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Abstract. Considered is a 2D cellular automaton with moving agents.
Each cell contains a particle with a certain spin/color that can be turned
by an agent. Four colors are used. The objective is to align the spins in
parallel along horizontal and vertical lines, in order to form long orthog-
onal “line patterns”. The quality of a line pattern is measured by a
degree of order computed by counting matching 3 x 3 patterns. Addi-
tional markers are used and signals between agents are introduced in
order to improve the task efficiency. The agents’ behavior is controlled
by a finite state machine (FSM). An agent can perform 128 actions alto-
gether as combinations of moving, turning, color changing, marker set-
ting and signaling. It reacts on its own state and on the sensed colors,
markers and signals. For a given set of n x n fields, near optimal FSM
were evolved by a genetic algorithm. The evolved agents are capable of
forming line patterns with a limited degree of order. The scalability of
two FSM against a varying number of agents is studied as well as the
efficiency gain through the newly introduced signals.

Keywords: Cellular automata agents · Multi-agent system · Pattern
formation · Evolving FSM behavior · Spatial computing

1 Introduction

How can cellular automata agents (CAA) be configured in order to form specific
structures? CAA are agents modeled by classical CA using relatively complex
rules. There are many applications, e.g. the forming of mechanical, chemical,
biological [1] or artificial structures, or the building of computational devices
and communication networks. Nano-structures can be built by nano-robots, or
by beaming focused energy onto certain cells in order to change their phys-
ical state [2–6]. Building special nano-polymers or functional polymers could
be another application. The alignment of spins – as discussed in this paper –
allows to minimize the conductivity of a thin-film structure based on the giant
magnetoresistance.

The Task. Given is a field of N = n × n cells with border, n assumed to be
even. A given number k of agents is moving around in the field. The agents’ task
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is to construct a global state where a certain spatial line pattern appears that
belongs to a predefined line pattern class. The agents behavior is controlled by an
embedded finite state machine (FSM). The main objective is to find “intelligent”
agents that are able to solve this task. Each cell, except the border cells, contains
a particle with a certain color/spin, color ∈ {0, 1, 2, 3}. The border cells’ color
is NIL with value −1. In addition, markers are available in each cell, marker ∈
{0, 1}. An agent can change color and marker on its site. Markers are used as
a distributed global memory. A marker can later be used by the same agent
or by another agent. Markers enlarge the control and data space and allow
indirect communication between agents: e.g. an agent may set a marker from 0
to 1 indicating that the current site is already locally ordered. As an extension
to previous works [7,8], explicit signals between agents are introduced. Now a
further objective is to study how signals act onto system performance. Initially
the color, marker and agents’ position and direction are randomly distributed.

We define the aimed line pattern class by long horizontal lines of parallel
up-or-down spins, or vertical lines of right-or-left spins.The neighboring cells
of a line shall have another spin/color. The capabilities of the agents shall be
constrained, i.e. the number of control states, the action set and the amount of
perceived information.

Agents. What is the advantage to solve this task by agents? Generally speak-
ing, agents can behave in a flexible, powerful and coordinated way because of
their intelligence and their specific sensors and actuators. Important properties
that can be achieved by agents are: (Scalability) The problem can usually be
solved with a variable number of agents, and faster with more agents in a cer-
tain range; (Tuneability) The problem can be solved faster or with a higher
quality by increasing the agent’s intelligence; (Flexibility) Similar problems can
be solved by the same agents, e.g. when the shape or size of the environment
is changed; (Fault-tolerance) When obstacles are introduced or some agents are
faulty, the problem can still be solved in a gracefully degraded way; (Updating-
tolerance) Often the time-evoluted global state depends only weakly on the
updating-scheme (synchronous, asynchronous). This is important if no global
clock is available.

Related Work. (i) FSM-controlled agents: We have designed evolved FSM-
controlled CAA for several tasks, like the Creature’s Exploration Problem [9,
10], the All-to-All Communication Task [10–12], the Target Searching Task [13],
the Routing Task [14,15]. The FSM for these tasks were evolved by genetic
algorithms mainly. Other related works are a multi-agent system modeled in
CA for image processing [16], and modeling the agent’s behavior by an FSM
with a restricted number of states [17]. An important pioneering work about
FSM-controlled agents is [18]. FSM-controlled robots are also well known.

(ii) Pattern formation: Agent-based pattern formations in nature and physics
are studied in [19,20]. A programming language is presented in [21] for pattern-
formation of locally-interacting, identically-programmed agents – as an example,
the layout of a CMOS inverter is formed by agents;related is a new “Global–
to–Local” theory emerging in [22]. In [23] a general framework is proposed to
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discover rules that produce special spatial patterns based on a combination of
Machine Learning strategies including Genetic Algorithms and Artificial Neural
Networks.

(iii) Modeling moving agents: CAA used herein are modeled within the CA
paradigm [7] and implemented from the write access CA–w concept [24–26]
allowing a cell to write information onto a neighbor. Other modeling concepts
related to CA are lattice-gas cellular automata [27], block substitutions [28] or
partitioned CA as used in [12].

This work extends the issues presented in [7]. The class of patterns was differ-
ent therein and satisfactory patterns could only be found with two colors. Now
the aim is to generate patterns with four colors using explicit markers and addi-
tional communication signals. In Sect. 2 the class of target patterns and a mea-
sure for them are defined and in Sect. 3 the multi-agent system with its agent’s
actions, sensing features and control structure is presented. The used genetic
algorithm is explained in Sect. 4, the effectiveness and efficiency of selected FSMs
and signals are evaluated in Sect. 5.

2 Line Patterns and Degree of Order

How can the class of line patterns be defined? The idea is to use a set of small
m × m matching patterns (or templates) and test them on each site (x,y) of the
cell field. So each template is applied in parallel on each cell, which can be seen
as a classical CA rule application. If a template fits on a site, then a hit (at most
one) is stored at this site. Then the sum of all hits is computed which defines
the degree of order h. For our problem the size of the templates is 3 × 3. Larger
templates could be used if more sophisticated patterns should be generated. The
process is illustrated in Fig. 1. In order to detect lines more easily in a pattern,
small rectangles with redundant colors (b) are used in the representation instead
of the spin-arrows (a). A black dot is used to display a hit (c). The used templates
are depicted in (d–g): a (horizontal) row of 3 parallel up-spins (d), a (vertical)

Fig. 1. (a) An optimal balanced line pattern of a 6×6 field with a maximum number of
hits. A line is defined by a row or column of parallel spins. (b) Another representation
of (a), each spin is represented by a specific rectangle within a square. Additional
redundant colors are used in order to make the lines more distinguishably. (c) Hits are
depicted as dots. (d–g) The templates defining the class of line patterns. Templates
are local test patterns which are expected to appear in a target pattern. (Color figure
online)
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column of 3 parallel right-spins (e), a row of 3 parallel down-spins (f), a column
of 3 parallel left-spins (g). The six empty sites of each template have a color
different from the line’s color. Thereby two or more parallel lines with the same
color/spin are not allowed.

A line of length w > 2 has a hit count h = w − 2 because the beginning and
ending of a line are not counted. This means also that lines of length 1 and 2 are
not counted. Not counting the terminal cells of each line can be seen as a penalty
reflected in the fitness function which is used during the optimization process,
thereby the searching for long lines is favored. The aimed patterns consist in
a maximum number of long lines. The theoretically maximum order is at least
hmax = (n − 2)2 (for even side length n). The relative order is hrel = h/hmax.
The maximum can be reached by optimal line patterns, e.g. the one shown in
Fig. 1(a–b). Patterns are balanced if the frequency for each color is the same, i.e.
∀i ∈ {0, 1, 2, 3} : n2/4 =

∑
(color(x, y) = i) and unbalanced otherwise. Unbal-

anced patterns can be generated easier than balanced patterns and can even
have higher hit counts than optimal balanced patterns.

3 Modeling the Multi-Agent-System

The cell rule has to react on several non-uniform situations, such as:an agent is
actively operating on that cell, an agent is in the neighborhood, or a border cell
is in front. Therefore the cell state is modeled as a record of several data items.

CellState = (Border, Color,Marker,Agent), where
Border ∈ {true, false}, Color L ∈ {0, 1, 2, 3}, Marker M ∈ {0, 1}
Agent = (Activity, Identifier,Direction,ControlState)
Activity ∈ {true, false}, Identifier ID ∈ {0, 1, ..., k − 1}
Direction D ∈ {0, 1, 2, 3} ≡{toN, toE, toS, toW }
ControlState S ∈ {0, 1, ..., Nstates − 1}.

Fig. 2. An agent is controlled by a finite state machine (FSM). The state table defines
the agent’s next control state, its next direction, and whether to move or not. The table
also defines the next color, the next marker and the signal to another agent. (Color
figure online)
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This means that each cell is equipped with a potential agent, which is either
active or not. When an agent is moving from A to B, it is copied from A to
B and the Activity bit on A is set to false. The agent’s behavior is depicted in
Fig. 2. The FSM corresponds to the “brain” or algorithm controlling the agent.It
contains a state table (also called next state/output table). Outputs are the actions
and the next control state. Inputs are the control state s and defined input
situations x. An input mapping function is used in order to limit the size of the
state table. The input mapping reduces all possible input combinations to an
index x ∈ X = {0, 1, . . . , Nx − 1} used in combination with the control state
to select the actual line of the state table. The capabilities of the agents have
to be defined before designing or searching for the agents’ behavior. The main
capabilities are: the perceivable inputs from the environment, the outputs and
actions an agent can perform, the capacity of its memory (number of possible
control and data states) and its “intelligence” (useful pro- and reactive activity).
Here the intelligence is limited and realized by a mapping of its state and inputs
to the next state, actions and outputs. Actions and outputs that an agent is able
to perform are:

• nextstate: state ← nextstate ∈ {0, ... , Nstates − 1}.
• move: move ∈ {0, 1} ≡ {wait, go}.
• turn: turn ∈ {0, 1, 2, 3}.
The new direction is D(t + 1) ← (D(t) + turn) mod 4.
• setcolor: setcolor ∈ {0, 1, 2, 3}.
The new color is L(t + 1) ← (L(t) + setcolor) mod 4.
• setmarker: The new marker is M(t + 1) ← setmarker ∈ {0, 1}.
• signal: An agent emits a signal ∈ {0, 1} that can be used by another agent.

An agent shall react on the following inputs:
• its own control state,
• its own direction,
• the cell’s color and marker it is situated on,
• a border cell in front,
• a blocked situation/condition, caused either by a border, another agent in

front, or when another prior agent can move to the front cell in case of a conflict.
The inverse condition is called free.

• a signal from another agent if it stays in front.

An agent has a moving direction D that also selects the cell in front as the actual
neighbor. What can an agent directly observe from a neighboring agent? In the
used model it can only register the presence of an agent in front and the emitted
signal from that agent. So only a small part of the state of that agent is revealed
in the form of a signal, which can be used for cooperation.

All actions can be performed in parallel. There is only one constraint:when
the agent’s action is go and the situation is blocked, then the agent cannot move
and has to wait, but still it can turn and change the cell’s color and marker. In
case of a moving conflict, the agent with the lowest identifier (ID = 0 .. k − 1)
gets priority. Instead of using the identifier for prioritization, it would be possible
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to use other schemes, e.g. random priority, or a cyclic priority with a fixed or
space-dependent base. The following input mapping was used, x ∈ {0, 1, . . . , 12}:

x = 0, if the agent is blocked by a border cell in front,
x = 1 + (L − D)mod 4 + 4(marker), if the agent is not blocked,
x = 9+2(signal), if L ∈ {0, 2} and the agent is blocked by an agent in front,
x = 10 + 2(signal), if L ∈ {1, 3} and the agent is blocked by an agent.

This mapping was designed by experience and experiments. Of course, other
input mappings could be defined, with more or less x codes, or other assignments,
e.g. the color or marker in front of the agent or in its neighborhood could be
taken into account. Note that agent’s view is very limited, it can react only the
cell data (control state, direction, color, marker) where it is situated on, and
sometimes on the signal from an agent in front. Therefore the agent’s task is
really difficult to solve. (Imagine you are the agent, moving around in a dark
space where you can only observe the color and marker on the ground, and
sometimes you detect a border or a signal in front!): the larger the agent’s view,
the easier the task can be solved.

The used updating scheme is synchronous; An important issue is that asyn-
chronous updating is more natural, as studied in [29,30]; see further Sect. 5.5.

4 Evolving FSMs by a Genetic Algorithm

An ultimate aim could be to find an FSM that is optimal for all possible initial
configurations on average. This aim is very difficult to reach because it needs
an huge amount of computation time. Furthermore, it depends on the ques-
tion whether all-rounders or specialists are favored. Therefore, in this work we
searched only for specialist optimized for (i) a fixed field size of N = n×n, n = 8,
(ii) a fixed number of agents k and (iii) 100 initial random configurations (for
training and evaluation).

The number of different FSMs which can be coded by a state table is Z =
(|s||y|)(|s||x|) where |s| is the number of control states, |x| is the number of inputs
and |y| is the number of outputs. As the search space increases exponentially, we
restricted the number of states to |s| = Nstates = 8, and the number of inputs
to |x| = 13. A relatively simple genetic algorithm similar to the one in [7] was
used in order to find (sub)optimal FSMs with reasonable computational cost.
A possible solution corresponds to the contents of the FSM’s state table. For
each input combination (x, state) = j, a list of actions is assigned: actions(j) =
(nextstate(j), move(j), turn(j), setcolor(j), setmarker(j), signal(j)).

The fitness is defined as the number t of time steps which is necessary to
emerge successfully a target pattern with a given degree htarget of order, aver-
aged over all given initial random configurations. Successfully means that a tar-
get pattern with h ≥ htarget was found. The fitness function F is evaluated
by simulating the system with a tentative FSMi on a given initial configura-
tion. Then the mean fitness F (FSMi) is computed by averaging over all initial
configurations of the training set. F is then used to rank and sort the FSMs.
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Evolved Finite State Machines. In general it turned out that it was very
time consuming to find good solutions with a high degree of order, due to the
difficulty of the agent’s task in relation to their capabilities. In addition the
search space is very large and difficult to explore. The total computation time
on a Intel Xeon QuadCore 2 GHz was around 3 weeks to find the needed FSMs.

Let the best found FSM for k agents and a reached order of h be denoted by
FSM(k,h). At first the FSM(k=16, h=18) was evolved and used in Sects. 5.1
and 5.2; then FSM(1,18) in Sect. 5.3 and finally FSM(16,12), FSM(32,12),
FSM(48,12) in Sect. 5.4.

5 Simulations and Evaluations

5.1 Simulation

The whole multi-agent system using the evolved FSM(16, 18) was simulated
(Fig. 3). The snapshots (a) show how the line patterns are being built. The com-
munication by signals is shown in Fig. 3b. It can be seen that at the end long
lines in four colors appear. The markers (depicted as green or red small squares)
are random at the beginning and almost all of them are changed during the run
by the agents. The information stored in the markers is used for feedback and
indirect communication. Although it was not detectable in which way, exper-
iments without markers showed that the performance is much lower, a result
also found in [8,11]. Note that a formed line pattern is not stable. After having

Fig. 3. (a) Snapshots showing how a line pattern is formed in a 8×8 field by 16 agents
starting from a random configuration. h= degree of order.Agents are represented by
black triangles, spins by colors, and markers by small squares (red = 1, yellow = 0).
Dots represent template hits. (b) The signals that the agents emit are shown, colors
and hits are hidden. When an agent is blocked by another agent in front, it can read
its signal. Some communication situations by signals are encircled in orange. (Color
figure online)
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reached the required degree of order the pattern is changing and the degree of
order is fluctuating. Detecting a certain degree of order in a decentral way for
termination is a seperate issue. It could be achieved by all-to-all communication
of the hits.

5.2 Effectiveness Test

At first FSM(k = 16, h = 18) was investigated. The chosen density of the agents
was δ = 1/4, because from [7] this density turned out to be most cost-effective in
terms of time×agents. The degree of order to be reached was incremented from
lower levels until htarget = 18, the theoretical maximum is at least hmax = (n −
2)2 = 36. The aimed relative degree of order was hrel = 50%, which is relatively
low. The problem was that it was very difficult to reach a higher degree for this
task with the given features of the agents. The found FSM was successful on
all given 100 initial configurations of the test and evaluation set. The mean and
extrema times to order a field were tmean = 1079±1011, tmin = 73, tmax = 5365.

Then this FSM was simulated for another number of agents and it was
expected that it is also 100 % successful, but that was not the case. There-
fore FSM(16, 18) was tested with a lower order to be reached, h = 12 instead
of h = 18. The result of this test is shown in Fig. 4a, success rate vs. number of
agents. The success rate is the number of fields out of 100 which were ordered
with degree 12. This diagram shows that this FSM is working effectively (satis-
factorily successful) for a number of agents nearby 16, the number it was evolved
for. This is an argument that a specialist was evolved.

Fig. 4. (a) Effectiveness test. The top evolved FSM(k= 16, h= 18) for size = 8× 8 was
used. Then it was tested on how many fields it was successful for a different number
k of agents, with a lower h= 12. This FSM is only effective for a number of agents
nearby 16. (b) The top evolved FSM(k= 1, h= 18) was used then tested with h= 12.
Successful for 100 fields in the range k= 1,..., 16. (b1) Mean time ratio, minimal for
k= 6. (b2) The efficiency decreases continuously with the number of agents.

5.3 FSM Evolved for One Agent

Mean and extrema times for FSM(1, 18) to order a field were tmean = 2272 ±
1666, tmin = 260, tmax = 7828. Now the question is, how does FSM(1, 18),
evolved for one agent, behaves if the number of agents is varied. Time-scaling
and efficiency were evaluated for a lowered degree of order h = 12; time t(k) was
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normalized to t(1). The graph (b1) in Fig. 4b shows that the minimal time is
reached for k = 6, whence a density of agents δ = 6/64 = 9.4%. This result was
not expected, because in [7] the optimal density was 25 %. An explanation could
be that this task is more difficult, and therefore each agent needs a larger “per-
sonal” local memory (more markers and colors) to store intermediate ordering
information. The graph (b2) shows the efficiency, i.e. the speedup divided by
the number of agents: (t(1)/t(k))/k. The decreasing efficiency with the number
of processors is quite common in multiprocessor systems, as we can interpret
agents as moving processors.

5.4 Effect of Signals

The question is how much the communication with signals speed up the task.
A scientifically sound answer goes beyond the scope of this paper. Nevertheless
a partial answer can be given for some test cases. For that reason six top FSMs
were evolved with order h = 12, for k = 16, 32, 48, and with (resp. without)
signal. The following values were obtained:

no. of agents k 16 32 48

t1 = t(with signal) 111 185 1553

t2 = t(without signal) 134 237 2146

t1/t2 .83 .78 .72

This evaluation shows that the time ratio t1/t2 is significantly lower than 1
(signals are efficient) and it increases with the number of agents when more
communication is probable. Another result is that times t1 and t2 increase with
k in this interval; this confirms the observation from the previous cases, that a
high density of agents is not efficient.

5.5 Updating-Tolerance

Further simulations were done in order to show the effect of asynchronous updat-
ing. The optimal FSM(16, 18) evolved under synchronous updating was used.
Then each generation was divided into k = 16 subgenerations. For each subgen-
eration one active agent was selected at random. The time counter was incre-
mented by 1/k for each subgeneration, i.e. by one for one generation. 10 runs
with different random seeds were performed on the given 100 initial fields. The
mean and extrema times to order a field are tmean = 859.13 ± 856.78, tmin =
34.25, tmax = 5628.94. Compared to synchronous updating (Sect. 5.2), the tmean

ratio tasyn/tsyn = 859.13/1079 = 0.8. This means that asynchronous updating
was successful on all fields using the same synchronous rule, and the time was
even 20 % lower for this test case.

6 Conclusion

The objective was to find FSM-controlled agents that can form specific line
patterns. The class of path patterns was defined by a set of templates, small
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3× 3 local patterns. For 8 × 8 fields, several FSM were evolved with a different
number of agents and a certain degree of order h. The agents are able to form
successfully the aimed line patterns with the predefined degree of order by means
of markers and signals. The FSM evolved for 16 agents is only effective for an
agent number nearby 16. The FSM evolved for 1 agent is effective for up to 16
agents and most efficient for 6 agents. Signals speed-up the task significantly,
especially for a higher density of agents when the communication probability
is higher. The general result is that the generation of specific patterns by CA
agents can be designed in a methodical way.
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