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Preface

This volume contains a revised and selected version of the proceedings of the Inter-
national Meeting on Computational Intelligence Methods for Bioinformatics and
Biostatistics (CIBB 2015), which was in its 12th edition this year.

CIBB is a meeting with more than 10 years of history. Its main goal is to provide a
forum open to researchers from different disciplines to present problems concerning
computational techniques in bioinformatics, systems biology and medical informatics,
to discuss cutting-edge methodologies and accelerate life science discoveries. Fol-
lowing this tradition and roots, this year’s meeting brought together more than 80
researchers from the international scientific community interested in this field to discuss
the advancements and the future perspectives in bioinformatics and biostatistics.
Moreover, applied biologists participated in the conference in order to propose novel
challenges aimed at having high impact on molecular biology and translational med-
icine. CIBB maintains a large Italian participation in terms of authors and conference
venues but it has progressively become more international and more important in the
current landscape of bioinformatics and biostatistics conferences.

This year the conference was organized in Naples (Italy) in the CNR research area
during September 10–12, 2015. The topics of the conferences have kept pace with the
appearance of new types of challenges in biomedical computer science, particularly
with respect to a variety of molecular data and the need to integrate different sources of
information. About 40 contributed papers were selected for presentation at the con-
ference in the form of extended or short talks, either in the two main topic areas (i.e.,
bioinformatics and biostatistics) or in the five special sessions (The EDGE, enhanced
definition of genomic entities for systems biomedicine in oncology; Multi-Omic
metabolic models and statistical Bioinformatics of adaptations and biological associ-
ations; Large-Scale and HPC data analysis in bioinformatics: intelligent methods for
computational, systems and synthetic biology; New knowledge from old data: power of
data analysis and integration methods; Regularization methods for genomic data
analysis). Each contributed paper received two reviews or more. Moreover, seven
invited papers were presented in form of keynote talks. We deeply thank our invited
speakers Michele Ceccarelli, Dario Greco, Dirk Husmeier, Wessel Van Wieringen,
Cinzia Viroli, and Daniel Yekutieli. We are also indebted to the chairs of the very
interesting and successful special sessions, which attracted very interesting contribu-
tions and attention.

All authors of contributed and invited papers were asked to submit an extended and
revised paper for this volume. Afterward a further reviewing process took place, which
led to the 21 papers that were selected to appear in this volume. The authors are spread
over more than ten countries.

The editors would like to thank all the Program Committee members and the
external reviewers of both the conference and post-conference versions of the papers
for their valuable work.



A big thanks also to the sponsors, Gruppo Nazionale per il Calcolo Scientifico—
GNCS INdAM, Bioinformatics Italian Society, Genomix4Life S.r.l., BMR Genomics
S.R.L., M&M Biotech S.C.A.R.L., and in particular to the Istituto per le Applicazioni
del Calcolo M. Picone and Institute of Genetics and Biophysics A. Buzzati Traverso
that made this event possible. Finally, the editors would also like to thank all the
authors for the high quality of the papers they contributed and for the interesting and
stimulating discussion we had in Naples.

June 2016 Claudia Angelini
Paola Maria Vittoria Rancoita

Stefano Rovetta
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A Commentary on a Censored
Regression Estimator

Antonio Eleuteri(&)

Department of Medical Physics and Clinical Engineering,
Royal Liverpool and Broadgreen University Hospital Trusts,

Daulby Street L7 8XP, Liverpool, UK
antonio.eleuteri@liv.ac.uk

Abstract. In this note we evaluate the properties and performance of a
censored median regression estimator, as presented in literature by different
authors in the context of support vector regression. This estimator is based on
minimisation of an inequality constrained loss in a linear program formulation.
Using a theoretical argument, we conjecture that the estimator is not consistent,
and we compare its performance on simulated and real data in the one-sample
case, with the Kaplan-Meier estimator and an inverse probability weighted
estimator. We also compare the performance of the estimator on simulated and
real data in the censored median regression setting, with the Portnoy estimator
and the inverse probability weighted estimator.

Keywords: Censoring � Quantile regression � Survival analysis � Support
vector machines

1 Scientific Background

Let us consider a sample of pairs ðTi;CiÞ : i ¼ 1; � � � ; nf g; Ti �F; Ti and Ci condi-
tionally independent. Let us also consider the case of right censoring, so what we
observe are actually the variables Yi ¼ min Ti;Cif g and di ¼ I Ti\Cið Þ, where I(.) is the
set indicator function. We consider the case of median estimation, and for simplicity we
focus our attention on the one-sample problem; we’ll address the regression case later.

The relevance of modeling the censoring phenomenon stems from important
applications in many fields: from medical statistics to industrial life testing, it is often
the case that not all statistical units are observed until the realization of an event of
interest; for example some units may be lost to follow-up. (a very common case in
survival time modeling.)

We will denote by h the median to be estimated. The basic idea behind median (and
generally, quantile) estimation derives from observing that minimisation of the ‘1 loss
for location estimates results in the median [3]. We denote the residual for the i-th
observation in the uncensored case as ri ¼ Ti � h. The median loss function ‘1 (see
Fig. 1) can then be written:

© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 1–13, 2016.
DOI: 10.1007/978-3-319-44332-4_1



qðrÞ ¼ r 1=2� Iðr\0Þf g: ð1Þ

Estimation of the median given a sample of observed points leads to minimisation of a
piecewise linear empirical risk function:

min
h2R

X

i

qðriÞ: ð2Þ

Due to the discontinuous nature of the median loss, a linear programming problem
formulation is used in practice, by introducing 2n slack variables [3]:

min
ðh;u;vÞ2R�R

2n
þ

1
2

X

i

ui þ 1
2

X

i

vi

s:t: hþ ui � vi ¼ Yi ; 8i ¼ 1. . .n

ð3Þ

In the censored case, we denote the residual for the i-th observation as ri ¼ Yi � h. The
loss function of the censored median estimator proposed in literature (see e.g. [1, 2]) in
this case is defined as (see Fig. 2):

qIðrÞ ¼ dqðrÞþ 1=2ð1� dÞrIðr[ 0Þ: ð4Þ

Note that this loss, when evaluated on censored observations (i.e. when d ¼ 0 in Eq. 4)
is one-sided, and it reaches its minimum zero when h[ Yi ¼ Ci (i.e. the residual is
negative, resulting in a zero loss.) In this way, estimates larger than the censored
observations are “encouraged”.

Fig. 1. Median loss
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Similarly to the uncensored case, estimation of the median in this case requires
minimisation of a piecewise linear empirical risk function:

min
h2R

X

i

qIðriÞ; ð5Þ

that translates into the following linear programming problem:

min
ðh;u;vÞ2R�R

2n
þ

1
2

X

i

ui þ 1
2

X

i

vi

s:t:
hþ ui � vi ¼ Yi ; 8i : di ¼ 1

hþ ui � vi � Yi ; 8i : di ¼ 0

ð6Þ

Note the set of inequality constraints in correspondence to censored observations. The
intuition behind this approach is simple: try to estimate the median by taking into
account that censored observations provide a lower bound for the “true” unobserved
points.

1.1 Median Regression

In analogy to median estimation, the aim of median regression is identification of a
group of p observations (where p is the number of independent variables) that define a
hyperplane that optimally represents the conditional median function [3].

Fig. 2. Inequality loss (for d ¼ 0)
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In general there are several complications which arise in the regression setting, that
are not present in the simpler one-sample case, for example [5]: the weaker nature of
monotonicity in a p-dimensional setting, which can lead to “crossing” of conditional
quantile functions; or the impossibility to estimate the parameters without further
assumptions. (e.g. Yi and Ci to be unconditionally independent.)

Formally, the more general case of median regression can be handled by noting that
assuming a linear model, the residual can be written ri ¼ Ti � xTi h; h 2 R

pþ 1. The
intercept is assumed to be part of the parameter vector, corresponding to a fixed
regressor of constant value 1. With this definition in mind, we can write the problem in
Eq. 6 as:

min
ðh;u;vÞ2Rpþ 1�R

2n
þ

1
2

X

i

ui þ 1
2

X

i

vi

s:t:
xTi hþ ui � vi ¼ Yi ; 8i : di ¼ 1

xTi hþ ui � vi � Yi ; 8i : di ¼ 0

ð7Þ

2 Materials and Methods

We will show now how the intuition behind the inequality constraint approach pro-
posed in [1, 2] ignores some intrinsic and not readily evident aspects of the censoring
process.

First note that in ordinary median estimation the contribution of each point to the
subgradient1 condition only depends on the sign of the residuals ri ¼ Ti � h [3]. So a
correct evaluation of the sign of the residuals is fundamental for any estimation pro-
cedure to work. Let us consider the two cases of uncensored and censored points.

For uncensored data we can observe both Yi ¼ Ti\Ci and I ri\0ð Þ; note that in this
case the residuals can be either negative or positive.

For censored data, in the case h\Yi ¼ Ci, by the definition of right censoring we
have Ti [Ci, hence we can observe I ri\0ð Þ ¼ 0.

However, if h[ Yi ¼ Ci there is an ambiguity: we cannot observe the sign of the
residual at all, since we can have either h[ Ti or h� Ti, i.e. the residual can be
negative or positive. In contrast, in the inequality loss formulation in Eq. 4, this case
always results in a negative residual. As we will see with simulations, this fact impacts
the performance of the estimator, resulting in an “excess” of negative residuals which
“pull” the estimation process towards biased-low results.

What can we say about a residual when we cannot observe it? We can evaluate the
following conditional expectation (with respect to the measure F):

E Iðri\0ÞjTi [Ci½ � ¼ Pr Ci\Ti\hf g
Pr Ci\Tif g ¼ FðhÞ � FðCiÞ

1� FðCiÞ ¼ 1=2� FðCiÞ
1� FðCiÞ : ð8Þ

1 The partial derivatives in the positive and negative directions.
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The above quantity (calculated for FðCiÞ\1=2 since we are interested in the median)
gives a measure of the “weight” attached to ambiguous censored observations.

This suggests a weighting scheme originally proposed by Efron [4] and adapted by
Portnoy [5] to quantile regression. The key observation is that the weight we assign is
split into two pieces: a part of the probabilistic mass is left in its position at the censored
observation, but the remainder is shifted to the right to an unspecified, indefinitely large
observation Y1 (which in practice can be set to, say, ten times the largest observation in
the data). If we denote by wi the expectation defined in Eq. 8, we can write the
minimization problem as:

min
h2R

X

i

diqðriÞþ ð1� diÞ wiqðriÞþ ð1� wiÞqðY1 � hÞ½ �: ð9Þ

Note that the weights depend on knowledge of the true distribution of the observations,
which is usually not available; however, as shown in [5] these can be estimated
non-parametrically using the Kaplan-Meier estimator of F. In general, Kaplan-Meier
quantiles can be framed as solutions of the above problem (with wi depending on the
quantile of interest). Comparison of Eq. 9 with Eq. 4 suggests that the inequality loss
estimator may not be consistent.

Portnoy’s estimator [5] extends Eq. 9 to the more general quantile regression
framework, and it produces consistent estimates of the parameters.

An alternative estimator, first proposed in [6, 7] in the context of mean regression,
and recently adapted in [8] to support vector quantile regression, is based on the idea of
inverse probability reweighting. The weighted estimator takes the form:

min
h2R

X

i

di
ĜðYiÞ

qðYi � hÞ; ð10Þ

where ĜðYiÞ is the Kaplan-Meier estimate of the survival distribution of the censoring
process. Note that this estimation method is not applicable with fixed and constant
censoring, except in the special case of no censoring (where it reduces to the canonical
median estimator.) It is known [6, 7] that this estimator produces consistent estimates.

3 Results

In the following sections we report results on simulated and real data, both for the
one-sample and regression cases. In most cases we will provide comparisons with the
weighted and Portnoy estimators as they naturally arise from the above discussion.

Both the inequality and weighted estimators have been implemented using
MATLAB® and the Optimization Toolbox (function linprog). The Portnoy estimator
is available in the R quantreg package (function crq.) All experiments were run using
MATLAB® R2015a and R 3.2.2.
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3.1 One-Sample Experiments

3.1.1 Simulations
We performed a series of simulation experiments to compare the finite sample per-
formance of some estimates of the median (denoted by ĥ) in a censored one-sample
setting.

We assume the distribution of events as standard lognormal with median h ¼ 1,
and the censoring distribution as exponential with mean 4. This results in approxi-
mately 30 % censored observations. We follow the experimental setup in [9]. For each
problem instance the estimate was calculated 1000 times and the results averaged. We
also report the performance of the (infeasible) sample median (estimated on uncensored
data) and the naïve estimator (i.e. the sample median ignoring the censored
observations.)

In Table 1 we report the bias ĥ� h of the estimates, and in Table 2 the mean
squared error (MSE) of the estimates (scaled to the sample size, to conform to the
asymptotic variance calculations [9] and denoted by “n = ∞” in the last row.)

From the tables we can see that the inequality estimator behaves qualitatively in a
similar way to the naïve estimator, in that the bias is roughly constant independently of
the sample size; and the scaled MSE increases with sample size (although at a different
rate.) We extended the experiment for the inequality and weighted estimators up to a
sample size of 10000. The results support our conjecture that the inequality estimator is
not consistent (Table 3).

Table 1. Bias

Sample Median (infeasible) Kaplan-Meier Inequality loss Weighted Naïve

n = 50 0.0138 −0.0503 −0.0503 −0.0142 −0.214
n = 200 0.00641 −0.00892 −0.0603 −0.0094 −0.221
n = 500 −0.00159 −0.00750 −0.0674 −0.0123 −0.223
n = 1000 −0.000160 −0.00206 −0.0659 −0.0073 −0.224

Table 2. Scaled mean squared error

Sample Median (unfeasible) Kaplan-Meier Inequality Weighted Naïve

n = 50 1.674 1.756 1.555 2.020 3.424
n = 200 1.780 2.023 2.268 2.153 10.860
n = 500 1.565 1.902 3.693 2.092 25.955
n = 1000 1.445 1.716 5.612 1.818 50.421
n = ∞ 1.571 1.839 – – –
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In Fig. 3 we compare the naïve empirical risk, inequality empirical risk and
weighted empirical risk with the true (unfeasible) empirical risk. The weighted
empirical risk is the closest to the true empirical risk.

3.2 Regression Experiments

In these experiments we will deal with conditional censored median estimation under
different censoring mechanism. In the case of simulated data we will report the bias of

Table 3. Performance for large sample sizes

Bias SMSE

Inequality
n = 2000 −0.0653 9.904
n = 5000 −0.0668 23.715
n = 10000 −0.0662 45.295
Weighted
n = 2000 −0.00411 1.914
n = 5000 −0.00384 1.999
n = 10000 −0.00204 2.099

Fig. 3. Empirical risk functions for lognormal data (median 1) with exponential censoring
(mean 4). n = 2000
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the estimate, the median absolute error (MAE) and the root mean squared error
(RMSE); note we won’t report the scaled mean square error as it was done in the
one-sample case, since asymptotic variance results aren’t generally available for con-
ditional estimation. For real world data we will report parameter estimates and standard
errors in accordance to common practice (we cannot calculate the true bias and MAE as
the data generating process is not known.)

3.2.1 Simulation: IID Error, Input-Dependent Censoring
In this experiment event times were generated according to the IID linear model:

Ti ¼ 5þ xi þ ui xi �U½0; 2�; ui �Nð0; 0:392Þ:

Censoring times were generated according to the linear model:

Ci ¼ 5:5þ :75xi þ vi vi �Nð0; 0:32Þ:

The above model results in a proportion of censored observations of roughly 30 %.
Note that censoring depends on the covariate x; this means that in the case of the

weighted estimator, use of Eq. 10 corresponds to estimation under misspecification of
the model.

In Table 4 we report the performance of the Portnoy, weighted and inequality
estimators for different sample sizes.

Table 4. IID error and input-dependent censoring

Intercept (= 5) Slope (= 1)
Bias MAE RMSE Bias MAE RMSE

Portnoy
n = 100 −0.0042 0.065 0.094 0.0024 0.059 0.087
n = 400 −0.0025 0.037 0.054 −0.0009 0.032 0.047
n = 1000 −0.0025 0.021 0.031 0.0006 0.019 0.028
Inequality
n = 100 −0.0019 0.065 0.095 −0.032 0.057 0.085
n = 400 −0.0034 0.031 0.047 −0.035 0.038 0.053
n = 1000 −0.00073 0.019 0.029 −0.035 0.035 0.043
n = 5000 −0.00065 0.0087 0.013 −0.036 0.036 0.037
n = 10000 −0.0016 0.0062 0.0094 −0.035 0.035 0.036
Weighted
n = 100 −0.11 0.11 0.15 0.028 0.067 0.11
n = 400 −0.12 0.12 0.13 0.042 0.050 0.070
n = 1000 −0.12 0.12 0.13 0.049 0.049 0.060
n = 5000 −0.13 0.13 0.13 0.056 0.056 0.059
n = 10000 −0.13 0.13 0.13 0.059 0.059 0.060
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To emphasize the properties of the inequality estimator and its closer analogue the
weighted estimator, we ran simulations to larger sample sizes than the Portnoy esti-
mator. The results in Table 4 show that the bias of the slope remains practically
constant and negative, thus corroborating the results of the theoretical analysis. Note
also how the performance of the weighted estimator suffer from the misspecification.

3.2.2 Simulation: IID Error, IID Censoring
In this experiment event times were generated according to the same IID linear model
as in the previous paragraph, but censoring times were generated independently from
the input, according to the model:

Ci ¼ 6:25þ vi vi �Nð0; 0:32Þ:

Note that this has been obtained by replacing the dependence from the input, with its
expected value 1. In Table 5 we report the performance of the three estimators. We
again see how the bias of the slope in the case of the inequality estimator remains
essentially constant negative with increasing sample sizes, whereas it decreases for the
other two estimators.

3.2.3 Simulation: IID Error, Constant Censoring
In this experiment event times were generated according to the previous experiment,
but censoring times were constant for all observations:

Ci ¼ 6:5:

Table 5. IID error and IID censoring

Intercept (= 5) Slope (= 1)
Bias MAE RMSE Bias MAE RMSE

Portnoy
n = 100 −0.0042 0.065 0.094 0.0024 0.059 0.087
n = 400 −0.0025 0.037 0.054 −0.0009 0.032 0.047
n = 1000 −0.0025 0.021 0.031 0.0006 0.019 0.028
Inequality
n = 100 0.051 0.088 0.12 −0.11 0.12 0.15
n = 400 0.055 0.058 0.077 −0.13 0.13 0.13
n = 1000 0.053 0.054 0.062 −0.12 0.12 0.12
n = 5000 0.054 0.053 0.056 −0.12 0.12 0.12
n = 10000 0.053 0.052 0.054 −0.12 0.12 0.12
Weighted
n = 100 0.066 0.11 0.15 −0.13 0.17 0.21
n = 400 0.048 0.073 0.098 −0.091 0.12 0.15
n = 1000 0.043 0.055 0.070 −0.079 0.096 0.11
n = 5000 0.031 0.038 0.047 −0.055 0.063 0.076
n = 10000 0.027 0.032 0.038 −0.048 0.055 0.063
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The results in Table 6 show that the bias of the slope remains practically constant
and negative, again corroborating the results of the theoretical analysis. Note that the
weighted estimator cannot be applied in this instance since censoring is constant.

3.2.4 Stanford Heart Transplant Data
We assessed the performance of the median estimators on the Stanford Heart Trans-
plant data (available in the R survival package as stanford2.) The sample size is 184,
with 71 censored observations (38.6 % censoring). The model is a regression of sur-
vival days (expressed as logarithm base 10) vs. a 2nd degree polynomial in the variable
age (following similar uses of this data set in literature.)

In Table 7 we report the parameter estimates of Cox, inequality, weighted and
Portnoy estimators, with standard errors in brackets. The standard errors for the
inequality and weighted estimators were calculated as the median absolute deviation of
the bootstrap c.d.f. (based upon 1000 replications) divided by 0.67 (so that the estimate
is consistent at the standard normal distribution and approximately equal to one.)

Table 6. IID error and constant censoring

Intercept (= 5) Slope (= 1)
Bias MAE RMSE Bias MAE RMSE

Portnoy
n = 100 −0.0032 0.064 0.094 0.0024 0.070 0.11
n = 400 −0.0066 0.041 0.054 -0.0036 0.039 0.059
n = 1000 −0.0022 0.022 0.031 0.0006 0.023 0.034
Inequality
n = 100 0.067 0.089 0.13 −0.12 0.12 0.15
n = 400 0.069 0.070 0.087 −0.12 0.12 0.13
n = 1000 0.061 0.060 0.068 −0.11 0.11 0.11
n = 5000 0.066 0.066 0.067 −0.11 0.11 0.11
n = 10000 0.066 0.066 0.066 −0.11 0.11 0.11

Table 7. Stanford Heart Transplant data

Cox Inequality Weighted Portnoy

Constant – 1.822
(1.292)

0.860
(1.395)

2.067
(0.687)

age 0.121
(0.0527)

0.0837
(0.0612)

0.108
(0.074)

0.0836
(0.0514)

age2 −0.0020
(0.0007)

−0.0014
(0.0007)

−0.0015
(0.0009)

−0.0015
(0.0008)

Median survival (days) at mean age 729 733 494 1005
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3.2.5 German Breast Cancer Study Group 2 Data
As a further test, we analysed the data from the German Breast Cancer Study Group 2
[10]. The sample size is 686, with 299 censored observations (43.6 % censoring). The
model is a regression of survival days (expressed as logarithm base 10) vs. eight
prognostic factors.

In Table 8 we report the coefficient estimates of Cox, inequality, weighted and
Portnoy estimators, with standard errors in brackets. The standard errors for the
inequality and weighted estimators were calculated by bootstrap. (same setup as in the
previous analysis.)

3.2.6 Drug Relapse Data from Hosmer and Lemeshow
We estimated the conditional median of the data reported in [11], and also available in
R under the name uis. The sample size is 575 with 111 censored observations (*19 %
censoring.)

The model is a regression of the natural logarithm of the days to relapse to drug
abuse of subjects in a drug treatment program vs. eight prognostic factors.

In Table 9 we report the coefficient estimates of Cox, inequality, weighted and
Portnoy estimators, with standard errors in brackets. The standard errors for the
inequality and weighted estimators were calculated by bootstrap (same setup as in the
previous analysis.)

Table 8. German Breast Cancer Study Group 2 data

Cox Inequality Weighted Portnoy

Constant – 3.0878
(0.134)

2.757
(0.248)

3.126
(0.332)

horTh 0.337
(0.129)

0.107
(0.0344)

0.0716
(0.110)

0.150
(0.0865)

age 0.00939
(0.00927)

0.00498
(0.00260)

−0.0111
(0.00485)

0.00657
(0.00489)

menostat −0.267
(0.183)

−0.0885
(0.0467)

−0.0326
(0.127)

−0.145
(0.112)

tsize −0.00772
(0.00395)

−0.00282
(0.00141)

0.0000547
(0.00452)

−0.00278
(0.00302)

tgrade −0.280
(0.106)

−0.0517
(0.0302)

−0.146
(0.0525)

−0.0424
(0.0573)

pnodes −0.0499
(0.00741)

−0.0178
(0.00455)

−0.0145
(0.00868)

−0.0244
(0.00832)

progrec 0.00224
(0.000576)

0.000559
(0.000130)

0.000409
(0.000363)

0.00059
(0.00024)

estrec −0.000168
(0.000448)

−0.00000166
(0.000165)

−0.0000779
(0.000290)

−0.00002
(0.00033)

Median survival (days) at mean age 1814 1316 1018 1639
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4 Conclusions

In this paper we have shown that a censored median regression estimator independently
proposed in literature by different authors doesn’t appropriately take into account all the
aspects of the censoring phenomenon.

Comparison results in the one-sample case with the Kaplan-Meier estimator (which
is known to be consistent) through simulation seems to suggest the estimator is not
consistent.

We compared the performance of the estimator in the more general regression
setting with Portnoy’s censored quantile regression estimator on simulated data, and we
observed further evidence of inconsistency.

At the same time, the weighted estimator, although theoretically sound, suffers from
possible misspecification of the censoring model.

Although the inequality estimator has an intuitive description and is simple to
implement, we suggest that care should be taken when using it to analyse real world data.

Table 9. Hosmer and Lemeshow data

Cox Inequality Weighted Portnoy

Intercept – 2.367
(0.323)

3.0652
(0.262)

2.375
(0.373)

ND1 0.511
(0.129)

0.343
(0.111)

0.0889
(0.105)

0.328
(0.145)

ND2 0.191
(0.0499)

0.129
(0.0418)

0.0269
(0.0451)

0.122
(0.0541)

IV3 −0.371
(0.108)

−0.145
(0.0965)

−0.109
(0.0703)

−0.168
(0.123)

TREAT 0.490
(0.0963)

0.662
(0.0895)

0.640
(0.0849)

0.665
(0.0888)

FRAC 1.253
(0.103)

1.346
(0.108)

1.214
(0.0815)

1.382
(0.133)

RACE 0.349
(0.115)

0.442
(0.143)

0.311
(0.149)

0.446
(0.138)

AGE 0.0380
(0.0100)

0.0238
(0.00922)

0.0126
(0.00725)

0.0242
(0.0132)

SITE 0.870
(0.519)

0.953
(0.422)

0.447
(0.430)

0.894
(0.579)

AGE:SITE
interaction

−0.0414
(0.157)

−0.0430
(0.0132)

−0.0274
(0.0137)

−0.0410
(0.0181)

Median survival (days)
at mean age

167 141 123 144
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Abstract. In Foot-and-Mouth Disease Virus (FMDV), understanding
how viruses offer protection against related emerging strains is vital for
creating effective vaccines. With testing large numbers of vaccines being
infeasible, the development of an in silico predictor of cross-protection
between virus strains has been a vital area of recent research. The current
paper reviews a recent contribution to this area, the SABRE method, a
sparse hierarchical Bayesian model which uses spike and slab priors to
identify key antigenic sites within FMDV serotypes. WAIC is then com-
bined with the SABRE method and its ability to approximate Bayesian
Cross Validation performance in terms of correctly selecting random
effect components analysed. WAIC and the SABRE method have then
been applied to two FMDV datasets and the results analysed.

Keywords: Model selection · Spike and slab prior · Foot-and-Mouth
Disease Virus · Bayesian hierarchical models · WAIC · Cross Validation

1 Introduction

In Foot-and-Mouth Disease Virus (FMDV) where new virus strains continuously
emerge, choosing effective vaccines is vital. However FMDV has high genetic
variability due to changes in the virus proteins which affect recognition by the
host immune system. With the high antigenic variability, FMDV vaccines are
only effective against strains that are closely related genetically and antigenically
similar to the vaccine strain. As a result it is important to estimate antigenic
similarity between different strains and understand how one strain can confer
protection against another. The South African Territories types 1 and 2 (SAT1
and SAT2) serotypes both show significant levels of antigenic variability and can
be used to explore the relationship between antigenic variation and changes in
the protein structure.

In order to understand the relationship between antigenic variation and
changes in the protein structure, we need a measure of the antigenic similar-
ity between any two virus strains. Virus Neutralisation (VN) titre is in vitro
measure which approximates the extent one strain confers protection on another
by examining how well one strain (the challenge strain) is able to neutralise a
c© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 14–27, 2016.
DOI: 10.1007/978-3-319-44332-4 2
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second strain (the protective strain). Higher values of VN titre indicate that the
protective strain offers a higher level of protection against the challenge strain
and that the strains are more antigenically similar.

The antigenic differences between virus strains can be explained by changes
in the protein structure on the surface of the virus shell. While many changes
can occur, only some of these affect recognition by the host immune systems and
result in a reduction in the observed VN titre. Identifying the individual areas
of the surface exposed proteins, residues, that are considered to be key antigenic
regions is critical to understanding the antigenic similarities between viruses.
Similarly, understanding how antigenicity is affected by the evolutionary history
of the virus strains is important and must be accounted for.

Predicting VN titre, the in vitro measure of antigenic similarity, based on the
changes in the virus proteins and the shared evolutionary history of the virus
strains is complicated by the presence of variation in the VN test, the test to
determine VN titre. It is possible that certain virus strains will produce higher
or lower VN titre measurements against all other virus strains due a reactivity
or immunogenic effect caused by non-antigenic properties of the challenge or
protective strains. Additionally the serum used as part of the VN test and the
date of the experiment, a proxy for lab conditions, can affect the measured VN
titre. Where available, see Sect. 5, the challenge strain, protective strain, serum
and date are included as potential random effects and choosing which of these
should be used in the analysis is an important problem as including irrelevant
components will introduce unnecessary variation into the models.

To account for both the random and fixed effects, Reeve et al. (2010) used
classical mixed-effects models, e.g. Pinheiro and Bates (2000), to predict the
antigenic similarity between any two virus strains. The authors firstly selected
the random effect components and then added terms to account for the evolu-
tionary history of the virus using a forward inclusion algorithm. A univariate
test for significance was then carried out on the residue variables with a p-value
of less than 0.05 corresponding to an antigenically significant residue. Davies
et al. (2014) then introduced a sparse hierarchical Bayesian model for detecting
relevant antigenic sites in virus evolution (SABRE) method which was shown to
outperform the method of Reeve et al. (2010) in terms variable selection. The
first aim of the current work is to review the SABRE method of Davies et al.
(2014), propose a slight methodological improvement and show how the SABRE
method outperforms both classical mixed-effects models and the mixed-effects
Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani 1996;
Schelldorfe et al. 2011) in terms of variable selection.

The SABRE method of Davies et al. (2014) combines a Bayesian hierarchical
mixed-effects model with spike and slab priors. Hierarchical models allow for
consistent inference of all parameters and hyper-parameters with the inferences
borrowing strength from the sharing and combination of information; see Gelman
et al. (2013). The introduction of spike and slab priors into the model allows for
simultaneous model selection not offered by the classical mixed-effects models
of Reeve et al. (2010) and improved variable selection over the �1 regularisation
offered by the mixed-effects LASSO (Mohamed et al. 2012).
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Fig. 1. Compact representation of the SABRE method as a PGM. The grey
circles refer to the data and fixed (higher-order) hyperparameters, while the white
circles refer to parameters and hyperparameters that are inferred.

The second and new contribution of the current work is to investigate how
best to choose the random effect components that should be included in the
SABRE method for each dataset. In larger datasets, where the SABRE method
is computationally expensive, using Bayesian Cross Validation (CV) methods is
computationally infeasible. The current work investigates whether the Widely
Applicable Information Criterion (WAIC) (Watanabe 2010) can be used as a less
computationally intensive alternative to Bayesian CV. While WAIC is asymptot-
ically justified, it is unlikely to provide as accurate performance as Bayesian CV
in terms of correctly including or excluding random effect components. The pur-
pose of the current study is to understand the size of this reduction in accuracy
and assess the suitability of WAIC to be used in larger more computationally
demanding datasets, e.g. Harvey et al. (2015).

The final contribution of the current work is to give examples of the SABRE
method and WAIC applied to two FMDV datasets. We apply the SABRE
method with each possible combination of random effect components and then
apply WAIC to find the best choice of model. The results are then analysed in
terms of selecting relevant antigenic sites (residues).
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2 SABRE Method

In this section we mathematically describe the SABRE method proposed in
Davies et al. (2014) with the addition of a separate intercept parameter and
increased conjugacy, where the Probabilistic Graphical Model (PGM) is shown
in Fig. 1. The model parameters are sampled from the posterior distribution
using Markov chain Monte Carlo (MCMC), using the distributions in Sect. 2.5.

2.1 Likelihood

The likelihood of the SABRE method is similar to that of classical mixed-effects
models, e.g. Pinheiro and Bates (2000), where the response y = (y1, . . . , yN )�

is taken as the log VN titre. In classical mixed-effects models, the response, y,
is modelled by a combination of the intercept, w0, the explanatory variables, X,
and corresponding regression coefficients, w, as well as random effects, b, and
the design matrix, Z. The SABRE method uses a similar structure as can be
seen in Fig. 1, however it only includes the relevant explanatory variables, Xγ ,
and regression coefficients, wγ :

p(y|w0,wγ ,b, σ2
ε ,Xγ ,Z) = N (y|1w0 + Xγwγ + Zb, σ2

εI). (1)

The relevance of the jth column of X is determined by γj ∈ {0, 1}, where feature
j is said to be relevant if γj = 1, giving γ = (γ1, . . . , γJ )� ∈ {0, 1}J . We then
define Xγ to be the matrix of relevant explanatory variables with ||γ|| columns
and N rows, where ||γ|| =

∑J
j=1 γj is the number of non-zero elements of γ.

Similarly wγ is given as the column vector of regressors, where the inclusion of
each parameter is dependent on γ.

2.2 Noise and Intercept Priors

As with classical mixed-effects models, we assume iid Gaussian noise, σ2
ε , for the

log VN titre, y. σ2
ε is then given a conjugate Inverse-Gamma prior:

σ2
ε ∼ IG(σ2

ε |αε, βε) (2)

where αε and βε are fixed, as indicated by the grey nodes in Fig. 1.
In addition to being used in the likelihood, (1), σ2

ε is also included in the
distributions for w0, wγ , μw = (μw,1, . . . , μw,H)� in Sect. 2.3. These additional
relationships, indicated by the edges in Fig. 1, increase information sharing and
mean that the error variance in terms of model fit is reflected in the distribution
of the regression coefficients. Including these relationships also makes the model
conjugate rather than semi-conjugate, see Chap. 3 of Gelman et al. (2013), and
allows the creation of an improved sampling strategy based on using collapsed
Gibbs sampling, e.g. Andrieu and Doucet (1999).

We also require a distribution for the intercept, w0:

w0 ∼ N (w0|μw0 , σ
2
w0

σ2
ε). (3)
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We treat the intercept differently from the remaining regressors, wishing to use
vague prior settings so as not to penalise this term and effectively make the
model scale invariant (Hastie et al. 2009).

2.3 Spike and Slab Priors

Spike and slab priors are known to outperform �1 methods such as the LASSO
both in terms of variable selection and out-of-sample performance (Mohamed
et al. 2012). They have been used in a number of forms, but were originally
proposed by Mitchell and Beauchamp (1988) as a mixture of a Gaussian distri-
bution and a Dirac spike, as used for the SABRE method in (4). Alternatives
to the specification of Mitchell and Beauchamp (1988) include the mixture of
two Gaussian distributions proposed by George and McCulloch (1993) and the
Binary mask model, e.g. Jow et al. (2014).

The spike and slab prior reflects the relevance of each variable wj,h based
on the value of the corresponding latent indicator variable, γj . If γj = 0, i.e.
the jth variable, Xj , is irrelevant, then we expect that wj,h = 0. Conversely if
γj = 1, we think the jth variable is relevant and the corresponding regression
coefficient should be non-zero, wj,h �= 0, and we specify a conjugate Gaussian
prior. To increase generality we allow the models to have multiple groups of
variables h ∈ {1, . . . , H} which are defined by j, i.e. wj,h is shorthand for wj,hj

,
but only a single group is used for the results in Sects. 7 and 8.

p(wj,h|γj , μw,h, σ2
w,h, σ2

ε) =
{

δ0(wj,h) if γj = 0
N (wj,h|μw,h, σ2

w,hσ2
ε) if γj = 1 (4)

for j ∈ 1, . . . , J and where δ0 is the delta function. Here we have a spike at
0 and as σ2

w,hσ2
ε → ∞ the distribution, p(wj,h|γj = 1), approaches a uniform

distribution, a slab of constant height.
We give the hyper-parameters of (4) conjugate priors, specifying σ2

w,h to have
an Inverse-Gamma prior with fixed hyper-parameters αw,h and βw,h, and μw,h

a Gaussian prior with fixed hyper-parameters μ0,h and σ2
0,h:

σ2
w,h ∼ IG(σ2

w,h|αw,h, βw,h μw,h ∼ N (μw,h|μ0,h, σ2
0,hσ2

ε) (5)

where σ2
ε is again included in the variance of μw,h for further conjugacy. We allow

μw,h to vary in order to reflect our biological understanding of the problem. In
the FMDV data we are likely to observe a comparatively large intercept, with
negative regression coefficients, wj,h, reflecting the fact that any mutational or
evolutionary changes are likely to reduce the similarity between virus strains,
therefore reducing the measured VN titre.

For convenience we define w∗
γ = (w0,w�

γ )� with the following distribution:

w∗
γ ∼ N (w∗

γ |mγ , σ2
εΣw∗

γ
) (6)

where mγ = (μw0 , μw,1, . . . , μw,1, μw,2, . . . , μw,H)� and Σw∗
γ

= diag(σ2
w∗) with

σ2
w∗ = (σ2

w0
, σ2

w,1, . . . , σ2
w,1, σ

2
w,2, . . . , σ

2
w,H)�. Each μw,h and σ2

w,h is repeated
with length ||wγ,h|| dependent on γ.
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The priors related to the latent inclusion parameters, γ, are given by:

p(γ|π) =
J∏

j=1

Bern(γj |π) π ∼ B(π|απ, βπ) (7)

where we define π to be the probability of an individual variable being relevant.
Given we do not a-priori know the value of π, it is given a conjugate Beta prior
where απ and βπ are fixed to represent our vague knowledge that only a small
proportion of variables should be included in the model; see Sect. 6.

2.4 Random-Effects Priors

The random-effect coefficients are given as b = (b�
1 , . . . ,b�

G)�, where each bg

relates to a vector of coefficients related to different levels with in a particular
random effect component or group, g ∈ {1, . . . , G}, e.g. challenge strain. Each
bg has ||bg|| coefficients and follows a zero mean Gaussian distribution with a
group dependent variance, bg ∼ N (bg|0, σ2

b,gI), where I is the identity matrix.
From this we then define all the random-effect coefficients to have a joint dis-
tribution b ∼ N (b|0,Σb), where we define Σb to be a diagonal matrix with
(σ2

b,1, . . . , σ
2
b,1, σ

2
b,2, . . . , σ

2
b,G)� on the diagonal with each σ2

b,g being repeated
||bg|| times.

We give bk,g, the kth coefficient of b, a Gaussian distribution with a fixed
zero mean, μb,g = 0, and a group dependant variance parameter, σ2

b,g, which is
in turn given an Inverse-Gamma prior:

bk,g ∼ N (bk,g|μb,g, σ
2
b,g) σ2

b,g ∼ IG(σ2
b,g|αb,g, βb,g). (8)

The group g is defined by k, i.e. bk,g is shorthand for bk,gk
and the hyper-

parameters αb,g and βb,g are fixed for each g.

2.5 Posterior Inference

To sample from the posterior distribution we have used an MCMC algorithm. As
we have chosen mainly conjugate priors (see Sect. 2), we can use a Gibbs sampling
scheme. The conditional dependence relations are shown in the graphical model
of Fig. 1, and the detailed forms of the conditional distributions are available
from Sect. 10.

Sampling γ is more difficult, as it does not naturally take a distribution of
standard form. However we can still get a valid conditional distribution and use
a variety of techniques to sample from it. Here we have used collapsing methods
to achieve faster mixing and convergence:

p(γ|θ′,Xγ ,Z,y) ∝
∫

p(γ, π, σ2
ε ,w∗

γ ,μw|θ′,Xγ ,Z,y)dμwdw∗
γdπdσ2

ε (9)

where the fixed hyper-parameters (given as grey circles in Fig. 1) have been
dropped to improve notational clarity. In the current work we update multiple γj
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simultaneously via a Metropolis-Hastings step (Metropolis et al. 1953; Hastings
1970), which Davies et al. (2014) found to be more computationally efficient
than the more established component-wise Gibbs sampler. In addition to being
used within the conditional distribution of γ, collapsing steps are also used for
w∗

γ , μw, σ2
ε and π. These steps are not detailed here, but using them leads to

improved mixing and convergence, e.g. Andrieu and Doucet (1999).

3 Random Effect Selection Methods

3.1 Cross Validation

Bayesian CV methods are reliable, if computationally expensive, techniques for
measuring the out-of-sample performance of different models. CV methods work
by partitioning the data into K groups and then analysing the predictive perfor-
mance of a given model on each of the K different groups using the remainder
of the data for training. In this sense CV methods estimates out-of-sample pre-
dictive performance while still making use of all of the available data.

Various CV methods can be used to analyse the performance of different
models. Leave-One-Out CV (LOO-CV) uses each observation as an individual
group, i.e. K = N , with the advantage of making maximum use of the avail-
able data at every step. However LOO-CV is computational infeasible for many
models, as it requires fitting the model N times. As a compromise 10-fold CV is
often used, where K = 10, as it only involves fitting 10 models and this method
has been used here.

To calculate the 10-fold Bayesian CV performance of a model, we apply the
SABRE method to partial data, y−k, Xγ,−k and Z−k, and use thinned samples
of the model parameters, θι, for ι ∈ {1, . . . , I}, from p(θ|y−k,Xγ,−k,Z−k), to
estimate the performance on the remaining data, yk, Xγ,k and Zk, using (1).
Doing this for each of the K groups gives the 10-fold Bayesian CV performance:

pCV =
1
K

K∑

k=1

log
1
I

I∑

ι=1

p(yk|θι,Xγ,k,Zk). (10)

3.2 WAIC

WAIC, as proposed in Watanabe (2010) is a useful criterion for selecting the
correct model when the underlying model is singular, e.g. the SABRE method.
Additionally WAIC has the desirable property of averaging over the posterior
distribution, as opposed to the Deviance Information Criterion (DIC) which uses
a point estimate. Watanabe (2010) showed how WAIC is asymptotically equiv-
alent to Bayesian LOO-CV and can be computed using the thinned parameter
samples, θι, from the posterior distribution of the full dataset, p(θ|y,Xγ ,Z),
meaning we only have to sample the model parameters once:

pWAIC = −2

N∑

i=1

(
log

(
1

I

I∑

ι=1

p(yi|θι,Xγ ,i,Zi)

)
−Var (log(p(yi|θι,Xγ ,i,Zi)))

)
. (11)
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3.3 Multiple Parameter Spike and Slab Prior

Using a spike and slab prior to include or exclude all random effect coefficients,
bg, from a particular random effect component, g, is an alternative to both
WAIC and 10-fold Bayesian CV. While WAIC and 10-fold Bayesian CV would
be applied to each combination of random effect components separately, spike
and slab priors would only require one model to be fitted. However, using spike
and slab priors for selecting the random effects will come at a large computational
cost. Some of the random effect components from the FMDV datasets contain
between 30 to 50 different levels and this would mean including or excluding 30
to 50 parameters simultaneously at each proposal step of the MCMC sampling
scheme. This is likely to lead to poor mixing as the difference in log-likelihood
for the inclusion and exclusion of a random effect component is likely to be large.
Poor mixing leads to the possibility of not sampling the optimal combination of
fixed and random effects, as the proposals will struggle to move between different
combinations of random effect components. Therefore in order to ensure the
optimal selection of fixed and random effects is found it would be necessary to
sample the model for a large number of iterations. Due to the computational
inefficiency of this inter-model approach, we have used an intra-model approach
and run MCMC simulations for a relatively small number of models in parallel
to compute WAIC and 10-fold Bayesian CV scores for each plausible candidate
model separately.

4 Simulated Data

To show that the SABRE method proposed in Davies et al. (2014), with the
addition of a separate intercept parameter and increased conjugacy, still outper-
forms classical mixed-effects models and the mixed-effects LASSO in terms of
variables selection, we generated 100 simulated datasets. Each of these datasets
were given 40 possible variables, where the corresponding coefficients were set
to be non zero with probability π ∼ U(0.2, 0.4). Additionally 2 random effect
components were added, each with 8 levels.

Additionally, to compare WAIC and 10-fold Bayesian CV, we generated 20
datasets each with 500 observations and 50 possible variables. The data was
generated with 10 viruses, with every virus used as both the challenge and pro-
tective strains and for any given pair of viruses the variables remain identical
as in the real FMDV datasets. Possible random effects were the protective and
challenge strains and 2 generic random effects with 8 levels. The random effects
were given a variance of zero, i.e. set to be irrelevant, with probability 0.5.

5 FMDV Data

Davies et al. (2014) analysed a dataset from the SAT1 serotype of FMDV,
which was originally used in Reeve et al. (2010). Since that analysis, addi-
tional data has been collected and been analysed using mixed-effects models in
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(Maree et al. 2015). We call this the extended SAT1 dataset and it contains 2125
VN titre measurements with 5 protective and 42 challenge strains, and 221 vari-
ables related to the residues and phylogenetic structure. Possible random effects
included the serum used to get the VN titre measurement, the challenge strain,
the protective strain and the date of the experiment (a proxy to lab conditions).

Reeve et al. (2010) also used a dataset on the SAT2 serotype, although it
was not analysed in Davies et al. (2014). The SAT2 dataset contains 320 VN
titre measurements from 4 protective and 22 challenge strains. In total there are
148 variables when the residues and phylogenetic data are combined. Possible
random effects include the serum used to get the VN titre measurement, the
challenge strain and the protective strain.

6 Computational Inference

Our code has been implemented in R, using the packages lme4 (Bates et al.
2013) and lmmlasso (Schelldorfer et al. 2011) for the comparison with classical
mixed-effects models and mixed-effects LASSO. For the mixed-effects models, as
in Reeve et al. (2010), forward variable inclusion was used adjusting for multiple
testing using the Holm-Bonferroni correction.

We ran MCMC simulations for 10,000 and 15,000 samples respectively for
the simulated and real datasets removing an appropriate proportion for burn-in
based on convergence diagnostics. Convergence was determined by computing
the potential scale reduction factor (PSRF) (Gelman and Rubin 1992), where a
PSRF ≤ 1.05 for 95 % of the variables was taken as the threshold for convergence.
The latent inclusion parameters were sampled using a block Metropolis-Hastings
algorithm following Davies et al. (2014).

In general, the fixed hyper-parameters, shown as grey nodes in Fig. 1, were set
to give a vague distribution for the flexible (hyper-)parameters, shown as white
nodes. The only exception was the prior on π, defined in (7), which was set to
be weakly informative such that απ = 1 and βπ = 4. This corresponds to prior
knowledge that only a small number of residues or branches have a significant
antigenic effect. The remaining hyper-parameters, shown as grey nodes in Fig. 1,
are fixed to give vague distributions: αb,g = βb,g = αη,g = βη,g = 0.001 and
μb,g = μη,g = 0 for all g, αw,h = βw,h = 0.001, μ0,h = 0 and σ2

0,h = 100 for
all h, μξ = 0, σ2

ξ = 100, μw0 = max(y), σ2
w0

= 100 and αε = βε = 0.001. The
only informative choice is μw0 = max(y) which follows from us expecting a high
intercept with the regression coefficients then having a negative effect on the
response. This is a result of strains having high reactivity with themselves, and
any changes making the strains less similar, reducing their reactivity.

7 Simulation Study Results

To compare the variable selection accuracy of the SABRE method compared to
the mixed-effects LASSO and classical mixed-effects models we produced receiver
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Fig. 2. ROC curves and 95 % confidence intervals for classical mixed-effects models
(crosses), the mixed-effects LASSO (solid black and points), and the SABRE method
(solid black) when applied to the simulated data in Sect. 4.

operating characteristic (ROC) curves for each of the methods by ordering the
inclusion of variables. For the SABRE method we ordered the marginal posterior
inclusion probabilities of each variable. For the mixed-effects LASSO, the model
was run for different values of the penalty parameter λ and then the so-called
LASSO path created (Hastie et al. 2009). Finally for the classical mixed-effects
models we ran a forward inclusion algorithm with no stopping point, ranking
the variables based on when they were included in the model. For each method
the moving average (mean) and standard deviation of the ROC curves for each
of the 100 simulated datasets was taken. The mean ROC curve for each method
was then plotted with the corresponding 95 % confidence interval in Fig. 2. Using
ROC curves to compare the methods gives a more general indication of perfor-
mance than simply looking at the performance of a specific cut-off point.

Figure 2 shows that the SABRE method outperforms both the mixed-effects
LASSO and classical mixed-effects models across all cut-offs. The improved per-
formance is shown by the Area Under the ROC (AUROC) value, where the
SABRE method achieves an AUROC value and 95 % confidence interval of 0.87
(0.86,0.88) compared to 0.76 (0.74,0.78) and 0.75 (0.73,0.77) for the mixed-effects
LASSO and classical mixed-effects models. One-sided paired t-tests showed that
the SABRE method performed better in terms of AUROC value than both
the mixed-effects LASSO (p-value < 0.001) and standard mixed-effects models
(p-value < 0.001). Similarly the mixed-effects LASSO performed better than
standard mixed effects models (p-value = 0.035).

To analyse the performance of WAIC in comparison to 10-fold Bayesian CV,
we looked at how accurate each method was at correctly selecting the random
effect components used to generate the datasets simulated in Sect. 4. We applied
both methods to each of the 16 possible models for each dataset and selected
the best model in each case. We then analysed the ability of the best models
to correctly include or exclude the random effect components that were used or
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Table 1. Results comparing the model selection performance of WAIC com-
pared to 10-fold Bayesian CV. The mean and 95% confidence intervals are given
in terms of correctly including or excluding random effect components in the simulated
datasets described in Sect. 4.

10-fold Bayesian CV WAIC

Sensitivity 0.91 (0.85,0.97) 0.78 (0.69,0.87)

Specificity 0.63 (0.52,0.73) 0.77 (0.68,0.86)

Predictive accuracy 0.79 (0.70,0.88) 0.78 (0.68,0.87)

F1-score 0.83 (0.75,0.91) 0.80 (0.71,0.88)

not used to generate each of the datasets. Table 1 gives the results in terms of
sensitivity, specificity, predictive accuracies and F-scores.

The results of Table 1 show that WAIC performs similarly to 10-fold Bayesian
CV in terms of correctly selecting random effect components. While 10-fold
Bayesian CV gets an increased sensitivity, WAIC has a better specificity and
both perform similarly in their predictive accuracy and F1-score. However WAIC
is much more computationally effective and to run the MCMC simulations for
the WAIC took on average 87 min, as opposed to 761 min for 10-fold Bayesian
CV.

8 FMDV Results

Having tested the use of WAIC on simulated datasets in Sect. 7, we have then
used WAIC to find the best choice of random effect components for two FMDV
datasets. After applying WAIC to the extended SAT1 dataset, the best model
was found to contain only the protective strain and the serum as random effect
components. Choosing these random effect components is an interesting result
as the work of Davies et al. (2014), on the original SAT1 dataset of Reeve
et al. (2010), was based on using the challenge strain and the serum. The results
suggest that it is important to effectively chose the random effect components
rather than simply choosing them based on biological prior knowledge.

Choosing the most appropriate random effect components will have an affect
on which of the fixed effects are selected by the SABRE method. Based on the
model selected by WAIC and using π̂×J as the cut-off, the SABRE method found
a total of 9 proven and 24 plausible residues or branches. Classification is based
on the residue being experimentally validated in the SAT1 serotype or validated
in 4 or more FMDV serotypes (proven), being experimentally validated in 3 or
less serotypes (plausible), or from a region not known to be antigenic in any of
the FMDV serotypes (implausible). The proven residues come from the 4 known
antigenic regions (Grazioli et al. 2006); VP1 C-terminus, VP1 G-H, VP2 B-C
and VP3 B-C. Additionally, other residues which are not known to be antigenic
were also found in these regions and should be experimentally investigated.
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Applying WAIC to the SAT2 dataset resulted in all of the random effect
components being included in the model; challenge strain, protective strain and
serum. As less is known about the SAT2 serotype we do not classify the branches
and residues into different categories, and instead treat the best model as a tool
for hypothesis generation. While we do not discuss the results in detail here due
to space restrictions and the lack of biological prior knowledge that could be
used for assessment, it is worth noting that residues were selected from 3 out of
the 4 regions identified in the SAT1 serotype above; VP1 C-terminus, VP1 G-H
and VP3 B-C. These residues included a large number in close proximity to each
other on the VP1 G-H loop and this area could be of experimental interest.

9 Discussion

In the current work we described and improved the SABRE method and shown
how it outperforms established alternatives in terms of variable selection in
Fig. 2. In addition we have compared the performance of WAIC and 10-fold
Bayesian CV in the context of correctly selecting random effect components.
The results, given in Table 1, show that in terms of model selection (concerning
the random effects to be included) WAIC achieves a similar performance at a
lower computational cost to 10-fold Bayesian CV. We have quantified both the
difference in performance and the reduction in computational cost. Finally we
have applied the SABRE method with WAIC to two FMDV datasets, identifying
a number of antigenically important locations on the surface of the virus shell
and a number of residues worthy of investigation.

Further work will develop the SABRE method to better take into account
the structure of the data. For any given pair of virus strains tested, the fixed
effects will remain the same. By introducing a latent structure into the model
we can more precisely account for the data generation process. An additional
computational advantage can also be gained for larger datasets, e.g. Harvey
et al. (2015), as often the datasets will have far more VN titre measurements than
tested virus pairs. A latent variable model could take advantage of the structure
and reduce the computational complexity of the conditional distribution for γ.

10 Appendix

For the Gibbs sampling we sample the intercept and regression coefficients
together and define w∗

γ = (w0,w�
γ )�, X∗

γ = (1,Xγ), mγ = (μw0 , μw,1, . . . , μw,1,

μw,2, . . . , μw,H)� and Σw∗
γ

= diag(σ2
w∗) with σ2

w∗ = (σ2
w0

, σ2
w,1, . . . , σ

2
w,1, σ

2
w,2,

. . . , σ2
w,H)�. Each μw,h and σ2

w,h is repeated with length ||wγ,h|| dependent on
γ. The Gibbs sampling distributions are then given as follows, with θ′ used to
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denote all the parameters not on the left of the conditioning bar:

w∗
γ |θ′,X∗

γ ,Z,y ∼N (w∗
γ |Vw∗

γ
X∗�

γ (y − Zb) + Vw∗
γ
Σ−1

w∗
γ
mγ , σ2

εVw∗
γ
) (12)

b|θ′,X∗
γ ,Z,y ∼N (b| 1

σ2
ε
VbZ�(y − X∗

γw∗
γ),Vb) (13)

σ2
b,g|θ′,X∗

γ ,Z,y ∼IG(σ2
b,g| ||bg||/2 + αb,g, βb,g + 1

2b
�
g bg) (14)

μw,h|θ′,X∗
γ ,Z,y ∼N (μw,h|V −1

μγ ,h(∑(wγ,h)/σ2
w,h + μ0,h/σ2

0,h), σ2
εVμγ ,h) (15)

σ2
w,h|θ′,X∗

γ ,Z,y ∼ (16)

IG(σ2
w,h| ||wγ,h||/2 + αw,h, βw,h + 1

2σ2
ε
(wγ,h − 1μw,h)�(wγ,h − 1μw,h))

σ2
ε |θ′,X∗

γ ,Z,y ∼IG(σ2
ε |(N + ||w∗

γ || + H)/2 + αε, βε + 1
2Rσ2

ε
) (17)

π|θ′,X∗
γ ,Z,y ∼B(π|απ + ||γ||, βπ + J − ||γ||) (18)

where we sample σ2
b,g, μw,h and σ2

w,h for each g and h respectively. We also define
Vw∗

γ
= (X∗�

γ X∗
γ+Σ−1

w∗
γ
)−1, Vb = ( 1

σ2
ε
Z�Z+Σ−1

b )−1, Vμγ ,h = ((||wγ,h||/σ2
w,h)−1

+(σ2
0,h)−1)−1 and Rσ2

ε
= (y−X∗

γw∗
γ −Zb)�(y−X∗

γw∗
γ −Zb)+(w∗

γ −mγ)�Σ−1
w∗

γ

(w∗
γ −mγ) +

∑H
h=1(μw,h − μ0,h)2/σ2

0,h for notational simplicity.
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Abstract. To understand the unique characteristics of biological state
or phenotype, such as disease or cellular homeostasis, it is of vital impor-
tance to analyze the behavior of global gene expression. In the field of
transcriptomics, gene expression patterns under the corresponding phe-
notypic state could be used as a proxy to determine the physiological
and chemical response from the cellular system of an organism. Study-
ing these kinds of patterns helps us to unveil the response of molecular
machinery of cell, and predict regulation of a particular metabolic path-
way. To understand the biological implication of these gene expression
signatures is still an open question. In the present work, we are studying
the behaviour of gene expression signatures of 22 knock down (perturbed)
genes involved in secretory pathways, in distinct human cancer cell lines
at different time scales, with the help of rank based statistical approach.
The aim of our work is to compare the consequence of these gene per-
turbations at the transcriptional level, independently from the specific
cell line effects, and categorize these perturbations to understand the
inter connected network with in these perturbed genes and their shared
influence on the regulation of sectretory pathway. To achieve this goal,
we compared the gene expression signatures with respect to each per-
turbation per cell lines, using three different approaches implying non
parametric rank based statistics. In the first approach, we generated pro-
totype rank lists (PRLs) from gene expression data from given perturba-
tion experiments, and calculated distance between expression signatures
using pattern matching similarity based on kolmogorov-Smirnov sta-
tistic. In second approach, we implemented rank-rank hyper-geometric
overlap maps (RRHO) for the identification of statistically significant
overlapping genes between gene-expression signatures with respect to
22 genes perturbation experiments. Finally, we carried out gene set
enrichment analysis (GSEA) on the previously obtained PRLs for the
respective perturbations, and identify statistically significant KEGG
pathways for which expression signatures of these 22 pertubations are
enriched. Based on the comparative study of gene expression signature,

c© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 28–41, 2016.
DOI: 10.1007/978-3-319-44332-4 3



Comparison of Gene Expression Signature 29

22 pertubations are clustered into 4 groups. Our results show that the
transcriptional response with respect to each perturbation does not have
an independent behavior, but perturbations with in each cluster share
a common transcriptional response. Sister perturbations in each cluster
have a cumulative role in shaping up the behaviour of cellular system.

Keywords: Expression signature · Perturbation · Prototype rank list ·
RRHO · Secretory pathway

1 Introduction

The secretory pathway is responsible for the delivery of a large variety of
proteins to their proper cellular location and it is essential for cellular func-
tion and multicellular development. It is composed of a series of compartment
that includes endoplasmic reticulum (ER), golgi apparatus, trans golgi network
(TGN), through which the cargo (protein or lipid) is transported in an orderly
fashion starting from the ER where the biosynthesis of cargoes is initiated. The
processing of proteins is carried out by the addition of glycan groups through
golgi apparatus and then sorted to their appropriate sites by the Trans Golgi
Network [1].

At each step of protein transport, including forward and recycling pathways
are controlled by regulatory modulator genes that maintain the homeostasis of
the system [2] (see Fig. 1).

Fig. 1. Modulators genes in secretory pathway.

With the online availability of huge experimental data, it is now possible to
extensively predict novel functions and interactions of genes involved in secretory
pathway [3,5]. In our research work, we are keenly interested in studying the
pathways and functional components regulated in the secretory pathway. In the
present era of high-tech experimental opportunity, expression data provide an
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easy and large-scale analysis platform for understanding biological mechanism
at the cellular level. In the present work, we put our focus on the list of genes,
which are localized in a secretory pathway and share gene ontology terms related
to protein transport machinery (Fig. 2).

Fig. 2. Word cloud for important gene ontology terms represented by modulators genes
in secretory pathway.

Our aim is to highlight the role of those genes which are involved in secretory
pathways, by studying the consequences of their perturbations at the transcrip-
tional level independently from the specific cell line effects. It certainly provide
an insight into their influence on the biological system. We employed rank based
statistical approach to compare their gene expression profiles to predict their
global effects with respects to pathways and functions, which might be directly
or indirectly linked with the gene perturbed and thus the secretory pathway.

2 Materials and Methods

2.1 Data Retrieval

The gene expression profile data is a collection of 22 genes perturbation (knock-
down) experiments in 12 cancer cell lines at different time points such as 96
and 120 h (Fig. 3). For each perturbation experiment, we collected expression
data for all the biological and technical replicates in different cell lines at 96
and 120 h time points and merged them into single file to create the expres-
sion profile. The data is downloaded from LINCS (http://www.lincscloud.org/
perturbagens/), NIH program that funds the generation of perturbation profiles
across multiple cells and perturbation types(genetic and chemical). The expres-
sion data comprises of signature profiles of genes obtained through micro-array
technology, which utilized directly measured 1000 landmark transcripts to detect
the over all gene expression of all the genes. It has been normalized using invari-
ant set scaling followed by quantile normalization [4]. In these profiles expression
data are represented in terms of fold change across the distinctive cell line at
different time points.

http://www.lincscloud.org/perturbagens/
http://www.lincscloud.org/perturbagens/
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Fig. 3. Perturbed genes in corresponding cell lines for which gene expression profiles
are downloaded from LINCS.

2.2 Comparison of Gene Expression Signature Using Prototype
Rank List

To obtain gene expression signature and compute distances between pre-
processed gene expression profiles for the selected genes, we used “Gene Expres-
sion Signature Package” from Bioconductor in R [6]. This package provides the
implementation of a methodology to determine the gene expression signature
for the perturbation data and calculate distance between them. Gene expression
signature is represented as a list of genes whose expression is correlated with a
biological state of interest. The distance between the gene expression signature
is calculated non parametrically using rank based pattern matching similarity
based on Kolmogorov-Smirnov statistic [7]. There are four basic steps involved;

1. The gene expression profiles were sorted according to the differential expres-
sion values with respect to the controls, and each gene in the profile is ranked
accordingly to its expression value within the sorted list. A matrix is gener-
ated, which is composed of ranked list representing the corresponding gene
expression profile in each cell line for a given gene perturbation. The graded
lists of profiles known as PRLs (prototype ranked list).

2. The PRLs in all the corresponding cell lines are aggregated by a rank merg-
ing procedure to negate the effects of specific cell lines. We used built-in
“krubor” function of “Gene Expression Signature Package” to carry out the
rank merging process. It comprises of two sub steps;

– a distance is measured between two ranked list using Spearman’s footrule
[8] and two or more ranked lists are merged using Borda Merging method.

– a single ranked list is obtained in a hierarchical way using Kruskal
algorithm [9].

3. A signature of optimum length such as 250, 500, 800 and 1000 of the most up-
regulated genes (near the top of the list) and the most down-regulated genes
(near the bottom of the list) is used for the distance calculation between all
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the PRLs representing the individual perturbation experiment, with the help
of ScorePGSEA and ScoreGSEA functions in “Gene expression signature” in
R package. We considered this signature of genes as a general cellular response
to the perturbation. In other words, we obtained sets of genes which shows
variable expression change in response to the perturbation across different
experimental conditions (e.g., different cell lines, different dosages). The sig-
nature of perturbation x, p = p1, p2...pn (up-regulated) and q = q1, q2....qn
(down-regulated), we defined as the distance between perturbation x and
perturbation y the Inverse Total Enrichment Score (TES) of the perturba-
tion x signature p, q, with respect to the PRL of perturbation y, as follows:
TES(x, y)= 1 − (ESp

y −ESq
y)/2, here ESr

y(r ∈ p, q) is the Enrichment-Score
of the optimal signature with respect to the PRL of y. ESr

y ranges in [−1,1],
it is a measure based on the Kolmogorov-Smirnov statistics, and it quantifies
how much a set of genes is at the top of a ranked list [12]. The closer that
this measure is to 1, the more the genes are at the top of the list, whereas
the closer to −1, the more the genes are at the bottom of the list. TES(x,y)
ranges in [0,2], it takes into account two sets of genes, and it checks how much
the genes in the first set (p) are placed at the top of the y PRL and how much
the genes in the second set (q) are placed at the bottom. The more these two
statements are true, the more the value of TES(x,y) is close to 0.

We take into consideration two distance measurements between PRLs:

– Average Enrichment Score Distance Davg = (TESx,y + TESy,x)/2;
– Maximum Enrichment Score Distance Dmax = Min(TESx,y, TESy,x)/2.

4. Affinity propagation clustering (AP) [10] is used to group these PRLs rep-
resenting different perturbation experiments, inferring distance measures
among respective gene expression signatures. AP iteratively searches for opti-
mal clustering by maximizing an objective function called net similarity.

2.3 Rank-Rank Hypergeometric Overlap Test Analysis

To highlight the correlation strength between two expression profiles, we carried
out the rank-rank hypergeometric overlap test analysis using “RRHO package”
from Bioconductor in R [11]. This algorithm compares two gene expression pro-
files ranked by the degree of differential expression. It is used to infer the amount
of agreement between two sorted lists (PRL’s) by computing the number of over-
lapping elements in the first i ∗ stepsize and j ∗ stepsize elements of each list,
where stepsize represents the number of genes selected from the complete ranked
gene list i and j, and return the observed significance of this overlap using a hyper
geometric test (Fisher exact test). The output is returned as a list of matrices
including: the overlap in the first i ∗ stepsize, j ∗ stepsize elements and the sig-
nificance of this overlap.
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2.4 Gene Set Enrichment Analysis

The PRLs generated were further processed by Gene Set Enrichment Analy-
sis (GSEA) [12] (http://www.broadinstitute.org/gsea/downloads.jsp) using the
Molecular Signature Database (MsigDB). GSEA is a computational method that
determines whether an initially defined set of genes shows statistical significant
differences between two biological states. MsigDB has a collection of annotated
gene sets (curated gene set, motif gene set, GO gene set, oncogene signature,
immunologic signature, etc.) for use with GSEA software. In order to study the
enriched pathways, we used KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway gene set that includes genes contributing to each of the pathways listed
in this gene set. Subsequently, using GSEA, enriched KEGG pathways and thus
enriched genes, were predicted for all the 22 PRLs and sorted for further analysis.

3 Results

3.1 Distance Calculation and Clustering of Gene Expression
Profiles

In order to calculate the pair wise distances among samples (PRLs representing
expression profiles in response to gene perturbation experiments), gene’s lists are
ranked accordingly to the gene expression ratio (fold change). We include 250 top
up-regulated genes (near the top of the list) and the most down-regulated genes
(near the bottom of the list) for the distance calculation (Fig. 4). We also tested
signature length for 500, 800, 1000 genes to obtain the best possible average
distance and cluster the gene expression profile through affinity propagation
approach. Using scoreGSEA function, we obtained Average Enrichment Score
Distance Davg as a measure of pairwise distance between PRLs. The matrix
table is generated using pairwise distance between all 22 PRLs versus each other
(Fig. 4).

Fig. 4. An average enrichment score distance calculation between PRLs corresponding
to each perturbation.

http://www.broadinstitute.org/gsea/downloads.jsp
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The closeness of expression profiles, was further verified with the affinity
propagation clustering method. For the reproducibility of the results, we car-
ried out comparison between the clusters obtained for 250, 500, 800 and 1000
signature length and voted out the genes which are always grouped together
irrespective of signature length (Fig. 5).

Fig. 5. Clustering of gene perturbation on the basis of affinity propagation. It shows
the respective clusters obtained for signature length 250, 500, 800 and 1000.

The AP clusters obtained for different signature length are in concordance
with each other. The clusters for 250 and 500 signature length are more similar
in comparison to 800 and 1000 signature led AP clusters. By voting for gene
togetherness in each cluster for the different signature length, we determined
4 set of genes, which mostly (>=2 of 4 times) group together irrespective of
signature length. The first set of genes includes ARF1, BLZF1, COG2, COG7,
COPA, COPZ1, SEC24C, (SEC24D, SEC24B only in 800 and 1000 signature
length) and TMED10. This set of genes are also making important biological
sense as all these genes are involved in either COPI coating of golgi vesicles or
COPII vesicle coating and involved in ER to Golgi vesicle mediated transport
of proteins with in the cell. The second set of genes includes COG4, M6PR,
COPB2, PLA2G4A and AKAP9. These genes are involved in signal transduc-
tion, endocytosis, mitotic cell cycle, retrograde vesicle-mediated transport and
regulation of membrane repolarization. It is important to observe that signal
transduction and membrane repolarization activity in this set of genes are asso-
ciate to retrograde vesicle mediated transport and mitotic cell cycle. It is possible
that by pertubing genes which are involved in retrograde vesicle mediated trans-
port, mitotic cycle of the cell experience a substantial effect. The third group
of genes includes YKT6, TMED9 and GOLGA5, in the case of 250 and 500
signature length, PLA2G4A also group together with these genes. These genes
generally involved in protein transport and Golgi organization. The fourth and
final set includes BNP1, TMED7, RAB1B and SARIB. The fourth group does
not show strong evidence of grouping all-together with respect to the applied vot-
ing criteria, yet it is observed that BNP1, SAR1B as one sub set, while RAB1B,
TMED7 as another sub set follow the group voting criteria with respect to the
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given signature length. These genes are mostly involved in membrane transport,
and post-translational protein modification. Initially, we carried out hierarchical
clustering approach to cluster genes (results not shown), but due to the fact
that hierarchical clustering starts with every data point as its own cluster and
then recursively merges pairs of clusters which led this approach to makes hard
decisions that can cause it to get stuck in local minima. While, on the other
hand, affinity propagation is a clustering algorithm that requires each cluster
to vote for a good exemplar from within its data points, and thus it provides
better clustering of perturbed genes in this study as far as biological inference
is concerned. For example, hierarchical clustering shows M6PR (signal receptor
activity) closer to GOLGA5 (Golgi organization) in spite of TMED9 (Golgi-
organization), which is known to be closer to GOLGA5 with respect to gene
ontology. These results further reveal although the gene expression signature
was obtained independently concerning distinct gene perturbation experiments
in different cancer cell lines, they still share the same biological connectivity as
far as functional regulation of cellular activity is concerned within each respective
cluster. For example, in set 1, the gene expression profiles obtained by the per-
turbation of ARF1, BLZF1, COG2, COG7, COPA, COPZ1, SEC24C, (SEC24D,
SEC24B only in 800 and 1000 signature length) and TMED10 genes in separate
experiments within different cancer cell lines, shares a common transcriptional
response. It will help us to understand the basic biology in which these genes are
involved. It also helps us to address and characterize the biological properties of
less-known genes in comparison with its elated sister genes within the cluster, as
far as their biological activity and molecular functionality in the cellular system
and metabolic pathways are concerned.

3.2 RRHO Analysis

In addition to “Gene Expression Signature” analysis, we also carried out rank-
rank hyper-geometric overlap test to measure the statistical significance of the
number of overlapping genes between two expression profiles. Although the gene
expression signature is a robust methodology there is a drawback existed in the
form of “signature length”. In the previous analysis, we provide the result based
on pre-defined signature length such as 250 which means that we only selected
the top 250 and bottom 250 genes in our study. Though it is possible to change
this criterion, and we also obtained results for 500, 800 and 1000 preselected
genes by altering the signature length significantly in our work. Nevertheless,
previous methodology does not consider the whole 22000 genes in gene expression
profile all together while calculating the average distance between profiles. To
over come this bottleneck and consider all the genes simultaneously within the
study, we used RRHO analysis. In RRHO analysis, we select a window of 2000
(around 10 %) genes from the complete list of genes in a expression profile, which
moves throughout all the gene’s identifiers listed on the ranked list. The output
is returned as a list of matrices including: the overlap in the first i ∗ stepsize, j ∗
stepsize elements and the significance of this overlap.
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The significance of the overlap between two lists is calculated as function
aggregating information from the whole overlap matrix into one summary sta-
tistic, typically the min p-value, or max on −log(pval) scale. We also calculated
this summary statistic between each pair of knock down genes (table not shown).
We carried out network analysis for all the 22 perturbed genes. Taking cut-off
value > 70 (−log(pval) scale from 0–160), a gene network is obtained.

Fig. 6. Network representation of perturbed genes based on sum static of −log P value
of hypergeometric overlap between them greater than 70.

In this network (Fig. 6), we obtained 4 subnetwork representing the perturbed
genes cluster, representing perturbed genes which shares the common pattern
of gene expression. The cluster obtained from the network analysis shows satis-
factory coherence with the genes set obtained through by comparing and voting
approach for AP clusters. As in AP approach, we clearly obtained perturbations
seperated in different groups, while in case of RRHO, RAR1B, SEC24B, and
BNP1 does not behave in the similar manner. This may be due to the fact that
in RRHO analysis, we consider the complete set of probes in an experiment,
instead of fixed set of signature genes. Rank-rank hypergeometric overlap maps
provides two level of information. First information is about the level of intensity
of an overlap as well as position of an overlap between the two ranked list.

While the sub networks obtained from the network based on sum static of
−log P value of hypergeometric overlap between them greater than 70 also shows
modest coherence with the previous obtained clusters through affinity propa-
gation approach in PRL analysis. We have selected sister perturbed genes in
cluster/set 1 and cluster/set 2 respectively (see Fig. 7). Taking these sister per-
turbation with in each cluster and generating RRHO heat maps reveals common
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Fig. 7. RRHO map between genes perturbation profiles clustered through affinity prop-
agation and representing sum static of −log P value of hypergeometric overlap greater
than 70.

pattern of differential behaviour of gene expression among them. In simple terms,
from these results, it is obvious that these perturbation do not have an indepen-
dent effect, instead these perturbations behave in a complex interconnected man-
ner to pursue a global effect on the transcriptional response during perturbation
of any of the sister genes with in each cluster respectively. This commonalities in
expression behaviour is more prominent in highly up and down-regulated genes
between sister perturbations within each cluster.

3.3 Gene Set Enrichment Analysis

The PRLs generated were further analyzed with Gene Set Enrichment Analysis
(GSEA) using a java desktop application available [13] at Molecular Signature
Database (MsigDB). GSEA is a computational method that determines whether
a priori defined set of genes shows statistically significant, differences between
two biological states. In order to study the enriched pathways, we used KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway gene sets that includes
genes contributing to each of the pathways listed in this gene set. KEGG path-
way is a collection of manually drawn pathway maps representing our knowledge
on the molecular interaction and reaction networks for metabolism, genetic infor-
mation processing, cellular process, etc. [14]. Thus using GSEA, enriched KEGG
pathways and thus enriched genes were predicted for all the 22 PRLs and sorted
for further analysis. GSEA assigns an enrichment score (ES) along with the false
discovery rate (FDR) to each of the enriched predicted pathways. ES (Enrich-
ment Score) is calculated by walking down the ranked list of genes increasing a
running-sum statistic when a gene is in the gene set and decreasing it when it
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is not. Based on the ES obtained, an ES matrix was generated. The number of
pathways enriched were narrowed down with FDR cut-off of 5 %. Of the 22 PRLs
analyzed; only 8 showed enriched pathways within the 5 % FDR cut-off (result
not shown). Further, these set of enriched pathways at 5 % FDR and 25 % FDR
respectively, were clustered into groups based on shared common genes (>50 %)
among the pathways. Thus for analysis at 5 % and 25 % FDR, 4 and 11 groups
were obtained respectively (Figs. 8 and 9).

Fig. 8. Groups generated for enriched pathways at 5% FDR analysis

In Fig. 8, based on 5 % FDR, four groups are obtained. Each group represent
the sister perturbation for which KEGG Pathways are enriched. It shows that
TMED9 and GOLGA5 in group 2, while SAR1B and SEC24C within group 3
share the common enriched pathways, though previously from both PRL and
RRHO analysis SAR1B and SEC24C does not group together. From biological
point of view, it is important that SAR1B and SEC24C are involved in N-linked
glycosylation process. The results obtained from GSEA analysis at 5 % FDR
are not complete and loose pathway enrichments for some of the perturbations
which does not fit into such stringent statistical cutoff. So as a trade off for
biological inference of our results over statistical significance, we lower down the
stringency from 5 % to 25 %, and obtained 11 groups of gene perturbations shar-
ing common KEGG pathways (See Fig. 9). The results obtained show that gene
perturbation such as GOLGA5 and TMED9 form one group, while perturba-
tions such as COPZ1, COG7 and BLZF1 form another group. These results are
not in complete coherence with the previously obtained results, due to the fact
that these results represents more biological interpretation instead of providing
statistical strength to the study.

4 Conclusion

In the present work, we analyze the perturbation profiles of 22 knock-down
genes in distinctive cell lines involved in secretory pathways using three different
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Fig. 9. Groups generated for enriched pathways at 25% FDR analysis

methodologies based on non parametric rank statistics. The effect of perturba-
tions across the different cell lines are taken into consideration and based on
their differential regulation of genes, a comparison study between their gene
expression signature is carried out. The gene expression profiles with respect
to each perturbation are checked for their conservation across the cell lines to
get an insight into novel functions. In this work, we shows that the transcrip-
tional response with respect to each perturbation does not have an independent
behavior, but somehow these perturbations shares a common gene expression
response. It regulates the secretory pathway with the help of complicated gene
interactions network. To study the perturbation of these 22 genes in secretory
pathways, we employed rank based statistical approach to compare their gene
expression profile to predict their global effects with respects to pathways and
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functions, which might be directly or indirectly linked with the gene perturbed
and thus the secretory pathway. Based on expression signature, these 22 knock-
down genes are categorized into four different sets and sister perturbation in each
cluster have a cumulative role in shaping up the behaviour of cellular system.
Considering the facts, that these 22 genes are involved in numerous biological
functions from golgi organization, vesicle coating, protein transport, membrane,
signal transduction to mitotic cycle with in the cell. It is not possible to group
these genes, using one methodology, due to the several facts such as: (i) genes do
performs various other biologically distant activities apart from sharing common
biological functions, which are not easy to relate; (ii) transcription rate of genes
associated to different biological activities are also distinct, for example, genes
involved in cellular component organization have higher expression compare to
a genes involved in signal transduction. In the case of PRL analysis, we only
consider the predefined highly up or down regulated genes for the analysis. It
means that in this approach, we could not take into account for those genes
which shows subtle expression change during perturbation, though these genes
may have higher impact on the cellular complexity during perturbation exper-
iments. In the other approach like RRHO, we do not consider pre-defined gene
signature, instead we took the complete gene set according to their rank. In this
way, we take into account of all the genes, irrespective of the level of change
in their expression. In the GSEA method, we only focus on KEGG pathway to
determine gene-gene association with respect to their common role in a given
biological pathway. These three approaches complement each other, while obtain-
ing novel informations, which is required to cluster the sister perturbations in
a distinct group. We obtained the outcome from three different methods (PRLs
analysis, RRHO and GSEA) and analyze them to retrieve significant information
for the systematic understanding of all these perturbation with in the secretory
pathway. This approach in future is also very helpful to characterize the novel
perturbation. We are working on the standardization of the appropriate method
for studying large-scale perturbation data.
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Abstract. High-performance Next-Generation Sequencing (NGS) has
become a widely used technology to characterize case-control compari-
son studies for RNA transcripts, such as mRNAs and small non-coding
RNAs. The first step in the analysis strategies is mapping NGS reads
against a reference database and a critical issue emerges in this phase:
the problem of multireads. In this paper we present a novel approach
to represent and quantify read mapping ambiguities through the use of
fuzzy sets and possibility theory. The aim of this work is to obtain a
list of candidate differential expression events, providing a description
of the uncertainty of the results due to multiread presence. In a pre-
liminary experiment on HeLa cells, the method correctly detected the
possibility of false positiveness, while on a case-control study of human
endobronchial biopsies, the method identified 11 genes with possible dif-
ferent expression, four of them with an uncertain fold change. This last
result was confirmed by FDR adjusted Fisher’s test, while DESeq2 did
not provide significant differences between case and control.

Keywords: RNA-Seq · Differential expression · Multireads · Fuzzy
sets · Possibility measure

1 Scientific Background

NGS technology is continuously improving and the produced reads are increas-
ingly numerous. When working with alignment-based methods, a confounding
factor is the presence of gene duplication, repetitive regions and overlapping
genes. These events induce the problem of multireads in the NGS mapping pro-
cedure when a significant proportion of reads map to more than one location.
This issue can lead to mistakes and imprecision in differential expression or
alternative splicing analysis based on counts of reads mapping to some reference
databases.

When multireads are sporadic, usually such reads are discarded from the
analysis, but this option leads to an underestimation of the read counts.
c© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 42–53, 2016.
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In the last years, alternative strategies have been developed for the estimation
of read counts in presence of multireads. The simplest choice is to randomly
assign multireads to references (as in best-match mapping) or proportionally
to the expression of uniquely mapped reads [1]. More complex techniques com-
pute an estimation of the read counts using probabilistic models, based on some
assumptions on the distribution of data [2–4].

The estimated expressions are given as input to the tools for the analysis
of differential expression [5,6]. Such tools scale the counts in order to make the
expression values comparable, then they compute the fold change and a p-value
with a statistical test, and eventually select a list of candidate differentially
expressed genes. These results may contain many false positives and must be
validated with further laboratory assays [7].

In this paper we propose a novel method, based on fuzzy sets and possi-
bility theory, that deals with the inherent uncertainty of multiread mapping.
The adopted approach is compliant with the work of Zadeh [8], who proposed
possibility distributions as suitable interpretations of fuzzy sets. The possibility
measure is used in this paper following the notation introduced by Pedrycz [9].

The aim of this work is to obtain a list of candidate differential expres-
sion events ordered by significance, while also providing a description of the
uncertainty of the results due to the multiread issue, for an easier detection of
false positives. The proposed approach is based on the idea of representing and
quantifying read mapping ambiguities without heavy simplifications or stringent
probabilistic assumptions.

2 Materials and Methods

In this section, we first introduce the representation of gene expression in terms
of fuzzy sets. Then, we outline the general idea of differential expression analysis
with fuzzy gene expressions through a graphical evaluation. Finally, we intro-
duce a complete workflow for differential expression analysis, which requires a
preliminary definition of fuzzy fold change.

2.1 Fuzzy Representation of Gene Expression

The uncertainty of multireads is modeled through a possibility distribution
describing the possibility that each gene has a given read count. Such a possibil-
ity distribution is naturally represented in terms of a fuzzy sets in the domain
of read counts.

When a read is mapped against a reference database, we have one of the
following results:

(i) the read does not map to any reference sequence;
(ii) the read maps to only one reference sequence (unique mapping);
(iii) the read maps to more than one reference sequence with equal or different

mapping quality (multiple mapping).
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In all cases, a read is the actual expression of a single gene, therefore multiple
mapping introduce uncertainty on the real expression quantification. Further-
more, usually the mapping algorithms assign a score to each match, in order to
rank the mapping results, with the biologically plausible assumption that the
higher the score, the more likely the read is an expression of that gene. Since our
aim is to transfer the uncertainty in mapping to a description of the uncertainty
in read count computation, we define a possibility degree to each mapping by
scaling the score between 0 and 1 (see Table 1 for a simple example).

Table 1. Example of mapping results, with scaled mapping scores.

Read ID Gene ID Mapping score

read-1 gene-1 1.0

read-2 gene-1 1.0

read-2 gene-2 0.8

read-3 gene-1 1.0

read-3 gene-2 1.0

For each gene, we can now compute the possibility degree that a given count
x is the real number of reads mapping to the gene. Roughly speaking, the pos-
sibility of having a read count equal to x for a gene is the maximal possibility
of having x reads as true matches and all the others as false matches. Based on
this definition, four main values have a critical importance:

A = number of uniquely mapping reads;
B = number of reads having the gene as unique best match (i.e. other genes

may match, but with lower quality);
C = number of reads having the gene as best match, although not unique (i.e.

other genes may match with the same quality);
D = number of reads having the gene as match, even if not best.

According to their definition, A ≤ B ≤ C ≤ D. Of course, it is impossible
that a gene is mapped to less than A reads and more than D reads. Also, it
is maximally possible that the number of reads is between B and C because
for each x in this interval, there are at least x reads mapping to the gene with
maximal quality. On the other hand, the possibility degree increases between
A and B and decreases between C and D, thus reflecting the relation between
possibility and mapping quality. According to the example in Table 1, for gene-1:
A = 1, B = 2, C = 3, D = 3, while for gene-2: A = B = 0, C = 1, D = 2.

The possibility distribution of the gene expression, based on read counts, can
be approximated by a trapezoidal fuzzy set characterized by the values A, B,
C and D. A fuzzy set represents a collection of elements with possibly partial
membership; it models an ill-defined variable where the possibility degree that
the variable assumes a value x corresponds to the membership degree of x to the
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fuzzy set. Formally, a fuzzy set is a function X �→ [0, 1] being X the universe of
discourse; in our work we use trapezoidal fuzzy sets, defined on real numbers,
with the following form:

Tr [A′, B,C,D′] (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≤ A′ ∨ x ≥ D′
x−A′
B−A′ , A′ < x ≤ B

1, B < x < C
x−D′
C−D′ , C ≤ x < D′

(1)

where1 A′ = A− 1 and D′ = D + 1 to give non-null possibility to counts A and
D respectively. Linear increase/decrease can be assumed for simplicity from A′

to B and from C to D′. The width of the fuzzy set (1) (defined as D′ − A′)
quantifies the uncertainty in the evaluation of the expression value, which in
turn generates uncertainty in differential expression evaluation.

2.2 Graphical Evaluation of Uncertainty in Differential Expression

For a qualitative evaluation of differential expression of genes in a case-control
study, a graphical method can be proposed as a first approach.

Two trapezoidal fuzzy sets, representing the expression of the same gene in
different samples, can be plotted on a 3-dimensional graph, which is useful to
fully understand the use of fuzzy sets and the related possibility distributions.
The count values for the two experimental samples are drawn on the x axis and
y axis respectively, while the possibility degrees are represented on the z axis. As
shown in Fig. 1 (left subfigure), the Cartesian product of two trapezoidal fuzzy
sets, representing the expression of the same gene in different samples, yields a
truncated pyramid of possibility degrees (3D plot). The z-value of the pyramid
is the possibility degree that the first sample has x reads and the second sample
has y reads for the gene under consideration.

The projection on the xy plane highlights two rectangles that bound the
possibility: the innermost covers the area with highest possibility, while the out-
ermost limits the area with non-null possibility. Larger rectangles represent wider
uncertainty, small rectangles (possibly degenerating to a single point) represent
more definite results. The position of the rectangle with respect to the bisector
line describes the differential expression result in the case-control comparison.

As an example, depicted in the right part of Fig. 1, in the case that the
outermost rectangle does not intersect the bisector line (as in the case of the
red rectangles), then it is fully possible that a gene is over-expressed or under-
expressed, depending on the relative position of the rectangle w.r.t. the bisector
line, but it is impossible that there is no differential expression. On the other
hand, if the bisector intersects the outermost rectangle but not the innermost
(yellow case in the figure), then there is full possibility of over-expression or
under-expression, but non-null possibility of false positiveness (i.e. no differential
expression). Finally, if the bisector intersects the innermost rectangle (green
1 A′ = A − 1 if A > 0, otherwise A′ = A = 0.
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Fig. 1. Graphical interpretation of the fuzzy sets and their comparison for differential
expression evaluation. Each couple of rectangles of the same color in the right figure
corresponds to a 2-D projection of a fuzzy relation, as depicted in the left figure. (Color
figure online)

case), then there is full possibility that the mapping results do not show any
differential expression between case and control.

2.3 Fuzzy Fold Change Computation

The proposed quantitative method for the evaluation of differential expression
extends the fold change metric, usually adopted for differential expression, by
integrating fuzzy sets representing uncertain read counts. In particular, given a
control sample with fuzzy expression Tr [A′

1, B1, C1,D
′
1] and a control case with

fuzzy expression Tr [A′
2, B2, C2,D

′
2], we extend the usual fold change metric to

the following fuzzy fold change metric:

Tr
[

log2
A′

1

D′
2

, log2
B1

C2
, log2

C1

B2
, log2

D′
1

A′
2

]

(2)

This fuzzy set follows from the application of the extension principle to the stan-
dard fold change metric (limited to the points A′, B,C,D′), eventually simplified
to a trapezoidal fuzzy set for ease of computation2.

The fuzzy fold change is very useful to highlight potential false positives when
the value of 0 (corresponding to null variation between case and control) belongs
to fuzzy fold change with high possibility degree. However, we should take into
account that its values depend on the amount of expression of the genes, since
it is a ratio among read counts.

2 A standard application of the extension principle to the fold change results in a
fuzzy set with a complex membership function, which requires complex computations
without any real benefits.
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2.4 Fuzzy Representation of Data and Differential Expression

For a complete differential expression analysis, all the genes of both the case and
the control samples must be taken into account. The last approach we propose
ranks the genes of both samples in order of possibility that their expression in
the case and control is significantly different. This approach combines the fuzzy
fold change metric with a fuzzy representation of the dataset of genes.

Fig. 2. MA-plot is a compact representation of the results of a differential expres-
sion analysis. Existing tools usually select varied genes combining several metrics: a
statistical test of significant variation (red points selected by DESeq2), a user-defined
threshold for the fold change values (horizontal lines) and, optionally, a minimum value
of mean expression (vertical line). This figure is based on a plot published on www.
genomatix.de. (Color figure online)

In order to analyze the trend of the logarithmic fold change, differential
expression analysis results are usually represented with an MA-plot3. Figure 2
shows an example of how the results are managed by an existing tool for differen-
tial expression analysis, DESeq2. Genes are considered as differentially expressed
if they pass a statistical test based on some user-defined thresholds. In our app-
roach we take into account the uncertainty of read mappings and we will not fix
any arbitrary threshold for detecting differential expression, because we rely on

3 Given two expressions e1 and e2 of a gene in two samples, the MA-plot places the gene
on a plane (M , A) where M = log2(e1/e2) (the fold change) and A = (1/2) log2(e1e2)
(average intensity).

www.genomatix.de
www.genomatix.de
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ranking genes according to their possibility of being differentially expressed as
well as the possibility degree of false positiveness.

We represent expression data in the MA-plot, as in Fig. 3 (main plot). For
simplicity, each gene is represented as a point and its expression value is the cen-
troid of its trapezoid4. The plot clearly shows that the variability of fold change
decreases as the mean expression value increases. The genes that are far from
the main rhomboidal figure are the best candidates for differential expression.
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Fig. 3. Computation of the differential expression possibility of a gene. The MA-plot of
estimated data shows the variability of log2 fold change for low expression values (main
plot). The blue boundaries enclose the genes with insignificant expression variation. By
projecting the mean expression of one gene (in yellow), its intersection with the blue
curves can be used to define the system of three fuzzy sets of differential expression
possibility for that gene (green plot on the right) and intersected with the fuzzy fold
change (in red). (Color figure online)

In order to compute the possibility of a gene to be differentially expressed,
we estimate the boundaries of the rhomboidal distribution of points (blue curves
in Fig. 3)5. These curves serve as fuzzy boundaries for differential expression
events (we are not interested in the left part of the rhomboidal distribution,
because it represents genes with too small expressions). The points enclosed
in the boundaries are those genes with a higher possibility of having expression
variations which are unrelated to the experimental conditions. The genes lying on
the boundaries can be associated to a possibility of being differentially expressed
4 The centroid is computed with the constraint of falling inside the interval [B, C].
5 The boundaries are estimated as hyperbolas, with their parameters fitted on the

dataset; their horizontal asymptotes represent a limit fold change value under which
differential expression loses significance.



Managing NGS Differential Expression Uncertainty with Fuzzy Sets 49

equal to 0.5; on the other hand, genes above the upper boundary or below the
lower boundary have higher possibility of being differentially expressed.

Thereby, for each value of mean expression, a system of three fuzzy sets is
used to describe and to compute a differential expression possibility value for
each gene, according to the following procedure.

1. Given a gene, its corresponding mean expression is computed.
(a) If it is located in the left part of the rhomboid, it is excluded from further

analysis because its expression is not significant.
(b) Otherwise, in correspondence of its abscissa (yellow vertical line in Fig. 3),

the ordinates y+, y− of the two enclosing boundaries are produced (dotted
lines in Fig. 3).

2. Three fuzzy sets are then defined in the domain of fuzzy fold change values,
given y+, y− and a mean expression value (see Fig. 3, projections on the right).
The first fuzzy set represents over-expression, the second fuzzy set represent
insignificant variation, and the third fuzzy set represent under-expression.
(a) The fuzzy sets representing under-expression and over-expression are

defined in terms of a sigmoidal membership function, while the fuzzy
set representing insignificant variation is defined as a Gaussian fuzzy set.

(b) The fuzzy set representing under-expression (resp. over-expression) inter-
sects the fuzzy set representing insignificant variation at y− (resp. y+),
with membership degree equal to 0.5.

3. The three fuzzy sets are used to evaluate the possibility of the gene to be dif-
ferentially expressed. More specifically, the possibility measure is computed
between the fuzzy fold change and the under-expression fuzzy set, the insignif-
icant variation fuzzy set, and the over-expression fuzzy set6.
(a) The possibility measure between the fuzzy fold change and the sigmoidal

fuzzy set representing over-expression (resp. under-expression), quantifies
the possibility that the gene is over-expressed (resp. under-expressed) in
the control sample.

(b) The possibility measure between the fuzzy fold change and the Gaussian
fuzzy set representing insignificant variation evaluates the possibility of
false positiveness.

By repeating the procedure for all the genes, a ranked list is eventually pro-
duced with genes sorted according to their possibility of being differentially
expressed, and accompanied with an additional information of possible false-
positiveness.

3 Results

The proposed method was tested using two datasets downloaded from NCBI-
SRA archive: DRP000527 and SRP014005. The datasets were mapped against

6 The possibility measure between two fuzzy sets F1 and F2 is defined as Π(F1, F2) =
maxx min{F1(x), F2(x)}.
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Table 2. Example of differential expression analysis results for dataset SRP014005.
For each gene, the table lists the Fisher’s p-value adjusted with False Discovery Rate
computed on centroids (FDR), the Log2 Fold Change computed on centroids (Log2fc),
the fuzzy fold change computed on fuzzy read counts, the possibility of differential
expression as the maximum between over- or under-expression possibility (DE-p) and
of false positive risk (FP-p). The results are sorted by FDR.

n Gene ID FDR Log2fc Fuzzy fold change DE-p FP-p

1 RP5-857K21.6 2.58e−11 0.45 Tr[0.24, 0.45, 0.45, 0.57] 0.91 0.44

2 MUC5AC 1.39e−10 1.24 Tr[1.13, 1.24, 1.24, 1.32] 1.00 0.06

3 EEF1A1 6.91e−6 −1.21 Tr[−5.01, −1.89, −0.57, 1.94] 1.00 0.88

4 POSTN 9.53e−5 2.21 Tr[2.08, 2.21, 2.21, 2.35] 0.94 0.20

5 CH507-513H4.3 9.77e−4 −0.63 Tr[−10.32, −10.31, 9.75, 9.76] 1.00 1.00

6 CH507-513H4.4 9.77e−4 −0.63 Tr[−10.32, −10.31, 9.75, 9.76] 1.00 1.00

7 CH507-513H4.6 9.77e−4 −0.63 Tr[−10.32, −10.31, 9.75, 9.76] 1.00 1.00

8 SCGB1A1 0.00489 −1.96 Tr[−3.07, −2.01, −1.92, −0.23] 0.91 0.58

9 LYZ 0.00942 −1.74 Tr[−2.14, −1.86, −1.62, −1.46] 0.91 0.37

10 RP11-380M21.2 0.0162 1.75 Tr[−0.14, 1.33, 2.25, 3.50] 0.93 0.75

11 CLCA1 0.0221 4.00 Tr[3.88, 4.00, 4.00, 4.11] 0.75 0.36

12 MTRNR2L12 0.0292 0.13 Tr[−0.28, 0.03, 0.23, 0.55] 0.71 0.99

13 PDE4DIP 0.0292 2.42 Tr[−0.17, 2.25, 2.70, 5.90] 0.90 0.69

14 ENO2 0.1087 3.75 Tr[3.61, 3.75, 3.75, 3.88] 0.58 0.48

15 WAC 0.1272 −4.00 Tr[−4.07, −4.00, −4.00, −3.92] 0.75 0.36

16 TSPAN3 0.1488 2.58 Tr[2.19, 2.58, 2.58, 3.06] 0.59 0.55

17 AFF4 0.1750 −2.41 Tr[−2.89, −2.41, −2.41, −2.02] 0.64 0.52

18 GSTA2 0.1881 −3.92 Tr[−4.07, −3.92, −3.92, −3.75] 0.70 0.40

19 MALAT1 0.1906 −0.15 Tr[−0.16, −0.15, −0.15, −0.14] 0.13 0.83

20 FAM213A 0.1906 3.61 Tr[3.46, 3.61, 3.61, 4.00] 0.51 0.54

Vega transcript database [10], while DESeq2 [5], TopHat-Cuffdiff [6] and Fisher’s
Exact test p-value (adjusted with False Discovery Rate, FDR) were used to
evaluate differential expression.

The first dataset contains two samples coming from the HeLa cells. There is
no difference between the two samples, except for one gene: in one sample the
U2AF1 gene is suppressed, therefore only this gene should result differentially
expressed in the comparison of the two samples. The U2AF1 gene is 14632 bases
long, it is present in the human genome on the chromosome 21, but on the same
chromosome there is another gene similar to the 98 %, that we call U2AF1’. The
presence of this gene is a clear source of multireads.

The Illumina reads were mapped using Bowtie2. The 30 % of mapped reads
are multireads. The mapping identified 19816 genes, and 78 % of them are influ-
enced by multireads.

By applying the proposed method, we obtain that both U2AF1 and U2AF1’
have a possibility of being differentially expressed = 1, but also a possibility of
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Table 3. Example of fuzzy read counts for dataset SRP014005. For each gene, the
centroid and the fuzzy trapezoidal set for Control (Ctrl) and Case are listed. Genes are
ordered as in Table 2.

n Gene ID Ctrl Ctrl fuzzy read count Case Case fuzzy read count

1 RP5-857K21.6 1167 Tr[1076, 1166, 1168, 1176] 1593 Tr[1389, 1592, 1594, 1599]

2 MUC5AC 103 Tr[101, 103, 103, 108] 245 Tr[236, 245, 245, 252]

3 EEF1A1 174 Tr[34, 152, 226, 314] 75 Tr[9, 60, 102, 134]

4 POSTN 11 Tr[10, 11, 11, 12] 54 Tr[52, 54, 54, 55]

5 CH507-513H4.3 361 Tr[0, 0, 1268, 1282] 233 Tr[0, 0, 860, 868]

6 CH507-513H4.4 361 Tr[0, 0, 1268, 1282] 233 Tr[0, 0, 860, 868]

7 CH507-513H4.6 361 Tr[0, 0, 1268, 1282] 233 Tr[0, 0, 860, 868]

8 SCGB1A1 52 Tr[19, 50, 53, 60] 12 Tr[6, 12, 12, 16]

9 LYZ 59 Tr[53, 56, 62, 64] 17 Tr[14, 16, 18, 19]

10 RP11-380M21.2 12 Tr[8, 9, 16, 40] 44 Tr[36, 41, 48, 95]

11 CLCA1 0 Tr[0, 0, 0, 0] 15 Tr[14, 15, 15, 16]

12 MTRNR2L12 4459 Tr[3635, 4316, 4612, 4883] 4879 Tr[4015, 4724, 5049, 5339]

13 PDE4DIP 5 Tr[0, 4, 5, 14] 29 Tr[12, 28, 32, 59]

14 ENO2 0 Tr[0, 0, 0, 0] 12 Tr[11, 12, 12, 14]

15 WAC 15 Tr[14, 15, 15, 16] 0 Tr[0, 0, 0, 0]

16 TSPAN3 2 Tr[2, 2, 2, 3] 20 Tr[19, 20, 20, 21]

17 AFF4 24 Tr[23, 24, 24, 25] 4 Tr[2, 4, 4, 5]

18 GSTA2 14 Tr[12, 14, 14, 16] 0 Tr[0, 0, 0, 0]

19 MALAT1 3249 Tr[3235, 3249, 3249, 3262] 2934 Tr[2912, 2934, 2934, 2939]

20 FAM213A 0 Tr[0, 0, 0, 0] 11 Tr[10, 11, 11, 15]

insignificant variation (risk of false positive) greater than 0.9. This means that
our method is able to detect the suppression of U2AF1, but, since almost all the
reads mapping to U2AF1 are multireads (because they also map to U2AF1’),
even its similar gene U2AF1’ results as differentially expressed. Because of the
multireads, both the results are labeled with a high risk of false positiveness.
In fact, just one of the two genes was really suppressed. DESeq2 and Fisher’s
test, applied on the centroids of the fuzzy read counts, confirm the result on
U2AF1 and U2AF1’, with a Log2 fold change greater than 4. The same analysis,
performed with TopHat and Cuffdiff, does not output any significant differen-
tial expression events: when we run these tools without multireads management
option, all the reads mapping to U2AF1 are discarded because they all map also
on U2AF1’; on the other hand, when we run the tools with multireads man-
agement (and Cuffdiff’s rescue estimation), some reads are mapped to U2AF1,
producing a log2 fold change of only 0.76 between case and control (but with a
non significant p-value greater than 0.05).

The second dataset contains a case-control study of the Asthma disease,
performed through 454 Roche sequencing of human endobronchial biopsies. The
reads were mapped using BLAST, with 97 % of identity required, and 16 % of
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mapped reads are multireads. The mapping identified 14802 genes, 11 genes have
a possibility of being differentially expressed greater than 0.9 and four of them
have a degree of false positive risk greater than 0.9. Both centroid data and
uniquely mapping read counts have been processed with DESeq2, but the tool
only warns about the absence of replicates and outputs no significant differences
in the two samples. The adjusted p-value of Fisher’s test selects 13 differentially
expressed genes: 11 of them are the same highlighted with fuzzy possibility sets,
while the other 2 show a possibility of being differentially expressed between
0.71 and 0.75 and one of them has also a 0.99 risk of false positiveness. TopHat
and Cuffdiff cannot be run on 454 data.

Tables 2 and 3 show the results of the computation for the first 20 genes,
ordered by Fisher’s p-value adjusted with FDR. The 1st and 10th genes are
ribosomal proteins that showed over-expression, but one of them with an high
FP-p (0.75), due to multireads. EEF1A1 gene shows a quite high possibility of
insignificant variation (FP-p) in the result, due to multireads. In fact, even if
the centroids generate a relevant fold change, the fuzzy read counts are partially
overlapping and the fuzzy fold change includes 0. The 5th, 6th and 7th genes are
lincRNA with identical sequence and each read mapping to one of these three
genes maps at least on the other two. From the mapping accuracy point of view, it
is impossible to distinguish the real source of the obtained reads. This means that
it is possible that all of the three genes have really changed their expression, but
it is also possible that only one did it, influencing the other with the ambiguous
mapping. From the functional point of view, since the genes are identical, it is
important to highlight the overall variation in their expression, because identical
genes have the same function in the cell. For MTRNR2L12, the uncertainty is
due both to multireads and to low values of log2 fold change. The results with
high DE-p (maximum possibility of over or under-expression) and low FP-p are
the most relevant. It is also useful to look at the obtained read counts, showed
in Table 3. In this example, if we want to select the three most relevant and less
uncertain differential expression events, they are the over-expression of MUC5AC
and POSTN and the under-expression of LYZ. In general, DE-p and FP-p could
be used to help the biologist in the selection of candidate differential expression
events: genes with high DE-p are the most promising candidates, provided that
they have a small FP-p value; otherwise they are possible false positive.

4 Conclusion

The described method exploits fuzzy sets to manage the uncertainty due to mul-
tireads, in particular during the evaluation of differential expression analysis with
NGS RNA-Seq data. The model has been tested on case-control transcriptomic
data produced by Roche 454 and Illumina sequencers.

Gene expressions are represented with trapezoidal fuzzy sets, which represent
the ambiguities resulting from read mapping. Genes are ranked through a pos-
sibility measure of differential expression, accompanied with information about
the uncertainty that could be present in the results, caused by multireads.
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The uncertainty representation can also be used just to add information to
the results obtained with other differential expression tools, in order to highlight
the risk of false positives in the results.

The method can also be applied to different types of data, like genomic and
metagenomic reads, and it will be extended to cope with biological replicates
and different types of sample comparison (e.g. with more than two conditions or
time series data).

In order to test the method, some scripts have been developed using R and
Phyton. All the scripts and the datasets used for the experimentations are avail-
able at http://bioinformatics.ba.itb.cnr.it/multidea.
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Abstract. While computational systems biology provides a rich array of
methods for network clustering, most of them are not suitable to capture
cellular network dynamics. In the most common setting, computational
algorithms seek to integrate the static information embedded in near-
global interaction networks with the temporal information provided by
time series experiments. We present a novel technique for temporally
informed network module detection, named TD-WGcluster (Time Delay
Weighted Graph CLUSTERing). TD-WGcluster utilizes four steps:
(i) time-lagged correlations are calculated between any couple of
interacting nodes in the network; (ii) an unsupervised version of k-
means algorithm detects sub-graphs with similar time-lagged correlation;
(iii) a fast-greedy optimization algorithm identify connected components
by sub-graph; (iv) a geometric entropy is computed for each connected
component as a measure of its complexity. TD-WGcluster notable fea-
ture is the attempt to account for temporal delays in the formation of
regulatory modules during signal propagation in a network.

Keywords: Graph clustering · Network analysis · Time lagged
correlation · Geometric entropy · Protein network

1 Introduction

Interaction networks can reveal the overall landscape of biological systems. The
common tendency in network mapping studies is to regard interaction networks
as static information. Almost all interaction maps, to date, have been generated
under a single standard laboratory condition, in the absence of information on
the physiological context, either in space or in time, where such interactions
may or may not occur. In fact biological systems often undergo highly dynamic
processes such as during cell cycle and circadian rhythm, along development, age
and disease progression or in response to a host of environmental and genetic
perturbations. It is clear that these dynamical, either reactive or programmed,
c© Springer International Publishing Switzerland 2016
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processes effect or are affected by changes in the underlying interaction networks.
The variation of the interactions over time guides the temporal aspects of the
information flow through a network [22]. Since interaction network dynamics
cannot be directly gauged by most currently available near-global interaction
maps, the integration of static network data with time series data is decisive to
our ability to infer the interaction network dynamics. The richest resources of
temporal information at relatively reduced costs are provided by time series gene
expression (e.g. transcriptomics, proteomics) data. Computational approaches
based on the integration of network data with temporal data are largely proposed
in the following settings.

– Identification of expression-activated sub-networks. A multitude of algorithms
detect sub-networks on the basis of statistically significant expression changes
of their nodes over some time intervals. Such approaches are typified by jAc-
tiveModules [11], ExprEssence [36], TimeXNet [25]. Fewer algorithms detect
subnetworks by resorting to the responsiveness of the edges connecting the
nodes in the sub-networks [10]. Another sort of approaches relies on the detec-
tion of time-sequenced modules, and applies static module detection methods
for each time point in the time series experiment [17,24,35]. Recently, TS-OCD
has been proposed based on the concept of overlapping temporal protein com-
plexes in order to track the evolution (growth or shrinking) of modules across
different time points [23]. However, in general, these approaches disregard the
connections between the networks at consecutive time points.

– Identification of expression-activated pathways by algorithms which conduct
enrichment analysis of differentially expressed genes in annotated pathways
such as PathExpress [9], GSEA [34]; Pathway-Express [5] and SPIA [32]
account also for the magnitude of gene expression changes and pathway topo-
logical properties.

– Identification of dynamical regulatory events on global scales by probabilistic
algorithms such as DREM and SMARTS [28,29,37], regression-based algo-
rithms such as Inferelator [1] and data decomposition algorithms like NCA
[18]. These modules aim at providing several hypotheses regarding possibly
causal relationships between nodes.

However, the methods deriving either static time-wise modules or dynamic
regulatory modules often miss important temporal aspects. Since many causal
events happen in a sequential manner, correlation-based analysis may miss key
regulatory events whenever the relationships between regulators and regulated
nodes are time-lagged. Lagged correlations refer to the correlation between two
time series shifted in time relative to one another, and are characteristic of
the dynamical behaviour of biological systems, which rely not only on impulse
responses but also on responses delayed over time. The simple correlation coef-
ficient between the two series is inadequate to characterize the relationship in
such common situations in the biological systems.

In this paper, we introduce an advanced computational method, Time
Delayed Weighted Edge Clustering (TD-WGcluster), which integrates static
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interaction networks with time series data in order to detect modules of genes
between which the information flows at similar time delays and intensities. For
this purpose, TD-WGcluster does not modularize the time series but the time-
lagged correlation profiles between any two nodes connected in the static net-
work. Since the basic units of the modules are time-lagged correlation curves, a
module detected by TD-WGcluster may assemble pairs of nodes characterized
by diverse temporal relationships, provided that these relationships are max-
imally intense at similar temporal delays. Therefore, TD-WGcluster does not
set stringent constraints on node temporal profiles which finally may turn out to
be unrealistic. Oppositely, TD-WGcluster permits heterogeneity in the temporal
information flow between node pairs within a module and, in this way, it improves
the adherence of the detected modules in the networks to the functional modules
in biological systems, which indeed may rely on combinations of diverse types of
causal (e.g. regulatory) relationships between module constituents. Additional
TD-WGcluster advantages include the quantification of the complexity of the
temporal evolution of the detected modules.

2 TD-WGcluster: The Algorithm

The TD-WGcluster algorithm is implemented in R (http://wwww.r-project.org)
and takes as input network edges in Simple Interaction File (SIF Cytoscape)
format and the time series of the abundance of each system’s component (repre-
sented as a node of the network) in tabular text format. The algorithm sequen-
tially executes four computational modules.

1. First it calculates the time-lagged correlation (TLC) between each couple
of linked nodes in the network, i.e. the correlation between the nodes’ time
series shifted in time relative to one another. Then it analyzes the TLC curves
to estimate the features describing their shape. i.e. the lag corresponding
to the maximum of the curve, the trend index, the seasonality index, the
autocorrelation test statistics, the non-linearity test statistics, the skewness
index, the kurtosis index, and the Lyapunov coefficient [19,30].

2. A K-means algorithm detects sub-graphs by clustering the TLC curves of
each couple of linked nodes according to the features describing the shape
of the curves. Relying on the shape of the TLC curves, such clustering per-
mits the identification of sub-graphs of nodes between which the information
propagates from the source node to the target node at similar time lags. The
similarity of the shapes of the TLC curves does not imply that those nodes
have similar dynamics (i.e. similar time series), but only that the synchroniza-
tion between the activities of directly linked nodes occurs at similar time lag.
Therefore, each sub-graph can be characterized by its own time lag τr, rep-
resentative of the time delay at which the correlation between the dynamics
of the directly linked nodes reach its maximum value.

3. Fast-greedy modularity optimization procedure finds (if any) the connected
components in each sub-graph.

http://wwww.r-project.org
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4. Finally, the geometric entropy Er of each connected component in the sub-
graph characterized by representative time delay τr is calculated as the neg-
ative natural logarithm of the determinant of the covariance matrix of the
time series of the nodes in the component. The geometric entropy is used as
a measure of the complexity of the connected component since it is indicative
of its size (i.e. number of nodes and number of edges) and of the multiformity
of the dynamics of its nodes. Indeed, if a component consists of D nodes, the
geometric entropy is a global measure of the D-dimensional variance of the
time series corresponding to the D nodes. The larger is the volume occupied
by the node time series in the D-dimensional space, the larger is the geometric
entropy. The most interesting cases are identified by extreme low/high values
of the geometric entropy, since the former case can suggest purely stochastic
or purely deterministic dynamics, whereas the latter case can suggest hybrid
deterministic/stochastic dynamics. Furthermore, the distribution of the geo-
metric entropy on the graph reflects the complexity of the graph itself. Indeed,
the more the entropies of the network connected components differ, the more
the dynamics vary across the network nodes, and the higher is the complexity
of the network.

Finally, note that matrices with the same determinant (thus geometric
entropy) can show different sets of eigenvalues. For this reason, TD-WGcluster
performs the comparative analysis of the connected components by comple-
menting the usage of the geometric entropy with the analysis of the eigenvec-
tors and eigenvalues of the covariance matrix of each connected component.
In particular, TD-WGcluster decomposes the contribution of each node to the
variance of the dynamics in a connected component through variable factor
analysis.

Computational modules of TD-WGcluster are now described in detail.

2.1 Analysis of Time Lagged Correlation

Lagged correlation refers to the correlation between two time series shifted in
time relative to one another. Lagged correlation is important in studying the
relationship between time series since one series may have a delayed response to
the other series, or a delayed response to a common stimulus that affects both
series.

The lagged correlation is estimated by the cross-correlation function (CCF).
The CCF of two time series is the product-moment correlation as a function of lag
between the series. It is helpful to begin defining the CCF by the cross-covariance
function (CCFV). Consider N pairs of observations on two time series, x(t) and
y(t), the sample CCFV is:

cxy =
1
N

N−τ∑

t=1

(x(t) − x(t))(y(t + k) − y(t)), k = 0, 1, · · · , (N − 1) (1)

and, similarly, cxy = 1
N

∑N
t=1−τ (x(t) − x(t))(y(t + k) − y(t)), k =

−1,−2, · · · ,−(N − 1) where x(t) and y(t) are the sample means, and τ is the
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lag. The sample CCF is the CCFV scaled by the variances cxx(0) and cyy(0) of
the two series: rxy(τ) = cxy(τ)√

cxx(0)cyy(0)
.

The CCFV and CCF are asymmetrical functions. The asymmetry is specified
in the definition given in Eq. (1). In this equation, the cross-correlation function
is described in terms of lead and lag relationships. The first part of the equation
applies to y(t) shifted forward relative to y(t). With this direction of shift, x(t) is
said to lead y(t). This is equivalent to saying that y(t) lags x(t). The second part
of Eq. (1) describes the reverse situation, and summarizes lagged correlations
when y(t) leads x(t) (x(t) lags y(t)).

The analysis of the CCF permits to detect the lag at which the two time
series are maximally correlated and to determine if this correlation is significant.
The correlation is significant if its values does not belong to the confidence inter-
val of the cross-correlation. This confidence interval relies on several simplifying
assumptions and can be computed from the sample size alone. For a two-tailed
test, the approximate γ confidence interval is CI = 0 ± zγ

1√
N

. The value zγ is
the γ probability-point of the cumulative distribution function of the normal dis-
tribution. This confidence interval relies on assumptions that (1) the processes
generating x(t) and y(t) are uncorrelated, (2) the processes are not autocorre-
lated, (3) the populations are normally distributed, and (4) the sample size is
large. Under those assumptions, the sample cross-correlations are ∼N (0, 1/N),
or normally distributed with mean zero and variance 1/N .

2.2 Detection of Sub-graphs

The number of optimal sub-graphs which partition the input graph is esti-
mated by minimizing the total within-clusters sum of squares (WCSS) obtained
with a K-means procedure. K-means clustering is applied to the feature
vectors tlc = (tlc1, tlc2, . . . , tlcE), describing the shape of the time-lagged cor-
relations between the time series of each couple of linked nodes. E is the num-
ber of edges in the input graph. The components of the feature vector for
the i-th TLC curve Ci(τ) (i = 1, 2, . . . , E) are: (lag of maximal correlation)i,
(seasonality index)i, (trend index)i, (non-linearity index)i, (kurtosis index)i,
(skewness index)i, (Liapunov coefficient)i, (autocorrelation statistics)i.

The elements of tlci are typically used in time series analysis [19,30] but,
within TD-WGcluster, are used to capture the main behavioural characteristics
of the TCL curves [16]. In particular, the lag of maximal correlation is the lag
at which the cross-correlation (i.e. the TLC curve) is maximum. Hereafter, this
lag will be denoted by τr and we will refer to it as to the representative of the
interactions in a sub-graph.

Applying K-means algorithm to the feature vector set {tlci}, (i =
1, 2, . . . , E), with an increasing putative number of clusters (sub-graphs) at each
run, we obtained the values of WCSS. An elbow in the curve interpolating the
WCSS curves points (nsub-graphs, WCSS), where nsub-graphs is the increasing
putative number of sub-graphs, suggests the appropriate number of sub-graphs
noptimal. noptimal is estimated as the minimum value of nclusters at which the
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first derivative of WCSS w.r.t. nsub-graphs is null within a tolerance 0 < ε � 1,

i.e.
∣
∣
∣
∣

d WCSS
dnsub-graphs

∣
∣
∣
∣ ≤ ε. The first derivative of the curve (nsub-graphs, WCSS) is

calculated by the Stineman algorithm [12]. The problem of WCSS minimiza-
tion is known to be NP-hard. Furthermore, if the input data do not have a
strong clustering structure, the procedure may not converge. For this reason,
TD-WGcluster adopts the Lloyd’s algorithm whose complexity is linear in the
number of edges and number of sub-graphs, and is recommended in case of data
poorly clustered [6].

2.3 Detection of Connected Components and Geometric Entropy

Each sub-graph Sv(v = 1, . . . , K) returned by the K-means clustering is decom-
posed into connected components C

(v)
l (with l = 1, 2, . . . , Lv, where Lv is the

number of connected components in sub-graph Sv) via a fast-greedy optimiza-
tion procedure [4]. The geometric entropy of C

(v)
l (τr), indicating the entropy

value at the lag τr, is calculated as:

E
(v)
l (τr) ≡ − ln |det M

(v)
l | (2)

where M
(v)
l (θl,v) is the matrix of covariances of the time series of the nodes in

the connected component l of sub-graph v; its entries are

M
(v)
(l,(a,b)) = E(xa(t)xb(t + τr)), a, b = 1, 2, . . . Nl

where xa(t), and xb(t) denote the time series of nodes “a” and “b”, respectively.
The entropy as defined in Eq. (2) estimates the Nl-dimensional variance of the
dynamics of the nodes in the connected component.

3 Results

In this section we will introduce the TD-WGcluster features by an in silico exper-
iment and we will present an application of it in a real case study of biological
interest.

3.1 In Silico Study

As a running example to illustrate the features of TD-WGcluster, we constructed
an in silico random network consisting of 100 nodes and 500 edges, where lags
in correlation were induced by generating a bimodal distribution of distinct
kinetic rates, characterizing slow and fast reactions (Fig. 1). Kinetic rates from
this distribution have been randomly assigned to the edges of the network. The
time series (consisting of 1000 time points between initial time 0 and final time
4 in arbitrary units) associated with each node were generated by simulating
the deterministic dynamics of the network with Dizzy software (http://magnet.
systemsbiology.net/software/Dizzy/).

http://magnet.systemsbiology.net/software/Dizzy/
http://magnet.systemsbiology.net/software/Dizzy/
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Fig. 1. Bimodal distribution D(k),
of the kinetic rates k of the bench-
mark network. D(k) has been
obtained as a mixture of two log-
normal distributions with parame-
ters μ1 = 0, σ1 = ln(2) and μ2 =
ln(200), σ2 = 0. The index R mea-
sures the disproportion between
the number of slow and fast kinet-
ics which are characterized by
kinetic rate constant under the two
peaks in the bimodal distribution.

The K-means clustering resulted in the
identification of eight sub-graphs character-
ized by distinct feature sets, as shown in
Fig. 2.

The fast-greedy modularity optimization
algorithm resulted in the identification of
18 connected components (number of edges
greater than 1). Three examples of connected
components extracted from three distinct sub-
graphs and characterized by TLC curves of
different shape are shown in Fig. 3. Interest-
ingly, in more than half of the connected
components (61 %), the representative time
lag of maximal correlation was different from
zero. Figure 4 displays the connected compo-
nents in three coordinate spaces: (i) represen-
tative entropy E

(v)
l (τr) and number of nodes,

(ii) representative entropy Er and the repre-
sentative maximum of the TLC defined by the
average of the maxima of the TLC curves in a
connected component, and (iii) representative
entropy E

(v)
l (τr) and the standard deviation

of the maxima of the TLC curves.
TD-WGcluster provides an effective app-

roach in any applicative context where the assumption of absence of temporal
delay, which is implicit in classical correlation-based clustering approaches, can
represent a limitation. As mentioned, TD-WGcluster assigns a temporal delay
characteristic of the interactions between the nodes in each identified connected
component; in this way, it allows the user an easy investigation of the identified
connected components in the light of the associated time lags, as shown in Fig. 7.

Finally, the aforementioned synthetic dataset was used to undertake the
assessment of TD-WGcluster performances. This choice was motivated by the
insufficiency of time series datasets of adequate quality and of clustering meth-
ods accounting for lagged-correlation of time series. To establish the benchmark
clustering solution in the synthetic setting, we computed the expected opti-
mal number of clusters of time-lagged correlation curves applying the Calinski
criterion [2] and the Bayesian Information criterion [21] to the convolution func-
tions of the time series associated with the nodes in the synthetic network (see
TDWG-Cluster tutorial at [16] for more details on this regard). Indeed, time
series convolution (as well as time-lagged correlation between time series) is
determined principally by the distribution of kinetic rates and, secondly, by net-
work topology. In this case, the topology is the simplest as possible as it was
defined by an Erdös-Renyi random graph with no scale free property, and there-
fore, it is likely to scarcely influence the clustering structure of the time-lagged
correlation curves. Both the Calinski and Bayesian Information criteria agreed
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Fig. 2. Features of the sub-graphs identified by TD-WGcluster in the in silico network.
(A) Heat map displaying the average value of each feature reported along the x-axis
for each sub-graph reported along the y-axis. The colour bar along the y-axis displays
distinct time lag in distinct colours. Average is computed across the TLC curves assem-
bled in each sub-graph. (B) Heat map displaying the standard deviation value of each
feature reported along the x-axis for each sub-graph reported along the y-axis. Stan-
dard deviation is computed across the TLC curves assembled in each sub-graph (Color
figure online)

Fig. 3. The TLC curves derived from the time series of couples of nodes belonging
to a sub-graph have similar shapes. Each sub-graph, and consequently each connected
components in it, performs its own TLC curve.

on estimating 10 clusters as the optimal number of clusters. Therefore, the con-
volution curves were classified in 10 clusters with the recent dynamical time
warping fuzzy clustering algorithm [7] implemented in the dtwclust R package
[27]. We assessed the validity of the sub-graphs detected by TD-WGcluster by
comparing both the number and the content of the TD-WGcluster sub-graphs
with the expected number and content of the clusters inferred by the dynamic
time warping algorithm. We compared clusters’ content by counting the edges
in common between each sub-graph detected by TD-WGcluster and each cluster
detected by fuzzy clustering.
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Fig. 4. Connected components are visualized as coloured points in the space of entropy
at the representative time lag and number of nodes (first plot); in the space of entropy at

representative time lag (E
(v)
l (τr), here simply indicated as Er) and maximum value of

time-lagged correlation at the representative time lag, here indicated as max Cortaur

(second plot); and in the space of entropy at representative time lag and standard
deviation of the maximum of time-lagged correlation (third plot). The plots show that
connected components of larger size (i.e. number of nodes) have also a larger geometric
entropy. Regardless of the number of nodes, connected components represented by
larger value of the maximum of TLC (averaged on the TLC curve of the connected
component) have also a larger entropy. Regardless of the number of nodes and the
value of the average maximum of the TLC curves, the entropy seems to not have a
functional dependency on the standard deviation of this maximum.

TD-WGcluster sub-graphs showed reasonable agreement with the clusters
detected by fuzzy clustering in terms of clusters’ number and content, as shown
in Fig. 5A. TD-WGcluster performances were found to be sensitive to the pro-
portion of interactions of slow (low k) and fast (high k) kinetics, as shown in
Figs. 5B and 5C. In particular, the presence of a larger number of slow (fast)
kinetics jeopardizes the accuracy of the tool, as slow (fast) kinetics tend to result
in flat (stiff) dynamics causing classification errors in algorithms relying on the
shape of a curve. In order to understand how the performance of TD-WGcluster
depends on the ratio R between slow and fast kinetics, and thus to establish the
conditions for an optimal performance, we generated different sets of kinetic rate
distributions characterized by a different value of R (see Fig. 6). We found that
for an optimal performance of the tool R is recommended to be in the interval
[21%, 72%]. Nonetheless, we also noticed that even for values of R outside of
this range, the performance does not decrease below 50 %.

3.2 Time-Resolved Proteomics Case Study

We applied TD-WGcluster to a time-resolved mass-spectrometry-based quanti-
tative proteomic profiling of mouse embryonic stem cell (ESC) differentiation
[20] in combination with the protein-protein interaction network provided by
the IntAct database (www.ebi.ac.uk/intact/). This application is of particular

www.ebi.ac.uk/intact/
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Fig. 5. A. Performance of TD-WGcluster in clustering a network of 100 nodes and 500
interactions whose kinetic rates follow a bimodal distribution obtained as a mixture of
two log-normal distributions. B. Distribution of the kinetic rate constants of the inter-
actions common to TD-WGcluster sub-graphs and the corresponding best matching
benchmark clusters. C. Distribution of the kinetic rate constants of the interactions
which are present in a TD-WGcluster sub-graph and which are absent from the best
matching benchmark cluster.

Fig. 6. Percentage of validated edges for each sub-graph identified by TD-WGcluster
in graphs of equal topology but different distribution of kinetic rate constants. Nine
bimodal distributions, Di(k), i = 1, . . . , 9, with a different ratio R between the number
of interactions with low and high kinetic rates. TD-WGcluster has best performance
for R ∈ [21 %, 72 %].
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Fig. 7. The connected components identified by TD-WGcluster in the in silico case
study are displayed in order of representative time lag. Connected components whose
representative time lag is zero are not displayed.

interest since ESCs represent a valuable model for systematically studying mam-
malian embryonic development.

Applying TD-WGcluster to this case study resulted in the identification of a
total of 86 connected components which were arranged in 7 sub-graphs of distinct
correlation profiles (Fig. 8). Figure 9 displays the eigenvectors of the covariance
matrices for the connected components with a number of nodes greater than
3. In the majority of cases the first axis (PCA 1) extracted more than 90 %
of the variation in the time series data. An increment of the entropy Er (and
of the number of nodes) was found to correspond to a decrement in the norm of
the majority of the eigenvectors.
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Fig. 8. Features of the subgraphs identified by TD-WGcluster in Intact protein network
(see Fig. 2 for a detailed explanation of this graphical representation).

We performed gene set enrichment analysis for each connected component
by using the Gene Ontology categories in order to explore the biological interest
raised by the connected components identified by TD-WGcluster (Fisher exact
test, false discovery test <0.05). The connected components characterized by
synchronized time series (time lag = 0) consisted of nodes annotated to plasma
membrane organization, cell junction organization, to developmental matura-
tion, and cytoskeleton-dependent intracellular transport (Fig. 10). This observa-
tion is interesting since genes functioning in the organization of the embryonic
microenvironment have been shown to directly or indirectly modulate the crit-
ical balance between ESC self-renewal and differentiation [14,15,31]. Further-
more, human ESC differentiation into neuro-ectodermal spheres has been shown
to be associated with a marked reorganization of the cellular cytoskeleton [3].
Therefore, the connected components of temporally synchronized nodes are in
agreement with previous observations about the ESC differentiation process.

In general, the connected components where the time lag of maximal cor-
relation is different from zero can be of equal interest since they can capture
regulatory events delayed over time. In the present study, such connected com-
ponents were found to consist of genes linkable to the ESC fate determination. In
addition to genes involved in the crucial process of ESC environment modifica-
tion, the connected components were found to contain genes involved in energy
production and cell cycle-related processes. This observation elicited our atten-
tion since bioenergetics shifts fuel cell state transitions [33]. ESCs are derived
from a relatively hypoxic environment and, accordingly, mainly rely on glycolytic
ATP generation regardless of oxygen availability [38], and a glycolytic engage-
ment was shown to mobilize the induction of pluripotency [8,13]. Conversely,
the conversion of ESCs into differentiated phenotypes involves a glycolytic to
oxidative metabolic transition [26] accompanied by a mitochondrial reorganiza-
tion. In summary, these results make it likely that the connected components
of time-lagged correlation profiles include interactions worth of attention in the
study of ESC differentiation.
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Fig. 9. First and second components of the eigenvector of covariance matrix for the
connected components with a number of nodes greater than 3. In the majority of cases
the first axis (PCA 1) explains the 90 % of the variation in time series dataset. We
note as an increment of the entropy Er corresponds to a decrement of the norm of the
vectors.

4 Discussion

A central aim in cell biology is to describe the molecular programmes that drive
cellular functions. Although these are encoded in the genome, they are exe-
cuted primarily by networks of interacting proteins. The strategies used to map
interaction networks are insensitive to the physiological contexts within which
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Fig. 10. Functional characterization of the connected components identified by TD-
WGcluster in the time-resolved proteomics case study. The heat map shows the fold
enrichment of Gene Ontology categories (Biological Process domain) by connected
component.

interactions can occur. Nevertheless, analysing the temporal aspects underlying
the interactions is crucial to understand cellular function. Given this, a common
approach is to combine static protein interaction networks with temporal data
from time series experiments.

Here, we introduce the TD-WGcluster method that utilizes interaction
networks and time series data in order to execute temporally-informed net-
work clustering analysis. The temporal information is embedded in the time-
lagged correlation profiles, which are associated with the edges in the network.
The requirement of similar time-lagged correlations coupled to the interactions
between nodes is the cornerstone of the TD-WGcluster approach since it drives
the identification of the sub-networks and of the connected components therein.
The modules identified by our approach can be viewed as a framework for
hypothesis generation and for design and interpretation of focused studies that
address the dynamic underpinnings of interactions of interest.
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5 Software

TD-WGcluster is available at

https://sites.google.com/site/paolaleccapersonalpage/software

along with a short tutorial and a technical report describing the theoretical foun-
dations of the tool and script (R and Dizzy) for the generation of the synthetic
case study presented in the paper.
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Abstract. In this paper, we have proposed a novel method for the
reduction of the number of inferred false positives in gene regulatory
networks, constructed from time-series microarray genetic expression
datasets. We have implemented a hybrid statistical/swarm intelligence
technique for the purpose of reverse engineering genetic networks from
temporal expression data. The theory of combination has been used
to reduce the search space of network topologies effectively. Recurrent
neural networks have been employed to obtain the underlying dynamics
of the expression data accurately. Two swarm intelligence techniques,
namely, Particle Swarm Optimisation and a Bat Algorithm inspired
variant of the same, have been used to train the corresponding model
parameters. Subsequently, we have identified and used their common
portions to construct a final network where the incorrect predictions
have been filtered out. We have done preliminary investigations on exper-
imental (in vivo) data sets of the real-world SOS DNA repair network in
Escherichia coli. Furthermore, we have implemented our proposed algo-
rithm on medium-scale networks, consisting of 10 and 20 genes. Experi-
mental results are quite encouraging, and they suggest that the proposed
methodology is capable of reducing the number of false positives, thus,
increasing the overall accuracy and the biological plausibility of the pre-
dicted genetic networks.

Keywords: Bat algorithm · Gene regulatory network · Particle swarm
optimisation · Recurrent neural network · Time-series microarray data

1 Scientific Background

To fully comprehend the critical cellular activities of living beings [1], it is imper-
ative that we learn the exact nature of the genetic relationships using the knowl-
edge of genetic expression patterns. Investigations on gene regulatory networks
c© Springer International Publishing Switzerland 2016
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(GRNs), thus, have enticed the research fraternity considerably. Thus, the devel-
opment of suitable methodologies to completely understand the causal relation-
ships between genes has ensued.

Transcriptional regulation of genes involves DNA, RNA, protein and other
molecules. A GRN represents the inter-genetic relationships, and they are indi-
rect, i.e. genes do not interact with each other directly. The interactions are
essentially realised via proteins (aka transcription factors) although other fac-
tors such as small and long non coding RNA (e.g., miRNA, lncRNA, etc.) are also
involved. For example, if a gene g1 is said to be regulated by another gene g2, it
indicates that the transcription factors encoded by g2 are responsible for control-
ling the expression/transcription of g1 (also known as the target gene). There
are other underlying activities involved in the regulatory process, viz. mRNA
splicing, structural modifications of proteins post-transcription, etc. Neverthe-
less, contemporary research is concentrated on the transcription stage (mRNA)
only, because of a lack of information concerning the other processes (advance-
ments are being constantly made in this regard). Regardless of these restrictions,
the simplicity allows large scale simultaneous measurements of genetic expres-
sion values in the form of microarrays. Although, microarray technology is slowly
being replaced with more accurate techniques line RNA sequencing, next gener-
ation sequencing, etc. expression datasets from such methods are still not freely
and easily available.

A GRN represents these complex, inter-genetic regulatory relationships.
Depending upon the nature of regulation, the relationships may be of two types:
(i) activation: the expression of the target gene increases and (ii) repression:
there is a decrease in the expression of the target gene.

Fig. 1. The original structure of the SOS DNA repair transcriptional network of
E. coli. Arrowheads represent activation; T-heads represent repression. (Courtesy:
http://wws.weizmann.ac.il/mcb/UriAlon/sites/mcb.UriAlon).

http://wws.weizmann.ac.il/mcb/UriAlon/sites/mcb.UriAlon
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The simultaneous measurement of the genetic expression levels of several
thousand genes has been made possible by the innovations of DNA microar-
ray technology. However, the microarray data contains unwanted, experimental
noise. Additionally, the number of genes investigated is two to three orders of
magnitude higher compared to the number of time points. The problem is known
as the curse of dimensionality and it severely undermines the potential of any
applied methodology for the construction of GRNs from temporal microarray
datasets. Several research endeavours have been made to solve this problem but
researchers have achieved only partial success in this regard. Various method-
ologies for reverse engineering of GRNs from time-series expression data such as
Boolean Networks [2], Recurrent Neural Networks (RNN) [3], S-systems [4], etc.
have been investigated. A review of the various methods used for reverse engi-
neering of GRNs from time-series expression datasets is given in [5]. The training
of the corresponding model parameters is an optimisation problem. Thus, meta-
heuristic techniques like particle swarm optimisation (PSO) [6] are quite popular
among researchers worldwide. In this investigation, apart from PSO, a bat algo-
rithm (BA) [7] inspired variant of PSO has been introduced and implemented.
Results were evaluated based on their combination.

Although metaheuristics are extensively used for model parameter training
purposes, the number of parameters increases in a quadratic manner with respect
to the number of genes in a GRN. Thus, for N ∼ 102 or 103 numbers of genes,
optimisation becomes computationally implausible. Researchers have proposed
to solve this particular problem by decomposing the global optimisation prob-
lem (model parameter optimisation of all genes in a GRN) into several local
optimisation problems (model parameter optimisation of a single gene) [8].

Also, extensive investigations on GRNs reveal that a GRN contains only a
handful of regulators [9], i.e. GRNs are sparse in nature. This information points
towards the possibility of some form of topological constraint being applied on
the predicted GRNs. It, thus, becomes feasible to decouple the architectural and
the dynamical features of this reverse engineering problem. This can be realised
by decoupling the discrete network architecture search space from the continuous
model parameter search space [8]. The continuous search supervises the discrete
search.

Unfortunately, none of the above computational techniques [5] for the recon-
struction of GRNs from time series microarray data is completely accurate, and
all true positives have never been predicted reliably without any false predictions.
This inaccuracy increases exponentially as the number of genes involved in the
GRN increases. Thus, the very effectiveness of the endeavour of reconstruction
of GRN using computational techniques has been challenged.

The main hindrance in these techniques is the inference of many false posi-
tives amongst the genes along with true positives. False positives are naturally
unwanted entities in the entire domain of investigation into the computational
reconstruction of GRNs. Here, we have undertaken an investigation as how to
minimise false positive prediction in computational GRN reconstruction. These
are initiated by reconstructing GRNs using the RNN technique where several
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types of optimization techniques have been adopted. Later on, all these tech-
niques are combined to derive a single GRN, where it was found that the number
of false positives has been decreased to a significant extent.

2 Materials and Methods

2.1 Materials

First, we have implemented the proposed approach on the in vivo time-series
genetic expression datasets of the SOS DNA repair network of E. coli [10]. This
DNA repair mechanism involves only eight genes as studied by Ronen et al. [10].
The original network comprising of these eight genes has been shown in Fig. 1,
and involves a total of nine interactions. These datasets are mostly used as a
benchmark for the comparison of the results obtained from different computa-
tional methodologies for reconstruction of GRNs. Ronen et al. [10] performed
four such experiments, producing four microarray datasets. Each dataset con-
tains the expression values of the eight genes for 50 time points at an interval
of six minutes. The expression value at the first time point for each gene, in
each dataset, is zero. Hence, we have ignored the particular time-point for our
training purpose.

Fig. 2. The original structure of the GRN [8,13].

Secondly, we have implemented the proposed algorithm on two medium-scale
GRNs: one 10-gene and the other 20-gene. We have extracted the GRNs from
GeneNetWeaver (GNW) [11] from the genome of yeast and E. coli, respectively.
We have used DREAM4 [12] settings for the generation of the gene expression
time-series. The generated time series contains 50 time points. The 10-gene GRN
has been studied previously in [8,13], and the original GRN has been shown in
Fig. 2. The original structure of the 20-gene GRN has been shown in Fig. 3.
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Fig. 3. The original structure of the 20-gene GRN extracted from GNW.

2.2 Methods

In this work, we have proposed to implement a statistical framework hybridised
with Particle Swarm Optimisation (PSO) [6], and another one, hybridised with a
Bat Algorithm [7] inspired Particle Swarm Optimisation (BAPSO) algorithm for
the construction of GRNs. Previous knowledge [14] allows us to reduce the search
space of network topologies by prefixing the maximum number of allowable
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regulators for a particular gene. In this work, we have assumed m = 4, as the
GRNs under consideration are small to medium-scale only [14]. Also, the theory
of combination has been utilised to search the reduced network space, exhaus-
tively. Thus, we have achieved a reduction of the search space from a maximum
dimension of 2N to NC4 or

(
N
4

)
(i.e. the combination of N things taken 4 at a

time).
To explain this, let us suppose that there are four genes (A,B,C,D) in a

GRN and there are maximum two regulators allowed for each gene. Then the
probable candidate solutions for gene A would be: [0011] i.e. A regulated by C
and D; [0101] i.e. A regulated by B and D; [0110] i.e. A regulated by B and
C; [1001] A regulated by A and D; [1010] A regulated by A and C; and [1100]
i.e. A regulated by A and B. This, in essence, is the combination of four things
(ones representing the presence of regulatory relationships) taken two at a time,
i.e. 4C2 = 6. Proceeding in this manner, if there is no restriction on the number
of regulators, the number of solutions become: 4C1 +4 C2 +4 C3 +4 C4 = 24. In
other words, for a N -gene network, the search space is originally 2N which is
reduced to NCm by the restriction on regulators. Due to the exhaustive search,
the likelihood of inferring biologically plausible networks increases, along with a
lesser chance of false predictions. The RNN technique has been employed for the
purpose of modelling the underlying dynamics of the temporal genetic expression
data [3], according to the following equation:

xi (t + Δt) =
Δt

τi

[

1 + exp

(

−
N∑

j=1

[wijxj + βi]

)] −
(

1 − Δt

τi

)

xi(t) (1)

In the above equation, xi denotes the expression level of the i-th gene. The
equation predicts the expression value of a gene, at a particular time point, based
on the expression values of the all the genes at the previous time point only. The
term βi denotes an external bias, and τi is a constant parameter. The vector,
W = [wij ] contains the regulatory relationships among the genes. A positive
value of wij indicates activation of gene i by gene j, a negative value of wij

indicates repression of gene i by gene j, and wij = 0 indicates no relationship
among genes i and j. The efficient training of the parameters: wij , βi, and τi
from the given temporal expression data is an optimization problem. And, like
any optimization problem, an objective or a fitness function is required which
can be defined by the mean squared error (MSE), in this work:

MSE =
1

NT

N∑

1

T∑

1

(xi(t) − x̃i(t))
2 (2)

Here, N is the total number genes in the GRN, T is the number of time
points, xi(t) is the original expression data and x̃i(t) is the simulated data at
any point of time t. The MSE determines the fitness of a solution. Traditional
PSO has been used for the first implementation of the proposed methodology,
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described by Eqs. (3) and (4).

v′
i = w · v + r1c1 · (pbi − pi) + r2c2 · (gb − pi) (3)

p′
i = pi + v′

i (4)

Here, v′ and v denote the particle velocities for the next and the current
generations, respectively; p′ and p are the particle positions in the next and the
current generations, respectively; pb is the best solution achieved by a particle;
gb is the best solution achieved by the swarm; w is the inertia weight term that
controls the efficient balance between exploration and exploitation undertaken
by a particle; r1, r2 are random numbers in the range [0, 1]; and c1, c2 are taken
as 2.

In the proposed BAPSO, the update of w is inspired by the frequency update
of BA. We have uniformly draw a random value of w from [wmin, wmax]. We
have assigned wmin = 0 and wmax = 1, in this work. This, to a certain extent,
counterbalances the problem of getting trapped at local minima thus, getting an
upper hand over one the very few problems plaguing PSO.

Another modification introduced into the proposed BAPSO algorithm, is the
initialisation of the particle velocity to zero, inspired by virtual bats in BA. This
might help in preventing particles from acquiring an initial unguided velocity
that may sidetrack it from a potential optimal solution in the search space.

Last but not the least, for this investigation, GRNs need to be represented
computationally, and that is most easily achieved via directed graphs. A directed
graph, G = (V,E) can represent a GRN, where V is the set of all genes (nodes or
vertices) and E is the set of all interactions between the elements of V (edges).
The set E contains an edge eij , if and only if a causal relationship is present
between the vertices (genes), i and j. This structure can be represented with
the help of an adjacency matrix, G = [gij ]N×N where N = the number of nodes
(genes) in the graph. The element gij has a value 0 or 1 depending on the absence
or presence of any regulatory interaction from gene j to gene i, respectively.

The novelty of this work lies in the final network construction strategy based
on the results of the two formalisms above. We have compared, rather, superim-
posed the two GRNs constructed using the two swarm intelligence techniques.
Subsequently, we have used only the edges, common to both the structures, to
assemble the final inferred GRN. This filters out the false positives while keeping
the true positives intact.

This can be explained based on the fact that GRNs are sparse. Thus, false
positives can be scattered throughout the entire search space and the possibility
of identifying the same false positive, by different metaheuristic techniques, is
low. As a result, the incorrect predictions vary in their positions in the inferred
GRNs for different methodologies and get filtered out. On the other hand, the
true positives are unwavering in their positions and thus, survive the filtering
process.
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3 Experimental Results

All the simulations have been run on 64-bit Matlab 2014a, running on a 64-bit
version of MS Windows 7. The simulations have been run on a desktop computer
with an Intel Core i7 Processor running at 3.4 GHz, with 8 GB of RAM.

In this work, we have employed a collaborative learning scheme due to the sto-
chastic quality of the methodologies involved (as a consequence the GRNs vary
in their structures for each independent experiment). Subsequently, we assign
a plausibility score psij for each edge eij for its inclusion in the final predicted
network, as:

psij =
1
L

L∑

1

gij (5)

In the above equation, gij ∈ G, psij ∈ [0, 1], and L = numbers of independent
experiments conducted (inferred GRNs) corresponding to each methodology.
After the evaluation of psij for all i and j, we have stored the final inferred
GRN as a matrix GF = [gfij ]N×N . The value of gfij can be either 0 or 1 and we
have adopted the following technique to assign a value to gf ij:

gfij =

{
0, if psij ≥ α

1, otherwise
(6)

The parameter α is a threshold of psij i.e. the plausibility score. It regulates
the inclusion of a particular edge in the final GRN. In order to evaluate the
accuracy of the implemented methodology, we compare this final GRN, GF with
GO, the original GRN. The experimental results have been validated in this
manner. An inferred edge is categorised into four types:

True Positive (TP ): if goij = 1 and gfij = 1
True Negative (TN): if goij = 0 and gfij = 0
False Positive (FP ): if goij = 0 and gfij = 1
False Negative (FN): if goij = 1 and gfij = 0

The following metrics help in the quantitative comparison of the proposed
methodology with those in the contemporary literature:

Sensitivity(Sn) =
TP

TP + FN
(7)

Specificity(Sp) =
TN

TN + FP
(8)

PositivePredictiveV alue(PPV )/Precision =
TP

TP + FP
(9)

Accuracy(ACC) =
TP + TN

TP + FP + TN + FN
(10)

F -score =
2TP

2TP + FN + FP
(11)



A Novel Technique for Reduction of FPs in Predicted GRNs 79

Here, in this work, we have conducted L = 10 independent experiments for
each of the GRNs studied. The experiment on the SOS DNA repair network
of E. coli have been conducted with a swarm population of n =

(
8
4

)
, and a

maximum number of 5000 iterations. For the 10-gene GRN, we have used a
swarm population of n =

(
10
4

)
, and a maximum number of 10000 iterations.

Finally, for the 20-gene GRN, we have used a swarm population of n =
(
20
4

)
,

and a maximum number of 10000 iterations.

Table 1. Experimental results for the E. coli SOS DNA repair network involving eight
genes.

Dataset Technique TP FP Sn Sp PPV ACC F -score Graph edges

1 eDSF [8] 3 10 0.33 0.82 0.23 0.75 0.27 13

PSO 5 09 0.56 0.84 0.36 0.80 0.43 14

BAPSO 7 09 0.78 0.84 0.44 0.83 0.56 16

Proposed 7 09 0.78 0.84 0.44 0.83 0.56 16

2 eDSF [8] 8 05 0.89 0.91 0.62 0.91 0.73 13

PSO 4 10 0.44 0.73 0.29 0.77 0.35 14

BAPSO 7 15 0.78 0.82 0.32 0.73 0.45 22

Proposed 7 12 0.78 0.78 0.37 0.78 0.50 19

3 eDSF [8] 3 10 0.33 0.82 0.23 0.75 0.27 13

PSO 4 09 0.44 0.84 0.31 0.78 0.36 13

BAPSO 4 09 0.44 0.84 0.31 0.78 0.36 13

Proposed 7 09 0.78 0.84 0.44 0.83 0.56 16

4 eDSF [8] 0 09 0.00 0.84 0.00 0.72 0.00 09

PSO 3 08 0.33 0.78 0.27 0.78 0.30 11

BAPSO 4 12 0.44 0.85 0.25 0.73 0.32 16

Proposed 3 00 0.44 1.00 1.00 0.92 0.62 04

Table 1 shows the comparison of the inferred network structures with those
inferred in [8]. The proposed framework is consistent with respect to the num-
ber of correct (true positive) and incorrect (false positive) predictions for each
dataset unlike the unevenness in the results of [8]. The obtained prediction error,
MSE is ∼ 10−2

Moreover, the novel scheme of constructing the final inferred topology has
succeeded in the reduction of false positives, as seen in Table 1. In general,
BAPSO identifies a greater number of edges compared to PSO. As a result,
there are more true positives identified, but at the same time, more false pos-
itives creep into the final inferred topology as well. Constructing a GRN with
only those edges that are common to both the methodologies, helps in filtering
out the noisy information i.e. false positives from the GRNs at the same time
preserving the increased number of true predictions. The results show the extent
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Table 2. Variation of results with α for the E. Coli SOS DNA repair network.

TP FP Sn Sp ACC TP FP Sn Sp ACC

α = 0.60

Dataset 1 Dataset 2

7 12 0.78 0.78 0.78 7 15 0.78 0.73 0.73

Dataset 3 Dataset 4

9 12 1.00 0.78 0.81 4 03 0.44 0.95 0.88

α = 0.70

Dataset 1 Dataset 2

7 12 0.78 0.78 0.78 7 13 0.78 0.76 0.77

Dataset 3 Dataset 4

9 10 1.00 0.82 0.84 4 00 0.44 1.00 0.92

α = 0.80

Dataset 1 Dataset 2

7 10 0.78 0.82 0.81 7 12 0.78 0.78 0.78

Dataset 3 Dataset 4

7 10 0.78 0.82 0.81 3 00 0.33 1.00 0.91

α = 0.90

Dataset 1 Dataset 2

5 08 0.56 0.85 0.81 4 10 0.44 0.82 0.77

Dataset 3 Dataset 4

5 08 0.56 0.85 0.81 1 00 0.11 1.00 0.88

α = 1.00

Dataset 1 Dataset 2

2 06 0.22 0.89 0.8 1 10 0.11 0.82 0.72

Dataset 3 Dataset 4

2 07 0.22 0.87 0.78 1 00 0.11 1.00 0.88

Table 3. Experimental results for the 10-gene GRN extracted from GNW.

Technique TP FP Sn Sp PPV ACC F -score Graph edges

eDSF [8] 5 11 0.42 0.88 0.31 0.82 0.36 16

PSO 5 11 0.42 0.88 0.31 0.82 0.36 16

BAPSO 6 12 0.50 0.86 0.33 0.82 0.40 18

Proposed 3 09 0.25 0.90 0.25 0.82 0.25 12

of such filtering: in the first three datasets, the false positives reduce but for the
final dataset, the false positives vanish altogether. The variation of the results
with increasing threshold α has been shown in Table 2.
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Table 4. Variation of results with α for the 10-gene GRN extracted from GNW.

α TP FP Sn Sp PPV ACC F -score Graph edges

0.6 3 13 0.25 0.85 0.19 0.78 0.21 16

0.7 3 09 0.20 0.89 0.25 0.79 0.22 12

0.8 3 09 0.20 0.89 0.25 0.79 0.22 12

0.9 3 07 0.20 0.92 0.30 0.81 0.24 10

1.0 3 06 0.20 0.93 0.33 0.82 0.25 09

Table 5. Experimental results for the 20-gene GRN extracted from GNW.

Technique TP FP Sn Sp PPV ACC F -score Graph edges

BAPSO 3 26 0.13 0.93 0.10 0.88 0.11 29

PSO 2 32 0.08 0.91 0.06 0.87 0.07 34

Proposed 2 16 0.08 0.96 0.11 0.91 0.10 18

The results for the 10-gene network have been shown in Table 3. The MSE
is ∼ 3 ∗ 10−3. The results have been compared with [8], and it indicates that the
proposed algorithm is able to reduce the number of false positives in comparison
to [8]. The variation in the false positive reduction with the threshold has been
shown in Table 4.

The results of the 20-gene network have been shown in Table 5, and in Table 6,
we have shown the variation in the results with increasing threshold α. The MSE
is ∼ 10−3. The results indicate that there is a marked reduction in the number of
false predictions when the GRNs inferred using PSO and BAPSO are combined.
The results are very encouraging when we consider that there is no biological
information used in the inference process. In the contemporary literature, infer-
ence results for medium-scale and large-scale networks are not at all satisfactory,
and researchers have resorted to including significant biological information in
their formalisms [15]. The results obtained in this work, however, show that the
accuracy of the inferred networks can be increased, by reducing false predictions,
even for medium-scale networks without any biological information included.

Table 6. Variation of results with α for the 20-gene GRN extracted from GNW.

α TP FP Sn Sp PPV ACC F -score Graph edges

0.6 3 27 0.13 0.93 0.10 0.88 0.11 30

0.7 3 21 0.13 0.94 0.13 0.90 0.13 24

0.8 2 16 0.08 0.96 0.11 0.91 0.10 18

0.9 2 16 0.08 0.96 0.11 0.91 0.01 18

1.0 1 11 0.04 0.97 0.08 0.92 0.06 12
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4 Conclusion

In this work, we have explored the construction of GRNs from temporal expres-
sion datasets where a decoupled methodology based on the ideas of combining
swarm intelligence algorithms with RNN has been implemented. Results show
that the proposed methodology is capable of achieving a remarkable reduction in
the number of false positives without sacrificing true positives. In the present con-
text, the identification and reduction of the number of false predictions require
conscious efforts that may have been slightly neglected in the endeavour of
predicting more and more true positives. Also, the proposed methodology, in
essence, is based upon the concept of ensemble learning [16]. Although, it is
quite an established concept, ensemble learning algorithms, like boosting, Bayes
optimal classifier, etc. have not been implemented in the do-main of reverse engi-
neering of GRNs yet and their application in this domain is also not yet clearly
understood. This provides further scope of future research in the domain of this
work.
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Abstract. Cell differentiation is a complex dynamic process and
although the main cellular states are well studied, the intermediate stages
are often still unknown. Single cell data (such as obtained by flow cytom-
etry) is typically analysed by clustering the cells into distinct cell types,
which does not model these gradual changes. Alternative approaches that
explicitly model such gradual changes using seriation methods seems
promising, but are only able to model a single differentiation pathway.
In this paper, we introduce a new, graph-based approach that is able to
model multiple branching differentiation pathways as continuous trajec-
tories. Results on synthetic and real data show that this is a promising
approach which is moreover robust to parameter changes.

1 Scientific Background

Flow cytometry offers a high-throughput platform for single cell analysis. Typ-
ically, 10 to 20 different cell surface proteins (markers) are stained with flu-
orochromes, enabling their detection using laser-based systems on millions of
individual cells during an experiment. Traditional analysis of flow cytometry
data is done by examining two-dimensional scatter plots in order to identify
distinct cell populations.

However, the amount of possible scatter plots increases exponentially with
the number of proteins measured, which makes it infeasible to examine them all.
To alleviate this problem, alternative visualisation techniques such as SPADE
[1], Visne [2] and FlowSOM [3] have been proposed. These map the multidimen-
sional data to two-dimensional plots, incorporating the similarities of all marker
dimensions. Figure 1 shows the result of a FlowSOM analysis on flow cytometry
data concerning hematopoietic stem cells differentiating into common myeloid
and lymphoid progenitors. While the different cell types are represented in dif-
ferent branches and the corresponding median fluorescence intensities for all
markers are indicated, we do not infer any information about their developmen-
tal trajectory.

c© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 84–97, 2016.
DOI: 10.1007/978-3-319-44332-4 7
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LT−HSC
ST−HSC
CMP
CLP

CD34CD16/32
CD117
CD127 Sca1

Fig. 1. FlowSOM representation of selected bone marrow cells of a wildtype mouse.
Each circle represents a group of similar cells. On the left, the manual gating annota-
tions are visualized in pie charts. The different branches in the tree correspond roughly
to the different cell types. On the right, the median fluorescence intensities are indi-
cated. Slight variations in marker intensities for a single cell type are discernable, but
one cannot infer the known developmental process: the long-term hematopoietic stem
cells (LT-HSC) differentiate into short-term hematopoietic stem cells (ST-HSC) and
these can in turn differentiate into either common myeloid progenitor cells (CMP) or
common lymphoid progenitor cells (CLP). (Color figure online)

A schematic example of cell differentiation is given in Fig. 2(a) where cells
start in an immature state (state 1) and evolve through an intermediate state
(state 2) to finally result in two distinct mature cell types (either state 3 or 4).
While transitioning from one state to another, certain aspects of the cells change,
for example increasing values of two markers when the immature cells differenti-
ate to the intermediate state (Fig. 2(b)). As cells evolve in a continuous manner
with many cells being in different states, a single snapshot of the developmental
system can be presented in Fig. 2(c), showing only two markers for simplicity. As
there is still a lot of uncertainty about the developmental trajectories that cells
follow, it would be interesting to infer such trajectories automatically from the
data without using any external information about the intermediate stages. This
results not only in information about the differentiation state of the cells, but
can also present a concise overview of marker behaviour during the differentia-
tion, thereby providing novel hypotheses about cell differentiation and possibly
revealing new intermediate cell stages.

Inferring a temporal ordering is not limited to deduce the developmental
chronology of cells, and occurs in many other situations, such as reconstruc-
tion of temporal ordering of biological samples using microarray data [4]. Other
related fields are seriation and ordination, which also try to find an ordering
without explicitly using the order-defining property (such as time). Seriation
was developed to chronologically order archaeological artefacts from numerous
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Fig. 2. This figure illustrates the concept of trajectory modelling where (a) shows a
schematic overview of the developmental differentiation, (b) the marker changes during
development, and (c) a snapshot of the cells following trajectories which are indicated
with the coloured lines. (Color figure online)

sites belonging to the same culture [5] and ordination orders objects so that
similar objects are near each other and dissimilar objects are farther from each
other, often applied on the field of community ecology [6].

The inference of differentiation pathways is a relatively new research. On
the one hand, there are methods working on expression data such as Monocle [7]
that is an unsupervised algorithm that can infer temporal ordering in single cells
based on their expression profiles. At the other hand, there are methods working
on flow cytometry data such as Wanderlust [8] that will be explained in the
following section. This is the first paper that proposes a method for identifying
multiple differentiation pathways in flow cytometry data.

2 Materials and Methods

In this work, we present a new computational method to identify multiple tra-
jectories given a flow cytometry dataset. As input, we use the measured data
plus a single cell selected to represent the most immature cell state and a cell
selected for each mature cell state. Our algorithm forms a wrapper around the
Wanderlust algorithm [8], which is capable of detecting a single trajectory where
all cells must differentiate to the same mature cell type. Our method can be eas-
ily adapted to use any other approach that is capable of automatically detecting
a single trajectory.

In Sect. 2.1, we explain shortly how Wanderlust constructs a single trajectory.
In Sect. 2.2, we formulate our solution to find multiple trajectories in unordered
data.

2.1 Inference of a Single Trajectory

We define a trajectory as an ordering of cells such that the cells are sorted accord-
ing to their developmental order: immature cells should thus be sorted before
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mature cells. It is important to note that the developmental distance often does
not correspond with Euclidean distance: cells that are developmentally close will
typically be close in Euclidean distance as well, but the opposite is not necessar-
ily true. An example is given in Fig. 2(c) by elements X and Y . Although they
are close in Euclidean distance, X is still differentiating towards the intermedi-
ate state, while Y is much closer to the mature state. The Wanderlust algorithm
solves this by representing the data as a k-nearest neighbour (knn) graph such
that only developmentally close cells are connected. Due to noise, it is still possi-
ble that cells get connected even though they are developmentally far apart. To
handle these short circuits, an ensemble is created consisting of m graphs where
in each graph each node contains only l(< k) edges that are randomly chosen
from the k edges present in the knn graph, resulting in m l-knn graphs.

Wanderlust creates a trajectory by ordering all cells according to their simi-
larity to the cell selected as the most immature (the start cell). This similarity
is defined as the distance in the l-knn graph and is calculated for each graph
in the ensemble, resulting in l trajectories. The final trajectory is obtained by
averaging each cell’s distance across all m l-knn graphs.

The running time of this algorithm is dominated by the creation of the knn
graph which takes O(N2) if the amount of cells is N . Thus if the amount of cells
increases linearly, then the running time increases quadratically.

The most restrictive assumption of this algorithm is that all cells must fol-
low one and the same trajectory. This is a necessary assumption as the cells
are ordered with respect to their distance to the starting cell of the trajectory.
In the following section, we will propose an algorithm that can infer multiple
trajectories.

2.2 Inference of Multiple Trajectories

An overview of our algorithm to infer multiple trajectories is given in Fig. 3.
As input, we do not only use a start cell representing the most immature cell,
but also one end cell for each mature state. Using this information, we infer a
trajectory for each end cell. First, we assign each cell in the dataset to one or more
trajectories. Once this is done, we apply the original Wanderlust algorithm on all
cells assigned to one trajectory and aggregate the results in one final trajectory
per mature state.

Assigning cells to a trajectory is done by clustering the data with k-means
clustering using a large amount of clusters (overclustering). In these clusters, we
find the ones to which the given end cells belong. This allows us to represent
each mature state with not only one end cell, but with all the cells in the cluster:
the representatives. In the next step, we determine for each representative the
edges of the shortest path to the starting cell, resulting in a collection of edges
for each mature state. Then for every cell, we determine the edges of the shortest
path to the start cell and compare it to the edge collections of the mature states,
resulting in the detection of the most similar collection. This comparison is done
by determining the amount of overlap. Knowing the most similar collection,
we assign the cell to the trajectory going from the starting cell to the selected
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Fig. 3. This figure illustrates the proposed algorithm with a flow chart. The steps
concerning the assignments of points and finding the best trajectories are elaborated
in more detail with a figure.

end cell. When the overlap is the same for different edge collections, the cell is
assigned to multiple trajectories.

Due to the ensemble of graphs, we have m possible trajectories for each
mature state. To choose the best trajectory without using extra information, we
add a regularisation procedure which assumes that changes between the states in
the trajectory should be gradual. Due to this property, the curves representing
the parameter values of the cells along the trajectory (Fig. 2(b)) must be smooth.
More specific, if these curves contain large jumps (see Fig. 3), there is a high
probability that cells are missing or that the ordering is wrong. Concretely, we
calculate the smoothed curves using a median filter and calculate a score as
the difference between these curves and their smoothed version. The difference
between a curve c and his smoothed version ĉ is defined as

∑

i

| ci − ĉi |

The trajectory with the smallest score is chosen as it differs the least from
its smoothed version and thus the assumption that changes occur gradual is
satisfied. This results in one trajectory per mature state. Note that indeed no
extra information is used.

The running time of this algorithm is also dominated by the creation of the
knn graph which takes O(N2) if the amount of cells is N . Thus if the amount of
cells increases linearly, then the running time increases quadratically.

The parameters for our algorithm are the amount of neighbours k for creating
the knn graph, the amount of randomly selected edges l out of the k edges to
reduce the effect of short circuits, and the amount of times m this sampling must
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happen, resulting in m l-knn graphs. For assigning points to a trajectory, the
amount of clusters cl must be given.

3 Results

We used synthetic data to evaluate our algorithm and perform a sensitivity
analysis for the different parameters. Additionaly, we evaluted our algorithm on
real flow cytometry data.

3.1 Synthetic Data

The synthetic data was created using Bézier curves representing an artificial
branching structure in a three-dimensional space. We have chosen six points
A,B,C,D,E and F ∈ R

3. The structure starts at point A going to B where it
branches to C and endpoint D. From C, it branches then further to the endpoints
E and F (Fig. 4(a)). All these connections are created using a quadratic Bézier
curve:

B(t) = (1 − t) [(1 − t)P0 + tP1] + t [(t − 1)P1 + tP2] , t ∈ [0, 1] (1)

where P0 and P2 are two of the six chosen points that need to be connected
in the branched structure (e.g. point B and C) and P1 is a random point. We
thus created a branched trajectory with three endpoints, as shown in Fig. 4(b).
Note that for each endpoint we have a trajectory that starts in A, e.g. the tra-
jectory for endpoint E traverses A, B, C and E. Another way to visualise this
branched trajectory is shown in Fig. 4(c). Here, one plot is used for each tra-
jectory and it visualises the parameter values (y-axis) of the points along the
trajectory (x-axis), one curve for each feature. As we work in a three dimensional
space (amount of parameters = 3), this results in three curves on one plot. The
smoothness of these curves is used to define a good trajectory.

From each curve, we uniformly sample 100 points. Noise is added by per-
turbing each point,

P = P + int ∗ n, int ∈ [0, 1] (2)

where n is a noise vector (∈ R
3) containing numbers randomly sampled from

a Gaussian distribution with μ = 0 and σ = 1. The number int represents the
intensity of the noise. It is not realistic to assume that during each stage in
a trajectory the same amount of cells is available. Rather, we will have states
that are very well represented and states that are rare because the cells evolve
through them quickly. We model this with a random density functions fdens. For
each point, we generate x noisy variants, with x depending on fdens.

x(P) = fdens(P) (3)

For each curve in the branched structure, we define one fdens by randomly
choosing four points in the range ]0, 20] and by interpolating these with cubic
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splines. We make sure that at the connection points (B and C) the densities
are the same for all relevant trajectories. An example of the density functions
for each trajectory is given in Fig. 4(d) resulting in 3984 points representing the
branched trajectory.

(a) (b)

(c) (d)

Fig. 4. This figure shows (a) a schematic branched trajectory with three endpoints, (b)
the different functions B(t) following the branched structure in (a), (c) an alternative
visualisation which shows a curve following the feature values (y-axis) of the points
along the trajectory (x-axis) for each feature for each trajectory, and (d) the densities
for each trajectory used for sample representation.

Evaluation. The main advantage of using synthetic data is that we know the
exact underlying trajectories without noise. As such, a ground truth is avail-
able indicating which points belong to which trajectories and how they must be
ordered. This underlying ground truth allows us to define two measures. First,
we check if the points are assigned to the correct trajectories. From this compar-
ison we extract the True Positive Rate (TPR or the sensitivity) and the False
Positive Rate (FPR) for each trajectory, defined as:

TPR =
TP

TP + FN
,FPR =

FP

FP + FN
(4)

where TP are the true positives, or points that are present in the calculated and
ground truth assignments, FP the false positives or the points that are present
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in the calculated assignment but not in the ground truth assignment, FN the
false negatives or the points that are not present in the calculated assignment
but should be. The TPR must be as close to one as possible, and the FPR as
close to zero.

A second criterion checks for each trajectory how well the TP are ordered
according to the ground truth ordering, so we check if the points that are assigned
correctly are ordered correctly. To this end, we calculate the Spearman rank
correlation coefficient.

Parameter Sensitivity. As the described algorithm has a number of para-
meters, the robustness of the algorithms’ output needs to be investigated by
comparing it for different parameter settings. In the following, we change the
amount of clusters cl, the amount of edges k and l, and the starting and ending
points. We do not change the amount of graphs m as we assume that if this
is sufficiently large, the best trajectory will be detected no matter how many
graphs are created (m = 50 is sufficient). We perturbed the data with 15%
noise. Increasing the noise to 20% does not pose a problem, but for higher val-
ues the results deteriorate.

Sensitivity to the Amount of Clusters. While changing the amount of clusters,
the amount of representatives for the endpoints changes. The smaller the amount
of clusters, the higher the amount of points assigned to each cluster, thus the
higher the amount of points representing an endpoint. If there are a lot of repre-
sentatives, it is likely that a point belonging to another trajectory is incorrectly
assigned to the cluster resulting in wrong assignments of points to the trajectory
going to this endpoint. As the change in the amount of clusters only affects the
assignment of objects to trajectories it suffices to calculate the TPR and FPR.

In our test case, we set k = 20 and l = 15, and let the number of clusters
vary between {4, 10, 20, 30, 40, 3950 (amount of points in V )}. The last case is
equivalent to the case when there are no clusters. The TPR and FPR for each
trajectory in function of the amount of clusters are shown in Fig. 5(a). These
indicate that when using too few clusters, this leads to the scenario described
above which is visible by the fact that when using 4 clusters all elements belong-
ing to trajectory 3, are added to trajectory 3 (TPR = 1), but at the same
time we notice that the FPR is high, meaning that points belonging to tra-
jectory 1 and 2 are also added to trajectory 3. If we plot the trajectories in
the 3-dimensional space (Fig. 5(b)), we indeed see that a lot of points are erro-
neously assigned to trajectory 3, and consequently a lot of points are missing in
trajectory 1 and 2, resulting in a corresponding low TPR. When using enough
clusters (cl ≥ 10), we see that the result varies with the best being achieved
when cl = 20. We can also see the big advantage of using clusters when com-
paring with the case without clusters (cl = 3950), namely for trajectory 1 and 2
the TPR stays approximately the same but the FPR decreases when no clusters
are used. For trajectory 3 it remains approximately the same. When plotting
the trajectories in the 3-dimensional space for both cases (Fig. 5(c) and (d)), we
see this difference: trajectory 1 and 2 improve when clusters are used, as less
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points from respectively branch CF and CE are wrongly assigned to them, and
for trajectory 3 points are wrongly assigned whether or not clusters are used,
explaining the permanent high FPR. However, when clusters are used, these
wrongly assigned points are more spread across other branches. In general, the
FPR for trajectory 3 is high for every possible amount of clusters indicating this
is a difficult branch to detect. For the following test cases we use cl = 20. The
usage of clusters doesn’t seem to be advantageous, but their use will be justified
when using real data.

(a) (b)

(c) (d)

Fig. 5. This figure shows (a) the TPR and FPR concerning the assignments of points to
the three different trajectories when k = 20, and l = 15, (b) the three trajectories in the
3-dimensional space when k = 20, l = 15, and cl = 4, (c) k = 20, l = 15, and cl = 20,
and (d) k = 20, l = 15, and cl = 3950.

Sensitivity to k and l. When changing k and l, this has consequences on both
the assignment of points to a trajectory and the execution of Wanderlust. In [8],
it is stated that Wanderlust is robust against changes in the parameters k and l.
We recheck this by using our second evaluation metric, and the robustness of
our own assignment algorithm is checked using the first evaluation metric.

In our test case, we set cl = 20 and let k vary between {10, 20, 50, 100} and
l between {5, 10, 15, 20} where we guarantee that l < k. The Spearman rank
correlation coefficient, the TPR and FPR in function of k and l are shown in
Fig. 6. When comparing for each trajectory, we see that a low TPR corresponds
to a low Spearman rank correlation coefficient. This is logical as determining the
real ordering using only a few points (low TPR) is hard, resulting in a low corre-
lation coefficient. Otherwise, the Spearman rank correlation coefficient remains
high indicating the robustness of the Wanderlust algorithm against changes in
k and l.
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(a) (b) (c)

Fig. 6. This figure shows (a) the Spearman rank correlation coefficient, (b) the TPR
and (c) the FPR when cl = 20.

(a) (b) (c)

Fig. 7. This figure shows (a) the Spearman rank correlation coefficient and (b) the
TPR and (c) FPR when cl = 20 and the start point and ending points are altered.

Sensitivity to Start and Endpoints. In the previous investigations, we
assumed the real starting and endpoints to be given a priori. When working
with synthetic data, this can be given without problem. But when working with
real data, it is difficult to know exactly which points are the start and endpoints,
i.e. know which points have no predecessor or successor in the trajectory. It is
thus likely that a point with predecessors is given as starting point and points
with successors as endpoints. To check if the algorithm can handle this scenario,
we changed the real starting and end points. This is done by taking as start
point, the point that is normally ordered as 30th, and as endpoints we pick the
points that are normally ranked 30 places before the end.

The results are given in Fig. 7. If we compare these with the results obtained
with the real endpoints (Fig. 6), we see that the Spearman rank correlation
coefficient is as good, and that the TPR values range between the same intervals,
but higher FPR values are more frequent. E.g. for the case when k = 20, l = 15
there is clearly an increase in the FPR in Fig. 7(b) when comparing to Fig. 6,
and at the same time we also note that the corresponding TPR increases. This
translates into the fact that more points are assigned to the trajectory, both
good and wrong ones.

3.2 Real Data

Context. We evaluated our algorithm on the dataset visualized in Fig. 1, con-
taining 4647 bone marrow cells. These are manually analysed and are known to
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differentiate from long-term hematopoietic stem cells (LT-HSC) into short-term
hematopoietic stem cells (ST-HSC), which can in turn differentiate into either
common myeloid progenitor cells (CMP) or common lymphoid progenitor cells
(CLP). The cells can thus follow two trajectories, both of which are expected
to include the hematopoietic stem cells. Our data set includes measurements for
five surface markers: CD34, CD16/CD32, CD117, CD127, and Sca-1. Typically
only a few of these marker values are used to define each of the distinct cell
types, indicated in Fig. 8(a). By forming a trajectory from the unordered data,
it can be checked if the known feature value changes correspond, and which other
changes happen.

Evaluation. As the data is gated manually, we have cell annotations at our
disposal. A simple way to visualise the quality of the resulting trajectories is to
plot a density function which indicates the presence of a specific cell type in a
specific place in the trajectory (using a sliding window approach). This leads to
two plots, one for each trajecory, where the plots contain four curves representing
the density of the four different cell types. This does not only show us if the cells
are assigned to the correct trajectories, but also if the order in which cell types
are assigned is as expected. Another way to visualise the resulting trajectories is
to plot curves representing the marker values of the cells along the trajectory as
done in Fig. 2(b). This again results in two plots, one for each trajectory, where
each plot contains five curves, one for each marker value. A way to evaluate this
result, is to compare these curves with the known marker presence shown in
Fig. 8(a). For example, we can check if CD34 is low at first and then gradually
increasing when the cells differentiate from LT-HSC to ST-HSC.

Results. As input, the algorithm takes one starting cell (a LT-HSC cell) and
two end cells (a CLP and a CMP cell). These are chosen from the manual
analysis, relying on the assumed values for a subset of markers. The start cell
is the cell with the lowest value for CD34 and the highest value for CD117,
the end cell representing CMP is the cell with highest CD34 and the end cell
representing CLP is the cell with the highest CD117. As parameters we used
k = 100, l = 15 and cl = 10. Changing the parameters did not have a big
influence on the general trend of the results. The result of the algorithm is given
in Fig. 8(b). On top, we see the density of the different cell types along the
calculated trajectories. From this, we can conclude that the algorithm takes the
correct cells for each trajectory. The trajectory ending in the CMP state contains
LT-HSCs, ST-HSCs and CMPs but no CLPs, and these cell types are traversed
in the expected order. The trajectory ending in the CLP state does contain a
few CMPs, but is also mainly as expected from the assumed differentiation path
in Fig. 8(a). When looking at the bottom of Fig. 8(b), we can also inspect the
marker changes through differentiation. As expected, we see an increase in the
CD34 intensity corresponding to the transition from LT-HSC to ST-HSC.

These results might help to gain new information as well. For example, there
seems to be a subset in the CMPs which gains CD127, which is not used at all
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Fig. 8. This figure shows (a) the theoretical branched trajectory, (b) the density of
the different cell states and the feature values of the cells along the calculated branch
going to CMP (on the left), and to CLP (on the right) when using k = 100, l =
15, and no clusters, and (c) the results when using 10 clusters. Only with clustering,
the separation between the CMPs and CLPs is detected correctly.

in our manual gating. Often it is also very hard to know at which point a gate
should be drawn if there is a gradual marker change. By looking at changes in
other markers as well, a more informed decision might be taken.

The real data also emphasises the need for the usage of clusters for repre-
senting the endpoints. This is indicated in Fig. 8(c) where the density of the
different cell states and the parameter values of the objects along the calculated
trajectory is shown when no clusters are used. Comparing this with the previous
result in Fig. 8(b), we see several mistakes are made, especially for trajectory 1
where many CMP cells are assigned in the CLP differentiation, resulting in a
high FPR (Fig. 8(c) top left).

Note that for example in the top left of Fig. 8(b) the length of the interval
where the CLP density is high, is very small in comparison to the length of the
interval where the ST-HSC density is high. This has the simple reason that there
are just far more ST-HSC-cells present in the data than CLP-cells (2192 versus
122). This phenomenon is also present in the bottom left of Fig. 8(b) where the
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feature values for CLP-cells are only shown in a short interval. A nice extension
would thus be to automatically detect the different cell states and rescale the
axis.

4 Conclusion

In this paper, we proposed a graph-based approach to infer multiple trajectories
from unlabelled data. This is done by extending the Wanderlust algorithm [8]
that was only able to model a single trajectory. Our algorithm extends Wander-
lust by first assigning each cell to one or multiple trajectories. On each separate
trajectory, Wanderlust is then executed. Results indicate that the assignment of
the cells to the different trajectories and the ordering of the cells works well.

Future work includes finding the branch points and using this information to
avoid wrong assignments. Knowing the branch points would also be beneficial
for a better representation of the trajectories with a non-uniform density as this
would allow rescaling of the trajectory. It is also important to take into account
the fact that not all cells in the data might belong to the trajectories. While
assigning the cells, such noisy data should be removed. This is a challenging
extension that must be made as it will allow us to make use of data sources
where not everything is known.
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Abstract. Maintaining accessibility of biomedical literature databases
has led to development of text classification systems to assist human
indexers by recommending thematic categories to biomedical articles.
These systems rely on using machine learning methods to learn the asso-
ciation between the document terms and predefined categories. The accu-
racy of a text classification method depends on the metric used in order
to assign a weight to each term. Weighting metrics can be classified as
supervised or unsupervised according to whether they use prior infor-
mation on the number of documents belonging to each category. In this
paper, we propose two supervised weighting metrics (One-way Klosgen
and Loevinger) which both improve the quality of biomedical document
classification. We also show that by using moment generating function
centroids, an alternative to the traditional arithmetical average centroids,
a nearest centroid classifier with Loevinger metric performs significantly
better than SVM on a biomedical text classification task.

1 Scientific Background

Medical Subject Headings (MeSH), a controlled set of keywords, are used to
index all the article abstracts contained in the MEDLINE/PubMed database [1]
to facilitate search and retrieval. The increasing size of the MEDLINE/PubMed
needs efficient text classification tools to assist indexers in labeling document
texts with the predefined thematic categories of MeSH [2–4].

In the two last decades a huge number of machine learning techniques were
proposed to automatically classify text documents [5,6]. In text classifier sys-
tems, documents are preprocessed in order to be suitable as training data for a
learning algorithm. Traditionally, each text document is converted into a vector
where each dimension represents a term which value is the weight that will be
used in the learning process. As the weight reflects the importance of the term
in the document, an appropriate choice of the metric function used for weighting
terms is crucial for correct classification.
c© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 98–113, 2016.
DOI: 10.1007/978-3-319-44332-4 8
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Table 1. Abbreviations used in the present paper

Abbreviation Definition

AAC Arithmetical Average Centroid

BIN Binary Term Weight

BNS Bi-Normal Separation

CFC Class Feature Centroid

GR Gain Ratio

ICF Inverse Class Frequency

IDF Inverse Document Frequency

IG Information Gain

IR Information Retrieval

ITF Inverse Term Frequency

JS Jensen-Shannon divergence

KL Kullback-Leibler divergence

LTF Logarithm of the Term Frequency

MGFC Moment Generating Function Centroid

OR Odds Ratio

RF Relevance Frequency

RTF Raw Term Frequency

SVM Support Vector Machine

TF Term Frequency

TFW Term Frequency Weight

Among text classification methods, the nearest centroid approach is one of
the most popular supervised learning techniques due to its computational effi-
ciency [7]. Nearest centroid method computes for each category a centroid pro-
totype vector and classifies a document in the closest categories according to the
similarity between their prototype vector and the document vector. When we
consider the problem of term weighting in the context of nearest centroid clas-
sification, we have to determine how each term is weighted in each document
vector representation (document term weighting), and how each term is weighted
in the centroid prototype vector of each category (centroid term weighting). The
performance of centroid-based classifiers is very sensitive to the metric adopted
for weighting terms in both document and centroid prototype vectors. Our aim
is to find a metric that is efficient for biomedical articles classification using the
nearest centroid approach.

1.1 Document Term Weighting

Common term weighting metrics for text classification were unsupervised and
generally borrowed from Information Retrieval (IR) field. The simplest IR metric
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is the binary representation BIN which assigns a weight of 1 if the term appears
in the document and 0 otherwise. The term can be assigned a weight TF (Term
Frequency) that reflect its frequency in the document. TFIDF is the most com-
monly used weighting metric in text classification. TFIDF is the product of TF
and IDF, the Inverse Document Frequency which favors rare terms in the corpus
over frequent ones1. However, there are some drawbacks on using unsupervised
weighting functions, as the category information is omitted.

Previous studies proposed different supervised weighting metrics where the
document frequency factor IDF of TFIDF is replaced by a factor that use prior
information on the number of documents belonging to each category. Several
classical metrics were tested in the literature, for instance, Chi-square (χ2), Infor-
mation Gain (IG), Gain Ratio (GR) and Odds Ratio (OR) [8]. These early stud-
ies get an improvement with TF.χ2, TF.IG, TF.GR and TF.OR term weights
trained with a Support Vector Machine (SVM). Accurate SVM text classifica-
tion was obtained using Bi-Normal Separation (BNS) metric for supervised term
weighting [9]. More recently, other specific metrics were proposed for the super-
vised term weighting problem. Lan et al. [10] utilizes a term weight TF.RF based
of the Relevance Frequency (RF) metric. Altinçay and Erenel [11] combined RF
metric with mutual information and the difference of term occurrence proba-
bilities in the collection of the documents belonging to the category and in its
complementary set.

1.2 Centroid Term Weighting

Given a set of documents belonging to the same category and their corresponding
vector representations, the centroid prototype vector is traditionally defined as
nothing more than the vector obtained by averaging the weights of the various
terms present in the documents [12]. This vector is known as the arithmetical
average centroid.

Guan et al. [7] proposed a Class Feature Centroid (CFC) term weighting
that is not reducible to averaging or adding document term weights. The CFC
weight of a given term belonging to a given category, depends on both inner-class
term weight and inter-classes term weight. The inner-class weight measures the
importance of a term within a category while the inter-classes weight measures
is used to evaluate if a term is discriminative relatively to other categories.
In this later work the document vectors are computed by unsupervised term
weighting using the metric TFIDF. Recently, Ren et al. [13] compute arithmetical
average cendroids based on the Inverse Class Frequency (ICF) metric. They also
experimented ICSδF a variant of ICF metric. ICF is exactly the inter-class part
of the class feature centroid defined by Guan et al. [7] but Ren et al. used this
metric as a term weight for document vectors. Nguyen et al. [14] proposed a
centroid term weighting based on a moment generating function centroid which
corresponds to the inner-class used by Guan et al. [7] in CFC. But instead of

1 Table 1 contains the abbreviations used in this paper.
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using the inter-class frequency, they use Kullback-Leibler divergence (KL) [15,16]
or Jensen-Shannon (JS) divergence measures [17].

1.3 Our Contribution

In this paper we propose two metrics, One-way Klosgen and Loevinger, as
an alternative to the weight metrics described in the literature (see Table 2,
Sect. 2.3). We use these metrics on a new term representation [18] where tradi-
tional bag-of-words document representation is extended by integrating term fre-
quencies and term positions in the representation. We experimentaly study these
metrics with two learning algorithms (SVM and nearest centroid) for biomedical
text classification and show that both the metrics and the term representation
can improve significantly the classification of Ohsumed biomedical documents
[19]. In a first version of the present work [20] we used the traditional Arith-
metical Average Centroids (AAC) and observed that SVM classification with
One-way Klosgen weighting metric performs better than AAC with Loevinger
metric. In this paper we improve the work by considering Moment Generating
Function Centroids (MGFC) [14]. It appears from the experiments that using
MGFC instead of AAC improves the performances of nearest centroid classifiers
with Loevinger metric to the point that it makes centroid method performing
significantly better than SVM on biomedical text classification task.

The rest of the paper is organized as follows. Section 2 describes the extended
term representation we use, the supervised metrics we propose for term weighting
and the corpus used as benchmark. Section 3 explains the way of computing the
centroid prototype vectors. The experimental comparison on Ohsumed biomed-
ical documents of our metrics with those proposed in the literature is presented
in Sect. 4.

2 Materials and Methods

In the following we show how a text document can be seen as a vector where
each dimension is a feature that represent either a term, a term frequency or
a term position. Given this representation we describe 14 metrics for weighting
these features, among them two (One-way Klosgen and Loevinger) are proposed
by the authors of this paper.

2.1 Extended Term Representation

In this classical representation, terms are viewed as the dimensions of the learning
space. A term may be a single word or a phrase (n-gram). In this work, we
represent each dimension by a term together with its minimal frequency in the
document. Let us consider for example, a particular term t such that 25 % of the
documents where t appears are in category c. If 45 % of the documents where
t appears at least 3 times are in category c, then the term t is probably more
correlated with the category c when its frequency exceeds 2. Hence, we propose
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features of the form (t, n) in documents containing t with a term frequency at
least n. If a document d contains ten times a term t, we must generate ten
features (t, i) (i = 1, 2, . . . , 10), meaning that t occurs at least once, twice,. . . ,
ten times. This could unnecessarily grow the number of features so we consider
only n powers of 2. Then, if t occurs ten times, we will generate the features
(t, 1), (t, 2), (t, 4) and (t, 8). The number of frequency features associated to a
term t which appears n times in a document d will only be log2 p in the worst
case.

Most of the terms that are related to the main topics of a document occur
at its beginning. In order to validate this assumption we propose features of the
form (t, p), meaning that the first position of t in the document is lower or equal
to p. The position being defined as the number of words preceding the term
occurrence. As for term frequency features, we generate only features (t, p) with
p powers of 2. For example, if a term t first appears at position 5 in a document
of size 100 words, we generate the features (t, 8), (t, 16), (t, 32) et (t, 64), meaning
that the first position of t is lower or equal than 8, 16, 32 and 64. The number of
position features associated to a term t which appears in a document d at first
position p will be log2 |d| in the worst case, where |d| is the size of d in number
of words.

Table 2. Metrics used for supervised feature weighting. See Sect. 2.2 for the notations.

Metric Mathematical form

Inverse Document Frequency (IDF) log( N
f(x∗) )

Pearson’s χ2 test
∑

i,j

(fij− ˆfij)

ˆfij

Information gain
∑

u∈{x,x̄}
∑

v∈{y,ȳ} p(uv) log p(uv)
p(u∗)p(∗v)

Odds ratio ad
bc

Log odds ratio log ad
bc

Bi-normal separation |F −1(p(x|y)) − F −1(p(x|ȳ))| (*)

Pointwise mutual information log p(xy)
p(x∗)p(∗y)

Relevance frequency log2(2 + a
max(b,1)

)

Relevance frequencyOR log2(2 + a
max(b,1)

)(1 − (p(x|y) − p(x|ȳ)))

Relevance frequencyχ2 log2(2 + a
max(b,1)

)|p(x|ȳ) − p(x|y)|
Jensen-Shannon divergence −(p(∗ȳ)p(x|y) + p(∗y)p(x|ȳ)) log(p(∗ȳ)p(x|y) +

p(∗y)p(x|ȳ))

+p(∗ȳ)p(x|y) log(p(x|y)) +
p(∗y)p(x|ȳ) log(p(x|ȳ))

Inverse Class frequency (ICF) log( M
fc(x)

)

One-way Klosgen
√

p(xy)(p(y|x) − p(∗y))

Loevinger 1 − p(x∗)p(∗ȳ)
p(xȳ)

(*) F −1 is the inverse Normal cumulative distribution function.
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2.2 Notations

We consider a corpus D of N documents and d a particular document of D. Let
x denotes a nominal feature of d representing either, (1) t a term that occurs in
d, (2) (t, n) a term that occurs at least n times in d, or (3) (t, p) a term which
first position is lower or equal to p in the document d.

Each document can belong to one or many categories (labels or classes)
c1, c2, . . . , cM . We denote by y a particular category ci. We denote by x̄ the fact
that the feature x is not present in d and by ȳ the fact that d does not belong to
the category y. The number of documents containing the feature x and belonging
to the category y is denoted by f(xy) and represents the document frequency.
In general, f(uv) denotes the number of documents containing u and belonging
to v, u being x, x̄ or ∗ (documents containing any term) and v being y, ȳ or
∗ (documents belonging to any category). These frequencies are represented in
the contingency Table (Table 3) in which the number of documents is denoted
by N , f(xy) by a and f11, f(xȳ) by b and f12, and so on.

Table 3. Two-way contingency table for nominal feature x (term) and category y
(document label). f(uv) denotes the number of documents containing u and belonging
to v. ∗ represents any term or category.

y ȳ ∗
x f(xy) = a f(xȳ) = b f(x∗)

x̄ f(x̄y) = c f(x̄ȳ) = d f(x̄∗)

∗ f(∗y) f(∗ȳ) f(∗∗) = N

Many metrics are based on the estimation of the probability P (uv) the prob-
ability that a document containing u belongs to the category v, u being x, x̄ or
∗ and v being y, ȳ or ∗. Under the maximum-likelihood hypothesis this proba-
bility is estimated by: p(uv) = f(uv)

N . Some metrics are based on the difference
between the observed and the expected frequencies. The expected contingency
frequencies under the null hypothesis of independence H0 are given in Table 4.

Table 4. Expected contingency table for nominal feature x and category y. f̂(uv)
denotes the expected number of documents containing u and belonging to v under the
null hypothesis of independence H0.

y ȳ ∗
x f̂(xy) = f(x∗)f(∗y)

N
f̂(xȳ) = f(x∗)(N−f(∗y))

N
f̂(x∗)

x̄ f̂(x̄y) = (N−f(x∗))f(∗y)
N

f̂(x̄ȳ) = (N−f(x∗))(N−f(∗y))
N

f̂(x̄∗)

∗ f̂(∗y) f̂(∗ȳ) N
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The number of categories containing a document that contains a feature x is
denoted by fc(x) and corresponds to:

fc(x) = |{y|f(x, y) > 0}| (1)

2.3 Weighting Metrics

Giving a weight to a feature x associated to a term in a document labeled
with y depends on the correlation between x and y in the training corpus. This
correlation can be estimated by different metrics, all the metrics used in this
paper depend only on these values:

– N : the number of training documents
– f(x∗): the number of documents containing the feature x (feature marginal

frequency)
– f(∗y): the number of documents containing belonging to the category y (cat-

egory marginal frequency)
– f(xy): the number of documents containing the feature x and belonging to

the category y (joint frequency)
– fc(x): is the number of categories containing (a document that contains) fea-

ture x.
– M : the number of categories

The first 12 metrics of Table 2 are those already been used for the problem of
term weighting in the literature [7–11,13,14,21,22]. Compared to the first version
of the present work [20] we have added the inverse class frequency metric used
in [7,13], and also a metric used in [14] (see Sect. 1.2). In their paper Nguyen
et al. [14] tried two metics Kullback-Leibler divergence (KL) and Jensen-Shannon
(JS). In their experiments (confirmed by ours) JS measure performs better than
KL, so we kept only the first metric.

The last 2 metrics of Table 2, Loevinger and One-way Klosgen, are proposed
by the authors of this paper. These metrics are collected from papers dealing
with association rules and classification rules [23] and have never been used for
supervised term weighting in the literature.

2.4 Benchmark

In order to compare experimentally the metrics, we use the Ohsumed corpus.
Ohsumed is a test collection that includes 13,929 medical abstracts (6,286 for
training and 7,643 for testing) from MEDLINE/PubMed indexed by 23 car-
diovascular diseases MeSH categories. Ohsumed is small when compared to
the entire MEDLINE/PubMed corpus that contains over 21 million references
indexed by 27,149 descriptors in 2014 MeSH. However it was necessary in the
first instance to use a small dataset for all the experiments we have done, namely
120 learn/prediction tasks with 12 metrics, 5 different weighting schemes and two
machine learning methods (see Tables 9 and 10 next section).
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Table 5. True/False positive/negative instance definitions. Categories are denoted by
0 and 1.

Real category

1 0

Predicted category 1 TP (true positive) FP (false positive)

0 TN (true negative) FN (false negative)

We have done a summary preprocessing on these data and did not use feature
selection in order to compare the weighting metrics independently from other
methods of selecting the terms. Each document was stemmed (Porter stemming
[24]) and reduced to a vector of features representing 1-grams or 2-grams terms.
Traditionally the performance of a classifier on a corpus is estimated by learn-
ing the classification on the training data and evaluating the accuracy of the
prediction obtained on the evaluation data. The evaluation metrics used are the
precision which is the proportion of documents placed in the category that are
really in the category, recall which is the proportion of documents in the cate-
gory that are actually placed in the category. precision and recall are computed
by counting the true/false positive/negative instances (see Table 5 and Eq. 2).

precision =
TP

TP+FP
recall =

TP
TP+FN

(2)

The F1-Score is defined as:

F1-Score =
2 . precision . recall
precision + recall

(3)

The microaveraged F1-Score is computed globally for all the categories, while
the macroaveraged F1-Score is the average of the F1-Scores computed for each
category. This later measures the ability of a classifier to perform well when the
distribution of the categories is unbalanced, while the microaveraged F1-Score
gives a global view of the document classification performance.

2.5 SVM Classification

In the following we will use support vector machines for comparison with cen-
troid classification. In a SVM, each instance (text in our case) is viewed as a
p-dimensional vector and the goal is to know whether we can separate such points
with a (p-1)-dimensional hyperplane. There are many hyperplanes that might
separate the data. For a SVM algorithm the best hyperplane is the one that
represents the largest separation (margin) between two binary classes (belongs
to a category or not). For each category, we have used SVM binary classifier
which learns a linear combination of the features in order to define the decision
hyperplane. We adopted the SVMLight tool [25] with a linear kernel and used
the default settings. Previous studies show that SVMLight performs well for text
classification [7].
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3 Nearest Centroid Classification

The nearest centroid approach is a popular supervised learning techniques due
to its computational efficiency [7]. Nearest centroid method computes for each
category a centroid prototype vector and classifies a document in the closest
categories according to the similarity between their prototype vector and the
document vector. When we consider the problem of term weighting in the con-
text of nearest centroid classification, we have to determine how each term is
weighted in each document vector representation (document term weighting),
and how each term is weighted in the centroid prototype vector of each cat-
egory (centroid term weighting). The performance of centroid-based classifiers
is very sensitive to the metric adopted for weighting terms in both document
and centroid prototype vectors. Our aim is to find a metric that is efficient for
biomedical articles classification using the nearest centroid approach.

3.1 Document Term Weighting

In text classification each document d belongs to one or several categories in
{c1, c2, . . . , cM}. For each category y, every document d is transformed to a
vector:

Wd = (wy(x1, d), wy(x2, d), . . . , wy(xn, d)) (4)

where each feature x is weighted by :

wy(x, d) = wTF(x, d) × wDF(x, y) (5)

The term frequency weight wTF(x, d) depends on the frequency of x in the
document d (see Table 6). The document frequency weight wDF(x, y) is one of
the metrics described in Table 2.

Each feature x can be either:

– a term feature t in the classical model,
– or a term frequency feature (t, n) and/or a term position (t, p) feature as

defined in Sect. 2.1.

For the classical term representation, following [10], we have experimented
three possible term frequency weights: RTF, LTF or ITF (see Table 6). For our

Table 6. Experimented term frequency weights as a function of the frequency tf(x, d)
of a feature x in a document d

TFW Value Description

BIN(x,d) 1 if tf(x, d) > 0, 0 otherwise Binary weight

RTF(x,d) tf(x, d) Raw term frequency

LTF(x,d) log(1 + tf(x, d)) Term frequency logarithm

ITF(x,d) 1 − 1
1−tf(x,d)

Inverse term frequency
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term representation, we use only binary term weights (wTF(x, d) = BIN(x, d)),
because the frequency of the term is already considered in the extended term
representation x = (t, n) or x = (t, p).

3.2 Centroid Term Weighting

Nearest centroid method computes for each category y a prototype vector:

Wy = (wy(x1), wy(x2), . . . , wy(xn)) (6)

There are different ways to define the prototype vector Wy for category y. The
Table 7 gives the centroid definitions we use in this work. The centroid prototype
vector is traditionally defined as an Arithmetical Average Centroid (AAC). As
we observed in Sect. 1.2, the Moment Generating Function Centroid (MGFC)
[14] can be seen as a generalization of the Class Feature Centroid (CFC) [7],
where:

– the inner-class part e
f(xy)
f(∗y) is generalized to any term frequency weight

wTF(x, d),
– and the inter-class part (ICF metric) is replaced by any document frequency

weight wDF(x, y).

Table 7. Centroid definitions

Name Term weight

AAC wAAC
y (x) =

∑
d∈y wy(x,d)

f(∗y)

CFC wCFC
y (x) = e

f(xy)
f(∗y) log( M

fc(x)
)

MGFC wMGFC
y (x) = e

∑
d∈y wTF(x,d)

f(∗y) wDF(x, y)

In the case of extended term representation we use binary term weights:
wTF(x, d) = BIN(x, d). This means that the Eq. 5 becomes:

wy(x, d) = BIN(x, d) × wDF(x, y) (7)

In this particular case the centroid definitions presented in Table 7 can be
simplified as shown in Table 8. For example in the case of the arithmetical average
centroid we have:

wAAC
y (x) =

∑
d∈y wy(x, d)

f(∗y)
=

∑
d∈y BIN(x, d) × wDF(x, y)

f(∗y)
(8)

As
∑

d∈y BIN(x, d) correponds to the number of document containing the
feature x and belonging to the category y, it can be writen f(xy) using our
notations, and we have:

wAAC
y (x) =

f(xy)
f(∗y)

wDF(x, y) (9)
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3.3 Centroid Classification

The degree of closeness between the vector representing the document d and
the prototype vector for category y is defined by a similarity measure SIM(d, y).
Generally the cosine similarity measure is used for this purpose:

SIM(d, y) =
Wd.Wy

‖Wd‖ ‖Wy‖ =
∑

x∈d wy(x, d)wy(x)
√∑

x∈d w2
y(x, d)

√∑
x∈F w2

y(x)
(10)

Generally the cosine similarity measure is used for this purpose, however
other measures could be used. In particular, Guan et al. [7] use a denormalized
cosine similarity for comparing a CFC prototype with a document vector. We
also tried other similarity measures, but cosine provide the best results.

Table 8. Centroid definitions in case of binary term weights

Name Term weight

AAC wAAC
y (x) = f(xy)

f(∗y)
wDF(x, y)

CFC wCFC
y (x) = e

f(xy)
f(∗y) log( M

fc(x)
)

MGFC wMGFC
y (x) = e

f(xy)
f(∗y) wDF(x, y)

After the prototype vector for each category is obtained, nearest centroid
method classifies a document d by taking the closest category y according to the
similarity measure SIM(d, y). In the case of multi-label classification a document
can belong to multiple categories, in this case if we know the number of categories
k associated to the document d, we take the k closest categories. We predict
the number k by learning the number of categories associated to a document
following the method used in [26].

4 Results

In order to estimate the performance of both our model and the two metrics we
propose, we have compared the F1-Score of SVM and nearest centroid classifi-
cation on Ohsumed documents with classical and extended term representations
using different weighting schemes.

For each document frequency weight metric wDF we have experimented five
weighting schemes:

– raw term frequency weight (wTF = RTF) for term features t
– term frequency logarithm weight (wTF = LTF) for term features t
– inverse term frequency weight (wTF = ITF) for term features t
– binary term frequency weight (wTF = BIN) for term frequency features (t, n)
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– binary term frequency weight (wTF = BIN) for term frequency features (t, n)
and term position features (t, p)

The Table 9 reports the microaveraged and macroaveraged F1-Score obtained
with SVM classification considering different term representations and weighting

Table 9. F1-Scores of SVM classifier with different weighting metrics and term repre-
sentations: classical term features t, term frequency features (t, n) and combined term
frequency and term position features (t, n)&(t, p)

Term representation t t t (t,n) (t,n)&(t,p)

Term frequency weight RTF LTF ITF BIN BIN

Microaveraged F1-score

One-way Klosgen 0.587 0.604 0.609 0.631 0.639

Pearson’s χ2 0.593 0.598 0.600 0.618 0.629

Odds ratio 0.563 0.582 0.590 0.617 0.629

Loevinger 0.563 0.579 0.586 0.614 0.626

Bi-normal separation 0.553 0.586 0.593 0.614 0.623

Information gain 0.570 0.583 0.586 0.603 0.615

Relevance frequencyχ2 0.548 0.568 0.571 0.590 0.602

Log odds ratio 0.497 0.545 0.556 0.587 0.600

Jensen-Shannon divergence 0.579 0.559 0.575 0.577 0.595

Relevance frequencyOR 0.475 0.531 0.541 0.571 0.588

Relevance frequency 0.460 0.521 0.535 0.564 0.583

Pointwise mutual information 0.459 0.520 0.533 0.566 0.582

IDF 0.296 0.363 0.380 0.417 0.444

ICF 0.250 0.306 0.319 0.361 0.371

Macroaveraged F1-Score

One-way Klosgen 0.538 0.569 0.575 0.595 0.602

Pearson’s χ2 0.553 0.562 0.568 0.587 0.598

Odds ratio 0.520 0.545 0.553 0.576 0.594

Loevinger 0.518 0.541 0.550 0.580 0.590

Information gain 0.529 0.547 0.550 0.560 0.578

Relevance frequencyχ2 0.501 0.522 0.524 0.540 0.565

Bi-normal separation 0.468 0.513 0.521 0.552 0.564

Jensen-Shannon divergence 0.498 0.519 0.520 0.537 0.552

Log odds ratio 0.401 0.461 0.476 0.510 0.534

Relevance frequencyOR 0.384 0.450 0.462 0.504 0.523

Relevance frequency 0.365 0.435 0.453 0.486 0.515

Pointwise mutual information 0.353 0.421 0.439 0.480 0.501

IDF 0.185 0.237 0.255 0.289 0.319

ICF 0.141 0.180 0.192 0.230 0.241



110 M. Haddoud et al.

Table 10. F1-Scores of arithmetical average centroid (AAC) classifier with different
weighting metrics and term representations: classical term features t, term frequency
features (t, n) and combined term frequency and term position features (t, n)&(t, p)

Term representation t t t (t,n) (t,n)&(t,p)

Term frequency weight RTF LTF ITF BIN BIN

Microaveraged F1-Score

ICF 0.502 0.579 0.605 0.634 0.646

Loevinger 0.585 0.603 0.610 0.620 0.628

IDF 0.490 0.564 0.584 0.604 0.616

Pointwise mutual information 0.506 0.548 0.563 0.585 0.593

Log odds ratio 0.516 0.547 0.559 0.577 0.590

Odds ratio 0.515 0.527 0.530 0.547 0.563

Relevance frequency 0.394 0.465 0.489 0.513 0.532

Bi-normal separation 0.461 0.491 0.500 0.518 0.531

Relevance frequencyOR 0.388 0.456 0.479 0.503 0.518

One-way Klosgen 0.468 0.481 0.486 0.495 0.502

Pearson’s χ2 0.444 0.452 0.456 0.463 0.468

Jensen-Shannon divergence 0.381 0.400 0.408 0.420 0.422

Information gain 0.345 0.346 0.347 0.357 0.373

Relevance frequencyχ2 0.319 0.334 0.335 0.325 0.330

Macroaveraged F1-Score

ICF 0.466 0.547 0.580 0.617 0.627

Loevinger 0.568 0.584 0.591 0.604 0.611

IDF 0.441 0.536 0.560 0.590 0.603

Log odds ratio 0.492 0.535 0.548 0.570 0.579

Pointwise mutual information 0.476 0.528 0.545 0.570 0.577

Odds ratio 0.517 0.524 0.526 0.543 0.564

Relevance frequency 0.384 0.463 0.491 0.522 0.542

Relevance frequencyOR 0.390 0.458 0.481 0.509 0.526

Bi-normal separation 0.439 0.476 0.484 0.505 0.513

One-way Klosgen 0.457 0.468 0.473 0.485 0.491

Pearson’s χ2 0.440 0.444 0.446 0.454 0.462

Jensen-Shannon divergence 0.391 0.399 0.401 0.407 0.414

Information gain 0.366 0.375 0.384 0.400 0.401

Relevance frequencyχ2 0.337 0.352 0.368 0.360 0.365
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Table 11. F1-Scores of moment generating function centroid (MGFC) classifier with
(t,n) &(t,p) term representation and different weighting metrics

Microaveraged F1-Score Macroaveraged F1-Score

Loevinger 0.667 Loevinger 0.647

Odds ratio 0.665 Odds ratio 0.641

Log odds ratio 0.642 Log odds ratio 0.635

Bi-normal separation 0.610 Bi-normal separation 0.617

One-way Klosgen 0.609 Bi-normal separation 0.617

Pointwise mutual information 0.560 One-way Klosgen 0.593

Pearson’s χ2 0.546 Relevance frequencyOR 0.553

ICF 0.539 Relevance frequency 0.535

Gain ratio 0.518 Pearson’s χ2 0.533

Information gain 0.518 ICF 0.524

Relevance frequencyχ2 0.456 Gain ratio 0.500

Relevance frequencyOR 0.371 Information gain 0.500

Jensen-Shannon divergence 0.347 IDF 0.482

Relevance frequency 0.342 Relevance frequencyχ2 0.472

IDF 0.332 Jensen-Shannon divergence 0.409

metrics (the five table columns represent the five weighting schemes). After cal-
culation of the F1-Score for each classifier, the metrics are ranked in descending
order of the best weighting scheme score. It can be seen that by using the One-
way Klosgen metric we obtain the best classification scores on Ohsumed data. It
is also clearly observed from these results that the proposed representation model
(t, n) & (t, p) performs significantly better than the classical representation (the
three first columns) and achieves the best performances in all experiments in
terms of microaveraged F1-scores for all the metrics.

Table 10 provides the F1-Scores obtained with nearest centroid classifier
that use arithmetical average centroids (AAC). It can be seen that ICF met-
ric obtain the best classification scores on Ohsumed data. However, as we can
see in Table 11, by using moment generating function centroids (MGFC), rather
than AAC, our proposed metric Loevinger performs significantly better than
arithmetical average centroids with ICF and SVM with One-way Klosgen met-
ric. considering both microaveraged and macroaveraged F1-scores. We can also
notice from these experiments on Ohsumed data that with Odds ratio metric
we obtain results that are close to Loevinger metric when we use MGFC. At
our knowledge, Odds ratio was only used with AAC in the literature and the
accuracy of this metric was not known with MGFC that was only used with
ICF, Jensen-Shannon and Kullback-Leibler metrics.
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5 Conclusion

In this paper, we have proposed two term weighting metrics that have not been
previously used for term weighting in the literature. We showed that these met-
rics improve significantly the classification of Ohsumed biomedical documents.
We also showed that by using moment generating function centroids, a near-
est centroid classifier with Loevinger metric performs significantly better than
SVM on a biomedical text classification task. In another work [18] we show
that using a SVM classifier which combines the outputs of SVM classifiers that
utilize different metrics improves the classification. However, this approach is
time-consuming and cannot be used for huge text classification problems. At
the contrary, the present work intend to assess our approach with large-scale
experiments on all MEDLINE/PubMed corpus with all MeSH categories. We
can achieve this goal in a future work thanks to efficiency of the nearest centroid
classification method.
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11. Altinçay, H., Erenel, Z.: Using the absolute difference of term occurrence proba-
bilities in binary text categorization. Appl. Intell. 36(1), 148–160 (2012)

12. Han, E.-H.S., Karypis, G.: Centroid-based document classification: analysis and
experimental results. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD
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Abstract. Epigenetic mechanisms such as nucleosome positioning, his-
tone modifications and DNA methylation play an important role in the
regulation of cell type-specific gene activities, yet how epigenetic pat-
terns are established and maintained remains poorly understood. Recent
studies have shown a role of DNA sequences in recruitment of epige-
netic regulators. For this reason, the use of more suitable similarities or
dissimilarity between DNA sequences could help in the context of epi-
genetic studies. In particular, alignment-free dissimilarities have already
been successfully applied to identify distinct sequence features that are
associated with epigenetic patterns and to predict epigenomic profiles.
In this work, we focalize the study on the problem of nucleosome classi-
fication, providing a benchmark study of 6 alignment free dissimilarity
measures between sequences, belonging to the categories of geometric-
based, correlation-based, information-based and compression based. Their
comparisons have been done versus an alignment based dissimilarity, by
measuring the performance of several nearest neighbour classifiers that
incorporate each one the considered dissimilarities. Results computed on
three dataset of nucleosome forming and inhibiting sequences, shows that
among the alignment free dissimilarities, the geometric and correlation
are the more suitable for the purpose of nucleosome classification, mak-
ing them a more efficient alternative to the alignment-based similarity
measures, which nevertheless are yet the preferred choice when dealing
with sequence similarity measurements.

Keywords: k-mers · L-tuples · Alignment free DNA sequence dissimi-
larities · Nucleosome classification · Epigenetic · Knn classifier

1 Introduction

The primary repeating unit of chromatin is the nucleosome, which consists of
147 bp of DNA wrapped 1.67 times around an octamer of core histone proteins
[1]. The N-terminal ends of the histones are unstructured and called the histone
tails. Many amino acid residues on the histone tails can be covalently modified,
c© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 114–128, 2016.
DOI: 10.1007/978-3-319-44332-4 9
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and many of these modifications have distinct biological functions [2]. The field
of epigenomics has been growing rapidly in the past few years, in part because
of the development of genome-wide profiling technologies and new specialized
computational approaches [3–5]. The underlying mechanisms for the establish-
ment and maintenance of cell type-specific epigenetic patterns are complex and
involve the dynamic interactions among multiple classes of factors [6], whose rel-
ative contribution remains poorly understood. One fundamental question is to
what extent the epigenomic patterns are orchestrated by the underlying DNA
sequence. Previous studies have shown that, for the case of nucleosome posi-
tioning, the DNA sequence plays an important role [7], so that methods based
on sequence similarity have been developed to predict genome-wide patterns,
sometimes with great accuracy. In particular, initial biological hypotheses about
sequence similarity has been traditionally generated by using sequence alignment
methods. Several algorithms that target specific goals such as global alignment,
local alignment, with or without overlapping have been proposed [8–10]. The
main issue of alignment methods is that their computational complexity esca-
lates as a power function of the length of the related sequences. Despite the
recent efforts in improving their computational efficiency [11,12], the applica-
tions of alignment methods are not unlimited. They are based on the main
assumption that functional elements are related to sequence substrings whose
relative order is also conserved. Unfortunately there are cases showing that this
can be violated, such as the cis-regulatory element sequences where there is lit-
tle evidence suggesting that the order between different elements would have
any significant effect in regulating gene expression. In the case of nucleosome
identification, it has been demonstrated that the most informative sequence
features are those that are traditionally viewed as degenerative, such as CpG
density and poly-A tract [13], posing a severe challenge for alignment-based
methods. In the meantime, the development of alignment-free methods [14] has
provided a promising alternative to overcoming such challenges. The interested
reader can find a review about several applications of alignment free methods
in the field of epigenomics in the work by Pinello et al. [15]. In this work we
present a study about nucleosome classification, providing a benchmark study
of 6 alignment free dissimilarity measures between sequences, when incorporated
into a nearest neighbour classifier. The used dissimilarities belong to the cate-
gories of geometric-based, correlation-based, information-based and compression
based. The performance of the resulting nearest neighbour classifiers are com-
pared with a classifier that incorporate an alignment based dissimilarity. The
paper is organized as follows: in the next section such dissimilarities will be for-
mally described, in Sect. 3 the experimental design and related results will be
presented and discussed. Concluding remarks will be given in Sect. 4.

2 Dissimilarity Functions

Let X be a set. A function δ : X × X → R is a dissimilarity on X if, ∀ x,y ∈ X,
it satisfies the following three conditions:
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1. δ(x,y) ≥ 0 (non-negativity);
2. δ(x,y) = δ(y,x) (symmetry);
3. δ(x,x) = 0;

A generic DNA sequence s ∈ Σ∗ is a string of finite length whose symbols
are taken in the nucleotide alphabet Σ = {A, T,C,G}. An alignment based dis-
similarity between two DNA sequences s and t is a dissimilarity that make use
of an alignment algorithm, conversely an alignment free dissimilarity is estab-
lished without making us of any alignment process. In general, we can think
to an alignment free dissimilarity, as a dissimilarity computed on a particular
co-domain X = φ(Σ∗) mapped by a particular mapping function φ.

2.1 Dissimilarities Computed by Alignment

The alignment based class of dissimilarities are defined by making use of an align-
ment algorithm [16]. Alignment algorithms are mainly categorized into global
and local methods. The first category is related to the solution of a global opti-
mization problem that imposes the alignment algorithm to span the entire length
of the two sequences, and is most useful when the sequences are similar and quite
of equal size. The local alignment algorithms identify instead regions of similar-
ity within long sequences that are often widely divergent overall. They are more
difficult to compute because of the additional challenge of identifying the simi-
larity regions. In both cases, after the alignment process, every symbol at each
position of the two strings can be the same (match case), can be different (mis-
match case) or one of the letters aligns to a gap in the other sequence (insertion
or deletion case). Assuming that it is possible to assign a predefined score to
each kind of mismatch, insertion or deletion errors, alignment algorithms search
for the alignment of highest total score. A common way of defining an alignment
based dissimilarity (ABD for short) is by using the score related to the alignment
in the following way:

ABD(s, t) =
(

1 − score(s, t)
score(s, s)

)

×
(

1 − score(s, t)
score(t, t)

)

(1)

Note that in the rare case where the score between sequences is greater than
the score when aligning a sequence with itself, one assumes the dissimilarity
equal to zero.

2.2 Alignment Free Dissimilarities Computed on L-tuple Codomain

In the case of L-tuple codomain representation, the mapping function φ project
s into a vector xs that enumerates the frequency of occurrence of a finite set
of fixed length words W = {wi, .., wm} in the string s. W is the set of L-tuples
(or k-mers), i.e. a set containing any string of fixed length L whose symbols are
taken in the nucleotide alphabet Σ = {A, T,C,G}. As result, each sequence s
will be mapped to a vector xs ∈ R

m with m = 4L, such that the component (xs)i
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counts the occurrence of the i−th L-tuple into the string s. The counting process
uses a window of length L that is run by steps of one through the sequence, from
string position 1 to M − L + 1, being M the length of the string s.

The L tuple representation has shown to be very effective for classification of
several kind of DNA sequences [17–20] and for the specific case of nucleosomic
related sequences it represents an effective representation for the best performing
nucleosome classification methodologies [5,21]. Anyway, it is also important to
remark that this representation involves an exponential space complexity with
respect to the length L of the representation. To this purpose, several solutions
for the selection of relevant k-mers have been proposed [22,23] also for the specific
case of nucleosome identification [27]. Anyway, L represents a parameter of the
representation. In the euclidean space R

m, it is possible to categorize dissimilar-
ity functions according to three broad classes: geometric-based, correlation-based
and information-based. Functions in the first class capture the concept of physi-
cal distance between two objects. They are strongly influenced by the magnitude
of changes in the measured components of vectors x and y, making them sen-
sitive to noise and outliers. Functions in the second class capture dependencies
between the coordinates of two vectors. In particular, they usually have the ben-
efit of capturing positive, negative and linear relationships between two vectors.
Functions in the third class are defined via well known quantities in information
theory such as entropy and mutual information. They have the advantage of
capturing statistical dependencies between two data points, even if they are not
linear. We now formally define the functions of interest for this work, starting
with the geometric ones.

The Euclidean or 2-norm dissimilarity is defined as follows:

de(x,y) = 2

√
√
√
√

m∑

i=1

(xi − yi)2 (2)

where x = (x1, . . . , xm), y = (y1, . . . , ym), where m represents the number of
components.

Among the correlation-based dissimilarities, the most known is the Pearson
disssimilarity dr:

dr(x,y) = 1 − r = 1 −
∑m

i=1(xi − x̄)(yi − ȳ)
∑m

i=1(xj − x̄)2
∑m

j=1(yj − ȳ)2
(3)

where x̄ = 1
m

∑
i xi, ȳ = 1

m

∑
i yi. The Cosine Distance, is another example of

correlation-based dissimilarity, and can be defined as:

dcos(x,y) = 1 − (
x · y√

x · x√
y · y ) (4)

that corresponds to 1 minus the cosine of the angle between the two vectors x
and y.
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Finally, the symmetrical Kullback-Leibler dissimilarity between two vectors
x and y belongs to the class of information-based dissimilarities, and is so
defined:

dkl(x,y) =

∑
i pxi

log2
pxi

pyi
+

∑
j pyj

log2
pyj

pxj

2
(5)

where pxi
= xi

M−L+1 . This dissimilarity is able to measure the difference between
the probability distributions of the L-tuple representation of two sequences.

2.3 Alignment Free Dissimilarities Computed by Compression
Measures

The compression based class of dissimilarities are defined by making use of a
string compressor to be considered as an auto-mapping C of Σ∗. They are based
on the concept of Kolmogorov complexity of a string, which intuitively can be
viewed as a measure of the computational resources needed to generate such
string. Formally, the conditional Kolmogorov complexity KC(s|t) between two
generic strings s and t is the length of the shortest binary program written
in a generic programming language that computes s giving t as input. The
Kolmogorov complexity KC(s) of a string s is defined as KC(s|λ) where λ stands
for the empty string. Li et al. [24] have defines the so called Universal similarity
metric (USM for short) for strings based on the Kolmogorov complexity:

USM(s, t) =
max{KC(s|t∗),KC(t|s∗)}

max{KC(s),KC(t)} (6)

where w∗ denotes the shortest program that produces the generic sequence w
on an empty input. Unfortunately, USM is not computable; therefore, it is com-
monly approximated by the Universal Compression Dissimilarity whose defini-
tion is in the following :

UCD(s, t) =
max{|C(st)| − |C(s)|, |C(ts)| − |C(t)|}

max{|C(s)|, |C(t)|} (7)

where st and ts denote the concatenations of the sequences s and t, C is the
mapping associated to a compression algorithm and C(s) its output on a string
s, |.| denotes the length of a string. Details about UCD and other approxi-
mation of USM can be found in the work of Ferragina et al. [25]. The main
advantage on using compression based dissimilarities, is that they are able to
measure the combinatorial properties of a string. Note that in the case of nucle-
osome classification, combinatorial properties such as periodicities of particular
dinucleotides [21] have been observed in several species. This class of dissimilar-
ities have been used for general sequence classification problem [26] and also to
distinguish nucleosome-enriched and depleted regions [27].



Alignment Free Dissimilarities for Nucleosome Classification 119

3 Experiments and Results

3.1 Materials and Methods

For the experiments we have considered three datasets of DNA sequences under-
lying nucleosomes belonging to the following three species: (i) Homo sapi-
ens (HM); (ii) Caenorhabditis elegans (CE) and (iii) Drosophila melanogaster
(DM). Details about all the steps of data extraction and filtering of the three
datasets can be found in the work by Guo et al. [5] and in the references
therein. Each of the three datasets is composed by two classes of samples:
the nucleosome-forming sequence samples (positive data) and the linkers or
nucleosome-inhibiting sequence samples (negative data). The HM dataset con-
tains 2, 273 positives and 2, 300 negatives, the CE 2, 567 positives and 2, 608 neg-
atives and the DM 2, 900 positives and 2, 850 negatives. The length of a generic
sequence is 147 bp. The three dataset can be downloaded from the url that the
authors have provided [28]. All the dissimilarities have been compared in terms
of classification performances of a related K nearest neighbor (Knn) classifier.
This kind of classifier represents the more suitable for dissimilarity comparisons
because, apart form the dissimilarity, it only makes use of the notion of neigh-
bourhood. For completeness, in the following we formally describe how it works.
Let R be the number of classes, Ti the training set of elements for a class i and
δ a distance between elements. Let Y (x) be the set of K elements closest to an
unlabelled element x with respect to δ, then the Knn classifier assign to x the
class j using the following assignment rule:

j = arg max
1≤i≤R

(|Y (x) ∩ Ti|) (8)

This rule means that the unlabelled element x is classified by assigning the label
which is most frequent among the K training samples nearest to that point.
Note that K is a parameter of the method, and its best choice depends upon
the data. Generally, larger values of K are preferred since the effect of noise on
the classification can be reduced.

In our experiment, we have computed a total of 3 performance measure for
the Knn classifier related to a particular dissimilarity: Accuracy (A), Sensitivity
(Se) and Specificity (Sp). In the following, we recall their definitions:

A =
TP + TN

TP + FN + FP + TN
, Se =

TP

TP + FN
, Sp =

TN

FP + TN
(9)

where the prefix T (true) indicates the number of correctly classified
sequences, F (false) the incorrect ones, P the positives class and N the neg-
atives class.

3.2 Results

Starting from a dataset S of n sequences, the training and test of the Knn
classifier have been selected using a 10 fold cross validation schema. For all the
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considered dissimilarities, except for the alignment and compression based ones,
we have used as numerical dataset for the classifier a matrix DS of size n × 4L,
such that (DS)ji stores the counting cji of the j − th L-tuple wj into a sequence
si of the dataset. In this case, we have computed the experiments for different
L ranging from 2 to 6. For the alignment and compression based dissimilarities
we have used the set S directly. Regarding the K value of the Knn classifier, we
have decided to compute experiments for each odd value (the number of classes
is R = 2) ranging in the integer interval {1, ., 21}.

We have computed the accuracy results of 7 Knn classifiers, referred as Knn-
ABD-nw, Knn-euclidean, Knn-correlation, Knn-cosine, Knn-Kullback, Knn-
UCD-deflate and Knn-UCD-gzip. The first classifier is referred to a knn clas-
sifier that incorporates the ABD distance (see Subsect. 2.1), with Needlmenan-
Wunsch as global alignment algorithm [8]. The choice of this global alignment
algorithm is due to the equal size of all the sequences, i.e. 147 bp as mentioned
before. The other classifiers are related to the alignment free distances defined
in Subsects. 2.2 and 2.3. The last two differentiate themselves in the use of the
compression algorithm, i.e. the deflate compression algorithm (UCD-defalte) and
the gzip compression algorithm (UCD-gzip).
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Fig. 1. Accuracy (black), Sensitivity (gray) and Specificity (light gray) plots of the
Knn classifiers, for different neighbors K in the range {1,.,21}, and for different L-tuple
lengths L in the range {2,.,6} in the case of Caenorhabditis elegans (CE) dataset. Error
bars for each K are also reported. The first three plots in the first line are referred to
ABD-nw, UCD-deflate and UCD gzip and does not depend on the L-tuple length L.
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Fig. 2. Elapsed times in seconds of each classifier for the classification of one fold in
the case of the Caenorhabditis elegans (CE) dataset

Figures 1, 3 and 5 show the mean accuracy, sensitivity, specificity values
computed among all the considered neighbours K, for each values of L = {2, ., 6}.
Note that ABD and UCD dissimilarities are independent from the L parameter.

Table 1 show mean (μ) and standard deviation (σ) of the 3 performance
measure (in percentage) reached by each one of the classifiers, eventually for
different L (L-tuple length). In the case of ABD and UCD in consideration of
their independence from L, the results are replicated. Accuracies, Sensitivities
and Specificities of the two best performers are depicted in bold. We have also
verified that the difference between the performance metrics of the best classifiers
versus the others are statistically significant by computing a two sample paired
t-test with significance level of 5%. It means that a bold value in the table show
that the corresponding classifier has reached the best value of the performance
metric, that is also significantly different from all the others with a p-value lower
than 0.05 (maximum p-value = 2, 7 × 10−4).

The elapsed times in seconds of each knn-classifier for the classification of
one fold are shown in Figs. 2, 4 and 6.

Results show that the alignment based distance ABD-nw is the best in terms
of accuracy and sensitivity for CE and DM datasets, but not for the case of HM
dataset. Anyway, such superiority in terms of accuracy versus the alignment free
dissimilarity (at most 2% with the euclidean), seems to be not justified by their
ratio of elapsed computation times. In fact knn-euclidean is more than 20 times
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faster than knn-ABD-nw in computing a one fold classification (see Figs. 2, 4
and 6). This is not surprising since it is noteworthy that the complexity of the
Needlmenan-Wunsch global alignment algorithm is O(M ∗ N) being M and N
the lengths of the two sequences.

Among the alignment free dissimilarities based classifiers, Knn-euclidean
reaches 91% of sensitivity on CE and HM dataset, and accuracies greater than
83%, 76%, 84% on CE, DM, HM datasets respectively. This makes the euclidean
distance the best among the alignment free measures. Note that this performance
are comparable, and in the case of sensitivity superior, to the results presented
in [5]. Another interesting property is that the Knn-euclidean classifier is also
invariant, in terms of accuracy, to the used L (see Figs. 1, 3 and 5). Knn-cosine
is also a good performer in terms of accuracy (> 83%, L = 3 CE, > 76%, L = 3,
DM). Knn-kullback and Knn-UCD-gzip seem only suitable for the more difficult
dataset to classify, i.e. the DM dataset (best accuracy 77%). Knn-correlation
is one of the worst performer, showing only good specificity values for L = 6.
Finally, it is also observable that the best choice for L of the geometric-based,
correlation-based and information-based dissimilarity is 3 and 4, and that all the
related classifiers’ sensitivities and accuracies tend to decrease while L increases.
In the case of compression based dissimilarities, Figs. 1, 3 and 5 show clearly an
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Fig. 3. Accuracy (black), Sensitivity (gray) and Specificity (light gray) plots of the
Knn classifiers, for different neighbors K in the range {1,.,21}, and for different L-tuple
lengths L in the range {2,.,6} in the case of Drosophila melanogaster (DM) dataset.
Error bars for each K are also reported. The first three plots in the first line are referred
to ABD-nw, UCD-deflate and UCD gzip and does not depend on the L-tuple length L.
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Fig. 4. Elapsed times in seconds of each classifier for the classification of one fold in
the case of the Drosophila melanogaster (DM) dataset

increasing trend of all the performance indices while K increases. This could
lead to the suggestion of increasing K, but, taking into consideration that the
computation cost required by the compression based dissimilarity is significantly
greater than the cost required by other ones, this will surely affect the computing
time required by the Knn classifier.

3.3 Implementation Notes

The algorithms that implement the knn classifiers have been developed in
MatlabTM release 2014b, and are available upon request to the author.



Alignment Free Dissimilarities for Nucleosome Classification 125

Fig. 5. Accuracy (black), Sensitivity (gray) and Specificity (light gray) plots of the
Knn classifiers, for different neighbors K in the range {1,.,21}, and for different
L-tuple lengths L in the range {2,.,6} in the case of Homo sapiens (HM) dataset. Error
bars for each K are also reported. The first three plots in the first line are referred to
ABD-nw, UCD-deflate and UCD gzip and does not depend on the L-tuple length L.
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Fig. 6. Elapsed times in seconds of each classifier for the classification of one fold in
the case of the Homo sapiens (HM) dataset
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4 Conclusion

In this paper it is presented a benchmark study of 6 alignment free dissimilarities
between sequences, belonging to the classes of geometric-based, correlation-based
information-based and compression-based, for the purpose of nucleosome classi-
fication. Such dissimilarities are computed on a co-domain of the sequence set
after a particular mapping process, and are alignment free in the sense that does
not make any use of string alignment algorithms. The comparisons between the
dissimilarities has been carried out in terms of performance comparisons among
the related K nearest neighbour classifiers and versus a K nearest neighbour
classifier that incorporates an alignment based dissimilarity. Experiments have
been carried out on three public datasets of nucleosome sequences, showing that
the geometric based dissimilarities computed on the L − tuple representation of
sequences lead to reach very good classification results, also in terms of com-
putational efficiency. Several nucleosome classification methodologies have been
recently proposed, sometimes implementing very complex algorithms, also from
the computational point of view. This work shows that nucleosomes can be
successfully and efficiently predicted by using only sequence information, by a
very simple classification paradigm such as the Knn classifier, adopting common
alignment free dissimilarity measures.
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by the Euro-Mediterranean Institute of Science and Technology, and funded with the
Italian National Operational Programme for Research and Competitiveness 2007–2013
grant awarded to the project titled “CyberBrain-Polo di innovazione” (Project code:
PONa3 00210, European Regional Development Fund).
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Abstract. Deep learning neural networks are capable to extract signif-
icant features from raw data, and to use these features for classification
tasks. In this work we present a deep learning neural network for DNA
sequence classification based on spectral sequence representation. The
framework is tested on a dataset of 16S genes and its performances, in
terms of accuracy and F1 score, are compared to the General Regres-
sion Neural Network, already tested on a similar problem, as well as
naive Bayes, random forest and support vector machine classifiers. The
obtained results demonstrate that the deep learning approach outper-
formed all the other classifiers when considering classification of small
sequence fragment 500 bp long.

Keywords: Deep learning · Convolutional neural network · Barcode
classification

1 Introduction

In the last years there has been a great interest in the neural networks, due
to the so called deep architecture or deep learning networks. The term “deep”
refers intuitively to the number of layers that are used in these networks, and,
more precisely, it is related to the path from an input node to the output node
in the network (considering the network as a directed graph) [1]. Deep learning
architectures are able to extract the features used for classification tasks from
input patterns [2]. Among the deep learning architecture, it is usually comprised
the LeNet-5 network, or Convolutional Neural Network (CNN), a neural network
that is inspired by the visual system’s structure [3]. This network was used for
character recognition in the original paper, and for image processing [4] and
speech detection [5].

The main drawback of the deep learning methods is that it is still impos-
sible to reuse the knowledge acquired by the network; deep networks are still
black boxes and it is complicated to correct wrong answers or to understand the
reasons of a good one. As proved in [6], it is possible to build artificial images
with no recognizable objects in it, but classified with high confidence in specific
categories, as “chair” or “lion”, by a deep neural network.
c© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 129–140, 2016.
DOI: 10.1007/978-3-319-44332-4 10
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The application of these techniques to gene classification requires a fixed
dimension representation of the sequences like the spectral representation based
on k–mers occurrences. This representation was used for sequence classification
in many works. In particular in our work [7] it is noticed that some k–mers are
much more important than the other for sequence representation, this means that
in the representing vectors there are details that should be taken into account.
This observation resembles the problem of feature extraction from image and
this idea is at the core of the present work.

In this work we want to understand if the convolutional network is capable
to identify and to use these features for sequence classification, outperforming
the classifiers proposed in the past. To do that, we considered a dataset of 16S
rRNA sequences that, for bacteria, represent the genes used for taxa assignment
thanks to their strong conservation among similar species [8].

2 Materials and Methods

2.1 Spectral Representation

Each biological species, as demonstrated by [9], has a proper modal spectrum,
that can distinguish it from the other ones. Therefore, spectral representation
has been successfully used in many bioinformatics works, implementing several
algorithms: support vector machine (SVM) and K-nearest neighbour (K-NN)[10],
general regression neural network (GRNN) [7,11], neural gas (NG) [12,13], topic
models [14,15], logic formulas [16]. Given a fixed value k, a spectral representa-
tion is a vector of size 4k. Its components are computed by counting the occur-
rences of small DNA snippets of length k, called k -mers, which are extracted
from the genomic sequences by means of a sliding window, with step = 1 and
length = k. In case of k-mers containing one or more undefined nucleotides, for
example the “N” character, they are discarded. Since the CNN is able to discover
and exploit those k-mers representing distinctive features, we adopt the so called
“bag–of–words” model, which does not take into account the position of k -mers
in the original sequence. This procedure is summarized in Fig. 1. The main com-
putational advantages of using this representation are: (1) to obtain a fixed-size
vector representation of genomic sequences and (2) to take into account only
distinctive k-mers.

2.2 Convolutional Neural Network

The convolutional neural networks are made of a very large number of connec-
tions and layers. The one used in this work is a modified version of the LeNet-5
network introduced by LeCun et al. in [3] and it is implemented using the python
Theano package for deep learning [17,18].

The modified LeNet-5 proposed network is made of two lower layers of con-
volutional and max-pooling processing elements, followed by two “traditional”
fully connected Multi Layer Perceptron (MLP) processing layers, so that there
are 6 processing layers.
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Fig. 1. k–mers spectral representation. The sliding window on the sequence selects the
k–mer counted; the bar graph represent the frequency count obtained

The convolutional layers calculate L 1-D convolutions between the kernel
vectors wl, of size 2n+1, and the input signal x:

ql(i) =
n∑

u=−n

wl(u)x(i − u) l = 1, 2 . . . , L (1)

The dimension (dim) of q is defined as:

dim(q) =
dim(x) − (dim(w) − 1)

size of max-pooling
(2)

In Eq. 1 ql(i) is the component i of the l-th output vector and wl(u) is the
component u of the l-th kernel vector. Then a bias term bl is added and a non–
linear function is applied:

hl(i) = tanh(ql(i) + bl) l = 1, 2 . . . , L (3)

The vector hl is the output of the convolutional layer. The max-pooling is
a non-linear down-sampling layer. In these processing layers the input vector is
partitioned into a set of non-overlapping regions (of 2 elements in this imple-
mentation) and, for each subregion, the maximum value is considered as output.
This processing layer reduces the complexity for the higher layers and operates
a sort of translational invariance.

Figure 2 shows the network architecture: the overall network is depicted in
the lower part, and a detail of the two convolutional layers is reported in the
upper part of the figure. The first layer of convolutional kernels, named kernel 0,
is made of L = 10 kernels of dimension 5 (so that n = 2). From a spectral
representation vector made of 1024 components this layer produces 10 vectors
of 1024 dimensions that the pooling layer reduces to the 10 feature maps of
510 dimensions. These vectors are the input for the second convolutional layer.
The second layer of kernel (kernel 1 ) is made of L = 20 kernels of dimension 5.
In both cases the max-pooling layer has dimension 2. Convolution and max-
pooling are usually considered together and they are represented in the lower
part of Fig. 2 as two highly connected blocks.
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Fig. 2. The architecture of the used network: in the lower part of the figure an overall
schema of the CNN network, in the upper part a detail of the lower levels of the
network with the kernels and the output signal of the two blocks of convolution and
max pooling.

The two upper level layers corresponds to a traditional fully-connected MLP:
the first layer of the MLP operates on the total number of output from the lower
level (the output is flattened to a 1-D vector) and the total number of units in
the Hidden Layer is 500. The output layer has one unit for each class.
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2.3 Dataset of 16S Sequences

The 16S rRNA sequences have been downloaded from the RDP Ribosomal
Database Project II repository [19], release 10.27. We randomly selected 1000
sequences from each of the three most common bacteria phyla, Actinobacteria,
Firmicutes, Proteobacteria, collecting in total 3000 sequences. All the sequences
have length greater than 1200 bp, they are classified as type strain, i.e. they
are the best representative of their own species, and they are certified as “of
good quality” by the RDP database. Table 1 reports the number of taxonomic
categories, or taxa, from phylum to genus. It clearly shows that, even if the
dataset is balanced at phylum level, it becomes more and more unbalanced for
the other taxonomic categories, reaching 393 different groups of 16S sequences
at genus level. Figure 3 shows a boxplot representing, for each taxa, the number
of samples contained in the categories of each taxa (vertical axis). This figure,
together with the Table 1, gives an idea of the classification task, for example
the distribution of samples in each Class varies from 1 to nearly 1000 (there are
5 classes of 998, 994, 5, 2 and 1 sample).

Table 1. 16S bacteria dataset composition.

Three main bacteria phyla Number of categories for each taxa

Phylum Class Order Family Genus

Actinobacteria 1 1 3 12 79

Firmicutes 1 2 3 19 110

Proteobacteria 1 2 13 34 204

3 Results

Experimental tests have been carried out using the algorithm and the dataset
described in Sect. 2. Two kinds of experiments have been made. In the first case,
using a ten fold cross validation scheme, the prediction performances of the CNN
have been tested at each taxonomic rank (from phylum to genus) and considering
full length sequences. In the second case, the ten-fold cross validation scheme was
repeated considering as test set the sequence fragments of shorter size, 500 bp
long, obtained randomly extracting 500 consecutive nucleotides from the original
full length sequences. This way, we wanted to asses if the network is able to
correctly predicts the taxonomic rank of the test sequences even if they just
contain only a small part (500 bp) of the original information content, usually
composed of about 1400 bp. This situation is often dealt with in metagenomic
studies [20] where, considering environmental species, only a small part of the 16S
gene is actually sequenced. In our experiments, we set the k-mers size to k = 5, as
done in other works adopting the spectral representation, e.g. in [7,10]. The CNN
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has been run considering two different kernels sizes: kernel 0 = kernel 1 = 5 in
the first run; kernel 0 = 25, kernel 1 = 15 in the second run. From here on, the
first kernels configuration will be named kern 1, whereas the second one will be
named kern 2. In both configurations the training phase has been run for 200
epochs.

Fig. 3. 16S bacteria dataset distribution.

Classification scores have been computed in terms of accuracy and F1 score:

Accuracy =
TP + FN

TP + FP + TN + FN
(4)

F1 =
2TP

2TP + FP + FN
= 2 ∗ precision ∗ recall

precision + recall
(5)

where TP are true positives, FP are false positives, TN are true negatives, FN
are false negatives.

We compared our approach with another classifier based on the GRNN algo-
rithm [21], presented in our previous work [7] for the classification of barcode
and mini-barcode sequences. Moreover we compared the obtained classification
scores with regard to three other state-of-the-art classifiers, namely naive Bayes
(NB) [22], random forest (RF) [23] and SVM [24].

The GRNN is a one-pass training neural network, usually adopted for regres-
sion purposes, that we adapted for the classification of barcode sequences of ani-
mal species, taking into account the COI gene. Moreover we developed three dif-
ferent versions of the GRNN, each one implementing a different distance model:
euclidean distance, city-block (Manhattan) distance, Jaccard distance.
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Fig. 4. Accuracy scores for full length sequences (upper chart) and 500 bp sequences
(lower chart). Comparison between CNN and GRNN with different distance models.

Experiments with NB, RF and SVM classifiers have been done using the
WEKA experimenter platform [25]. NB and RF were used with default parame-
ters. As for SVM, Weka uses the LibSVM library [26] that implements the “one-
against-one” approach [27] for multiclass classification. We adopted a Gaussian
radial basis kernel and the parameters have been optimised by means of a grid
search over a set of parameters values.

In our experiments, the CNN network with kern 1 configuration always pro-
vided better results with respect to the CNN with kern 2 configuration. For this
reason, in the following we will only discuss the results obtained with kern 1
configuration.

As for the comparison with the GRNN, all the classification results have
been summarized in the charts of Figs. 4 and 5, showing respectively accuracy
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Fig. 5. F1 scores for full length sequences (upper chart) and 500 bp sequences (lower
chart). Comparison between CNN and GRNN with different distance models.

and F1 score. Considering the full length sequences, it is evident that our app-
roach based on the CNN network, with kern 1 configuration, reaches almost
identical scores, with variance lesser than 1%, with regards with the GRNN
classifiers based on the euclidean and the city block distance models. Otherwise
the GRNN with Jaccard distance model produced lower results. The CNN per-
formances are obtained with a grater execution time with regard to the GRNN
network, because the CNN neural network has a training phase that is necessary
to obtain the minimization of the classification error (that is a function of the
kernel parameters), while the GRNN algorithm has just one parameter, and does
not need a training phase. The GRNN processing time lasted about 10 min on
average, whereas the CNN proposed architecture has a training time of about
22 min on average and it gives better performances.
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Fig. 6. Accuracy scores for full length sequences (upper chart) and 500 bp sequences
(lower chart). Comparison among CNN and NB, RF and SVM classifiers.

Classification scores considering 500 bp sequences showed very interesting
results. Our CNN approach, with kern 1 configuration, clearly outperforms all
the other classifiers in terms of accuracy at all taxonomic levels. Only at genus
level, accuracy score does not reach the 50 %: this behaviour can be explained
considering the great number of different genera (393) of the dataset. With
regards to the F1 score chart (Fig. 5), the CNN with kern 1 configuration per-
forms similar to the other classifiers for all taxa. There once again the CNN
with kern 1 configuration always reaches the highest scores, demonstrating that
our approach has a better true positive rate, that is the percentage of retrieving
correctly classified samples.
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Fig. 7. F1 scores for full length sequences (upper chart) and 500 bp sequences (lower
chart). Comparison among CNN and NB, RF and SVM classifiers.

In Figs. 6 and 7, accuracy and F1 score of CNN versus the NB, RF and VM
classifiers are showed. Considering the full length sequences, once again the CNN
network obtained very similar results in terms of accuracy with regards to the
other classifiers. At family and genus level, CNN reached better F1 score, while
at genus level it is below of about ten percentage points with respect to the other
classifiers, and SVM in particular.

On the other hand, considering 500 bp sequences, CNN outperforms all the
other classifiers considering all the three performances score, demonstrating that
the CNN network is the only algorithm that build a model that is able to general-
ize in order to correctly classify genomic sequences even in only a short fragment
is provided.
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4 Conclusion

In this work we presented a classifier of 16S bacterial genomic sequences based on
spectral representation and convolutional neural networks. The spectral repre-
sentation is obtained as k-mers frequencies along the sequences; the CNN belongs
to the so called “deep learning” algorithms. Experiments were carried out with
the aim of classify both full length sequences and sequence fragments. In metage-
nomic studies, for example, only a small part of DNA sequences is often available.
Our CNN classifier has been compared, in terms of accuracy and F1 score, with
three state-of-the-art classifiers, NB, RF, SVM, and finally with one of our pre-
viously developed classifier based on GRNN. If considering full length sequences
all the algorithms provided very similar good results (between 95–99 %) at each
taxonomic level. In the near future we are going to further test this deep learn-
ing approach considering more complex sequence representation methods, like
for instance those provided by the Pse-in-One web server [28].
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Abstract. Machine learning is a widely used technique in structural
biology, since the analysis of large conformational ensembles originated
from single protein structures (e.g. derived from NMR experiments or
molecular dynamics simulations) can be approached by partitioning the
original dataset into sensible subsets, revealing important structural and
dynamics behaviours. Clustering is a good unsupervised approach for
dealing with these ensembles of structures, in order to identify stable
conformations and driving characteristics shared by the different struc-
tures. A common problem of the applications that implement protein
clustering is the scalability of the performance, in particular concerning
the data load into memory. In this work we show how it is possible to
improve the parallel performance of the GROMOS clustering algorithm
by using Hadoop. The preliminary results show the validity of this app-
roach, providing a hint for future development in this field.

Keywords: Hadoop · Clustering protein structures · Molecular
dynamics · Data parallel

1 Introduction

A common task in unsupervised machine learning and data analysis is clustering.
This means a method to partition a discrete metric space into sensible subsets.
The exact setup and procedures may vary, but the general idea is to group data
points with similar features together. This might reveal some structure in the
data set, or it can help in simplifying the data set by dealing with entire clusters
instead of many individual data points. In this context, hierarchical clustering
is very important since it does not produce a prescribed number of clusters, but
a dendrogram that allows the user to decide which is a reasonable number of
clusters, in order to create a partition of the data accordingly.

These concepts apply very well to structural biology, in which protein-
structure prediction experiments and protein-folding simulation software gen-
erate large ensembles of candidate structures using different starting conditions.
c© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 141–153, 2016.
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In particular, molecular dynamics simulations produce trajectories of atom posi-
tions, velocities, and energies as a function of time, providing a sampling of
the different conformations achieved by a given macromolecule. As simulations
on the 100 ns–1µs time scale are becoming routinely, with sampled configura-
tions stored on the picosecond time scale, the resulting trajectories contain large
amounts of data.

Data-mining techniques, like hierarchical clustering, provide a valuable tool
to make sense of the information available in these trajectories [2]. Since protein
conformations that are more frequently assumed during a trajectory represent
at best the real structure of the macromolecule, clustering is a suitable approach
to improve both consistency and accuracy of the most probable protein con-
formations, which can be very important for achieving good results in docking
screenings [3]. From the computational point of view this process is very time
consuming, since there are dozens or even hundreds of thousand structures to
compare. Many algorithms have been implemented in parallel in order to over-
come this problem, such as MAX CLUST [1] and FAST PROTEIN CLUSTER
[4]. The latter is based on an efficient GPU-accelerated solution, although not
specifically designed to analyse molecular dynamics trajectories.

Nonetheless, analysing the scalability of these software a clear bottleneck
emerges, which is the large number of I/O operations necessary for data acquisi-
tion and possible use of virtual memory when processing these large structures.
This is particularly true for bunches of PDB structures, which are text files, while
trajectories are usually stored in binary files. It is therefore clear that a large
amount of computational time is spent in reading the structures for the clus-
tering operation. In this paper we propose a proof-of-concept Apache Hadoop
based solutions in order to parallelize the clustering on partitions of the original
dataset.

The Apache Hadoop framework is an ecosystem of related projects and tools.
Mostly they are based on the Hadoop Distributed File System (HDFS), which
stores data on commodity hardware, providing very high aggregate bandwidth
across the cluster. We will exploit in particular MapReduce, a programming
model for large scale data processing based on HDFS that is well suited for
data-intensive problems. Both are based on two principles: jobs must be moved
near data for their analysis and the high availability of Hadoop-based systems,
because hardware failures are very frequent.

To implement this solution we started from the GROMOS [5] algorithm for
clustering protein structures, which is provided as part of the GROMACS [6]
package. Although GROMOS is not parallel in its released implementation, it
is widely used to cluster conformation from molecular dynamics simulations.
The algorithm is fast, but it suffers, as introduced, of a slow loading of the
structures in memory. In the following we present a preliminary implementation
of a solution based on the Hadoop-MapReduce architecture and the preliminary
results.

The remainder of this work is structured as follows. In Sect. 2 the clustering
algorithm is presented and Apache Hadoop is introduced. In Sect. 3 a real-life test
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case of protein conformations clustering is presented. In Sect. 4 the implementa-
tion is sketched. Section 5 presents the results achieved in terms of performance,
while in Sect. 6 some conclusions are drawn about the presented work.

2 Materials and Methods

In this section we present the details of the GROMOS algorithm and the Apache
Hadoop platform that has been used for our tests.

GROMOS Algorithm. Clustering involves partitioning models into sets of simi-
lar structures. The input of these algorithms is a distance matrix in which are
reported, for each sampled structural conformation of the molecular dynamics
trajectory, the RMSD distances, time frame after time frame, of the Cα atoms
that compose the backbone of the protein. The GROMOS algorithm relies on
the nearest neighbour algorithm, which is a non-parametric method used for
classification and regression [7]. In particular, the GROMOS implementation of
this algorithm is an iterative process:

– the neighbours of each data point are defined according to a cut-off distance
c;

– the point with largest neighbourhood defines the “best” cluster, corresponding
to a stable conformation of the protein;

– all the points belonging to the cluster are removed;
– the algorithm is iterated until all data have been assigned to a cluster and

removed.

In Fig. 1 the different steps of the algorithm are shown on a simple matrix
representing the conformation distances. For each column below threshold dis-
tances are evidenced and the best cluster is identified accordingly. Then, all the
conformations belonging to this cluster are eliminated from the matrix and the
algorithm is iterated.

Apache Hadoop and Map Reduce. Apache Hadoop [8] is an open source frame-
work for distributed storage and processing of large sets of data on commodity
hardware. Hadoop enables to quickly mine massive amounts of structured and
unstructured data. Numerous Apache Software Foundation projects make up the
services required by an enterprise to deploy, integrate and work with Hadoop
(MapReduce, Spark, Storm, Hive, HBase and many others). Each project has
been developed to deliver an explicit function and each has its own community
of developers and individual release cycles. In the analysis of Big Data, Apache
Hadoop is probably the most popular approach available to researchers, and
for this reason is receiving a great attention from the Bioinformatics research
field [9].

The following modules compose the Apache Hadoop framework:

– Hadoop Common: it contains libraries and utilities needed by other Hadoop
modules.
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Fig. 1. An example of the GROMOS algorithm on a table describing the distances
between different conformations of the same protein. Underlined distances are below the
0.50 cut-off threshold. The orange column is the one with the largest neighbourhood.
Blue columns are removed from the matrix during the first iteration as they belong to
the first cluster. (Color figure online)

– Hadoop Distributed File System (HDFS): a distributed file system that stores
data on commodity machines, providing very high aggregate bandwidth across
the cluster.

– Hadoop YARN: a resource-management platform that is responsible for allo-
cating computational resources in clusters for scheduling users’ applications.

Hadoop Distributed File System (HDFS) is the core technology for the effi-
cient scale out storage layer, and is designed to run across low-cost commod-
ity hardware. HDFS is a distributed, scalable, and portable file-system written
in Java for the Hadoop framework. A Hadoop cluster has nominally a single
NameNode plus a cluster of DataNodes, although redundancy options are avail-
able for the NameNode due to its criticality. Each DataNode serves up blocks
of data over the network using a block protocol specific to HDFS. The file sys-
tem uses TCP/IP sockets for communication. Clients use remote procedure call
(RPC) to communicate between each other.
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HDFS stores large files (typically in the range of gigabytes to terabytes)
across multiple machines. It achieves reliability by replicating the data across
multiple hosts, and hence theoretically does not require RAID storage on hosts
(but to increase I/O performance some RAID configurations are still useful).
With the default replication value of 3, data is stored on three nodes. DataNodes
can talk to each other to rebalance data, to move file copies around, and to keep
high the replication of data. HDFS is not fully POSIX-compliant, because the
requirements for a POSIX file-system differ from the target goals for a Hadoop
application. The trade off of not having a fully POSIX-compliant file-system is
increased performance for data throughput and support for non-POSIX opera-
tions such as Append.

Apache Hadoop YARN is the pre-requisite for Enterprise Hadoop as it pro-
vides the resource management and pluggable architecture for enabling a wide
variety of data access methods to operate on data stored in Hadoop with
predictable performance and service levels. YARN is the architectural core of
Hadoop that allows multiple data processing engines such as interactive SQL,
real-time streaming, data science and batch processing to handle data stored in
a single platform, unlocking an entirely new approach to analytics.

YARN is composed of a global ResourceManager and a per-node
NodeManager, which form the generic system for managing applications in a
distributed manner. The ResourceManager is the ultimate authority that arbi-
trates resources among all applications in the system. Each application has a
dedicated ApplicationMaster, which is a framework-specific entity that negoti-
ates resources from the ResourceManager and works with the NodeManager(s)
to execute and monitor the component tasks. Moreover, each application runs
into a Container instantiated by the NodeManager.

MapReduce [10] is the natural companion of Hadoop, since it consists of a
framework for writing applications that process large amounts of structured and
unstructured data in parallel across a cluster of thousands of machines, in a
reliable and fault-tolerant manner. The MapReduce engine consists of one Job-
Tracker, to which client applications submit MapReduce jobs. The JobTracker
schedules work to available TaskTracker nodes in the cluster, trying to keep the
work as close to the data as possible.

With a server-aware file system, the JobTracker knows which node contains
the data, and which other machines are nearby. If the work cannot be hosted on
the actual node where the data resides, priority is given to nodes in the same rack.
This reduces network traffic on the main backbone network. If a TaskTracker fails
or times out, that part of the job is rescheduled. The TaskTracker on each node
spawns off a separate Java Virtual Machine process to prevent the TaskTracker
itself from failing if the running job crashes the JVM. A heartbeat is sent from
the TaskTracker to the JobTracker every few minutes to check its status. The
JobTracker and TaskTracker status and information is exposed by Jetty and can
be viewed from a web browser.

In early versions of Hadoop, when a JobTracker failed all the on going work
was lost, but actually there are checkpoints along with the process and the
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JobTracker records what it is up to in the file system. When a JobTracker starts
up, it looks for any such data, so that it can restart work from where it left
off. The allocation of work to TaskTrackers is very simple. Every TaskTracker
has a number of available slots and every active map or reduce task takes up
one slot. The JobTracker allocates work to the tracker nearest to the data with
an available slot. There is no consideration of the current system load of the
allocated machine, and hence its actual availability. If one TaskTracker is very
slow, it can delay the entire MapReduce job, especially towards the end of a
job, where everything can end up waiting for the slowest task. With speculative
execution enabled, however, a single task can be executed on multiple slave
nodes.

An advantage of using HDFS is data awareness between the JobTracker and
the TaskTracker. The JobTracker schedules map or reduce jobs to TaskTrackers
with an awareness of the data location. For example: if node A contains data
(x,y,z) and node B contains data (a,b,c), the JobTracker schedules node B to
perform map or reduce tasks on (a,b,c) and node A would be scheduled to
perform map or reduce tasks on (x,y,z). This reduces the amount of traffic that
goes over the network and prevents unnecessary data transfer. When Hadoop
is used with other file systems this advantage is not always available. This can
have a significant impact on job-completion times, which has been demonstrated
when running data-intensive jobs. A few applications can be solved with a single
MapReduce job, while the others are based on several MapReduce steps which
run in series to accomplish specific tasks, i.e. Map1 → Reduce1 → Map2 →
Reduce2 → Map3 . . .

3 Case Study: Hsp70

In the context of this work, the input dataset for testing the clustering algorithm
consisted of a molecular dynamics (MD) trajectory of the human protein Hsp70
in complex with ADP ligand. Hsp70 is a molecular chaperone, which prevents
the incorrect folding of other proteins, or it is involved in protein translocation
though the mitochondrial membrane [11]. This protein belongs to a large protein
family, which is present in different organisms, from bacteria to human. Hsp70
displays two active conformations the closed bound to ADP and the open bound
to ATP. Due to the absence of crystallized human structure, simulated protein
was build with homology modelling based on bacterial DnaK in ATP conforma-
tion [12]. The analysis consists in evaluating the effect of the nucleotide exchange
(ATP to ADP) on protein conformation (open to closed). To identify the more
stable conformation, that is the conformation assumed more frequently during
the trajectory, cluster analysis is a useful tool.

In detail, the complex has about 600 atoms. To evaluate the protein con-
formation two independent trajectories of 25 ns and 100 ns of MD simulation of
the solvated complex were obtained with Gromacs 4.0 [13]. Both trajectories
were skipped every 50 frames, and we obtained two trajectories of 500 and 2000
conformations [14]. The two files have a size of, respectively, 200 and 800 MBs,
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Fig. 2. Histogram of the cluster population distribution in the Hsp70 example with
2000 conformations. The GROMOS algorithm creates 30 clusters of decreasing dimen-
sion. The second and third clusters represent, respectively, the open and closed con-
formation of the HPS70 protein, while the first cluster represents an intermediate
conformation between the two.

while the original one has a size of about 40 GB [15]. Cut-off was set at 0.5 nm,
in agreement with the number of atoms to be clustered and to the protein con-
formation type. This is also the default value for GROMOS: higher values result
in less clusters, composed by a larger number of points and vice versa for smaller
values.

We performed the clustering analysis using the g cluster tool provided by the
GROMACS suite. Considering the largest test, at the end of clustering analysis
we obtain 30 clusters distributed as shown in Fig. 2. The first three clusters can
be considered representative for this simulation. As shown in Fig. 3 the central
structure of the first cluster obtained is an intermediate conformation between
the open and the closed one, showing that molecular dynamics simulation is a
useful tool to evaluate a conformational change and clustering allow to identify
a representative conformation. The second test presents a subsampling of this
distribution, with a very similar profile for what concerns the first three clusters.

4 Implementation

In this section we discuss our strategy to achieve a proof-of-concept implemen-
tation of GROMOS relying on Apache Hadoop.
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Fig. 3. Central structure of the first cluster. Hsp70 sub-domains are shown in different
colours for the open conformations, in solid colours the central structure of the first
cluster, in transparent colours the starting conformation, and in transparent grey the
closed conformations. (Color figure online)

Data Structure and Pre-processing. Figure 4 shows the data structure contained
in the trajectories file. Each row in the file contains the atom id, the atom type,
the residue name, the chain to which it belongs, the residue number, the x,
y, z coordinates, the occupancy, and the B-factor. Before the execution of the
analysis the trajectory file is stored on HDFS and therefore split into several
parts.

In this step we extract, in parallel, only the trajectories related to the atoms
involved in the computation. This is implemented with several map tasks (typ-
ically one for each file split) that retrieve data relying on the type of atom
of interest (step A). In a preliminary implementation we re-created a data file
with only these data with a Reducer task. Considering that these data are used
only in the next step we disregarded the use of the reducer task. In conclu-
sion the input pairs correspond to the row of the trajectory file, having the line
number as key. The output is composed by a subset of these pairs, those cor-
responding to Cα, where the time instant is added. The schema of these (key;
value1+value2+value3+) pairs is:

( l inenumber ; Atomid | CA | . . . | x | y | z | . . . | t ime in s t an t )
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Fig. 4. The data structure within trajectories file.

Retrieval of the Coordinates from Trajectory Files. Subsequently, every Map
task reads portions of the new trajectories file and associates to each atom the
x, y, z coordinates assumed at a given time instant (step B). The schema of
these (key,values) pairs is:

(Atomid ; xyzt0 | xyzt40 | xyzt122 )

At the end of the Map tasks, a Reducer collects all data and creates a new sin-
gle file containing the coordinates of all atoms for each frame. The data structure
used by Map Task to temporary store the coordinates consists of an id that iden-
tifies the atom and a list in which each node is formed by an object that wraps
the coordinates taken by the atom at a given time instant. In this way we get
a list of nodes in which each node represents a time frame with inside the coor-
dinates taken from the atom at that instant. The schema of these (key,values)
pairs is:

(Atomid ; xyzt0 | xyzt1 | xyzt2 | . . . | xyztstop )

Creation of Distances Matrix. Once we have created the file containing all the
coordinates of all atoms for each frame as described in step B, new Map tasks
are performed to calculate the Euclidean distance of the positions taken by each
atom at each time instant (step C). The schema of these (key,values) pairs is:

(Atomid ; d i s t ( t0 , t1 ) | d i s t ( t0 , t2 ) | . . . )

After completing these tasks, a Reducer collects data by summing the various
distances of all atoms at each time frame to obtain the variation of the centre of
gravity of the entire molecule with respect to all the others frames. The schema
of these (key,values) pairs is:
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Fig. 5. Apache Hadoop implementation of the GROMOS algorithm. (Color figure
online)

( Conformation i ; rmsd ( conformation i , conformation j ) | . . . )

Clustering. The distances matrix resulting from step C is processed by several
Map tasks: the matrix is divided in different parts and each part is elaborated by
a single Map task that produces partial frame clusters on the basis of a cut-off
established a priori (in our case it is set to 0.5 nm, as said before). The schema
of these (key,values) pairs is:

( Conformation i ; i sne i ghbour 0 | i sne i ghbour 14 | i sne i ghbour 122 )

A Reducer task manages the data and defines the final frame clusters, select-
ing the biggest one, and removing the frame associated with the largest cluster
from the other ones (step D). The schema of these (key,values) pairs is:

( Conformation i ; numneighbours )

The elaboration is repeated until clusters consume themselves. In this case,
the processing is the union of a parallel part (the elaboration of parts of matrix
by Map tasks) and a serial part (the reorganization of clusters and the cycle
until the end of the clusters by the Reducer task). The schema of the Apache
Hadoop computation of the same matrix presented in Fig. 1 is presented here in
Fig. 5.

5 Results

The computer cluster named imatihpc has been used to experiment our Hadoop
based solution and it is composed by three computational nodes and a front-end
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node, each of those presents the following hardware configuration: two 6-core
Intel Xeon E5645 CPUs, 32 GB of RAM, 2 TB of SATA hard disk. Nodes are
linked together with a Gigabit network connection. The Hadoop cluster follows
the physical configuration of the imatihpc cluster on which it is implemented: the
front-end node acts as the master while the 3 nodes used for the computation
act as a slave, with an HDFS file system of 3 TB.

The exact reproducibility of the achieved clusters, and therefore the consis-
tency of the biological results, is clearly an essential prerequisite for any paral-
lel implementation of this algorithm. Considering our Hadoop implementation,
results are exactly the same of the ones achieved with the sequential algorithm.
Therefore, we have 30 clusters for the large example, representing all the pro-
tein conformations achieved during the Molecular Dynamics simulations, and a
sub-sampling of these for the small example in which, however, the distribution
of the first three clusters is clearly conserved.

Performances are shown in Table 1. They are based on the average on 10
executions. The Hadoop framework automatically determines the number of
parallel processes. Typically, a MapTask is created for each map split, and there
is a map split for each input file or, for files larger than the data block size of
HDFS, with 64 MB as default value, there is a MapTask for each data block.
This means that in the first test (500 conformations) 2 MapTask are launched,
and 13 in the second test (2000 conformations). The number of ReduceTasks is
normally set to 1, in order to create the result at a global level and to produce
results also when one or more nodes of the cluster fail.

The first step of the algorithm (A - Data Structure and pre-processing)
achieves good results because a good overlapping between the map and reduce
tasks. Similar considerations hold true for the second step (B - Retrieval of the
coordinates from trajectories file). In both cases the speedup in the first case is
around 2, in the second around 10. The last two steps (C - Creation of distances
matrix, D - clustering) instead suffer of the framework overheads and of the
bottleneck due to the reduce task, presenting therefore a speedup of 1.3 and 7
respectively.

Table 1. Elapsed times (Sec) of the sequential and MapReduce versions of the Gromos
algorithm subdivided in the steps described in Sect. 4.

500 2000

A B C+D A B C+D

Sequential 3.40 1.2 54.75 19.38 5.06 2184.10

MapReduce 1.70 0.6 41.88 1.8 0.49 312.50
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6 Conclusions

Structure clustering is very important in the analysis of Molecular Dynamics tra-
jectories, since it allow the identification of stable conformations. The number
of structures to analyse in this kind of analysis is very high because the increas-
ing computational power allows the generation of very large simulations, which
poses important scalability problems to clustering algorithm. Here we present
a Hadoop based solution to accelerate the loading of data into memory, which
is the real bottleneck of this algorithm. The presented results show interesting
performance figures, which support the use of Hadoop when analysing very large
data files.
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Abstract. Mass spectrometry is a well-known technology used for the analysis
of pure compounds as well as mixtures, widely applied in large-scale studies such
proteomic studies. The result of mass spectrometric analyses is a mass spectrum,
a profile of mass/charge values and corresponding intensity values originated
from the analyzed compounds. In the case of large-scale analyses, raw mass
spectra comparisons are difficult due to different drawback typologies: data
defects, unusual distributions, underlying disturbs and noise, bad data calibration.
A bunch of data elaborations is essential, from data processing to feature extrac‐
tion, in order to obtain a list of peaks from different mass spectra. In this work, a
workflow has been developed to process raw mass spectra and compare the new
tidy ones with the aim of defining a robust procedure, suitable for real applications
and reusable for different kind of studies. A similarity measure has been used for
comparison purposes, in order to verify similarity among replicates and differ‐
ences among analyzed samples, and a clustering method has been performed on
fish species, in order to discover how they cluster statistically. A case study is
shown with the application of the processing method to data obtained from the
analysis of different fish species.

Keywords: Proteomics · Mass spectrometry · MALDI-TOF · Similarity
measures · R environment

1 Scientific Background

Proteomics is a scientific discipline focused on the identification and structural analysis
of all the proteins expressed by a biological system (such as an organism, a tissue etc.) in
a determined state and of proteins that change their expression level when the biological
system is subjected to a perturbation, for instance, a pathological condition. Proteomic
studies produce large-scale datasets and together with other “omics” disciplines, have a
fundamental role in biomedical research. Mass spectrometry is the analytical technology
used in proteomics and metabolomics, which allows analyzing proteins, peptides and
different metabolites. Matrix-Assisted Laser Desorption Ionization-Time of Flight mass
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spectrometry (MALDI-TOF-MS) is one of the most used technique in proteomics. In
MALDI-TOF-MS, samples are mixed with an appropriate matrix (an organic compound
with a strong optical absorption in the UV range), and, upon a laser irradiation, sample
molecules are ionized and desorbed as gaseous ions. These ions are accelerated and trans‐
ferred to the TOF analyzer. The ions, accelerated by the electric field, acquired velocities
that are inversely proportional to their mass/charge, i.e. heavier particles reach lower
speeds values, therefore ions are separated in the TOF and, from the TOF measures, the
ion mass/charge value can be calculated. This technology gives the benefit of getting large
amounts of data in a short time and with a high-resolution, accuracy and sensitivity of
molecular mass measurements [1, 2]. The most common data representation is a mass
spectrum, an indented profile where mass/charge values are reported in abscissa and the
corresponding intensities are reported in ordinate. The intensity is usually shown in
percentage, in relationship with the tallest (base) peak. The comparison of mass spectra
data is a common task in proteomics, in order to detect signals that can represent a signa‐
ture of each group. The comparison can be performed among replicates from the same
sample or, more interestingly, among different sample groups.

2 Materials and Methods

2.1 Data and Tools

Mass spectra used to set up the procedure have been obtained from the analysis of protein
extracts of fish muscle by MALDI-TOF-MS, as previously described in [3]. In particular,
mass spectra of sixteen different fish species, four belonging to the same genus
(Diplodus) and the others belonging to different genera, have been chosen for this study,
as shown in Table 1. Related common names have been retrieval from FishBase data‐
base, available online [4].

Table 1. Fishes species, with common English name

Scientific name Common name
Auxis thazard Frigate tuna
Coryphoena hippurus Common dolphinfish
Diplodus annularis Annular seabream
Diplodus puntazzo Sharpsnout seabream
Diplodus sargus White seabream
Diplodus vulgaris Common two-banded seabream
Engraulis encrasicolus European anchovy
Lophius piscatorius Angler
Pagellus erythrinus Common pandora
Perca fluviatilis European perch
Sarda sarda Atlantic bonito
Sardina pilchardus European pilchard
Scomber scombrus Atlantic mackerel
Solea solea Common sole
Thunnus albacares Yellowfin tuna
Trachurus trachurus Atlantic horse mackerel
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Each fish has been represented by six mass spectra, three replicates for two samples.
The work has been performed in R environment, mainly using the following packages:
MALDIquant, MALDIquantForeign [5], OrgMassSpecR [6] and pvclust [7].

2.2 Data Processing

The workflow of our mass spectrometry data analysis is shown in Fig. 1. The software
related to the bio-spectrometry workstation supplies a data matrix, where the first column
represents the m/z values (or m/z ratios, or masses) and the second one represents their
intensity; a header is also present, with the information about the id number and the base
(tallest) peak for each experiment. Metadata from header have been stored by means of
regular expressions, mass spectrum data have been extracted from a .txt file and trans‐
formed in a special object, for a simpler access. This object is constituted by class type,
number and range of m/z values, range of intensity values, memory usage and mass
spectrum name (if available). After raw data storage, two prearranged controls have
been verified: if the mass spectrum is empty and if the distances between two consecutive
mass points are equal or monotonically increasing.

Fig. 1. Mass spectrum data analysis workflow.

2.3 Mass Spectra Transformation

Due to specific features of MALDI-TOF-MS [8], peak intensity values could vary
between different measurements on the same substance or sample. Hence, a strengthened
normalization is compulsory for comparing several mass spectra from the same sample
and different experiments. Global and local transformations have been performed on
mass spectra: one for a normalization on each entire mass spectrum, one for a normal‐
ization on different parts of the mass spectrum. In particular:

• variance stabilization, in order to shift the data for a better graphical result and to
avoid a dependency between variance and mean, for example, using a square root
transformation [9];
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• smoothing, in order to reduce noise coming from artefacts or other underlying
disturbs and, consequently, to improve the signal-to-noise ratio, for example, using
the Savitsky-Golay filter [10];

• baseline correction, in order to control the amplification of chemical noise in the low
mass range, for example, using the Statistics-sensitive Non-linear Iterative Peak-
clipping (SNIP) algorithm [11];

• normalization, in order to preserve the proportionality between the intensity of
different peaks of the mass spectrum, for example, using Total Ion Current (TIC)
method, the most common normalization technique for MALDI-TOF data [12].

Some details are available. Before the variance stabilization, the m/z range has been
trimmed in 4000–14000, in order to eliminate upper-lower bounds noise for the
following elaborations. The window dimension used for the smoothing step has been
chosen in a heuristic way, taking in account that its dimension should be smaller than
the full width at half maximum (FWHM) of the peaks: the zone considered is the one
near the highest peak for each fish species (one random sample for species). The resulting
average value is 11 points. The number of iterations about the baseline correction is 25
(among the attempts 25, 50, 75, 100), because it is the value which is more adaptive
with the spectra profiles, as shown in Fig. 2.

Fig. 2. Different number of iterations about the baseline correction algorithm. The most adaptive
profile is the one related to 25.

2.4 Peak Extraction

The set of the most important peaks from a mass spectrum represents a simpler fingerprint
for the sample. At first, an alignment procedure is required to obtain a preliminary corre‐
spondence between the highest peaks from mass spectrum replicates and to preserve an
average mass spectrum, useful for following comparison purposes. Local Weighted Scat‐
terplot Smoothing (LOWESS) technique has been chosen as warping algorithm for the
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alignment, because phase errors need a correction due to their non-additive nature: it is
different from other regression method (linear, polynomial), because it is applied on data
subsets, with better performances in extracting local variability of data. After having esti‐
mated an overall noise on the mass spectra, peaks have been locally detected with the
Median Absolute Deviation (MAD) method [13]: a priori knowledge of mass spectra can
help in selecting a suitable window size (as for the smoothing) for data subsets and signal-
to-noise ratio. In particular, the signal-to-noise ratio has been selected with a value of 3,
chosen after some proofs from 1 to 5 values, as a good compromise between number of
remaining peaks and further noise eliminated (Fig. 3).

Fig. 3. Different signal-to-noise ratio (SNR) values for peaks detection algorithm. A good sub-
optimal solution can be 3, in order to eliminate the mostly part of noise, without reducing the
peaks number too much.

Peak extraction shows that mass values are very similar, but not the same. A binning
step has been executed, thus only one abscissa value represents the sets of aligned peaks
from each mass spectrum.

2.5 Validation Analysis

Feature matrix can be useful for further statistical analysis: missing values have been inter‐
polated from all the mass spectra and only the peaks over a selected frequency threshold
have been kept. It is possible that only one interval of m/z values can be characteristic for a
sample, thus a zoom on the mass spectrum or on the peaks can be more descriptive than the
entire dataset. Moreover, numerical and graphical analyses of different mass spectra from the
same sample have been performed. A good similarity measure is the cosine correlation, also
called dot product, which considers two lists of peaks as vectors, and the cosine of the angle
establishes how much they are similar [14, 15]. Cosine correlation has been calculated with
OrgMassSpecR package, and a head-to-tail plot between a reference and a target mass
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spectrum has been shown for a visual comparison about peaks and a consequent mass spec‐
trum discrimination. Because of the strict relationship between Pearson’s correlation and
cosine correlation [16], it is possible:

– to extract a dissimilarity measurement (similar to Pearson’s distance) and to create a
distance matrix among the mass spectra, for studying their clusterization;

– to provide a statistical validation on cosine correlation, using a t-Student’s test with
a significance level of 0.95. All the p-values have been improved by means of the
classical Bonferroni-Holm and Benjamini-Hochberg corrections, concerning a
multiple comparisons problem.

3 Results

Starting from raw or partially processed mass spectra, it is possible to obtain a refined one
with a smoothed trend, a low level of noise and evident peaks, which characterize the
chosen dataset. In Fig. 4, five replicate mass spectra from D. puntazzo have been assem‐
bled together, in order to get a clear profile for this sample. The peaks have been marked
with a cross: 150 intensity values have been recognized as peaks after the processing,
approximately 1.5 % of the total mass spectrum length, and ten of them are the highest,
over a threshold of 25 % about the presence in all the samples for one species. Thus, three
m/z regions in this average mass spectrum include the most intense peaks: the first region

Fig. 4. Average mass spectrum extracted by five mass spectra from D. puntazzo samples. Crosses
show all the detected peaks, numbers highlight the most important ten of them (more than 25 %
about the presence in all the samples for one species).

Comparative Analysis of MALDI-TOF Mass Spectrometric Data in Proteomics 159



around 4000, the second around 6000, the third around 12000, and they can be assumed as
identifiers (the isolated peaks in 8455 and in 13250 require a more accurate study).

Fig. 5. Head-to-tail plots with spectrum similarity values (trimmed version). Top: plot between
D. puntazzo average mass spectrum peaks (upper) and D. puntazzo sample mass spectrum peaks
(lower). Bottom: plot between D. puntazzo average mass spectrum peaks (upper) and A. thazard
sample mass spectrum peaks (lower).
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Two comparisons have been performed over the average mass spectrum, as shown
in Fig. 5. After randomly choosing a mass spectrum from D. puntazzo to make a
comparison and using the others to construct the average mass spectrum, head-to-tail
graph shows that sample mass spectrum is very similar (taking in account the peaks) to
the average one. Moreover, a quantitative measurement assures a similarity of 83.8 %,
thus, as expected, it is possible to say that sample mass spectrum is coherent with the
average one. At the same time, the average mass spectrum can be used for performing
a control over a mass spectrum extracted from a different dataset. The external control
has been made with an A. thazard mass spectrum: both graphical effect - different peak
profile - and cosine correlation calculation - a similarity of 61.3 % - reveal that the new
mass spectrum is not coherent with the average one. The elimination of the noise in the
range 4000–14000 does not show relevant modification in the evaluation.

For further information, the first similarity percentage becomes 84.8 %, while the
second one becomes 60.3 %: thus, peripheral mass spectrum noise, in the m/z regions
2000–4000 and 14000–20000, weights only for the 1 %. The Leave-One-Out method‐
ology, performed iteratively for the construction of the average mass spectra, has showed
as Diplodus Puntazzo has mean 0.862 and standard deviation 0.021, in term of multiple
evaluations of the spectrum similarity. The same methodology has been applied for each
fish family, underlying that, in our database, Diplodus Puntazzo is the ‘worst’ case, as
shown in Table 2. Thus, a value of 0.840 can be considered as (the lowest) threshold,
used to say if a mass spectrum comes from the same species or not. The result with (*)
has been considered as an outlier.

Table 2. Mean similarity score, calculated with Leave-One-Out technique

Scientific name Mean ± standard deviation
Auxis thazard 0.982 ± 0.010
Coryphoena hippurus 0.984 ± 0.006
Diplodus annularis 0.986 ± 0.012
Diplodus puntazzo 0.862 ± 0.021
Diplodus sargus 0.959 ± 0.011
Diplodus vulgaris 0.972 ± 0.026
Engraulis encrasicolus 0.980 ± 0.008
Lophius piscatorius 0.985 ± 0.010
Pagellus erythrinus 0.985 ± 0.010
Perca fluviatilis 0.865 ± 0.116 (*)
Sarda sarda 0.981 ± 0.006
Sardina pilchardus 0.978 ± 0.005
Scomber scombrus 0.979 ± 0.007
Solea solea 0.935 ± 0.028
Thunnus albacares 0.981 ± 0.010
Trachurus trachurus 0.973 ± 0.004

In Fig. 6, dataset dendrogram, built from the distance matrix, has been shown. Each
fish genus has a well-defined cluster, under a cut-off of 0.3. The most valuable results
are:
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1. the light blue cluster - with fish species 01, 02, 03, 04 - which represents the Diplodus
genus;

2. the last purple cluster - with fish species 11, 13, 14, 16 - which represents three fishes
from the same family (Sarda sarda, Scomber scombrus and Thunnus albacares) and
one from a singular species (Sardina pilchardus).

The correction about multiple comparisons problem has been made especially to validate
the intra-family cosine correlations. The difference in the use of Bonferroni-Holm, or
Benjamini-Hochberg, is not so sensible in the intra-family cosine correlations (whereas
the number of validated extra-family cosine correlations increases considerably, around
five times, with the second method).

In Fig. 7, another dendrogram has been built from the feature matrix, more restrictive
in terms of peaks, and with a different R package (pvclust) which concerns a hierarchical
clustering with bootstrapping: the two previous results are unchanged.

Fig. 6. Dataset dendrogram, in which the code represents fish_sample_replicate. Legend for fish:
01 D. vulgaris, 02 D. sargus, 03 D. puntazzo, 04 D. annularis, 05 P. erythrinus, 06 L.
piscatorius, 07 T. trachurus, 08 A. thazard, 09 E. encrasicolus, 10 C. hippurus, 11 S. sarda, 12
P. fluviatilis, 13 S. pilchardus, 14 S. scombrus, 15 S. solea, 16 T. albacares

Fig. 7. Hierarchical clustering with bootstrapping for the same dataset. The legend is the same
as in Fig. 4. The cut-off is at 0.3.
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4 Conclusion

The proposed workflow starts from importing raw mass spectra data and it ends with
analyzing and comparing tidy mass spectra data: intermediate steps concern mass
spectra and peaks processing. Peak extraction allows implementing a comparison
between an average mass spectrum and a sample one, in order to perform a comparison
and to determine if the sample mass spectrum is graphically coherent with the average
one, as shown in the first example, or not, as shown in the second one. Similarity measure
(cosine correlation) and Pearson’s distance quantify the difference among mass spectra.
At last, fish species has been clustered, revealing that the clusters, tied to mass spectrum
peaks, have a connection in term of phylogenetic classification.

Possible future applications of this work include the creation of a tool for sample
identification, on the basis of comparison to reference datasets, as already performed in
the case of bacteria identification through the analysis of intact cells by MALDI-TOF-
MS [17], or for sample classification, especially useful in biomedical application, for
instance to classify pathological or non-pathological samples [18]. From a statistical
point of view, it is possible to perform a discriminant analysis (linear or diagonal) to
find the peaks that are typical for a specific species [19] and to apply over them a variable
selection by means of cross validation [20], even if it should pay attention about the hard
reduction of peaks number during the feature matrix creation.
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Abstract. The amount of completely sequenced chloroplast genomes
increases rapidly every day, leading to the possibility to build large-scale
phylogenetic trees of plant species. Considering a subset of close plant
species defined according to their chloroplasts, the phylogenetic tree that
can be inferred by their core genes is not necessarily well supported,
due to the possible occurrence of “problematic” genes (i.e., homoplasy,
incomplete lineage sorting, horizontal gene transfers, etc.) which may
blur the phylogenetic signal. However, a trustworthy phylogenetic tree
can still be obtained provided such a number of blurring genes is reduced.
The problem is thus to determine the largest subset of core genes that
produces the best-supported tree. To discard problematic genes and due
to the overwhelming number of possible combinations, this article focuses
on how to extract the largest subset of sequences in order to obtain the
most supported species tree. Due to computational complexity, a dis-
tributed Binary Particle Swarm Optimization (BPSO) is proposed in
sequential and distributed fashions. Obtained results from both versions
of the BPSO are compared with those computed using an hybrid app-
roach embedding both genetic algorithms and statistical tests. The pro-
posal has been applied to different cases of plant families, leading to
encouraging results for these families.

Keywords: Chloroplasts · Phylogeny · Genetic algorithms · Lasso test ·
Binary Particle Swarm Optimization

1 Introduction

The multiplication of completely sequenced chloroplast genomes should normally
lead to the ability to infer reliable phylogenetic trees for plant species. This is
due to the existence of trustworthy coding sequence prediction and annotation
software specific to chloroplasts (like DOGMA [1]) and of accurate sequence
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alignment tools. Additionally, given a set of biomolecular sequences or charac-
ters, various well-established approaches have been developed in recent years to
deduce their phylogenetic relationship, encompassing methods based on Bayesian
inference or maximum likelihood [2]. Robustness aspects of the produced trees
can be evaluated too, for instance through bootstrap analyses. In other words,
given a set of close plant species, their core genome (the set of genes in common)
is as large and accurately detected as possible, to hope to be able to finally obtain
a well-supported phylogenetic tree. However, all genes of the core genome are
not necessarily constrained in a similar way, some genes having a larger ability
to evolve than other ones due to their lower importance: such minority genes tell
their own story instead of the species one, blurring so the phylogenetic informa-
tion. The link between the robustness and accuracy of the phylogenetic tree, and
the amount of data used for this reconstruction, is not yet completely understood.
More precisely, if we consider a set of species reduced to lists of gene sequences,
we have an obvious dependence between the chosen subset of sequences and the
obtained tree (topology, branch length, and/or robustness). This dependence is
usually regarded by the mean of gene trees merged in a phylogenetic network.
This article investigates the converse approach: it starts by the union of whole
core genes and tries to remove the ones that blear the phylogenetic signals. More
precisely, the objective is to find the largest part of the genomes that produces a
phylogenetic tree as supported as possible, reflecting by doing so the relationship
of the largest part of the sequences under consideration.

Due to an overwhelming number of combinations to investigate, a brute force
approach is a nonsense, which explains why heuristics are considered.

A previous work [3] has proposed the use of an ad hoc Genetic Algorithm
(GA) to solve the problem of finding the largest subset of core genes producing
a phylogenetic tree as supported as possible. However, in some situations, this
algorithm fails to solve the optimization problem due to a low convergence rate.
The proposal of this research work is thus to investigate the application of the
Binary Particle Swarm Optimization (BPSO) to face our optimization challenge,
and to compare it to the GA one. A new algorithm has been proposed and
applied, in a distributed manner using supercomputing facilities, to investigate
the phylogeny of various families of plant species.

This article is indeed an extended and improved version of the work published
in the CIBB proceedings book [4]. New contributions encompass a second version
of the BPSO for phylogenetic studies together with its distributed algorithm. The
two BPSO versions are evaluated on a large number of new group of species. New
experimental results have been thus obtained with this BPSO based approaches
and with the genetic algorithm and further compared.

The remainder of this article is organized as follows. Section 2 gives a gen-
eral presentation of the problem, further recalls how to extract the restricted
set of core genes, and next presents various tools for constructing the phylo-
genetic tree from the hybrid approach. It ends with a brief description of the
BPSO metaheuristic. Section 3 describes the way the metaheuristic approach
is applied to solve problematic supports in biomolecular based phylogenies,
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considering the particular case of Rosales order. The distributed version of BPSO
algorithm using MPI is also discussed. Obtained results and comparisons with
GA approaches are detailed in Sect. 4. Finally, this paper ends with a conclusion
section, in which the article is summarized and intended future work is outlined.

2 Presentation of the Problem

2.1 General Presentation

Let us consider a set of chloroplast genomes that have been annotated using
DOGMA [1]. Following [5,6], we have then access to the restricted core
genome [5] (genes present everywhere) of these species, whose size is about one
hundred genes when the species are close enough. Sequences are further aligned
using MUSCLE [7] and the RAxML [2] tool infers the corresponding phyloge-
netic tree. If the resulting tree is well-supported (i.e., if all bootstrap values are
larger than 95) we can indeed reasonably consider that the phylogeny of these
species is resolved.

In a case where some branches are not well supported, we can wonder whether
a few genes can be incriminated in this lack of support. If so, we face an opti-
mization problem: find the most supported tree using the largest subset of core
genes. Obviously, a brute force approach investigating all possible combinations
of genes is intractable, as it leads to 2n phylogenetic tree inferences for a core
genome of size n. To solve this optimization problem, we have formerly pro-
posed in [3] a general pipeline detailed in Fig. 1. In this pipeline, the stage of
phylogenetic tree analysis mixes both genetic algorithm with LASSO tests in
order to discover problematic genes. However, deeper experimental investiga-
tions summarized in Table 1 have shown that such a pipeline does not succeed
to predict the phylogeny of some particular plant orders: in 14 groups of species
the pipeline produces a score of bootstrap lower than 95 (the b column). It is
important to understand what the bootstrap value represents before we can get
a good response for what is “good” or “poor” support.

Bootstrapping is a resembling analysis that involves taking columns of char-
acters out of the analysis, rebuilding the tree, and testing if the same nodes are
recovered. This is done through many (100 or 1000, quite often) iterations. If, for
example, you recover the same node through 95 of 100 iterations of taking out
one character and resampling your tree, then you have a good idea that the node
is well supported. If we get low support, this suggests that only few characters
support that node, as removing characters at random from your matrix leads to
a different reconstruction of that node.

We thus wonder whether a binary particle swarm optimization approach can
outperform the GA when finding the largest subset of core genes producing the
most supported phylogenetic tree (GA replaced by the BPSO in the “Phyloge-
netic tree analysis” box of Fig. 1).

Let us now give the general idea behind particle swarm optimization.
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Table 1. Results of genetic algorithm approach on various families.

Group occ c # taxa b Terminus Likelihood Outgroup

Gossypium group 0 85 84 12 26 1 −84187.03 Theo cacao

Ericales 674 84 9 67 3 −86819.86 Dauc carota

Eucalyptus group 1 83 82 12 48 1 −62898.18 Cory gummifera

Caryophyllales 75 74 10 52 1 −145296.95 Goss capitis-viridis

Brassicaceae group 0 78 77 13 64 1 −101056.76 Cari papaya

Orobanchaceae 26 25 7 69 1 −19365.69 Olea maroccana

Eucalyptus group 2 87 86 11 71 1 −72840.23 Stoc quadrifida

Malpighiales 422 78 10 96 3 −91014.86 Mill pinnata

Pinaceae group 0 76 75 6 80 1 −76813.22 Juni virginiana

Pinus 80 79 11 80 1 −69688.94 Pice sitchensis

Bambusoideae 83 81 11 80 3 −60431.89 Oryz nivara

Chlorophyta group 0 231 24 8 81 3 −22983.83 Olea europaea

Marchantiophyta 65 64 5 82 1 −117881.12 Pice abies

Lamiales group 0 78 77 8 83 1 −109528.47 Caps annuum

Rosales 81 80 10 88 1 −108449.4 Glyc soja

Eucalyptus group 0 2254 85 11 90 3 −57607.06 Allo ternata

Prasinophyceae 39 43 4 97 1 −66458.26 Oltm viridis

Asparagales 32 73 11 98 1 −88067.37 Acor americanus

Magnoliidae group 0 326 79 4 98 3 −85319.31 Sacc SP80-3280

Gossypium group 1 66 83 11 98 1 −81027.85 Theo cacao

Triticeae 40 80 10 98 1 −72822.71 Loli perenne

Corymbia 90 85 5 98 2 −65712.51 Euca salmonophloia

Moniliformopses 60 59 13 100 1 −187044.23 Prax clematidea

Magnoliophyta group 0 31 81 7 100 1 −136306.99 Taxu mairei

Liliopsida group 0 31 73 7 100 1 −119953.04 Drim granadensis

basal Magnoliophyta 31 83 5 100 1 −117094.87 Ascl nivea

Araucariales 31 89 5 100 1 −112285.58 Taxu mairei

Araceae 31 75 6 100 1 −110245.74 Arun gigantea

Embryophyta group 0 31 77 4 100 1 −106803.89 Stau punctulatum

Cupressales 87 78 11 100 2 −101871.03 Podo totara

Ranunculales 31 71 5 100 1 −100882.34 Cruc wallichii

Saxifragales 31 84 4 100 1 −100376.12 Aral undulata

Spermatophyta group 0 31 79 4 100 1 −94718.95 Mars crenata

Proteales 31 85 4 100 1 −92357.77 Trig doichangensis

Poaceae group 0 31 74 5 100 1 −89665.65 Typh latifolia

Oleaceae 36 82 6 100 1 −84357.82 Boea hygrometrica

Arecaceae 31 79 4 100 1 −81649.52 Aegi geniculata

PACMAD clade 31 79 9 100 1 −80549.79 Bamb emeiensis

eudicotyledons group 0 31 73 4 100 1 −80237.7 Eryc pusilla

Poeae 31 80 4 100 1 −78164.34 Trit aestivum

Trebouxiophyceae 31 41 7 100 1 −77826.4 Ostr tauri

Myrtaceae group 0 31 80 5 100 1 −76080.59 Oeno glazioviana

Onagraceae 31 81 5 100 1 −75131.08 Euca cloeziana

Geraniales 31 33 6 100 1 −73472.77 Ango floribunda

Ehrhartoideae 31 81 5 100 1 −72192.88 Phyl henonis

Picea 31 85 4 100 1 −68947.4 Pinu massoniana

Streptophyta group 0 31 35 7 100 1 −68373.57 Oedo cardiacum

Gnetidae 31 53 5 100 1 −61403.83 Cusc exaltata

Euglenozoa 29 26 4 100 3 −8889.56 Lath sativus



Binary Particle Swarm Optimization versus Hybrid Genetic Algorithm 169

Fig. 1. Overview of the proposed pipeline

2.2 Binary Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic optimization technique devel-
oped by Eberhart and Kennedy in 1995 [8]. PSOs have been successfully applied
on various optimization problems like function optimization, artificial neural net-
work training, and fuzzy system control. In this metaheuristic, particles follow a
very simple behavior that is to learn from the success of neighboring individuals.
An emergent behavior enables individual swarm members, particles, to take ben-
efit from the discoveries, or from previous experiences, of the other particles that
have obtained more accurate solutions. In the case of the standard binary PSO
model [9], the particle position is a vector of N parameters that can be set as
“yes” or “no”, “true” or “false”, “include” or “not include”, etc. (binary values).
A function associates to such kind of vector a score (real number) according to
the optimization problem. The objective is then to define a way to move the
particles in the N dimensional binary search space so that they produce the
optimal binary vector w.r.t. the scoring function.

In more details, each particle i is represented by a binary vector Xi (its
position). Its length N corresponds to the dimension of the search space, that
is, the number of binary parameters to investigate. A 1 in coordinate j of this
vector means that the associated j-th parameter is selected. A swarm of n par-
ticles is then a list of n vectors of positions (X1,X2, . . . , Xn) together with their
associated velocities V = (V1, V2, ..., Vn), which are N -dimensional vectors of
real numbers between 0 and 1. These latter are initially set randomly. At each
iteration, a new velocity vector is computed as follows:

Vi(t + 1) = wVi(t) + φ1

(
P best
i − Xi

)
+ φ2

(
P best
g − Xi

)
(1)

where w, φ1, and φ2 are weighted parameters setting the level of each three
trends for the particle, which are respectively to continue in its adventurous
direction, to move in the direction of its own best position P best

i , or to follow
the gregarious instinct to the global best known solution P best

g . Both P best
i and

P best
g are computed according to the scoring function.

The new position of the particle is then obtained using the equation below:

Xij(t + 1) =

{
1 if rij ≤ Sig(Vij(t + 1)),
0 otherwise,

(2)
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where rij is a threshold that depends on both the particle i and the parameter
j, while the Sig function is the sigmoid one [9], that is:

Sig(Vij(t + 1)) =
1

1 + e−Vij(t+1)
(3)

Let us now recall how to use a BPSO approach to solve our optimization problem
related to phylogeny [4].

3 Particle Swarm for Phylogenetic Investigations

3.1 BPSO Applied to Phylogeny

In order to illustrate how to use the BPSO approach, we have considered the
Rosales order, which has already been analyzed in [3] using a hybrid genetic
algorithm and Lasso test approach. The Rosales order is constituted by 9 ingroup
species and 1 outgroup (Mollissima), as described in Table 2. They have been
annotated using DOGMA and their core genome has been computed according
to the method described in [5,6]. Its size is equal to 82 genes. Unfortunately, the
phylogeny cannot be resolved directly neither by considering all these core genes
nor by considering any of the 82 combinations of 81 core genes.

Table 2. Genomes information of Rosales species under consideration

Species Accession Seq.length Family Genus

Chiloensis NC 019601 155603 bp Rosaceae Fragaria

Bracteata NC 018766 129788 bp Rosaceae Fragaria

Vesca NC 015206 155691 bp Rosaceae Fragaria

Virginiana NC 019602 155621 bp Rosaceae Fragaria

Kansuensis NC 023956 157736 bp Rosaceae Prunus

Persica NC 014697 157790 bp Rosaceae Prunus

Pyrifolia NC 015996 159922 bp Rosaceae Pyrus

Rupicola NC 016921 156612 bp Rosaceae Pentactina

Indica NC 008359 158484 bp Moraceae Morus

Mollissima NC 014674 160799 bp Fagaceae Castanea

As some branches are not well supported, we can wonder whether a few
genes can be incriminated in this lack of support, for a large variety of reasons
encompassing homoplasy, stochastic errors, undetected paralogy, incomplete lin-
eage sorting, horizontal gene transfers, or even hybridization. If so, we face the
optimization problem presented previously: find the most supported tree using
the largest subset of core genes.
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Genes of the core genome are now supposed to be lexicographically ordered.
Each subset S of the core genome is thus associated with a unique binary word
W of length n: for each i, 1 ≤ i ≤ n, Wi is 1 if the i-th core gene is in S and 0
otherwise. Any n-length binary word W can be associated with its percentage
p of 1’s and the lowest bootstrap b of the phylogenetic tree we obtain when
considering the subset of genes associated to W . Each word W is thus associated
with a fitness score value F = b+p

2 .
In the BPSO context the search space is then {0, 1}N , where N = 82 in

Rosales. Each node of this N -cube is associated with the set of following data:
its subset of core genes, the deduced phylogenetic tree, its lowest bootstrap b
and the percentage p of considered core genes, and, finally, the score b+p

2 . Notice
that two close nodes of the N -cube have two close percentages of core genes. We
thus have to construct two phylogenies based on close sequences, leading with
a high probability to the same topology with close bootstraps. In other words,
the score remains essentially unchanged when moving from a node to one of its
neighbors. It allows to find optimal solutions using approaches like BPSO.

During swarm initialization, the L particles (set to 10 in our experiments) of
a swarm are randomly distributed among all the vertices (binary words) of the
N -cube that have a large percentage of 1’s. The objective is then to move these
particles in the cube so that they will converge to an optimal node.

At each iteration, the particle velocity is updated by taking into account its
own best position and the best one considering the whole particle swarm (both
identified according to the fitness value). It is influenced by constant weight
factors as expressed in Eq. (1). In this one, we have set φ1 = c1 ·r1 and φ2 = c2 ·r2
where c1 = 1 and c2 = 1, while r1, r2 are random numbers belonging to [0.1,0.5],
and w is the inertia weight that is computed based on the following formula:

w = wmax − wmax − wmin

Imax
× I ′

cur (4)

where Imax represents the maximum number of iterations (or time step) and
I ′
cur is the current iteration. This equation determines the contribution rate of a

particle’s previous velocity and is determined as in [10].
To increase the number of included components in a particle, we reduce the

interval of Eq. (1) to [0.1, 0.5]. For instance, if the velocity Vij of an element is
equal to 0.51 and rij = 0.83, then Sig(0.51) = 0.62. So rij > Sig(Vij) and this
leads to 0 in the vector element j of the particle i. By minimizing the interval, we
increase the probability of having rij < Sig(Vij) and consequently the number
of 1s, which means more included elements in the particle (a larger number of
core genes).

Note that a large inertia weight facilitates a global search, while a small iner-
tia weight tends more to a local investigation [11]. In other words, a larger value
of w facilitates a complete exploration, whereas small values promote exploita-
tion of areas. This is why Eberhart and Shi [12] suggested to decrease w over
time, typically from 0.9 to 0.4, thereby gradually changing from exploration to
exploitation. Finally, each particle position is updated according to Eq. (2).
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3.2 Distributed BPSO with MPI

Traditional PSO algorithms are time consuming in sequential mode. The distrib-
uted version shown in Fig. 2 has thus been proposed to minimize the execution
time as much as possible. The general idea of the proposed algorithm is simple:
a processor core is employed for each particle in order to compute its fitness
value, while a last core called the master centralizes the obtained results. In
other words, if we have a swarm of ten particles, we use ten cores as workers and
one core as master (or supervisor).

Fig. 2. The distributed structure of BPSO algorithm.

More precisely, the master initializes the particles of the swarm and distrib-
utes them to the workers. When one worker finishes its job, it sends a “terminate”
signal with the fitness value to the master. This latter waits until all the workers
have finished their jobs. Then, it determines the position of the particle that has
the best fitness value as the global best position and sends this information to the
workers that update their respective particle velocity and position. This mecha-
nism is repeated until a particle achieves a fitness value larger than or equal to
95 with a large set of included genes. In the following, two distributed versions
of the BPSO described previously are considered: in version I the equation used
to update the velocity is slightly changed as shown below, and in version II we
use the equations of Sect. 2.2.

Distributed BPSO Algorithm: Version I. In this version Eq. (1), which is
used to update the velocity vector, is replaced by:

Vi(t + 1) = x · [Vi(t) + C1(P best
i − Xi) + C2(P best

g − Xi)] (5)

where x, C1, and C2 are weighted parameters setting the level of each three trends
for the particle. The default values of these parameters are C1 = c1 · r1 = 2.05,
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C2 = c2 · r2 = 2.05, while x which represents the constriction coefficient is
computed according to formula [13,14]:

x =
2 × k

|2 − C − (
√

C × (C − 4))| , (6)

where k is a random value between [0,1] and C = C1+C2, where C ≥ 4. Accord-
ing to Clerc [14], using a constriction coefficient results in particle convergence
over time.

Distributed BPSO Algorithm: Version II. This version is a distributed
approach of the sequential PSO algorithm presented previously in Sect. 2.2.

4 Phylogenetic Prediction

4.1 Genetic Algorithm Evaluation on a Large Group of Plant
Species

The proposed pipeline has been tested with the genetic algorithm on various
sets of close plant species. 50 subgroups, including on average from 12 to 15
chloroplasts species, encompassing 356 plant species, and already presented in
this document (c.f. Table 1) have been used with our formerly published genetic
algorithm. Obtained results with details are contained too in Table 1. Column
Occ represents the amount of generated phylogenetic trees from the correspond-
ing search space for each group. The column c represents the number of core
genes included within each group. The # taxa column is the amount of species
corresponding to the considered group. b is the lowest value from bootstrap
analysis. The Terminus column contains the termination stage for each sub-
group, namely: the systematic (1), random (2), or optimization (3) stage using
genetic algorithm and/or Lasso test. These stages, which have been proposed
in [3], correspond to the systematic deletion of 0 or 1 gene (N + 1 computations
for N core genes), random suppression of core genes (ranging from 2 to 5 genes),
and the so-called genetic algorithm on binary word populations improved by the
use of a statistical test. Finally, the Likelihood column stores the likelihood value
of the best phylogenetic tree (i.e., according to the lowest bootstrap value b).
A large occurrence value in this table means that the associated p-value and/or
subgroup has its computation terminated in either penultimate or last pipeline
stage. An occurrence of 31 is frequent due to the fact that 32 MPI threads (one
master plus 31 slaves) have been launched on our supercomputing facility.

Notice that the groups in Table 1 can be divided in four parts:

– Groups of species stopped in systematic stage with weak bootstrap values. This
is due to the fact that an upper time limit has been set for each group and/or
subgroups, while each computed tree in these remarkable groups needed a lot
of times for computations.

– Subgroups terminated during systematic stage with desired bootstrap value.
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Fig. 3. Average fitness of Rosales order

Table 3. Best tree in each swarm

Removed

Swarm genes F b

1 4 75.5 73

2 6 75.5 76

3 20 75 88

4 52 59.5 89

5 3 75.5 72

6 19 77.5 92

7 47 63.5 92

8 9 73.5 74

9 10 72.5 73

10 13 76.5 84

– Groups or subgroups terminated in random stage with desired bootstrap value.
– Finally, groups or subgroups terminated with optimization stages.

A majority of subgroups has its phylogeny satisfactorily resolved, as can be seen
on all obtained trees which can be downloadable at http://meso.univ-fcomte.fr/
peg/phylo. However, some problematic subgroups still remain to be investigated,
which explains why the distributed BPSO is considered in the next section.

4.2 First Experiments on Rosales Order

In a first collection of experiments, we have implemented the proposed BPSO
algorithm on a supercomputing facility. Investigated species are the ones listed in
Table 2. 10 swarms having a variable number of particles have been launched 10
times, with c1 = 1, c2 = 1, and w linearly decreasing from 0.9 to 0.4. Obtained
results are summarized in Table 3 that contains, for each 10 runs of each 10
swarms: the number of removed genes and the minimum bootstrap of the best
tree. Remark that some bootstraps are not so far from the intended ones (larger
than 95), whereas the number of removed genes are in average larger than what
is desired.

Seven topologies have been obtained after either convergence or maxIter iter-
ations. Only 3 of them have occurred a representative number of times, namely
the Topologies 0, 2, and 4, which are depicted in Fig. 4 (see details in Table 4).

These three topologies are almost well supported, except in a few branches.
We can notice that the differences in these topologies are based on the sister
relationship of two species named Fragaria vesca and Fragaria bracteata, and of
the relation between Pentactina rupicola and Pyrus pyrifolia. Due to its larger
score and number of occurrences, we tend to select Topology 0 as the best
representative of the Rosale phylogeny.

http://meso.univ-fcomte.fr/peg/phylo
http://meso.univ-fcomte.fr/peg/phylo
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Table 4. Best topologies obtained from the generated trees, b is the lowest bootstrap
of the best tree having this topology, = p is the number of considered genes to obtain
this tree.

Topology Swarms b p F Occurrences

0 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 92 63 77.5 568

1 1, 2, 3, 4, 5, 6, 10 63 45 54 11

2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 76 67 71.5 55

3 8, 1, 2, 3, 4 56 41 48.5 5

4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 89 30 59.5 65

5 1, 3, 4, 5, 6, 9 71 33 52 9

6 5, 6 25 45 35 2

To further validate this choice, CONSEL [15] software has been used on per
site likelihoods of each best tree obtained using the RAxML [2]. The CONSEL
computes the p-values of various well-known statistical tests, like the so-called
approximately unbiased (au), Kishino-Hasegawa (kh), Shimodaira-Hasegawa
(sh), and Weighted Shimodaira-Hasegawa (wsh) tests. Obtained results are pro-
vided in Table 5, they confirm the selection of Topology 0 as the tree reflecting
the best the Rosales phylogeny.

Table 5. The CONSEL results regarding best trees

Rank item obs au np bp pp kh sh wkh wsh

1 0 −1.4 0.774 0.436 0.433 0.768 0.728 0.89 0.672 0.907

2 4 1.4 0.267 0.255 0.249 0.194 0.272 0.525 0.272 0.439

3 2 3 0.364 0.312 0.317 0.037 0.328 0.389 0.328 0.383

After having verified that BPSO can be used to resolve phylogenetic issues
thanks to the Rosales order, we now intend to deeply compare the genetic algo-
rithm versus the swarm particle optimization. In order to do so, a large collec-
tion of group of plant species have been selected, on which we have successively
launched the genetic algorithm and the BPSO one in distributed mode.

4.3 Comparison Between Distributed Version of GA and the Two
Distributed Versions of BPSO

12 groups of plant genomes have been extracted from the 49 ones used in the GA
evaluation. More precisely, seven “difficult” groups have been selected from those
that have reached the third stage in genetic algorithm method (no resolution of
phylogeny during systematic and random modes). Conversely, five “easy” groups
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Fig. 4. The best obtained topologies for Rosales order

have been added in the pool of experiments, for the sake of comparison: in these
groups, the phylogeny has been resolved during the systematic mode. They have
been applied on our two swarm versions, and results have been compared to the
genetic algorithm ones. We have successively tested 10 and 15 particles (with
each of the two algorithms), on the supercomputer facilities.

Comparisons are provided in Tables 6 and 7. In these tables, Topo. column
stands for the number of topologies, NbTrees is the total number of obtained
trees using 10 swarms, b is the minimum bootstrap value of selected w, 100 − p
is the number of missing genes in w and Occ. is the number of occurrences of

Fig. 5. PSO with 10 and 15 particles vs. GA.
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Table 6. Groups from BPSO Version 1. Table 7. Groups from BPSO Version 2.

Table 8. PSO vs GA.

Group PSO Ver. I PSO Ver. II

10 15 10 15 GA

Ericales 53 54 51 52 67

Bambusoideae 72 69 84 82 80

Pinus 98 94 98 100 80

Chlorophyta 70 68 71 82 81

Eucalyptus 86 86 88 92 90

Malpighiales 65 69 72 84 96

Magnoliidae 100 100 100 100 98

Ehrhartoideae 100 100 100 100 100

Euglenozoa 100 100 100 100 100

Picea 94 100 100 100 100

Poeae 80 80 100 100 100

Trebouxiophyceae 100 100 100 100 100

the best obtained topology from 10 swarms. As can be seen in these tables, the
two versions of BPSO did not provide the same kind of results:

– In the case of Chlorophyta, Pinus, and Bambusoideae, the second version of
the BPSO has outperformed the first one, as the minimum bootstrap b of the
best tree is finally larger for at least one swarm.

– In the Ericales case, the first version has produced the best result.

We can also remark that Malpighiales has better b in GA than the two
versions of PSO. For easy to solve subgroups, Pinus data set has got maximum
bootstrap b larger than what has been obtained using the genetic algorithm,
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while Picea and Trebouxiophyceae have got the same values of b than in genetic
algorithm. More comparison results between GA and both versions of PSOs are
provided in Fig. 5.

According to this figure, we can conclude that the two approaches lead to
quite equivalent bootstrap values in most data sets, while on particular sub-
groups obtained results are complementary. In particular, PSO often produces
better bootstraps that GA (see Magnoliidae or on Bambusoideae), but with a
larger number of removed genes. Finally, using 15 particles instead of 10 does
not improve so much the obtained results (see Fig. 5 and Table 8).

5 Conclusion

This article has presented an original method to produce a well supported and
large-scale phylogenetic tree of chloroplast species where various optimization
algorithms are applied to highlight the relationships among given gene sequences.

More precisely, this method first discovers and removes blurring genes in the
set of core genes by applying a bootstrap analysis for each tree produced from a
subset of core genes. It then continues with integrating a discrete PSO method
to provide the largest subset of sequences. Two distributed versions of this PSO-
based optimization step have been developed in order to reduce the computation
time and memory used. Finally, a per site analysis by the CONSEL is applied: a
dedicated topological process analyses all the output trees and might use a per
site analysis in order to extract the most relevant ones. Our proposed pipeline has
been applied to various families of plant species. More than 65 % of phylogenetic
trees produced by this pipeline have presented bootstrap values larger than 95.

Acknowledgements. All computations have been performed on the Mésocentre de
calculs supercomputer facilities of the University of Franche-Comté.
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Abstract. We present a voxel-based methodology for the computation
of discrete representations of macromolecular surfaces at high resolu-
tions. The procedure can calculate the three main molecular surfaces,
namely van der Waals, Solvent-Accessible and Solvent-Excluded, by
employing compact data structures and implementing a spatial slicing
protocol. Fast Solvent-Excluded surface generation is achieved by adapt-
ing an approximate Euclidean Distance Transform algorithm. The algo-
rithm exploits the geometrical relationship between the Solvent-Excluded
and the Solvent-Accessible surfaces and limits the calculation of the dis-
tance map values to a small subset of the overall voxels representing the
macromolecule. A parallelization scheme for the slicing procedure is also
proposed and discussed.

Keywords: Macromolecular surface · High-resolution voxel surface ·
EDT

1 Introduction

Proteins are large molecules that play a vast range of biological functions by
intervening in virtually all cellular activities. Each protein consists of one or
more sequences of linear polymers (chains) of amino acids linked to each other by
peptide covalent bonds. The physicochemical properties of its components, along
with the surrounding environment (solvent), determine the proteins’ specific
three-dimensional (3D) shape. Proteins express their biological roles by binding
selectively and with high affinity to other biomolecules, which depends on the
formation of a set of weak, non-covalent bonds (hydrogen bonds, ionic bonds,
van der Waals interactions) plus favourable hydrophobic interactions. Because
the weakness of each individual bond, effective binding interactions require the
simultaneous formation of multiple weak bonds, which is only possible if the sur-
face contours of the interacting molecules are geometrically complementary. For
this reason, many in silico methods for the prediction of protein functions, prop-
erties and interactions require proper representations of the molecular surface
and its associated physicochemical properties.

To capture diverse aspects of the 3D geometry of proteins and macromole-
cules, different representations of the molecular surface have been introduced.
c© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 180–195, 2016.
DOI: 10.1007/978-3-319-44332-4 14
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Currently, the most used representations are: the van der Waals surface (vdW)
[1], the Solvent-Accessible surface or Lee-Richards surface (SAS) [2] and the
Solvent-Excluded surface (SES) or Connolly surface [3,4]. Surface calculations
of large biomolecules, such as proteins or nucleic acids, based on their experi-
mentally determined 3D structures (typically obtained by X-ray crystallography,
NMR spectroscopy, or, increasingly, cryo-electron microscopy) have been exten-
sively used in modern molecular biology studies [5–9].

Voxel-based molecular surface representations have received a lot of interest
in many bioinformatics and computational biology applications. A voxel is the
tiniest distinguishable element of a 3D object and can be thought as the equiva-
lent of a pixel in the 3D domain. It is a discrete volume element that represents
a single cell on a regularly spaced 3D grid. Voxels can be labelled with multiple
values, describing various properties of a certain portion of space, and have been
extensively used for visualization and analysis of scientific and medical data.

Voxelized protein surfaces are currently being employed in descriptor-based
protein docking, pairwise alignment of molecules, protein shape comparison,
pocket identification and FFT-based fast computations. Kihara et al. propose
protein docking, shape comparison and interface identification methods based on
3D Zernike descriptors (3DZD) [10–12], which are calculated over circular sur-
face patches of voxelized macromolecular surfaces. The voxelized representation
of a molecular surface can describe the molecule’s flexibility [13,14] and physico-
chemical property values, such as electrostatic potentials or hydrophobicity [15].
In [16] a ligand-binding pocket identification algorithm is introduced which uses
a voxelized representation of the Connolly surface. In [17,18] the Fast Fourier
Transform is used to efficiently match shape and electrostatic properties on sur-
face grid points for protein docking. Protein surface atoms extraction based on
a voxelized representation, which yields full atoms listings useful for studying
binding regions on protein surfaces, was introduced in [19]. In [20], a voxelized
protein representation is used for the identification and modelling of ligand bind-
ing areas. Grid representations of protein surfaces have also been used in cavity
detection, binding-pockets identification and evaluation techniques [21–24].

Although macromolecular structural data repositories such as the Protein
Data Bank (PDB) [25] have long been available, only a limited number of surface
representations is provided, primarily aimed for visualization purposes. Surface
calculation is an application-dependent task, resulting in multiple parametrisa-
tions based on the users’ requirements. Protein surfaces are usually produced at
runtime, adding high computational cost to the overall calculation. Moreover,
many of the techniques and algorithms employing voxel-based molecular sur-
faces derive the latter from other explicit representations such as triangle mesh
surfaces. Surface meshes are placed inside 3D grids, and the voxels whose centres
are intersected by or within a certain distance from the mesh faces are marked
as occupied (typically with 1, 0 otherwise), resulting in tremendous accuracy
loss for the final representation [26–28]. These näıve voxelization methods can-
not guarantee two important requirements that voxelized surfaces must exhibit:
separability and minimality [29]. The separability requirement ensures that the
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resulting voxelized surface is connected and gap-free. On the other hand, a min-
imal voxelized surface should not contain voxels that, if removed, make no dif-
ference in terms of separability.

In this paper we propose and analyse a methodology for the computation of
voxel-based fine-grained representations of the van der Waals, Solvent-Accessible
and Solvent-Excluded surfaces starting directly from their PDB entries. To the
extent of our knowledge, there are no available tools which can produce voxelized
surface representations of macromolecules at the desired resolutions starting
from their experimentally determined structural data (PDB entries). Several sur-
face computation and visualization tools are available to date (see Table 1), but
none of them provides voxelized representations of molecular surfaces. Represent-
ing and elaborating high-resolution 3D voxel grids requires memory-demanding
data structures as well as high computational resources. We deal with the mem-
ory requirements by implementing a compact representation of the voxel grid
and by implementing a spatial slicing protocol previously introduced in [30].
Only one bit is used to represent each voxel in the grid, which is eight times
less than the smallest elemental type (char) on most systems. The molecule is
sliced with parallel planes in a user-defined number of parts and the surface is
computed for each slice separately. A parallelization scheme is also proposed and
discussed. The parallel computation of voxelized surfaces on top of a compact
data representation is the key to reducing computation time while maintaining
accuracy, as shown by experimental results.

1.1 Macromolecular Surface Definitions

A molecule can be represented as a set of possibly overlapping spheres, each one
having a radius equal to the van der Waals radius of the atom it represents.
The topological boundary of this set of spheres is what is known as van der
Waals surface. For proteins and other macromolecules, much of the van der
Waals surface is buried in the inside of the molecules and is not accessible to the
solvent or possible ligands. For this reason, the van der Waals surface is rarely
used in bioinformatics applications. However, it is very important because it
serves as a foundation to other surface definitions, and also because it is the
basis of what is known as Corey-Pauling-Koltun (CPK) model (also known as
calotte model or space-filling model [41,42]).

The Solvent-Accessible and Solvent-Excluded surfaces determine the 3D
shape of the molecule in functional relationship with the external solvent. The
Solvent-Accessible surface is defined as the geometric locus of the centre of a
probe sphere (representing the solvent molecule) as it rolls over the van der
Waals surface of the molecule. The Solvent-Excluded surface is defined as the
locus of the inward-facing probe sphere as it rolls over the van der Waals surface
of the molecule. This surface can be considered as a continuous sheet consisting
of two parts: the contact surface and the re-entrant surface. The contact surface
is part of the van der Waals surface that is accessible to a probe sphere. The
re-entrant surface is the inward-facing surface of the probe when it touches two
or more atoms. There is a clear relation between the SAS and the SES, as the
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Table 1. Overview of some molecular surface computation tools.

Name Surface representation Comments

vdW SAS SES

PyMOL [31] dot, spheres dot, spheres mesh Scriptable molecular
visualization system;
extensible with Python

DeepView [32] dot dot mesh Tightly linked to
SWISS-MODEL, an
automated homology
modelling server

MSMS [33] n/a n/a dot, mesh Dot surface over-sampled in
some areas; can fail
computing the surface of
large molecules

UCSF chimera [34] dot, spheres dot, spheres dot, mesh Uses MSMS to compute the
SES. Supports interactive
visualization and analysis of
molecular structures, density
maps, assemblies, sequence
alignments, docking results
and trajectories

VMD [35] dot, spheres dot mesh Uses either SURF [36] or
MSMS to compute the SES.
Supports displaying,
animating, and analyzing
large biomolecular systems
using 3-D graphics and
built-in scripting

RasMol [37] dot, spheres spheres n/a Aimed at visualisation and
generation of publication
quality images

Jmol [38] dot, spheres dot, spheres dot, mesh Supports multiple molecules
with independent movement,
surfaces, orbitals, cavity
visualization and crystal
symmetry

Avogadro [39] mesh mesh n/a Advanced molecule editor;
extensible via a plugin
architecture

DS visualizer [40] mesh n/a mesh Commercial-grade graphics
visualization tool for
viewing, sharing, and
analysing protein and
modelling data
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Fig. 1. The three main molecular surfaces: van der Waals (green), Solvent-Accessible
(black) and Solvent-Excluded (blue). (Color figure online)

Solvent-Accessible surface is displaced outward from the Solvent-Excluded one
by a distance equal to the probe radius. Figure 1 gives a graphical representation
of the three molecular surfaces.

2 Materials and Methods

2.1 Surface Calculation Algorithm

The first step of the proposed methodology consists in acquiring the atomic
coordinates of a macromolecule from its corresponding Protein Data Bank entry.
The atomic coordinates of each atom composing the macromolecule and the
relative radius are stored in a dedicated data structure. By default, the radius
assignment for each atom type is based on the charmm27 force field [43], but
users can provide their own radii information.

Pose normalisation follows the data acquisition step. The centre of gravity
of the molecule is first translated to the coordinate origin. Then, a rotation is
applied to the atomic coordinates in order to align the three principal axes of
the molecule with the coordinate axes. The rotation matrix is determined by
running Principal Component Analysis on the atomic coordinates.

The algorithm calculates the tightest axis-aligned bounding-box enclosing the
whole molecule by determining the minimal and maximal atomic coordinates.
Given a user-defined grid resolution parameter, the dimensions of the voxel grid
which will contain the molecule are calculated. All atomic coordinates previously
imported are translated, scaled and quantized to the new coordinate system
defined by the voxel grid: each atom centre is mapped in its corresponding voxel
in the voxel grid.
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An adaptation of Bresenham’s line algorithm [44] is used to efficiently deter-
mine the voxels occupied by a given atom. Each atom in the molecule is repre-
sented by a ball having a radius equal to either the atom’s radius when calculat-
ing the vdW, or the atom’s radius increased by the solvent-probe’s radius when
calculating the SAS and SES. After all the atoms composing the macromolecule
have been mapped into the grid, we obtain the voxelized representation of the
CPK model.

To obtain the van der Waals or the Solvent-Accessible surfaces, the bound-
ary voxels of the voxelized representation of the CPK volumetric model of the
macromolecule are extracted using an efficient 3D flood-filling algorithm [45].
The Solvent-Excluded surface is trickier to calculate because it includes the
re-entrant surface portions. The proposed method is based on the Euclidean
Distance Transform (EDT) algorithm for surface smoothing.

The implemented tool supports four different output formats: the Point
Cloud Data file [46], OpenDX [47], Visualization Toolkit Structured Points and
Visualization Toolkit PolyData [48,49].

2.2 The Euclidean Distance Transform

A distance transform (also known as distance map or distance field), is a derived
representation of a digital image (usually a binary image). Distance maps are
images where the value of each voxel of the foreground is the distance to the
nearest voxel of the background. Let B ∈ {0, 1}l×w×h be a binary voxel grid of
length l, width w and height h. There are exactly l × w × h voxels in B, each
one identified by the ordered triple v = (i, j, k) ∈ V = {1, . . . , l}×{1, . . . , w}×
{1, . . . , h}. Also, let IB : V → {0, 1} be the image function of B defined as

IB(i, j, k) = bi,j,k ∈ {0, 1} , (1)

where bi,j,k is the value of voxel (i, j, k) in B. Let VO be the set of occupied
voxels of B, i.e.

VO = {v = (i, j, k) ∈ V | IB(i, j, k) = 1} . (2)

Also, let NBVB : V → VO, such that ∀v ∈ V , NBVB(v) is a nearest occupied
voxel of B to v, that is

NBVB(v) ∈ arg min
w∈VO

d(w,v) = {w ∈ VO | ∀y ∈ VO : d(w,v) ≤ d(y,v)} , (3)

according to some distance metric d. NBVB(v) is called the nearest boundary
voxel (NBV) of v in B. Clearly, if v ∈ VO then NBVB(v) = v.

Finally, the distance transform of B (also known as distance map or distance
field) is defined as a real-valued voxel grid DTB ∈ R

l×w×h such that

IDTB
(v) = d(v, NBVB(v)), ∀v ∈ V, (4)

where IDTB
: V → R is the image function of DTB .
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When the chosen distance metric is the Euclidean Distance we talk about
Euclidean Distance Transform (EDT). The Euclidean distance between two
points v,w ∈ R

3 is given by

d(v,w) = ‖w − v‖ =
√

(wx − vx)2 + (wy − vy)2 + (wz − vz)2. (5)

Squared Euclidean distance values among voxels are integers, and are often used
to avoid time-consuming square root calculations.

2.3 Computing the Solvent-Excluded Surface

The Solvent-Excluded surface computation is based on the Euclidean Distance
Transform. The employment of the Euclidean Distance Transform for macro-
molecular surface computation was first introduced in [50]. Let us consider the
voxel grid containing the SAS and its relative Euclidean Distance Transform
EDT (SAS). Because the SAS is displaced outward from the SES by a distance
equal to the probe radius, the latter can be obtained from the EDT (SAS) by
removing all voxels with a distance map value smaller than the probe radius
from the CPK model, and then extracting the surface voxels of the resulting
voxelized volume with the above-mentioned flood-filling algorithm.

To compute the SES, we only need distance values up to one probe-sphere
radius from the SAS, and only for voxels inside the volume delimited by the SAS.
We implemented the region-growing Euclidean Distance Transform algorithm
described in [51] which can limit the computation up to a certain distance value
and only to a given subset of the voxels in the grid. Starting from the voxels
in the SAS, nearest boundary voxels are propagated towards the interior of the
molecule. The boundary propagation is done considering voxels by increasing
distance values, until the desired depth inside the Solvent-Accessible volume is
reached.

The processing order of the voxels is enforced by a data structure called
Hierarchical Queues (HQ), made of a collection of FIFO queues labelled from 0 to
d2max. Ingoing voxel in the HQ are inserted in the queue with label corresponding
to their squared distance value. Outgoing voxels are extracted from the first non-
empty queue with the least label. This way voxels are guaranteed to be parsed
by increasing distance values. A map data structure is created to contain the
squared distance values of each voxel. At the end of the procedure, this map
will contain the squared Euclidean Distance Transform of the input voxel grid
containing the SAS.

The HQ is initialised with queue 0 containing all the voxels belonging to the
Solvent-Accessible surface, and all other queues empty. The map is initialised
with 0 for all voxels belonging to the SAS and with maxint for all other voxels.
Voxels are processed in the HQ-imposed order. For each voxel extracted from
the HQ, its NBV is passed to its neighbours. If this leads to a smaller distance
value than the previously stored one, the map is updated with the new value
and the neighbour is inserted in the HQ. This procedure allows voxels to be
mislabelled with a wrong NBV at first an then be corrected in a subsequent



Computing Discrete Fine-Grained Representations of Protein Surfaces 187

step when a closer boundary voxel is found. The parsing order imposed by the
HQ guarantees that errors are not propagated. Corrections are always processed
before the initial errors propagate since they have smaller distance values and
are placed in queues of smaller label.

Because the propagation is done only within a certain neighbourhood
(3 × 3 × 3), certain voxels might be assigned an erroneous distance value. Erro-
neous distance values arise because the correct NBV are not propagated. Prop-
agating boundary voxels to a larger neighbourhood (5 × 5 × 5) can significantly
diminish the percentage of erroneous distance values, but also increases the time
complexity of the algorithm. For this reason we adapted a two phase algorithm:
the distance map is first computed quickly with the 3 × 3 × 3 neighbourhood,
and then the 5 × 5 × 5 neighbourhood is used to correct errors made during the
first scan. The corrections are required only for a small subset of voxels, i.e. the
ones that were not propagated during the initial scan, and that have a distance
value greater than a certain threshold.

2.4 The Slicing Procedure

To enable the computation of high resolution surfaces in spite of memory limita-
tions we have developed a slicing protocol for the macromolecule. The molecule
is sliced in a user-defined number of parts, and the surface is calculated sep-
arately for each part in a sequential fashion. The slicing is done with planes
perpendicular to the x-axis of the Cartesian coordinate system (see Fig. 2).

Atom coordinates parsed from the PDB file are translated, scaled and quan-
tized to the coordinate system defined by each slice. For each slice, we subtract
the slice-length to the x coordinate of the translation vector k − 1 times, where
k is the current slice index (k = 1, 2, ..., n). The space filling procedure is per-
formed for each slice separately, also taking into account any portions of atoms
intersecting the slice whose centres might be located outside the current slice.

The correct determination of the distance map value for a given voxel requires
knowledge of all boundary voxels within one probe sphere distance from the given
voxel. Voxels in the immediate proximity of the slice borders require knowledge
regarding the nearby boundary voxels in the adjacent slices in order to correctly
calculate their distance map values. For this reason some extra margin on the x
coordinate must be considered for each slice in order for the surface computation
to yield correct results and it must be greater than the scaled and quantized
probe-sphere radius (see Fig. 3).

Proteins can have solvent-accessible pockets which often serve as binding
sites of other molecules. When running the spatial slicing procedure, pockets
could run though two or more slices. Solvent-excluded voids buried inside the
molecule can also be cut by the slicing planes, and there are cases when the
surface portion belonging to a cavity cut by a slicing plane is disconnected from
the outer molecular surface in that given slice. Communication among slices is
required in order to correctly identify disconnected cavities cut by the slicing
planes as solvent accessible or solvent excluded.
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Fig. 2. Solvent-Excluded surface of 1VLA (4258 ATOM entries) [52] calculated with
5 slices, 1.4 Å probe-radius, 103 voxels per Å3 resolution.

Fig. 3. Slices 1 and 2 of the SES of 1VLA, calculated with 5 slices, 1.4 Å probe-radius,
103 voxels per Å3 resolution. We can see the differences between surfaces computed
with (left) and without (right) the slice margin.
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The procedure can be described as follows. Candidate pocket cavities are
identified by checking in the margin region of each slice for free solvent-excluded
voxels. The algorithm extracts all surface voxels of potential pockets from each
slice using an adaptation of the same efficient 3D flood-filling procedure men-
tioned earlier. Pockets and solvent-excluded cavities running through two or
more slices must be distinguished from each other. The algorithm extracts all
surface voxels belonging to potential pockets from each slice and stores them in
an apposite data structure. For each pair of adjacent slices, the border voxels of
the candidate pockets are matched against their neighbours on the other slice.
A candidate pocket is solvent-accessible if its border voxels have free neighbours
on the adjacent slice. Otherwise, if its border voxels are matched with the bor-
der voxels of another candidate pocket on the adjacent slice, the current pocket
remains undetermined as it could run through two or more slices in length. Mul-
tiple border exchange iterations are required if there are large pockets or cavities
that run through more than one slice in length in the current macromolecule.
The procedure ends when, at a given iteration, no new candidate pockets are
recognized as solvent accessible.

2.5 Parallelization

The macromolecular surface calculation protocol with slicing introduced in the
previous sections suggests an immediate parallelization scheme. The surface cal-
culation for each slice can be executed nearly-independently from the others,
as process synchronization and communication is required only for the pocket-
detection and extraction procedure, in order to correctly identify pockets span-
ning between two or more slices.

3 Results and Discussion

We have run different tests of an MPI-based implementation of the parallel algo-
rithm on an IBM R©Power R©P770 Server with 6 IBM R©Power7 3.1 GHz CPUs and
640 Gb of RAM, running SUSE Linux Enterprise 11, and experimentally deter-
mined the average computation times for different input molecules at various
resolutions, while calculating the three molecular surfaces. For the tests we used
molecules 1GZX (4387 ATOM records) [53] and 2AEB (9568 ATOM records)
[54], see Fig. 4.

3.1 Workload Distribution

To obtain an equitable workload distribution among processes, the slicing proce-
dure should guarantee a uniform distribution of the workload. A uniform distri-
bution of the number of atoms per slice (i.e. variable-length slices) yields better
speedup values than employing a constant slice length value.
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Fig. 4. SES of 1GZX (left) and 2AEB (right) computed with 1.4 Å probe-radius and
103 voxels per Å3 resolution.

3.2 Surface Computation Time

The average surface computation times that follow were calculated over 100
runs of the corresponding configuration (PDB entry, desired molecular surface,
resolution, probe radius, number of processes). We progressively increased the
number of processes (from 1 to 64) and evaluated the mean computation time for
each configuration (see Fig. 5). The tests were conducted for very high resolution
molecular surface representations.

The overall speedup is affected by the constant margin introduced in each
slice during the SES computation. At some point, while increasing the number
of processors (increasing number of slices), the overhead introduced by the mar-
gins will become comparable to the slice computation time, thus vanishing the
benefits of further parallelization.

3.3 Sequential Slicing

To overcome memory limitations the method implements a compact representa-
tion of the voxel grid and uses a sequential spatial slicing procedure: the molecule
is sliced by a user-defined number of parallel planes perpendicular to the x-axis
and the surface is computed for each slice sequentially. For instance, the calcu-
lation of the surface for 1GZX at a resolution of 9000 voxels per Å3 and while
dividing the molecule in 10 slices, needs nearly 5 GB of RAM, against the 2.6 GB
used while dividing the molecule in 20 slices (tests were made on a desktop com-
puter with an Intel Core i7 860 CPU and 8 GB of RAM (4× 2GB DDR3-1333
banks) running Ubuntu 13.10 × 64), which is an easily affordable amount of
memory nowadays in desktop computers. By tuning the resolution and number-
of-slices parameters, various memory utilization rates can be achieved depending
on the users’ needs.
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Fig. 5. Surface computation time for 1GZX and 2AEB for various configurations. Error
bars represent one standard deviation of the computation time based on 100 repetitions.

3.4 Separability and Minimality

The voxelized representations of molecular surfaces produced by this approach
possess both separability and minimality properties. The voxelized surface is
extracted using a flood-filling algorithm: any gap would cause leakage of the
flood through the discrete surface. Also, if any voxel in the resulting surface is
removed, the flood-filling algorithm would propagate through that voxel towards
the outside of the space-filling volume. This means that the produced surface is
both separating and minimal.

4 Conclusion

We presented a methodology for the computation of discrete fine-grained vox-
elized macromolecular surfaces, implemented in a tool that can generate the
three main molecular surfaces at high-resolutions effectively and in a timely
manner. This makes it perfectly suitable for integration into other applications
or pipelines of bioinformatics tools which require the computation of such sur-
faces at runtime. The parallel implementation introduces advantages in terms
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of the overall speedup, however the uniform distribution of atoms per slice may
not necessarily yield a balanced workload between processes. On the other hand,
the constant slice margin represents the main limitation to this parallelization
scheme as it introduces constant overhead regardless of the slice size. These
issues are left for future work.

Voxelized representations are well suited to represent multiple physicochem-
ical and geometrical properties of molecular surfaces, as each voxel can describe
multiple properties of a portion of the 3D space. Although only binary voxels
were employed in this work, they could easily be extended to contain multiple
values in order to represent several properties, such as electrostatic potentials,
hydrophobicity, curvature, surface normals, etc. For instance, we are currently
developing a local surface descriptor for protein-protein docking based on the
voxelized representation of shape and electrostatic properties of the molecular
surface. The descriptor is invariant to roto-translations and allows the efficient
comparison of geometric and electrostatic complementarity between surface por-
tions.

Linux binaries and test results are available at: http://www.dei.unipd.it/
∼daberdak/VoxSurf
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Abstract. During the last decade, there has been great progress in high-
throughput (HTP) phosphoproteomics and hundreds or even thousands of phos‐
phorylation sites (p-sites) can now be detected in a single experiment. This
success is attributable to a combination of very sensitive Mass Spectrometry
instruments, better phosphopeptide enrichment techniques and bioinformatics
software that are capable of detecting peptides and localizing p-sites. These new
technologies have opened up a whole new level of gene regulation to be studied,
with great potential for therapeutics and synthetic biology. Nevertheless, many
challenges remain to be resolved; these concern the biases and noise of these
proteomic technologies, the biological noise that is present, as well as the incom‐
pleteness of the current datasets. Despite these problems, the datasets published
so far appear to represent a good sample of a complete phosphoproteome of some
organisms and are capable of revealing their major properties.

Keywords: Phosphoproteomics · Phosphorylation · Bioinformatics · Data
integration

1 The Biological Significance of Protein Phosphorylation

To understand a biological system, it is not enough to know which molecules are expressed
in various conditions/states. Recent advances in high-throughput proteomics and phospho‐
proteomics have highlighted the importance of knowing whether the expressed proteins have
their molecular functions turned on or off via post-translational modifications.

© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 196–204, 2016.
DOI: 10.1007/978-3-319-44332-4_15



Phosphorylation is the most abundant reversible post-translational modification (PTM) [1].
It may function as either a digital switch or as a rheostat, regulating one or more functions
in a protein, including: enzyme activity, subcellular localization, complex formation or
degradation. These effects are mediated via conformational changes, regulation of order/
disorder transitions, and affinity change on molecular interaction surfaces [2, 3]. Phosphor‐
ylation/dephosphorylaton is also a key component of signal transduction. More than one
switch of this kind may be present in a protein; they may be independent of each other, or
there may be interdependencies between them or even with other types of switches [4].
Previous studies [5–7] have estimated that 1/3–2/3 of the proteins in a eukaryote are
expected to be phosphorylated. Moreover, a protein may have from one to tens of p-sites.
Therefore, the combinatorics behind this process as well as the potential for complexity at
the molecular level is enormous.

Mutation of only one site of phosphorylation in a key protein may have dramatic
effects not only for the function of that specific protein, but also for the pathways in
which it is involved and even the overall phenotype of the organism [8, 9]. For example,
a point mutation that results in a single amino-acid change (S42 -> A) in the yeast Cdc28
protein results in decreased cell size, whereas the mutation of another p-site may even
be lethal, within a certain genetic context, or it may rescue the lethal effect of another
point mutation [10]. Furthermore, point mutations of p-sites in key enzymes may alter
flux through the biochemical pathways of the cell towards desired biotechnological
products or properties [11, 12].

Abnormal protein phosphorylation is involved in many diseases; including cancer,
diabetes, autoimmune, cardiovascular and neurodegenerative diseases [13, 14]. New
generations of drugs in cancer and other diseases target this PTM, whereas there is
intense interest in measuring serum or blood phosphoproteomes, for improved diag‐
nostics [15]. Furthermore, many bacteria disrupt the host immune system by interfering
with the phosphorylation networks of the host [16], whereas many viruses rely on host
kinases to phosphorylate and regulate their proteins [17].

Therefore, phosphorylation appears to be an extremely attractive area of research,
not only for understanding organismal complexity or how the cell is regulated, but also
for therapeutics and even for synthetic biology. It holds the promise of manipulating
molecular pathways and phenotypes via a few point mutations that modify a small
number of critical phosphorylation sites.

The advent of high-throughput (HTP) phosphoproteomics in the last decade has revo‐
lutionized the field, enabling hundreds or even thousands of phosphorylation sites (p-sites)
to be detected in a single experiment. This success may be attributed to a combination of
very sensitive Mass Spectrometry instruments, better phosphopeptide enrichment techni‐
ques and bioinformatics tools that are capable of detecting phosphopeptides and localizing
p-sites [18–20]. Nevertheless, many challenges remain to be addressed.
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2 The Challenges of Phosphoproteomics

2.1 Biological Noise and Technical Problems

A major challenge relates to the quality of the generated phosphoproteomic datasets. As
with any new HTP technology, the data which they generate are afflicted by experimental
biases and noise. The various phosphopeptide enrichment techniques capture only a
fraction of the complete phosphoproteome while also introducing biases [21]. Lienhard
[22] has raised the possibility that, due to the high sensitivity of the new MS instruments,
biologically noisy p-sites are being detected. ‘Biological noise’, in this case, represents
phosphorylation events occurring in degenerate motifs by non-cognate kinases; i.e.
frequent but of low abundance off-target phosphorylations. Also, during the process of
cell-lysis, kinases and scaffold proteins may encounter target proteins from different
cellular compartments, which they would not meet under normal conditions. More
concern is raised by the observed low occupancy (~10 %) of the majority of p-sites for
a given condition [23]. In addition, less than 20 % of p-sites identified in a single phos‐
phoproteomic experiment are up/down-regulated when a perturbation occurs [24]. [25]
exploited evolutionary information to estimate that up to 65 % of p-sites in HTP experi‐
ments could be non-functional, indicating that biological noise may indeed be a signif‐
icant problem. In agreement with [22, 25], it was demonstrated that, within a compen‐
dium of 12 HTP phosphoproteomic experiments from yeast, more than half of non-
redundant p-sites were identified only once, further highlighting the problem of potential
false positive or non-functional p-sites in HTP datasets [5].

Another concern relates to the stringency of the criteria and algorithms used to identify
phosphopeptides and to correctly localize p-sites within a phosphopeptide. Some data‐
bases, bioinformatics analyses or even prediction tools extract phosphorylation sites from
supplementary material of publications without applying very stringent criteria. Such anal‐
yses often rely on the criteria set by each individual publication, and these are far from
uniform. The general tendency to publish phosphoproteomic datasets with as many p-sites
as possible (the more, the better) means that not very stringent filtering criteria have been
applied in some of the original publications. Nevertheless, in the last few years, this problem
has been ameliorated, as more software tools have appeared that try to detect phosphopep‐
tides and also localize the p-site, by either estimating the p-site’s correct localization prob‐
ability or the Search engine difference scores [26]. In parallel, more and more studies have
started to adopt more stringent criteria, with a cutoff of 99 % probability of correct peptide
identification and 99 % probability of correct p-site localization.

The bioinformatics analysis of 12 phosphoproteomic yeast datasets revealed that the
phosphoprotein and p-site overlap between two experiments from two different research
groups in very similar conditions (alpha-factor treated yeast cells) was 31 % and 11 %
respectively, whereas the overlap between two experiments of one research group in two
different phases of the yeast cell-cycle were 54 % and 28 % respectively [5, 27–29]. Simi‐
larly, a 2010 study by the Proteome Informatics Research group from ABRF showed that
for the same phosphoproteomic dataset, the average agreement of identified phosphopro‐
teins and phosphosites by any two software packages was ~57 % and ~38 % respectively
[26]. Furthermore, a replication of the same experiment may increase the detection of p-sites
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by 25 % [30], whereas 3–4 replicates are sufficient to reach saturation in terms of p-sites
identified for a particular condition using a given technology [31].

Another issue that significantly affects p-site detection is the choice of the proteolytic
enzyme employed to generate peptide fragments for analysis by MS/MS. The most
commonly used proteolytic enzyme is trypsin. Nevertheless, several studies have shown
that the consecutive use of more than one proteolytic enzyme may increase phospho‐
peptide and p-site detection by up to 40–70 % [30, 32, 33]. Clearly, the detection of
phosphoproteins and phosphopeptides is still very much a protocol-dependent issue.

The availability of even more phosphoproteomic datasets for a given species, in
combination with more sensitive instruments, better enrichment protocols, better local‐
ization software and comparative phosphoproteomics will help filter out noisy p-sites.

2.2 Incompleteness of the Datasets

Baker’s yeast (S. cerevisiae) is the best studied unicellular eukaryote and it harbors only
~6.000 proteins [34, 35]. Thus the plethora of HTP phosphoproteomic experiments
(performed on this organism under a reasonably wide range of conditions) has probably
revealed the majority of proteins (3100–3800) that are regulated at some stage by phos‐
phorylation [5, 7]. Another analysis estimated that high-throughput phosphoproteomic
studies have revealed about 80–90 % of all S. cerevisiae phosphoproteins [36]. Yet, we
are far away from identifying the majority of p-sites in this relatively simple organism.
In an updated compendium of yeast p-sites, [7] found that 45 % of p-sites identified in
low-throughput (LTP) experiments were also identified by at least two independent
high-throughput experiments. There are also many reports in the literature where a well-
known p-site was not detectable by the high-throughput technologies. In yeast, more
than 70 % of its whole proteome is detectable by MS/MS technology in a single experi‐
ment [37, 38]. Clearly, for a multicellular organism such as Homo sapiens, with a much
more complex proteome and more transient or spatial (tissue- or organ-specific) expres‐
sion patterns, the identification of its entire phosphoproteome, estimated to involve
hundreds of thousands of p-sites, is much more challenging.

Better experimental protocols and the availability of comparative phosphoproteo‐
mics data from several closely related species should help us to estimate how many more
p-sites are missing. The basic principle is that if a p-site is found in organism X and the
same amino acid or even phosphorylation motif is conserved in another species Y, based
on alignment of orthologous proteins, then, the conserved amino acid of species Y could
also be phosphorylated. Thus, a better estimation of the total number of p-sites in species
Y may be obtained. Nevertheless, a disturbing finding that complicates this type of
evolutionary analyses is that the precise positioning of p-sites is not always required for
proper regulation [39, 40]. The implication is that multiple alignments of orthologous
proteins may not be sufficient to fully determine the conservation of a p-site in another
organism. It may be the case that the phosphorylated amino acid is not conserved in
another organism, but an equivalent p-site has emerged in the vicinity. Therefore, it is
not sufficient to have the phosphoproteome of one reference organism and the multiple
alignments of orthologous proteins. One needs to take into consideration the “neigh‐
borhood” of the p-site as well.
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2.3 The Challenges of Predicting Phosphorylation Sites

The increase of HTP phosphoproteomic data has stimulated research to develop bioin‐
formatics tools to predict p-sites, either from amino-acid sequence alone, or in combi‐
nation with structural and other types of information [17, 41–43]. More than 40 predic‐
tion methods have been published on this computational problem, applying artificial
neural networks, support vector machines, decision trees, genetic algorithms or position-
specific scoring matrices. In addition, a plethora of databases exists (see two extensive
reviews on this subject, [44, 45]. There are still ongoing discussions on what is the
optimal size of the sequence region around the p-site that contains enough information
to build a prediction pipeline, without decreasing the signal/noise ratio and still
remaining computationally tractable for the machine-learning algorithms to analyze. A
crucial issue is the training datasets used for these algorithms. Abundant and high-quality
p-sites, as well as very good negative datasets are needed for successful implementation.
Not surprisingly, the negative datasets are very difficult to obtain since a large fraction
of the phosphoproteome of an organism remains unknown. Also, gold-standard refer‐
ence datasets (both positive and negative) are needed to allow the community to evaluate
any new algorithm/tool and compare it to existing ones. So far, the datasets used to train
such algorithms suffer from noisy p-sites and poor filtering of technical and biological
noise, and do not account for the fact that kinases may mistakenly phosphorylate a serine
that is very close to the cognate site [5, 22, 25]. Furthermore, most of the high-throughput
p-sites have been identified with a protocol involving only trypsin. The use of two or
more proteolytic enzymes sequentially (e.g. Lys-N and trypsin) resulted in datasets that
were enriched in significantly different phosphorylation motifs [30]. Therefore, as more
complex protocols with more than one digestion enzymes are used, more diverse phos‐
phorylation motifs will be sampled and used for training new prediction algorithms.

3 Biological Properties of the Phosphoproteome

Despite all of the above problems, many investigations have tried to shed light on the
properties of the best studied phosphoproteome, that of the model organism, S. cerevi‐
siae, either from only one or from a compendium of filtered datasets. In yeast, phos‐
phorylation occurs most frequently on serines (81 %), then on threonines (17 %), whereas
tyrosines are very rarely phosphorylated (2 %) [5]. This is probably due to the lack of
tyrosine specific kinases and the presence of kinases with dual (threonine/tyrosine)
specificity [29, 46]. About 90 % of p-sites have been identified as being within intrins‐
ically disordered regions, whereas between 12–17 % of p-sites are found to be either
within or in the vicinity (10 amino acids) of a conserved and characterized structural or
functional domain [5, 41]. Most of the identified phosphoproteins have a small number
of p-sites, whereas there exists a very small number of proteins with many p-sites.
Phosphoproteins are more ancient and are under tighter regulatory control, with shorter
protein half-lives, more ubiquitination, more genetic interactions and more protein-
protein interactions than non-phosphoproteins [5, 47, 48]. In addition, as the number of
phosphorylation sites in a protein increases, the chance of this gene surviving after a
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gene or (especially) a whole-genome duplication increases as well [49]. Thus, protein
phosphorylation may shape the evolution of genomes.

Interestingly, there is no strong correlation between the number of kinases targeting
a phosphoprotein and the number of p-sites in that protein. Apparently, a kinase may
phosphorylate more than one p-site in the same protein or a p-site may be phosphorylated
by more than one closely related kinase [5, 43]. In addition, p-sites tend to cluster
together and this is not due to false detection/localization of p-sites [5, 40, 50].

Despite the noise that is present in the current phosphoproteomic datasets and their
acknowledged incompleteness, the conclusions of computational analyses done so far
with limited datasets are not necessarily invalid. As demonstrated in [5], several conclu‐
sions remain robust, even when creating large and high-quality compendia of p-sites.
Nevertheless, efficient filtering of noise will substantially increase confidence and reso‐
lution in the conclusions of related computational analyses and thus, it will allow new
discoveries.
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Abstract. Biological systems show impressive adaptations at extreme
environments. In extreme environments, directional selection pressure
mechanisms acting upon mutational events often produce functional and
structural innovations. Examples are the antifreeze proteins in Antarctic
fish and their lack of hemoglobin, and the thermostable properties of
TAQ polymerase from thermophilic organisms. During the past decade,
more than 4000 organisms have been part of genome-sequencing projects.
This has enabled the retrieval of information about evolutionary relation-
ships among all living organisms, and has increased the understanding of
complex phenomena, such as evolution, adaptation, and ecology. Bioin-
formatics tools have allowed us to perform genome annotation, cross-
comparison, and to understand the metabolic potential of living organ-
isms. In the last few years, research in bioinformatics has started to
migrate from the analysis of genomic sequences and structural biology
problems to the analysis of genotype-phenotype mapping. We believe
that the analysis of multi-omic information, particularly metabolic and
transcriptomic data of organisms living in extreme environments, could
provide important and general insights into the how natural selection in
an ecosystem shapes the molecular constituents. Here we present a review
of methods with the aim to bridge the gap between theoretical models,
bioinformatics analysis and experimental settings. The amount of data
suggests that bioinformatics could be used to investigate whether the
adaptation is generated by interesting molecular inventions. We therefore
review and discuss the methodology and tools to approach this challenge.
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1 Introduction

Population genetics and multi-omics systems biology have independently wit-
nessed increasing research attention in recent years [1,2]. For instance, mathe-
matical models for investigating genotype-phenotype relations have been devel-
oped for specific organisms, mainly bacteria [3,4]. However, predictions of cellular
behavior cannot disregard bioinformatics methodologies that estimate the capa-
bility of adaptation of the cell to varying environmental conditions [5]. Methods
for studying the molecular response to adaptation are still lacking, and would
require a multi-scale and multi-omic combination of tools commonly employed
in bioinformatics, but currently used referring only to single scales or to a single
omic.

This paper reviews molecular and bioinformatics methods for studying mole-
cular adaptation. The review is divided into distinct methods/software blocks
describing existing software tools and techniques (Fig. 1), further reviewed in
the following sections. Note that we focus mainly on the analysis of organisms
from extreme environments as they possess distinct properties that allow deci-
phering the basis of environmental adaptation. In fact, the evolution of genome
and phenome depends on the robustness of an organism and on its ability to
adapt to varying conditions [6]. For this reason, as we discuss in the following,
innovations are often found in organisms living in extreme environments.

The sequence of functional blocks in the figure leads to the identification
of pathways, genes and proteins involved in adaptation. Each block contains
distinct methodologies which could be implemented in one or more existing
software tools, reviewed in the relevant sections. For the sake of clarity, each
block is numbered and described below in the paper.

Throughout the paper, we will stress the need for multi-omic tools. Analo-
gously, since many tools rely on networks to represent relations between biologi-
cal entities, we will propose the use of multi-layer networks instead of single-layer
networks. The strengths of our design are the following: (i) use and calibra-
tion of multi-omic and multi-layer information; (ii) use of pathway information;
(iii) machine learning, bioinformatics and multi-objective optimization inte-
grated in a powerful and novel inferential engine. The paper is structured accord-
ing to the three main figures. First, we follow Fig. 1 to describe how experimental
techniques produce data that need models, bioinformatics and machine learning
for useful interpretations. Then, we describe the main problem of the present
study, i.e. the relationship between molecular changes and selection (Figs. 2
and 3). We list below the main definitions of multi-omic terms employed in
this paper:

– Multi-omics approach: Method that combines several omics data, such as
genomics, proteomics and transcriptomics.

– Multi-layer network: A set of networks with a 1:1 correspondence between
nodes, but different edges. This can be a useful methodology to represent
relations between biological networks, e.g. from genes to proteins, and from
pathways to metabolic fluxes. Networks are often a natural way to model many
types of biological knowledge at different levels.
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– Multi-scale model: Typically, a model that has been created by combining
techniques that are valid at different scales of organization. For instance, com-
bining a number of individual flux balance models (traditionally fine-grained
single cell models) to model an entire population (which would normally be
done using coarse-grained agents).

The main tools described in this paper are:

– METRADE: pipeline for building and optimizing genome-scale multi-omic
models that accounts for metabolism, gene expression and codon usage at
both transcriptional and translational levels. Freely available as a MATLAB
toolbox [7].

– Colombos v3.0: database integrating publicly available transcriptomics data
for several prokaryotic model organisms [8].

– MMETSP: database providing over 650 assembled, functionally annotated,
and publicly available transcriptomes. These transcriptomes largely come from
some of the more abundant and ecologically significant microbial eukaryotes
in the ocean [9].

– Panoga: software used to identify the affected pathways in organisms living in
extreme conditions [10]. It takes the list of significantly altered genes and their
significance values and maps them to a protein-protein interaction network.
Panoga is also a web-server for identification of SNP targeted pathways from
genome-wide association study data. The web-server is freely available at:
http://panoga.sabanciuniv.edu/.

2 Sampling, Next Generation Sequencing (NGS)
and Ribotyping to Detect Microbial Diversity
and Adaptations

One of the most important parts in studying environmental adaptation is the
acquisition of data needed to perform multi-omic analysis. It is essential to care-
fully plan the number and location for up-taking environmental samples that
will be collected, in order to avoid a number of gaps for future analysis. Further-
more, it is worth developing a protocol detecting even the least prevalent type of
microorganisms from relative abundant index from different sources. Sampling
biases such as selection of least turbulent sites, depth, width as well as time
of the year and later on DNA extraction methods for direct isolation without
culturing depending must be taken into consideration during the analysis. The
analysis of metagenomes from samples collected in extreme environments, such
as volcanoes, glaciers, or deep ocean waters (Fig. 1, panel 1) represents a valuable
resource to study the molecular mechanisms underlying environmental adapta-
tion. An extreme environment can also be found in the human body, e.g. gut
microbiota during dietary extremes and exercise, or during metabolic diseases,
for which models are available [11].

http://panoga.sabanciuniv.edu/
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Fig. 1. Sampling in extreme ecosystems and bioinformatics methodological
applications. The response to extreme environmental conditions (for instance Arctic
and Antarctic regions, glaciers, deep ocean seawater, volcanoes and arid areas, and
also similarly extreme but less exotic locations such as gut microbiota) is sampled for
different associated species (1), and measured through expression profiling (2). To eval-
uate the environmental conditions and detect their community structure, a multi-omic
model (3) can be applied to the species’ metabolism, taking into account gene expres-
sion and codon usage. This model lets us map the input genotype and environment
to the external behavior. The set of possible states for the organism as a response to
the set of growth conditions is called condition space (4). Conditions can be measured
for various biomarkers and therefore on various levels of omic information, e.g., a gene
expression profile on the transcriptomic layer and a profile of flux rates on the fluxomic
layer. Their interaction can be modeled using multi-layer networks (5). Statistical esti-
mators and community detection methods defined on the multi-omic model can be used
to investigate the pathway basis of the relationships between conditions and species
in the association (6). After sampling, in parallel, homology modeling and molecular
dynamic simulation can be applied to calculate structure flexibility and binding affinity
of molecules of interest at different temperatures (7).

According to the extreme environment under consideration, different molecu-
lar, physiological and phenotypic strategies can be unraveled by applying multi-
omic approaches. For example, in [12], a comprehensive survey of the distribution
of bacteria from 213 samples was generated from 60 stations along the horizon-
tal and vertical salinity gradients of the Baltic Sea. This represented the first
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detailed taxonomic study of an indigenous brackish water microbiome composed
by a diverse combination of freshwater and marine clades that appears to have
adapted to the brackish conditions. Furthermore, by applying whole-genome
shotgun sequencing to microbial populations collected en masse from the Sar-
gasso Sea near Bermuda, it was possible to discover 148 previously unknown
bacterial phylotypes and to identify over 1.2 million previously unknown genes,
suggesting substantial oceanic microbial diversity [13]. Microbial community pro-
filing is also benefiting from advanced Bayesian techniques that have proven effi-
cient strategies when multiple species are present in the mixture sampled [14].

Different populations within the same species may adapt differently to spe-
cific environmental conditions. These ecotypes or ecospecies are usually geneti-
cally distinct geographic subspecies of organisms that typically exhibit different
phenotypes. However, microbial ecotypes cannot always be recognized by obvi-
ous phenotypic differences. In the last years, several genotypic methods usually
based on the small subunit (SSU) ribosomal RNA (rRNA) analysis, or the rRNA
internal transcribed spacer (ITS) regions (ribotyping) have greatly enhanced our
capacity to quickly identify microbial species and sometimes populations from
environmental samples. Also, they can be used to compare the distribution of
various microorganisms isolated from animals, humans and food.

The analysis of SSU/ITS RNA sequences is also a powerful tool to character-
ize symbiote/host association and to identify whether a species is widespread in its
distribution, or has dispersed through recent human-mediated events. For exam-
ple, SSU/ITS RNA sequences were used to assess that a ciliate species of Stentor
genus was introduced in the Lake Garda by anthropogenic activities [15]. Recently,
SSU RNA phylogenetic analysis was used to characterize a bacterial consortium
associated to Euplotes focardii, a strictly psychrophilic marine bacteria isolated
from Terra Nova Bay, in Antarctica [16]. This study indicates that the consortium
is also represented by Antarctic bacteria that were probably acquired by E. focardii
after the colonization of the Antarctic marine habitat and may have contributed
to its adaptation to the extreme conditions of this environment.

Extreme environments played a key role in shaping processes that are cur-
rently used in molecular biology. At extreme temperatures, it is in fact more
difficult to keep a stable DNA replication process; this explains why innovations
are often found in organisms living in extreme conditions. For instance, Taq
polymerase, which is frequently a key step for the polymerase chain reaction,
originates from Thermus aquaticus, a thermophilic microorganism. The high dis-
criminatory power and reproducibility of polymerase chain reaction ribotyping
(PCR RT) is also used for studying outbreaks at a local level, like in healthcare
centers. Nosocomial infections are one of the leading causes of death among hos-
pitalized patients and remain a major problem in all hospitals across the world.
Many types of microorganisms cause infections in humans. Therefore, under-
standing the microbial diversity is a fundamental goal in healthcare. An increase
in incidence of a PCR RT in hospitals could provide useful data for monitoring
changes in type prevalence rates and control outbreaks [17]. In this survey, 14
Clostridium difficile have been isolated from nosocomial patients. PCR RT was
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used to prove if these microorganisms were identical. Result showed that among
the isolations there was a predominant C. difficile lineage spreading in the hos-
pital, with 5 out 14 identical ribotyping patterns. PCR RT has rapidly become
the most widely used, straightforward and affordable typing method to detect
diversities among the same microorganism species [18].

3 Omic Datasets to Measure Cellular Response
to Varying Environments

Due to reduced costs and improved technology, data collection has witnessed a
massive growth in speed and efficiency. For instance, multi-omic datasets can
be used in association with multi-omic models to further extend, optimize and
refine them [19], as well as to give insights into mechanisms of adaptation to
different environmental conditions (Fig. 1).

By combining network inference algorithms and experimental data derived
from 445 Escherichia coli microarrays, Faith et al. [20] identified 1079 regulatory
interactions, 741 of which were new regulators of amino acid biosynthesis, flagella
biosynthesis, osmotic stress response, antibiotic resistance, and iron regulation.
This approach contributed to the understanding on how organisms can adapt to
changing environments.

A more comprehensive dataset of gene expression levels measured in various
environmental conditions, named Colombos v3.0, has been recently published by
Meysman et al. [8]. Colombos includes E. coli microarray profiles for over 4000
conditions, measured using microarrays (Affymetrix E. coli Genome 2.0) with
raw hybridization of intensities, and RNA-seq (Illumina MiSeq) with short read
sequences. The expression profiles, measured on different platforms, have been
then homogenized, and the conditions have been fully annotated.

RNA-seq and microarray techniques have revolutionized gene expression
studies and allowed large-scale parallel measurement of whole genome expression.
Both approaches represent valuable tools for the identifications of genes that
are up- or down- regulated to respond to extreme conditions. High-resolution
RNA-Seq transcriptome analysis of Deinococcus gobiensis following UV irradi-
ation indicated the induction of genes involved in photoreactivation and recom-
binational repair, together with a subset of previously uncharacterized genes
[21]. The investigation of the unknown genes and pathways required for the
extreme resistance phenotype will highlight the exceptional ability of D. gobi-
ensis to withstand environmental harsh conditions [21], providing the ground-
work for the understanding of the general mechanisms of adaptation to extreme
environments.

The Marine Microbial Eukaryotic Transcriptome Sequencing Project
MMETSP1 provided over 650 assembled, functionally annotated, and publicly
available transcriptomes. These transcriptomes largely come from some of the
more abundant and ecologically significant microbial eukaryotes in the ocean,

1 http://marinemicroeukaryotes.org/.

http://marinemicroeukaryotes.org/
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and allowed the creation of a valuable benchmark against which environmen-
tal data can be analyzed [9]. By exploiting MMETSP datasets, researchers are
allowed to study the evolutionary relationships among marine microbial eukary-
otic clades, such as ciliates [22], and within the overall eukaryotic tree of life
(Keeling et al., 2014). Furthermore, the interpretation of metatranscriptomic
data generated from marine ecosystems allows us to explore the physiology and
adaptation of diverse microbial eukaryotes from marine ecosystems [9].

Microarray transcriptional profiling of Arctic Mesorhizobium strain N33
allowed the identification of the most prominent up- and down- regulated genes
under eight different temperature conditions, including both sustained and tran-
sient cold treatments, compared with cells grown at room temperature [23]. Up-
regulated genes encode proteins involved in metabolite transport, transcription
regulation, protein turnover, oxidoreductase activity, cryoprotection (mannitol,
polyamines), fatty acid metabolism, and membrane fluidity [23]. Some genes
were significantly down-regulated and classified in secretion, energy production
and conversion, amino acid transport, cell motility, cell envelope and outer mem-
brane biogenesis functions. This transcriptional profiling suggests that one of the
strategy to survive under cold stress conditions is to adjust cellular function and
save energy by reducing or ceasing cell growth rate.

4 Multi-omic Models Can Predict Cellular Activity

Several computational algorithms have been developed to analyze genes and
gene sets in a multi-omic fashion [24]. The main goals are detecting dependencies
among genes over different conditions and unraveling gene expression programs
controlled by the dynamic interactions of hundreds of transcriptional regulators
[20] (Fig. 1, panel 3).

The dataset by Faith et al. [20] was mapped to a multidimensional objec-
tive space through METRADE [7], a comprehensive tool for multi-omic flux
balance analysis (Fig. 1, panel 4). The Colombos dataset has been exploited to
predict growth rates and secretion of chemicals of interest (acetate, formate, suc-
cinate and ethanol) by mapping each environmental condition onto a multi-omic
E. coli model that includes underground metabolism [25]. More specifically, using
a multi-level linear program and a multi-omic extension of flux-balance analy-
sis (FBA), gene expression was mapped onto a model of Escherichia coli. As a
result, condition-specific models of E. coli were generated, and their predicted
growth rate and production of byproduct were assessed.

A hybrid method combining multi-omic FBA and Bayesian inference was
recently proposed [26] with the aim of investigating the cellular activities of a
bacterium from the transcriptomic, fluxomic and pathway standpoints under
different environmental conditions. The authors integrate an augmented FBA
model of E. coli and a Bayesian factor model to regard pathways as latent
factors between environmental conditions and reaction rates. Then, they deter-
mine the degree of metabolic pathway responsiveness and detect pathway cross-
correlations. They also infer pathway activation profiles as a response to a set of
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environmental conditions. Finally, they use time series of gene expression pro-
files combined with their hybrid model in order to investigate how metabolic
pathway responsiveness vary over time.

In two research works, Taffi and colleagues proposed a computational frame-
work that integrates bioaccumulation information at the ecosystem level with
genome-scale metabolic models of PCB degrading bacteria [27,28]. The authors
applied their methods to the case study of the polychlorinated biphenyls (PCBs)
bioremediation in the Adriatic food web. Remarkably, they were able to discover
species acting as key players in transferring pollutants in contaminated food
web. In particular, the role of the bacterial strain Pseudomonas putida KT2440,
known to be able to degrade organic compound, in the reduction of PBCs in
the trophic network, was assessed in different scenarios. Interestingly, one aspect
of their analysis involved a scenario computed by using a synthetic strain of
Pseudomonas performing additional aerobic degradation pathways. Combining
these computational tools allows designing effective remediation strategies for
contaminated environments, which can present challenges of natural selection,
and provides at the same time insights into the ecological role of microbial com-
munities within food webs.

5 Genome-Scale Modeling and Community Detection
of Extreme Environmental Conditions

Omics technologies facilitate the study of organisms living at extreme conditions
from different perspectives. They provide insights at genomic level, transcription
level, protein level, and metabolites level. When compared to omics data from
the organisms living at normal conditions, these may help understand mecha-
nism of adaptation to extreme conditions. However, each dataset represents one
portion of the whole picture and to understand the whole mechanism it is vital
to integrate the data and reveal the mechanisms supported by diverse range of
omics data. One way to integrate omics data is through identification of the
pathways affected by each data source, and through combining the significance
of affected pathways via Fisher’s z-score. Panoga [10] is one of the methods
that is used to identify the affected pathways in organisms living in extreme
conditions. It takes the list of significantly altered genes and their significance
values and maps them to a protein-protein interaction network. Then it searches
for active subnetworks containing most of the affected genes. Affected KEGG
pathways from the set of genes in the active subnetworks are determined and
assigned significance values based on hypergeometric distribution. Combination
of significance values of all the affected pathways for each type of omics data
reveals affected pathways by all the data available.

In the past decade, genome-scale metabolic modeling has been successfully
applied also for studying large-scale metabolic networks in microbes, with the aim
of guiding rational engineering of biological systems, with applications in indus-
trial and medical biotechnology, including antibiotic resistance [29]. Even though
antibiotics remain an essential tool for treating animal and human diseases in the
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21st century, antibiotic resistance among bacterial pathogens has garnered global
interest in limiting their use, and to provide actionable strategies to search and
support development of alternative antimicrobial substances [30]. It is interest-
ing to note that bacterial strains such as Arthrobacter and Gillisia sp. CAL575,
producing an array of molecules with potential antimicrobial activity vs human
pathogenicBurkolderia cepacia complex strainswere isolated fromAntarctica [31].
These strains represent useful models to unravel metabolic pathways responsible
for the production of bioactive primary and/or secondary metabolites [32].

Using methods for community detection in networks (Fig. 1, panels 5–6),
environmental conditions can be grouped according to their predicted response,
which is measured in the metabolic network using multi-omic models. Interest-
ingly, this response can be measured on different omic levels. For instance they
can be evaluated on the transcriptomic and fluxomic levels, each of which can
constitute a layer of a multi-layer network. This approach would enable the study
of the response individually on each omic layer, but also globally, e.g. by using a
network fusion approach, where layers can be weighted and the multi-layer net-
work can be fused to a single-layer network. Finally, although not covered here,
another important approach to study metabolic networks is stochastic simula-
tion based on an approach pioneered by Gillespie [33], and relying on molecular
counts to simulate the evolution of populations of chemical species [34].

6 Protein Homology Modeling and Directed Evolution

The proteome forms the primary link between the genome and the metabolome.
As such, understanding protein function is extremely important to taking a truly
multi-omic view where we understand the causal interactions between layers,
rather than just finding correlations. Computational models allow us to pre-
dict protein folding, and hence functionality, and are particularly useful when
combined with directed evolution, which can allow us to explore entirely new
structures and their properties.

Computational methods such as homology modeling and molecular dynamic
simulation can be employed for protein engineering and design. Directed evolu-
tion of enzymes and/or bacterial strains can be exploited for industrial processes
[35]. For instance, protein modeling and molecular dynamic simulation can be
applied to molecules from psychrophilic organisms to unravel the molecular mech-
anisms responsible for cold-adaptation. In [36], a computational structural analy-
sis based on molecular dynamics (MD) was performed for three β-tubulin isotypes
from the Antarctic psychrophilic ciliate Euplotes focardii. Tubulin eterodimers
(the building block of microtubules composed of α-tubulin and β-tubulin) from
psychrophilic eukaryotes can polymerize into microtubules at 4 ◦C, a tempera-
ture at which microtubules from mesophiles disassemble. The structural analy-
sis based on MD indicated that all isotypes from E. focardii, with respect to
those of mesophilic organisms, display different flexibility properties in the regions
involved in the formation of longitudinal and lateral contacts during microtubule
polymerization. A higher flexibility of these regions may facilitate the formation of
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lateral and longitudinal contacts among heterodimers for the formation of micro-
tubules in an energetically unfavorable environment. Given that the protein struc-
ture could be thought of as a unit of phenotype, homology modeling analysis plays
a major role in the generation of testable hypothesis on selection processes (dis-
ruptive, directional, stabilizing; see Fig. 2) acting at the level of genomic coding
regions. One of the most important parameters influencing selection processes is
the temperature. Molecular dynamics studies provide important insights into the
mechanism of activity and stability of enzymes working in extreme conditions. If
the three dimensional structure of the enzyme is known, one can conduct molec-
ular dynamics runs at variable temperatures and compare the root mean square
deviation (RMSD), root mean square fluctuation (RMSF) and the radius of gyra-
tion values of the enzyme at room temperatures, elevated temperatures and at
low temperatures. This approach would allow tracing the unfolding mechanism
and the flexibility of the enzyme. When compared with enzymes that are working
at room temperatures, these runs would reveal crucial factors for activity and

Fig. 2. Multi-omic changes - selection problem statement. (A) This is an exten-
sion of Fig. 1, panel 5; we show how multi-omics enlarge the molecular changes events
affecting the phenotypic variations. For the sake of clarity, we show only few connections
between the different omic levels. The changes are then filtered by selection processes.
(B) We show the three main types of selection pressure: disruptive, directional and
stabilizing. In green we show the allele distribution before the selection and in red the
distribution after the selection process. It is noteworthy that with adaptation there is
an increase of specificity, i.e. the number of many-to-many relationships decreases and
the number of one-to-one relationships increases. (Color figure online)
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stability at extreme conditions. One such study that used a MD-based approach
to study the mechanism of temperature stability of thermophilic lipases, showed
the importance of tryptophans involved in dimer formation and enhancement
of aggregation tendency [37]. Another study conducted on the same family of
lipases also revealed the importance of these tryptophans for coordination of
zinc ions and the dependence of the thermostability to zinc concentrations [38].

Bioinformatics and mathematical methods play a crucial role in the exper-
imental design and in understanding the pathways of the natural and artificial
evolution of protein properties. Focused databases and computational tools to
study and design evolution pathways have been developed. A promising collab-
oration between computational methods and evolutionary mutagenesis is envis-
aged in the field of de novo protein design, in which folds and functions not
yet existing in nature are simulated computationally. Coupling computational
design with directed evolution can help improve the performance of new pro-
teins, as shown by designing and evolving proteins able to catalyze reactions not
accessible to natural enzymes [39]. Interestingly, concepts originally developed
in protein design studies such as protein folding funnels and fitness adaptive
landscapes [40–42] could be further extended to multi-omic information.

7 Multi-omic Adaptive Landscapes

One of the biggest challenges of multi-omic bioinformatics is the estimation of
mutual relationships between different omics. As shown in Fig. 3, one omic level
Z may show a different structure over time. This can depend on a previous
structure at the same level, but also on the structure of the interacting levels
X and Y . By hypothesizing a linear relation between two omic levels, and a
perturbation term P affecting X, in a discrete time domain we can define the
interdependencies between omic levels as

x(t + T ) = Λx(t) + p(t), (1)

where x = (X,Y,Z)ᵀ, Λ = (λij)i,j=1,2,3, p = (P, 0, 0)ᵀ. Note that, due to the
large availability of genotype/phenotype data, the parameters (λij)i,j=1,2,3 can
be calculated with parameter estimation techniques (e.g. minimization of root
mean square error).

From a reverse engineering point of view, reconstructing systems from multi-
omic data will require identifying correlations between selective micro-level iden-
tifiers and macro-level properties (for example the physiological level). To achieve
this aim, we need to model structure and dynamics of the funnel to figure out req-
uisite dimensionality (danger of losing dimensions instead of merely losing detail)
and covariates of the problem space, given that many possible paths may have
led to the same observed outcome. The funnel reconstruction is affected by the
uncertainty due to multi-omic data analytics from different sources (quality, and
conditions), i.e. the identifying the structure and dimensionality of metadata.
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Fig. 3. Interdependency among omic layers in a multi-layer network. One of
the challenges is to estimate the mutual relationships between omics, i.e. the causal
relationships. In general terms, the control and target is an important bioinformatics
challenge. Nodes represent genes forming a network, but they can also represent dif-
ferent features. A perturbation P may affect one or more layers. The overall response
of each layer is produced by the combination of X, Y and Z, according to the interde-
pendency among layers (see Eq. 1).

Although the different omics are subtly coupled, one meaningful and useful
perspective from the operational standpoint, is the concept of multi-layer net-
works. Network theory investigates the global topology and structural patterns
of the interactions among the constituents of a multi-omic adaptive system. Net-
works are the most natural way to model many types of biological knowledge
at different levels. Recently, complex network theory has been extended towards
multiple networks. Multilayered networks can be used for the representation and
quantification of the interactions arising from the combined action of omics in
response to mutational events and selection pressures. The architecture of com-
plex networks is a natural embedding for fitness-changes diffusion processes as
a function of natural selection constraints, e.g. those observed during environ-
mental changes.

8 Conclusion

In this paper, we reviewed available methods to study selection and adapta-
tion processes to extreme environments by means of multi-omic experimental
and bioinformatics approaches. To date, a great deal of biological information
has already been acquired through application of individual ‘omics’ approaches.
However, “multi-omic technology”, coupled with or mapped to multi-layer net-
works, will enable the integration of knowledge at different levels: from genes
to proteins, from pathways to metabolic fluxes. We have also discussed how
the investigation of the correlation between changes at the level of omics and
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the selection processes may provide a useful approach to study the genotype-
phenotype mapping.

We argue that extreme conditions could provide better insights into
genotype-phenotype mapping, because extreme phenotypes are required to adapt
to extreme environments. Large adaptations such as the production of vast
amounts of antifreeze protein are much easier to detect and understand than
the far more subtle changes one expects in more hospitable environments, where
adaptation is primarily concerned with slight changes to an already near-optimal
phenotype.

Multi-omic and multi-layer models represent a novel and powerful tool to
generate discrete and testable biological hypotheses. We also argue that the
study of life in extreme environments will provide useful clues to general laws of
biological adaptations and easier conditions to test mechanistic hypotheses.
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Abstract. Accurate de novo assembly using short reads generated
by next generation sequencing technologies is still an open problem.
Although there are several assembly algorithms developed for data gen-
erated with different sequencing technologies, and some that can make
use of hybrid data, the assemblies are still far from being perfect. There
is still a need for computational approaches to improve draft assemblies.
Here we propose a new method to correct assembly mistakes when there
are multiple types of data generated using different sequencing technolo-
gies that have different strengths and biases. We exploit the assembly
of highly accurate short reads to correct the contigs obtained from less
accurate long reads. We apply our method to Illumina, 454, and Ion Tor-
rent data, and also compare our results with existing hybrid assemblers,
Celera and Masurca.

Keywords: de novo assembly · Assembly improvement · Next genera-
tion multi-platform sequencing

1 Scientific Background

Since the introduction of high throughput sequencing (HTS) technologies, tradi-
tional Sanger sequencing is being abandoned especially for large-scale sequencing
projects. Although cost effective for data production, HTS also imposes increased
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cost for data processing and computational burden. In addition, the data qual-
ity is in fact lower, with greater error rates, and short read lengths for most
platforms. One of the main algorithmic problems in analyzing HTS data is the
de novo assembly: i.e. “stitching” billions of short DNA strings into a collection
of larger sequences, ideally the size of chromosomes. However, “perfect” assem-
blies with no gaps and no errors are still lacking due to many factors, including
the short read and fragment (paired-end) lengths, sequencing errors in basepair
level, and the complex and repetitive nature of most genomes. Some of these
problems in de novo assembly can be ameliorated through using data generated
by different sequencing platforms, where each technology has “strengths” that
may be used to fix biases introduced by others.

There are three kinds of assemblers mainly used to do genome assembly:
(i) greedy assemblers [1–3], (ii) overlap-layout-consensus (OLC) graph based
assemblers [4–6] and (iii) de Bruijn graph based assemblers [7–11]. Greedy assem-
blers follow a greedy approach such that: given one read or contig, at each step
assembler adds one more read or contig with the largest overlap. The problem of
greedy assemblers is that they can get stuck at local maxima. Therefore they are
generally used for small genome assemblies. Since they also use more memory
and are slower, it is not feasible to assemble large genomes with greedy assem-
blers. OLC graph based assemblers work well when the long reads are available
for assembly. They generate all-against-all pairwise alignments and build the
graph by representing reads as nodes and overlaps between reads as edges. They
obtain the consensus assembly by following a Hamiltonian path on the graph.
Assemblers that are based on de Bruijn graphs are designed primarily for short
reads. They use a k-mer graph approach instead of calculating all-against-all
pairwise alignments. They build the graph by using k-mers as edges and the
overlaps between k-mers as nodes. They follow an Eulerian path through the
k-mer graph to find a consensus assembly. Several assemblers use multiple read
libraries [12,13,15,16] for better assembly construction. CABOG [12] was ini-
tially designed for Sanger sequencing, and then it was revised to use 454 data,
but it also accepts Illumina data to generate a hybrid assembly. Masurca [13]
is able to assemble Illumina reads together with longer 454 and Sanger reads.
MIRAest [15] can use Sanger, 454, Illumina, Ion Torrent and corrected PacBio
data for hybrid assembly. It works on small genomes. Cerulean [16] uses long
PacBio reads and short Illumina reads to construct a hybrid assembly. It uses
ABySS [10] assembler to generate assembly graphs with paired end Illumina
reads. Then, as input, it uses these assembly graphs and also long PacBio read
alignments to the assembled contigs.

Additionally, strategies to merge different assemblies using different data
sources into a single coherent assembly are described in the literature (e.g. [18]).
Our method differs from that of [18], in data types. [18] works on Illumina,
454 and ABI SOLID data, where we work on Illumina, 454 and Ion Torrent
data. Also pre- and post-processing steps of the two methods differ. [18] at first
assembles 454, Illumina and SOLID data separately with different assemblers
and then assembles the resulting contig collection again with another assembler.
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In this work, we propose a method to improve draft assemblies (i.e. produced
using a single data source, and/or single algorithm) by incorporating data gener-
ated by different HTS technologies, and by applying novel correction methods.
To achieve better improvements, we exploit the advantages of both short but
low-error-rate reads and long but erroneous reads. We show that correcting the
contigs built by assembling long reads through mapping short and high quality
read contigs produces the best results, compared to the assemblies generated by
algorithms that use hybrid data all at once. With this study, we also have the
opportunity to compare Ion Torrent and Roche/454 reads in terms of assembly
performances.

2 Materials and Methods

We cloned a part of human chromosome 13 into a bacterial artificial chromo-
some (BAC), and sequenced it separately using Illumina, Roche/454, and Ion
Torrent platforms (Table 1). We also obtained a “gold standard” reference assem-
bly for this BAC using GRCh37-guided assembly generated by Mira [14] using
Roche/454 data, which we then corrected using the Illumina reads [17]. Since
Roche/454 and Ion Torrent platforms have similar sequencing biases (i.e. prob-
lematic homopolymers), we separated this study into two different groups: Illu-
mina & 454 and Illumina & Ion Torrent. We applied the same method on the two
groups and evaluated them separately which gave us the opportunity to com-
pare Roche/454 and Ion Torrent data. The flowchart of the pipeline is depicted
in Fig. 1.

Table 1. Properties of the data

Technology Length range Mean length Mean base qual (phred s.) Paired

Illumina 101 bp (all reads have equal length) 101 bp 38 paired

Roche/454 40 bp-1027 bp 650 bp 28 single-end

Ion Torrent 5 bp-201 bp 127 bp 24 single-end

Technology: The name of the sequencing technology used to produce the reads. Length range:
Minimum and maximum lengths of the generated reads. Mean length: The mean length among
all reads. Mean base qual: The average phred score sequence quality of all reads. Calculated
by summing up all phred scores of the bases in a read and dividing it to sequence length of the
read, over all reads. Paired: Represents whether the sequencing is performed as paired-end or
single-end.

2.1 Pre-processing

Pre-processing steps consist of the following:

– First, we discard the reads that have low average quality value (phred score
17, i.e. ≥2 % error rate).

– Then, we remove the reads with high N-density (with >10 % of the read con-
sisting of Ns) from consideration. Ns would destroy the assembly contiguity.
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Fig. 1. Flow chart of the assembly improvement processes only for Illumina & 454.
Same is valid for Illumina & Ion torrent.
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– Third, we trim the groups of bases at the beginning and/or at the end of
the read that seem to be non-uniform according to sequence base content (A,
T, G, C) (See Fig. 2). These regions would cause erroneous structures in the
assembly.

– Finally, we apply the pre-processing operations of each assembler we used.

Fig. 2. Non-uniform A, T, G, C regions of Ion Torrent reads. First 8 bases and the
bases after the 130th base are trimmed in pre-processing.

2.2 Assembly

After the pre-processing step, we used several assembly tools suitable to assem-
ble different types of data: We used Velvet [7], a de Bruijn graph based assembler
that is designed to assemble short reads for assembling the Illumina reads. Con-
sidering the trimmed beginning and/or end parts of 101bp long paired-end reads
from Illumina, and after testing kmers 21 and 31, we decided to use k = 51 for
short read assembly. We ran Velvet with shortPaired mode with insert size
400bp, expected coverage 80, coverage cutoff 2, and minimum contig length 100.
N50 value of the resulting short read contigs was 8,865 bp. We used two differ-
ent OLC assemblers: Celera [5] and SGA [6] to assemble the long read data sets
(Roche/454 and Ion Torrent) separately. We ran Celera assembler in unmated
mode and with default parameters to assemble 454 and Ion Torrent reads. N50
value of the assembly obtained with 454 and Ion Torrent reads with Celera was
1,308 bp and 1,284 bp, respectively. We also used SGA assembler in unmated
mode for the same data sets. We obtained N50 values of 505 bp and 117 bp
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for Roche/454 and Ion Torrent data, respectively. In addition, we also used a de
Bruijn graph based assembler, SPAdes [8], to assemble the long read data. Again,
we applied default parameters. N50 values of the assemblies obtained with 454
and Ion Torrent reads with SPAdes were 212 bp and 259 bp, respectively.

We mapped all draft assemblies to the E. coli reference sequence using
BLAST [19]’s MegaBLAST [20] task to identify and discard E. coli contami-
nation due to the cloning process. We discarded any contig that mapped to the
E. coli reference sequence with sequence identity ≥95 %. Finally, we obtained
one short read, and three long read assemblies without contamination.

2.3 Correction

In the correction phase, we wanted to exploit the accuracy of the short read con-
tigs (SRC) and the coverage of the long read contigs (LRC) to obtain a better
assembly. Hence, we mapped all SRCs onto all LRCs of each group and cor-
rected the LRCs according to the mapping results. First, we used BLAST [19]’s
MegaBLAST [20] mapping task to map the SRC onto the LRC. We then used
an in-house C++ program to process the MegaBLAST mapping results. Since
MegaBLAST may report multiple mapping locations due to repeats, we only
accepted the “best” mapping locations. Reasoning from the fact that short
reads show less sequencing errors, we preferred the sequence reported by the
SRC over the LRC when there is a disagreement between the pair. By doing
this, we patched the “less fragmented” long read assemblies. If there is an over-
lap between different SRC mappings at the same region on the LRC, the latter
overwrites the first. Figure 3 shows a visual representation of the strategy on
correcting the LRCs.

Briefly, we describe our strategy in the following steps:

– If there is a mapping between a SRC and a LRC, and if the mapping does not
start at the beginning of the LRC, add the unmapped prefix of the LRC.

– Next, if the mapping does not start at the beginning of the SRC (very rare
situation), add the unmapped prefix of the SRC with lowercase (i.e. low con-
fidence) letters.

– Over the mapping region between SRC and LRC, pick the SRC values.
– If the mapping does not end at the end of the SRC (rare), add the unmapped

suffix of the SRC, again with lowercase letters. One may argue that it might
disturb the continuity of the resulting contig, however, we observe such map-
ping properties very rarely. The reason for using lowercase letters is to keep
track of the information that there is a disagreement between the SRC and
LRC on these sections, so the basepair quality will be lower than other sections
of the assembly.

– Finally, add the unmapped suffix of the LRC and obtain the corrected contig.

We repeated this process to correct each of the three long read assembly contig
sets. We applied our correction strategy on each data set multiple times until
there is no improvement in the Coverage and Average Identity metrics.
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Fig. 3. Correction method: correct the long read contig according to the mapping
information of the short read contig.

2.4 Evaluation

To evaluate and compare the resulting and corrected assemblies all-against-all,
we mapped all of the assembly candidates, including primary assemblies and
also final corrected assemblies to the “gold standard” BAC assembly. According
to the alignment results, we calculated various statistics such as the number
of mapped contigs, how many bases on the reference sequence were covered,
how many gaps exist on the reference sequence, and the total gap length. We
calculated metrics such as “Coverage” and “Average Identity” and compared
the resulting assemblies with these metrics.

To calculate these statistics, we kept an array of arr reference[0,0,0,...0],
where length(arr reference) = length(reference). We updated the contents of
arr reference according to the alignments. If there is a match at a location, we
assigned the corresponding position in the array to “1”, if there is a mismatch
at a location, we set it as “−1”, and if that location is not included in any align-
ment, we left it as “0” (which means a gap). We assumed deletions in the contig
(query) as mismatches. We also calculated the number of insertions in the con-
tig. Scanning the array and summing up the number of “1”s (matches), “−1”s
(mismatches), “0”s (gaps) and “insertionInQuery”, we obtained the number of
matches, mismatches, gaps, and insertions in contig. Using these numbers, we
calculated the Coverage (Eq. 1) and Average Identity values (Algorithm 1).

We also used two hybrid assemblers, Celera-CABOG [12] and Masurca [13],
with Illumina & 454 and Illumina & Ion Torrent. These hybrid assemblers load
all reads as input and assemble them with a hybrid method. We assembled the
two data sets with these hybrid assemblers to compare our correction method
with the results of them.

Coverage =
(

# of covered bases
length of the reference

)

(1)
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Algorithm 1. Average identity
while no contigs left do

alignmentLength ← matches + mismatches + insertionInContig

identity ←
(

matches
alignmentLength

)

avgIdentity ← avgIdentity + identity × contigLength
end while

avgIdentity ←
(

avgIdentity
∑contigNum

i=1 contigLengthi

)

3 Results

We present the results in Table 2, and interpret them in different point of views.

3.1 454 vs. Ion Torrent

Ion Torrent reads are shorter than 454 reads and they have less mean base quality
(Table 1). So, we did not expect to have better assembly with Ion Torrent reads
than 454 reads. The results in Table 2 agree with our expectations. In Table 2,
we see that the assembly of 454 reads performs better on evaluation metrics
than Ion Torrent with all kind of assemblers. The assembly of Ion Torrent reads
with Celera assembler has very low coverage value: 26.94 %. The reason for the
low coverage might be because Celera assembler is not designed for Ion Torrent
read type (shorter reads with lower quality). Even 454 and Ion Torrent reads
have similar error types at the homopolymer regions. SGA assembly with Ion
Torrent reads performs better on Coverage (86.57 %) but it cannot reach to the
Coverage of SGA assembly with 454 reads (99.83 %). The assembly of Ion Torrent
reads has the highest coverage with SPAdes assembler (94.94 %). Correction of
the Ion Torrent contigs improves the assembly quality but even after correction
phase Ion Torrent corrected assembly cannot reach the results of 454 corrected
assembly.

3.2 Assemblers

Table 2 shows that the assembly obtained by Velvet with only short Illumina
reads showed good coverage (99.05 %) and average identity rates (97.52 %). The
number of contigs obtained with Velvet assembly is 455, of which 437 map to the
reference. There are 39 gaps and the total size of the gaps is 1,671 bp. Our aim
was to increase the coverage, improve the average identity, decrease the number
of contigs and gaps, and shrink the lengths of the gaps.

Since we observed that 454 reads resulted better assembly than Ion Torrent
reads as stated in Sect. 3.1, we compared different assemblers using 454 con-
tigs. The assembly of Celera with the 454 long reads has 97.58 % coverage and
92.59 % average identity, which are lower than Illumina-Velvet values. Number
of contigs (735) is reasonable but number of gaps and total gap length are high
(18 and 4,280 bp, respectively). SGA assembly using 454 reads has very high
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Table 2. Results of assembly correction method on BAC data.

Name Length # of # of mapped # of covered Coverage Avg. # of Size of

contigs contigs bases identity Gaps Gaps

Reference 176.843

Velvet

Ill. Velvet 197,040 455 437 175, 172 0.99055 0.97523 39 1,671

Celera

454 Celera 908,008 735 735 172, 563 0.97580 0.92599 18 4,280

Ion Celera 39,347 27 27 47, 638 0.26938 0.96932 47 129,205

Corrected Celera#

Ill-454 Celera 371,065 250 250 176, 071 0.995635 0.944558 5 772

Ill-454 Celera2
∗

365,802 245 245 176, 343 0.9971 0.9455 4 500

Ill-Ion Celera 93,909 30 28 81, 819 0.46267 0.96327 36 95,024

Ill-Ion Celera2 145,262 30 28 91, 962 0.52002 0.97412 33 84,881

Ill-Ion Celera3 216,167 30 28 99, 645 0.56347 0.98066 34 77,198

SGA

454 SGA 62,909,254 108, 095 101, 514 176, 546 0.99832 0.97439 1 297

Ion SGA 842,997 6, 417 6, 122 153, 092 0.86569 0.99124 197 23.751

Corrected SGA

Ill-454 SGA 295,009 335 335 176, 757 0.99951 0.96823 5 86

Ill-Ion SGA 197,509 291 291 175, 052 0.98987 0.97501 45 1,791

Ill-Ion SGA2 203,064 291 291 175, 676 0.99340 0.97413 34 1,167

SPADES

454 SPADES 12,307,761 49, 824 49, 691 176, 843 1.0 0.98053 0 0

Ion SPADES 176,561 110 107 167, 890 0.94937 0.92909 9 8,953

Corrected SPADES

Ill-454 SPADES 290,702 298 298 176, 454 0.99780 0.96538 5 389

Ill-Ion SPADES 198,665 52 52 171, 977 0.97248 0.94215 4 4,866

Ill-Ion SPADES2 200,307 52 52 172, 101 0.97319 0.94230 2 4,742

Masurca

Ill-454 Masurca 380 1 0 0 0 0 0 0

Ill-Ion Masurca 2,640 8 8 1, 952 0.01104 0.98223 9 174,891

Celera-CABOG

Ill-454 Celera 1,101,716 891 891 174, 330 0.98579 0.92452 12 2,513

Ill-Ion Celera 0 0 0 0 0.0 0.0 0 0.0

Name: the name of the data group that constitutes the assembly; # of Contigs: the number of contigs that belong
to the resulting assembly; # of Mapped Contigs: the number of contigs that successfully mapped onto the reference
sequence; # of Covered bases: the number of bases on the reference sequence that are covered by the assembly;
Coverage: percentage of covered reference; Avg. identity: percentage of the correctly predicted reference bases; #
of Gaps: the number of gaps that cannot be covered on the reference genome; Size of Gaps: total number of bases
on the gaps.∗“2” represents the results of the second cycle of correction, “3” represents the third cycle.
#A mistake is noticed on Ill-454 Celera data and the results are corrected after being published in the proceedings
of CIBB2015.

coverage (99.83 %) and identity (97.43 %). It has just one gap with size 297 bp,
but the number of contigs is also very high (101,514), which is an unwelcome sit-
uation. SPAdes-454 assembly also had a large number of contigs (49,824) which
completely cover the reference sequence with 98.05 % average identity. SPAdes
assembly resulted in lower number of contigs and had higher coverage and aver-
age identity than SGA. If we evaluate the results according to the number of
contigs, Celera-454 results seem more reasonable than SGA or SPAdes results,
since it returned a reasonable number of contigs even with low coverage and
average identity.
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3.3 Correction

We observed that the correction method improved both 454 and Ion Tor-
rent based assemblies generated with all assemblers we tested (Table 2). In the
remainder of the paper, we only mention the 454-based assemblies for simplicity.

When we applied our correction method on Celera-454 assembly using the
Velvet-Illumina assembly, we achieved better coverage and average identity rates:
the coverage of 454 assembly increases up to 99.56 % and the average identity
rate increases up to 94.45 % on the first correction cycle. The second correction
cycle increases the coverage and average identity rates to 99.71 % and 94.55 %,
respectively, and the correction converges. The number of contigs decrease to
245 from 735, and the number of gaps decrease down to 4 (500 bp) from 18
(4,280 bp). Since the third correction cycle does not give better results it is not
shown in Table 2.

Our correction method increased the coverage of SGA-454 assembly up to
99.99 % from 99.82 % but with less average identity and with more gaps although
the total length of the gaps is decreased. Correction using the short read assembly
decreased the number of contigs down to a reasonable number (335). Corrected
SGA assembly has the largest coverage rate among all, and also with more
identity than Velvet-Illumina assembly.

The number of contigs in SPAdes assembly also decreased to 298 from 49,691
using our correction method. With the decrease in number of contigs, the cov-
erage also decreased (99.78 %) as well as the average identity (96.53 %). The
number of gaps increased to 5 from 0 with a total size of 389.

In summary, we obtained substantial assembly correction in draft assemblies
by using advantages of different technologies.

3.4 Hybrid Assemblers

We also compared the results of two hybrid assemblers on our multiple type of
data. We used Masurca and Celera-CABOG with default parameters given two
groups of hybrid data as input: Illumina & 454 and Illumina & Ion Torrent.
Hybrid assemblers Masurca and CABOG did not show good assembly rates.
We obtained zero coverage with 454 and Illumina reads using Masurca. The
only contig left after the contamination removal did not map to the reference
sequence. We also observed very low coverage (1.10 %) with 98.22 % average
identity with Ion Torrent & Illumina reads. Therefore, we conclude that Masurca
did not work very well in our case with our data types.

Similarly, we obtained zero coverage with Ion Torrent & Illumina using
CABOG. All of the resulting contigs obtained from the assembly were removed
as contamination. However, CABOG performed substantially better with Illu-
mina & 454, and generated assembly with 98.58 % coverage and 92.45 % average
identity. The assembly composed of 891 contigs and 12 gaps with total gap length
of 2,513 bp. Still, the performance of CABOG was not better than the corrected
assembly results described above.



230 P. Kavak et al.

3.5 Combination of the Data from all Platforms

We combined data from all 3 platforms to generate a new assembly in order to see
if we have better coverage or accuracy on the results. The results are presented
in Table 3. Our method is originally designed for two data types. It corrects one
data type’s contigs with the other data type’s contigs, so we needed to combine
three types of contigs sequentially. As mentioned in Sect. 2.3 our method accepts
that the corrector data is more accurate than the corrected data. If there is a map
between the two, it replaces the values of the corrected data with the values of the
corrector data. For that reason, while working with 3 data combination, we decided
to use Velvet-Illumina contigs which are built by the highest accurate reads as the
last corrector. On Table 3, it is seen that Celera-454 contigs increase the coverage
rate of Celera-Ion Torrent contigs (from 26.93 % to 84.26 %) although decreasing
the average identity rate from 96.93 % to 94.51 %. Correcting the resulting contigs
with Velvet-Illumina contigs increases the coverage (96.32 %) and average identity
rates (95.50 %) even higher. The coverage and average identity rates are improved
on the second and third cycles too. Correcting Ion SPADES, with 454 SPADES
gives higher coverage (99.82 %) and average identity (97.33 %) rates than correct-
ing them with only Velvet Illumina contigs (97.24 % and 94.21 % respectively).
After using Velvet Illumina contigs for the last correction, the results are improved
approximately by 0.1 % and 0.01 % respectively. Correcting Ion SGA contigs with
454 SGA contigs was not possible because of memory limitations of BLAST map-
ping with such huge data. Instead, we used corrected version of “454 SGA contigs
with IlluminaVelvet contigs” to correct the IonSGAcontigs.The coverage is higher
than both Ill-Ion SGA and Ill-454 SGA, average identity is lower than Ill-454 SGA.

Table 3. Results with combination of 3 data types

Name Length # of # of mapped # of covered Coverage Avg. # of Size of

contigs contigs bases Identity gaps gaps

Reference 176.843

Corrected Ion Celera

454-Ion Celera 500, 251 27 27 149, 021 0.84267 0.94515 63 27, 822

Ill-“454-Ion Celera” 570, 865 27 27 170, 348 0.96327 0.95503 16 6, 495

Ill-“454-Ion Celera”2
∗

575, 726 27 27 172, 516 0.97553 0.95541 12 4, 327

Ill-“454-Ion Celera”3 578, 727 27 27 174, 535 0.98694 0.95555 10 2, 308

Corrected Ion SPADES

454-Ion SPADES 11, 224, 602 60 60 176, 540 0.99828 0.97334 6 303

Ill-“454-Ion SPADES” 9, 543, 712 45 45 176, 712 0.99925 0.97347 1 131

Corrected Ion SGA

Ill-454”-Ion SGA 281, 155 212 212 176, 769 0.99958 0.96562 4 74

Masurca(all)

Ill-454-Ion Masurca 3, 398 7 5 1, 477 0.00835 0.99363 5 175366

Celera-CABOG(all)

Ill-454-Ion Celera 575, 642 485 485 164, 621 0.93088 0.94664 39 12, 222

Name: the name of the data group that constitutes the assembly; # of Contigs: the number of contigs that belong
to the resulting assembly; # of Mapped Contigs: the number of contigs that successfully mapped onto the reference
sequence; # of Covered bases: the number of bases on the reference sequence that are covered by the assembly;
Coverage: percentage of covered reference; Avg. identity: percentage of the correctly predicted reference bases; #
of Gaps: the number of gaps that cannot be covered on the reference genome; Size of Gaps: total number of bases
on the gaps.∗“2” represents the results of the second cycle of correction, “3” represents the third cycle.
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We also used the hybrid assemblers Masurca and CABOG with default para-
meters with the combination of three data. Masurca resulted in very low coverage
0.8 % as it did before with the dual combinations. CABOG resulted in lower cov-
erage and higher average identity compared to Ill-454 combination and higher
in both compared to Ill-Ion Torrent combination. Hybrid assembler still did not
result in as high coverage and average identity as obtained with the correction
method.

We note that exploiting all the data gives us more accurate results especially
when we are using a diverse data which has different strengths and weaknesses.
However, one must be careful about the weaknesses and strengths of the data
and where and in which order to use each of them.

4 Conclusion

In this paper, we presented a novel method to improve draft assemblies by cor-
recting high contiguity assemblies using the relatively more fragmented contigs
obtained using high quality short reads. Assembling short and long reads sepa-
rately using both de Bruijn and OLC graph based assemblers according to data
types and then using correction methods gives better results than using only
hybrid assemblers. Using three data types together for correction or as the input
of the hybrid assemblers rather than using only two of them gives more accurate
results.

However, the need to develop new methods that exploit different data prop-
erties of different HTS technologies, such as short/long reads or high/low quality
of reads, remains. In this manner, as future work, our correction algorithm can
be improved by exploiting the paired end information of the short, high quality
reads after the correction phase to close the gaps between corrected contigs.
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Abstract. Controlled biomolecular annotations are key concepts in
computational genomics and proteomics, since they can describe the
functional features of genes and their products in both a simple and
computational way. Despite the importance of these annotations, many
of them are missing, and the available ones contain errors and incon-
sistencies; furthermore, the discovery and validation of new annotations
are very time-consuming tasks. For these reasons, recently many com-
puter scientists developed several machine-learning algorithms able to
computationally predict new gene-function relationships. While several
of these methods have been easily adapted from different domains to
bioinformatics, their validation remains a challenging aspect of a com-
putational pipeline. Here, we propose a validation procedure based upon
three different sub-phases, which is able to assess the precision of any
algorithm predictions with a reliable degree of accuracy. We show some
validation results obtained for Gene Ontology annotations of Homo sapi-
ens genes that demonstrate the effectiveness of our validation approach.

Keywords: Validation · Gene Ontology · Biomolecular annotations ·
Receiver Operating Characteristic · ROC curves · Genomic and Pro-
teomic Data Warehouse (GPDW)

1 Introduction

In computational biology, a controlled biomolecular annotation is the association
of a gene or gene product with a biological functional feature expressed through
a controlled term, which can be part of a terminology or a controlled vocabulary
structured within an ontology, such as the Gene Ontology (GO) [1]. Thus, the
annotation states that the gene has the functional feature represented by the
controlled term.

For instance, the pair <SLC1A6, L-glutamate transmembrane transporter
activity> represents the annotation of the SLC1A6 gene to the L-glutamate
transmembrane transporter activity molecular function. Despite their biologi-
cal importance, there are some issues with available annotations, such as the
c© Springer International Publishing Switzerland 2016
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presence of erroneous or missing ones [2]. Thus, computational algorithms and
software tools able to produce ranked lists of reliably predicted annotations are
a very useful contribution [3].

In the past, we designed and developed several algorithms towards this goal.
We started from a state-of-the-art algorithm based on truncated Singular Value
Decomposition (tSVD) and developed some variants [4]. Then, in [5] we designed
an algorithm to choose the best truncation level for the tSVD, while in [6,7]
we developed weighted variants of the tSVD method. In [8,9] we designed and
tested some topic modeling techniques, and in [10] we took advantage of a deep
neural network approach. We compared many of these algorithms in [11], and
also merge together different prediction techniques in [12].

Other scientists have dealt with this scientific task in the past. Khatri et al.
used principal component analysis (PCA) through singular value decomposition
(tSVD) as well in [13–15], while King et al. used decision trees and Bayesian
networks in [16]. Tao and colleagues took advantage propounded to use a k-
nearest neighbour (k-NN) classifier in [17]. Barutcuoglu and colleagues, used a
support vector machine (SVM) algorithm in [18]. Many other algorithms were
used in the past to predict GO annotations, we cannot report them all here for
lack of paper space (a detailed and complete literature review is available in the
Related Works section of [19]).

All these methods can be viewed as matrix-completion approaches, in which
the method attempts to recover a matrix with some underlying structure from
noisy observations. The input of these methods is A = [aij ], an m × n matrix,
where each row corresponds to a gene and each column corresponds to a Gene
Ontology feature term (aij = 1 if gene i is annotated to feature term j, aij = 0
otherwise). Moreover, let θ be a fixed threshold value. The prediction algorithm
elaborates the matrix A to produce an output matrix Ã, with the same dimen-
sions of A, where each likelihood value ãij is used to categorize an annotation:
〈genei, featurej , ãij〉. A high ãij value indicates that the probability for genei
to be associated with the feature featurej is high. Every approach described in
the previously cited papers constructs the input matrix A, elaborates it with a
machine-learning algorithm, and finally generates the output matrix Ã contain-
ing the predicted functional annotations.

All these prediction pipelines, as well as of any other similar project, share
a common final pivotal step: the validation of results. Since biomolecular anno-
tations are always incomplete (because our knowledge of biology is incomplete),
we do not have a ground-truth or gold-standard on which to rely; this makes us
unable to take advantage of the usual computational methods widely used for
validation in other applied machine-learning domains (such as computer vision
or signal processing). To deal with this issue, we developed a method which
assembles three different validation procedures that, together, lead to a reliable
determination of the predicted annotation accuracy.

Here, we illustrate this method and the three techniques that it includes: the
analysis of the Receiver Operating Characteristic (ROC) curves, the comparison
between available annotation versions, and the review of the scientific literature.
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To the best of our knowledge, no other complete paper has been published
about the validation of predicted GO annotations in the past. Khatri and col-
leagues briefly mention in [13–15] their validation techniques, based upon the
analysis of literature and on a search made on the updated GO datasets, with-
out providing details about it. King et al. used a receiver operating characteristic
(ROC) performance evaluation followed by an analysis on an updated organim
database in [16]. Also Tao and colleagues used looked for the Homo sapiens GO
annotations they predicted on a newer version of the Homo sapiens database,
through a procedure they called historical rollback validation [17].

After this Introduction, Sect. 2 illustrates our method and the included val-
idation procedures. Section 3 shows some example results of the proposed vali-
dation method and Sect. 4 concludes.

2 Methods

In this section we describe the validation procedures that we assembled and
implemented to test the effectiveness of annotation prediction computational
methods: (Sect. 2.1) ROC curve analysis, (Sect. 2.2) comparison between dif-
ferent versions of available annotations, and (Sect. 2.3) evaluation against the
literature using available web tools.

2.1 Receiver Operating Characteristic (ROC) Curve Analysis

A ROC curve is a graphical plot which depicts the performance of a binary
classifier system while its discrimination threshold τ varies [20]. Although usually
in the biomolecular annotation prediction field a reference gold standard is not
available, it can be used to compare output predicted annotations against input
ones, instead of against the unavailable reference gold standard.

Our ROC curves depict the trade-off, for all possible values of τ , between the
TPrate and the FPrate, where:

TPrate =
TP

TP + FN
FPrate =

FP

FP + TN
(1)

and TP, FP, TN and FN represent the number of true positive, false positive,
true negative and false negative predictions. Notice that, in statistical terms,
TPrate = sensitivity and FPrate = fallout = 1 − specificity. Our ROC
curves are built with the TPrate on the y axis and with the FPrate on the x
axis.

Thus, this ROC curve analysis is an efficient tool to understand the similarity
between the input and output annotations of an annotation prediction method.
A ROC curve showing a high area under the curve (AUC) corresponds to having
many TPs (annotations present in the input and confirmed as present in the
output) and many TNs (annotations absent in the input and confirmed as absent
in the output). This means that the input annotation matrix is very similar to
the output annotation matrix, and the output annotation profiles strongly reflect
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the input ones. On the contrary, a low AUC means a lot of differences between
the input and output annotations.

Given the comparison with the input annotations instead of with a gold stan-
dard, a good prediction should have a fairly high AUC. We consider a prediction
insufficiently acceptable when its AUC is lower than ω = 2/3. We chose this
heuristic value to indicate that at least 66.67% of the output annotation matrix
should be equivalent to the input matrix, since usually most of available annota-
tions are correct although some errors and several missing annotations generally
exist.

Despite the effectiveness of this ROC AUC analysis, our two other validation
methods (annotation version comparison and literature review) are more useful
and efficient.

2.2 Annotation Version Comparison

When an updated version of the controlled annotations used as input to a predic-
tion method is available, the tally of the new annotations predicted (FPs) that
are found confirmed in the updated version of the analyzed annotations provides
an important validation. Note however that it can give only a lower estimate of
the predicted annotation accuracy, since correctly predicted annotations could
not be present in the available updated annotations just because they have not
been discovered yet, or simply because they have not yet been included in the
available annotations.

We take advantage of the Genomic and Proteomic Data Warehouse (GPDW)
[21–23], a knowledge base which integrates numerous, multi-organism, gene and
protein controlled annotation data from many different sources, including the
Entrez Gene and GO databases. Relevant features of the GPDW are its peri-
odical updates of the contained data and the storage in the GPDW of their
outdated versions [24]. We leverage them by retrieving from the GPDW differ-
ent, time distant versions of the available gene GO annotations, and using them
as analyzed annotations and updated annotations for validation comparison,
respectively. Our validation procedure behaves as follows:

1. We save the FP annotation list into a table in the analyzed GPDW database
version, with geneOID, termOID and the prediction likelihood value as fields.

2. Since the OID codes are unique IDs only within the specific GPDW version,
we first enrich the FP list with additional fields to unequivocally identify
annotation genes and terms also in the updated GPDW version. Towards
this aim, we execute a SQL query on the analyzed GPDW version to add
other fields, such as gene source id, gene source name, term source id and
term source name, to the FP list table. The gene source name field includes
the name of the source database of the gene (e.g. Entrez Gene), gene source id
is the unique ID of the gene inside the source database, term source name is
the name of the source database of the annotation term (e.g. Gene Ontology),
and term source id is the unique ID of the term inside the source database.
Thus, the gene source name and gene source id fields together unequivocally
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identify a gene; and the term source name and term source id fields together
unequivocally identify a feature term. We create a new FP list enriched table
with the FP annotations and their values for these additional fields.

3. We read this FP list enriched table from the analyzed GPDW version and
copy it into the updated GPDW version considered.

4. We execute a SQL query that retrieves all indirect, less specific, ontological
annotations contained in the updated GPDW version and store them into
a new UnfoldedAnnotations table. In the GPDW, the direct, more specific,
annotations are in the gene2biological function feature table, while their indi-
rect ones can be found with a JOIN operation between this table and the
gene2biological function feature unfolded table.

5. We execute a SQL query that counts how many direct annotations in the
FP list enriched table are found in the gene2biological function feature table
of the updated GPDW version, by joining the unique fields gene source id,
gene source name, term source id and term source name of the two tables.

6. We execute a SQL query that counts how many parental annotations in the
FP list enriched table are found in the UnfoldedAnnotations table, by join-
ing the unique fields gene source id, gene source name, term source id and
term source name of these two tables.

7. Finally, we also count how many of the predicted (FP) gene GO annotations
that are found confirmed in the updated version of the GPDW have evidence
IEA or ND.

We report a flow chart of this annotation prediction validation procedure
in Fig. 1.

2.3 Literature Evaluation Through Web Tools

The third and last step of our annotation prediction validation procedure is
based upon searching literature resources for information supporting the pre-
dicted annotations. It is the only step not fully automated in our pipeline.

The sources integrated in the GPDW mainly contain data from validated
experiments, whose results are published in the literature. Yet, given the numer-
ous research groups working independently all over the world and the many
different journals in which results are published, some validated annotations
published in the literature may have not yet been included in annotation data-
bases. Thus, a literature review to search for confirmation of the annotations
predicted by a computational method can provide effective additional valida-
tion results. For this last step of our validation procedure, we leverage the main
online biomedical literature repository, PubMed [25], and the AmiGO [26] and
GeneCards [27] web tools.

2.4 Evaluation

We applied all the described validation techniques to the gene GO annotations
that we predicted with the methods described in [4]. Such methods are all based
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Fig. 1. Flow chart of the annotation prediction validation procedure based on the
comparison of annotation versions.

on the popular tSVD, also known as principal component analysis. We re-use
the tests made by Khatri and colleagues [13–15], based on the tSVD with a
heuristic fixed truncation level (SVD-Khatri), and compared their results to
those obtained with a tSVD variant that we developed (SVD-us), where the
best truncation level is chosen through a ROC optimization algorithm [5]. We
also compared two other variants of the tSVD, named SIM1 and SIM2, both
described in [4].

For the tests, we used as input the GO annotations of Homo sapiens genes
available in the July 2009 version of the GPDW [23] (i.e. 14,341 annotations of
7,868 genes and 684 GO Cellular Components (CC), 15,467 annotations of 8,590
genes and 2,057 GO Molecular Functions (MF), and 21,048 annotations of 7,902
genes and 2,528 GO Biological Processes (BP)).

For the result validation with the annotation version comparison tech-
niques we used the corresponding gene GO annotations available in the March
2013 version of the GPDW (i.e. 31,135 annotations of 12,033 genes and 1,021
GO Cellular Components, 25,396 annotations of 10,460 genes and 2,603 GO



Validation Pipeline for Computational Prediction of Genomics Annotations 239

Molecular Functions, and 64,212 annotations of 11,681 genes and 7,295 GO Bio-
logical Processes).

3 Results

Using the three validation procedures defined, we compared the results and eval-
uated the performance of four different annotation prediction methods:

– the tSVD as used by Khatri et al. [13] (with fixed truncation level k = 500 for
all datasets),

– the tSVD with truncation level chosen by our automatic algorithm [5],
– the SIM1 with truncation level and cluster number chosen by our automatic

algorithms [5], and
– the SIM2 with truncation level and cluster number chosen by our automatic

algorithms [5] and using the Resnik similarity measure [4].

We describe the evaluation results in the next sections.

3.1 ROC Curve Analysis

We generated the ROC curves for the considered prediction methods and input
datasets, and report their AUCs in Table 1. Almost all ROC AUCs are greater
than ω = 66.67%, which is the minimum “reliability” threshold that we consider
for the predictions. Only the ROC AUC generated by the SVD-Khatri method
for the GO CC gene annotations did not reach that threshold; thus, we do not
explore those predicted annotations further.

Table 1. ROC AUCs for the three Homo sapiens gene GO annotation datasets and
four prediction methods considered. The AUC percentage is always greater than the
minimum reliability threshold ω, which we heuristically set at 66.67 %, except for the
SVD-Khatri method applied to the GO CC dataset.

Method Cellular component Molecular function Biological process

SVD-Khatri 58.98 % 90.06 % 77.24 %

SVD-us 83.44 % 85.40 % 75.99 %

SIM1 80.94 % 83.58 % 70.20 %

SIM2 81.66 % 83.32 % 68.65 %

3.2 Annotation Version Comparison

In the first three cases in Table 2 we report the results obtained with a single
GO sub-ontology dataset as input and output, while the results obtained with
the complete whole GO dataset (CC ∪ MF ∪ BP) are in the last case in Table 2.
Based upon this Table content, we can observe what follows:
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Table 2. Results comparison of the methods tSVD with truncation level k fixed to 500
as in Khatri et al. [13] (SVD-Khatri), tSVD with our automatically determined optimal
truncation level k (SVD-us), SIM1 and SIM2. The τ threshold minimizes the sum
FPs + FNs. C: number of clusters for SIM1 and SIM2. SIM2 uses Resnik’s similarity.
APs: number of annotations predicted; anDB : number of predicted annotations found
in the July 2009 GPDW version; upDB (upDB%): number (percentage) of predicted
annotations found in the March 2013 updated GPDW version (percentage over the
predicted annotations). The most important values are bolded: the percentages of
APs found on the updated GPDW version. The values of the ROC AUC of these tests
are in Table 1; the SVD-Khatri, SVD-us, SIM1 and SIM2 methods are described in [4].

Method k τ C APs anDB upDB upDB%

Homo sapiens, GO Cellular Component - CC

SVD-Khatri 500 0.45 0 0 0 0.00

SVD-us 378 0.49 8 0 4 50.00

SIM1 378 0.49 2 8 0 4 50.00

SIM2 378 0.49 2 8 0 4 50.00

Homo sapiens, GO Molecular Function - MF

SVD-Khatri 500 0.48 108 0 4 5.56

SVD-us 607 0.48 81 2 5 6.17

SIM1 607 0.48 5 13 0 1 7.69

SIM2 607 0.48 5 30 0 3 10.00

Homo sapiens, GO Biological Process - BP

SVD-Khatri 500 0.48 358 1 48 13.51

SVD-us 1,413 0.45 64 2 12 18.75

SIM1 1,413 0.45 2 35 1 10 28.57

SIM2 1,413 0.45 5 14 0 8 57.14

Homo sapiens, whole GO (CC ∪ MF ∪ BP)

SVD-Khatri 500 0.45 794 196 234 29.47

SVD-us 1,905 0.43 112 3 51 45.54

SIM1 1,905 0.43 2 116 3 45 38.79

SIM2 1,905 0.43 2 111 3 49 44.14

(a) Our tSVD method always outperforms the Khatri tSVD method with fixed
truncation: the percentage of annotations predicted (AP) found confirmed in the
updated GPDW version (table last column) is greater for all datasets.
(b) Our SIM1 method always outperforms the tSVD methods (greater percent-
age of annotations found confirmed in the updated GPDW version), except for
the CC dataset, where it has the same performance as our tSVD method, and
for the (whole CC ∪ MF ∪ BP) dataset, where the SVD-us outperforms all the
other methods.
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(c) Our SIM2 method always outperforms the SIM1 and tSVD methods, except
for the CC dataset, where they all have the same results. The complete whole
GO dataset (CC ∪ MF ∪ BP) shows an increased number of validated predicted
annotations, which are much more than the ones predicted in the single GO
sub-ontology tests. In addition, in this complete dataset the SVD-us method
outperforms all the other methods.

3.3 Literature Evaluation

Once we had the lists of the annotations predicted by our methods, we looked
for confirmation of their existence in the literature, as described previously. In
the scientific literature, GeneCards or AmiGO resources, out of the total 153
annotations (CC: 8, MF: 81, BP: 64) predicted with the tSVD method with our
best truncation level for each single GO sub-ontology, we found the 8 (5.30 %)
annotations (MF: 4, BP: 4) reported in Table 3; only one of them, i.e. <ITGA6,
Cell-matrix adhesion> (in bold in Table 3) was not in the updated GPDW
version. Out of the total 56 annotations predicted through the SIM1 method
(CC: 8, MF: 13, BP: 35), 2 (3.57 %) annotations (1 MF and 1 BP) were found.
Out of the total 52 annotations predicted through the SIM2 method (CC: 8,
MF: 30, BP: 14), 4 (7.69 %) annotations were found (3 MF and 1 BP).

Through the literature analysis, out of the total 153 annotations predicted by
our tSVD method, 21 (13.73 %) were validated in the updated GPDW version,
and we found only 1 additional annotation in the literature. Given the time
required to perform the literature evaluation, this result may seem very limited;
this is why we consider the first two validation procedures (ROC curve analysis
and annotation version comparison) to be more useful and reliable, particularly
the latter one.

Table 3. Homo sapiens gene GO annotations predicted by our tSVD method (SVD-
us, Table 2) and confirmed in the literature evaluation. If an annotation was available
in the latest Gene Ontology annotation version, its evidence is reported (IEA: Inferred
from Electronic Annotation, EXP: Inferred from Experiment, TAS: Traceable Author
Statement). The single annotation not found in the annotation version comparison
analysis is in bold.

tSVD with best truncation level chosen by our automatic algorithm

Sub-ontology Gene symbol GO term ID GO term name Evidence

MF SLC1A6 GO:0005313 L-glutamate transmembrane transporter activity IEA

MF HDAC6 GO:0004407 Histone deacetylase activity IEA

MF POR GO:0004128 Cytochrome-b5 reductase activity IEA

MF NT5M GO:0008253 5’-Nucleotidase activity EXP

BP ITGA6 GO:0007155 Cell adhesion IEA

BP ITGA6 GO:0007160 Cell-matrix adhesion IEA

BP CPA2 GO:0006508 Proteolysis IEA

BP AHR GO:0006805 Xenobiotic metabolic process TAS
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4 Conclusions

Validation of functional annotation predictions in biology is always a difficult
task. Available annotations continuously increase while scientists discover new
aspects of biology; furthermore, some of the available annotations may contain
errors, which could be corrected in their subsequent versions. A gold-standard
to use in the validation is not available, and creating a reasonably ample and
unbiased one is a daunting task. So, stating if a machine learning prediction
algorithm is performing well is quite difficult.

In the past, we designed and implemented several techniques for prediction
of Gene Ontology annotations, with algorithms from in linear algebra, cluster-
ing, weighting schemes, topic modeling and deep learning [4–11]. In this paper,
we illustrated here three validation procedures that we assembled and used to
validate the GO annotations of Homo sapiens genes predicted through some
computational learning methods. These three techniques mutually compensate
for each others’ strengths and weaknesses; although they are not fully innova-
tive, all together represent an useful tool to state the quality of biomolecular
annotations predicted through any computational algorithm.

Despite our evaluation of the presented validation procedures considers only
GO annotations, such procedures are not bound to the Gene Ontology, or even
to the biological domain, but can be used in any scientific validation in which a
full gold-standard does not exist, or is always changing. In the future, we plan to
improve the use of our overall validation method by additionally automating the
literature evaluation step, through the use of text mining techniques, as well as
to integrate it in our software suite for biomolecular annotation prediction [28]
and in the Bio-SeCo (Search Computing) platform [29,30].
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Abstract. Reproducible (computational) Research is crucial to pro-
duce transparent and high quality scientific papers. First, we illustrate
the benefits that scientific community can receive from the adoption of
Reproducible Research standards in the analysis of high-throughput omic
data. Then, we describe several tools useful to researchers to increase the
reproducibility of their works. Moreover, we face the advantages and lim-
its of reproducible research and how they could be addressed and solved.
Overall, this paper should be considered as a proof of concept on how and
what characteristic - in our opinion - should be considered to conduct
a study in the spirit of Reproducible Research. Therefore, the scope of
this paper is two-fold. The first goal consists in presenting and discussing
some easy-to-use instruments for data analysts to promote reproducible
research in their analyses. The second aim is to encourage developers to
incorporate automatic reproducibility features in their tools.

Keywords: Reproducible research · Big-data · R

1 Introduction

In recent years, “irreproducibility” is becoming a crucial and widespread problem,
especially in Medical and Life Sciences where most of the efforts are dedicated to
the so-called personalizedmedicine. In this field, based on the analysis of omic data
and the results of bio-medical studies, new drugs are synthesized/tested and new
treatments are proposed. The hazard, in this case, consists in the concrete possi-
bility to give a drug or a treatment to human patients without the achievement of
the expected results due to potential weaknesses in the data analysis on which the
therapywas based.As an example of irreproducible study,wemention the so-called
Duke Saga [1,2]. Unfortunately, there have been several cases - like that one - in lit-
erature. More and more papers [3–10] are reporting the impossibility to reproduce
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results presented in several works in involving the analysis of omic data. There-
fore, the attention towards reproducible findings and the need of transparency is
increasing [11]. In fact, several researchers [12,13] are showing how irreproducible
works often hamper the possibility to find possible errors and misconduct that
might be hidden into scientific papers. Moreover, not only might irreproducible
research create large increases of costs and delays, but it might also be extremely
dangerous especially when clinical trials on human beings are based on irrepro-
ducible (and therefore possibly incorrect) results. Unfortunately, we must admit
that the Life Science research community is still far from the achievement of what
it might be considered as a minimum standard for reproducibility. In fact, in [22]
the reproducibility levels of 441 biomedical journal papers published in the last fif-
teen years have been quantitatively evaluated. The results of this interesting study
established that just one paper - among these ones - described a full protocol and
none of them provided all the starting data publicly available. Moreover, only four
works have been found suitable for a full replication. The impact of irreproducibil-
ity can result in an unsatisfactory level of scientific research quality, in an improper
knowledge transfer and ethics problems related to misconduct in the presentation
of desired results.

For all those reasons, Reproducible Research (RR) is becoming an indis-
pensable feature to publish better and more reliable scientific research. In the
last few years, a debate has been increasing about the concept of reproducibil-
ity [14–19]. The analysis of massive datasets of high-throughput omic data, such
as Next Generation Sequencing (NGS), is increasing in terms of complexity, that
involve preprocessing steps, statistical methods and data interpretations. There-
fore, it become very difficult keeping track of all steps afront resulting in a lack
of reproducibility. Consequently, it has been suggesting the use of tools in a way
that can enhance transparency of the executions involved into the analyses pre-
sented in papers. Researchers are invited to make their raw data and the used soft-
ware/pipelines available specifying all the versions and parameters used. More-
over, in describing a work, all instruments used and how they have been connected
in a pipeline should be always available. However, as showed in [22] this is still
rarely done.

In this work, we discuss several solutions to increase reliability, verifiability,
quality, transparency and transfer knowledge of scientific findings. Therefore, the
scope of this paper is two-fold. The first goal consists in presenting and discussing
some easy-to-use instruments for data analysts to promote reproducible research
in the analysis of omic data. The second aim is addressed to developers that
decide to incorporate reproducibility features in their tools.

The rest of the paper is organized in the following way. In Sect. 2, we illustrate
an overview on Reproducible (computational) Research and describe the advan-
tages that researchers can benefit from the adoption of satisfactory reproducibility
standards. In Sect. 3, we explore some R-tools useful to make reproducible a work
or an analysis. In Sect. 4, we briefly present some repositories useful for data and
code sharing. In Sect. 5, we illustrate tools outside R. In Sect. 6, we describe which
are the limits of Reproducible Research. In Sect. 7, we draw out conclusions.
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2 Overview

Reproducible (computational) Research is a concept born in the early nineties
[25] obtaining a great impact within the statistical community thanks to the
work of Donoho et al. [27]. The main idea was to give to readers the possibility
to reproduce the entire analysis published in a paper (see Fig. 1 for a schematic
representation). To this purpose, they released the Wavelab Matlab package,
providing not only the code, but also the data and scripts used to generate
analyses and simulations. The package was adopted to publish several papers,
to teach case studies as well as to promote the RR spirit.

Since then the RR has been evolved in several ways with the help of modern
technologies like the Hypertext Markup Language (HTML), the Portable Doc-
ument Format (PDF), Python, R, etc., by preserving the same philosophy of
Literate Statistical Programming (LP) [26].

The LP promote the incorporation of natural language sentences along with
the computational language in order to enhance comprehensibility and to make
the code human readable. The lines of code are supplemented with explanatory
sentences that guide both readers and analysts to understand and verify the
strategy adopted to solve a specific problem. The code is divided in small pieces
called code chunks, preceded by a summary of the idea underlying the imple-

Tables

Cached Database
Files

Plots

Published 
article

Enriched Document
as

Supplementary Material

Raw Data
Analysis
R Code Reader

Fig. 1. This figure explains the basic idea of Reproducible Research. The raw data
needs to be analysed by using several tools written in some programming language (R
code in this example, but any language can be used) and by producing plots, tables and
caching data. Usually, this is a very complex task involving several intermediate steps.
All results (hopefully) converge in a publication (along with supplementary materials).
In particular, both papers and supplementary materials can be enriched by documents
that keep track of all code, data and results produced during the analysis. The final
reader - thanks to this “enriched document” - can back-trace and reproduce the entire
analysis made or just part of it. Figure is inspired from [28].
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mentation. The summary is more than simple lines of comments and give a more
complete view of the solutions used. In this manner, third-party users are able
to better understand the meaning and the aim of a code chunk.

After a period of general disinterest about the RR, in the last years this
concept has been recovered by the statistical community headed by Peng and
Stodden [24]. Community that has produced several papers and tools, in order
to establish guidelines to create a standard and providing the instruments to
facilitate the adoption of RR.

Their contribution has led to an evolution of RR, expanding the initial idea
of LP, highlighting that to obtain the reproducibility of a work it is necessary to
release not only the source code and a description summary of a developed tool,
but also the specifications about the middle steps of the analysis made with that
specific tool. Hence, during a complex analysis, it is necessary to understand
which tools have been used and also how the parameters has been set and which
middle results they have produced.

A good example of what the RR community has produced is the Bioconductor
project, in R language, which has reproducibility as its first goal [14]. The project
aims to aggregate as much as possible packages useful to analyse high-throughput
omic data, offering to the final user high quality standard software. In fact, in
a complete reproducible spirit, each package released under the Bioconductor
project has a vignette; an excellent example of RR, constituted by a mix of code
and natural language describing an example of use of the package, helping the
user to reproduce that specific analysis and also to adapt the code for its own
analysis.

2.1 Advantages of Reproducible Research

Researchers which adopt the RR spirit in their work can benefit of many advan-
tages [21]. In this section, we just underline three of them, such as: transparency,
verification, knowledge transfer.

Transparency [22] can be easily reached - for instance - by the automatic
generation of a report file that keeps track of all action performed, control ver-
sion of used tools and details regarding the set of parameters chosen during
the execution of a complex high-throughput omic data analysis. Even though
a fully reproducibility of a research does not guarantee the correctness of its
findings, a substantial improvement of its results - thanks to reproducibility -
can be achieved via the possibility to check the appropriateness of statistical
methodologies adopted and tools used. Presently, the peer review system cannot
guarantee to find out all possible mistakes hidden in a work. Usually, most of
the subtle issues and errors pass unnoticed during the revision process [13].

Therefore, transparency can assure a more technical and theoretical verifi-
cation of correct uses of both instruments and methods from the scientific com-
munity. Verification helps a reader to better understand and to have a deeper
insight in all the details of sets of procedures carried out during the pre-analysis
and analysis process. Therefore, a reader has the possibility to learn and to re-
execute the entire study described in a paper. In order to asses and verify the
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results of scientific publications, it is fundamental to inspect and reproduce the
entire analysis carried out by authors.

Knowledge transfer is an essential reproducibility characteristic. To achieve
a good level, researchers have to correctly report all steps performed by allowing
other researchers to start from their data and following all the steps described
making them able to obtain the same results presented in a paper. Hence, read-
ers can have deep insight into an analysis described in a paper, to verify the
authenticity of results (eventually to find out bugs and mistakes), to improve
the published analysis, or reuse the pipeline in a similar content. Overall, it
contributes to publish high quality scientific works and to help researchers to
improve their skills and comprehension.

3 R-Tools for Reproducible Research

The R community has always pursued the RR philosophy giving instruments to
incorporate RR features inside R in a simple way. A good starting point offering
main guidelines to attend during software development and data analysis, is
represented by [23,24], illustrating fundamental aspects on how to implement
RR features in R.

Fortunately, many different tools (Refer to CRAN specific task view to have
an overview https://cran.r-project.org/web/views/ReproducibleResearch.html)
have been built to help developers to incorporate these characteristics inside
their software for different programming languages. The Bioconductor project
contains several packages useful for integrating RR main features, allowing both
non expert and expert R user to implement RR in data analysis and software
development, automating the production of enriched documents.

Moreover, a useful reference, as tool repository, is represented by the rOpen-
Sci https://ropensci.org/ project, having as main aim the development and col-
lection of R packages in order to facilitate the data and code sharing in a complete
RR spirit.

3.1 R-Markdown

Since the beginning the R developers had produced tools, like sweave, to create
enriched documents, like the R vignette, an example document, associated to a
package, within a reproducible analysis to illustrate how to use the package.

In recent years, the sweave package has been mostly replaced by the knitr [30]
package before and by rmarkdown package after, facing the implementation lim-
its of previous packages and simplifying the construction of enriched documents.
Thanks to these packages it is possible to create scripts written in R-Markdown
language. These file types are a mix of sentences in natural language as expla-
nations, figures, tables and code chunks, complete and independent code units,
which can be run independently in an R console.

Using knitr, it is possible to compile the R-Markdown script in order to
produce documents in different common format, such as: HTML, PDF and Word.

https://cran.r-project.org/web/views/ReproducibleResearch.html
https://ropensci.org/
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The compiled documents can be used to produce manuals, reports, tutorials and
also data analysis summaries.

Anyone which is familiar with R can easily create an R-Markdown file. During
the compilation all the R code is re-executed, in order to test all the steps
included in the file. One of the most common suggestion, to keep in mind, is to
clear the R workspace before the compilation. The empty working environment
will ensure the reproducibility of the script, highlighting any error or missing
variable in the code.

There are two major ways to use the knitr package, the standard one is by
including the knitr package and to compile the R-Markdown script with the
knit2html function. In such a way the package compiles the script and generates
the corresponding HTML file. An easier way to create an R-Markdown script
is by using the R-Studio, an R development environment tool. As described in
Fig. 2, by choosing in the new file button the “R Markdown”, an example script
is created. It is possible to compile the R-Markdown script simply pressing the
Knitr button. It is also possible to choose the output file format by the down
arrow near to the “knitr” button.

The R-Markdown script can be used also to perform an entire analysis,
because of its native inclusion of R code mixed to natural language. While the
natural language is free to be written everywhere in the document without the
need to be enclosed between special characters, the R code needs to be enclosed
in special apostrophe like that:

‘‘‘{r}

## R code here

‘‘‘
Therefore, not only does the final document provide an open source code, but
also all those lines of code, that have been actually executed during the analysis
process, are clearly reported in a self-contained way, the code chunks. A reader
just needs to install the needed packages and by copying & pasting the code
chunks of interest can reproduce the same analysis carried out by the analyst.
Such enriched document can be considered as a full detailed log file, written in
human readable and friendly format usable as a supplementary material, con-
taining executable code along with all initializations and printed results (plots,
tables, arrays etc.). Moreover, each code chunk inside the file can be run inde-
pendently in an R console to obtain the results shown in that report.

3.2 Caching

Caching is a mechanism to store and retrieve data. This feature can be useful
in the analysis of high-throughput omic data because it helps to speed-up time
consuming code re-execution, like the reports generation.

Integrating caching inside software is convenient in order to store the input
and output of an entire analysis along with the parameters used. In this way,
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Fig. 2. This figure explains how to generate an R-Markdown script with R-Studio. By
choosing the new button, it is possible to select the R Markdown voice. The software
automatically generates an R-Markdown example script. Finally, with Knit HTML
button the script is compiled and the HTML document is generated. The natural
language comments have been highlighted in orange and the code chunks in blue. The
output of the executed code chunks has been highlighted in green. (Color figure online)
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caching not only does speed-up time consuming code, but it permits also to
share cached data through the Internet. Caching prevents re-computation of
time consuming lines of code by saving intermediate results into several objects
invoked when the same data are necessary for computations.

Caching is more complex than LP, it needs advanced programming skills
to be implemented in software or analysis scripts. The basic idea when using
caching is to think to store data on disk when not needed, in order to free the
memory, and to retrieve the specific variables when necessary.

In RR spirit, caching has to make available all the intermediate results that
can be checked separately and can be used as starting points for different analy-
ses. As a consequence, the implementation of caching allows the user to run in
a faster way different types of analyses on the same stored dataset, allowing to
easily modify an analysis while still preserving reproducibility.

By combining RR and caching features, a developer can achieve a better
management of the entire data analysis and an automatic way of keeping track
of the computational protocol used for analysing a specific dataset.

Thanks to the effort of several statisticians and developers there are many
packages available in R which can be used for caching, like cacher [29], rctrack
[33], filehash [34] and others [35] supporting and encouraging the caching use in
reproducible research.

The common concept underlying these packages is to have an object (saver)
devoted to the data storage on disk and another object (loader) devoted to
retrieve the re-stored data when needed. Stored data needs a key identifier, in
order to be uniquely retrieved and stored without overriding, when not expressly
desired.

Moreover, depending on the application, it can be necessary to split data in
order to store them in different files or storing them all together in one big file.
Best packages offer the possibility to choose the preferred way of implementation.
We suggest to modularize the caching file on disk, in order to facilitate the file
sharing.

Anyway, caching, alone, is not enough to ensure the reproducibility of an
analysis. In fact, it is necessary to share, together with the cached objects con-
taining the intermediate results, the actual code used to generate them, the
starting raw data and the versions of all packages and tools used during the
analysis.

3.3 Incorporation of Reproducible Research Features Inside GUIs
that Manage Big-Data

Graphical user interfaces (GUIs) are interactive tools, easy to use and very help-
ful for those users which do not have specific computational skill. However, the
incorporation of the RR features inside GUIs is usually extremely difficult. Fortu-
nately, there are different strategies to achieve this goal. We suggest the following
one. During the usage of a particular GUI, the system writes in background all
the executed lines of code in an automatically saved R-Markdown file. The file



Advantages and Limits in the Adoption of RR and R-Tools 253

can be compiled, re-executed, and possibly showed to the user in the form of an
HTML report whenever he wants.

Thus, a developer can help a user to conduct a study in a reproducible way
even though the user has no knowledge of programming languages. For this
scope, a developer can build a GUI that works at two levels. One is the user
level, providing access to all high level functionalities. The second level operates
in background and it is executed automatically by the GUI to generate and store
cached object and to print a report file that contains all the code lines executed
when the user performed an action. In this way, a researcher can perform an
analysis in a reproducible way and benefit of a report file that describes the
code lines involved in his study.

As a particular working example of a software which automatically produces
fully reproducible analysis, we refer to RNASeqGUI [42,43]. This R package is a
completely open source graphical user interface implemented in R. It allows to
identify differentially expressed genes from RNA-Seq experiments and to support
the interpretation of the results, through the pathway and gene ontology analysis.
It includes several well known RNA-Seq tools, available as command line in
Bioconductor.

This software, thanks to R-Markdown language, works at two levels as we
have just described. Therefore, it is capable to automatically generate a dynamic
report describing all the analysis carried out on a given project in a fully detailed
way. The report includes all R code chunks used during the analysis, the figures
and the summary of the results. These code chunks can be executed and their
results are updated automatically whether some changes occur. It keeps track
of all versions of the R packages used (session info), all steps, input/output
parameters, file names, etc. Moreover, the report can be exported as HTML file.

4 Repositories for Public Access to Data and Code

In order to be able to reproduce an analysis, a third-party user needs to have
access to code and raw data used for the analysis. To cope this need in recent
decades a vast amount of web resources are born in order to give the possibility
to share code and data for public accessibility.

In the bioinformatics field, examples of repositories are represented by
the Gene Expression Omnibus (GEO) [36] and the Sequence Read Archive
(SRA) [37]. Both give the possibility to upload and download datasets with
a unique identifier, useful for sharing. The first one is for functional genomic
data, while the second one is aimed to store biological sequence data.

Moreover, lots of works are based on data produced by international con-
sortia like The Cancer Genome Atlas (TCGA) https://tcga-data.nci.nih.gov/
tcga/, ENCODE https://genome.ucsc.edu/ENCODE/ [38] and ROADMAP
epigenomics http://www.roadmapepigenomics.org/ which allow public access for
download, also with interfaces of R packages.

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://genome.ucsc.edu/ENCODE/
http://www.roadmapepigenomics.org/


254 F. Russo et al.

Similarly, there are several code repositories on the Web useful to facili-
tate this goal. Repositories like Rpubs https://rpubs.com/ and GitHub https://
github.com/, give the possibility to share the code used during an analysis and
also to take trace of code versions. However, GitHub is more suited as repository
for a specific tool, while Rpubs is more inspired to share pieces of codes of data
analysing.

In this way, with a good combination of code and data, and a full share
of them through a public repository, a third-party user is more stimulated to
reproduce and to adapt a published analysis. Unfortunately, code sharing (in
particular for data analysing) repositories are still too few and their development
should be encouraged.

5 Reproducible Research Tools in Other Languages

We have presented so far the reproducibility feature inside the R environment.
However, we can find several instruments that helps developers in most of the
programming languages, such as: Python, Matlab and Java.

Python developers have the possibility to use IPython Notebook, freely avail-
able at http://ipython.org/notebook.html. This represents an interesting and
useful computational interactive environment, very intuitive and easy to use.
Thanks to this tool you can easily integrate executable code, rich text, mathe-
matics equations and formulas, several plots and graphs and rich media as well.

For Matlab developers, there is the Matlab Report Generator giving the user
the possibility to automatically generate enriched reports from Matlab scripts.

For Java developers, there is ResearchAssistant (RA): a Java library which
offers the possibility to build reproducible experiments.

A completely different approach to reproducibility has been developed in
Galaxy [39–41], useful for life science data analysis. Galaxy is a web platform
offering a vast amount of software for genomic data analysis, creating a work-flow
of made analysis, in order to trace all user actions. Moreover, Galaxy trace as
much metadata as it can, that, in combination with stored work-flow, facilitates
the reproducibility of analysis made.

6 Reproducible Research Issues and Limits

In the previous sections of this paper, we described the advantages gained by
researchers in adopting reproducible research as main aspect in the conduction of
studies in Life Science. However, several issues arise when we decide to introduce
reproducibility in our work in practise.

There is no doubt about that in the short term the effort of performing
an analysis that keeps track of all instruments adopted in a fully detailed way
is time expensive and demanding. Nevertheless, we think that in the middle
and long term reproducible analyses pay the best interests in order to gain
an acceptable level of publishability, transparency, reliability and correctness

https://rpubs.com/
https://github.com/
https://github.com/
http://ipython.org/notebook.html
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of research. Analogously, the implementation of GUIs that automatically keep
track of all user actions requires significant efforts.

Another issue consists in the difficulties that often many researchers face
when they want to re-execute the entire analysis presented in a paper. In fact,
sometimes they do not possess the required facilities (memory storage, RAM,
fast processors) to perform the entire analysis of high-throughput omic data. In
this particular case, caching can be helpful, but might be limited to short code
chunks only.

In terms of limits, we have to admit that reproducibility is difficult to sur-
vive though the time since the tool versions change rapidly. Virtual machines
can partially solve this problem. Unfortunately, after a period of time the fully
reproducibility is impossible to be maintained. However, the transparency of the
research still remains.

Finally, we stress that even though fully reproducible research helps a lot in
the discovery of errors and misconduct, it does not assure the correctness of the
results of a study. Nevertheless, it helps a lot in detecting potential errors or
mis-use of statistical methodologies.

7 Conclusions

In this work, we discussed the importance of reproducible research in Life Sci-
ence. We presented advantages and limits and we illustrated several R-tools
which can help both data analysts and developers to make their research repro-
ducible.

In particular, we stressed the importance to have tools that automatically
generate a report file that keeps track of all actions executed by users and that
provides a set of cached objects saved in a database that stores intermediate
results of the executions. In this manner, scientific results can be explored by
other researchers and used as starting points for alternative analyses. Moreover,
the report can be attached as supporting information data and database of
cached objects can be shared via the Internet. Thanks to the report and to the
available caching database files, researchers promote transparency and reliability
of their work.

We want to stress the importance to promote and teach how to reach accept-
able levels of reproducibility. In fact, for this scope we think that training on
reproducibility through seminaries and courses should be worldwide organised
and encouraged. Reproducibility of data analyses should be taught as it is done
for the Scientific Method. Students must learn the instruments to carry out indi-
vidual and group projects in a fully reproducible way. Fortunately, we can find
online lessons about reproducible research as the one promoted by the Johns
Hopkins University at www.coursera.org/learn/reproducible-research taught by
R. Peng, J. Leek and B. Caffo. There are also affordable courses like the one
organised by the Instituto Gulbenkian de Cincia in Portugal (ended in 2015).

We also want to stress the importance and the urgency to adopt standard
terms of reproducibility levels and conditions that should be broadly agreed and
accepted by the scientific research community, universities and fund agencies.

www.coursera.org/learn/reproducible-research
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We aim that research centers will more and more encourage and reward
reproducible publications and evaluate their research staff based on the level
of reproducibility of their studies, journal editors will encourage the submis-
sion of reproducible papers, funding agencies will strongly support and finance
projects only if the beneficiaries of the funds accept to guarantee an high level
of reproducibility of their work and finally reviewers will increasingly demand
reproducibility as a mandatory characteristic of high quality scientific research
essentially for a paper to be accepted. In this way, we can enhance transfer
knowledge, verification of the results presented and transparency. All these fea-
tures are also extremely important to face ethic problems related to misconduct
in research and to improve the discovery of possibly errors or misuses of method-
ologies in Life Science studies, as well as in other scientific research areas.
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Abstract. Recent advances in molecular biology and Bioinformatics
techniques brought to an explosion of the information about the spatial
organisation of the DNA in the nucleus. High-throughput chromosome
conformation capture techniques provide a genome-wide capture of chro-
matin contacts at unprecedented scales, which permit to identify physi-
cal interactions between genetic elements located throughout the human
genome. These important studies are hampered by the lack of biologists-
friendly software. In this work we present NuchaRt, an R package that
wraps NuChart-II, an efficient and highly optimized C++ tool for the
exploration of Hi-C data. By rising the level of abstraction, NuchaRt
proposes a high-performance pipeline that allows users to orchestrate
analysis and visualisation of multi-omics data, making optimal use of
the computing capabilities offered by modern multi-core architectures,
combined with the versatile and well known R environment for statistical
analysis and data visualisation.

Keywords: Next-generation sequencing · Neighbourhood graph · High-
performance computing · Multi-Omic data · Systems biology

1 Scientific Background

Over the last decade, a number of approaches have been developed to study
the organisation of the chromosome at high resolution. These approaches are all
based on the Chromosome Conformation Capture (3C) technique, and allow the
identification of neighbouring pairs of chromosome loci that are in close enough
physical proximity (probably in the range of 10-100 nm) that they become cross-
linked [1]. This information highlights the three-dimensional organisation of the
chromosome, and reveals that widely separated functional elements actually
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result to be close to each other, and their interaction can be the key for detect-
ing critical epigenetics patterns and chromosome translocations involved in the
process of genes regulation and expression.

Among 3C-based techniques, the Hi -C method exploits Next-Generation
Sequencing (NGS) techniques to provide a genome-wide library of coupled DNA
fragments that are found to be close to each other in a spatial context. The con-
tact frequency between the two fragments relies on their spatial proximity, and
thus it is expected to reflect their distance. The output of a Hi-C process is a list
of pairs of locations along all chromosomes reads, which can be represented as a
square matrix M , where each element Mi,j of the matrix indicates the intensity
of the interactions between positions i and j.

In a previous work we proposed NuChart-II as a highly optimised, C++
application designed to integrate information about genes positions with paired-
ends reads resulting from Hi-C experiments, aimed at describing the chromosome
spatial organisation using a gene-centric, graph-based approach [6]. A graph-
based representation of the DNA offers a more comprehensive characterization of
the chromatin conformation, which can be very useful to create a representation
on which other omics data can be mapped and characterize different spatially-
associated domains.

NuChart-II has been designed using high-level parallel programming pat-
terns, that facilitate the implementation of the algorithms employed over the
graph: this choice permits to boost performances while conducting genome-wide
analysis of the DNA. Furthermore, the coupled usage of C++ with advanced
techniques of parallel computing (such as lock-free algorithms and memory-
affinity) strengthens genomic research, because it makes possible to process much
faster, much more data: informative results can be achieved to an unprecedented
degree [3].

However, C++ is not widely used in Bioinformatics, because it requires highly
specialised skills and does not fully support the rapid development of new inter-
active pipelines. Conversely, the modularity of R and the huge amount of already
existing statistical packages facilitates the integration of exploratory data analy-
sis and permits to easily move through the steps of model development, from
data analysis to implementation and visualisation. In this article we discuss the
integration of our C++ application into the R environment, an important step
toward our objective of augmenting the usability of bioinformatics tools: we aim
at obtaining a high-performance pipeline that allows users to orchestrate analy-
sis and visualisation of multi-omics data, making optimal use of the computing
capabilities offered by modern multi-core architectures, combined with the versa-
tile and well known R environment for statistical analysis and data visualisation.
The novel package has been renamed NuchaRt.

1.1 Parallelism Facilities in R

By default, it is not possible to take advantage of multiple processing elements
from within the R environment. Instead, a sort of “back-end” must be regis-
tered, that effectively permits to run a portion of code in parallel. For what it
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concerns high-performance computing, some libraries exist that foster parallel
programming in R, most of which focus on distributed architectures and clusters
of computers. Worth to mention are Rmpi and Snow.

Rmpi is a wrapper to MPI and exposes an R interface to low-level MPI func-
tions. The package provides several R-specific functions, beside wrapping the
MPI API: parallel versions of the apply()-like functions, scripts to launch R
instances at the slaves from the master and some error-handling functions to
report errors form the workers to the manager. Snow (Simple Network Of Work-
stations) provides support for simple parallel computing on a network of work-
stations and supports several different low-level communication mechanisms,
including private virtual machine (PVM), MPI (via Rmpi) and raw sockets.
The package also provides high-level parallel functions like apply() and simple
error-handling mechanism.

The multicore package builds a back-end for parallel execution of R code on
machines with multiple CPUs: all jobs share the full state of R when parallel
instances are spawned, so no data or code needs to be copied or initialized.
Spawning uses the fork system call (or OS-specific equivalent) and establishes a
pipe between master and child process, to enable inter-process communication.
However, the variety of operations that can be parallelized with multicore is
limited to simple independent math computations on a collection of indexed
data items (e.g., an array).

The doMC package acts as an interface between multicore functionalities and
the foreach package, which permits to execute looping operations on multiple
processors.

R/parallel enables automatic parallelization of loops without data depen-
dencies by exposing a single function: runParallel(). The implementation is
based on C++, and combines low-level system calls to manage processes, threads
and inter-process communications. The user defines which variable within the
enclosed loop will store the calculation results after each iteration, and how these
variables have to be operated and reduced.

It is worth to mention that an interface to Intel TBB for R also exists, that
pretty much resembles our approach and permits to use TBB’s parallel for
pattern to convert the work of a standard serial for loop into a parallel one,
and the parallel reduce construct can be used for accumulating aggregates
or other values. This solution enforces a master/slave behaviour between R and
C++, so that data-parallel computations can be offloaded to C++. We will
shortly see that our approach pretty much resembles this latter one.

Memory Management

The notoriously “poor” memory management mechanism in R is actually a com-
bination of multiple factors, that also include the way operating systems allocate
memory. Since our development relies on Linux OS, a discussion about these fac-
tors will shed some light over this problem.

R uses a lazy memory reclaim policy, in a sense that it will not reclaim
memory until it is actually needed. Hence, R might be holding on to memory
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because the OS hasn’t yet asked for it back, or it does not need more space yet.
In order to decide when to release memory, R uses a garbage collector (GC) that
automatically releases memory to the OS when an object is no longer used. It
does so by tracking how many references point to each object, and when there
are no references pointing to an object it deletes that object and returns memory
to the OS. This means that when we have one or more copies of a big object,
explicitly removing the original object does not correspond to free memory space:
until references to that object exists, the memory wont be released. Even a direct
call to the GC does not force R to release memory, rather it acts as a “request”,
but R is free to ignore [7].

Furthermore, R has limited control over memory management mechanism:
it simply uses malloc/free functions plus a garbage collector. One attempt to
force memory to be released to the OS is the use of the malloc trim function,
that explicitly forces memory release, provided that a sufficiently large chunk
is ready to be released. We managed to limit the drawbacks related to these
weaknesses by avoiding unnecessary copies of objects and promptly freeing their
memory, as soon as they are no longer needed. In this way we controlled memory
leaks that cause memory fragmentation to explode.

1.2 Hi-C Data Analysis Step-by-step

The Hi-C data analysis conducted with NuChart-II walks through five main
steps:

(1) data retrieval and parsing;
(2) neighbourhood graph construction;
(3) weighing of the edges as a result of data normalisation;
(4) statistical analysis;
(5) output and visualisation.

NuChart-II parses a number of options from Command Line Interface (CLI)
to set up and characterise each execution. Once started, the application walks
through all the steps outlined above in a “monolithic” fashion, and yields its
results as a summary of the whole process: the final output is available in terms
of a neighbourhood graph drawn using some plotting engine, together with for-
matted text files (such as csv files) that contain whole information necessary
to examine the represented data. This include the actual sequences “contained”
in edges, edges probability resulting from data normalisation, network analysis
metrics and various statistical annotations.

Genomic data analysis, just like many other scientific fields, does not work as
one monolithic process: different stages of data analysis are just fundamentally
different, and have different parallelism patterns, memory access and data access
requirements. Also, it often makes sense to run the same stage of an analysis in
a number of different ways to demo nstrate the robustness of novel results or
to tackle different sorts of data, for example one in which a reference genome is
available, compared to one where it is not.
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If we consider the possibility to map additional features on a graph — such as
genes expression, CTCF binding sites or methylation profiles — we would choose
a dataset from which to gather the required information and re-execute the
application from the beginning, until we get our output with mapped omics data.
This means that no intermediate inspection is allowed, nor we could choose some
quick statistics to satisfy whatever curiosity or to banish some doubts. Despite
its undeniable efficiency, this lack of modularity highlights a clear limitation in
usability of the C++ implementation.

These factors led us to re-consider R as a “hosting” environment for a scalable
and usable tool for Hi-C data analysis. From the early R prototype — developed
within the R environment — we learned that high-performance and good mem-
ory hierarchy exploitation is hard to achieve within the R environment, due to
specificities of the environment itself, and requires a substantial programming
effort. Nonetheless, research during the last decade has widely explored the use
of parallel computing techniques with R.

2 NuchaRt

We aim at building a tool for Hi-C data analysis that is both efficient — in terms
of speed and memory resources exploitation — and usable. We decided not to
use off-the-shelf libraries for parallel computing, because of the well known R’s
limits in memory management: our search for long-range chromatin contacts over
genome-wide paired-ends reads results in a memory-bound algorithm, thus par-
allel memory-intensive tasks should be kept on C++ side where we can obtain
a finer memory control, while we rely on R for setting up a usable working envi-
ronment. Also, we already had a fully tested C++ solution to our problem, that
led us to consider Rcpp [4]: it facilitates data interchange from C++ to R and
vice-versa. C++ objects holding the output of a computation are made available
within the R environment, ready to be used as source for advanced statistical
analysis, by mean of a wrapping mechanism based on the templated functions
Rcpp::as<>() and Rcpp::wrap(). These functions convert C++ object classes
into a S expression pointers (called SEXP), that can be handled on the R side to
construct Lists or DataFrames1, which are essential object types in R and are
used by almost all modelling functions.

In this respect, our application clearly exhibits a master/slave behaviour: on
the R side we set up the “background” for the computation, and then we offload
computationally intensive tasks to C++ (see Fig. 1). Once it terminates, the
needed information is moved back to the R side and is ready to be processed,
drawing from the huge R’s library basket.

1 We actually use data.tables as basic data structures for our datasets: data.table
is an enhanced version of data.frame that allows to easily optimise operations for
speed and memory usage.
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Fig. 1. Master/Slave behaviour between R and C++, on the graph construction phase

2.1 NuchaRt and Rcpp

In our context, we have dealt with four C++ objects that abstract the leading
actors of our software: SamData, Gene, Fragment and Edge. These objects contain
much of the information that is needed to build a topographical map of the DNA
from Hi-C data. In order to exchange a SamData object between C++ and R
we have specialised the templated functions above: a std::vector<SamData>
is thus treated by R as a list of Lists, while a list of Lists in R (or a
DataFrame) is managed in C++ by casting the SEXP object to a Rcpp::List
(or a Rcpp::DataFrame) object, and by subsequently filling each field of the
SamData class with the value contained in the respective field of the List.
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Recalling Sect. 1.2, NuChart-II can be described as a 5 stages pipeline: from
data retrieval to output and visualisation, these phases can now be broke up and
used as loose modules. Phase (1) is responsible for data collection and early data
processing: datasets are provided as static csv-like files, but can also be down-
loaded from on-line repositories. The information contained therein is parsed
and processed, in order to build the data collections needed to perform the com-
putations: unneeded fields are dropped and elements are ordered in a consistent
way, while a unique identifier for each element of a collection is generated, when
needed. Problems may arise if these operations are performed on the R side, as
it may lead to memory overflows with big size files (> 2GB, as it is the case with
SAM files) due to the way R objects are constructed and stored in memory. For
this reason dataset whose size exceeds 2GB is parsed on C++ side (as it is the
case for SAM files). No matter where these operations are executed, objects can
be moved from C++ side to R side and vice-versa, as explained above.

Phases (2) and (3) constitute by far the most onerous parts of the application,
in terms of execution time and resource consume. Both of them are suitable for
being revisited in the context of loop parallelism, since their kernels can be run
concurrently on multiple processors with no data dependencies involved. These
phases have been thoroughly explained in our previous works [3,5,6], and we
refer to those writings for a thorough explanation. Not much changes when we
offload the a computation from R to C++: the very same logic is used and the
ParallelFor skeleton permits to speed up both phases in a seamless way. Data
transfer overhead is negligible, compared to the computationally intensive task
that takes place.

Phase (4) encompasses essential features that the package ought to provide,
in order to fulfil the requirements of a useful tool for genomic data interpre-
tation. With a graph-based representation we can apply network analysis over
the resulting graph: topological measures capture graph’s structure for nodes
and edges and highlight the “importance” of the actors. For instance, centrality
metrics describe the interactions that (may) occur among local entities. Rank-
ing of nodes by topological features (such as degree distribution) can help to
prioritize targets of further studies or lead to a more local, in-deep analysis of
specific chromosome locations. Here studies of functional similarity can suggest
new testable hypotheses [8].

Finally, visualisation is crucial for a tool that aims at facilitating a better
interpretation of genomic data. NuChart-II supplies both tabular output and
graphical visualization. Concerning the latter, common plotting engines perform
nicely with small-to-medium sized graphs, but cannot provide useful represen-
tations of huge graphs.

A possible approach could be to decouple visualisation from NuchaRt, and
make use of external applications purposely designed for interactive visualisation
of networks. One such application is Gephi2, that permits to interact with the
graph by manipulating structures, shapes and colors to reveal hidden properties.
NuchaRt can output a resulting graph in GraphML format, which permit to get

2 https://gephi.org/.

https://gephi.org/
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the most out of Gephi. In this way the user can easily browse the results of Hi-C
data analysis through Gephi interface.

3 Discussion

The novel package benefits of the combined use of parallel programming tech-
niques provided by the C++ engine, and the flexibility of the R environment,
maintaining the same performance and scalability achieved in NuChart-II. More-
over, within the R environment the five steps listed in Sect. 1.2 become loose but
totally compatible modules, and could be either executed in order or as services
that permit to accomplish a specific task.

Results of each module are made globally available in form of DataFrames,
and can be easily queried and inspected, exported, or saved and re-used with
other, different data analysis tools. The graph can be plotted and the results can
be visualised and browsed. Eventually, one can draw from the huge R’s libraries
basket the one that suits her need, and conduct advanced analysis over the
resulting data. For instance, we also tested the ERGM package that permit to
understand the processes of network structure emergence and tie formation: the
Exponential-family Random Graph Models package provides an integrated set
of tools for creating an estimator of the network through a stochastic modelling
approach.

3.1 Experiments

The study of the interactions of the actor genes with the environment is of
critical importance for understanding the entire system. By using the modelling
functions of the package we can statistically characterize the distribution of
the edges in relation to the characteristics of the nodes that represent mapped
multi-omics features. We performed the analysis of the clusters of genes Human
Leukocyte Antigen (HLA, Fig. 3) and Kruppel-Associated Box (KRAB, Fig. 2)
in the context of four Dixon experiments (SRA:SRR400260, SRA:SRR400261,
SRA:SRR400266, SRA:SRR400267) [2], to verify the correlation of the edges
distribution in relation to some genomic features (hypersensitive sites, CTCF
binding sites, isochores, RSSs).

The first analysed locus is located in cytoband chr19.q13.12 and concerns
the clusters of Kruppel-type zinc finger genes, related to the KRAB, which are
peculiar for their tandem organization. Zinc finger proteins are a family of tran-
scription factors that regulate the gene expression, and most of these proteins
are members of the KZNF family. There are 7 human-specific novel KZNFs
and 10 KZNFs that have undergone pseudo-gene transformation specifically
in the human lineage. 30 additional KZNFs have experienced human-specific
sequence changes that are presumed to be of functional significance. Members
of the KZNF family are often in regions of segmental duplications, and multiple
KZNFs have undergone human-specific duplications and inversions. In Fig. 2, top
panel drawings concern sequencing runs from hESC (SRR400260, SRR400261);
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Fig. 2. Neighbourhood graphs of the KRAB cluster of genes in four different runs from
the Hi-C experiments of Dixon et al.

bottom panel drawings in the same Figure concern sequencing runs from IMR90
(SRR400266, SRR400267). Seed genes are the genes given as input to the algo-
rithm, while output genes are differentially represented according to their impor-
tance (in terms of node degree).

The second analysed gene cluster concerns the human leukocyte antigen
(HLA) system, which is the name of the locus containing the genes that encode
for major histocompatibility complex (MHC) in humans. It belongs to a super-
locus that contains a large number of genes related to the immune system func-
tion in humans. The HLA group of genes resides on cytoband chr6.p31.21 and
encodes for cell-surface antigen-presenting proteins, which have many different
functions. The HLA genes are the human version of the MHC genes that are
found in most vertebrates (and thus are the most studied of the MHC genes).
The major HLA antigens are essential elements for the immune function. In
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Fig. 3. Neighbourhood graphs of the HLA cluster of genes in four different runs from
the Hi-C experiments of Dixon et al.

Fig. 3, top panel drawings concern sequencing runs from hESC (SRR400260,
SRR400261); bottom panel drawings in the same Figure concern sequencing runs
from IMR90 (SRR400266, SRR400267). Seed genes are the genes given as input
to the algorithm, while output genes are differentially represented according to
their importance (in terms of node degree).

The correlation between cryptic RSS sites and edges is more pronounced in
the HLA cluster, in comparison to the KRAB cluster, probably due to a more
consistent presence of this kind of sequences in genes related to the immune sys-
tem. The correlation between hypersensitive sites (super sensitivity to cleavage
by DNase) and edges, although positive, is poor, probably because the accessi-
bility of these regions are impaired by a large number of long-range interactions.
The correlation between the presence of CTCF binding sites and edges was



NuchaRt 269

Table 1. Mapping CTCF binding sites, isochores, cryptic RSSs, and DNase sites on
the graphs affects the edge distribution of the KRAB cluster of genes and of the HLA
cluster of genes, using the ERGM package

KRAB HLA

Estimate Std. Error Estimate Std. Error

SRA:SRR400260

edges + nodecov(“dnase”) 0.2867 0.08451 0.1711 0.07961

edges + nodecov(“ctcf”) 0.6531 0.01157 0.5545 0.01253

edges + nodecov(“rss”) 0.5804 0.06176 0.6304 0.08196

edges + nodecov(“iso”) -1.047 0.09269 -0.9406 0.09156

SRA:SRR400261

edges + nodecov(“dnase”) 0.2042 0.07932 0.1706 0.07822

edges + nodecov(“ctcf”) 0.6629 0.04158 0.5687 0.02005

edges + nodecov(“rss”) 0.5378 0.03566 0.6319 0.03776

edges + nodecov(“iso”) -1.015 0.09566 -0.93035 0.08969

SRA:SRR400266

edges + nodecov(“dnase”) 0.2042 0.07932 0.1706 0.07822

edges + nodecov(“ctcf”) 0.6629 0.04158 0.5687 0.02005

edges + nodecov(“rss”) 0.5378 0.03566 0.6319 0.03776

edges + nodecov(“iso”) -1.015 0.09566 -0.93035 0.08969

SRA:SRR400267

edges + nodecov(“dnase”) 0.2042 0.07932 0.1706 0.07822

edges + nodecov(“ctcf”) 0.6629 0.04158 0.5687 0.02005

edges + nodecov(“rss”) 0.5378 0.03566 0.6319 0.03776

edges + nodecov(“iso”) -1.015 0.09566 -0.93035 0.08969

clearly predictable, because linking Gene-Regulatory elements maintain differ-
ent regions of the genome close to each other. On the other hand, regions with
isochores seem less involved in long-range interactions, which can be quite sur-
prising considering that these portions of the genome are considered gene-rich.

Statistical results are reported in Table 1. The network estimators are all com-
puted using 100 iterations of stochastic modelling. A high correlation between
the presence of specific genomic features and the probability of existence of an
edge persists. DNase sensitivity sites are weakly correlated with the presence
of an edge, while isochores are strongly anti-correlated with the presence of an
edge.

Performance comparisons between the original R prototype and the actual
implementation have not been conducted, because there would be no room
for such debate, since the original tool often halted its execution, due to its
strong limitations in memory management. For what it concerns the comparison
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between the C++ application and the combined R with C++ package, they
report substantially similar behaviours: the graph construction execution is
strongly affected by datasets size and resolution, that determine the “search
space” for the BFS-like graph construction and the overall memory load. Reduc-
ing the working set ameliorates execution times and overall scalability with
NuChart-II, and clearly helps in obtaining good performance when offloading
the graph construction from R to C++ [3].

Figure 4 compares execution time (left) and speedup (right) in the
two approaches: Figs. 4a and 4b show the performance for constructing a
graph at level 1 starting from the KRAB cluster of genes using Dixon’s
SRR400266 experiment as Hi-C dataset. Despite similar timings and scalabil-
ity, NuchaRt has slightly worse performance and shows a higher execution time.
Figures 4c and 4d show a comparison of the performance during normalisation
phase with NuChart-II and NuchaRt: again both implementations yield simi-
lar results, both approaching a quasi-linear scalability, even though NuchaRt’s
execution time is slightly higher with respect to NuChart-II’s. This is likely due
to the worsening of memory access time when offloading computation to C++:
while the multi-threaded C++ application is running, the R environment is kept
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alive. R stores additional information, beside the data itself, for each object cre-
ated: when this small overhead is combined to the lazy memory reclaim policy
adopted by R’s garbage collector, and to the massive size of the dataset used for
neighbourhood graph construction, resident memory consumption remains high
at run-time, thus affecting memory access times and overall performance.

Our experiments where conducted on a NUMA system, equipped with
4 eight-cores E7-4820 Nehalem running at 2.0 GHz, with 18 MB L3 cache and
64 GB of main memory. The Nehalem processor has Hyper-Threading capability
with 2 contexts per core, but we decided not to use it and stick to the number
of physical cores: the heavy memory usage would dramatically damage perfor-
mance, and likely increase chances of false-sharing among threads in the same
context that share L2 cache. With this configuration the cache-coherence mech-
anism plays an important role in this performance degradation, where cache
misses are likely frequent and cache lines updates occur frequently.

Performance differences seem to flatten when the same applications are exe-
cuted on a different machine: we also conducted experiments on a workstation
equipped with a single eight-cores Intel Xeon CPU E5-2650 running at 2.60 GHz.
This machine features 20 MB of L3 cache with 64 GB of main memory. The
SandyBridge processor also has Hyper-Threading capability allowing 2 contexts
per core. Here as well we decided to not run more than 8 threads, so that the
second context is not used an only physical cores are employed during compu-
tation. In this case the gap between the two solutions is reduced, though the
total execution time is higher due to the limited degree of parallelism that can
be achieved because of the reduced number of available cores.

4 Concluding Remarks

Embedding NuChart-II in R creates an application that can be used either to
conduct a step-by-step analysis of genomic data, or as a high-performance work-
flow that takes heterogeneous datasets in input, processes data and produces a
graph-based representation of the chromosomal information provided, supported
by a rich set of default descriptive statistics derived from the topology of the
graph. The graph-based approach fosters a tight coupling of topological obser-
vations to biological knowledge, which is likely to bring remarkable biological
insights to the whole research community.

From a computational point of view, the ever-increasing amount of infor-
mation generated by novel Bioinformatics techniques require proper solutions
that permit the full exploitation of the computing power offered by modern
computing systems, together with advanced tools for an efficient analysis and
interpretation of genomic data. These tasks require high skills, but we believe
that NuchaRt can be a valuable mean to support researchers in pursuing these
objectives.

Despite the results achieved in terms of performance and usability, some prob-
lems remain partially unsolved, and are open to further investigations. Among
them, our main concern is the visualisation of multi-omic graphs, which we
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believe is an essential feature for a usable tool aimed at facilitating genomic
data analysis and interpretation, and that remains an open problem.

We are currently working on making the package compliant to Bioconductor
and CRAN requirements, so that it can be easily downloaded and used by the
research community. At the time of writing it is available through our research
group’s repository, at http://alpha.di.unito.it:8080/tordini/nuchaRt.

Acknowledgements. This work has been partially supported by the EC-FP7 STREP
project “REPARA” (no. 609666), the Italian Ministry of Education and Research Flag-
ship (PB05) “InterOmics”, and the EC-FP7 innovation project “MIMOMICS”.
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Abstract. Skeletal muscle represents a very well organized anatomical
tissue in animals and its appearance might have predated the divergence
of vertebrate and arthropods lineages about 700MYA. This diversified
structure is very well visible in Primates since it differentiates according
to their life styles and environmental conditions. This study focuses on
Pan troglodytes - known as common chimpanzee - which belongs to a
genus that is the most closely related to human species by which also
shares a high similarity in the DNA composition. Our aim is to test the
level of similarity between chimpanzee and human DNA - diversified to
a functional phenotypic level to better adapt in different environmen-
tal conditions - by collecting skeletal muscle transcriptomic data from
ENA (European Nucleotide Archive) database and performing its func-
tional annotation analysis. We developed PrimatesDB, a freely available
web-oriented application which contains 30,944 sequences belonging to
Pan troglodytes skeletal muscle transcriptomic data and from which it
is possible to retrieve all the information related to 12,222 transcripts.
PrimatesDB is available at: www-labgtp.na.icar.cnr.it/PrimatesDB.

Keywords: Pan troglodytes · Annotations · Skeletal muscle · Transcrip-
tome · Database

1 Introduction

We all know how similar humans are genetically with all the other primates, How-
ever, there is also a high morphological differentiation, among the whole order,
due to the different environmental living conditions we have undergone to. Where
and how this functional differentiation has arisen is still unclear. For this reason it
would be really important to find out a link of all the information we have about
genomic, transcriptomic andproteomicdataof primates in order to compared them
and look for the causes that might have generated all this differentiation. More-
over, shading light on how other non humans primates organisms work, might also

D. Evangelista and M. Avino—Contributed equally to this work.

c© Springer International Publishing Switzerland 2016
C. Angelini et al. (Eds.): CIBB 2015, LNBI 9874, pp. 273–284, 2016.
DOI: 10.1007/978-3-319-44332-4 21

www-labgtp.na.icar.cnr.it/PrimatesDB


274 D. Evangelista et al.

come in handy to further understand the knowledge of our species. This might also
allow us to employ much more closely related organisms like apes, than using more
distant species, like mice or fruit flies, to better understand the complex mecha-
nism of certain diseases. This has been already successfully employed in studies of
human pathologies tested in some primates (see below). However, a big problem
to overcome, when choosing primates to study humans, would be of ethical origin,
given their consequent usage in lab experiments. However, a silico approach, like
we propose, could thoroughly bypass this disadvantage. We decided to start our
comparative analysis picking the muscular system. Muscles might have evolved,
independently, at least twice in animals from common ancestor contractile cells in
sponge-grade organisms [1], once in cnidarians and cnetophores and another time
in bilaterian (where we belong). In this last group, specialized forms of skeletal and
cardiacmuscles predated thedivergence of vertebrate/arthropode lineage circa 700
millions of years ago (MYA) while smooth muscle seemed to be evolved indepen-
dently to othermuscles [1].Weare interested in striatedmuscles,whichmakeup the
skeletal musculature. In primates, muscles are anatomically adapted of their par-
ticular life style. Postcranial skeletal is, for example, adapted to a great variety of
locomotor, postural and feeding activities and it is not very well specialized, like in
other non-primates vertebrate, such as horses and other ungulates or even whales.
However, major changes among primates compared to other vertebrate are seen in
locomotor morphology [2] being, the first ones, more adapted to vertical leaping
and clinging. Most nonhuman primates spend at least some time during the day
in trees, therefore, grasping, when climbing, in arboreal environment is an essen-
tial component of their life. This is seen in feet and hands muscles morphology.
Humans locomotors muscles are, on the other hand, adapted to a vertical postural
position with evident changes in the vertebral column, pelvis, legs and feet. There
have beendescribed, at least, six different locomotion systems in primates [3]: arbo-
real and terrestrial quadrupedalism, knuckle-walking, leaping, suspensory climb-
ing and bipedalism. In order to better elucidate the functional differentiation of
these categories, we thought that having directly a look to expression data analysis
would have been more suitable, and this is why we decided to pick transcriptomic
data. Nowadays, these data are highly proliferating out there, due to the recent
advent of high throughput studies, like NGS (Next Generation Sequencing), which
are able to get the whole gene expression spectre of an organism, in a few lab exper-
iments, at relatively low cost. However, these data are very difficult to handle due
to their heaviness and complexity. To solve this problem many online tools, soft-
ware, repositories and databases have been created, making difficult their imme-
diate finding and communication to each other. Most remarkable already existing
primatesdatabases containsuseful informationabout their ecological role innature
(All The Worlds Primates, http://www.alltheworldsprimates.org) or store genetic
population data (Primate Life Histories, https://plhdb.org), or news about mor-
phology and evolution (PRIMO, http://primo.nycep.org). Among the ones that
keep primates bionformatic data we can mention IPD (Immuno Polymorphism
Database, https://www.ebi.ac.uk/ipd/mhc/nhp/species.html) which aims to col-
lect information about polymorphisms related to diseases or Primate Orthologous
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Exon Database (http://giladlab.uchicago.edu/orthoExon), which includes a cat-
alogue of unique orthologous exon regions in the genomes of human, chimpanzee,
and rhesus macaque. In Ensembl (http://www.ensembl.org) is also possible to find
out comparative data analysis regarding primates in order to construct gene trees.
However, to our knowledge, none of these databases contains comparative tran-
scriptomic data aimed to find out conservation and differences for functional anno-
tations purposes. Therefore, we are presentingPrimatesDB, which is a comprehen-
sive web resource - driven on a relational database - for the retrieval of primates
functional annotation and other related integrated information. The first data
collected and analyzed in PrimatesDB are skeletal muscle myoblasts transcripts
[4] coming from RNA-seq experiments on common chimpanzee (Pan troglodytes
Blumenbach). The transcripts are already genome reference-assembled and struc-
tural but not functional annotated. Common chimpanzee belongs to the family
Hominidae [5]. With Pan paniscus Schwarz (bonobo), it represents the only living
species of genusPan Oken and it is themost closely related species to humans, shar-
ing the last common ancestor circa 6 millions years ago (MYA) [6–11], and at least
98 % DNA similarity. A recent research study of hepatitis C have shown that they
sometimes become the only available source to test vaccines in humans [7]. More-
over, research into how the evolution of chimpanzee is influenced by viruses, like
HIV-1, canhave important implications in humanhealth advances [8].Chimpanzee
whole-genome has been already published [9]. We collected its muscular transcrip-
tome, and ran it, in our lab, into an existing computational pipeline [12] calledTran-
scriptator to obtain its functional annotation. The transcriptomic dataset was, in
this way, annotated and stored in PrimatesDB. Currently, PrimatesDB, includes
around 12,222 transcripts of the gene ontology and functional annotation of chim-
panzee skeletal muscles transcriptome. Moreover, hyperlink services are available
for Ensembl and UniProt, so that users can gain diverse insights about the tran-
scripts of interest from these publicly available resources.

2 The Pipeline

PrimatesDB pipeline (Fig. 1) is divided in two main areas: (i) data retrieval (blue
panel) and (ii) data visualization (orange panel). It consists of three major com-
ponents: (i) BLAST analysis (ii) functional annotation (iii) retrieval and statisti-
cal analysis of the data. The operations developed in the first area are carried out
by using the core engine of Transcriptator background pipeline (lower right cor-
ner). Here, the results provided are in the form of tabular reports and transferred
to the LAB-GTP web server where the database, managed by phpMyAdmin soft-
ware, is ready to store the entire sets of records and handle the administration
of MySQL queries. Here, as second main area of the project, the web applica-
tion of PrimatesDB is developed. It makes easier the contents visualization and
through a guided path helps the users to submit their queries for data recovery.
The Graphical User Interface (GUI) is written in PHP, JavaScript and HTML
and is structured in tables based on a relational framework in order to prop-
erly handle the data type for a better performance of the database with respect
to speed and deployment. TheUser Interface (UI) is presented as shown in the

http://giladlab.uchicago.edu/orthoExon
http://www.ensembl.org


276 D. Evangelista et al.

F
ig
.
1
.
P
ri
m
a
te
sD

B
p
ip

el
in

e



A Web Resource on Skeletal Muscle Transcriptome of Primates 277

center of the Fig. 1, where the Home Page is specifically reported with its hierar-
chical structure which provides several information related to the Order, Genus
and Species of the Primates. Currently, it is possible to access to skeletal muscle
data of Pan troglodytes which are organized in extremely easy-to-read tables for
helping external users to quickly visualize and download the information. For
what concern the three major components, they are based on the Transcriptator
computational pipeline [12] which is the background pipeline of PrimatesDB.
Here, the annotation process comprises four main parts: (i) finding the best
hit in locally installed SwissProt and UniProt-Trembl database; (ii) assignment
of functional annotation and gene ontology terms and their enrichment from
DAVID; (iii)assignment of GOSlim terms and their analysis from QuickGO; (iv)
integration and summarization of retrieved results from DAVID and QuickGO
web services. BLASTX program from locally installed ncbi-blast.2.2.23 stand
alone package is used (with threshold e-value 0.001, [12]) to identify the best hits
for query sequences on locally installed SwissProt and UniProt-trEMBL data-
bases: http://www.uniprot.org. The main goal of the first step is to find similar
sequences within SwissProt and UniProt-trEMBL databases for the unanno-
tated query from the user. The output of BLASTX run is an alignment file in
a tsv format. This latter, using a bash script, is transformed into a protein list,
which is the required input file for DAVID [13] and QuickGO [14] web services.
Python client source code for DAVID web services employed in our pipeline,
retrieves the functional and gene ontology annotation for every single transcript
in a query dataset. In particular, the Python client for DAVID web-services
uses light-weight soap client suds-0.4 module [15] while for QuickGO web-
services, BioServices Python package is implemented to the pipeline. It provides
access to QuickGO and a framework to easily implement web service wrappers
(based on WSDL/SOAP or REST protocols). These python scripts take the
input protein list file from previous step and utilize DAVID database to obtain
information in the form of TableReport and SummaryReport. For a given query
dataset, Python source code is implemented with default parameter for DAVID
database search to obtain the TableReport obtained through DAVID web ser-
vices, it is a gene centric report which lists the genes or the transcripts, their
associated functions and gene ontological terms. The list of UniProt-trEMBL
accession proteins was run in BAR+ [16] for validation purposes.

3 Transcriptomic Data Retrieval

Starting from a recent Pan troglodytes transcriptomic analysis study [4], we
have downloaded the assembled dataset corresponding to the skeletal mus-
cle myoblasts transcripts data in NCBI repository (TSA, Transcripts Shotgun
Assembly) with accessions numbers range GABE01000001 - GABE01030945
(http://www.ncbi.nlm.nih.gov/nuccore/GABE00000000.1). This database con-
tains all the transcripts already assembled by the authors to their genome ref-
erence. Unfortunately, this study does not include any functional annotation.
In order to obtain biological information of this muscle specific transcriptome

http://www.uniprot.org
http://www.ncbi.nlm.nih.gov/nuccore/GABE00000000.1
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and expand its knowledge, we ran it into an existing computational pipeline and
carried out downstream analysis for this purpose.

4 Annotation of Gene-Level Data

Presently, PrimatesDB not only accommodates the gene ontological information,
but also other available functional annotations about domains, metabolic path-
ways, as well as, relevant biological information from SwissProt and PIR protein
databases with respect to each and every muscle specific Pan troglodytes tran-
script. With the help of PrimatesDB end-users can obtain comprehensive biolog-
ical information for the differentially expressed transcripts IDs. Some biological
information incorporated for each transcript withinPrimatesDB regards: (i)Gene
Ontology : controlled vocabularies (ontologies) that describe gene products in
terms of their associated biological processes (GOTERM BP FAT), cellular com-
ponents (GOTERM CC FAT) and molecular functions (GOTERM MF FAT)
in a species-independent manner (http://www.geneontology.org/GO.indices.
shtml); (ii) Functional categories: to classify proteins from completely sequenced
genomes on the basis of the orthology concept by using Clusters of Ortholo-
gous Groups of proteins, Phylogenetic classification of proteins encoded in com-
plete genomes [17] (COGs ONTOLOGY - http://www.ncbi.nlm.nih.gov/COG);
(iii) Domain annotation: modular structure of the gene product, evolution-
ary and molecular functional aspects of the transcripts, annotations for Inter-
Pro [18] (Integrated Resource of Protein Families, Domains and Sites - http://
www.helmholtz-muenchen.de/en/ibis), PFAM [19] (Database of protein families -
http://pfam.xfam.org) and SMART [20] (Simple Modular Architecture Research
Tool - http://smart.embl-heidelberg.de) domains; (iv) Metabolic pathway anno-
tation: biological pathway information from KEGG [21] (Kyoto Encyclopedia of
Genes and Genomes - http://www.genome.jp/kegg/pathway.html), BBID [22]
(Biological Biochemical Image Database - http://bbid.irp.nia.nih.gov) and Pan-
ther [23] (A comprehensive function information system about genes - http://
www.pantherdb.org) resources.

Lastly, we also provided ENA (European Nucleotide Archive - http://www.
ebi.ac.uk/ena), Ensembl (www.ensembl.org) and UniProt (Universal Protein
Resource - http://www.uniprot.org) IDs entries as additional information of the
collected transcripts.

5 PrimatesDB use case

In order to demonstrate the ease and flexibility usage of PrimatesDB we have
selected a case study for showing the web-resource usage. By way of example,
we refer to the transcript with ENA ID: GABE01006024 which is related to
the Ensembl ID: ENSPTRG00000000023 and UniProt protein ID: Q5TA50
(Fig. 1/orange box). PrimatesDB, by connecting different databases to each
other, offers the opportunity to retrieve several information related to this single
transcript, such as: (i) skeletal muscle transcriptomic data from ENA database;

http://www.geneontology.org/GO.indices.shtml
http://www.geneontology.org/GO.indices.shtml
http://www.ncbi.nlm.nih.gov/COG
http://www.helmholtz-muenchen.de/en/ibis
http://www.helmholtz-muenchen.de/en/ibis
http://pfam.xfam.org
http://smart.embl-heidelberg.de
http://www.genome.jp/kegg/pathway.html
http://bbid.irp.nia.nih.gov
http://www.pantherdb.org
http://www.pantherdb.org
http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena
www.ensembl.org
http://www.uniprot.org
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(ii) functional annotation from a background pipeline; (iii) information related
to the transcripts ID from ENA and Ensembl repositories; (iv) protein ID knowl-
edge from UniProt project. Depending on the user’s knowledges there are three
different ways to access to these data (Fig. 1/orange box): (i) by Databases ;
(ii) by Transcriptome; (iii) by Search sections. The Databases section hosts four
Databases set which we have suitably merged in: Domain, Gene Ontology, Path-
ways and Miscellaneous. By typing the transcript or the protein of interest, the
user can choose to select the set of database from which to get the information.
Once it has been selected, the subset of repositories will be clickable and the
contents accessible. By selecting the Transcriptome section, from the naviga-
tion menu, user is able to visualize the complete list of Pan troglodytes collected
transcripts. Here, the header is divided into seven columns (Fig. 2): the first cor-
responds to the skeletal muscle ENA ID transcripts; the second one is composed

Fig. 2. Page of transcripts list. The columns ENA ID/ Ensembl ID/ UniProt ID/ are
clickable buttons with redirection at the specific information of the related repositories.
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of Ensembl ID, retrieved from UniProt ID. These first two columns give to the
user important information about the species of interest showing which tissue
specific transcripts have been already automatically annotated into the Ensembl
specific organism database. The last five columns are particularly interesting
for comparative studies, because they provide information about the best-hit
UniProt protein (the third column) with their relative Species, Name, Score and
e-value (respectively fourth, fifth, sixth and seventh column) attributes. In par-
ticular, the Species column shows the number of items present for in the top
15 species list - out of about 58 - for which BLASTX program obtained the
proteins hits (Fig. 3). It is evident that most of the protein hits belonging to our
non reference organism is present in Homo sapiens as well, confirming the two
species are very well related with a percentage of 87 %.

Lastly, if the user has the ENA ID, or the Ensembl ID or the UniProt ID of
the transcript, with the Search section a quick recovery way for seeking all the
information related to it is also offered. In each of these cases, it is possible to
access to all the information globally stored in PrimatesDB and be redirected
to the belonging repositories.

Fig. 3. Top species distribution returned by BLASTX program regarding the proteins
belonging to the Pan troglodytes and 15 out 58 organisms taken into account
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6 Database Development and Description

The PrimatesDB web resource is a database driven on a Relational Database
Management System. It retrieves information from the database and display
them on the related web page each time it is requested. Database updatings
are reflected by the web page, which is dinamically queried on user request.
PrimatesDB has been developed using web server Apache/2.2.26 [24]; MySQL
client version 5.3.28 - 10.04.1 (Ubuntu) [25] and the free tool phpMyAdmin
version 3.3.2 deb1 Ubuntu 0.2 [26] to handle the administration of MySQL,
over the World Wide Web, with InnoDB storage engine. The front-end side
was implemented using the scripting language PHP/5.2.6-3 [27]; the JavaScript
technology for dynamic contents [28]; the markup language HTML5 [29] and
style sheet CSS 3.0 [30]. PrimatesDB, although optimized for Safari, is easily
accessible and clearly visible by all browsers and smartphones.

7 Results

PrimatesDB is an open access and searchable database of complete annotation
of the predicted tissue specific transcriptome of the non-reference organism Pan
troglodytes. Its versatile and easily expandable structure accepts data from differ-
ent sources, which are automatically processed and integrated into the platform.
The web interface allows the end-user to access several sections. PrimatesDB,
indeed, consists of seven sections and the core of the web portal is represented
by the Tissue Specific Transcriptome page. This section hosts the whole tran-
script list of the Pan troglodytes transcriptome identified by the analysis of our
Python scripts. Currently, we are in the process of implementing and increasing
the flexibility of dynamic content in the database through five database sets,
which we have suitably merged in: Domain, Ontology and Pathways. All other
sections were designed for all those users who want to deepen the understand-
ing of this web application. The PrimatesDB web resource allows structuring
the data and displaying it in sorted and filtered tables accompanied by thor-
ough explanations. Data were collected from literature and external databases,
then appropriately handled with ad hoc scripts. Overall, information currently
contained in PrimatesDB are related to 12 different functional terms of 12,222
transcripts (Fig. 2). The dataset contains 30,944 sequences, with relative lengths
ranging from 280 bp to 3100 bp, deposited into the ENA/NCBI repositories
starting from GABE01000001 - GABE01030945. A further and crucial step to
be considered at the end of an annotation analysis is validation of results, given
the possibility of getting matching errors. According to BAR+, our list of protein
resulted in a fully validated set.

8 Conclusion

The creation of a dedicated database for non-reference model organisms is an
important issue and always desirable for several reasons, especially considering
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that the organism we picked, closely related to our species, can be useful in
human research studies, and considering a thoroughly in silico research, which
would not imply his ethical usage in the lab. In our laboratory, we developed Pri-
matesDB, a web resource for retrieving functional annotations on skeletal muscle
specific transcriptome of Pan troglodytes, the common chimpanzee. The choice
of this organism reflects the idea to start shading light of his, and his belonging
orders, life style, comparing it to other species phylogenetically related - but with
different morphological characteristics - in order to understand how these might
have allowed them to better adapt in their specific environments. Our analy-
sis begun with the retrieval of the specific transcriptomic data obtained from
NCBI and, the usage of an home-made computational pipeline, which was used
to process these data to place the functional annotations. To date, PrimatesDB
represents a pilot study and it is useful to provide a comprehensive knowledge
about the tissue specific transcriptome of Pan troglodytes non-reference model
organism. PrimatesDB is a very easy-to-use web resource, freely available and
without login requirements. As a modular platform, PrimatesDB can be easily
extended and customized to future demands and developments. Indeed, we are
in the process of updating PrimatesDB resource to make it more informative
and we aim to provide functional annotation for all other transcripts. In order
to deepen knowledges and increase interest about functional information of pri-
mates species, we need to start a comparative research approach by including
in our analysis a further primate species to compare with common chimpanzee.
Currently, we have selected the common marmoset (Callithrix jacchus L.) and,
of this latter, we retrieved the muscle transcriptomic tissue dataset (NCBI TSA
GAMQ01000001-GAMQ01033528) on which we carried out the same analysis we
developed for the chimpanzee. Beyond the ease of retrieving exactly the same
kind of data we had for chimpanzee, marmoset is a strategic choice given his basal
position in primates phylogenetic tree compared to the more derivate position of
chimpanzee. Marmoset belongs to the family Callitrichidae. It is a New World
monkey (Platyrrhini parvorder) species. These ones split form Old World apes
(Catarrhini parvorder, where chimpanzee belongs to) around 40 MYA coloniz-
ing the American continent [31]. This evolutionary and biogeographic distance
is very much evident morphologically as well. Indeed, marmoset present a very
small size body with a long tail, with no so much differences among sexes. They
do posses an arboreal quadrupedalism locomotion being able to hang on trees
and leap between them as well. Its whole-genome sequence has been published
and available [32]. Having the opportunity to compare two species, which present
quite different morphological properties and life styles, it might focus our atten-
tion on those genes, and their transcripts and functional annotation, who might
exhibit rapid changes in expression, linked to many developmental differences
underlying possible phenomena of directional selection in some lineages [33].
Computer science community could take example of our web resource as a model
that has easily connected different context data: from phylogenetic to molecu-
lar biology and from high throughput to morphological data. We believe that by
creating simple but well-structured relational databases, the intent to provide an
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extended panning shot for improving the knowledges of primates differentiation
and evolution is possible.
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