
FResCA: A Fault-Resistant Cellular Automata
Based Stream Cipher

Jimmy Jose1,2(B) and Dipanwita Roy Chowdhury1

1 Crypto Research Laboratory, Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Kharagpur, India

{jimmy,drc}@cse.iitkgp.ernet.in
2 Department of Computer Science and Engineering,

National Institute of Technology Calicut, Calicut, India
jimmy@nitc.ac.in

Abstract. Grain is a stream cipher suitable for restricted hardware
environments. The cipher is particularly vulnerable to fault attacks. It
has been shown that fault injection in either the linear or nonlinear
block of Grain can break the cipher. Fault attacks generally exploit the
linear behaviour and the reversibility of the cipher states. Using Cellular
Automata (CA), we propose a Grain-like cipher which is shown to be
strong particularly against fault attacks.

Keywords: Fault analysis · Grain cipher · Stream cipher · Cellular
automata

1 Introduction

Encryption techniques in general can be broadly classified into two, namely
symmetric-key encryption (secret-key encryption) and asymmetric-key encryp-
tion (public-key encryption). Stream ciphers fall under symmetric-key encryption
where the sender and the receiver share the same secret key. Stream ciphers may
be classified into synchronous where the keystream depends only on the key and
asynchronous where the keystream depends on both the key and the ciphertext.

The importance of stream ciphers stems from the fact that they are suitable
for resource-constrained environments where computing power, memory, etc. are
at a premium. Stream ciphers may be efficient in software meaning they need
fewer instructions to execute or may be hardware efficient meaning they need
less hardware circuitry.

eSTREAM [1], the ECRYPT Stream Cipher Project, was conceptualised to
promote the design of efficient stream ciphers. The shortlisted ciphers under
the the project falls into two categories. One set of ciphers are more suitable
for software applications with high throughput requirements and the other set
of ciphers are suitable for restricted hardware environments. Grain cipher falls
under the second category and our interest is on 128-bit version of Grain known
as Grain-128 which is described in detail in Subsect. 2.1. In this paper, reference
to Grain implies Grain-128 version of the cipher unless otherwise stated.
c© Springer International Publishing Switzerland 2016
S. El Yacoubi et al. (Eds.): ACRI 2016, LNCS 9863, pp. 24–33, 2016.
DOI: 10.1007/978-3-319-44365-2 3



FResCA: A Fault-Resistant CA Based Stream Cipher 25

Side channel attacks (SCA) are attacks that target the limitations in the
physical implementation of the cryptosystem. They can be either active or pas-
sive. Fault attacks are active side channel attacks and in particular, they find
relevance against stream ciphers [9]. Faults are injected into unknown bit posi-
tions in the cipher state and by tracking these faults, the state of the cipher is
found. These attacks are suitable when the cryptosystem is not vulnerable to
direct attacks. Some of the fault attacks that were proposed against Grain are
fault injection in LFSR [4], fault injection in NFSR [12], and the attack which
is applicable to Grain family of ciphers [3].

The immunity of a CA based Trivium-like stream cipher against fault attacks
was shown [10] in ACRI 2014. In [7], a scalable stream cipher based on CA
was proposed. In this paper, we propose a CA based Grain-like stream cipher
FResCA which is resistant to fault attack. Analysis of its cryptographic strength
is provided with a special emphasis on fault attacks.

The paper is organised as follows. In Sect. 2, we give a brief description
of Grain and suitability of CA as better cryptographic primitive against fault
attacks.The proposed cipher FResCA is described in Sect. 3. Section 4 discusses
the security of the proposed cipher and Sect. 5 describes the cipher’s strength
against fault attacks. We conclude with Sect. 6.

2 Preliminaries

Boolean functions should have certain desirable cryptoproperties so that they
can be employed in practical cryptosystems. A detailed discussion on Boolean
functions and their cryptoproperties can be found in [14]. In this section, a brief
description of Grain is provided followed by a discussion on CA’s suitability as
cryptographic primitive against fault attacks.

Fig. 1. Grain block diagram Fig. 2. Grain Initialisation

2.1 Grain-128 Description

Grain [8] has three blocks namely an LFSR, an NFSR, and an output func-
tion as shown in Fig. 1. The contents of the LFSR and NFSR are denoted
by (si, si+1, · · · , si+127) and (bi, bi+1, · · · , bi+127) respectively at clock i and



26 J. Jose and D. Roy Chowdhury

together determine the 256-bit state of the cipher. The LFSR feedback poly-
nomial f(x) updates the LFSR as

si+128 = si ⊕ si+7 ⊕ si+38 ⊕ si+70 ⊕ si+81 ⊕ si+96.
The NFSR feedback polynomial g(x) together with si from LFSR updates

the NFSR as

bi+128 = si ⊕ bi ⊕ bi+26 ⊕ bi+56 ⊕ bi+91 ⊕ bi+96 ⊕ bi+3bi+67 ⊕ bi+11bi+13

⊕ bi+17bi+18 ⊕ bi+27bi+59 ⊕ bi+40bi+48 ⊕ bi+61bi+65 ⊕ bi+68bi+84.

The nonlinear function h is defined as
h = bi+12si+8 ⊕ si+13si+20 ⊕ bi+95si+42 ⊕ si+60si+79 ⊕ bi+12bi+95si+95.
The output bit zi is given as
zi = bi+2 ⊕ bi+15 ⊕ bi+36 ⊕ bi+45 ⊕ bi+64 ⊕ bi+73 ⊕ bi+89 ⊕ h ⊕ si+93.
In the initialisation phase, the key (k0, · · · , k127) and IV (v0, · · · , v95) are

loaded into the NFSR and LFSR as
(b0, · · · , b127) ← (k0, · · · , k127)
(s0, · · · , s127) ← (v0, · · · , v95, 1, · · · , 1).
Then the cipher is iterated 256 times without producing the keystream in

the initialisation phase as shown in Fig. 2. Instead, the keystream bits are fed
back and XORed with the input of both the LFSR and NFSR. After the initiali-
sation phase, these feedback paths are removed and keystream bits are available
through the output line.

2.2 CA as Better Cryptographic Primitive Against Fault Attacks

CA can provide fast evolution and high nonlinearity if appropriate CA rules are
employed. CA diffuse the state bits very fast and in a single cycle, every bit
undergoes transformation. This parallel transformation forces the introduced
fault to spread quickly and dissipate. So fault tracking becomes very difficult.

Most of the stream ciphers that are vulnerable to fault attacks use a reversible
algorithm. That is, if we know the state of the cipher at any instant, the cipher
can be run backwards until it reaches the initial state revealing the key which
was used for the cipher initialisation. CA can be effectively employed in such a
way that it is practically infeasible to reverse the cipher.

Since nonlinearity of CA based stream ciphers is quite high if appropriate CA
rules are employed, it is very difficult to generate linear equations which can be
solved to extract state bits of the cipher as done in a general fault attack. Thus,
a CA based stream cipher can be designed such that it prevents fault attack.

Other than these, CA prevent correlation attacks too. CA based stream
ciphers can provide fast initialisation as they achieve desirable values of crypto-
graphic properties in less rounds. They can be designed in such a way that they
are suitable in hardware as well as software.

3 FResCA Description

Our cipher model is Grain-like and has three blocks, namely nonlinear, linear,
and a mixing function as shown in Fig. 3. Nonlinear block uses highly nonlinear



FResCA: A Fault-Resistant CA Based Stream Cipher 27

4-neighbourhood CA rule whereas linear block uses 3-neighbourhood maximum
length CA and both are of 128-bit length. Third block performs nonlinear mixing
and produces the output stream.

Fig. 3. FResCA block diagram Fig. 4. FResCA Initialisation

3.1 Nonlinear Block

A study was conducted in [11] to explore the cryptographic properties of four-
neighbourhood CA. In the paper, five good candidate rules were selected based
on their cryptographic properties. The rules 43350 and 51510 are cryptograph-
ically stronger among the five rules. In the NIST test suite [2], rule 43350 per-
formed better. So this rule is used in the nonlinear block which computes the
state of the CA cell qi at time t + 1 as

Rule 43350: qi(t + 1) = qi−2(t) ⊕ qi+1(t) ⊕ (qi−1(t) + qi(t)),
where qi−2(t), qi−1(t), qi(t), and qi+1(t) represent the state of the two left

neighbours, self, and right-neighbour respectively at time t of the left-skewed
four-neighbourhood CA, ⊕ and + represent XOR and OR operations respec-
tively. Rule 43350 provides high nonlinearity to the nonlinear block and the non-
linearity increases rapidly with each iteration. The rule is balanced and exhibits
good correlation immunity also.

3.2 Linear Block

Linear block uses a three-neighbourhood linear maximum-length CA. Two linear
rules, rule 90 and 150 are used to realise the CA. These rules are defined as
Rule 90: qi(t + 1) = qi−1(t) ⊕ qi+1(t)
Rule 150: qi(t + 1) = qi−1(t) ⊕ qi(t) ⊕ qi+1(t)

The bit positions 1 and 29 uses rule 150 and all other 126 positions use rule
90 to realise the maximum length CA.

3.3 Nonlinear Mixing

The nonlinear mixing is achieved by using NMIX function [5] which is defined
for two n-bit inputs X,Y, and output Z as follows:
zi ← xi ⊕ yi ⊕ ci−1

ci ← x0y0 ⊕ · · · ⊕ xiyi ⊕ xi−1xi ⊕ yi−1yi
and x−1 = y−1 = c−1 = 0, 0 ≤ i ≤ n − 1.



28 J. Jose and D. Roy Chowdhury

We take 8-bits each from the nonlinear and linear block as input to NMIX
and the most significant bit (MSB) is taken as the output from NMIX. We
can see that all input bits are present in the computation of MSB. The output
function is a 16-variable bent function of degree two and this mixing provides
high nonlinearity.

3.4 Working of FResCA Cipher

FResCA is Fault-Resistant Cellular Automata based Grain-like cipher. The
cipher has an initialisation phase and a keystream generation phase. The output
is suppressed in the initialisation phase which consists of 32 iterations. The
number of iterations in initialisation phase is very less in comparison to 256
iterations in Grain. The 128-bit key and 128-bit IV are loaded to the nonlinear
and linear blocks respectively. During this phase, the output is fed back to both
the nonlinear and linear blocks as shown in Fig. 4. The output bit acts as the right
neighbour for the rightmost linear cell and the XOR of the output bit and the
leftmost bit of linear block acts as the right neighbour to the rightmost nonlinear
cell in the initialisation phase. In each iteration, each bit in the nonlinear block
changes its state according to the 4-neighbourhood CA rule 43350. In the linear
block, the bits change according to 3-neighbourhood linear rule 90 except for bit
locations 1 and 29 where rule 150 is used. Eight taps are taken from each of the
nonlinear and linear blocks so that the number of input lines to the nonlinear
mixing block is 16. The eight taps corresponds to the bit positions 1, 22, 43, 64,
65, 86, 107, and 128 in both the blocks. The tap positions are spaced equally
other than the two central taps so that the output is influenced by all the bits
in less iterations.

Thirty-two cycles are more than sufficient for all the 256 state bits to influence
the input to the NMIX function and thereby influencing the output of NMIX,
i.e., the keystream bit. So each keystream bit is influenced by all the 256 state
bits. The first keystream bit z1 (first 32 keystream bits are suppressed and are
not available as output) involves 16 variables, 8 from the nonlinear block and 8
from the linear block.

If nonlinear bits are represented as (b1, · · · , b128) and linear bits are repre-
sented as (s1, · · · , s128), then z1 is represented as

z1 = b128 ⊕ s128 ⊕ b1s1 ⊕ b22s22 ⊕ b43s43 ⊕ b64s64 ⊕ b65s65 ⊕ b86s86 ⊕ b107s107 ⊕
b86b107 ⊕ s86s107.

The cryptographic properties of z1 are measured. Nonlinearity, correlation-
immunity, resiliency, and algebraic degree are 32256, 1, 1, and 2 respectively.
Since we have resiliency value as 1, the Boolean function is balanced also.

The second keystream bit z2, which is also suppressed, involves 41 variables
(26 from the nonlinear block and 15 from linear block). The Boolean function
corresponding to z2 is



FResCA: A Fault-Resistant CA Based Stream Cipher 29

z2 = b126⊕b127⊕b128⊕s127⊕(b1s1)⊕(b1s2)⊕(b105b84)⊕(b105b85)⊕(b105b86)
⊕ (b105b87) ⊕ (b105s106) ⊕ (b105s108) ⊕ (b106b84) ⊕ (b106b85) ⊕ (b106b86) ⊕ (b106b87)
⊕ (b106s106)⊕ (b106s108)⊕ (b107b84)⊕ (b107b85)⊕ (b107b86)⊕ (b107b87)⊕ (b107s106)
⊕ (b107s108)⊕ (b108b84)⊕ (b108b85)⊕ (b108b86)⊕ (b108b87)⊕ (b108s106)⊕ (b108s108)
⊕ (b127b128)⊕ (b2s1)⊕ (b2s2)⊕ (b20s21)⊕ (b20s23)⊕ (b21s21)⊕ (b21s23)⊕ (b22s21)
⊕(b22s23)⊕(b23s21)⊕(b23s23)⊕(b41s42)⊕(b41s44)⊕(b42s42)⊕(b42s44)⊕(b43s42)
⊕(b43s44)⊕(b44s42)⊕(b44s44)⊕(b62s63)⊕(b62s65)⊕(b63s63)⊕(b63s64)⊕(b63s65)
⊕(b63s66)⊕(b64s63)⊕(b64s64)⊕(b64s65)⊕(b64s66)⊕(b65s63)⊕(b65s64)⊕(b65s65)
⊕(b65s66)⊕(b66s64)⊕(b66s66)⊕(b84s85)⊕(b84s87)⊕(b85s85)⊕(b85s87)⊕(b86s85)
⊕ (b86s87) ⊕ (b87s85) ⊕ (b87s87) ⊕ (s106s85) ⊕ (s106s87) ⊕ (s108s85) ⊕ (s108s87)
⊕ (b105b85b86) ⊕ (b106b107b84) ⊕ (b106b107b85) ⊕ (b106b107b86) ⊕ (b106b107b87)
⊕ (b106b107 s106) ⊕ (b106b107s108) ⊕ (b106b85b86) ⊕ (b107b85b86) ⊕ (b108b85b86)
⊕ (b21b22s21) ⊕ (b21b22s23) ⊕ (b42b43s42) ⊕ (b42b43s44) ⊕ (b63b64s63) ⊕ (b63b64s65)
⊕ (b64b65s64) ⊕ (b64b65s66) ⊕ (b85b86s85) ⊕ (b85b86s87) ⊕ (b106b107b85b86).

Algebraic degree increases from 2 to 4 in the second iteration itself and
increases with each iteration. A Boolean function should have high algebraic
degree for cryptographic security [6]. Presence of forty-one variables makes it
impossible to compute the other crypto properties as the truth-table has 241

entries.

4 Security of FResCA

We analyse the security of the cipher with respect to different attacks.

Meier-Staffelbach Attack Our cipher uses 4-neighbourhood CA in the non-
linear block. It has been shown in [11] that a certain class of 4-neighbourhood
CA resist Meier-Staffelbach attack. The nonlinear rule in FResCA is from that
class. So the cipher is strong against the attack.

Linear Attacks First keystream bit of our cipher has a nonlinearity of 32256.
The nonlinearity increases with each iteration. Keystream bits are available only
from 33rd iteration onwards and the nonlinearity will be much higher at that
stage.

Correlation Attacks The nonlinear CA rule 43350 exhibits good correlation
property [11]. Output from this block is combined with the output from the
maximum length CA block using NMIX function [5] which guarantees correlation
immunity and balancedness in the output. Thus correlation attacks can be ruled
out.

Algebraic Attacks Ciphers having high algebraic degree in their Boolean func-
tion are difficult to attack algebraically. The rate of increase in algebraic degree
is high with each iteration in our cipher. This prevents algebraic attacks.

Scan-Based Side Channel Attacks This attack will succeed if the cipher is
reversible. The combination of nonlinear and linear CA rules makes our cipher
robust against this attack.



30 J. Jose and D. Roy Chowdhury

Experimental Results Our cipher was run on NIST test suite [2]. Input to
the NIST test suite was a file containing 0.1 billion keystream bits. NIST test
suite was allowed to partition the input to 100 keystreams where each keystream
contains 1 million bits.

Our cipher with rule 43350 as the 4-neighbourhood rule passed all the tests
for different key-IV pairs. Rule 51510, which is also thought to be promising [11],
failed in some tests (failures relatively low in number). The same key-IV pairs
were used to generate keystream bits for NOCAS cipher [13] which needs 64
cycles in the initialisation phase whereas FResCA needs only 32. NOCAS failed
in non-overlapping tests but passed all other tests in the test suite.

Strength of the cipher against fault attack is discussed separately in the next
section.

5 Strength of FResCA Against Fault Attacks

Grain is shown to be vulnerable against fault attacks. It is shown in [4] that
the cipher can be broken by inserting fault into the LFSR state. Later, fault
injection in NFSR state [12] is also shown to be successful.

5.1 Injecting Fault into Linear Block of Grain

Initially, the attack [4] tries to find out the fault location by analysing the
keystream difference bits. If di, zi, and z′

i are respectively the ith keystream differ-
ence bit, keystream bit, and keystream bit after fault injection, then di = zi⊕z′

i.
Corresponding to each possible fault location i in the LFSR, a unique pattern
in {di} is found out.

The Boolean representation of Grain-128 output zi contains si+13si+20 and
si+60si+79 as terms. If any one of the four bits s13, s20, s60, or s79 is faulted,
then the output difference represents the value of an LFSR bit. As an example,
if fault is injected at position 60, output difference is the value of s79. In this
way, each LFSR bit is revealed.

If we know the LFSR bits, we can generate linear equations involving NFSR
bits from the regular keystream. The only exception is the involvement of the
term bi+12bi+95si+95 and if si+95 = 0, we get linear equation involving several
bits of the current NFSR state. The keystream difference equations that are used
to recover LFSR states can be reused here also.

Since Grain-128 algorithm is reversible, the cipher can be run backwards
from the known current state to reach the initial state to reveal the key.

Prevention of the Attack in FResCA In our cipher, fault position cannot
be found out as described in the attack. ΔGrain algorithm tries to find a unique
pattern Pi corresponding to each each fault position i, 0 ≤ i ≤ 127. The algo-
rithm relies on the fact that the fault injected position will be represented by 1
while other bits are 0 and the availability of this 1 in the output through different
taps at different instances of time provides the value of i. In our CA based linear



FResCA: A Fault-Resistant CA Based Stream Cipher 31

block, a single 1 in the register generates more 1’s in different cell positions with
each iteration (unlike in Grain where the single 1 shifts its position with each
iteration) and we cannot generate unique patterns corresponding to each fault
position.

In phase 3 of the attack, the algorithm (algorithm 3) which finds the number
of known LFSR bits also will fail as it uses ΔLFSR as used in ΔGrain algorithm
because there will be more 1’s in our cipher as opposed to a single 1 in ΔLFSR.
In the case of Grain, the number of LFSR bits that are recovered depends on
the fault location and the number of times the cipher is clocked after the fault
is injected. In our case, during subsequent clocking after fault injection, the
fault will not be preserved in a single cell and gets mixed with more and more
neighbours with each iteration. We can find out exactly one linear bit if the
fault location is 86 or 107 as s86s107 is the only term involving linear bits in the
keystream function z = b128 ⊕ s128 ⊕ b1s1 ⊕ b22s22 ⊕ b43s43 ⊕ b64s64 ⊕ b65s65 ⊕
b86s86 ⊕ b107s107 ⊕ b86b107 ⊕ s86s107.

If we know all the linear bits (si’s), we can try to find nonlinear bits (bi’s).
Then the only nonlinear term in zi (keystream bit) is b86b107. We cannot make
it linear as was done in Grain where the only nonlinear term was b12b95s95 and
if s95 was zero, the whole equation becomes linear. In Grain, more iterations will
produce more linear equations (shown in Fig. 4 - Algorithm “CountEquations”
[4]) whereas in our cipher, more iterations will not be fruitful as the fault start
mixing with more and more neighbours in each iteration.

We need to compute the initial state to find the key thereby breaking the
cipher. Use of CA and combination of nonlinear and linear CA rules to produce
keystream bits make the computation of initial state from the known present
state of the cipher difficult. In our case, finding present state itself is not possible.

5.2 Injecting Fault into Nonlinear Block of Grain

After initialisation phase in Grain, if fault is injected into NFSR, it cannot
propagate to LFSR. This attack [12], just like the previous attack, also starts by
finding out the fault injection location. Over a large number of key-IV combina-
tions, the nonlinear b-bits will provide unique keystream difference sequence for
fault injection at a particular location thereby revealing the fault location. To
enhance the attack, a table named Fault Traces Table which contains the list of
corrupted bit locations after t iterations on fault injection at location f is also
created.

To find out nonlinear bits, the feedback equation for b128 is used which con-
tains seven degree-2 terms containing only nonlinear b-bits of the form bmbn.
Moving the fault to either bm or bn will provide the value of the other as the
difference. To get more linear equations involving b-bits, we use linear b-terms
in zi. Feedback fault is moved to one of the single b-bit output taps to get either
the value of b-bit or linear equation involving several b-bits.

The three terms bi+12si+8, bi+95si+42, bi+12bi+95si+95 in zi are exploited to
determine the LFSR bits. They provide either the s-bit value or provide linear
equation involving s-bits. These equations are solved to get the LFSR state.



32 J. Jose and D. Roy Chowdhury

Like in the previous attack, after NFSR and LFSR state is obtained, Grain
is run backwards to get the key.

Prevention of the Attack in FResCA When fault is injected in the nonlinear
block of our cipher, the fault propagation largely depends on the nonlinear CA
rule used and the effect of the fault is propagated to the neighbouring cells on
both sides of the cell where fault was injected. Because of the fast diffusion of the
introduced fault, we will not be able to find unique pattern σf as in algorithm 1
of the attack so that fault location can be found out. Moreover, the computed
fault traces in our cipher looks random as the nonlinear CA rule determines how
the fault traces are spread.

It is not possible to determine the nonlinear bits in our cipher like the NFSR
bits in Grain. The attack against Grain uses equations corresponding to zi and
b128. In our cipher, we have only output zi as there is no feedback path (which
corresponds to b128 in Grain) for the nonlinear block. In the output equation for
Grain, there are 7 single b-bit output taps, namely b2, b15, b36, b45, b64, b73, and
b89 that are exploited in this phase whereas our cipher has only one, i.e., b128.
We cannot move a fault into single bit output tap as done in Grain as it is a
simple left shift in Grain with each iteration. In our cipher, the number of 1’s
will be more and controlling them to occupy specific cell locations is practically
impossible. This phase of the attack consults Fault Traces Table twice, but in
our case, fault traces cannot be constructed in a similar manner.

We try to find out linear block bits just like how LFSR bits are found out in
Grain assuming that we have already found out the nonlinear block bits. This
phase uses the terms in zi representation which has both b and s, like bmsn. In
Grain, the induced fault propagates to some specified locations in NFSR without
corrupting other b-bits of zi. In our cipher, it is very difficult to guarantee this
as more and more bits get corrupted because of the higher diffusion of the fault
which is the inherent nature of the CA.

Computation of initial state from the known present state of the cipher
thereby breaking the cipher is very difficult because of the use of CA and combi-
nation of nonlinear and linear CA rules to produce keystream bits as described
in the previous attack.

6 Conclusion

We have proposed a 4-neighbourhood CA based Grain-like stream cipher. Its
initialisation is 8 times faster than Grain. We have shown that it is strong against
different attacks, in particular, fault attacks. Experimental results confirm our
claim for its robustness.



FResCA: A Fault-Resistant CA Based Stream Cipher 33

References

1. The Estream Project. http://www.ecrypt.eu.org/stream/. Accessed 31 Mar 2016
2. The NIST Statistical Test Suite. http://csrc.nist.gov/groups/ST/toolkit/rng/.

Accessed 31 Mar 2016
3. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family of

stream ciphers. In: Proceedings of the CHES 2012-14th International Workshop,
Leuven, Belgium, 9–12 September 2012

4. Berzati, A., Canovas, C., Castagnos, G., Debraize, B., Goubin, L., Gouget, A.,
Paillier, P., Salgado, S.: Fault analysis of grain-128. In: 2009 IEEE International
Workshop on Hardware-Oriented Security and Trust, HOST 2009, pp. 7–14 (2009)

5. Bhaumik, J., RoyChowdhury, D.: Nmix: An ideal candidate for key mixing. In:
SECRYPT 2009, Proceedings of the International Conference on Security and
Cryptography, Milan, Italy, 7–10 July 2009, pp. 285–288 (2009)

6. Ding, C., Xiao, G., Shan, W.: The Stability Theory of Stream Ciphers. LNCS, 1st
edn. Springer, Heidelberg (1991)

7. Ghosh, S., RoyChowdhury, D.: CASca: A CA based scalable stream cipher. In:
Mohapatra, R.N., Chowdhury, D.R., Giri, D. (eds.) Mathematics and Computing.
Springer Proceedings in Mathematics & Statistics, pp. 95–105. Springer, India
(2015)

8. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: 2006 IEEE International Symposium on Information Theory, pp. 1614–
1618 (2006)

9. Hoch, J.J., Shamir, A.: Fault analysis of stream ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004)

10. Jose, J., Das, S., RoyChowdhury, D.: Inapplicability of fault attacks against triv-
iumon a cellular automata based stream cipher. In: Proceedings of the Cellular
Automata-ACRI 2014, Krakow, Poland, 22–25 September 2014, pp. 427–436 (2014)

11. Jose, J., RoyChowdhury, D.: Investigating four neighbourhood cellular automata
as better cryptographic primitives. J. Discrete Math. Sci. Crypt. (to be published
in 2016)

12. Karmakar, S., Roy Chowdhury, D.: Fault analysis of grain-128 by targeting NFSR.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
298–315. Springer, Heidelberg (2011)

13. Karmakar, S., RoyChowdhury, D.: NOCAS: A nonlinear cellular automata based
stream cipher. In: Automata 2011, Center for Mathematical Modeling, 21–23
November 2011, pp. 135–146. University of Chile, Santiago, Chile (2011)

14. Wu, C.K., Feng, D.: Boolean Functions and Their Applications in Cryptogra-
phy. Advances in Computer Science and Technology, 1st edn. Springer, Heidelberg
(2016)

http://www.ecrypt.eu.org/stream/
http://csrc.nist.gov/groups/ST/toolkit/rng/

	FResCA: A Fault-Resistant Cellular Automata Based Stream Cipher
	1 Introduction
	2 Preliminaries
	2.1 Grain-128 Description
	2.2 CA as Better Cryptographic Primitive Against Fault Attacks

	3 FResCA Description
	3.1 Nonlinear Block
	3.2 Linear Block
	3.3 Nonlinear Mixing
	3.4 Working of FResCA Cipher

	4 Security of FResCA
	5 Strength of FResCA Against Fault Attacks
	5.1 Injecting Fault into Linear Block of Grain
	5.2 Injecting Fault into Nonlinear Block of Grain

	6 Conclusion
	References


