
A Fast Parallel Algorithm for the Robust
Prediction of the Two-Dimensional Strict

Majority Automaton

Eric Goles1,3(B) and Pedro Montealegre2

1 Facultad de Ingenieŕıa Y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
eric.chacc@uai.cl

2 Université D’Orléans, INSA Centre Val de Loire, LIFO EA, 4022 Orléans, France
3 Le Studium: Loire Valley Institute for Advanced Studies, Orléans, France

Abstract. Consider the robust prediction problem for some automaton
as the one consisting in determine, given an initial configuration, if there
exists a nonzero probability that some selected site change states, when
the network is updated picking one site at a time uniformly at random.
We show that the robust prediction is in NC for the two-dimensional,
von Neumann neighborhood, strict majority automaton.

Keywords: Majority automata · Prediction problem · Asynchronous
automata · Computational complexity · Fast parallel algorithm · Boot-
stap percolation

1 Introduction

The study of the dynamics of cellular automata and their relation with the com-
putational complexity was introduced, to our knowledge, by Banks in the 70’s
[1,2]. The computational complexity of a cellular automaton is defined as its
capability to simulate algorithms using certain configurations. In other words,
to be Turing-Universal. These notions can be translated into decision problems,
consisting in the prediction of state changes in some site, given an initial config-
uration. The complexity of the automaton is then related with the complexity
of this type of decision problems, where the Turing Universality is translated as
the P-Completeness of the prediction problem.

The class NC, which is a subclass of P, is known as the class of problems
that can be solved with a fast parallel algorithm, which run in poly-logarithmic
time in a PRAM machine using a polynomial number of processors. It is widely
believed that NC �= P. The membership of the prediction problem of some CA
in NC, suggest that this automaton is not capable of simulating algorithms in
the sense above, since it can only simulate very simple circuits.

These perspectives have been studied by several authors, in the context of
sand piles and the chip firing game [3–5,14], the majority automaton [13] and
the life without death [11] in cellular automata, as well as when the dynamics

c© Springer International Publishing Switzerland 2016
S. El Yacoubi et al. (Eds.): ACRI 2016, LNCS 9863, pp. 166–175, 2016.
DOI: 10.1007/978-3-319-44365-2 16

A Fast Parallel Algorithm for the Robust Prediction 167

are not necessarily defined over a finite lattice but over some graph [7,9]. These
results usually consider only synchronous dynamics, i.e., at each step the sites are
updated at the same time. However, there exist some results around prediction
problems with different updating schemes [6,8].

Another prediction problem considers the so-called fully asynchronous updat-
ing schemes, where in each time step a single site is updated, picked uniformly at
random. The prediction problem in this context (that we call robust-prediction)
consists in determining, given an initial configuration, if there exists a nonzero
probability that some site change states. In other words, determine if there exists
a sequence of site updates that produces the selected node to change states.
In [13] it is suggested that this prediction problem belongs to the class NC
restricted to two-dimensional majority cellular automata.

In this paper we show that the robust prediction problem is effectively in
NC for the two-dimensional strict majority automaton with the von Neumann
neighborhood. Our result is based on an algorithm on [9], which is used to solve
a version of the prediction problem (the synchronous one) in the freezing version
of the two-dimensional strict majority automaton. Freezing means that all sites
that begin in or reach state 1, remain in that state forever.

In next section we begin by giving some formal definitions of the concept
exposed above. In Sect. 3 we show the main result, and in Sect. 4 we give some
conclusions.

2 Preliminaries

In the following [n] denotes the set {1, . . . , n}. For a node v in a graph G =
(V,E), we call N(v) the neighborhood of v and N [v] = N(v) ∪ {v} the closed
neighborhood of v. Let U ⊆ V be a set of nodes, then G[U] is the subgraph of
G induced by the nodes in U .

An automata network (AN) of size n is a tuple A = (G,F), where G = (V,E)
is a graph of size n. Each node v ∈ V has a state in {0, 1}. Nodes in state 1 are
called active while nodes in state 0 are called inactive. A configuration x of G is
a state assignment to each node of G, represented by an element of {0, 1}n. The
configurations evolve according to a global function F : {0, 1}n → {0, 1}n, com-
posed of node functions (fv)v∈V (G) such that fv : {0, 1}N [v] → {0, 1} depends
only in the closed neighborhood of a node and F (x) = (fv(x))v∈V . Usually F
is called the rule of the automata network. When G is a finite two-dimensional
lattice with periodic boundary conditions, we say that the corresponding AN is
a two-dimensional cellular automaton (CA). In this paper we will always con-
sider the von Neumann neighborhood for CA’s (i.e., the four sites orthogonally
surrounding a central site).

An updating scheme of an AN of size n is a function σ : N → 2[n], which
defines which nodes are updated at each time step. An updating scheme σ is
applied to an automata network A = (G,F) as follows: define for u ∈ V (G) and

168 E. Goles and P. Montealegre

i ∈ N the value of (F σ(i)(x)) in the site u as:

(F σ(i)(x))u =
{

(F (x))u if u ∈ σ(i),
xu otherwise.

and F σ,i(x) = F σ(i)(F σ,i−1(x)) with F σ,0(x) = x. The synchronous updating
scheme, represented by the function sync ≡ [n], corresponds to the one where
each site is updated at each time step. We denote F sync,i = F i, for any i > 0.
In this paper all updating schemes which are not the synchronous one will be
sequential, this is, for any t > 0 |σ(t)| = 1. In words, this means that at each
time step we will update a single site. Notice that we do not ask the sequen-
tial updating schemes to be fair: some nodes may be updated several times,
while others may not be updated at all. A sequential updating scheme is called
fully asynchronous if at each time step the updated node is picked uniformly at
random.

A node v ∈ V is called stable for a pair (G, x) and some updating scheme σ
of rule F , where G is a graph and x is a configuration of G, if (Fσ(t)(x))v = xv

for all t > 0. For any two n dimensional boolean vectors, x, y ∈ {0, 1}n, we say
that x ≤ y if xi ≤ yi for each i ∈ [n]. A rule F is called monotone if for each
x1, x2 ∈ {0, 1}n, x1 ≤ x2 implies F (x1) ≤ F (x2). For any local rule F , we define
the freezing version of F , denoted F , as the rule defined as (F (x))v = 1 if xv = 1
and (F (x))v otherwise.

The Strict Majority rule is the global function defined using the following
local functions:

fv(x) =
{

1 if
∑

u∈N(v) xv > |N(v)|/2,

0 otherwise.

We call Bootstrap Percolation the freezing version of the strict majority rule.

2.1 Prediction Problems

As we said in the introduction, the computational complexity of an automata
network can be characterized by different prediction problems. Let G be a graph
and v ∈ V (G) a special node, that we will call the objective node. In the following
we will define three prediction problems, each of them consisting in deciding if
a objective node will change states, given an initial configuration that evolves
according to some fixed rule.

The first problem, called Prediction consists in determining if the objective
node will change states in at most some given number of synchronous steps, given
also an initial configuration. Formally the problem is stated as follows:

Prediction(F)
Input: A graph G, an initial configuration x, a vertex v ∈ V (G) such that
xv = 0 and T > 0.
Question: Determine if (FT (x))v = 1.

A Fast Parallel Algorithm for the Robust Prediction 169

The second problem, called Eventual-Prediction is similar to Predic-
tion. In this problem, the number of steps to decide a state change is not given,
so the problem consists in determining if there exists a time step in which the
objective node becomes active. In other words we ask if the objective node is
stable for the synchronous updating. Formally the problem is stated as follows:

Eventual-Prediction(F)
Input: A graph G, an initial configuration x and a vertex v ∈ V (G) such
that xv = 0.
Question: Does there exists T > 0 such that (FT (x))v = 1?

The third problem is called Robust-Prediction, and the question is if there
exists a nonzero probability that the objective node becomes active in at most
some given number of steps, when the network is updated in a fully asynchronous
updating scheme. In other words, if there exists a sequential updating scheme
that makes the objective node to change. Formally the problem is stated as
follows:

Robust-Prediction(F)
Input: A graph G, an initial configuration x, a vertex v ∈ V (G) such that
xv = 0, and T > 0.
Question: Does there exists a sequential updating scheme σ such that
(F σ,T (x))v = 1?

Let G be a family of graphs. We call Prediction (respectively Eventual-
Prediction, Robust-Prediction) restricted to G to the decision prob-
lem Prediction (respectively Eventual-Prediction, Robust-Prediction)
where the input graph is restricted to belong to G.

Notice that Prediction(F) belongs to the class P for any rule F (whose
node function is computable in polynomial time), because simulating the
automaton for the given number of steps we can obtain the answer. Several exam-
ples exist for rules that are P-Complete both in general graphs and restricted to
the two-dimensional case [9,11]. On the other hand, Eventual-Prediction(F)
is in general in PSPACE, and may be PSPACE-Complete. However, when
the local function is a threshold function with symmetric weights (for example
the strict majority rule), the problem becomes polynomial, since in that case
the automaton reaches in at most a polynomial number of synchronous steps, a
fixed point or a two-cycle [10]. Finally Robust-Prediction(F) is in general in
NP, since a sequential updating scheme that makes the objective node active is
a certificate that can verified in polynomial time.

In the following we will show that for the Strict Majority and Bootstrap
Percolation rules, some of these problems restricted to the family of regular
graphs of degree four are in NC.

170 E. Goles and P. Montealegre

2.2 Parallel Subroutines

In our algorithms we will use as subroutines some fast parallel algorithms to
compute graph properties. These algorithms can be found in [12]. The connected
components of a graph G are the equivalence classes of the connectivity relation
over the vertices of G. The biconnected components of a graph are the equiva-
lence classes of the relation over the edges of G, where two edges are related if
they are both contained in the same cycle.

Proposition 1 ([12]). There exist the following fast parallel algorithms:

– A Connected-Components algorithm, that receives as input the adja-
cency matrix of a graph of size n, and returns an array C of dimension n,
such that C(i) = C(j) if and only if nodes vi and vj are in the same connected
component. The algorithm runs in time O(log n) using O(n2 log n) processors
in a CRCW PRAM1.

– A Biconnected-Components algorithm, that receives as input the adja-
cency matrix of a connected graph of size n, and returns an array B of dimen-
sion

(
n
2

)
, such that B(ei) = B(ej) if and only if edges ei and ej are in the same

biconnected component. The algorithm runs in time O(log2 n) using O(n2)
processors CRCW PRAM.

– A Rooting-tree algorithm, that receives as input a tree T represented as
the adjacency lists of its vertices and a special node r of T , and returns for
each node v the value p(v) which corresponds to the parent of v in the tree T
rooted at r. The algorithm runs in time O(log n) using O(n) processors in a
CRCW PRAM.

– A Tree-level algorithm, that receives as input a tree T represented as the
adjacency lists of its vertices, a special node r of T , and returns for each node
v the value l(v) which corresponds distance of node v to root r. The algorithm
runs in time O(log n) using O(n) processors in a CRCW PRAM.

We will also use a fast parallel algorithm to solve Eventual-Prediction for
the Bootstrap Percolation rule.

Proposition 2 ([9]). Let F be the Bootstrap Percolation rule. There exists an
algorithm that solves Eventual-Prediction(F) restricted to regular graphs of
degree four, in time O(log2 n) using O(n4) processors in a CRCW PRAM.

This fast parallel algorithm, that we call Algorithm 1 is based in the fol-
lowing characterization of nodes that are stable for the synchronous update of
the Bootstrap Percolation rule.

Proposition 3 ([9]). Let G be a regular graph of degree four, x be a configura-
tion of G, and v ∈ V (G) some node such that xv = 0. Call G[0, v] the connected
component of G[{u ∈ V (G) : xu = 0}] that contains v. Then v is stable for
(G, x) updated synchronously with the Bootstrap Percolation rule if and only if
either v belongs to a cycle or to a path between two cycles in G[0, v].
1 Concurrent-read Concurrent-write Parallel Random Access Machine: A RAM with

several processors, which can read and write a shared memory.

A Fast Parallel Algorithm for the Robust Prediction 171

Then, the fast parallel algorithm of [9] consists in finding the connected and
biconnected components of the graph induced by the nodes initially inactive,
and then detect if the objective node belongs to some cycle or a path between
two cycles in that graph. If it is not, then from the above proposition necessarily
the node eventually change states. In Sect. 3 we show that we can adapt this
algorithm to find, in case that the objective node is not stable, the exact number
of nodes that we must update in order to produce a change in the state of the
objective node.

3 The Strict Majority Rule

Before enunciate the main theorem, we prove the following lemma.

Lemma 1. Let G be a graph, x be a configuration of G, and v ∈ V (G) a vertex
such that xv = 0. Then v is a stable node for the synchronous updating scheme
of the Bootstrap Percolation rule if and only if v is stable for any sequential
updating scheme of the Strict Majority rule.

Proof. We will show that the property is true for any monotone rule F and
its freezing version F . We notice first that the monotonicity of F implies that
F σ,i(x) ≤ F

i
(x), for any i > 0, and sequential updating scheme σ. Indeed, from

the definition of F , for any configuration y ∈ {0, 1}n and k ∈ N, F σ(k)(y) ≤ F (y),
in particular F σ(1)(x) ≤ F (x). If we suppose then F σ,i−1(x) ≤ F

i−1
(x), we

obtain
F σ,i(x) = F σ(i)(F σ,i−1(x)) ≤ F σ(i)(F

i−1
(x)) ≤ F

i
(x).

where the first inequality follows from the monotonicity of F , and the second
one from the base case. We obtain that if there exists an updating scheme σ and
a time t > 0 such that (F s,t(x))v = 1, then (F

t
(x))v = 1.

In the other direction, suppose that there exists a time t > 0 such that
(F

t
(x))v = 1. Call Ui = {u ∈ V (G) : (F

i−1
(x))u = 0 ∧ (F

i
(x))u = 1} the set

of the nodes that change states in step i (from 0 to 1, since F is freezing). Call
now σ the updating scheme where sequentially update one by one the nodes
in U1, . . . , Ut, starting from U1, and choosing for each i ∈ {1, . . . , t} an arbi-
trary order in Ui. Call t∗ =

∑t
i=1 |Ui|, then we have that for each u ∈ Ui

and
∑i

j=1 |Uj | ≤ k ≤ t∗, (F σ,k(x))u = (F
i
(x))u = 1. Then, in particular

(F σ,t∗
(x))v = 1.
�

Theorem 1. Let F be the Strict Majority rule. Then Robust-Prediction(F)
restricted to the family of regular graphs of degree four is in NC.

Proof. Let (G, x, v, T) be an input of the Robust-Prediction(F) problem.
We start checking, using Algorithm 1, that v is not stable in G and x for the
Bootstrap Percolation rule updated with a synchronous updating scheme. If it
does, our algorithm returns, indicating that the objective node is stable for any
updating scheme of the strict majority rule.

172 E. Goles and P. Montealegre

In the following we suppose that v is not stable for the synchronous updating
of Bootstrap Percolation rule. From Lemma 1 this means that there exists a
sequential updating scheme σ for which v is not stable for the strict majority
rule updated according to σ. This scheme will consist in the sequential updating
of the nodes that change states at each step of the synchronous updating of the
bootstrap percolation rule. We choose an arbitrary ordering if several nodes are
updated at the same time step.

Let v1, v2, v3 and v4 the neighbors of v in G. Let G[0] = G[{u ∈ V (G) :
xu = 0}] the induced graph of nodes initially inactive, and call G[0; v] the con-
nected component of G[0] containing v. For i ∈ {1, 2, 3, 4} call Ti the connected
component of G[0; v] − v that contain vi.

Without loss of generality, suppose that v1, v2 and v3 are the first three neigh-
bors of v to become active before v in the synchronous update of the bootstrap
percolation rule (in particular they can be initially active, in that case Ti = ∅).
Notice that if Ti �= ∅ then Ti is a tree. Indeed, if Ti contain a cycle Ci, then
either vi is contained in C or vi is in a path P between C and v. In both cases
each internal node of the path P will have two inactive neighbors, so vi cannot
change before v in a synchronous update of the Bootstrap Percolation rule, a
contradiction.

Call T 0
i the tree Ti, and for t > 0 call T t

i the subtree of Ti that contains
the inactive nodes after t synchronous updates of the bootstrap percolation rule.
Notice that for any t > 0, the set V (T t−1

i)\V (T t
i) is the set of leafs of T t−1

i ,
except possibly vi. Indeed in time t − 1 each internal node of T t−1

i has at least
two inactive neighbors, every leaf has three active neighbors, and vi is adjacent
to v, which we suppose to become active after vi. This implies that vi will become
active only once each node of Ti becomes active. Notice that if we sequentially
update the leafs of the trees T 0

i , T 1
2 , . . . we obtain a sequential updating scheme

which produces a change of states in vi in the minimum number of steps. Indeed,
if there is a faster sequential updating scheme, that means that there is some
t > 0 such that one leaf T t

i was not updated, so it remains inactive. That implies
that internal nodes of a path between such non updated leaf and vi will have at
least two inactive neighbors, preventing vi to become active. We conclude that
the minimum number of sequential steps to produce vi to change states is |Ti|.
We obtain that the objective node v changes in at most T steps if and only if
|T1| + |T2| + |T3| + 1 ≤ T (Fig. 1).

Let G be a regular graph of degree 4, v a node of G, and let v1, v2, v3 and v4
be the neighbors of v. We call Gv,C4 the graph obtained from G removing v, and
replacing it with a cycle of length 4, called C4 = {c1, c2, c3, c4}, such that for
each i ∈ {1, 2, 3, 4}, the edge {v, vi} is replaced in Gv,C4 with {ci, vi}. Let x be
a configuration of G such that xv = 0, we call xv,C4 the configuration of Gv,C4

such that xv,C4
w = xw if w �= v and xv,C4

ci = 0 for i ∈ {1, 2, 3, 4}. Notice that from
Proposition 3, Ti contains a cycle if and only if vi is stable for (Gv,C4 , xv,C4) and
the synchronous updating of the Bootstrap Percolation rule. We are now ready
to present Algorithm 2.

A Fast Parallel Algorithm for the Robust Prediction 173

v
v1

v2
v3

v4

Fig. 1. Example of a configuration in the two-dimensional lattice. The objective node
is v, which is not stable for the synchronous updating of the bootstrap percolation rule.
Note that |T1| = 12, |T2| = 11 and |T3| = 5, and that T4 contains a cycle.

Algorithm 2
Input: A graph G of size n represented by its adjacency list, an array of
dimension n representing a configuration x, a vertex v ∈ V (G) and T > 0
such that xv = 0.
Output: A boolean out that indicates if there exists an updating scheme σ
such that (F σ,T (x))v = 1, where F is the Strict Majority rule.

1 Define for i = {1, 2, 3, 4}, ki ← ∞.
2 Run Algorithm 1 to check v is stable for (G, x) and the synchronous

update of the bootstrap percolation rule. If it does not then continue,
else return out ← false.

3 Build the adjacency matrix of Gv,C4 and the configuration xv,C4 .
4 For each vi neighbor of v do in parallel:
4.1 If xvi

= 1 then ki ← 0 and exit the for loop else contiue.
4.2 Run Algorithm 1 on input (Gv,C4 , xv,C4 , vi) to check if vi is sta-

ble for (Gv,C4 , xv,C4) and the synchronous update of the bootstrap
percolation rule.

4.3 if vi is not stable then
4.3.1 Use the Connected Components Algorithm of Proposition 1

to compute Ti, the connected component of G[0, v]−v containing
vi.

4.3.2 ki ← |Ti|
5 Compute t1 ← min{k1, k2, k3, k4}, t2 ← min{k1, k2, k3, k4}\{t1},

t3 ← min{k1, k2, k3, k4}\{t1, t2} and T ∗ ← t1 + t2 + t3 + 1.
7 If T ∗ < T then out ← true else out ← false

174 E. Goles and P. Montealegre

The correctness of Algorithm 2 is follow from the paragraphs above. About
the complexity, Algorithm 2 runs O(log2 n) time with O(n4) processors, where
the most expensive part is the runnings of Algorithm 1 in steps 2 and 4.2,
running in O(log2 n) time with O(n4) each. Steps 1, 3, 5 and 7 can be done in
O(log n) sequential time, steps 4.1, 4.3.2 can be done in O(log n) time using 4
processors. Finally step 4.3.1 can be done in time O(log2 n) and O(n2) proces-
sors according to Proposition 1.
�
Remark 1. Notice that we can easily adapt Algorithm 2 to output, in case that
the objective node is not stable, the updating scheme that makes it change in
the wished number of steps. Indeed, after step 4.3.2 we can compute for each
subtree Ti the level of its nodes with respect to the root vi, using the algorithms
cited in Proposition 1. The updating scheme is then defined in decreasing order
with respect to the level of the nodes, where tie cases are solved arbitrarily.

Corollary 1. Let F be the strict majority rule. Then Robust-Prediction(F)
restricted to the two-dimensional lattice is in NC.

Remark 2. We can also adapt Algorithm 2 to solve Prediction for the Boot-
strap Percolation rule, restricted to the family of regular graphs of degree 4.
Again, we can compute after step 4.2 the level of each node with respect to the
corresponding subtree. The algorithm outputs true if there are three non stable
neighbors of v whose trees have depth smaller than T .

Corollary 2. Let F be the bootstrap percolation rule. Then Prediction(F)
restricted to the two-dimensional lattice is in NC.

4 Discussion

We had proven that the Robust-Prediction is in NC for the strict majority
rule in the two dimensional lattice. This suggests, for example, that unless NC =
P a two dimensional strict majority CA can not simulate monotone circuits that
are not planar. However, the complexity of Prediction for the strict majority
rule restricted to a two dimensional lattice is open. In [13] is conjectured that
this problem is not P-Complete. The possibility that a monotone function, in
two dimensions, and with a von Neumann neighborhood is capable of simulating
non planar circuits is unlikely.

What about higher dimensions? In [9] it is shown that Prediction is P-
Complete for the Bootstrap percolation rule for the family of graphs that admit
nodes of degree greater than 4, and in [13] it is shown that in Prediction is
P-Complete for the majority rule in the d-dimensional lattice, for d ≥ 3. In the
case of Robust-Prediction, the problem is in general in NP. In a future work
we will show that when we are not restricted to a two dimensional lattice, both
the Bootstrap Percolation and the Strict Majority rules are NP-Complete.

A Fast Parallel Algorithm for the Robust Prediction 175

References

1. Banks, E.R.: Universality in cellular automata. In: SWAT (FOCS). IEEE Com-
puter Society, pp. 194–215 (1970)

2. Banks, E.R.: Information processing and transmission in cellular automata,
Technical Report AITR-233, MIT Artificial Intelligence Laboratory (1971)

3. Gajardo, A., Goles, E.: Crossing information in two-dimensional sandpiles. Theor.
Comput. Sci. 369, 463–469 (2006)

4. Goles, E., Margenstern, M.: Sand pile as a universal computer. Int. J. Mod. Phys.
C 07, 113–122 (1996)

5. Goles, E., Margenstern, M.: Universality of the chip-firing game. Theor. Comput.
Sci. 172, 121–134 (1997)

6. Goles, E., Montealegre, P.: Computational complexity of threshold automata net-
works under different updating schemes. Theor. Comput. Sci. 559, 3–19 (2014).
Non-uniform Cellular Automata

7. Goles, E., Montealegre, P.: The complexity of the majority rule on planar graphs.
Adv. Appl. Math. 64, 111–123 (2015)

8. Goles, E., Montealegre, P., Salo, V., Törmä, I.: Pspace-completeness of majority
automata networks. Theor. Comput. Sci. 609(Part 1), 118–128 (2016)

9. Goles, E., Montealegre-Barba, P., Todinca, I.: The complexity of the bootstrap-
ing percolation, other problems. Theor. Comput. Sci. 504, 73–82 (2013). Discrete
Mathematical Structures: From Dynamics to Complexity

10. Goles-Chacc, E., Fogelman-Soulie, F., Pellegrin, D.: Decreasing energy functions
as a tool for studying threshold networks. Discrete Appl. Math. 12, 261–277 (1985)

11. Moore, C.: Life without death is P-complete. Complex Syst. 10, 437–447 (1996)
12. Jaja, J.: An introduction to parallel algorithms. Addison-Wesley Professional,

New York (1992)
13. Moore, C.: Majority-vote cellular automata, Ising dynamics, and p-completeness.

J. Stat. Phys. 88, 795–805 (1997)
14. Moore, C., Nilsson, M.: The computational complexity of sandpiles. J. Stat. Phys.

96, 205–224 (1999)

	A Fast Parallel Algorithm for the Robust Prediction of the Two-Dimensional Strict Majority Automaton
	1 Introduction
	2 Preliminaries
	2.1 Prediction Problems
	2.2 Parallel Subroutines

	3 The Strict Majority Rule
	4 Discussion
	References

