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Abstract. A partitioned cellular automaton (PCA) is a subclass of a
standard CA such that each cell is divided into several parts, and the
next state of a cell is determined only by the adjacent parts of its neigh-
bor cells. This framework is useful for designing reversible CAs. Here,
we investigate isotropic three-neighbor 8-state triangular PCAs where
a cell has three parts, and each part has two states. They are called
elementary triangular PCAs (ETPCAs). There are 256 ETPCAs, and
they are extremely simple since each of their local transition functions is
described by only four local rules. In this paper, we study computational
universality of nine kinds of reversible and conservative ETPCAs. It has
already been shown that one of them is universal. Here, we newly show
universality of another. It is proved by showing that a Fredkin gate, a
universal reversible logic gate, can be simulated in it. From these results
and by dualities, we can conclude six among the nine are universal. We
also show the remaining three are non-universal. Thus, universality of all
the reversible and conservative ETPCAs is clarified.

1 Introduction

A reversible cellular automaton (RCA) is a CA such that its global function is
injective. Among various research topics on RCAs, computational universality
of them is one of the important problems. Toffoli [12] first showed that a two-
dimensional RCA is universal. Since then, studies on universality of one- and two-
dimensional RCAs have been done extensively. As for two-dimensional RCAs,
several very simple universal RCAs have been proposed. Margolus [4] presented
a two-state universal block RCA with the Margolus neighborhood. Morita and
Ueno [11] showed two kinds of 16-state universal RCAs using the framework of
partitioned CAs (PCAs). Imai and Morita [3] gave a universal 8-state reversible
triangular PCA (in the following sections it is denoted by TRU) that has an
extremely simple local function. In all these models, computational universality
is shown by giving a configuration that simulates a Fredkin gate, a 3-input
3-output universal reversible logic gate.

A triangular CA is a one such that each cell is triangular-shaped, and commu-
nicates with its three neighbor cells. Here, we use the framework of a triangular
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PCA (TPCA) to study reversible ones. It is a CA whose cell is divided into three
parts. Each cell changes its state depending only on the three adjacent parts of
its three neighbor cells, but not depending on the whole states of the three cells.
This framework makes it easy to design reversible TPCAs. An elementary TPCA
(ETPCA) is a TPCA where each part of a cell has only two states (hence a cell
has eight states) and it is isotropic. ETPCAs are extremely simple, since each
of their local transition functions is described by only four local rules.

In this paper, we investigate all the conservative (i.e., bit-conserving) and
reversible ETPCAs (RETPCAs). There are nine conservative RETPCAs. It has
been shown that one of them (denoted by TRU) is computationally universal [3].
Here, we newly show another one, denoted by TRL, is also universal. It is proved
by showing that a Fredkin gate can be simulated in TRL. From these results,
and by the dualities among ETPCAs under reflection and conjugation, we can
see six of them are universal. We also show that three are non-universal. Hence,
universality of all the nine conservative RETPCAs is clarified.

2 Preliminaries

In this section, we give definitions on elementary triangular partitioned cellular
automata (ETPCAs), their reversibility, and conservativeness. We also explain
a method for showing computational universality of a reversible PCA.

2.1 Triangular Partitioned Cellular Automata (TPCAs)

A partitioned cellular automaton (PCA) is a subclass of a standard CA, where
a cell is divided into several parts, and each part has a state set. The next state
of a cell is determined by the states of the adjacent parts of the neighbor cells.
A two-dimensional three-neighbor triangular PCA (TPCA) is a special kind of
a PCA such that a cell is triangular-shaped, and divided into three parts.

We first consider an example of a TPCA whose behavior is determined by
the set of local transition rules shown in Fig. 1. Note that each of the three parts
of a cell has the state set {0, 1}, where 0 and 1 are represented by a blank and
a particle (i.e., •). Hence, each cell has eight states. We assume this TPCA is
isotropic (or rotation-symmetric). Namely, for each local rule, the rules obtained
by rotating the both sides of it by a multiple of 60◦ exist. Thus, the set of
local rules in Fig. 1 specifies the local function f by which the next state of each
cell is uniquely determined from the present states of the adjacent parts of the
neighbor cells. Applying the local function f to all the cells in parallel, we obtain
the global function F , which defines transition among configurations as in Fig. 2.

We say a PCA is locally reversible if its local function is injective, and globally
reversible if its global function is injective. It is known that global reversibility
and local reversibility are equivalent (Lemma 1). Thus, such a PCA is simply
called a reversible PCA (RPCA). Note that, in [10], the lemma is given for
one-dimensional PCAs, but it is easy to extend it for two-dimensional PCAs.

Lemma 1. [10] A PCA A is globally reversible iff it is locally reversible.
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Fig. 1. Example of local rules of an isotropic TPCA, which define a local function
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Fig. 2. Evolution of configurations by the global function F , which is induced by the
local function shown in Fig. 1

By this lemma, to obtain a reversible CA, it is sufficient to give a locally reversible
PCA. Thus, the framework of PCA makes it easy to design reversible CAs.

We can see that the local function defined by the set of local rules shown
in Fig. 1 is injective, since there is no pair of local rules that have the same
right-hand sides. Therefore, it is a reversible TPCA.

2.2 Elementary Triangular Partitioned Cellular Automata

An 8-state isotropic TPCA is called an elementary TPCA (ETPCA). Thus,
each part of a cell has two states. ETPCAs are the simplest ones among two-
dimensional PCAs. But, this class still contains many interesting PCAs as in the
class of one-dimensional elementary CAs (ECAs) [13,14].

Since ETPCA is isotropic, and each part of a cell has the state set {0, 1},
its local function is defined by only four local rules. Hence, an ETPCA can be
specified by a four-digit number wxyz, as shown in Fig. 3, such that w, z ∈ {0, 7}
and x, y ∈ {0, 1, . . . , 7}. Thus, there are 256 ETPCAs. Note that w and z must
be 0 or 7 because an ETPCA is deterministic and isotropic. The ETPCA with
the number wxyz is denoted by Twxyz. The ETPCA in Fig. 1 is T0157.

A reversible ETPCA is denoted by RETPCA. It is easy to see the following.

An ETPCA Twxyz is reversible iff
(w, z) ∈ {(0, 7), (7, 0)} ∧
(x, y) ∈ {1, 2, 4}×{3, 5, 6} ∪ {3, 5, 6}×{1, 2, 4}

Let Twxyz be an ETPCA. We say Twxyz is conservative (or bit-conserving),
if the total number of particles (i.e., •’s) is conserved in each local rule. Thus,
the following holds.

An ETPCA Twxyz is conservative iff
w = 0 ∧ x ∈ {1, 2, 4} ∧ y ∈ {3, 5, 6} ∧ z = 7
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w :
0

| •••
7

x :
• 0

| •
1

| •
2

| ••
3

| •
4

| ••
5

| ••
6

| •••
7

y : ••
0

| •
1

| •
2

| ••
3

| •
4

| ••
5

| ••
6

| •••
7

z : •
•

•
0

| •••
7

Fig. 3. Representing an ETPCA by a four-digit number wxyz, where w, z ∈ {0, 7} and
x, y ∈ {0, 1, . . . , 7}. Vertical bars indicate alternatives of a right-hand side of a rule.

We can see that if an ETPCA is conservative, then it is reversible. This is because
ETPCAs are isotropic. There are nine kinds of conservative RETPCAs.

Here, we give “aliases” to the nine conservative RETPCAs for the later con-
venience. Each of their local functions are shown in Fig. 4. Based on it, we denote
a conservative RETPCA by TXY , if its local function f is given by the set of local
rules {(0), (1X), (2Y ), (3)}, where X,Y ∈ {L, U, R}. For example, TRU = T0157.
Note that L, U, and R stand for left-, U-, and right-turns of particles, respec-
tively. Namely, the rule (1L) ((1U), and (1R), respectively) can be interpreted as
the one where a coming particle makes left-turn (U-turn, and right-turn). The
rules (2L), (2U), and (2R) are also interpreted similarly.

(0)
0

(1L)
•

• or (1U)
• • or (1R)

•
•
124

(2L) •• •• or (2U) •• •• or (2R) •• ••
653

(3) •
•

• •••
7

Fig. 4. Local function of a conservative RETPCA
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2.3 Dualities in ETPCAs

We can define two kinds of dualities in ETPCAs. They are the duality under
reflection, and the duality under conjugation, which are similarly defined as in
the case of one-dimensional ECAs [13]. Dual ETPCAs are equivalent since they
can simulate each other in a straightforward manner.

ETPCAs T and T ′ are called dual under reflection, if their local functions are
mirror image of each other. It is denoted by T ←→

refl
T ′. Evolution of configurations

in T is simulated by the mirror images of them in T ′ in an obvious way. We can
see the following relations hold among nine conservative RETPCAs.

TRL←→
refl

TLR, TRU←→
refl

TLU, TUR←→
refl

TUL, TRR←→
refl

TLL, TUU←→
refl

TUU.

ETPCAs T and T ′ are called conjugate (or dual under conjugation), if their
local functions are 0 −1 exchange of the other (i.e., renaming of the states). It is
denoted by T ←→

conj
T ′. Obviously, evolution of configurations in T is simulated by

the complemented configurations in T ′. We can see the following relations hold.

TRU←→
conj

TUR, TUL←→
conj

TLU, TRL←→
conj

TLR,

TRR←→
conj

TRR, TLL←→
conj

TLL, TUU←→
conj

TUU.

2.4 Turing Universality of RPCAs

An RPCA is called Turing universal, if any Turing machine is simulated in it.
To prove Turing universality of an RPCA, it is sufficient to show any circuit
composed of Fredkin gates [2] (Fig. 5) and delay elements is simulated in it. It
is stated in Lemma 5.

c
p

q

x = c

y = cp+ cq

z = cq+ cp

Fig. 5. Fredkin gate [2]. It is a 3-input 3-output reversible logic gate.

Lemma 5 can be derived, e.g., in the following way. First, any reversible
sequential machine (RSM), in particular, a rotary element (RE), which is a
2-state 4-symbol RSM, is composed of Fredkin gates (Lemma 2). Next, any
reversible Turing machine is constructed out of REs (Lemma 3). Finally, any
(irreversible) Turing machine is simulated by a reversible one (Lemma 4). Thus,
Lemma 5 follows. Note that the circuit that realizes a reversible Turing machine
constructed by this method becomes an infinite (but ultimately periodic) circuit.

Lemma 2. [5,7] Any RSM (in particular RE) can be simulated by a circuit
composed of Fredkin gates and delay elements, which produces no garbage signals.
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Lemma 3. [6] Any reversible Turing machine can be simulated by a garbage-less
circuit composed only of REs.

Lemma 4. [1] Any (irreversible) Turing machine can be simulated by a garbage-
less reversible Turing machine.

Lemma 5. An RPCA is Turing universal, if any circuit composed of Fredkin
gates and delay elements is simulated in it.

In [3], it is shown that any circuit composed of Fredkin gates and delay ele-
ments is simulated in TRU (see Fig. 1). From this, and the dualities in ETPCAs,
we have the following theorem.

Theorem 1. [3] The conservative RETPCAs TRU, TLU, TUR, and TUL with
infinite (but ultimately periodic) configurations are Turing universal.

3 Universality of the RETPCA TRL

We prove Turing universality of TRL. Its local function is given in Fig. 6. In TRL,
if one particle comes, it makes right-turn, and if two come, they make left-turns.

,
•

• , •• •• , •
•

• •••

Fig. 6. Local function of the conservative RETPCA TRL

It is easy to see that if the following elements and modules are implemented
in TRL, then any circuit composed of Fredkin gates and delay elements can be
realized in it: (1) Signal and transmission wire. (2) Delay module. (3) Signal
crossing module. (4) Fredkin gate module.

In TRL a signal is represented by a single particle, and a transmission wire is
composed of blocks (Fig. 7). A block is a stable pattern consisting of six particles
as in Fig. 7 (note that a pattern is a finite segment of a configuration). A signal
travels along a sequence of blocks as shown in Fig. 7.

To implement a delay module and a signal crossing module, we use a signal
control module. It consists of a single particle that simply rotates (Fig. 8(a)), by
which the trajectory of a signal can be altered as explained below. Since it is a
pattern of period 6, a signal to be controlled must be given at a right timing.

A delay module is a pattern for fine adjustment of signal timing. Putting a
signal control module near a transmission wire as in Fig. 8(b), an extra delay of
2 steps is realized. On the other hand, a large delay is implemented by appropri-
ately bending a transmission wire. Note that a delay of odd steps is not necessary
by the following reason. Assume a signal is in an up-triangle (�) at t = 0. At
t = 1 it must be in a down-triangle (	), then at t = 2 it is in an up-triangle,
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Fig. 7. A signal, and a transmission wire composed of blocks in TRL. The signal travels
along the wire. The number t (1 ≤ t ≤ 68) shows the position of the signal at time t.
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Fig. 8. (a) Signal control module, and (b) delay module of 2 steps in TRL

and so on. Therefore, to interact two signals at a specified cell, they must be in
the same type of triangles at t = 0. Thus, if both of the signals visit the same
cell, then the difference of their arriving time is even.

A signal crossing module is for crossing two signals in the two-dimensional
space. It consists of two signal control modules and transmission wires (Fig. 9).

To simulate a Fredkin gate, we implement a switch gate and an inverse switch
gate (Fig. 10(a) and (b)). Since a Fredkin gate is composed of switch gates and
inverse switch gates as in Fig. 10(c) [2], we can obtain a pattern that simulates
a Fredkin gate, from those of a switch gate and an inverse switch gate.

In TRL, a single cell works as a switch gate and an inverse switch gate as
shown in Fig. 11. However, since it is not convenient to use one cell as a building
unit for a larger circuit, we design a switch gate module and an inverse switch
gate module from it. A gate module in the standard form is a pattern embedded
in a rectangular-like region in the cellular space that satisfies the following (see
Fig. 12): (1) It realizes a reversible logic gate. (2) Input ports are at the left end.
(3) Output ports are at the right end. (4) Delay between input and output is
constant.

Figure 13 shows a switch gate module, and an inverse switch gate module, each
of which contains a (modified) signal crossing module, and three delay modules.
The cells that work as switch gate and inverse switch gate are indicated by bold
lines. The delay between input and output is 126 steps.
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Fig. 9. Signal crossing module in TRL. Trajectories of (a) signal x, and (b) signal y.
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Fig. 10. (a) Switch gate. (b) Inverse switch gate, where c = y1 and x = y2 + y3 under
the assumption (y2 → y1) ∧ (y3 → y1). (c) Fredkin gate composed of them [2].
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Fig. 11. A single cell of TRL works as (a) a switch gate, and (b) an inverse switch gate
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Fig. 12. Gate module in the standard form



Universality of 8-State Reversible and Conservative Triangular PCA 53

x→

c→

→cx

→cx

→c

• •

• •• • • • • • • • • • • • • •• • • • • • • • • • • • • • •
• • •• • • • •

• •• • • • • • • •• • • • • • • • •
• • •

• • • • • •
• • • • • •• • • • • •

• • • • • •
• • •

• • • • • • • • • • • •• • • • • •
• • • • • • • • •

• • • • • •
• • •

• • • • • • • • • • • •
•

• • • • • • • • •
• • • • • • • • •

• • •
• • • • • • • • •

5 7
12, 14

19

24
25

2627 2829
34

39

44

47

52
53

5455 5657
62

65
70

75

80
85

88

91 93
98

103 105

108

113

116

121
126

5

10

13

18

21

26

29 31
36

39

42

47
52

53 54
55

5657

62

65

70

73

78

80
85 87

92

94

99
104

109

114

116

119
124,126

23

25 26
27

28

y3→

y2→

y1→

→x

→c

• •

• • • • • • • • • • • • • • •• • • • • • • • • • • • • • •
• • •• • • • •

• •• • • • • • • •• • • • • •
• • • • • •

• • •
• • • • • • • • •• • • • • • • • •

• • •
• • • • • • • • •

• • • • • •• • • • • • • • • • • •
• • •

• • • • • • • • •
• • • • • • •

• • • • • •
• •• •

• • • • • •
• • • • • • • • • • • •• • • • • • • • •

5

10

13

18

21 23
28

33 35

38

41
46

51
56

61

64
69 70 71

72

73 74

79

82

87
92

97 98 99
100

101102

107
112, 114

119 121
126

7

10

12

17
22

27

32

34
39 41

46

48

53

56

61

64

69
70

71 72
73
74

79

84

87

90
95 97

100

105

108

113

116

121
126

95

97
98

99 100

)b()a(

Fig. 13. (a) Switch gate module, and (b) inverse switch gate module in TRL

A Fredkin gate module is obtained by connecting two switch gate modules,
two inverse switch gate modules, five signal crossing modules, and many delay
modules to form the circuit shown in Fig. 10(c). The complete configuration is
found in [9]. Its size is of 30 × 131, and the input-output delay is 744 steps.

By above, and by the duality in ETPCAs, we have the following.

Theorem 2. The conservative RETPCAs TRL and TLR with infinite (but ulti-
mately periodic) configurations are Turing universal.

4 Non-universality of the RETPCAs TRR, TLL and TUU

TRR has the set of local rules {(0), (1R), (2R), (3)} (see Fig. 4). We can interpret
(1R), (2R) and (3) to be the ones where all particles make right-turn. Therefore,
every configuration has period 6, and thus TRR is trivially non-universal. By a
similar argument, TLL is also non-universal.

In TUU, we can interpret its local rules (1U), (2U) and (3) to be the ones
where all particles make U-turn. Therefore, every configuration has period 2,
and thus TUU is again trivially non-universal.

Theorem 3. The RETPCAs TRR, TLL, and TUU are not Turing universal.

5 Concluding Remarks

In this paper, nine conservative RETPCAs, which have extremely simple local
functions, are studied. It was shown that TRL, and TLR are Turing universal
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(Theorem 2), while TRR, TLL, and TUU are not (Theorem 3). With Theorem 1
shown in [3], universality of all the nine conservative RETPCAs was clarified.
Evolving processes of various configurations of TRL, TRU, and TUR can be seen
by movies in [9].

A non-conservative RETPCA T0347 also exhibits interesting behavior.
Recently, existence of a glider and glider guns in T0347, and its universality
were shown in [8]. Investigation of other ETPCAs is left for the future study.
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