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Abstract. We prove the Garden of Eden theorem for cellular automata
with finite set of states and finite neighbourhood on right amenable left
homogeneous spaces with finite stabilisers. It states that the global tran-
sition function of such an automaton is surjective if and only if it is
pre-injective. Pre-Injectivity means that two global configurations that
differ at most on a finite subset and have the same image under the
global transition function must be identical.
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The notion of amenability for groups was introduced by John von Neumann in
1929. Tt generalises the notion of finiteness. A group G is left or right amenable
if there is a finitely additive probability measure on P(G) that is invariant under
left and right multiplication respectively. Groups are left amenable if and only
if they are right amenable. A group is amenable if it is left or right amenable.

The definitions of left and right amenability generalise to left and right group
sets respectively. A left group set (M, G,p) is left amenable if there is a finitely
additive probability measure on P(M) that is invariant under . There is in
general no natural action on the right that is to a left group action what right
multiplication is to left group multiplication. Therefore, for a left group set there
is no natural notion of right amenability.

A transitive left group action > of G on M induces, for each element mg € M
and each family {g,,m }menm of elements in G such that, for each point m € M,
we have g, m >mo = m, a right quotient set semi-action < of G/Gy on M with
defect Gg given by m < gGy = gmo,mgg,;é’m > m, where Gy is the stabiliser of
mg under >. Each of these right semi-actions is to the left group action what
right multiplication is to left group multiplication. They occur in the definition
of global transition functions of cellular automata over left homogeneous spaces
as defined in [5]. A cell space is a left group set together with choices of mg and
{gmo,m}m€M~

A cell space R is right amenable if there is a finitely additive probability
measure on P (M) that is semi-invariant under <. For example cell spaces with
finite sets of cells, abelian groups, and finitely right generated cell spaces of
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sub-exponential growth are right amenable, in particular, quotients of finitely
generated groups of sub-exponential growth by finite subgroups acted on by left
multiplication. A net of non-empty and finite subsets of M is a right Falner net
if, broadly speaking, these subsets are asymptotically invariant under <. A finite
subset E of G/Gy and two partitions {Ac}ecr and {B.}ecr of M constitute
a right paradozical decomposition if the map _ < e is injective on A, and B,
and the family {(A. <e) U (B. <e)}ecr is a partition of M. The Tarski-Fglner
theorem states that right amenability, the existence of right Fglner nets, and the
non-existence of right paradoxical decompositions are equivalent. We prove it in
[6] for cell spaces with finite stabilisers.

For a right amenable cell space with finite stabilisers we may choose a right
Fglner net F = {F;};cs. The entropy of a subset X of Q™ with respect to F,
where @ is a finite set, is, broadly speaking, the asymptotic growth rate of the
number of finite patterns with domain F; that occur in X. For subsets E and E’
of G/Gy, an (E, E')-tiling is a subset T' of M such that {t < E},cr is pairwise
disjoint and {t < E'};cr is a cover of M. If for each point ¢ € T not all patterns
with domain ¢ < E occur in a subset of @™, then that subset does not have
maximal entropy.

The global transition function of a cellular automaton with finite set of states
and finite neighbourhood over a right amenable cell space with finite stabilisers,
as introduced in [5], is surjective if and only if its image has maximal entropy and
it is pre-injective if and only if its image has maximal entropy. This establishes
the Garden of Eden theorem, which states that a global transition function as
above is surjective if and only if it is pre-injective. This answers a question posed
by Sébastien Moriceau at the end of his paper ‘Cellular Automata on a G-Set’ [4].

The Garden of Eden theorem for cellular automata over Z? is a famous
theorem by Edward Forrest Moore and John R. Myhill from 1962 and 1963, see
the papers ‘Machine models of self-reproduction’ [2] and ‘The converse of Moore’s
Garden-of-Eden theorem’ [3]. This paper is greatly inspired by the monograph
‘Cellular Automata and Groups’ [1] by Tullio Ceccherini-Silberstein and Michel
Coornaert.

In Sect. 1 we introduce E-interiors, E-closures, and E-boundaries of subsets
of M. In Sect. 2 we introduce (E, E’)-tilings of cell spaces. In Sect. 3 we introduce
entropies of subsets of Q™. And in Sect. 4 we prove the Garden of Eden theorem.

Preliminary Notions. A left group set is a triple (M, G,1>), where M is a set,
G is a group, and > is a map from G x M to M, called left group action of G on
M, such that G — Sym(M), g — [g>], is a group homomorphism. The action >
is transitive if M is non-empty and for each m € M the map _>m is surjective;
and free if for each m € M the map _>m is injective. For each m € M, the set
G >m is the orbit of m, the set G,,, = (_>m)~1(m) is the stabiliser of m, and,
for each m’ € M, the set Gy, ;s = (->m)~1(m/) is the transporter of m to m/.

A left homogeneous space is a left group set M = (M, G,>) such that > is
transitive. A coordinate system for M is a tuple KK = (mo, {gmg,m fmenm ), where
mg € M and for each m € M we have gm, m > mo = m. The stabiliser G, is
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denoted by Gy. The tuple R = (M, K) is a cell space. The set {¢gGy | g € G}
of left cosets of Gy in G is denoted by G/Gy. The map <: M x G/Gy — M,
(m, gGo) — ng’mgg;LLm >mM (= Gmg,mg > Mo) Is a right semi-action of G/Gy
on M with defect Gy, which means that

VYme M :m<Gyg=m,
Vm € MVg € G3go € Go :Vg' € G/Gy:m<g-g = (m<gGo)<go-g-

It is transitive, which means that the set M is non-empty and for each m € M
the map m < _is surjective; and free, which means that for each m € M the map
m < _ is injective; and semi-commutes with >, which means that

Vm € MVg € G3go € Go :Vg' € G/Gy: (g>m) <g =g (m<go-g).

The maps ¢: M — G/Go, m — Gpmym, and mg < _ are inverse to each other.
Under the identification of M with G/Go by either of these maps, we have
<: (M, 8) = Gme,m > 8-

A left homogeneous space M is right amenable if there is coordinate system
K for M and there is a finitely additive probability measure p on M such that

Vg € G/GoVA C M : ((-<g)l, injective = p(A<g) = u(A)),

in which case the cell space R = (M, K) is called right amenable. When the
stabiliser Gy is finite, that is the case if and only if there is a right Folner net
in R indexed by (I,<), which is a net {F;};c; in {FF C M | F # ), F finite}
such that
[Fi~ (-<9)”'(F)]
| E|

A semi-cellular automaton is a quadruple C = (R, @, N, d), where R is a cell
space; @, called set of states, is a set; N, called neighbourhood, is a subset of G/
Gy such that Go - N C N; and 4, called local transition function, is a map from
QN to Q. A local configuration is a map £ € QN , a global configuration is a map
c e QM and a pattern is a map p € Q*, where A is a subset of M. The stabiliser
Go acts on QN on the left by e: Go x QN — QN (go,£) — [n+ £(gy ' -n)], and
the group G acts on the set of patterns on the left by

»: G x U QA — U Q4,
ACM ACM

g5 dom(p) — Q.
m i plg~" o m).

=0.

Vg € G/Go : lzlen}

(9,p) —

The global transition function of C is the map A: QM — QM| ¢+ [m — §(n —
e(m < n))].

A cellular automaton is a semi-cellular automaton C = (R, @, N, ) such that
0 is e-invariant, which means that, for each go € Go, we have §(gpe-) = §(-). Its
global transition function is »-equivariant, which means that, for each g € G,
we have A(gw» ) = g» A().

For each A C M, let ma: Q™ — Q4, ¢+ c[ 4.
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1 Interiors, Closures, and Boundaries

In this section, let R = ((M, G,>), (mo, {gme,m }menrr)) be a cell space.

In Definition 1 we introduce FE-interiors, E-closures, and E-boundaries of
subsets of M. In Lemma 3 we define surjective restrictions Ay , of global tran-
sition functions to patterns. And in Theorem 1 we show that right Fglner nets
are those nets whose components are asymptotically invariant under taking finite
boundaries.

Definition 1. Let A be a subset of M and let E be a subset of G/Gy.

1. The set

AP ={meM|m<ECA} (= ﬂ U(,ée)_l(a))

ecFEacA
18 called E-interior of A.
2. The set
AP =fmeM|m<E)nA£0} (= J(C2e) ()
ecFEacA

is called E-closure of A.
3. The set OpA = AYE < A=F is called E-boundary of A.

Remark 1. Let R be the cell space ((G,G,-), (eq,{9}4ec)), where G is a group
and eq is its neutral element. Then, Gy = {eg} and < = -. Hence, the notions
of E-interior, E-closure, and E-boundary are the same as the ones defined in [1,
Sect. 5.4, Paragraph 2].

Ezample 1. Let M be the Euclidean unit 2-sphere, that is, the surface of the ball
of radius 1 in 3-dimensional Euclidean space, and let G be the rotation group.
The group G acts transitively but not freely on M on the left by > by function
application, that is, by rotation about the origin. For each point m € M, its
orbit is M and its stabiliser is the group of rotations about the line through the
origin and itself.

Furthermore, let mq be the north pole (0,0,1)T of M and, for each point
m € M, let gm, m be a rotation about an axis in the (z,y)-plane that rotates
mg to m. The stabiliser G of the north pole m( under > is the group of rotations
about the z-axis. An element gGo € G/G( semi-acts on a point m on the right
by the induced semi-action < by first changing the rotation axis of g such that
the new axis stands to the line through the origin and m as the old one stood
to the line through the origin and my, gmoymggfnéym, and secondly rotating m
as prescribed by this new rotation.

Moreover, let A be a curved circular disk of radius 3p with the north pole
mo at its centre, let g be the rotation about an axis @ in the (z,y)-plane by p
radians, let E be the set {gogGo | go € Go}, and, for each point m € M, let
FE,, be the set m < E. Because Gy is the set of rotations about the z-axis and
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mo CE = gmy,meGog >mo = Go > (g >myg), the set E,,, is the boundary of a
curved circular disk of radius p with the north pole mg at its centre. And, for
each point m € M, because m < E = ¢py.m > By, the set Ey, is the boundary
of a curved circular disk of radius p with m at its centre.

The E-interior of A is the curved circular disk of radius 2p with the north
pole mg at its centre. The E-closure of A is the curved circular disk of radius 4p
with the north pole mg at its centre. And the E-boundary of A is the annulus
bounded by the boundaries of the E-interior and the E-closure of A.

Essential properties of and relations between interiors, closures, and bound-
aries are given in the next lemma. The upper bound given in its corollary follows
from the last part of Item 7.

Lemma 1. Let A be a subset of M, let {A;}icr be a family of subsets of M, let
e be an element of G/Gq, and let E and E' be two subsets of G/Gy.

1. A~{Gok = 4, ATCo} = A, and 9yg, A = 0.

2. A~{Goet = AN (_< e)’l(A), AHGoel = AU (L<e) H(A), and O;g, 01 A =
A\(,ﬂe) HA) U (L<ge)1(A) N A

3. (MNA)F =M< ATF and (M\A)*E M~ A7E,

4. Let EC E'. Then, A=F D A~E' AYE C ATE' and 8EA COop A

5. Let Gy € E. Then, A=F C A C ATF,

6. Let Gy € E and let A be finite. Then, A=F is finite.

7. Let Gy, A, and E be finite. Then, ATF and OpA are finite. More precisely,
AFE| < [Go| - |A] - |E].

8. Letg € G andlet Go-E C E. Then, gv A~F = (g A)~F, gp ATF = (gp A)TF
and g 0gA = 0g(g> A).

9. Let m € M, let Go- E C E, and let .: M — G/Gy, m — Gpym. Then,
m<(AE) = (m<u(A)7F, m<u(ATE) = (m<u(A)E, and m <(0gA) =
Op(m <u(A)).

Corollary 1. Let Gy be finite, let A be a finite subset of M, and let g be an
element of G/Go. Then, |(-<g) 1 (A)| < |Gol - |Al.

The restriction Ay 4 of A given in Lemma 3 is well-defined according to the
next lemma, which itself holds due to the locality of A.

Lemma 2. Let C = (R,Q,N,0) be a semi-cellular automaton, let A be the
global transition function of C, let ¢ and ¢’ be two global configurations of C, and

let A be a subset of M. If ¢l 4 = T4, then A(c)] 4-n = A()] p=n-

Lemma 3. Let C = (R,Q,N,0) be a semi-cellular automaton, let A be the
global transition function of C, let X be a subset of Q™, and let A be a subset
of M. The map

Ay ma(X) = ma-~ (A(X)),
p— Alc)| 4=~, where ¢ € X such that c[ 4 = p,

is surjective. The map A(E)M,A is denoted by A .
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In the proof of Theorem 1, the upper bound given in Lemma 6 is essential,
which itself follows from the upper bound given in Corollary 1 and the inclusion
given in Lemma 5, which in turn follows from the equality given in Lemma 4.

Lemma 4. Let m be an element of M, and let g be an element of G/Gy. There
is an element g € g such that

Vo' € G/Go: (m<g)<g =m<g- g,
in particular, for said g € g, we have (m<g)<g~'Go = m.

Lemma 5. Let A and A’ be two subsets of M, and let g and g’ be two elements
of G/Gy. Then, for each element m € (_<g) " (A)~ (-<g')"1(A),

mage|JAN(egtd) (A,
geg

mag e |J(Ca(@) e (AN A,

Lemma 6. Let Gy be finite, let F and F' be two finite subsets of M, and let g
and g’ be two elements of G/Go. Then,

|Gol* - max|F ~ (-<g™" - g") 7 (F)],

_<g) M) N (Leg)THF) < =8

Lo )N Cog) N <] e
g'eg’

Theorem 1. Let Gy be finite and let {F;}ier be a net in {F C M | F #

0, F finite} indexed by (I,<). The net {F;}icr is a right Folner net in R if and

only if OnF
Bl

=0.
|Fi]

VE C G/Gy finite : henll

Proof. First, let {F;};cr be a right Felner net in R. Furthermore, let E C G/Gg
be finite. Moreover, let ¢ € I. For each e € E and each ¢’ € E, put 4; . =
(-<e) Y F;) \ (-<€e)"I(F;). For each g € G/Gy, put B; g = F; \ (-<g) ' (F;).
According to Definition 1,

opF = (UC=o(m) ~ (N Cee) ()

ecE

€
= U (7&1 e)_l(Fi> N (7&1 e/)_l(Fi) = U Ai,e,e’-
ee’'cE ee'cE
Hence, |0pFi| <. ocp|Aieer|-
According to Lemma 6, we have |4; . /| < |Go|? - maxge, B; 4-1.c. Put E' =
{g7t-¢'|e,e € E,g € e}. Because E is finite, Gy is finite, and, for each e € E,
we have |e| = |Gg|, the set E’ is finite. Therefore,
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0 F 2
i \ Z A < T2 4|| S max|Bygrl
ee'€lE v ee' €k g
\G0|2 : \E|2 2 2 |Fi~ (<)~ (F)
< B < E|=-
< T erpax\ ier| < 1Gol” - |E| max ] =0
In conclusion, lim;e; |8|’§1?| =0

|6EF|

Secondly, for each finite E C G/Gy, let lim;e; = 0. Furthermore, let

1 €1, let e € G/Gy, and put E = {Gy, e}. According to Item 2 of Lemma 1, we
have F; \ (_<e)~}(F;) C OgF;. Therefore,

) -1/ )
[Fi~ (<o) (F)| _ [9ski]
| E3| — |F| ier

In conclusion, {F;}ier is a right Fglner net in R. O

2 Tilings

In this section, let R = (M, G,>), (Mo, {gme,m }menr)) be a cell space.

In Definition 2 we introduce the notion of (E, E’)-tilings. In Theorem 2 we
show using Zorn’s lemma that, for each subset F of G/Gj, there is an (F, E')-
tiling. And in Lemma 7 we show that, for each (E, E’)-tiling with finite sets E
and E', the net {|T N F; ®|};c; is asymptotic not less than {|F;|}icr.

Definition 2. Let T be a subset of M, and let E and E’ be two subsets of G/
Go. The set T is called (E, E')-tiling of R if and only if the family {t < E}ier
is pairwise disjoint and the family {t < E'}icr is a cover of M.

Remark 2. Let T be an (E, E')-tiling of R. For each subset F' of E and each
superset I’ of E’ with F' C G/Gy, the set T is an (F, F')-tiling of R. In
particular, the set T is an (F, E U E’)-tiling of R.

Remark 8. In the situation of Remark 1, the notion of (F, E’)-tiling is the same
as the one defined in [1, Sect. 5.6, Paragraph 2.

Ezample 2. In the situation of Example 1, let E’ be the set {g(¢’)"'Go | e,€’ €
E,g€eg €¢'} (= {90999 *Go | 90,9, € Go}) and, for each point m € M,
let B/ = m < E’. Because g~ ! is the rotation about the axis a by —p radians,
the set Gog~' >my is equal to E,,, and the set gGog~! > myg is equal to Egppp, -
Because mg < E' = gimg.moGogGog ™! >mo = Go > (9Gog™ ' >mg) = Go > Egomgs
the set E], is the curved circular disk of radius 2p with the north pole mq at
its centre. And, for each point m € M, because m < E' = gy m > Emo, the set
E!. is the curved circular disk of radius 2p with m at its centre.

If the radius p = 7/2, then the circle E,,, is the equator and the curved
circular disk £j, has radius 7 and is thus the sphere M, and hence the set
T = {mp} is an (E, E')-tiling of R; if the radius p = 7 /4, then the curved
circular disks E;, and EY, where S is the south pole, have radii 7/2, thus they
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are hemispheres, and hence the set T = {my, S} is an (E, E')-tiling of R; if
the radius p = 7/8, then the curved circular disks £, and E§ have radii 7/4,
and it can be shown with spherical geometry that the set T' consisting of the
north pole mg, the south pole S, four equidistant points my, meo, ms, and my
on the equator, and the circumcentres ¢y, co, ..., cg of the 8 smallest spherical
triangles with one vertex from {mg, S} and two vertices from {my, ma, ms, mq}
(see Fig.1).

Fig. 1. The points mo, S, m1, ms, m3, ma4, c1,C2,...,cs constitute an (E, E')-tiling of
the sphere; the circles E,, about these points are drawn solid; the boundaries of the
curved circular disks E},, about these points are drawn dotted; the inclined circle about
g > myg is the rotation Egpm, of Em, by m/8 about the axis a; and the other inclined
circles are rotations go > (Egsm,) 0f Egsm, about the z-axis, for a few go € Go.

Theorem 2. Let E be a non-empty subset of G/Gqo. There is an (E, E')-tiling
of R, where E' = {g(¢')"'Go | e,e’ € E,g € e,g' €€}

Proof. Let § = {S C M | {s € E}scs is pairwise disjoint}. Because {mg} € S,
the set § is non-empty. Moreover, it is preordered by inclusion.

Let C be a chain in (S, C). Then, (Jgce S is an element of S and an upper
bound of C. According to Zorn’s lemma, there is a maximal element 7" in S. By
definition of S, the family {t < E};cr is pairwise disjoint.

Let m € M. Because T' is maximal and m < E is non-empty, there isa t € T
such that (t<E)N(m<E) # (. Hence, there are e, ¢/ € F such that t<e = m<e¢’.
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According to Lemma 4, there is a ¢’ € €’ such that (m <¢€’) < (¢')"1Gy = m,
and there is a g € e such that (t <e) < (¢')"'Go = t < g(¢’)'Gp. Therefore,
m = t<g(g')"1Go. Because g(¢') "1Go € E’, we have m € t<E'. Thus, {t<FE’ }teT
is a cover of M.

In conclusion, T is an (F, E')-tiling of R. O

Lemma 7. Let Gq be finite, let {F;},cr be a right Folner net in R indexed by
(I,<), let E and E’ be two finite subsets of G/Gy, and let T be an (E, E")-tiling
of R. There is a positive real number € € R and there is an index ig € I such
that, for each index i € I with i > ig, we have |T N F; %] > ¢|Fy|.

3 Entropies

In this section, let R = (M, G,>), (Mo, {gme.m }menrr)) be a right amenable cell
space, let C = (R, @, N, d) be a semi-cellular automaton, and let A be the global
transition function of C such that the stabiliser Go of mg under >, the set @ of
states, and the neighbourhood N are finite, and the set () is non-empty.

In Definition 3 we introduce the entropy of a subset X of Q™ with respect
to a net {F;};cr of non-empty and finite subsets of M, which is the asymptotic
growth rate of the number of finite patterns with domain F; that occur in X.
In Lemma 8 we show that Q™ has entropy log|Q| and that entropy is non-
decreasing. In Theorem 3 we show that applications of global transition functions
of cellular automata on subsets of @™ do not increase their entropy. And in
Lemma 9 we show that if for each point ¢ of an (F, E’)-tiling not all patterns
with domain ¢ < E occur in a subset of @™, then that subset has less entropy
than Q™.

Definition 3. Let X be a subset of QM and let F = {F;}ics be a net in {F C
M | F # 0, F finite}. The non-negative real number

1 (X
entx(X) = limsup log |mr, (X)]
icl | F]

is called entropy of X with respect to F.

Remark 4. In the situation of Remark 1, the notion of entropy is the same as
the one defined in [1, Definition 5.7.1].

Lemma 8. Let F = {F;}icr be a net in {F C M | F # 0, F finite}. Then,
1. entx(QM) =log|Q|;

2. VX CQMYX' C QM : (X C X' = entz(X) <entr(X'));

3. VX C QM :entr(X) < log|Q|.

In the remainder of this section, let F = {F;};es be a right Fglner net in R
indexed by (I, <).

Theorem 3. Let X be a subset of QM. Then, entz(A(X)) < entr(X).
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Proof. Suppose, without loss of generality, that Gy € N. Let ¢ € I. According
to Lemma 3, the map Ay p: 7, (X) — 7~ (A(X)) is surjective. Therefore,
|7 -~ (A(X))] < |7F, (X)]. Because Gy € N, according to Item 5 of Lemma 1,

we have F, ™ C F;. Thus, 7r, (A(X)) C 7~ (A(X)) x QF~F " Hence,

NG ‘_N
log |75, (A(X))] < log |-~ (A(X))] + log|Q7 > |
<log|mp, (X)| +|F; ~ F7 V] - log|Q).
Because Gy € N, according to Item 5 of Lemma 1, we have F; C F;rN . Therefore,

F; F;N - FfN N F;N = On F;. Because Gg, F;, and N are finite, according
to Item 7 of Lemma 1, the boundary Oy F; is finite. Hence,

log |77, (A(X))| _ log|mr, (X)) N |On Fi
| Fi - | F3 |F;|

log |Q.

Therefore, because N is finite, according to Theorem 1,

gt (O, (i, 001

entr(A(X)) < limsup lim ]

iel |Fz|
Lemma 9. Let Q contain at least two elements, let X be a subset of QM , let E
and E’ be two non-empty and finite subsets of G/Gy, and let T be an (E, E')-

tiling of R, such that, for each cell t € T, we have mop(X) S Q'F. Then,
entr(X) < log|Q)|.

) log|Q| =entx(X). O

Corollary 2. Let @ contain at least two elements, let X be a »-invariant sub-
set of QM, and let E be a non-empty and finite subset of G/Gy, such that
Tmear(X) G Q™. Then, entr(X) < log|Q)|.

4 (Gardens of Eden

In this section, let R = ((M,G,>), (mo,{Gme,m mer)) be a right amenable
cell space and let C = (R,Q, N, d) be a semi-cellular automaton such that the
stabiliser Gy of mg under >, the set @ of states, and the neighbourhood N are
finite, and the set @ is non-empty. Furthermore, let A be the global transition
function of C, and let F = {F;};c; be a right Fglner net in R indexed by (I, <).

In Theorem 4 we show that if A is not surjective, then the entropy of its image
is less than the entropy of Q™. And the converse of that statement obviously
holds. In Theorem 5 we show that if the entropy of the image of A is less than
the entropy of QM| then A is not pre-injective. And in Theorem 6 we show the
converse of that statement. These four statements establish the Garden of Eden
theorem, see Main Theorem 1.

Definition 4. Let ¢ and ¢’ be two maps from M to Q. The set diff (¢, ') = {m €
M | ¢(m) # ¢ (m)} is called difference of ¢ and ¢'.
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Definition 5. The map A is called pre-injective if and only if, for each tuple
(e,c) € QM x QM such that diff (¢, ) is finite and A(c) = A(c), we have c = ¢’.

In the proof of Theorem 4, the existence of a Garden of Eden pattern, as
stated in Lemma 10, is essential, which itself follows from the existence of a
Garden of Eden configuration, the compactness of @, and the continuity of A.

Definition 6. 1. Let c: M — @ be a global configuration. It is called Garden
of Eden configuration if and only if it is not contained in A(QM).

2. Let p: A — Q be a pattern. It is called Garden of Eden pattern if and only
if, for each global configuration ¢ € QM , we have A(c)| 4 # p-

Remark 5. 1. The global transition function A is surjective if and only if there
is no Garden of Eden configuration.

2. If p: A — @ is a Garden of Eden pattern, then each global configuration
c € QM with c] 4, = p is a Garden of Eden configuration.

3. If there is a Garden of Eden pattern, then A is not surjective.

Lemma 10. Let A not be surjective. There is a Garden of Eden pattern with
non-empty and finite domain.

Theorem 4. Let 6 be e-invariant, let () contain at least two elements, and let
A not be surjective. Then, ent(A(QM)) < log|Q|.

Proof. According to Lemma 10, there is a Garden of Eden pattern p: F — @
with non-empty and finite domain. Let E = (mg < _)~*(F). Then, mg<E = F
and, because < is free, |E| = |F| < oco. Because p is a Garden of Eden pattern,
P ¢ Tmoar(A(QM)). Hence, Tm,«p(AQY)) S Qm0%F. Moreover, according to
[5, Item 1 of Theorem 2], the map A is »-equivariant. Hence, for each g € G, we
have g» A(QM) = A(gw» QM) = A(Q™M). In other words, A(Q™M) is »-invariant.
Thus, according to Corollary 2, we have entz(A(QM)) < log |Q|. O

In the proof of Theorem 5, the fact that enlarging each element of F does
not increase entropy, as stated in the next lemma, is essential.

Lemma 11. Let X be a subset of QM and let E be a finite subset of G /G such
that Gy € E. Then, ent{FgrE}iel(X) <entr(X).
Theorem 5. Let entr(A(QM)) < log|Q|. Then, A is not pre-injective.

Proof. Suppose, without loss of generality, that Gy € N. Let X = A(QM).
According to Lemma 11, we have ent p+ny  (X) < entr(X) < log|Q|. Hence,

there is an i € I such that

i€

log |7 o n (X)]
—t <o .

] g|Q
Thus, |mp+n (X)| < |Q|'Fil. Furthermore, let ¢ € Q and let X’ = {c € QM |
clyrr, = q}- Then, |Q[IFil = |X'|. Hence, |mp+~ (X)| < |X'|. Moreover, accord-

ing to Item 3 of Lemma 1, we have (M ~ F;)™N = M ~ F;'N. Hence, for each
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(¢,c') € X' x X', according to Lemma 2, we have A(c) [M\F;fw = A(c) [M\F;fw.
Therefore,

|AX")] = [T pen (AX))] < [ (AQM))] = [ (X)] < | X,

Hence, there are ¢, ¢ € X’ such that ¢ # ¢ and A(c) = A(¢’). Thus, because
diff (e, ¢') C F; is finite, the map A is not pre-injective. O

In the proof of Theorem 6, the statement of Lemma 12 is essential, which says
that if two distinct patterns have the same image and we replace each occurrence
of the first by the second in a configuration, we get a new configuration in which
the first pattern does not occur and that has the same image as the original one.

Definition 7. Identify M with G/Go by v: m — Gy m- Let

<«: M x U QA*) U QAv (m,p)r—>

ACM ACM

lm <dom(p) — Q, ]

m<a— p(a).

Remark 6. Let A be a subset of M, let p be map from A to @, and let m be an
element of M. Then, m «p = gpg,m » P-

Definition 8. Identify M with G/Gy by t: m — Gpyym, let A be a subset of
M, let p be map from A to Q, let ¢ be map from M to Q, let m be an element
of M. The pattern p is said to occur at m in ¢ and we write p C,, ¢ if and only

if map=clpqa-

Lemma 12. Identify M with G/Gqy by t: m — Gy m, let A be a subset of M,
let N’ be the subset {g=-n' | n,n’ € N,g € n} of G/Go, and let p and p' be
two maps from AN to Q such that p| yin' 4 = D'l g4n' 4 and A;Hv,(p) =

A’ v (D). Furthermore, let ¢ be a map from M to Q and let S be a subset of

M, such that the family {s < A+N/}Ses 18 pairwise disjoint and, for each cell
s €8, we have p C4 c. Put

/I /
¢ =y (U, g 504N X H s4p-
seS

Then, for each cell s € S, we have p' T, ¢, and A(c) = A(). In particular, if
p #p', then, for each cell s € S, we have p L, c'.

Theorem 6. Let & be e-invariant, let QQ contain at least two elements, and let
A not be pre-injective. Then, ent(A(QM)) < log|Q|.

Proof. Suppose, without loss of generality, that Go € N. Identify M with G/
Go by ¢: m — Gpyym. Because A is not pre-injective, there are ¢, ¢’ € QM
such that diff(c, ') is finite, A(c) = A(¢'), and ¢ # ¢/. Put A = diff(¢, ¢'), put
N' ={g7'n'|n,n € Nygen},put E= AN andput p=c|zand p’ = ¢| .
Because A(c) = A(c'), we have A/ (p) = A7\ (p).

= AN
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Because N is finite and, for each n € N, we have |n| = |Gg| < oo, the set
N’ is finite. Moreover, Gy - N’ C N’. According to Item 5 of Lemma 1, because
Go € N and A # 0, we have E DO A and hence E is non-empty. According
to Item 7 of Lemma 1, because Gg, A, and N’ are finite, so is E. Because E
is non-empty, according to Theorem 2, there is a subset E’ of G/Gy and an
(E, E')-tiling T of R. Because Gy and E are non-empty and finite, so is F’.

LetY ={yec QM |VteT:pZy} Foreacht € T, we have t «p ¢ map(Y
and therefore map(Y) & Q™F. According to Lemma 9, we have entz(Y) <
log |@Q|. Hence, according to Theorem 3, we have entz(A(Y)) < log|Q)|.

Let z € QM. Put S ={t € T | pC; }. According to Lemma 12, there is an
2’ € QM such that 2/ € Y and A(x) = A(2'). Therefore, A(QM) = A(Y). In
conclusion, ent(QM) < log |Q]. |

Main Theorem 1 (Garden of Eden theorem; Edward Forrest Moore,
1962; John R. Myhill, 1963). Let M = (M,G,>) be a right amenable left
homogeneous space with finite stabilisers and let A be the global transition func-
tion of a cellular automaton over M with finite set of states and finite neigh-
bourhood. The map A is surjective if and only if it is pre-injective.

Proof. There is a coordinate system K = (mg, {gmo,m tmenm) such that the cell
space R = (M, K) is right amenable. Moreover, according to [5, Theorem 1],
there is a cellular automaton C = (R, @, N, d) such that @ and N are finite and
A is its global transition function.

In the case that |@| < 1, the proof is trivial. Let it be the case that |Q| > 1.
According to Theorem 4 and Item 1 of Lemma 8, the map A is not surjective
if and only if ent#(A(QM)) < log |Q|. And, according to Theorems 5 and 6, we
have entz(A(QM)) < log|Q| if and only if A is not pre-injective. Hence, A is
not surjective if and only if it is not pre-injective. In conclusion, A is surjective
if and only if it is pre-injective. O

Remark 7. In the situation of Remark 1, Main Theorem 1 is [1, Theorem 5.3.1].
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