/Kk�1 � �2k. OKj �1 C � � � C 1/k OV�2k�

(26.92)

Here, (26.91) and (26.92) follow from (26.88) and (26.89), respectively.
Now, let j be such that T

j
�1 is an ˛-contraction, which is guaranteed to exist by

Lemma 1. Note that Statement 1 of Lemma 1 implies that such a j < 1 exists.
Then we have

k OV�1 � OV�2k� D kT j
�1

OV�1 � T j
�2

OV�2k�
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� kT j
�1

OV�1 � T j
�1

OV�2k� C kT j
�1

OV�2 � T j
�2

OV�2k�

H) .1 � ˛/k OV�1 � OV�2k� � kT j
�1

OV�2 � T j
�2

OV�2k� (26.93)

Finally, from (26.92) and (26.93), we get

k OV�1 � OV�2k�

�
2.m � 1/K. OKj �1 C � � � C 1/k�1 � �2k

1 � ˛
k OV�2k�

�
2.m � 1/K. OKj �1 C � � � C 1/k�1 � �2k

1 � ˛

	 .k OV�1k� C k OV�1 � OV�2k�/:

Therefore, if 2.m�1/K. OKj �1C���C1/

1�˛
k�1 � �2k < 1

2
, then

k OV�1 � OV�2k�

�
4.m � 1/K. OKj �1 C � � � C 1/

1 � ˛
k OV�1k�k�1 � �2k

Hence, the maps V � and �� are continuous. �

Step 2: Continuity of the map …�

Let …�;� .:/ be the invariant distribution generated by any �: Recall that …� takes
� 2 P to probability measure …�.:/ D …

�; O��
.:/. First, we show that …�;� .:/ 2 
;

where 
 is the space of absolutely continuous measures (with respect to Lebesgue
measure) on R

C.

Lemma 3. For any � 2 P and any � 2 ‚, …�;� .�/ is absolutely continuous with
respect to the Lebesgue measure on R

C.

Proof. …�;� .�/ can be expressed as the invariant queue-length distribution of the
dynamics

q !

(
Q0 C A with probability ˇ

R with probability .1 � ˇ/;

where A � ˆ and R � ‰; and Q0 is a random variable with distribution generated
by the conditional probabilities

P.Q0 D qjq/ D1 � p�. O�.q//
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P.Q0 D .q � 1/Cjq/ Dp�. O�.q//

Let …0 be the distribution of Q0. Then for any Borel set B , … can be expressed
using the convolution of …0 and ˆ W

…�;� .B/ D ˇ

Z 1

�1

ˆ.B � y/d…0.y/ C .1 � ˇ/‰.B/: (26.94)

If B is a Lebesgue null set, then so is B�y 8y. So, ˆ.B�y/ D 0 and ‰.B/ D 0

and therefore …�.B/ D 0. �

We now develop a useful characterization of …�;� . Let

‡
.k/

�;� .Bjq/ D P.Qk 2 Bjno regeneration, Q0 D q/

be the distribution of queue length Qk at time k induced by the transition
probabilities given in (26.82) conditioned on the event that Q0 D q and that there
are no regenerations until time k. We can now express the invariant distribution
…�;� .�/ in terms of ‡

.k/

�;� .�jq/ as in the following lemma.

Lemma 4. For any bid distribution � 2 P and for any stationary policy � 2 ‚,
the Markov chain described by the transition probabilities given in (26.82) has a
unique invariant distribution …�;� .�/. Also …�;� and ‡

.k/

�;� are related as follows:

…�;� .B/ D
X

k�0

.1 � ˇ/ˇk
E‰.‡

.k/

�;� .BjQ//; (26.95)

where E‰.‡
.k/

�;� .BjQ// D
R

‡
.k/

�;� .Bjq/d‰.q/.

Proof. ‡
.k/

�;� .Bjq/ is the queue length distribution assuming no regeneration has
happened yet, and the regeneration event occurs with probability ˇ independently
of the rest of the system. It is then easy to find …�;� .B/ in terms of ‡

.k/

�;� .Bjq/ by
simply using the properties of the conditional expectation, and the theorem follows.
Note that in E‰.‡

.k/

�;� .BjQ//; the random variable is the initial condition of the
queue, as generated by ‰: �

We next prove the continuity of …� in �.

Theorem 6. The mapping …� W P 7! 
 is continuous.

Proof. By Portmanteau theorem, (Billingsley 2009), we only need to show that
for any sequence �n ! � in w-norm and any open set B , lim infn!1 …�n.B/ �

…�.B/. By Fatou’s lemma,
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lim inf
n!1

…�n.B/

D lim inf
n!1

1X

kD0

.1 � ˇ/ˇk
E‰R Œ‡.k/

�n
.BjQ/�

�

1X

kD0

.1 � ˇ/ˇk
E‰R Œlim inf

n!1
‡.k/

�n
.BjQ/� (26.96)

where Q � ‰R. Let ‡
.k/
� D ‡

.k/

�; O��
: We finally show that lim infn!1 ‡

.k/
�n .Bjq/ �

‡
.k/
� .Bjq/ for every q 2 R

C; and the proof follows. �

Step 3: Continuity of the mapping F Now, using the results from Step 1 and

Step 2, we establish continuity of the mapping F . First, we show that F.�/ 2 P .

Lemma 5. For any � 2 P , let �.w/ D .F.�//.w/ D …�. O��1
� .Œ0; w�//; w 2 R

C.
Then, � 2 P .

Proof. From the definition of …�, it is easy to see that � is a distribution function.
Since O�� is continuous and strictly increasing function as shown in Lemma 2,
O��1
� .fwg/ is either empty or a singleton. Then, from Lemma 3, we get that

…�. O��1
� .fwg// D 0. Together, we get that �.w/ has no jumps at any w and hence it

is continuous.
To complete the proof, we need to show that the expected bid under �.:/ is finite.

In order to do this, we construct a new random process QQk that is identical to the
original queue length dynamics Qk , except that it never receives any service. We
show that this process stochastically dominates the original, and use this property to
bound the mean of the original process by a finite quantity independent of �: �

We now have the main theorem.

Theorem 7. The mapping F W P 7! P given by .F.�//.w/ D …�. O��1
� .Œ0; w�// is

continuous.

Proof. Let �n ! � in uniform norm. From previous steps, we have O��n ! O�� in
�-norm and …�n ) …�. Then, using Theorem 5.5 of Billingsley (2009), one can
show that the push forwards also converge:

…�n. O��1
�n

.�// ) …�. O��1
� .�//:

Then, F.�n/ converges point-wise to F.�/ as it is continuous at every w, i.e.,
.F.�n//.w/ ! .F.�//.w/ for all w 2 R

C.
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Finally, it is easy to show that in the norm space P , point-wise convergence
implies convergence in uniform norm, which completes the proof. �

Step 4: F.P/ is contained in a compact subset of P We show that the closure

of the image of the mapping F , denoted by F.P/, is compact in P . As P is a
normed space, sequential compactness of any subset of P implies that the subset is
compact. Hence, we just need to show that F.P/ is sequentially compact. Sequential
compactness of a set F.P/ means the following: if f�ng 2 F.P/ is a sequence,
then there exists a subsequence f�nj g and � 2 F.P/ such that �nj ! �. We use
Arzelà-Ascoli theorem and uniform tightness of the measures in F.P/ to show the
sequential compactness. The version that we will use is stated below:

Theorem 8 (Arzelà-Ascoli Theorem). Let X be a � -compact metric space. Let
G be a family of continuous real valued functions on X . Then the following two
statements are equivalent:

1. For every sequence fgng � G there exists a subsequence gnj which converges
uniformly on every compact subset of X .

2. The family G is equicontinuous on every compact subset of X; and for any x 2 X ,
there is a constant Cx such that jg.x/j < Cx for all g 2 G.

Suppose a family of functions D � P satisfies the equivalent conditions of the
Arzelá-Ascoli theorem and in addition satisfy the uniform tightness property, i.e.,
8� > 0, there exists an x� such that for all f 2 D 1 � f .x�/ � 1� �. Then, for any
sequence f�ng � D, there exists a subsequence f�nj g that converges uniformly on
every compact set to a continuous increasing function � on R

C. As D is uniformly
tight it can be shown that �nj converges uniformly to � and that � 2 P . Therefore,
D is sequentially compact in the topology of uniform norm.

In the following, we show that F.P/ satisfies uniform tightness property and
condition 2 in Arzelá-Ascoli theorem. First verifying the conditions of Arzelá-
Ascoli theorem, note that the functions in consideration are uniformly bounded by 1.
To prove equicontinuity, consider a � D F.�/ and let x > y.

�.x/ � �.y/ D …�.��.q/ � x/ � …�.��.q/ � y/

D …�.y < ��.q/ � x/ (26.97)

Lemma 6. For any interval Œa; b�, …�.Œa; b�/ < c �.b�a/, for some large enough c.

Proof. The proof follows easily from our characterization of …� in terms of ‡
.k/
� :�

The above lemma and Eq. (26.97) imply that �.x/��.y/ � c.��1
� .x/���1

� .y//.

To show equicontinuity, it is enough to show that lim supy"x
�.x/��.y/

x�y
� K.x/ for
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some K independent of �. This property follows from our characterization of the
optimal bid function.

Finally, we have the following lemma showing that F.P/ is uniformly tight.

Lemma 7. F.P/ is uniformly tight, i.e., for any � > 0 and any f 2 F.P/, there
exists an x� 2 R such that 1 � � � f .x�/ � 1.

Proof. From Lemma 5, we have F.P/ � P . Hence, the expectation of the bid
distributions in F.P/ is bounded uniformly. An application of Markov inequality
will give uniform tightness. �

4.5 Properties of MFE

As we showed above, the bid function O��.q/ is monotone increasing in q regardless
of �: This property implies that the service regime corresponding to MFE is identical
to the LQF policy. The result essentially says that there is no price of anarchy
induced by the auction-based scheduling policy! In other words, the desirable
properties of LQF are a natural result of auction-based scheduling.

5 Notes

The VCG mechanism was developed by Clarke (1971) and Groves (1973) as a
generalization of an auction called the second-price auction due to Vickrey (1961).
The Kelly mechanism is due to Kelly (1997). The price of anarchy for strategic users
using the Kelly mechanism was computed by Johari and Tsitsiklis in (2004). The
interest in the Kelly mechanism is due to the fact that it has a simple decentralized
implementation when the users are price taking. If one is more generally interested
in truth-revealing mechanisms using one-dimensional bids, then there is recent work
on the design of such mechanisms: the interested reader is referred to the works of
Maheswaran and Basar (2006), Yang and Hajek (2007) and Johari and Tsitsiklis
(2005).

The general class of selfish routing with infinitesimal agents (called non-atomic)
was first discussed by Pigou (1920). The Baress’ paradox was discovered by Braess
(1968). The results on selfish routing discussed in this chapter is a simplified
version of the work of Roughgarden and Tardos (2002). They also showed in
the same work that the result can be generalized to networks with affine cost
functions, with a price of anarchy of at most 4=3: Our development follows the
presentation in Roughgarden (2016). More recent developments in this area and
further generalizations can be found in Roughgarden (2015) and Roughgarden and
Schoppmann (2015).

The topic of “mean field games” has been covered in general terms in this
Handbook in a chapter by that name, where detailed information on historical



1182 S. Shakkottai and R. Srikant

developments can be found. More relevant to the topic of this chapter, the MFG
approach has recently been used in several different problems on games with a
large number of agents, each subset of which meet infrequently. Examples include
Tembine et al. (2009), Borkar and Sundaresan (2012), Xu and Hajek (2012),
Adlakha and Johari (2013), Iyer et al. (2014), Manjrekar et al. (2014), and Li
et al. (2015, 2017). The framework lends itself readily to the modeling an analysis
of many realistic systems. For example, Iyer et al. (2014) consider advertisers
competing via a second-price auction for spots on a webpage. The bid must lie
in a finite real interval, and the winner can place an ad on the webpage. In the
space of queueing systems, Xu and Hajek (2012) consider the game of sampling a
number of queues and joining one. The mean field results on scheduling presented
in this chapter are based primarily on work by Manjrekar et al. (2014). The
idea of infrequent interactions between subsets of players is exploited in a recent
application of the mean field game framework for mechanism design to incentivize
truth-telling about one’s ability to help peer devices in a device-to-device (D2D)
network setting by Li et al. (2017). Another application is on designing “nudge
systems” for modifying societal behavior through providing incentives such as
lottery tickets. An application of this kind in the context of electricity networks is
studied by Li et al. (2015), where the objective is demand response, i.e., modifying
one’s usage pattern when demand is high; demand response management in power
networks in the large population regime has been covered in another chapter in the
Handbook. Here, the agents are electricity consumers who must tradeoff the cost of
modifying ones’ usage (say by resetting their air conditioner temperature) versus the
probability of a reward by obtaining many lottery tickets, under some belief about
what the other consumers would do.

The asymptotic validity of the mean field assumption usually follows form a
so-called chaos hypothesis, which essentially says that the correlation between the
states of any finite subset of agents decays as the number of agents become large.
Results of this nature are available in work by Graham and Méléard (1994) and can
be used in the context of our scheduling game. There has been recent work studying
the question of the conditions required to ensure that the mean field model is indeed
the limiting case of the finite system. Work by Benaïm and Le Boudec (2008)
and Borkar and Sundaresan (2012) provide regularity conditions under which the
passage to the mean field is valid.

Conclusion

In this chapter, we considered three applications of game theory to problems related
to routing and resource allocation in communication networks. In doing so, we
explored three game theoretic equilibrium concepts in different settings, namely,
(i) Nash Equilibrium in the problem of resource allocation to a finite set of agents,
(ii) Wardrop Equilibrium in the context of selfish routing by an infinite number of
agents, and (iii) Mean Field Equilibrium in the setting of repeated resource alloca-
tion to an infinite number of agents. In each case, we presented a model that pertains
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to a particular layer of the networking stack, and attempted to characterize the effects
of strategic decision making on system performance as relevant to that layer. We
noted that strategic decision making by agents can degrade system performance,
and showed tight bounds on the performance degradation in these cases.
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Abstract

In recent years, the power system has undergone unprecedented changes that
have led to the rise of an interactive modern electric system typically known
as the smart grid. In this interactive power system, various participants such
as generation owners, utility companies, and active customers can compete,
cooperate, and exchange information on various levels. Thus, instead of being
centrally operated as in traditional power systems, the restructured operation
is expected to rely on distributed decisions taken autonomously by its various
interacting constituents. Due to their heterogeneous nature, these constituents
can possess different objectives which can be at times conflicting and at other
times aligned. Consequently, such a distributed operation has introduced various
technical challenges at different levels of the power system ranging from energy
management to control and security. To meet these challenges, game theory
provides a plethora of useful analytical tools for the modeling and analysis of
complex distributed decision making in smart power systems.
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The goal of this chapter is to provide an overview of the application of game
theory to various aspects of the power system including: i) strategic bidding in
wholesale electric energy markets, ii) demand-side management mechanisms
with special focus on demand response and energy management of electric
vehicles, iii) energy exchange and coalition formation between microgrids, and
iv) security of the power system as a cyber-physical system presenting a general
cyber-physical security framework along with applications to the security of state
estimation and automatic generation control. For each one of these applications,
first an introduction to the key domain aspects and challenges is presented,
followed by appropriate game-theoretic formulations as well as relevant solution
concepts and main results.

Keywords
Smart grid � Electric energy markets � Demand-side management � Power
system security � Energy management � Distributed power system operation �

Dynamic game theory

1 Introduction

The electric grid is the system responsible for the delivery of electricity from its pro-
duction site to its consumption location. This electric system is commonly referred
to as a “grid” due to the intersecting interconnections between its various elements.
The three main constituents of any electric grid are generation, transmission, and
distribution.

The generation side is where electricity is produced. The electricity generation
is in fact a transformation of energy from chemical energy (as in coal or natural
gas), kinetic energy (delivered through moving water or air), or atomic energy (for
the case of nuclear energy) to electric energy. The transmission side of the grid
is responsible for the transmission of this bulk generated electric energy over long
distances from a source to a destination through high-voltage transmission lines. The
use of high transmission voltage aims at reducing the involved electric losses. The
distribution side, on the other hand, is the system using which electricity is routed to
its final consumers. In contrast with the transmission side, on the distribution side,
electricity is transported over relatively short distances at relatively low voltages to
meet the electric demand of local customers.

In recent years, the electric grid has undergone unprecedented changes, aiming
at increasing its reliability, efficiency, and resiliency. This, in turn, gave rise to an
interactive and intelligent electric system known as the smart grid. As defined by
the European Technology Platform for Smart Grids in their 2035 Strategic Research
Agenda,

“A smart electric grid is an electricity network that can intelligently integrate the actions
of all users connected to it – generators, consumers and those that do both – in order to
efficiently deliver sustainable, economic and secure electricity supplies.”
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The main drivers behind this evolution toward a smarter power system stem
from an overhaul of three key elements of the grid: generation, transmission, and
distribution. These major transformations can be summarized as follows:

1. Restructuring of the electric energy market: the recent restructuring of the elec-
tric generation and transmission markets transformed them from a centralized
regulated market, in which the dispatch of the generation units is decided by
a central entity that runs the system, into a competitive deregulated market. In
this market, various generator owners, i.e., generation companies (GENCOs)
and load serving entities (LSEs) submit offers and bids in a competitive auction
environment. This market is cleared by an independent system operator based on
which the amount of power that each of the GENCOs supplies and each of the
LSEs receives along with the associated electricity prices are specified.

2. Integration of renewable energy (RE) sources into the grid: the vast integration
of small-scale RE has transformed the distribution side and its customers from
being mere consumers of electricity into electric “prosumers” who can consume
as well as produce power and possibly feed it back to the distribution grid. In
fact, distributed generation (DG) consists of any small-scale generation that is
connected at the distribution side of the electric grid and which can, while abiding
by the implemented protocols, pump electric energy into the distribution system
reaping financial benefit to its owner. Examples of DG include photovoltaic cells,
wind turbines, micro turbines, as well as distributed storage units (including
electric vehicles). Similarly, large-scale RE sources have also penetrated the
wholesale market in which their bulk produced energy is sold to the LSEs.

3. The power grid as a cyber-physical system (CPS): the evolution of the traditional
power system into a CPS is a byproduct of the massive integration of new
sensing, communication, control, and data processing technologies into the
traditional physical system. In the new cyber-physical power system, accurate
and synchronized data is collected from all across the grid and sent through
communication links for data processing which generates an accurate moni-
toring of the real-time state of operation of the system and enables a remote
transmission of control signals for a more dependable, resilient, and efficient
wide-area operation of the grid. Moreover, the integration of communication and
information technologies into the grid has allowed utility companies to interact
with their customers leading to a more economical and efficient operation of the
distribution system and giving rise to the concepts of demand-side management
(DSM), demand response (DR), and real-time pricing.

Clearly, the electric grid is gradually moving from a centralized operation, in
which decisions are taken by a centralized entity, to a distributed architecture. In
fact, in this new architecture, decisions governing the operation of the grid are
taken in a distributed manner by the constituents of the grid such as GENCOs and
LSEs, on the market side, and utility companies, DG owners, and consumers on the
distribution side. Given that these constituents can have different objectives, their
decisions might be conflicting, and, as such, they will engage in noncooperative and
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competitive interactions whose outcome impacts the revenues of each constituent
as well as the overall performance of the grid. On the other hand, at other times,
those constituents can seek to cooperate in order to reach a mutual goal. This gives
rise to strategic interactions between the various components of the grid through
which the decision taken by one component to meet its objective needs to take into
consideration the decisions that can be taken by others.

Beyond energy management and market scenarios, the study of strategic behavior
will also play a very important role in securing the grid. In fact, the interconnectivity
between the various elements of the power system and its critical reliance on
its underlying communication and computational systems make the grid more
vulnerable to many types of attacks, of cyber and physical nature, aiming at
compromising its functionality. In this regard, by exploiting hidden vulnerabilities
and the dense system interconnectivity, an attacker uses its limited resources to
devise an attack strategy aiming at penetrating the system and spreading failures
to maximize the inflicted damage on the grid. On the other hand, using limited
resources, the grid operator (defender) must protect the system against such attacks
by choosing proper defense mechanisms. In this regard, when devising a defense
strategy, the defender needs to study and account for the strategic behavior of
potential attackers and vice versa. As a result, this shows the importance of strategic
modeling and analysis for having a better understanding of the security state of the
grid and devising strategies to improve this security.

Clearly, the overall operation and security of a power system will involve
complex interactive decisions between its various elements. Modeling these deci-
sion making processes is essential for anticipating and optimizing the overall
performance of the grid. In this respect, game theory provides a suitable framework
to model the emerging interactive decision making processes in modern power
systems (For a general overview of game-theoretic approach to the smart grid, the
reader is referred to Saad et al. (2012)). In particular, given the dynamic nature of the
grid’s operation and control, dynamic game theory provides very useful modeling
tools to analyze the grid’s dynamic and distributed decision making. For example,
participants in an energy market as well as demand-side management mechanisms
periodically and repeatedly make decisions based on information available to them
from past time periods and projections of future system behavior. Moreover, the
power system itself is a dynamic system whose states evolve over time depending
on the various operational and control actions taken. As a result, the outcome of
any strategic interaction depends not only on the decisions taken by the grid’s
constituents but also on the state of the system. In this respect, dynamic game
models provide the required analytical tools to capture such dynamic decision
making over the dynamic power system.

The goal of this chapter is to introduce various game-theoretic techniques that
can be applied to model the strategic behavior in various areas of the power system.
First, the strategic interactions between different market participants in a wholesale
competitive electric energy market is studied. Second, the distribution side is
considered shedding the light on the strategic behavior of the various prosumers and
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their overall effect on the distribution system in demand-side management schemes
as well as on microgrids and their energy exchange. Finally, the security of the
cyber-physical power system is studied using game-theoretic techniques presenting
a general dynamic security framework for power systems in addition to considering
specific security areas pertaining to the security of automatic generation control and
power system state estimation.

In summary, the goals of this chapter are threefold:

1. Discuss the areas of the power system in which the strategic behavioral modeling
of the involved parties is necessary and devise various game-theoretic models that
reflect this strategic behavior and enables its analysis.

2. Investigate different types of games which can be developed depending on the
studied power system application.

3. Provide reference to fundamental research works which have applied game-
theoretic methods for studying the various sides of the smart grid covered.

One should note that even though proper definitions and explanations of the
various concepts and models used are provided in this chapter, prior knowledge of
game theory, which can be acquired through previous chapters of this book, would
be highly beneficial to the reader. In addition, the various power system models
used will be clearly explained in this book chapter. Thus, prior knowledge of power
systems is not strictly required. However, to gain a deeper knowledge of power sys-
tem concepts and models, the reader is encouraged to explore additional resources
on power system analysis and control such as for power system analysis (Glover
et al. 2012), for power system operation and control (Wood and Wollenberg 2012),
for electric energy markets (Gomez-Exposito et al. 2009), for power system state
estimation (Abur and Exposito 2004), for power system protection (Horowitz et al.
2013), and for power system dynamic modeling (Sauer and Pai 1998), among many
others.

Here, since each section of this chapter treats a different field of power system
analysis, the notations used in each section are specific to that section and are chosen
to align with typical notations used in the literature of their corresponding power
system field. To this end, a repeated symbol in two different sections can correspond
to two different quantities, but this should not create any source of ambiguity.

2 Competitive Wholesale Electric Energy Markets

In a traditional power system, to operate the system in the most economical manner,
the regulating entity operating the whole grid considers the cost of operation of
every generator and dispatches these generators to meet the load while minimizing
the total generation cost of the system. In fact, a generator cost function fi .PGi /,
which reflects the cost of producing PGi MW by a certain generator Gi , is usually
expressed as a polynomial function of the form:
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fi .PGi / D ai P
2
Gi

C bi PGi C ci : (27.1)

To minimize the total cost of generation of the system, the operator solves an
economic dispatch problem or what is commonly known as an optimal power flow
(OPF) problem, whose linearized version is usually defined as follows1:

min
P

NGX

iD1

fi .PGi / (27.2)

subject to:

NX

iD1

.Pi � Di / D 0; (27.3)

P min
Gi

� PGi � P max
Gi

; 8i 2 f1; : : : ; NGg; (27.4)

F min
l � Fl � F max

l ; 8l 2 f1; : : : ; Lg; (27.5)

where P D ŒPG1; : : : ; PGNG
� and NG , N , and L represent, respectively, the

number of generators, buses,2 and transmission lines in the system. Pi and Di are,
respectively, the power injection and load at a bus i . Thus, Pi D 0 (Di D 0)
corresponds to the case in which no generator (or load) is connected to bus i .
Fl in (27.5) corresponds to the power flow over a transmission line l which is
constrained by the operational and thermal limits, fF min

l ; F max
l g, of the associated

line. In the lossless MW-only simplified power flow formulation (known as DC
power flow), the flow over a transmission line l connecting buses i and j can be
expressed as:

Fl , Pij D .�i � �j /=Xij ; (27.6)

where Xij is the transmission line reactance (expressed in p.u.3) while �i and �j

correspond to the phase angle of the voltage at buses i and j , respectively, expressed

1This is the linearized lossless OPF formulation commonly known as the DCOPF. The more
general nonlinear OPF formulation, known as the ACOPF, has more constraints such as limits
on voltage magnitudes and reactive power generation and flow. Moreover, the ACOPF uses the AC
power flow model rather than the linearized DC one. The ACOPF is a more complex problem to
solve whose global solution can be very complex, and computationally challenging to compute,
with the increase in the number of constraints involved. Hence, practitioners often tend to use the
DCOPF formulation for market analyses. Here, the use of the terms AC and DC is just a notation
that is commonly used in energy markets and does not, in any way, reflect that the used current in
DCOPF or DC power flow is actually a direct current.
2In power system jargon, a bus is an electric node.
3p.u. corresponds to per-unit which is a relative measurement unit expressed with respect to a
predefined base value (Glover et al. 2012).
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in radians. As such, the power injection (power entering the bus) at a certain bus i ,
Pi , is equal to the summation of powers flowing out of that bus. Thus,

Pi D
X

j 2Oi

Pij ; (27.7)

where Oi is the set of neighboring buses connected to bus i .
The expressions in (27.6) and (27.7) correspond to the MW-only power flow

model. This MW-only model is valid under the following assumptions: (i) the
system is lossless (transmission lines’ resistances are much smaller than their reac-
tances), (ii) the shunt susceptance in the transmission lines �-model4 is negligible,
(iii) the voltage magnitudes of the buses are assumed not to deviate much from their
flat profile (voltage magnitude at each bus is equal to 1 p.u.), and (iv) the voltage
phase angles are assumed to be small. In steady-state operation, such assumptions
hold to a reasonable extent.5 As a result, this linearized model is commonly used in
energy market applications in which steady-state system operation is assumed and
fast OPF solutions are needed.

In a competitive energy market environment, rather than minimizing the total
cost of generation, the system operator, referred to as ISO (independent system
operator) hereinafter, does not own nor operate the generators. The ISO, in fact,
receives generation offers from the GENCOs and demand bids from the LSEs and
aims to maximize the underlying social welfare (to be defined next). The generation
offers are normally an increasing function of the delivered power PGi , whereas the
demand bids are represented by a decreasing function of the demanded power Dj .
In various models, offers and bids are submitted block-wise6 as shown in Fig. 27.1.
In this regard, consider a GENCO owning a generator Gi . The submitted offer of
Gi , �i .PGi /, takes the following form:

�i .PGi / D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�Gi;1 if P min
Gi

� PGi � PGi;1 ;

�Gi;2 if PGi;1 � PGi � PGi;2 ;

: : :

�Gi;Ki
if PGi;Ki �1 � PGi � P max

Gi
;

(27.8)

where PGi ;x > PGi ;y and �Gi ;x > �Gi ;y when x > y. The offer of Gi is said to be
composed of Ki blocks. In a similar manner, a bid of an LSE j , !j .Dj /, composed
of Kj blocks is expressed as follows:

4The �-model is a common model of transmission lines (Glover et al. 2012).
5If such assumptions do not hold, the standard nonlinear power flow equations will have to be used.
The nonlinear power flow equations can be found in Glover et al. (2012) and Wood and Wollenberg
(2012).
6Various offer structures are considered in the literature and in practice, including block-wise,
piece-wise linear, as well as polynomial structures. Here, a block-wise offer and bid structures
are used; however, a similar strategic modeling can equally be carried out for any of the other
structures.
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Fig. 27.1 (a) �i .PGi /: Generation offer curve of generator Gi , (b) !j .Dj /: Demand curve for
load Dj

!j .Dj / D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

ıDj;1 if 0 � Dj � Dj;1;

ıDj;2 if Dj;1 � Dj � Dj;2;

: : :

ıDj;Kj
if Dj;Kj �1 � Dj � Dj;Kj ;

(27.9)

where Dj;x > Dj;y and ıj;x < ıj;y when x > y. Thus, after receiving NG different
supply offers and ND demand bids, assuming ND to be the number of load buses in
the system, from the various GENCOs and LSEs of the market, the ISO dispatches
the system in a way that maximizes the social welfare, W , by solving

max
P;D

W D

NDX

j D1

KjX

kD1

ıDj;k
D

.j /

k �

NGX

iD1

KiX

kD1

�Gi;k
P

.Gi /

k ; (27.10)

subject to:

0 � D
.j /

k � D
.j /

k�max 8j; k; and 0 � P
.Gi /

k � P
.Gi /

k�max 8i; k; (27.11)

while meeting the same operational constraints as those in (27.3) and (27.5). The
constraints in (27.11) insure preserving the demand and generation block sizes, as
shown in Fig. 27.1. In this regard, D

.j /

k�max D Dj;k �Dj;k�1 is the MW-size of block

k of load j , D
.j /

k is a decision variable specifying the amount of power belonging
to block k that j obtains, and ıDj;k

is the price offered by j for block k. Similarly,

P
.Gi /

k�max is the size of block k offered by generator Gi , �Gi;k
is the price demanded by

Gi for that block, and P .Gi / is a decision variable specifying the amount of power
corresponding to block k that Gi is able to sell. In this formulation, P and D is
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composed of D
.j /

k 8j; k and P
.Gi /

k 8i; k. By solving this problem, the ISO clears

the market and announces the power output level, P �
Gi

D
PKi

kD1 P
.Gi /�
k , requested

from generation unit i , for i D f1; : : : ; NGg, and the amount of power, D�
j D

PKj

kD1 D
.j /�
k allocated to each load Dj for j D f1; : : : ; NDg. This market-clearing

procedure generates what is known as locational marginal prices (LMPs) where
the LMP at bus n, �n, denotes the price of electricity at n7. Consider a GENCO
i owning nGi generation units and an LSE j serving nDj nodes. The profit ˘i of
GENCO i and cost Cj of LSE j are computed, respectively, as follows:

˘i D

nGiX

rD1

Œ�.Gr /P �
Gr

� fi .P
�
Gr

/�; (27.12)

Cj D

nDjX

rD1

�.Dr /D�
r ; (27.13)

where fi .P
�
Gr

/ is the cost of producing P �
Gr

MW by generator Gr while �.Gr /

and �.Dr / correspond, respectively, to the LMP at the bus at which Gr or Dr is
connected.

In some models, the demand is not considered to be flexible and thus always
needs to be met. In that case, no demand bids are considered and (27.10) turns into

min
P

W D

NGX

iD1

KiX

kD1

�Gi;k
P

.Gi /

k ; (27.14)

while meeting the operational and block size constraints.
Given that the energy market is not a fully competitive market (as studied using

game-theoretic models in Guan et al. (2001); Li and Shahidehpour (2005); Nanduri
and Das (2007)), the submitted offer (bid) of each GENCO (LSE) affects the market-
clearing process and hence affects the profit (cost) of the GENCO (LSE) itself as
well as the profit and costs of other GENCOs and LSEs participating in the market.

2.1 Strategic Bidding as a Static Game

Strategic bidding is typically a periodically repeated process following the adopted
market architecture. At every period at which the market opens for bids, participants
submit new offers and bids, and the market is cleared accordingly. Hence, to be able
to study this dynamic bidding structure and its evolution over time, it is important
to have an understanding of the bidding process at every separate period. This is
achieved by using a static strategic bidding model in which a snapshot of the energy

7This LMP-based nodal electricity pricing is a commonly used pricing technique in competitive
markets of North America. Here, we note that alternatives to the LMP pricing structure are
implemented in a number of other markets and mainly follow a zonal-based pricing approach.
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market is considered. In this snapshot, market participants submit their offers and
bids with no regard to previously taken actions or to future projections. Such an
analysis provides interesting insights and a set of tools to be used when a general
dynamic bidding model is derived.

The problem of choosing the optimal offers that each GENCO, from a set of G
GENCOs, should submit for its nGi generators, in competition with other GENCOs,
has been considered and analyzed in Li and Shahidehpour (2005) which is detailed
next.

In this work, each GENCO, i , submits a generation offer for each of its
generators, Gj for j 2 Gi where Gi is the set of all generators owned by i and
jGi j D nGi , considering three different supply blocks, Ki D 3, while choosing
�Gj;k

as follows:

�Gj ;k D �i;j

@fj .PGj /

@PGj

j.PGj DPGj ;k/ D �i;j .2aj PGj C bj /j.PGj DPGj ;k/; (27.15)

where �i;j is the bidding strategy of GENCO i corresponding to its generator j with
�i;j D 1 in case Gj is a price taker. �i is the vector of bidding strategies of all
generators owned by GENCO i .

Thus, this decision making process of the different GENCOs can be modeled as a
noncooperative game 	 D hI ; .Si /i2I ; .˘i /i2I i. Here, I is the set of GENCOs
participating in the market, which are the players of this game. Si is the set of
actions available to player i 2 I which consists of choosing a bidding strategy �i

which has limits set by GENCO i such that �min
i;j � �i;j � �max

i;j . ˘i is the utility
function of player i 2 I corresponding to its payoff given in (27.12).

Thus, the different GENCOs submit their generation offers to the ISO, i.e.,
choose their bidding strategy �i for each of their generators; the ISO receives those
offers and sends dispatch decisions for the generators in a way that minimizes
the cost of meeting the load subject to the existing constraints, i.e., by solving
problem (27.14).

To this end, in the case of complete information, a GENCO can consider any
strategy profile of all GENCOs, i.e., � D Œ�1; �2; : : : ; �G� and subsequently run
an OPF to generate the resulting dispatch schedules, LMPs, and achieved payoffs.
Based on this acquired knowledge, a GENCO can characterize its best bidding
strategy, ��

i , facing any strategy profile, ��i , chosen by its opponents.
The most commonly adopted equilibrium concept for such noncooperative

games is the Nash equilibrium (NE). The NE is a strategy profile of the game in
which each GENCO chooses the strategy ��

i which maximizes its payoff (27.12) in
response to ��

�i chosen by the other GENCOs. In other words, the bidding process
reaches an NE when all the GENCOs simultaneously play best response strategies
against the bidding strategies of the others.
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2.1.1 Game Solution and Main Results
Obtaining a closed-form expression for the NE of this strategic bidding game
is highly challenging since it requires analytical solutions of two optimization
problems. In the first, each GENCO chooses its bidding strategy to maximize its
profit (expected profit); while in the second, the ISO receives the GENCOs’ offers
and runs an OPF to meet the load while maximizing the social welfare. Hence, to
solve the proposed game, the authors in Li and Shahidehpour (2005) introduce an
iterative numerical solution algorithm which is guaranteed to reach an NE when it
exists.

For analysis, the work in Li and Shahidehpour (2005) treats an eight-bus power
system with six generation units and three GENCOs where each GENCO owns two
generation units. The results show the advantage of performing strategic bidding,
following the NE strategies, as compared to always bidding the marginal cost of
production of each unit. In fact, in perfect competitive market models, all suppliers
are price takers, and their optimal supply quantity is one that equates the marginal
cost of production to the given price. However, the wholesale electric energy market
is considered not to be a fully competitive market due to the physical features
and limitations of the power system such as the transmission congestion and the
insufficiency of transmission capacity. Thus, following the NE strategies, a strategic
GENCO achieves a payoff that is at least as good as the one it obtains by submitting
offers equal to its marginal cost.

This static game formulation can form the basis for a dynamic modeling of
strategic behavior in wholesale electric energy market. This dynamic process is
explained next.

2.2 Dynamic Strategic Bidding

Most competitive electric energy markets adopt a forward market known as the day-
ahead (DA) market. In the DA market, participants submit their energy offers and
bids for the next day, usually on an hourly basis, and the market is cleared based
on those submitted offers and a forecast8 of next day’s state of operation (loads,
outages, or others) using the OPF formulation provided in (27.10). This process is
repeated on a daily basis requiring a dynamic strategic modeling.

Consider the DA market architecture with non-flexible demands, and let I be
the set of GENCOs participating in the market each assumed to own one generation
unit; thus, jI j D NG . Each GENCO at day T � 1 submits its generation offers for
the 24 h of T . Let t 2 f1; : : : ; 24g be the variable denoting a specific hour of T . Let
s

t;T
i 2 Si be the offer submitted by GENCO i for time period t of day T . s

t;T
i

corresponds to choosing a �i .PGi / as in (27.8) for generator i at time t of day T .

8The DA market is followed by a real-time (RT) market to account for changes between the DA
projections and the RT actual operating conditions and market behavior. In this section, the focus
is on dynamic strategic bidding in the DA market.
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Thus, the bidding strategy of GENCO i for day T corresponds to the 24 h bidding
profile sT

i D .s
1;T
i ; s

2;T
i ; : : : ; s

24;T
i / where sT

i 2 S 24
i . This process is repeated daily,

i.e., for incremental values of T . However, based on the changes in load and system
conditions, the characteristics of the bidding environment, i.e., the game differ from
one day to the other. These changing characteristics of the game are known as the
game’s states. A description of the “state” of the game is provided next.

Let the state of the game for a given time t of day T , xt;T , be the vector of
hourly loads and LMPs at all buses N of the system during t of T . Let N be
the set of all buses in the system with jN j D N , NG be the set of all generators
with jNG j D NG , and d t;T

n and �t;T
n be, respectively, the load and LMP at bus

n 2 N for time t of day T . In this regard, let dt;T D .d
t;T
1 ; d

t;T
2 ; : : : ; d

t;T
N / and

�t;T D .�
t;T
1 ; �

t;T
2 ; : : : ; �

t;T
N / be, respectively, the vectors of loads and LMPs at all

buses at hour t of day T . Thus, xt;T D .dt;T ; �t;T / is the state vector for time t of T

and xT D .x1;T ; x2;T ; : : : ; x24;T / is the vector of states of day T .
It is assumed that the DA offers for day T C 1 are submitted at the end of day T .

Thus, xT is available to each GENCO i 2 I to forecast xT C1 and choose sT
i .

The state of the game at T C 1 depends on the offers presented in day T , sT
i for

i 2 f1; : : : ; NGg, as well as on realizations of random loads. Hence, the state xT C1

of the game at day T C 1 is a random variable.
Based on the submitted offers and a forecast of the loads, the ISO solves an

OPF problem similar to that in (27.14) while meeting the associated constraints to
produce the next day’s hourly generator’s outputs, P

t;.T C1/�
Gi

for i 2 NG , as well as
hourly LMPs, �t;.T C1/�, for t 2 f1; : : : ; 24g. Thus, the daily payoff of a GENCO i

for a certain offer strategy sT
i and state xT

i based on the DA schedule is given by

˘T
i .sT

i ; xT / D

24X

tD1

h
�

t;.T C1/�
i P

t;.T C1/�
Gi

� fi

�
P

t;.T C1/�
Gi

�i
; (27.16)

where fi .PGr / is as defined in (27.1).
Such a dynamic modeling of strategic bidding has been presented and analyzed

in Nanduri and Das (2007) in which dynamic decision making has been modeled
using a stochastic game. In contrast to deterministic games in which the outcome
is solely dictated by the strategies chosen by the players, a stochastic game is one
in which the outcome depends on the players’ actions as well as the “state” of the
game. In stochastic games, the game transitions from one state to the other (i.e.,
from one game to the other) based on the current state (i.e., current game) and on
transition probabilities influenced by the actions chosen by the players.

A stochastic game is defined by the set of players, set of actions available to
each player, state vector, state transition probabilities, and payoffs. In the dynamic
bidding model, the set of players is the set of GENCOs, the set of actions of each
player i is defined by S 24

i (a certain action is given by sT
i ), and the state vector for a

day T is defined by xT (sT
i and xT should be discretized to fit in a discrete stochastic

game model). As for the transition probabilities from one state to the other, the work
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in Nanduri and Das (2007) discusses the complexity of calculating these transition
probabilities for this dynamic strategic bidding model and uses a simulation based
environment to represent state dynamics. The payoff of each GENCO i over the
multiple number of days in which it participates in the market can take many forms
such as the summation, discounted summation or average of the stage payoff ˘T

i ,
defined in (27.16), over the set of days T . The goal of each GENCO is to maximize
this aggregate payoff over the multi-period time frame.

2.2.1 Game Solution and Main Results
This dynamic strategic bidding game is a nonzero-sum stochastic game. This
type of stochastic games is known to be very challenging to solve. To this end,
the authors in Nanduri and Das (2007) propose a solution framework based on
reinforcement learning (RL) to obtain an approximation of the game’s solution.
This algorithm is applied in Nanduri and Das (2007) to a 12-bus test electric system
with eight generators and four loads. The derived numerical results compute the
market power (MP) that each of the GENCOs can have under various auction
architectures (uniform auction, discriminatory auction, and second price auction)
while investigating the effect of system conditions, such as transmission line
congestion, on the rise of these market powers. Moreover, the sensitivity of the MP
to the levels of demand, congestions, and type of auction used has been analyzed.
This sensitivity analysis has shown that MP levels are most affected by the load
level followed by the auction type and then the congestion level.

Hence, the use of this dynamic bidding strategy model provides the system
operator with the analytical tools to assess market powers and the sensitivity of these
market powers to various market characteristics and system operating conditions.

3 Strategic Behavior at the Distribution System Level

The integration of distributed and renewable generation into the distribution side
of the grid and the proliferation of plug-in electric vehicles, along with the wide-
spread deployment of new communication and computation technologies, have
transformed the organization of the distribution system of the grid from a vertical
structure between the electric utility company and the consumers to a more inter-
active and distributed architecture. In this interactive architecture, the consumers
and the utility company can engage in a two-way communication process in which
the utility company can send real-time price signals and energy consumption
recommendations to the consumers to implement an interactive energy production/-
consumption demand-side management. For example, using DSM, electric utilities
seek to implement control policies over the consumption behavior of the consumers
by providing them with price incentives to shift their loads from peak hours to
off-peak hours. Participating in DSM mechanisms must simultaneously benefit the
two parties involved. In fact, by this shift in load scheduling, utility companies can
reduce energy production costs by reducing their reliance on expensive generation
units with fast ramping abilities which are usually used to meet peak load levels. On
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Fig. 27.2 Illustration of the various interactions in a smart distribution system

the other hand, by shifting their consumption, the consumers will receive reduced
electricity prices.

Moreover, the proliferation of distributed generation has given rise to what is
known as microgrids. A microgrid is a local small-scale power system constituted
of locally interconnected DG units and loads and which is connected to the main
distribution grid but can also self-operate, as an island, in the event of disconnection
from the main distribution system. Thus, microgrids clearly reflect the distributed
nature of the smart distribution system as they facilitate decomposing the macro-
distribution system into a number of small-scale microgrids which can operate
independently as well as exchange energy following implemented energy exchange
protocols. This distributed nature of the distribution system and the interactions
between its various constituents is showcased in Fig. 27.2.

As a result, this distributed decision making of individual prosumers, which
represent customers who can produce and consume energy, as well as the decision
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making of groups of prosumers forming a microgrid introduce various operational
challenges. The understanding and analysis of these challenges require a global
distributed decision making model in which various entities with different objectives
interact. Such modeling can be formulated using the tools of game theory.

This section focuses on the application of game-theoretic tools to study demand-
side management as well as the problems of energy exchange and coalition
formation between microgrids. As part of DSM, this section will focus on modeling
the analysis and management of the energy consumption trends of electric vehicles.
Throughout this section, the use of cooperative as well as noncooperative game
theory is highlighted following the treated application.

3.1 Demand-Side Management

Due to the possibility of direct interactions between electricity providers and
customers within the smart grid, DSM has emerged as a framework using which
electric utility companies implement energy policies to guide the consumption
patterns of the customers with the goal of improving the aggregate load profile
of the distribution system. Hence, the essence behind DSM is understanding how
a price signal sent by the utility company will affect the electricity demand and
consumption patterns of each of the consumers. In this respect, in a DSM model,
the utility company has to take into consideration the possible reaction of the
consumers to the price it declares before announcing that price. When the price
is decided, and a price signal is sent to the customers, these customers then react by
choosing their levels of consumption. This hierarchical interaction can be modeled
using a Stackelberg game model as introduced in Maharjan et al. (2013) and further
developed in Maharjan et al. (2016).

Here, the focus will be shed on the response of the customers to dynamic
real-time pricing through studying charging and consumption patterns of electric
vehicles (EVs). Electric vehicles will be an integral component of tomorrow’s power
systems. EVs are typically equipped with batteries which can be charged via a plug-
in connection to the local electricity grid. Allowing the EVs to sell their stored
power back to the grid will turn them into a mobile type of energy prosumers
who can play a vital part in DSM mechanisms. The charging strategy of an EV
owner (referred to simply as EV hereinafter) is a dynamic control policy aiming at
minimizing a cost function incorporating the real-time price of electricity which, in
turn, depends on the aggregate demand for electricity by all consumers. Thus, the
optimal charging strategies of all EVs are coupled through their resulting market
price. As such, dynamic game-theoretic techniques can play a vital role in modeling
and analyzing the charging policies of the various EVs. However, in practice, as the
number of EVs in the system significantly grows, the effect of the charging strategy
of a single EV owner on the actual aggregate real-time price significantly decreases.
Thus, the charging policy of each EV is not a response to the charging actions of
each electric vehicle in the system but rather to the aggregate charging actions of all
the EVs, requiring a mean field game analysis to model their strategic behavior. To
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this end, the work in Couillet et al. (2012) proposes a differential mean field game
to model the charging policies of EV owners as detailed next.

Even though mean field games have been formulated also for the nonhomoge-
neous case, we will restrict our discussion here to the homogeneous case, which
assumes that all EVs are identical and enter the game symmetrically.9 The validity
of this assumption directly stem from the type of EVs connected to a particular grid.

Consider a distribution grid spanning a geographical area containing a set V D

f1; 2; : : : ; V g of EVs. Let x
.v/
t be the fraction of the battery’s full capacity stored

at the battery of EV v 2 V at time t 2 Œ0; : : : ; T � where x
.v/
t D 0 denotes an

empty battery and x
.v/
t D 1 denotes that the battery is fully charged. Let g

.v/
t be the

consumption rates of v at time t and ˛
.v/
t be its energy charging rate (or discharging

rate in case EVs are allowed to sell energy back to the grid). The evolution of x
.v/
t

from an initial condition x
.v/
0 is governed by the following differential equation:

dx
.v/
t

dt
D ˛

.v/
t � g

.v/
t : (27.17)

In (27.17), the evolution of x
.v/
t for a deterministic consumption rate g

.v/
t is

governed by v’s chosen charging rate ˛
.v/
t for t 2 Œ0; : : : ; T �. To this end, the goal

of v is to choose a control strategy ˛.v/ D f˛
.v/
t ; 0 � t � T g which minimizes

a charging cost function, Jv . This cost function incorporates the energy charging
cost (which would be negative in case energy is sold to the grid) at the real-time
energy price at t 2 Œ0; : : : ; T � given by the price function pt .˛t / W RV ! R

where ˛t D Œ˛
.1/
t ; : : : ; ˛

.V /
t � is the energy charging rates of all EVs at time t . In

addition to the underlying energy purchasing costs, an EV also aims at minimizing
other costs representing battery degradation at a given charging rate, ˛

.v/
t , given by

h
.v/
t .˛

.v/
t / W R ! R, as well as the convenience cost for storing a portion x

.v/
t of the

full battery capacity at time t captured by the function f
.k/

t .x
.k/
t / W Œ0; 1� ! R. As

such, the cost function of EV v can be expressed as

Jv.˛.v/; ˛.�v// D

Z T

0

�
˛

.v/
t pt .˛t / C h

.v/
t .˛

.v/
t / C f

.v/
t .x

.v/
t /

�
dt C 
.v/.x

.v/
T /;

(27.18)

where ˛.�v/ denotes the control strategies of all EVs except for v and 
.v/.x
.v/
T / W

Œ0; 1� ! R is a function representing the cost for v to end the trading period with
x

.v/
T battery level and which mathematically guarantees that the EVs would not sell

all their stored energy at the end of the trading period.
Such a coupled multiplayer control problem can be cast as a differential game

in which the set of players is V , the state of the game at time t is given by

9For a discussion on general mean field games with heterogeneous players, see �Chap. 7, “Mean
Field Games” in this Handbook.
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xt D Œx
.1/
t ; : : : ; x

.V /
t �, and whose trajectory is governed by the initial condition x0

and the EVs’ control inputs as indicated in (27.17). To this end, the objective of
each EV is to choose the control strategy ˛.v/ to minimize its cost function given
in (27.18).

To solve this differential game for a relatively small number of EVs, and
assuming that each EV has access only to its current state, one can attempt to find an
optimal multiplayer control policy, ˛� D Œ˛�.1/; : : : ; ˛�.V /�, known as the own-state
feedback Nash equilibrium which is a control profile such as for all v 2 V and for
all admissible control strategies:

Jv.˛�.v/; ˛�.�v// � Jv.˛.v/; ˛�.�v//: (27.19)

However, as previously stated, with a large number of EVs, the effect of the
control strategy of a single EV on the aggregate electricity price is minimal
which promotes the use of a mean field game approach that, to some extent,
simplifies obtaining a solution to the differential game. Under the assumption of
EVs’ indistinguishability, the state of the game at time t can be modeled as a
random variable, xt , following a distribution m.t; x/ corresponding to the limiting
distribution of the empirical distribution:

m.V /.t; x/ D
1

V

VX

vD1

ı
x

.v/
t Dx

: (27.20)

Considering the consumption rate of each EV to be a random variable (with mean
gt dt ), given by gt .dt C�t dWt / where Wt is a Brownian motion, the state evolution
can be represented by a stochastic differential equation as follows:

dxt D ˛t dt � gt .dt C �t dWt / C dNt ; (27.21)

with initial condition x0 being a random variable following a distribution m0 D

m.0; :/ and where dNt is a reflective variable which ensures that xt remains in the
range Œ0; 1�.

Under the mean field game formulation, the multiplayer differential game control
problem reduces to a single player stochastic control problem with a cost function

J .˛/ D E

�Z T

0

�
˛t pt .mt / C ht .˛t / C ft .xt /

�
dt C 
.xT /

�
; (27.22)

initial condition .x0; m0/, and state dynamic equation given in (27.21); while
mt .t; :/ is the distribution of EVs among the individual states. Here, the expectation
operation in (27.22) is performed over the random variable Wt .
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The equilibrium of this mean field game proposed in Couillet et al. (2012) is
denoted as a mean field equilibrium (MFE) in own-state feedback strategies and is
one in which the control strategy ˛� satisfies:

J .˛�I m�/ � J .˛I m�/; (27.23)

for all admissible control strategies ˛ and where m� is the distribution induced by
˛� following the dynamic equation in (27.21) and initial state distribution m0.

3.1.1 Game Solution and Main Results
The value function, � W Œ0; T � � Œ0; 1� ! R for a given mt is defined as follows:

�.u; y/ D inf
˛2A

E

�Z T

u

�
˛t pt .mt / C ht .˛t / C ft .xt /

�
dt C 
.xT /

�
; (27.24)

where the dynamics of xt follow (27.21), A is the set of admissible controls, and
xu D y. As detailed in Couillet et al. (2012), an MFE is a solution of the following
backward Hamilton-Jacobi-Bellman (HJB) equation:

@t v.t; x/ D � inf
˛2R

f˛@xv.t; x/ C ˛pt .m
�
t / C ht .˛t / C ft .xt /g

C gt @xv.t; x/ �
1

2
g2

t �2
t @2

xxv.t; x/; (27.25)

in which m�
t D m.t; :/� is the solution of the forward Fokker-Planck-Kolmogorov

(FPK) equation defined as

@t m.t; x/ D �@xŒ.˛�
t � gt /m.t; x/� C

1

2
g2

t �2
t @2

xxm.t; x/: (27.26)

The work in Couillet et al. (2012) solves the HJB and FPK equations using
a fixed-point algorithm and presents a numerical analysis over a 3-day period
with varying average energy consumption rates and a quadratic price function in
total electricity demand (from EVs and other customers). The obtained distribution
evolution, m�, shows sequences of increasing and decreasing battery levels with a
tendency to consume energy during daytime and charge during nighttime. In fact,
simulation results show that the maximum level of purchased energy by the EVs
occur during nighttime when the aggregate electricity demand is low. However, the
simulation results indicate that, even though during peak daytime demand electricity
prices are higher, the level of purchased energy by the EVs remains significant since
the EV owners have an incentive not to completely empty their batteries (via the
function f .t; x/). Moreover, the obtained results showcase how price incentives
can lead to an overall decrease in peak demand consumption and an increase in
demand at low consumption periods indicating the potential for EVs to participate
in demand-side management mechanisms to improve the consumption profile of the
distribution system.
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3.2 Microgrids’ Cooperative Energy Exchange

A microgrid is an interconnected group of distributed energy sources and local
loads at the distribution system’s level through which local generation units can
meet the electric energy demand of a local geographical area. The analysis and
understanding of the operation of microgrids and their integration in the distribution
system requires an accurate distributed decision making model. In fact, in a classical
power system, the operator optimizes the system operation by solving a system-wide
optimization problem based on a centralized objective function. However, due to the
formation of autonomous microgrids, each of these microgrids may need to optimize
its own objective function which can differ in nature from that of other microgrids.
The difference in objectives stems from the versatile nature of the microgrid network
which often incorporates different components such as electric vehicles, energy
storage, and renewable energy units. As a result, it is imperative to use distributed
analytical methods, such as those provided by game theory, in order to optimize and
control a distribution system containing a network of microgrids.

One key purpose of microgrids is to relieve the demand on the main distribution
system by serving their local geographical areas. However, due to their heavy
reliance on intermittent type of generation sources, such as RE, as well as due to the
consumers’ random demand (especially with the integration of EVs), a microgrid
can fall short on meeting its local electric load. As a result, this deficit needs to be
met by the distribution grid.

However, in future power systems, it is envisioned that the distribution system
will encompass a large number of interconnected microgrids. Hence, due to this
interconnection, a microgrid in need for power can obtain power from another
interconnected microgrid that has a power surplus instead of obtaining the power
from the main grid. One should note, here, that such an energy exchange is
contingent upon the introduction of proper energy exchange protocols to alleviate
the technical challenges and operational risks that it may introduce. If properly
implemented, this energy exchange can be beneficial to participants in both
microgrids and can introduce various advantages ranging from achieving reduction
in power transmission losses, due to the local exchange of power, to reducing the
peak load of the main distribution system.

As a result, there is a need for devising a mathematical mechanism which enables
this local energy exchange between microgrids experiencing a lack of energy,
referred to as buyers, and microgrids that have a surplus of energy, referred to
as sellers. To this end, the work in Saad et al. (2011) has devised such a scheme
and showed that cooperative game theory can be used to model cooperative energy
exchange mechanisms in the smart grid. The model presented in Saad et al. (2011),
a game formulation, and the main results that ensue are introduced next. Here, the
focus is on modeling the cooperative behavior between the different microgrids. For
modeling the noncooperative behavior between different microgrids competing to
meet a local load, the reader is referred to El Rahi et al. (2016).
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Consider an interconnection of N microgrids in a distribution network. Each
microgrid n 2 N , N referring to the set of all microgrids, has a set of DG units
and loads that it serves. Let Pn be the difference between the generation and demand
at n. Here, Pn is a random variable due to the random nature of the RE and the
load. As a result, at a given time instant, microgrid n can be in one of three states:
(1) Pn > 0 and n aims at selling this surplus, (2) Pn < 0 and n is searching to buy
energy from another power source to meet the deficit, or (3) Pn D 0 and n does not
take part in any energy exchange. To this end, when Pn < 0, n is faced with the
options of covering the deficit by either buying energy from the distribution system
or from another microgrid n0 2 N with n0 ¤ n. When n buys the deficit Pn from
the main grid, the incurred total electric losses are denoted by P loss

n0 , and the total
cost of these losses is given by

u.fng/ D �!nP loss
n0 ; (27.27)

where !n is the price per unit of power loss. P loss
n0 is dependent on many factors

including the amount of power exchange, the voltage at which power is transmitted,
the associated distribution lines’ resistances and distance, as well as losses at
corresponding substations. u.fng/ is hence considered as the utility function of a
noncooperative microgrid n 2 N .

However, rather than buying power from the main grid, a microgrid can buy
power from other microgrids. To this end, microgrids form a cooperative group,
referred to as coalition, through which energy can be exchanged between the
constituents of this coalition. Such a local exchange of power serves to reduce
the incurred power losses mainly due to the short distances involved. Hence, based
on their respective geographic locations and power needs, a number of microgrids
would have an incentive to cooperate and exchange power locally. In this regard, a
coalitional game can be formulated to model this cooperative energy exchange.

To this end, let S � N be a coalition between a number of cooperating
microgrids. S is hence composed of a set of buyers, Sb , and a set of seller, Ss ,
such that S D Sb [ Ss . The utility of a coalition S depends on the members of
S as well as on the way in which the matching between buyers and sellers is done
within S . The optimal matching mechanism within S can be modeled as a double-
auction mechanism in analogy with the wholesale energy market model described
in Sect. 2. The participants in this auction are the sellers and buyers, while their
strategies are, respectively, to specify the amount of power to sell (buy) and the
associated price. Thus, the end result of this auction specifies the optimal amount
of power that each seller (buyer) is willing to sell (buy) and the equilibrium price
(resulting in an optimal matching between the different sellers and buyers). Let ˘

be such an association between buyers and sellers within S ; the utility of S can be
expressed as follows:

u.S; ˘/ D �

0

@
X

n2Ss;n02Sb

!nP loss
nn0

C
X

n2Ss

!nP loss
n0 C

X

n02Sb

!n0P loss
n00

1

A ; (27.28)
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where P loss
nn0

corresponds to the power loss associated with the local energy exchange
between the seller n 2 Ss and buyer n0 2 Sb while P loss

n0 and P loss
n00

correspond to
the power loss resulting from power transfer, if any, between n or n0 and the main
grid.10 The expression of u.S; ˘/ in (27.28), hence, reflects the aggregate power
lost through the various power transfers within S . Let Ps be the set of all possible
˘ associations between buyers and sellers in S . Accordingly, the value function
v.S/ of the microgrids’ coalitional game, which corresponds to the maximum total
utility achieved by any coalition S � N (minimum aggregate power loss within
S ), is defined as

v.S/ D max
˘2Ps

u.S; ˘/: (27.29)

This value function represents the total cost of power loss incurred by a coalition
S which, hence, needs to be split between the members of S . Since this cost can
be split in an arbitrary way between the members of S , this game is known to
have a transferable utility. The work in Saad et al. (2011) adopts a proportional
fair division of the value function. Hence, every possible coalition S has, within,
an optimal matching between the buyers and sellers which subsequently leads to an
achieved value function and corresponding cost partitions. However, one important
question that is yet to be answered is how can the different microgrids form the
coalitions? The answer to this question can be obtained through the use of a
coalitional formation game framework. Hence, the solution to the proposed energy
exchange problem requires solving a coalition formation game and an auction game
(or a matching problem).

3.2.1 Game Solution and Main Results
For the energy exchange matching problem within each coalition S , the authors
in Saad et al. (2011) propose a sequential approach using which each buyer bi 2

Sb D fb1; : : : ; bkg, following a given order, purchases its needed power in a way that
minimizes its incurred losses. This approach can be described as follows. A buyer
bi 2 Sb builds a preference relation among sellers Ss based on the amount of power
lost during exchange between bi and sj 2 Ss . Following this relation, bi requests
the amount of power it needs from its preferred seller, sl (which corresponds to the
seller yielding the smallest power loss which can be, for example, the geographically
closest seller to bi ). If sl can fully meet the power demand Pi , then bi takes no
further actions. However, if not all of Pi can be obtained from sl , bi purchases the
highest possible fraction of Pi from sl and tries to obtain the remaining power from
its next preferred seller. This process goes on until bi meets all of its demand deficit
Pi . This approach is considered to be a simple approach through which buyers

10Energy exchange with the main grid happens in two cases: (1) if the total demand in S cannot
be fully met by the supply in S , leading some buyers to buy their unmet load from the distribution
system, or (2) if the total supply exceeds the total demand in S ; and hence, the excess supply is
sold to the distribution system.
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meet their energy needs within the coalition. A more general approach would be
to consider buyers and sellers as competing players in an auction mechanism as
described previously in this section. An example of competitive behavior modeling
between microgrids is presented in El Rahi et al. (2016).

With regard to the coalition formation problem, the authors in Saad et al.
(2011) propose a distributed learning algorithm following which microgrids can,
in an autonomous manner, cooperate and self-organize into a number of disjoint
coalitions. This coalition formation algorithm is based on the rules of merge and
split defined as follows. A group of microgrids (or a group of coalitions) would
merge to form a larger coalition if this merge increases the utility (reduces the power
loss) of at least one of the participating microgrids without decreasing the utilities of
any of the others. Similarly, a coalition of microgrids splits into smaller coalitions if
this split increases the payoff of one of the participants without reducing the payoff
of any of the others.

This coalition formation algorithm and the energy exchange matching heuristic
have been applied in Saad et al. (2011) to a case study consisting of a distribution
network including a numbers of microgrids. In this respect, it was shown that
coalition formation served to reduce the incurred electric losses associated with the
energy exchange as compared with the case in which the microgrids decided not
to cooperate. In fact, the numerical results have shown that this reduction in losses
can reach an average of 31% per microgrid. The numerical results have also shown
that the decrease in losses due to cooperation improves when the total number of
microgrids increases.

Consequently, the introduced cooperative game-theoretic framework provides
the mathematical tools needed to analyze coalition formation between microgrids
and its effect on improving the efficiency of the distribution system through
achieving a decrease in power losses.

4 Power System Security

The integration of communication and data processing technologies into the tradi-
tional power system promotes a more efficient, resilient, and dependable operation
of the grid. However, this high interconnectivity and the fundamental reliance of the
grid on its underlying communication and computational system render the power
system more vulnerable to many types of attacks, of cyber and physical natures,
aiming at disrupting its functionality. Even though the power system is designed to
preserve certain operational requirements when subjected to external disturbances
which are (to some extent) likely to happen, the system cannot naturally withstand
coordinated failures which can be orchestrated by a malicious attacker.

To this end, the operator must devise defense strategies to detect, mitigate, and
thwart potential attacks using its set of available resources. Meanwhile, an adversary
will use its own resources to launch an attack on the system. The goal of this
attack can range from reaping financial benefit through manipulation of electricity
prices to triggering the collapse of various components of the system leading to
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a wide-range blackout. However, when devising a defense (attack) strategy, the
defender (attacker) has to take into consideration the potential attack (defense)
strategies that the attacker (defender) might admit so as to choose the defense
(attack) strategy that minimizes (maximizes) the effect of that attack on the system.
In this regard, given that the actions of the attackers have direct impact on the
objective of the defender and vice versa, game-theoretic tools can be used to capture
and analyze this intertwined strategic interaction. Moreover, given that the power
system is a dynamic system, dynamic game-theoretic techniques provide a plethora
of mathematical tools which can be used in power system security analyses.

The application of game-theoretic techniques to address power system security
challenges allows operators to devise defense strategies that can better secure the
grid, preserving its integrity and availability. To this end, the devised game-theoretic
models should account for the following:

1. Practicality constraints: a defender’s goal cannot solely be to protect the
system against potential attacks. It must also meet power system performance
requirements. In fact, to completely secure the system against possible cyber
attacks, a complete disconnection of the cyber layer from the physical system
might be the best solution. However, even though such a strategy would improve
the security of the system, it would deprive it from all the operational advantages
introduced by the underlying communication and data processing systems.

2. Feasibility restrictions: attackers and defenders both have limited resources
that they can use for their attack or defense strategies. Such resources can
correspond to monetary resources, skills, time, or computational abilities, among
others. Thus, the attackers’ and defenders’ strategies need to abide by their
corresponding resource limitations.

This section focuses on the security threats targeting the observability of the
power system as well as its dynamic stability. First, observability attacks on the
power system’s state estimation are considered while focusing on modeling the
strategic behavior of multiple data injection attackers, targeting the state estimator,
and a system defender. Second, dynamic attacks targeting the power system are
considered. In this regard, first, a general cyber-physical security analysis of the
power system is provided based on which a robust and resilient controller is
designed to alleviate physical disturbances and mitigate cyber attacks. Then, the
focus is shed on the security of a main control scheme of interconnected power
systems known as automatic generation control.

4.1 Power System State Estimator Security

The full observability of the state of operation of a power system can be obtained
by a complete concurrent knowledge of the voltage magnitudes and voltage phase
angles at every bus in the system. These quantities are, in fact, known as the
system states, which are estimated using a state estimator. In this regard, distributed
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measurement units are spread across the power system to take various measurements
such as power flows across transmission lines, power injections and voltage
magnitudes at various buses, and, by the introduction of phasor measurement units
(PMUs), synchronized voltage and current phase angles. These measurements are
sent via communication links and fed to a state estimator which generates a real-time
estimate of the system states. Hence, the observability of the power system directly
relies on the integrity of the collected data. Various operational decisions are based
on the monitoring ability provided by the state estimator. Thus, any perturbation
to the state estimation process can cause misled decisions by the operator, whose
effect can range from incorrect electricity pricing to false operational decisions
which can destabilize the system. In this regard, data injection attacks have emerged
as a highly malicious type of integrity attacks using which malicious adversaries
compromise measurement units and send false data aiming at altering the state
estimator’s estimate of the real-time system states.

This subsection focuses on the problem of data injection attacks targeting
the electric energy market. Using such attacks, the adversary aims at perturbing
the estimation of the real-time state of operation leading to incorrect electricity
pricing which benefits the adversary. First, the state estimation process is explained
followed by the data injection attack model. Then, based on Sanjab and Saad
(2016a), the effect of such attacks on the energy markets and electricity pricing
is explored followed by a modeling of the strategic behavior of a number, M , of
data injection attackers and a system defender.

In a linear power system state estimation model, measurements of the real
power flows and real power injections are used to estimate the voltage phase
angles at all the buses in the system.11 The linear state estimator is based on
what is known as a MW-only power flow model which was defined along with its
underlying assumptions in Sect. 2. The power Pij flowing from bus i to bus j over
a transmission line of reactance Xij is expressed in (27.6), where �k corresponds to
the voltage phase angle at bus k; while the power injection at a certain bus i is as
expressed in (27.7). Given that in the MW-only model the voltage magnitudes are
assumed to be fixed, the states of the system that need to be estimated are the voltage
phase angles. The power injections and power flows collected from the system are
linearly related to the system states, following from (27.6) and (27.7). Thus, the
measurement vector, z, can be linearly expressed in terms of the vector of system
states, � , as follows:

z D H� C e; (27.30)

where H can be built based on (27.6) and (27.7) and e is the vector of random
measurement errors assumed to follow a normal distribution, N.0; R/. Using a
weighted least squares estimator, the estimated system states are given by

11Except for the reference bus whose phase angle is the reference angle and is hence assumed to
be equal to 0 rad.
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O� D .HT R�1H/�1HT R�1z: (27.31)

The estimated measurements, Oz, and what is known as the measurement residuals,
r, can be computed as follows:

Oz D H O� D Sz; r D z � Oz D .I � S/z D Wz; (27.32)

where I is the identity matrix of size . � / and  is the total number of collected
measurements.

When additive data injection attacks are launched by M attackers in the set
M D f1; : : : ; M g, the measurements are altered via the addition of their attack
vectors fz.1/; z.2/; : : : ; z.M/g. Hence, this leads to the following measurements and
residuals:

zatt D z C

MX

mD1

z.m/; ratt D r C W
MX

mD1

z.m/: (27.33)

Typically, identification of outliers is based on the calculated measurement

residuals. In this respect, W
MP

iD1

z.m/ must be chosen to keep the magnitude of

the residuals, jjrattjj22 D
P

iD1.ratt
i /2, relatively small to minimize the chance of

detection of the attack.
To model the effect of data injection on an energy market, consider a competitive

wholesale electric energy market architecture based on day-ahead and real-time
markets. In the DA market, hourly DA LMPs, �DA, are issued by the operator for
the next operating day based on the generation offers of the participating GENCOs
and the solution of an OPF problem as discussed in Sect. 2 in (27.2), (27.3), (27.4),
(27.5) and (27.14). However, electricity pricing is not only based on DA forecasts
but also on the real-time state of operation of the system. Thus, in real-time, using
the state estimator output, the real-time behavior of all market participants and
system states is estimated. This estimation outcome is fed to an OPF problem to
generate the real-time LMPs, �RT . An illustration of the DA-RT market architecture
is presented in Fig. 27.3. Some market participants in the DA and RT markets do
not possess any generation units nor serve any loads. Such participants are known
as virtual bidders (VBs). Virtual bidding is a protocol using which VBs submit what
is known as virtual supply offers and demand bids. However, since the VBs do not
possess any physical means to meet their generation offers or demand bids, a VB
that buys (sells) virtual power at a specific bus in DA is required to sell (buy) that
same power at the same bus in RT. In this respect, VBs can make a profit from
possible mismatch between DA and RT LMPs.

As such, using data injection attacks, a VB can successfully manipulate system
measurements to change the real-time LMPs and intentionally create a beneficial
mismatch between �DA and �RT at the buses over which it has placed virtual
bids. On the other hand, to protect the system, the operator aims at securing some
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Fig. 27.3 Illustration of energy market operation based on DA and RT markets

measurement units such that they become immune to such attacks. Securing a
measurement unit can be done by, for example, a disconnection from the Internet,
encryption techniques, or replacing the unit by a more secure one. However, such
security measures are preventive aiming at thwarting potential future attacks. To
this end, a skilled attacker can have the ability to observe which measurements
have been secured. In fact, installation of new measurement units can be physically
noticeable by the attackers, while encrypted sensors’ outputs can be observed by an
adversary attempting to read the transmitted data. Hence, the strategic interaction
between the defender and the M attackers is hierarchical in which the defender
(i.e. the leader) chooses a set of measurements to protect while the attackers (i.e. the
followers) observe which measurements have been protected and react, accordingly,
by launching their optimal attack. This single leader multi-follower hierarchical
security model presented in Sanjab and Saad (2016a) is detailed next.

Starting with the attackers (i.e. the followers game), consider a VB, m, which
is also a data injection attacker and which places its virtual bids as follows. In the
DA market, VB m buys and sells Pm MW of virtual power at buses im and jm,
respectively. In the RT market, VB m sells and buys the same amount of virtual
power Pm MW at, respectively, buses im and jm. As a result, the payoff, �m, of VB
m earned from this virtual bidding process can be expressed as follows:

�m D
h�

�RT
im

� �DA
im

�
C

�
�DA

jm
� �RT

jm

�i
Pm: (27.34)

As a result, attacker m aims at choosing a data injection attack vector z.m/ from
the possible set of attacks Z .m/ which solves the following optimization problem:

max
z.m/2Z .m/

Um.z.m/; z�.m// D �m � cm.z.m//: (27.35)
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subject to:

kWz.m/k2 C

MX

lD1;l¤m

kWz.l/k2 � �m; (27.36)

where cm.z.m// is the cost of launching attack z.m/ and z�.m/ corresponds to the
attack vectors of all other attackers except m as well as on the defense vector (to be
defined next). Z .m/ rules out the measurements that have been previously secured
by the defender and hence is dependent on the defender’s strategy. The dependence
of Um on the attacks launched by the other attackers as well as on the defense
vector is obvious since these attack and defense strategies will affect the LMPs
in RT. The limit on the residuals of the attacked measurements expressed in (27.36)
is introduced to minimize the risk of being identified as outliers, where �m is a
threshold value specified by m. As such, in response to a defense strategy by the
operator, the attackers play a noncooperative game based on which each one chooses
its optimal attack vector. However, since the attackers’ constraints are coupled, their
game formulation is known as a generalized Nash equilibrium problem (GNEP).
The equilibrium concept of such games known as the generalized Nash equilibrium
(GNE) is similar to the NE; however, it requires that the collection of the equilibrium
strategies of all the attackers not violate the common constraints.

The system operator, on the other hand, chooses a defense vector a.0/ 2 A .0/

indicating which measurement units are to be secured and which takes into
consideration the possible attack strategies that can be implemented by the attackers
in response to its defense policy. The objective of the defender is to minimize the
potential mismatch in LMPs between DA and RT which can be caused by data
injection attacks. Thus, the defender’s objective is as follows:

min
a02A0

U0.a0; a�0/ D PL

vuut 1

N

NX

iD1

.�RT
i � �DA

i /2 C c0.a0/; (27.37)

subject to:

ka0k0 � B0; (27.38)

where c0.a0/ constitutes the cost of the implemented defense strategy, PL is the total
electric load of the system, N is the number of buses, and B0 corresponds to the
limit on the number of measurements that the defender can defend concurrently.12

12This feasibility constraint in (27.38) insures the implementability and practicality of the derived
defense solutions. To this end, a defender with more available defense resources may be more likely
to thwart potential attacks. For a game-theoretic modeling of the effects of the level of resources,
skills, and computational abilities that the defenders and adversaries have on their optimal defense
and attack policies in a power system setting, see Sanjab and Saad (2016b).



1212 A. Sanjab and W. Saad

a�0 corresponds to the collection of attack vectors chosen by the M attackers, i.e.,
a�0 D Œz.1/; z.2/; : : : ; z.M/�.

Let Ratt.a0/ be the set of optimal responses of the attackers to a defense strategy
a0. Namely, Ratt.a0/ is the set of GNEs of the attackers’ game defined in (27.35)
and (27.36). As such, the hierarchical equilibrium of the defender-attackers’ game
is one that satisfies:

max
a

�02Ratt.a�

0 /
U0.a�

0 ; a�0/ D min
a02A0

max
a

�02Ratt.a0/
U0.a0; a�0/: (27.39)

4.1.1 Game Solution and Main Results
By transforming each attacker’s problem in (27.35) and (27.36) to a convex
optimization problem, the work in Sanjab and Saad (2016a) has proven the existence
of at least one GNE for the attackers’ game which can be obtained through a
proposed solution algorithm. Moreover, the case in which the defender has limited
information about the attackers has been treated using the concept of satisfaction
equilibrium. In this regard, given that the defender may not be able to anticipate the
reaction of the attackers, rather than aiming at minimizing the mismatch between
DA and RT LMPs, the defender aims at finding a defense strategy a0 which
keeps this mismatch within a certain bound. Thus, the defender aims at meeting
a certain performance requirement. As in the hierarchical framework, the attackers
respond to the defense strategy by playing a GNEP. The authors in Sanjab and Saad
(2016a) introduced an equilibrium concept for this hybrid satisfaction equilibrium-
generalized Nash equilibrium problem (denoted as hybrid hierarchical equilibrium)
which is a state of the game in which the defender plays a strategy that meets its
performance requirement and the attackers respond by playing a GNE.

Simulation results over a 30-bus test system in Sanjab and Saad (2016a) showed
that the competitive behavior of multiple attackers can alleviate the aggregate effect
of the attacks. Moreover, the results showed that protecting a small subset of
measurements can significantly mitigate the effect of the attacks on the system.

This subsection has investigated observability attacks on the power system. In
the next subsection, dynamic system attacks are studied.

4.2 Dynamic System Attacks on the Power System

Modern power systems are cyber-physical systems formed of an interconnection
between a physical dynamic system, comprising physical components (such as
synchronous generators and transformers) and the underlying control systems,
and a cyber system comprising the communication, data processing, and network
layers. Such a multilayered system is subject to a set of externalities ranging from
disturbances to the physical system to cyber attacks. Thus, preserving the security of
the power system requires an accurate multilayered cyber-physical modeling of the
system with the goal to attenuate and reject physical disturbances as well as mitigate
and thwart cyber attacks.
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4.2.1 Cyber-Physical Security of the Power System
The power network’s physical dynamic system is continuously subject to exogenous
disturbances which affect the evolution of its states. As such, robust control policies
are typically implemented to attenuate the effects of such disturbances. Moreover,
the interconnection of the physical dynamic system to a cyber – information and
communication – layer puts the system in danger of cyber attacks which can occur
at random times and cause sudden changes to the state of operation of the system.
Thus, defense policies should be implemented to enhance the resilience of the power
system against such attacks.

To this end, a multilayered cyber-physical security model was proposed in Zhu
and Başar (2011) using a layered stochastic-differential dynamic game. In this
model, the physical system dynamics are modeled to be continuous in time and
governed by controller inputs and external disturbances. The disturbances/uncer-
tainties over the physical system are modeled as continuous and deterministic. A
robust optimal control is designed, using a zero-sum differential game, to achieve
robustness of the physical system facing such disturbances. In addition, cyber
attacks are modeled to induce sudden changes to the system’s structural states. As
such, the state space of the cyber system is modeled to be discrete, and the transition
between these states is modeled to be stochastic and dependent on the attack and
defense strategies. The conflicting strategic behavior of the attacker and defender
is modeled using a zero-sum stochastic game enabling the derivation of a defense
strategy to mitigate the effect of the attacks. Such an intertwined security model
allows the derivation of optimal control and security strategies to mitigate the effect
of externalities and cyber attacks targeting the power system. The work in Zhu and
Başar (2011) in this domain is detailed next; for a more detailed exposure to such
dynamic games within the context of cyber-physical system security, see Zhu and
Başar (2015).

Consider x.t/ 2 Rn to be the state of the physical system which evolves from
the initial condition x0 D x.t0/ based on the state dynamic equation:

Px.t/ D h.t; x; u; wI s.t; ˛; ı//; (27.40)

where u 2 Rr is the control input, w 2 Rp are disturbances to the physical system,
and s is the state of the cyber system (i.e. the structural states of the system)
belonging to the state space S D f1; 2; : : : ; Sg. ˛ and ı are attack and defense
actions which will be explored in greater details next. The structural states denote
the security state of the system. For example, a certain structural state si can denote
that a transmission line has been disconnected due to a certain cyber attack.

The transition between the discrete structural states of the system can be
represented using a Markov process with initial distribution �0 and rate matrix � D

f�i;j gi;j 2S . The transition between structural states depends on the implemented
defense action ı 2 D and the attack action ˛ 2 A carried out by the attacker.

Note, here, that the transitions between structural states happen on a different
time scale than the evolution of the physical states. In fact, the physical states evolve
in the order of seconds, while the time scale of cyber attacks is typically in the
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order of days. As such, at a time k at which a cyber event occurs, the physical
dynamic system can be assumed to be in steady state. This is referred to as “time-
scale separation.”

An attack can lead to a sudden transition in the state of operation of the system,
while a defense strategy can bring the system back to its nominal operating state.
Consider the set of mixed defense and attack strategies to be, respectively, denoted
by Dm

k D fd.k/ 2 Œ0; 1�jDjg and A m
k D fa.k/ 2 Œ0; 1�jA jg. The transition between

the system states for a mixed defense strategy d.k/ and mixed attack strategy a.k/

can be modeled as follows:

Probfs.k C �/ D j js.k/ D ig D

(
�i;j .d.k/; a.k//; j ¤ i

�i;i .d.k/; a.k//; j D i;
(27.41)

where � is a time increment on the time scale of k. Denoting O�i;j .ı.k/; ˛.k// to be
the transition rate between i 2 S and j 2 S under pure defense action ı.k/ and
attack action ˛.k/, then �i;j in (27.41) corresponds to the average transition rates
between i and j and can be calculated as follows:

�i;j .d.k/; a.k// D
X

ı2D

X

˛2A

dı.k/a˛.k/ O�i;j .ı.k/; ˛.k//: (27.42)

As such, (27.40) and (27.41) present a hybrid discrete-continuous security model
of the power system. The goal is to design an optimal control strategy to mitigate
the effect of physical disturbances and characterize a dynamic defense strategy to
mitigate the effect of cyber attacks on the system. Due to the time-scale separation
between the physical and cyber layers, the control and defense strategies can be
studied separately but while considering the interdependence between the two.

For the optimal controller design, let sŒt0;t � be defined as sŒt0;t � WD fs.�/; � � tg.
Consider that the controller has access to xŒt0;t � and sŒt0;t � at time t . As such, denote
the perfect state closed-loop control strategy by u.t/ D �.t; xŒt0;t �I sŒt0;t �/ in the class
of all admissible control strategies MCL and closed-loop disturbance by v.t/ D

�.t; xŒt0;t �I sŒt0;t �/ in the set of all admissible disturbances NCL. In this respect, a cost
function over t 2 Œt0; tf � to be minimized by the controller is one of the form:

L.x; u; wI s/ D q0.x0I s.t0//Cqf .x.tf /I s.tf //C

Z tf

t0

g.t; x.t/; u.t/; w.t/I s.t//dt;

(27.43)
where g.:/, q0.:/, and qf .:/ define the cost structure.

Based on this cost function, the performance index of the controller can be
defined as

J .u; v/ D EsfL.x; u; wI �/g: (27.44)

The goal of the optimal controller is to devise a minimax closed-loop control
strategy ��

CL 2 MCL which achieves
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sup
�2NCL

J .��
CL; �/ D inf

�2MCL

sup
�2NCL

J .�; �/: (27.45)

The expression in (27.45) along with the dynamics in (27.40) define a zero-sum
differential game. A solution of the differential game will lead to an optimal control
minimizing the effect of disturbances on the physical system. Next, characterizing
the optimal defense policy against cyber attacks is investigated.

The interaction between an attacker and a defender can be modeled as a zero-sum
stochastic game in which the discounted payoff criterion, Vˇ.i; d; a), with discount
factor ˇ is given by

Vˇ.i; d.k/; a.k// D

Z 1

0

e�ˇkE
d.k/;a.k/
i ŒV i .k; d.k/; a.k//�dk; (27.46)

where V i .k; d.k/; a.k// is the value function of the zero-sum differential game at
state s D i with a starting time at k in the cost function in (27.43). In this game, the
defender’s goal is to minimize (27.46) while the goal of the attacker is to maximize
it.

Let dm
i 2 Di and am

i 2 Ai be a class of mixed stationary strategies dependent on
the current structural state i 2 S . The goal is to find a pair of stationary strategies
.D� D fdi W i 2 S g; A� D fai W i 2 S g/ constituting a saddle point of the
zero-sum stochastic game, i.e., satisfying:

Vˇ.D�; A/ � Vˇ.D�; A�/ � Vˇ.D; A�/: (27.47)

Game Solution and Main Results
A robust and resilient control of the cyber-physical power system described
in (27.40) can be described as an intertwined set of optimal control policies,
denoted by f.D�; A�/; .��

CL; ��
CL/g, generating an equilibrium of the interconnected

differential and stochastic games. As detailed in Zhu and Başar (2011), the optimal
defense strategy .D�; A�/, which can be found using a value iteration algorithm
described in Zhu and Başar (2011), should satisfy the following fixed point equation
for all i 2 S :

ˇv�
ˇ.i/ D V i .D�; A�/ C

X

j 2S

�i;j .D�; A�/v�
ˇ.j /; (27.48)

while the optimal control policy .��
CL; ��

CL/ should satisfy the Hamilton-Jacobi-
Isaacs equation given by

�V i
t .t; x/ D

inf
u2Rr

sup
w2Rp

2

4V i
x .t; x/f .t; x; u; w; i / C g.t; x; u; w; i / C

X

j 2S

�i;j V j .t; x/

3

5 ;

V i .tf ; x/ D qf .x.tf /I i/; for i 2 S : (27.49)
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As a case analysis, the work in Zhu and Başar (2011) has studied the case
of voltage regulation of a single generator. The simulation results first show the
evolution of the angular frequency of the generator and its stabilization under normal
operation and then the ability of the controller to bring back stable nominal system
operation after the occurrence of a sudden failure. This highlights the robustness
and resilience of the developed controller.

The presented security model in this subsection is one of a general cyber-physical
power system. Next, the focus is on a specific control mechanism of interconnected
power systems, namely, automatic generation control.

4.2.2 Automatic Generation Control Security
The power system is a dynamic system which operates at a fixed nominal frequency,
i.e., synchronous frequency corresponding to 50 Hz in most parts of the world;
except for North and South America, where the operating frequency in most
countries is 60 Hz. To this end, control designs are applied to the power system
to damp any frequency deviations and maintain this nominal frequency.

The rotor dynamics of every synchronous generator is affected by the electric
load connected to it. In fact, in a synchronous generator, the shaft connecting
the turbine to the synchronous machine’s rotor is subject to a mechanical torque,
Tm, generated by the turbine rotation and an electric torque, Te , generated by the
connected electric load. Based on Newton’s second law, the acceleration of the
machine is expressed as

I
d!

dt
D Tm � Te; (27.50)

where ! is the angular frequency of the rotor and I is the moment of inertia of the
rotating mass. Thus, as can be seen from (27.50), for a fixed mechanical torque, an
increase in the electric load leads to a deceleration of the machine’s rotor while a
decrease in the electric load leads to the acceleration of the rotor. Transforming the
torques in (27.50) into powers generates what is known as the swing equation given
by

M
d�!

dt
D �Pm � �Pe; (27.51)

where �Pm and �Pe correspond to a change to the mechanical and electric power,
respectively, while M is a constant known as the inertia constant at synchronous
speed.13

Hence, to maintain the change in angular frequency �! close to 0, a control
design should constantly change the mechanical power of the machine to match
changes in the electric loads of the system. Such a frequency control design typically
follows a three-layer scheme. The first layer is known as the primary control layer.
The primary control layer corresponds to a local proportional controller connected

13All the quantities in (27.51) are expressed in per unit based on the synchronous machine’s rated
complex power.
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to the synchronous machine. The primary proportional controller can reduce the
frequency deviation due to a change in load; however, it can leave a steady-state
error. The elimination of this steady-state error is achieved by an integrator. In
contrast to the local proportional control, the integral control is central to an area.
This central integral control corresponds to the second control layer known as the
secondary control. The third control layer is known as the tertiary control and is a
supervisory control layer insuring the availability of spinning reserves (which are
needed by the primary control) and the optimal dispatch of the units taking part in
the secondary control.

Moreover, the power grid is composed of the interconnection of many systems.
These various systems are interconnected via tie lines. A drop in the frequency of
one system triggers a deviation in the power flow over the tie lines from its scheduled
power. The change in the power flow of the tie line, �PTL, can be expressed in
the Laplace domain in terms of the frequency deviations in the two interconnected
systems i and j as follows:

�PTL.s/ D
!s

sXTL

.�!i .s/ � �!j .s//; (27.52)

where !s is the synchronous angular frequency and XTL is the reactance of the tie
line. To minimize such deviation in the tie line power flow, generation control in the
two interconnected areas is needed. This control is known as the load-frequency
control. This load-frequency control can be achieved through the combination
of the primary and secondary controls. The automatic generation control (AGC)
constitutes an optimized load-frequency control which is combined with economic
dispatch based on which the variations of the generators’ outputs dictated by the
load-frequency controller follow a minimal cost law.

When these control designs fail to control the deviation from the nominal
frequency, frequency relays take protection measures to prevent the loss of syn-
chronism in the system, which can be caused by the large frequency deviations. In
this respect, if the frequency deviation is measured to have positively surpassed
a given threshold, over-frequency relays trigger the disconnection of generation
units to reduce the frequency. Similarly, if the frequency deviation is measured to
have negatively surpassed a given threshold, under-frequency relays trigger a load
shedding mechanism to decrease the electric load, bringing back the frequency to
its nominal value and preserving the safety of the system. However, these frequency
relays can be subject to cyber attacks which can compromise them and feed them
false data with the goal of triggering an unnecessary disconnection of generation or
load shedding. This problem has been addressed in Law et al. (2015).

For example, a data injection attacker can target a frequency relay by manip-
ulating its measured true frequency deviation, �f , by multiplying it by a factor
k such that the frequency relay’s reading is k�f . Such an attack is known as an
overcompensation attack since the integral controller overcompensates this sensed
false frequency deviation leading to unstable oscillations overpassing the frequency
relay’s under-frequency or over-frequency thresholds which triggers load shedding
or generation disconnection. When the multiplication factor is negative, this attack
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is known as a negative compensation attack. Other types of frequency sensing
manipulation attacks are constant injection and bias injection. Constant injection
continuously feeds the frequency deviation measurement unit a constant mismatch
�f . Bias injection is an additive attack through which a constant additive deviation
c is added to the real �f so that the manipulated measurement is �f C c. Both
of these attacks perturb the functionality of the integral controller and leads the
system to converge to a frequency different from the nominal one. If this frequency
deviation surpasses the frequency relays’ thresholds, it leads to shedding of a
fraction of the load or disconnection of generation units.

On the other hand, the defender can take defensive actions to mitigate and detect
such attacks. To mitigate the effect of such attacks, two measures can be taken.
First, saturation filters can be employed to limit the frequency deviation at the
input of the integral controller. The cutoff frequencies of such saturation bandpass
filters are, respectively, above the over-frequency threshold and below the under-
frequency threshold. Thus, the frequency relays can still act to protect the system;
however, large deviations do not get fed into the integral controller. Second, the use
of redundancy can lead to a decrease in the probability of success of a data injection
attack since, clearly, the probability of successfully attacking multiple frequency
relays concurrently is smaller than the likelihood of successfully attacking only
one of them. Using redundancy, the controller can in an alternating manner take
a frequency reading sample from a different measuring unit at each time sample to
reduce the risk of issuing a control action based on manipulated readings. In addition
to mitigating an attack’s effect on the system, detection techniques are essential to
detect and eliminate the presence of attacks. In this regard, a detection algorithm can
compare successive frequency deviation readings to sense the presence of an attack.
Moreover, a clustering-based framework can also be used for data injection detec-
tion since, normally, frequency deviations should be clustered around 0. Hence, the
presence of more than one cluster can be an indication of the presence of an attack.

The loss to the system, i.e. the loss to the defender which is equivalent to the gain
of the attacker, due to such attacks on under-frequency relays can be quantified by
the amount of load that has been shed due to that attack, which is denoted by Pshed.
Various cost of load shed assessment techniques can be adopted. In this regard, Law
et al. (2015) considers two approaches; one that quantifies the loss as the expected
value of the load shed, EŒPshed�, and the other that quantifies the loss using the
risk assessment concept known as the conditional value at risk (CVaR). The value
at risk (VaR), with significance level denoted by 0 < � < 1, corresponds to the
minimum value of a loss limit � such that the probability that the incurred loss is
greater than � is at most equal to � . Hence, considering FPshed to be the cumulative
density function of Pshed that is assumed to be smooth and continuous, the VaR and
CVaR are defined, respectively, as follows:

VaR� .Pshed/ D inff� j FPshed.�/ � 1 � �g D F �1
Pshed

.1 � �/; (27.53)

CVaR� .Pshed/ D EŒPshedjPshed � VaR� .Pshed/� D
1

�

Z 1

1��

F �1
Pshed

.ˇ/dˇ: (27.54)
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Thus, the attacker and the defender choose their optimal attack and defense
strategies aiming at, respectively, maximizing and minimizing the incurred cost
of load shed. Due to the coupling in actions and payoffs of the attacker and the
defender, their strategic interaction can be modeled using the tools of game theory.
However, the game model needs to consider the dynamic evolution of the system
affected by the actions taken by the attacker and the defender. To this end, Law et al.
(2015) proposes the use of the framework of a stochastic game. This stochastic game
is introduced next.

The authors in Law et al. (2015) consider under-frequency load shedding in
two interconnected areas 1 and 2 where a load is shed in area i if the frequency
deviation �fi in i is such that �fi � �0:35 Hz. The frequency deviation in
area i is measured using frequency sensor i . The work in Law et al. (2015)
defines the stochastic game between the defender d and attacker a, 	 , as a 7-
tuple 	 D hI ; X ; S d ; S a; M; U d ; U ai. I D fd; ag is the set of players.
X D fx00; x01; x10; x11g is the set of states reflecting the frequency deviations at
the two areas. A state x 2 X can be defined as follows:

x D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

x00 if �f1 > �0:35 and �f2 > �0:35;

x01 if �f1 > �0:35 and �f2 � �0:35;

x10 if �f1 � �0:35 and �f2 > �0:35;

x11 if �f1 � �0:35 and �f2 � �0:35:

S d and S a are the set of actions available to the attacker and defender,
respectively, and are defined as follows. As a redundancy measure, the defender
implements two frequency measuring devises and reads n consecutive samples from
each. Each n consecutive samples constitute a session. Following the reading of
these n samples, a clustering algorithm is run to detect attacks. The defender’s action
space reflects how sharp or fuzzy the used clusters are which is dictated by the size
of the cross-correlation filter. In this regard, S d D fsd

1 ; sd
2 g where sd

1 sets the filter
size to n=4 and sd

2 sets the filter size to 2n=5. In both cases, the frequency measuring
unit is considered under attack if at least two clusters are formed. In that case,
the frequency sensor is disinfected through a firmware update which is assumed
to take one session. When the attacker compromises a meter, it chooses between
two strategies: (i) sa

1 which is to overcompensate half of the observed samples or
(ii) sa

2 which corresponds to overcompensating all of the observed samples. Thus,
S a D fsa

1 ; sa
2 g. The attacker is assumed to require four sessions to compromise

meter 1 and eight sessions to compromise meter 2. When the meter disinfection
is done by the defender, this meter is again subject to attack when it is back in
operation.

The transition matrix M.sd ; sa/ D Œmxi ;xj .sd ; sa/�.4�4/, i.e. the probability of
transitioning from state xi to state xj under attack sa and defense sd , can be inferred
from previous collected samples and observed transitions.
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The payoff of the defender, U d , reflects the cost of the expected load shed and the
expected cost of false positives. A false positive corresponds to falsely identifying
a meter to be under attack and disinfecting it when it actually is not compromised.
The expected cost of false positives can be calculated as cfp � pfp where cfp is the
cost associated with a false positive and pfp is the probability of occurrence of this
false positive. Thus, U d , at time t , can be defined in two ways depending on the
expected loss model used as follows:

U d
ŒE�.s

d ; sa; xI t / D �EŒPshed.sd ; sa; xI t /� � cfppfp.sd ; sa; xI t /; (27.55)

U d
ŒCVaR�.s

d ; sa; xI t / D �CVaR� .Pshed.sd ; sa; xI t // � cfppfp.sd ; sa; xI t /:

(27.56)

This model assumes that the loss to the defender is a gain to the attacker. Hence, the
stochastic game is a two-player zero-sum game, and U a

Œy� D �U d
Œy�.

Under this game framework, the objective of the defender (attacker) is to
minimize (maximize) the discounted cost C , with discount factor ˇ, over all time
periods:

C D

1X

tD0

ˇt U a.sd ; sa; xI t /: (27.57)

Game Solution and Main Results
For the solution of the game, the Nash equilibrium solution concept is adopted.
In this regard, since the considered stochastic game is a two-player zero-sum
discounted game, it is proven to have a unique NE in stationary strategies. A
stationary strategy is a strategy that is independent of time t . As a result, the game
in Law et al. (2015) is solved using dynamic programming techniques by recursively
solving a matrix game at each stage.

The authors in Law et al. (2015) provide simulation results considering a two-
area AGC with a session size of 20 samples (n D 20), a simulation window of
200 minutes, and a sapling rate of 1 Hz. The results obtained show that both defense
strategies sd

1 and sd
2 achieve a 100% rate of detection against the attacks sa

1 and
sa

2 , while sd
2 shows a higher rate of false positives. The results obtained also aimed

at comparing the use of different risk assessment models with regard to choosing
the optimal defense and attack strategies. In fact, the results show that the optimal
attack and defense strategies differ in between using the expected load shed loss
model and the CVaR model. In addition, the results presented show that CVaR is
highly adequate when considering losses whose probability of occurrence is low
but whose associated magnitude is very high.

The game model adopted enables a dynamic analysis of attack and defense of
a multi-area automatic generation control which provides essential tools for the
defender to devise appropriate defense strategies against potential attacks.
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5 Conclusion

This chapter has introduced and discussed the application of dynamic game
theory to model various strategic decision making processes arising in modern
power system applications including wholesale competitive electric energy markets,
demand-side management, microgrid energy exchange, as well as power system
security with applications to state estimation and dynamic stability.

In summary, dynamic game theory can play a vital role in enabling an accurate
modeling, assessment, and prediction of the strategic behavior of the various
interconnected entities in current and future power systems; which is indispensable
to guiding the grid’s evolution into a more efficient, economic, resilient, and secure
system.
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Abstract

Security is a critical concern around the world, whether it is the challenge
of protecting ports, airports, and other critical infrastructure; interdicting the
illegal flow of drugs, weapons, and money; protecting endangered wildlife,
forests, and fisheries; or suppressing urban crime or security in cyberspace.
Unfortunately, limited security resources prevent full security coverage at all
times; instead, we must optimize the use of limited security resources. To that
end, we founded a new “security games” framework that has led to building
of decision aids for security agencies around the world. Security games are a
novel area of research that is based on computational and behavioral game theory
while also incorporating elements of AI planning under uncertainty and machine
learning. Today security-games-based decision aids for infrastructure security
are deployed in the US and internationally; examples include deployments at
ports and ferry traffic with the US Coast Guard, for security of air traffic with
the US Federal Air Marshals, and for security of university campuses, airports,
and metro trains with police agencies in the US and other countries. Moreover,
recent work on “green security games” has led our decision aids to be deployed,
assisting NGOs in protection of wildlife; and “opportunistic crime security
games” have focused on suppressing urban crime. In cyber-security domain, the
interaction between the defender and adversary is quite complicated with high
degree of incomplete information and uncertainty. Recently, applications of game
theory to provide quantitative and analytical tools to network administrators
through defensive algorithm development and adversary behavior prediction to
protect cyber infrastructures has also received significant attention. This chapter
provides an overview of use-inspired research in security games including
algorithms for scaling up security games to real-world sized problems, handling
multiple types of uncertainty, and dealing with bounded rationality and bounded
surveillance of human adversaries.

Keywords
Security games � Scalability � Uncertainty � Bounded rationality � Bounded
surveillance � Adaptive adversary � Infrastructure security � Wildlife protection

1 Introduction

Security is a critical concern around the world that manifests in problems such
as protecting our ports, airports, public transportation, and other critical national
infrastructure from terrorists, in protecting our wildlife and forests from poachers
and smugglers, and curtailing the illegal flow of weapons, drugs, and money
across international borders. In all of these problems, we have limited security
resources which prevents security coverage on all the targets at all times; instead,
security resources must be deployed intelligently taking into account differences
in the importance of targets, the responses of the attackers to the security posture,
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and potential uncertainty over the types, capabilities, knowledge, and priorities of
attackers faced.

To address these challenges in adversarial reasoning and security resource
allocation, a new “security games” framework has been developed (Tambe 2011);
this framework has led to building of decision aids for security agencies around
the world. Security games are based on computational and behavioral game theory
while also incorporating elements of AI planning under uncertainty and machine
learning. Security games algorithms have led to successes and advances over previ-
ous human-designed approaches in security scheduling and allocation by addressing
the key weakness of predictability in human-designed schedules. These algorithms
are now deployed in multiple applications. The first application was ARMOR, which
was deployed at the Los Angeles International Airport (LAX) in 2007 to randomize
checkpoints on the roadways entering the airport and canine patrol routes within the
airport terminals (Jain et al. 2010b). Following that came several other applications:
IRIS, a game-theoretic scheduler for randomized deployment of the US Federal
Air Marshals (FAMS), has been in use since 2009 (Jain et al. 2010b); PROTECT,
which schedules the US Coast Guard’s randomized patrolling of ports, has been
deployed in the port of Boston since April 2011 and is in use at the port of New
York since February 2012 (Shieh et al. 2012) and has spread to other ports such as
Los Angeles/Long Beach, Houston, and others; another application for deploying
escort boats to protect ferries has been deployed by the US Coast Guard since
April 2013 (Fang et al. 2013); and TRUSTS (Yin et al. 2012) which has been
evaluated in field trials by the Los Angeles Sheriff’s Department (LASD) in LA
Metro system. Most recently, PAWS – another game-theoretic application – was
tested by rangers in Uganda for protecting wildlife in Queen Elizabeth National
Park in April 2014 (Yang et al. 2014); MIDAS was tested by the US Coast Guard
for protecting fisheries (Haskell et al. 2014). These initial successes point the way
to major future applications in a wide range of security domains.

Researchers have recently started to explore the use of such security game models
in tackling security issues in the cyber world. In Vanek et al. (2012), the authors
study the problem of optimal resource allocation for packet selection and inspection
to detect potential threats in large computer networks with multiple computers of
differing importance. In their paper, they study the application of security games to
deep packet inspection as countermeasure to intrusion detection. In a recent paper
(Durkota et al. 2015), the authors study the problem of optimal number of honeypots
to be placed in a network using a security game framework. Another interesting
work, called audit games (Blocki et al. 2013, 2015), enhances the security games
model with choice of punishments in order to capture scenarios of security and
privacy policy enforcement in large organizations (Blocki et al. 2013, 2015).

Given the many game-theoretic applications for solving real-world security
problems, this chapter provides an overview of the models and algorithms, key
research challenges, and a description of our successful deployments. Overall,
the work in security games has produced numerous decision aids that are in
daily use by security agencies to optimize their limited security resources. The
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implementation of these applications required addressing fundamental research
challenges. We categorize the research challenges associated with security games
into four broad categories: (1) addressing scalability across a number of dimensions
of the game, (2) tackling different forms of uncertainty that be present in the game,
(3) addressing human adversaries’ bounded rationality and bounded surveillance
(limited capabilities in surveillance), and (4) evaluation of the framework in the
field. Given the success in providing solutions for many security domains involving
the protection of critical infrastructure, the topic of security games has evolved and
expanded to include new types of security domains, for example, for wildlife and
environmental protection.

The rest of the chapter is organized as follows: Sect. 2 introduces the general
security games model, Sect. 3 discusses three different types of security games,
Sect. 4 describes the approaches used to tackle scalability issues, Sect. 5 describes
the approaches to deal with uncertainty, Sect. 6 focuses on bounded rationality and
bounded surveillance, and Sect. 7 provides details of field evaluation of the science
of security games.

2 Stackelberg Security Games

Stackelberg games were first introduced to model leadership and commitment (von
Stackelberg 1934). A Stackelberg game is a game played sequentially between two
players: the first player is the leader who commits to a strategy first, and then the
second player, called the follower, observes the strategy of the leader and then
commits to his own strategy. The term Stackelberg security games (SSG) was first
introduced by Kiekintveld et al. (2009) to describe specializations of a particular
type of Stackelberg game for security as discussed below. This section provides
details on this use of Stackelberg games for modeling security domains. We first give
a generic description of security domains followed by security games, the model by
which security domains are formulated in the Stackelberg game framework.1

2.1 Stackelberg Security Game

In Stackelberg security games, a defender must perpetually defend a set of targets
T using a limited number of resources, whereas the attacker is able to surveil and
learn the defender’s strategy and attack after careful planning. An action, or pure
strategy, for the defender represents deploying a set of resources R on patrols or
checkpoints, e.g., scheduling checkpoints at the LAX airport or assigning federal
air marshals to protect flight tours. The pure strategy for an attacker represents an
attack at a target, e.g., a flight. The mixed strategy of the defender is a probability

1Note that not all security games in the literature are Stackelberg security games (see Alpcan and
Başar 2010).



28 Trends and Applications in Stackelberg Security Games 1227

distribution over the pure strategies. Additionally, each target is also associated with
a set of payoff values that define the utilities for both the defender and the attacker
in case of a successful or a failed attack.

A key assumption of Stackelberg security games (we will sometimes refer
to them as simply security games) is that the payoff of an outcome depends
only on the target attacked and whether or not it is covered (protected) by the
defender (Kiekintveld et al. 2009). The payoffs do not depend on the remaining
aspects of the defender allocation. For example, if an adversary succeeds in
attacking target t1, the penalty for the defender is the same whether the defender
was guarding target t2 or not.

This allows us to compactly represent the payoffs of a security game. Specifi-
cally, a set of four payoffs is associated with each target. These four payoffs are the
rewards and penalties to both the defender and the attacker in case of a successful
or an unsuccessful attack and are sufficient to define the utilities for both players for
all possible outcomes in the security domain. More formally, if target t is attacked,
the defender’s utility is U c

d .t/ if t is covered or U u
d .t/ if t is not covered. The

attacker’s utility is U c
a .t/ if t is covered or U u

a .t/ if t is not covered. Table 28.1
shows an example security game with two targets, t1 and t2. In this example game,
if the defender was covering target t1 and the attacker attacked t1, the defender
would get 10 units of reward, whereas the attacker would receive �1 units. We
make the assumption that in a security game, it is always better for the defender to
cover a target as compared to leaving it uncovered, whereas it is always better for
the attacker to attack an uncovered target. This assumption is consistent with the
payoff trends in the real world. A special case is zero-sum games, in which for each
outcome the sum of utilities for the defender and attacker is zero, although general
security games are not necessarily zero sum.

2.2 Solution Concept: Strong Stackelberg Equillibrium

The solution to a security game is a mixed strategy2 for the defender that maximizes
the expected utility of the defender, given that the attacker learns the mixed strategy
of the defender and chooses a best response for himself. The defender’s mixed

Table 28.1 Example of a security game with two targets

Defender Attacker

Target Covered Uncovered Covered Uncovered

t1 10 0 �1 1

t2 0 �10 �1 1

2Note that mixed strategy solutions apply beyond Stackelberg games.
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strategy is a probability distribution over all pure strategies, where a pure strategy is
an assignment of the defender’s limited security resources to targets. This solution
concept is known as a Stackelberg equilibrium (Leitmann 1978).

The most commonly adopted version of this concept in related literature is called
Strong Stackelberg Equilibrium (SSE) (Breton et al. 1988; Conitzer and Sandholm
2006; Paruchuri et al. 2008; von Stengel and Zamir 2004). In security games, the
mixed strategy of the defender is equivalent to the probabilities that each target t is
covered by the defender, denoted by C D fct g (Korzhyk et al. 2010). Furthermore,
it is enough to consider a pure strategy of the rational adversary (Conitzer and
Sandholm 2006), which is to attack a target t . The expected utility for defender
for a strategy profile .C; t/ is defined as Ud .t; C / D ct U

c
d .t/ C .1 � ct /U

u
d .t/ and a

similar form for the adversary. An SSE for the basic security games (non-Bayesian,
rational adversary) is defined as follows:

Definition 1. A pair of strategies .C �; t�/ form a Strong Stackelberg Equilibrium
(SSE) if they satisfy the following:

1. The defender plays a best response: Ud .t�; C �/ � Ud .t.C /; C / for all
defender’s strategy C where t .C / is the attacker’s response against the defender
strategy C .

2. The attacker plays a best-response: Ua.t�; C �/ � Ua.t; C �/ for all target t .
3. The attacker breaks ties in favor of the defender: Ud .t�; C �/ � Ud .t 0; C �/ for

all target t 0 such that t 0 D argmaxt Ua.t; C �/.

The assumption that the follower will always break ties in favor of the leader
in cases of indifference is reasonable because in most cases the leader can induce
the favorable strong equilibrium by selecting a strategy arbitrarily close to the
equilibrium that causes the follower to strictly prefer the desired strategy (von
Stengel and Zamir 2004). Furthermore an SSE exists in all Stackelberg games,
which makes it an attractive solution concept compared to versions of Stackelberg
equilibrium with other tie-breaking rules. Finally, although initial applications relied
on the SSE solution concept, we have since proposed new solution concepts that are
more robust against various uncertainties in the model (An et al. 2011; Pita et al.
2012; Yin et al. 2011) and have used these robust solution concepts in some of the
later applications.

For simple examples of security games, such as the one shown above, the Strong
Stackelberg Equilibrium can be calculated by hand. However, as the size of the
game increases, hand calculation is no longer feasible, and an algorithmic approach
for generating the SSE becomes necessary. Conitzer and Sandholm (Conitzer and
Sandholm 2006) provided the first complexity results and algorithms for computing
optimal commitment strategies in Stackelberg games, including both pure- and
mixed-strategy commitments. An improved algorithm for solving Stackelberg
games, DOBSS (Paruchuri et al. 2008), is central to the fielded application ARMOR

that was in use at the Los Angeles International Airport (Jain et al. 2010b).
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Decomposed Optimal Bayesian Stackelberg Solver (DOBSS): We now describe
the DOBSS3 in detail as it provides a starting point for the algorithms we develop in
the next section. We first present DOBSS in its most intuitive form as a mixed-integer
quadratic program (MIQP); we then present a linearized equivalent mixed-integer
linear program (MILP). The DOBSS model explicitly represents the actions by the
leader and the optimal actions for the follower in the problem solved by the leader.
Note that we need to consider only the reward-maximizing pure strategies of the
follower, since for a given fixed mixed strategy x of the leader, each follower faces
a problem with fixed linear rewards. If a mixed strategy is optimal for the follower,
then so are all the pure strategies in support of that mixed strategy.

Thus, we denote by x the leader’s policy, which consists of a probability
distribution over the leader’s pure strategies �i 2 ˙� , where ˙� is the set of all
pure strategies of the leader. Hence, the value xi is the proportion of times in which
pure strategy �i 2 ˙� is used in the policy. Similarly, qj is the probability of
taking strategy �j 2 ˙� for the follower, where ˙� is the set of all pure strategies
for the follower. We denote by X and Q the index sets of the leader and follower
pure strategies, respectively. We also index the payoff matrices of the leader and the
follower by the matrices R and C where Rij and Cij are the rewards obtained if the
leader takes strategy �i 2 ˙� and the follower takes strategy �j 2 ˙� . Let M be
a large positive number; constraint 3 in the MIQP below requires that the variable
a be set to the maximum reward a follower can obtain given the current policy x

taken by the leader. The leader then solves the following:

max
x;q;a

X

i2X

X

j 2Q

Rij xi qj (28.1)

s.t.
P

i2X xi D 1 (28.2)
P

j 2Q qj D 1 (28.3)

0 � .a �
P

i2X Cij xi / � .1 � qj /M 8j 2 Q (28.4)

xi 2 Œ0 : : : 1� 8i 2 X (28.5)

qj 2 f0; 1g 8j 2 Q (28.6)

a 2 < (28.7)

Here, for a leader strategy x and a strategy q for the follower, the objective
(Line 1) represents the expected reward for the leader. The first (Line 2) and the
fourth (Line 5) constraints define the set of feasible solutions x 2 X as a probability
distribution over the set of strategies �i 2 ˙� . The second (Line 3) and third
(Line 6) constraints limit the vector of strategies, q, to be a pure strategy over the
set Q (that is each q has exactly one coordinate equal to one and the rest equal

3DOBSS addresses Bayesian Stackelberg games with multiple follower types, but for simplicity we
do not introduce Bayesian Stackelberg games here.
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to zero). The two inequalities in the third constraint (Line 4) ensure that qj D 1

only for a strategy j that is optimal for the follower. Indeed this is a linearized
form of the optimality conditions for the linear programming problem solved by
each follower. We explain the third constraint (Line 4) as follows: this constraint
enforces dual feasibility of the follower’s problem (leftmost inequality) and the
complementary slackness constraint for an optimal pure strategy q for the follower
(rightmost inequality). Note that the leftmost inequality ensures that 8j 2 Q,
a �

P
i2X Cij xi . This means that given the leader’s policy x, a is an upper bound

on follower’s reward for any strategy. The rightmost inequality is inactive for every
strategy where qj D 0, since M is a large positive quantity. In fact, since only one
pure strategy can be selected by the follower, say some qj D 1, for the strategy that
has qj D 1, this inequality states a �

P
i2X Cij xi, which combined with the left

inequality enforces a D
P

i2X Cij xi, thereby imposing no additional constraint for
all other pure strategies which have qj D 0 and showing that this strategy must be
optimal for the follower.

We can linearize the quadratic programming problem (Lines 28.1 to 7) through
the change of variables zij D xi qj to obtain a mixed integer linear programming
problem as shown in Paruchuri et al. (2008).

max
q;z;a

P
i2X

P
j 2Q pRij zij (28.8)

s.t.
P

i2X

P
j 2Q zij D 1 (28.9)

P
j 2Q zij � 1 8i 2 X (28.10)

qj �
P

i2X zij � 1 8j 2 Q (28.11)

P
j 2Q qj D 1 (28.12)

0 � .a �
P

i2X Cij .
P

h2Q zih// � .1 � qj /M 8j 2 Q (28.13)

P
j 2Q zij D

P
j 2Q z1

ij 8i 2 X (28.14)

zij 2 Œ0 : : : 1� 8i 2 X; j 2 Q (28.15)

qj 2 f0; 1g 8j 2 Q (28.16)

a 2 < (28.17)

DOBSS solves this resulting mixed integer linear program using efficient integer pro-
gramming packages. The MILP was shown to be equivalent to the MIQP (Lines 28.1
to 7) and the equivalent Harsanyi transformed Stackelberg game (Paruchuri et al.
2008). For a more in-depth explanation of DOBSS, please see Paruchuri et al. (2008).
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3 Categorizing Security Games

With progress in the security games research and the expanding set of applications,
it is valuable to consider categorizing this work into three separate areas. These
categories are driven by applications, but they also impact the types of games
(e.g., single shot vs repeated games) considered and the research issues that arise.
Specifically, the three categories are (i) infrastructure security games, (ii) green
security games, and (iii) opportunistic crime security games. We discuss each
category below.

3.1 Infrastructure Security Games

These types of games and their applications are where the original research
on security games was initiated. Key characteristics of these games include the
following:

– Application characteristics: These games are focused on applications of pro-
tecting infrastructure, such as ports, airports, trains, flights, and so on; the
goal is often assisting agencies engaged in counterterrorism. Notice that the
infrastructure being protected tends to be static, and little changes in a few
months, e.g., an airport being protected, may have new construction once in
2–3 years. The activities in the infrastructure are regulated by well-established
schedules of movement of people or goods. Furthermore, the targets being
protected often have a discrete structure, e.g., terminals at an airport, individual
flights, individual trains, etc.

– Overall characteristics of the defender and adversary play: These games are
single-shot games. The defender does play her strategy repeatedly, i.e., the
defender commits to a mixed strategy in this security game. This mixed strategy
may get played for months at a time. However, a single attack by an adversary
ends the game. The game could potentially restart after such an attack, but it is
not set up as a repeated game as in the game categories described below.

– Adversary characteristics: The games assume that the adversaries are highly
strategic, who may attack after careful planning and surveillance. These carefully
planned attacks have high consequences. Furthermore, since these attacks are a
result of careful planning with the anticipation of high consequences, attackers
commit to these plans of attacks and are not considered to opportunistically move
from target to target.

– Defender characteristics: The defender does not repeatedly update her strategies.
In these domains, there may be just a few attacks that may occur, but these tend
to be rare; they are not a very large number of attacks that occur repeatedly. As a
result, traditionally, no machine learning is used in this work for the defender to
update her strategies over time.
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3.2 Green Security Games

These types of games and their applications are focused on trying to protect the
environment; and we adopt the term from “green criminology.”4

– Application characteristics: These games are focused on applications of pro-
tecting the environment, including forests, fish, and wildlife. The goal is thus
often to assist security agencies against poachers, illegal fishermen, or those
illegally cutting trees in national parks in countries around the world. Unlike
infrastructure security games, animals or fish being protected may move around
in geographical space, introducing new dimensions of complexity. Finally, the
targets being protected are spread out over vast open geographical spaces, e.g.,
large forest regions protect trees from illegal cutting.

– Overall characteristics of the defender and adversary play: These games are
not single-shot games. Unfortunately, the adversaries often conduct multiple
repeated “attacks,” e.g., poaching animals repeatedly. Thus, a single illegal
activity does not end the game. Instead, usually, after obtaining reports, e.g., over
a month, of illegal activities, the defender often replans her security activities. In
other words, these are repeated security games where the defender plays a mixed
strategy while the attacker attacks multiple times, and then the defender replans
and plays a new mixed strategy and the cycle repeats. Notice also that the illegal
activities of concern here may be conducted by multiple individuals, and thus
there are multiple adversaries that are active at any one point.

– Adversary characteristics: As mentioned earlier, the adversaries are engaged in
repeated illegal activities; and the consequences of failure or success are not as
severe as in the case of counterterrorism. As a result, every single attack (illegal
action) cannot be carried out with the most detailed surveillance and planning;
the adversaries will hence exhibit more of a bounded rationality and bounded
surveillance in these domains.

Nonetheless, these domains are not ones where illegal activities can be con-
ducted opportunistically (as in the opportunistic crime security games discussed
below). This is because in these green security games, the adversaries often have
to act in extremely dangerous places (e.g., deep in forests, protecting themselves
from wild animals), and thus given the risks involved, they cannot take an entirely
opportunistic approach.

4We use the term green security games also to avoid any confusion that may come about
given that terms related to the environment and security have been adopted for other uses. For
example, the term “environmental security” broadly speaking refers to threats posed to humans
due to environmental issues, e.g., climate change or shortage of food. The term “environmental
criminology” on the other hand refers to analysis and understanding of how different environments
affect crime.
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– Defender characteristics: Since this is a repeated game setting, the defender
repeatedly updates her strategies. Machine learning can now be used in this
work for the defender to update her strategies over time, given that attack data
is available over time. The presence of large amounts of such attack data is very
unfortunate in that very large numbers of crimes against the environment are
recorded in real life, but the silver lining is that the defender can improve her
strategy exploiting this data.

3.3 Opportunistic Crime Security Games

These types of games and their applications are focused on trying to combat
opportunistic crime. Such opportunistic crime may include criminals engaged in
thefts such as snatching of cell phones in metros or stealing student laptops from
libraries.

– Application characteristics: These games focused on applications involving
protecting the public against opportunistic crime. The goal is thus often to assist
security agencies in protecting public’s property such as cell phones, laptops,
or other valuables. Here, human crowds may move around based on scheduled
activities, e.g., office hours in downtown settings or class timings on a university
campus, and thus the focus of what needs to be protected may shift on a
regular schedule. At least in urban settings, these games focus on specific limited
geographical areas as opposed to vast open spaces as involved in “green security
games.”

– Overall characteristics of the defender and adversary play: While these games
are not explicitly formulated as repeated games, the adversary may conduct or
attempt to conduct multiple “attacks” (thefts) in any one round of the game.
Thus, the defender commits to a mixed strategy, but a single attack by a single
attacker does not end the game. Instead multiple attackers may be active at a
time, conducting multiple thefts while the defender attempts to stop these thefts
from taking place.

– Adversary characteristics: Once again, the adversaries are engaged in repeated
illegal activities; and the consequences of failure or success are not as severe
as in the case of counterterrorism. As a result, once again, given that every
single attack (illegal action) cannot be carried out with the most detailed
surveillance and planning, the adversaries may thus act even less strategically
and exhibit more of a bounded rationality and bounded surveillance in these
domains. Furthermore, the adversaries are not as committed to detailed plans
and are flexible in their execution of their plans, as targets of opportunity present
themselves.

– Defender characteristics: How to update defender strategies in these games from
crime data is still an open research challenge.
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3.4 Cybersecurity Games

These types of games and their applications are focused on trying to combat cyber
crimes. Such crimes include, attackers compromising network infrastructures to
disrupt normal system operations, launch a physical attack, steal valuable digital
data, conducting social engineering attacks such as phishing attacks, etc.

– Application characteristics: These games are focused on applications involving
protecting network assets against cyber attacks. The goal is thus often to assist
network administrators in protecting computer systems such as data servers,
switches, etc., from data theft or damage to hardware, software, or information,
as well as preventing disruption of services.

– Overall characteristics of the defender and adversary play: Depending on the
problem at hand, the attacker (or the intruder) may want to gain control over
(or to disable) a valuable computer in the network by scanning the network,
compromising a more vulnerable system, and/or gaining access to further devices
on the computer network. The ultimate goal could be to use the compromised
systems to launch further attacks or to steal data, etc. The broader goal of
the defender (a human network administrator, or a detection system) could be
formulated as preventing the adversary from gaining control over systems in the
network by detecting malicious attacks.

– Adversary characteristics: The adversary’s characteristics vary from one appli-
cation domain to another. In some application scenarios, the intruder may simply
want to gain control over (or to disable) a valuable computer in the network to
launch other attacks, by scanning the network and thus compromising a more
vulnerable system and/or gaining access to further devices on the computer
network. The actions of the attacker can therefore be seen as sending malicious
packets from a controlled computer (termed source) to a single or multiple
vulnerable computers (termed targets). In other scenarios, the attacker may be
interested in stealing valuable information from a particular data server and
therefore takes necessary actions to compromise the desired system, possibly
through a series of disruptions as studied in the advanced persistent threat (APT)
literature.

– Defender characteristics: Although this is a new and open problem, there has
been recent literature that studies the problem of optimal defender resource
allocation for packet selection and inspection to detect potential threats in large
computer networks with multiple computers of differing importance. Therefore,
the objective of the defender in such problems is to prevent the intruder from
succeeding by selecting the packets for inspection, identifying the attacker, and
subsequently thwarting the attack.

Even though we have categorized the research and applications of security games
in these three categories, not everything is very cleanly divided in this fashion.
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Further research may reveal other categories of need to generate subcategories of
the above three categories.

In the rest of this chapter, we will concentrate only on infrastructure security
games and green security games. In the following sections, we first present three
key challenges in solving real-world security problems which are summarized
in Fig. 28.1: (1) scaling up to real-world sized security problems, (2) handling
multiple uncertainties in security games, and (3) dealing with bounded rationality
and bounded surveillance of human adversaries. While Fig. 28.1 does not provide
an exhaustive overview of all research in SSG, it provides a general overview of the
areas of research and a road map to the rest of the book chapter. In each case, we
will use a domain example to motivate the specific challenge and then outline the
key algorithmic innovation needed to address the challenge.

Fig. 28.1 Summary of Real-world Security Challenges
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4 Addressing Scalability in Real-World Problems

The early works in Stackelberg security games such as DOBSS (Paruchuri et al.
2008) required that the full set of pure strategies for both players be considered
when modeling and solving Stackelberg security games. However, many real-
world problems feature billions of pure strategies for either the defender and/or
the attacker. Such large problem instances cannot even be represented in modern
computers, let alone solved using previous techniques.

In addition to large strategy spaces, there are other scalability challenges
presented by different real-world security domains. There are domains where, rather
than being static, the targets are moving and thus the security resources need to
be mobile and move in a continuous space to provide protection. There are also
domains where the attacker may not conduct the careful surveillance and planning
that is assumed for a Strong Stackelberg Equilibrium, and thus it is important to
model the bounded rationality and bounded surveillance of the attacker in order to
predict their behavior. In the former case, both the defender and attacker’s strategy
spaces are infinite. In the latter case, computing the optimal strategy for the defender
given attacker behavioral (bounded rationality and/or bounded surveillance) model
is computationally expensive. Furthermore, in certain domains, it is important
to incorporate fine-grained topographical information to generate realistic patrol
strategies for the defender. However, in doing so, existing techniques lead to a
significant challenge in scalability especially when scheduling constraints need to
be satisfied. In this section, we thus highlight the critical scalability challenges faced
to bring Stackelberg security games to the real world and the research contributions
that served to address these challenges.

4.1 Scale Up with Large Defender Strategy Spaces

This section provides an example of a research challenge in security games where
the number of defender strategies is too enormous to be enumerated in computer
memory. In this section, as in others that will follow, we will first provide a
domain example motivating the challenge and then the algorithmic solution for the
challenge.

Domain Example – IRIS for US Federal Air Marshals Service. The US Federal
Air Marshals Service (FAMS) allocates air marshals to flights departing from and
arriving in the USA to dissuade potential aggressors and prevent an attack should
one occur. Flights are of different importance based on a variety of factors such
as the numbers of passengers, the population of source and destination cities, and
international flights from different countries. Security resource allocation in this
domain is significantly more challenging than for ARMOR: a limited number of
air marshals need to be scheduled to cover thousands of commercial flights each
day. Furthermore, these air marshals must be scheduled on tours of flights that
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obey various constraints (e.g., the time required to board, fly, and disembark).
Simply finding schedules for the marshals that meet all of these constraints is
a computational challenge. For an example scenario with 1000 flights and 20
marshals, there are over 1041 possible schedules that could be considered. Yet there
are currently tens of thousands of commercial flights flying each day, and public
estimates state that there are thousands of air marshals that are scheduled daily by
the FAMS (Keteyian 2010). Air marshals must be scheduled on tours of flights that
obey logistical constraints (e.g., the time required to board, fly, and disembark). An
example of a schedule is an air marshal assigned to a round trip from New York to
London and back.

Against this background, the IRIS system (Intelligent Randomization In Schedul-
ing) has been developed and deployed by FAMS since 2009 to randomize schedules
of air marshals on international flights. In IRIS, the targets are the set of n flights
and the attacker could potentially choose to attack one of these flights. The FAMS
can assign m < n air marshals that may be assigned to protect these flights.

Since the number of possible schedules exponentially increases with the number
of flights and resources, DOBSS is no longer applicable to the FAMS domain.
Instead, IRIS uses the much faster ASPEN algorithm (Jain et al. 2010a) to generate
the schedule for thousands of commercial flights per day.

Algorithmic Solution-Incremental Strategy Generation (ASPEN). In this sec-
tion, we describe one particular algorithm, ASPEN, that computes strong Stackelberg
equilibria (SSE) in domains with a very large number of pure strategies (up to
billions of actions) for the defender (Jain et al. 2010a). ASPEN builds on the insight
that in many real-world security problems, there exist solutions with small support
sizes, which are mixed strategies in which only a small set of pure strategies are
played with positive probability (Lipton et al. 2003). ASPEN exploits this by using a
incremental strategy generation approach for the defender, in which defender pure
strategies are iteratively generated and added to the optimization formulation.

In ASPEN’s security game, the attacker can choose any of the flights to attack,
and each air marshal can cover one schedule. Each schedule here is a feasible
set of targets that can be covered together; for the FAMS, each schedule would
represent a flight tour which satisfies all the logistical constraints that an air marshal
could fly. For example, ft1; t2g would be a flight schedule, where t1 is an outbound
flight and t2 is an inbound flight for one air marshal. A joint schedule then would
assign every air marshal to a flight tour, and there could be exponentially many joint
schedules in the domain. A pure strategy for the defender in this security game is a
joint schedule. Thus, for example, if there are two air marshals, one possible joint
schedule would be fft1; t2g; ft3; t4gg, where the first air marshal covers flights t1 and
t2 and the second covers flights t3 and t4. As mentioned previously, ASPEN employs
incremental strategy generation since all the defender pure strategies cannot be
enumerated for such a massive problem. ASPEN decomposes the problem into
a master problem and a slave problem, which are then solved iteratively. Given
a number of pure strategies, the master solves for the defender and the attacker
optimization constraints, while the slave is used to generate a new pure strategy
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Fig. 28.2 Strategy generation employed in ASPEN: The schedules for a defender are generated
iteratively. The slave problem is a novel minimum-cost integer flow formulation that computes the
new pure strategy to be added to P; J4 is computed and added in this example

for the defender in every iteration. This incremental, iterative strategy generation
process allows ASPEN to avoid generation of the entire set of pure strategies. In
other words, by exploiting the small support size mentioned above, only a few pure
strategies get generated via the iterative process; and yet we are guaranteed to reach
the optimal solution.

The iterative process is graphically depicted in Fig. 28.2. The master operates on
the pure strategies (joint schedules) generated thus far, which are represented using
the matrix P. Each column of P, Jj , is one pure strategy (or joint schedule). An entry
Pij in the matrix P is 1 if a target ti is covered by joint-schedule Jj , and 0 otherwise.
For example, in Fig. 28.2, the joint schedule J3 covers target t1 but not target t2.
The objective of the master problem is to compute x, the optimal mixed strategy
of the defender over the pure strategies in P. The objective function for the slave
is updated based on the solution of the master, and the slave is solved to identify
the best new column to add to the master problem, using reduced costs (explained
later). If no column can improve the solution, the algorithm terminates. Therefore,
in terms of our example, the objective of the slave problem is to generate the best
joint schedule to add to P. The best joint schedule is identified using the concept of
reduced costs, which captures the total change in the defender payoff if a candidate
column is added to P, i.e., it measures if a pure strategy can potentially increase
the defender’s expected utility. The candidate column with minimum reduced cost
improves the objective value the most. The details of the approach are provided
in Jain et al. (2010a)). While a naïve approach would be to iterate overall possible
pure strategies to identify the pure strategy with the maximum potential, ASPEN
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uses a novel minimum-cost integer flow problem to efficiently identify the best pure
strategy to add. ASPEN always converges on the optimal mixed strategy for the
defender.

Employing incremental strategy generation for large optimization problems is
not an “out-of-the-box” approach; the problem has to be formulated in a way that
allows for domain properties to be exploited. The novel contribution of ASPEN is
to provide a linear formulation for the master and a minimum-cost integer flow
formulation for the slave, which enables the application of strategy generation
techniques.

4.2 Scale Up with Large Defender and Attacker Strategy Spaces

Whereas the previous section focused on domains where only the defender’s
strategy was difficult to enumerate, we now turn to domains where both defender
and attacker strategies are difficult to enumerate. Once again we provide a domain
example and then an algorithmic solution.

Domain Example – Road Network Security One area of great importance is
securing urban city networks, transportation networks, computer networks, and
other network-centric security domains. For example, after the terrorist attacks in
Mumbai of 2008 (Chandran and Beitchman 2008), the Mumbai police started setting
up vehicular checkpoints on roads. We can model the problem faced by the Mumbai
police as a security game between the Mumbai police and an attacker. In this
urban security game, the pure strategies of the defender correspond to allocations of
resources to edges in the network – for example, an allocation of police checkpoints
to roads in the city. The pure strategies of the attacker correspond to paths from any
source node to any target node – for example, a path from a landing spot on the
coast to the airport.

The strategy space of the defender grows exponentially with the number of
available resources, whereas the strategy space of the attacker grows exponentially
with the size of the network. For example, in a fully connected graph with 20
nodes and 190 edges, the number of defender pure strategies for only five defender
resources is

�
190
5

�
or almost 2 billion, while the number of attacker pure strategies

(i.e., paths without cycles) is on the order of 1018. Real-world networks are
significantly larger, e.g., the entire road network of the city of Mumbai has 9,503
nodes (intersections) and 20,416 edges (streets), and the security forces can deploy
dozens (but not as many as number of edges) of resources. In addressing this
computational challenge, novel algorithms based on incremental strategy generation
have been able to generate randomized defender strategies that scale up to the entire
road network of Mumbai (Jain et al. 2013).

Algorithmic Solution-Double Oracle Incremental Strategy Generation
(RUGGED) In domains such as the urban network security setting, the number
of pure strategies of both the defender and the attacker is exponentially large. In
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Fig. 28.3 Strategy
Generation employed in
RUGGED: The pure strategies
for both the defender and the
attacker are generated
iteratively

this section, we describe the RUGGED algorithm (Jain et al. 2011), which generates
pure strategies for both the defender and the attacker.

RUGGED models the domain as a zero-sum game and computes the minimax
equilibrium, since the minimax strategy is equivalent to the SSE in zero-sum games.
Figure 28.3 shows the working of RUGGED: at each iteration, the minimax module
generates the optimal mixed strategies hx; ai for the two players for the current
payoff matrix, the Best Response Defender module generates a new strategy for the
defender that is a best response against the attacker’s current strategy a, and the
Best Response Attacker module generates a new strategy for the attacker that is a
best response against the defender’s current strategy x. The rows Xi in the figure
are the pure strategies for the defender; they would correspond to an allocation of
checkpoints in the urban road network domain. Similarly, the columns Aj are the
pure strategies for the attacker; they represent the attack paths in the urban road
network domain. The values in the matrix represent the payoffs to the defender. For
example, in Fig. 28.3, the row denoted by X1 indicates that there was one checkpoint
setup, and it provides a defender payoff of �5 against attacker strategy (path) A1 and
a payoff of 10 against attacker strategy (path) A2.

In Fig. 28.3, we show that RUGGED iterates over two oracles: the defender best
response and the attacker best response oracles. In this case, the defender best
response oracle has added a strategy X2, and the attacker best response oracle then
adds a strategy A3. The algorithm stops when neither of the generated best responses
improve on the current minimax strategies.

The contribution of RUGGED is to provide the mixed integer formulations
for the best response modules which enable the application of such a strategy
generation approach. The key once again is that RUGGED is able to converge to
the optimal solution without enumerating the entire space of defender and attacker
strategies. However, originally RUGGED could only compute the optimal solution
for deploying up to four resources in real-city network with 250 nodes within a
time frame of 10 h (the complexity of this problem can be estimated by observing
that both the best response problems are NP hard themselves (Jain et al. 2011)).
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More recent work Jain et al. (2013) builds on RUGGED and proposes SNARES,
which allows scale-up to the entire city of Mumbai, with 10–15 checkpoints.

4.3 Scale-Up with Mobile Resources and Moving Targets

Whereas the previous two sections focused on incremental strategy generation as
an approach for scale-up, this section introduces another approach: use of compact
marginal probability representations. This alternative approach is shown in use in
the context of a new application of protecting ferries.

Domain Example – Ferry Protection for the US Coast Guard The US Coast
Guard is responsible for protecting domestic ferries, including the Staten Island
Ferry in New York, from potential terrorist attacks. Here are a number of ferries
carrying hundreds of passengers in many waterside cities. These ferries are attractive
targets for an attacker who can approach the ferries with a small boat packed with
explosives at any time; this attacker’s boat may only be detected when it comes
close to the ferries. Small, fast, and well-armed patrol boats can provide protection
to such ferries by detecting the attacker within a certain distance and stop him from
attacking with the armed weapons. However, the number of patrol boats is often
limited; thus, the defender cannot protect the ferries at all times and locations. We
thus developed a game-theoretic system for scheduling escort boat patrols to protect
ferries, and this has been deployed at the Staten Island Ferry since 2013 (Fang et al.
2013).

The key research challenge is the fact that the ferries are continuously moving in
a continuous domain, and the attacker could attack at any moment in time. This type
of moving targets domain leads to game-theoretic models with continuous strategy
spaces, which presents computational challenges. Our theoretical work showed that
while it is “safe” to discretize the defender’s strategy space (in the sense that the
solution quality provided by our work provides a lower bound), discretizing the
attacker’s strategy space would result in loss of utility (in the sense that this would
provide only an upper bound, and thus an unreliable guarantee of true solution
quality). We developed a novel algorithm that uses a compact representation for
the defender’s mixed strategy space while being able to exactly model the attacker’s
continuous strategy space. The implemented algorithm, running on a laptop, is able
to generate daily schedules for escort boats with guaranteed expected utility values
(Fig. 28.4).

Algorithmic Solution – Compact Strategy Representation (CASS). In this
section, we describe the CASS (Solver for Continuous Attacker Strategy) algorithm
(Fang et al. 2013) for solving security problems where the defender has mobile
patrollers to protect a set of mobile targets against the attacker who can attack
these moving targets at any time during their movement. In these security problems,
the sets of pure strategies for both the defender and attacker are continuous w.r.t,
the continuous spatial and time components of the problem domain. The CASS
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Fig. 28.4 Escort boats protecting the Staten Island Ferry use strategies generated by our system

algorithm attempts to compute the optimal mixed strategy for the defender without
discretizing the attacker’s continuous strategy set; it exactly models this set using
subinterval analysis which exploits the piecewise-linear structure of the attacker’s
expected utility function. The insight of CASS is to compactly represent the
defender’s mixed strategies as a marginal probability distribution, overcoming the
shortcoming of an exponential number of pure strategies for the defender.

CASS casts problems such as the ferry protection problem mentioned above as
a zero-sum security game in which targets move along a one-dimensional domain,
i.e., a straight line segment connecting two terminal points. This one-dimensional
assumption is valid as in real-world domains such as ferry protection, ferries
normally move back-and-forth in a straight line between two terminals (i.e., ports)
around the world. Although the targets’ locations vary w.r.t time changes, these
targets have a fixed daily schedule, meaning that determining the locations of the
targets at a certain time is straightforward. The defender has mobile patrollers (i.e.,
boats) that can move along between two terminals to protect the targets. While the
defender is trying to protect the targets, the attacker will decide to attack a certain
target at a certain time. The probability that the attacker successfully attacks depends
on the positions of the patroller at that time. Specifically, each patroller possesses
a protective circle of radius within which she can detect and try to intercept any
attack, whereas she is incapable of detecting the attacker prior to that radius.

In CASS, the defender’s strategy space is discretized, and her mixed strategy is
compactly represented using flow distributions. Figure 28.5 shows an example of
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Fig. 28.5 An example of a
ferry transition graph

a ferry transition graph in which each node of the graph indicates a particular pair
of (location, time step) for the target. Here, there are three location points namely
A, B, and C on a straight line where B lies between A and C. Initially, the target
is at one of these location points at the 5-min time step. Then the target moves to
the next location point which is determined based on the connectivity between these
points at the 10-min time step and so on. For example, if the target is at the location
point A at the 5-min time step, denoted by (A, 5 min) in the transition graph, it can
move to the location point B or stay at location point A at the 10-min time step. The
defender follows this transition graph to protect the target.

A pure strategy for the defender is defined as a trajectory of this graph, e.g.,
the trajectory including (A, 5 min), (B, 10 min), and (C, 15 min) indicates a
pure strategy for the defender. One key challenge of this representation for the
defender’s pure strategies is that the transition graph consists of an exponential
number of trajectories, i.e., O.N T / where N is the number of location points and
T is the number of time steps. To address this challenge, CASS proposes a compact
representation of the defender’s mixed strategy. Instead of directly computing a
probability distribution over pure strategies for the defender, CASS attempts to
compute the marginal probability that the defender will follow a certain edge of
the transition graph, e.g., the probability of being at the node (A, 5 min) and
moving to the node (B, 10 min). We show that given a discretized strategy space
for the defender, any strategy in full representation can be mapped into a compact
representation as well as compact representation does not lead to any loss in
solution quality compared to the full representation (see Theorem 1 in ?). This
compact representation allows CASS to reformulate the resource allocation problem
as computing the optimal marginal coverage of the defender over a number of
O.NT /, the edges of the transition graph.

4.4 Scale-Up with Boundedly Rational Attackers

One key challenge of real-world security problems is that the attacker is boundedly
rational; the attacker’s target choice is nonoptimal. In SSGs, attacker bounded
rationality is often modeled via behavior models such as quantal response (QR)
(McFadden 1972; McKelvey and Palfrey 1995). In general, QR attempts to predict
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the probability the attacker will choose each target with the intuition is that
the higher the expected utility at a target is, the more likely that the adversary
will attack that target. Another behavioral model that was recently shown to
provide higher prediction accuracy in predicting the attacker’s behavior than
QR is subjective utility quantal response (SUQR) (Nguyen et al. 2013). SUQR
is motivated by the lens model which suggested that evaluation of adversaries
over targets is based on a linear combination of multiple observable features
(Brunswik 1952). We provide a detailed discussion on modeling and learning the
attacker’s behavioral model in Sect. Addressing Bounded Rationality and Bounded
Surveillance in Real-World Problems. However, even when the attacker’s bounded
rationality is modeled and those models are learned efficiently, handling multiple
attackers with these behavioral models in the context of large defender’s strategy
space is computational challenge. Therefore in this section, we mainly focus on
handling the scalability problem given behavioral models of the attacker.

To handle the problem of large defender’s strategy space given behavioral models
of attackers, we introduce yet another technique of scaling up, which is similar
to the incremental strategy generation. Instead, here we use incremental marginal
space refinement. We use the compact marginal representation, discussed earlier,
but refine that space incrementally if the solution produces violates the necessary
constraints.

Domain Example – Fishery Protection for US Coast Guard Fisheries are a vital
natural resource from both an ecological and economic standpoint. However, fish
stocks around the world are threatened with collapse due to illegal, unreported,
and unregulated (IUU) fishing. The US Coast Guard (USCG) is tasked with the
responsibility of protecting and maintaining the nation’s fisheries. To this end, the
USCG deploys resources (both air and surface assets) to conduct patrols over fishery
areas in order to deter and mitigate IUU fishing. Due to the large size of these
patrol areas and the limited patrolling resources available, it is impossible to protect
an entire fishery from IUU fishing at all times. Thus, an intelligent allocation of
patrolling resources is critical for security agencies like the USCG.

Natural resource conservation domains such as fishery protection raise a number
of new research challenges. In stark contrast to counterterrorism settings, there
is frequent interaction between the defender and attacker in these resource con-
servation domains. This distinction is important for three reasons. First, due to
the comparatively low stakes of the interactions, rather than a handful of persons
or groups, the defender must protect against numerous adversaries (potentially
hundreds or even more), each of which may behave differently. Second, frequent
interactions make it possible to collect data on the actions of the adversary actions
over time. Third, the adversaries are less strategic given the short planning windows
between actions.

Algorithmic Solution – Incremental Constraint Generation (MIDAS). Gen-
erating effective strategies for domains such as fishery protection requires an
algorithmic approach which is both scalable and robust. For scalability, the defender
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is responsible for protecting a large patrol area and therefore must consider a
large strategy space. Even if the patrol area is discretized into a grid or graph
structure, the defender must still reason over an exponential number of patrol
strategies. For robustness, the defender must protect against multiple boundedly
rational adversaries. Bounded rationality models, such as the quantal response (QR)
model (McKelvey and Palfrey 1995) and the subjective utility quantal response
(SUQR) model (Nguyen et al. 2013), introduce stochastic actions, relaxing the
strong assumption in classical game theory that all players are perfectly rational
and utility maximizing. These models are able to better predict the actions of
human adversaries and thus lead the defender to choose strategies that perform
better in practice. However, both QR and SUQR are nonlinear models resulting in
a computationally difficult optimization problem for the defender. Combining these
factors, MIDAS models a population of boundedly rational adversaries and utilizes
available data to learn the behavior models of the adversaries using the subjective
utility quantal response (SUQR) model in order to improve the way the defender
allocates its patrolling resources.

Previous work on boundedly rational adversaries has considered the challenges
of scalability and robustness separately, by Yang et al. (2012, 2013a) and Yang et al.
(2014), Haskell et al. (2014), respectively. The MIDAS algorithm was introduced
to merge these two research threads for the first time by addressing scalability and
robustness simultaneously. Figure 28.6 provides a visual overview of how MIDAS

operates as an iterative process. Similar to the ASPEN algorithm described earlier,
given the sheer complexity of the game being solved, the problem is decomposed
using a master-slave formulation. The master utilizes multiple simplifications to
create a relaxed version of the original problem which is more efficient to solve.
First, a piecewise-linear approximation of the security game is taken to make the
optimization problem both linear and convex. Second, the complex spatiotemporal
constraints associated with patrols are initially ignored and then incrementally added

Fig. 28.6 Overview of the
multiple iterative process
within the MIDAS algorithm
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back using cut generation. In other words, we ignore the spatiotemporal constraint
that a patroller cannot simply appear and disappear at different locations instan-
taneously and that a patroller must pass through regions connecting two different
regions if the patroller is going from one region to another. This significantly
simplifies the master problem.

Due to the relaxations, solving the master produces a marginal strategy x which
is a probability distribution over targets. However, the defender ultimately needs a
probability distribution over patrols. Additionally, since not all of the spatiotemporal
constraints are considered in the master, the relaxed solution x may not be a feasible
solution to the original problem. Therefore, the slave checks if the marginal strategy
x can expressed as a linear combination, i.e., probability distribution, of patrols.
Otherwise, the marginal distribution is infeasible for the original problem. However,
given the exponential number of patrol strategies, even performing this optimality
check is intractable. Thus, column generation is used within the slave where only
a small set of patrols is considered initially in the optimality check and the set is
expanded over time. Much like previous examples of column generation in security
games, e.g., (Jain et al. 2010a), new patrols are added by solving a minimum cost
network flow problem using reduced cost information from the optimality check. If
the optimality check fails, then the slave generates a cut which is returned to refine
and constrain the master, incrementally bringing it closer to the original problem.
The entire process is repeated until an optimal solution is found. Finally, MIDAS has
been successfully deployed and evaluated by the USCG in the Gulf of Mexico.

4.5 Scale-Up with Fine-Grained Spatial Information

Discretization is a standard way to convert a continuous problem to a discrete
problem. Therefore, a grid map is often used to describe a large area. However,
when fine-grained spatial information needs to be considered, each cell in the grid
map should be of small size, and the total number of cells is large, which leads to
a significant challenge in scalability in security games especially when scheduling
constraints need to be satisfied. In this section, we introduce a hierarchical modeling
approach for problems with fine-grained spatial information, which is used in the
context of designing foot patrols in area with complex terrain (Fang et al. 2016).

Domain Example – Wildlife Protection for Area with Complex Terrain There
is an urgent need to protect wildlife from poaching. Indeed, poaching can lead
to extinction of species and destruction of ecosystems. For example, poaching is
considered a major driver (Chapron et al. 2008) of why tigers are now found in less
than 7% of their historical range (Sanderson et al. 2006), with three out of nine tiger
subspecies already extinct (IUCN 2015). As a result, efforts have been made by law
enforcement agencies in many countries to protect endangered animals; the most
commonly used approach is conducting foot patrols. However, given their limited
human resources, improving the efficiency of patrols to combat poaching remains a
major challenge.
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Fig. 28.7 Patrols through a forest in Malaysia. (a) A foot-patrol (Malaysia). (b) Illegal camp sign

While game-theoretic framework can be used to address this challenge, the
complex terrain of the patrolled area introduces additional complexity. In many
conservation areas, high changes in elevation and the existence of large water bodies
may result in a big difference in the effort needed for patrollers’ movement. These
factors also have a direct effect on poachers’ movement. Therefore, when designing
defender strategies, it is important to incorporate such topographic information.
Figure 28.7a shows a sample foot patrol through a forest in Malaysia and the
difficulty of conducting these patrols due to topographical constraints. Figure 28.7b
shows illegal camping signs observed during those foot patrols. To generate patrol
routes that contain detailed information for the patrollers and are compatible with
the terrain, a fine-grained discretization of the area is necessary, leading to a
large grid map of the area. On the other hand, the number of feasible routes is
exponential to the number of discretized cells in the grid map due to the practical
scheduling constraints such as patrol time limit and starting and ending at the
base camp. Therefore, computing the optimal patrolling strategy is exceptionally
computationally challenging.

Algorithmic Solution – Hierarchical Modeling Approach The hierarchical mod-
eling approach allows us to attain a good compromise between scaling up and
providing detailed guidance. This approach would be applicable in many other
domains for large open area patrolling where security games are applicable, not
only other green security games applications, but others including patrolling of large
warehouse areas or large open campuses via robots or UAVs.

We leverage insights from hierarchical abstraction for heuristic search such as
path planning (Botea et al. 2004) and apply two levels of discretization to the area
of interest. We first discretize the area into large-sized grid cells and treat every grid
cell as a target. We further discretize the grid cells into small-sized raster pieces
and describe the spatial information for each raster piece. The defender actions are
patrol routes defined over a virtual “street map” – which is built in the terms of raster
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pieces while aided by the grid cells in this abstraction as described below. With this
hierarchical modeling, the model keeps a small number of targets and reduces the
number of patrol routes while allowing for details at a fine-grained scale. The street
map is a graph consisting of nodes and edges, where the set of nodes is a small
subset of the raster pieces and edges are sequences of raster pieces linking the nodes.
We denote nodes as key access points (KAPs) and edges as route segments. While
designing foot patrols in areas with complex terrain, the street map not only helps
scalability but also allows us to focus patrolling on preferred terrain features such
as ridgelines which patrollers find easier to move around and are important conduits
for certain mammal species such as tigers.

The street map is built in three steps: (i) determine the accessibility type for each
raster piece, (ii) define KAPs, and (iii) find route segments to link the KAPs. In
the first step, we check the accessibility type of every raster piece. In the example
domain, raster pieces in a lake are inaccessible, whereas raster pieces on ridge lines
or previous patrol tracks are easily accessible. In other domains, the accessibility of
a raster piece can be defined differently. The second step is to define a set of KAPs,
via which patrols will be routed. We want to build the street map in such a way that
each grid cell can be reached. So we first choose raster pieces which can serve as
entries and exits for the grid cells as KAPs, i.e., the ones that are on the boundary
of grid cells and are easily accessible. In addition, we consider existing base camps
and mountain tops as KAPs as they are key points in planning the patroller’s route.
We choose additional KAPs to ensure KAPs on the boundary of adjacent cells are
paired. Figure 28.8 shows identified KAPs and easily accessible pieces (black and
grey raster pieces respectively). The last step is to find route segments to connect the
KAPs. Instead of inefficiently finding route segments to connect each pair of KAPs
on the map globally, we find route segments locally for each pair of KAPs within
the same grid cell, which is sufficient to connect all the KAPs. When finding the
route segment, we design a distance measure which estimates the actual patrol effort
according to the accessibility type of the raster pieces. Given the distance measure,

Fig. 28.8 KAPs (black) for
2 by 2 grid cells
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the route segment is defined as the shortest distance path linking two KAPs within
the grid cell.

The defender’s pure strategy is defined as a patrol route on the street map, starting
from the base node, walking along route segments, and ending with the base node,
with its total distance satisfying the patrol distance limit. The defender’s goal is
to find an optimal mixed patrol strategy – a probability distribution over patrol
routes. Based on the street map concept, we use a cutting-plane approach (Yang
et al. 2013b) that is similar to MIDAS; specifically, in the master component, we
use ARROW (Nguyen et al. 2015) algorithm to handle payoff uncertainty using
the concept of minimax regret and in the slave component, we also use optimality
check and column generation, and in generating new column (new patrol), we use
a random selection approach over the street map. This framework is the core of the
PAWS (Protection Assistant for Wildlife Security) application. Collaborating with
two NGOs (Panthera and Rimba), PAWS has been deployed in Malaysia for tiger
conservation.

5 Addressing Uncertainty in Real-World Problems

The standard security game model features a number of strong assumptions
including that the defender has perfect information about the game payoff matrix
as well as the attacker’s behavorial model. Additionally, the defender is assumed
to be capable of exactly executing the computed patrolling strategy. However,
uncertainty is endemic in real-world security domains and thus is may be impossible
or impractical for the defender to the accurately estimate various aspects of the
game. Also, there are any number of practicalities and unforeseen events that may
force the defender to change their patrolling strategy. These types of uncertainty
can significantly deteriorate the effectiveness of the defender’s strategy and thus
addressing uncertainty when generating strategies is a key challenge of solving real-
world security problems. This section describes several approaches for dealing with
various types of uncertainties in SSGs.

We first summarize the major types of uncertainties in SSGs as a three-
dimensional uncertainty space with the following three dimensions (Fig. 28.9):
(1) uncertainty in the adversary’s payoffs, (2) uncertainty related to the defender’s
strategy (including uncertainty in the defender’s execution and the attacker’s
observation), and (3) uncertainty in the adversary’s rationality. These dimensions
refer to three key attributes which affect both players’ utilities. The origin of the
uncertainty space corresponds to the case with no uncertainty. Figure 28.9 also
shows existing algorithms for addressing uncertainty in SSGs which follow the two
different approaches:

(1) applying robust optimization techniques using uncertainty intervals to represent uncer-
tainty in SSGs. For example, BRASS (Pita et al. 2009b) is a robust algorithm that only
addresses attacker-payoff uncertainty, RECON (Yin et al. 2011) is another robust algorithm
that focuses on addressing defender-strategy uncertainty, and monotonic maximin (Jiang
et al. 2013b) is to handle the uncertainty in the attacker’s bounded rationality. Finally,



1250 D. Kar et al.

Fig. 28.9 Uncertainty space and algorithms

URAC (Nguyen et al. 2014) is a unified robust algorithm that handles all types of
uncertainty; and (2) following Bayesian Stackelberg game model with dynamic execution
uncertainty in which the uncertainty is represented using Markov decision process (MDP)
where the time factor is incorporated.

In the following, we present two algorithmic solutions which are the represen-
tatives of these two approaches: URAC – a unified robust algorithm to handle all
types of uncertainty with uncertainty intervals – and the MDP-based algorithm to
handle execution uncertainty with an MDP representation of uncertainty.

5.1 Security Patrolling with Unified Uncertainty Space

Domain Example – Security in Los Angeles International Airport. Los Angeles
International Airport (LAX) is the largest destination airport in the US and serves
60–70 million passengers per year. The LAX police use diverse measures to
protect the airport, which include vehicular checkpoints, police units patrolling the
roads to the terminals, patrolling inside the terminals (with canines), and security
screening and bag checks for passengers. The application of our game-theoretic
approach is focused on two of these measures: (1) placing vehicle checkpoints on
inbound roads that service the LAX terminals, including both location and timing,
and (2) scheduling patrols for bomb-sniffing canine units at the different LAX
terminals. The eight different terminals at LAX have very different characteristics,
like physical size, passenger loads, international versus domestic flights, etc.
These factors contribute to the differing risk assessments of these eight terminals.
Furthermore, the numbers of available vehicle checkpoints and canine units are
limited by resource constraints. Thus, it is challenging to optimally allocate these
resources to improve their effectiveness while avoiding patterns in the scheduled
deployments (Fig. 28.10).
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Fig. 28.10 LAX checkpoints are deployed using ARMOR

The ARMOR system (Assistant for Randomized Monitoring over Routes) focuses
on two of the security measures at LAX (checkpoints and canine patrols) and
optimizes security resource allocation using Bayesian Stackelberg games. Take the
vehicle checkpoints model as an example. Assuming that there are n roads, the
police’s strategy is placing m < n checkpoints on these roads where m is the
maximum number of checkpoints. ARMOR randomizes allocation of checkpoints
to roads. The adversary may conduct surveillance of this mixed strategy and may
potentially choose to attack through one of these roads. ARMOR models different
types of attackers with different payoff functions, representing different capabilities
and preferences for the attacker. ARMOR has been successfully deployed since
August 2007 at LAX (Jain et al. 2010b).

Although standard SSG-based solutions (i.e., DOBSS) have been demonstrated
to improve the defender’s patrolling effectiveness significantly, there remains
potential improvements that can be made to further enhance the quality of such
solutions such as taking uncertainties in payoff values, in the attacker’s rationality,
and in defender’s execution into account. Therefore, we propose the unified
robust algorithm, URAC, to handle these types of uncertainties by maximizing the
defender’s utility against the worst-case scenario resulting from these uncertainties.

Algorithmic Solution – Uncertainty Dimension Reduction (URAC). In this
section, we present the robust URAC (Unified Robust Algorithmic framework for
addressing unCertainties) algorithm for addressing a combination of all uncertainty
types (Nguyen et al. 2014). Consider an SSG where there is uncertainty in the
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attacker’s payoff, the defender’s strategy (including the defender’s execution and
the attacker’s observation), and the attacker’s behavior, URAC represents all these
uncertainty types (except for the attacker’s behaviors) using uncertainty intervals.
Instead of knowing exactly values of these game attributes, the defender only has
prior information w.r.t the upper bounds and lower bounds of these attributes. For
example, the attacker’s reward if successfully attacking a target t is known to lie
within the interval Œ1; 3�. Furthermore, URAC assumes the attacker monotonically
responds to the defender’s strategy. In other words, the higher the expected utility of
a target, the more likely that the attacker will attack that target; however, the precise
attacking probability is unknown for the defender. This monotonicity assumption is
motivated by the quantal response model – a well-known human behavioral model
for capturing the attacker’s decision-making (McKelvey and Palfrey 1995).

Based on these uncertainty assumptions, URAC attempts to compute the optimal
strategy for the defender by maximizing her utility against the worst-case scenario
of uncertainty. The key challenge of this optimization problem is that it involves
several types of uncertainty, resulting in multiple minimization steps for determining
the worst-case scenario. Nevertheless, URAC introduces a unified representation of
all these uncertainty types as an uncertainty set of attacker’s responses. Intuitively,
despite of any type of uncertainty mentioned above, what finally affects the
defender’s utility is the attacker’s response, which is unknown to the defender due
to uncertainty. As a result, URAC can represent the robust optimization problem as
a single maximin problem.

However, the infinite uncertainty set of the attacker’s responses depends on the
planned mixed strategy for the defender, making this maximin problem difficult to
solve if directly applying the traditional method (i.e., taking the dual maximization
of the inner minimization of maximin and merging it with the outer maximization
– maximin now can be represented a single maximization problem). Therefore,
URAC proposes a divide-and-conquer method in which the defender’s strategy set
is divided into subsets such that the uncertainty set of the attacker’s responses is the
same for every defender strategy within each subset. This division leads to multiple
sub-maximin problems which can be solved by using the traditional method. The
optimal solution of the original maximin problem is now can be computed as a
maximum over all the sub-maximin problems.

5.2 Security Patrolling with Dynamic Execution Uncertainty

Domain Example – TRUSTS for Security in Transit Systems. Urban transit sys-
tems face multiple security challenges, including deterring fare evasion, suppressing
crime and counterterrorism. In particular, in some urban transit systems, including
the Los Angeles Metro Rail system, passengers are legally required to purchase
tickets before entering but are not physically forced to do so (Fig. 28.11). Instead,
security personnel are dynamically deployed throughout the transit system, ran-
domly inspecting passenger tickets. This proof-of-payment fare collection method
is typically chosen as a more cost-effective alternative to direct fare collection, i.e.,
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Fig. 28.11 TRUSTS for transit systems. (a) Los Angeles Metro. (b) Barrier-free entrance to
transit system

when the revenue lost to fare evasion is believed to be less than what it would cost to
directly preclude it. In the case of Los Angeles Metro, with approximately 300,000
riders daily, this revenue loss can be significant; the annual cost has been estimated
at $5.6 million (Hamilton 2007). The Los Angeles Sheriff’s Department (LASD)
deploys uniformed patrols on board trains and at stations for fare checking (and for
other purposes such as crime prevention). The LASD’s current approach relies on
humans for scheduling the patrols, which places a tremendous cognitive burden on
the human schedulers who must take into account all of the scheduling complexities
(e.g., train timings, switching time between trains, and schedule lengths).

The TRUSTS system (Tactical Randomization for Urban Security in Transit
Systems) models the patrolling problem as a leader-follower Stackelberg game (Yin
et al. 2012). The leader (LASD) precommits to a mixed strategy patrol (a probability
distribution over all pure strategies), and riders observe this mixed strategy before
deciding whether to buy the ticket or not. Both ticket sales and fines issued for
fare evasion translate into revenue for the government. Therefore, the utility for the
leader is the total revenue (total ticket sales plus penalties). The main computational
challenge is the exponentially many possible patrol strategies, each subject to both
the spatial and temporal constraints of travel within the transit network under
consideration. To overcome this challenge, TRUSTS uses a compact representation
of the strategy space which captures the spatiotemporal structure of the domain.

The LASD conducted field tests of this TRUSTS system in the LA Metro in
2012, and one of the feedback comments from the officers was that patrols are often
interrupted due to execution uncertainty such as emergencies and arrests.

Algorithmic Solution – Marginal MDP Strategy Representation Utilizing
techniques from planning under uncertainty (in particular Markov decision
processes), we proposed a general approach to dynamic patrolling games in
uncertain environments, which provides patrol strategies with contingency plans
(Jiang et al. 2013a). This led to schedules now being loaded onto smartphones and
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given to officers. If interruptions occur, the schedules are then automatically updated
on the smartphone app. The LASD has conducted successful field evaluations using
the smartphone app, and the TSA is currently evaluating it toward nationwide
deployment. We now describe the solution approach in more detail. Note that the
targets, e.g., trains normally follow predetermined schedules; thus, timing is an
important aspect which determines the effectiveness of the defender’s patrolling
schedules (the defender needs to be at the right location at a specific time in order
to protect these moving targets). However, as a result of execution uncertainty (e.g.,
emergencies or errors), the defender could not carry out her planned patrolling
schedule in later time steps. For example, in real-world trials for TRUSTS carried
out by Los Angeles Sheriff’s Department (LASD), there is interruption (due to
writing citations, felony arrests, and handling emergencies) in a significant fraction
of the executions, causing the officers to miss the train they are supposed to catch
as following the pre-generated patrolling schedule.

In this section, we present the Bayesian Stackelberg game model for security
patrolling with dynamic execution uncertainty introduced by Jiang et al. (2013a)
in which the uncertainty is represented using Markov decision processes (MDP).
The key advantage of this game-theoretic model is that patrol schedules which
are computed based on Stackelberg equilibrium have contingency plans to deal
with interruptions and are robust against execution uncertainty. Specifically, the
security problem with execution uncertainty is represented as a two-player Bayesian
Stackelberg game between the defender and the attacker. The defender has multiple
patrol units, while there are also multiple types of attackers which are unknown to
the defender. A (naive) patrol schedule consists of a set of sequenced commands
in the following form: at time t , the patrol unit should be at location l and execute
patrol action a. This patrol action a will take the unit to the next location and time
if successfully executed. However, due to execution uncertainty, the patrol unit may
end up at a different location and time. Figure 28.12 shows an example of execution
uncertainty in a transition graph where if the patrol unit is currently at location A at
the 5-min time step, she is supposed to take the on-train action to move to location
B in the next time step. However, unlike CASS for ferry protection in which the
defender’s action is deterministic, there is a 10% chance that she will still stay at

Fig. 28.12 An example of
execution uncertainty in a
transition graph
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location A due to execution uncertainty. This interaction of the defender with the
environment when executing patrol can be represented as an MDP.

In essence, the transition graph as represented above is augmented to indicate the
possibility that there are multiple uncertain outcomes possible from a given state.
Solving this transition graph results in marginals over MDP policies. When a sample
MDP policy is obtained and loaded on to a smartphone, it provides a patroller not
only the current action but contingency actions should the current action fail or
succeed. So the MDP policy provides options for the patroller, allowing the system
to handle execution uncertainty. A key challenge of computing the SSE for this type
of security problem is that the dimension of the space of mixed strategies for the
defender is exponential in the number of states in terms of the defender’s times and
locations. Therefore, instead of directly computing the mixed strategy, the defender
attempts to compute the marginal probabilities of each patrolling unit reaching a
state s D .t; l/ and taking action a which have dimensions polynomial in the sizes
of the MDPs (the details of this approach are provided in Jiang et al. 2013a).

6 Addressing Bounded Rationality and Bounded
Surveillance in Real-World Problems

Game theory models the strategic interactions between multiple players who are
often assumed to be perfectly rational, i.e., they will always select the optimal
strategy available to them. This assumption may be applicable for high-stakes
security domains such as infrastructure protection where presumably the adversary
will conduct careful surveillance and planning before attacking. However, there are
other security domains where the adversary may not be perfectly rational due to
short planning windows or because the adversary is less strategic due to lower stakes
associated with attacking. Security strategies generated under the assumption of a
perfectly rational adversary are not necessarily as effective as would be feasible
against a less-than-optimal response.

In addition to bounded rationality, attackers’ bounded surveillance also needs to
be considered in real-world domains. In previous sections, a one-shot Stackelberg
security game model is used, and it is assumed that the adversaries will conduct
extensive surveillance to get a perfect understanding of the defender’s strategy
before an attack. However, this assumption does not apply to real-world domains
involving frequent and repeated attacks. In carrying out frequent attacks, the
attackers generally do not conduct extensive surveillance before performing an
attack, and therefore the attackers’ understanding of the defender strategy may not
be up-to-date. As will be shown later in this section, if the bounded surveillance
of attackers is known to the defender, the defender can exploit it to improve
her average expected utility by carefully planning changes in her strategy. The
improvement may depend on the level of bounded surveillance and the defender’s
correct understanding of the bounded surveillance. Therefore, addressing the human
adversaries’ boundedly rationality and bounded surveillance is a fundamental
challenge for applying security games to a wide variety of domains.
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Domain Example – Green Security Domains. A number of our newer applica-
tions are focused on resource conservation, through suppression of environmental
crime. One area is protecting forests (Johnson et al. 2012), where we must protect a
continuous forest area from extractors by patrols through the forest that seek to deter
such extraction activity. With limited resources for performing such patrols, a patrol
strategy will seek to distribute the patrols throughout the forest, in space and time,
in order to minimize the resulting amount of extraction that occurs or maximize the
degree of forest protection. This problem can be formulated as a Stackelberg game,
and the focus is on computing optimal allocations of patrol density (Johnson et al.
2012) (Fig. 28.13).

As mentioned earlier, endangered species poaching is reaching critical levels as
the populations of these species plummet to unsustainable numbers. The global tiger
population, for example, has dropped over 95% from the start of the 1900s and
has resulted in three out of nine species extinctions. Depending on the area and
animals poached, motivations for poaching range from profit to sustenance, with
the former being more common when profitable species such as tigers, elephants,
and rhinos are the targets. To counter poaching efforts and to rebuild the species’
populations, countries have set up protected wildlife reserves and conservation
agencies tasked with defending these large reserves. Because of the size of the
reserves and the common lack of law enforcement resources, conservation agencies
are at a significant disadvantage when it comes to deterring and capturing poachers.
Agencies use patrolling as a primary method of securing the park. Due to their
limited resources, however, patrol managers must carefully create patrols that
account for many different variables (e.g., limited patrol units to send out, multiple
locations that poachers can attack at varying distances to the outpost).

6.1 Bounded Rationality Modeling and Learning

Recently, we have conducted some research on applying ideas from behavioral
game theory (e.g., prospect theory (Kahneman and Tversky 1979) and quan-
tal response (McFadden 1976)) within security game algorithms. One line of

Fig. 28.13 Examples of illegal activities in green security domains. (a) An illegal trapping tool.
(b) Illegally cutting trees
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approaches is based on the quantal response model to predict the behaviors of
the human adversary and then to compute optimal defender strategies against such
behavior of the adversary. These include BRQR (Yang et al. 2011) which follows
the logit quantal response (QR) (McFadden 1976) model and subsequent work
on subjective-utility quantal response (SUQR) models (Nguyen et al. 2013). The
parameters of these models are estimated by experimental tuning. Data from a
large set of participants on the Amazon Mechanical Turk (AMT) were collected
and used to learn the parameters of the behavioral models to predict future attacks.
In real-world domains like fisheries protection or wildlife crime, there are repeated
interactions between the defender and the adversary, where the game progresses
in “rounds.” We call this a repeated Stackelberg security game (RSSG) wherein
each round the defender would play a particular strategy and the adversary would
observe that strategy and act accordingly. In order to simulate this scenario and
conduct experiments to identify adversary behavior in such repeated settings, an
online RSSG game was developed (shown in Fig. 28.14) and deployed.

Wildlife Poaching Game: In our game, human subjects play the role of poachers
looking to place a snare to hunt a hippopotamus in a protected wildlife park. The
portion of the park shown in the map is actually a Google Maps view of a portion
of the Queen Elizabeth National Park (QENP) in Uganda. The region shown is
divided into a 5*5 grid, i.e., 25 distinct cells. Overlaid on the Google Maps view
of the park is a heat map, which represents the rangers’ mixed strategy x – a cell i

Fig. 28.14 Interface of the Wildlife Poaching game to simulate an RSSG
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with higher coverage probability xi is shown more in red, while a cell with lower
coverage probability is shown more in green. As the subjects play the game and
click on a particular region on the map, they were given detailed information about
the poacher’s reward, penalty, and coverage probability at that region: Ra

i , P a
i , and

xi for each target i . However, the participants are unaware of the exact location of
the rangers while playing the game, i.e., they do not know the pure strategy that
will be played by the rangers, which is drawn randomly from mixed strategy x

shown on the game interface. Thus, we model the real-world situation that poachers
have knowledge of past pattern of ranger deployment but not the exact location of
ranger patrols when they set out to lay snares. In our game, there were nine rangers
protecting this park, with each ranger protecting one grid cell. Therefore, at any
point in time, only 9 out of the 25 distinct regions in the park are protected. A player
succeeds if he places a snare in a region which is not protected by a ranger, else he
is unsuccessful.

Similar to Nguyen et al. (2013), here also we recruited human subjects on AMT
and asked them to play this game repeatedly for a set of rounds with the defender
strategy changing per round based on the behavioral model being used to learn the
adversary’s behavior. Before we discuss more about the experiments conducted, we
first give a brief overview of the bounded rationality models used in our experiments
to learn adversary behavior.

Bounded Rationality Models: Subjective utility quantal response (SUQR)
(Nguyen et al. 2013) is a behavioral model which builds upon prior work on
quantal response (QR) (McFadden 1976) according to which rather than strictly
maximizing utility, an adversary stochastically chooses to attack targets, i.e., the
adversary attacks a target with higher expected utility with a higher probability.
SUQR proposes a new utility function called subjective utility, which is a linear
combination of key features that are considered to be the most important in each
adversary decision-making step. Nguyen et al. (2013) experimented with three
features: defender’s coverage probability, adversary’s reward and penalty (xi , Ra

i ,
P a

i ) at each target i . According to this model, the probability that the adversary will
attack target i 2 T is given by:

qi .!jx/ D
eSU a

i .x/

P
j 2T

eSU a
j .x/

(28.18)

where SU a
i .x/ is the subjective utility of an adversary for attacking target i when

defender employs strategy x and is given by:

SU a
i .x/ D !1xi C !2Ra

i C !3P a
i (28.19)

The vector ! D .!1; !2; !3/ encodes information about the adversary’s behavior,
and each component of ! indicates the relative importance the adversary gives
to each attribute in the decision-making process. The weights are computed by
performing maximum likelihood estimation (MLE) on available attack data.
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While behavioral models like QR (McFadden 1976) and SUQR (Nguyen et al.
2013) assume that there is a homogeneous population of adversaries, in the real
world, we face heterogeneous populations of adversaries. Therefore Bayesian
SUQR was proposed to learn the behavioral model for each attack (Yang et al.
2014). Protection Assistant for Wildlife Security (PAWS) is an application which
was originally created using Bayesian SUQR. However, in real-world security
domains, we may have very limited data or may only have some limited information
on the biases displayed by adversaries. An alternative approach is based on robust
optimization: instead of assuming a particular model of human decision-making,
try to achieve good defender expected utility against a range of possible models.
One instance of this approach is MATCH (Pita et al. 2012), which guarantees a
bound for the loss of the defender to be within a constant factor of the adversary
loss if the adversary responds nonoptimally. Another robust solution concept is
monotonic maximin (Jiang et al. 2013b), which tries to optimize defender utility
against the worst-case monotonic adversary behavior, where monotonicity is the
property that actions with higher expected utility is played with higher probability.
Recently, there has been attempts to combine such robust-optimization approaches
with available behavior data (Haskell et al. 2014) for RSSGs, resulting in a new
human behavior model called Robust SUQR. However, one question of research
is how these proposed models and algorithms will fare against human subjects in
RSSGs. This has been explored in recent research (Kar et al. 2015) in the “first-
of-its-kind” human subjects experiments in RSSGs over a period of 46 weeks with
the “Wildlife Poaching” game. A brief description of our experimental observations
from the RSSG human subject experiments is presented below.

Results in RSSG Experiments – An Overview: In our human subject experi-
ments in RSSGs, we observe that (i) existing approaches (QR, SUQR, Bayesian
SUQR) (Haskell et al. 2014; Nguyen et al. 2013; Yang et al. 2014) perform poorly in
initial rounds, while Bayesian SUQR which is the basis for PAWS (Yang et al. 2014)
performs poorly throughout all rounds; and (ii) surprisingly, simpler models like
SUQR which were originally proposed for single-shot games performed better than
recent advances like Bayesian SUQR and Robust SUQR which are geared specif-
ically toward addressing repeated SSGs. These results are shown in Fig. 28.16a–d.
Therefore, we proposed a new model called SHARP (Stochastic Human behavior
model with AttRactiveness and Probability weighting) (Kar et al. 2015) which
is specifically suited for dynamic settings such as RSSGs. SHARP addresses the
limitations of the existing models in the following way: (i) modeling the adversary’s
adaptive decision-making process in repeated SSGs, SHARP reasons based on
success, or failure of the adversary’s past actions on exposed portions of the attack
surface, where attack surface is defined as the n-dimensional space of the features
used to model adversary behavior; (ii) addressing limited exposure to significant
portions of the attack surface in initial rounds, SHARP reasons about similarity
between exposed and unexposed areas of the attack surface, and also incorporates
a discounting parameter to mitigate adversary’s lack of exposure to enough of the
attack surface; (iii) addressing the limitation that existing models do not account
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for the adversary’s weighting of probabilities, we incorporate a two parameter
probability weighting function. We discuss these three modeling aspects of SHARP.

SHARP – Probability Weighting: SHARP has three key novelties, of which we
discuss probability weighting first. The need for probability weighting became
apparent when we observed based on our initial experiments with existing models
(Haskell et al. 2014; Nguyen et al. 2013; Yang et al. 2014) that the weight
on coverage probability was positive for experiments. That is, counterintuitively
humans were modeled as being attracted to cells with high coverage probability,
even though they were not attacking targets with very high coverage, but they were
going after targets with moderate to very low coverage probability. We hypothesize
that this counterintuitive result of a model with !1 > 0 may be because the
SUQR model may not be considering people’s actual weighting of probability.
SUQR assumes that people weigh probabilities of events in a linear fashion, while
existing work on probability weighting (Kahneman and Tversky 1979; Tversky
and Kahneman 1992) suggests otherwise. To address this issue, we augment the
subjective utility function with a two-parameter probability weighting function
(Eq. 28.20) proposed by Gonzalez and Wu (1999) that can be either inverse S-shaped
(concave near probability zero and convex near probability one) or S-shaped.

f .p/ D
ıp�

ıp� C .1 � p/�
(28.20)

The SU of an adversary denoted by “a” can then be computed as:

SU a
i .x/ D !1f .xi / C !2Ra

i C !3P a
i (28.21)

where f .xi / for coverage probability xi is computed as per Eq. 28.20.
One of our key findings is that the curve representing human weights for prob-

ability is S-shaped in nature and not inverse S-shaped as prospect theory suggests.
The S-shaped curve indicates that people would overweight high probabilities and
underweight low to medium probabilities. An example of learned curves on our data
over several rounds of the RSSG experiment is shown in Fig. 28.15. Recent studies
(Alarie and Dionne 2001; Etchart-Vincent 2009; Humphrey and Verschoor 2004)
have also found S-shaped probability curves which contradict the inverse S-shaped
observation of prospect theory. Given S-shaped probability weighting functions, the
learned !1 was negative as it accurately captured the trend that a significantly higher
number of people were attacking targets with low to medium coverage probabilities
and not attacking high coverage targets.

SHARP – Adaptive Utility Function: A second major innovation in SHARP is
the adaptive nature of the adversary and addressing the issue of attack surface
exposure where attack surface ˛ is defined as the n-dimensional space of the
features used to model adversary behavior. A target profile ˇk 2 ˛ is defined as
a point on the attack surface ˛ and can be associated with a target. Exposing the
adversary to a lot of different target profiles would therefore mean exposing the



28 Trends and Applications in Stackelberg Security Games 1261

Fig. 28.15 Probability curves from rounds 1 to 4

adversary to more of the attack surface and gathering valuable information about
their behavior. While a particular target location, defined as a distinct cell in the
2D space, can only be associated with one target profile in a particular round, more
than one target may be associated with the same target profile in the same round.
ˇi

k denotes that target profile ˇk is associated with target i in a particular round.
Below is an observation from our human subjects data that reveal interesting trends
in attacker behavior in RSSGs.

Observation 1. Consider two sets of adversaries: (i) those who have succeeded
in attacking a target associated with a particular target profile in one round and
(ii) those who have failed in attacking a target associated with a particular target
profile in the same round. In the subsequent round, the first set of adversaries are
significantly more likely than the second set of adversaries to attack a target with a
target profile which is “similar” to the one they attacked in the earlier round.

Now, existing models only consider the adversary’s actions from round .r � 1/

to predict their actions in round r . However, based on our observation (Obs. 1), it
is clear that the adversary’s actions in a particular round are dependent on his past
successes and failures. The adaptive probability weighted subjective utility function
proposed in Eq. 28.22 captures this adaptive nature of the adversary’s behavior in
such dynamic settings by capturing the shifting trends in attractiveness of various
target profiles over rounds.

ASU R
ˇi

D .1 � d � AR
ˇi

/!1f .xˇi / C .1 C d � AR
ˇi

/!2�ˇi

C .1 C d � AR
ˇi

/!3P a
ˇi

C .1 � d � AR
ˇi

/!4Dˇi (28.22)

Here, AR
ˇi

denotes the attractiveness of a target profile ˇi at the end of round R and
models the attacker’s current affinity toward targets he attacked in the past based
on his past successes and failures. The parameter d (0 � d � 1) in Eq. 28.22
is a discounting parameter which is based on a measure of the amount of attack
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Fig. 28.16 (a), (b), (c), and (d): Defender utilities for various models on four payoff structures,
respectively

surface exposed and mitigates this attack surface exposure problem. Therefore,
there are three main parts to SHARP’s adaptive utility computation: (i) adapting
the subjective utility based on past successes and failures on exposed parts of the
attack surface, (ii) discounting to handle situations where not enough attack surface
has been exposed, and (ii) reasoning about similarity of unexposed portions of the
attack surface based on other exposed parts of the attack surface (see Kar et al. 2015
for details).

Based on our human subjects experiments with SHARP and other models on four
different payoff structures, we observe in Fig. 28.16a–d that SHARP completely
outperforms existing approaches consistently over all rounds, most notably in initial
rounds (refer to Kar et al. 2015 for more details about the experimental results and
observations).

6.2 Bounded Surveillance Modeling and Planning

We have discussed above some of the bounded rationality models applied to
RSSGs. However, sometimes the adversaries may be bounded by their surveillance
capabilities. Therefore, to account for adversaries’ bounded surveillance, more
recent work has generalized the perfect Stackelberg assumption, and they assume
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that the adversaries’ understanding of the defender strategy may not be up to date
and can be instead approximated as a convex combination of the defender strategies
used in recent rounds (Fang et al. 2015). The RSSG framework, which assumes that
the attackers always have up-to-date information, can be seen as a special case of
this more generalized Green Security Games (GSG) model.

More specifically, a GSG model considers a repeated game between a defender
and multiple attackers. Each round corresponds to a period of time, which can be a
time interval (e.g., a month) after which the defender (e.g., warden) communicate
with local guards to assign them a new strategy. In each round, the defender chooses
a mixed strategy at the beginning of the round. Different from RSSG, an attacker in
GSG is characterized by his memory length and weights on recent rounds in addition
to his SUQR model parameters. The attacker is assumed to respond to a weighted
sum of the defender strategies used in recent rounds (within his memory length).
The defender aims to maximize her total expected utility over all the rounds.

Due to the bounded surveillance of attackers, the defender can potentially
improve her average expected utility by carefully planning changes in her strategy
from round to round in a GSG. Based on the GSG model, we provide two algorithms
that plan ahead – the generalization of the Stackelberg assumption introduces a need
to plan ahead and take into account the effect of defender strategy on future attacker
decisions. While the first algorithm plans a fixed number of steps ahead, the second
one designs a short sequence of strategies for repeated execution.

For clarity of exposition, we first focus on the case where the attackers have
one round memory and have no information about the defender strategy in the
current round, i.e., the attackers respond to the defender strategy in the last round. To
maximize her average expected utility, the defender could optimize over all rounds
simultaneously. However, this approach is computationally expensive when the
game has many rounds: it needs to solve a non-convex optimization problem with at
least NT variables where N is the number of targets considered and T is the length
of the game. An alternative is the myopic strategy, i.e., the defender can always
protect the targets with the highest expected utility in the current round. However,
this myopic choice may lead to significant quality degradation as it ignores the
impact of current strategy in the future round.

Therefore, we propose an algorithm named PlanAhead-M (or PA-M) in Fang
et al. (2015) that looks ahead a few steps. PA-M finds an optimal strategy for
the current round as if it is the M th last round of the game. If M D 2, the
defender chooses a strategy assuming she will play a myopic strategy in the next
round and end the game. PA-T corresponds to the optimal solution and PA-1 is the
myopic strategy. Choosing 1 < M < T can balance the solution quality and the
computation complexity.

While PA-M presents an effective way to design sequential defender strategies,
we provide another algorithm called FixedSequence-M (FS-M) for GSGs in (Fang
et al. 2015). FS-M not only has provable theoretical guarantees but may also ease
the implementation in practice. The idea of FS-M is to find a short sequence of
strategies with fixed length M and require the defender to execute this sequence
repeatedly. If M D 2, the defender will alternate between two strategies, and she
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can exploit the attackers’ delayed response. It can be easier to communicate with
local guards to implement FS-M in green security domains as the guards only need
to alternate between several types of maneuvers.

7 Addressing Field Evaluation in Real-World Problems

Evidence showing the benefits of the algorithms discussed in the previous sections
is definitely an important issue that is necessary for us to answer. Unlike conceptual
ideas, where we can run thousands of careful simulations under controlled con-
ditions, it is not possible to conduct such experiments in the real world with our
deployed applications. Nor is it possible to provide a proof of 100% security – there
is no such thing.

Instead, we focus on the specific question of are our game-theoretic algorithms
presented better at security resource optimization or security allocation than how
they were allocated previously, which was typically relying on human schedulers
or a simple dice roll for security scheduling (simple dice roll is often the other
“automation” that is used or offered as an alternative to our methods). We have
used the following methods to illustrate these ideas. These methods range from
simulations to actual field tests.

1. Simulations (including using a “machine learning” attacker): We provide
simulations of security schedules, e.g., randomized patrols, assignments, com-
paring our approach to earlier approaches based on techniques used by human
schedulers. We have a machine learning-based attacker who learns any patterns
and then chooses to attack the facility being protected. Game-theoretic schedulers
are seen to perform significantly better in providing higher levels of protections
(Jain et al. 2010b; Pita et al. 2008). This is also shown in Fig. 28.17.

2. Human adversaries in the lab: We have worked with a large number of
human subjects and security experts (security officials) to have them get through
randomized security schedules, where some are schedules generated by our
algorithms and some are baseline approaches for comparison. Human subjects
are paid money based on the reward they collect by successfully intruding
through our security schedules; again our game-theoretic schedulers perform
significantly better (Pita et al. 2009a).

3. Actual security schedules before and after: For some security applications, we
have data on how scheduling was done by humans (before our algorithms were
deployed) and how schedules are generated after deployment of our algorithms.
For measures of interest to security agencies, e.g., predictability in schedules, it
is possible to compare the actual human-generated schedules vs our algorithmic
schedules. Again, game-theoretic schedulers are seen to perform significantly
better by avoiding predictability and yet ensuring that more important targets are
covered with higher frequency of patrols. Some of this data is published (Shieh
et al. 2012) and is also shown in Fig. 28.18.
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Fig. 28.17 ARMOR evaluation results

Fig. 28.18 PROTECT evaluation results: pre deployment (left) and post deployment patrols
(right)

4. “Adversary” teams simulate attack: In some cases, security agencies have
deployed adversary perspective teams or “mock attacker teams” that will attempt
to conduct surveillance to plan attacks; this is done before and after our
algorithms have been deployed to check which security deployments worked
better. This was done by the US Coast Guard indicating that the game-theoretic
scheduler provided higher levels of deterrence (Shieh et al. 2012).

5. Real-time comparison: human vs algorithm: This is a test we ran on the
metro trains in Los Angeles. For a day of patrol scheduling, we provided
head-to-head comparison of human schedulers trying to schedule 90 officers
on patrols vs an automated game-theoretic scheduler. External evaluators then
provided an evaluation of these patrols; the evaluators did not know who had
generated each of the schedules. The results show that while human schedulers
required significant effort even for generating one schedule (almost a day) and
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the game-theoretic scheduler ran quickly, the external evaluators rated the game-
theoretic schedulers higher (with statistical significance) (Fave et al. 2014a).

6. Actual data from deployment: This is another test run on the metro trains in
LA. We had a comparison of game-theoretic scheduler vs an alternative (in this
case a uniform random scheduler augmented with real time human intelligence)
to check fare evaders. In 21 days of patrols, the game-theoretic scheduler led to
significantly higher numbers of fare evaders captured than the alternative (Fave
et al. 2014a,b).

7. Domain expert evaluation (internal and external): There have been of course
significant numbers of evaluations done by domain experts comparing their own
scheduling method with game-theoretic schedulers, and repeatedly the game-
theoretic schedulers have come out ahead. The fact that our software is now in
use for several years at several different important airports, ports, air traffic, and
so on is an indicator to us that the domain experts must consider this software of
some value.

8 Conclusions

Security is recognized as a worldwide challenge, and game theory is an increasingly
important paradigm for reasoning about complex security resource allocation. We
have shown that the general model of security games is applicable (with appropriate
variations) to varied security scenarios. There are applications deployed in the
real world that have led to a measurable improvement in security. We presented
approaches to address four significant challenges: scalability, uncertainty, bounded
rationality, and field evaluation in security games.

In short, we introduced specific techniques to handle each of these challenges.
For scalability, we introduced three approaches: (i) incremental strategy generation
for addressing the problem of large defender strategy spaces, (ii) double oracle
incremental strategy generation w.r.t large defender and attacker strategy spaces,
(iii) compact representation of strategies for the case of mobile resources and
moving targets, (iv) cutting plane (incremental constraint generation) for handling
multiple boundedly rational attacker, and (v) a hierarchical approach for incor-
porating fine-grained spatial information. For handling uncertainty we introduced
two approaches: (i) dimensionality reduction in uncertainty space for addressing a
unification of uncertainties and (ii) Markov Decision Process with marginal strategy
representation w.r.t dynamic execution uncertainty. In terms of handling attacker
bounded rationality and bounded surveillance, we propose different behavioral
models to capture the attackers’ behaviors and introduce human subject experiments
with game simulation to learn such behavioral models. Finally, for addressing field
evaluation in real-world problems, we discussed two approaches: (i) data from
deployment and (ii) mock attacker team.

While the deployed game-theoretic applications have provided a promising
start, significant amount of research remains to be done. These are large-scale
interdisciplinary research challenges that call upon multiagent researchers to work
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with researchers in other disciplines, be “on the ground” with domain experts and
examine real-world constraints and challenges that cannot be abstracted away.
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˛-characteristic function, 603
ˇ-characteristic function, 603
ı-characteristic function, 604
�-characteristic function, 603

Characteristics, 977
Cauchy, 963

Charging pattern, 1199
Charging rate, 1200
Cheating period, 647
Chentsov, A.G., 956, 970
Chernous’ko, F.L., 957
Climate change, 704, 709, 710, 720
Closed-loop, 436, 437

information structure, 163
Stackelberg equilibrium, 198

Close-knit family, 580, 581
r-Close-knit, 581
Clustering, 911, 947, 1218, 1219
Coalition, 1204, 1205
Coalitional game, 1204, 1205
Coalition formation, 910, 944–947, 1199,

1205, 1206
Collision, 1000
Collision course, 1082
Collusive equilibrium, 102–108, 201, 203,

205, 208
Command signal, 1012
Commit, 164
Commitment-short-term, 184
Common noise, 366
Communication networks, 368, 1144
Comparison principle, 394, 402
Competitive contagion game, 573, 575–577
Competitive market, 1193, 1195
Complete information game, 6, 56
Computational methods, 16
Computing correspondences, 757, 765
Condition

irreducibility, 307
strict diagonal dominance, 286
strong stochastic dominance, 299

Conditional Pareto efficiency, 662
Condorcet criterion, 936, 938
Confidence bound, 921, 924
Conformity, 913, 920, 926, 934
Congestion control, 1146
Congestion game, 549–553, 555, 556, 559, 589

asymmetric network, 555
definition, 550
in market sharing, 555–559



Index 1273

network, 551, 553
player-specific, 555
pure-strategy NE, 553–555
symmetric network, 553–555

Conjectural variations, 782–784, 794
Consensus algorithm, 515
Consistency condition, 363
Constant injection attack, 1218
Contingent claim, 829
Continuation payoff, 173, 190
Continuous-kernel games, 5, 36

formulation, existence and uniqueness,
36–38

stability and computation, 38–40
and Stackelberg equilibria, 40–44

Continuously stable strategy (CSS)
concept, 476

and adaptive dynamics, 477–479
asymmetric game, 503
multi-dimensional, 489

Continuous opinion dynamics,
913–924

Continuous trait space, 476
asymmetric game, 502
one dimensional, 476

Contradictory criteria, 937
Control

adaptive, 958, 1023
extremal, 979
feedback, 953, 968, 1026
inputs, 1201
inseparable, 955
open-loop, 954, 956
separable, 955
strategy, 1200–1202, 1214

Convenience cost, 1200
Convergence stable, 477
Convex hull, 1007, 1029
Convex optimization, 1212
Cooperation, 1045
Cooperation duration, 644
Cooperative differential games, 600

with random duration, 623–628
Cooperative dynamic games, 634–668
Cooperative games, 4, 634–668, 706, 718, 720,

726, 1199, 1203
Cooperative outcome, 636
Cooperative strategies, 657–661
Cooperative trajectory, 636, 650, 654, 661
Coordination games, 913

bounded confidence, 920–924
definition, 909
innovation spread, 927–935
stubborn individuals, 914–920

Core, 596, 605, 606, 616, 622
Corporate games, 829, 845–859
Corrector, 424
Correlated equilibrium (CE), 18–20, 519
Correspondence, 115, 730

lower measurable, 218
upper semicontinuous, 218
weakly measurable, 218

Co-state variable, 645, 647
Cost function(al), 4, 9, 11, 14, 21, 26, 35,

38–40, 43, 45, 50, 51, 55, 1189,
1199–1201, 1214, 1215

Cost learning, 876
Cost measure, 439, 453
Coupled constraint, 114
Coupled constraint equilibrium (CCE),

114–116
Coupled-constraint problem (CCP), 134
Coupled-reaction mapping, 115
Coupled state-constraints

coupled dynamic game, equilibria for,
136–138

discounted case, 143–152
global change game, 138–143
Hamiltonian systems, 119, 124
model and basic hypotheses, 133–135
m-person games, 114, 119
open-loop differential games, 124–133
steady-state normalized equilibrium

problem, 135
Cournot competition, 781, 783, 784, 786, 788,

791, 794, 795, 799–801, 803, 808,
810, 812, 815, 817

Cournot equilibrium, 781, 782, 789, 791, 794,
795, 797, 799–804

Cournot stochastic game, 302, 303
Crandall, M.G., 967
Credibility, 648
Credible threats, 668
Critical tube, 1010, 1013, 1016–1018,

1021, 1023
Current-valued value function, 176
Curse of dimensionality, 178
Cyber attacks, 1207, 1212–1215, 1217
Cyber-physical power system, 1187,

1215, 1216
Cyber-physical system, 1187, 1212, 1213
Cyber security games, 1234–1235

D
Darwinian dynamics, 482–488, 505
Data injection, 1207–1210, 1217, 1218
Day-ahead market, 1195, 1209
Decision theory, 433
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Decomposed Optimal Bayesian Stackelberg
Solver (DOBSS), 1228–1230

DOBSS MILP, 1229
DOBSS MIQP, 1229

Defaultable game options, 832–833
Defender, 1000
Defense strategy, 1188, 1207, 1211–1215
Deffuant-Weisbuch (DW) model, 921
Definability, 257
DeGroot model, 912
Delay function, 550, 554–556
Delta-Nash equilibrium, 923
Demand learning, 876–877
Demand response, 1187
Demand-side management (DSM), 1187,

1188, 1197, 1199, 1202
Deregulated market, 1187
Deterministic games, 5, 45–50, 53

Stackelberg solution, 52–53
team problems, 51
two-person zero-sum games, 50

Diagonally strictly concave, 119, 127, 129,
137, 141

Diet choice model, 1067
Difference equations, 158
Differential games, 6, 8, 57, 639, 649–652,

704, 706–708, 868, 874, 878,
880, 881, 952, 953, 1200, 1201,
1213, 1215

with hard bounds, 1089
nonzero-sum, 62–108
zero-sum, 62, 105

Diffusion game, 549, 570, 573, 582, 589
competitive contagion in networks,

573–578
coordination-based, 578–582
deterministic, 571–573

Dilution effect, 833
Dimensionless variables, 961
Direct reciprocity, 1045
Discounted criterion, 161
Discounted payoff, 1215
Discrete control scheme, 955, 968,

995, 1005
Discrete discriminating kernel, 971

fully, 972
Discrete opinion dynamics, 924–935
Discrete-time analysis, 653–662
Discriminating domain, 409
Discrimination, 954, 1005
Dispersal, 1064
Distributed generation (DG), 1187, 1197,

1198, 1204
Distributed storage, 1187

Distribution, 1186–1189, 1197–1200,
1202–1206

Disturbance attenuation, 1099–1106
Double oracle, 1239–1241
Dove, 1042, 1056
DS-continuity, 290
Dubins, L., 961
Duhamel principle, 365
Dynamic(s)

best response dynamics, 472
compensator, 436, 442, 443
consistency, 635, 648
game(s), 6, 8, 19, 21, 23, 28, 35, 55,

634–668
game theory, 1188
instability, 637
linear, 956, 1003
monotone selection dynamics, 471
nonlinear, 954
programming, 390, 398, 953, 1220
programming principle, 1006
reaction functions, 185
simple motion, 952, 955–957, 960,

1000, 1006
stability, 1207
system, 158, 1188, 1207, 1212–1214, 1216

Dynkin game, 332

E
Economic dispatch, 1190, 1217
Electricity demand, 1199, 1202
Electricity prices, 1187, 1198, 1202, 1206
Electric vehicles, 1187, 1197, 1199, 1203
Empirical measure, 350, 351, 362, 364
Encryption, 1210
Endogenous growth model, 202
Energy market, 1187, 1189, 1191, 1208
Entropic risk measure, 331
Entry deterrence (accommodation), 782, 818
Envelope condition, 185
Equilibrium, 115, 116, 118

correlated, 317
correlated with public signals, 291
Nash constrained, 321
robust Markov perfect, 331
selection, 535–541
stationary almost Markov, 288
stationary Markov, 288
subgame-perfect, 288

Erdos-Renyi graph, 572, 573
Ergodicity, 244
Escape times, 1095
ESS, see Evolutionarily stable strategy (ESS)
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EV, 1199–1203
Evader, 952, 954, 955, 957, 983, 990, 992,

1000–1002, 1011–1013, 1026
Evolutionarily stable strategy (ESS), 462, 463,

467, 1042, 1049
candidate, 487
and invasion dynamics, 464–465
and replicator equation for matrix games,

465–467
2-species, 492, 1054, 1064

weak, 1055, 1070
Evolutionary branching, 479
Evolutionary game(s), 724–726

distributed control design (see Game
theoretic learning, distributed
control)

dynamics, 471, 505
Exceptional line, see Singular line
Exhaustible resources, 674, 685

antibiotics effectiveness, 692–694
extraction under different market

structures, 686
under common access, 691–692

Exogenous disturbances, 1213
Exponential discounting, 188
Extensive form, 21–23
Extensive form correlated

equilibrium, 754
Extensive form game, 496, 1067

generic, 500
Extremal aiming, 995
Extremal shift, 995, 1026
Extremal trajectory, 979

F
Fair choice, 936–940
False target, 1002
Federal Air Marshals Service (FAMS), 1225
Feedback equilibrium, 198, 781, 783–786,

789, 791, 794, 795, 797, 801, 802,
804, 806, 810, 811

Feedback games of exploitation, 677–681
Feedback information structure, 164, 175,

196, 208
Feedback-Nash equilibrium, 177, 178, 191,

199, 202, 203, 205, 208, 636,
646, 653

Feedback Stackelberg equilibrium (FSE), 91,
94–97, 101

Feedback strategy(ies), 164, 194, 197,
210, 640

Feedback threat, 200
Feldbaum, A.A., 952

Ferry protection, 1241
Fictitious play (FP), 18, 531–532

joint strategy, 532–533
variants of, 532

Filippov theorem, 284
Finance, dynamic games, 828
Finance game-theoretic models, 828
Finite-escape time, 1087
Finite games, 5

existence and computation of
NE, 14–20

and Stackelberg equilibria, 28–36
Finite improvement path, 553
Finite population, 360
Fishery protection, 1244
Fishery’s management model, 162
Fish war game, 298
Fixed point, 116, 1202, 1215
Fixed-point condition, 115
Fokker-Planck-Kolmogorov (FPK) equation,

347, 358, 359, 361, 365, 1202
Folk theorem, 462, 467

asymmetric games, 492
evolutionary game theory, 462

Follower, 28, 191, 192
Foraging game, 1066
Forest protection, 1256
Forward-backward stochastic differential

equation, 364
Fossil resources and pollution, 690–691
FPK equation, see Fokker-Planck-Kolmogorov

(FPK) equation
Frequency relay, 1217, 1218
Front, 978, 981, 985, 990
Full Pareto efficiency, 662
Function

universally measurable, 218
upper semianalytic, 218

Functional response, 1066
Fundamental Cauchy matrix, 1004
Fundamental diagram of traffic, 1110, 1114

G
Game

absorbing, 256, 264, 315
acoustic, 990, 992–994
approximating, 1006
ARAT, 295
Big Match, 253
Blackwell, 251
with complete information, 955
Cournot stochastic, 301–303
of degree, 968
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Game (cont.)
differential, 952

linear, 954, 1003, 1028
one-dimensional, 1028

Dynkin, 332
fish war, 298
group pursuit, 957
homicidal chauffeur, 952, 958, 976, 1001
with incomplete information, 955
isotropic rockets, 1001
of kind, 968
lifeline, 955
limit-average stochastic, 307
linear-quadratic, 1028
noisy stochastic, 296
perfect information, 262
pursuit-evasion, 957, 1002
quitting, 316
recursive, 252, 257, 264, 266, 317
resource extraction, 300
supermodular, 285, 303
supermodular stochastic, 304
surveillance-evasion, 989–991
time-optimal, 953, 958
of two cars, 1001
zero-sum, 953

Game options, 830
numerical approaches, 834

Games in normal (strategic) form, 67, 69
Games of kind, 407
Game theoretic learning, distributed control

action profile, 518
distributed routing, 525–526
equilibrium selection, 530, 535–541
game design, 514, 517, 528–529
game structures, 523–525
graphical coordination games, 526
human-agent collaborative systems, 518
joint distribution, 519
learning design, 515, 517
measures of efficiency, 520–521
model-based learning, 529, 530
performance guarantees, 517
robust learning, 530, 534–535
setup, 513–514
smoothness, 522–523
strategy profile, 519
universal learning, 530, 541–544
vehicle target assignment problem, 527

Game theory, 1188, 1189, 1199, 1203, 1219
in extensive form, 21–23
hierarchical finite games and Stackelberg

equilibria, 28–36
incomplete information, 55–57

Nash equilibrium (see Nash equilibrium
(NE))

non-cooperative games and equilibria, 8–13
origins and classifications, 4–8
quadratic games, 45–55
social networks (see Social networks)

Gauss-Seidel iteration, 47, 49
Generalized Nash equilibrium (GNE), 114,

1211, 1212
Generation, 1186, 1187, 1189–1195, 1197,

1203, 1204, 1209, 1217, 1218
Geometric difference, see Minkowski

difference
G-function, 483

fitness generating function, 483
Global agreement, 911
Global asymptotic stability (GAS), 122, 123,

144, 153
Global reaction function, 115
Goodwill models, 874–875
Gossip model, 913
Graphical coordination games, 526, 541
Graphical games, 549
Great Fish War, 162
Green security games, 1232–1233
Group optimality, 634, 637–639
Group selection, 1043
Growth model, 227–229
Growth rate, 200, 202, 212
Guaranteed performance, 433, 455

H
Habitat selection game, 473, 1060

two-species, 493
Hamiltonian, 167, 379, 401, 402, 426, 645,

955, 965, 973
Hamiltonian systems, 381

competitive models, 123–124
Ramsey problem, 119–123

Hamilton-Jacobi-Bellman (HJB) equation,
75–76, 95, 347, 356, 359, 361, 363,
365, 1202

Hamilton-Jacobi equation, 953
Hamilton-Jacobi-Isaacs (HJI) equation, 380,

397, 399, 403, 412, 419, 421,
426, 1215

second-order, 401
Hamilton rule, 1047
Handicap principle, 1071
Hausdorff distance, 756, 757
Hawk, 1042, 1056
Hawk-Dove game, 1042
Hegselmann-Krause (HK) model, 920, 921
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Historical evolution of game theory,
see Game theory

History of the game, 160, 163, 164
Hit-to-kill, 1087
HJB equation, see Hamilton-Jacobi-Bellman

(HJB) equation
Homicidal chauffeur, 952, 958, 960–1003
Homicidal chauffeur game, 376
Homing missile guidance, 1083
Homogenization, 426
Homotopy, 313
Horizontal queues, 1110
Hotelling Rule, 685
Human subjects experiments, 1259, 1262
Hybrid hierarchical equilibrium, 1212
Hyperbolic discounting, 159, 734, 738, 758
Hyperbolic preferences, 329
Hypercube, 572

I
Ideal Free Distribution (IFD), 473, 1060

two-species, 495
Implicit equilibrium solution, 147
Implicit Nash equilibrium, 148–149
Implicit steady state equilibrium problem,

146–148
Impulses, 454–457
Imputation, 602, 603, 605, 607
Imputation distribution procedure (IDP),

610, 612
Incentive equilibrium, 599
Incomplete information game, 6, 55–57
Increasing patience, 188
Incremental strategy generation, 1237–1239
Independence of irrelevant alternatives

(IIA), 939
Indirect reciprocity, 1045
Indirect utility, 328
Individual player’s payoff, 638–639, 643–644
Individual rationality, 596, 597, 599, 603, 637
Industrial organizations, 184
Inefficiency of NE, 18
Infinite game, 5, 36–40
Infinite horizon concave differential

games, coupled state-constraints,
see Coupled state-constraints, 133

Infinite horizon problem, 377
Infinite population, 360
Information, 435–438

patterns, 354–355
sets, 21, 23, 25, 27
structure, 163

Informational inferiority, 23

Informational non-uniqueness, 8, 23
Infrastructure security games, 1231
Innovation spread, 927–935
Instant run-off, 935, 937, 939
Integrity, 1207, 1208
Intelligent Randomization In Scheduling

(IRIS), 1225, 1236–1237
International environmental agreements,

716–726
International pollution control, 708–716
Internet, 1210
Intra-personal dynamic game, 189
Invariant distribution, 327
Invasion dynamics, 464

asymmetric games, 492
Involute, 975
Ionescu-Tulcea Theorem, 747, 751
Irrelevant alternatives, 939
Isaacs, R., 375, 378, 407, 952, 958, 961, 964,

976, 1001
Isaacs’ condition, 379, 397, 399, 403,

412, 955
Isaacs’ equation, 384
Isaacs’ method, 963, 969
Isochrone, see Front
Iterated Prisoner’s Dilemma, 1045

J
Jacobi iteration, 47, 49
Jamming, 1104
Jamming attack, 1003
Jankov-von Neumann theorem, 220
Joint payoff, 118
Joint strategy fictitious play (JSFP), 532–533

K
Kakutani fixed-point theorem, 115
Kalai-Smorodinsky bargaining solution, 647
Kalman, 446
Kalman filter, 1102
Kantorovich-Rubinstein (KR) metric, 361
Karush-Kuhn-Tucker multipliers, 116–117
Kelly mechanism, 1150–1152
Kin selection, 1045, 1047
Krasovskii, N.N., 953, 954, 970
Kruzhkov transform, 413
Kuratowski Ryll-Nardzewski theorem, 218

L
Lagrangian, 168
Large finite populations, 347, 351
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Lasry-Lions monotonicity condition, 361
Latency function, 1110, 1112, 1114, 1139
Lattice, 572, 581
Leader, 5, 28, 29, 31, 34, 41, 43, 52, 192
Leader’s Stackelberg cost, 31, 33, 36,

41, 43
Leadership

channel, 885
domain, 409

Learning, 1256–1262
algorithm, 1206
in games, 513, 515, 516

Least best response, 568
Level set, 958, 1005
Levhari-Mirman over-exploitation, 678
Lévy processes, 351
Lewin, J., 953, 989
L2-gain, 450
Limiting behaviour, 326
Limit of average criterion, 161
Line

barrier, 967, 968, 970, 977, 981,
985, 986

dispersal, 967, 977, 983, 987
equivocal, 967, 977, 983
focal, 983, 985, 986
singular, 967, 977, 983
switch, 983
universal, 967, 977, 983

Linear complementarity problem, 312
Linear quadratic differential game(s) (LQDGs),

80–90, 1084, 1093
guidance law, 1087

Linear-quadratic games, 53, 177
Linear-quadratic systems, 358
Line-of-sight, 1084
Lion and man, 375
Lions, P.-J., 967
LMP, 1193, 1194, 1196, 1209,

1211, 1212
Load-frequency control, 1217
Load profile, 1199
Load shedding, 1217, 1219
Local asymptotic stability, 465
Locally stable Nash equilibrium, 39
Locally superior, 468
Locational marginal prices, 1193
Log linear learning, 535–537

binary, 537–539
Long-run average (LRA) payoff, 680
Loop shaping, 442
Lotka-Volterra competition model, 487
Lower value, 10, 12, 51
Lyapunov function, 469

M
Major agent, 353, 365
Marauder, 1057
Marginal contribution, 529
Marginal cost, 1195
Marketing, 866–900
Marketing channels, 881–891
Market power, 1197
Market sharing game, 555, 556, 558, 559

uniform, 557
Markov, A.A., 961
Markov control-state substitutability

(complementarity), 781, 786, 788
Markov decision process(es) (MDP), 347, 351,

1250, 1253–1255
Markov equilibria, 768, 771
Markovian equilibrium, 175
Markovian information structure, 164
Markovian strategy, 164
Markov-perfect Nash equilibrium (MPNE),

679, 688
Markov process, 1213
Markov-stationary strategy, 750
Markov strategy, 356, 750
Master equation, 347, 361
Master slave approach, 1245
Matching, 1204–1206
Matrix game, 5, 14, 16, 22, 24–26, 43
Maximal stable bridge, 955, 958, 970
Maximin Markov decision process, 221
Maximum principle, 167, 486
McKean-Vlasov equation, 350
McKean-Vlasov stochastic differential

equation, 347
Mean field, 354

equilibrium, 1146, 1171, 1202
game, 1167, 1199–1202

Mean field game (MFG) theory
basic PDE formulation, 360, 361
common noise problem, 366
communication networks, 368
congestion studies, 349
diffusion models, 349–351
economics and finance, 348
finite state models, 351
individual agent performance functions,

noncooperative games, 352
information patterns, 354–355
linear-quadratic systems, 358
major and minor agents, 365
Markov chains and discrete time

processes, 351
master equation method, 361
mean field type control optimality, 357
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Nash equilibria, 355–356
nonlinear Markov framework, 364–365
nonlinear Markov processes, 351
non-linear systems, 358–360
opinion dynamics, 349
Pareto optima, 356
probabilistic approach, 363–364
residential power storage control, 367
risk sensitive performance

functions, 352
SDE, 363
social optima and welfare optimization,

356
stochastic growth models, 369
team optima, 357
vaccination games, 349

Measurable selector, 218
Measurement errors, 1208
Measurement residuals, 1209
Measurement uncertainty, 1099
p-Median problem, 587
Melikyan, A.A., 953, 956, 968
Memory strategies, 102–108
Merge and split, 1206
Mergers, 781, 795, 796, 800, 801
Merz, A., 953, 958, 983
Method

(Cauchy) characteristic, 964, 966
Isaacs’ (see Isaacs’ method)
programmed iterations, 956, 970

Microgrid, 1189, 1198, 1199, 1203–1206
MIDAS, 1225, 1244–1246
Miele, A., 957
Min-cost flow, 554
Minimal size coalition, 945–946
Minimax, 1214
Minimax theorem, 7, 15–16, 220
Minkowski difference, 954, 1007
Minkowski sum, 1007
Minor agent, 353, 365
Mischenko, E.F., 957
Miss

one-dimensional, 1029
two-dimensional, 1012, 1028

Missile guidance, 1106
Mixed Stackelberg equilibrium strategy, 33,

34, 43
Mixed-strategy Nash equilibrium (MSNE), 11,

17, 18, 20, 26, 38
Mixed-strategy saddle-point equilibrium

(MSSPE), 11, 14, 16, 18, 38
Model-based learning, 530
Model reduction, 424
Mode of the game, 208

Monitoring and threat strategies, 644–648
Monotonicity, 937
Multi-level selection, 1045
Multiple Nash equilibria, 705
Multistage game, 158
Multistage game in a state space, 159
Mumbai terrorist attack, 1239

N
Narrow throat, 958, 1016, 1018
Nash bargaining solution, 637, 649, 656
Nash certainty equivalence (NCE), 347, 358
Nash equilibrium (NE), 9, 22, 24, 68–90, 94,

102, 104, 106–107, 202, 203, 205,
208, 210, 346, 348, 354–356, 358,
359, 363, 462, 467, 513, 922, 923,
942, 943, 945, 947, 957, 1042, 1068,
1115, 1118, 1146, 1153, 1194, 1201,
1211, 1220

asymmetric games, 492
best Nash equilibrium, 1116, 1124
congested, 1120
correlated equilibrium, 18–20
cost, 1119
essential uniqueness, 1120
of infinite/continuous-kernel games

(see Continuous-kernel games)
mixed strategy, 519, 575
neighborhood strict NE, 480
neutralization and domination, 15–16
nonzero-sum finite games and Nash’s

theorem, 17–18
number of equilibria, 1123
off-line computation of MSSPE, 16
on-line computation of MSSPE and

MSNE, 18
outcome, 22
perfect equilibrium, 25–27
proper equilibrium, 27
pure-strategy, 518, 551, 553–555,

562, 589
single-link-free-flow, 1120, 1121
solution, 640, 653, 663
subgame perfect (SPNE), 498
support, 1119
zero-sum finite games and minimax

theorem, 14–15
�-Nash equilibrium, 356, 359
Nash–Pareto pair, 1054
Nash’s theorem, 17–18
Natural resources, 674

exploitation, 674
Negative compensation attack, 1218
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Neighborhood invader strategy (NIS),
477, 480

asymmetric game, 504
neighborhood invader strategy, 480
and replicator equation, 479–482

Neighborhood superior, 481
asymmetric game, 504

Neighborhood superiority, 481, 503
Network creation game, 582, 583, 585–587

local search for, 585–587
PoA, 583–585

Network formation game, 549, 582, 584,
588, 589

coordination-based, 587–588
local search for, 585–587
PoA, 583–585

Network games, 347
aggregative games, 589
congestion games, 550–559
diffusion games, 570–582
network formation games, 582–588
rent-seeking games, 589
resource allocation games, 559–570

Network reciprocity, 1045
Neutralization, 15–16
Newton’s second law, 1216
NIS, see Neighborhood invader strategy (NIS)
Nobel Prize, 7
Non-atomic routing games, 1115, 1137
Non-compliant first strategy, 1118, 1124
Non-cooperative games, 5, 352, 355–356,

1194, 1199, 1211
elements and equilibrium solution, 8–11
security strategies, 11–12
strategic equivalence, 12–13

Non-cooperative payoff, 637, 640, 646
Non-dictatorship, 937
Nonlinear feedback strategies, 781, 796, 797,

801, 803
Nonlinear Markov processes, 351, 364–365
Nonlinear programming, constrained, 310
Non-minimal phase zero, 1103
Non-transferable utility (NTU), 634–668
Nonzero-sum games (NZSGs), 5, 12, 13,

17–18, 24, 37, 39, 42, 50, 51
Normal form, 167, 170
Normal form games, 464

asymmetric, 491
bimatrix games, 491
matrix games, 466

Normalized equilibrium, 117–119
Not subgame perfect solution, 192
NP-hard, 556, 572, 583, 587
Numerical methods, 756–758

O
Oblivious equilibria, 347
Observability, 1207, 1208, 1212
Observation, 438
Oligopolistic exploitation, 682
Oligopoly, 149–152
Olsder, G.-J., 953, 989
Online algorithm, 513
Online learning in routing, 1109
Open-loop, 436

controls, 385
equilibrium, 780–783, 786, 788,

789, 791, 794, 795, 797, 806,
811, 812

games of fishery, 676–677
information structure, 164, 194, 196
strategy, 67, 69, 91, 195

Open-loop differential games (OLDG),
124–133

Open-loop Nash equilibrium (OLNE), 69, 167,
170, 645

necessary conditions for, 72
Open-loop Stackelberg equilibrium (OLSE),

91–94, 198
Operator norm, 434, 439
Opinion dynamics, 909

averaging dynamics, 911–913
continuous, 913–924
definition, 910
discrete, 924–935

Opportunistic crime security games,
1231, 1233

Optimal control, 159, 1213–1215
guidance law, 1087
law, 1085, 1091–1093
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