Distributed Database System (DSS) Design
Over a Cloud Environment

Ahmed E. Abdel Raouf, Nagwa L. Badr and Mohamed Fahmy Tolba

Abstract An efficient way to improve the performance of database systems is the
distributed processing. Therefore, the functionality of any distributed database
system is highly dependent on its proper design in terms of adopted fragmentation,
allocation, and replication methods. As a result, fragmentation including its allo-
cation and replication is considered as a key research area in the distributed envi-
ronment. Cloud computing is an emerging distributed environment that uses central
remote servers and the internet to maintain data and applications. This research
presents an enhanced dynamic distributed database system over a cloud environ-
ment. The proposed system allows fragmentation, allocation and replication deci-
sions to be taken dynamically at run time. It also allows users to access the
distributed database from anywhere. Moreover, this research presents an enhanced
allocation and replication technique that can be applied at the initial stage of the
distributed database design when no information about the query execution is
available. It also presents different clustering techniques and their advantages and
disadvantages.

1 Introduction

Distributed database systems typically consist of a number of distinct database
fragments located at different geographic sites, which can communicate through a
network and are managed by a distributed database management system (DDBMS)
[15].

A.E. Abdel Raouf (=) - N.L. Badr - M.F. Tolba
Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
e-mail: ahmed_ezzat991@yahoo.com

N.L. Badr
e-mail: dr.nagwabadr@gmail.com

M.F. Tolba
e-mail: fahmytolba@ gmail.com

© Springer International Publishing AG 2017 97
A.E. Hassanien et al. (eds.), Multimedia Forensics and Security,
Intelligent Systems Reference Library 115, DOI 10.1007/978-3-319-44270-9_5

98 A.E. Abdel Raouf et al.

An efficient support is needed to databases that consist of very large amounts of
data which are used by applications at different physical locations. Telecom data-
bases, scientific databases, and large distributed enterprise databases are examples
of application areas [18]. The main problem of many of these applications is the
delay of accessing remote databases. As a result, it is necessary to use a distributed
database that employs fragmentation, allocation and replication [18].

Fragmentation is the process of dividing a single database into two or more
pieces; known as database fragment, the combinations of the pieces yielded from
the original database are without any loss of information [15].

The process of placing data fragments at the sites are in order to, minimize the
overall data transmission cost required to answer the query known as the allocation
process [15].

To enhance the system performance and increase the availability, copies of the
fragments are allocated to other locations within the distributed database. This
process is known as the replication process. Too many copies of a fragment will
enhance the performance of read only queries and increase the availability; how-
ever, it will also slow down updates. While too fewer copies of a fragment will
decrease the performance of read only queries and the availability.

The design of a distributed database is one of the major research issues within
the distributed database system area. The main challenges facing the DDBS design
are: How to fragment database tables and which type of fragmentation will be used,
when to replicate fragments, what is the optimal number of replications that can be
taken for each fragment to enhance the system performance and increase avail-
ability, how to allocate fragments to sites where they are frequently accessed, do we
group distributed database sites into disjoint clusters and which type of clustering
will be used. These issues were previously solved either by static and dynamic
solutions or based on a priori query analysis.

Fragmentation, replication and allocation are considered the most important
design issues that lead to optimal solutions particularly in a dynamic distributed
environment. They also have a great impact on the Distributed Database Systems
(DDBS) performance. In distributed databases, the communication costs can be
reduced by partitioning database tables into fragments. The fragments are then
allocated to the sites where they are most frequently accessed, aiming at maxi-
mizing the number of local accesses compared to accesses from remote sites. The
cost of the read operation can be further reduced by the replication of fragments
when beneficial. Fragmentation, allocation and replication will be referred to as
FAR in the rest of the proposed research.

Many applications of DDBS generate very dynamic workloads with frequent
changes in access patterns from different sites. Consequently, static/manual FAR
may not always be optimal. As a result, FAR should be automatic and completely
dynamic. Any change in access patterns should result in re-fragmentation of
existing fragments or tables and reallocation of fragments to different sites, as well
as creation or removal of fragment replicas [18].

This research presents an enhanced dynamic DDBS over the cloud environment
that allows dynamic FAR decisions to be taken dynamically over a clustered

Distributed Database System (DSS) Design ... 99

distributed database sites. Dynamic FAR decisions are based on the access pattern
and the load of the sites after allocation or migration of fragments or a replica to it.
Moreover, this research presents an optimal allocation and replication technique,
which can be applied at the initial stage of the distributed database design, when no
information about the query execution is available. It also presents different clus-
tering techniques and their advantages and disadvantages and which one we will
use in our system.

The rest of this paper is organized as follows; Sect. 2 reviews the related works
of dynamic fragmentation, allocation and replication. The research issues are pre-
sented in Sect. 3. The solutions and recommendations are given in Sect. 4 and its
subsections. Section 5 presents the enhanced allocation and replication technique.
The experimental results are given in Sect. 6. Section 7 presents the previous works
done in clustering distributed database sites. Finally, the future research directions
and the conclusions are given in Sects. 8 and 9.

2 Background

The authors of [18] present a decentralized approach for dynamic table FAR in
distributed database systems. It performs FAR based on recent access history,
aiming at maximizing the number of local accesses compared to accesses from
remote sites. In this approach FAR decisions are fully decentralized. Each site
decides over its own fragments to split, migrate and/or replicate independently of
other sites. The FAR decisions are made on the fly based on current operations and
recent history of local reads and writes. This makes it possible to use this approach
without communication overhead. This approach has two main components first,
detecting replica access patterns. Second, based on these statistics to decide on
re-fragmentation and reallocation. This approach ensures that decisions taken are
not in conflict with each other by handling master replica and read replicas dif-
ferently. It use cost functions to take decision by estimate the difference in future
communication costs between a given replica change and keeping it as is. However,
this algorithm doesn’t consider site constraints, the load of the site after the allo-
cation or migration of replica or fragments to it and the optimal number of replicas
that can be taken for each fragment to enhance the system performance and increase
availability.

The author of [3] presents a synchronized horizontal FAR model. It adopts a new
approach to perform horizontal fragmentation of database relation based on attri-
bute retrieval and update frequency. It proposes a new heuristic technique to satisfy
horizontal fragmentation and allocation using a cost model to minimize the total
cost of distribution. This technique performs the allocation process based on the
fragment access pattern and the cost of moving the data fragments from one site to
the other. It provides an optimal allocation that leads to best fragments distribution
which avoids frequent remote accesses. In this technique first, performance and cost
implications of different allocation choices are evaluated. Second, the replication

100 A.E. Abdel Raouf et al.

decision is taken based on the computed threshold values for the average retrieval
and update costs of all fragments individually. This technique use site constraints to
improve the efficiency which has been confirmed by the produced empirical results.

The process of placing data fragments at the sites in order to minimize the
overall data transmission costs that are required to answer the query is known as
fragment allocation. The fragment allocation has two types: Non-redundant frag-
ment allocation and redundant fragment allocation. In non-redundant fragment
allocation, each fragment of each global relation is allocated to exactly one site. As
a result, the optimum allocation of the fragments is the only way, which can be
exploited to increase the performance, efficiency, reliability and availability of the
distributed database. In redundant fragment allocation, the fragments of each global
relation are allocated to one or more sites introducing replication of the fragments.

The work of [1] proposes an approach that contributes in determining best
possible allocation of a data fragment in a distributed environment. This approach is
based on the fragment access patterns and the cost of moving data fragments from
one site to the other. Different SAGA methods for data allocation were employed.
However, the implementation confirmed that SAGA 100 outperformed all other
SAGA.

The authors of [30] give the brief overview of dynamic fragment allocation in
non-replicated distributed database system algorithms. They also propose new
algorithm called region based fragment allocation (RFA). The proposed algorithm
considers the frequency of fragment accessed by region as well as individual nodes
to move fragment from source node to target node. The RFA algorithm is designed
to address the issues in existing approaches where fragments movement depends
only on the frequency of access to the fragments. The RFA algorithm decreases the
migration of fragments using knowledge of the network topology in comparison to
optimal [14] and threshold [29] algorithms. In comparison to the BGBR algorithm
[11], the RFA algorithm reduces the amount of topological data required in decision
making. The proposed algorithm first, chooses the region that has high fragment
access. Second, chooses node in that region that has high fragment access. Third,
allocates the fragment to that node. However, this solution will not be the optimal
solution in the case of a node in a region having a high fragment access while the
other nodes in that region have low fragment access. As a result, the fragment will
allocate to it, in this case, the problem is solved for only one node and is not solved
for the other nodes in other regions.

The author of [2] presents a new data reallocation model for replicated and
non-replicated constrained DDBSs. The proposed model takes site constraints into
account in the process of reallocation. It reallocates data fragments across sites
based on communication and update cost for each fragment individually. The
reallocation process performed by selecting the site that has the highest query
updates cost for fragment Fi to be chosen as the candidate site to store fragment Fi
in order to, minimize communication cost. If the candidate site that chosen to store
fragment violate site constraints then, the fragment will be migrate to the site with
the next highest update cost value. Moreover, if more than one site has the same
update cost for a certain fragment. In this case, this model will use fragment priority

Distributed Database System (DSS) Design ... 101

(FP) procedure to allocate fragment to the site with the highest FP value in order to,
avoid fragment duplication over sites. The main advantages of this model are that
any change in the site queries and their frequency will have an effect on the
reallocation process. In addition, this model guarantees that no fragment duplication
at post allocation. However, this model will be more complicated when queries
information continuously changes in faster way or when the number of fragments
and sites largely increase.

The work of [16] proposes a new dynamic data allocation algorithm for
non-replicated distributed database system. The proposed algorithm named Near
Neighborhood Allocation (NNA). The NNA algorithm reallocates data with respect
to the changing in data access pattern with time constraint. This algorithm is based
on optimal algorithm, but with different strategy for selecting nodes for data
movement. It moves data to a node which is the neighborhood and also placed in
the path to the node with the maximum access counter. The experiments of this
algorithm find that the NNA algorithm performs better for large fragment size and
query production. However, the optimal algorithm performs better for small query
production and fragment size. It also finds that the threshold for the fragment size is
almost 8000 byte. The NNA can be used for larger networks to decrease the delay
of response to a fragment regarding to optimal algorithm.

The work of [22] proposes a new integer programming formulations for the
non-redundant version of the fragment allocation problem. This work assumes that
the fragments already determined, and focuses on the problem of allocating them in
such a way as to minimize the total cost resulting from transmissions generated by
user queries.

The authors of [10] present and analyze a new approach for dynamic data
allocation algorithm named Fuzzy Neighborhood Allocation (FNA) algorithm. This
algorithm is based on NNA in [27]. It is different with NNA in selecting nodes for
data movements and different strategy in migrating fragments. The proposed
algorithm uses fuzzy method to prevent redundant data fragment migration and
avoid oscillation condition. The experiments results indicated that, the proposed
algorithm performs better for larger fragment size. However, the NNA and optimal
algorithm performs better for small fragment size. The future of this work is to test
FNA, NNA and optimal algorithms in replicated distributed database systems.

The author of [23] proposes a new dynamic fragment allocation algorithm in
non-replicated allocation scenario. The proposed algorithm takes into account the
time constraints of database accesses, volume threshold, and the volume of data
transmitted in successive time intervals in order to, dynamically reallocate frag-
ments to sites at runtime in accordance with the changing access patterns. The
proposed algorithm migrates a fragment located at a certain site to another site,
which not only makes number of accesses to that Fragment greater than the access
threshold for reallocation in the specific period of time, but also results in trans-
mission of maximum volume of data from or to that fragment in that specific period
of time. The proposed algorithm improves the overall performance of the dis-
tributed database by imposing a more strict condition for fragment reallocation in
distributed database. It results in fewer migrations of fragments from one site to

102 A.E. Abdel Raouf et al.

other sites over the network. However, the volume threshold, the number of time
intervals and duration are the most important factors that regulate the frequency of
fragment reallocations.

The authors of [5] propose a new dynamic data allocation algorithm for
non-replicated DDBS named Performance Optimality Enhancement Algorithm
(POEA). This works explores and improves some concepts used in previously
developed algorithms to reallocates fragments to different sites given the changing
data access patterns, time, and sites constraints of the DDBS. When the migration
decisions are made it adopts the shortest path between the old location and the new
anticipated location for the transferred fragments. The POEA algorithm is the most
efficient one among all previous algorithms for dynamic data allocation as, it has
certainly improves the DDBS performance by further minimizing network traffic. It
also reduces data transmission cost compared to the previous methods, since it
adopts the shortest path algorithm once data movement decisions are taken. The
only drawback of the POEA algorithm is that it requires more storage compared to
some previous algorithms. However, this is compensated by DDBS performance
enhancement and is considered as a very trivial drawback due to the dramatic fall
down in the storage hardware prices.

The authors in [28] solve the fragment allocation problem by using the
well-known Quadratic Assignment Problem solution algorithms. The authors of
[21] propose a new technique for horizontal fragmentations of the relations of
distributed databases. This technique can be applied at the initial stage as well as in
later stages of DDBS for partitioning the relations. The authors of [20] address
some important scalability issues. They provide some algorithms to ensure gener-
ality of the technique developed in [21].

A new vertical fragmentation, allocation and replication scheme of a distributed
database called (VFAR) was proposed by our previous work in [7]. The proposed
scheme partitions the distributed database relations vertically at the initial stage of
the database design by using the enhanced minimum spanning tree (MST) Prim’s
algorithm. In addition, it allocates and replicates the resulted fragments to the sites
that require it.

The authors of [4] propose a heuristic technique to satisfy horizontal fragmen-
tations and allocations using a cost model to minimize the total cost of distribution.
Furthermore, the authors of [9, 19] present a new framework for dynamic fragment
allocation and replication. The authors of [19] consider replication and fragment
correlation under a flexible network topology. This framework tackles multiple
issues in this system, including lazy replication strategy, fragments’ correlation, on
the-fly fragment allocation in the face of changing query access patterns, and
non-uniform distances between network sites. In this framework the correlation
between fragments is modeled and an algorithm to find near optimal dynamic
allocation is presented. It also provides a simple methodology to update the allo-
cation when access patterns change. The experiments demonstrate that this algo-
rithm provides efficient solutions for the fragment allocation problem in distributed
database systems. The future of this work is firstly, leveraging fragment ordering to
further improve the performance of the algorithms. Secondly, generalize

Distributed Database System (DSS) Design ... 103

reallocation by employing a mechanism that does data mining of the access patterns
to detect and decide on a reallocation schedule. Finally, incorporate into the
algorithms the ability to handle extra characteristics, such as bounds on the capacity
of sites, constraints on the number of replicas for each fragment, and constraints on
fragments that are not allowed to be replicated, e.g., due to access control or
security constraints.

The author of [33] proposes two algorithms for dynamic data redistribution: Part
of the redistribution (Partial Reallocate) and full redistribution (Full Reallocate)
algorithm. The two algorithms are linear complexity and can be used in a variety of
different sizes distributed database system. The authors of [25] propose a new
dynamic data allocation algorithm for non-replicated distributed database system.
This algorithm is called Threshold and Time Constraint Algorithm (TTCA), which
is an extension of the optimal algorithm [12] and threshold algorithm [29].
The TTCA algorithm removes problems of threshold algorithm by adding time
constraint to the existing threshold technique.

The authors of [8] introduced cluster based peer to peer architecture for dis-
tributed databases. The proposed architecture is named flexipeer. This work uses
predicate based fragmentation of previous work done in [21]. It is used to address
the fragmentation and allocation of database designs. The proposed work introduces
a clustering approach for partitioning database sites. The clustering process is done
based on the unique numbers of region sites. It also allocates fragments across the
sites of each cluster. This paper tries to implement the concept of chord in peer to
peer based data management. The sites of each cluster are managed by the local
cluster administrator LCA and the whole architecture is managed by a global cluster
administrator GCA. However, it doesn’t address the replication phase of database
design. It also wastes a lot of time between node, LCA, LCA Validator, Resource
Checker and GCA until it reaches the required data.

The work of [17] presents a novel algorithm for grouping distributed database
network sites into disjoint clusters based on communication time. The authors see
that performing clustering algorithms after fragmentation will speed up the process
of data allocation by eliminating extra communication costs between sites. The
proposed algorithm creates disjoint clusters according to the least average com-
munication cost between network sites. It also distributes the DDBS sites over the
clusters. In addition, it generates near optimal numbers of clusters required to
achieve high network system performance. The results obtained from the simulation
demonstrated the significant network server’s load balance and network delay. The
experimental outcomes confirmed that this approach can be implemented in dif-
ferent DDBS environments even if the network sites are enormous.

Another method of clustering the sites in which low communication cost sites
are grouped in one cluster was proposed in [15]. Furthermore it allows the frag-
mentation of structured data, fragmentation of unstructured data and it describes the
allocation of fragments to the cluster of sites in order to reduce communication cost.
However, this work doesn’t mention which sites in the cluster will hold the frag-
ment when the fragment is allocated to it.

104 A.E. Abdel Raouf et al.

The authors of [31] proposed a dynamic data replication strategy using historical
access records and proactive deletions called Closest Access Greatest Weight with
Proactive Deletion (CAGW_PD). The authors of [13, 24, 26, 32] believe that a
replication method has three important issues to consider: When the new replica
should be replicated, which file should be replicated, and where the new replica
should be placed. However, the authors of [31] see that there is still one additional
issue which should be resolved, i.e., how to control the number of replicas.

3 Research Issues

Based on the above survey, the following key findings are highlighted. First, no
previous works handle dynamic fragmentation, allocation, and replication decisions
of distributed database fragments and replica at cloud environment.

Second, no existing work takes the fragmentation, allocation, and replication
decisions dynamically over a clustered distributed database sites. In spite of, per-
forming clustering algorithm after fragmentation will speed up the process of data
allocation by eliminate extra communication costs between sites.

Third, few existing works handle FAR decisions dynamically at run time.
However, these works does not consider site constraints, load of the sites after
allocate or migrate a fragment or replica to it, and the limit of the replica numbers
into account in order to take the dynamic decisions.

4 Solutions and Recommendations

To overcome the limitations of existing literature highlighted by the above survey,
this research proposes an enhanced DDBS design over a cloud environment. In our
previous work in [6], a DDBS design over the cloud was introduced.

To extend this work, contributions in this proposed research includes adding
new layers and modules to enhance the DDBS design and allows users to access a
database from anywhere in the world without owning any technology infrastructure.
It can be accessed through: A web browser, mobile application or desktop appli-
cation while the database is stored on servers at a remote site. It also allows FAR
decisions to be taken dynamically at run time. These decisions are based on access
patterns and the load of sites after the allocation and migration of fragments as well
as its replicas.

The proposed architecture is shown in Fig. 1. It consists of three layers:
Application client layer, distributed database system manager layer and distributed
database clusters layer.

Distributed Database System (DSS) Design ... 105

Application client layer

Distributed Database System Manager Layer
Add New Database Clustering B
; B]“ 7S A]
Static F ion of Relati Database Site e y 3 7 S
= N =) s
T Static Allocation of Fragments | ' Client's Queries Distrjbuted |Dtstﬁb|.rted lDiSIﬂbutstt
base System D s Datab m
Static Repli .‘ of F Manager 1 Manager 2 Manager 3
| — 2 = Dy ic Election
Update Cluster and Repl
L Datab of Cluster Head
s 7 | -)

Distributed Database

Clusters Laye
Access @
Histopi’

Cluster
/ Node 5

Cluster
@ Node 4

Cluster 2 Cluster 1

Cluster

Fig. 1 A dynamic distributed database system over a cloud environment architecture

4.1 Application Client Layer

This layer consists of a set of interfaces which allow the users of distributed
database systems to access the databases from anywhere. In order to join the
distributed database system, first the client calls the distributed database system
manager to get all the information about the structure and the location of the sites of
the distributed system. Second, the client joins the distributed system by sending a
query to the distributed database system manager.

4.2 Distributed Database System Manager Layer

This layer is composed of five modules: Add a new database, clustering distributed
database sites, client queries processing, add/remove sites and dynamic election and
replacement of the cluster head.

106 A.E. Abdel Raouf et al.

i. Add a New Database Module

This module is used to add the database tables to DDBS. Firstly, the new tables are
fragmented using the static fragmentation technique that can be used at the initial
stage of the DDBS design. Secondly, that fragments are allocated to the sites of
each cluster. Thirdly, some fragments are replicated to the different sites of each
cluster in order to enhance the system performance and increase the availability.
Finally, the cluster information database is updated to save the locations of each
fragment and replica in the distributed database system. Cluster information data-
base is a database that holds complete information about each fragment or replica
and in which site or cluster.

ii. Clustering Distributed Database Sites Module

Distributed database system manager will use clustering techniques to cluster dis-
tributed database sites into disjoint clusters. It also allocates sites to each cluster.
Finally, it updates cluster information databases with the recent location of each site
in DDBS.

iii. Client Queries Processing Module

When the client sends a query to the distributed database system manager, firstly
the distributed database system manager uses the cluster information database to
determine the closest site that holds the required data. Then, it re-directs the user to
that site to fetch the needed data.

iv. Add/Remove Sites Module

The distributed database system manager uses this module to add new sites to the
distributed database system or remove existing sites from the distributed system. By
using this module the distributed database system manager can expand or reduce
the distributed database system without any affect to the client and other the sites of
distributed database system.

v. Dynamic Election and Replacement of the Cluster Head Module

This module is used by the distributed database system manager to elect and replace
the cluster head. A new cluster head is elected in two cases. In the first case the
recent cluster head is removed. In the second case a new site is added to the cluster
and its capacity is higher than the cluster head.

4.3 Distributed Database Clusters Layer

The distributed database cluster layers consist of more than one cluster. Each cluster
has one cluster head and more than one cluster node.

Distributed Database System (DSS) Design ... 107

i. Cluster Node

Each cluster node contains two local databases. The first local database is used to
store the fragments and replicas of the distributed system. The second local data-
base is used to store the information about the user’s access to the stored fragments
and replicas. At each access firstly, the cluster node checks whether it is a local
access or remote.

Secondly, it allows the user to access a local database of the node to run the
query and fetch the required data.

Thirdly, the local database of user’s access is updated to save the information
about the user access. Forth, cluster node runs query composition to answer the
query after it fetches all needed fragments.

Finally, it sends the site access record to the distributed database system manager
and also sends the results of the query to user. Each cluster node sends the access
history to the cluster head to take any suitable decisions such as: Create or delete
replicas, re-fragmentation or re-allocation of the fragments.

ii. Cluster Head

The cluster head is a cluster node and has special and additional operations to
manage the other cluster nodes. The cluster head performs three operations:
Manage cluster nodes data, load balancing of the cluster, dynamic fragmentation,
replication and allocation.

1. Managing Cluster Node Data

Each cluster node sends the access history to the cluster head to take the decision to
either create or delete replica, re-fragmentation or re-allocation of the fragments.
The cluster head collects the data that each node in its cluster holds. Afterwards, it
sends it to the distributed database system manager to keep the cluster information
database updated.

2. Load Balancing of the Cluster

Each cluster head contains load balancing algorithm that contains two services: Site
capacity identifier and performance prediction services. The site capacity identifier
service contains the capacity of each site in each cluster.

The capacity of the site contains two objects: The number of users that can access
site at any time and the number of fragments and replicas that the site can hold.

The performance prediction service will be used to predict the load of the site
after adding the fragments or replicas to it. The fragment or replica will be assigned
to the site with less workload.

3. Dynamic Fragmentation, Replication and Allocation

The cluster head will take fragmentation, replication and allocation decisions based
on access history and load of each site after the allocation or migration of the
fragments and replicas of it. The fragments and replicas will send to the site with
less workload.

108 A.E. Abdel Raouf et al.

5 Enhanced Allocation and Replication Technique

The authors of [21] proposed a new technique of horizontal fragmentation. This
technique helps in taking the fragmentation decision at the initial stage of designing
the distributed database. It uses knowledge gathered during the requirement anal-
ysis phase by using the enhanced CRUD (Create, Read, Update, and Delete) matrix
without the help of empirical data about query executions. This technique performs
data allocation according to the maximum attribute locality precedence (ALP) value
and the location of sites. The attribute locality precedence (ALP) can be defined as
the importance of an attribute with respect to each site.

However, the allocation strategy of this technique doesn’t meet the goal of the
data allocation. The goal of the data allocation can be achieved by allocating the
fragments to the sites that require it only. As a result the user can access data with
low costs and time.

In our previous work in [6], we enhanced the allocation strategy of this tech-
nique by performing data allocation according to the site that has the maximum
ALP single value. That methodology guarantees that no fragment duplication will
happen during the allocation process. In this case we used two sites that have the
maximum ALP single value, the fragment will be allocated to the site that performs
more data manipulations and less read operations. Consequently, the replica is sent
to the site which performs less data manipulations and more read operations.

After the process of data allocation, we replicate the fragment to the site that
performs more read operations than other sites. For example, if we have two sites:
Site 1 and Site 2. Site 1 performs CUD operations. Site 2 performs R operations.
The replica will be sent to Site 2 although Site 1 has the maximum ALP single
value. If the replica is sent to Site 1, it will not be used because there is no data
manipulation on the replica. The pseudo code for the enhanced allocation and
replication technique is shown in Fig. 2.

6 Experimental Results

We have implemented our technique on an HP Compaq computer with Coretwo
Duo 2.33 processors and 2 GB RAM using the SQL Server as DBMS. We have
implemented the modified technique on the MCRUD matrix of the bank account
table as shown in Table 1. We performed the enhanced technique on account
relations shown in Table 2. The ALP table is generated after applying the modified
technique on the MCRUD matrix. The ALP table is shown in Table 3. From the
ALP table, the attribute that has a maximum ALP value is the branch name, so its
predicates will be used to perform horizontal fragmentations. The resulted frag-
ments are shown in Tables 4, 5 and 6 and are allocated to sites that already need it
without taking the location of sites into account. Fragmentl has been allocated to
Site 1 and fragment2 has been allocated to Site 2 because they have the maximum

Distributed Database System (DSS) Design ... 109

Input: Humber of attributes, number of predicates of each attribute [], number of sites, number of
applications of each site [], and MCRUD matrix [total number of predicates, total number of applications]
Qutput: The ALP table, the sites that contain maximum ALP single value for each predicate of each
attribute (Position of MAX [attribute, predicate]), and the sites that performs more read operations for
each predicate of each attribute (Position of next Max [attribute, predicate]).
Foreach attribute in Number of attributes do
Foreach predicate in number of predicates [attribute] do
Number of read operation of max = @
Number of read operation of next max = @
Application number = 8
Total sum = B
Foreeach site in number of sites do
Application sum = @
Number read operation = @
Foreeach application in number of application [site] do
Application sum += Calculate MCRUD (MCRUD [Predicate number, application number])
Application number++ End
Total sum += application sum
If application sum == MAX [attribute, predicate] then
If Number read operation > Number of read operation of max then
Position of next Max [attribute, predicate] = site
Number of read operation of next max = Number read operation End
Else if Number read operation < Number of read operation of max then
Position of mext Max [attribute, predicate] =
Position of MAX [attribute, predicate]
Number of read operation of next max = Number of read operation of max
MAX [attribute, predicate] = application sum
Position of MAX [attribute, predicate] = site
Nunber of read operation of max = Number read operation End End
If application sum » MAX [attribute, predicate] and application sum » @ then
If Number of read operation of max » Number of read operation of next max then
Position of next Max [attribute, predicate] =
Position of MAX [attribute, predicate]
Number of read operation of next max = Number of read operation of max End
MAX [attribute, predicate] = application sum
Position of MAX [attribute, predicate] = site
Number of read operation of max = Number read operation End
Else if application sum > @ and Number read operation > @ and
Number read operation » Humber of read operation of next max then
Position of next Max [attribute, predicate] = site
Number of read operation of next max = Number read operation; End End
Predicate number++
ALP Single [attribute, predicate] = MAX [attribute, predicate] -
(Total sum - MAX [attribute, predicate]) End
Foreach predicate in number of predicates [attribute] do
ALP FINAL [attribute] += ALP Single [attribute, predicate] End End

Fig. 2 Pseudo Code for the enhanced allocation and replication technique

110 A.E. Abdel Raouf et al.

Table 1 MCRUD matrix

Site 1 Site 2 Site 3
AP1 AP2 | AP3 AP1 AP2 AP3 AP1 AP2 | AP3

Account.Account C RU C
id > 20
Account.Account R
id <=20
Account. CRD RU RUD R
Type = ind
Account. RU R CRUD |RU R
Type = cor

Account.customer C RU R
id>5
Account.customer R
id<=5
Account.open CRD RU RU R
date > 1-1-2008
Account.open RU R CRUD |RU R
date <= 1-1-2008
Account. R R CRUD R
Balance < 10000
Account. CR
Balance >= 10000
Account.Branch CRUD |RU CRUD CUD R
Name = dhk
Account.Branch R CRUD |CRUD |R R
Name = ctg

Account.Branch CRUD |CRU |U CRUD |CRU |CR
Name = khl

Table 2 Account relation

Account Account Customer Open date Account Account
no type ID balance name
3 Ind 1 20/01/2009 | 12500.0000 Dhk
Cor 2 20/05/2009 | 12000.0000 Dhk
7 Ind 2 05/03/2009 | 11000.0000 Ctg
15 Ind 3 08/05/2009 | 11000.0000 Khl
20 Cor 2 08/05/2010 | 15000.0000 Ctg
21 Ind 1 09/05/2012 | 9000.0000 Khl
22 Cor 8 20/09/2011 8000.0000 Dhk
23 Ind 5 06/08/2011 | 6000.0000 Khl
24 Ind 9 08/09/2006 | 15000.0000 Khl
28 Cor 5 07/05/2009 | 16000.0000 ctg

Distributed Database System (DSS) Design ...

Table 3 ALP table

111

Attribute name ALP value

Account id 6

Type 22

customer id 6

open date 22

Balance 8

Branch Name 27

Table 4 Fragment 1

Account Account Customer Open date Account Account
no type ID balance name

3 Ind 1 20/01/2009 12500.0000 Dhk

Cor 2 20/05/2009 12000.0000 Dhk

22 Cor 8 20/09/2011 8000.0000 Dhk
Table 5 Fragment 2

Account Account Customer Open date Account Account
no type ID balance name

7 Ind 2 05/03/2009 11000.0000 Ctg

20 Cor 2 08/05/2010 | 15000.0000 Ctg

28 Cor 5 07/05/2009 16000.0000 ctg
Table 6 Fragment 3

Account Account Customer Open date Account Account
no type ID balance name

15 Ind 3 08/05/2009 11000.0000 Khl

21 Ind 1 09/05/2012 9000.0000 Khl

23 Ind 5 06/08/2011 6000.0000 Khl

24 Ind 9 08/09/2006 15000.0000 Khl

ALP single value for the fragmentation attribute. However, the last predicate of the
branch name attribute has two sites which have the same maximum value. In this
case, the fragment will be allocated to the site that performs more data manipulation
and less read operations. In our experiments, Site 1 performs two read operations
and Site 3 performs three read operations. As a result, fragment 3 will be allocated
to Site 1 and its replica will be sent to Site 3.

112 A.E. Abdel Raouf et al.

Table 7 Final result of

. et Fragment number Allocated to Replicated to
allocation and replication
Fragment 1 1 3
Fragment 2 2 1
Fragment 3 1 3

After the allocation process, we replicate the fragments to enhance the system
performance of reading only queries and increase the availability. The replicas will
be allocated to the site that performs more read operations than other sites. In our
scenario, replical of fragmentl is allocated to Site 3, replica 2 of fragment 2 is
allocated to Site 1 and replica 3 of fragment 3 is allocated to Site 3. The final results
of the allocation and the replication processes are shown in Table 7.

7 Clustering Distributed Database Sites

An efficient way to minimize the communication time required for query processing
and data allocation is grouping distributed database sites into disjoint clusters [17].
As a result, clustering distributed database sites is an important issue in distributed
database systems.

The previous works done in this area are divided into two parts. In the first part
are clusters distributed database sites based on communication costs between the
network sites. In the second part are cluster distributed database sites based on the
region fields of the database.

7.1 Clustering Distributed Database Sites Based
on Region Fields

The simplest way to cluster the distributed database sites into disjoint clusters is by
using the region field of the database [8]. The sites in the same region belong to the
same cluster. However, clustering distributed database sites based on region has
two disadvantages.

The first disadvantage, this methodology of clustering sites will not work on all
the sites that belong to the same region or at most two regions. In this case we will
have one cluster that contains all the sites in the distributed system.

The second disadvantage is that this methodology will not work in some cases
belonging to different regions. In this case, each cluster will contain one site.

Distributed Database System (DSS) Design ... 113

7.2 Clustering Distributed Database Sites Based
on Communication Costs Between Network Sites

The second way to cluster distributed database sites is to use the communication
cost between database sites [15, 17]. This work focuses on grouping distributed
database sites into disjoint clusters according to the least average communication
cost between network sites. The clustering process highly depends on the com-
munication cost range of the CCR value.

The CCR parameter represents the communication cost value (ms/byte) that is
allowed for the maximum difference between the sites to be grouped in the same
cluster. If the communication cost between two sites is less than the CCR then the
two sites are grouped on one cluster. The CCR value depends on how much time is
allowed for the sites of the same cluster to receive or transmit their data.

The first advantage of methodology is that it can be implemented in different
DDBS environments even if the network sites are enormous.

The second advantage is performing the clustering algorithm after fragmentation
will speed up the process of data allocation by eliminate extra communication costs
between sites [17].

Based on the advantages and disadvantages of the clustering techniques, we
implemented the clustering technique mentioned in [17] that clusters the distributed
database sites based on the communication costs.

The implemented method categorizes the distributed database sites according to
Clustering Decision Value (CDV). The value of CDV is based on two values. The
first value is communication cost range CCR value. The second value is the
communication cost between the distributed database sites (CC). The communi-
cation cost between two sites (S; S;) is defined as the following linear function:

CC(S;, S;) = the cost of creating the data packet + the cost of transmitting the
data packet from site S; to site S;

The cluster decision value (CDV) is logical value. It determines whether a pair
of sites can be grouped on one cluster or not. The value of CDV is determined by
Eq. 1.

s Lif CC(Si,Sj) < CCR

CDV(Si, 8j) = { 0if CC(Si, Sj) > CCR (1)

In this proposed research we run the implemented algorithm on distributed
database system that consists of 10 sites. The communication cost between the sites
is shown on Table 8. We assumed that the communication cost range value
(CCR) equal to 5. After running the implemented algorithm, the resulted clusters
and the sites assigned to it are shown in Table 9. More details about the imple-
mented algorithm in [17]. However, we will use our enhanced technique to allocate
and replicate the fragments to the sites of each cluster.

114 A.E. Abdel Raouf et al.

Table 8 Communication cost between sites

Site# |Site O |Site 1 |Site 2 |Site 3 |Site 4 |Site 5 |Site 6 |Site 7 | Site 8 | Site 9
Site 0 | 0 6 11 10 7 8 9 9 12 12
Site 1 6 0 10 10 2 3 4 2 7 8
Site 2 | 11 10 0 6 6 7 8 7 2 3
Site 3 | 10 10 6 0 8 7 6 7 9 6
Site 4 2 6 8 0 1 2 2 7 6
Site 5 3 7 7 1 0 1 2 8 8
Site 6 4 8 6 2 1 0 3 6 6
Site7 | 9 2 7 7 2 2 3 0 8 7
Site 8 |12 7 2 9 7 8 6 8 0 1
Site 9 | 12 8 3 6 6 8 6 7 1 0
Table 9 Resulted clusters Cluster # Site #

and the assigned sites to it .
€ Cluster 0 | Site 0

Cluster 1 Site 3
Cluster 2 Site 1 Site 4 Site 5 Site 6 Site 7
Cluster 3 Site 2 Site 8 Site 9

8 Future Research Directions

As proposed future work, we plan to implement the remaining parts of the proposed
architecture to efficiently allow FAR decisions to be taken automatically at run
time. We plan to take the site constraints, load of the sites and the volume of data
transmitted in a specific time interval from or to fragments into account to take the
dynamic FAR decisions.

9 Conclusions

Efficient distribution of the distributed database fragments and replicas to various
sites play a critical role in the function of the database in terms of performance and
cost. In this proposed research, we present an enhanced dynamic DDBS over a
cloud environment. The proposed system allows FAR decisions to be taken based
on access history and the load of the site. Moreover, this research presents enhanced
allocation and replication techniques, which allocate the fragments and replicas to
the sites that already, requires it without taking into account the location of the sites.
The enhanced technique aims at maximizing the number of local accesses com-
pared to access from the remote sites, enhances the systems performance and

Distributed Database System (DSS) Design ... 115

increases the availability. This research also presents different clustering techniques
that used to cluster distributed database sites into disjoint clusters. It also presents
the clustering technique advantages, disadvantages, and which one we will use in
our system.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Abdalla, H.I.: An efficient approach for data placement in distributed systems. In: 2011 5th

FTRA International Conference on Multimedia and Ubiquitous Engineering (MUE). IEEE
(2011)

. Abdalla, H.I.: A new data re-allocation model for distributed database systems. Int. J. Database

Theory Appl. 5(2), 45-60 (2012)

. Abdalla, H.I.: A synchronized design technique for efficient data distribution. Comput. Hum.

Behav. 30, 427-435 (2014)

. Abdalla, H.I., Amer, A.A.: Dynamic horizontal fragmentation, replication and allocation

model in DDBSs. In: 2012 International Conference on Information Technology and
e-Services (ICITeS). IEEE (2012)

. Abdalla, H.I., Amer, A.A., Mathkour, H.: Performance optimality enhancement algorithm in

DDBS (POEA). Comput. Hum. Behav. 30, 419-426 (2014)

. Abdel Raouf, A.E., Badr, N.L., Tolba, M.F.: Dynamic distributed database over cloud

environment. In: International Conference of Advanced Machine Learning Technologies and
Applications. Springer, Berlin Heidelberg (2014)

. Abdel Raouf, A.E., Badr, N.L., Tolba, M.F.: An optimized scheme for vertical fragmentation,

allocation and replication of a distributed database. In: 2015 IEEE Seventh International
Conference on Intelligent Computing and Information Systems (ICICIS). IEEE (2015)

. Amalarethinam, D.G., Balakrishnan, C.: A Study on Performance Evaluation of Peer-to-Peer

Distributed Databases. IOSR J. Eng. 2(5), 1168-1176 (2012)

. Amalarethinam, D., Balakrishnan, C.: oDASuANCO-ant colony optimization based data

allocation strategy in peer-to-peer distributed databases. Int. J. Enhanc. Res. Sci. Technol. Eng.
2(3), 1-8 (2013)

Basseda, R., Rahgozar, M., Lucas, C.: Fuzzy neighborhood allocation (FNA): a fuzzy
approach to improve near neighborhood allocation in DDB. In: Advances in Computer
Science and Engineering. Springer, Berlin (2009)

Bayati, A., Ghodsnia, P., Rahgozar, M., Basseda, R.: A novel way of determining the optimal
location of a fragment in a DDBS: BGBR. In: ICSNC’06 International Conference on Systems
and Networks Communications, 2006. IEEE (2006)

Brunstrom, A., Leutenegger, S.T., Simha, R.: Experimental evaluation of dynamic data
allocation strategies in a distributed database with changing workloads. In: Proceedings of the
Fourth International Conference on Information and Knowledge Management. ACM (1995)
Chang, R.S., Chang, H.P.: A dynamic data replication strategy using access-weights in data
grids. J. Supercomput. 45(3), 277-295 (2008)

Corcoran, A.L., Hale, J.: A genetic algorithm for fragment allocation in a distributed database
system. In: Proceedings of the 1994 ACM Symposium on Applied Computing. ACM (1994)
Suganya, A., Kalaiselvi, R.: Efficient fragmentation and allocation in distributed databases. Int.
J. Eng. Res. Technol. 2(1), 1-7 (2013)

Gope, D.C.: Dynamic data allocation methods in distributed database system. Am. Acad. Sch.
Res. J. 4(6), 1-8 (2012)

Hababeh, I.: Improving network systems performance by clustering distributed database sites.
J. Supercomput. 59(1), 249-267 (2012)

116 A.E. Abdel Raouf et al.

18. Hauglid, J.O., Ryeng, N.H., Ngrvdg, K.: DYFRAM: dynamic fragmentation and replica
management in distributed database systems. Distrib. Parallel Databases 28(2-3), 157-185
(2010)

19. Kamali, S., Ghodsnia, P., Daudjee, K.: Dynamic data allocation with replication in distributed
systems. In: 2011 IEEE 30th International Performance Computing and Communications
Conference (IPCCC). IEEE (2011)

20. Khan, S.I., Hoque, A.L.: Scalability and performance analysis of CRUD matrix based
fragmentation technique for distributed database. In: 2012 15th International Conference on
Computer and Information Technology (ICCIT). IEEE (2012)

21. Khan, S.I., Hoque, A.S.M.L.: A new technique for database fragmentation in distributed
systems. Int. J. Comput. Appl. 5(9), 20-24 (2010)

22. Menon, S.: Allocating fragments in distributed databases. IEEE Trans. Parallel Distrib. Syst.
16(7), 577-585 (2005)

23. Mukherjee, N.: Synthesis of non-replicated dynamic fragment allocation algorithm in
distributed database systems. ACEEE Int. J. Inf. Technol. 10, 154-159 (2011)

24. Ranganathan, K., Foster, I.: Identifying dynamic replication strategies for a high-performance
data grid. In: Grid Computing—GRID 2001. Springer, Berlin (2001)

25. Singh, A., Kahlon, K.S.: Non-replicated dynamic data allocation in distributed database
systems. IJCSNS Int. J. Comput. Sci. Netw. Secur. 9(9), 176-180 (2009)

26. Tang, M., Lee, B.S., Yeo, C.K., Tang, X.: Dynamic replication algorithms for the multi-tier
data grid. Futur. Gener. Comput. Syst. 21(5), 775-790 (2005)

27. Basseda, R., Tasharofi, S., Rahgozar, M.: Near neighborhood allocation (NNA): a novel
dynamic data allocation algorithm in DDB. In: 11 International CSI Computer Conference
(CSICC’2006). School of Computer Science, IPM (2006)

28. Tosun, U., Dokeroglu, T., Cosar, A.: Heuristic algorithms for fragment allocation in a
distributed database system. In: Computer and Information Sciences III. Springer, London
(2013)

29. Ulus, T., Uysal, M.: Heuristic approach to dynamic data allocation in distributed database
systems. Pak. J. Inf. Technol. 2(3), 231-239 (2003)

30. Varghese, P.P., Gulyani, T.: Region based fragment allocation in non-replicated distributed
database system. Int. J. Adv. Comput. Theory Eng. 1(1), 62-70(2012)

31. Wang, Z., Li, T, Xiong, N., Pan, Y.: A novel dynamic network data replication scheme based
on historical access record and proactive deletion. J. Supercomput. 62(1), 227-250 (2012)

32. Zhang, J., Lee, B.S., Tang, X., Yeo, C.K.: A model to predict the optimal performance of the
hierarchical data grid. Futur. Gener. Comput. Syst. 26(1), 1-11 (2010)

33. Zhenglong, L.: Study of dynamic data redistribution algorithm based on distributed database
system. Procedia Engineering 15, 5611-5615 (2011)

Additional Reading

34. Hababeh, 1.0., Ramachandran, M., Bowring, N.: A high-performance computing method for
data allocation in distributed database systems. J. Supercomput. 39(1), 3—18 (2007)

35. Hababeh, 1., Khalil, I., Khreishah, A.: Designing high performance web-based computing
services to promote telemedicine database management system. IEEE Trans. Serv. Comput. 8
(1), 47-64 (2015)

36. Kumar, R., Gupta, N.: An extended approach to Non-Replicated dynamic fragment allocation
in distributed database systems. In: 2014 International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT). IEEE (2014)

37. Mukherjee, N.: Non-replicated dynamic fragment allocation in distributed database systems.
In: Advances in Computer Science and Information Technology. Springer, Berlin (2011)

	5 Distributed Database System (DSS) Design Over a Cloud Environment
	Abstract
	1 Introduction
	2 Background
	3 Research Issues
	4 Solutions and Recommendations
	4.1 Application Client Layer
	4.2 Distributed Database System Manager Layer
	4.3 Distributed Database Clusters Layer

	5 Enhanced Allocation and Replication Technique
	6 Experimental Results
	7 Clustering Distributed Database Sites
	7.1 Clustering Distributed Database Sites Based on Region Fields
	7.2 Clustering Distributed Database Sites Based on Communication Costs Between Network Sites

	8 Future Research Directions
	9 Conclusions
	References
	Additional Reading

