
Performance and Energy Consumption
Analysis of AES in Wireless Sensor Networks

Dan Dragomir and Cristina Panait

Abstract With WSN deployments increasing in popularity, securing those deploy-

ments becomes a necessity. This can be achieved by encrypting inter-node communi-

cations and/or using message authentication codes. AES is a well studied symmetric

cipher, with no known practical vulnerabilities, that can be used to solve both prob-

lems. We provide an optimized implementation of AES, with five modes of operation

for encryption (ECB, CBC, CFB, CTR and GCM) and two modes for authentica-

tion (CBC-MAC and GCM-MAC), that use the hardware accelerator available on

the ATmega128RFA1 microcontroller, and compare it with the best known software

implementation. We show that our hardware AES implementation is both faster and

more energy efficient than a software implementation. This is not the case for pre-

vious sensor nodes and implementations, which show an improved execution speed,

but with a higher energy consumption. We also show that our implementation of

CTR is faster and more energy efficient than the unsecure fully hardware-supported

ECB mode.

1 Introduction

Wireless sensor networks (WSNs) and their applications present an increased risk

to a series of attacks, which can affect a network’s operation. As a solution to these

problems we present a performance and energy consumption analysis of AES-128

on WSN hardware. AES is a well studied block cipher with no known practical vul-

nerabilities, has a speed comparable with other symmetrical encryption algorithms

and is supported on multiple WSN platforms through a hardware acceleration mod-

ule. This work is an extended version of [12] and improves the previous study in two

key areas. Firstly, it further optimizes the hardware-assisted implementation, leading

D. Dragomir (✉) ⋅ C. Panait

Faculty of Automatic Control and Computers—University POLITEHNICA of Bucharest,

Splaiul Independentei 313, 060042 Bucharest, Romania

e-mail: dan.dragomir@cs.pub.ro

C. Panait

e-mail: cristina.panait19@gmail.com

© Springer International Publishing Switzerland 2017

M. Grzenda et al. (eds.), Advances in Network Systems, Advances in Intelligent

Systems and Computing 461, DOI 10.1007/978-3-319-44354-6_11

181



182 D. Dragomir and C. Panait

to better performance and lower energy consumption and secondly, it adds two new

algorithms to the analysis, that handle message authentication and verification.

As a general definition, a wireless sensor network is composed of a set of nodes

which communicate through a wireless medium in order to perform certain tasks. A

couple of examples where WSNs can be deployed, as stated in [6], are: fire exten-

sion detection, earthquake detection, environment surveillance for pollution track-

ing, intelligent building management, access restriction, detection of free spaces in

parking lots and so on. WSNs bring a number of advantages in these situations, like

enhanced flexibility and mobility, mainly because nodes are generally powered from

an on-board battery and are thus self sufficient. This, however, is also their biggest

weakness. The lifetime expectancy of a node depends on its usage. The constraints

mainly come from the limited energy source, as data processing and transmission

can be energy intensive.

The particular characteristics of these types of networks make the direct imple-

mentation of conventional security mechanisms difficult. The imposed limitations

on minimizing data processing and storage space, and reducing bandwidth need

to be addressed. The major constraints for WSNs, as presented in [2, 14, 17], are:

energy consumption (which can lead to premature exhaustion of the energy source

and to the denial of service), memory limitations (flash, where the application source

code is stored, and RAM, where sensed data and intermediary computing results are

stored), unreliable communication (the routing protocols used, collisions), latency

(which can lead to synchronization issues and algorithms that cannot act correctly)

and unattended nodes (an attacker could have physical access to the nodes).

In Sect. 2 we discuss some of the related work. Sections 3 and 4 present the algo-

rithm design and modes of operation and the implementation with two methods,

software and hardware. Then, in Sect. 5, we make a comparative analysis of the solu-

tions, based on execution time and energy consumption, and select the encryption

and authentication methods suitable for ATmega128RFA1-based platforms, taking

also into consideration the provided security. Finally, we present the conclusions of

our work.

2 Related Work

The problem of measuring the cost of encryption on wireless sensor node hardware

has been addressed previously. In [9] Lee et al. analyze a range of symmetric-key

algorithms and message authentication algorithms in the context of WSNs. They

use the MicaZ and TelosB sensor nodes and measure the execution time and energy

consumption of different algorithms. For AES they provide measurements for a hard-

ware assisted implementation and conclude that it is the cheapest when either time

or energy is considered. They do not however study this implementation on different

plaintext lengths and instead rely on datasheets to extend to lengths longer than one

block. However, this conclusion is not backed by Zhang et al. [19] which compares

different AES implementations on the MicaZ nodes. They conclude that hardware



Performance and Energy Consumption Analysis of AES . . . 183

assisted encryption is faster, but also consumes more energy due to the external chip

which handles the computation in hardware.

Compared to their work, we study only AES-128 which is a well known cipher

also adopted by the National Institute of Standards and Technology (NIST) and

which has been proposed as a viable alternative [8] to other less studied ciphers in

WSN applications. This choice is also supported by the fact that multiple 802.15.4

transceivers offer a hardware accelerator for AES operations. We study the newer

Sparrow v3.2 sensor nodes based on the ATmega128RFA1, which integrates the

microcontroller with the radio transceiver and hardware encryption module, and

show that AES-128 can be efficiently implemented reducing both execution time and

energy consumption. We also provide hybrid implementations for modes of opera-

tion that are not natively supported by the hardware and show that they can still be

efficiently implemented with the available primitives.

In [8] Law et al. conduct a thorough survey of the costs of different block ciphers,

when implemented on sensor node hardware. They conclude that Rijndael (AES) is

the second most efficient cipher, being surpassed only by Skipjack. However, their

analysis is based on older hardware and does not consider any hardware accelerated

implementations.

In [4] de Meulenaer et al. study the problem of key exchange and measure the cost

of two key agreement protocols: Kerberos and Elliptic Curve Diffie-Hellman. They

measure the energy consumption of the two protocols on MicaZ and TelosB sen-

sor nodes and conclude that the listening mode is the principal factor in the energy

efficiency of key exchange protocols, with Kerberos being the more efficient proto-

col. Compared to their work, we concentrate on encryption and authentication algo-

rithms, and more specifically on AES, with key distribution left for future work.

In a previous work [12] we reported the performance and energy consumption of

our implementation for 4 modes of operation that use the AES block cipher: ECB,

CBC, CFB and CTR. The current work extends that analysis by also studying the cost

of data authentication using CBC-MAC and adding a new mode of operation, GCM,

that seamlessly supports both encryption and authentication using the same secret

key. We also improve on the performance and energy consumption of our previous

implementation for some of the modes, by making use of pipelining, in the hardware

assisted case.

3 Design

AES is a block cipher encryption algorithm that uses symmetrical keys for encrypt-

ing a block of plaintext and decrypting a block of ciphertext [3]. The algorithm uses

a series of rounds consisting of one or more of the following operations: byte-level

substitution, permutation, arithmetical operations on a finite field and XOR-ing with

a given or calculated key [15]. As a general rule, the operations are handled bytewise.

AES receives as input a plaintext of 16 bytes and the encryption key, which has a

variable dimension of 16, 24 or 32 bytes. The input text is processed into the output



184 D. Dragomir and C. Panait

text (ciphertext) by using the given key and applying a number of transformations.

Encryption and decryption are similar, except for the fact that decryption needs an

extra step—it first runs a full encryption in order to obtain the modified key needed

for decrypting data.

In [13], Schneier divides symmetrical encryption algorithms in two basic cate-

gories: block ciphers and stream ciphers. A block cipher encrypts a block of plaintext

producing a block of encrypted data, whilst a stream cipher can encrypt plaintexts of

varying sizes. This makes block ciphers prone to security issues if used to encrypt

plaintexts (in a naïve way) longer than the block size, mainly because patterns in the

plaintext can appear in the ciphertext.

A more secure way to encrypt data with a block cipher can be achieved by com-

bining the resulting ciphertext blocks using a few basic operations, resulting in what

is called a mode of operation for that block cipher. It is worth mentioning that the

combining operations are not directly securing the data. This is the responsibility of

the block cipher. The operations however are used to maintain the security of the

cipher when it is operated on plaintexts longer than the block size.

Another use case for a block cipher is to compute a Message Authentication Code

(MAC) for a piece of data, in order to provide data authentication. As for the encryp-

tion case, a naïve implementation would not provide the necessary guarantees for the

generated MAC. Extra precaution must be taken when both encryption and authenti-

cation are required as not all combinations of encryption and authentication methods

provide the desired properties. For a thorough treatment of the security properties of

the different options we refer to Katz and Lindell [7].

3.1 Electronic Code Book (ECB)

The ECB mode of operation receives blocks of plaintext, respectively ciphertext,

and a key and produces corresponding blocks of ciphertext, respectively plaintext.

One property of this mode of operation is that two blocks of plaintext, encrypted

with the same key, will result in two identical blocks of ciphertext. ECB is the most

simple mode of operation. However, one major drawback is that it does not hide data

patterns, meaning that identical ciphertext blocks imply the existence of identical

plaintext blocks.

3.2 Cipher Block Chaining (CBC)

The CBC mode of operation takes as input parameters the plaintext, respectively

the ciphertext, the key and an initialization vector (IV). One property of CBC is

that two encrypted blocks are identical only if their respective plaintexts have been

encrypted using the same key and the same IV. Unlike ECB, CBC has link depen-

dencies, as its basic chaining mechanism makes the ciphertext blocks dependent on



Performance and Energy Consumption Analysis of AES . . . 185

previously encrypted data. This, coupled with a randomly chosen IV, ensures that

identical plaintext blocks will be encrypted to different ciphertext blocks.

With slight modifications CBC can be transformed to provide authentication

instead of encryption, resulting in CBC-MAC. For this, the initialization vector must

be fixed to a constant value (usually 0) and only the last encrypted block must be

kept, which is also the authentication tag. This scheme will provide a secure MAC,

but only for messages of fixed length (agreed ahead of time by the communicating

parties). A further modification of prepending the length of the message as the data

in the first block of the encryption, can make this mode secure for varying length

messages. A disadvantage of CBC-MAC is that when both encryption and authenti-

cation are required, separate keys must be used for the two steps in order to maintain

security.

3.3 Cipher Feedback (CFB)

The CFB mode of operation is very similar to CBC regarding its input parameters

and the operations it performs. The main difference between them lies in the fact

that CBC works as a block cipher, while CFB can be used as a stream cipher. Unlike

CBC, CFB can encrypt variable-length blocks (which are not restricted to 16 bytes).

The properties of this mode of operation are similar with the ones of CBC. One key

difference between the two can be observed at the implementation level: CFB uses

only the encryption primitive of the underlying block cipher, both for encrypting and

for decrypting data.

3.4 Counter (CTR)

The CTR mode of operation [10] also produces a stream cipher. The IV used in CBC

and CFB is now associated with the starting value of a counter, which is incremented

and used to encrypt each block in turn. In this mode, the output from an earlier block

is not used for computing the current block, as the previous two modes of operation.

For the described system to work, a generator is needed on each side of the commu-

nication. The generators have to remain synchronized in order to produce the same

stream of counter values on both sides. A disadvantage of this mode of operation

is the possible desynchronization of the communicating entities. This results in the

incorrect decryption of all subsequently received data.

A closely related mode of operation is Counter with CBC-MAC (CCM) [18],

which provides both encryption and authentication of the plaintext data. In this mode,

CBC-MAC is initially run over the message in order to obtain a authentication tag,

and then, CTR mode is run on both the plaintext data and the authentication tag

to obtain the ciphertext, which now provides both encryption and authentication. A



186 D. Dragomir and C. Panait

slight variation of CCM, called CCM*, is part of the IEEE 802.15.4 standard [5] for

wireless personal area networks.

3.5 Galois/Counter Mode (GCM)

The GCM mode of operation [11] combines the Counter mode with operations on

a Galois field in order to produce another mode of operation which provides both

encryption and authentication of a piece of data using a single secret key. The key

operation is a multiplication in GF(2128), defined by the polynomial x128 + x7 + x2 +
x + 1, which is used to define a hashing function that generates the authentication tag.

The algorithm supports additional authenticated data (AAD), which is data protected

against tampering by the authentication tag, but left unencrypted. This additional

data is useful in networking protocols, where source and destination information

must be left in cleartext for the purpose of routing. The algorithm can be easily

converted to an authentication only mode of operation by providing only AAD and

no encryption payload.

4 Implementation

A practical example would be a wireless sensor network, which transmits data gath-

ered from three types of sensors: temperature, humidity and luminosity. Because of

privacy and integrity concerns all data must be encrypted during transmission and

routing information must be authenticated. The working platform for this scenario

is based on the Sparrow v3.2 node [16]. Its technical specifications are:

∙ CPU: ATmega128RFA1, 16MHz

∙ Memory: 128KB flash, 16KB RAM

∙ Bandwidth: up to 2Mbps

∙ Programming: C/C++

The ATmega128RFA1 microcontroller is actually a SoC (System on Chip) which

incorporates a radio transceiver compatible with the IEEE 802.15.4 standard [1].

It offers, among other things, a relatively low energy consumption (mostly in sleep

states), a FIFO buffer of 128 bytes for receiving and transmitting data, a partial hard-

ware implementation of the MAC layer and support for AES-128.

This microcontroller facilitates secured data transmissions by incorporating a

hardware acceleration module which implements the AES algorithm. The module

is capable of both encrypting and decrypting data, with most of the functionality

implemented directly in hardware. It is compatible with the AES-128 standard (the

key is 128 bits long) and supports encryption and decryption for ECB mode, but

only encryption for CBC mode. The input to these operations consists of the plain-

text/ciphertext block and the encryption key. Note that for decryption, the extra round



Performance and Energy Consumption Analysis of AES . . . 187

needed by AES to compute the decryption key is performed automatically. Other

modes of operation are not supported by the hardware.

As we already stated in the previous sections, energy consumption is the main

issue and challenge for WSNs. In order to obtain the best approach for ensuring con-

fidentiality and integrity with minimal energy consumption, we implemented and

compared AES-128, coupled with the ECB, CBC, CFB, CTR and GCM modes of

operation. All five modes have both a hardware and a pure software implementation.

Since only ECB has a full hardware implementation, for the other modes we used

a hybrid approach, combining the hardware part from ECB with software imple-

mentations for the remaining operations. We also refer to these hybrids as hardware

implementations. Were possible we pipelined the algorithm’s execution so that the

extra software steps not implemented in hardware were overlapped with the encryp-

tion of the next data block, thus achieving better performance than the serial solution

employed in [12]. For the pure software implementation we used an optimized ver-

sion of AES, called TableLookupAES [19].

5 Evaluation

5.1 Experimental Setup

To measure the energy consumption of our implementation, we perform two kinds

of measurements: the time required (t) and the current drawn by the node (I) while

encrypting/decrypting. Using the formula E = P ⋅ t, where P = U ⋅ I is the power

required by the node, we can compute the energy consumed by the algorithm, be

it implemented in software, in hardware or using a hybrid approach. We ensure a

constant voltage U using a voltage regulator, as explained in the next subsection.

In certain applications, the latency of encrypting/decrypting a given payload

might be more important than the energy consumed. For this reason, this section

also presents the timing results of the different solutions, independent of the energy

measurements. As we later show, the current drawn by the node using both software

and hardware security approaches is practically the same. Thus, the time taken is a

sufficient metric for relative comparisons between the different solutions.

5.1.1 Current Measurement

For the purpose of measuring the energy consumption of the Sparrow sensor node

during our experiments, we built a current sensing circuit based on the INA 193

current shunt monitor.

Figure 1 presents the circuit we designed. Power is provided by a 3.3V voltage

regulator, which ensures a constant voltage regardless of the current drawn by the

circuit. A shunt resistor connected in series with the Sparrow node acts as a cur-



188 D. Dragomir and C. Panait

Fig. 1 Current

measurement setup

rent sensor. The voltage drop on the resistor is directly proportional with the current

drawn by the circuit. This has two implications. On the one hand, the chosen resistor

value must be small enough not to disturb the rest of the circuit (e.g. by incurring a

big voltage drop). On the other hand, the same value has to be big enough so that the

expected currents register a voltage drop that can be sensed with enough precision. In

order to improve the measurement precision and sensitivity, without the drawbacks

of a big resistor value, we employ a INA 193 current shunt monitor, which provides

a constant gain of 20 V/V on the input voltage drop, and a 4.99Ω precision resistor

with a tolerance of 0.01%. The output of the current sensing circuit is connected to

a Metrix OX 5042 oscilloscope which we used to monitor the current drawn by the

node during the different encryption/decryption operations. Determining the current

is as simple as dividing the voltage shown on the oscilloscope by the current shunt

monitor gain (20 V/V) and the shunt resistor value (4.99Ω).

5.1.2 Time Measurement

Using the oscilloscope, we also measure the time required for each encryption/

decryption operation. The oscilloscope has a function that accurately measures pulse

duration. We create a pulse lasting for the duration of the operation by setting a GPIO

pin before the start of the operation and clearing it after it ends. Using this method,

we can measure the duration of an operation with minimal overhead: 1 bit set instruc-

tion and 1 bit clear instruction, each taking 2 cycles.

Although the proposed measurement scheme is precise, it has the disadvantage of

requiring manual intervention. The available oscilloscope cannot be interfaced with

a PC, so a measurement point is obtained by uploading a program which encrypts a

hardcoded message length in a loop, reading the information from the oscilloscope

and repeating the process for all message lengths.

In order to automate the time measurements, we resorted to a software implemen-

tation running along side the encryption/decryption operation, that measures the time

required. To keep overhead to a minimum, our solution employs the hardware timer

module available on the ATmega128RFA1 to count the number of cycles taken by

the operation. Each operation is measured by sampling a counter before and after the



Performance and Energy Consumption Analysis of AES . . . 189

operation and taking the difference of the two values. The count is then converted to

a time value given that the microcontroller operates at 16MHz.
This time measurement solution allowed us to automate the whole process of eval-

uating the algorithms for different message sizes. A small overhead can be observed

between the software based time measurement and the oscilloscope based one, but

the relative difference between the algorithms is unaffected. If absolute numbers are

required, the software-based measurements can be corrected by noticing that the

overhead increases linearly with the message size when compared with the oscillo-

scope measurements.

5.2 Results

We conducted multiple experiments, to evaluate both the time taken and the energy

consumed by AES encryption/decryption and authentication/verification operations.

We measured our hardware assisted implementation against the pure software imple-

mentation based on look-up tables.

5.2.1 Time Experiments

We started of with measuring the difference between the optimized software imple-

mentation and our hardware assisted implementation for each of the five studied

modes of operation. For each type of implementation and operation mode, we mea-

sured the time taken by an encryption operation and a decryption operation on vary-

ing message lengths. We used message lengths from 1 byte to 127 bytes, which is

the maximum packet size allowed by the transceiver and the 802.15.4 standard.

As can be seen in Fig. 2, the hardware assisted implementation easily outperforms

the optimized software implementation for 4 of the 5 modes. For GCM the difference

is not as pronounced as the other modes, but the hardware assisted implementation

is still faster for all message lengths. The reason the difference is less pronounced is

that, compared to the other four modes, GCM takes a longer time to compute. That

time is used by the software implementation of the GF(2128) multiply operation,

which cannot be accelerated in hardware on the ATmega128RFA1. The time saved

for doing the block cipher in hardware is small compared with the multiply operation,

which leads to a less pronounced speed-up. The staircase shape of the graph is easily

explained by the requirement of every block cipher, including AES, to operate on

multiples of the block size. Plaintext sizes that are not a multiple of the block size

need to be padded in most cases, thus still incurring the cost of an entire block.

The difference in performance varies between ∼7.0× for the ECB mode, which is

fully supported in hardware, down to ∼1.15× for the GCM mode, which is only par-

tially supported in hardware through the AES single block encryption primitive. The

MAC version of GCM has an even lower speed-up, of ∼1.01×, which is explained by

the fact that in a pure authentication mode, GCM only performs one block encryp-



190 D. Dragomir and C. Panait

0

0.5

1

1.5

2

2.5

3

3.5

4

0 16 32 48 64 80 96 112 128

E
xe

cu
ti

on
ti

m
e 

(m
s)

Size (bytes)

SWencryption
SWdecryption
HWencryption
HWdecryption

(a) ECB mode

0

0.5

1

1.5

2

2.5

3

3.5

4

0 16 32 48 64 80 96 112 128

E
xe

cu
ti

on
ti

m
e 

(m
s)

Size (bytes)

SWencryption
SWdecryption
HWencryption
HWdecryption

(b) CBC mode

0

0.5

1

1.5

2

2.5

3

3.5

4

0 16 32 48 64 80 96 112 128

E
xe

cu
ti

on
ti

m
e 

(m
s)

Size (bytes)

SWencryption
SWdecryption
HWencryption
HWdecryption

(c) CFB mode

0

0.5

1

1.5

2

2.5

3

3.5

4

0 16 32 48 64 80 96 112 128

E
xe

cu
ti

on
ti

m
e 

(m
s)

Size (bytes)

SWencryption
SWdecryption
HWencryption
HWdecryption

(d) CTR mode

0

2

4

6

8

10

12

14

16

18

0 16 32 48 64 80 96 112 128

E
xe

cu
ti

on
ti

m
e 

(m
s)

Size (bytes)

SWencryption
SWdecryption
HWencryption
HWdecryption

(e) GCM mode

Fig. 2 Comparison between software and hardware implementations of AES encryption modes



Performance and Energy Consumption Analysis of AES . . . 191

Table 1 Execution speed-up hardware versus software

Encryption Decryption Authentication Verification

ECB 7.01×–7.94× 6.44×–6.84× – –

CBC 5.78×–7.07× 5.75×–6.82× 5.40×–7.72× 4.82×–7.46×
CFB 4.86×–6.51× 5.55×–6.69× – –

CTR 5.45×–6.75× 5.47×–6.75× – –

GCM 1.15× 1.15× 1.01×–1.08× 1.01×–1.08×

tion regardless of the message length. The difference in performance between the

optimized software implementations and our hardware assisted implementations is

further summarized in Table 1.

For the ECB and CBC modes we can observe (Fig. 2a, b) the extra prepara-

tion step needed by the single block decryption primitive, which makes decryp-

tion slightly more time consuming than encryption. No difference can be observed

(Fig. 2c, d) between encryption and decryption for the CFB and CTR modes in the

software implementation, because they use the same encrypt primitive of AES for

both encryption and decryption, albeit with some extra processing. In the hardware

assisted case CTR maintains equal performance between encryption and decryp-

tion, however CFB encryption gets progressively slower as the message length

increases. This is caused by the extra software processing step, which cannot be

hidden by pipelining, as is done for CTR, because of data dependencies in CFB

encryption. Again, no performance difference can be observed (Fig. 2e) in the GCM

case between encryption and decryption. What is relevant for GCM though, is the

time required for either the software or hardware implementations which is almost

five times longer than even the slowest of the other modes.

The behavior of the authentication modes is shown in Fig. 3. Both modes have

an almost equal performance between generating the MAC and verifying it, in both

0

0.5

1

1.5

2

2.5

3

3.5

4

0 16 32 48 64 80 96 112 128

E
xe

cu
ti
on

ti
m

e 
(m

s)

Size (bytes)

SW MAC
SW verification
HW MAC
HW verification

(a) CBC-MAC mode

0

2

4

6

8

10

12

14

16

18

0 16 32 48 64 80 96 112 128

E
xe

cu
ti
on

ti
m

e 
(m

s)

Size (bytes)

SW MAC
SW verification
HW MAC
HW verification

(b) GCM-MAC mode

Fig. 3 Comparison between software and hardware implementations of AES based MACs



192 D. Dragomir and C. Panait

the software and the hardware implementations. This was to be expected as the ver-

ification step implies recomputing the authentication tag and comparing it with the

received one. What is notable is that the comparing step adds minimal overhead com-

pared with the tag calculation. Like in the encryption case, the hardware implemen-

tation is again much faster for CBC (Fig. 3a), while for GCM (Fig. 3b) the speed-up

gained from the hardware assist is dwarfed by the time required for the GF(2128)
multiplication.

Figure 4 compares the hardware assisted implementations of 4 of the modes

(ECB, CBC, CFB and CTR) against each other, during encryption and decryption.

GCM was left out of this comparison as its hardware assisted performance was poor

compared with the other modes. For encryption, ECB has the lowest runtime for all

sizes, which was to be expected, as it does no extra operations on the output of the

encrypt primitive to mask patterns in the plaintext. CTR is slightly worse, but not by

much. The cost of the extra XOR operation required by this mode is mostly hidden by

our pipelined implementation. This is not the case in the non-pipelined implementa-

tion measured in [12]. CBC is slightly worse, as its extra XOR operation cannot be

0

0.1

0.2

0.3

0.4

0.5

0.6

0 16 32 48 64 80 96 112 128

E
xe

cu
ti

on
ti

m
e 

(m
s)

Size (bytes)

ECB
CBC
CFB
CTR

(a) Encryption

0

0.1

0.2

0.3

0.4

0.5

0.6

0 16 32 48 64 80 96 112 128

E
xe

cu
ti

on
ti

m
e 

(m
s)

Size (bytes)

ECB
CBC
CFB
CTR

(b) Decryption

0

0.2

0.4

0.6

0.8

1

1.2

0 16 32 48 64 80 96 112 128

E
xe

cu
ti

on
ti

m
e 

(m
s)

Size (bytes)

ECB
CBC
CFB
CTR

(c) Total

Fig. 4 Comparison between modes of operation with hardware acceleration



Performance and Energy Consumption Analysis of AES . . . 193

pipelined. The difference remains constant though, as the message length increases

because only for the first block the XOR operation is emulated in software. For all

the other blocks it is implemented by the hardware accelerator. Finally, CFB has the

worst performance of the 4 modes mostly attributed to its extra XOR operation that

cannot be pipelined like in the CTR case, because of data dependencies in the the

algorithm. The cost of the extra operations increases as the encrypted message gets

longer.

For decryption, CFB and CTR have a considerable advantage over ECB and

CBC, as they only use the encrypt primitive, which has a smaller setup time than

the decrypt primitive. Also, in the decryption case, the cost of the emulated XOR

operation required by CBC, CFB and CTR is hidden by our pipelined implementa-

tion, thus giving a constant difference over all message lengths.

Another performance characteristic shown by both plots is the streaming nature

of CFB and CTR. They can be optimized to reduce the performance cost when the

message only covers part of a block. This can be seen as the slanting portions of

the lines for CFB and CTR in both encryption and decryption. No such behavior is

visible for ECB and CBC, which must fully process a whole block, even if only one

byte of the message is contained in the block.

If we look at the cumulated time of both encryption and decryption (Fig. 4c), CTR

holds a consistent advantage over all the other modes. CFB also holds an advantage

over the unsecure ECB up to messages of 40 bytes. Compared with CBC, CFB is

faster up to messages of 80 bytes. Thus, even if most WSN hardware offers acceler-

ated support for AES-CBC, CFB and especially CTR can be better alternatives even

if they are not completely accelerated in hardware.

5.2.2 Energy Experiments

For energy consumption we concentrated our efforts on determining the cost of using

AES in CTR mode. We chose this mode based on the fact that the timing measure-

ments showed it to be the best encryption/decryption mode for all message sizes. We

only performed measurements for message encryption, as decryption is identical in

terms of the code which is ran. We measured the cost of doing the encryption in

software as well as the cost of using our hardware accelerated implementation. For

completeness, we also measured the cost of an empty processing loop to compare

against the two encryption implementations.

In our experiments, we used the measurement circuit described in Sect. 5.1.1 to

measure the average current drawn during encryption, as well as the voltage and

duration of the operation, as reported by the oscilloscope. As with the timing mea-

surements, we performed the experiment for different message sizes, from 1 byte

to 127 bytes. The oscilloscope was configured to report the mean over 16 samples

in order to obtain the average energy consumption of the device. An instantaneous

energy consumption is hard to obtain and is irrelevant when considering the long

time operation of the node.



194 D. Dragomir and C. Panait

18

19

20

21

22

23

24

25

26

0 16 32 48 64 80 96 112 128

P
ow

er
 (

m
W

)

Size (bytes)

Software
Hardware
EmptyLoop

(a) Average power consumption

0

10

20

30

40

50

60

70

0 16 32 48 64 80 96 112 128

E
ne

rg
y

(µ
J)

Size (bytes)

Software
Hardware

(b) Average energy consumption

Fig. 5 Power and energy consumption of AES encryption in CTR mode

Using the raw current and voltage measurements, we plot the average power

drawn with respect to the encryption size. As can be seen in Fig. 5a, for message sizes

larger than 16 bytes the hardware implementation consistently draws more power

than the software solution. This is in contrast with our previous measurements [12]

which showed mostly equal amounts of power drawn by the two implementations.

The difference though is that this new hardware implementation uses pipelining to

overlap the hardware accelerated block encryption with the emulated XOR opera-

tion, thus using more of the transistors on the chip at a given time. This can also be

seen in the first part of the graph, for message lengths less than 16 bytes, where a

single block exists and pipelining is not possible. In this case the power drawn by

the two solutions is more or less equal.

If we plot the average energy consumed by the encryption operation (Fig. 5b),

we see a mostly linear increase in energy consumption with increasing plaintext

size. The higher power needed by the pipelined hardware assisted implementation is

more than offset by the lower running time, thus leading to a lower overall energy

consumption. We believe the same conclusion holds for other operation modes, like

CBC and CFB, as they mostly use the same operations as CTR, but in a slightly

different order.

6 Conclusion

In this paper an updated evaluation of the cost of adding AES-128 encryption to

WSN communications has been presented. We expand the work in [12] with more

modes of operation and an improved pipelined implementation for some of the

modes. Both the time penalty as well as the more important (from the point of view

of a WSN) energy penalty have been analyzed for: ECB, CBC, CFB, CTR and GCM

and for two implementations: a pure software implementation, based on the opti-



Performance and Energy Consumption Analysis of AES . . . 195

mized table lookup AES and the hardware accelerated implementation, that uses the

AES hardware module of the ATmega128RFA1 microcontroller.

We showed how the AES hardware module in the ATmega128RFA1 microcon-

troller can be used to implement other modes of operation than the ones supported

natively. Our solution uses a hybrid approach that runs some operations in hardware

and emulates the missing ones in software. Where possible we pipeline the algo-

rithm’s execution to completely hide the cost of the emulated operation in terms of

processing time. Using this approach, we implemented CBC decryption, as well as

three full modes of operation for AES, CFB, CTR and GCM which do not have direct

hardware support.

We presented a methodology of accurately measuring the power consumption

using low cost components and a way of determining the encryption/decryption

duration using only the wireless node itself. We compared the different modes of

operation and concluded that a pipelined and hardware assisted implementation of

CTR can be faster than even the unsecure and completely hardware accelerated ECB

mode. CFB is also a better overall alternative to CBC for message sizes smaller than

80 bytes. This is true even though the hardware accelerator has native support for the

CBC mode and it relates to the way decryption works for CBC. In contrast, GCM

has performed very poorly in the hardware assisted case, even though a small speed-

up was obtained when compared to a pure software implementation. If authenti-

cated encryption is required, using CTR for encryption followed by CBC-MAC for

authentication represents the best combination in terms of both time performance

and energy consumption.

We also built on the work of Zhan [19] and showed that the newer ATmega128

RFA1 microcontroller with an integrated transceiver, used in the Sparrow v3.2 node,

can reduce both the duration and the energy consumption of AES operations. This

is in contrast to work done on previous sensor nodes, that used a separated micro-

controller and transceiver and which had a higher energy cost when running the

encryption in hardware as opposed to using a pure software implementation.

References

1. Atmel: 8-bit AVR Microcontroller with Low Power 2.4 GHz Transceiver for ZigBee and IEEE

802.15.4

2. Carman, D.W., Kruus, P.S., Matt, B.J.: Constraints and approaches for distributed sensor net-

work security (final). Technical Report 1, NAI Labs, Cryptographic Technologies Group,

Trusted Information System (2000)

3. Daemen, J., Rijmen, V.: The block cipher Rijndael. In: Smart Card Research and Applications,

pp. 277–284. Springer (2000). doi:10.1007/10721064_26

4. De Meulenaer, G., Gosset, F., Standaert, O.X., Pereira, O.: On the energy cost of commu-

nication and cryptography in wireless sensor networks. In: IEEE International Conference

on Wireless and Mobile Computing Networking and Communications, 2008. WIMOB’08,

pp. 580–585. IEEE (2008). doi:10.1109/WiMob.2008.16

5. IEEE 802 Working Group: IEEE standard for local and metropolitan area networks - Part 15.4:

Low-rate wireless personal area networks (LR-WPANs). IEEE Std 802, 4–2011 (2011)

http://dx.doi.org/10.1007/10721064_26
http://dx.doi.org/10.1109/WiMob.2008.16


196 D. Dragomir and C. Panait

6. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley (2007).

doi:10.1002/0470095121

7. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press (2014)

8. Law, Y.W., Doumen, J., Hartel, P.: Survey and benchmark of block ciphers for wireless sen-

sor networks. ACM Trans. Sensor Netw. (TOSN) 2(1), 65–93 (2006). doi:10.1145/1138127.

1138130

9. Lee, J., Kapitanova, K., Son, S.H.: The price of security in wireless sensor networks. Comput.

Netw. 54(17), 2967–2978 (2010). doi:10.1016/j.comnet.2010.05.011

10. Lipmaa, H., Wagner, D., Rogaway, P.: Comments to NIST concerning AES modes of operation:

CTR-mode encryption (2000)

11. McGrew, D., Viega, J.: The Galois/Counter mode of operation (GCM). Submission to NIST.

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf (2004)

12. Panait, C., Dragomir, D.: Measuring the performance and energy consumption of AES in wire-

less sensor networks. In: Proceedings of the 2015 Federated Conference on Computer Science

and Information Systems, pp. 1261–1226 (2015). doi:10.15439/978-83-60810-66-8

13. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley

(1996)

14. Sen, J.: Routing security issues in wireless sensor networks: attacks and defenses. In: Seah,

W., Tan, Y.K. (eds.) Sustainable Wireless Sensor Networks, pp. 279–309. InTech (2010).

10.5772/663

15. Stallings, W.: Cryptography and Network Security—Principles and Practice, 5th edn. Pearson

Education (2011)

16. Voinescu, A., Tudose, D., Dragomir, D.: A lightweight, versatile gateway platform for wireless

sensor networks. In: Networking in Education and Research, 2013 RoEduNet International

Conference 12th Edition, pp. 1–4. IEEE (2013). doi:10.1109/RoEduNet.2013.6714202

17. Wang, Y., Attebury, G., Ramamurthy, B.: A survey of security issues in wireless sensor net-

works (2006). doi:10.1109/COMST.2006.315852

18. Whiting, D., Housley, R., Ferguson, N.: AES encryption & authentication using CTR mode &

CBC-MAC. IEEE P802, 11 (2002)

19. Zhang, F., Dojen, R., Coffey, T.: Comparative performance and energy consumption analysis of

different AES implementations on a wireless sensor network node. Int. J. Sensor Netw. 10(4),

192–201 (2011). doi:10.1504/IJSNET.2011.042767

http://dx.doi.org/10.1002/0470095121
http://dx.doi.org/10.1145/1138127.1138130
http://dx.doi.org/10.1145/1138127.1138130
http://dx.doi.org/10.1016/j.comnet.2010.05.011
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://dx.doi.org/10.15439/978-83-60810-66-8
http://dx.doi.org/10.1109/RoEduNet.2013.6714202
http://dx.doi.org/10.1109/COMST.2006.315852
http://dx.doi.org/10.1504/IJSNET.2011.042767

	Performance and Energy Consumption Analysis of AES in Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Design
	3.1 Electronic Code Book (ECB)
	3.2 Cipher Block Chaining (CBC)
	3.3 Cipher Feedback (CFB)
	3.4 Counter (CTR)
	3.5 Galois/Counter Mode (GCM)

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	References


