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Abstract In this paper, a probabilistic solution for gaze following in the context

of joint attention will be presented. Gaze following, in the sense of continuously

measuring (with a greater or a lesser degree of anticipation) the head pose and gaze

direction of an interlocutor so as to determine his/her focus of attention, is impor-

tant in several important areas of computer vision applications, such as the devel-

opment of nonintrusive gaze-tracking equipment for psychophysical experiments in

Neuroscience, specialized telecommunication devices,Human–Computer Interfaces
(HCI) and artificial cognitive systems for Human–Robot Interaction (HRI). We have

developed a probabilistic solution that inherently deals with sensor models uncer-

tainties and incomplete data. This solution comprises a hierarchical formulation of

a set of detection classifiers that loosely follows how geometrical cues provided by

facial features are used by the human perceptual system for gaze estimation. A quan-

titative analysis of the proposed architectures performance was undertaken through a

set of experimental sessions. In these sessions, temporal sequences of moving human

agents fixating a well-known point in space were grabbed by the stereovision setup

of a robotic perception system, and then processed by the framework.

1 Introduction

Head movements are commonly interpreted as a vehicle of interpersonal commu-

nication. For example, in daily life, human beings observe head movements as an

expression of agreement or disagreement in a conversation, or even as a sign of con-

fusion. On the other hand, gaze shifts are usually an indication of intent, as they

commonly precede action by redirecting the sensorimotor resources to be used. As a
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Fig. 1 Gaze following in the context of joint attention for HRI, using the ROVIS system on a

Neobotix
Ⓡ

MP 500 mobile platform

consequence, sudden changes in gaze direction can express alarm or surprise. Gaze

direction can also be used for directing a person to observe a specific location. To this

end, during their infancy, humans develop the social skill of joint attention, which is

the means by which an agent looks at where its interlocutor is looking at by producing

an eye-head movement that attempts to yield the same focus of attention. Over nine

months of age, infants are known to begin to engage with their parents/caregivers in

an activity in which both look at the same target through joint attention.

As artificial cognitive systems with social capabilities become more and more

important due to the recent evolution of robotics towards applications where complex

and human-like interactions are needed, basic social behaviors such as joint attention

have increasingly become important research topics in this field. Figure 1 illustrates

the ROVIS
1

(Robust Vision and Control Laboratory) gaze following system at work,

under the context of joint attention for Human Robotic Interaction (HRI). Gaze fol-

lowing thus represents an important part of building a social bridge between humans

and computers. Researchers in robotics and artificial intelligence have been attempt-

ing to accurately reproduce this type of interaction in the last couple of decades, and,

although much progress has been made [1], dealing with perceptual uncertainty still

renders it difficult for these solutions to work adaptively.

Gaze following is an example for which the performance of artificial systems is

still far from human adaptivity. In fact, the gaze following adaptivity problem can

be stated as follows: how can gaze following be implemented under nonideal cir-

cumstances (perceptual uncertainty, incomplete data, dynamic scenes, etc.)? Figure 2

demonstrates how incomplete data, arguably the issue where the lack of adaptivity

and underperformance of artificial systems are most apparent, might influence the

outcome of gaze following.

In the following text, we propose a robust solution to facial feature detection for

human–robot interaction based on (i) a feedback control system implemented at the

image processing level for the automatic adaptation of the system’s parameters, (ii) a

1
http://rovis.unitbv.ro.

http://rovis.unitbv.ro
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Fig. 2 Examples of probable gaze following failure scenarios due to incomplete data: facial fea-

tures occluded in profile views (a), or failure of feature detection algorithms (b)

cascade of facial features classifiers, and (iii) a Gaussian Mixture Model (GMM) for

facial points segmentation. The goal is to obtain a real-time gaze following estimator

which can cope with uncertainties and incomplete data. The proposed system aims at

the robust computation of the human gaze direction in the context of joint attention

for HRI.

2 Related Work

2.1 Gaze Following

In recent years, the problem of gaze following has been extensively studied. Physio-

logical investigations have demonstrated that the brain estimates the gaze as a mix-

ture of eye direction and head position and orientation (pose) [2]. By itself, head

pose provides an estimate that represents a coarse approximation of gaze direction

that can be used in situations in which the eyes are invisible (e.g., when observing

a distant person, or when sunglasses occlude the eyes) [3]. When the eyes are not

occluded, the head pose is an extra marker that can be used to estimate the direction

of the gaze. The gaze direction estimation problem, as it is solved by the human brain,

can therefore be subdivided into two fundamental and sequential subproblems: head
pose estimation and eye gaze estimation.

The consequences of such a solution are twofold: partial information can be used

to already arrive to an estimate; however, this happens at the expense of biasing. As
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Fig. 3 Wollaston illusion: although the eyes are the same in both images, the perceived gaze direc-

tion is dictated by the orientation of the head. (Adapted from [2, 3])

an illustration of this drawback, in Fig. 3 is shown [2] that the interpretation of the

gaze for an observer is deviated in the direction of the head. In any case, the error

propagated by erroneously estimating one of the features is greatly compensated by

the fact that the human brain is able to yield an estimate even when only presented
with partial or incomplete information. Moreover, visual features used to detect a

face or an eye do not need to be the same for both cases, so they can be detected

independently, which makes the problem more tractable.

Consequently, the following paragraphs will present a summarized survey of solu-

tions for each subproblem.

In the survey by [3], solutions for head pose estimation are divided into eight

categories: seven represent pure methods, while the remaining are hybrid methods,

i.e., combinations of the other methods. The article ends by presenting a quantitative

comparison of the performance of these methods.

As mentioned in this survey, most of the computer vision based head pose cal-

culation algorithms have diverged greatly from the results of psychophysical exper-

iments as to how the brain tackles this problem. In fact, the former are concentrated

on appearance-based methods, while the latter takes into account how the human

perceives the pose of the head based on geometrical cues [3].

Geometrical approaches, as shown in Fig. 4, attempt to detect head features as

accurately as possible in order to compute the pose of the head. An example of a

geometrical approach for head pose estimation is presented in [4], where monoc-

ular images are used as input information. The proposed algorithm makes mini-

mal assumptions, compared with other methods, about the facial features structure.

Knowing the positions of the nose, eyes, and mouth, the facial normal direction can

be obtained from one of the next two methods [4], also used in our work:

1. Using two relations: the nose tip and the line between the far corners of the mouth

(R1 =
lm
lf

); the line between one eye with the correspondent far corners of the

mouth and the distance given by the nose tip; and the line connecting one eye

with the far corners of the mouth (R2 =
ln
lf

);

2. Using the line between the eye extremities and the far mouth corners.
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Fig. 4 Geometrical relations between facial features (Adapted from [4]). 3D gaze orientations can

be computed using the distances between detected facial features, such as the eyes, nose and mouth

The derivation of the roll, pitch, and yaw for a human head is presented in [5]. The

assumption from this article is that the four points that describe the eye are collinear.

The position is obtained using the line through the four eye points and the nose tip.

The main difficulties with this method are related to the pitch direction estimation,

which uses an anthropometric face analysis [5]. The yaw and the pitch are obtained

from eye corners and the intrinsic camera parameters (focal length).

The method proposed by [6] uses the model of the face and the eye, deduced from

anthropometric features in order to determine the head orientation. This method uses

only three points (e.g., eye centers and the middle point between the nostrils) to per-

form the desired task. Their model uses the following assumption: d(A,C) = d(B,C);
d(A,B) = kd ⋅ d(A,C); d(A,B) = 6, 5 cm, where A and B are the central points of

each eye and C is the middle point between the nostrils.

Another solution for head pose estimation is introduced in [7]. The main idea

here is to consider an isosceles triangle, with corners in both eyes and in the center

of the mouth. The direction of the head is computed if we assume that one side of

the triangle lies on the image plane, such that applying a trigonometric function we

can estimate the angle between the triangle plane and the image plane [7].

Finally, an alternative method for head estimation is supposed to use multiple

cameras [8] with accurate calibration information available. Skin color segmentation

is performed on each camera, and then data fusion is performed, resulting in a 3D

model of the head. The orientation of the head is estimated based on a particle filter.

2.2 Facial Features Extraction

Feature detection represents a subtopic within the head pose estimation problem. An

accurate estimate for the eye, nose, or the mouth represents an intermediate stage, in

which essential information used by the geometrical approach for head pose estima-

tion is computed. Methods for gaze estimation, presented in the following section,
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include eye feature detection. Detection of other important facial features, such as

the mouth and the nose, is discussed next.

Mouth recognition is dealt with methods such as the ones suggested in [9, 10]. A

common approach for detecting the mouth is by pre-segmenting the color red on a

specific patch of the image. Both methods use a ROI (Region of Interest) extracted

after head segmentation, in which the mouth is approximately segmented, after a

color space conversion is performed (such as RGB to HSI (Hue, Saturation, Inten-
sity) [9], or RGB to Lab [10]). On the other hand, nose detection algorithms use

Boosting classifiers, commonly trained with Haar-like features [11], or the 3D infor-

mation of the face, as in [12].

As suggested in [13], most of the methods used for eyes detection and segmen-

tation can be divided into shape-based, appearance-based and hybrid methods. The

shape-based technique uses the detection of the iris, the pupil, or the eyelids to locate

the eye. Particular features, such as the pupil (dark/bright pupil region) or cornea

reflections are used in appearance-based approaches, while the hybrid method tries

to combine the advantages of both methods.

The shape-based algorithm proposed in [14], built on the isophote curvature con-

cept, i.e., the curve that connects points of the same intensity, is able to deliver accu-

rate eye localization from a web camera. The main advantage of using this concept

is that the shape of the isophotes is invariant to rotation or to linear illumination

changes. The eye location can be determined using a combination of Haar features,

dual orientation Gabor filters and eye templates, as described in [15].

Unsupervised learning algorithms, such as the Independent Component Analysis
(ICA), are used in [16] for eyes extraction, based on the fact that the eye is a sta-

ble facial feature. The two stages technique determines first a rough eye ROI using

ICA and the gray-level image intensity variance, and second, the eye center point is

computed from image intensity data.

Finally, an alternative method which uses two visual sensors is proposed in [17]:

a wide-angle camera for face detection and rough eyes estimation and an active pan–

tilt–zoom camera to focus on the rough detected ROIs. The method considers the

face as a 3D terrain surface and the eye areas as ”pits” and ”hillsides” regions. The

eyes 2D positions are chosen using a (GMM). A similar dual stereo camera system

is also proposed in [18], where a wide-angle camera detects the face and an active

narrow Field of View (FoV) system tracks the eyes at high resolution.

As mentioned above, most methods tackle the problem of gaze direction esti-

mation using either head pose or eyes direction estimation. However, papers such

as [14, 19, 20] present hybrid approaches that combine head pose and eye direction

estimation for obtaining the subject’s gaze direction.

In [14], a hybrid solution for eye detection and tracking, combining the detec-

tion results with a Cylindrical Head Model (CHM) for head direction estimation,

is presented. In [19], the gaze’s direction is computed in two stages, after a camera

calibration process: first the eyes orientation vector is determined with respect to the

head’s coordinate system and, second, the final gaze direction estimate is given by

a fusion between the determined eyes and head’s poses. Both approaches have lim-
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itations in estimating the gaze’s orientation when either the eyes or the poses of the

head are imprecise.

The technique from [20] describes a human gaze direction algorithm from a com-

bination of Active Appearance Models (AAM) and a CHM. Although the approach

seems to perform well in off-line experiments, real-time scenarios are not presented.

One other notable facial features extractor is the Flandmark system [21], which,

despite its real-time capabilities and ability to detect and track facial features from

frontal faces, fails to recognize features when the pose of the head has a slight offset

from the frontal view.

3 Controlling a Machine Vision System

In a robotics application, the purpose of the machine vision system is to perceive the

environment through a camera module.

An image processing chain is usually composed of low (e.g., image enhancement,

segmentation) and high (e.g., object recognition) level image processing methods.

In order for the high level operations to perform properly, the low level ones have

to deliver reliable information. In other words, object recognition methods require

reliable input coming from previous operations [22].

In order to improve the image processing chain, we propose to control the low

level vision operation through a feedback loop derived from the higher level compo-

nents. In [23, 24], the inclusion of feedback structures within vision algorithms for

improving the overall robustness of the chain is suggested.

The core idea of the feedback control system for adapting the low level vision

operations is presented in Fig. 5, where the control signal u, or actuator variable, is

a parameter which controls the processing method, whereas the controlled variable
y is a measure of image processing quality.

Input 
Image

Image
Processing 

Operation (u)

Image
Processing 

Quality Measure

y

Initial processing

parameters

Fig. 5 Feedback adaptation of a computer vision algorithm. The image processing quality measure

y is used as a feedback control variable for adapting the parameters of the vision algorithms using

the actuator u
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4 Image Processing Chain

The gaze following image processing chain, depicted in Fig. 6, contains four main

steps. We assume that the input is an 8-bit gray-scale image I = JV×W , of width V
and height W, containing a face viewed either from a frontal or profile direction,

where J = {0,… , 255}. (v,w) represents the 2D coordinates of a specific pixel. The

face region is obtained from a face detector.

First, a set of facial features ROI hypotheses 𝐇 ∈ {hle, hre, hn, hm}, consisting

of possible instances of the left hle and right hre eyes, nose hn and mouth hm, are

extracted using a local features estimator which determines the probability measure

p(𝐇|I) of finding one of the searched local facial region. The number of computed

ROI hypotheses is governed by a probability threshold Th, which rejects hypotheses

with a low p(𝐇|I) confidence measure. The choice of the Th threshold is not a trivial

task when considering time critical systems, such as the gaze estimator, which, for

a successful HRI, has to deliver in real-time the 3D gaze orientation of the human

subject. The lower Th is, the higher the computation time. On the other hand, an

increased value for Th would reject possible “true positive” facial regions, thus lead-

ing to a failure in gaze estimation. As explained in the following, in order to obtain a

robust value for the hypotheses selection threshold, we have chosen to adapt Th with

respect to the confidences provided by the subsequent estimators from Fig. 6, which

take as input the facial regions hypotheses. The output probabilities coming from

these estimation techniques, that is, the spatial estimator and the GMM for point-

wise feature extraction, are used in a feedback manner within the extremum seeking

control paradigm.

Once the hypotheses vector 𝐇 has been built, the facial features are combined into

the spatial hypotheses 𝐠 = g0, g1,… , gn, thus forming different facial region combi-

nations. Since one of the main objectives of the presented algorithm is to identify

facial points of frontal, as well as profile faces, a spatial vector si is composed either

from four, or three, facial ROIs:

Local features 
estimator

H
hrehle

hn

hm

g

yf = p (mi | I, H, gj, li)

Spatial features estimator
GMM facial 
segmentation

GMM facial points 
extraction

m

p (H |I ) p (gj |H ) p (mi | li)p (li | gj)

m

3D gaze direction 
reconstruction

Fig. 6 Block diagram of the proposed gaze following system for facial feature extraction and 3D

gaze orientation reconstruction. Each processing block within the cascade provides a measure of

feature extraction quality, fused within the controlled variable yf (see Eq. 2)
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hrehle

hn

hm

hle

hn

hm

hre

hn

hm

hrehle

hm

(a) (b) (c) (d)

Fig. 7 Different spatial combinations of features used for training the four classifiers. a All four

facial features. b, c, d Cases where only three features are visible in the sample image

gi = {h0, h1, h2, h3} ∩ {h0, h1, h2}, (1)

where hi ∈ {hle, hre, hn, hm}.

The extraction of the best spatial features combination can be seen as a graph

search problem gj = f ∶ G(𝐠,𝐄) → ℜ, where 𝐄 are the edges of the graph con-

necting the hypotheses in 𝐠. The considered features combinations are illustrated

in Fig. 7. Each combination has a specific spatial probability value p(gj|𝐇) given by

a spatial estimator trained using the spatial distances between the facial features from

a training database.

Once the spatial distributions of the probable locations of the facial features ROIs

are available, their pointwise location mi is determined using a GMM segmentation

method. Its goal is to extract the most probable facial pointwise locationsmi given the

GMM pixel likelihood values p(li|gj). The most relevant point features for computing

the 3D gaze of a person are the centers of the eyes, tip of the nose, and corners of

the mouth.

The described data analysis methods are used to evaluate a feature space com-

posed of the local and spatial features.

Having in mind the facial feature points extraction algorithm described above,

it can be stated that the confidence value yf of the processing chain in Fig. 6 is a

probability confidence measure obtained from the estimators cascade:

yf = p(mi|I,𝐇, gj, li). (2)

Since the whole described processing chain is governed by a set of parameters,

such as the threshold Th for selecting the vector 𝐬, we have chosen to adapt it using

an extremum seeking control mechanism and the feedback variable yf , derived from

the output of the gaze following structure illustrated in Fig. 6. The final 3D gaze

orientation vector 𝜑⃗(mi), representing the roll, pitch, and yaw of the human subject,

is determined using the algorithm proposed in the work of Gee and Cipolla [4].
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5 Performance Evaluation

5.1 Experimental Setup

In order to test the performance of the proposed gaze following system, the following

experimental setup has been prepared.

The system has been evaluated on the Labeled Faces in the Wild (LFW) data-

base [25]. LFW consists of 13, 233 images, each having a size of 250 × 250px. In

addition to the LFW database, the system has been valuated on an Adept Pioneer
Ⓡ

3-DX mobile robot equipped with an RGB-D sensor delivering 640px × 480px size

color and depth images. The goal of the scenarios is to track the facial features of the

human subject in the HRI context. The error between the real and estimated facial

feature’s locations was computed offline.

For evaluation purposes, two metrics have been used:

∙ the mean normalized deviation between the ground truth and the estimated posi-

tions of the facial features:

d(𝐦, 𝐦̂) = 𝜏(𝐦)1
k

k−1∑

i=0
‖mi − m̂i‖, (3)

where k is the number of facial features, 𝐦 and 𝐦̂ are the manually and estimated

annotated positions of the eyes, nose and mouth, respectively, and 𝜏(𝐦) is a nor-

malization constant:

𝜏(𝐦) = 1
‖(mle + mre) − mm‖

. (4)

∙ the maximal normalized deviation:

dmax(𝐦, 𝐦̂) = 𝜏(𝐦) max
j=0,…,k−1

‖mi − m̂i‖. (5)

5.2 Competing Detectors

The proposed gaze following system has been tested against three open source detec-

tors.

(1) Independent facial feature extraction: The detector is based on the Viola–Jones

boosting cascades and returns the best detected facial features, independent of

their spatial relation. The point features have been considered to be the centers

of the computed ROIs.

The boosting cascades, one for each facial feature, have been trained using a
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few hundred samples for each eye, nose, and mouth. The searching has been

performed several times at different scales, with Haar-like features used as inputs

to the basic classifiers within the cascade. From the available ROI hypotheses,

the one having the maximum confidence value has been selected as the final

facial feature.

(2) Active Shape Models: An Active Shape Model (ASM) calculates a set of feature

points along the facial features contours of the eyes, nose, mouth, eyebrows, or

chin. An ASM is initially trained using a set of manually marked contour points.

The open source AsmLib, based on OpenCV, has been used as candidate detec-

tor. The ASM is trained using manually marked face contours. The trained ASM

model determines variations in the training dataset using Principal Component
Analysis (PCA), which enables the algorithm to estimate if the contour is a face.

(3) Flandmark: Flandmark [21] is a deformable part model detector of facial fea-

tures, where the detection of the point features is treated as an instance of struc-
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Fig. 8 Cumulative histograms for the mean and the maximal normalized deviation shown for all

competing detectors applied on video sequences with frontal (a, b) and profile (c, d) faces
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tured output classification. The algorithm is based on a Structured Output Sup-
port Vector Machine (SO-SVM) classifier for the supervised learning of the

parameters for facial points detection from examples.

In comparison to our gaze following system, which uses a segmentation step for

determining the pointwise location of the facial features, flandmark considers the

centers of the detected ROIs as the point location of the eyes, nose, and mouth.

The mean and maximal deviation metrics were used to compare the accuracy

of the four tested detectors with respect to the ground truth values available from

the benchmark databases. Especially for the evaluation of the computation time, the

algorithm has also been tested on a mobile robotic platform.

The cumulative histograms of the mean and maximal normalized deviation are

shown in Fig. 8 for frontal and profile faces. In all cases, the proposed estimator

delivered an accuracy value superior to the ones given by the competing detectors.

If the accuracy difference between our algorithm and Flandmark is relatively low for

the case of frontal faces, it actually increases when the person’s face is imaged from

a profile view.

An interesting observation can be made when comparing the independent detec-

tors with the ASM one. Although the ASM outperforms independent facial feature

extraction on frontal faces, it does not perform well when the human subjects are

viewed from the lateral. This is due to the training nature of the ASM, where the

input training data is made of points spread on the whole frontal area (e.g., eyes,

eyebrows, nose, chin, cheeks, etc.).

6 Conclusion

In this paper, a robust facial features detector for 3D gaze orientation estimation has

been proposed. The solution is able to return a reliable gaze estimate, even if only a

partial set of facial features is visible. The paper brings together algorithms for facial

feature detection, machine learning, and control theory. During the experiments, we

investigated the system’s response and compare the results to ground truth values. As

shown in the experimental results section, the method performed well with respect

to various testing scenarios. As future work, the authors consider the possibility of

extending the framework for the simultaneous gaze estimation of multiple interlocu-

tors and the adaptation of algorithm with respect to the robot’s egomotion.
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