
Cutting the Firing Squad Synchronization

Antonios Dimitriadis1, Martin Kutrib2(B), and Georgios Ch. Sirakoulis1(B)

1 Department of Electrical and Computer Engineering,
Democritus University of Thrace, 67100 Xanthi, Greece

gsirak@ee.duth.gr
2 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany

kutrib@informatik.uni-giessen.de

Abstract. The firing squad synchronization problem on Cellular
Automata (CA) has been studied extensively for many years, and a
rich variety of synchronization algorithms have been proposed. From
Mazoyer’s paper it is known that a minimal-time solution with 6 states
exists. The firing squad synchronization problem has also been studied
for defective CA where a defective cell can still transmit information
without processing it. In the present paper, we consider defective CA
where the dynamic defects are such that a defective cell totally fails.
The failures are permanent and may occur at any time in the computa-
tion. In this way the array is cut into two parts. The question addressed
is how many cells in each part can still be synchronized and at which
time steps. It is analyzed how many cells are synchronized, where and
when this happens and how these three characteristics are connected
with the position of the defective cell and the time at which the cell fails.
Based on Mazoyer’s 6-state algorithm, a solution for one-dimensional CA
is proposed that synchronizes the maximal possible number of cells in
each part.

1 Introduction

Nowadays it becomes possible to build massively parallel computing systems
that consist of hundred thousands of processing elements. Each single compo-
nent is subject to failure such that the probability of misoperations and loss of
function of the whole system increases with the number of its elements. It was
von Neumann [12] who first stated the problem of building reliable systems out
of unreliable components. Here we consider one-dimensional CA as a model for
homogeneously structured parallel systems as are linear processor arrays. Such
devices of interconnected parallel acting finite-state machines have been studied
from the viewpoint of fault tolerance in several ways. In [2] reliable arrays are
constructed under the assumption that a cell (and not its links) at each time step
fails with a constant probability. Moreover, such a failure does not incapacitate
the cell permanently, but only violates its rule of operation in the step when
it occurs. Under the same constraint that cells themselves (and not their links)
fail (that is, they cannot process information but are still able to transmit it
unchanged with unit speed) fault-tolerant computations have been investigated,
c© Springer International Publishing Switzerland 2016
S. El Yacoubi et al. (Eds.): ACRI 2016, LNCS 9863, pp. 123–133, 2016.
DOI: 10.1007/978-3-319-44365-2 12



124 A. Dimitriadis et al.

for example, in [4,13] where encodings are established that allow the correction
of so-called K-separated misoperations, in [5] where the studies are in terms of
syntactical pattern recognition, in [6,7,15,17,20] where the firing squad synchro-
nization problem is considered in defective cellular arrays, and in [1] where the
early bird problem [14] is investigated.

However, in the previous studies defective cells are considered such that cells
still can transmit information without processing it. Here we consider defective
CA where the dynamic defects are such that a defective cell totally fails. The
failures are permanent and may occur at any time in the computation. In this way
the array is cut into two parts. Our study is in terms of the famous Firing Squad
Synchronization Problem (FSSP). It was raised by Myhill in 1957 and emerged
in connection with the problem to start several parts of a parallel machine at
the same time. The first published reference appeared with a solution found by
McCarthy and Minsky in [11]. Roughly speaking, the problem is to set up a
CA such that all cells change to a special state for the first time after the same
number of steps. Many modifications and generalizations of the FSSP have been
investigated. An overview can be found in [18].

From the perspective that a cell totally fails, the question addressed here is
how many cells in each of the parts caused by the failure can still be synchro-
nized and at which time steps. It is analyzed how many cells are synchronized,
where and when this happens and how these three characteristics are connected
with the position of the defective cell and the time at which the cell fails. Based
on Mazoyer’s 6-state algorithm, a solution for one-dimensional CA is proposed
that synchronizes the maximal possible number of cells in each part. Implemen-
tations of the proposed algorithm show that the algorithm has an average of
78 % synchronization success, which means that in some cases a small number
of cells could finally be remain unsynchronized.

2 Preliminaries

Let A denote a finite set of letters. Then we write A∗ for the set of all finite
words (strings) built with letters from A and A+ for the set of all non-empty
words. We use ⊆ for set inclusion and ⊂ for strict set inclusion. For a set S and
a symbol a we abbreviatory write Sa for S ∪ {a}.

A one-dimensional CA is a linear array of identical deterministic finite-state
machines, called cells. Except for the leftmost cell and rightmost cell each one
is connected to its both nearest neighbors. We identify the cells by positive
integers. The state transition depends on the current state of a cell itself and the
current states of its two neighbors, where the outermost cells receive a permanent
boundary symbol on their free input lines.

Definition 1. A cellular automaton (CA) is a system M = 〈S,A, #, δ〉, where S
is the finite, nonempty set of cell states, A ⊆ S is the nonempty set of input
symbols, # /∈ S is the permanent boundary symbol, δ : S# × S × S# → S is the
local transition function.



Cutting the Firing Squad Synchronization 125

A configuration ct of M at time t ≥ 0 is a string of the form #S∗#, that
reflects the cell states from left to right. The computation starts at time 0 in a
so-called initial configuration, which is defined by the input w = a1a2 · · · an ∈
A+. We set c0 = #a1a2 · · · an#. During the course of its computation a CA
steps through a sequence of configurations, whereby successor configurations are
computed according to the global transition function Δ: Let ct be a configuration
reached at time t ≥ 0 in some computation. Then its successor configuration
ct+1 = Δ(ct) is as follows. For 2 ≤ i ≤ n−1, ct+1(i) = δ(ct(i−1)), ct(i), ct(i+1)),
and for the leftmost and rightmost cell we set ct+1(1) = δ(#, ct(1), ct(2)) and
ct+1(n) = δ(ct(n − 1), ct(n), #), for t ≥ 0. Thus, the global transition function Δ
is induced by δ.

Next, we consider CA with dynamic defects. In [5] dynamic defects have been
studied so that a defective cell can still transmit information without processing
it. In this way the array is not cut into pieces. Here we investigate dynamic
defects so that a defective cell totally fails, such failures are permanent and may
occur at any time in the computation. In order to define CA with this type of
defects more formally, a possible failure is seen as a weak kind of nondeterminism
for the local transition function.

Definition 2. A cellular automaton M = 〈S,A, #, δ〉 is a cellular automaton
with (totally) dynamic defects (TDCA), if δ is extended so that it may map any
triple from S# × S × S# to S#, that is, either to a state from S or alternatively
to the boundary symbol #.

If a cell works fine the local transition function maps to a state from S.
Otherwise it maps to #. In the latter case, for the remaining computation the
cell behaves as the boundary to its both neighbors. Since the transition function
is not defined for #, the failure is permanent and the cell can be seen as totally
defective. The time step at which a cell enters the boundary symbol from a
non-boundary symbol is said to be the time step at which the cell fails or its
failure time. We assume that initially all cells are intact and, thus, no cell fails
at time 0.

3 The Firing Squad Synchronization Problem

Roughly speaking, the problem is to set up a CA such that all cells change to
a special state for the first time after the same number of steps. Originally, the
problem has been stated as follows: Consider a finite but arbitrary long chain of
finite automata that are all identical except for the automata at the ends. The
automata are called soldiers, and the automaton at the left end is the general.
The automata work synchronously, and the state of each automaton at time step
t+1 depends on its own state and on the states of its both immediate neighbors
at time step t. The problem is to find states and state transitions such that the
general may initiate a synchronization in such a way that all soldiers enter a
distinguished state, the firing state, for the first time at the same time step. At
the beginning all non-general soldiers are in the quiescent state.



126 A. Dimitriadis et al.

Definition 3. Let C be the set of all configurations of the form #GQQ · · · Q#.
The Firing Squad Synchronization Problem is to specify a CA 〈S,A, #, δ〉 so that
for all c ∈ C,

1. there is a synchronization time tf ≥ 1 such that Δtf (c) = #FF · · · F#,
2. for all 0 ≤ t < tf , Δt(c) = #X1X2 · · · Xn# with Xi �= F , 1 ≤ i ≤ n, and
3. δ(Q,Q,Q) = δ(#, Q,Q) = δ(Q,Q, #) = Q.

While the first solution of the problem takes 3n time steps to synchronize n
cells [11], Goto [3] was the first who presented a minimal-time solution that uses
several thousand states (see [16,21] for a reconstruction of this algorithm). The
minimal solution time for the FSSP is 2n − 2 [19].

Apart from time optimality there is a natural interest in efficient solutions
with respect to the number of states or the number of bits to be communicated
to neighbors. While there exists a time optimal solution where just one bit of
information is communicated [10], the minimal number of states is still an open
problem. Currently, a 6-state solution is known [9]. In the same paper it is proved
that there does not exist a time-optimal 4-state algorithm. It is a challenging
open problem to prove or disprove that there exists a 5-state solution.

Since the algorithm to be presented here relies on Mazoyer’s solution, we
next sketch the basic idea from [9].

Algorithm 4. The FSSP is solved by iteratively dividing the array of length n
into parts on which the same algorithm is applied recursively (see Fig. 1). First
the array is divided into two parts. Then the process is applied to both parts
in parallel, etc. The cut-points are chosen so that one of the parts is twice as
long as the other (up to the remainder of n modulo 3). Exactly when all cells
are cut-points they enter the firing state synchronously.

In order to divide the array into two parts, the general sends two signals to
the right. One Signal moves with speed 1, that is, one cell per time step, and the
other signal speed 1/2, that is, one cell every other time step. The fast signal is
bounced at the right end and sent back to the left with speed. Both signals meet
at position 2/3 · n (up to the remainder of n modulo 3), where the cell becomes
a general. Now the right part is treated as an array of length (n + i)/3, where
i ∈ {0, 1, 2} so that the synchronization starts with 0, 1, or 2 steps delay.

The next cut-point in the left part, which is at total position (2/3)2, can be
determined by another signal sent at initial time by the general at the left end.
This signal moves with speed 2/7. It meets the bounced signal from above at the
required position. In order to determine the cut-point at total position (2/3)3

in this way, the general has to send a further signal with speed 4/23, and so
on. Altogether, for a solution the general has to send a number of signals that
depends on the length of the array.

In order to send this number of signals with a finite state set, an approach
shown in [19] can be adopted. The idea is rather simple, the additional sig-
nals are generated and moved by trigger signals. The left-moving trigger signals
themselves are emitted by the initial right-moving signal. Whenever a trigger



Cutting the Firing Squad Synchronization 127

123 · · · n
t = 0

t = n

t = 2n − 1

Fig. 1. Scheme of the time-optimal 6-state FSSP solution. The vertical solid lines are
cells in the general state. For the sake of clarity not all signals are depicted.

signal reaches the leftmost cell, a new signal to be triggered is generated. When-
ever a trigger signal reaches a triggered signal, the latter is moved. That way,
the desired behavior is achieved, and a minimal-time solution for the FSSP is
obtained. �

4 Synchronization with a Totally Defective Cell

In this section we turn to consider the effect of a cell becoming totally defective
on Mazoyer’s algorithm that is extended. For non-defective CA, the algorithm
runs in optimal time, that is, in time 2n− 2 where n is the number of cells to be
synchronized. For the case that a cell k with 1 < k < n fails the array is cut into
two independent parts, that is, into the cells 1, 2, . . . , k − 1 on the left and the
cells k + 1, k + 2, . . . , n on the right. The problem is now to synchronize these
two parts independently of each other, if possible at all. However, this may yield
extended synchronization times. The main goal in the sequel is to determine for
a given situation how many cells can still be synchronized, and how many time
steps are needed. The algorithm depends naturally on the time step at which a
cell fails (recall that this is the time step at which it enters the boundary symbol
from a non-boundary state) and its position in the array. For our notation, in
the following we assume that at most one cell k with 1 < k < n fails at time
step td with 0 < td ≤ 2n − 2.

In general, cell k − 1 has to detect that the failure occurred. This means,
it has to distinguish between a boundary symbol to its right that is due to a
failure and a boundary symbol that is initial. On the other hand, this distinction
is irrelevant if the failure occurs when cell k−1 has not received the initial signal.
So, it is sufficient that each cell remembers the information whether or not its



128 A. Dimitriadis et al.

right neighbor is the boundary symbol when the cell receives the initial signal.
To this end, no further copies of the states are used, but the remembering is
successfully encapsulated in the transition function. In general, since the leftmost
cell is cell 1, the running time of the initial signal to cell k is k − 1 time steps.

4.1 Analysis for the Left Part

When cell k fails at time td, its left neighbor enters a state that may depend on
the fact that a failure occurs at the earliest at time td + 1. The actual behavior
of cell k − 1 at time td + 1 depends on the position of the defective cell, that is,
on k and on td.

Case 1: If td ≤ k − 3, then the initial signal sent by the leftmost cell of the
FSSP still did not arrive at cell k −1 when its neighbor failed. The running time
of this signal to cell k−1 is k−2 time steps. So, cell k acts a boundary cell for the
FSSP that synchronizes all the k−1 cells of the left part in 2(k−1)−2 = 2k−4
steps. This behavior does not apply to the case k − 2 ≤ td. The reason is that
the state of cell k − 1 at time k − 2 is given by the transition function that sees
the quiescent state in cell k at time k − 3. So, if cell k fails at time k − 2, then
the state of cell k − 1 does not reflect the bounced signal.

Case 2: Let k − 2 ≤ td ≤ 2n − k − 1. Then cell k − 1 was already reached by
the initial signal and the synchronization is in progress. Therefore, the algorithm
we consider is set up so that cell k−1 informs the cells of the left part about the
failure and to stop the running FSSP. To this end, it sends a signal to the left.
This signal is started at time td+1 and arrives at time td+1+k−2 = td+k−1.
If the synchronization time 2n − 2 of the running FSSP is after the arrival time
of the signal in cell 1, none of the cells in the left part will fire according to the
running FSSP. This happens if 2n − 2 ≥ td + k − 1 and, thus, td ≤ 2n − k − 1.

Now the algorithm is further extended such that the signal that stops the
running synchronization is additionally the initial signal of a new (mirrored)
FSSP instance where the synchronization is initiated by the rightmost cell of the
array. In particular, this implies that the left part is synchronized in 2(k −1)−2
steps after the signal has been emitted. That is, the synchronization takes place
at time step td + 1 + 2(k − 1) − 2 = td + 2k − 3.

It is worth mentioning that the mirrored FSSP costs extra states. Here we
can trade states for a slowdown as follows. Cell k −1 still sends the signal to the
left in order to stop the running FSSP. If the signal arrives in cell 1 a new (non-
mirrored) FSSP is initiated that synchronizes the left part in further 2(k−1)−2
steps, that is, at time td + 1 + k − 2 + 2(k − 1) − 2 = td + 3k − 5. Since the new
signal requires just one additional state, we trade one state for k − 2 additional
time steps.

Case 3: Let 2n−k ≤ td ≤ 2n−2. In this case, the signal emitted by cell k−1
to stop the running FSSP does not reach all cells of the left part before time
step 2n − 2 at which the running synchronization takes place. However, at time
td +x the signal has affected x cells, where x ≥ 1. Setting 2n−2 = td +x implies
x = 2n−2−td. So, 2n−2−td cells are affected and, thus, not synchronized by the



Cutting the Firing Squad Synchronization 129

Table 1. Summary of synchronization times and cells in the left part, where td denotes
the time of failure, the columns with head cells show the number of cells synchronized,
and tf denotes the time step at which the cells are synchronized.

Left part

td cells tf

[1, . . . , k − 3] All 2k − 4

[k − 2, . . . , 2n− k − 1] All td + 2k − 3

[2n− k, . . . , 2n− 2] td − 2n + k + 1 2n− 2

running FSSP. Conversely, this means that k−1− (2n−2− td) = td −2n+k+1
cells are synchronized at time step 2n − 2.

For example, if td = 2n − k then just one cell is synchronized. This is the
leftmost cell that cannot be reached by the signal in due time. Setting td =
2n− 2 gives k − 1 synchronized cells. These are all cells in the left part since the
synchronization takes place at the time cell k fails.

Table 1 summarizes the results for the left part.

4.2 Analysis for the Right Part

As for the left part, when cell k fails at time td, its right neighbor enters a state
that may depend on the fact that a failure occurs at the earliest at time td + 1.
The actual behavior of cell k + 1 at time td + 1 depends on the position of the
defective cell, that is, on k and on td.

Case 1: If td ≤ k − 1, then the initial signal sent by the leftmost cell of the
FSSP still did not arrive at cell k + 1 when its left neighbor failed. The running
time of this signal to cell k + 1 is k time steps. So, when cell k + 1 is still in the
quiescent state with a boundary to its left, it can start a new instance of a FSSP
that synchronizes the right part. Here we note that a quiescent cell next to the
left boundary does not occur without a failure, since initially the leftmost cell is
in the general state. The new instance is set up when cell k+1 enters the general
state at time td + 1. Then it takes another 2(n − k − 1) − 2 steps to synchronize
all the n − k cells of the right part. That is, the right part is synchronized at
time td + 1 + 2(n − k − 1) − 2 = td + 2n − 2k − 3.

Case 2: Let k ≤ td ≤ n + k − 2. Then cell k + 1 was already reached by the
initial signal and the synchronization is in progress. Therefore, the algorithm we
consider is set up so that cell k + 1 informs all cells of the right part about the
failure and to stop the running FSSP. To this end, it sends a signal to the right.
This signal is started at time td+1 and arrives at time td+1+n−k−1 = td+n−k.
If the synchronization time 2n − 2 of the running FSSP is after the arrival time
of the signal in cell n, none of the cells in the right part will fire according to the
running FSSP. This happens if 2n − 2 ≥ td + n − k and, thus, td ≤ n + k − 2.

Now, as for the left part, the algorithm is extended such that the signal that
stops the running synchronization is additionally the initial signal of a new FSSP



130 A. Dimitriadis et al.

instance. This implies that the right part is synchronized in 2(n − k − 1) − 2
steps after the signal has been emitted. That is, the synchronization takes place
at time step td + 1 + 2(n − k − 1) − 2 = td + 2n − 2k − 3.

Case 3: Let n + k − 1 ≤ td ≤ 2n − 2. In this case, the signal emitted by
cell k + 1 to stop the running FSSP does not reach all the cells of the right
part before time step 2n − 2 at which the running synchronization takes place.
However, at time td + x the signal has affected x cells, where x ≥ 1. Setting
2n − 2 = td + x implies x = 2n − 2 − td. So, 2n − 2 − td cells are affected
and, thus, not synchronized by the running FSSP. Conversely, this means that
n − k − (2n − 2 − td) = td − n − k + 2 cells are synchronized at time step 2n − 2.

For example, if td = n + k − 1 then just one cell is synchronized. This is
the rightmost cell that cannot be reached by the signal in due time. Setting
td = 2n − 2 gives n − k synchronized cells. These are all cells in the right part
since the synchronization takes place at the the time cell k fails.

Table 2 summarizes the results for the right part.

Table 2. Summary of synchronization times and cells in the right part, where td denotes
the time of failure, the columns with head cells show the number of cells synchronized,
and tf denotes the time step at which the cells are synchronized.

Right part

td cells tf

[1, . . . , k − 1] All td + 2n− 2k − 3

[k, . . . , n + k − 2] All td + 2n− 2k − 3

[n + k − 1, . . . , 2n− 2] td − n− k + 2 2n− 2

5 Graphical Representation of Two Examples

In the first example a CA with 17 cells is considered. Let cell 9 fail at time
step 15. A simulation of the original algorithm from [9] is depicted in the left
part of Fig. 2. The boundary cells are represented in yellow. The cells to the right
of the failure are left unsynchronized and are depicted in red, while the cells to
the left of the failure which are still synchronized are drawn in orange.

At the right hand side of Fig. 2 the extended algorithm is simulated. In par-
ticular, all non-defective cells are synchronized (though the left and the right
part fire independently at different time steps).

In the second example a CA with 26 cells is presented (see Fig. 3) and is
supposed that cell 12 fails at time step 14. Again, at the left hand side of the
figure a simulation of the original algorithm is shown. The colors are as before.
Note, that none of the cells fires. At the right hand side of Fig. 3, a simulation
based on the extended algorithm is presented. As in the first example, now all
non-defective cells are synchronized, where the firing times for the left and right
part necessarily differ.



Cutting the Firing Squad Synchronization 131

Fig. 2. Simulations of the first example. The original algorithm (left) and the extended
algorithm (right). Boundary cells are depicted in yellow, finally synchronized cells in
orange, and non-synchronized cells in red. (Color figure online)

Fig. 3. Simulations of the second example. The original algorithm (left) and the
extended algorithm (right). Boundary cells are depicted in yellow, finally synchronized
cells in orange, and non-synchronized cells in red. (Color figure online)

6 Conclusions

The time-optimal solution of the FSSP by Mazoyer has been considered for
one-dimensional CA where at most one cell may totally fail, that is, it can
neither process nor transmit information any longer. In order to synchronize as
many cells as possible, the algorithm has been extended by several features. The
proposed algorithm divides the initial array into two separated parts, which are
treated independently. The number of cells that still can be synchronized and
the synchronization times naturally depend on the position of the defective cell
and the time at which it fails.

The new algorithm has been implemented with 14 states. It has been tested in
experiments with all array lengths between 4 and 500 and for all possible failure
times and positions. The tests were run on a commercially available Windows
PC and took several days running time. It turned out that the algorithm has an
average of 78 % synchronization success. Finally, by a case-by-case analysis the
number of synchronized cells as well as their synchronization times were derived.
A definition of the minimal time to solve the problem is not that obvious as it
depends on the number of cells that are synchronized. Moreover, a formal proof
would require that the precise configuration of an array at failure time is involved



132 A. Dimitriadis et al.

in the argumentation. However, it is not hard to see that the algorithm proposed
here works in minimal time for the number of cells that it synchronizes.

References

1. Fay, B., Kutrib, M.: The fault-tolerant early bird problem. IEICE Trans. Inf. Syst.
E87–D, 687–693 (2004)

2. Gács, P.: Reliable computation with cellular automata. J. Comput. Syst. Sci. 32(1),
15–78 (1986)

3. Goto, E.: A minimal time solution of the firing squad problem. Course Notes for
Applied Mathematics 298, Harvard University (1962)

4. Harao, M., Noguchi, S.: Fault tolerant cellular automata. J. Comput. Syst. Sci. 11,
171–185 (1975)

5. Kutrib, M., Löwe, J.T.: Massively parallel fault tolerant computations on syntac-
tical patterns. Future Gener. Comput. Syst. 18, 905–919 (2002)

6. Kutrib, M., Vollmar, R.: Minimal time synchronization in restricted defective cel-
lular automata. J. Inform. Process. Cybern. EIK 27, 179–196 (1991)

7. Kutrib, M., Vollmar, R.: The firing squad synchronization problem in defective
cellular automata. IEICE Trans. Inf. Syst. E78–D, 895–900 (1995)

8. Maignan, L., Yunès, J.-B.: Experimental finitization of infinite field-based gener-
alized FSSP solution. In: W ↪as, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014.
LNCS, vol. 8751, pp. 136–145. Springer, Heidelberg (2014)

9. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization
problem. Theoret. Comput. Sci. 50, 183–238 (1987)

10. Mazoyer, J.: A minimal time solution to the firing squad synchronization problem
with only one bit of information exchanged. Technical report TR 89–03, Ecole
Normale Supérieure de Lyon (1989)

11. Moore, E.F.: The firing squad synchronization problem. In: Sequential Machines -
Selected Papers, pp. 213–214. Addison-Wesley (1964)

12. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In: Automata Studies, pp. 43–98. Princeton University
Press (1956)

13. Nishio, H., Kobuchi, Y.: Fault tolerant cellular spaces. J. Comput. Syst. Sci. 11,
150–170 (1975)

14. Rosenstiehl, P., Fiksel, J.R., Holliger, A.: Intelligent graphs: networks of finite
automata capable of solving graph problems. In: Graph Theory and Computing,
pp. 219–265. Academic Press (1972)

15. Umeo, H.: A fault-tolerant scheme for optimum-time firing squad synchroniza-
tion. In: Parallel Computing: Trends and Applications, North-Holland, pp. 223–230
(1994)

16. Umeo, H.: A note on firing squad synchronization algorithms. In: IFIP Cellular
Automata Workshop 1996, p. 95. Universität Giessen (1996)

17. Umeo, H.: A simple design of time-efficient firing squad synchronization algorithms
with fault-tolerance. IEICE Trans. Inf. Syst. E87–D, 733–739 (2004)

18. Umeo, H.: Firing squad synchronization problem in cellular automata. In:
Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science,
pp. 3537–3574. Springer, New York (2009)

19. Waksman, A.: An optimum solution to the firing squad synchronization problem.
Inform. Control 9, 66–78 (1966)



Cutting the Firing Squad Synchronization 133

20. Yunès, J.B.: Fault tolerant solutions to the firing squad synchronization problem.
Techical report LITP 96/06, Institut Blaise Pascal (1996)

21. Yunès, J.B.: Goto’s construction and Pascal’s triangle: new insights into cellular
automata synchronization. In: Symposium on Cellular Automata - Journées Auto-
mates Cellulaires, JAC 2008, pp. 195–203. MCCME Publishing House (2009)


	Cutting the Firing Squad Synchronization
	1 Introduction
	2 Preliminaries
	3 The Firing Squad Synchronization Problem
	4 Synchronization with a Totally Defective Cell
	4.1 Analysis for the Left Part
	4.2 Analysis for the Right Part

	5 Graphical Representation of Two Examples
	6 Conclusions
	References


