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Abstract. This study proposes an inverted ant cellular automata
(IACA) model for swarm robots performing the surveillance task. A
new distributed coordination strategy is described here, which was
designed with a cellular automata-based modeling and using a repulsive
pheromone-based search. The environmental structure is well-known to
all robots and their current positions are shared by the team. Besides,
they communicate indirectly through the repulsive pheromone, which is
available to each robot as an information about its neighborhood. The
pheromone is deposited at each time step by each robot, over its cur-
rent position and neighborhood cells. The pheromone is also evaporated
as the time goes by. All next movement decisions are stochastic giving
a non-deterministic characteristic to the model. Simulation results are
presented, by applying the proposed model to different environmental
conditions.
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1 Introduction

Each member of a multi-agent system must be capable to achieve its objectives
autonomously adapting it-self to environmental changes. An intelligent global
behavior is desirable, which can be generated by modeling each individual agent
of the system and the interactions among them [1]. It is well-known that a
distributed and coordinated behavior can emerge from individual interactions
in complex systems. In this context, there are several works that have investi-
gated the application of cellular automata-based models to swarm robotics [2,3].
Swarm systems are characterized by a global dynamics reflecting some synergy
among the swarm members [4]. Swarm robotics models that mimic the nat-
ural collective behavior have being recently investigated, such as the pheromone
interaction employed by ants colonies (ACO) [1] and the communication between
glows-worms lights [5]. In this context, some works use a combination of cellular
automata (CA) and ACO [6] and others use IAS (Inverted Ant System) [7]. The
IAS [7] is a technique based on the biological ants behavior that uses the indirect
global communication denominated stigmergy. Unlike ACO [8], that provides a
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chemical attraction between agents through the pheromone interaction, an oppo-
site behavior emerges in IAS since it employs a repulsive pheromone type. This
kind of pheromone is also observed in natural ants and it is used to indicate
risk or danger. Stigmergy is considered one of the factors that decisively con-
tributes to enlarge the capabilities of a single ant. Colonies use the stigmergy
to coordinate their activities in a distributed way [9]. There are many coordi-
nating tasks being investigated in swarm robotics, such as, foraging [10], search
and rescue [11]. Another relevant task in robotics is surveillance [12], which con-
sists in monitoring the behavior, the activities, or other environmental changing
information, protecting people or objects [7,13,14]. Surveillance involves envi-
ronmental exploration and the area must be covered by the robots. Therefore,
the swarm uses cooperation and communication strategies to cover the environ-
ment, in a reasonable period of time.

In the present work, a navigation model called IACA based on cellular
automata modeling and inverted ant pheromone communication was proposed
for robots performing the surveillance task. The environment is modeled by a
lattice of square cells composed by two layers. Simulations were carried out to
evaluate the model in different situations and environments. They were made
to (i) measure the time taken by the robots team to perform the surveillance
task; (ii) analyze the evaporation process; (iii) analyze the coverage and explo-
ration. By simulation results it was possible to observe that the resultant behav-
ior returns an efficient task execution and the inverted pheromone employment
causes scattered paths with low or none collisions.

2 Model Description

Initially, a two-dimensional map representing the environment is constructed. It
is divided in square cells and the resultant lattice has two layers. The first layer is
the pheromone lattice where the cell’s pheromone amount is stored. A continues
state is assigned to each cell of the pheromone lattice. The state value is between
0 and τmax for the non-wall cells cells. Additionally, a value representing ∞ is
assigned for all wall cells. The second layer is the physical lattice, in which the
current robots’ positions and the walls cells are represented. A discrete state is
assigned to each cell of the physical grid. There are three possible values: free,
wall and robot. Figures 1(a) and (b) show two examples of physical grids, where
the walls cells are represented in gray, the free cells are represented in white and
the cells with red circles represent the current robots’ positions. One robot in
the grid cannot overlaps another or a wall cell. The pheromone layer relative to
the environment E2 is shown in Fig. 1(c).

The IACA model is divided in two levels: one is related to the individual
robot’s behavior and the other is related to the team’s global behavior. The
team’s behavior is related to robot-robot and environment-robot interactions.
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Fig. 1. Rooms 20 × 30 size. (a) Environment E1 with 7 rooms. (b) Environment E2

with 6 rooms. Four robots are represented in red in each environment and they are
performing the surveillance task. (c) Pheromone grid. (Color figure online)

2.1 Individual Behavior

The behavior model of each robot can be described by a four finite state machine
(FSM), as shown in Fig. 2. In IACA model, the robots start their movements
at time step 0 and the task is finished (when the robots stop their movements)
after a predefined number of time steps (T).

Fig. 2. Individual behavior represented by a finite state machine adapted from [7].

The pheromone detection state in the FSM represents the robot’s
pheromone reading process. The current amount of pheromone in each cell xij is
a resultant from the previous pheromone deposition due to robots’ steps followed
by an evaporation process. This reading comprises the Moore neighborhood cells
considering the robot’s vision radius rv. The robot access all the neighborhood
pheromone values xij , which size is defined as m = (2rv + 1)2. The robot access
the xij values from its neighborhood cells to make the next movement decision.

The decision process is represented by the next cell choice, which will drive
the next robot’s movement. This choice is based on the amount of the repulsive
pheromone deposited in the neighborhood cells. The amount of pheromone in a
determined cell xij will define the probability P (xij) of this cell to be chosen in
the next time step. If the pheromone amount is big, then the probability is low.
On the other hand, if the cell has a small amount of pheromone, it has a high
probability to be chosen. The total pheromone deposited in the neighborhood
cells as a whole is given by ρtmax =

∑m
k=1 xt

ij . Equation 1 shows the function used
to determine the probability of each cell xij of the current neighborhood to be
the next robot position in the time step t + 1. Using this equation, a stochastic
choice is made to decide the next position.

P (xij)t+1 =
ρtmax − xt

ij∑m
k=1 ρtmax − xt

ij

(1)
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Each robot deposits pheromone over its current and neighborhood cells, to
signalize its presence to the other members of the swarm. The pheromone
deposition state in the FSM represents the process in which the robot increases
the amount of pheromone over its current position xij and in the corresponding
neighborhood cells x(i+a)(j+b), where −rv ≤ a < 2 × rv and −rv ≤ b < 2 × rv.
If a neighborhood cell is a wall, then the pheromone is not deposited. There
is a maximum amount of pheromone τmax that each cell can receive, avoid-
ing an uncontrolled growth of pheromone. Equation 2 represents the amount
of pheromone deposited in one time step. The constants δ and σ represents,
respectively, the pheromone rate and the dispersion rate.

ρt+1
ij = δ × e

− xij−x(i+a)(j+b)
σrv2 (2)

The pheromone updating is computed by Eq. 3:

xt+1
ij = xt

ij + (τmax − xt
ij) × ρt+1

ij (3)

By analyzing Eqs. 2 and 3, one can observe that in a first visit to a cell with
no pheromone the robot deposits the maximum amount of pheromone τmax mul-
tiplied by the δ constant before its departure. However, in the next time steps,
this value will be continuously evaporated until a robot crosses the cell’s neigh-
borhood again. On the other hand, the robot deposits an attenuated amount of
pheromone (<< τmax and given by σ parameter) over its neighborhood, which
will be also submitted to an evaporation process in the next time.

The movement state is the FSM is the final step that represents the robot’s
transition from one cell xij to another x(i+a)(j+b) in the robot neighborhood.
This action will be accomplished by the robots’ individual control, which is
responsible to decide how to control robot’s components to make the desired
step.

The CA model investigated here is not standard since the transition rule
changes the state of two cells of the neighborhood. This transition starts with
a stochastic local rule which taking in account the pheromone amount in each
cell of the robot neighborhood. Each robot movement corresponds to change its
current position to an adjacent cell. Besides that, the CA modifies the neigh-
borhood cells updating the pheromone amount. Finally, the cell occupied by the
robot becomes free, and the free neighborhood’s cell chosen by the stochastic
rule as its next position, becomes the new robot’s position.

2.2 Global Behavior

The global behavior comprehends two processes: the first is the evaporation
process and the second represents the interaction between the robots and the
environment. The pheromone evaporation is a global process performed in all
the cells of the environment (except the wall cells) at the end of each time step
t according to a constant β. The evaporation process is represented by Eq. 4. In
the first time step (t = 0), each cell xij receives a pheromone amount equal to 0.
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In the subsequent time steps, each cell visited by a robot or in its neighborhood
has its pheromone increased according to Eqs. 2 and 3. Besides, all the non-wall
cells in the environment having a pheromone different from zero have their val-
ues decreased by a β constant as in Eq. 4.

xt+1
ij = xt

ij − (β × xt
ij) (4)

Each robot tries to move to a cell of its neighborhood defined by its vision
radius rv. The employment of the inverted pheromone - and its inherit repul-
sive force [15] - to guide robot’s movements returns trajectories almost-free of
conflicts due to the robots spreading effect. However, specific conflict cases are
solved by a random decision process: if two robots try to move into the same
cell, a random choice decides which robot that will perform the movement, while
the loser has to wait until the next time step. The conflicts avoidance between a
robot and a wall is solved using a high value of pheromone, in this case, ρ = ∞.

From these interactions between the robots and the environment (pheromone
dynamics), and between the robots themselves (collision avoidance), emerges a
complex behavior that makes the swarm of robots able to efficiently solve the
surveillance task. These interactions produce a robot-robot repulsion and prevent
collisions, improving the exploration and increasing the covered area.

3 Experiments

The experiments presented in this section were carried out using virtual environ-
ments implemented in C language aiming to: (i) evaluate different evaporation
rates, (ii) evaluate different team size N to perform the task, (iii) evaluate the
team performance related to the environment coverage, (iv) evaluate the team
performance in the surveillance task. All the simulation experiments were con-
ducted in 20×30 cells lattice environments, each cell was defined as a 14×14 cm
square. This size is sufficiently large to accommodate a robot inside the cell,
since the robot size was adopted according to a real e-puck dimension: a cir-
cular robot with 7 cm of diameter. This configuration results in a 2.8 × 4.2 m
environment, which is adequate to analyze the performance of a e-pucks’ team
performing surveillance. Figure 1 presents the two lattice environments used to
conduct the experiments. All the simulations were carried out using the follow-
ing parameters: T = 1000 steps, σ = 0.43, rv = 1, δ = 0.7 and τmax = 50, values
were defined by preliminar experiments with the model and they were adjusted
based on the adaptation of the values proposed for a continuous model in [13].

The first experiment was conducted to refine the evaporation rate correspond-
ing to the β constant in Eq. 4, which was varied using six different values: {0.001,
0.005, 0.01, 0.05, 0.1, 0.2}. It was accomplished using the E1 environment. The
number of iterations was T = 1000 and N = 3 robots were used. The amount
of pheromone from each cell xij was captured in the step T = 1000 for each β
variation. Figure 3 shows the temperature graphics for the six β variations. The
red cells have high pheromone levels, while the dark blue cells have low or null
pheromone levels. It is important to note that each graphic has a different color
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scale, because the highest temperature (dark red color) depends on the maxi-
mum pheromone level (θmax) found at the end of the simulation. It is possible to
observe in Fig. 3(a) that final lattice does not have a significant variation on xij

value, because all the cells have high pheromone levels (red and orange cells),
except for the blue cells corresponding to the environment walls. This situation
is not adequate for a good coverage strategy because it turns the movement
choice a random process, since the cells have almost the same probability to be
chosen, not taking account the cells previously visited by the swarm. The best
evaporation rates were those used in the simulations related to Fig. 3(b) and (c)
(β = 0.005 and β = 0.01), because the cells have a good variability in the color
scales. It represents that the robot can choose a cell in its neighborhood using
the pheromone information. The higher evaporation rates were used in Fig. 3(d),
(e) and (f). It is possible to conclude that they are not appropriate, because of
the large number of dark blue regions. This absence of pheromone information
affects the task conclusion and the robot decision movement is a random choice.

Fig. 3. Maps of amount of pheromone according to different evaporation rates (a)
β = 0.001 and θmax = 50. (b) β = 0.005 and θmax = 46. (c) β = 0.01 and θmax = 45.
(d) β = 0.05 and θmax = 40. (e) β = 0.1 and θmax = 35. (f) β = 0.2 and θmax = 35.
(Color figure online)

A second analysis was conducted using N = 3 robots to verify the envi-
ronment coverage employing the same β variation used in the first experiment.
The number of times each cell xij have been visited during 1000 time steps was
computed in each simulation. These values were used to construct temperature
graphics, in which a high number of dark blues cells represents a simulation
with low coverage, indicating a poor surveillance performance. Figure 4 shows
that robots made good environmental coverage for almost all β values. The sim-
ulation β = 0.2 returned the worst performance, due to one room was overloaded
with robots visits, while other rooms were missing visits. It is also possible to
observe in β = 0.05 and β = 0.1 simulations that there are several blue points
inside some individual rooms, indicating that some positions were never or few
times visited by the robots. Therefore, considering both pheromone (Fig. 3) and
coverage (Fig. 4) analyses we conclude that β = 0.005 and β = 0.01 evaporation
rates leads the team to the best behaviors.
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Fig. 4. Maps of cell steps according to different evaporation rates (a) β = 0.001 and
smax = 12. (b) β = 0.005 and smax = 16. (c) β = 0.01 and smax = 16. (d) β = 0.05
and smax = 14. (e) β = 0.1 and smax = 14. (f) β = 0.2 and smax = 20, using N = 3,
T = 1000 and σ = 0.43rv. (Color figure online)

The appropriate team size N to perform the task is an important feature to be
considered in a swarm of robots for an specific environment. In order to analyze
this characteristic, the team size was varied using four different values N = {1, 2,
3, 4} and they were used to perform the surveillance for E2 environment. Since
there are 7 rooms in this environment, the task could be solved putting one robot
in each room. Therefore, the goal is to identify the minimum number of robots
in the team to solve this task with a reasonable performance, that is, each room
needs to be checked by at least one robot after a short interval of time. The
experiment was conducted using T = 1000 steps and β = 0.01. By inspecting
Eqs. 2, 3 and 4 using δ = 0.7, σ = 0.43, τmax = 50 and β = 0.01, it was possible
to conclude that after a cell is visited and a pheromone is deposited on it, and it
takes at least 100 time steps to be almost evaporated (considering the case that
no robot returns to this position to reinforce the pheromone trace). Therefore,
if a dark blue cell is found at time T = 1000, it means that this position has
not been visited by any robot for at least 100 time units. Figure 5 shows the
pheromone in each cell xij after T = 1000 steps. Figure 5(a) shows the result of
the first experiment performed with just one robot (N = 1). It was possible to
note that 4 rooms were not recently visited, since they just have dark blue cells. It
represents that a unique robot is not able to perform this task alone. Figure 5(b)
shows the resultant pheromone temperature graphic using 2 robots in the team.
Although it was possible to observe at least one cell in each room with a different
color, it is still possible to observe a lot of dark blue cells in each room, meaning
that a large portion of these rooms were not recently visited, embarrassing the
surveillance task. Therefore, 2 robots is still not enough to complete the task.
Starting from 3 robots (Fig. 5(c) and (d)), it is possible to notice that the team
performance is good. Although we have 1 room in Fig. 5(c) with a great number
of dark blue cells, this same room has a hot region indicating that a robot was
inside it at time T = 1000 and this region was started to be coverage again.
Figure 5(d) indicates that all rooms received a good recent exploration but as
the previous analysis suggested we can considered a waste of resources to use
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Fig. 5. Maps of pheromone amount according to the number of robots (a) N = 1 and
θmax = 46. (b) N = 2 and θmax = 45. (c) N = 3 and θmax = 45. (d) N = 4 and
θmax = 46. (Color figure online)

Fig. 6. The IACA performance according to different evaporation rates (a) β = 0.001.
(b) β = 0.01. (c) β = 0.1. (Color figure online)

4 robots. Finally, we conclude that the appropriate team size for this environment
configuration uses 3 robots.

A final experiment was carried out to deeper analyze the team perfor-
mance by registering the number of visits in each room during the 1000
time steps. Figure 6 exhibits three graphics summarizing the simulation con-
ducted using room E2, each one corresponding to a different evaporation rate
β = {0.001, 0.01, 0.1}. The graphics were elaborated registering the current local-
ization of each robot at each time step. The y-axis represents the rooms and the
x -axis represents iterations. Each red vertical line indicates that one cycle of the
surveillance was completed, that is, the iteration when the robots cooperatively
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visited all the 6 rooms. Each robot is initialized in a different room. The graph-
ics show that IACA system with β = 0.001 is able to conclude the first cycle of
surveillance at the iteration 219. In the simulations using β = 0.01 and β = 0.1
the IACA system executes more efficiently the task concluding the first cycle at
the iterations 145 and 152, respectively. Moreover, IACA system with β = 0.001
concludes 5 cycles of the surveillance task, considering all the 1000 steps of sim-
ulation. On the other hand, using β = 0.01 and β = 0.1, the number of cycles
concluded is increased to 7 and 6, respectively. This result corroborates that the
pheromone evaporation rate is an important parameter of the model to induce
a better swarm performance. Considering the β values evaluated and using 3
robots to explore the environment E2, the best performance was achieved using
β = 0.01.

4 Conclusions and Further Comments

This work proposes and investigates a new control model for swarms of robots
based on two-dimensional cellular automata and inverted pheromone dynamics
called IACA. Our model is dedicated to the surveillance task, which is very
relevant to collective robotics due to [14] (i) it is included in a broad class
of robotics problems; (ii) surveillance is largely used for the study of robot-
robot cooperation, (iii) many real-world applications for robotics are samples of
surveillance robots.

The major characteristics of IACA model are: (i) the environment is mod-
eled as a cellular automata lattice formed by identical square cells; (ii) each
robot is controlled by an individual finite state machine that switches over a
4-state cycle; (iii) each time a robot passes a cell while exploring, it leaves a
trace in the environment, being that the repulsive pheromone is deposited in
the current cell but also in the adjacent ones (in a attenuated value); (iv) the
pheromone is submitted to an evaporation process aiming to enable visited cells
to be checked again after some time delay, (v) the vision ability is considered in
a such way that the robot is able to identify a pheromone trace inside its vision
radius; (vi) the next step choice is stochastic and based on a probability which
is inversely proportional to the pheromone amount of the neighborhood cells;
(vii) the pheromone dynamics allows almost-free collisions trajectories; (viii) the
robot-robot conflict avoidance are treated in a non-deterministic way.

Using simulations on virtual environments it was possible to evaluate the
IACA model in terms of coverage performance, exploration analysis and the best
evaporation rate. It was possible to conclude that the proposed model is adequate
to control a team of robots for surveillance returning an efficient performance
in this task. For a better utilization of this model, it is possible to refine its
parameters according to robots and environment’s specifications.

A forthcoming work is about the implementation of this model using simu-
lation platforms with real-world robotic architectures, allowing a more realistic
analysis of the model. We have already started this investigation and some new
relevant issues have appeared related to the need of synchronization and the
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model dependency on the accuracy of the localization and orientation of robots.
In a future investigation we intend to identify the common behavior returned by
the proposed model, independently from the parameters values adopted.

Aknowledgments. GMBO thanks to CAPES, CNPq and Fapemig.

References

1. Kıran, M.S., Gündüz, M., Baykan, Ö.K.: A novel hybrid algorithm based on particle
swarm and ant colony optimization for finding the global minimum. Appl. Math.
Comput. 219(4), 1515–1521 (2012)

2. Ferreira, G.B.S., Vargas, P.A., Oliveira, G.M.B.: An improved cellular automata-
based model for robot path-planning. In: Mistry, M., Leonardis, A., Witkowski, M.,
Melhuish, C. (eds.) TAROS 2014. LNCS, vol. 8717, pp. 25–36. Springer, Heidelberg
(2014)

3. Behring, C., Bracho, M., Castro, M., Moreno, J.: An algorithm for robot path
planning with cellular automata. In: Bandini, S., Worsch, T. (eds.) Theory and
Practical Issues on Cellular Automata, pp. 11–19. Springer, Heidelberg (2001)

4. Biswas, S., Das, S., Debchoudhury, S., Kundu, S.: Co-evolving bee colonies by
forager migration: a multi-swarm based Artificial Bee Colony algorithm for global
search space. Appl. Math. Comput. 232, 216–234 (2014)

5. Quang, N.N., Sanseverino, E.R., Di Silvestre, M.L., Madonia, A., Li, C., Guerrero,
J.M.: Optimal power flow based on glow worm-swarm optimization for three-phase
islanded microgrids. In: AEIT Annual Conference-From Research to Industry,
pp. 1–6. IEEE (2014)

6. Ioannidis, K., Sirakoulis, G.C., Andreadis, I.: Cellular ants: a method to create
collision free trajectories for a cooperative robot team. Rob. Auton. Syst. 59(2),
113–127 (2011)

7. Calvo, R., de Oliveira, J.R., Figueiredo, M., Romero, R.A.F.: Bio-inspired coor-
dination of multiple robots systems, stigmergy mechanims to cooperative explo-
ration, surveillance tasks. In: 2011 IEEE 5th International Conference on Cyber-
netics and Intelligent Systems (CIS), pp. 223–228. IEEE (2011)

8. Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A. (eds.):
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