
Pseudorandom Pattern Generation
Using 3-State Cellular Automata

Kamalika Bhattacharjee(B), Dipanjyoti Paul, and Sukanta Das

Department of Information Technology,
Indian Institute of Engineering Science and Technology,

Shibpur 711103, West Bengal, India
kamalika.it@gmail.com, dipanjyotipaul@gmail.com, sukanta@it.iiests.ac.in

Abstract. This paper investigates the potentiality of pseudo-random
pattern generation of 1-dimensional 3-state cellular automata (CAs).
Here, a pattern represents configuration of a CA of length n. We have
identified 805 CAs which have great potentiality to act as pseudorandom
pattern generator (PRPG).

Keywords: Pseudo-random pattern generator (PRPG) · 3-state Cellu-
lar Automata(CAs) · Fixed-Point Graph (FPG) · Diehard · TestU01

1 Introduction

This paper investigates the (pseudo) randomness behaviour of 1-dimensional
3-neighborhood (that is, nearest neighbor) CAs having 3 states per cell with peri-
odic boundary condition. A list of works already exists in literature using binary
(2-state) 3-neighborhood CAs as source of randomness [2,3,8]. However, the ran-
domness of binary CAs with increased neighborhood dependency is not known,
but it is well-known after Smith that, a CA with higher neighborhood depen-
dency can always be emulated by another CA with lesser, say 3-neighborhood
dependency [7]. In this paper, we have selected 1-D 3-neighborhood finite 3-state
CAs, and checked the randomness of the patterns which are configurations of
the CAs.

As the rule space of 3-state CAs is huge, we have developed greedy strategies
(Sect. 3) and some theories to filter out the potential CAs (Sect. 4.1). These CAs
are, however, further tested for randomness using Diehard battery of tests [5]
as the testbed (Sect. 4.2). Finally, we have got 805 CAs which are verified and
claimed to be excellent source of randomness (Sect. 5). We have also tested some
existing PRPGs on the same testbed Diehard with same specifications as our
PRPGs and compared the result. It is seen that, our PRPGs beat the existing
CAs based PRPGs for n = 15 (Sect. 5.3).

This research is partially supported by Innovation in Science Pursuit for Inspired
Research (INSPIRE) under Dept. of Science and Technology, Govt. of India.

c© Springer International Publishing Switzerland 2016
S. El Yacoubi et al. (Eds.): ACRI 2016, LNCS 9863, pp. 3–13, 2016.
DOI: 10.1007/978-3-319-44365-2 1



4 K. Bhattacharjee et al.

2 Background

Here, we have considered 1-D 3-neighborhood 3-state CAs, where each cell can
take any of the states S = {0, 1, 2}. The local rules are expressed by a tabular
form (see Table 1), where the table contains entries for the combinations of left
(x), self (y) and right (z) neighbors of a cell. Each of these combinations with
respect to the value R(x, y, z), where R is the local rule, is termed as Rule Min
Term (RMT)(r) and is generally represented by its decimal equivalent. In this
paper, R(x, y, z) ≡ R[r]. The number of RMTs of a 3-state CA rule is 33 = 27.
We represent R by the values of R[r] with R[0] as the right most digit.

Table 1. Rules of 3-state CAs. Here, PS is present state and NS is next state

P.S. 222 221 220 212 211 210 202 201 200 122 121 120 112 111 110 102 101100022021020012011010002001000
RMT(26)(25)(24)(23)(22)(21)(20)(19)(18)(17)(16)(15)(14)(13)(12)(11)(10)(9) (8) (7) (6) (5) (4) (3) (2) (1) (0)

2 1 1 2 1 2 1 1 2 0 2 0 0 0 0 0 2 0 1 0 2 1 2 1 2 0 1
N.S. 1 0 2 0 1 2 1 0 2 0 1 2 1 0 2 1 0 2 0 2 1 0 2 1 0 1 2

1 1 2 2 2 1 0 1 0 1 1 2 2 2 1 0 0 0 1 1 2 2 2 1 0 0 0

Definition 1. An RMT r of a rule R is said to be self-replicating, if R[r] = y,
where r = x × 32 + y × 3 + z and x, y, z ∈ {0, 1, 2}.

For example, for the CA 102012102012102102021021012 (4th row of Table 1),
the self-replicating RMTs are RMTs 2(002), 3(010), 7(021), 10(101), 14(112),
15(120), 19(201), 22(211) and 24(220). Moreover, a rule is called balanced if it
contains equal number of RMTs for each of the three possible states for that
CA [1]. In Table 1, the rule of 5th row is unbalanced, whereas the rest rules are
balanced.

A configuration of a CA can also be represented as a sequence of RMTs,
called RMT sequence. For example, let 0120 be a configuration of a 4-cell CA.
Then the RMT sequence corresponding this configuration is 〈1, 5, 15, 18〉. To get
a RMT sequence, we consider an imaginary window of length 3 which slides over
the configuration, one cell right at a time. The decimal value corresponding to
this 3-cell window is ith RMT in the sequence. Note that, in a RMT sequence,
only a specific set of RMTs can be selected after a RMT. For example, after
RMT 1(001), either of the RMTs 3(010), 4(011) or 5(012) can be present in a
RMT Sequence. For any RMT, the set of 3 RMTs from which the next RMT for
the RMT sequence is selected, are named as sibling RMTs. Similarly, a set of 3
RMTs always results in creating the same sibling RMT set, which are termed
as equivalent RMTs.

There are 32 = 9 sets of equivalent RMTs and 9 sets of sibling RMTs. We
represent Equii as a set of RMTs that contains RMT i and all of its equivalent
RMTs. That is, Equii = {i, 9 + i, 18 + i}, where 0 ≤ i ≤ 8. Similarly, Siblj
represents a set of sibling RMTs where Siblj = {3j, 3j + 1, 3j + 2} (0 ≤ j ≤ 8).
Table 2 shows the relationship among the RMTs of 3-state CAs [1]. If in a RMT
sequence, a RMT is chosen from Equii, then the next RMT in the sequence
must be chosen from Sibli.



Pseudorandom Pattern Generation Using 3-State Cellular Automata 5

Table 2. Relations among the RMTs for 3-State CA

Equivalent set Sibling set

#Set Equivalent RMTs Decimal equivalent #Set Sibling RMTs Decimal equivalent

Equi0 000, 100, 200 0, 9, 18 Sibl0 000, 001, 002 0, 1, 2

Equi1 001, 101, 201 1, 10, 19 Sibl1 010, 011, 012 3, 4, 5

Equi2 002, 102, 202 2, 11, 20 Sibl2 020, 021, 022 6, 7, 8

Equi3 010, 110, 210 3, 12, 21 Sibl3 100, 101, 102 9, 10, 11

Equi4 011, 111, 211 4, 13, 22 Sibl4 110, 111, 112 12, 13, 14

Equi5 012, 112, 212 5, 14, 23 Sibl5 120, 121, 122 15, 16, 17

Equi6 020, 120, 220 6, 15, 24 Sibl6 200, 201, 202 18, 19, 20

Equi7 021, 121, 221 7, 16, 25 Sibl7 210, 211, 212 21, 22, 23

Equi8 022, 122, 222 8, 17, 26 Sibl8 220, 221, 222 24, 25, 26

Definition 2. A fixed-point attractor is a configuration of CA, for which the
next configuration is the configuration itself. That means, if a CA reaches to a
fixed-point attractor, then it remains at that particular configuration forever.

For example, 0n is a fixed point attractor of the CA
112221010112221010112221000 with n cells, n ≥ 3. Generally, one state x is
called a quiescent state, when R(x, x, x) = x, where R is the rule of the CA. If
a CA has a quiescent state at x, then there exists a fixed point attractor at xn,
for any cell length n.

3 Cellular Automata as PRPG

CAs are considered to be a good source of randomness. However, for 3-state
CAs, total number of rules is 33

3
= 7.625597485 × 1012, which is a huge number

for exhaustive testing. So, we concentrate on finding some properties of a CA,
which make it a candidate to have good randomness quality. Following is the
first property:

Property 1: The randomness of balanced rules, in general, are better than
that of unbalanced rule.

If a CA rule is unbalanced, then at least one of the states 0/1/2 has more
presence in the rule than the other state(s). Therefore, during evolution from
an arbitrary configuration, the CA will be biased towards the state(s) having
more presence in the unbalanced rule. The number of balanced 3-state CA rules
is 33!

(32!)3 = 227873431500, which is also a big number. However, in a random
system, information on a localized change eventually flows through the whole
system. In a CA based random system, a small change at a local cell by a local
rule eventually propagates throughout it, effecting globally. Hence, to have good
randomness, the CA must have a sufficient rate of information transmission, so
that it does not become stable in a finite time. But, only balancedness does
not ensure the flow of information on left or right side in CA. Therefore, we



6 K. Bhattacharjee et al.

take a greedy approach to choose the balanced rules which have a constant rate
of information transmission on at least right direction. Success of this scheme,
however, remains on how efficiently we are choosing the balanced rules.

Please recall that, the set {xy0, xy1, xy2} represents the set of sibling RMTs,
where x, y ∈ {0, 1, 2} (see Table 2). So, our strategy is to choose the CA rules,
where the sibling RMTs have different next state values, which implies that,
there is a constant rate of information transmission towards the right side.

STRATEGY: Pick up the balanced rules in which the RMTs of a sibling set
have the different next state values, that is, no two RMTs of Sibli (0 ≤ i ≤ 8)
have same next state value [1].

There are (3!)3
2

= 10077696 balanced rules that can be selected as candidates
following this strategy. These CAs are potential nominees to be good PRPGs.
Moreover, we also want to consider the flow of information to the left direction
for these rules. This implies the RMTs of Equii, 0 ≤ i ≤ 8, should have differ-
ent states. We define an index, termed as equiRMTCount, which measures the
amount of information flow towards left direction by observing the equivalent
RMT sets.

Definition 3. The equiRMTCount is the cumulative sum of the number of
RMTs in Equii (0 ≤ i ≤ 8), which have the same next state value. That means,
equiRMTCount is increased by 1 if R[r1] = R[r2] �= R[r3] (or R[r1] �= R[r2] =
R[r3], or R[r1] = R[r3] �= R[r2]) and it is increased by 2 if R[r1] = R[r2] = R[r3],
where r1, r2, r3 ∈ Equii, ∀i and R is the rule of the CA.

Table 3 shows an example of finding equiRMTCount of a rule R. First column
notes the set number, whereas, next 3 pairs of columns shows the RMTs and
corresponding next state values. RMTs 0, 9 and 18 of the rule have same next
state values, so, equiRMTCount is 2 for Equi0. Similarly, RMTs 10 and 19 of
the rule have same state value, so Equi1 gives 1 increment to equiRMTCount.

This index gives idea about the information flow in the left direction. For
example, for a CA 012012021012012021012012021, equiRMTCount= 18, that
is, no information flow at the left direction. However, for the rule of Table 3,
equiRMTCount = 8, that means, there is at maximum 18−8

18 = 55.56% chance
of information travel in the left direction.

Note that, our requirement is to select the rules which have a constant infor-
mation transmission in the right direction, as well as, at least a certain rate of
information transmission in the left side. This is to ensure that, a small ripple
in a local cell propagate in both sides. To validate our argument, an experiment
is constructed, where some rules are arbitrarily chosen and tested on Diehard
testbed; equiRMTCount for these rules is also calculated. Figure 1 shows the
plot of these rules. In this figure, X-axis represents equiRMTCount, Y-axis the
number of randomness tests passed and the count of rules with any particular
equiRMTCount value that passes any number of tests is shown in Z-axis.

This figure clearly shows that, if equiRMTCount value is high (≥ 15), then
practically there are insignificant number of rules that passes any randomness
tests. So, in our work, we have chosen the rules following STRATEGY which



Pseudorandom Pattern Generation Using 3-State Cellular Automata 7

Table 3. Calculation of equiRMTCount for the CA 102012102012102102021021012(R)

Equivalent RMTs

#Set RMT i R[i] RMT i R[i] RMT i R[i] Match count

Equi0 0 2 9 2 18 2 2

Equi1 1 1 10 0 19 0 1

Equi2 2 0 11 1 20 1 1

Equi3 3 1 12 2 21 2 1

Equi4 4 2 13 0 22 1 0

Equi5 5 0 14 1 23 0 1

Equi6 6 1 15 2 24 2 1

Equi7 7 2 16 1 25 0 0

Equi8 8 0 17 0 26 1 1

equiRMTCount = 8

equiRMTCount #Randomness Tests Passed

#Rules following X and Y

Fig. 1. Test Result of 61249 arbitrarily selected CAs

have equiRMTCount ≤ 14. There are 10067760 rules that pass this condition.
In the next section we define some filtering criteria on these rules based on the
inherent structure of the CAs and experiment to select the potential PRPGs.

4 Two-Step Filtering

In this section, the set of 10067760 rules are first filtered based on some theories
developed in the following subsection and then, on these rules randomness tests
are applied repeatedly for different seeds.

4.1 Theoritical Filtering

Here, we have worked with the CAs, which have at least one quiescent state.
Recall that, for a quiescent state, a fixed-point attractor in generated in the CA.



8 K. Bhattacharjee et al.

Now, in the configuration transition diagram of CAs, one can observe that, a
fixed-point attractor [9] may be associated with long chains of configurations,
or small chains, or it may be isolated and most of the configurations are part of
a long cycle. Moreover, a CA with long cycle length (or very long chains) have
better randomness property than that of the CAs with small cycles (or, small
chains). This is because, longer the cycle length, lesser the number of times any
state in the cycle get repeated - implying better randomness. Note here that,
max-length CAs [2] has maximum possible cycle length; but for classical CAs,
there is no known existence of max-length CA. However, a classical CA can have
long cycle only when it does not have a tendency to converge to the fixed-point
attractor. Therefore, identifying the fixed-point attractor and its connection to
other configurations is important for selecting the CAs having good randomness
property. We now define a graph, termed as fixed-Point graph (FPG) which
helps to identify any fixed-point attractor and its nature in the CA. This graph
was introduced in [6] for asynchronous CAs.

Fixed-Point Graph: The fixed-point graph (FPG) is a directed graph, where
the nodes represents the self-replicating RMTs. To draw the FPG for a CA, first
a forest is formed with the self-replicating RMTs of the CA as the individual
nodes. Now, there is a directed edge from vertex u to vertex v, if u ∈ Equik ⇒
v ∈ Siblk, 0 ≤ k ≤ 8, for any u, v (see Table 2). For example, if RMTs 1, 3 and
9 are self-replicating for a CA, then we can draw directed edges from RMT 1 to
RMT 3, RMT 3 to RMT 9 and RMT 9 to RMT 1. But we can not draw directed
edge from RMT 1 to RMT 9, as RMT 1 ∈ Equi1, but RMT 9 /∈ Sibl1.

Example 1. This example illustrates the procedure of drawing the FPG for the
CA 102012210120021021012102120. First, the self-replicating RMTs for this CA,
i.e. the RMTs 0, 5, 6, 11, 12, 16, 18, 22 and 24 are drawn as individual vertices.
Now, we start from vertex 0, the minimum of the RMTs, as the first vertex.
RMT 0 ∈ Equi0 and the sibling RMTs from RMT 0 are Sibl0 = {0, 1, 2}.
However, only RMT 0 is a vertex in this graph, so, a self loop is drawn to vertex
0. The next vertex is vertex 5. Now, RMT 5 ∈ Equi5, and from RMT 5, the next
RMTs are Sibl5 = {15, 16, 17}. Among these RMT 16 is a vertex, so, a directed
edge is drawn from vertex 5 to vertex 16. Similarly, from vertex 16, we draw an
edge to vertex 22, from vertex 22 to vertex 12, vertex 12 to vertex 11, vertex 11
to vertex 6, vertex 6 to vertex 18 and vertex 18 to vertex 0. Finally, from vertex
24, directed edge is drawn to vertex 18 completing the graph. Figure 2a shows
the fixed-point graph for this CA.

Every fixed-point attractor in a CA can be identified easily by using this
graph. To identify a fixed-point, we start with any vertex in the graph. Now, if
this vertex can be reached again by traversing a sequence of vertices in the graph,
then the RMT sequence corresponding to this traversal represents a fixed-point
attractor. That means, if there is a loop of length l in the FPG, then the RMT
sequence corresponding to this loop portrays a fixed-point attractor for the CA
when cell length is equal to multiples of l.



Pseudorandom Pattern Generation Using 3-State Cellular Automata 9

5

0

18

24

6

11

12

16

22

102012210120021021012102120

5

0 15

19

6

11 21

24

12

102021201102021012012102120

Fig. 2. Fixed-point graphs (FPGs) for CAs

Example 2. Figure 2b shows the fixed-point graph for the CA
102021201102021012012102120. In this graph, vertex 0 has self-loop. So, the
configuration 0n represents a fixed-point attractor for any values of n. Apart
from that, starting with vertex 5, this vertex can be reached by traversing the
edges connecting vertices 5 to 15, 15 to 19 and 19 to 5. Therefore, the RMT
sequence 〈5, 15, 19〉 represents the fixed-point attractor (120)n or 120120 · · · 120
for the CA, when n is multiple of 3. However, for the CA of Fig. 2a, there is
no other loop in the graph, except the self-loop at vertex 0. Therefore, 0n is
the only fixed-point attractor for the CA 102012210120021021012102120 for any
values of n.

Note that, for the CAs following this strategy, there are 9 vertices in the
FPGs and one RMT from each of Sibli, 0 ≤ i ≤ 8 forms a vertex in the graph.
However, our target is to get the CAs which have long cycles. Nevertheless, we
define some conditions for filtering these CAs.

Filtering Conditions: We select those CAs as our candidates for experiment
with battery of randomness tests, which have one and only one fixed-point attrac-
tor. To achieve this, the following two conditions are applied on the CAs–

(a) Only 1 quiescent state: Here, we consider the CAs, which have only one
quiescent state. For this quiescent state, a fixed-point attractor is created in the
CA. For 3-state CAs, the RMTs for quiescent state are RMT 0(000) for 0 as
the quiescent state, RMT 13(111) for 1 as the quiescent state and RMT 26(222)
for 2 as the quiescent state. So, we select the CAs which have 0 at R[0], and
0/2 at R[13] & 0/1 at R[26], for providing the quiescent state 0. Similarly, the
condition for only quiescent state at 1 (respectively, 2) is R[13] = 1 (respectively,
R[26] = 2) and R[0] �= 0 & R[26] �= 2 (respectively R[0] �= 0 & R[13] �= 1), where
R[i] implies the RMT i of rule R. The following Table 4 gives some examples.

(b) No other fixed-point attractor: To ensure that the fixed-point attrac-
tor due to the quiescent state is the only fixed-point attractor in the CA, the
fixed-point graph (FPG) for that CA is used. Recall that, any loop in this graph
represents a fixed-point attractor for the CA. However, as the CAs fulfill the
above condition, so, the fixed-point graphs have a self-loop at either of RMT 0,
RMT 13 or RMT 26. If apart from this self loop, there is any other loop in the



10 K. Bhattacharjee et al.

Table 4. Some 3-state CAs having only one fixed-point

Fixed-point Rules Condition

0 102012210120021021012102120 R[0] = 0, R[13] = 2, R[26] = 1

0 012012120012021012012012210 R[0] = 0, R[13] = 2, R[26] = 0

1 012012102201012210012012102 R[0] = 2, R[13] = 1, R[26] = 0

2 201210021102102201210012012 R[0] = 2, R[13] = 0, R[26] = 2

FPG, then it implies a RMT sequence, that is a valid configuration depicting
another fixed-point attractor. In this case, we reject the CA. For example, in
the FPG for the CA 012012120012021012012012210 (Fig. 2a), there is only one
fixed-point at 0n for the quiescent state 0. So, this CA satisfies the filtering con-
ditions. However, the FPG for the CA 102021201102021012012102120 (Fig. 2b)
has another fixed-point attractor apart from the same for the quiescent state.
So, this CA is rejected.

Among the 10067760 CA rules from the strategy, we get 1117008 rules which
satisfy these theoretical filtering conditions. Now, there is greater chance of get-
ting long cycle, if the fixed-point is isolated and not reachable from any other
state. In the next subsection, we assure this through experiment and apply ran-
domness tests on the selected rules.

4.2 Experimental Filtering

Some more rules can be screened out, if the possibility of reaching the trivial
configurations from other configuration is considered, that is, if the trivial con-
figurations are isolated and not connected with other non-trivial configurations.

Non-reachable Trivial Configuration: If any of the trivial configuration
(0n, 1n or 2n) is reachable from other non-trivial configuration, and the trivial
configuration is associated with a fixed-point attractor, then there is a tendency
to converge to that fixed-point attractor from any non-trivial configuration. In
this case, the fixed-point attractor is not isolated and there is a chance of getting
small cycles. This is an undesirable situation which weakens randomness prop-
erty of the corresponding CA. Note that, this behavior is cell dependent, and
relates with the length of the loop in the fixed-point graph for the CA. So, to
avoid those rules, an experiment is conducted, where for each rule, it is checked
whether the trivial configuration is reachable from the standard non-trivial con-
figuration (all cells are 0, except the middle cell which is 2, i.e. 0k20k, k =

⌊
n
2

⌋
),

similar to [8]. If the trivial configurations are reachable and has a fixed-point
attractor, then the rule is discarded. This experiment is repeated on each of the
1117008 rules for the cell length n, 5 ≤ n ≤ 15. We have found 637406 rules
which have reachable trivial configuration. Therefore, the working rule set is of
size 479602 on which the randomness tests are performed. We have used Diehard
battery of tests as the initial testbed.



Pseudorandom Pattern Generation Using 3-State Cellular Automata 11

Filtering with Diehard Battery of Tests: Although from the theoretical
development, 479602 rules are selected as the working set of candidates for PRPG
with 3-state CA using the strategy, but, all of these rules may not be good for
every circumstances demanding randomness. Therefore, rigorous and exhaustive
randomness testing is applied on these rules to get the set of best rules. Note
that, a rule is part of this best set only when it passes a minimum number of
tests on every initial condition.

Wolfram in [8] showed that the binary CA with rule 30(00011110) is a good
source of randomness. However, in that paper, he considered the randomness of
the vertical sequence generated by the middle cell for a certain number of time
stamps. But, for our CA, we have considered the randomness of the pattern
generated in the configuration of a n-cell CA, where each cell can take any of
the states {0, 1, 2}. Therefore, for our CA based PRPGs, finding n as minimum
as possible is very important.

All the 479602 rules are tested with Diehard for arbitrary initial configuration
as well as fixed initial configuration (i.e. 0k20k, k =

⌊
n
2

⌋
). By experimentation,

we have got the minimum cell length for which the PRPG beats other existing
CA based PRPGs is n = 15. So, for testing each CA, n is taken as 15 uniformly.

At each time, the CAs are tested with Diehard with random initial configura-
tion and only the good CAs are put to test again. Here, a CA is considered good,
when it passes at least 7 tests out of the 15 tests of Diehard. We have repeated
this experiment several times. The rules, which have passed the minimum tests
(that is, at least 7 tests) in all these runs, are selected to be potential PRPGs
for any seed or initial condition. We have got 805 such 3-state CA rules. Table 5
gives some of these rules.

5 Verification of Result

In this section, we verify our final set of rules of size 805 to confirm their compe-
tency as excellent PRPGs. To reaffirm that, we have tested these CAs again with
Diehard battery of tests for 5 different arbitrary initial seeds and fixed initial
seed (i.e. 0k20k, k =

⌊
n
2

⌋
) and with more stringent TestU01 library.

5.1 Test with TestU01 Library

As TestU01 library [4] offers many more stringent battery of tests, we test our
final rule set with TestU01 library. Among the different battery tests, we have
selected the battery rabbit (bbattery RabbitFile()) which takes a binary file as
input and contains 39 stringent tests. Each of the 805 rules, when tested with the
battery rabbit, passes 12 − 15 tests for any arbitrary initial configuration. Some
of the results of the 805 rules with TestU01 library for fixed initial configuration
is shown in Table 5.



12 K. Bhattacharjee et al.

Table 5. Sample of good PRPGs. The test results are for fixed initial configuration

3-state CA Rules #Tests passed #Tests 3-state CA Rules #Tests passed #Tests
in Diehard passed in in Diehard passed in
(n = 15) TestU01 (n = 15) TestU01

(n = 20) (n = 20)

012012120021021021201021210 9 13 210120201201021210120021021 8 12
210201102210102012201102201 8 10 210201021210120201120102021 8 11
012012102012012102120210012 7 15 012012021120012210021120012 9 15
210120021210201021021120021 7 14 102201102012210120102210201 9 10
210102102210201012210102012 8 13 120210021012210012021210012 8 14
210201201210201102021120201 8 13 120012120201210120120021012 9 10
210210021201120012021021201 8 8 012012120102012102210012102 8 14
012012102102012201012012021 9 14 012012120012012102210012102 7 14
012012102021012021102102021 7 14 012120201012201210210021210 9 12
210201021201201021201021021 7 14 102210012021210201120210012 9 14
012012210102210120120210102 9 13 210102102210102012210102201 7 15
012012201102012102210012102 9 12 012012021201012012021012012 7 13
210210102201102102120102102 7 14 012012201201012201102012102 7 14
201102102210102210201102201 9 12 210210120210120102210120102 8 14
201102102210120201210120021 9 13 012021012201012201021210201 8 14
210201102210120201021210102 8 11 210210210210021012201021021 8 7
012210012210012201120210012 8 11 012021021021210201021210021 8 11
012021120012102012012021210 8 12 012021120012120120021021210 8 12
012021120120120120120201120 8 11 012021210012021021012210120 8 12
012102210210102012102102210 8 10 012120120012120021120021120 8 11
012120201012201120021201120 8 12 012201012210210102021210201 8 9
012201102012012012012210102 8 9 012102210201012120210012102 8 9
012201201021201210012201210 8 12 012201210201102102201102120 8 12
012102201201210120201210201 8 8 012210120021012102120120102 8 8
012210120210210012012210102 8 11 012210201021210120012210012 8 12
021012012021012012201012102 8 12 021012012210012102201012201 8 11
201102012102201120201210012 7 9 102210120120210021120210012 7 12
102210120012120120102102120 7 9 102210120102102120102210210 7 11
201021201201021021210210102 7 12 012021012012012102021012201 7 12

5.2 Cycle Length Test

We have conducted an experiment to find out the cycle lengths of these 805
rules for different values of n. Table 6 gives cycle lengths for a sample run on
different values of n for some rules of Table 5. Note that, although, for some
CAs, cycle length varies with cell length, but, we can observe that, the 805 CAs
selected as possible PRPGs, have sufficiently long cycle length for most values
of n, especially for n = 15 and thus strengthens our selection process.

Table 6. Cycle lengths from a sample run for some 3-state CAs of Table 5

Rule n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15

012021120012102012012021210 104 65 22 55 1043 104 4630 5210 28456 22 123824

012021120120120120120201120 4 5 139 2 77 4 170 6575 20643 13005 96764

012021210012021021012210120 4 13 244 47 140 739 4421 1015 7201 7944 116924

012102201201210120201210201 94 95 258 1 1214 223 274 89 2846 8987 49094

012102210210102012102102210 54 17 42 231 2114 144 2309 17 19980 3156 91184

012120201012201120021201120 34 8 27 51 368 34 527 10475 11998 29553 36224

012201012210210102021210201 34 23 146 271 22 34 208 911 4731 2461 84284

012210012210012201120210012 94 17 167 143 188 339 2375 2639 378 9561 74234

012210201021210120012210012 19 5 167 3 143 39 21 357 17146 293 88364

021012012021012012201012102 36 5 251 3 134 2999 10262 8 24556 11570 151214

021012012210012102201012201 109 62 153 687 152 189 1033 9239 8878 8735 137534

201102102210120201210120021 49 8 31 2 458 49 2826 3563 6759 11129 54554



Pseudorandom Pattern Generation Using 3-State Cellular Automata 13

1
3

1
3

7

1

3

11

4
5

13

n = 15 n = 20 n = 24
Number of Cells

N
u
m
b
er

of
te
st
s
p
as
se
d

Rule 30 Max-length CA 3-state CA PRPG

Fig. 3. Comparison of rule 30, max-length CA and 3-state CAs as potential PRPGs

5.3 Comparison

We have selected most popular binary CA with rule 30 [8] and a max-length CA
[2] with rules 150 and 90 and tested on Diehard testbed for different values of
n, such as 15, 20, & 24 with fixed initial seed, i.e., all zero except the middle bit
as one (0k10k, k =

⌊
n
2

⌋
). Figure 3 shows the comparison result. In this figure,

among the 805 3-state CAs, a CA is arbitrary selected as our PRPG, which is
the rule 012012102012012102120210012 in this case. It can be observed that, our
PRPG beats the PRPG based on rule 30 as well as the max-length CA for the
minimum cell length n = 15.

References

1. Bhattacharjee, K., Das, S.: Reversibility of d-state finite cellular automata. J. Cell.
Automata 11(2–3), 213–245 (2016)

2. Chaudhuri, P.P., Chowdhury, D.R., Nandi, S., Chatterjee, S.: Additive Cellular
Automata Theory and Applications. IEEE Computer Society Press, New York
(1997). ISBN 0-8186-7717-1

3. Das, S., Sikdar, B.K.: A scalable test structure for multicore chip. IEEE Trans. CAD
Integr. Circ. Syst. 29(1), 127–137 (2010)

4. L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random
number generators. ACM Trans. Math. Softw. 33(4), 22 (2007)

5. Marsaglia, G.: DIEHARD: a battery of tests of randomness (1996). http://stat.fsu.
edu/geo/diehard.html

6. Sethi, B., Roy, S., Das, S.: Asynchronous cellular automata and pattern classifica-
tion. Complexity (2016). doi:10.1002/cplx.21749

7. Smith III, A.R.: Cellular automata complexity trade-offs. Inf. Control 18, 466–482
(1971)

8. Wolfram, S.: Random sequence generation by cellular automata. Adv. Appl. Math.
7(2), 123–169 (1986)

9. Wuensche, A.: Complex and chaotic dynamics, basins of attraction, and memory in
discrete networks. Acta Phys. Pol. B-Proc. Suppl 3, 463–478 (2010)

http://stat.fsu.edu/ geo/diehard.html
http://stat.fsu.edu/ geo/diehard.html
http://dx.doi.org/10.1002/cplx.21749

	Pseudorandom Pattern Generation Using 3-State Cellular Automata
	1 Introduction
	2 Background
	3 Cellular Automata as PRPG
	4 Two-Step Filtering
	4.1 Theoritical Filtering
	4.2 Experimental Filtering

	5 Verification of Result
	5.1 Test with TestU01 Library
	5.2 Cycle Length Test
	5.3 Comparison

	References


