
A Metaheuristic for Classification
of Interval Data in Changing
Environments

Piotr Kulczycki and Piotr A. Kowalski

Abstract The Bayes approach is arguably the classification method most used in
unspecialized applications, thanks to its robustness, simplicity, and interpretability. The
main problem here is establishing proper probability values. This paper deals with
adapting the above method for cases where the classified data is of interval type, with
changing environments (evolving data stream, concept drift, nonstationarity). The
probability values are estimated using nonparametric methods, thanks to which the
procedure becomes independent of characteristics of learning subsets representing
particular classes. They can also be supplemented with new, current observations,
added while performing the algorithm. The investigated process also removes elements
with negligible or even negative impact on accuracy of results, which increases the
effectiveness of adaptation in conditions of changing reality. It is possible to differ-
entiate the meanings of particular classes. The method allows any number of them. The
particular attributes of data elements may be continuous, categorical, or both.

Keywords Data analysis ⋅ Classification ⋅ Interval data ⋅ Changing
environment ⋅ Adaptation

1 Introduction

One of the main tasks of contemporary data analysis is classification [2, 5]. Suppose
that we have a data set, whose particular elements are assigned labels explicitly,
indicating membership of particular, previously defined subsets, constituting
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specific classes. Such a label should be forecast for another element submitted for
testing which does not already have one. This procedure of mapping a label sug-
gesting membership to a class, to an investigated element is called a classifier.1 If
the concept of the classifier is based on a rough method, giving no strict guarantee
of finding the best or even a correct solution, it can be categorized as heuristic [23],
while if a few different concepts combine, where some act as servants to others,
then it becomes metaheuristic. Finally, when computational intelligence method-
ology [11] is used, the data set mentioned at the beginning becomes a learning set.
Its subsets assigned to particular classes are referred to as patterns.

This publication concerns the classification of data given in interval form [10],
including also the multidimensional case. The fundamental benefit of this type of
data is its simplicity, transparency, and possibility of using well-developed math-
ematical apparatus. Besides actual interval analysis, the case investigated here also
includes a probabilistic approach with uniform distribution as well as fuzzy logic
for a rectangular membership function. On the other hand in this publication,
patterns consist of elements which are uniquely determined (including single-point
distribution or crisp numbers for probabilistic and fuzzy approaches, respectively).
This corresponds to many situations occurring in practice, for instance when pat-
terns are formed from elements precisely measured some time ago (e.g., exchange
rates, outside temperature), but the forecast, ambiguous in nature, is classified and
presented in interval form [17].

Changeability in time of analyzing data is assumed here. Literature terms this a
changing environment [21], occasionally also evolving data stream [3], concept
drift [29], nonstationarity [19], or relates it with the adaptation process [4]. Such a
problem is most commonly connected to permanent supplementation of a data set
with new elements, which are naturally the most up to date and therefore the most
valuable. In the methodology presented below, each of the patterns’ element
receives coefficients proportional to their influence on correct results. Those ele-
ments with smallest coefficients are removed, although an exception is made for
those with successively growing values, as their character is in accordance with the
trend of changes in the environment.

The metaheuristic proposed here will construct Bayes classifier [5], with a
deservedly high opinion among researchers. It possesses a range of advantages,
both theoretical (ensuring minimum expectation value of losses resulting from
classification errors, albeit for incompletely fulfilled assumption of the attributes’
independence) and practical (the idea is simple, robust, and being easy to interpret,
is easy to modify). This method allows any number of classes and enables to
differentiate their meaning from a practical perspective. The probability values
existing in the classifier will be established by means of the nonparametric kernel
estimators methodology [16]. Patterns can therefore be of any shape, including
consisting of separate parts. Particular attributes of processed data may be

1Sometimes this procedure performs the function of reflecting reality with mathematics and
information technology, which explains why it is occasionally called a model.
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continuous, categorical, or a combination of both. It is worth noting that, thanks to
the correctly chosen measure of similarity, it is possible to treat categorical vari-
ables as multivalued, including binary. The fixing and adaptation of estimators’
parameters are carried out based on optimization procedures [12] and a sensitivity
analysis known from the artificial neural networks technique [30].

The initial sections, Sects. 2–5, shortly present a theoretical basis applied later in
the Sect. 6, the main section, to create the classification procedure for use in
changing environments. Conclusions with numerical verification, followed by final
comments, are the subject of Sect. 7.

The concept worked out here connects research for the interval stationary case
with the deterministic nonstationary, which are accessible in the papers [18, 19],
respectively. Initial results were described in the publication [20]. The specific
aspects of using neural networks in the methodology proposed here are the subject
of the articles [14, 15], currently in press.

2 Kernel Estimators

The nonparametric method of statistical kernel estimators enables the establishment
of characteristics—mainly density of distribution—without any prior knowledge
concerning its type. Thus, let an n-dimensional continuous random variable be
given. Suppose that its distribution has a density, denoted by f. Having the random
sample

x1, x2, . . . , xm ð1Þ

one can obtain its kernel estimator [16, 26, 28] defined as

f ð̂xÞ= 1
mhn

∑
m

i=1
K

x− xi
h

� �
, ð2Þ

whereas the function K: Rn → ½0,∞Þ, named a kernel, is measurable, symmetrical
with respect to zero, has a weak global maximum at this point, and fulfills the
condition

R
Rn KðxÞ dx=1; the constant h>0 is called a smoothing parameter.

The generalized one-dimensional Cauchy kernel

KðxÞ= 2

π ðx2 + 1Þ2 , ð3Þ

will be used in the following. This type of kernel lends itself especially well to the
classification problem, thanks to the presence of so-called “heavy tails”, valuable in
areas of potential division into particular classes, actually lying on peripheries of
distributions associated with them. For the multidimensional case, the product
approach will be used. The kernel is then defined as
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KðxÞ=K

x1
x2
⋮
xn

2664
3775

0BB@
1CCA=K1ðx1ÞK2ðx2Þ . . . KnðxnÞ, ð4Þ

where K1, K2, . . . ,Kn represent one-dimensional kernels (3). Note that the
expression hn must be substituted in definition (2) by h1 ⋅ h2 ⋅ . . . ⋅ hn, i.e., the
product of smoothing parameters for consecutive coordinates. Observe also that
thanks to the continuity of the kernel (3)–(4), the estimator f ̂defined by equality (2)
is also continuous.

Due to the planned correction in the smoothing parameter h, for calculation of its
value the so-called simplified method is enough [16—Sect. 3.1.5; 28—Sect. 3.2.1].
In the one-dimensional case, as well as for particular coordinates in the multidi-
mensional case, the smoothing parameter can be then calculated from a simple
formula:

h=
WðKÞ
UðKÞ2

8
ffiffiffi
π

p
3m

 !1 5̸bσ, ð5Þ

while WðKÞ= RR KðxÞ2 dx, UðKÞ= RR x2KðxÞ dx, and bσ is an (one-dimensional)
estimator of standard deviation obtained on the basis of sample (1). For the Cauchy
kernel (3) one has WðKÞ=1 and UðKÞ=5 4̸π.

Kernel estimators are fully presented in the classic monographs [16, 26, 28], also
including among others comments on the choice of kernel type [16—Sect. 3.1.3;
28—Sects. 2.7 and 4.5], algorithms for calculation of the smoothing parameter
[16—Sect. 3.1.5; 28—Chap. 3 and Sect. 4.7], and additional concepts for fitting
this type of estimator to specific conditions (e.g., boundary of random variable
support) and procedures generally increasing its quality. In this latter group, it is
worth highlighting the procedure for a smoothing parameter modification
[16—Sect. 3.1.6; 26—Sect. 5.3.1], narrowing of particular kernels in dense areas
(which enables better characterization of individual features of distribution), and
also “flattening” them in sparse regions to additionally smooth the estimator on the
peripheries (“tails”) of distribution. The potential addition of this aspect to the
material presented below is obvious and has been described in detail in the
paper [19].

Kernel estimators can also be constructed for different than continuous types of
attributes, in particular categorical (nominal and ordered), which through the
appropriate selection of similarity measure offers a wide range of generalizations to
multivalued variables, including binary. Various compositions of the above types
are also possible. The explanations for this topic can be found in the publications [7,
22, 24]. The supplementation of this aspect to the considerations presented in this
work is obvious.
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3 Bayes Classification

The classification process consists of creating a decision rule, which will map to the
tested element an additional label, demonstrating supposed membership to one of the
earlier defined classes. These classes are represented by patterns, i.e., sets of elements
already possessing such labels. At the beginning consider a continuous random
variable. First, the one-dimensional case (relating to the previous section: n=1) will
be investigated. Consider therefore the tested quantity, given in the formof the interval

½x, x�, ð6Þ

while x≤ x ̄. Note that when x= x ̄, it becomes precise (i.e., deterministic or sharp).
Let also J classes of the sizes m1, m2, . . . , mJ be represented by patterns composed
of real numbers:

x11, x
1
2, . . . , x1m1

ð7Þ

x21, x
2
2, . . . , x

2
m2

ð8Þ

⋮

xJ1, x
J
2, . . . , x

J
mJ
. ð9Þ

(Note that the upper index in the notations (7)–(9) denotes membership to a fixed
class). Bayes classification consists of mapping the tested element (6) to the j-class
(j=1, 2, . . . , J) if the largest is the j-th value among

m1f1ðx ̃Þ, m2f2ðx ̃Þ, . . . , mJfJðx ̃Þ, ð10Þ

where f1, f2 , . . . , fJ denote probability density with the condition of its member-
ship to the class 1, 2, . . . , J, respectively. In the metaheuristic investigated here,
these densities will be defined by kernel estimators methodology, described in
Sect. 2, where successive patterns (7)–(9) will be used as samples (1). Suppose
therefore such estimators of the above densities as f 1̂, f 2̂, . . . , f Ĵ . Then expressions
(10) take the form

m1f 1̂ðx ̃Þ,m2f 2̂ðx ̃Þ, . . . , mJf Ĵðx ̃Þ. ð11Þ

In turn for interval type of data, denoted in the form of element (6), one can
conclude that it belongs to the j-class when the biggest is the j-th value from among

m1

x− x

Zx
x

f 1̂ðxÞ dx,
m2

x− x

Zx
x

f 2̂ðxÞ dx, . . . ,
mJ

x− x

Zx
x

f ĴðxÞ dx. ð12Þ
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If one uses the continuous kernel K, then formula (12) becomes the generalization
of (11). In fact, here the kernel estimator f ĵ is also continuous, therefore for any
fixed x ̃∈ ½x, x�, if the length of interval (6) is reduced to 0 by x→ x ̃ and x→ x ̃, then
one obtains

lim
x→ x ̃
x ̄→ x ̃

1
x− x

Zx
x

f ĵðxÞ dx= f ĵðx ̃Þ for j=1, 2, . . . , J. ð13Þ

The expressions (12) transform into (11).
Furthermore, the positive expression 1 ð̸x− xÞ can be removed as having no

influence on which factor in formula (12) is the largest. Then it becomes equivalent
to

m1

Zx
x

f 1̂ðxÞ dx, m2

Zx
x

f 2̂ðxÞ dx, . . . , mJ

Zx
x

f ĴðxÞ dx. ð14Þ

Moreover, for every j=1, 2, . . . , J we have

Zx
x

f ð̂xÞ dx= bFðxÞ− bFðxÞ ð15Þ

with

bFðxÞ= Zx
−∞

f ð̂yÞ dy. ð16Þ

Substituting to the above dependency the definition for kernel estimator (2) (for
n=1) with Cauchy kernel (3) and removing once again the positive constant 1 m̸π
irrelevant here, one can obtain the following analytical formula:

bFðxÞ= ∑
m

i=1

ðx2 − 2xxi + x2i + h2Þ arctg x− xi
h

� �
+ hðx− xiÞ

x2 − 2xxi + x2i + h2
+

π

2

� �
. ð17Þ

In summary: the tested element (6) should be mapped to the j-class
(j=1, 2, . . . , J) if the j-th value is the largest from expressions (14). The integrals
appearing there can be calculated using formula (15) with substitution of depen-
dence (17). This completes the classification algorithm in the one-dimensional case.
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Now consider the multidimensional case, i.e., n>1, when the interval vector

½x1, x1�
½x2, x2�

⋮
½xn, xn�

2664
3775 ð18Þ

is tested, while elements of patterns (7)–(9) belong to the space Rn. Then expres-
sions (14) are

m1

Z
E

f 1̂ðxÞ dx, m2

Z
E

f 2̂ðxÞ dx, . . . , mJ

Z
E

f ĴðxÞ dx, ð19Þ

where E= ½x1, x1�× ½x2, x2�×⋯× ½xn, xn�. To calculate the above integrals, observe
that for the product kernel (4), the following is true:Z

E

KðxÞ dx= ½I1ðx1Þ− I1ðx1Þ�½I2ðx2Þ− I2ðx2Þ� . . . ½InðxnÞ− InðxnÞ�, ð20Þ

where Ii means the primitive function of the one-dimensional kernel Ki for
i=1, 2, . . . , n. Equalities (15) and (17) provide analytical formulas for obtaining
the values of these integrals, which completes the procedure for classification of
interval data in the continuous random variable case.

The above material can be easily transposed from continuous to categorical
variables. Here, an interval element should be understood to be the set sum of
several categories. In this situation, testing an element of such type, one should add
the kernel estimators values for all categories belonging to the created sum (or their
combinations if there are a number of categorical attributes), and then apply cri-
terion (11). The procedure is similar for a combination of continuous and cate-
gorical attributes: for fixed categories belonging to the set one should—using the
above-presented methodology—calculate kernel estimator values for continuous
attributes, add them, and finally apply criterion (11).

Finally, generalize expressions existing in (11) and (19), introducing the coef-
ficients z1, z2, . . . , zJ >0 in the following manner:

z1m1

Zx
x

f 1̂ðxÞ dx, z2m2

Zx
x

f 2̂ðxÞ dx, . . . , zJmJ

Zx
x

f ĴðxÞ dx ð21Þ

z1m1

Z
E

f 1̂ðxÞ dx, z2m2

Z
E

f 2̂ðxÞ dx, . . . , zJmJ

Z
E

f ĴðxÞ dx, ð22Þ
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respectively. Taking as standard values z1 = z2 = . . . = zJ =1, formula (21) brings
us to (14), and (22) to (19). By appropriately changing the value zi, one can
appropriately influence the probability of assigning elements from the i-th class to
other wrong classes, although potentially at the cost of increasing the total number
of misclassifications. This concept can be applied in such situations where partic-
ular classes are associated with phenomena of different significance to the inves-
tigated task, or diverse conditioning. In the case of changing environments, moving
patterns represent a much more difficult scenario. They may contain elements which
are no longer current, or have already appeared, but will only become typical in the
future. The adaptation procedure for such patterns is significantly less efficient than
for unchanging patterns, where instead of the necessity for updating they can be
successively improved by removing less effective elements. In the presented
problem, the coefficient zi values should be, respectively, proportional to the speed
of changes of the i-th classes. The value, 1.25 can be proposed as initial; generally
for the most applicational tasks z1, z2, . . . , zJ ∈ ½1, 1.5�.

Bayes classification is highly regarded among practitioners. It is uncomplicated,
easily interpretable, and often provides results better than many more refined
procedures. Together with kernel estimators, with a very small value of the
smoothing parameter, it is reminiscent of the nearest neighbor algorithm, whereas
when it is large, it is similar to average (mean) linkage. Thanks to the proper choice
of the smoothing parameter, it seems possible to obtain better results than in the
case of those two effective methods. Within the proposed metaheuristic, this aspect
is reflected in the optimal correction of the above parameter, presented in the next
section.

More details concerning Bayes classification is included in the publications [1,
5]; see also [9, 13]. A somewhat broader presentation of the material of the above
section can be found in the paper [18].

4 Correction for Smoothing Parameters

With the aim of improving quality of results as well as creating the possibility of
keeping up with environment changes, the metaheuristic investigated here applies a
correction procedure to the smoothing parameters values, using optimizing algo-
rithms, suiting the value (5) to the classification problem.

Thus, suppose n correcting coefficients b1, b2, . . . , bn >0, which will be used to
multiply the particular smoothing parameters h1, h2, . . . , hn calculated using for-
mula (5), respectively. Note that the case b1 = b2 = . . . = bn =1 means a lack of
correction. Assume the natural performance index

Jðb1, b2, . . . , bnÞ=# incorrect classificationsf g, ð23Þ

where # denotes here the number of elements, and the task of minimization of its
value. First, on the grid created for the values bj =0.25, 0.5, . . . , 1.75 for every
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coordinate j=1, 2, . . . , n, one should calculate the values of the above index, and
then choose the best five. Next, treating these points as initial, static optimization
methods in the space Rn ought to be used. The value of index (23) can be calculated
by the classic leave-one-out method. Due to these values being integers, a modified
Hook–Jeeves procedure [12], with initial step taken as 0.2, was applied. Other
conceptions are described in the survey paper [27]. After finishing the above five
“runs” of the Hook–Jeeves procedure, one should select one of these values of the
correcting coefficients b1, b2 , . . . , bn for which functional (23) value for the end
point is the smallest.

However, the above-presented correction of the smoothing parameters procedure
is not necessary, it increases classification accuracy, enhances adaptation, and
furthermore enables the use of a simplified method for calculating smoothing
parameters values (5), based on the square criterion, which is not always beneficial
to the classification task [8]. Its influence could have particular significance in
abrupt or atypical changes of environment. When applying the modification pro-
cedure for the smoothing parameter (see the penultimate paragraph of Sect. 2), the
above action undergoes moderate generalization in accordance with the concept
described in the paper [19].

5 Pattern Size Reduction

In practical tasks, several elements of patterns (7)–(9) might be unimportant, and in
some cases may even have negative influence for classification quality. Their proper
selection and removal can improve the correctness of results, and also—thanks to a
reduction in pattern sizes—significantly accelerate calculations. To this end, we
shall generalize the definition of kernel estimator (2) to the following form:

f ð̂xÞ= 1
mhn

∑
m

i=1
wiK

x− xi
h

� �
, ð24Þ

where the coefficients w1, w2, . . . , wm ≥ 0 introduced above are normed such that

∑
m

i=1
wi =m. ð25Þ

In the special case wi ≡ 1, formula (24) reduces to its initial definition (2). The
parameters wi are intended to characterize the influence of the respective i-th ele-
ments of the patterns on the accuracy of results. In order to calculate their values,
the sensitivity analysis, familiar from the theory of artificial neural networks [6, 30],
will be applied. Its aim is to define—after the learning phase—the influence of the
particular inputs ui of a neural network on its output value y, described in the natural
way by the quantity
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Si =
∂ yðx1, x2, . . . , xmÞ

∂xi
for i=1, 2, . . . ,m, ð26Þ

and then to aggregate information in the form of the coefficients

Si =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
P

p=1
ðSðpÞi Þ2

P

vuuut
for i=1, 2, . . . ,m, ð27Þ

where SðpÞi with p=1, 2, . . . ,P denotes the value (26) for particular iterations.
A detailed description of the sensitivity method, together with the appropriate
formulas, is presented in the publications [6, 30]. The configuration of neural
networks and specific aspects associated with this topic are presented in the separate
papers [14, 15]. To every class characterized by patterns (7)–(9) an individual
network is assigned. For the sake of simplified notation, the index j=1, 2, . . . , J
of particular classes will be fixed hereinafter.

In order to define the values of the parameters introduced in definition (24), first
calculate auxiliary quantities

w̃i = 1−
Si

∑
m

j=1
Sj

0BBB@
1CCCA, ð28Þ

finally normed—in consideration of condition (25)—to

wi =m
w̃i

∑
m

i=1
w̃i

. ð29Þ

The concept of the above formulas stems from the fact that neural networks are
most sensitive to redundant and atypical elements which, from a classification point
of view, are mainly of negative significance, therefore they receive the values w̃i

and in consequence wi should be proportionately small. Note also that due to the
shape of formulas (26)–(27), in practice not all coefficients Si are equal to zero,
which guarantees the nominator in dependence (28) is not equal to zero.

Finally, those elements of patterns (7)–(9) for which wi <1 are removed. The
limit value 1 results from the fact that, thanks to the form of normalization (29), the
arithmetic mean of parameters equals 1. Empirical research carried out confirmed
this theoretically conditioned point of view [14, 15].
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6 Classification Metaheuristic

This crucial section collates the material presented in this paper. Procedures pre-
sented earlier in Sects. 2–5, will be joined in the classifying metaheuristic designed
for the changing environment case. An illustration is provided in Fig. 1. Blocks
drawn with a continuous line denote operations performed on all elements of
patterns, with a dashed line—on particular classes, while a dotted line symbolizes
operations for each element of those patterns.

To start, one should fix the so-called reference sizes of patterns (7)–(9), denoted
hereinafter as m*

1, m
*
2, . . . ,m*

J . They are the sizes of patterns defined during the
reduction procedure presented in Sect. 5. Of course, initial patterns must be of a
size no smaller than the reference ones. These values may be changed, with the
natural boundary that their increase cannot be smaller than the amount of new
elements. To begin one can propose m*

1 =m*
2 =⋯=m*

J =25 ⋅ 2n. Greater values
may cause an increase in calculation time, while smaller a drop in accuracy of
results.

Initial patterns (7)–(9) constitute preliminary data submitted for investigated
procedure. First, the values of the smoothing parameters h1, h2 , . . . , hn are cal-
culated according to the material of Sect. 2. This action is denoted in Fig. 1 as
block A. The subsequent block B symbolizes computation for the coefficients b1,
b2 , . . . , bn values, realizing a correction of the smoothing parameters, worked out
in Sect. 4.

The next step, described in Sect. 5 (block C in Fig. 1), consists of the calculation
of the parameters wi values, carried out separately for particular classes. After that,
these parameters are sorted within each class (block D in Fig. 1). Any sorting
procedure [25] can be used here. Following this, shown in Fig. 1 as block E, the m*

1,
m*

2, . . . ,m*
J elements corresponding to the largest values wi are the basis of the

principal phase of the investigated procedure—Bayes classification (block F in
Fig. 1), which will be discussed in the subsequent paragraph. On the other hand,
elements corresponding to smaller values wi are sent to block U, during which the
derivative w

0
i is calculated individually for each of them. Newton’s interpolation

polynomial for the last three observations can be proposed here; its description,
together with formulas as well as similar methods are presented in the survey paper
[27]. (If for some element, three previous values wi are not available, then they can
be filled with zeroes, artificially increasing a derivative, while at the same time
securing such elements against premature removal.) Later the values w

0
i are sorted

separately for specific classes (block V in Fig. 1), after which—within block W—

elements of each pattern in the number

qm*
1, qm

*
2, . . . , qm*

J , ð30Þ

respectively, with the largest positive derivative values, return to block A at the
beginning. The leftover elements are finally removed, as is shown in block Z.
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Fig. 1 Classification metaheuristic
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The positive parameter q introduced above in formula (30) implies the part played
in further tests of elements with small, but successively increasing significance,
therefore preceding trends of environment changes, as it were. The initial value
q=0.2 is proposed; generally q∈ ½0.1, 0.25� depending on intensity and uniformity
of changes. Bigger values may improve the adaptation process but lengthen cal-
culation time, while smaller ones bring contrary effects.

Let us return to Bayes classification, the essence of the procedure presented here.
As mentioned at the top of the previous paragraph, this stage sees the arrival of
those patterns’ elements which have the greatest influence on accurate results. First
the parameters’ wi values are once more calculated, in accordance with Sect. 5
(block F in Fig. 1). Then within block G those elements for which wi <1 are
excluded from further processing and sent at the beginning to block A, while those
with wi ≥ 1 are prescribed to block H, where they form the basis for Bayes clas-
sification, described in Sect. 3 (block H in Fig. 1). Testing can be performed on
many interval data of type (6) or (18). Next all patterns’ elements join block A at
the beginning.

The presented procedure can be repeated as soon as new elements are provided
to block A. In addition, there are also applied the previously used m*

1, m
*
2, . . . ,m*

J
elements with the largest values wi as the most valuable for accuracy of results, as
well as approximately qm*

1
, qm*

2
, . . . , qm*

J
ones having the greatest positive

derivative w
0
i, as not having yet big influence but successively increasing their

significance as the environment changes.
The expanded description of the procedure presented above can be found in the

paper [19].

7 Verification and Final Comments

The correctness of the method described in this paper underwent comprehensive
numerical verification. In particular, it was shown that the classification developed
here offers correct results also in cases of nonseparated classes with composite
multisegment and multimodal patterns. The character of changing environment may
increase successively, abruptly, or also periodically, although the best results are
found in the first case. The standard values proposed in this text for the parameters
used were obtained as deductions from simulations carried out.

The results differed little in nature from those obtained in the basic case where an
element which is uniquely defined, e.g., deterministic or crisp, undergoes testing. It
proves proper averaging introduced by formulas (14) and (19).

As an example, presented in Fig. 2, let us consider the illustratory
two-dimensional case with two classes, one of which is invariable, with the other
also unchanging at the beginning, after the 18th step it starts to change its place, and
then—after describing a full orbit around the first class—stops in the 54th step at its
initial location. The remaining parameters are accepted in the form proposed above
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in this text. One can see in Fig. 2 that the number of misclassifications increases
sharply at times when the environment changes its character, i.e., in steps 18 and
54. The prediction function is then ineffective by nature. In the periods of non-
stationarity, i.e., before the 18th and after the 54th step, the rate of errors stabilizes
at a value of 0.08, whereas in the period of constant changes between the 18th and
54th steps, at the higher 0.105. This is still lower than the maximums values 0.12,
which would be maintained without the influence of the adaptation function
designed here.

Further research was undertaken on the influence of size of imprecision of
classified data—represented by the length of intervals—on accuracy of results. In
this aspect also the effects showed themselves to be fully satisfactory. If the interval
length was less than the generally understood distance between centers of specific
patterns (a condition usually fulfilled in practice), then its growth did not cause an
increase in the mean value of incorrect classifications, but in fact the results
underwent some stabilization—the variance of misclassifications decreased. Again
averaging, introduced by formulas (14) and (19), proves to have a positive
influence.

A broader description of particular aspects of the above simulations can be found
in the papers [14, 15, 18, 19].

The metaheuristic proposed in this paper was compared with other classification
methods based on computational intelligence, e.g., Support Vector Machine, as
well as natural, e.g., counting components of patterns which are included in the
tested element. Unfortunately, no method has been found to allow exactly the same
conditionings: uniquely defined patterns elements, interval form of tested element,
changing environment, any number of classes and patterns shapes, categorical
attributes. For this reason, it was possible only to compare with simplifications
fitting suitable methodologies, and so offer the results presented below purely in a
qualitative aspect. The advantage of the metaheuristic proposed in this paper mainly
lies in the smaller number of misclassifications for stabilized variability of envi-
ronment, which in Fig. 2 appears as a significant decrease in errors between 30 and

Fig. 2 Number of
misclassifications at particular
steps of the representative run
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55 steps. Better results are also achieved here in areas between particular patterns,
which are always troublesome for classification, as well as for long intervals rep-
resenting specific attributes of tested elements. Thanks to the calculational com-
plexity of particular procedures of the metaheuristic under investigation, the
proposed method is especially destined for those cases where slow learning is
permitted, but the classification process itself must be fast. This is achieved in great
part by obtaining an analytical form of formulas (15)–(17). The computational
complexity of the classification phase alone amounts to OðnJ mÞ, and therefore is
linear with respect to dimensionality of space, number of classes, and size of their
patterns.
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