
Sokratis Katsikas
Costas Lambrinoudakis
Steven Furnell (Eds.)

 123

LN
CS

 9
83

0

13th International Conference, TrustBus 2016
Porto, Portugal, September 7–8, 2016
Proceedings

Trust, Privacy
and Security
in Digital Business

Lecture Notes in Computer Science 9830

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Sokratis Katsikas • Costas Lambrinoudakis
Steven Furnell (Eds.)

Trust, Privacy
and Security
in Digital Business
13th International Conference, TrustBus 2016
Porto, Portugal, September 7–8, 2016
Proceedings

123

Editors
Sokratis Katsikas
Norwegian University of Science
and Technology

Gjøvik
Norway

Costas Lambrinoudakis
University of Piraeus
Piraeus
Greece

Steven Furnell
Plymouth University
Plymouth
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-44340-9 ISBN 978-3-319-44341-6 (eBook)
DOI 10.1007/978-3-319-44341-6

Library of Congress Control Number: 2015946097

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This book presents the proceedings of the 13th International Conference on Trust,
Privacy and Security in Digital Business (TrustBus 2016), held in Porto, Portugal,
during September 7–8, 2016. The conference continues from previous events held in
Zaragoza (2004), Copenhagen (2005), Krakow (2006), Regensburg (2007), Turin
(2008), Linz (2009), Bilbao (2010), Toulouse (2011), Vienna (2012), Prague (2013),
Munich (2014), and Valencia (2015).

The advances in the Information and Communication Technologies (ICT) have
raised new opportunities for the implementation of novel applications and the provision
of high-quality services over global networks. The aim is to utilize this “information
society era” for improving the quality of life for all citizens, disseminating knowledge,
strengthening social cohesion, generating earnings, and finally ensuring that organi-
zations and public bodies remain competitive in the global electronic marketplace.
Unfortunately, such a rapid technological evolution cannot be problem-free. Concerns
are raised regarding the “lack of trust” in electronic procedures and the extent to which
“information security” and “user privacy” can be ensured.

TrustBus 2016 brought together academic researchers and industry developers who
discussed the state of the art in technology for establishing trust, privacy, and security
in digital business. We thank the attendees for coming to Porto to participate and debate
the new emerging advances in this area.

The conference program included a keynote and four technical papers sessions that
covered a broad range of topics, from security, privacy, and trust in eServices, to
security and privacy in cloud systems and mobile environments. The conference
attracted many high-quality submissions, each of which was assigned to four referees
for review and the final acceptance rate was 43 %.

We would like to express our thanks to the various people who assisted us in
organizing the event and formulating the program. We are very grateful to the Program
Committee members and the external reviewers, for their timely and rigorous reviews
of the papers. Thanks are also due to the DEXA Organizing Committee for supporting
our event, and in particular to Gabriela Wagner for her help with the administrative
aspects.

Finally, we would like to thank all of the authors who submitted papers for the event
and contributed to an interesting technical program.

September 2016 Sokratis Katsikas
Costas Lambrinoudakis

Steven Furnell

Organization

General Chair

Steven Furnell Plymouth University, UK

Program Committee Co-chairs

Sokratis Katsikas Norwegian University of Science and Technology -
NTNU, Norway

Costas Lambrinoudakis University of Piraeus, Greece

Program Committee

Aggelinos, George University of Piraeus, Greece
Agudo Ruiz, Isaac University of Malaga, Spain
Rudolph, Carsten Monash University, Australia
Casassa Mont, Marco HP Labs Bristol, UK
Chadwick, David University of Kent, UK
Chu, Cheng-Kang Huawei International, Singapore
Clarke, Nathan University of Plymouth, UK
Cuppens, Frederic ENST Bretagne, France
De Capitani di Vimercati,

Sabrina
Università degli Studi di Milano, Italy

Domingo-Ferrer, Josep Rovira i Virgili University, Spain
Drogkaris, Prokopis University of Piraeus, Greece
Eloff, Jan University of Pretoria, South Africa
Fernandez, Eduardo B. Florida Atlantic University, USA
Fernandez-Gago, Carmen University of Malaga, Spain
Ferrer Gomila, Jose Luis University of Balearic Islands, Spain
Fischer-Huebner, Simone Karlstad University, Sweden
Foresti, Sara Università degli Studi di Milano, Italy
Fuß, Jürgen University of Applied Sciences Upper Austria

at Hagenberg, Austria
Geneiatakis, Dimitris Aristotle University of Thessaloniki, Greece
Gritzalis, Dimitris Athens University of Economics and Business, Greece
Gritzalis, Stefanos University of the Aegean, Greece
Hansen, Marit Independent Center for Privacy Protection

Schleswig-Holstein, Germany
Kalloniatis, Christos University of the Aegean, Greece
Karyda, Maria University of the Aegean, Greece
Kesdogan, Dogan University of Regensburg, Germany

Kokolakis, Spyros University of the Aegean, Greece
Kowalski, Stewart Norwegian University of Science and Technology,

Norway
Lioy, Antonio Politecnico di Torino, Italy
Lopez, Javier University of Malaga, Spain
Markowitch, Olivier Université Libre de Bruxelles, Belgium
Marsh, Stephen University of Ontario, Institute of Technology, Canada
Martinelli, Fabio CNR, Italy
Matyas, Vashek Masaryk University, Czech Republic
Megias, David Open University of Catalonia, Spain
Mitchell, Chris Royal Holloway, University of London, UK
Mouratidis, Haralambos University of Brighton, UK
Olivier, Martin S. University of Pretoria, South Africa
Oppliger, Rolf eSecurity Technologies, Switzerland
Papadaki, Maria Plymouth University, UK
Pashalidis, Andreas BSI, Germany
Patel, Ahmed Universiti Kebangsaan Malaysia, Malaysia
Pernul, Guenther University of Regensburg, Germany
Posegga, Joachim University of Passau, Germany
Quirchmayr, Gerald University of Vienna, Austria
Rizomiliotis, Panagiotis University of the Aegean, Greece
Roman Castro, Rodrigo University of Malaga, Spain
Ruland, Christoph University of Siegen, Germany
Samarati, Pierangela Università degli Studi di Milano, Italy
Skarmeta, Antonio F. University of Murcia, Spain
Teufel, Stephanie University of Fribourg, Switzerland
Theoharidou, Marianthi European Commission - Joint Research Centre, Italy
Tjoa, A Min Technical University of Vienna, Austria
Tomlinson, Allan Royal Holloway, University of London, UK
Tsochou, Aggeliki Ionian University, Greece
Weippl, Edgar SBA Research and Vienna University of Technology,

Austria
Xenakis, Christos University of Piraeus, Greece

VIII Organization

Contents

Security, Privacy and Trust in eServices

A Framework for Systematic Analysis and Modeling of Trustworthiness
Requirements Using i* and BPMN . 3

Nazila Gol Mohammadi and Maritta Heisel

Automatic Enforcement of Security Properties . 19
Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes

Security and Privacy in Cloud Computing

Towards a Model-Based Framework for Forensic-Enabled Cloud
Information Systems . 35

Stavros Simou, Christos Kalloniatis, Haralambos Mouratidis,
and Stefanos Gritzalis

Modelling Secure Cloud Computing Systems from a Security Requirements
Perspective . 48

Shaun Shei, Christos Kalloniatis, Haralambos Mouratidis,
and Aidan Delaney

Privacy Requirements

Bottom-Up Cell Suppression that Preserves the Missing-at-random
Condition. 65

Yoshitaka Kameya and Kentaro Hayashi

Understanding the Privacy Goal Intervenability. 79
Rene Meis and Maritta Heisel

Information Audit and Trust

Design of a Log Management Infrastructure Using Meta-Network Analysis. . . . 97
Vasileios Anastopoulos and Sokratis Katsikas

The Far Side of Mobile Application Integrated Development Environments. . . . 111
Christos Lyvas, Nikolaos Pitropakis, and Costas Lambrinoudakis

Author Index . 123

http://dx.doi.org/10.1007/978-3-319-44341-6_1
http://dx.doi.org/10.1007/978-3-319-44341-6_1
http://dx.doi.org/10.1007/978-3-319-44341-6_2
http://dx.doi.org/10.1007/978-3-319-44341-6_3
http://dx.doi.org/10.1007/978-3-319-44341-6_3
http://dx.doi.org/10.1007/978-3-319-44341-6_4
http://dx.doi.org/10.1007/978-3-319-44341-6_4
http://dx.doi.org/10.1007/978-3-319-44341-6_5
http://dx.doi.org/10.1007/978-3-319-44341-6_5
http://dx.doi.org/10.1007/978-3-319-44341-6_6
http://dx.doi.org/10.1007/978-3-319-44341-6_7
http://dx.doi.org/10.1007/978-3-319-44341-6_8

Security, Privacy and Trust in eServices

A Framework for Systematic Analysis
and Modeling of Trustworthiness

Requirements Using i* and BPMN

Nazila Gol Mohammadi(B) and Maritta Heisel

Paluno - The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{nazila.golmohammadi,maritta.heisel}@paluno.uni-due.de

Abstract. New technologies like cloud computing and new business
models bring new capabilities for hosting and offering complex col-
laborative business operations. However, these advances can also bring
undesirable side-effects, e.g., introducing new vulnerabilities and threats
caused by collaboration and data exchange over the Internet. Hence,
users become more concerned about the trust, e.g., trust in services for
critical business processes with sensitive data. Since trust is subjective,
trustworthiness requirements for addressing trust concerns are difficult
to elicit, especially if there are different parties involved in the busi-
ness process. In this paper, we propose a user-centered trustworthiness
requirement analysis and modeling framework. Using goal models for
capturing the users’ trust concerns can motivate design decisions with
respect to trustworthiness. We purpose integrating the subjective trust
concerns into goal models and embedding them into business process
models as objective trustworthiness requirements. This paper addresses
the gap in considering trustworthiness requirements during automation
(in providing supporting software) of business processes. We demonstrate
our approach on an application example from the health-care domain.

Keywords: Trust · Trustworthiness requirements · Business process
modeling · Requirements engineering · Goal modeling

1 Introduction

Advances in new technologies such as cloud, social and mobile computing have
been an important enabler for developing business information systems that sup-
port nowadays’ complex businesses. These new technologies bring new capabili-
ties for hosting and offering highly dynamic and collaborative business processes,
e.g., health-care services via Internet in the medical domain. The trustworthiness
of business information systems that support collaborative business processes is
a key factor for promoting such collaboration and consequently the adoption
of these systems. Trustworthiness requirements must be assured, in order to
meet users’ trust concerns. To support users’ confidence (leading to business ser-
vices adoption), the right mechanisms should be put into place. Trustworthiness
c© Springer International Publishing Switzerland 2016
S. Katsikas et al. (Eds.): TrustBus 2016, LNCS 9830, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-44341-6 1

4 N.G. Mohammadi and M. Heisel

requirements should be in accordance with end-users’ trust concerns. Further-
more, business processes and their involved software systems and services need
to be made trustworthy to mitigate the risks of engaging those systems.

For being trustworthy, business information systems should fulfill a variety of
qualities and properties that depend on the application and its domain [9]. For
instance, organizations as users require confidence about their business-critical
data, whereas an elderly person using a health-care service may be more con-
cerned about reliability and usability. The traditional development methodolo-
gies do not respect users’ trust concerns in dynamic, heterogeneous, and distrib-
uted settings. Recently, innovative technologies like trustworthiness-by-design
methodologies [6], are attracting researchers’ attention. Requirements engineer-
ing is a critical activity in such “by-design” methodologies. However, there only
exists a small set of well-accepted requirement refinement methods and comple-
mentary decision support (supporting design decisions), which can be applied in
a systematic way for considering trustworthiness [3]. We believe that trustworthi-
ness of business systems is strongly dependent on their development processes,
especially the elaboration of trustworthiness requirements during the require-
ment engineering phase [6].

To bridge the gap between requirements and design artifacts in addressing
trust concerns, we propose a framework to specify and analyze trustworthiness
requirements in a systematic and iterative way. Trust concerns are identified and
addressed in the goal models by trustworthiness goals. Consequently, trustwor-
thiness requirements are refined in goal models iteratively in combination with
the business process models defined for satisfying the goals. In this way, it is
ensured that trustworthiness requirements will not be violated or ignored, while
developing or implementing the activities, resources and data-objects involved
in the business processes. We propose a conceptual model and a framework for
systematic analysis, documentation and modeling trustworthiness requirements
in a user-centered manner. The paper aims at bringing together trustworthiness
requirements analysis with regard to trust concerns and thereafter building trust-
worthiness properties into underlying systems for performing business processes.
Our objectives are to analyze and specify trustworthiness requirements in the
business process models to support the process designer and tool developers in
fulfilling trustworthiness requirements and a later evaluation of them. We use i*
[23] for goal-modeling and Business Process Model and Notation (BPMN) [13]
for modeling business processes. The main challenges that we discovered based
on an analysis of the state of the art are a lack of concepts relevant for trustwor-
thiness (e.g., delegations) and a lack of inter-model consistency checks between
BPMN and i* models. Goal models combined with business process models
specify how business processes fulfill the trustworthiness goals. Our framework
makes it possible to document the trustworthiness requirements together with
the corresponding knowledge of the system’s context. Furthermore, it supports
the process of refining (soft-) goals right up to the elicitation of corresponding
trustworthiness requirements.

Our approach is beneficial for the decision support during run-time adap-
tation as well. In an uncertain and changing environment, business processes

A Framework for Systematic Analysis and Modeling 5

are continuously optimized, e.g., via service substitution. To respect the overall
trustworthiness level, quality trade-offs should respect trustworthiness require-
ments. The business process models enhanced with trustworthiness properties
are useful information during the run-time as well.

The remainder of this paper is structured as follows: In Sect. 2, we explain the
fundamentals of our framework. Section 3 presents our framework for combining
goal models and business process modeling to support eliciting and analyzing
trustworthiness requirements and embedding them in business process models.
We demonstrate the application of our framework on a case study inspired from
the EU project OPTET1 in Sect. 4. Section 5 discusses related work. Finally,
Sect. 6 gives a conclusion and sketches future work.

2 Background and Fundamentals

In this section we briefly introduce the fundamental techniques and concepts for
the framework that is described in Sect. 3.

Trust and Trustworthiness. Trust is defined as a “bet” about the future
contingent actions of a system [19]. The components of this definition are belief
and commitment. There is a belief that placing trust in a software or a system
will lead to a good outcome. Then, the user commits the placing of trust by
taking an action by using a business process. This means when some users decide
to use a service, e.g., a health-care service on the web, they are confident that
it will meet their expectations. Trust is subjective and different from user to
user. For instance, organizations require confidence about their business-critical
data, whereas an elderly person using a health-care service (end-users) may
be more concerned about usability. These concerns manifest as trustworthiness
requirements.

Trustworthiness properties are qualities of the system that potentially influ-
ence trust in a positive way. The term trustworthiness is not used consistently in
the literature. Trustworthiness has sometimes been used as a synonym for secu-
rity and sometimes for dependability. However, security is not the only aspect of
trustworthiness. Some approaches merely focus on single trustworthiness char-
acteristics, e.g., security or privacy. However, trustworthiness is rather a broad-
spectrum term with notions including reliability, security, performance, and
usability as parts of trustworthiness properties [11]. Trustworthiness is domain
and application dependent. For instance, in health-care applications, the set of
properties which have primarily been considered consists of availability, confi-
dentiality, integrity, maintainability, reliability and safety, but also performance
and timeliness.

Business Process Modeling Using BPMN. A business process is a spe-
cific ordering of activities across time and place, with a start, an end, and
1 http://www.optet.eu/.

http://www.optet.eu/

6 N.G. Mohammadi and M. Heisel

clearly defined inputs and outputs. A business process model is the represen-
tation of the activities, documents, people and all the elements involved in a
business process, as well as the execution constraints between them [18]. By
using business process modeling, different information can be captured such as
organizational, functional, informational, behavioral and context information.
The organizational information focuses on the actors and their activities. The
functional information describes the process element activity which is being per-
formed during a business process execution. A resource can either be a human
resource or a technical resource, such as tools or a service used in performing an
activity, or informational resources, such as data. The business process models
also represent how the informational resources are manipulated in a process.
The behavioral information includes the time aspects of activities by focusing
on when activities are performed and when they are sequenced. We can show
control flow and data flow in business process models.

BPMN [13] is a standard for modeling business processes, which is broadly
extended and used widely in both, industry and research. The most important
BPMN elements are shown in Fig. 6.

Goal Modeling. In requirements engineering, goal modeling approaches have
gained considerable attention in varying contexts. These approaches aim at cap-
turing the rationale of the software system development. A goal model defines
organization goals and the tasks necessary to achieve these goals. Thus, goal
models relate the high-level goals of an organization to low-level system require-
ments. Goals can be classified into two different categories: hard-goals and soft-
goals. Hard-goals may refer to the functional properties of the system behavior,
whereas soft-goals represent quality preferences of the stakeholders. There exist
a number of different goal modeling languages used in requirements engineering.
We use i* in our analysis due to its comprehensiveness.

The i* notation was developed with the purpose of modeling and reasoning
within an organizational environment and its information systems [23]. It con-
sists of two main models, a Strategic Dependency Model (SDM) and a Strategic
Rationale Model (SRM). The SDM (cf. Fig. 5) is used to express strategic rela-
tionships among different actors in an organizational context. The SRM (cf.
Fig. 7) captures both an internal view of each actor and external relations among
actors. The main concepts used in i* models are actors, goals, tasks, resources
and soft goals. An actor is a role who carries out a task to achieve a certain goal.
A resource is an object that is needed to complete a goal or perform some task.
The following dependencies can be defined in i*: goal, soft-goal, task or resource
dependencies (cf. Fig. 5). For the internal view of an actor in SRM, the links are
as follows: means-ends, task decomposition and contribution (cf. Fig. 7).

3 Framework for Systematic Analysis and Modeling
of Trustworthiness Requirements

Our proposed goal-business process model is employed to decompose high-level
goals into low-level goals. We shape and structure our framework (shown in Fig. 1)

A Framework for Systematic Analysis and Modeling 7

Fig. 1. Overview of proposed framework inspired by [12]

based on the twin peaks model [12]. The cornerstone of embedding the develop-
ment of business information systems in the twin peak model is that requirements
engineers and developers build a system’s requirements and its architecture spec-
ification concurrently and iteratively. The same applies to our proposed approach
for the analysis of trustworthiness requirements and integrating them into busi-
ness models. The business processes are defined to fulfill goals with trustworthi-
ness embedded into the business processes.

The major method of our framework for eliciting and refining trustworthiness
requirements is the combination of business process modeling (to show how, solu-
tion peak) using BPMN and goal models (to say what, problem peak) in i*. The
details about the conceptual model of the framework and method are presented
in the following sections.

3.1 Conceptual Model

We use the basis described in Sect. 2 to analyze how the described goal modeling
components align with process model components. We analyze the ability of goal
modeling in assisting the business process models in enabling trustworthiness
properties. We use certain concepts to facilitate the analysis of business process
models respecting trustworthiness. The relationship between these concepts is
depicted in a conceptual model shown in Fig. 2 as Unified Modeling Language
(UML) class diagram. The conceptual model depicts the basic concepts of our
approach.

A trustworthiness goal is a special goal that addresses the trust concerns of
users. A trustworthiness goal is satisfied by trustworthiness requirements, which
can be realized by more concrete trustworthiness properties. Actors have goals
that can be satisfied in a business process. A business process consists of business
process elements (a set of activities, events, and involved resources). Here, activ-
ities, resources, or events are more concrete business process elements. An actor

8 N.G. Mohammadi and M. Heisel

Fig. 2. Conceptual model of our proposed framework and the method

performs an activity. An activity is supported by resources. For instance, an
activity consumes data objects (information resource) as input, or it produces
output, or technical resources support performing an activity such as software
services and applications. We use the term business process element to distin-
guish between generic types of BPMN and concrete trustworthiness elements
(our extension to BPMN in [7]).

This paper focuses on the part of the framework for analyzing and address-
ing the end-users’ trust concerns, using goal and business process models. We
defined trustworthiness elements to enrich business process elements by defining
monitor point or interaction point or constraints on business process elements.
For instance, a trustworthiness element can be a trustworthiness-specific activity
(e.g., notifications for satisfying transparency) or a monitoring point where we
can specify which part of the process needs to be monitored during run-time
and what the desired behaviors are. This will serve to derive trustworthiness
requirements in the form of commitments reached among the participants for
the achievement of their goals. The precise specification of our BPMN extension
is described in another paper [7].

A threat is a situation or event that, if active at run-time, could undermine
the trustworthiness by altering the behavior of involved resources or service in
the process. Controls aim at blocking threats. Metrics are used as functions
to quantify trustworthiness properties. A metric is a standard way for measur-
ing and quantifying certain trustworthiness properties as more concrete quality
properties of an element [4,9]. Trustworthiness elements realize the control in
terms of defining elements which address the trustworthiness, e.g., an additional
activity can be defined to block a threat to privacy. These additional activities
could involve documenting or triggering a notification upon a delegating case of
a patient to another authority, or an engagement of a new service from a new
third party.

A Framework for Systematic Analysis and Modeling 9

3.2 The Method for Systematic Analysis of Trustworthiness
Requirements

Figure 3 gives an overview of the steps of the method and their inputs and
outputs. The steps are as follows:

Step 1 - Context Analysis: The first step is concerned with identifying the par-
ticipants and initial context information. This can also be captured in a context
model. The context information provides an overview of the process, as well.

Step 2 - Set Up Goal Model: This step is concerned with setting up the
goal model by capturing the major intentions of the involved participants/s-
takeholders. The goals are captured either by interviewing involved stakeholders
or are based on expertise of a requirements engineer or business engineer at the
business level. We start with high-level goals, and then refine them within the
problem (requirement) peak. We model and document the goals using i* with
SDM and SRM models.

Step 3 - Set Up Business Process Models: As input the SDM and SRM
models are used. We select a specific goal from SDM. For satisfying the selected
goal we set up a business process model. As notation, we use BPMN. To create
the business process model we use information shown in the SDM and SRM.
Using SDM, the dependency between roles and other goals can be anlysed. SRM
models give insight into the resources and activities. The business process model
for a specific goal selected from SDM models will visualize the control and data
flow between identified tasks, used resources and involved actors.

Step 4 - Identify Trust Concerns: Trust concerns of end-users and their
dependencies on other participants in the business are identified. Trust con-
cerns can be collected either by interviewing involved end-users/consumers or
are based on the expertise of a requirements engineer. Trust concerns are sub-
jective. To support this step (especially considering subjectiveness of trust), a
questionnaire is provided in our previous work [8].

Fig. 3. The method for analysis of trustworthiness requirements and including trust-
worthiness properties into the business process models

10 N.G. Mohammadi and M. Heisel

Step 5 - Goal Model Including Trustworthiness Goals: Based on trust
concerns, we refine the goal model with the trustworthiness goals and their
relation to the other goals (conflicts or positive influences). The trustworthiness
goals include the purpose of the building of trustworthiness properties into the
system under development. To support this step, a catalogue of trustworthiness
attributes which contribute to mitigate trust concerns is provided in our previous
work [9].

Step 6 - Business Process Model Including Trustworthiness Proper-
ties: Enhance a business process model by adding trustworthiness properties
which fulfill the trustworthiness goals. For supporting this step, we provide the
new trustworthiness elements (cf. Fig. 2). The business process model from step
3 is analysed by identifying which business process elements are related to the
identified trustworthiness goals from step 5. The relation of trustworthiness goals
in the goal model to the other goals from step 5 assists this step.

Step 7 - Refinement of Goal Model (Problem Peak): Refine goals and
trustworthiness goals further to obtain user-centered trustworthiness require-
ments on resources and tasks. This refinement is performed within the problem
peak. However, based on the output of this step revisions of business process
models can be necessary.

Step 8 - Refinement of Business Process Model (Solution Peak): Detail
business processes by including trustworthiness properties on resources, activ-
ities, etc. for satisfying trustworthiness requirements. This refinement is per-
formed within the solution peak. However, based on the output of this step
revisions of goal models can be necessary.

4 Application Example

This section demonstrates our approach of eliciting and refining trustworthiness
requirements and specifying trustworthiness properties on business process ele-
ments. The example stems partially from the experience that the first author
gained during the OPTET project on an Ambient Assisted Living (AAL)
system.

Motivating Scenario. In our scenario, Alice is an elderly person who lives
alone in her apartment. She does not feel comfortable after a heart attack. She
was unconscious in her home for several hours. Alice has been informed that
there are some AAL services available in the marketplace. She considers using
one of those services to avoid similar incidents in the future. She desires an AAL
service that will suit her specific needs. We illustrate, in Fig. 4, a general approach
using supporting tools and provided apps to perform the activities. We assume
that some of these software services are to be built by software developers, who
will also benefit from the results of our work in developing trustworthy apps,
software services, etc.

A Framework for Systematic Analysis and Modeling 11

Fig. 4. Part of home monitoring system for handling health-care cases inspired by [5]

Step 1 - Context Analysis: We will focus on a H ome M onitoring System
(HMS) for incident detection and detection of abnormal situations to prevent
emergency incidents. The HMS allows elderly people in their homes to call for
help in case of emergency situations. Furthermore, HMS analyzes the elderly
person’s health status for preventing incidents in the first place. The incidents
are reported to an Alarm Call Center that, in turn, reacts by, e.g., sending out
ambulances or other medical caregivers, and notifying the elderly person’s rela-
tives. For preventing emergency situations, the vital signs of the elderly person
are diagnosed in regular intervals to reduce hospital visits and falls. Figure 4
shows an exemplary design-time system model including physical, logical, and
human resources/assets. Using this system, an elderly person uses a Personal
Emergency Response System (PERS) device to call for help, which is then
reported to the alarm call center that uses an Emergency M onitoring and
H andling Tool (EMHT) to visualize, organize, and manage emergency inci-
dents. Furthermore, elderly persons are able to use a H ealth M anager (HM) app
on their smart device for organizing their health status like requesting health-
care services or having an overview regarding their medication or nutrition plan.
The EMHT is a software service hosted by the alarm call center that, in turn,
is operated by a health-care authority. Emergency notification and Ambulance
Service, which run on mobile phones of relatives, or Ambulance Stations respec-
tively, are called in order to require caregivers to provide help. An Ambulance
Service is requested in case an ambulance should be sent to handle an emer-
gency situation. The other case is that, based on analyzed information sent to
the EMHT, an abnormal situation is detected and further diagnoses are neces-
sary. Therefore, the elderly person will get an appointment and notifications for
a tele-visit in her HM app.

Step 2 - Set Up Goal Model: Figure 5 captures the goals of different partici-
pants and their dependencies on each other or the realization of the goals. This
is done based on expertise of a requirements engineer and the knowledge gained
during the context analysis like interviews. Here, we only focus on the Elderly per-
son and the Alarm Call Center. The Ambulance Station has also been considered,
because for handling the emergency cases the alarm call center is dependent on
the ambulance as a resource.

12 N.G. Mohammadi and M. Heisel

Fig. 5. Simplified SDM with the dependencies between identified participants

Additional to SDM presented in Fig. 5, we have further SRM models which
gives more detail on tasks, resources and soft-goals within the actor boundaries.
As an example, one can consider the SRM model in Fig. 7. In this step we have
only the white-coloured elements of that SRM.

Step 3 - Set Up Business Process Model: Figure 6 illustrates and exem-
plifies the typical steps that, e.g., caregivers in an alarm center have to take
once they analyzed that the health record of an elderly person deviates from
the normal situation and further examination is needed. This business process
model targets the satisfaction of reducing hospital visits and the prevention of
incidents goals (cf. Fig. 5). The process starts by analysing the elderly person’s
vital signs in the last 7 days. These data is examined by a physician, who decides
whether the elderly person is healthy or if additional examination needs to be
undertaken. In the former case, the physician fills out the examination report.
In the latter case, a tele-visit is performed by this physician in which the physi-
cian informs the elderly person about examination and necessary treatment. An
examination order is placed by the physician. The physician sends out a request.

Fig. 6. Exemplary business process model for preventing emergency cases and reducing
hospital visits

A Framework for Systematic Analysis and Modeling 13

This request includes information about the elderly person, the required exam-
ination and possible labs. Furthermore, an appropriate appointment should be
arranged. The process continues for taking a sample and validating this. Even-
tually, the physician from the Alarm Call Center should get the result in order
to make the diagnosis and prescribing the medication.

Step 4 - Identify Trust Concerns: Alice is concerned about the fact whether
she will really receive the emergency help if a similar situation happens again
(heart attack experience). Alice is informed that by using the HMS she can have
regular diagnoses which can prevent frequent hospital visits. However, Alice is
concerned whether she will be able to use the service in a proper way. She is
also concerned about who can get access to the data about her diseases or life
habits. She indicates that she would only like her regular nurse and doctor to be
able to see her history and health status.

Step 5 - Goal Model Including Trustworthiness Goals: Based on the
trust concerns and the application domain and considering necessary legislation,
a requirement engineer will add trustworthiness goals to the goal model. The
existing goal-based refinement techniques will be applied to refine these trust-
worthiness goals into trustworthiness requirements. Considering the health-care
domain, reliability, availability, usability, raising awareness and privacy (provid-
ing guidance and user’s data protection) is a crucial issue related to trustworthi-
ness [1]. For instance, electronic medical transactions require the transmission
of personal and medical information over insecure channels, e.g., the Internet.
Patients’ profiles document the medical behavior of patients, or even include
sensitive information, e.g., their medical history. Considering trustworthiness of
a health-care application, one can consider a vector of multiple trustworthiness
goals. They either address the fulfillment of the mission, e.g., reliability, avail-
ability when the patient needs help, correctness of prescribed therapy or address
it from a privacy perspective. The gray-coloured soft-goals in Fig. 7 are the trust-
worthiness goals added to the goal model in this step. The initial SRM of the
elderly person and the alarm call center contain only the white-coloured elements
of Fig. 7.

Step 6 - Business Process Including Trustworthiness Properties: Figure 8
illustrates the enriched business process model with the trustworthiness require-
ments satisfying reliability and privacy (cf. Fig. 7). In particular, we exemplify the
typical steps that a human resource (e.g., caregiver in alarm call center) has to take
or properties that a non-human resource needs to have in order to contribute to
trustworthiness. We start with the activity to analyse the history of the vital signs
of the elderly person in the last seven days. This activity may detect a risk in her
health status. For addressing the trust concerns of the elderly person related to
her confidence that she is not left alone and will get the needed health care in case
when necessary, as well as privacy-related concerns, the following trustworthiness
requirements are specified: The elderly person should receive a regular notifica-
tion that informs her about the diagnoses that are performed on her vital signs.
In Fig. 8 it is added as a trustworthiness-related activity, namely “Notify elderly”.

14 N.G. Mohammadi and M. Heisel

Fig. 7. Simplified SRM including trustworthiness goals considering trust concerns

Fig. 8. Exemplary business process model enriched with trustworthiness requirements

This activity contributes to make her confident that she is not left alone with-
out care. Because of privacy, in case no further diagnosis is necessary, the history
should be deleted. TheDeletion of history activity is also a trustworthiness-related
activity added to the initial business process. This part of the business process is
annotated as relevant for monitoring at run-time.

If a risk to the elderly person’s health status is detected, a tele-visit is offered.
This activity is an interaction point supported by the HM app as technical

A Framework for Systematic Analysis and Modeling 15

resource (cf. Fig. 8, tele-visit activity performed by a physician). The trustwor-
thiness properties for this interaction point are usability, response time, etc.
In case of necessity for further examination the elderly person should be con-
tacted by her physician or responsible care assistant (delegation of physician
to the assistants). Furthermore, based on history, the same physician should be
assigned to activities when the elderly person is in contact with the alarm call
center staff (addressing the trust concern). After processing her history data
and if everything is alright, her last 7 days of vital signs should be deleted. She
should be informed that the processing has been performed and her health status
is fine. She should be informed about the deletion of her history as well.

In step 6 and step 7 further iterative refinements of trustworthiness goals,
and respectively in business processes, are performed. Gray-coloured elements
(additional to the elicited trustworthiness goals) in Fig. 7 are the results of the
refinement of the goal model. For instance, in order to satisfy reliability and
availability the redundant sensors for sending vital signs are considered for pro-
viding the vital signs of the elderly person to the alarm call center. The task
Notify about usage and collection is added to positively influence privacy. These
refinements are further elaborated in business process models. Figure 9 shows fur-
ther refinement of the trustworthiness requirements related to the Notify elderly
activity which is related to the Notify about usage and collection from the goal
model (cf. Fig. 7).

Fig. 9. Exemplary further refinement on business process model (within solution peak)

5 Related Work

The study of related work reveals some gaps in business process management
with respect to trustworthiness. Plenty of works are done in security and to some
extent in privacy. Short et al. [15] provided an approach for dealing with the
inclusion of internal and/or external services in a business process that contains
data handling policies. Wang et al. [21] developed a method to govern adaptive
distributed business processes at run-time with an aspect-oriented programming
approach. Policies can be specified for run-time governance, such as safety con-
straints and how the process should react if they are violated. Several works have
been done to overcome the problem of considering qualities in resource assign-
ment. Some meta-models like [10,20] and an expressive resource assignment lan-
guage [2] have been developed. Between those, RALPH [2] provides a graphical

16 N.G. Mohammadi and M. Heisel

representation of the resource selection conditions and assignments. RALPH has
formal semantics, which makes it appropriate for automated resource analysis in
business process models. Stepien et al. [16] present the user interfaces that users
can use to define conditions themselves. The main gap is addressing a broad
spectrum of qualities which contribute to trustworthiness and the necessity of
defining conditions on resources and activities in business process with respect
to trustworthiness. The resource patterns provided by Russell et al. [14] are used
to support expressing criteria in resource allocation.

Business Activities is a role-based access control extension of UML activity
diagrams [17] to define the separation of duties and binding of duties between
the activities of a process. Wolter et al. [22] developed a model-driven business
process security requirement specification which introduces security annotations
into business process definition models for expressing security requirements for
tasks. However, current state of the art in this field neglects to consider trust-
worthiness as criteria for the resources and business process management.

6 Conclusions and Future Work

Managing business processes respecting trustworthiness requirements remains an
ongoing challenge in service-oriented computing and cloud computing research.
This paper discussed trust issues in the context of business process management
using BPMN and i*. We provide an integration of subjective trust concerns
into goal and process models. Our framework supports the analysis of a busi-
ness process from activity, resource, and data object perspectives with respect to
trustworthiness. To the best of our knowledge, we propose a novel contribution on
user-centered identification of trust concerns and elicitation of trustworthiness
requirements and thereafter integrating trustworthiness properties in business
process design. Furthermore, our contribution includes a preparation for ver-
ification that satisfies trustworthiness constraints over resource allocation and
activities executions.

We propose a method to identify the resources and activities that are
trustworthiness-related. Then, we specify the trustworthiness requirements on
those resources and activities in business processes with regard to trustworthi-
ness goals from goal models. The proposed method needs a full integration to a
business process modeling or management application. Furthermore, our frame-
work supports the business process life-cycle with respect to trustworthiness.

This is a work-in-progress paper. The main ideas and findings will be fur-
ther investigated and evaluated based on the presented example in Sect. 4. This
will lead to the establishment of patterns and metrics for trustworthiness. To
reduce the process designer’s effort, we plan developing a set of patterns for
easing trustworthiness requirement specifications. Our future research will focus
on three important issues: (1) understand how the trustworthiness attributes
actually influence trust. (2) how to identify interdependencies between differ-
ent attributes of different parties involved in the business process, and how
to consequently define a set of trustworthiness properties for process elements

A Framework for Systematic Analysis and Modeling 17

and resources. (3) investigate existing risk assessment methodologies on the busi-
ness process level, and show how they can support business process design and
definition in building trustworthiness into processes in the whole life-cycle of
business process management. We will improve our understanding and encour-
age the utilization of our framework and method by being perceived as useful,
easy to use, easy to learn, compatible, and highly valued by practitioners.

References

1. Avancha, S., Baxi, A., Kotz, D.: Privacy in mobile technology for personal health-
care. ACM Comput. Surv. 45(1), 1–54 (2012)

2. Cabanillas, C., Knuplesch, D., Resinas, M., Reichert, M., Mendling, J., Ruiz-Cortés,
A.: RALph: a graphical notation for resource assignments in business processes. In:
Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097,
pp. 53–68. Springer, Heidelberg (2015)

3. Di Cerbo, F., Gol Mohammadi, N., Paulus, S.: Evidence-based trustworthiness of
internet-based services through controlled software development. In: Cleary, F.,
et al. (eds.) CSP Forum 2015. CCIS, vol. 530, pp. 91–102. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-25360-2 8

4. Mohammadi, N.G., Bandyszak, T., Goldsteen, A., Kalogiros, C., Weyer, T., Moffie,
M., Nasser, B.I., Surridge, M.: Combining risk-management and computational
approaches for trustworthiness evaluation of socio-technical systems. In: Proceed-
ings of the CAiSE Forum, pp. 237–244 (2015)

5. Mohammadi, N.G., Bandyszak, T., Kalogiros, C., Kanakakis, M.: A framework
for evaluating the end-to-end trustworthiness. In: Proceedings of the 14th IEEE
International Conference on Trust, Security and Privacy in Computing and Com-
munications (IEEE TrustCom) (2015)

6. Mohammadi, N.G., Bandyszak, T., Paulus, S., Meland, P.H., Weyer, T., Pohl,
K.: Extending software development methodologies to support trustworthiness-by-
design. In: Proceedings of the CAiSE Forum, pp. 213–220 (2015)

7. Mohammadi, N.G., Heisel, M.: Enhancing business process models with trustwor-
thiness requirements, accepted. In: 10th IFIP WG 11.11 International Conference
on Trust Management (2016)

8. Mohammadi, N.G., Heisel, M.: Patterns for identification of trust concerns and
specification of trustworthiness requirements, accepted in the progress of publica-
tion (2016)

9. Mohammadi, N.G., Paulus, S., Bishr, M., Metzger, A., Könnecke, H., Hartenstein,
S., Weyer, T., Pohl, K.: Trustworthiness attributes and metrics for engineering
trusted internet-based software systems. In: Helfert, M., Desprez, F., Ferguson, D.,
Leymann, F. (eds.) CLOSER 2013. CCIS, vol. 453, pp. 19–35. Springer, Heidelberg
(2014)

10. Koschmider, A., Yingbo, L., Schuster, T.: Role assignment in business process
models. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011,
Part I. LNBIP, vol. 99, pp. 37–49. Springer, Heidelberg (2012)

11. Mei, H., Huang, G., Xie, T.: Internetware: a software paradigm for internet com-
puting. Computer 45(6), 26–31 (2012)

12. Nuseibeh, B.: Weaving together requirements and architectures. Computer 3, 115–
119 (2001)

http://dx.doi.org/10.1007/978-3-319-25360-2_8

18 N.G. Mohammadi and M. Heisel

13. OMG: Business Process Model and Notation (BPMN) version 2.0. Technical report
(2011)

14. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: identification, representation and tool support. In: Pastor, Ó.,
Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005)

15. Short, S., Kaluvuri, S.P.: A data-centric approach for privacy-aware business
process enablement. In: van Sinderen, M., Johnson, P. (eds.) IWEI 2011. LNBIP,
vol. 76, pp. 191–203. Springer, Heidelberg (2011)

16. Stepien, B., Felty, A., Matwin, S.: A non-technical user-oriented display notation
for XACML conditions. In: Babin, G., Kropf, P., Weiss, M. (eds.) E-Technologies:
Innovation in an Open World. LNBIP, vol. 26, pp. 53–64. Springer, Heidelberg
(2009)

17. Strembeck, M., Mendling, J.: Modeling process-related RBAC models with
extended UML activity models. Inf. Softw. Technol. 53(5), 456–483 (2011)

18. Stroppi, L.J.R., Chiotti, O., Villarreal, P.D.: Extending BPMN 2.0: method and
tool support. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011.
LNBIP, vol. 95, pp. 59–73. Springer, Heidelberg (2011)

19. Sztompka, P.: Trust: A Sociological Theory. Cambridge University Press,
Cambridge (2000)

20. van der Aalst, W.M.P., Kumar, A.: A reference model for team-enabled workflow
management systems. Data Knowl. Eng. 38(3), 335–363 (2001)

21. Wang, M., Bandara, K., Pahl, C.: Process as a service distributed multi-tenant
policy-based process runtime governance. In: IEEE International Conference on
Services Computing (SCC), pp. 578–585 (2010)

22. Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.: Model-driven busi-
ness process security requirement specification. J. Syst. Archit. Spec. Issue Secure
SOA 55(4), 211–223 (2009)

23. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the 3rd IEEE International Symposium on Require-
ments Engineering, pp. 226–235 (1997)

Automatic Enforcement of Security Properties

Jose-Miguel Horcas(B), Mónica Pinto, and Lidia Fuentes

CAOSD Group, Universidad de Málaga, Andalućıa Tech, Málaga, Spain
{horcas,pinto,lff}@lcc.uma.es

Abstract. Ensuring the security requirements of an application is
not a straightforward task. Security properties (e.g., confidentiality,
anonymity) need to be satisfied in different ways in different parts of
the same application. Software architects are usually required to man-
ually define security components and their dependencies with the base
application, customize them to the application’s requirements, identify
the points where security is incorporated, and verify that the selected
places are correct. The last two steps are especially complex and error-
prone. In our approach, we aim to provide a solution that helps soft-
ware architects to identify the correct places to incorporate the security
functionality and to verify the correctness of the composed application
architecture. This is achieved by identifying a set of general structural
patterns for incorporating security into the application architecture, and
by providing a model-driven SPL solution to customize these patterns
to each application’s requirements.

Keywords: Encryption · Security pattern · Software architecture · SPL

1 Introduction

It is well known that the development of applications that ensure their security
requirements is not a straightforward task [1–3]. This is because security prop-
erties (e.g., confidentiality, authentication, etc.) need to be satisfied in different
ways in different parts of the same application. Even the same security property
usually needs to be satisfied differently in multiple parts of the same application.
For instance, in order to preserve confidentiality the application’s sensitive data
has to be encrypted. But, where and how does the data need to be encrypted?

In our example, confidentiality is guaranteed by adding the encryption behav-
ior in different places of the application. For instance, during the interaction of
two components that exchange sensitive data, it could be added at the place
where the data is encrypted, and the place where the same data is to be
decrypted. However, encryption could be applied differently to different kinds of
interactions. For example, only remote interactions, involving components that
are deployed in different hosts, may be required to encrypt sensitive informa-
tion. Sensitive data could be encrypted for all the interactions managing sensi-
tive information, independently from the location of components. Or, encryption
is required for all interactions managing sensitive data but providing different
c© Springer International Publishing Switzerland 2016
S. Katsikas et al. (Eds.): TrustBus 2016, LNCS 9830, pp. 19–31, 2016.
DOI: 10.1007/978-3-319-44341-6 2

20 J.-M. Horcas et al.

security levels — i.e., using different encryption algorithms, depending on the
local or remote location of the components. Moreover, guaranteeing the secure
storage of the information requires the data to be encrypted before storing it and
decrypted after retrieving it. More variability is introduced if we consider that
the sensitive data have to circulate securely — i.e., encrypted, through different
components of the application. This means that the component where the data
is encrypted and the component where the data is decrypted do not directly
interact with each other, as there are third components between them. Finally,
different kinds of sensitive data may require different levels of security, requiring
the use of different encryption algorithms (e.g., RSA, AES,. . .). Thus, it is not
trivial for software architects to correctly answer the where-and-how question.

A first step toward mitigating this problem is applying the separation of
concerns principle to model the variability of security from the early stages of
the software’s development. Thus, security concerns are modeled separately from
the base applications and later customized to the application’s requirements and
composed at particular points of the application model [4,5]. It has been demon-
strated that this approach has many advantages [4–6], such as high reusability,
low coupled components and high cohesive software architectures. Moreover,
security can be more easily customized to the application’s requirements. Fol-
lowing this approach, our previous work [5] provided support to: (1) model the
variability of security independently from the application, (2) instantiate the
security model according to the requirements of a particular application, and
(3) compose the customized security model with the application model.

However, in order to compose the customized security model and the appli-
cation model, first, the join points — i.e., points in the application model where
the elements of the security model have to be injected/composed, have to be
identified. In our previous work, the join points were identified completely man-
ually. This resulted in a lack of support to guarantee the required security level,
since analyzing whether the security components had been introduced in all and
the correct places was not possible. Other similar approaches [4,6,7] have the
same limitation. Thus, the benefits of reusing the security models are lost. In this
paper, we improve upon our previous approach by providing support to ensure
that security is correctly incorporated in the applications. This is achieved by:
(1) automatically identifying the places in the software architecture where a par-
ticular security functionality has to be incorporated, and (2) checking whether
the security functionality was incorporated correctly to a software architecture.

In order to automate the identification of the join points we need to under-
stand that security models are not completely oblivious to the application mod-
els, and thus some dependencies between them need to be taken into account
during both the security modeling and during the incorporation of the security
functionality inside the application. Without this, the automatic identification
of the join points is impossible. Concretely, as part of the variability of the
security properties, we need to model the variability of the different structural
and behavioral patterns (e.g., the remote/local direct/indirect interactions, data
storage, etc. in the case of encryption) previously discussed. The main reason is
that the identification of the join points and the definition of the composition

Automatic Enforcement of Security Properties 21

rules largely depend on these patterns. Moreover, formally defining these pat-
terns and the composition rules based on them will provide our approach with
the support that is required to verify the correct deployment of security.

In this paper we focus on confidentiality, although our ultimate goal is to
identify a set of general structural and behavioral patterns to incorporate many
other security properties into an application’s architecture, and to customize
these patterns to each application’s requirements. We use a Software Product
Line (SPL) [8] to specify the variability of the composition patterns, and model-
to-model (M2M) transformations to identify the join points from the patterns
and to guarantee that the final architecture satisfies the security requirements.

The paper is structured as follows. Section 2 motivates our work with a case
study. Section 3 presents our SPL to model and instantiate the variability of the
security patterns. Section 4 explains the automatic identification of join points
from the patterns. Section 5 qualitatively evaluates our approach. Section 6 dis-
cusses related work and Sect. 7 sets out our conclusions and future work.

2 Motivating Case Study

Our case study is an electronic payment (e-payment) application for making
payments for different services (taxi, restaurants, donations,. . .) and chasing up
receipts. This kind of application requires strong security requirements such as
preserving confidentiality of the user’s information, integrity of the data, and
access control, among others. In this paper, we focus only on confidentiality.

Figure 1 shows a simplified UML software architecture with the basic func-
tionality of the application. The PaymentApp component allows users to make
payments for a specific service, and request the proof of payments by using
the EPayment interface. The customer’s information (e.g., payment card details)
is stored on the user’s device (CustomerProfileManager component). Addi-
tionally, this information can be synchronized between different user devices
(SynchronizationData component). The server manages the payments through
the EPaymentServer component that uses the ServiceDomainResolution and
BankTransaction components to identify the service’s provider information and
to complete the transactions with the banks, respectively. The server also tracks
a history of the users’ transactions (TransactionsHistory component).

Apart from this basic functionality shown in Fig. 1, it is of paramount impor-
tance to guarantee the following security requirements, among others:

– Req. 1: Confidentiality. Sensitive information (i.e., payment card data)
exchanged between the client and the server hosts must be encrypted (e.g.,
using the RSA algorithm). This means that it is required to encrypt the
payment information (information of type PaymentMethod or the parame-
ter payInfo in Fig. 1) when: (1) a payment is made — i.e., the PaymentApp
client component calls the pay method of the EPayment interface; and when
(2) the client synchronizes the list of payment methods — i.e., the com-
ponent CustomerProfileManager calls the synchronize method of the
SynchInfo interface. Then, the information has to be decrypted when the

22 J.-M. Horcas et al.

Fig. 1. Software architecture of the e-payment application.

server receives it, in both EPaymentServer and SynchronizationData. Fol-
lowing our approach the software architect only needs to indicate that the pay-
ment card data is the sensitive data and then our automatic join point identi-
fication approach indicates those join points where encryption and decryption
need to be incorporated in order to ensure the confidentiality of the sensitive
data.

– Req. 2: Confidentiality. All information exchanged between the EPayment-
Server and BankTransaction components inside the server must also be
encrypted, regardless of the type of information or the interface used. In this
case, the software architect indicates that interactions between two specific
components need to be encrypted and all the affected join points are auto-
matically identified by our approach.

– Req. 3: Confidentiality. The payment card details are stored in the user’s device
using a different encryption algorithm from the one for communications (e.g.,
AES). Thus, another encryption algorithm is required to encrypt the payment
methods information when they are stored/retrieved in the user’s device. In
this case, both encrypting and decrypting functionalities are required by the
same component (CustomerProfileManager). Here, our approach inspect the
application looking for a structural pattern that represents a data storage and
the join points would be automatically detected.

3 Capturing the Security Variability

To accomplish the automatic identification of the joint points, we identify a set
of structural patterns that specifies the relationships with the application. The
variability of the patters is modelled in an SPL, together with the variability of
the security functionality. Then, the software architect instantiates the patterns
and the security functionality according to the application’s requirements.

A security pattern describes a particular, recurring security problem (e.g.,
applying encryption) that arises in specific contexts, and presents a well-proven
generic solution for it [9]. In the case of the confidentiality property, we need

Automatic Enforcement of Security Properties 23

Fig. 2. Encryption pattern for secure communications.

a set of patterns that allows to apply the encryption functionality to different
parts of the application such as remote/local direct/indirect interactions, and
data storage. Encryption is usually defined as a component that provides two
main functionalities: encrypt and decrypt (see Fig. 2), which normally inter-
cept (crosscut) the application functionality at specific points. For example,
the pattern to apply encryption in a secure communication is shown in Fig. 2
and states that the encrypt method intercepts a “sender component” (|C1)
in order to encrypt the message information (|param) before sending it (i.e.,
calling the method |m), while the decrypt method crosscuts a “receiving com-
ponent” (|C2) to decrypt the message information after receiving it. Figure 2
represents a parameterizable structural (a) and behavioral (b) view of this pat-
tern for encrypted communications. The top of Fig. 2(a) shows the dependencies
of the pattern with the architectural elements of the application architecture
(Application components). The bottom of Fig. 2(a) shows the encryption com-
ponent (EncryptionAlgorithm) with the provided functionality (Encryption
interface). The pattern captures the information that is required to incorporate
encryption into the interaction between two components. Throughout this paper,
we only use the structural view for the sake of simplicity, but patterns can be
complemented with additional views as shown in Fig. 2(b).

The partial or total instantiation of the parameters of this pattern, with infor-
mation obtained from the application’s requirements, allows correctly applying
encryption for straightforward communications — i.e., applying encryption to
two communicating components that use a common interface. However, this
pattern does not capture all the situations in which encryption may have to be
incorporated. For instance, it does not allow applying encryption in situations
that do not involve a communication, such as storing encrypted data in a device,
or applying encryption to interactions between two non-adjacent components.

24 J.-M. Horcas et al.

Fig. 3. Variability model for the encryption patterns and encryption functionality.

Thus, as it is impossible for only one pattern to cover all kinds of interac-
tions with the application, we propose modeling the variability of the security
patterns following a Software Product Line (SPL) [8]. Concretely, we extend
the variability model modeling the security functionality in our previous work
to enhance it with the variability of the security patterns. An SPL1 allows us
to specify the commonalities and variabilities of a product and then generate
specific configurations of the product according to different requirements.

Figure 3 shows a variability model that specifies, using features in an abstract
level (top of Fig. 3), the variability of the encryption patterns (left of the figure)
and the variability of the encryption functionality (right of the figure). Then,
specific models (e.g., the software architecture of encryption, the structural/be-
havioral patterns for encryption) are linked to the features of the abstract tree.
Note that using existing tools for SPL (e.g., CVL [10], SPLOT [11]), the architec-
tural models in the bottom of Fig. 3 will be automatically instantiated accord-
ing to the features selected from the abstract tree. Concretely, the bottom of
Fig. 3 shows two parameterizable encryption patterns and the model of the
encryption functionality (Encryption Functionality Model), including all the

1 http://www.sei.cmu.edu/productlines/.

http://www.sei.cmu.edu/productlines/

Automatic Enforcement of Security Properties 25

variable architectural elements. Notice that security properties are usually mod-
eled by much more complex architectures, though in this example we only rep-
resent the encryption algorithms for the sake of simplicity. For the Encryption
Functionality Model, a selection of a particular feature in the tree selects the
encryption algorithm that will be used. The multiplicity feature (Encryption
[1..*] in Fig. 3) indicates that both the algorithms and the patterns can be
instantiated multiple times in order to use different algorithms and patterns.

3.1 Resolving the Variability of the Application

Once all the variability of the security functionality and the patterns has been
defined in the SPL (only once) by the domain experts, the software architect
can use our approach to generate different configurations of the patterns and
the security functionality according to each application’s requirements.

A complete configuration of the variability model from requirements Req. 1,
2, and 3 of our case study is shown in Fig. 4. There are three instances of the
encryption feature: one for each requirement. The first instance (Encryption
for Req. 1) is configured with the RSA algorithm, and uses the Communication-
Encryption pattern instantiated as shown in Fig. 5(a), with the goal of encrypt-
ing the sensitive information exchanged between the client and the server host.
The second instance (Encryption for Req. 2) is also configured with the RSA
algorithm, but uses two patterns (CommunicationEncryption and Response-
Encryption) to apply encryption in both directions of the communications
between the components EPaymentServer and BankTransaction of the same
host (E-PaymentServer). Since all information exchanged between these two
components is required to be encrypted, no information regarding the type of
the data, nor the interface, methods, etc. is provided by the software architect.
Finally, the third instance (Encryption for Req. 3) is configured with the AES
algorithm, and uses the StorageEncryption pattern in order to storage the
payment information in a secure way. In this case, the software architect has
not instantiated any parameter of the pattern, as shown in Fig. 5(b). This could

Fig. 4. Instance of the variability model for the encryption functionality and patterns.

26 J.-M. Horcas et al.

Fig. 5. Instances of the encryption patterns for (a) Req 1. and (b) Req. 3.

occur when the requirements do not provide enough information, the software
architect does not know how to interpret the requirements, or does not have
the required knowledge to instantiate the pattern. In this case our approach
identifies a larger set of join points and the software architect has to manually
select the correct ones. At least it knows all the matching points that need to
be considered.

The encryption patterns show the parameters that can be customized accord-
ing the application’s requirements. The patterns for applying encryption to the
communications (Communication Encryption Pattern) and to the storage of
information (Storage Encryption Pattern) are described in more details in
Fig. 5(a) and (b), respectively. Providing a value in the feature tree means
that this element in the pattern will be instantiated with the provided value.
For instance, to satisfy Req. 1, the software architect has instantiated the
Communication Encryption Pattern of Fig. 5 (a) with the following parame-
ters: the data type of the information to be encrypted (i.e., the PaymentMethod
type), and the identifiers of the client and the server hosts (E-PaymentClient
and E-PaymentServer). The following section explains how we correctly identify
the join points from the previously customized patterns in our approach.

Automatic Enforcement of Security Properties 27

4 Supporting the Composition Process

Once the variability model has been instantiated, now the security and the
application models are composed. To achieve this, the composition patterns
customized in the previous step are mapped on structures in the application
architecture by using M2M transformations. The mapping process can be used
in two complementary ways: (1) guiding the software architects in selecting the
correct join points, and (2) supporting them in verifying their choices of join
points.

4.1 Automatically Identifying the Join Points

In order to identify the join points where the customized patterns have to be
applied and guaranteeing that the final architecture satisfies the security require-
ments, the model transformations can be treated as a separate previous step to
the composition process. Before the composition process, checking each instan-
tiated pattern with our e-payment application architecture (Fig. 1) finds all pos-
sible matchings where the pattern can be applied (Fig. 6). The number of identi-
fied matchings directly depends on the number of parameters for which a specific
value was provided during the instantiation of the variability model.

For instance, the first instantiated pattern (Encryption for Req. 1)
matches the application model in the join points Req. 1. Matching 1 and
Req. 1. Matching 2 in Fig. 6. The software architect provided just the data
type to be encrypted (PaymentMethod) and the hosts’ information, while the con-
crete components where the encrypt and decrypt methods will be composed has

Fig. 6. Matchings for the encryption patterns in the e-payment architecture.

28 J.-M. Horcas et al.

been automatically identified. To satisfy Req. 2, two patterns were instantiated:
CommunicationEncryption and ResponseEncryption. Each of them matches
the application architecture in Req. 2. Matching 1 and Req. 2. Matching 2,
respectively. In this case, the identifiers of the two communicating compo-
nents were directly provided: the PaymentServer and the BankTransaction
components. All information exchanged between these two components will be
encrypted before sending and decrypted after being received. Finally, for Req. 3,
the StorageEncryption pattern was instantiated without specifying any para-
meters. This implies that there will be multiple matchings for this pattern, as
Req. 3. Matching 1 and Req. 3. Matching 2 in Fig. 6. Both matchings are cor-
rect for this pattern. However, Req. 3 only specifies that the payment card infor-
mation that is stored in the user’s device need be encrypted (Req. 3. Matching
1) and, thus, the information about the receipts of the transactions (Req. 3.
Matching 2) does not need to be encrypted. In such a case, we give the soft-
ware architect the opportunity to make an explicit choice of the matching, or to
instantiate the pattern again by providing more specific information such as the
type of data to be encrypted (e.g., the PaymentMethod in this case).

4.2 Verifying the Security Requirements

To demonstrate that the security functionality has been applied in the correct
way and places, the M2M transformations can be applied to a model where
the security model has already been composed with the application model. For
instance, when the join points were manually identified. The same instance of
the variability model shown in Figs. 4 and 5 can now be used to verify that the
security property was correctly added to all the matchings of the final application
model (the base application model composed with the security model). In our
case study, a software architect could verify whether the final application model
includes encryption in all the matchings shown in Fig. 6. Comparing the final
application model and the matchings, the software architect may realise that
encryption was not added to some of the identified matchings. This supposes
a hole in the security of the application, but it can be easily resolved accord-
ing to the information provided automatically by our approach. Thus, the tool
supporting the instantiation of the patterns can also be used to check that the
software architect has applied them in all the correct places.

5 Evaluation Results and Discussion

We have tested the validity of our approach by implementing the patterns and
M2M transformations using the Henshin transformation language [12].2 We have
used two case studies: the e-payment application used throughout this paper,
and an electronic voting application.3 In this section we qualitatively argue the
correctness, extendibility, and reusability of our approach.
2 They are available at http://150.214.108.91/code/interfacesfqa/tree/master.
3 http://inter-trust.eu/.

http://150.214.108.91/code/interfacesfqa/tree/master
http://inter-trust.eu/

Automatic Enforcement of Security Properties 29

Correctness. The correctness of our approach depends on the correctness of the
specification of the patterns and on the implementation of the M2M trans-
formations. The patterns and M2M transformations are formally modeled
conforming to a specific metamodel, so if the domain experts do their job
correctly, the identification and checking of the join points will also be correct.
Moreover, separately modeling the security functionality and the base appli-
cation considerably facilitates the verification of the security properties of an
application since a security expert can rely on the automatic output provided
by applying the patterns, instead of manually checking all the modules in the
base application to ensure that all security requirements have been correctly
enforced. Finally, our approach is able to ensure the level of security required
by an application even when the software architect is not completely aware of
the elements in the application architecture that are affected by the security
requirements, but is able to indicate at least, the structural patterns that
are affected by security (e.g., encrypt the communications between compo-
nents, or encrypt the data store in a data storage). In this case, our approach
identifies a larger set of join points because most of the pattern’s parameters
are not specified. We can ensure that all of them are correct. The software
architect then has two options: (1) add encryption to all the identified join
points. This will guarantee that the security of the application is ensured,
or (2) manually select a subset of them. In this case, our approach is not
responsible for the security gaps that may be introduced.

Extendibility. In this paper we have focused on the confidentiality property and
have shown in the SPL only the variability of the encryption algorithms. How-
ever, the SPL can be easily extended to cover more security properties such as
authentication, integrity, anonymity, etc. Moreover, the variability model can
consider any variable security functionality such as the management of the
keys for encryption or the passwords for the authentication concern, not just
the variation between algorithms. Note that although the intricacy of this
approach may seem inadequate for only adding encryption to an application,
our final goal is much more ambitious as this work is part of an approach to
separately modeling the variability of quality attributes [5]. Concretely, we
have an SPL modeling the variability of several quality attributes, not only
security (e.g., contextual help, persistence) and the approach presented in
this paper is applicable to all of them.

Reusability. Our approach improves the reusability of the security concerns by
modeling the security functionalities separately from the core functionality
of the application, from early stages. This reduces the coupling and increases
the cohesion of software architectures. Also, thanks to the combined use of
the separation of concerns and the SPLs, we can reuse the same security
functionality and patterns with different applications.

6 Related Work

Security is usually achieved in several ways, but most of the approaches present
security as a set of non-functional properties [6,9,13,14], instead of focusing on

30 J.-M. Horcas et al.

the functional part of the security concerns as we have done for confidentiality
in this paper. For instance, in [6], the authors present a systematic approach for
weaving non-functional requirements into software architecture using architec-
tural tactics similar to our composing patterns. However, we consider security as
extra-functionality that needs to be present as functional components inside the
application architecture to satisfy the requirements. So, we focus on the iden-
tification of the correct places where security must be incorporated, instead of
providing the systematic steps to perform the composition of the patterns, as
we also did in previous work on composing security functionalities [5,15].

Cuevas et al. [7] also describe a generic solution for non-security experts
using security patterns. The solution captures a security pattern that provides
access control to sensor data based on light-weight encryption and grant pro-
vision. No means of how and where applying encryption functionality to the
software architecture is described. Only the properties and functionalities that
are common to all implementations of the encryption-based access control are
captured using the security patterns, and thus, the customization of the patterns
is too limited because of the lack of variability. QADA [16] is a specific method
for designing SPL architectures by transforming systematic functionality into
software architectures, but this proposal does not explicitly take into account
the security requirements, so the semantic correctness of the final architecture
cannot be checked, in order to assure the quality of the system.

Another approach that separately models the security functionality from the
base application is CORE (Concern-Oriented REuse) [4]. Nevertheless, as the
other existing work [5–7,15], they do not provide mechanisms to guarantee that
security is deployed in all and correct places of the application architecture.

7 Conclusions and Future Work

In this paper we have presented an approach towards the automation of the
composition process between application and security models. Specifically, the
approach consists in modeling the variability of a set of patterns to incorporate
the security functionality in the correct places of the application architecture,
according to its requirements. This means that we provide the software architect
with support for automatically identifying the join points where the security
functionality has to be incorporated. So, instead of manually identifying the join
points, as existing approaches propose, the system offers the software architect a
set of join points. It also provides support to verify the correctness of a composed
application architecture, so that the requirements of the system can be assured.
As future work we plan to improve our approach by defining the patterns in terms
of a security conceptual model that will allow the join points to be selected based
on semantic instead of just syntactic information [17].

Acknowledgment. This work is supported by the project Magic P12-TIC1814 and
by the project HADAS TIN2015-64841-R (co-financed by FEDER funds).

Automatic Enforcement of Security Properties 31

References

1. Preda, S., Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J., Toutain,
L.: Model-driven security policy deployment: property oriented approach. In:
Massacci, F., Wallach, D., Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965,
pp. 123–139. Springer, Heidelberg (2010)

2. Ayed, S., Idrees, M.S., Cuppens-Boulahia, N., Cuppens, F., Pinto, M., Fuentes, L.:
Security aspects: a framework for enforcement of security policies using AOP. In:
SITIS, pp. 301–308 (2013)

3. Mouelhi, T., Fleurey, F., Baudry, B., Le Traon, Y.: A model-based framework
for security policy specification, deployment and testing. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 537–552. Springer, Heidelberg (2008)

4. Alam, O., Kienzle, J., Mussbacher, G.: Concern-oriented software design. In:
Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013.
LNCS, vol. 8107, pp. 604–621. Springer, Heidelberg (2013)

5. Horcas, J.M., Pinto, M., Fuentes, L.: An automatic process for weaving functional
quality attributes using a software product line approach. J. Syst. Softw. 112,
78–95 (2016)

6. Kim, S., Kim, D.K., Lu, L., Park, S.: Quality-driven architecture development
using architectural tactics. J. Syst. Softw. 82(8), 1211–1231 (2009)

7. Cuevas, A., Khoury, P.E., Gomez, L., Laube, A.: Security patterns for capturing
encryption-based access control to sensor data. In: SECURWARE, pp. 62–67 (2008)

8. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, New York (2005)

9. Schumacher, M., Fernandez, E., Hybertson, D., Buschmann, F.: Security Patterns:
Integrating Security and Systems Engineering. Wiley, Chichester (2005)

10. Haugen, Ø., Wasowski, A., Czarnecki, K.: CVL: common variability language. In:
Software Product Line Conference, SPLC, vol. 2, pp. 266–267 (2012)

11. Mendonca, M., Branco, M., Cowan, D.: S.P.L.O.T.: software product lines online
tools. In: Object Oriented Programming Systems Languages and Applications,
OOPSLA, pp. 761–762. ACM (2009)

12. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 121–135. Springer, Heidelberg (2010)

13. Yu, H., Liu, D., He, X., Yang, L., Gao, S.: Secure software architectures design by
aspect orientation. In: ICECCS, pp. 47–55 (2005)

14. Hafiz, M., Adamczyk, P., Johnson, R.E.: Organizing security patterns. IEEE Softw.
24(4), 52–60 (2007)

15. Horcas, J.M., Pinto, M., Fuentes, L.: An aspect-oriented model transformation to
weave security using CVL. In: MODELSWARD, pp. 138–147 (2014)

16. Matinlassi, M., Niemelä, E., Dobrica, L.: Quality-driven Architecture Design and
Quality Analysis Method: A Revolutionary Initiation Approach to a Product Line
Architecture (2002)

17. Pires, P.F., Delicato, F.C., Pinto, M., Fuentes, L., Marinho, É.: Software evolution
in AOSD: a MDA-based approach. In: CBSE, pp. 193–198 (2011)

Security and Privacy in Cloud
Computing

Towards a Model-Based Framework for Forensic-Enabled
Cloud Information Systems

Stavros Simou1(✉), Christos Kalloniatis1, Haralambos Mouratidis2,
and Stefanos Gritzalis3

1 Cultural Informatics Laboratory, Department of Cultural Technology and Communication,
University of the Aegean, University Hill, GR 81100 Mytilene, Greece

{SSimou,chkallon}@aegean.gr
2 School of Computing, Engineering and Mathematics, University of Brighton,

Watts Building, Lewes Road, Brighton, BN2 4GJ, UK
H.Mouratidis@brighton.ac.uk

3 Information and Communication Systems Security Laboratory,
Department of Information and Communications Systems Engineering,

University of the Aegean, GR 83200 Samos, Greece
sgritz@aegean.gr

Abstract. One of the most important challenges for software engineers is the
design and implementation of trustworthy cloud services. Information system
designers face an important issue, the design of cloud forensic-enabled systems
that could assist investigators solving cloud-based cyber-crimes. Although digital
forensics assists on this direction, limited evidence of cloud-based forensic
approaches exist. These approaches don’t support information systems devel‐
opers as they focus on the investigation only and also they don’t support modelling
potential cases of forensics investigations. This paper aims to fill this gap by
introducing a modelling language, presented in terms of a meta-model. Since most
respective efforts focus on the investigation part a thorough analysis and a sugges‐
tion of a generic cloud forensic process is included as the main input for designing
the proposed language.

Keywords: Cloud forensic framework · Cloud forensic process · Cloud forensic
meta-model · Digital forensic models · Cloud forensics

1 Introduction

Over the past years, cloud computing altered the way services are provided to users and
organizations. This is due to its high scalability and pay-per-use utility model. In January
2015, RightScale [1] conducted a Cloud Survey of the latest cloud computing trends
and revealed that cloud computing adoption continues to be a given, with 93 percent of
IT professionals reporting that they are adopting cloud services. International Data
Corporation [2] predictions for 2015, presented by Frank Gens, mention that cloud
services will remain a hotbed of activity in 2015 with $118 billion in spending on the
greater cloud ecosystem, growing to over $200 billion by 2018. Increasing interest in
use of cloud computing automatically means increasing interest on cyberattacks by

© Springer International Publishing Switzerland 2016
S. Katsikas et al. (Eds.): TrustBus 2016, LNCS 9830, pp. 35–47, 2016.
DOI: 10.1007/978-3-319-44341-6_3

perpetrators. According to PricewaterhouseCoopers [3], in 2015, there was an increase
of 38 % in detected information security incidents from the previous year and an increase
of 56 % in theft of hard intellectual property. A survey in December 2014 by Open Data
Center Analysis [4] revealed that the primary concern that slows cloud adoption remains
security, with more that 70 % of respondents supporting that. This creates the need for
information system engineers to design forensic-enabled services in order to resolve
cloud incidents (cyber-attacks) as fast and efficient as possible raising in parallel the
trustworthiness of the services provided. Conducting an effective cloud forensic inves‐
tigation requires, from an information systems development point of view, the support
of the designers in identifying requirements that will assist developers to build forensic-
enabled information system; this is an information system that its architecture supports
forensic investigation. While there are several research works in the field of digital
forensics, there are only few concerning cloud forensics. Moreover, the literature lacks
work to support software engineers in identifying forensic-related requirements for
information systems. For addressing the aforementioned gaps our work is concentrating
on the establishment of a common modeling language presented in terms of a meta-
model, which includes all necessary concepts for designing a cloud-forensic enabled
system. One of the main prerequisites for designing the meta-model was the under‐
standing of how cloud-forensic investigation is conducted. Since most of the research
efforts are concentrated on the investigation part this paper proposes a generic cloud
forensic investigation process in order to clarify all necessary activities required by the
investigators for fulfilling their task. The understanding of this process as well as an
extensive literature review on respective concepts and challenges for cloud forensics
presented in our previous work [5–7] assisted on the design of the proposed modeling
language.

The rest of the paper is organized as follows: Sect. 2 presents the cloud forensic
investigation process. In Sect. 3 the proposed meta-model is presented. In Sect. 4 a
running example for addressing the concepts of the meta-model is presented. Finally,
Sect. 5, concludes the paper by raising future research on this innovative research field.

2 A Process for Cloud-Forensic Investigation

After a thorough analysis [5–7] of the respective literature this paper proposes a generic
process for cloud-forensic investigation consisting of the following steps: Incident
Confirmation, Incident Identification, Collection-Acquisition, Examination-Analysis
and presentation. The proposed process is also illustrated in Fig. 2. Understanding the
cloud forensic investigation process is of vital importance in order to identify the key
factors that a modeling language aiming on modeling Cloud-Forensic enabled systems
must address.

2.1 The Process

Incident Confirmation. The first stage is the confirmation of the incident. An incident
may be detected by different sources such as an automated detection system,

36 S. Simou et al.

administrator, external actors, or accidentally. In the confirmation stage the protective
actors are made aware that an incident has detected and reported. According to Ciard‐
huain [8] the awareness stage need to be included because the events causing the inves‐
tigation may influence the type of investigation required. The people responsible for the
safety (protective actors) need to be informed about the malicious action and start
searching the incident using all available resources to realize what it concerns. It can be
a breach on confidential data, stolen information, a DDOS attack, trafficking illegal
content, etc. Protective actors should be able to understand the nature of the incident
and decide if they are willing to proceed with an investigation or not. Their decision
involves different factors such as the criticality and severity of the incident, the infection
(damage can cause), the cost and the availability on human resources. Kohn [9], states
that “the detected incident should be confirmed by some other source before action is
taken towards an incident response”. Once the incident is confirmed, protective actors
need to notify and inform all the stakeholders involved in the investigation. Application
of warranty should be prepared and appropriate authorizations need to be obtained in
order to grant permissions to different stages of the investigation. On the other hand, if
the incident does not impose an immediate threat to organizations, or public security
and it can be solved by the inside, then, the investigation is not initiated.

Incident Identification. The next step is to identify all relevant assets (software, hard‐
ware and data) that may contain potential evidence, to build a case. According to [10],
identification is the “process involving the search for recognition and documentation of
potential digital evidence”. Protective actors need to determine the type of crime and
what type of assets are used. Protective actors also need to identify the assets (potential
evidence), the location of the incident, the malicious actor’s resources and the cloud
provider. An important concern is the trustworthiness of the involved CSP. As Zawoad
[11] mentioned, most of the existing work on cloud forensics is taking a priori that CSPs
are trusted entities and honest in a cloud investigation. “Trust must be managed through
detailed Service Level Agreements (SLAs) with clear metrics and monitoring mecha‐
nisms and clear delineation of security mechanisms” [12]. Once the incident is
confirmed, an investigation team should be formed consisting of people with special
skills in cloud environments, such as legal advisors, experienced technicians and law
officers. Warrant permissions to different stages of the investigation should be granted.
All the actions taken should be recorded and documented. A proper documentation can
be very helpful in the next stages of the investigation and in parallel it can maintain the
chain of custody. Protective actors also need to consult previous cases and all the action
plans performed during their training in order to prepare and deploy their strategy. Initial
planning is based on respective older documentation and policies. Authorizations should
be obtained to carry out the investigation and resources need to be identified. Resources
include the personnel (actors) that will form the team to cope with the investigation, the
methods and procedures that they will adopt and the tools they will use to identify the
potential evidence. An actors list, assets list, system information report, time plan,
acquisition plan and action plan (risk assessment plan) will be produced and recorded
to maintain the chain of custody. Finally, the Service Level Agreement (SLA) between

Towards a Model-Based Framework for Forensic-Enabled Cloud Information 37

CSPs and cloud consumer should be reviewed by the actors to understand technical and
legal terms.

Collection – Acquisition. After identifying the assets and their location, the collection
and acquisition process follows. The goal of this phase is to obtain the potential evidence.
Depending on specific factors such as the kind of potential evidence, the criticality of
the system or the legal requirements, the actors should decide what type of method must
be used to extract them. In an ongoing cloud investigation, the impact for seizing hard‐
ware equipment cannot be measured; hence, in most of the cases, acquisition method
should be used. [10], defines collection as the “process of gathering the physical items
that contain potential digital evidence”, meanwhile, acquisition is defined as the “process
of creating a copy of data within a defined set”. The methods of collecting data are either
static or live. In the first case, the process is straightforward; seizing the items and
removing them to a forensic lab for further examination. In the second case, the systems
are running and the collection is performed on a system in running state. This involves
an image or a snapshot acquisition that it can obtain useful information about registry
entries, temporary files, memory, running processes, log entries, cache, etc. According
to [13], “the copy created during acquisition can range from the forensic image of a hard
drive to a copy of the contents of a server’s memory to the logical contents of an indi‐
vidual user’s email box”. Pichan [14], states that for the cloud a series of snapshot images
over a period of time should be taken in order to provide all the information regarding
changes. During the collection-acquisition stage specific resources will be used. This
involves well-trained personnel (internal or even external actors), special tools for cloud
extraction data and up-to-date methodologies/processes such as protection mechanisms
and action plans. Using the appropriate resources, protective actors aim to obtain both
volatile and non-volatile potential evidence, in a forensically sound manner. The
acquired assets should be securely stored for further analysis. The acquired evidence
should be well-documented and checked for their integrity using hash methods and
algorithms in order to discover any future alteration.

Examination – Analysis. Once the acquired data has been stored in a safe and secure
storage a number of identical copies to the original data should be produce in order the
protective actors to work with. This process involves two different sub-processes:
evidence examination and evidence analysis. According to NIST [15], examination is
defined as “the involvement of forensically processing large amounts of collected data
using a combination of automated and manual methods to assess and extract data of
particular interest, while preserving the integrity of the data” while analysis is defined
as “the process to analyze the results of the examination, using legally justifiable
methods and techniques, to derive useful information that addresses the questions that
were the impetus for performing the collection and examination”. In order to go into a
forensic examination, protective actors should obtain a high level overview of the terrain
and form a strategy; otherwise, delays might occur when unforeseen but preventable
problems are encountered. This phase “is an important step for data collected from a
cloud computing environment as the data is unlikely to be stored and collected in a form
which permits immediate forensic analysis” [16]. Technician examiners should be

38 S. Simou et al.

informed by the questions and priorities that protective actors developed during their
initial planning [17]. On the other hand, examiners should review previously encoun‐
tered cases and training plans to find patterns that can help reduce the time of the exami‐
nation and develop their action plan. The enormous amount of data collected in the
previous stage should be converted into manageable size and form for future analysis
[18]. Due to the volume and complexity of data stored on digital devices, examiners
should take decisions on what methods and tools should use in order to focus on the
relevant data [19]. Examiners should search for timestamps, usernames and passwords,
particular keywords using filters, etc. During analysis, actors should determine the
significance of the data in order to transform them into evidence. Encrypted data should
be processed and analyzed and the results will be used to reconstruct the timeline. Meta‐
data from the examination phase will be analyzed and correlated to the potential
evidence. Also, “metadata and other forms of audit data must be properly kept and made
available when requested” [16]. The tools used will permit analysts to group related
events into meta-events [15]. This process may perform several iterations to support the
investigation depending on the evidence during the analysis phase. It could iterate back
to the collection-acquisition or even identification process.

Presentation. The last stage is the presentation of the evidence selected during the
investigation. [20], states that presentation process involves three steps in order to ensure
a successful conclusion to the investigation; these are case preparation, case presentation
and evidence preservation. Experts should be prepared to confront the jury who lacks
knowledge of cloud computing and try to present the evidence collected in a language
that anyone can understand. [15], uses the word reporting for this process and defines it
as “the process of preparing and presenting the information resulting from the analysis
phase”. During presentation, the personnel responsible for presenting the respective
report should be well prepared to explain in a logical and understandable way the
preserved and documented evidence. The implemented reports along with the supporting
materials concerning the chain of custody of the evidence should be submitted to the
court of law. At the end of the trial, the evidence and the documentation should be
carefully stored and secured in order to be used either in case of an appeal or for future
purpose.

Concurrent Activities. Some activities are running in parallel with the aforementioned
stages. These are the preservation of the evidence, documentation and preparation
(training and planning). In a cloud environment, the challenge is how to preserve the
data and then determining whether the existing approaches of measuring data integrity
are applicable or not [21]. To ensure that the integrity of evidence and the chain of
custody are maintained throughout the investigation, this activity should be running in
parallel with all the stages of the aforementioned process. The same applies for the
documentation activity. For conventional forensic process, [22] defines chain of custody
as “a roadmap that shows how evidence was collected, analyzed and preserved in order
to be presented as evidence in court”. Braid [23], states, that the evidence must meet
five criteria in order to be used and support a trial, these are: admissible, authentic,
complete, reliable and believable. To preserve the integrity of the evidence, maintain

Towards a Model-Based Framework for Forensic-Enabled Cloud Information 39

the authenticity and the chain of custody a number of requirements need to be produced,
such as reports (handling, methodology, storage, etc.), lists (tools, actors, procedures,
etc.) and logs (activity logs). Any change that will produce a different result should be
recorded. According to Prayudi [24] protective actors are facing a serious problem in
the chain of custody related to the documentation of the evidence. This is due to tremen‐
dous amount of data and the distributed cloud environment that require many different
concepts and entities to handle the evidence. The main objective of the documentation
is to keep the investigation proper documented in order to increase the probabilities of
winning a case in a court of law. The main objective of preparation (training and plan‐
ning) activity is to prepare and ensure that personnel, operations and infrastructures are
able to support an investigation in case of an incident [25]. A well-organized preparation
can improve the quality and availability of digital evidence collected and preserved,
while minimizing cost and workload [26]. Training plans will be used as input in order
to organize and prepare the resources of the investigation. SLAs are contracts providing
information on how a cloud forensic investigation will be handled, usually signed
between consumers and CSPs [27]. Well-written and robust SLAs should be considered
in order to provide technical and legal details about the roles and responsibilities between
the CSP and the cloud customer, security issues in a multi-jurisdictional and multi-tenant
environment in terms of legal regulations, confidentiality of customer data, and privacy
policies.

3 Meta-Model

In this section a revised meta-model from our previous work [7] is being introduced.
The goal of the specific meta-model is to present all necessary concepts that will assist
the designers in modeling all respective aspects when designing a cloud forensic enabled
system/service.

The forensic investigation process is initiated whenever an incident occurs. Once the
incident is brought to investigators’ attention the forensic investigation process is initi‐
ated. Malicious actors are the ones introducing an incident and protective actors are
people investigating it and trying to find a solution. On the other hand, whenever there
is an attack there is always a target (victim). In cloud forensics, targets are usually indi‐
viduals, organizations, companies, etc.

Malicious actors use Cloud Service Providers’ services to launch their attacks hidden
behind anonymity. CSPs major concern is to rent as many services to clients. So far we
distinguished four different actors involved in a cloud forensic investigation: malicious
actors, protective actors, cloud provider and the victim. An incident most of the times
affects one target (i.e. user or machine) and in parallel introduces goals (to solve the
incident, find perpetrators, etc.). All actors use resources (personnel, tools, trainings
plans, methods, etc.) either to create the incident or to resolve it. The resources that can
be used related to personnel are the technicians (provider, protective or victim), the law
persons and anyone who will work on the case. On the other hand, actors develop strategy
concerning decisions they have to take, based on the training, planning and preparation
activities. Planning and organizing the steps an actor will make in case of an incident,

40 S. Simou et al.

is very productive when the time comes. A well-organized preparation can improve the
quality and availability of digital evidence collected and preserved, while minimizing
cost and workload [26]. Developing an incident response plan ensures that it was taken
under consideration all possible calculated risks [26]. Policies and procedures should be
clearly defined and as many likely scenarios should be considered and tested. To support
the plans, actors need to have skilled and experienced personnel. Training plays a vital
role to all investigations, by minimizing risks and mistakes. CSPs should be responsible
to assist and help practitioners and consumers with all the information and evidence
found in their infrastructures. They should be willing to provide the right access to
potential evidence shortly after a request has been placed, without compromising the
privacy and security of their tenants. In other words, CSP is the one who controls all the
assets during a forensic investigation. There are three types of assets; hardware, software
and data. After collecting the assets using appropriate resources, will lead to the iden‐
tification of useful evidence. Examining and analyzing the assets with the use of software
tools investigators can find evidence to build a case in the court of law. The types of
assets that can be transformed to evidence include but are not limited to remote
computers, hard discs, deleted files, times and dates associated with modifications,
computer names and IP addresses, usernames and passwords, web server logs, windows
event logs, registry entries and temporary files, browser history, temporary internet files
and cache memory, etc. Assets related to cellular phones could be SIM cards, call logs,
contacts, SMS and MMS, calendar, GPS locations and routes. The main objective of
documentation concept is to keep the investigation proper documented in order to
increase the probabilities of winning a case in a court of law or in an internal investi‐
gation. Documentation at the early stages of the incident also helps to keep track of all
the actions have been taken and to proceed with different techniques. Any risk analysis
or assessment tests performed during the training and preparation should be documented
in order to assist the team. All tools, processes, methods and principles performed should
be documented properly in order to maintain the chain of custody. Any changes made
to the evidence should be also recorded. According to Grispos [28], “a properly main‐
tained chain of custody provides the documentary history for the entire lifetime of
evidence discovered during an investigation”. To present the evidence in a court as
admissible, all the parties (staff, CSPs, third parties) conducted the investigation should
record their actions through logs and notes e.g. who handled the evidence, how was it
done, did the integrity of the evidence maintained, how was it stored, etc. The last
concept identified in the meta-model is the verdict of the jury (the closure). This concept
is related to the evidence and in particular with their presentation. When the verdict is
announced, the incident either is resolved or an appeal follows. Either way, the strategy
should be revised to identify areas of improvement and review methodologies and
procedures. Figure 1 summarizes the critical components of the model for assisting cloud
forensic process.

Towards a Model-Based Framework for Forensic-Enabled Cloud Information 41

Fig. 1. Process for cloud forensic investigation

Fig. 2. Meta-model for assisting a cloud forensics process

42 S. Simou et al.

4 Running Example

For verifying the applicability of the aforementioned meta-model a running example is
presented. Through this example a basic analysis is conducted for identifying that all
concepts presented are indeed the necessary ones required for describing a specific
forensic scenario. The words that match the proposed concepts of the meta-model are
marked in bold. The case deals with trafficking illegal digital material in cloud envi‐
ronment.

John, a malicious actor, opens an account with Microsoft Azure Cloud Service
Provider (CSP). He registers to use IaaS services. He creates a Virtual Machine (VM)
and a webserver where he uploads illegal content of photographs, videos, etc. using the
storage (hard disks), Azure is providing. All data is encrypted using cryptographic
function and anyone can download the material anonymously as long as is a registered
user. Once a day the VM is switched off resulting in the loss of data, leaving it to restart
from a clean state. Most of the times John pays the provider with a pay-safe or a pre-
paid card, thus his ID remains unknown. Protective actors’ primary purpose is to find
malicious actor and prosecute him.

Incident Confirmation - John (Malicious actor) is responsible for the initiation of
the incident (trafficking illegal content over the internet). The Cyber Crime Unit
(Protective actors) detects the illegal activity and brings the case into the head officer
to decide whether they are going to proceed into an investigation or not. The head officer
is informed about the type of incident and the available resources and takes the decision
to initiate the investigation.

Incident Identification - John uses the cloud, so protective actors locate the Cloud
Provider that accommodate malicious actor’s servers and prepare an application of
warranty. In parallel a special trained team responsible for the incident is formed
consisting of IT and law officers. Once the warrant permission is granted, a commu‐
nication with CSP is established and is being asked to preserve the data, through
procedures, which do not suspect the malicious actor. At the same time, protective
actors search for previous similar cases to identify any common patterns working in
parallel on the investigation strategy by setting the goals and their initial plan. The
identification of the malicious actor’s IP address is unsuccessful, due to the third coun‐
tries proxy servers. Using CSP’s assistance, protective actors try to find more evidence
such as card payment information, cloud providers’ subscriber id’s, access logs,
NetFlow records, webserver virtual machine and cloud storage data [29]. Any
CSP’s personnel involved in the investigation and their actions are recorded and
documented according to the data preservations procedures and principles. Also, a
research is conducted by protective actors to identify the source of the evidence and
assets, such as computers, laptops, mobiles, etc. Once system information and poten‐
tial evidence have been identified with forensic tools, protective actors start to imple‐
ment the acquisition plan and produce an action plan, time plan, actors’ and assets’
lists. Due to the fact that the CSP is operating in a different country and the data are
stored in data centers geographically spanned in various locations, proper procedures
need to be followed to cope with the different jurisdictions. Trained law officers, speci‐
alized on legal issues, are involved.

Towards a Model-Based Framework for Forensic-Enabled Cloud Information 43

Collection–Acquisition - Once the remaining issues relating to jurisdiction have
been resolved, the CSP assigns an experienced and skilled technician to produce an
exact copy of all data of the original media (hard disk) that is under the supervision of
the protective actor, using appropriate software such as the EnCase or FTK. The tools
are part of the resources being used to investigate the incident. This operation is followed
according to the training scenarios that took place during the preparation/training and
takes under consideration the acquisition plan. A proper forensic image contains volatile
evidence, metadata, such as, hashes and timestamps and it compresses all empty
blocks. Then, the technician verifies the image for integrity and authenticity of data
by creating MD5 hash values. These tests reveal any alteration of the evidence, in order
to use the evidence in a court of law, through forensically acceptable procedures. The
problem identified in this process is whether the hired technical staff of the cloud
provider has the necessary knowledge and training to properly manage forensic evidence
collected from the malicious actor’s assets and how trustworthy the whole process is
mainly against intentional or accidental data alteration. The chain of custody could be
considered to be violated with negative results. The entire process of creating the image
should be documented in detail, presenting the exact methods and tools (resources) that
have been used, the produced outputs and the results, a methodology report, the tech‐
nical knowledge of the personnel responsible for the creation, the supervisor’s position
and any other relevant detail that will help in a lawsuit. With the completion of the
controls, the provider sends the image and all data collected to protective actors for
examination in order to carry on with the investigation.

Examination–Analysis - Once protective actors receive the VM image and respec‐
tive data, new checks and controls are taking place to ensure the integrity and validity
of the assets. Two identical copies are produced to work with and the original one is
stored in a secure place with limited access to the head of the investigation. Using
appropriate resources (software tools), data is being analyzed for any useful information
such as files containing photos, videos and sounds, event logs, IP addresses, time‐
stamps, etc. At this point, protective actors realize that data is encrypted and a search
for finding and identifying decode keys is starting. With Azure, where the location of
applications and data is abstracted, storing a public key in cloud makes it very difficult
to find and retrieve it. File system and windows registry is also analyzed. Time is
valuable and crucial during an investigation and it is directly related to the amount of
data to be analyzed. Let us assume that the CSP managed to produce 20 MB of event
logs, 150 MB from NetFlow records, 50 GB of VM snapshot and 1 TB of data. The
protective actors load the VM snapshot to be able to get more information regarding
the structure of the web site and the encryption methods used. The personnel responsible
for analyzing the data follows an action plan designed mainly from previous cases. After
a thorough investigation protective actors manage to locate and retrieve the decoding
keys and the analysis of 1 TB data is starting in order to reveal any evidence. A precise
timeline with evidence related to the investigation is produced. From the examination
of the evidence, protective actors manage to trace malicious actor’s IP address. Reports
are being produced and handled with all the evidence and techniques followed. The
reports contain information about the CSP, the persons involved in the investigation,
evidence analysis, methods and techniques followed, respective findings and all

44 S. Simou et al.

technical terms used. A final report is produced by the head of the investigation and
presented to the legal authorities.

Presentation - All the stages followed during the above mentioned investigation
have been well documented in accordance with forensic principles and procedures, in
order to ensure the integrity and the validity of the evidence and to preserve the chain
of custody. Before the presentation all evidence, reports, resources used, have been
examined thoroughly and tasks have been assigned to experienced personnel who will
present the case. Whatever the outcome (verdict) of the trial is, all the investigation is
reviewed from the start and the necessary updates have been recorded. Then the case
is closed and the documentation is stored in a database for future use and training
purposes.

5 Conclusions

Undoubtedly, cloud environments are attracting malicious actors to take advantage of
the new technology for their criminal activities. Developing cloud services that will
assist investigators resolving cyber crime incidents is of vital importance. This work is
an initial effort towards this direction. Specifically in this paper a conceptual meta-model
was presented in order to deal with the analysis and prospective modeling of the basic
concepts a forensic-enabled cloud system. The presentation of a cloud forensic inves‐
tigation process was crucial for identifying the key aspects of the meta-model in addition
to our findings from our previous work on cloud forensics. This paper is an initial step
towards the construction of a Cloud Forensic Framework (CFF) that will contain the
proposed meta-model as well as a process and the respective design models and tools
for assisting designers to reason about the development of forensic enabled cloud
systems in order to raise users’ trustworthiness on the delivered cloud services.

References

1. RightScale 2015, State of the Cloud Report. http://assets.rightscale.com/uploads/pdfs/
RightScale-2015-State-of-the-Cloud-Report.pdf. Accessed Mar 2016

2. IDC Predicts the 3rd Platform. https://www.idc.com/getdoc.jsp?containerId=prUS25285614.
Accessed Mar 2016

3. The Global State of Information Security® Survey 2016. http://www.pwc.com/gx/en/issues/
cyber-security/information-security-survey.html. Accessed Mar 2016

4. Open Data Center Alliance Cloud Adoption Survey – 2014. http://www.
opendatacenteralliance.org/docs/2014MemberSurvey04.pdf. Accessed Mar 2016

5. Simou, S., Kalloniatis, C., Kavakli, E., Gritzalis, S.: Cloud forensics: identifying the major
issues and challenges. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos,
Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 271–284. Springer,
Heidelberg (2014)

6. Simou, S., Kalloniatis, C., Mouratidis, H., Gritzalis, S.: Towards the development of a cloud
forensics methodology: a conceptual model. In: Persson, A., Stirna, J. (eds.) CAiSE 2015
Workshops. LNBIP, vol. 215, pp. 470–481. Springer, Heidelberg (2015)

Towards a Model-Based Framework for Forensic-Enabled Cloud Information 45

http://assets.rightscale.com/uploads/pdfs/RightScale-2015-State-of-the-Cloud-Report.pdf
http://assets.rightscale.com/uploads/pdfs/RightScale-2015-State-of-the-Cloud-Report.pdf
https://www.idc.com/getdoc.jsp?containerId=prUS25285614
http://www.pwc.com/gx/en/issues/cyber-security/information-security-survey.html
http://www.pwc.com/gx/en/issues/cyber-security/information-security-survey.html
http://www.opendatacenteralliance.org/docs/2014MemberSurvey04.pdf
http://www.opendatacenteralliance.org/docs/2014MemberSurvey04.pdf

7. Simou, S., Kalloniatis, C., Mouratidis, C., Gritzalis, S.: A meta-model for assisting a cloud
forensics process. In: Lambrinoudakis, C., Gabillon, A. (eds.) CRiSIS 2015. LNCS, vol. 9572,
pp. 177–187. Springer, Heidelberg (2015)

8. Ciardhuáin, S.Ó.: An extended model of cybercrime investigations. Int. J. Digit. Evid. 3(1),
1–22 (2004)

9. Kohn, M.D., Mariki, M.E., Jan, H.P.E.: Integrated digital forensic process model. Comput.
Secur. 38, 103–115 (2013)

10. ISO/IEC 27037, Information Technology – Security Techniques – Guidelines for
Identification, Collection, Acquisition and Preservation of Digital Evidence. http://
www.iso.org/iso/catalogue_detail?csnumber=44381. Accessed Mar 2016

11. Zawoad, S., Hasan, R., Skjellum, A.: OCF: an open cloud forensics model for reliable digital
forensics. In: 8th International Conference on Cloud Computing (CLOUD), pp. 437–444.
IEEE, New York (2015)

12. Simpson, W.R., Chandersekaran, C.: Cloud forensics issues. DTIC document, Institute of
Defense Analysis (2014). https://www.ida.org/~/media/Corporate/Files/Publications/
IDA_Documents/ITSD/2014/D-5133.ashx. Accessed Mar 2016

13. Cloud Security Alliance: Mapping the Forensic Standard ISO/IEC 27037 to Cloud
Computing. CSA Incident Management and Forensics Working Group (2013). https://
downloads.cloudsecurityalliance.org/initiatives/imf/Mapping-the-Forensic-Standard-ISO-
IEC-27037-to-Cloud-Computing.pdf. Accessed Mar 2016

14. Pichan, A., Lazarescu, M., Soh, S.T.: Cloud forensics: technical challenges, solutions and
comparative analysis. Digit. Investig. 13, 38–57 (2015)

15. Kent, K., Chevalier, S., Grance, T., Dang, H.: Guide to integrating forensic techniques into
incident response. NIST Special Publication 800-86 (2006)

16. Martini, B., Choo, K.K.R.: An integrated conceptual digital forensic framework for cloud
computing. Digit. Investig. 9(2), 71–80 (2012)

17. Casey, E., Katz, G., Lewthwaite, J.: Honing digital forensic processes. Digit. Investig. 10(2),
138–147 (2013)

18. Agarwal, A., Gupta, M., Gupta, S., Gupta, S.C.: Systematic digital forensic investigation
model. Int. J. Comput. Sci. Secur. (IJCSS) 5(1), 118–131 (2011)

19. Williams, J.: ACPO Good Practice Guide for Digital Evidence Version 5.0. Association of
Chief Police Officers (2011). http://www.dcs.kcl.ac.uk/staff/richard/7CCSMCFC/ACPO-
gpg-digital-evidence-v5.pdf. Accessed Mar 2016

20. von Solms, S., Louwrens, C., Reekie, C., Grobler, T.: A control framework for digital
forensics. In: Olivier, M., Shenoi, S. (eds.) Advances in Digital Forensics II, vol. 222, pp.
343–355. Springer, New York (2006)

21. Almulla, S.A., Iraqi, Y., Jones, A.: A state-of-the-art review of cloud forensics. J. Digit.
Forensics Secur. Law 9(4), 22–28 (2014)

22. Vacca, J.R.: Computer Forensics: Computer Crime Scene Investigation. Networking Series.
Charles River Media, Inc., Rockland (2005)

23. Braid, M.: Collecting electronic evidence after a system compromise. Australian Computer
Emergency Response Team (2001)

24. Prayudi, Y., Sn, A.: Digital chain of custody: state of the art. Int. J. Comput. Appl. 114(5),
1–9 (2015)

25. Carrier, B., Spafford, E.H.: Getting physical with the digital investigation process. Int. J. Digit.
Evid. 2(2), 1–20 (2003)

26. Beebe, N.L., Clark, J.G.: A hierarchical, objectives-based framework for the digital
investigations process. Digit. Investig.: Int. J. Digit. Forensics Incid. Response 2(2), 147–167
(2005)

46 S. Simou et al.

http://www.iso.org/iso/catalogue_detail%3fcsnumber%3d44381
http://www.iso.org/iso/catalogue_detail%3fcsnumber%3d44381
https://www.ida.org/%7e/media/Corporate/Files/Publications/IDA_Documents/ITSD/2014/D-5133.ashx
https://www.ida.org/%7e/media/Corporate/Files/Publications/IDA_Documents/ITSD/2014/D-5133.ashx
https://downloads.cloudsecurityalliance.org/initiatives/imf/Mapping-the-Forensic-Standard-ISO-IEC-27037-to-Cloud-Computing.pdf
https://downloads.cloudsecurityalliance.org/initiatives/imf/Mapping-the-Forensic-Standard-ISO-IEC-27037-to-Cloud-Computing.pdf
https://downloads.cloudsecurityalliance.org/initiatives/imf/Mapping-the-Forensic-Standard-ISO-IEC-27037-to-Cloud-Computing.pdf
http://www.dcs.kcl.ac.uk/staff/richard/7CCSMCFC/ACPO-gpg-digital-evidence-v5.pdf
http://www.dcs.kcl.ac.uk/staff/richard/7CCSMCFC/ACPO-gpg-digital-evidence-v5.pdf

27. Aydin, M., Jacob, J.: A comparison of major issues for the development of forensics in cloud
computing. In: International Conference on Information Science and Technology (ICIST).
IEEE (2013)

28. Grispos, G., Storer, T., Glisson, W.B.: Calm before the storm: the challenges of cloud
computing in digital forensics. Int. J. Digit. Crime Forensics (IJDCF) 4(2), 28–48 (2012). IGI
Global, Hershey, PA, USA

29. Dykstra, J., Sherman, A.T.: Understanding issues in cloud forensics: two hypothetical case
studies. In: Conference on Digital Forensics, Security and Law, pp. 45–54. Richmond, VA
(2011)

Towards a Model-Based Framework for Forensic-Enabled Cloud Information 47

Modelling Secure Cloud Computing Systems
from a Security Requirements Perspective

Shaun Shei1(B), Christos Kalloniatis1,2, Haralambos Mouratidis1,
and Aidan Delaney1

1 School of Computing, Engineering and Mathematics,
Secure and Dependable Software Systems (SenSe),

Research Cluster, University of Brighton, Brighton, UK
{S.Shei,H.Mouratidis,A.J.Delaney}@brighton.ac.uk

2 Cultural Informatics Laboratory, Department of Cultural Technology
and Communication, University of the Aegean, Lesvos, Greece

chkallon@aegean.gr

Abstract. This paper presents a cloud modelling language for defin-
ing essential cloud properties, enabling the modelling and reasoning
about security issues in cloud environments from a requirements engi-
neering perspective. The relationship between cloud computing and secu-
rity aspects are described through a meta-model, aligning concepts from
cloud computing and security requirements engineering. The central con-
cept of the proposed approach is built around cloud services, where the
propagation of relationships from a social perspective, abstract software
processes and the foundational infrastructure layer are captured. The
proposed concepts are applied on a running example throughout the
paper to demonstrate how developers are able to capture and model cloud
concepts across multiple conceptual layers, facilitating the understand-
ing of cloud security requirements and the design of security-embedded
cloud systems to realise organisational needs.

Keywords: Cloud computing · Cloud security · Cloud security
requirements · Modelling language · Security requirements engineering

1 Introduction

Cloud computing enables the provisioning of a wide range of cloud services, deliv-
ered on a self-servicing basis for cloud users based on the concept of abstracting
physical and virtual computing resources. This paradigm offers seemingly unlim-
ited scalability, availability and flexibility through a pay-per-use model, where
users are able to select and deploy cloud services that satisfy their requirements
without worrying about how the cloud service is implemented or delivered. How-
ever in order to take advantage of these benefits, the distributed nature of the
involved technologies implicitly requires the outsourcing of business processes
and data to off-premise, third party providers. Thus the users are required to
sacrifice a degree of access and control over their data, relying on third party
c© Springer International Publishing Switzerland 2016
S. Katsikas et al. (Eds.): TrustBus 2016, LNCS 9830, pp. 48–62, 2016.
DOI: 10.1007/978-3-319-44341-6 4

Modelling Secure Cloud Computing Systems 49

providers to ensure that their data is kept secure and available. As the concept of
cloud computing evolves from utility services to the foundational focus of busi-
ness IT infrastructure, there is a clear need for ensuring the security of cloud
computing systems and maintaining service-provider transparency.

Cloud computing is an evolving term in which the core characteristics has
seen numerous reiterations, definitions and is over-saturated in terms of standard
definitions [1]. Producing a concrete meaning, reasoning or realisation of cloud
computing is hugely dependent on the sector and discipline; between industry,
academia, levels of abstraction and granularity, all parties attempts to provide
their own definitions [2]. Despite the perceived immaturity of the concept, specif-
ically concerning security, privacy and jurisdictional issues, organisations are
still integrating cloud computing as part of their business strategy [3,4]. Some
have even acknowledged the numerous issues but have opted to use the technol-
ogy regardless, citing the need to keep up with competitors and stay relevant
in today’s industry [5,6].

The primary challenge in cloud computing adoption is the lack of a sys-
tematic methodology to facilitate the understanding, reasoning and modelling
of non-functional aspects, specifically regarding security issues [7,8]. Combined
with a deploy-first, fix-later approach, this creates scenarios resulting in high
losses when deploying business systems to the cloud in terms of financial assets,
man-hours and reputation [9]. For example moving from a traditional IT envi-
ronment towards a cloud environment without adequate planning and under-
standing of the security issues creates systems that are insecure by design, that
is the system will inherit both traditional security issues in addition to cloud
specific issues. The result is insecure operational systems riddled with vulnerabil-
ities which requires constant patching and even redesigns, where the underlying
cause is the lack of a methodological approach for understanding and addressing
security issues during the system life-cycle. Thus there is a lack of a holistic
modelling language that captures user security requirements and cloud comput-
ing properties within a well-defined contextual environment, which satisfies the
demand for understanding and realising the requirements for secure cloud-based
systems [3,9,10].

In this paper we present a modelling language for defining cloud comput-
ing properties, based on capturing and modelling the security requirements of
organisational systems and providing case-by-case guidance towards deployment
properties in cloud environments. This work is part of an on-going research effort
to create a framework for holistically modelling secure cloud computing systems,
grounded in security requirements engineering and cloud computing security con-
cepts. The framework consists of the modelling language, a process to system-
atically apply the concepts to the system-under-design and a tool to facilitate
automated security requirement analysis. Our work benefits users involved in the
process of securing cloud computing systems, for example organisational stake-
holders that wish to migrate aspects of their business system to the cloud, pro-
viding guidance for security engineers modelling cloud environments or allowing
cloud users to understand the security properties of cloud systems. Therefore in

50 S. Shei et al.

the running example we introduce the users of our work as organisational stake-
holders and cloud security engineers under their employment. Our contributions
in this paper are:

– C1 : Definition of a cloud service to provide abstract and fine-grained descrip-
tion of cloud systems.

– C2 : Concepts required to holistically model a cloud computing environment
through a three layer approach which describes properties at the organisation,
application and infrastructure level.

– C3 : Holistic threat and vulnerability analysis through decomposition and
propagation of operationalised security constraints through separate or com-
positions of conceptual cloud layers.

The rest of the paper is structured as follows. A motivating scenario for migrat-
ing hospital processes to the cloud is presented in Sect. 2. The cloud modelling
language and cloud computing security concepts are defined in Sect. 3. In Sect. 4
we discuss the respective related work. Finally we conclude the paper in Sect. 5,
noting the on-going work and contributions.

2 Health-Care Running Example

The health-care industry is one example where business and organisational goals
are enacted through a complex environment, involving multiple facets of tech-
nology and stakeholders such as the exchange of data through disparate systems,
collaboration between geographically dispersed medical personnel and a rapidly
growing repository of electronic records and medical images [11]. Thus there is
a need to ensure the availability of medical assets, interoperability between col-
laborating health-care partners and reducing IT upkeep costs. However, due to
the sensitive nature of health-care data, there are rigorous federal regulations
such as the Health Insurance Portability and Accountability Act (HIPAA) in
the USA and the European Parliament and Council Directive 95/46/EC in the
EU surrounding security and privacy in data protection, processing and transit
practises. For example in the United States, administrators, doctors and nurses
in traditional health-care systems are responsible for ensuring strict HIPAA com-
pliance. However, one of the primary security concerns when moving health-care
processes to the cloud is the disseminated responsibility for compliance with key
regulations such as HIPAA, due to the unavoidable loss of control over valuable
assets and the reliance on third-parties to ensure secure practises are satisfied.

Our running example shown in Fig. 1 describes a scenario where one hospi-
tal wishes to partially offload their patient records management system to the
cloud, in order to improve the availability and interoperability of the records.
This information is captured using organisational goal models with existing secu-
rity requirements engineering approaches, in this example Secure Tropos [12].
The notation used in this scenario is based around goals represented through
rounded rectangles, security constraints represented through octagons, actors
represented through circles, resources represented through rectangles and the

Modelling Secure Cloud Computing Systems 51

Fig. 1. Simple organisational goal model of hospital processes.

dependency relationship represented through a half circle on the connector. This
model indicates the security requirements of actors based on security constraints
placed on goals. For example the actor “Patient” depends on the actor “Hos-
pital” to achieve the goal “G2 Update personal details”, where they place the
security constraint “Ensure confidentiality, integrity and availability holds” on
the depender actor “Hospital” while the security constraint “Ensure user access
isn’t compromised” is placed on the dependee actor “Patient” by the depender
actor. However this model is unable to capture cloud computing properties such
as cloud services, virtual machines or multi-tenancy.

3 Cloud Modelling Language

In this section we discuss the cloud computing paradigm and how we capture
the essential characteristics from a security requirements engineering perspective.
The National Institute of Standards and Technology (NIST) provides the follow-
ing definition for cloud computing: “Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction.”, where the cloud model is composed

52 S. Shei et al.

of “five essential characteristics, three service models, and four deployment mod-
els.” [13]. We are interested in modelling the service and deployment models, as
each service delivery model has a unique set of associated threats and vulnera-
bilities at the cloud level, while also posing a threat to existing traditional tech-
nologies in a cloud environment [14]. The cloud-specific security issues are based
on existing work, where our running example demonstrates several cloud threats
and vulnerabilities identified by Hashizume et al. [15]. We define our modelling
language through established concepts from software security, cloud comput-
ing and requirements engineering, combining knowledge from these domains to
describe security properties of cloud computing software systems. We follow the
Goal-Oriented Requirements Engineering (GORE) approach from the require-
ments engineering domain [16], where we argue that a cloud service embodies the
realisation of a goal. The proposed cloud meta-model is shown in Fig. 2, illustrat-
ing the relationships and attributes of concepts required to describe security in
cloud computing through a semi-formal UML notation. The meta-model guides
the process of modelling cloud computing systems, through the semi-automated
instantiation of concepts and attributes with optional user input to broadly
capture scenarios with security in mind. The conceptual model is divided in
three groups of concepts. The first group (mainly located on the left side of the

Fig. 2. The cloud meta-model showing the relationships between concepts.

Modelling Secure Cloud Computing Systems 53

meta-model) represents concepts relating to security requirements engineering.
The second group (central part of the meta-model) represents concepts for the
requirements engineering analysis whereas the third group (right part of the
meta-model) represents the cloud computing concepts. In the following subsec-
tions all respective concepts are described based on the aforementioned three
groups. For every concept a reference to the running example is provided for
better realising the proposed model.

3.1 Security Requirements Engineering Concepts

The proposed concepts are grounded in principles from the requirements engi-
neering and security requirements engineering domain [12,16–18], in order to
facilitate the construction of security-ensured software systems from abstract
operational needs. The security-oriented aspects of the modelling language are
defined below:

Actor: We represent stakeholders, entities or roles using the notion of an actor,
drawing from goal-based modelling approaches. The common categories of stake-
holders represented as actors are direct or indirect stakeholders, end-users of
the system, domain-specialists involved throughout the development process or
entities such as components of a system or a physical entity. Referring to the
health-care running example, we are able to identify several actors roles within a
generic hospital environment. Starting from the list of stakeholders, we identify
the notion of patients who wish to receive health-care from the hospital. For
example the actor entity A1: Patient in the health-care running example repre-
sents the patient role. Note that we define the patient as an entity, which refers
to the set of stakeholders playing the role of actors with the strategic intention
of receiving health-care. Thus our approach defines the notion of actors through
roles as opposed to an instantiation of a role, which provides a high-level descrip-
tion of entities in a system and the role they play in relation to other entities.
The entity A2: Hospital in the running example represents the hospital as a sys-
tem, for example the actor A1: Patient is interested in receiving health-care from
the actor A2: Hospital. This relationship is represented using the dependency
relationship from one actor to another based on a goal, in this case from A1:
Patient to A2: Hospital. Thus the A1: Patient depends on the A2: Hospital to
provide health-care, in which the strategic intent is captured through the notion
of an goal. Actors may have one or more strategic interests, which is expressed
through the use of the dependency relationship initiated from an actor entity to
a goal. The dependency relationship requires an actor as the dependee to initiate
the notation, a goal connected from the dependee to the depender and an actor
as the depender to complete the relationship.

Malicious Actor: This subset of actor represents a stakeholder with malicious
intentions, realised through attacks on the system to exploit vulnerabilities and
compromise assets. An example of a malicious actor named A4: Malicious Actor
is shown in the running example, where they pose the threat Customer-data
manipulation.

54 S. Shei et al.

Goal: While there is no uniform notion of a goal in requirements engineering,
the general description is a way to achieve different objectives. Thus our notion
of a goal is based on representing the strategic interests of stakeholders within
the context of a system. We do not explicitly represent goals in our cloud models,
instead we define a rule to transform goals into cloud services. Each goal belong-
ing to an organisational model is conceptually mapped as a cloud service entity,
thus we transform strategic needs from high-level requirements to a service-
oriented entity from a cloud computing perspective. In the health-care running
example, the goal “Receive health-care” captures the strategic needs of the actor
A1: Patient which should be achieved under the system. In the health-care exam-
ple, the goal “Receive health-care” has one initiating actor and is connected to
one terminal actor through a dependency relationship. This relationship indi-
cates that the actor A1: Patient depends on the actor A2: Hospital to achieve
the goal “Receive health-care”, which conceptually represents the responsibility
hospitals have for providing health-care to patients.

Threat: A threat embodies the concept of causing harm to an entity, in soft-
ware security this typically indicates gaining access to, modifying or damaging
assets. In the cloud computing context, threats may impact multiple abstract
layers. Referring to the running example, the threat Customer-data manipula-
tion is posed by a malicious actor, where the threat impacts both cloud service 1:
Patient Details Service and cloud service 2: E-prescription Service. The threat is
also realised through the Cross-site scripting and SQL injection attacks. Threats
are unaddressed if at least one vulnerability associated to the threat is not pro-
tected by a security mechanism. This is graphically indicated by a exclamation
mark inside a red circle, while the satisfaction attribute is flagged false for the
instantiated instance of the threat.

Security Constraint: This is a restriction related to security issues, such as
the established principles of confidentiality, integrity and availability (CIA). A
security constraint is placed from an actor to another actor based around one
constrained entity, in this case a goal. This relationship represents the security
needs of actors when achieving their goals, which in a cloud computing context
indicates security needs that cloud services are required to satisfy. In our running
example we have both satisfied and unsatisfied security constraints, respectively
indicated visually by a green circle enclosing the letter “s” and a red circle
enclosing an exclamation mark. The security constraint Correct credentials is
satisfied because it is enforced through a security objective, Ensure only user
groups with correct credentials are given access.

Security Objective: The security objective describes the conditions, criteria
and approaches to satisfy security constraints. A high-level description of the
security properties provides flexibility when choosing security solutions, as mul-
tiple security mechanisms can be implemented to realise the security objective.

Security Mechanism: A security mechanism represents standard security
methods for satisfying security objectives, which is described as a high-level
solution. In our running example, the security mechanisms Identity and access

Modelling Secure Cloud Computing Systems 55

management and Dynamic credentials implements the security objective Ensure
only user groups with correct credentials are given access. It is the security
experts responsibility for selecting and realising security mechanisms during the
implementation stage, where they decide the most suitable security mechanism
through our cloud models.

Vulnerability: This describes a weakness which allows an attacker to reduce a
system’s information assurance. An example of a vulnerability is Insecure inter-
face and APIs, which impacts both cloud service 1: Patient Details Service and
cloud service 2: E-prescription Service. The vulnerability can be protected by the
security mechanism Web application scanners, as seen in the running example
where the protected vulnerability is visually indicated as satisfied by the letter
“s” inside a green circle.

Attack: An attack embodies a specific method of carrying out a threat in order
to exploit vulnerabilities in the system. Cross-site scripting and SQL injection
are examples of attacks that exploit the vulnerability Insecure interface and
APIs, where they are both realised from the threat Customer-data manipulation.

3.2 Cloud Computing Concepts

In this section the concepts that are essential for capturing cloud computing
properties are presented, centred around the concept of cloud services which are
the basic type of resource in a cloud environment.

Cloud Service: A cloud service can be described as a set of six concepts:
capability, actor, resource, relationships, service model, deployment model. An
example of an instantiated cloud service is cloud service 1: Patient Details Ser-
vice, which has the cloud service description Patient Details Service, the end-user
dependency relationship from the actor A1: Patient, the service-provider depen-
dency relationship from the actor A2: Hospital, the managed relationship from
the actor A5: CSP, the requires relationship to virtual resource Patient Data,
the constraint relationship from the security constraints SC1: Keep information
CIA and SC2: Patient access not compromised, the SaaS service model and the
public deployment model.

Capability: A capability describes, at a high level, an atomic action that is
performed by a cloud service to produce a desired outcome. In our running
example we have not explicitly modelled capabilities, because the cloud services
cloud service 1: Patient Details Service and cloud service 2: E-prescription Ser-
vice both provide atomic capabilities. That is if a cloud service only provides
an atomic capability, the capability itself is the cloud service and is represented
as such. If a cloud service provides two or more capabilities, it is conceptually
a composite cloud service where each capability is explicitly represented as an
entity belonging to the specific cloud service.

Cloud Actor: A cloud service involves direct and indirect stakeholders, dis-
parately distributed throughout the cloud management levels. We define two
specialised roles of actors in the cloud, the cloud user and the cloud service
provider.

56 S. Shei et al.

Resource: Assets are represented through resources, which is essential for
understanding cloud computing systems and reasoning about security properties.
We define two subtypes of resources: Virtual Resource to represent information
and intangible data and Physical Infrastructure to represent tangible assets.
Physical Infrastructure is a conceptual container to hold Infrastructure Nodes,
which abstractly represents physical computing components such as processing
servers, data storage and networking connections.

Cloud Service Model: The cloud service provider provides a high-level
description of how a cloud service is delivered, which indicates the level of
control and the parties responsible for managing computing components. We
include in the model the respective cloud service models; Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS) [13].
It is necessary to model the cloud service models due to the impact of model-
dependent issues, such as threats which target physical components relevant only
to the IaaS model and vulnerabilities which apply to virtual machines in the SaaS
model. This also captures the level of control and responsibility of each actor
in relation to the interaction with cloud services, which provides transparency
and traceability. For example it is possible to indicate that a cloud provider
is responsible for managing physical components on a cloud service deployed
through a IaaS model, therefore they are responsible for security requirements
addressing threats on physical components. The cloud service user has the high-
est level of control in the IaaS model, a lesser degree of control for the PaaS
model and little to no control for the SaaS model. This is indicated through
the resources and configurations the user is responsible and has access to, given
a cloud service with a designated cloud service model. For example in the IaaS
model the cloud provider is responsible for providing and managing the low-level
components such as networking, storage, servers and configuring virtualisation
to ensure that users of the service are able to manage the high-level components
such as the operating system, application and data. Given the same cloud service
with a SaaS model, the cloud service user is therefore only responsible for using
the service where the cloud provider is responsible for configuring and managing
components at the IaaS and PaaS layers in order to deliver the service. e.g. The
cloud provider manages and configures virtual machines to ensure that the users
of the SaaS receives the same quality of service regardless of resource load or
storage limits.

Cloud Deployment Model: The type of deployment models are also neces-
sary for security reasoning. Thus we include the cloud deployment models as
public, private, community and hybrid [13]. The deployment model determines
the user group, level of access and accessibility of the cloud service. It also explic-
itly determines the physical location, ownership and management of computing
resources such as infrastructure and data.

Relationships: We propose five types of relationships that are required to cap-
ture interactions with cloud services:

– Dependency: One actor is dependent on another actor to deliver a cloud ser-
vice. The depender actor is either a cloud user or an end-user. The dependee

Modelling Secure Cloud Computing Systems 57

actor is a cloud service provider, who themselves can also be a cloud user. A
cloud user is an actor that uses an cloud service but has dependents, for exam-
ple A2: Hospital is a cloud service provider and cloud user because they pro-
vide the cloud service 1: Patient Details Service to the end-user A1: Patient,
but A2: Hospital uses the cloud service provider A5: CSP and is dependent
on them to provide components of the cloud service.

– Requires: One or more resources are required by a cloud service. For exam-
ple the cloud service Patient Details Service requires Virtual Resource: Patient
Data, indicating that the cloud service requires digital patient records to per-
form computing processes such as creating, editing and deleting data.

– Security Constraint: One or more security constraints are placed on a cloud
service. As explained in the security requirements concepts section previously,
this represents the security needs of stakeholders which has to be satisfied by
the cloud service.

– Manages: One or more actors are responsible for managing a cloud service.
We use the term manage to represent parties responsible for providing cloud
resources, configuring cloud components and ensuring security and jurisdic-
tional requirements are fulfilled. For example A5: CSP is responsible for man-
aging the IaaS, PaaS and SaaS layers of the cloud service Patient Details
Service, while A2: Hospital manages the SaaS layer of the same cloud service.
This represents that both A5: CSP and A2: Hospital share the responsibility
of ensuring security needs are met and enforced at the SaaS level, while only
the A5: CSP is responsible for the IaaS and PaaS layers.

– Impacts: Threats or vulnerabilities which impact the security properties of
a cloud service. These may target a cloud service, or individual capabilities
within a cloud service. For example the threat Customer-data manipulation
and the vulnerability Insecure interface and APIs target the cloud services
Patient Details Service and E-prescription Service, which indicates that any
entities encapsulated in the cloud services are indirectly impacted.

3.3 Cloud Environment Model

Reasoning about security in the cloud computing environment requires a more
detailed procedure due to the high complexity and its multi-parameter nature.
For assisting prospective users in modelling secure cloud services we have created
visual models of the system-under-design during our process based on the cloud
meta-model. The graphical notation of cloud security concepts and relationships
help facilitate understanding of complex cloud environments, where cloud secu-
rity engineers are able to holistically model and evaluate security properties of
cloud systems based on three conceptual layers at the organisational, application
and infrastructure level. Here we explain the cloud environment model through
the running example, instantiating concepts from our meta-model to create a
holistic cloud view as shown in Fig. 3. The novelty of the approach is based on
the three-layer view which assists designers in capturing the necessary concepts
for security reasoning holistically.

58 S. Shei et al.

Fig. 3. A holistic cloud view of the health-care running example.

Organisation Concepts: We describe the stakeholders on the organisation
layer in the cloud environment model, identifying the direct and indirect stake-
holders as actors through their relationship with cloud services. In our running
example we have identified five actors; the A1: Patient is an end-user of the
cloud service 1: Patient Details Service and cloud service 2: E-prescription Ser-
vice, A2: Hospital manages cloud service 1 and they are a cloud service provider
to A1: Patient and a cloud user to A5: CSP, A3: Pharmacy manages the cloud
service 2 and is a cloud service provider to A1: Patient and a cloud user to A5:
CSP, A5: CSP is a cloud service provider that manages both clouds services at
all three service levels and A4: Malicious Actor is a malicious actor which poses
a security threat Customer-data manipulation.

Modelling Secure Cloud Computing Systems 59

Application Concepts: This layer represents the abstract concepts for soft-
ware and applications in the system-under-design, centring around cloud ser-
vices, components interacting with cloud services and the security impacts. In
our running example we model two cloud services, the security issues impact-
ing them, the virtual resources they require and partial solutions for mitigation.
The service and deployment models of each cloud service determines the actors
that owns the cloud service, actors responsible for managing the cloud service,
security issues and propagation of dependencies. For example the cloud service
Patient Details Service uses a SaaS model and is deployed publicly, determin-
ing that the CSP actor A5: CSP is responsible for managing components on
all three service model layers (SaaS, PaaS, IaaS) while the actor A2: Hospital
manages the SaaS components. Customer-data manipulation is a cloud-specific
threat impacting all three service model layers [15], therefore the actors respon-
sible for the cloud services impacted by the threat will be held accountable for
deploying security mechanisms in order to mitigate identified threats. In this
case the Customer-data manipulation threat is realised through attacks Cross-
site scripting and SQL injection which exploit the Insecure interface and APIs
vulnerability, where the cloud security engineer modelling the system has identi-
fied a security mechanism Web application scanners to protect the vulnerability
and thus mitigate the underlying threat.

Infrastructure Concepts: We define this layer to abstractly model physical
components required to realise cloud computing services, which we capture as
infrastructure nodes belonging to one or more physical infrastructure contain-
ers representing IT infrastructure. In our running example, we model a single
physical infrastructure to represent one physical IT infrastructure owned and
managed by the CSP A5: CSP. The compute capabilities are enabled through
the abstract notions of a storage, compute and network entity, where they are
multi-tenant and geographically located in the USA. From these attributes we
can infer jurisdictional legislation such as the USA Patriot Act which applies
to all virtual resources residing on infrastructure physically located in the USA,
where multi-tenancy indicates that compute processes are physically shared with
one or more unknown cloud service users thus also violating HIPAA compliance.
In this scenario the cloud security engineer has a range of options for mitigating
these issues, one option is to change the service model of the cloud services to
IaaS and provision single-tenancy infrastructure nodes from a CSP geographi-
cally located outside the US, thus ensuring dedicated access to cloud computing
resources in order to comply with HIPAA regulations.

4 Related Work

Existing research in cloud security is primary focused on mitigating mechanisms
and software solutions at the implementation level, which targets software sys-
tems that are already implemented and operational [19]. While most work covers
multiple security sub-areas, they only target these cloud computing issues in iso-
lation, for example considering security properties in software systems or human

60 S. Shei et al.

factors on a social level but failing to provide direct correlations between the
conceptual layers required to fully capture cloud computing issues and indi-
cate impact on security requirements [7,20]. Li et al. provides a holistic security
requirements-eliciting approach towards socio-technical systems [21], however
this work lacks expressive power for capturing cloud computing-specific prop-
erties which is essential for representing cloud security issues, impact and mit-
igation. Beckers et al. provides a pattern-based approach for eliciting security
requirements and selecting security measures in a cloud computing context [22].
While they provide detailed descriptions of cloud components and properties
through their Cloud System Analysis Pattern (CSAP), they do not support
propagation of threats or directly model the correlation between security issues
and how they are addressed through the instantiation of solutions.

The proposed approach ensures that the system-under-design incorporates
security from the early requirements stage, thus addressing underlying vulner-
abilities and provides a foundation for implementing security mechanisms and
enforcing requirements. We achieve this by building upon existing work in secu-
rity requirements engineering that lacks the capability to capture or reason about
cloud-specific security issues from a holistic point of view [12,23]. This is achieved
through a systematic approach which describes and examines cloud computing
properties from three distinct but essential levels of abstraction, aggregating
layer-specific details to generate a holistic view of a cloud environment [9]. We
identify cloud-specific threats and the impact of attacks within the context of
the cloud computing system to elicit security requirements, which is realised
through cloud service configurations.

5 Conclusion

Currently there is a lack of a methodology offering systematic support for the
process of realising organisational and business needs security through the cloud
computing paradigm. Our work seeks to fill this gap by providing a methodolog-
ical approach for eliciting secure cloud environment needs from a requirements
engineering perspective, enabling developers to realise organisational needs on a
cloud computing context with security embedded in the process. For contribu-
tions C1 and C2 we have defined a language to capture cloud computing con-
cepts that enables the modelling of essential cloud properties required to describe
cloud services, which we argue represents both abstractly and through a fine-
grained perspective, the organisational needs and the relationships required for
achieving them. For C3 we provide a security-by-design approach using concepts
from security requirements engineering, allowing us to model and address cloud
security threats and mitigation mechanisms.

We are currently working on a framework to enable the automated trans-
formation of cloud security controls into security patterns, thus providing a
pattern library for applying security policies and mechanisms from a security
requirements perspective. Initial efforts have been taken to identify patterns
from several domains in the Cloud Controls Matrix (CCM) provided by the
Cloud Security Alliance (CSA).

Modelling Secure Cloud Computing Systems 61

References

1. Chen, Y., Paxson, V., Katz, R.H.: . Whats new about cloud computing security.
University of California, Berkeley, Report No. UCB/EECS-2010-5, 20 January 2010

2. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. ACM SIGCOMM Comput. Commun. Rev. 39(1), 50–55
(2008)

3. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing
The business perspective. Decis. Support Syst. 51(1), 176–189 (2011)

4. Horwath, C., Chan, W., Leung, E., Pili, H.: Enterprise Risk Management for Cloud
Computing. COSO, Hoboken (2012)

5. Merrill, T., Kang, T.: Cloud Computing: Is Your Company Weighing Both Benefits
& Risks? Ace Group, New York (2014)

6. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.
IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)

7. Sengupta, S., Kaulgud, V., Sharma, V.S.: Cloud computing security-trends and
research directions. In: 2011 IEEE World Congress on Services (SERVICES), pp.
524–531. IEEE, July 2011

8. Takabi, H., Joshi, J.B.D., Ahn, G.J.: Security and privacy challenges in cloud
computing environments. IEEE Secur. Priv. 6, 24–31 (2010)

9. Almorsy, M., Grundy, J., Müller, I.: An analysis of the cloud computing security
problem. In: Proceedings of APSEC 2010 Cloud Workshop, Sydney, Australia, 30th
November 2010

10. Armbrust, M., Fox, A., Grioffith, R., Joseph, A.D., Katz, R., Konwinski, A.,
Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)

11. Ahuja, S.P., Mani, S., Zambrano, J.: A survey of the state of cloud computing in
healthcare. Netw. Commun. Technol. 1(2), 12 (2012)

12. Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented extension of the
tropos methodology. Int. J. Softw. Eng. Knowl. Eng. 17(02), 285–309 (2007)

13. Mell, P., Grance, T.: The NIST definition of cloud computing (2011)
14. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models

of cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)
15. Hashizume, K., Rosado, D.G., Fernández-Medina, E., Fernandez, E.B.: An analysis

of security issues for cloud computing. J. Internet Serv. Appl. 4(1), 1–13 (2013)
16. Van Lamsweerde, A.: . Goal-oriented requirements engineering: a guided tour. In:

Proceedings of the Fifth IEEE International Symposium on Requirements Engi-
neering, pp. 249–262. IEEE (2001)

17. Yu, E.: Modelling strategic relationships for process reengineering. Soc. Model.
Requir. Eng. 11, 2011 (2011)

18. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
an agent-oriented software development methodology. Auton. Agents Multi-Agent
Syst. 8(3), 203–236 (2004)

19. Modi, C., Patel, D., Borisaniya, B., Patel, A., Rajarajan, M.: A survey on security
issues and solutions at different layers of cloud computing. J. Supercomput. 63(2),
561–592 (2013)

20. Iankoulova, I., Daneva, M.: . Cloud computing security requirements: a system-
atic review. In: 2012 Sixth International Conference on Research Challenges in
Information Science (RCIS), pp. 1–7. IEEE, May 2012

62 S. Shei et al.

21. Li, T., Horkoff, J., Beckers, K., Paja, E., Mylopoulos, J.: . A holistic approach to
security attack modeling and analysis. In: Proceedings of the Eighth International
i* Workshop (2015)

22. Beckers, K., et al.: A structured method for security requirements elicitation con-
cerning the cloud computing domain. Int. J. Secur. Softw. Eng. (IJSSE) 5(2), 20–43
(2014)

23. Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of security
requirements engineering methods. Requir. Eng. 15(1), 7–40 (2010)

Privacy Requirements

Bottom-Up Cell Suppression that Preserves
the Missing-at-random Condition

Yoshitaka Kameya(B) and Kentaro Hayashi

Department of Information Engineering, Meijo University,
1-501 Shiogama-guchi, Tenpaku-ku, Nagoya 468-8502, Japan

ykameya@meijo-u.ac.jp

Abstract. This paper proposes a cell-suppressionbased k-anonymization
method which keeps minimal the loss of utility. The proposed method
uses the Kullback-Leibler (KL) divergence as a utility measure derived
from the notions developed in the literature of incomplete data analysis,
including the missing-at-random (MAR) condition. To be more specific,
we plug the KL divergence into an bottom-up, greedy procedure for a
local recoding k-anonymization as a cost function which is efficiently
computed. We focus on classification datasets and experimental results
exhibit that the proposed method yields a small degradation of classifi-
cation performance when combined with naive Bayes classifiers.

Keywords: k-anonymity · Cell suppression · Missing-at-random
Condition

1 Introduction

Generally, in data mining, fine-grained datasets tend to produce sharper, and
accordingly, more useful results. However, when the datasets are human-related,
such fineness may lead to re-identification of a person and disclosure of his/her
privacy. Re-identification is not only possible from explicit identifiers but from a
combination of common personal attributes e.g. age and gender. Such attributes
are called quasi-identifiers or QIDs. In privacy-preserving data publishing [1,5,22],
we often modify QIDs so that both the risk of re-identification and the loss of util-
ity of the dataset are kept minimal at the same time.

k-Anonymity [16,18] is a well-known privacy requirement on a tabular
dataset that, for every combination of QIDs existing in a tuple, at least k − 1
other tuples must have the same combination of QIDs. Under k-anonymity with
a sufficiently large k, the risk of re-identification of a person will be small, since
its probability is at most 1/k. Modifying QIDs in the original dataset so that
k-anonymity is satisfied is called k-anonymization. k-Anonymity is attractive in
its simplicity and intuitiveness, but it is often quite costly in k-anonymization
to fully minimize the loss of the utility of the dataset. For instance, minimizing
the number of suppressed cells under k-anonymity is NP-hard [14].

Despite such a discouraging formal result, dozens of practical k-anonymization
methods have been proposed. One grouping criterion among these methods is the
c© Springer International Publishing Switzerland 2016
S. Katsikas et al. (Eds.): TrustBus 2016, LNCS 9830, pp. 65–78, 2016.
DOI: 10.1007/978-3-319-44341-6 5

66 Y. Kameya and K. Hayashi

range to which an anonymization operator is applied. In global recoding [2,13,
16,19], we replace all occurrences of a value with another general value, while in
local recoding [7,12,21], we just replace an occurrence of a value independently of
other occurrences. Cell suppression is a typical local recoding operator in which
we replace a cell value with a null value. One advantage of suppressing cell values
over generalizing them is that the former requires no hierarchical knowledge, and
another advantage is that there have been statistical tools including classifiers that
can work with suppressed (i.e. missing) data.

In this paper, we propose a cell-suppression based k-anonymization method
which keeps minimal the loss of utility using the notion from incomplete data
analysis, including the missing-at-random (MAR) condition [15,17]. Kifer and
Gehrke [11] formulated anonymized datasets in a probabilistic setting and intro-
duced as a utility measure the Kullback-Leibler (KL) divergence between two
empirical distributions, one from the original dataset and the other from the
anonymized one. One contribution of this paper is to justify their utility mea-
sure from the viewpoint of preserving the MAR condition. An underlying key
observation here is that anonymization is an artificial, explicit process that forces
the original dataset to be ambiguous or incomplete for avoiding re-identification,
whereas traditional incomplete data analysis deals with incomplete datasets as
they are, assuming a hidden generation process of the datasets [17]. Another con-
tribution is that we plug the KL divergence into an bottom-up, greedy procedure
for a local recoding k-anonymization [7,21] as a cost function which is efficiently
computed. We focus on classification datasets where different anonymizations
are clearly compared from the viewpoint of utility, though the proposed method
can also deal with non-classification datasets.

The rest of this paper is outlined as follows. First, we introduce several back-
ground notions and notations in Sect. 2. Then, Sect. 3 describes the proposed
method in detail. Experimental results are presented in Sect. 4. Section 5 con-
cludes the paper with some discussions on open problems and related work.

2 Background

2.1 Preliminaries

We begin by introducing some background notions and notations used in the
paper. The dataset we consider is a tabular classification dataset of size N with
M attributes. We also consider a null value ⊥j at the j-th attribute. In addition,
C is a set of pre-defined classes, and Vj is a set of discrete non-null values of the
j-th attribute. Then, a tuple is comprised of M attribute values and a class label
from C, i.e. it is an element of V ′

1 × V ′
2 × · · · × V ′

M × C, where V ′
j = Vj ∪ {⊥j}.

A tuple t is written as (y , c), where y of a vector (y1, y2, . . . , yM) of attribute
values. A dataset D is a multiset {t(1), t(2), . . . , t(N)} of tuples. Throughout the
paper, i indicates the index of a tuple in a dataset (1 ≤ i ≤ N), and j indicates
the index of an attribute (1 ≤ j ≤ M).

Suppressing a non-null attribute value is to replace it with a null value ⊥j . It
is obvious that suppression is exactly a generalization along a two-level hierarchy

Bottom-Up Cell Suppression Preserving the MAR Condition 67

where the top-level corresponds to ⊥j , and the bottom-level only includes raw
values from Vj . In incomplete data analysis [17], null or suppressed values are
called missing values. A tuple t = (x , c) is complete if it contains no missing
values, i.e. is an element of V1 ×V2 ×· · ·×VM ×C. A dataset is complete if it has
no incomplete tuples. For non-classification datasets, it is sufficient to consider
that C only contains one dummy class.

Given a complete dataset D, we may use statistics such as N(y , c) = |{t(i) ∈
D | t(i) = (y , c)}|, N(c) = |{t(i) ∈ D | t(i) = (·, c)}|, N(y) = |{t(i) ∈ D | t(i) =
(y , ·)}|, N(yj , c) = |{t(i) ∈ D | yj is the j-th attribute value of t(i) = (·, c)}| and
so on. In a probabilistic setting, we introduce a probability distribution p(x , c)
over complete tuples (x , c) = (x1, x2, . . . , xM , c) and compute empirical probabil-
ities p̂(c) = (N(c) + α)/(N + α|C|) and p̂(xj | c) = (N(xj , c) + α)/(N(¬⊥j , c) +
α|Vj |) for each class c and non-null value xj . Here, α is non-negative num-
ber called the pseudo count, and α prevents the empirical probabilities from
being zero when α > 0. Throughout the paper, we configure α = 1, which
results in so-called Laplace smoothing. On the other hand, N(¬⊥j , c) denotes
the sum of the occurrences of non-null values together with class c, i.e. we have
N(¬⊥j , c) =

∑
x∈Vj ,x �=⊥j

N(x, c) = N(c)−N(⊥j , c). Furthermore, a null or sup-
pressed value ⊥j means taking any value in Vj , so its (conditional) probability
should always be one. Specifically, we have p(⊥j | c) = p̂(⊥j | c) = 1.

2.2 k-Anonymity

Here, we describe k-anonymity formally with some additional notations. First,
for simplicity, we assume that all attributes y except the class label c in a tuple
t are QIDs and focus on reducing the risk of re-identification of a person from
QIDs. Whereas D was defined as a multiset, it is often convenient to transform D
into a pair of a tuple set S and a count table N . S is defined as {y | (y , c) ∈ D},
i.e. an ordinary set of distinct tuples. The count table N , on the other hand,
stores N(y , c), N(c), N(y) and N(yj , c) in the previous section when needed.
It is straightforward to generate an equivalent dataset from S and N . From the
settings above, k-anonymity of a dataset D is restated as min(y ,·)∈S N(y) ≥ k.

2.3 Bottom-Up Cell Suppression

In this paper, we adopt a bottom-up, greedy algorithm for local recoding k-
anonymization algorithm, which is a simplified adaptation of the one used in
[7,21] into the case of cell-suppression in classification datasets. The algorithm,
shown in Algorithms 1, 2 and 3, resembles agglomerative clustering.1

The Anonymize procedure is the main routine of the algorithm. The proce-
dure takes as input the anonymity threshold k and the original dataset D and
returns a k-anonymized version of D. The tuple set S and the count table N
1 Agglomerative clustering is a typical hierachical clustering in which we start with

initial clusters containing single tuples and merge the closest pair of clusters in a
bottom-up manner [10].

68 Y. Kameya and K. Hayashi

Algorithm 1. Anonymize(k,D)
Require: k: the anonymity to achieve, D: the original dataset
1: Construct the tuple set S and the count table N from D
2: Obtain the empirical probability function p̂ from S and N
3: while min(y,·)∈S N(y) < k do
4: Pick up t = (y , c) such that N(y) < k randomly from S
5: t∗ := argmint′=(y′,c)∈SΓ (t, t′, p̂, N)
6: u := Suppress(t, t∗)
7: Update(u, t, t∗, S, N)
8: end while
9: Construct D′ from S and N

10: return D′

Algorithm 2. Suppress(t, t′)
Require: t, t′: tuples of the same class c to be suppressed
1: Let t be (y1, y2, . . . , yM , c) and t′ be (y′

1, y
′
2, . . . , y

′
M , c)

2: return u = (u1, u2, . . . , uM , c) s.t. uj = yj (if yj = y′
j) or uj = ⊥j (if yj �= y′

j)

of D are used inside the procedure (Line 1). Empirical probability function p̂
w.r.t. the original dataset D, which will be referred to in computing the suppres-
sion cost, is then obtained from S and N (Line 2). The procedure repeatedly
chooses two tuples and merges them by suppression until no tuple violates the
k-anonymity requirement (Lines 3–8). Specifically, we randomly pick up a tuple
t from violating tuples (Line 4) and choose the best counterpart t∗ of the same
class (Line 5) that minimizes the suppression cost Γ in the case of t and t∗

being suppressed and merged. The suppression is actually done by the Suppress
procedure (Line 6). Then, the Update procedure replaces two chosen tuples
(t and t∗) in S with the merged one (u) and updates the count table N (Line 7).

The choice of the cell-suppression cost Γ is crucial since it reflects the utility
of the dataset which we wish to exploit. One simple cost function is Γham, the
one based on the Hamming distance, which is computed as:

Γham(t, t′, p̂,N) def= N(y , c)H(y ,u) + N(y ′, c)H(y ′,u), (1)

where t = (y , c), t′ = (y ′, c), u = (u , c) is the tuple to be generated by
Suppress(t, t′), and H(a , b) is the number of conflicting elements between a
and b (null values and non-null values are considered distinct). Γham is exactly
the total number of cells to be suppressed further and does neither use the empir-
ical probabilities p̂ in the original dataset nor the current counts from N . We
may also use a cost function Γinfo, which is based on information loss [7]:2

Γinfo(t, t′, p̂,N) def= −
∑

j:yj �=y′
j

(
N(y , c) log p̂(yj | c) + N(y ′, c) log p̂(y′

j | c)
)
, (2)

2 To be precise, the original definition by Harada et al. [7] does not consider classifi-
cation datasets.

Bottom-Up Cell Suppression Preserving the MAR Condition 69

Algorithm 3. Update(u, t, t′,S,N)
Require: u: a new tuple, t and t′: old tuples, S: a tuple set, N : a count table
1: Remove t and t from S
2: Let u be (u , c), t be (y , c) and t′ be (y ′, c)
3: if u ∈ S then
4: N(u , c) := N(u , c) + N(y , c) + N(y ′, c)
5: else
6: N(u , c) := N(y , c) + N(y ′, c)
7: S := S ∪ {u}
8: end if
9: Remove all entries of N concerning t and t′

where t = (y1, y2, . . . , yM , c) and t′ = (y′
1, y

′
2, . . . , y

′
M , c). Γinfo uses empirical

probabilities p̂(yj | c) (yj is a non-null value xj or a null value ⊥j) computed
from the original dataset as shown in Sect. 2.1. The term − log p̂(yj | c) is the self-
information of the j-th attribute taking yj . Since the self-information of the j-th
attribute taking ⊥j is − log p̂(⊥j | c) = − log 1 = 0, replacing a non-null value
xj with ⊥j loses the information − log p̂(xj | c). As a result, Γinfo(t, t′, p̂,N)
measures the total amount of information loss in suppressing and merging t
and t′. Obviously, the k-anonymization procedure in Sect. 2.3 tends to suppress
frequent attribute values when combined with Γinfo.

3 The Proposed Method

As said before, we propose a cell-suppression based k-anonymization method
which keeps minimal the loss of utility using the notion from incomplete data
analysis. In this method, we consider that anonymization is an artificial process
that forces the original dataset D to be ambiguous so as to avoid re-identification
of persons. It is then desirable to control such an anonymization process for
ensuring the soundness of later statistical inferences such as classification. In the
literature of incomplete data analysis, it is proved that, under the missing-at-
random (MAR) condition [15,17], the process where some portion of the original
dataset D turns to be missing is ignorable in the inference related to the empir-
ical probability distribution of D. In our context, the MAR condition allows
us to obtain empirical probabilities from an anonymized dataset ignoring the
anonymization process without distortion.

From the observations above, our k-anonymization method attempts to pre-
serve the MAR condition as well as possible. More precisely, we present a cell-
suppression cost function reflecting the deviation from the MAR condition and
use it in the k-anonymization procedure introduced in Sect. 2.3. To measure the
deviation from the MAR condition, we consider the Kullback-Leibler (KL) diver-
gence in naive Bayes classifiers. In the rest of this section, we will describe these
relevant notions in turn.

70 Y. Kameya and K. Hayashi

3.1 Naive Bayes Classification

In classification, we use Naive Bayes [20] as a primary classifier. Naive Bayes
assumes that attributes in a classification dataset are conditionally indepen-
dent of each other, given the class. Despite its strong independence assumption,
naive Bayes often works surprisingly well in classifying real datasets [4]. For-
mally, it is assumed that the probability that a complete tuple t = (x , c) =
(x1, x2, . . . , xM , c) occurs is simplified as p(t) = p(x , c) = p(c)

∏
j p(xj | c). Typ-

ically, classification is performed in two steps: we first learn the empirical prob-
abilities p̂(c) and p̂(xj | c) from the complete training dataset, and then predict
the most plausible class c∗ = argmaxc∈C p̂(c | x) = argmaxc p̂(c)

∏
j p̂(xj | c)

for an unseen data having attribute values x .
The independence assumption in naive Bayes also makes it simple to handle

incomplete data. That is, noting that p(⊥j | c) = 1, the probability that an
incomplete tuple (y1, y2, . . . , yM , c) occurs, where yj is a non-null value from Vj

or a null value ⊥j , is obtained as p(c)
∏

j:yj �=⊥j
p(yj | c), where null values are all

ignored. Similarly, one may learn the empirical probabilities p̂(xj | c) as described
in Sect. 2.1 for a non-null value xj , as if there are no missing values from the begin-
ning. This is a standard way of learning called maximum likelihood (ML) estima-
tion,3 which is also applicable to anonymized datasets. However, in general, jus-
tifying ML estimation requires some extra condition on the process how missing
data are generated. The MAR condition explained next is one of such conditions.

3.2 The Missing-at-random Condition

The Process of Anonymization. As said before, under the MAR condition,
a standard learning procedure of naive Bayes classifiers is justified even with
anonymized datasets. Conversely, to obtain a naive Bayes without distortion
brought by anonymization, it is reasonable to anonymize the original dataset so
that the MAR condition is preserved.

First, let us model our anonymization process by an analogy to the process
of generating missing data [17]. We focus on classification datasets where no
class labels will be missing or suppressed. Given an original dataset D having a
complete tuple (x , c) = (x1, x2, . . . , xM , c), we may anonymize it into an incom-
plete dataset having (y , c) = (y1, y2, . . . , yM , c) by suppressing some part of x .
A binary indicator r = (r1, r2, . . . , rM) says which part has been suppressed, i.e.
yj = xj iff rj = 1, or yj = ⊥j iff rj = 0. Note that, given an incomplete attribute
values y , the indicator r is uniquely determined. The joint probability of the
whole anonymization process behind y is then introduced and we decompose it
into two factors:4

p(r ,x , c | θ, φ) = p(r | x , c, φ)p(x , c | θ). (3)

3 To be precise, learning empirical probabilities using the pseudo count α, shown in
Sect. 2.1, is called maximum a posteriori (MAP) estimation. ML estimation is a spe-
cial case of MAP estimation where α = 0. The following discussions can be easily
extended to the case of MAP estimation.

4 Joint distributions decomposed in this way are called selection models [17].

Bottom-Up Cell Suppression Preserving the MAR Condition 71

Here, p(x , c | θ) is the probability that a complete, original tuple (x , c) occurs,
and p(r | x , c, φ) is the probability that the suppressed pattern is r given such a
complete tuple. The latter is called the missing-data mechanism and models our
choice in anonymization. θ denotes the parameters of the probability distribution
over complete tuples, and φ denotes the parameters for the missing-data mech-
anism. Since anonymization is an artificial operation subsequently performed
after the original dataset has been obtained, it is natural to think that there is
no overlap between θ and φ.

Learning Under the MAR Condition. Given an incomplete values y , we
define x obs as a collection of xj ’s where rj = 1, and xmis as a collection of xj ’s
where rj = 0. Thus, x obs (resp. xmis) denotes the observed or non-suppressed
(resp. missing or suppressed) part of x . The probability that an incomplete tuple
(y , c) occurs is then computed as p(y , c | θ, φ) =

∑
xmis

p(r ,x obs,xmis, c | θ, φ)
where r is compatible with y , and x = (x obs,xmis).

Next, let us consider the procedure for learning a naive Bayes classifier from
the dataset {(y , c)} which contains only one tuple.5 As said earlier, one standard
learning procedure is ML estimation, where we attempt to maximize the likeli-
hood of the whole process L(θ, φ) = p(y , c) by adjusting the parameters θ and
φ. In other words, we obtain (θ̂, φ̂) = argmaxθ,φL(θ, φ). Now we assume that the
MAR condition is satisfied. The MAR condition states that the choice in sup-
pression does not depend on the value to be suppressed itself. This condition is
formally written as ∀x , c p(r | x , c, φ) = p(r | x obs,xmis, c, φ) = p(r | x obs, c, φ).
Then, the likelihood L(φ, θ) is transformed as follows:

L(φ, θ) = p(y , c | φ, θ) =
∑

xmis
p(r ,x obs,xmis, c | φ, θ)

=
∑

xmis
p(r | x obs,xmis, c, φ)p(x obs,xmis, c | θ) (4)

=
∑

xmis
p(r | x obs, c, φ)p(x obs,xmis, c | θ) (5)

= p(r | x obs, c, φ)
∑

xmis
p(x obs,xmis, c | θ)

= p(r | x obs, c, φ)L′(θ), (6)

where L′(θ) =
∑

xmis
p(x obs,xmis, c | θ) = p(x obs, c | θ) is the likelihood of the

anonymized dataset, ignoring the anonymization process. The MAR condition
derives Eq. 5 from Eq. 4. Since p(r | x obs, φ) is constant w.r.t. θ, Eq. 6 says that,
for any φ, maximizing L(φ, θ) and maximizing L′(θ) yield the same parameters
θ̂, i.e. our anonymization is not influential on learning θ̂, as long as the MAR
condition is preserved. The probability p(. . . | θ̂) under the learned parameters
θ̂ coincides with the empirical probability p̂(. . .) used throughout the paper.

5 Extending the discussion to the case with multiple i.i.d. (independent and identi-
cally distributed) tuples {(y (1), c(1)), (y (2), c(2)), . . . , (y (N), c(N))} is fairly straight-
forward, since the likelihood can be transformed as L(θ, φ) =

∏
i p(y (i), c(i)) =

(
∏

i p(r (i) | x (i), c(i), φ))(
∏

i p(x (i), c(i) | θ)), where x (i) is the original of y (i).

72 Y. Kameya and K. Hayashi

The KL Divergence for Examining the MAR Condition. The next ques-
tion is how to preserve the MAR condition in anonymization. First, the MAR
condition ∀x , c p(r | x obs,xmis, c, φ) = p(r | x obs, c, φ) can always be rewrit-
ten as ∀x , c p(xmis | x obs, r , c, φ) = p(xmis | x obs, c, φ). By the independence
assumption in naive Bayes, this is simplified as ∀xmis, c p(xmis | rmis=0 , c, φ) =
p(xmis | c, φ), where x obs and xmis are independent given c, and rmis is the
portion of r corresponding to xmis which is necessarily all zero. Furthermore,
this statement is satisfied when p(xj | rj = 0, c, φ) = p(xj | c, φ) for all xj

such that rj = 0 (yj is a suppressed value), using naive Bayes’s assumption
again. The resulting statement says that the missing part of the j-th attribute
must follow the same distribution as the one over all j-th attribute values of
original tuples. Since the observed part and the missing part are mutually exclu-
sive and collectively exhaustive, this statement must also apply to the observed
part. Eventually we see that, when the empirical distribution from the original
dataset is identical to those from an anonymized dataset, the MAR condition is
preserved.

To measure the deviation from the MAR condition, we consider the Kullback-
Leibler (KL) divergence, which was firstly introduced by Kifer and Gehrke [11]
in the literature of anonymization. The KL divergence is defined and simplified
under the independence assumption in naive Bayes:

KL(p̂, q̂) =
∑

x ,c

p̂(x , c) log
p̂(x , c)
q̂(x , c)

=
∑

c

p̂(c)
∑

j

∑

xj

p̂(xj | c) log
p̂(xj | c)
q̂(xj | c)

(7)

=
∑

c

p̂(c)
∑

j

KLj,c(p̂, q̂) where KLj,c(p̂, q̂) =
∑

xj

p̂(xj | c) log
p̂(xj | c)
q̂(xj | c)

(the derivation is presented in the appendix). Here p̂ is the empirical probabil-
ity distribution from the original dataset, and q̂ is the one from an anonymized
dataset, which may be unfinished one in the Anonymize procedure (Sect. 2.3).
KLj,c(p̂, q̂) is the class- and attribute-wise version of the KL divergence. It is
known that the KL divergence is non-negative, and hence making KL(p̂, q̂)
smaller implies making each KLj,c(p̂, q̂) smaller. This further implies making
p̂(xj | c) and q̂(xj | c) closer, which leads to the preservation of the MAR con-
dition. In addition, the summation in Eq. 7 is taken over all classes and distinct
attribute values and so is costly to compute. Next, we plug the KL divergence
above into the Anonymize procedure as a new cost function which is efficiently
computed.

3.3 Cell-Suppression Cost for Preserving the MAR Condition

To introduce a light-weight cost function that reflects the MAR condition, we
consider the difference between two KL divergences before and after a cell sup-
pression in the Anonymize procedure. Cell suppression is a local operator, so
the difference between these two quantities will also be rather limited.

More formally, let D(�) be the dataset obtained at the end of the �-th loop in
the Anonymize procedure. We apply a cell suppression once to the dataset at

Bottom-Up Cell Suppression Preserving the MAR Condition 73

each loop. The difference is then written as ΔKL = KL(p̂, q̂′) − KL(p̂, q̂), where
p̂ is the empirical distribution from the original dataset D = D(0), q̂ is the one
from D(�), and q̂′ is the one from D(�+1) (� ≥ 0). Here we easily have:

ΔKL =
∑

c

p̂(c)
∑

j

ΔKLj,c where ΔKLj,c =
∑

xj

p̂(xj | c) log
q̂(xj | c)
q̂′(xj | c)

. (8)

Let us consider next a more specific case in which the j-th non-null attribute
value xj of a tuple t = (y , c) is suppressed in D(�). Also suppose that q̂(xj | c) has
been obtained from D(�) as (N(xj , c)+α)/(N(¬⊥j , c)+α|Vj |). Then, q̂′(xj | c) is
obtained from D(�+1) as (N(xj , c)−N(y , c)+α)/(N(¬⊥j , c)−N(y , c)+α|Vj |),
in which the count of the suppressed non-null value is decreased by N(y , c).
Substituting these empirical probabilities into Eq. 8 results in:

ΔKLj,c = p̂(xj | c) log
N(xj , c) + α

N(xj , c) − N(y , c) + α
+log

N(¬⊥j , c) − N(y , c) + α|Vj |
N(¬⊥j , c) + α|Vj |

(9)
(the derivation is presented in the appendix).

Based on the above, consider an extended case where two incomplete tuples
t = (y1, y2, . . . , yM , c) and t′ = (y′

1, y
′
2, . . . , y

′
M , c) are suppressed and merged.

Suppressions occur at yj and/or y′
j in the j-th attribute such that yj and y′

j are
distinct. An extension of Eq. 9 to this case is derived as:

ΔKLj,c = p̂(yj | c) log
N(yj , c) + α

N(yj , c) − wj(t) + α
+ p̂(y′

j | c) log
N(y′

j , c) + α

N(y′
j , c) − wj(t′) + α

+ log
N(¬⊥j , c) − (wj(t) + wj(t′)) + α|Vj |

N(¬⊥j , c) + α|Vj | . (10)

Note here that p̂(⊥j | c) = 1 and we define wj(t) = N(y , c) (if yj �= ⊥j) or
wj(t) = 0 (if yj = ⊥j) for an incomplete tuple t = (y , c). Finally, a cost function
Γmar which measures the deviation from the MAR condition is introduced as:

Γmar(t, t′, p̂,N) def= ΔKL =
∑

c p̂(c)
∑

j ΔKLj,c, (11)

where ΔKLj,c is the one defined in Eq. 10. One may find from Eq. 10 that we
have only to refer to the quantities related to the suppressed attribute values
and hence computing ΔKLj,c just requires a constant time. Lastly, we see from
Eqs. 8 and 11 that Γmar can be negative. This case happens when the empirical
distribution q̂′ after the suppression gets closer than q̂ to the original one p̂.

4 Experimental Results

We tested the proposed method using the adult dataset available from the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets/Adult).
Specifically, we compare cost functions Γham, Γinfo and Γmar plugged into the

http://archive.ics.uci.edu/ml/datasets/Adult

74 Y. Kameya and K. Hayashi

Anonymize procedure in Sect. 2.3. We additionally introduced a cost function
Γhybrid as a simple hybrid of Γham and Γmar, defined as follows:

Γhybrid(t, t′, p̂,N) def=

{
Γmar(t, t′, p̂,N)/Γham(t, t′, p̂,N) (Γmar(t, t′, p̂,N) ≤ 0)
Γmar(t, t′, p̂,N)Γham(t, t′, p̂,N) (Γmar(t, t′, p̂,N) > 0).

(12)
In this hybrid function, Γmar works as a base cost function, and Γham plays a
role of a penalty function which increases the cost according to the Hamming
distance, i.e. the total number of suppressed cells.

The adult dataset has two classes: salary above or below 50,000 dollars.
Furthermore, following the previous work [2,9,19], we used eight attributes for
a person: age, work class, education, marital status, occupation, race, gender and
native country. All attribute except age are discrete, and we discretized the age
attribute as [15, 20), [20, 25), [25, 30), . . . , [70, 75), [75, 80) and [80, 95), where
we first split the whole range into the ranges of five years and then merged the
last three to ensure that each range includes more than 100 tuples.

The classifiers we used are naive Bayes classifiers and C4.5, implemented in
Weka [20]. Each classifier is evaluated by average error rate in stratified 10-fold
cross validation. Before evaluation, we first anonymized the original datasets, and
in each fold of cross validation, we use the anonymized version for the training
dataset and the original version for the test dataset. All classifiers were run under
Weka’s default setting. Since the Anonymize procedure runs in a randomized
way, the obtained results were averaged over 30 trials.

Figure 1 (left) shows the KL divergence between the empirical distribution
from the original dataset and the one from the datasets k-anonymized by the
Anonymize procedure with k = 2, 5, 10, 15, . . . and cost functions. Figure 1
(right) shows the number of suppressed cells in the k-anonymized datasets. In
all graphs presented in the paper, the lines labeled ham, info, mar and hybrid
correspond to the cases with Γham, Γinfo, Γmar and Γhybrid, respectively. It is

Fig. 1. The KL divergence (left) and the ratio of suppressed cells (right) in k-
anonymized datasets, with various k (indicated by the x-axis) and cost functions. In
the case of the KL divergence, lines mar and hybrid overlap almost entirely.

Bottom-Up Cell Suppression Preserving the MAR Condition 75

Fig. 2. The average error rate (%) of naive Bayes (left) and C4.5 (right) for k-
anonymized datasets, with various k (the x-axis) and cost functions. In the case of
naive Bayes, lines mar and hybrid overlap almost entirely.

found in Fig. 1 (left) that, as expected, the KL divergence is smaller with Γmar

and Γhybrid. Figure 1 (right), on the other hand, exhibits a contrasting behavior
that Γham yields a smaller number of suppressed cells, which is also expected.
In addition, the error bars in the graphs indicate the 95 % confidence intervals.
The error bars are narrow, so we can see that the Anonymize procedure works
stably.

Figure 2 shows the average error rate (%) of naive Bayes (left) and C4.5
(right) for k-anonymized datasets. The horizontal line indicates the average
error rate for the original dataset. In these graphs, Γmar and Γhybrid give the
least degradation of error rate when combined with naive Bayes, as the theory
suggests. However, C4.5 did not work well with Γmar. From the fact that Γhybrid

which brings less suppressions reduces error rate, the number of suppressed cells
seems to give a highly negative impact on the classification performance of C4.5.

5 Concluding Remarks

This paper proposed a cell-suppression based k-anonymization method which
keeps minimal the loss of utility. The proposed method aims to preserve the
MAR condition and uses the KL divergence as a utility measure. From the
discussions and the experimental results presented in this paper, our approach
is shown to be statistically promising in both formal and practical senses. On
the other hand, there remain a couple of open problems. Here we conclude the
paper by discussing such open problems and related work in the literature.

First, a newly introduced cost function Γmar, which is based on the KL diver-
gence and the independence assumption in naive Bayes, only considers attributes
individually. This also applies to most of the existing work, e.g. Γinfo used in [7], but
some authors take multi-dimensional approaches, in which two or more attributes
are jointly taken into account. For instance, given a classification dataset,

76 Y. Kameya and K. Hayashi

kACTUS [12] performs cell suppression based on a decision tree built in advance.
Relaxing the independence assumption in naiveBayeswould be one possible exten-
sion of the proposed method.

There have been several methods targeting classification datasets. Many of
such methods [2,6,9,19], as well as kACTUS above, exploit classification-centric
heuristic scores such as information gain. Although out target is not limited
to classification datasets, as a simple hybrid cost Γhybrid used in our experi-
ment suggests, some classification-centric cost function would contribute to the
improvement of classification performance. In addition, anonymization may be
performed in big data environments consisting of, for example, data providers,
data collectors and data users who have different requirements [22]. To balance
several cost functions, multi-objective optimization techniques look attractive.
Dewri et al. [3] explored an evolutionary multi-objective optimization to deter-
mine a suitable anonymity threshold k.

As mentioned earlier, one advantage of cell suppression is that it requires no
hierarchical knowledge. If such knowledge is available, the coarsening-at-random
(CAR) condition [8] would be a key notion since it is a generalization of the MAR
condition considering partial information loss in each cell. In addition, Harada
et al. proposed a way for automatically constructing hierarchical knowledge [7].

Appendix: Derivation of the Proposed Suppression Cost

Here, we complete the derivation of the cost function Γmar by showing how to
obtain Eqs. 7 and 9. First, let us note that p̂(c) = q̂(c) holds since the class label
c is initially non-null and will be never suppressed. Equation 7 is then derived as
follows:

KL(p̂, q̂)

=
∑

x ,c

p̂(x , c) log
p̂(x , c)

q̂(x , c)
=
∑

x ,c

(
p̂(c)

M∏

j′=1

p̂(xj′ | c)
)

log
p̂(c)
∏M

j=1 p̂(xj | c)

q̂(c)
∏M

j=1 q̂(xj | c)

=
∑

c

p̂(c)
∑

x1

∑

x2

· · ·
∑

xM

(M∏

j′=1

p̂(xj′ | c)
) M∑

j=1

log
p̂(xj | c)

q̂(xj | c)

=
∑

c

p̂(c)

M∑

j=1

∑

x1

· · ·
∑

xj−1

∑

xj

∑

xj+1

· · ·
∑

xM

(j−1∏

j′=1

p̂(xj′ | c)
)
p̂(xj | c)

(M∏

j′=j+1

p̂(xj′ | c)
)

log
p̂(xj | c)

q̂(xj | c)
(13)

=
∑

c

p̂(c)
M∑

j=1

∑

xj

p̂(xj | c) log
p̂(xj | c)

q̂(xj | c)
·

∑

x1

· · ·
∑

xj−1

∑

xj+1

· · ·
∑

xM

(j−1∏

j′=1

p̂(xj′ | c)
)(M∏

j′=j+1

p̂(xj′ | c)
)

(14)

Bottom-Up Cell Suppression Preserving the MAR Condition 77

=
∑

c

p̂(c)
M∑

j=1

∑

xj

p̂(xj | c) log
p̂(xj | c)

q̂(xj | c)

(j−1∏

j′=1

∑

xj′

p̂(xj′ | c)
)(M∏

j′=j+1

∑

xj′

p̂(xj′ | c)
)

=
∑

c

p̂(c)
M∑

j=1

∑

xj

p̂(xj | c) log
p̂(xj | c)

q̂(xj | c)
. (15)

In Eqs. 13 and 14, we carefully reordered summations and moved irrelevant fac-
tors outside the summations wherever possible. Equation 15 was finally derived
using

∑
xj′ p̂(xj′ | c) = 1 since p̂ is a probability function.

On the other hand, for Eq. 9, we have been considering a specific case
where the j-th non-null attribute value xj of a tuple t = (y , c) is suppressed.
We have q̂(xj | c) = (N(xj , c) + α)/(N(¬⊥j , c) + α|Vj |) and q̂′(xj | c) =
(N(xj , c)−N(y , c)+α)/(N(¬⊥j , c)−N(y , c)+α|Vj |) as already mentioned, and
additionally, for each value x′

j of j-th attribute which is not suppressed this time
(i.e. x′

j �= xj), we have q̂′(x′
j | c) = (N(x′

j , c)+α)/(N(¬⊥j , c)−N(y , c)+α|Vj |).
Substituting these probabilities into Eq. 8 results in Eq. 9 as follows:

ΔKLj,c

= p̂(xj | c) log
q̂(xj | c)

q̂′(xj | c)
+

∑

x′
j :x

′
j �=xj

p̂(x′
j | c) log

q̂(x′
j | c)

q̂′(x′
j | c)

= p̂(xj | c) log

(
N(xj , c) + α

N(¬⊥j , c) + α|Vj | · N(¬⊥j , c) − N(y , c) + α|Vj |
N(xj , c) − N(y , c) + α

)

+

∑

x′
j :x

′
j �=xj

p̂(x′
j | c) log

(
N(x′

j , c) + α

N(¬⊥j , c) + α|Vj | · N(¬⊥j , c) − N(y , c) + α|Vj |
N(x′

j , c) + α

)

= p̂(xj | c) log
N(xj , c) + α

N(xj , c) − N(y , c) + α
+ p̂(xj | c) log

N(¬⊥j , c) − N(y , c) + α|Vj |
N(¬⊥j , c) + α|Vj | +

∑

x′
j :x

′
j �=xj

p̂(x′
j | c) log

N(¬⊥j , c) − N(y , c) + α|Vj |
N(¬⊥j , c) + α|Vj |

= p̂(xj | c) log
N(xj , c) + α

N(xj , c) − N(y , c) + α
+

log
N(¬⊥j , c) − N(y , c) + α|Vj |

N(¬⊥j , c) + α|Vj |

(

p̂(xj | c) +
∑

x′
j :x

′
j �=xj

p̂(x′
j | c)

)

= p̂(xj | c) log
N(xj , c) + α

N(xj , c) − N(y , c) + α
+ log

N(¬⊥j , c) − N(y , c) + α|Vj |
N(¬⊥j , c) + α|Vj | .

References

1. Aggarwal, C.C.: Data Mining: The Textbook. Springer, Switzerland (2015)
2. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In:

Proceedings of ICDE-05, pp. 217–228 (2005)
3. Dewri, R., Ray, I., Ray, I., Whitley, D.: On the optimal selection of k in the k-

anonymity problem. In: Proceedings of ICDE-08, pp. 1364–1366 (2008)

78 Y. Kameya and K. Hayashi

4. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier
under zero-one loss. Mach. Learn. 29, 103–130 (1997)

5. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)

6. Fung, B.C.M., Wang, K., Yu, P.S.: Anonymizing classification data for privacy
preservatio. IEEE Trans. Knowl. Data Eng. 19(5), 711–725 (2007)

7. Harada, K., Sato, Y., Togashi, Y.: Reducing amount of information loss in k-
anonymization for secondary use of collected personal information. In: Proceedings
of the 2012 Service Research and Innovation Institute Global Conference, pp. 61–69
(2012)

8. Heitjan, D.F.: Ignorability and coarse data. Ann. Stat. 19(4), 2244–2253 (1991)
9. Iyengar, V.: Transforming data to satisfy privacy constraints. In: Proceedings of

KDD-02, pp. 279–288 (2002)
10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.

Surv. 31(3), 264–323 (1999)
11. Kifer, D., Gehrke, J.: Injecting utility into anonymized datasets. In: Proceedings

of SIGMOD-06, pp. 217–228 (2006)
12. Kisilevich, S., Rokach, L., Elovici, Y.: Efficient multidimensional suppresion for

k-anonymity. IEEE Trans. Knowl. Data Eng. 22(3), 334–347 (2010)
13. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: efficient full-domain k-

anonymity. In: Proceedings of SIGMOD-05, pp. 49–60 (2005)
14. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Pro-

ceedings of PODS-04, pp. 223–228 (2004)
15. Rubin, D.B.: Inference and missing data. Biometrika 63, 581–592 (1976)
16. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.

Knowl. Data Eng. 13(6), 670–682 (2001)
17. Schafer, J.L., Graham, J.W.: Missing data: our view of the state of the art. Psychol.

Methods 7, 147–177 (2002)
18. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and

suppression. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(5), 571–588
(2002)

19. Wang, K., Yu, P.S., Chakraborty, S.: Bottom-up generalization: a data mining
solution to privacy protection. In: Proceedings of ICDM-04, pp. 249–256 (2004)

20. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

21. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W.C.: Utility-based anonymiza-
tion using local recoding. In: Proceedings of KDD-06, pp. 785–790 (2006)

22. Xu, L., Jiang, C., Chen, Y., Wang, J., Ren, Y.: A framework for categorizing
and applying privacy-preservation techniques in big data mining. Computer 49(2),
54–62 (2016)

Understanding the Privacy Goal Intervenability

Rene Meis(B) and Maritta Heisel

paluno - The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Duisburg, Germany
{rene.meis,maritta.heisel}@paluno.uni-due.de

Abstract. Privacy is gaining more and more attention in society and
hence, gains more importance as a software quality that has to be con-
sidered during software development. A privacy goal that has not yet
been deeply studied is the empowerment of end-users to have control
over how their personal data is processed by information systems. This
privacy goal is called intervenability. Several surveys have shown that
one of end-users’ main privacy concerns is the lack of intervenability
options in information systems. In this paper, we refine the privacy goal
intervenability into a software requirements taxonomy and relate it to
a taxonomy of transparency requirements because transparency can be
regarded as a prerequisite for intervenability. The combined taxonomy of
intervenability and transparency requirements shall guide requirements
engineers to identify the intervenability requirements relevant for the
system they consider. We validated the completeness of our taxonomy
by comparing it to the relevant literature that we derived based on a
systematic literature review.

1 Introduction

A central concern of end-users with regard to privacy is that they have almost no
control over their personal data once these are put into an information system
[1–4]. End-users wish for more empowerment, i.e. they want to keep the control
over their personal data and how their data is processed by information sys-
tems. Hansen [5] summarizes this and other privacy needs into the privacy goal
intervenability. Hansen states “Intervenability aims at the possibility for parties
involved in any privacy-relevant data processing to interfere with the ongoing
or planned data processing. The objective of intervenability is the application of
corrective measures and counterbalances where necessary.” [5].

Intervenability is a complex software quality that is strongly coupled with
other privacy-related goals. For example, end-users have to be sufficiently aware
of how and what personal data is processed and which options exist to intervene
in order to be able to exercise these options. Hence, the privacy goal transparency
can be seen as prerequisite for intervenability.

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG)
under grant No. GRK 2167, Research Training Group “User-Centered Social Media”.

c© Springer International Publishing Switzerland 2016
S. Katsikas et al. (Eds.): TrustBus 2016, LNCS 9830, pp. 79–94, 2016.
DOI: 10.1007/978-3-319-44341-6 6

80 R. Meis and M. Heisel

As a first step to assist requirements engineers to deal with the complex
privacy goal intervenability, we propose a requirements taxonomy that further
refines intervenability into subrequirements enriched with attributes and asso-
ciated to transparency requirements that we identified in [6]. The taxonomy
shall help requirements engineers to understand which intervenability and trans-
parency requirements have to be considered for the system they analyze.

The rest of the paper is structured as follows. Our privacy requirements
taxonomy is derived and presented in Sect. 2 and validated using related work
identified using a systematic literature review in Sect. 3. Section 4 concludes the
paper.

2 Deriving and Structuring Requirements
on Intervenability

In Sect. 2.1, we systematically analyze the privacy principles described by the
international standard ISO/IEC 29100:2011 [7] and the draft of the EU data
protection regulation [8] to derive the intervenability requirements they contain
and the transparency requirements related to them. To derive the requirements,
we analyze the description of the privacy principles and the formulations of the
regulation. We keep the formulation of the identified intervenability and trans-
parency requirements close to the original documents from which we identified
them. In Sect. 2.1, we enumerate these derived requirements using the notation
In for intervenability requirements and Tn for the related transparency require-
ments. As the ISO principles and EU articles partly overlap, we identified sev-
eral refinements of identified requirements. We relate those requirements using
a refines relation. If an intervenability requirement In1 refines a part of another
requirement In2, this means that In1 adds further details on how or which possi-
bilities have to exist to intervene in the processing of personal data. Furthermore,
we identified that there are transparency requirements that are closely related to
intervenability requirements. This is, because in order to be able to make use of
intervenability mechanisms, data subjects have to be aware of them. Hence, we
use a relatedTo relation to make the relations between transparency and inter-
venability requirements explicit. The refines (directed dashed edges) and relat-
edTo (solid edges) relation are visualized as an initial overview of intervenability
requirements in Fig. 1. In Sect. 2.2, we structure the intervenability requirements
identified in Sect. 2.1 into a taxonomy of intervenability requirements and inte-
grate this taxonomy into the taxonomy of transparency requirements introduced
in [6]. The taxonomy is presented as an extensible metamodel using a UML class
diagram.

ISO/IEC 29100:2011 and the draft of the EU data protection regulation do
not use the same terminology. To avoid ambiguities, we use the following term
definitions from the draft of the EU data protection regulation in this paper.

Data subject “means an identified natural person or a natural person who can
be identified, directly or indirectly, by means reasonably likely to be used by

Understanding the Privacy Goal Intervenability 81

the controller or by any other natural or legal person, [...].” This term is
called PII principal in ISO/IEC 29100:2011.

Personal data “means any information relating to a data subject.” This term
is called personally identifiable information (PII) in ISO/IEC 29100:2011.

Processing “means any operation or set of operations which is performed upon
personal data or sets of personal data, whether or not by automated means,
such as collection, recording, organization, structuring, storage, adaptation
or alteration, retrieval, consultation, use, disclosure by transmission, dissem-
ination or otherwise making available, alignment or combination, erasure or
destruction.”

Controller “means the natural or legal person, public authority, agency or any
other body which alone or jointly with others determines the purposes, condi-
tions and means of the processing of personal data; [...].” This term is called
PII controller in ISO/IEC 29100:2011.

Supervisory authority “means a public authority which is established by aMem-
ber State in accordance with Article 46.” Article 46 states that supervisory
authorities “are responsible for monitoring the application of this Regulation
and for contributing to its consistent application throughout the Union, [...].”

2.1 Requirements Identification from Privacy Principles and
Legislation

ISO/IEC 29100 Privacy Principles. To derive our taxonomy of inter-
venability requirements, we first consider the international standard ISO/IEC
29100:2011 [7], which defines 11 privacy principles which are a superset of the
OECD principles [9] and the US fair information practices (FIPs) [10].

We start our analysis with the consent and choice principle, which is obvi-
ously concerned with providing data subjects the power to decide how their
data is processed. From this principle, we obtain the following intervenability
and transparency requirements.

I1 Present to the data subjects the choice whether or not to allow the processing
of their personal data.

I2 Obtain the opt-in consent of the data subject for collecting or otherwise
processing sensitive personal data.

T1 Inform data subjects before obtaining consent about their rights to access
their personal data and to influence the processing of these.

I3 Provide data subjects with the opportunity to choose how their personal
data is handled.

I4 Allow data subjects to withdraw consent easily and free of charge.
T2 Where the personal data processing is not based on consent but instead on

another legal basis, the data subject should be notified wherever possible.
I5 Where the data subject has the ability to withdraw consent and has chosen

to do so, these personal data should be exempted from processing for any
purpose not legally mandated.

82 R. Meis and M. Heisel

Fig. 1. Initial overview of intervenability requirements

I6 Provide data subjects with clear, prominent, easily understandable, acces-
sible and affordable mechanisms to exercise choice and to give consent in
relation to the processing of their personal data at the time of collection,
first use or as soon as practicable thereafter.

Requirement I3 states that data subjects shall have the opportunity to choose
how their data is handled and is the most general intervenability requirement.
It is refined by I1 (cf. Fig. 1) that states that data subjects shall have the choice
whether their data is processed or not. I1 is further refined by I2 that requires
opt-in consent for processing of sensitive personal data, I4 that requires the pos-
sibility to withdraw consent, and I6 that describes requirements for the mecha-
nisms to realize I1. I5 refines I4 by describing the effects of withdrawing consent.
Both transparency requirements T1 and T2 are related to I1 (cf. Fig. 1). T1
requires that data subjects have to be informed about their rights before con-
sent is obtained. T2 requires to inform data subjects if their data is processed
without their explicit consent.

From the openness, transparency and notice principle we identify an addi-
tional transparency requirement that is related to all intervenability require-
ments that describe the choices and means for data subjects to influence how
their data is processed (cf. Fig. 1).

T3 Disclose the choices and means offered by the controller to data subjects for
the purposes of limiting the processing of, and for accessing, correcting and
removing their information.

The following two intervenability requirements are derived from the individ-
ual participation and access principle.

I7 Give data subjects the ability to access and review their personal data,
provided their identity is first authenticated with an appropriate level of
assurance and such access is not prohibited by applicable law.

I8 Allow data subjects to challenge the accuracy and completeness of their
personal data and have it amended, corrected or removed as appropriate
and possible in the specific context.

I7 and I8 are not refinements of the already identified intervenability require-
ments, because they are not concerned with how data subjects can influence

Understanding the Privacy Goal Intervenability 83

how or if their personal data is processed. But we consider I8 as a kind of refine-
ment of I7, because I8 depends on I7. Note that I7 prescribes that data subjects
shall be empowered with the ability to access and review their personal data.
Hence, I7 is considered as an intervenability requirement. Nevertheless, allow-
ing data subjects to access and review their personal data also contributes to
transparency.

The other principles presented in ISO 29100 do not contain further state-
ments from which we can derive intervenability requirements.

Draft of the EU Data Protection Regulation. To identify further inter-
venability and transparency requirements and to refine the already identified
requirements, we analyze the draft of the EU data protection regulation1 [8].
We selected this regulation as a representative data protection regulation. In
contrast to the situation in the US where no privacy regulations covering all
industrial branches exist, the EU data protection regulation covers all industrial
branches.

Article 7 describes the conditions for consent and we derive from it the fol-
lowing intervenability requirement that refines I4.

I9 The data subject shall have the right to withdraw his or her consent at any
time.

Article 12 specifies requirements on mechanisms for exercising the rights of
data subjects. We identified the following two transparency requirements that are
related to all intervenability requirements that describe the choices and means
for data subjects to influence how their data is processed.

T4 The controller shall inform the data subject without delay and, at the latest
within one month of receipt of the request, whether or not any action has
been taken if a data subject requested information and shall provide the
requested information.

T5 If the controller refuses to take action on the request of the data subject,
the controller shall inform the data subject of the reasons for the refusal and
on the possibilities of lodging a complaint to the supervisory authority and
seeking a judicial remedy.

Article 17 is about the right to be forgotten and to erasure. From this article
we derive the following requirements.

I10 The data subject shall have the right to obtain from the controller the
erasure of personal data relating to them and the abstention from further
dissemination of such data if the data subject withdraws consent or objects
to the processing of personal data.

1 The draft of the EU data protection regulation was adopted with some changes on
27 April 2016 and entered into force on 24 May 2016. Note that our analysis is based
on the draft and not on the final version of the regulation.

84 R. Meis and M. Heisel

I11 The controller shall carry out the erasure without delay, except to the extent
that the retention of the personal data is necessary.

I12 Where erasure is not possible, the controller shall instead restrict processing
of personal data.

T6 The controller shall inform the data subject before lifting the restriction on
processing.

I10, I11, and I12 refine the consequence of withdrawing consent (I4) and object-
ing to processing (I14 see below). T6 requires that data subjects are informed
about the restrictions on processing implied by I12 before these are lifted.

The right to data portability is introduced by Article 18. It implies the fol-
lowing intervenability requirement that refines I7.

I13 The data subject shall have the right, where personal data are processed by
electronic means and in a structured and commonly used format, to obtain
from the controller a copy of data undergoing processing in an electronic
and structured format which is commonly used and allows for further use
by the data subject.

Article 19 describes the right to object. From this we derived the following
two intervenability requirements that refine I3.

I14 The data subject shall have the right to object, on grounds relating to
their particular situation, at any time to the processing of personal data,
unless the controller demonstrates compelling legitimate grounds for the
processing.

I15 If the objection is valid, the controller shall no longer use or otherwise
process the personal data concerned.

Article 53 describes the powers of supervisory authorities. In contrast to the
previously identified requirements, the following requirements do not describe
intervention possibilities for data subjects or needs to provide information to
data subjects, but for/to supervisory authorities.

T7 Supervisory authorities may order the controller to provide any information
relevant for the performance of their duties to them.

I16 Supervisory authorities may order the rectification or erasure of all data
when they have been processed in breach of the provisions of a regulation.

I17 Supervisory authorities may impose a temporary or definitive ban on
processing.

I18 Supervisory authorities may order to suspend data flows to a recipient in a
third country or to an international organization.

Table 1 summarizes from which ISO 29100 principles and articles of the draft
of the EU data protection regulation which initial intervenability and trans-
parency requirements were derived. Additionally, it allows to associate the ele-
ments of our intervenability requirements taxonomy (introduced in the next
section) with the principles and articles from which these were identified.

Understanding the Privacy Goal Intervenability 85

Table 1. Mapping of ISO principles and data protection articles to the requirements

Principle/Article In/Tn IR DIR AIR PIR EIR IIR

Consent and choice I1–I6, T1, T2 X X X

Openness, transparency and notice T3 X X

Individual participation and access I7, I8 X X

Article 7 I9 X

Article 12 T4, T5 X

Article 17 I10–I12, T6 X X X

Article 18 I13 X X

Article 19 I14, I15 X X

Article 53 I16–I18, T7 X X X

IR: IntervenabilityRequirement DIR: DataSubjectInterventionRequirement
AIR: AuthorityInterventionRequirement PIR: ProcessingInformationRequirement
EIR: ExceptionalInformationRequirement IIR: InterventionInformationRequirement

2.2 Setting up an Intervenability Requirements Taxonomy

We now structure the identified preliminary intervenability requirements into
an intervenability requirements taxonomy. We integrate this taxonomy into the
transparency requirements taxonomy presented in earlier work [6] using the
related preliminary transparency requirements. Figure 2 shows our taxonomy
in the form of a metamodel using a UML class diagram. Note that we only show
the attributes and enumerations of the transparency taxonomy that are relevant
for this paper. All elements that have bold font and thick lines are newly added
to the transparency taxonomy. The requirements with dark gray background
represent the newly identified transparency and intervenability requirements.

Table 2 provides an overview of how the initial requirements are reflected in
our proposed taxonomy. In the following, we explain the new elements of our
taxonomy and how they are related to the requirements introduced in [6].

Intervenability Requirement. The root element of our intervenability
requirements taxonomy is the IntervenabilityRequirement. We modeled it as an
abstract class because only its specializations shall be instantiated. It contains
the attribute effect that describes the consequences of an intervenability require-
ment. The possible effects are derived from the preliminary requirements I1, I3,
I5, I7, I8, I10–I13, and I15–I18, and are summarized in the enumeration Inter-
ventionEffect (cf. Fig. 2). The effects are that data subjects get access to their
personal data, that their personal data is not processed, that the processing is
restricted, that their personal data is amended, corrected, or erased, that they
receive a copy of their data, and that data flows are suspended. In addition to the
effect that an intervenability requirement shall have, it has a type describing how
data subjects or supervisory authorities can cause the wanted effects. As these

86 R. Meis and M. Heisel

Fig. 2. Our combined taxonomy of transparency and intervenability requirements.

Table 2. Mapping between taxonomy and preliminary requirements

Requirement Attribute In/Tn

IntervenabilityRequirement effect I1, I3, I5, I7, I8,
I10–I13, I15–I18

DataSubjectInterventionRequirement type I1–I5, I7, I8, I10–I15

time I6, I9, I14

consequences T1, T3, I6

AuthorityInterventionRequirement type I16, I17, I18

ProcessingInformationRequirement controlOptions T1, T3, I6

grounds T2

ExceptionalInformationRequirement exceptionalCase I16, I17, I18, T7

InterventionInformationRequirement T4, T5, T6

Understanding the Privacy Goal Intervenability 87

Table 3. Mapping between authority intervention types and intervention effects

Intervention Type Possible Intervention Effects Source

suspendDataFlows suspendedDataFlows I18

orderBanOfProcessing noProcessing, restrictedProcessing I17

orderErasure erasure I16

orderRectification correction, amendment I16

types differ for data subjects and authorities, we added the attribute type to
the intervenability requirements DataSubjectInterventionRequirement (represent-
ing intervention possibilities for data subjects) and AuthorityInterventionRequire-
ment (representing intervention possibilities for supervisory authorities).

AuthorityInterventionRequirement.Almost all initial requirements describe
rights of data subjects to influence how their personal data is processed. Only I16,
I17, I18, and T7 present possibilities for supervisory authorities to intervene in
the processing of personal data. The intervention types for authorities are summa-
rized in the enumeration AuthorityIntervention (cf. Fig. 2). Supervisory authorities
may order to suspend data flows, order a ban of processing of personal data, and
order the erasure or rectification of personal data. The initial requirements I16,
I17, and I18 also describe which type of intervention shall lead to which kind of
intervention effect. Hence, there are limitations for the combination of interven-
tion types and effects when an ExceptionalInformationRequirement is instantiated.
Table 3 presents the valid combinations of intervention types and effects.

T7 indicates that supervisory authorities have to be informed about the
processing in order to exercise their rights to intervention properly. Hence,
each AuthorityInterventionRequirement has an ExceptionalInformationRequirement
assigned that describes which supervisory authorities may intervene. We newly
introduced into the enumeration ExceptionalCase the literals nonCompliance and
authorityRequest to reflect that authorities have to be informed in the case of
processing of personal data in a way that does not comply with the regulations
and that authorities then have the possibility to intervene in this processing.
Additionally, authorities have the right to request information concerning the
processing of personal data from the controller.

DataSubjectInterventionRequirement. The DataSubjectInterventionRe-
quirement presents the possibilities for data subjects to intervene in the process-
ing of their personal data. These possibilities are summarized in the enumeration
DataSubjectIntervention (cf. Fig. 2) that we derived from the preliminary require-
ments I1–I5, I7, I8, and I10–I15. These initial requirements additionally describe
which combinations of intervention types and effects are allowed for DataSub-
jectInterventionRequirements. The valid combinations are shown in Table 4.

T1, T3, I6, and I9 require that data subjects have to be informed about
how they can intervene in the processing of their personal data. To reflect
this, we introduced the association controlOptions between DataSubjectInter-
ventionRequirement and ProcessingInformationRequirement (cf. Fig. 2). From the

88 R. Meis and M. Heisel

Table 4. Mapping between data subject intervention types and intervention effects

Intervention Type Possible Intervention Effects Source

doNotConsent noProcessing I2

withDrawConsent noProcessing, restrictedProcessing, erasure I4, I5, I10, I12

review access I7

challengeAccuracy correction, amendment, erasure I8

challengeCompleteness amendment, erasure I8

object noProcessing, restrictedProcessing, erasure I10, I12, I15

requestDataCopy dataCopy I13

perspective of the ProcessingInformationRequirement, the association describes
which options exist for data subjects to intervene in the processing of their per-
sonal data. The two attributes consequence and time of DataSubjectIntervention-
Requirement are used to describe further details on the control option described
by the DataSubjectInterventionRequirement. The attribute consequences allows to
provide a textual description of the consequences that the utilization of the cor-
responding intervenability option has. The attribute time describes when data
subjects can exercise the corresponding option.

From the preliminary requirements T4–T6, we identified that an additional
transparency requirement should be added to the taxonomy. This requirement
states the need to inform data subjects about the progress or rejection of inter-
ventions requested by them. For this purpose, we introduce the InterventionIn-
formationRequirement. Each DataSubjectInterventionRequirement is associated to
an InterventionInformationRequirement and vice versa that presents the need to
inform data subjects about the progress or rejection of their intervention.

Furthermore, we identified from T2 that the ProcessingInformationRequire-
ment should also inform data subjects about the legal grounds on which their
data is processed. For this, we enriched this requirement with an attribute
grounds that reflects the possible grounds for processing personal data by the
controller. These are derived from ISO 29100 and the draft of the EU data pro-
tection regulation. They are consent of the data subject, the vital interest of the
data subject, an existing contract, a regulation that allows the processing, and
public interest.

3 Validation of the Taxonomy Using Related Literature

In this section, we give an overview of existing research that also contains con-
siderations about the privacy goal of intervenability. To validate our proposed
taxonomy, we map the notions and concepts used in the related literature to our
taxonomy to check whether it is suitable to reflect the intervenability concepts
used in the literature.

To identify the relevant related work, we performed a systematic literature
review using backward snowballing [11]. To obtain the starting set of papers for

Understanding the Privacy Goal Intervenability 89

our review, we manually searched the proceedings and issues of the last 10 years
of computer science conferences and journals that are mainly concerned with
at least one of the topics privacy, requirements, and software engineering and
ranked at least as B-level in the CORE20142 ranking. In this way, we selected 15
conferences and 19 journals. First, we checked whether title or abstract of a paper
indicates that the paper is concerned with privacy (requirements), intervenabil-
ity, empowerment, user’s controls, or user’s choices. In this way, we obtained
219 articles. We then analyzed the full texts of these articles. Doing this, we
reduced the number of relevant articles to 21. Due to the manual search process,
we have to deal with the threat to validity that our starting set of papers does
not contain all relevant literature, because it was published in a source that we
did not consider or was published earlier than in the last 10 years. To mitigate
this threat, we applied backward snowballing. That is, we also considered the
papers referenced in the papers that we identified as relevant until no new can-
didates were found. During the snowballing, we identified 79 possibly relevant
articles from which 12 were finally considered as relevant. In total, we identified
298 papers that seemed to be relevant after reading title and abstract. After the
analysis of the full text, we finally identified 33 papers as related work. Due to
space limitations, we cannot present all details of the literature review in this
paper, but we provide an overview of our key findings.

The most important finding is that we are able to map each explicitly men-
tioned intervenability-related concept in the literature to an element of our tax-
onomy and that none of the articles provides such a structured overview of
intervenability requirements and relates these explicitly to transparency require-
ments. Table 5 shows to which degree the articles identified during the literature
review address the intervenability requirements that we identified in this work.
For each article, we investigated to which degree aspects of the DataSubjectIn-
terventionRequirement (column DIR), the AuthorityInterventionRequirement (col-
umn AIR), and the relations between intervenability and transparency require-
ments (column RIT) are mentioned in it. We distinguish in Table 5 three cases.
If all aspects are addressed, we denote this with a “+”. If the aspects are only
partially considered, then we denote this with a “o”. If no aspects are addressed,
we denote this with a “−”.

From Table 5, we can see that no article discusses all aspects concerning the
relation between intervenability and transparency requirements. Several papers
mention that transparency is a prerequisite for intervenability or that data sub-
jects have to be aware of their options to intervene in the processing of their
personal data, but none of the papers mentioned that data subjects have to
be informed about the progress of the intervention requests they have triggered.
Few of the articles considered the intervention options of supervisory authorities.
Only three articles covered all of the aspects and 5 identified the need to be able
to answer requests of supervisory authorities in order to prove compliance with
regulations or standards. All articles discuss at least partially options for the
data subject to intervene into the processing of their personal data. The most

2 http://www.core.edu.au/conference-portal (accessed on 20 June 2016).

http://www.core.edu.au/conference-portal

90 R. Meis and M. Heisel

Table 5. Mapping of intervenability notions from the literature to our taxonomy

Source DIR AIR RIT

Bier [12], Hansen [5] + + o

Hoepman [13] + o o

Mouratidis et al. [14] o o o

Miyazaki et al. [15] + + −
Kalloniatis et al. [16,17], Spiekermann and Cranor [18] o o −
Makri and Lambrinoudakis [19], Acquisti et al. [20], Masiello
[21], Krol and Preibusch [22], Deng et al. [23], Komanduri
et al. [24], Cranor [25], Wicker and Schrader [26]

o − o

Strickland and Hunt [27], Sheth et al. [28], Fhom and Bayarou [29],
Antón et al. [30,31], Van der Sype and Seigneur [32], Basso et al.
[33]

+ − −

Lobato et al. [34], Caron et al. [35], Zuiderveen Borgesius [36],
Breaux [37], Langheinrich [38], Feigenbaum et al. [39], Wright and
Raab [40], Guarda and Zannone [41], Hedbom [42], Smith et al.
[43]

o − −

DIR: DataSubjectInterventionRequirement, AIR: AuthorityInterventionRequirement
RIT: Relation between intervenability and transparency requirements

often discussed intervenability option is to consent or withdraw consent. Another
interesting observation that we made is that only Hoepman [13] discusses the
right to data portability. This right, its implementation, and consequences seem
to not yet have been discussed deeply in the literature.

4 Conclusions

In this paper, (1) we systematically derived requirements for the privacy goal
intervenability and related transparency requirements from the ISO 29100 stan-
dard [7] and the draft of the EU data protection regulation [8]. (2) We then inte-
grated these requirements into an existing metamodel for transparency require-
ments [6]. The new metamodel provides an overview of the identified kinds of
transparency and intervenability requirements and how these are related to each
other. The metamodel shall furthermore help requirements engineers to iden-
tify and document the transparency and intervenability requirements relevant
for them and the information needed to address the transparency and interven-
ability requirements. (3) We performed a systematic literature review and pro-
vide an overview of the relevant research related to intervenability requirements.
(4) We validated that our taxonomy contains all necessary aspects mentioned
in the identified literature. The literature review showed that all aspects of
the privacy goal intervenability mentioned in the literature are reflected in the
proposed taxonomy. Furthermore, we did not find any literature that presents

Understanding the Privacy Goal Intervenability 91

intervenability requirements and their relation to transparency requirements in
such a structured, detailed, and complete manner.

We believe that our taxonomy is flexible enough to also represent interven-
ability and transparency requirements from other regulations and standards,
because our proposed metamodel of the taxonomy can easily be adopted and
extended. In these cases our metamodel can be enhanced with, e.g., further
intervention types and effects. These can easily be added to the corresponding
enumerations (cf. Fig. 2).

For future research, we identified three open research questions. (1) How
can the taxonomy be used to derive intervenability requirements for a spe-
cific software to be developed? To answer this question, we want to integrate
the intervenability requirements and their relations to the transparency require-
ments into our method for the automatic identification and validation of privacy
requirements [44]. (2) Which kinds of threats to transparency and intervenability
requirements exist? (3) Which technologies exist that implement transparency
and intervenability requirements or mitigate threats to these? To address the
latter two questions, we plan to set up a catalog of threats that possibly lead to
a violation of the identified transparency and intervenability requirements and
related mechanisms that may be used to mitigate the identified threats. Based
on this catalog, we want to develop a systematic method to identify the relevant
threats for a given set of functional requirements and appropriate countermea-
sures in order to perform a privacy risk assessment.

Acknowledgment. We thank Sylbie Sabit who provided a starting point for this
research with her master thesis [45].

References

1. GSMA: MOBILE PRIVACY: consumer research insights and considerations for
policymakers, February 2014. http://www.gsma.com/publicpolicy/wp-content/
uploads/2014/02/MOBILE PRIVACY Consumer research insights and considera
tions for policymakers-Final.pdf. Accessed 20 June 2016

2. Symantec: State of Privacy Report 2015 (2015). https://www.symantec.com/
content/en/us/about/presskits/b-state-of-privacy-report-2015.pdf. Accessed 20
June 2016

3. Quah, A.M.Y., Röhm, U.: User awareness and policy compliance of data privacy in
cloud computing. In: Proceedings of the First Australasian Web Conference, AWC
2013, vol. 144, pp. 3–12, Darlinghurst, Australia, Australian Computer Society,
Inc. (2013)

4. Ackerman, M.S., Cranor, L.F., Reagle, J.: Privacy in e-Commerce: examining user
scenarios and privacy preferences. In: Proceedings of the 1st ACM Conference on
Electronic Commerce, EC 1999, New York, NY, USA, pp. 1–8. ACM (1999)

5. Hansen, M.: Top 10 mistakes in system design from a privacy perspective and
privacy protection goals. In: Camenisch, J., Crispo, B., Fischer-Hübner, S., Leenes,
R., Russello, G. (eds.) Privacy and Identity Management for Life. IFIP AICT, vol.
375, pp. 14–31. Springer, Heidelberg (2012)

http://www.gsma.com/publicpolicy/wp-content/uploads/2014/02/MOBILE_PRIVACY_Consumer_research_insights_and_considerations_for_policymakers-Final.pdf
http://www.gsma.com/publicpolicy/wp-content/uploads/2014/02/MOBILE_PRIVACY_Consumer_research_insights_and_considerations_for_policymakers-Final.pdf
http://www.gsma.com/publicpolicy/wp-content/uploads/2014/02/MOBILE_PRIVACY_Consumer_research_insights_and_considerations_for_policymakers-Final.pdf
https://www.symantec.com/content/en/us/about/presskits/b-state-of-privacy-report-2015.pdf
https://www.symantec.com/content/en/us/about/presskits/b-state-of-privacy-report-2015.pdf

92 R. Meis and M. Heisel

6. Meis, R., Wirtz, R., Heisel, M.: A taxonomy of requirements for the privacy goal
transparency. In: Fischer-Hübner, S., Lambrinoudakis, C., López, J. (eds.) Trust-
Bus 2015. LNCS, vol. 9264, pp. 195–209. Springer, Heidelberg (2015)

7. ISO/IEC: ISO/IEC 29100:2011 Information technology - Security techniques - Pri-
vacy Framework. Technical report, International Organization for Standardization
and International Electrotechnical Commission (2011)

8. European Commission: Proposal for a REGULATION OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL on the protection of individuals with
regard to the processing of personal data and on the free movement of such data
(General Data Protection Regulation). http://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX:52012PC0011. Accessed 20 June 2016

9. OECD: OECD guidelines on the protection of privacy and transborder flows of per-
sonal data. Technical report, Organisation of Economic Co-Operation and Devel-
opment (1980)

10. US Federal Trade Commission: Privacy online: Fair information practices in the
electronic marketplace, a report to congress (2000)

11. Jalali, S., Wohlin, C.: Systematic literature studies: database searches vs. back-
ward snowballing. In: Proceedings of the ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM 2012, pp. 29–38. ACM
(2012)

12. Bier, C.: How usage control and provenance tracking get together - a data pro-
tection perspective. In: IEEE Security and Privacy Workshops (SPW), pp. 13–17,
May 2013

13. Hoepman, J.: Privacy design strategies - (extended abstract). In: Cuppens-
Boulahia, N., Cuppens, F., Jajodia, S., El Kalam, A.A., Sans, T. (eds.) ICT Sys-
tems Security and Privacy Protection. IFIP Advances in Information and Commu-
nication Technology, vol. 428, pp. 446–459. Springer, Heidelberg (2014)

14. Mouratidis, H., Islam, S., Kalloniatis, C., Gritzalis, S.: A framework to support
selection of cloud providers based on security and privacy requirements. J. Syst.
Softw. 86(9), 2276–2293 (2013)

15. Miyazaki, S., Mead, N., Zhan, J.: Computer-aided privacy requirements elicitation
technique. In: IEEE Asia-Pacific Services Computing Conference (APSCC), pp.
367–372, December 2008

16. Kalloniatis, C., Mouratidis, H., Vassilis, M., Islam, S., Gritzalis, S., Kavakli, E.:
Towards the design of secure and privacy-oriented information systems in the cloud:
identifying the major concepts. Comput. Stand. Interfaces 36(4), 759–775 (2014)

17. Kalloniatis, C.: Designing privacy-aware systems in the cloud. In: Fischer-Hübner,
S., Lambrinoudakis, C., López, J. (eds.) TrustBus 2015. LNCS, vol. 9264, pp. 113–
123. Springer, Heidelberg (2015)

18. Spiekermann, S., Cranor, L.: Engineering privacy. IEEE Trans. Softw. Eng. 35(1),
67–82 (2009)

19. Makri, E.-L., Lambrinoudakis, C.: Privacy principles: towards a common privacy
audit methodology. In: Fischer-Hübner, S., Lambrinoudakis, C., López, J. (eds.)
TrustBus 2015. LNCS, vol. 9264, pp. 219–234. Springer, Heidelberg (2015)

20. Acquisti, A., Adjerid, I., Brandimarte, L.: Gone in 15 seconds: the limits of privacy
transparency and control. IEEE Secur. Priv. 11(4), 72–74 (2013)

21. Masiello, B.: Deconstructing the privacy experience. IEEE Secur. Priv. 7(4), 68–70
(2009)

22. Krol, K., Preibusch, S.: Effortless privacy negotiations. IEEE Secur. Priv. 13(3),
88–91 (2015)

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012PC0011
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012PC0011

Understanding the Privacy Goal Intervenability 93

23. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat
analysis framework: supporting the elicitation and fulfillment of privacy require-
ments. RE 16, 3–32 (2011)

24. Komanduri, S., Shay, R., Norcie, G., Ur, B., Cranor, L.F.: Adchoices? compli-
ance with online behavioral advertising notice and choice requirements. Technical
report, CyLab - Carnegie Mellon University (2011). https://www.cylab.cmu.edu/
files/pdfs/tech reports/CMUCyLab11005.pdf. Accessed 20 June 2016

25. Cranor, L.F.: Necessary but not sufficient: standardized mechanisms for privacy
notice and choice. JTHTL 10(2), 273–308 (2012)

26. Wicker, S., Schrader, D.: Privacy-aware design principles for information networks.
Proc. IEEE 99(2), 330–350 (2011)

27. Strickland, L.S., Hunt, L.E.: Technology, security, and individual privacy: new
tools, new threats, and new public perceptions: research articles. J. Am. Soc. Inf.
Sci. Technol. 56(3), 221–234 (2005)

28. Sheth, S., Kaiser, G., Maalej, W.: Us and them: a study of privacy requirements
across North America, Asia, and Europe. In: Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pp. 859–870. ACM (2014)

29. Fhom, H., Bayarou, K.: Towards a holistic privacy engineering approach for smart
grid systems. In: IEEE 10th International Conference on Trust, Security and Pri-
vacy in Computing and Communications (TrustCom), pp. 234–241, November 2011

30. Antón, A.I., Earp, J.B., Reese, A.: Analyzing website privacy requirements using a
privacy goal taxonomy. In: IEEE International Confernce on Requirements Engi-
neering, pp. 23–31 (2002)

31. Antón, A.I.: Earp: a requirements taxonomy for reducing web site privacy vulner-
abilities. Requirements Eng. 9(3), 169–185 (2004)

32. Sype, Y.S.V.D., Seigneur, J.: Case study: legal requirements for the use of social
login features for online reputation updates. In: Cho, Y., Shin, S.Y., Kim, S., Hung,
C., Hong, J. (eds.) Symposium on Applied Computing, SAC, pp. 1698–1705. ACM
(2014)

33. Basso, T., Moraes, R., Jino, M., Vieira, M.: Requirements, design and evaluation of
a privacy reference architecture for web applications and services. In: Proceedings
of the 30th Annual ACM Symposium on Applied Computing, pp. 1425–1432. ACM
(2015)

34. Lobato, L., Fernandez, E., Zorzo, S.: Patterns to support the development of pri-
vacy policies. In: International Conference on Availability, Reliability and Security
(ARES), pp. 744–749, March 2009

35. Caron, X., Bosua, R., Maynard, S.B., Ahmad, A.: The internet of things (iot) and
its impact on individual privacy: an Australian perspective. Comput. Law Secur.
Rev. 32(1), 4–15 (2016)

36. Borgesius, F.Z.: Informed consent: we can do better to defend privacy. IEEE Secur.
Priv. 13(2), 103–107 (2015)

37. Breaux, T.: Privacy requirements in an age of increased sharing. IEEE Softw.
31(5), 24–27 (2014)

38. Langheinrich, M.: Privacy by design — principles of privacy-aware ubiquitous sys-
tems. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol.
2201, pp. 273–291. Springer, Heidelberg (2001)

39. Feigenbaum, J., Freedman, M.J., Sander, T., Shostack, A.: Privacy engineering for
digital rights management systems. In: Sander, T. (ed.) DRM 2001. LNCS, vol.
2320, pp. 76–105. Springer, Heidelberg (2002)

40. Wright, D., Raab, C.: Privacy principles, risks and harms. Int. Rev. Law, Comput.
Technol. 28(3), 277–298 (2014)

https://www.cylab.cmu.edu/files/pdfs/tech_reports/CMUCyLab11005.pdf
https://www.cylab.cmu.edu/files/pdfs/tech_reports/CMUCyLab11005.pdf

94 R. Meis and M. Heisel

41. Guarda, P., Zannone, N.: Towards the development of privacy-aware systems. Inf.
Softw. Technol. 51(2), 337–350 (2009)

42. Hedbom, H.: A survey on transparency tools for enhancing privacy. In: Matyáš,
V., Fischer-Hübner, S., Cvrček, D., Švenda, P. (eds.) The Future of Identity. IFIP
AICT, vol. 298, pp. 67–82. Springer, Heidelberg (2009)

43. Smith, H.J., Dinev, T., Xu, H.: Information privacy research: an interdisciplinary
review. MIS Q. 35(4), 989–1016 (2011)

44. Meis, R., Heisel, M.: Computer-aided identification and validation of privacy
requirements. Information 7(2), 28 (2016)

45. Sabit, S.: Consideration of intervenability requirements in software development.
Master thesis, University of Duisburg-Essen, Germany, August 2015

Information Audit and Trust

Design of a Log Management Infrastructure
Using Meta-Network Analysis

Vasileios Anastopoulos1 and Sokratis Katsikas1,2(&)

1 Systems Security Laboratory, Department of Digital Systems,
University of Piraeus, 18532 Piraeus, Greece

vasanasto@gmail.com, ska@unipi.gr
2 Center for Cyber and Information Security,

Norwegian University of Science and Technology, Gjøvik 2802, Norway
sokratis.katsikas@ntnu.no

Abstract. The need for compliance or organization specific requirements is
often guiding the implementation of a log management infrastructure. On a large
scale infrastructure the log data are stored in various places, where analysts or
administrators need to perform specific analysis tasks. In this work we propose a
method for validating the design of the log collector part of the infrastructure,
ensuring that each log collector has at its disposal the necessary log data for
performing the desired analysis tasks. This is achieved by modeling the
infrastructure as an organization and by applying social network analysis con-
cepts and metrics that are used to analyze the structure and performance of real
organizations. An example case study, demonstrating the workings of the
method and the interpretation of the results, on a simulated infrastructure is also
presented.

Keywords: Log management � Social network analysis � Organizational risk
analyzer

1 Introduction

According to [1], “a log management infrastructure consists of the hardware, software,
networks, and media used to generate, transmit, store, analyze, and dispose of log
data”. A log management infrastructure typically comprises three tiers, namely the Log
Generation tier that contains the hosts that generate the log data; the Log Analysis and
Storage tier, which is composed of one or more log servers, often called collectors or
aggregators, that receive log data or copies of log data from the hosts in the first tier;
and the Log Monitoring tier, that contains consoles that may be used to monitor and
review log data and the results of automated analysis [1–3].

Designing a log management infrastructure for a Wide Area Network (WAN) is a
demanding task, especially when the infrastructure is composed of geographically
dispersed and heterogeneous networks. The problem underlying most log management
related challenges is the need to effectively balance the available amount of log
management resources with the ever-increasing supply of log data, generated by
various devices throughout the organization, in inconsistent log formats and log

© Springer International Publishing Switzerland 2016
S. Katsikas et al. (Eds.): TrustBus 2016, LNCS 9830, pp. 97–110, 2016.
DOI: 10.1007/978-3-319-44341-6_7

content [1]. Typically in an infrastructure the data generated from various devices of
interest are sent to central points of collection, implementing a hierarchy of log col-
lectors. Selecting a centrally managed or distributed architecture is a common practice
depending on the needs of or the limitations posed to the organization that owns or
operates the WAN. On the other hand, a log management infrastructure has to satisfy
the log management requirements for which it was built. The accomplishment of
related tasks (e.g. generate a report by tracking user login patterns, identify failed
access attempts, software installation, data exfiltration, etc.) requires the availability of
the adequate log data at the right time and in the right place. Depending on the
requirements or the infrastructure design, specific log data may be stored into specific
log collectors and different log management tasks may be performed at different places.
In [1] the implementation of multiple log servers, each performing specific analysis or
storage functions for specific log generators, was proposed as part of a typical archi-
tectural solution. On a large scale infrastructure, each log collector can store a portion
of the total generated log files, and each analyst will likely need to perform specific
analysis tasks in different places.

The placement of the log collectors within the infrastructure is a design problem
that is commonly resolved empirically, taking into account good practices and relevant
guidelines. For example, the placement of log collectors needs to take into account the
following criteria [3]:

1. Geographic location: For a WAN that extends across multiple locations the
placement of a collection point to each region is proposed.

2. Collectors close to their originators: The collectors have to be placed close to
their originators. This is desired as a network problem or the spread of a malware
infection could disrupt the log collection process.

3. Hub-and-spoke architecture: Many originators forward the log data to a collector
and many collectors forward them to a central point or in the case of multiple layers
to a central collection point at the following layer.

4. Hierarchical: The placement of the components has to follow a hierarchical
fashion starting from the originators and ending to the central collection point,
where all the log data are collected and processed by the organization.

Thus, the driving factors for making design decisions on the placement of log
collectors do not take into account the log analysis tasks that will need to be performed
using the log data stored in each collector. Hence, there is a need to validate the design
structure of the second tier of a log management infrastructure.

This design structure comprises the relationship among collectors, log management
tasks and log data. Validation here means ensuring that on each log collector the
desired log management tasks can be performed using the log data actually collected on
it on one hand and establishing the significance of each log collector for the accom-
plishment of the overall log management tasks on the other hand. The entities and
relationships forming the design structure of the log management infrastructure can be
modeled as a collection of interlocked networks called a Meta-Network.
A Meta-Network can be represented using the Meta-Matrix conceptual framework [5];
this allows the extension of the Social Network Analysis (SNA) concepts and tech-
niques [6] to those of the Meta-Network Analysis (MNA) [7].

98 V. Anastopoulos and S. Katsikas

In this paper we consider the log management infrastructure to be a complex
organization. This viewpoint enables the application of concepts and measures used to
analyze the performance and structural properties of real organizations, such as the
MNA. As a result, we propose a method for validating the design and configuration of
a large scale log management infrastructure and for establishing a measure of each log
collector’s criticality for the infrastructure. This allows taking corrective action as well
as the continuous evaluation of the performance of the log management infrastructure.

The remainder of this paper is organized as follows: In Sect. 2, the related work is
presented. In Sect. 3, we elaborate on the proposed approach. Section 4 reports on the
findings of applying the proposed approach to a simulated log management infras-
tructure. Our conclusions and future work are discussed in Sect. 5.

2 Related Work

A high-level viewpoint of log management technologies is given in [1]. This paper can
be used as a framework for the development, the implementation and the maintenance
of a log management infrastructure, as it addresses most issues at a high level. In [2] the
authors propose a log data collection framework that is composed of four steps. It starts
with the definition of the potential threats posed to the organization, which are then
prioritized based on their risk. It continues with the identification of the data feeds that
are necessary to address each technical threat, and concludes with the detailed analysis
of the selected data sources. A high level guide is also available in [4], composed of
five phases for building a log analysis system. The planning phase, where the system
requirements are specified, the software selection, where issues related to the selection
of the right software tools are discussed, the policy definition, where procedures and
routines are defined. The fourth phase guides the decision for the system architecture
and at the last phase, issues related to the scaling of the system are considered. A data
acquisition and a data transmission module are presented in [8], as components of a
network security monitoring solution, focusing on specific tasks of log management
that are required by the proposed system. A log management architecture is proposed in
[9], discussing functions related to log collection and storage, and in conjunction with
commercial SIEM systems. The authors in [10] propose a method that guarantees the
completeness of logs that are transferred through an untrusted network. They focus on
the forensic soundness of the transferred log data, they propose a new log format and
they discuss functions related to log collection and storage. In [11, 12] the authors
present their systems for the delegation of log management to the cloud, achieving
properties of data such as availability privacy and confidentiality. These works are not
implementation guides but they are indicative of the advances in the employment of
cloud solutions for log management tasks and the challenges they pose.

The aforementioned work cannot be used as a step-by-step guide, as it is either
abstract or focused on specific issues of log management and relevant systems. The
methodology proposed in [13] adopts and adjusts specific elements of previous works
to avoid “re-inventing the wheel” whenever it is possible, and differentiates from it as it
extends to both high-level and low-level aspects of log management, to both business
and technical issues and can guide the design, implementation and evaluation of a log

Design of a Log Management Infrastructure Using Meta-Network Analysis 99

management infrastructure. The methodology consists of 11 steps and results in the
design and configuration of the infrastructure, including the specific log files that are
sent to each log collector.

Social network analysis is based on an assumption of the importance of relation-
ships among interacting units. The social network perspective encompasses theories,
models, and applications that are expressed in terms of relational concepts or processes.
In social network analysis the identification of the key nodes is a task that is commonly
achieved using the measurements of centrality. In [6] various measurements are defined
along with their possible interpretation and meaning, depending on the context. In [14]
various methods of analyzing social networks are presented. One of them is the sep-
aration of the social network into a core and a periphery part based on the centrality of
the nodes. More complex methods are proposed in [15, 16], where the author addresses
the inefficiency of the centrality measures in identifying important and key nodes. SNA
usually handles networks with one type of nodes, such as agent networks or task
networks. The SNA methods do not lend themselves well to treating complicated data
structures such as those encountered in multi-mode networks, where three or more
modes may coexist [6]. Therefore, whereas SNA can be used to model and analyze the
placement of log collectors, it does not lend itself to modeling and analyzing their
design structure, which is the relationship among different types of nodes; collectors,
log management tasks and log data. To achieve this, it is essential to extend SNA to
multiple types of nodes and to more complex cross-connected networks; this is
accomplished by MNA.

Meta-networks were first described as the precedence, commitment of resources,
assignment, networks, and skills (PCANS) model [17]. They involve key entities that
influence organizational design, such as tasks, resources, knowledge, and agents, as
well as their relations [18] and has been applied to diverse fields [7, 19–21]. To our
knowledge there is no previous work on using multi-relational social network analysis
on log management infrastructures to assess the alignment of the structure design with
the relevant log management requirements.

3 Validating the Log Management Infrastructure Design
Structure

3.1 Modeling a Log Management Infrastructure as a Social Network

The log management infrastructure comprises three entities, namely the log management
tasks (component of the requirements); the log collectors; and the log files and their
relationships. Each log management task needs the data contained into specific log files,
while each log file is sent to one or more log collectors [13]. Each log collector is
“assigned” specific log management tasks, meaning that an analyst, using the data col-
lected at this collector has to be able to perform the defined subset of tasks (or all of them).
This results into relationships among the three entities as depicted in Fig. 1; a log file
(shown as a square) is linked with log collectors (shown as circles), in a one-to-many
relationship; a log collector is linked with tasks (shown as hexagons), in a one-to-many
relationship; a logmanagement task is linkedwith logfiles, in a one-to-many relationship.

100 V. Anastopoulos and S. Katsikas

In SNA a node (or actor) is a social entity. It can be a discrete social unit (an
individual) or a collective social unit (a group of people, a corporate department, etc.).
The term “actor” does not imply that actors have the ability to act. Links (or social ties)
connect actors, establishing a tie between a pair of actors. A relation is the collection of
a specific kind of ties formed among the actors within a specific set of actors. Social
networks are composed of nodes and links. These nodes relate with other nodes
through their links. When the links have a direction the network is directed and the link
from node A to B is different from node B to A. When a link direction is not specified,
the network is undirected and the link from A to B is not different from the one from B
to A. A node can have one or more attributes and a link can be binary of valued. Using
graph theory notation G = (V, E) is a social network G, with |V| nodes and |E| links
among them. It is represented by a |V| × |V| adjacency matrix, where the existence of a
link between node vi 2 V and node vj 2 V, is indicated by a value in the eij2E cell.
This is a one-mode network [22], as the links are formed among the nodes of the same
set, where the term mode refers to the distinct set of entities on which structural
variables are measured. A two-mode network is formed between two distinct sets of
nodes, N and M, and is represented by a |N| × |M| incidence matrix. In our case, the
identified entities of the log management infrastructure and the relationships among
them are used to construct a three-mode social network, whose elements are as follows:

T = {t1,t2,…,tr}, the log management tasks.
C = {c1,c2,…,cc}, the log collectors.
F = {f1,f2,…,ff}, the log files.

and the links (relationships) among them are represented by the following incidence
matrices:

|F| × |T|, the log files necessary to perform each log management task.
|F| × |C|, the collector to which each log file is sent.
|T| × |C|, the log management tasks “assigned” to each log collector.

Fig. 1. Relationships among log management infrastructure entities

Design of a Log Management Infrastructure Using Meta-Network Analysis 101

3.2 Modeling the Log Management Infrastructure as a Meta-Network

In the context of MNA, the design structure is composed of agents, an information
processing entity; tasks, part of a set of actions which accomplish an assignment; and
knowledge, the available information [23]. Each of these entities corresponds to a node
class and collections of nodes belonging to these classes form specific nodesets. Links
can be present between the nodes of the same node class or between the nodes of
different node classes. Nodes and links may have attributes further describing the nodes
and providing context to their relationship. Multiple networks can be created, each one
representing a specific type of connection between the nodes. When the network is
formed between nodes of the same node set it is a one-mode network, while when it
uses N node sets it is an N-mode network. A group of such networks is referred to as a
meta-network.

In analogy, as shown in Table 1, we consider the log management infrastructure as
an organization composed of log collectors (agents), log files (knowledge) and log
management tasks (tasks). Further, following the notation of [23], AT is the agent x
task matrix, KT΄ is the transposed matrix knowledge x task, AK the agent x knowledge
matrix; these three networks form the meta-network to be analyzed in order to identify
flaws in the design of the infrastructure. It should be noticed that the log files are
modeled as knowledge, thus they are independent of life-cycle issues, such as
on-line/off-line storage, rotation, compression, etc.

The analysis is based on the following measures [23, 24]:
Agent Knowledge Needs Congruence, is the amount of knowledge that an agent

lacks to complete its assigned tasks, expressed as a fraction of the total knowledge
required for the assigned tasks. The measure compares the knowledge needs of the
agent to do its assigned tasks with the actual knowledge of the agent. The measure
value for an agent increases when it has need of knowledge to which it is not assigned.
Let NK = AT*KT’ be the knowledge needed by agents to do their assigned tasks; then
the output value for agent i is sum(NK(i,:) .* *AK(i,:))/sum(NK(i,:)).

Table 1. Constructed meta-network

Meta-network (organization): Log management infrastructure
Node class Node set Interpretation

Agent (A) Log collectors (C) The systems where the log files are collected
Knowledge (K) Log files (F) The log files sent by the log sources
Task (T) Log management

tasks (T)
The log management tasks (components of
the requirements)

Network 2-mode network Interpretation
Agent × Task (AT) |T| × |C| The log management tasks expected to be

accomplished on each log collector
Knowledge × Task
(KT’)

|F| × |T| The log files that are necessary to perform
each log management task

Agent × Knowledge
(AK)

|F| × |C The log files actually collected on each log
collector

102 V. Anastopoulos and S. Katsikas

Agent Knowledge Waste Congruence, is the amount of knowledge that an agent has
that is not needed by any of its tasks expressed as a fraction of the total knowledge of
the agent. The formula compares the knowledge of the agent with the knowledge it
actually needs to do its tasks. Any unused knowledge is considered wasted. Let
NK = AT*KT’ be the knowledge needed by agents to do their assigned tasks, then the
output value for agent i equals to sum(*NK(i,:) .* AK(i,:))/sum(NK(i,:)).

Knowledge Potential Workload, is the maximum amount of knowledge an agent
could use to do tasks if it were assigned to all tasks. If an agent is assigned all the tasks
this measure will compute a value expressing its potential to carry out all the tasks
based on his connections to the knowledge needed for the tasks [25]. The value for
agent i equals to sum((AK*KT(i,:))/sum(KT). The higher the value of this measure-
ment, the more tasks can be completed using the knowledge of this node, thus the more
critical this node is.

3.3 Validating and Improving the Design Structure

By calculating the first two measures, the log collectors that need more log data in order
to accomplish their tasks are identified, as well as the nodes that collect more log data
than they actually need. The log sources can then be reconfigured, modifying either the
collectors to which their log files are sent, or the specific log files that are sent to each
log collector. Following these adjustments, each log collector ends up with the log data
it actually needs to perform the “assigned” tasks, thus avoiding the waste of resources.
The third measure is used to identify the log collectors that are important for the
infrastructure. A collector whose log data are used for a large subset of tasks is more
important than a collector used to perform only a few ones, categorizing it as critical for
the log management infrastructure.

4 An Example Case Study

In order to demonstrate the workings of the proposed method, we assume a log man-
agement infrastructure where 25 log files from various devices are sent to 5 log col-
lectors. The collected log data were used to perform a set of 10 analysis tasks and on
each log collector a subset of analysis tasks was desired to be accomplished. The number
of nodes and links was selected to be small in this example in order to ensure the
readability of the visualizations. Each log analysis task needs specific log files in order to
be accomplished. We note, however, that the available MNA tools can easily handle
thousands of nodes and links, posing in practice no limit to the scalability of the
proposed approach. The log collector for each log file was configured during the
implementation of the infrastructure, as well as the subset of analysis tasks for each
collector and the log files that are required for each task. Each log collector is placed on a
different physical location and it is configured to collect log data from a specific category
of devices or operating systems [1]. Four log collectors, one for Linux generated logs;
one for Windows generated logs; one for log generated from network devices; one for
logs generated from security devices form a layer of collectors,Layer-2. The fifth

Design of a Log Management Infrastructure Using Meta-Network Analysis 103

collector, Layer-1, receives all the logs from Layer-2 as well as the logs generated by
specific services/applications. The aim of the analysis is to validate whether or not the
tasks assigned to each collector can be actually performed with the specific log data they
collect.

The infrastructure is modeled as a meta-network composed of three node classes
and three 2-mode networks. The node classes are agent (A), knowledge (K) and task
(T), having the corresponding node sets of log collectors |C| = 5, log files |F| = 25 and
log management tasks |T| = 10. A summary of the meta-network data is shown in
Table 2.

The three 2-mode networks are the log files collected on each log collector |F| × |C|,
the log files that are required for each analysis task |F| × |T| and the analysis tasks
“assigned” to each collector |T| × |C|. Sample data of the matrices representing the
aforementioned networks are listed in Tables 3, 4 and 5, respectively.

For the needs of this case study we assume three teams of personnel in the orga-
nization; the security, the system administration and the network administration teams.
Each team is located in a different physical location and has access to log collectors as
follows:

• Security team: Layer-2-Security Devices (c5)
• Systems’ administration team: Layer-2-Windows (c2), Layer-2-Linux (c3)
• Network administration team: Layer-2-Network Devices (c4)

Each team needs to perform a subset of analysis tasks as shown in Table 5.
When these 2-mode networks are combined, the resulting 3-mode network is

visualized in Fig. 2. In this figure, the circles represent the log collectors, the hexagons
the analysis tasks and the squares the log files.

Table 2. Summary of meta-network data

Node class Node set Node name

Αgent (A) |C|=5 Layer-1-Central (c1)
Layer-2-Windows (c2)
Layer2-Linux (c3)
Layer-2-Network Devices (c4)
Layer-2-Security Devices (c5)

Knowledge (K) |F|=25 Windows-Security log (f1)
Linux-secure/auth log (f5)
VPN Server log (f10)
Firewall log (f12)
Antivirus log (f19)

Task (T) |T|=10 Authentication failures and successes (t1)
Execution of scheduled tasks (t3)
Outbound connections from internal and DMZ systems (t6)
Critical errors (t8)
Malware (t9)

104 V. Anastopoulos and S. Katsikas

The construction of the multi-mode social network, the visualizations and the
measurements were performed using the CASOS ORA-NetScenes 3.0.9.9.29 tool [26],
developed by Carnegie Mellon University. It is a network analysis tool used to detect
risks or vulnerabilities on the design structure of organizations, analyzing their struc-
tural properties. The calculated measures for this case study are shown in Table 6. The
Agent Knowledge Waste Congruence of c1 is one, meaning that the log data collected
on this collector is not needed for the analysis.

This was expected, as this collector is the central point where every log file is
stored, though in Table 5 we observe that no analysis task is “assigned” to it. Collector
c4 has a value of 0.500 as it receives both syslog and NetFlow protocol data, though it
only needs the syslog data for the “assigned” tasks. Concerning the Agent Knowledge
Needs Congruence, we observe that no collector has the required log data. The value
for c4 is the highest, as the syslog data it receives from the network devices are not
enough to track the system and service restarts, the critical error, etc. throughout the
infrastructure.

Applying MNA on this simulated infrastructure we were able to quickly identify
that log collector c4 not only lacks the necessary log data to perform its tasks, but it
receives log data irrelevant to the “assigned” tasks as well; this results in waste of
resources. None of the remaining collectors has at its disposal the necessary data, but
they avoid receiving irrelevant log data, too. Figure 3 visualizes the c4 node and its
links. The dotted lines represent the log files it actually receives and the solid lines
represent the log files it should be receiving to accomplish its tasks. The social net-
work’s layout has been adjusted for readability and the positions of the nodes have no
special meaning. As a result of the analysis, a collector that both lacked necessary and
received unnecessary information was identified, and proper adjustments can be easily
performed assisted by the visualizations. This analysis should be repeated for collectors

Table 3. Sample log_file × collector matrix

Collector Windows-security
log (f1)

Windows-scheduled
tasks log (f2)

Windows-system
log (f3)

Linux-secure/auth
log (f5)

Firewall
log (f12)

c1 1 1 1 1 1
c2 1 1 1 0 0
c3 0 0 0 1 0

c4 0 0 0 0 0
c5 0 0 0 0 1

Table 4. Sample log_file × analysis_task matrix

Task Windows-security
log (f1)

Windows-scheduled
tasks log (f2)

Windows-system
log (f3)

Linux-secure/auth
log (f5)

Firewall log
(f12)

t1 1 0 0 1 0
t3 0 1 0 0 0
t6 0 0 0 0 1

t8 0 0 1 0 0
t9 1 0 0 1 0

Design of a Log Management Infrastructure Using Meta-Network Analysis 105

T
ab

le
5.

A
na
ly
si
s_
ta
sk

×
co
lle
ct
or

m
at
ri
x

C
ol
le
ct
or

A
ut
he
nt
ic
at
io
n

fa
ilu

re
s
an
d

su
cc
es
se
s
(t
1)

M
ul
tip

le
lo
gi
n

fa
ilu

re
s
fo
llo

w
ed

by
su
cc
es
s
(t
2)

E
xe
cu
tio

n
of

sc
he
du

le
d

ta
sk
s
(t
3)

Sy
st
em

an
d

se
rv
ic
e
re
st
ar
ts

an
d
sh
ut
do
w
ns

(t
4)

A
pp

lic
at
io
n

in
st
al
l
an
d

up
da
te
s
(t
5)

O
ut
bo

un
d

co
nn

ec
tio

ns
fr
om

in
te
rn
al

an
d
D
M
Z

sy
st
em

s
(t
6)

Fi
le

tr
an
sf
er
s

(t
7)

C
ri
tic
al

er
ro
rs

(f
8)

M
al
w
ar
e

(f
9)

D
at
ab
as
e
us
er
s

ex
ec
ut
in
g

C
R
E
A
T
E
,

G
R
A
N
T
(f
10
)

c1
0

0
0

0
0

0
0

0
0

0

c2
1

0
1

1
1

0
1

1
0

0
c3

1
0

1
1

1
0

1
1

0
0

c4
1

0
0

1
0

0
0

1
0

0

c5
1

1
1

1
1

1
1

0
1

1

106 V. Anastopoulos and S. Katsikas

c2, c3 and c5, as well as the process of adjustments and analysis until the desired
measurements are achieved.

Moving to the identification of nodes’ criticality, ignoring the central collector (c1),
the most important collectors for the performance of all the log management analysis
tasks are, in decreasing importance, c5, c2, c3 and c4, based on the measurement of

Fig. 2. Generated 3-mode social network

Fig. 3. Links of the c4 node

Design of a Log Management Infrastructure Using Meta-Network Analysis 107

the Knowledge Potential Workload. Following this analysis the files that are missing or
are in surplus on each collector can be easily identified, and corrective actions may be
applied, by reconfiguring the log files that are sent to each log collector.

Apart from having predefined subsets of analysis tasks “assigned” to each collector, a
different use case could be that of an analyst seeking the optimal collectors in order to
perform specific analysis tasks as part of their investigation, be it related to security or not.

5 Conclusions and Future Work

In this work we considered a large scale log management infrastructure as a complex
organization. This allowed us to model it as a multi-mode social network formed by the
links among its components, namely the log management tasks, the log files and the log
collectors. The MNA measures used for the structural analysis of organizations were
applied on the generated social network, aiming to identify flaws in the design of the
infrastructure and to enable the application of corrective actions. We target specifically
in identifying log collectors lacking the necessary log data that are required to perform
the desired log management tasks, as well as to categorize the log collectors in terms of
criticality for the infrastructure. The proposed method has been successfully applied on
a small-scale simulated infrastructure. However, even open source MNA software can
easily handle thousands of nodes and links rendering the proposed method to be highly
scalable. The proposed method focused on the log collectors; however, the analysis
could also include the log files and the log analysis tasks. Future work could study the
importance of each log file in fulfilling the requirements, as well as identify the log
analysis tasks that are “demanding” in log files.

References

1. Kent, K., Souppaya, M.: Guide to Computer Security Log Management. NIST SP800-92
(2006). http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf. Accessed 23 Mar
2016

2. Smith, J., Sanders, C.: Applied Network Security Monitoring, 1st edn. Syngress, Oxford
(2014)

Table 6. MNA measurements

Collector Congruence, agent
knowledge waste

Congruence, agent
knowledge needs

Potential workload,
knowledge

c1 1.000 0 1
c2 0 0.821 0.162
c3 0 0.839 0.149
c4 0.500 0.912 0.095
c5 0 0.525 0.405

108 V. Anastopoulos and S. Katsikas

http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf

3. Cisco: Building Scalable Syslog Management Solutions (2015). http://www.cisco.com/c/en/
us/products/collateral/services/high-availability/white_paper_c11-557812.html. Accessed 23
Mar 2016

4. Schmidt, K.J., Chuvakin, A.: Logging and Log Management: The Authoritative Guide to
Understanding the Concepts Surrounding Logging and Log Management, 1st edn. Syngress,
Oxford (2013)

5. Carley, K.M., Reminga, J.: ORA: Organization Risk Analyzer. CASOS Technical report
CMU-ISRI-04-106 (2004)

6. Faust, K., Wasserman, S.: Social Network Analysis: Methods and Applications. Cambridge
University Press, Cambridge (1994)

7. Li, Y., Lu, Y., Li, D., Ma, L.: Metanetwork analysis for project task assignment. J. Constr.
Eng. Manag. 141(12): (2015). http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001019

8. Liu, J., Guo, J., An, R., Gao, K.: Study on data acquisition solution of network security
monitoring system. In: 2010 IEEE International Conference on Information Theory and
Information Security (ICITIS), Beijing, pp. 674–677 (2010)

9. Rezayi, S., Gharaee, H., Madani, A.: Log management comprehensive architecture in
Security Operation Center (SOC). In: International Conference on Computational Aspects of
Social Networks (CASoN), Salamanca, pp. 284–289 (2011)

10. Uehara, M., Shimada, Y., Tomono, A.: Trusted log management system (chap. 5). In:
Khalil, I., Mantoro, T. (eds.) Trustworthy Ubiquitous Computing, pp. 79–98. Springer,
Atlantis Press, Berlin (2012)

11. Kala, T.K., Murugan, A.: An effective secured cloud based log management system using
homomorphic encryption. Int. J. Comput. Sci. Inf. Technol. 5(2), 2268–2271 (2014)

12. PawarAnil, S., RajebhosaleSagar, B.: Development of highly secured cloud rendered log
management system. Int. J. Comput. Appl. 108(16), December 2014

13. Anastopoulos, V., Katsikas, S.: A methodology for building a log management infrastructure.
In: Proceedings of IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT 2014), pp. 301–306 (2015). doi:10.1109/ISSPIT.2014.7300604

14. Mrvar, A., Batagelj, V., Nooy, W.D.: Exploratory Social Network Analysis with Pajek
(Structural Analysis in the Social Sciences), 2nd edn. Cambridge University Press,
Cambridge (2011)

15. Borgatti, S.P.: The key player problem. In: Dynamic Social Network Modeling and Analysis:
Workshop Summary and Papers (2003)

16. Borgatti, S.: Identifying Sets of Key Players in a Social Network, pp. 21–34. Springer
Science, Berlin (2006)

17. Krackhardt, D., Carley, K.M.: PCANS Model of Structure in Organizations. Institute for
Complex Engineered Systems, Carnegie Mellon University, Pittsburgh (1998)

18. Carley, K.M.: Computational organizational science and organizational engineering. Simul.
Model. Pract. Theor. 10(5), 253–269 (2002)

19. Wakolbinger, T., Nagurney, A.: Dynamic supernetworks for the integration of social networks
and supply chains with electronic commerce: modeling and analysis of buyer-seller
relationships with computations. NETNOMICS: Econ. Res. Electron. Netw. 6(2), 153–185
(2004)

20. Nagurney, A., Wakolbinger, T., Zhao, L.: The evolution and emergence of integrated social
and financial networks with electronic transactions: a dynamic supernetwork theory for the
modeling, analysis, and computation of financial flows and relationship levels. Comput.
Econ. 27(2–3), 353–393 (2006)

21. Nagurney, A., Dong, J.: Management of knowledge intensive systems as supernetworks:
modeling, analysis, computations, and applications. Math. Comput. Model. 42(3), 397–417
(2005)

Design of a Log Management Infrastructure Using Meta-Network Analysis 109

http://www.cisco.com/c/en/us/products/collateral/services/high-availability/white_paper_c11-557812.html
http://www.cisco.com/c/en/us/products/collateral/services/high-availability/white_paper_c11-557812.html
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001019
http://dx.doi.org/10.1109/ISSPIT.2014.7300604

22. Tucker, L.R.: Implications of factor analysis of thee-way matrices for measurement of
change. In: Harris, C.W. (ed.) Problems in Measuring Change, pp. 122–137. University of
Wisconsin Press, Madison (1963)

23. Carley, K.M., Pfeffer, J., Reminga, J., Storrick, J., Columbus, D.: ORA User’s Guide 2013.
CMU-ISR-13-108, School of Computer Science, Institute for Software Research, Carnegie
Mellon University, Pittsburgh, PA 15213, June 2013

24. Lee, J.-S., Carley, K.M.: OrgAhead: a computational model of organizational learning and
decision making. Technical report CMU-ISRI-04-117, School of Computer Science,
Institute for Software Research International, Carnegie Mellon University, Pittsburgh (2004)

25. Carley, K.M.: Summary of Key Network Measures for Characterizing Organizational
Architectures. Carnegie Mellon University, Pittsburgh (2002). Collins, M.S.: Network
Security Through Data Analysis: Building Situational Awareness, 1st edn. O’Reilly Media,
Sebastopol (2014)

26. Homepage|CASOS. http://www.casos.cs.cmu.edu/index.php. Accessed 23 Mar 2016

110 V. Anastopoulos and S. Katsikas

http://www.casos.cs.cmu.edu/index.php

The Far Side of Mobile Application Integrated
Development Environments

Christos Lyvas1(✉), Nikolaos Pitropakis2, and Costas Lambrinoudakis1

1 Department of Digital Systems, University of Piraeus, Piraeus, Greece
{clyvas,clam}@unipi.gr

2 School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, Georgia

pitropakis@gatech.edu

Abstract. Smart phones are, nowadays, a necessity for the vast majority of indi‐
viduals around the globe. In addition to the ubiquitous computing paradigm
supported by such devices, there are numerous software applications that utilize
the high computational capabilities that they offer. This type of software is a vital
part of what is known as e-Commerce, with a variety of business models proposed
and implemented. Lately, a new era of free-ware mobile application has arisen
with paid features and promoted content in them. Piracy is not only the weakest
point of software’s financial ecosystem for conventional computing systems but
also for smartphones. Actions like replication, redistribution and licensing viola‐
tions can cause financial losses of colossal extent to their creators. Mobile appli‐
cations also introduce the following peculiarity: They are distributed through
predefined channels (Application Stores) owned by mobile operating system
vendors such as Apple, Google and Microsoft. In this research we present several
scenarios where cracked and modified applications can be freely used into every
non jailbroken iOS device. Moreover it is demonstrated that not even in strict
mobile environments, such as Apple’s, end-users should be considered as trusted
entities from application developers by default.

Keywords: Application integrity · Application reverse engineer · Application
security

1 Introduction

Ubiquitous computing is certainly a breakthrough. Two decades ago no one could
imagine that he would be able to carry in his pocket mini computers with extremely high
processing power and capable to provide internet access on demand. In a very short time
smartphones have established their position in the mobile phone market and have
become the accessory that almost everyone uses constantly either for work or for enter‐
tainment.

After Apple launched the first iPhone, Google and Microsoft followed, offering new
smartphones and smart devices to the public. Each one of them promised to improve
our living quality and has developed software that was advertised as secure and stable.
During the last couple of years biometric sensors, such as fingerprint sensor and iris

© Springer International Publishing Switzerland 2016
S. Katsikas et al. (Eds.): TrustBus 2016, LNCS 9830, pp. 111–122, 2016.
DOI: 10.1007/978-3-319-44341-6_8

sensor, were introduced as an extra security level for the protection of the user. However
in practice most mobile applications do have bugs or other vulnerabilities that can be
exploited by malicious parties in order to harm the user. A very interesting debate for
academics and users is the following very simple question “which mobile platform
among iOS, Windows Phone and Android is more secure?” Clearly, there is not an easy
answer, especially since there are a lot of similarities in terms of the security mechanisms
adopted by each platform as all of them follow similar technological paths.

The main objective of this paper is to evaluate the mechanisms that the iPhone oper‐
ating system features in order to check the trustworthiness of the applications. Cracked
or prepackaged applications can run on Android devices by simply modifying the default
configuration settings of the mobile phone. This is also true for the Windows Phone,
where untrusted applications can be deployed into any developer unlocked Windows
Phone using the aid of an application deployment tool running on a PC. For Apple
devices the most popular method for executing untrusted applications is the Jailbreak
procedure that bypasses the code signature mechanism and instantly voids the guarantee.
The IOS’s Mandatory Code Signature mechanism aims to ensure that an application can
be executed only if its code has been signed by a trusted party [1]. Thus, prior to an
application’s execution, an internal kernel check verifies that the code loaded into the
virtual memory contains a valid signature and can, thus, proceed with the execution [5].
Any modification of a signed executable results in the invalidation of the entire file/
application. The Mandatory Code Signature mechanism can prevent cracked applica‐
tions of being executed on trusted devices (not Jailbroken) while at the same time trusted
malformed or malicious applications that change their executable code or behave like
droppers [6] cannot execute their payload on non-modified iOS devices since the execut‐
able code does not have a valid signature. The Jailbreak procedure disables the kernel
code sign check, allowing those devices to run pseudo signed code.

When a developer publishes an application, Apple ensures that the application is
fully functional, bug free and that it does not violate Apple’s security regulations [4].
Following the evaluation, the application is released in the iOS App Store and Mac
iTunes. These applications can execute on any iDevice (iPhone, iPod, iPad) [25] since
they have been signed with Apple’s s private key. This mechanism, as part of the
Mandatory Code Signature scheme explained before, ensures that applications with
illegal content or malicious payloads will not be executed on trusted devices.

Moreover, all the executables of the applications published in the App Store are code
protected with encrypted segments by Apple (connotation of ARMv7-A and ARMv8-
A Mach-O compatible for both 32 and 64 Bit ARM architectures) in order to prevent
any reverse engineering and replication attempts. This kind of obfuscation however is
not effective during runtime dynamic analysis, and thus an attacker can obtain the unen‐
crypted version of an executable when it is loaded into the memory [21].

In this paper we describe costless methods based on iOS Integrated Development
Environment, where any user can overcome the code signature mechanism and execute
cracked or prepackaged applications onto new iDevices. Moreover, the impact of this
ability is highlighted as it could lead to integrity violation of legitimate applications’
transactions, such as in app purchases [18], with significant financial consequences for
their creators.

112 C. Lyvas et al.

The rest of the paper is organized as follows. Section 2 provides an overview of the
related work and a comparison with the presented approach. In Sect. 3 the anatomy of
an iOS application and its embedded mechanisms is explained, while Sect. 4 describes
the provisioning model for iOS devices. Section 5 introduces practical attacks on paid
and free applications. Section 6 presents our thoughts for mitigating the attacks as well
as pointers for future work and specifically on how the proposed method can be further
extended in order to achieve a more in depth investigation of the iOS platform.

2 Related Work

This research work has emphasized into Apple’s iOS security ecosystem since it is
undoubtedly one of the stricter mobile platforms. Android and iOS cover 92.95 % of
mobile market for the last 4 years with an average of 79.1 % and 13.8 % respectively
[26]. Nonetheless, an interesting fact about those mobile platforms, is that iOS users
spend much bigger amounts of money to purchase applications or features on them, in
comparison to Android users [27].

Despite the fact that the huge percentage of software piracy is happening on Jail‐
broken devices, there are a lot of threats against applications’ integrity onto new iDevices
also. By combining a series of weaknesses in the development chain of iOS applications
it is clearly demonstrated that the entire business model of Apple’s App Store is not only
threatened by Jailbreak Development but also it cannot mitigate software piracy.

The majority of research work on the iOS application security model has tried to
attack the security mechanisms through remote exploits or local privilege escalation
vulnerabilities, using memory corruptions and memory leaks with a variety of methods
(Return Oriented Programming, Jump Oriented Programming, Heap Spraying etc.).

Wang et al. in [16] have managed to bypass Apple’s App Store review process and
publish vulnerable applications, while they propose ways to remotely exploit them based
on iOS Framework vulnerabilities. In another paper [15] they propose ways to inject
malicious developer-signed applications to non-jailbroken iOS devices by intercepting
USB and Wi-Fi connection between iDevices and infected computers. Finally, they
claim that infected non Jailbroken devices could act as botnets.

A survey by Zheng et al. [14] evaluates all possible ways through which an appli‐
cation can be distributed to a non Jailbroken iOS device signed with a variety of several
different paid certificates (Developer or Enterprise). During their research they develop
a framework to identify threats induced by the usage of vulnerable iOS private API
(undocumented application programming interfaces) functions. They evaluated 1408
private enterprise applications and they discovered several vulnerabilities and privacy
leaks in their payloads. Finally, they claim that non jailbroken iOS devices can run
cracked iOS applications if the applications have been signed with valid certificates.

A methodology for repackaging iOS applications executed on new 32Bit iDevices
was published by Livitt [22]. Specifically, a developer with an enrolled Developer
Account, with an annual cost of $99, can generate provisioning profiles (Certificates)
suitable to resign App Store Applications through Apple’s Developer Portal [24]. After

The Far Side of Mobile Application Integrated Development 113

performing tests with the tool proposed [23], it was concluded that it was only compatible
with 32 Bit iDevices.

The novelty of the work presented in this paper (Table 1) lies on the fact that it
demonstrates how someone can use any type of application (freeware or paid) freely on
any kind of non Jailbroken iDevice. The above procedure is independent of the iOS
version and the user only needs his/her Apple ID. Furthermore, additional ways that
allow users to access premium features and bypass applications’ additional security
checks are discussed, while additional developer features can be unlocked and used for
reversing third party applications such as automatic network monitoring, memory allo‐
cation debugging and automatic memory leak inspection. Finally, it has been demon‐
strated that in some app purchase cases it is feasible to bypass the payment by modifying
the application’s configuration files and accessing premium features by replacing legit‐
imate with arbitrary values. This kind of access into third party application files is
possible because they were supposed to run onto a new iDevice, owned by the developer
who signs them (signed with developer certificate), for testing purposes.

Table 1. Method comparison

114 C. Lyvas et al.

3 Anatomy of iOS Application

iOS applications can be downloaded through iTunes for conventional devices (Mac, PC)
and via App Store for iDevices (iPhone, iPod, iPad) with an active Apple ID account
being necessary in all cases. An iOS application is a Zip archive, containing several
folders and files. Every application contains a property list file with information about
the downloaded ipa (Apple application archive) [21] file, such us which Apple ID was
used for the purchase, the version of the application, date of creation etc. Another folder
placed in every ipa archive is the Payload folder which carries the application bundle in
app file extension. Every legitimate application container carries several application
icons, images and files for the application’s user interface. In order an application to run
in a non Jailbroken iDevice it must contain a valid property list file placed inside the
folder _CodeSignature. This property list contains hashes of every file inside the app
container in Base64 format [21]. The property list file named “info” inside the applica‐
tion container carries information about the executable version, the unique name of the
application (Bundle ID), URLs for the inter app communication mechanism [2] and the
publisher’s identifier. The executable file of an application is a connotation of ARMv7-
A and ARMv8-A Mach-O executables of the production source code. Any additional
extension or plugin of the application is most of the times placed inside the bundle
folders. For applications developed with swift framework an additional folder exists into
the app container which carries the necessary dynamic libraries for the application’s
execution. Figure 1 depicts the structure that has been already described.

Fig. 1. IPA container

The Far Side of Mobile Application Integrated Development 115

4 Provisioning Profiles

The code sign procedure is based on Public Key Infrastructure implementation which
ensures the integrity of the signed objects and the identity of the parties involved. Theo‐
retically, every developer has a pair of public and private RSA 2048 Bit key. As an
authority, Apple creates developer certificates based on developers’ public keys, then
uses the SHA-256 hash algorithm to hash the certificate and eventually signs it with its
private key. The generated developer certificate has as its only purpose to sign applica‐
tions. When a developer creates an application via Apple’s development tool Xcode and
he/she has attached an iOS device through a USB cable, he/she is allowed to deploy the
application to the iDevice [17]. Automatically after the compilation, an app container
is generated containing the necessary files in order to be executed onto the iDevice. An
additional file is generated with extension mobile provision. This specific file is a certif‐
icate in the form of a property list that declares the Developer ID which is the creator
of the application, the Bundle ID (Unique Name) of the generated application, the target
device UDID (Unique Device Identifier), the developer’s public key with which the
application has been signed and the permissions of the application. When a developer
needs to test the application onto an iDevice he/she must first accept the developer’s
certificate as being legitimate through the settings of the mobile device. Using this
implementation the parts of the application that have been encrypted with the developer’
s private key can be decrypted through the corresponding public key into the provisioned
iDevice [9, 10]. The trust of this procedure is sealed with the valid certificate issued by
Apple. The signed executable contains an embedded property list file, known as enti‐
tlement, which defines the application’s Bundle ID, the Developer’s ID and the permis‐
sions of the application. The entries of that file is a subset of the mobile provision’s file,
as explained before.

5 Attack Types

The objective of this work was to evaluate the tolerance of iOS’s application code
protection mechanisms. Section 5.1 demonstrates all the necessary steps to execute
cracked paid applications in non jailbroken iDevices. In addition to that, we were able
to extend the functionality of various applications by injecting malicious libraries as
add-ons into their original bundle and deploy them also into non jailbroken iDevices.
For the above purposes several 32 and 64 bit iOS devices have been used with various
versions of iOS 9. Our methodology is not automated. Every step is manually driven.
Automating these procedures is out of the scope of this paper.

5.1 Replication

In the experiments several legitimate paid applications, available on Apple’s App Store,
have been used together with several cracked application from various unofficial app
stores, developed with both Objective-C and Swift programming languages. The method

116 C. Lyvas et al.

for loading them onto a non jailbroken iDevice consists of the following steps (illustrated
in Fig. 2):

1. User must first install any application legitimate (installed via iTunes or App Store)
or cracked one (3rd party repos) into a Jailbroken iDevice.

2. After having installed a legitimate application onto a 32-bit Jailbroken iOS
Device, we bypass the encryption of the application’s executable by dumping the
decrypted parts loaded in the virtual memory to an ARMv7-A Mach-O file.
Then, we patch the decryption flag. The entire procedure has been carried out
using the LLDB Debugger [20]. Application’s executable decryption can also be
done by automatic tools [29, 30].

3. Following the previous step, we extract the generated executable from the iDevice.
4. Then, we replace the original executable file of the app container with the cracked

one. Then we modify the Bundle ID (Unique application name) of the original
application listed into the info plist file inside the container of the application file,
with a new name that consists of the original application’s name and a random suffix.
The random suffix that was utilised serves to overcome the fact that every Bundle
ID is reserved and cannot be re-used. It should be stressed that the aforementioned
replacement of the Bundle ID will not work for applications with iCloud or Game
Center extensions.

5. Every iDevice owner is obliged to create an Apple ID account in order to have access
to iTunes, App Store and iCloud. An iDevice allows a limited number of accounts
per device to be created without the use of a credit card. An attacker can create as
many as possible Apple accounts as he/she wants and declare them as developer
accounts without paying the annual fee to activate them. As a result, the fake Apple
accounts remain inactive and although they cannot be used for publishing applica‐
tions to the App Store they can be used for executing application that are under
development to any new iDevice. The exploited vulnerability has been based on the
developers’ ability to deploy their own testing applications to new iOS devices,
through Xcode, without any cost but by simply using an Apple ID registered to
Apple’s Developer Program without enrolment. Consequently, we are able to create
decoy application with the same Bundle ID as that of the modified application’s
(Legitimate Bundle-ID + Suffix) and bind it with the developers account. We let
Xcode to automatically generate a suitable team provisioning profile in order to
deploy the decoy application into a non jailbroken iDevice [12].

6. Before the user launches the decoy application for the first time, he/she must accept
the developers team provisioning profile in the iDevices’s Preferences.

7. At this point we are able to dump the entitlement of the generated executable and
merge it with the entitlement of the original one.

8. Then the Xcode tool set [3] was employed to resign the decrypted executable with
our valid developer certificate, based on the entitlement of the decoys application
executable. It is clear that the bind between a valid certificate, the Developer’s ID,
the UDID and the Bundle ID of the application, is not enough since Apple cannot
ensure that the developers actually will sign only their own legitimate applications.
By resigning an application the Code Signature folder is regenerated and that allows
the application to be deployed in an iDevice that has approved the developer’s public

The Far Side of Mobile Application Integrated Development 117

key. Finally the signed cracked application has been deployed onto a non jailbroken
iDevice by cheating Xcode in the sense that the cracked application has been gener‐
ated by the owner of the certificate that signs it. Due to the backward compatibility
of ARM processors we were able to execute the decrypted 32 Bit armv7 executable
(generated by the 32 Bit architecture of Jailbroken iPhone 5) to new iDevices with
64 and 32 Bit architectures respectively.

Fig. 2. Replication method

5.2 Malicious Payload Injection

Another issue that affects applications developed with the Objective-C language is the
ability to hook functions of application’s classes as described by Livitt [22]. After the
decryption and extraction of an iOS application’s executable (Step 1 Fig. 3), an attacker
can reverse engineer it through static and dynamic analysis and discover the usability
and functionality of its functions. Thus the attacker can take advantage of the Objective-
C [13] language method calling to create dynamic libraries (Step 2 Fig. 3) and hook
application’s class functions and modify the passing and return values or even inject
malicious payloads to them. The most suitable tool for this kind of extensions is the
Theos framework [11]. This tool in combination with the iOS Software Development
Kit and Cydia Substrate framework [19] is able to generate hooking dynamic libraries.
For the purposes of our research we used an ARMv7-A image of Cydia Substrate suitable
for both 32 and 64 Bit iOS 9 iDevices and we statically linked the Cydia Substrate to

118 C. Lyvas et al.

the generated dynamic library (Step 4 Fig. 3). Then we statically linked it into the cracked
executable (Step 3 Fig. 3) and place it inside the application container (Step 5 Fig. 3).
Due to the additional modifications it is necessary to resign (Step 6 Fig. 3) the cracked
executable and the additional dynamic libraries, with the entitlements of a decoy appli‐
cation as Sect. 5.1. Having the ability to hook Objective-C iOS application’s class func‐
tions, an attacker can modify an application’s behavior, bypass security checks, compro‐
mise application’s transactions integrity and extend functionality in order to unlock
premium features.

Fig. 3. Library injection

The aforementioned procedures can be performed by any owner of a non Jailbroken
iOS 32 Bit or 64 bit Device with a free registration to the Apple Developer Program
without enrolling his/her Apple ID and with access to a Mac or to a virtual machine of
Mac OS X with Xcode installed. A further impact of signing third parties’ applications
as ‘under test’ ones, is that an attacker can unlock several developer features such as the
ability to inspect memory allocations and automatically investigate and debug memory
leaks throw default system tools preinstalled into any OS X.

6 Conclusions

Both cases may lead to serious financial impacts in the business model of paid and free
(with in app purchases features) applications. From an economic standpoint, App Store
is the largest digital distribution platform for mobile apps with the total amount of
revenue from app sales since 2008 being at approximately 15 billion of United States

The Far Side of Mobile Application Integrated Development 119

Dollars [7]. The use of a functional cracked application deprives the developers of the
profit before taxes, which is equal to 70 % of the application’s price. Also, there is a loss
for Apple which amounts to the rest 30 % of the sale [28]. We were able not only to run
paid and repackaged applications freely into non jailbroken iDevices but we were also
able to have full access to their configuration files because we sign them as testing
applications and gain paid features and bypass Apple in app purchase model by modify
their data.

Running Apple ID signed applications onto not modified iDevices enlarge the attack
surface of iOS platform because in combination with exploitable memory corruptions
and Kernel vulnerabilities Jailbreak developers can deploy their own vulnerable apps in
order to directly attack the iOS Kernel. In this paper we leverage the opportunity for
unenrolled iOS developers to run freely their under developing application into their
iDevices for test purposes and we prove that cracked and repackaged applications can
be executed freely into every non Jailbroken devices regardless the version of the oper‐
ating system.

The immediate revocation of non enrolled developer code signature certificates will
only reduce the ability of iOS device owners to use cracked or malformed application
to their devices, and not to eliminate that malicious activities because of the alternative
equivalent methods accomplished that with enrolled developer and enterprise accounts
[8]. The only way that this type of threat can be eliminated is by robust obfuscation for
any generated application’s executable. Another common vulnerability we faced during
our research was the lack of encrypted values into applications file settings which gave
us the ability to modify values related with vulnerable in app purchases implementations.
Moreover it is recommended for application developers to redevelop immediately the
Objective-C applications available in the App Store to their equivalent Swift editions
and for Apple the design of a pure Swift framework for all the iDevices operation system.
Our research is based on framework vulnerabilities and security mechanisms imple‐
mented in mobile applications. Consequently, we aim to extend our research for Android
and Windows Phone applications. For Android application a malicious payload is able
to be injected into a repackaged application container with a crafted C/C++ library or
with Dalvik byte code injection. Similar to Android we will try to generalize those
methods to Windows Phone’s Applications to inject .NET assembly code into them in
order to evaluate the possibility of creation prepackaged tweaked applications for this
platform. Our final objective is to categorize common vulnerabilities in applications and
ways they can be exploited based on the mobile platform they are implemented in order
to suggest user space integrated methods for application integrity protection suitable for
any mobile operating system.

Finally, the above financial and statistical data we provided are because of the seri‐
ousness of the attack and the potential losses if an escalated attack against paid or
vulnerable credit based in app purchase implementations could be done.

120 C. Lyvas et al.

References

1. Code Signing Guide: Code Signing Overview. Apple Inc., 23 July 2012. Web 20 June 2016
2. App Programming Guide for IOS. Inter-App Communication. Apple Inc., 16 September

2015. Web 20 June 2016
3. OS X Code Signing In Depth: Technical Note TN2206. Apple Inc., 28 July 2015. Web 08

Dec 2015
4. App Store Review Guidelines: Apple Developer. Apple Inc., 20 June 2016
5. IOS Application Security: IOS Security 2015.2, pp. 18–19. Apple Inc., 9 September 2015.

Web 10 Dec 2015
6. Kwon, B.J., Mondal, J., Jang, J., Bilge, L., Dumitras, T.: The Dropper effect insights into

malware distribution with downloader graph analytics. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security - CCS 2015 (2015)

7. Forbes: Forbes Magazine, 11 January 2015. http://www.forbes.com/sites/anthonykosner/
2015/01/11/apple-app-store-revenue-surge-and-the-rise-of-the-freemium/. 09 Dec 2015

8. Choosing a Membership - Support. Apple Inc., 09 December 2015. https://
developer.apple.com/support/compare-memberships/

9. App Distribution Guide: Exporting Your App for Testing (iOS, TvOS, WatchOS). Apple
Inc., 29 May 2016. https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/
AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html#//
apple_ref/doc/uid/TP40012582-CH8-SW1. 20 June 2016

10. Code Signing Guide: About Code Signing. Apple Inc., 23 July 2012. https://
developer.apple.com/library/mac/documentation/Security/Conceptual/CodeSigningGuide/
Introduction/Introduction.html. 20 June 2016

11. Theos: Unified Cross-platform Makefile System. Github Repository, 7 February 2016. https://
github.com/DHowett/theos. 20 June 2016

12. App Distribution Guide: Launching Your App on Devices. Apple Inc., 29 April 2016. http://
developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/
LaunchingYourApponDevices/LaunchingYourApponDevices.html. 20 June 2016

13. Objective-C: Runtime Programming Guide. Messaging, Apple Inc., 19 October 2009. https://
developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/
Articles/ocrtHowMessagingWorks.html. 20 June 2016

14. Zheng, M., Xue, H., Zhang, Y., Wei, T., Lui, J.C.S.: Enpublic Apps. In: Proceedings of the
10th ACM Symposium on Information, Computer and Communications Security - ASIA
CCS 2015, pp. 463–474 (2015)

15. Wang, T., Jang, Y., Chen, Y., Chung, S., Lau, B., Lee, W.: On the Feasibility of Large-Scale
Infections of IOS Devices. In: 23rd USENIX Security Symposium, pp. 79–93 (2014). Web
10 Dec 2015

16. Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on iOS: when benign apps become evil.
In: 22nd USENIX Security Symposium, pp. 559–572 (2013)

17. App Distribution Guide: Maintaining Identifiers, Devices, and Profiles. Apple Inc., 29
April 2016. https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/
AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//
apple_ref/doc/uid/TP40012582-CH30-SW26. 20 June 2016

18. In-App Purchase Programming Guide: About In-App Purchase. Apple Inc., 21 October 2005.
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/
StoreKitGuide/Introduction.html. 20 June 2016

19. Cydia Substrate: The Powerful Code Modification Platform behind Cydia. SaurikIT LLC
(2014). http://www.cydiasubstrate.com/. 20 June 2016

The Far Side of Mobile Application Integrated Development 121

http://www.forbes.com/sites/anthonykosner/2015/01/11/apple-app-store-revenue-surge-and-the-rise-of-the-freemium/
http://www.forbes.com/sites/anthonykosner/2015/01/11/apple-app-store-revenue-surge-and-the-rise-of-the-freemium/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html#//apple_ref/doc/uid/TP40012582-CH8-SW1
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html#//apple_ref/doc/uid/TP40012582-CH8-SW1
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html#//apple_ref/doc/uid/TP40012582-CH8-SW1
https://developer.apple.com/library/mac/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
https://github.com/DHowett/theos
https://github.com/DHowett/theos
http://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/LaunchingYourApponDevices/LaunchingYourApponDevices.html
http://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/LaunchingYourApponDevices/LaunchingYourApponDevices.html
http://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/LaunchingYourApponDevices/LaunchingYourApponDevices.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtHowMessagingWorks.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtHowMessagingWorks.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtHowMessagingWorks.html
https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW26
https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW26
https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html#//apple_ref/doc/uid/TP40012582-CH30-SW26
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StoreKitGuide/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StoreKitGuide/Introduction.html
http://www.cydiasubstrate.com/

20. The LLDB Debugger: LLDB Homepage. LLVM Project, 20 June 2016. http://
lldb.llvm.org/. 20 June 2016

21. Levin, J.: Mac OS X and IOS Internals: To the Apple’s Core. Wiley, Indianapolis (2013)
22. Livitt, C.: Rethinking & Repackaging IOS Apps: Part 2. Bishop Fox, 4 May 2015. Web 2

Dec 2015
23. Theos and Cycript for Non-jailbroken IOS Devices. Github Repository, 17 August 2015.

https://github.com/BishopFox/theos-jailed. 20 June 2016
24. Apple Developer: Apple Inc. (2015). (18 Dec. 2015)
25. Passary, A.: Apple IOS 9: Here’s A List of Eligible Devices. TechTimes Inc., 10 June 2015.

http://www.techtimes.com/articles/59076/20150610/apple-ios-9-heres-a-list-of-eligible-
devices.htm. 20 June 2016

26. IDC: Smartphone OS Market Share. IDC Research, Inc., August 2015. www.idc.com. 8 Dec
2015 http://www.idc.com/prodserv/smartphone-os-market-share.jsp

27. McCracken, H.: Who’s Winning, IOS or Android? All the Numbers, All in One Place |
TIME.com. Time Inc., 16 April 2013. http://techland.time.com/2013/04/16/ios-vs-android.
20 June 2016

28. From Code to Customer: Apple Developer Program. Apple Inc (2016). https://
developer.apple.com/programs. 20 June 2016

29. Clutch: Fast IOS Executable Dumper. Github Repository, 15 June 2016. https://github.com/
KJCracks/Clutch. 20 June 2016

30. Esser, S.: Dumped Encrypted. Github Repository, 13 February 2014. https://github.com/
stefanesser/dumpdecrypted. 20 June 2016

122 C. Lyvas et al.

http://lldb.llvm.org/
http://lldb.llvm.org/
https://github.com/BishopFox/theos-jailed
http://www.techtimes.com/articles/59076/20150610/apple-ios-9-heres-a-list-of-eligible-devices.htm
http://www.techtimes.com/articles/59076/20150610/apple-ios-9-heres-a-list-of-eligible-devices.htm
http://Www.idc.com
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://techland.time.com/2013/04/16/ios-vs-android
https://developer.apple.com/programs
https://developer.apple.com/programs
https://github.com/KJCracks/Clutch
https://github.com/KJCracks/Clutch
https://github.com/stefanesser/dumpdecrypted
https://github.com/stefanesser/dumpdecrypted

Author Index

Anastopoulos, Vasileios 97

Delaney, Aidan 48

Fuentes, Lidia 19

Gritzalis, Stefanos 35

Hayashi, Kentaro 65
Heisel, Maritta 3, 79
Horcas, Jose-Miguel 19

Kalloniatis, Christos 35, 48
Kameya, Yoshitaka 65
Katsikas, Sokratis 97

Lambrinoudakis, Costas 111
Lyvas, Christos 111

Meis, Rene 79
Mohammadi, Nazila Gol 3
Mouratidis, Haralambos 35, 48

Pinto, Mónica 19
Pitropakis, Nikolaos 111

Shei, Shaun 48
Simou, Stavros 35

	Preface
	Organization
	Contents
	Security, Privacy and Trust in eServices
	A Framework for Systematic Analysis and Modeling of Trustworthiness Requirements Using i* and BPMN
	1 Introduction
	2 Background and Fundamentals
	3 Framework for Systematic Analysis and Modeling of Trustworthiness Requirements
	3.1 Conceptual Model
	3.2 The Method for Systematic Analysis of Trustworthiness Requirements

	4 Application Example
	5 Related Work
	6 Conclusions and Future Work
	References

	Automatic Enforcement of Security Properties
	1 Introduction
	2 Motivating Case Study
	3 Capturing the Security Variability
	3.1 Resolving the Variability of the Application

	4 Supporting the Composition Process
	4.1 Automatically Identifying the Join Points
	4.2 Verifying the Security Requirements

	5 Evaluation Results and Discussion
	6 Related Work
	7 Conclusions and Future Work
	References

	Security and Privacy in Cloud Computing
	Towards a Model-Based Framework for Forensic-Enabled Cloud Information Systems
	Abstract
	1 Introduction
	2 A Process for Cloud-Forensic Investigation
	2.1 The Process

	3 Meta-Model
	4 Running Example
	5 Conclusions
	References

	Modelling Secure Cloud Computing Systems from a Security Requirements Perspective
	1 Introduction
	2 Health-Care Running Example
	3 Cloud Modelling Language
	3.1 Security Requirements Engineering Concepts
	3.2 Cloud Computing Concepts
	3.3 Cloud Environment Model

	4 Related Work
	5 Conclusion
	References

	Privacy Requirements
	Bottom-Up Cell Suppression that Preserves the Missing-at-random Condition
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 k-Anonymity
	2.3 Bottom-Up Cell Suppression

	3 The Proposed Method
	3.1 Naive Bayes Classification
	3.2 The Missing-at-random Condition
	3.3 Cell-Suppression Cost for Preserving the MAR Condition

	4 Experimental Results
	5 Concluding Remarks
	References

	Understanding the Privacy Goal Intervenability
	1 Introduction
	2 Deriving and Structuring Requirements on Intervenability
	2.1 Requirements Identification from Privacy Principles and Legislation
	2.2 Setting up an Intervenability Requirements Taxonomy

	3 Validation of the Taxonomy Using Related Literature
	4 Conclusions
	References

	Information Audit and Trust
	Design of a Log Management Infrastructure Using Meta-Network Analysis
	Abstract
	1 Introduction
	2 Related Work
	3 Validating the Log Management Infrastructure Design Structure
	3.1 Modeling a Log Management Infrastructure as a Social Network
	3.2 Modeling the Log Management Infrastructure as a Meta-Network
	3.3 Validating and Improving the Design Structure

	4 An Example Case Study
	5 Conclusions and Future Work
	References

	The Far Side of Mobile Application Integrated Development Environments
	Abstract
	1 Introduction
	2 Related Work
	3 Anatomy of iOS Application
	4 Provisioning Profiles
	5 Attack Types
	5.1 Replication
	5.2 Malicious Payload Injection

	6 Conclusions
	References

	Author Index

