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Abstract. We prove the Garden of Eden theorem for cellular automata
with finite set of states and finite neighbourhood on right amenable left
homogeneous spaces with finite stabilisers. It states that the global tran-
sition function of such an automaton is surjective if and only if it is
pre-injective. Pre-Injectivity means that two global configurations that
differ at most on a finite subset and have the same image under the
global transition function must be identical.
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The notion of amenability for groups was introduced by John von Neumann in
1929. It generalises the notion of finiteness. A group G is left or right amenable
if there is a finitely additive probability measure on P(G) that is invariant under
left and right multiplication respectively. Groups are left amenable if and only
if they are right amenable. A group is amenable if it is left or right amenable.

The definitions of left and right amenability generalise to left and right group
sets respectively. A left group set (M,G, �) is left amenable if there is a finitely
additive probability measure on P(M) that is invariant under �. There is in
general no natural action on the right that is to a left group action what right
multiplication is to left group multiplication. Therefore, for a left group set there
is no natural notion of right amenability.

A transitive left group action � of G on M induces, for each element m0 ∈ M
and each family {gm0,m}m∈M of elements in G such that, for each point m ∈ M ,
we have gm0,m � m0 = m, a right quotient set semi-action � of G/G0 on M with
defect G0 given by m � gG0 = gm0,mgg−1

m0,m � m, where G0 is the stabiliser of
m0 under �. Each of these right semi-actions is to the left group action what
right multiplication is to left group multiplication. They occur in the definition
of global transition functions of cellular automata over left homogeneous spaces
as defined in [5]. A cell space is a left group set together with choices of m0 and
{gm0,m}m∈M .

A cell space R is right amenable if there is a finitely additive probability
measure on P(M) that is semi-invariant under �. For example cell spaces with
finite sets of cells, abelian groups, and finitely right generated cell spaces of
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sub-exponential growth are right amenable, in particular, quotients of finitely
generated groups of sub-exponential growth by finite subgroups acted on by left
multiplication. A net of non-empty and finite subsets of M is a right Følner net
if, broadly speaking, these subsets are asymptotically invariant under �. A finite
subset E of G/G0 and two partitions {Ae}e∈E and {Be}e∈E of M constitute
a right paradoxical decomposition if the map � e is injective on Ae and Be,
and the family {(Ae � e) ∪· (Be � e)}e∈E is a partition of M . The Tarski-Følner
theorem states that right amenability, the existence of right Følner nets, and the
non-existence of right paradoxical decompositions are equivalent. We prove it in
[6] for cell spaces with finite stabilisers.

For a right amenable cell space with finite stabilisers we may choose a right
Følner net F = {Fi}i∈I . The entropy of a subset X of QM with respect to F ,
where Q is a finite set, is, broadly speaking, the asymptotic growth rate of the
number of finite patterns with domain Fi that occur in X. For subsets E and E′

of G/G0, an (E,E′)-tiling is a subset T of M such that {t � E}t∈T is pairwise
disjoint and {t � E′}t∈T is a cover of M . If for each point t ∈ T not all patterns
with domain t � E occur in a subset of QM , then that subset does not have
maximal entropy.

The global transition function of a cellular automaton with finite set of states
and finite neighbourhood over a right amenable cell space with finite stabilisers,
as introduced in [5], is surjective if and only if its image has maximal entropy and
it is pre-injective if and only if its image has maximal entropy. This establishes
the Garden of Eden theorem, which states that a global transition function as
above is surjective if and only if it is pre-injective. This answers a question posed
by Sébastien Moriceau at the end of his paper ‘Cellular Automata on a G-Set’ [4].

The Garden of Eden theorem for cellular automata over Z
2 is a famous

theorem by Edward Forrest Moore and John R. Myhill from 1962 and 1963, see
the papers ‘Machine models of self-reproduction’ [2] and ‘The converse of Moore’s
Garden-of-Eden theorem’ [3]. This paper is greatly inspired by the monograph
‘Cellular Automata and Groups’ [1] by Tullio Ceccherini-Silberstein and Michel
Coornaert.

In Sect. 1 we introduce E-interiors, E-closures, and E-boundaries of subsets
of M . In Sect. 2 we introduce (E,E′)-tilings of cell spaces. In Sect. 3 we introduce
entropies of subsets of QM . And in Sect. 4 we prove the Garden of Eden theorem.

Preliminary Notions. A left group set is a triple (M,G, �), where M is a set,
G is a group, and � is a map from G × M to M , called left group action of G on
M , such that G → Sym(M), g �→ [g � ], is a group homomorphism. The action �
is transitive if M is non-empty and for each m ∈ M the map � m is surjective;
and free if for each m ∈ M the map � m is injective. For each m ∈ M , the set
G � m is the orbit of m, the set Gm = ( � m)−1(m) is the stabiliser of m, and,
for each m′ ∈ M , the set Gm,m′ = ( � m)−1(m′) is the transporter of m to m′.

A left homogeneous space is a left group set M = (M,G, �) such that � is
transitive. A coordinate system for M is a tuple K = (m0, {gm0,m}m∈M ), where
m0 ∈ M and for each m ∈ M we have gm0,m � m0 = m. The stabiliser Gm0 is
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denoted by G0. The tuple R = (M,K) is a cell space. The set {gG0 | g ∈ G}
of left cosets of G0 in G is denoted by G/G0. The map � : M × G/G0 → M ,
(m, gG0) �→ gm0,mgg−1

m0,m � m (= gm0,mg � m0) is a right semi-action of G/G0

on M with defect G0, which means that

∀m ∈ M : m � G0 = m,

∀m ∈ M∀g ∈ G∃g0 ∈ G0 : ∀g′ ∈ G/G0 : m � g · g′ = (m � gG0) � g0 · g′.

It is transitive, which means that the set M is non-empty and for each m ∈ M
the map m� is surjective; and free, which means that for each m ∈ M the map
m � is injective; and semi-commutes with �, which means that

∀m ∈ M∀g ∈ G∃g0 ∈ G0 : ∀g′ ∈ G/G0 : (g � m) � g′ = g � (m � g0 · g′).

The maps ι : M → G/G0, m �→ Gm0,m, and m0 � are inverse to each other.
Under the identification of M with G/G0 by either of these maps, we have
� : (m, g) �→ gm0,m � g.

A left homogeneous space M is right amenable if there is coordinate system
K for M and there is a finitely additive probability measure μ on M such that

∀g ∈ G/G0∀A ⊆ M :
(
( � g)�A injective =⇒ μ(A � g) = μ(A)

)
,

in which case the cell space R = (M,K) is called right amenable. When the
stabiliser G0 is finite, that is the case if and only if there is a right Følner net
in R indexed by (I,≤), which is a net {Fi}i∈I in {F ⊆ M | F �= ∅, F finite}
such that

∀g ∈ G/G0 : lim
i∈I

|Fi � ( � g)−1(Fi)|
|Fi| = 0.

A semi-cellular automaton is a quadruple C = (R, Q,N, δ), where R is a cell
space; Q, called set of states, is a set; N , called neighbourhood, is a subset of G/
G0 such that G0 · N ⊆ N ; and δ, called local transition function, is a map from
QN to Q. A local configuration is a map � ∈ QN , a global configuration is a map
c ∈ QM , and a pattern is a map p ∈ QA, where A is a subset of M . The stabiliser
G0 acts on QN on the left by • : G0 ×QN → QN , (g0, �) �→ [n �→ �(g−1

0 ·n)], and
the group G acts on the set of patterns on the left by

� : G ×
⋃

A⊆M

QA →
⋃

A⊆M

QA,

(g, p) �→
[

g � dom(p) → Q,

m �→ p(g−1 � m).

]

The global transition function of C is the map Δ : QM → QM , c �→ [m �→ δ(n �→
c(m � n))].

A cellular automaton is a semi-cellular automaton C = (R, Q,N, δ) such that
δ is •-invariant, which means that, for each g0 ∈ G0, we have δ(g0 • ) = δ( ). Its
global transition function is �-equivariant, which means that, for each g ∈ G,
we have Δ(g � ) = g � Δ( ).

For each A ⊆ M , let πA : QM → QA, c �→ c�A.
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1 Interiors, Closures, and Boundaries

In this section, let R = ((M,G, �), (m0, {gm0,m}m∈M )) be a cell space.
In Definition 1 we introduce E-interiors, E-closures, and E-boundaries of

subsets of M . In Lemma 3 we define surjective restrictions Δ−
X,A of global tran-

sition functions to patterns. And in Theorem 1 we show that right Følner nets
are those nets whose components are asymptotically invariant under taking finite
boundaries.

Definition 1. Let A be a subset of M and let E be a subset of G/G0.

1. The set

A−E = {m ∈ M | m � E ⊆ A} (
=

⋂

e∈E

⋃

a∈A

( � e)−1(a)
)

is called E-interior of A.
2. The set

A+E = {m ∈ M | (m � E) ∩ A �= ∅} (
=

⋃

e∈E

⋃

a∈A

( � e)−1(a)
)

is called E-closure of A.
3. The set ∂EA = A+E

� A−E is called E-boundary of A.

Remark 1. Let R be the cell space ((G,G, ·), (eG, {g}g∈G)), where G is a group
and eG is its neutral element. Then, G0 = {eG} and � = ·. Hence, the notions
of E-interior, E-closure, and E-boundary are the same as the ones defined in [1,
Sect. 5.4, Paragraph 2].

Example 1. Let M be the Euclidean unit 2-sphere, that is, the surface of the ball
of radius 1 in 3-dimensional Euclidean space, and let G be the rotation group.
The group G acts transitively but not freely on M on the left by � by function
application, that is, by rotation about the origin. For each point m ∈ M , its
orbit is M and its stabiliser is the group of rotations about the line through the
origin and itself.

Furthermore, let m0 be the north pole (0, 0, 1)ᵀ of M and, for each point
m ∈ M , let gm0,m be a rotation about an axis in the (x, y)-plane that rotates
m0 to m. The stabiliser G0 of the north pole m0 under � is the group of rotations
about the z-axis. An element gG0 ∈ G/G0 semi-acts on a point m on the right
by the induced semi-action � by first changing the rotation axis of g such that
the new axis stands to the line through the origin and m as the old one stood
to the line through the origin and m0, gm0,mgg−1

m0,m, and secondly rotating m
as prescribed by this new rotation.

Moreover, let A be a curved circular disk of radius 3ρ with the north pole
m0 at its centre, let g be the rotation about an axis a in the (x, y)-plane by ρ
radians, let E be the set {g0gG0 | g0 ∈ G0}, and, for each point m ∈ M , let
Em be the set m � E. Because G0 is the set of rotations about the z-axis and
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m0 � E = gm0,m0G0g � m0 = G0 � (g � m0), the set Em0 is the boundary of a
curved circular disk of radius ρ with the north pole m0 at its centre. And, for
each point m ∈ M , because m � E = gm0,m � Em0 , the set Em is the boundary
of a curved circular disk of radius ρ with m at its centre.

The E-interior of A is the curved circular disk of radius 2ρ with the north
pole m0 at its centre. The E-closure of A is the curved circular disk of radius 4ρ
with the north pole m0 at its centre. And the E-boundary of A is the annulus
bounded by the boundaries of the E-interior and the E-closure of A.

Essential properties of and relations between interiors, closures, and bound-
aries are given in the next lemma. The upper bound given in its corollary follows
from the last part of Item 7.

Lemma 1. Let A be a subset of M , let {Ai}i∈I be a family of subsets of M , let
e be an element of G/G0, and let E and E′ be two subsets of G/G0.

1. A−{G0} = A, A+{G0} = A, and ∂{G0}A = ∅.
2. A−{G0,e} = A ∩ ( � e)−1(A), A+{G0,e} = A ∪ ( � e)−1(A), and ∂{G0,e}A =

A � ( � e)−1(A) ∪ ( � e)−1(A) � A.
3. (M � A)−E = M � A+E and (M � A)+E = M � A−E.
4. Let E ⊆ E′. Then, A−E ⊇ A−E′

, A+E ⊆ A+E′
, and ∂EA ⊆ ∂E′A.

5. Let G0 ∈ E. Then, A−E ⊆ A ⊆ A+E.
6. Let G0 ∈ E and let A be finite. Then, A−E is finite.
7. Let G0, A, and E be finite. Then, A+E and ∂EA are finite. More precisely,

|A+E | ≤ |G0| · |A| · |E|.
8. Let g ∈ G and let G0 ·E ⊆ E. Then, g�A−E = (g�A)−E, g�A+E = (g�A)+E,

and g � ∂EA = ∂E(g � A).
9. Let m ∈ M , let G0 · E ⊆ E, and let ι : M → G/G0, m �→ Gm0,m. Then,

m � ι(A−E) = (m � ι(A))−E, m � ι(A+E) = (m � ι(A))+E, and m � ι(∂EA) =
∂E(m � ι(A)).

Corollary 1. Let G0 be finite, let A be a finite subset of M , and let g be an
element of G/G0. Then, |( � g)−1(A)| ≤ |G0| · |A|.

The restriction Δ−
X,A of Δ given in Lemma 3 is well-defined according to the

next lemma, which itself holds due to the locality of Δ.

Lemma 2. Let C = (R, Q,N, δ) be a semi-cellular automaton, let Δ be the
global transition function of C, let c and c′ be two global configurations of C, and
let A be a subset of M . If c�A = c′�A, then Δ(c)�A−N = Δ(c′)�A−N .

Lemma 3. Let C = (R, Q,N, δ) be a semi-cellular automaton, let Δ be the
global transition function of C, let X be a subset of QM , and let A be a subset
of M . The map

Δ−
X,A : πA(X) → πA−N (Δ(X)),

p �→ Δ(c)�A−N , where c ∈ X such that c�A = p,

is surjective. The map Δ−
QM ,A

is denoted by Δ−
A.
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In the proof of Theorem 1, the upper bound given in Lemma 6 is essential,
which itself follows from the upper bound given in Corollary 1 and the inclusion
given in Lemma 5, which in turn follows from the equality given in Lemma 4.

Lemma 4. Let m be an element of M , and let g be an element of G/G0. There
is an element g ∈ g such that

∀g′ ∈ G/G0 : (m � g) � g′ = m � g · g′,

in particular, for said g ∈ g, we have (m � g) � g−1G0 = m.

Lemma 5. Let A and A′ be two subsets of M , and let g and g′ be two elements
of G/G0. Then, for each element m ∈ ( � g)−1(A) � ( � g′)−1(A′),

m � g ∈
⋃

g∈g

A � ( � g−1 · g′)−1(A′),

m � g′ ∈
⋃

g′∈g′
( � (g′)−1 · g)−1(A) � A′.

Lemma 6. Let G0 be finite, let F and F ′ be two finite subsets of M , and let g
and g′ be two elements of G/G0. Then,

|( � g)−1(F ) � ( � g′)−1(F ′)| ≤
⎧
⎨

⎩

|G0|2 · max
g∈g

|F � ( � g−1 · g′)−1(F ′)|,
|G0|2 · max

g′∈g′
|( � (g′)−1 · g)−1(F ) � F ′|.

Theorem 1. Let G0 be finite and let {Fi}i∈I be a net in {F ⊆ M | F �=
∅, F finite} indexed by (I,≤). The net {Fi}i∈I is a right Følner net in R if and
only if

∀E ⊆ G/G0 finite : lim
i∈I

|∂EFi|
|Fi| = 0.

Proof. First, let {Fi}i∈I be a right Følner net in R. Furthermore, let E ⊆ G/G0

be finite. Moreover, let i ∈ I. For each e ∈ E and each e′ ∈ E, put Ai,e,e′ =
( � e)−1(Fi) � ( � e′)−1(Fi). For each g ∈ G/G0, put Bi,g = Fi � ( � g)−1(Fi).
According to Definition 1,

∂EFi =
( ⋃

e∈E

( � e)−1(Fi)
)

�

( ⋂

e′∈E

( � e′)−1(Fi)
)

=
⋃

e,e′∈E

( � e)−1(Fi) � ( � e′)−1(Fi) =
⋃

e,e′∈E

Ai,e,e′ .

Hence, |∂EFi| ≤ ∑
e,e′∈E |Ai,e,e′ |.

According to Lemma 6, we have |Ai,e,e′ | ≤ |G0|2 ·maxg∈e Bi,g−1·e′ . Put E′ =
{g−1 · e′ | e, e′ ∈ E, g ∈ e}. Because E is finite, G0 is finite, and, for each e ∈ E,
we have |e| = |G0|, the set E′ is finite. Therefore,



72 S. Wacker

|∂EFi|
|Fi| ≤ 1

|Fi|
∑

e,e′∈E

|Ai,e,e′ | ≤ |G0|2
|Fi|

∑

e,e′∈E

max
g∈e

|Bi,g−1·e′ |

≤ |G0|2 · |E|2
|Fi| max

e′∈E′
|Bi,e′ | ≤ |G0|2 · |E|2 · max

e′∈E′

|Fi � ( � e′)−1(Fi)|
|Fi| →

i∈I
0.

In conclusion, limi∈I
|∂EFi|

|Fi| = 0.

Secondly, for each finite E ⊆ G/G0, let limi∈I
|∂EFi|

|Fi| = 0. Furthermore, let
i ∈ I, let e ∈ G/G0, and put E = {G0, e}. According to Item 2 of Lemma 1, we
have Fi � ( � e)−1(Fi) ⊆ ∂EFi. Therefore,

|Fi � ( � e)−1(Fi)|
|Fi| ≤ |∂EFi|

|Fi| →
i∈I

0.

In conclusion, {Fi}i∈I is a right Følner net in R. ��

2 Tilings

In this section, let R = ((M,G, �), (m0, {gm0,m}m∈M )) be a cell space.
In Definition 2 we introduce the notion of (E,E′)-tilings. In Theorem 2 we

show using Zorn’s lemma that, for each subset E of G/G0, there is an (E,E′)-
tiling. And in Lemma 7 we show that, for each (E,E′)-tiling with finite sets E
and E′, the net {|T ∩ F−E

i |}i∈I is asymptotic not less than {|Fi|}i∈I .

Definition 2. Let T be a subset of M , and let E and E′ be two subsets of G/
G0. The set T is called (E,E′)-tiling of R if and only if the family {t � E}t∈T

is pairwise disjoint and the family {t � E′}t∈T is a cover of M .

Remark 2. Let T be an (E,E′)-tiling of R. For each subset F of E and each
superset F ′ of E′ with F ′ ⊆ G/G0, the set T is an (F, F ′)-tiling of R. In
particular, the set T is an (E,E ∪ E′)-tiling of R.

Remark 3. In the situation of Remark 1, the notion of (E,E′)-tiling is the same
as the one defined in [1, Sect. 5.6, Paragraph 2].

Example 2. In the situation of Example 1, let E′ be the set {g(g′)−1G0 | e, e′ ∈
E, g ∈ e, g′ ∈ e′} (= {g0gg′

0g
−1G0 | g0, g

′
0 ∈ G0}) and, for each point m ∈ M ,

let E′
m = m � E′. Because g−1 is the rotation about the axis a by −ρ radians,

the set G0g
−1 � m0 is equal to Em0 and the set gG0g

−1 � m0 is equal to Eg�m0 .
Because m0 � E′ = gm0,m0G0gG0g

−1 � m0 = G0 � (gG0g
−1 � m0) = G0 � Eg�m0 ,

the set E′
m0

is the curved circular disk of radius 2ρ with the north pole m0 at
its centre. And, for each point m ∈ M , because m � E′ = gm0,m � E′

m0
, the set

E′
m is the curved circular disk of radius 2ρ with m at its centre.

If the radius ρ = π/2, then the circle Em0 is the equator and the curved
circular disk E′

m0
has radius π and is thus the sphere M , and hence the set

T = {m0} is an (E,E′)-tiling of R; if the radius ρ = π/4, then the curved
circular disks E′

m0
and E′

S , where S is the south pole, have radii π/2, thus they
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are hemispheres, and hence the set T = {m0, S} is an (E,E′)-tiling of R; if
the radius ρ = π/8, then the curved circular disks E′

m0
and E′

S have radii π/4,
and it can be shown with spherical geometry that the set T consisting of the
north pole m0, the south pole S, four equidistant points m1, m2, m3, and m4

on the equator, and the circumcentres c1, c2, . . . , c8 of the 8 smallest spherical
triangles with one vertex from {m0, S} and two vertices from {m1,m2,m3,m4}
(see Fig. 1).

Fig. 1. The points m0, S, m1, m2, m3, m4, c1, c2, . . . , c8 constitute an (E, E′)-tiling of
the sphere; the circles Em about these points are drawn solid; the boundaries of the
curved circular disks E′

m about these points are drawn dotted; the inclined circle about
g � m0 is the rotation Eg�m0 of Em0 by π/8 about the axis a; and the other inclined
circles are rotations g0 � (Eg�m0) of Eg�m0 about the z-axis, for a few g0 ∈ G0.

Theorem 2. Let E be a non-empty subset of G/G0. There is an (E,E′)-tiling
of R, where E′ = {g(g′)−1G0 | e, e′ ∈ E, g ∈ e, g′ ∈ e′}.
Proof. Let S = {S ⊆ M | {s � E}s∈S is pairwise disjoint}. Because {m0} ∈ S,
the set S is non-empty. Moreover, it is preordered by inclusion.

Let C be a chain in (S,⊆). Then,
⋃

S∈C S is an element of S and an upper
bound of C. According to Zorn’s lemma, there is a maximal element T in S. By
definition of S, the family {t � E}t∈T is pairwise disjoint.

Let m ∈ M . Because T is maximal and m � E is non-empty, there is a t ∈ T
such that (t�E)∩(m�E) �= ∅. Hence, there are e, e′ ∈ E such that t�e = m�e′.
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According to Lemma 4, there is a g′ ∈ e′ such that (m � e′) � (g′)−1G0 = m,
and there is a g ∈ e such that (t � e) � (g′)−1G0 = t � g(g′)−1G0. Therefore,
m = t�g(g′)−1G0. Because g(g′)−1G0 ∈ E′, we have m ∈ t�E′. Thus, {t�E′}t∈T

is a cover of M .
In conclusion, T is an (E,E′)-tiling of R. ��

Lemma 7. Let G0 be finite, let {Fi}i∈I be a right Følner net in R indexed by
(I,≤), let E and E′ be two finite subsets of G/G0, and let T be an (E,E′)-tiling
of R. There is a positive real number ε ∈ R>0 and there is an index i0 ∈ I such
that, for each index i ∈ I with i ≥ i0, we have |T ∩ F−E

i | ≥ ε|Fi|.

3 Entropies

In this section, let R = ((M,G, �), (m0, {gm0,m}m∈M )) be a right amenable cell
space, let C = (R, Q,N, δ) be a semi-cellular automaton, and let Δ be the global
transition function of C such that the stabiliser G0 of m0 under �, the set Q of
states, and the neighbourhood N are finite, and the set Q is non-empty.

In Definition 3 we introduce the entropy of a subset X of QM with respect
to a net {Fi}i∈I of non-empty and finite subsets of M , which is the asymptotic
growth rate of the number of finite patterns with domain Fi that occur in X.
In Lemma 8 we show that QM has entropy log |Q| and that entropy is non-
decreasing. In Theorem 3 we show that applications of global transition functions
of cellular automata on subsets of QM do not increase their entropy. And in
Lemma 9 we show that if for each point t of an (E,E′)-tiling not all patterns
with domain t � E occur in a subset of QM , then that subset has less entropy
than QM .

Definition 3. Let X be a subset of QM and let F = {Fi}i∈I be a net in {F ⊆
M | F �= ∅, F finite}. The non-negative real number

entF (X) = lim sup
i∈I

log |πFi
(X)|

|Fi|
is called entropy of X with respect to F .

Remark 4. In the situation of Remark 1, the notion of entropy is the same as
the one defined in [1, Definition 5.7.1].

Lemma 8. Let F = {Fi}i∈I be a net in {F ⊆ M | F �= ∅, F finite}. Then,
1. entF (QM ) = log |Q|;
2. ∀X ⊆ QM∀X ′ ⊆ QM :

(
X ⊆ X ′ =⇒ entF (X) ≤ entF (X ′)

)
;

3. ∀X ⊆ QM : entF (X) ≤ log |Q|.
In the remainder of this section, let F = {Fi}i∈I be a right Følner net in R

indexed by (I,≤).

Theorem 3. Let X be a subset of QM . Then, entF (Δ(X)) ≤ entF (X).
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Proof. Suppose, without loss of generality, that G0 ∈ N . Let i ∈ I. According
to Lemma 3, the map Δ−

X,Fi
: πFi

(X) → πF −N
i

(Δ(X)) is surjective. Therefore,
|πF −N

i
(Δ(X))| ≤ |πFi

(X)|. Because G0 ∈ N , according to Item 5 of Lemma 1,

we have F−N
i ⊆ Fi. Thus, πFi

(Δ(X)) ⊆ πF −N
i

(Δ(X)) × QFi�F −N
i . Hence,

log |πFi
(Δ(X))| ≤ log |πF −N

i
(Δ(X))| + log |QFi�F −N

i |
≤ log |πFi

(X)| + |Fi � F−N
i | · log |Q|.

Because G0 ∈ N , according to Item 5 of Lemma 1, we have Fi ⊆ F+N
i . Therefore,

Fi � F−N
i ⊆ F+N

i � F−N
i = ∂NFi. Because G0, Fi, and N are finite, according

to Item 7 of Lemma 1, the boundary ∂NFi is finite. Hence,

log |πFi
(Δ(X))|

|Fi| ≤ log |πFi
(X)|

|Fi| +
|∂NFi|
|Fi| log |Q|.

Therefore, because N is finite, according to Theorem 1,

entF (Δ(X)) ≤ lim sup
i∈I

log |πFi
(X)|

|Fi| +
(

lim
i∈I

|∂NFi|
|Fi|

)
· log |Q| = entF (X). ��

Lemma 9. Let Q contain at least two elements, let X be a subset of QM , let E
and E′ be two non-empty and finite subsets of G/G0, and let T be an (E,E′)-
tiling of R, such that, for each cell t ∈ T , we have πt�E(X) � Qt�E. Then,
entF (X) < log |Q|.
Corollary 2. Let Q contain at least two elements, let X be a �-invariant sub-
set of QM , and let E be a non-empty and finite subset of G/G0, such that
πm0�E(X) � Qm0�E. Then, entF (X) < log |Q|.

4 Gardens of Eden

In this section, let R = ((M,G, �), (m0, {gm0,m}m∈M )) be a right amenable
cell space and let C = (R, Q,N, δ) be a semi-cellular automaton such that the
stabiliser G0 of m0 under �, the set Q of states, and the neighbourhood N are
finite, and the set Q is non-empty. Furthermore, let Δ be the global transition
function of C, and let F = {Fi}i∈I be a right Følner net in R indexed by (I,≤).

In Theorem 4 we show that if Δ is not surjective, then the entropy of its image
is less than the entropy of QM . And the converse of that statement obviously
holds. In Theorem 5 we show that if the entropy of the image of Δ is less than
the entropy of QM , then Δ is not pre-injective. And in Theorem 6 we show the
converse of that statement. These four statements establish the Garden of Eden
theorem, see Main Theorem 1.

Definition 4. Let c and c′ be two maps from M to Q. The set diff(c, c′) = {m ∈
M | c(m) �= c′(m)} is called difference of c and c′.
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Definition 5. The map Δ is called pre-injective if and only if, for each tuple
(c, c′) ∈ QM ×QM such that diff(c, c′) is finite and Δ(c) = Δ(c′), we have c = c′.

In the proof of Theorem 4, the existence of a Garden of Eden pattern, as
stated in Lemma 10, is essential, which itself follows from the existence of a
Garden of Eden configuration, the compactness of QM , and the continuity of Δ.

Definition 6. 1. Let c : M → Q be a global configuration. It is called Garden
of Eden configuration if and only if it is not contained in Δ(QM ).

2. Let p : A → Q be a pattern. It is called Garden of Eden pattern if and only
if, for each global configuration c ∈ QM , we have Δ(c)�A �= p.

Remark 5. 1. The global transition function Δ is surjective if and only if there
is no Garden of Eden configuration.

2. If p : A → Q is a Garden of Eden pattern, then each global configuration
c ∈ QM with c�A = p is a Garden of Eden configuration.

3. If there is a Garden of Eden pattern, then Δ is not surjective.

Lemma 10. Let Δ not be surjective. There is a Garden of Eden pattern with
non-empty and finite domain.

Theorem 4. Let δ be •-invariant, let Q contain at least two elements, and let
Δ not be surjective. Then, entF (Δ(QM )) < log |Q|.
Proof. According to Lemma 10, there is a Garden of Eden pattern p : F → Q
with non-empty and finite domain. Let E = (m0 � )−1(F ). Then, m0 � E = F
and, because � is free, |E| = |F | < ∞. Because p is a Garden of Eden pattern,
p /∈ πm0�E(Δ(QM )). Hence, πm0�E(Δ(QM )) � Qm0�E . Moreover, according to
[5, Item 1 of Theorem 2], the map Δ is �-equivariant. Hence, for each g ∈ G, we
have g �Δ(QM ) = Δ(g �QM ) = Δ(QM ). In other words, Δ(QM ) is �-invariant.
Thus, according to Corollary 2, we have entF (Δ(QM )) < log |Q|. ��

In the proof of Theorem 5, the fact that enlarging each element of F does
not increase entropy, as stated in the next lemma, is essential.

Lemma 11. Let X be a subset of QM and let E be a finite subset of G/G0 such
that G0 ∈ E. Then, ent{F+E

i }i∈I
(X) ≤ entF (X).

Theorem 5. Let entF (Δ(QM )) < log |Q|. Then, Δ is not pre-injective.

Proof. Suppose, without loss of generality, that G0 ∈ N . Let X = Δ(QM ).
According to Lemma 11, we have ent{F+N

i }i∈I
(X) ≤ entF (X) < log |Q|. Hence,

there is an i ∈ I such that

log |πF+N
i

(X)|
|Fi| < log |Q|.

Thus, |πF+N
i

(X)| < |Q||Fi|. Furthermore, let q ∈ Q and let X ′ = {c ∈ QM |
c�M�Fi

≡ q}. Then, |Q||Fi| = |X ′|. Hence, |πF+N
i

(X)| < |X ′|. Moreover, accord-

ing to Item 3 of Lemma 1, we have (M � Fi)−N = M � F+N
i . Hence, for each
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(c, c′) ∈ X ′ ×X ′, according to Lemma 2, we have Δ(c)�M�F+N
i

= Δ(c′)�M�F+N
i

.
Therefore,

|Δ(X ′)| = |πF+N
i

(Δ(X ′))| ≤ |πF+N
i

(Δ(QM ))| = |πF+N
i

(X)| < |X ′|.

Hence, there are c, c′ ∈ X ′ such that c �= c′ and Δ(c) = Δ(c′). Thus, because
diff(c, c′) ⊆ Fi is finite, the map Δ is not pre-injective. ��

In the proof of Theorem 6, the statement of Lemma 12 is essential, which says
that if two distinct patterns have the same image and we replace each occurrence
of the first by the second in a configuration, we get a new configuration in which
the first pattern does not occur and that has the same image as the original one.

Definition 7. Identify M with G/G0 by ι : m �→ Gm0,m. Let

� : M ×
⋃

A⊆M

QA →
⋃

A⊆M

QA, (m, p) �→
[

m � dom(p) → Q,

m � a �→ p(a).

]

Remark 6. Let A be a subset of M , let p be map from A to Q, and let m be an
element of M . Then, m � p = gm0,m � p.

Definition 8. Identify M with G/G0 by ι : m �→ Gm0,m, let A be a subset of
M , let p be map from A to Q, let c be map from M to Q, let m be an element
of M . The pattern p is said to occur at m in c and we write p �m c if and only
if m � p = c�m�A.

Lemma 12. Identify M with G/G0 by ι : m �→ Gm0,m, let A be a subset of M ,
let N ′ be the subset {g−1 · n′ | n, n′ ∈ N, g ∈ n} of G/G0, and let p and p′ be
two maps from A+N ′

to Q such that p�A+N′
�A = p′�A+N′

�A and Δ−
A+N′ (p) =

Δ−
A+N′ (p′). Furthermore, let c be a map from M to Q and let S be a subset of

M , such that the family {s � A+N ′}s∈S is pairwise disjoint and, for each cell
s ∈ S, we have p �s c. Put

c′ = c�M�(
⋃

s∈S s�A+N′ ) ×
∐

s∈S

s � p′.

Then, for each cell s ∈ S, we have p′ �s c′, and Δ(c) = Δ(c′). In particular, if
p �= p′, then, for each cell s ∈ S, we have p ��s c′.

Theorem 6. Let δ be •-invariant, let Q contain at least two elements, and let
Δ not be pre-injective. Then, entF (Δ(QM )) < log |Q|.
Proof. Suppose, without loss of generality, that G0 ∈ N . Identify M with G/
G0 by ι : m �→ Gm0,m. Because Δ is not pre-injective, there are c, c′ ∈ QM

such that diff(c, c′) is finite, Δ(c) = Δ(c′), and c �= c′. Put A = diff(c, c′), put
N ′ = {g−1 ·n′ | n, n′ ∈ N, g ∈ n}, put E = A+N ′

, and put p = c�E and p′ = c′�E .
Because Δ(c) = Δ(c′), we have Δ−

A+N′ (p) = Δ−
A+N′ (p′).
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Because N is finite and, for each n ∈ N , we have |n| = |G0| < ∞, the set
N ′ is finite. Moreover, G0 · N ′ ⊆ N ′. According to Item 5 of Lemma 1, because
G0 ∈ N ′ and A �= ∅, we have E ⊇ A and hence E is non-empty. According
to Item 7 of Lemma 1, because G0, A, and N ′ are finite, so is E. Because E
is non-empty, according to Theorem 2, there is a subset E′ of G/G0 and an
(E,E′)-tiling T of R. Because G0 and E are non-empty and finite, so is E′.

Let Y = {y ∈ QM | ∀t ∈ T : p ��t y}. For each t ∈ T , we have t�p /∈ πt�E(Y )
and therefore πt�E(Y ) � Qt�E . According to Lemma 9, we have entF (Y ) <
log |Q|. Hence, according to Theorem 3, we have entF (Δ(Y )) < log |Q|.

Let x ∈ QM . Put S = {t ∈ T | p �t x}. According to Lemma 12, there is an
x′ ∈ QM such that x′ ∈ Y and Δ(x) = Δ(x′). Therefore, Δ(QM ) = Δ(Y ). In
conclusion, entF (QM ) < log |Q|. ��
Main Theorem 1 (Garden of Eden theorem; Edward Forrest Moore,
1962; John R. Myhill, 1963). Let M = (M,G, �) be a right amenable left
homogeneous space with finite stabilisers and let Δ be the global transition func-
tion of a cellular automaton over M with finite set of states and finite neigh-
bourhood. The map Δ is surjective if and only if it is pre-injective.

Proof. There is a coordinate system K = (m0, {gm0,m}m∈M ) such that the cell
space R = (M,K) is right amenable. Moreover, according to [5, Theorem 1],
there is a cellular automaton C = (R, Q,N, δ) such that Q and N are finite and
Δ is its global transition function.

In the case that |Q| ≤ 1, the proof is trivial. Let it be the case that |Q| > 1.
According to Theorem 4 and Item 1 of Lemma 8, the map Δ is not surjective
if and only if entF (Δ(QM )) < log |Q|. And, according to Theorems 5 and 6, we
have entF (Δ(QM )) < log |Q| if and only if Δ is not pre-injective. Hence, Δ is
not surjective if and only if it is not pre-injective. In conclusion, Δ is surjective
if and only if it is pre-injective. ��
Remark 7. In the situation of Remark 1, Main Theorem 1 is [1, Theorem 5.3.1].
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