
A Class of Minimum-Time
Minimum-State-Change Generalized

FSSP Algorithms

Hiroshi Umeo(B) and Keisuke Imai

University of Osaka Electro-Communication,
Hastu-cho, 18-8, Neyagawa-shi, Osaka 572-8530, Japan

umeo@cyt.osakac.ac.jp

Abstract. The firing squad synchronization problem (FSSP, for short)
on cellular automata has been studied extensively for more than fifty
years, and a rich variety of FSSP algorithms has been proposed. Here
we consider the FSSP from a view point of state-change-complexity that
models the energy consumption of SRAM-type storage with which cel-
lular automata might be built. In the present paper, we propose a class
of minimum-time, minimum-state-change generalized FSSP (GFSSP, for
short) algorithms for synchronizing any one-dimensional (1D) cellular
automaton, where the synchronization operations are started from any
cell in the array. We construct two minimum-time minimum-state-change
GFSSP algorithms: one is based on Goto’s algorithm, known as the first
minimum-time FSSP algorithm that is reconstructed again recently in
Umeo et al. [13], and the other is based on Gerken’s one. These algorithms
are optimum not only in time but also in state-change complexity.

1 Introduction

We study a synchronization problem that gives a finite-state protocol for
synchronizing large-scale cellular automata. The synchronization in cellular
automata has been known as a firing squad synchronization problem (FSSP)
since its development, in which it was originally proposed by J. Myhill in Moore
[6] to synchronize some/all parts of self-reproducing cellular automata. The prob-
lem has been studied extensively for more than fifty years, and a rich variety of
synchronization algorithms has been proposed.

Here we consider the FSSP from a view point of state-change-complexity
that models the energy consumption of SRAM-type storage with which cellular
automata might be built. In the present paper, we propose a class of n − 2 +
max(k, n − k + 1) minimum-time, Θ(n log n) minimum-state-change generalized
FSSP (GFSSP, for short) algorithms for synchronizing any one-dimensional (1D)
cellular automaton of length n, where the synchronization operations are started
from any cell k (1 ≤ k ≤ n) in the array. We construct two minimum-time
minimum-state-change GFSSP algorithms, one is based on Goto’s algorithm,
known as the first minimum-time FSSP algorithm that is reconstructed again

c© Springer International Publishing Switzerland 2016
S. El Yacoubi et al. (Eds.): ACRI 2016, LNCS 9863, pp. 144–154, 2016.
DOI: 10.1007/978-3-319-44365-2 14

A Class of Minimum-Time Minimum-State-Change 145

recently in Umeo et al. [13], and the other is based on Gerken’s one. The Goto-
based GFSSP algorithm is realized on a cellular automaton with 434 internal
states and 13328 state-transition rules. The Gerken-based one is implemented
on a cellular automaton with 215 internal states and 4077 state-transition rules.
These algorithms are optimum not only in time but also in the state-change
complexity. The implemented minimum-time GFSSP algorithms are the first
ones having the minimum-state-change complexity.

In Sect. 2 we give a description of the 1D FSSP and review some basic results
on FSSP and GFSSP algorithms. Section 3 gives new implementations and gen-
eralizations to the GFSSP algorithm having minimum-state-change complexity.

2 Firing Squad Synchronization Problem

2.1 Definition of Firing Squad Synchronization Problem

The firing squad synchronization problem (FSSP, for short) is formalized in
terms of a model of cellular automata. Consider a 1D array of finite state
automata. All cells (except the end cells) are identical finite state automata. The
array operates in lock-step mode such that the next state of each cell (except
the end cells) is determined by both its own present state and the present states
of its right and left neighbors. All cells (soldiers), except one general cell, are
initially in the quiescent state at time t = 0 and have the property whereby
the next state of a quiescent cell having quiescent neighbors is the quiescent
state. At time t = 0 the general cell is in the fire-when-ready state, which is
an initiation signal to the array. The FSSP is stated as follows: given an array
of n identical cellular automata, including a general on the left end which is
activated at time t = 0, we want to give the description (state set and next-state
transition function) of the automata so that, at some future time, all of the cells
will simultaneously and, for the first time, enter a special firing state. The initial
general is on the left end of the array in the original FSSP.

C1 C2 C4 Cn

...
C3

Fig. 1. A one-dimensional (1D) cellular automaton.

Figure 1 shows a finite 1D cellular array consisting of n cells, denoted by Ci,
where 1 ≤ i ≤ n. The set of states and the next-state transition function must
be independent of n. Without loss of generality, we assume n ≥ 2. The tricky
part of the problem is that the same kind of soldiers having a fixed number of
states must be synchronized, regardless of the length n of the array.

A formal definition of the FSSP is as follows: a cellular automaton M is a
pair M = (Q, δ), where

146 H. Umeo and K. Imai

1. Q is a finite set of states with three distinguished states G, Q, and F. G is an
initial general state, Q is a quiescent state, and F is a firing state, respectively.

2. δ is a next state function such that δ : Q∪{∗}×Q×Q∪{∗} → Q. The state
* /∈ Q is a pseudo state of the border of the array.

3. The quiescent state Q must satisfy the following conditions: δ(Q, Q, Q) =
δ(∗, Q, Q) = δ(Q, Q, ∗) = Q.

A cellular automaton Mn of length n, consisting of n copies of M, is a 1D
array whose positions are numbered from 1 to n. Each M is referred to as a cell
and denoted by Ci, where 1 ≤ i ≤ n. We denote a state of Ci at time (step) t
by Sti, where t ≥ 0, 1 ≤ i ≤ n. A configuration of Mn at time t is a function
Ct : [1, n] → Q and denoted as St1S

t
2 Stn. A computation of Mn is a sequence

of configurations of Mn, C0, C1, C2,, Ct, ..., where C0 is a given initial con-
figuration. The configuration at time t + 1, Ct+1, is computed by synchronous
applications of the next transition function δ to each cell of Mn in Ct such that:

St+1
1 = δ(∗, St1, S

t
2), S

t+1
i = δ(Sti−1, S

t
i, S

t
i+1), and St+1

n = δ(Stn−1, S
t
n, ∗).

A synchronized configuration of Mn at time t is a configuration Ct, Sti = F,
for any 1 ≤ i ≤ n.

The FSSP is to obtain an M such that, for any n ≥ 2,

1. A synchronized configuration at time t = T (n), CT (n) =

n
︷ ︸︸ ︷

F, · · · , F can be

computed from an initial configuration C0 = G

n−1
︷ ︸︸ ︷

Q, · · · , Q.
2. For any t, i such that 1 ≤ t ≤ T (n) − 1, 1 ≤ i ≤ n, Sti �= F.

The generalized FSSP (GFSSP) is to obtain an M such that, for any n ≥ 2
and for any k such that 1 ≤ k ≤ n,

1. A synchronized configuration at time t = T (k, n), CT (k,n) =

n
︷ ︸︸ ︷

F, · · · , F can be

computed from an initial configuration C0 =

k−1
︷ ︸︸ ︷

Q, · · · , Q G

n−k
︷ ︸︸ ︷

Q, · · · , Q.
2. For any t, i, such that 1 ≤ t ≤ T (k, n) − 1, 1 ≤ i ≤ n, Sti �= F.

No cells fire before time t = T (k, n). We say that Mn is synchronized at time
t = T (k, n) and the function T (k, n) is a time complexity for the synchronization.

2.2 Some Related Results on FSSP and GFSSP

Here we summarize some basic results on FSSP algorithms.

• Minimum-time FSSP algorithms with a general at one end
The FSSP problem was first solved by J. McCarthy and M. Minsky who
presented a 3n-step algorithm for n cells. In 1962, the first minimum-time,

A Class of Minimum-Time Minimum-State-Change 147

i.e. (2n − 2)-step, synchronization algorithm was presented by Goto [3], with
each cell having several thousands of states. Waksman [16] presented a 16-
state minimum-time synchronization algorithm. Afterward, Balzer [1] and
Gerken [2] developed an eight-state algorithm and a seven-state synchroniza-
tion algorithm, respectively, thus decreasing the number of states required for
the synchronization. In 1987, Mazoyer [4] developed a six-state synchroniza-
tion algorithm which, at present, is the algorithm having the fewest states.

Theorem 1 (Goto [3], Waksman [16]). There exists a cellular automaton that
can synchronize any 1D array of length n in minimum 2n − 2 steps, where the
general is located at a left (or right) end.

• Generalized minimum-time FSSP algorithms
The generalized FSSP (GFSSP, for short) has also been studied, where an
initial general can be located at any position in the array. The same kind of
soldiers having a fixed number of states must be synchronized, regardless of
the position k of the general and the length n of the array. Moore and Langdon
[7] first studied the problem and presented a 17-state minimum-time GFSSP
algorithm, i.e. operating in n− 2+max(k, n− k +1) steps for n cells with the
general on the kth cell from left end of the array. See Umeo et al. [12] for
a survey on GFSSP algorithms and their implementations. Concerning the
GFSSP, it has been shown impossible to synchronize any array of length n
in less than n − 2 + max(k, n − k + 1) steps, where the general is located on
Ck, 1 ≤ k ≤ n.

Theorem 2 (Moore and Langdon [7] (Lower Bounds)). The minimum-time
in which the generalized firing squad synchronization could occur is no earlier
than n− 2+max(k, n−k +1) steps, where the general is located on the kth cell
from left end.

Theorem 3 (Umeo et al. [12]). There exists an 8-state cellular automaton that
can synchronize any 1D array of length n in minimum n − 2 + max(k, n − k + 1)
steps, where the general is located on the kth cell from left end.

3 A Class of Minimum-Time, Minimum-State-Change
GFSSP Algorithms

3.1 Designing Minimum-Time GFSSP Algorithms

In this section we develop a general methodology for designing a minimum-
time GFSSP algorithm based on freezing-thawing technique. We can construct
a minimum-time GFSSP algorithm from any minimum-time FSSP algorithm
with a general at one end. The freezing-thawing technique developed in Umeo
[10] enables us to have an FSSP algorithm with an arbitrary synchronization
delay for 1D arrays. The freezing-thawing technique can be employed efficiently
for the design of a minimum-time, minimum-state-change GFSSP algorithms in
Sects. 3.3 and 3.4. The technique is described as follows:

148 H. Umeo and K. Imai

G

1/1

1/1

1/1

1/1

1/2

1/1

CkC1 Cn

t = k - 1

t = 0

t = n - k

t = 2k - 2

t = 2n - k - 1

t1 = n - 1

t2 = 2n - 2k

Cellular Space

Time

1/1
1/1

Cn-k+1

GR

GL

Fig. 2. Space-time diagram for the construction of minimum-time GFSSP algorithm.

Theorem 4 (Umeo [10]). Let t0, t1, t2 and Δt be any integer such that t0 ≥ 0,
t1 = t0 + n − 1, t1 ≤ t2 and Δt = t2 − t1. We assume that a usual synchroniza-
tion operation is started at time t = t0 by generating a special signal which acts
as a general at the left end of 1D array of length n. We also assume that the
right end cell of the array receives another special signals from outside at time
t1 = t0 + n − 1 and t2 = t1 + Δt, respectively. Then, there exists a 1D cellular
automaton that can synchronize the array of length n at time t = t0+2n−2+Δt.

Consider a cellular array C1, C2, ..., Cn of length n with an initial general on
Ck, where 1 ≤ k ≤ n. At time t = 0 the general sends a unit speed (1 cell/1 step)
signal to both ends. The cell Ck keeps its state to indicate its initial position
on the array. The signal reaches at the left and right ends at time t = k − 1
and t = n − k, respectively, and generates a new general, denoted as GL and
GR at each end. In Fig. 2, we illustrate a space-time diagram for the GFSSP
construction. Each general, GL and GR, starts minimum-time synchronization
operations for the cellular space where the general is at its end by sending out
a wake-up signal. At time t = n − 1 the two signals collide with each other on
the cell Cn−k+1 and the cellular space is divided into two parts by the collision.
First, we consider the case where the initial general is in the left half of the given
cellular space, i.e. k ≤ n − k + 1. The wake-up signal generated by GL reaches
Ck at time t = 2k − 2, then collides with the wake-up signal generated by GR.
The larger part (left one in this case) is synchronized by a usual way, however,
the small one is synchronized with time delay Δt = n − 2k + 1. The wake-up
signal for the larger part splits into two signals on Ck, one is an original wake-up

A Class of Minimum-Time Minimum-State-Change 149

A
B

A
B

A

B

A

A*

B*

A*

A*

A*
B*

B*

t = 0

t = 2n - 2

1 2 n4 8
Cellular Space

.

.

.

.

.

.

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0 G Q

1 G >- Q

2 G a2 >- Q

3 Q a3) 1- >- Q

4 Q a4 2) w >- Q

5 Q a5 |b (1) 6- >- Q

6 Q |a (b3 a2)- 7- >- Q

7 Q |a) b4 a] 1- 8) Q >- Q

8 Q |a b5) |a 2] |b)- Q >- Q

9 Q |a |b a3) Q b1] w)- Q >- Q

10 Q |a |b a4 -) b2]- 6-)- Q >- Q

11 Q |a |b a5 Q b) 1-]- 7-)- Q >- Q

12 Q |a |b |a 3- |b 2) Q 8] Q)- Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

13 Q |a |b |a 4- |b Q (1) 9-]- Q)- Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

14 Q |a |b |a 5- |b (- a2)- w]- Q)- Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

15 Q |a |b |a Q (b3 Q |a 1-)- 6-]- Q)- Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

16 Q |a |b |a (- b4]- |a 2- Q)- 7-]- Q)- Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

17 Q |a |b |a) Q b5 Q a] Q 1- Q 8) Q]- Q)- Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q

18 Q |a |b |a -) |b 3- |a]- 2- Q |b)- Q]- Q)- Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q

19 Q |a |b |a Q b) 4- |a Q]- 1- |b w)- Q]- Q)- Q >- Q Q Q Q Q Q Q Q Q Q Q Q

20 Q |a |b |a Q |b 5) |a Q Q 2] |b Q 6-)- Q]- Q)- Q >- Q Q Q Q Q Q Q Q Q Q Q

21 Q |a |b |a Q |b Q a3) Q Q Q b1] Q Q 7-)- Q]- Q)- Q >- Q Q Q Q Q Q Q Q Q Q

22 Q |a |b |a Q |b Q a4 -) Q Q b2]- Q 8- Q)- Q]- Q)- Q >- Q Q Q Q Q Q Q Q Q

23 Q |a |b |a Q |b Q a5 Q -) Q |b 1-]- 9- Q Q)- Q]- Q)- Q >- Q Q Q Q Q Q Q Q

24 Q |a |b |a Q |b Q |a 3- Q -) |b 2- Q]- w Q Q)- Q]- Q)- Q >- Q Q Q Q Q Q Q

25 Q |a |b |a Q |b Q |a 4- Q Q b) Q 1- Q]- 6- Q Q)- Q]- Q)- Q >- Q Q Q Q Q Q

26 Q |a |b |a Q |b Q |a 5- Q Q |b -) 2- Q Q]- 7- Q Q)- Q]- Q)- Q >- Q Q Q Q Q

27 Q |a |b |a Q |b Q |a Q 3- Q |b Q -) 1- Q Q 8] Q Q Q)- Q]- Q)- Q >- Q Q Q Q

28 Q |a |b |a Q |b Q |a Q 4- Q |b Q Q 2) Q Q 9-]- Q Q Q)- Q]- Q)- Q >- Q Q Q

29 Q |a |b |a Q |b Q |a Q 5- Q |b Q Q Q (1) Q Q w]- Q Q Q)- Q]- Q)- Q >- Q Q

30 Q |a |b |a Q |b Q |a Q Q 3- |b Q Q (- a2)- Q Q 6-]- Q Q Q)- Q]- Q)- Q >- Q

31 Q |a |b |a Q |b Q |a Q Q 4- |b Q (- Q |a 1-)- Q Q 7-]- Q Q Q)- Q]- Q)- Q -<

32 Q |a |b |a Q |b Q |a Q Q 5- |b (- Q Q |a 2- Q)- Q 8- Q]- Q Q Q)- Q]- Q <c Q

33 Q |a |b |a Q |b Q |a Q Q Q (b3 Q Q Q |a Q 1- Q)- 9- Q Q]- Q Q Q)- Q <d c| Q

34 Q |a |b |a Q |b Q |a Q Q (- b4]- Q Q |a Q 2- Q Q)- w Q Q]- Q Q Q <c d| c| Q

35 Q |a |b |a Q |b Q |a Q (- Q b5 Q]- Q |a Q Q 1- Q Q)- 6- Q Q]- Q -< c| d| c| Q

36 Q |a |b |a Q |b Q |a (- Q Q |b 3- Q]- |a Q Q 2- Q Q Q)- 7- Q Q <d Q c| d| c| Q

37 Q |a |b |a Q |b Q |a) Q Q Q |b 4- Q Q a] Q Q Q 1- Q Q Q 8) Q -< d| Q c| d| c| Q

38 Q |a |b |a Q |b Q |a -) Q Q |b 5- Q Q |a]- Q Q 2- Q Q Q |b <c Q d| Q c| d| c| Q

39 Q |a |b |a Q |b Q |a Q -) Q |b Q 3- Q |a Q]- Q Q 1- Q Q b<\ c| Q d| Q c| d| c| Q

40 Q |a |b |a Q |b Q |a Q Q -) |b Q 4- Q |a Q Q]- Q 2- Q -< |b c\ Q d| Q c| d| c| Q

41 Q |a |b |a Q |b Q |a Q Q Q b) Q 5- Q |a Q Q Q]- Q <1 Q |b c| \- d| Q c| d| c| Q

42 Q |a |b |a Q |b Q |a Q Q Q |b -) Q 3- |a Q Q Q Q <d 2- /1 |b c1\ Q d\ Q c| d| c| Q

43 Q |a |b |a Q |b Q |a Q Q Q |b Q -) 4- |a Q Q Q -< d| Q /2 |b c2\ Q d| \- c| d| c| Q

44 Q |a |b |a Q |b Q |a Q Q Q |b Q Q 5) |a Q Q -< Q d| Q /3 |b c3\ Q d| Q c\ d| c| Q

45 Q |a |b |a Q |b Q |a Q Q Q |b Q Q Q a3) Q -< Q Q d| /1 Q |b c| 1\ d| Q c| d\ c| Q

46 Q |a |b |a Q |b Q |a Q Q Q |b Q Q Q a4 <c) Q Q Q d| /2 Q |b c| 2\ d| Q c| d| c\ Q

47 Q |a |b |a Q |b Q |a Q Q Q |b Q Q Q a< >c -) Q Q d| /3 Q |b c| 3\ d| Q c| d| c| \-

48 Q |a |b |a Q |b Q |a Q Q Q |b Q Q <- |a c\ -> -) Q /1d Q Q |b c| Q d1\ Q c| d| c| Q

49 Q |a |b |a Q |b Q |a Q Q Q |b Q <- Q |a c| \- -> -) /2d Q Q |b c| Q d2\ Q c| d| c| Q

50 Q |a |b |a Q |b Q |a Q Q Q |b <- Q Q |a c| Q \- -> /3d Q Q |b c| Q d3\ Q c| d| c| Q

51 Q |a |b |a Q |b Q |a Q Q Q <b\ Q Q Q |a c| Q Q /g\ {d> Q Q |b c| Q d| Q c| d| c| Q

52 Q |a |b |a Q |b Q |a Q Q <- /\ \- Q Q |a c| Q -/ {/\ {}\ -> Q |b c| Q d| Q c| d| c| Q

53 Q |a |b |a Q |b Q |a Q <- Q /b\ Q \- Q |a c| -/ -{ /b\ {d} \- -> |b c| Q d| Q c| d| c| Q

54 Q |a |b |a Q |b Q |a <- Q /1 Q 1\ Q \- |a /c -{ /1 {1 1\ 1} \- >b c| Q d| Q c| d| c| Q

55 Q |a |b |a Q |b Q a< Q Q /2 Q 2\ Q Q /a\ c} Q /2 {2 2\ 2} Q /a >c Q d| Q c| d| c| Q

56 Q |a |b |a Q |b <- |a \- Q /3 Q 3\ Q -/ |a c\ }- /3 {3 3\ 3} -/ {a c| -> d| Q c| d| c| Q

57 Q |a |b |a Q <b\ Q |a Q /g\ Q Q Q /g\ Q |a c| /g\ {g} Q Q /g\ {g} |a c| Q {d> Q c| d| c| Q

58 Q |a |b |a <- /\ \- |a -/ /\ \- Q -/ /\ \- |a /c {/\ {}\ }- -/ {/\ {}\ a} c| -{ {} -> c| d| c| Q

59 Q |a |b a< Q /b\ Q /a\ Q /b\ Q /\ Q /b\ Q /a\ c} /b\ {d} /\ {} /b\ {d} /a {c} Q {d} Q >c d| c| Q

60 Q |a <b\ |a /g\ Q /g\ |a /g\ Q /g\ Q /g\ Q /g\ |a /g\ {g} /g\ {g} /g\ {g} /g\ {g} c| {g} Q {g} c| {d> c| Q

61 Q /\ {} {} {} {} {} {} {} Q

62 F

Fig. 3. An overview of the reconstructed Goto’s FSSP algorithm (left) and its snapshots
on 32 cells of the 166-state, 4378-transition-rule implementation in Umeo et al. [13].

signal and the other is a new slow signal which follows the wake-up signal at 1/2-
speed. Note that the wake-up signal for the smaller part (right one in this case)
never reaches Ck. As for the synchronization for the smaller part, a freezing-
signal is generated at time t1 = n − 1 on Cn−k+1 and the state configuration
in the smaller part is frozen by the propagation of the 1/1-speed right-going
freezing signal. At time t2 = 2n − 2k, the split slow signal reaches Cn−k+1

and there a thawing signal is generated. The thawing signal thaws the frozen
configuration progressively. Theorem4 shows that the smaller part of length k
is synchronized at time t = 2n − k − 1. The larger part is also synchronized
at time t = 2n − k − 1. Thus, the whole space can be synchronized at time
t = 2n − k − 1 = n − 2 + max(k, n − k + 1). Similar discussions can be made in
the case where the initial general is in the right half of the cellular space. It is
seen that any minimum-time FSSP algorithm with a general at one end can be
embedded as a sub-algorithm for the synchronization of divided parts. A similar
technique was used for solving FSSP with many generals in Schmid and Worsch
[8]. Thus, we have:

Theorem 5. The schema given above can realize a minimum-time GFSSP algo-
rithm by implementing two minimum-time FSSP algorithms with a general at
one end.

3.2 State-Change Complexity

Vollmar [15] introduced a state-change complexity in order to measure the effi-
ciency of cellular automata, motivated by energy consumption in certain SRAM-
type memory systems. The state-change complexity is defined as the sum of

150 H. Umeo and K. Imai

proper state changes of the cellular space during the computations. A formal
definition is as follows: Consider an FSSP (GFSSP) algorithm operating on n
cells. Let T (n) (resp., T (k, n)) be synchronization steps of the FSSP (GFSSP)
algorithm. We define a matrix C of size T (n)×n (T (n) rows, n columns) (resp.,
T (k, n) × n (T (k, n) rows, n columns)) over {0, 1}, where each element ci,j on
ith row, jth column of the matrix C is defined:

ci,j =

{

1 Sji �= Sj−1
i

0 otherwise.
(1)

The state-change complexity SC(n)(resp., SCg(n)) of the FSSP (GFSSP)
algorithm is the sum of 1’s elements in C defined as:

SC(n) =
T (n)
∑

j=1

n
∑

i=1

ci,j , (2)

SCg(n) = 1/n

n
∑

k=1

T (k,n)
∑

j=1

n
∑

i=1

ci,j . (3)

Vollmar [15] showed that Ω(n log n) state-changes are required for synchro-
nizing n cells in (2n − 2) steps.

Theorem 6 (Vollmar [15]). Ω(n log n) state-change is necessary for synchroniz-
ing n cells in minimum-steps.

Gerken [2] presented a minimum-time, Θ(n log n) minimum-state-change
FSSP algorithm with a general at one end.

Theorem 7 (Gerken [2]). Θ(n log n) state-change is sufficient for synchronizing
n cells in 2n − 2 steps.

Goto’s algorithm (Goto [3]) has been known as the first minimum-time FSSP
algorithm, however the paper itself has been a mysterious one for a long time
due to its hard accessibility. Umeo [9] reconstructed the Goto’s algorithm and it
is noted in Umeo [11] that the algorithm has Θ(n log n) minimum-state-change
complexity. Mazoyer [5] also reconstructed the algorithm again. Yunès [17] gave a
new construction of Goto-like algorithms using the Wolfram’s rule 60. Recently,
Umeo et al. [13] reconstructed the Goto’s algorithm again and realized it on a
cellular automaton having 166-state and 4378 transition rules.

Theorem 8 (Umeo [11], Umeo et al. [13]). The reconstructed Goto’s algorithm
has Θ(n log n) state-change complexity for synchronizing n cells in 2n − 2 steps.

In order to get a minimum-time, minimum-state-change GFSSP algorithm,
we embed the reconstructed Goto’s algorithm and Gerken’s one with a general
at one end. The state-change complexity in the right and left parts in Fig. 2 is

A Class of Minimum-Time Minimum-State-Change 151

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0 Q Q Q Q Q Q G Q

1 Q Q Q Q Q -< GM >- Q

2 Q Q Q Q -< -< GM >- >- Q

3 Q Q Q -< -< Q GM Q >- >- Q

4 Q Q -< -< Q Q GM Q Q >- >- Q

5 Q -< -< Q Q Q GM Q Q Q >- >- Q

6 >- -< Q Q Q Q GM Q Q Q Q >- >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

7 G >- Q Q Q Q GM Q Q Q Q Q >- >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

8 -) a2 >- Q Q Q GM Q Q Q Q Q Q >- >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

9 Q a3) 1- >- Q Q GM Q Q Q Q Q Q Q >- >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q a4 2) w- >- Q GM Q Q Q Q Q Q Q Q >- >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

11 Q a5 b (a1) 6- >- GM Q Q Q Q Q Q Q Q Q >- >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q

12 Q a (b3 a2)- 7- >G Q Q Q Q Q Q Q Q Q Q >- >- Q Q Q Q Q Q Q Q Q Q Q Q Q

13 Q a) b4 a] 1- 8) 2- *>- Q Q Q Q Q Q Q Q Q Q >- >- Q Q Q Q Q Q Q Q Q Q Q Q

14 Q a b5) a 2] *b)- 1- *>- Q Q Q Q Q Q Q Q Q Q >- >- Q Q Q Q Q Q Q Q Q Q Q

15 Q a b a3) Q b1] w- *)2- Q *>- Q Q Q Q Q Q Q Q Q Q >- >- Q Q Q Q Q Q Q Q Q Q

16 Q a b a4 -) *b2]- 6- *)1- Q *>- Q Q Q Q Q Q Q Q Q Q >- >- Q Q Q Q Q Q Q Q Q

17 Q a b a5 Q b) 1-]- 27-)- Q *>- Q Q Q Q Q Q Q Q Q Q >- >- Q Q Q Q Q Q Q Q

18 Q a b a 3- b 2) Q 8] 1-)- Q *>- Q Q Q Q Q Q Q Q Q Q >- >- Q Q Q Q Q Q Q

19 Q a b a 4- b Q (a1) 9- 2] Q)- Q *>- Q Q Q Q Q Q Q Q Q Q >- >- Q Q Q Q Q Q

20 Q a b a 5- b (- a2)- w- 1] Q)- Q *>- Q Q Q Q Q Q Q Q Q Q >- >- Q Q Q Q Q

21 Q a b a Q (b3 Q a 1-)- 26-]- Q)- Q *>- Q Q Q Q Q Q Q Q Q Q >- >- Q Q Q Q

22 Q a b a (- b4]- a 2- Q)- 17-]- Q)- Q *>- Q Q Q Q Q Q Q Q Q Q >- >- Q Q Q

23 Q a b a) Q b5 Q a] Q 1- Q 28) Q]- Q)- Q *>- Q Q Q Q Q Q Q Q Q Q >- >- Q Q

24 Q a b a -) b 3- a]- 2- Q *b *)1- Q]- Q)- Q *>- Q Q Q Q Q Q Q Q Q Q >- >- Q

25 Q a b a Q b) 4- a Q]- 1- *b 2w-)- Q]- Q)- Q *>- Q Q Q Q Q Q Q Q Q Q >- -<

26 Q a b a Q b 5) a Q Q 2] *b Q 16-)- Q]- Q)- Q *>- Q Q Q Q Q Q Q Q Q -< G

27 Q a b a Q b Q a3) Q Q Q b1] Q 2- 7-)- Q]- Q)- Q *>- Q Q Q Q Q Q Q -< 2a (-

28 Q a b a Q b Q a4 -) Q Q *b2]- Q 18- Q)- Q]- Q)- Q *>- Q Q Q Q Q -< -1 (3a Q

29 Q a b a Q b Q a5 Q -) Q *b 1-]- 29- Q Q)- Q]- Q)- Q *>- Q Q Q -< -w (2 4a Q

30 Q a b a Q b Q a 3- Q -) *b 2- Q]- 1w- Q Q)- Q]- Q)- Q *>- Q -< -6 (1a) b 5a Q

31 Q a b a Q b Q a 4- Q Q b) Q 1- Q 2] 6- Q Q)- Q]- Q)- Q G> -7 -(2a 3b) a Q

32 Q a b a Q b Q a 5- Q Q b -) 2- Q Q 1] 7- Q Q)- Q]- Q <c GM *c> -1 [a 4b (a Q

33 Q a b a Q b Q a Q 3- Q b Q -) 1- Q 2- 8] Q Q Q)- Q <d c GM c *d> a (5b a Q

34 Q a b a Q b Q a Q 4- Q b Q Q 2) Q Q 19-]- Q Q Q <c d c GM c d *ga b a Q

35 Q a b a Q b Q a Q 5- Q b Q Q Q (a1) Q 2- w-]- Q -< c d c GM c d *ga b a Q

36 Q a b a Q b Q a Q Q 3- b Q Q (- a2)- Q 1- 6- <d Q c d c GM c d *ga b a Q

37 Q a b a Q b Q a Q Q 4- b Q (- Q a 1-)- 2- -< d Q c d c GM c d *ga b a Q

38 Q a b a Q b Q a Q Q 5- b (- Q Q a 2- Q <c 1- d Q c d c GM c d *ga b a Q

39 Q a b a Q b Q a Q Q Q (b3 Q Q Q a Q <1 c 2- d Q c d c GM c d *ga b a Q

40 Q a b a Q b Q a Q Q (- b4]- Q Q a -< 2- c Q d1 Q c d c GM c d *ga b a Q

41 Q a b a Q b Q a Q (- Q b5 Q]- Q <a Q Q c1 Q d2 Q c d c GM c d *ga b a Q

42 Q a b a Q b Q a (- Q Q b 3- Q <d *a Q Q c2 Q d 1- c d c GM c d *ga b a Q

43 Q a b a Q b Q a) Q Q Q b 4- -< d *a Q Q c 1- d 2- c d c GM c d *ga b a Q

44 Q a b a Q b Q a -) Q Q b <- -> d *a Q Q c 2- d Q c1 d c GM c d *ga b a Q

45 Q a b a Q b Q a Q -) Q <b\ Q Q {d> *a Q Q c Q d1 Q c2 d c GM c d *ga b a Q

46 Q a b a Q b Q a Q Q)c< /\ \- -{ {} *>a Q Q c Q d2 Q c d1 c GM c d *ga b a Q

47 Q a b a Q b Q a Q <- c /b\ -{ \- {d} a -> Q c Q d 1- c d2 c GM c d *ga b a Q

48 Q a b a Q b Q a <- Q /1c -{ 1\ {1 \- a1} Q -> c Q d 2- c d c1 GM c d *ga b a Q

49 Q a b a Q b Q a< Q Q /2c} Q 2\ {2 Q /a2} Q Q >c Q d Q c1 d c2 GM c d *ga b a Q

50 Q a b a Q b <- a \- Q /3c }- 3\ {3 -/ a3} Q -{ c -> d Q c2 d c >G c d *ga b a Q

51 Q a b a Q <b\ Q a Q /g\ c Q {g} /g\ Q a {g} Q c Q {d> Q c d1 c G c> d *ga b a Q

52 Q a b a <- /\ \- a -/ /\ c\ -{ /{} /\} \- {a {} }- c -{ {} -> c d2 c G c d> *ga b a Q

53 Q a b a< Q /b\ Q /a\ Q /b\ c} /\ {d} /b\ {} /a {d} Q {c} Q {d} Q >c d c G c d ga b a Q

54 Q a <b\ a /g\ Q /g\ a /g\ Q /c {g} /g\ {g} /g\ a} Q {g} c {g} Q {g} c {d> c G c <d} a /b> a Q

55 Q /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ {} {} {} {} {} {} {} {} {} G {} {} /\ /\ /\ Q

56 F

0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q -< GM >- Q Q Q Q Q Q Q Q Q Q Q

2 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q -< -< GM >- >- Q Q Q Q Q Q Q Q Q Q

3 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q -< -< Q GM Q >- >- Q Q Q Q Q Q Q Q Q

4 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q -< -< Q Q GM Q Q >- >- Q Q Q Q Q Q Q Q

5 Q Q Q Q Q Q Q Q Q Q Q Q Q Q -< -< Q Q Q GM Q Q Q >- >- Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q Q Q Q Q Q -< -< Q Q Q Q GM Q Q Q Q >- >- Q Q Q Q Q Q

7 Q Q Q Q Q Q Q Q Q Q Q Q -< -< Q Q Q Q Q GM Q Q Q Q Q >- >- Q Q Q Q Q

8 Q Q Q Q Q Q Q Q Q Q Q -< -< Q Q Q Q Q Q GM Q Q Q Q Q Q >- >- Q Q Q Q

9 Q Q Q Q Q Q Q Q Q Q -< -< Q Q Q Q Q Q Q GM Q Q Q Q Q Q Q >- >- Q Q Q

10 Q Q Q Q Q Q Q Q Q -< -< Q Q Q Q Q Q Q Q GM Q Q Q Q Q Q Q Q >- >- Q Q

11 Q Q Q Q Q Q Q Q -< -< Q Q Q Q Q Q Q Q Q GM Q Q Q Q Q Q Q Q Q >- >- Q

12 Q Q Q Q Q Q Q -< -< Q Q Q Q Q Q Q Q Q Q GM Q Q Q Q Q Q Q Q Q Q >- -<

13 Q Q Q Q Q Q -< -< Q Q Q Q Q Q Q Q Q Q Q GM Q Q Q Q Q Q Q Q Q Q -< G

14 Q Q Q Q Q -< -< Q Q Q Q Q Q Q Q Q Q Q Q GM Q Q Q Q Q Q Q Q Q -< 2a (-

15 Q Q Q Q -< -< Q Q Q Q Q Q Q Q Q Q Q Q Q GM Q Q Q Q Q Q Q Q -< -1 (3a Q

16 Q Q Q -< -< Q Q Q Q Q Q Q Q Q Q Q Q Q Q GM Q Q Q Q Q Q Q -< -w (2 4a Q

17 Q Q -< -< Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q GM Q Q Q Q Q Q -< -6 (1a) b 5a Q

18 Q -< -< Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q GM Q Q Q Q Q -< -7 -(2a 3b) a Q

19 >- -< Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q GM Q Q Q Q -< Q (8 -1 [a 4b (a Q

20 G >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q GM Q Q Q -< Q -(*b [2 a (5b a Q

21 -) a2 >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q GM Q Q -< Q -(-w [1b Q (3a b a Q

22 Q a3) 1- >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q GM Q -< Q -(-6 -[*2b (- 4a b a Q

23 Q a4 2) w- >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q GM -< Q -(-7 -[-1 (b Q 5a b a Q

24 Q a5 b (a1) 6- >- Q Q Q Q Q Q Q Q Q Q Q Q Q G< Q -(Q [8 Q (2 b -3 a b a Q

25 Q a (b3 a2)- 7- >- Q Q Q Q Q Q Q Q Q Q Q *-< -2 -(Q -[-9 (1a) Q b -4 a b a Q

26 Q a) b4 a] 1- 8) Q >- Q Q Q Q Q Q Q Q Q *-< -1 -(Q -[-w -(2a -) b -5 a b a Q

27 Q a b5) a 2] *b)- Q >- Q Q Q Q Q Q Q *-< Q *-2(Q -[-6 -(-1 a Q 3b) Q a b a Q

28 Q a b a3) Q b1] w-)- Q >- Q Q Q Q Q *-< Q *-1(Q -[-7 -(Q -2 a -[4b -) a b a Q

29 Q a b a4 -) *b2]- 6-)- Q >- Q Q Q *-< Q -(-2 -[Q (8 Q -1 Q [a Q 5b Q (a b a Q

30 Q a b a5 Q b) 1-]- 7-)- Q >- Q *-< Q -(-1 -[Q -(*b Q -2 -[a -3 b (- a b a Q

31 Q a b a 3- b 2) Q 8] Q)- Q <G Q -(Q [2 Q -(-w *b -1 -[Q a -4 (b Q a b a Q

32 Q a b a 4- b Q (a1) 9-]- Q *<c GM c> Q [1 Q -(-6 Q *b [2 Q Q a (5 b Q a b a Q

33 Q a b a 5- b (- a2)- w- *<d c GM c d> -2 -(-7 Q Q [1b Q Q Q (3a Q b Q a b a Q

34 Q a b a Q (b3 Q a 1- *<c d c GM c 1d c> Q -8 Q -[*2b Q Q (- 4a Q b Q a b a Q

35 Q a b a (- b4]- a *-<2 c d c GM c 2d c >- -9 -[-1 *b Q (- Q 5a Q b Q a b a Q

36 Q a b a) Q b5 Q *<e 2 c d c GM 1c d c Q d> Q -2 *b (- Q -3 a Q b Q a b a Q

37 Q a b a -) b *G< e 2 c d c GM 2c d c Q d 1> Q (b Q Q -4 a Q b Q a b a Q

38 Q a b a Q b *g e 2 c d c G< c d c Q d -2 (c> b Q Q -5 a Q b Q a b a Q

39 Q a b a Q b *g e 2 c d <c G c d c Q 1d *(- *c />b Q -3 Q a Q b Q a b a Q

40 Q a b a Q b *g e 2 c <d c G c d c Q *(2d Q */c *b >- -4 Q a Q b Q a b a Q

41 Q a b a Q b *g e 2 <c d c G c d c *1a d -/ *c *b <- -> Q a Q b Q a b a Q

42 Q a b a Q b *g e <2 c d c G c d c *2a /d Q */1c b< 1\ Q -> a Q b Q a b a Q

43 Q a b a Q b *g <e Q c1 d c G c d 1c *a\ d Q */2c< b 2\ Q Q >a Q b Q a b a Q

44 Q a b a Q b g e Q c2 d c G c d 2c *a d\ <- /3c b 3\ Q -/ a -> b Q a b a Q

45 Q a b a Q <b\ Q >e Q c d1 c G c 1d c *a <d} /g\ c b Q /g\ Q a Q /b> Q a b a Q

46 Q a b a <- /\ \- e -> c d2 c G c 2d c *a< /{} /\} c\ b -/ /\ \- a -/ /\ -> a b a Q

47 Q a b a< Q /b\ Q e Q >c d c G c d c< a\ {d} /b\ {c /\ Q /b\ Q /a\ Q /b\ Q >a b a Q

48 Q a <b\ a /g\ Q /g\ e {g} c {d> c G c <d} c {a /g\ {g} c\ Q /g\ Q /g\ a /g\ Q /g\ a /b> a Q

49 Q /\ /\ /\ /\ /\ /\ /\ {} {} {} {} G {} {} {} /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ Q

50 F

Fig. 4. Snapshots of configurations for Goto-based minimum-time, minimum-state-
change GFSSP algorithm developed on n = 32 cells with a general on C7 (left) and
C20 (right), respectively.

O((n − k + 1) log(n − k + 1)) and O(k log k), respectively, thus the total state-
change-complexity of the constructed GFSSP algorithm is O((n−k +1) log(n−
k + 1)) + O(k log k) ≤ O(n log n).

Thus, we have:

Theorem 9. There exists a minimum-time, minimum-state-change GFSSP
algorithm.

3.3 An Implementation of Goto-Based Minimum-Time,
Minimum-State-Change GFSSP Algorithm

The algorithm that Umeo [9] reconstructed is a non-recursive algorithm consist-
ing of a marking phase and a 3n-step synchronization phase. In the first phase, by
printing a special marker in the cellular space, the entire cellular space is divided
into many smaller subspaces, each length of which increases exponentially with a
common ratio of two, that is 2j , for any integer j ≥ 1. The exponential marking
is made by counting cells from both left and right ends of a given cellular space.
In the second phase, each subspace is synchronized by starting a well-known con-
ventional 3n-step synchronization algorithm from center point of each divided
subspace. Figure 3 illustrates an overview of the reconstructed Goto’s algorithm.
It can be seen that the overall algorithm does not call itself. Based on the recon-
structed Goto’s algorithm, we realize a minimum-time, minimum-state-change
GFSSP algorithm on a cellular automaton with 434 internal states and 13328
state-transition rules. Figure 4 shows some snapshots for the constructed GFSSP
algorithm on 32 cells with a general on C7 (left) and C20 (right), respectively.

152 H. Umeo and K. Imai

G CnCG 1

Gm

Gi

t = 0

t = 2n - 2

t =t n - 1

1/1

1/1

1/1

1/2

1/51 5

t =t n - 2 + 3
n

time

Cellular Space

1/1

1/1

1/1 1/1

1/1

1/1

t =t n - 2 + 3
2n

Frozen

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

0 !- Q

1 !! >- Q

2 !! 1- >- Q

3 !! 2- Q >- Q

4 !! Q 1- Q >- Q

5 !! 3- 2- Q Q >- Q

6 !! 4- \| 1- Q Q >- Q

7 !! 5- |- 2\ Q Q Q >- Q

8 !! 6- |- Q 1\ Q Q Q >- Q

9 !! 7- |- Q 2- |\ Q Q Q >- Q

10 !! Q 3| Q Q 1- |- Q Q Q >- Q

11 !! Q 4| Q Q 2- |- Q Q Q Q >- Q

12 !! Q 5| Q Q /- 1| Q Q Q Q Q >- Q

13 !! Q 6| Q /- Q 2| Q Q Q Q Q Q >- Q

14 !! Q 7| /- Q Q |- 1- Q Q Q Q Q Q >- Q

15 !! Q |- 3\ Q Q |- 2- Q Q Q Q Q Q Q >- Q

16 !! Q |- 4- \- Q |- Q 1- Q Q Q Q Q Q Q >- Q

17 !! Q |- 5- Q \- |- Q 2- Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

18 !! Q |- 6- Q Q \| Q Q 1- Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

19 !! Q |- 7- Q Q |- \- Q 2- Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

20 !! Q |- Q 3- Q |- Q \- Q 1- Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

21 !! Q |- Q 4- Q |- Q Q \- 2- Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

22 !! Q |- Q 5- Q |- Q Q Q \- 1- Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q Q

23 !! Q |- Q 6- Q |- Q Q Q Q 2\ Q Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q Q Q Q Q Q

24 !! Q |- Q 7- Q |- Q Q Q Q Q 1\ Q Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q Q Q Q Q

25 !! Q |- Q Q 3- |- Q Q Q Q Q 2- |\ Q Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q Q Q Q

26 !! Q |- Q Q 4- |- Q Q Q Q Q Q 1- |- Q Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q Q Q

27 !! Q |- Q Q 5- |- Q Q Q Q Q Q 2- |- Q Q Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q Q

28 !! Q |- Q Q 6- |- Q Q Q Q Q Q /- 1| Q Q Q Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q Q

29 !! Q |- Q Q 7- |- Q Q Q Q Q /- Q 2| Q Q Q Q Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q Q

30 !! Q |- Q Q Q 3| Q Q Q Q /- Q Q |- 1- Q Q Q Q Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q Q

31 !! Q |- Q Q Q 4| Q Q Q /- Q Q Q |- 2- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q Q

32 !! Q |- Q Q Q 5| Q Q /- Q Q Q Q |- Q 1- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q >- Q Q Q Q

33 !! Q |- Q Q Q 6| Q /- Q Q Q Q Q |- Q 2- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q >- Q Q Q

34 !! Q |- Q Q Q 7| /- Q Q Q Q Q Q |- Q Q 1- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q >- Q Q

35 !! Q |- Q Q Q |- 3\ Q Q Q Q Q Q |- Q Q 2- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q >- Q

36 !! Q |- Q Q Q |- 4- \- Q Q Q Q Q |- Q Q Q 1- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q -(

37 !! Q |- Q Q Q |- 5- Q \- Q Q Q Q |- Q Q Q 2- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q -(Q

38 !! Q |- Q Q Q |- 6- Q Q \- Q Q Q |- Q Q Q Q 1- Q Q Q Q Q Q Q Q Q Q Q Q Q Q -(Q Q

39 !! Q |- Q Q Q |- 7- Q Q Q \- Q Q |- Q Q Q Q 2- Q Q Q Q Q Q Q Q Q Q Q Q Q -(Q Q Q

40 !! Q |- Q Q Q |- Q 3- Q Q Q \- Q |- Q Q Q Q Q 1- Q Q Q Q Q Q Q Q Q Q Q -(Q Q Q Q

41 !! Q |- Q Q Q |- Q 4- Q Q Q Q \- |- Q Q Q Q Q 2- Q Q Q Q Q Q Q Q Q Q -(Q Q Q Q Q

42 !! Q |- Q Q Q |- Q 5- Q Q Q Q Q \| Q Q Q Q Q Q 1- Q Q Q Q Q Q Q Q -(Q Q Q Q Q Q

43 !! Q |- Q Q Q |- Q 6- Q Q Q Q Q |- \- Q Q Q Q Q 2- Q Q Q Q Q Q Q -(Q Q Q Q Q Q Q

44 !! Q |- Q Q Q |- Q 7- Q Q Q Q Q |- Q \- Q Q Q Q Q 1- Q Q Q Q Q -(Q Q Q Q Q Q Q Q

45 !! Q |- Q Q Q |- Q Q 3- Q Q Q Q |- Q Q \- Q Q Q Q 2- Q Q Q Q -(Q Q Q Q Q Q Q Q Q

46 !! Q |- Q Q Q |- Q Q 4- Q Q Q Q |- Q Q Q \- Q Q Q Q 1- Q Q -(Q Q Q Q Q Q Q Q Q Q

47 !! Q |- Q Q Q |- Q Q 5- Q Q Q Q |- Q Q Q Q \- Q Q Q 2- Q -(Q Q Q Q Q Q Q Q Q Q Q

48 !! Q |- Q Q Q |- Q Q 6- Q Q Q Q |- Q Q Q Q Q \- Q Q Q ![Q Q Q Q Q Q Q Q Q Q Q Q

49 !! Q |- Q Q Q |- Q Q 7- Q Q Q Q |- Q Q Q Q Q Q \- Q -[!! >- Q Q Q Q Q Q Q Q Q Q Q

50 !! Q |- Q Q Q |- Q Q Q 3- Q Q Q |- Q Q Q Q Q Q Q -[-1 !! 1- >- Q Q Q Q Q Q Q Q Q Q

51 !! Q |- Q Q Q |- Q Q Q 4- Q Q Q |- Q Q Q Q Q Q -[Q -2 !! 2- Q >- Q Q Q Q Q Q Q Q Q

52 !! Q |- Q Q Q |- Q Q Q 5- Q Q Q |- Q Q Q Q Q -[Q -1 Q !! Q 1- Q >- Q Q Q Q Q Q Q Q

53 !! Q |- Q Q Q |- Q Q Q 6- Q Q Q |- Q Q Q Q -[Q Q -2 -3 !! 3- 2- Q Q >- Q Q Q Q Q Q Q

54 !! Q |- Q Q Q |- Q Q Q 7- Q Q Q |- Q Q Q -[Q Q -1 |/ -4 !! 4- \| 1- Q Q >- Q Q Q Q Q Q

55 !! Q |- Q Q Q |- Q Q Q Q 3- Q Q |- Q Q -[Q Q Q /2 -| -5 !! 5- |- 2\ Q Q Q >- Q Q Q Q Q

56 !! Q |- Q Q Q |- Q Q Q Q 4- Q Q |- Q -[Q Q Q /1 Q -| -6 !! 6- |- Q 1\ Q Q Q >- Q Q Q Q

57 !! Q |- Q Q Q |- Q Q Q Q 5- Q Q |- <] Q Q Q /| -2 Q -| -7 !! 7- |- Q 2- |\ Q Q Q >- Q Q Q

58 !! Q |- Q Q Q |- Q Q Q Q 6- Q Q -! Q -] Q -| -1 Q Q |3 Q !! Q 3| Q Q 1- |- Q Q Q >- Q Q

59 !! Q |- Q Q Q |- Q Q Q Q 7- Q -< !! Q Q -] -| -2 Q Q |4 Q !! Q 4| Q Q 2- |- Q Q Q Q >- Q

60 !! Q |- Q Q Q |- Q Q Q Q Q <) -1 !! Q Q Q v] -\ Q Q |5 Q !! Q 5| Q Q /- 1| Q Q Q Q Q -(

61 !! Q |- Q Q Q |- Q Q Q Q -< Q)2 !! Q Q Q -v -] -\ Q |6 Q !! Q 6| Q /- Q 2| Q Q Q Q -(Q

62 !! Q |- Q Q Q |- Q Q Q -< Q -1 Q)! Q Q Q -v Q -] -\ |7 Q !! Q 7| /- Q Q |- 1- Q Q -(Q Q

63 !! Q |- Q Q Q |- Q Q -< Q Q -2 -3 !!)- Q Q -v Q Q -y -| Q !! Q |- 3\ Q Q |- 2- Q -(Q Q Q

64 !! Q |- Q Q Q |- Q -< Q Q -1 |/ -4 !! Q)- Q -v Q Q -y -| Q !! Q |- 4- \- Q |- Q ![Q Q Q Q

65 !! Q |- Q Q Q |-)- Q Q Q /2 -| -5 !! Q Q)- -v Q Q -y -| Q !! Q |- 5- Q \- |- <] !! >- Q Q Q

66 !! Q |- Q Q Q -! Q)- Q /1 Q -| -6 !! Q Q Q]! Q Q -y -| Q !! Q |- 6- Q Q -! Q !! 1- >- Q Q

67 !! Q |- Q Q -< !! Q Q]: -2 Q -| -7 !! Q Q -< !!]- Q -y -| Q !! Q |- 7- Q -< !! Q !! 2- Q >- Q

68 !! Q |- Q -< -1 !! Q Q -!]- Q |3 Q !! Q -< -1 !! 1-]- -y -| Q !! Q |- Q <) -1 !! Q !! Q 1- Q -(

69 !! Q |-)- Q -2 !! Q -< !! 1- [> |4 Q !!)- Q -2 !! 2- Q -(-| Q !! Q |-)- Q)2 !! Q !! 3- 2- :[Q

70 !! Q -! Q]! Q !!)- -1 !! u- -(!- Q !! Q]! Q !! Q ![Q !- Q !! Q -! Q]! Q)! Q !! 4- -< !- Q

71 !!

72 F

Fig. 5. Space-time diagram of Gerken’s FSSP algorithm (left) and its snapshots on 37
cells.

Fig. 6. Snapshots of configurations of Gerken-based minimum-time, minimum-state-
change GFSSP algorithm developed on n = 34 cells with a general on C10 (left) and
C22 (right), respectively.

A Class of Minimum-Time Minimum-State-Change 153

3.4 An Implementation of Gerken-Based Minimum-Time,
Minimum-State-Change GFSSP Algorithm

Gerken [2] constructed a minimum-time 157-state FSSP algorithm and showed
that the algorithm has a minimum-state-change complexity. The algorithm is
the first one having the Θ(n log n) minimum-state-change complexity for syn-
chronizing n cells with a general at one end. Figure 5 gives a space-time diagram
for the algorithm (left) and some snapshots for the synchronization processes on
37 cells. Based on the algorithm, we realize a minimum-time, minimum-state-
change GFSSP algorithm on a cellular automaton with 215 internal states and
4077 state-transition rules. Figure 6 shows some snapshots for the constructed
GFSSP algorithm on 34 cells with a general on C10 (left) and C22 (right), respec-
tively. Different snapshots can be found in Umeo et al. [14].

4 Summary

We studied the FSSP from a view point of state-change-complexity that models
the energy consumption of SRAM-type storage with which cellular automata
might be built. We have constructed two minimum-time minimum-state-change
GFSSP algorithms: one is based on Goto’s algorithm, known as the first
minimum-time FSSP algorithm, and the other is based on Gerken’s one. The
Goto-based GFSSP algorithm is realized on a cellular automaton with 434 inter-
nal states and 13328 state-transition rules. The Gerken-based one is implemented
on a cellular automaton with 215 internal states and 4077 state-transition rules.
These algorithms are optimum not only in time but also in the state-change com-
plexity. The implemented minimum-time GFSSP algorithms are the first ones
having the minimum-state-change complexity.

References

1. Balzer, R.: An 8-state minimal time solution to the firing squad synchronization
problem. Inf. Control 10, 22–42 (1967)

2. Gerken, H.D.: Über Synchronisationsprobleme bei Zellularautomaten. Diplomar-
beit, Institut für Theoretische Informatik, Technische Universität Braunschweig,
p. 50 (1987)

3. Goto, E.: A minimal time solution of the firing squad problem. Dittoed course
notes for Applied Mathematics 298, Harvard University, pp. 52–59 (1962)

4. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization
problem. Theoret. Comput. Sci. 50, 183–238 (1987)

5. Mazoyer, J.: A minimal-time solution to the FSSP without recursive call to itself
and with bounded slope of signals. Unpublished draft version, pp. 1–25 (1997)

6. Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.)
Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading MA
(1964)

7. Moore, F.R., Langdon, G.G.: A generalized firing squad problem. Inf. Control 12,
212–220 (1968)

154 H. Umeo and K. Imai

8. Schmid, H., Worsch, T.: The firing squad synchronization problem with many
generals for one-dimensional CA. In: Proceedings of IFIP World Congress, pp.
111–124 (2004)

9. Umeo, H.: A note on firing squad synchronization algorithms - a reconstruction of
Goto’s first-in-the-world optimum-time firing squad synchronization algorithm. In:
Kutrib, M., Worsch, T. (eds.) Proceedings of IFIP Cellular Automata Workshop.
1996, Schloss Rauischholzhausen, Giessen, Germany, p. 65 (1996)

10. Umeo, H.: A simple design of time-efficient firing squad synchronization algorithms
with fault-tolerance. IEICE Trans. Inf. Syst. E87-D(3), 733–739 (2011)

11. Umeo, H.: Firing squad synchronization problem in cellular automata. In: Meyers,
R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 4, pp. 3537–3574.
Springer, New York (2009)

12. Umeo, H., Kamikawa, N., Nishioka, K., Akiguchi, S.: Generalized firing squad
synchronization protocols for one-dimensional cellular automata - a survey. Acta
Phys. Pol. B, Proc. Suppl. 3, 267–289 (2010)

13. Umeo, H., Hirota, M., Nozaki, Y., Imai, K., Sogabe, T.: A reconstruction of Goto’s
FSSP algorithm (2016, draft in submission)

14. Umeo, H., Imai, K., Sousa, A.: A Generalized Minimum-Time Minimum-State-
Change FSSP Algorithm. In: Dediu, A.-H., Magdalena, L., Mart́ın-Vide, C. (eds.)
TPNC 2015. LNCS, vol. 9477, pp. 161–173. Springer, Switzerland (2015). doi:10.
1007/978-3-319-26841-5 13

15. Vollmar, R.: Some remarks about the efficiency of polyautomata. Inter. J. Theoret.
Phys. 21(12), 1007–1015 (1982)

16. Waksman, A.: An optimum solution to the firing squad synchronization problem.
Inf. Control 9, 66–78 (1966)

17. Yunès, J.B.: Goto’s construction and Pascal’s triangle: new insights into cellular
automata synchronization. Proceedings of JAC 2008, 195–203 (2008)

http://dx.doi.org/10.1007/978-3-319-26841-5_13
http://dx.doi.org/10.1007/978-3-319-26841-5_13

	A Class of Minimum-Time Minimum-State-Change Generalized FSSP Algorithms
	1 Introduction
	2 Firing Squad Synchronization Problem
	2.1 Definition of Firing Squad Synchronization Problem
	2.2 Some Related Results on FSSP and GFSSP

	3 A Class of Minimum-Time, Minimum-State-Change GFSSP Algorithms
	3.1 Designing Minimum-Time GFSSP Algorithms
	3.2 State-Change Complexity
	3.3 An Implementation of Goto-Based Minimum-Time, Minimum-State-Change GFSSP Algorithm
	3.4 An Implementation of Gerken-Based Minimum-Time, Minimum-State-Change GFSSP Algorithm

	4 Summary
	References

