
Chapter 5

Characterization of Evolving Networks
for Cybersecurity

Josephine M. Namayanja and Vandana P. Janeja

5.1 Introduction

Computer networks are vulnerable to varying cyber attacks that alter the structure

and activity of the network. Hence, in order to define and understand the vulnera-

bilities associated to the network, one must have an understanding of the overall

structure and nature of communication patterns within the network as well as the

potential points of vulnerability. Network analytics provides the basis for how

network structures are modeled, measured, and compared such that a network is

modeled as a graph, which describes a collection of nodes or vertices and the

communications between them, indicated by edges.

This chapter discusses approaches to change detection where the objective is

studying how the network evolves over time and how these changes can be

attributed to potential cyber attacks. Techniques such as change detection play a

role in network characterization mainly because they detect shifts in network

behavior over time. Changes in network behavior can be defined as sudden down-

time of key points, for example, servers on the network during peak hours,

existence of new or unidentified connections to the network, and specific time

periods associated with shifts in network behavior. Such shifts in network behavior

may come as a result of a cyber threat. This chapter discusses graph theory concepts

to model network behavior and then utilizing analytics to understand the dynamics
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of the network. Cyber attacks are becoming increasingly sophisticated. One of the

key challenges is knowing whether there is even an attack on the network in the first

place. Let us consider the following scenario:

5.1.1 Cyber Attacks Are Unrelenting

Large computer networks comprised of tens of thousands of machines generate
terabytes of network traffic each day. This traffic typically consists of hundreds of
millions of connection records and poses a big data problem. Such significant
volume and diversity traffic presents a daunting challenge in the detection of
cyber attacks, particularly when it comes to small amounts of malicious activity.
Additionally, attacks are increasingly becoming sophisticated and are designed to
be undetectable. The behavior of such cyber attacks is extremely dynamic and thus
changes over time. Furthermore, the continuous evolution of network structures
such as the Web creates complexity in the efficient analysis of computing
environments.

In an effort to establish a state of continuous awareness of network behavior, the
Supercomputing Enabled Transformational Analytics Capability (SETAC) project
at Lawrence Livermore National Laboratory aims to increase the ability to detect,
characterize, and combat malicious attacks on large computer networks [1].

Several major incidents of cyber attacks have reported delayed detection of

attacks. This delay can take from months to even years before the threat on the

network is discovered. In 2014, it took organizations a median of 205 days to detect

attackers in their network environments [2]. Such delays in attack detection can be

due to the complexity of networks both in scale and dynamism which makes it

difficult to keep track of what is taking place. From a graph perspective, networks

are comprised of multiple dimensions, which include, nodes, edges, and time,

where such dimensionality poses a challenge in identifying a vulnerability,

detecting an attack, and potentially preventing an attack. Certain attacks are usually

targeted to specific points in the network and are used in conjunction with advanced

persistent threats. Such targeted attacks are designed to exploit and cause harm on

the network.

The process of characterizing networks through change detection can be poten-

tially useful to understand and control the dynamics of the network [3]. This chapter

discusses state-of-the-art techniques in change detection that may be geared toward

modeling network behavior and detecting patterns, which can indicate potential

cyber threats such as the onset of a massive cyber attack which changes the way a

network appears.

The rest of the chapter is organized as follows: Sect. 5.2 presents a detailed

background on concepts in graph theory. Section 5.3 discusses fundamental con-

cepts in network evolution. Section 5.4 presents an extensive overview on the

fundamentals of change detection in temporally evolving networks. Section 5.5

discusses key applications for change detection. Lastly, Sect. 5.6 presents conclu-

sions and future work.
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5.2 Graph Theory Concepts

Each network presents specific topological features that characterize a network and

its connectivity. Several different network measures can be calculated from a given

graph. Network measures can be calculated for the entire graph or for each

individual node. Node-level measures in the form of node centrality enable model-

ing the network to determining the role of a node in a network which can be useful

in threat detection [4]. According to [5], an assessment of network vulnerabilities

indicates that an attacker is likely to exploit the weak points such as critical nodes

whose corruption greatly affects network performance. Additionally, graph-level

measures such as density and diameter provide an overall picture of the impact on

threats on individual nodes to the entire network. Let us consider the fundamental

concepts in graph theory as they are utilized in network analytics for cybersecurity.

5.2.1 Graph

A graph is made up of nodes or vertices and edges that connect them. It is defined

as:

A graph G¼ (n, e), where n¼ {n1. . .nv} is a set of nodes and e¼ {e1. . .ew} is a
set of edges, such that (ni, nj) is an edge between nodes ni and nj.

A graph can be directed or undirected. A directed graph G identifies the direction

of the edge between the source and destination nodes, respectively. For example,

ni! nj indicates ni as a source node and nj as the destination node as shown in

Fig. 5.1a. On the other hand, an undirected graph G does not identify the direction

of the edge between the nodes as shown in Fig. 5.1b.

This chapter discusses concepts that are applicable to both directed and undi-

rected networks.

Fig. 5.1 Directed versus undirected graph
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5.2.2 Node Centrality

The centrality of a node in a network determines a node’s individual connectivity
on the network. Here, we discuss selected centrality measures, namely, degree

centrality [6] which is relative to the node, betweenness centrality [6], PageRank

centrality [7], and eigenvector centrality [8, 9], which are individual node based but

still relative to the rest of the network. Other measures include closeness centrality

and Katz centrality to mention a few. These measures are applicable to both

directed and undirected networks.

5.2.2.1 Degree Centrality

The degree of a node ni is the number of edges incident on it. The degree centrality

[6] is the most basic of all measures, and it counts how many times a node is

involved in an interaction. It is defined, for a node ni, as the number of edges that are

incident on it.

Given x number of nodes in the network, the connectivity aij¼ 1 if nodes i and j
are connected by an edge and aij¼ 0 otherwise. Hence, the degree di of node ni is
the sum of all aij. The connectivity between nodes is represented through a v*v
adjacency matrix A, where v is the number of nodes.

If a node ni is connected to a node nj, then there exists an edge (ni, nj) between
nodes ni and nj. We provide an example of an adjacency matrix in Fig. 5.2.

In Fig. 5.2, we see that if two nodes are adjacent or connected, then the row and

column intersection is 1, else 0. For example, nodes n1 and n2 are connected and

Fig. 5.2 An adjacency matrix representing an undirected computer network
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nodes n2 and n3. Using this adjacency matrix, one can determine the degree

centrality of nodes in a network. For example, the degree centrality of node n1 is
4 based on the sum of connectivity aij, for n2 the degree centrality is 4, for n3 is
3, and so on.

5.2.2.2 Betweenness Centrality

Betweenness centrality [6] is a measure of how often a node lies along the shortest

path or geodesic path between the two other nodes for all nodes in a graph.

Given x nodes, gjk is the number of geodesic paths between nodes nj and nk; the
betweenness of node ni is defined as gjk(i) which is the number of geodesic paths that
pass through ni among gjk.

5.2.2.3 Eigenvector Centrality

The eigenvector centrality [8, 9] can be understood as a refined version of the

degree centrality in the sense that it recursively takes into account how neighboring

nodes are connected.

Given λ as the largest eigenvalue, the eigenvector centrality ei for a node ni is the
ith component of the eigenvector associated with the largest eigenvalue λ of the
network and is proportional to the sum of the eigenvector centrality of the nodes it
is connected to. λ assures the centrality is nonnegative.

While the eigenvector centrality of a network can be calculated via the standard

method using the adjacency matrix representation of the network, it can be also

computed by an iterative degree calculation [10].

5.2.2.4 PageRank Centrality

PageRank [7] is used to measure the relative importance of nodes on the network by

computing a ranking for every node based on the connectivity on the network.

Let A be a square matrix with the rows and column corresponding to nodes. Let

Au,v¼ 1/Nu if there is an edge from u to v and Au,v¼ 0 if not. If we treat R as a vector

over nodes, then we have R¼ cAR. So R is an eigenvector of Awith eigenvalue c. In
fact, we want the dominant eigenvector of A. It may be computed by repeatedly

applying A to any nondegenerate start vector.

Overall, metrics for node centrality are considered individual or local network

measures. However, these can also be translated into graph-level measures by

averaging them out over the count of nodes in the graph [11–13].
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5.2.3 Graph-Level Measures

Graph-level measures account for connections in the entire network and not just

individual nodes in a network.

5.2.3.1 Density

A network is called dense if its number of edges is roughly quadratic to its number

of nodes.

Density of the network is defined as the proportion of the actual number of edges
to the potential number of edges.

Network structures with high density are well connected internally. This may

work well for information sharing; however, as the size of the network increases, a

high-density measure may be undesirable because the corresponding high number

of links for each node could lead to information overload. According to [14, 15],

networks densify over time. This means that the number of edges is increasing

superlinearly with the number of nodes. This superlinear increase in the number of

edges can be measured through an increase in the average degree of nodes in a

network over time. Therefore, as the average degree increases over time, then a

network is said to obey the densification power law. Densification power law is

defined as a relation e(t)/ n(t)a where e(t) is number of edges at time t and n(t) is
the number of nodes at time t, while a is the densification exponent [14, 15]. When

a¼ 1, then the average degree of nodes is constant over time, whereas if a¼ 2, then

average degree is increasing over time; hence, the network is becoming denser with

time [14, 15].

5.2.3.2 Diameter

The diameter of a graphG is the shortest maximum distance between any two nodes

in G. In order to find the diameter of a computer network, we first determine all

possible paths p in G where p¼ {p1. . .pn}. A path pi¼ (npi, epi), where npi¼ {n0,
n1,. . .,nk} and e

pi¼ {n0n1, n1n2,. . .,nk�1nk} such that nodes no to nk are linked by pi,
and the number of edges in pi or |pi| is the length of pi. Thus, pi is a simple graph

whose nodes can be arranged in a linear sequence in such a way that two nodes are

adjacent if they are consecutive in the sequence and nonadjacent if otherwise. We

show an example of a path between nodes in Fig. 5.3.

In Fig. 5.3, we show a path pi from nodes n6 to n9 in a computer network

represented as pi (n6, n9). The length of pi (n6, n9) represented as jpi (n6, n9)jequals
to 4 based on the total number of edges between n6 and n9. Paths are used to

determine the distance between nodes on the network defined as:
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For any path pi where jpij ¼minj(npi, epi)j, then pi is shortest path between each
pair of nodes ni and nj, and pi is also referred to as distance d where d is the
distance distG(ni,nj) between ni and nj.

This distance d is measured in terms of the number of edges between the nodes in

question. In Fig. 5.3, the number of edges from nodes n6 to n9 is 4 such that d¼ 4.

Hence, this is the shortest path between these two nodes and is thus the distance

between these nodes. It should be noted that a computer network can have multiple

distances since it is based on the shortest path between each pair of nodes on the

network. However, the network can only have one diameter defined as:

For any path pi where jpij ¼min(maxj(npi, epi)j), then pi is the diameter h of G
represented as diam(G).

In order to determine the diameter of the network, we need to first determine all

the shortest paths or distances d between each pair of nodes. The shortest maximum

distance value between any pair of nodes is the diameter h of the overall network.

According to Fig. 5.2, the distance between n6 and n9 is the shortest maximum

distance between any pair of nodes in the network which makes it the diameter h of
the network. The diameter of a network can be used to determine how dense or

sparse a network is. Thus, if a network has a small diameter, then it is said to be well

connected. On the other hand, if a network has a large diameter, then it is said to be

sparse.

Both node centrality and graph-level metrics can be utilized to characterize how

a network evolves over time.

5.3 Network Evolution

5.3.1 Node Evolution

The study of node evolution involves observing connections in a graph. From this,

top central or influential nodes such as high-degree nodes as well as less popular

nodes such as low-degree nodes can be identified [17–22], observed, and compared

Fig. 5.3 Path between nodes
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over time. Node evolution can also be observed in relation to neighborhoods as

discussed in [23]. A certain set of numerical features of the neighborhood can be

established for each node such as the number of neighbors (degree of a node) and

the edges of the neighborhood, among others. Here it is possible that during

network evolution, node centrality changes over time and that some nodes may

disappear after sometime, or their centrality levels go higher and drop after a while

for some, and that some nodes appear after a while and remain constantly present

and maintain a high centrality level [19–22]. An example of changing node

centrality is shown in Fig. 5.4.

5.3.2 Community Evolution

In order to detect community changes, [24–26] identify communities of nodes or

communication patterns in the network and study how they evolve over time. For

example, [25] study time-evolving networks where they analyze the evolution of

network clusters through time to identify splits, merges, appearances, and disap-

pearances of communities. On the other hand, [26] model the evolution of com-

munities in heterogeneous networks where they study the size of communities to

determine how they increase or decrease with time.

Centrality Increases

Centrality Decreases

Degree of n = 6

Degree of n = 3

Degree of n = 3

Degree of n = 6

Time t

Time t

Time t + 1

Time t + 1

n
n

nn

a

b

Fig. 5.4 (a) Centrality of a node increases over time. (b) Centrality of a node decreases over time

118 J.M. Namayanja and V.P. Janeja



5.3.3 Graph Evolution

In graph evolution, [16–18, 27] observe key fundamental network properties to

determine how networks grow and evolve over time. Particularly, such fundamental

properties include densification power law, power-law degree, power-law eigenvector

and eigenvalue distribution, edge-by-edge evolution, shrinking diameter, diameter,

and radius. These properties are observed in relation to the degree of nodes.

For instance, [14, 15] clearly demonstrate that networks obey the densification

power law where edges grow faster than nodes. First, the graph over time maintains

a power-law degree distribution with a constant power law degree distribution

exponent γ. If γ< 2 and is constant over time, then the graph is said to densify.

An illustration is provided in Figs. 5.5, 5.6, and 5.7 for undirected and directed

networks based on key subgraphs selected from network traffic data by the Center

for Applied Internet Data Analysis (CAIDA) for the duration of December 2008 to

January 2010 [37–39].

Fig. 5.5 (a) Example of a

degree distribution in an

undirected network. (b)
Example of a degree

exponent over time in an

undirected network
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Overall, Figs. 5.5, 5.6, and 5.7 show that the degree distribution has a long tailed

distribution and thus follows a power-law distribution. Additionally, the power law

degree distribution exponent γ< 1 in all cases and is constant over time. These

[14, 15] also show that the diameter of the network shrinks over time such that as

the network grows, the distances between nodes slowly decrease.

According to [15], in a temporally evolving graph, if the power law degree

distribution exponent γ is constant over time, the densification exponent α is a

function of γ such that α¼ 1 if> 2, α¼ 2/γ if 1< γ< 2, and then α¼ 2 if γ< 1.

These properties can be used to clearly demonstrate how graphs densify over time.

5.4 Scientific Fundamentals for Change Detection

The study of network structures calls for an understanding of network structural

features and fundamental network properties as described in graph concepts and

network evolution, respectively. Such features and properties provide a basis for

Fig. 5.6 (a) Example of an

in-degree distribution in a

directed network. (b)
Example of an in-degree

exponent over time in a

directed network
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analysis of network behavior associated to identifying patterns such as changes in

the network over time. This section presents an overview on the concept of change

detection in evolving networks. Here the focus of change lies on evaluating network

behavior based on node features, network-level properties, or both. This chapter

therefore discusses change detection in network structures from two perspectives:

(1) uni-level change detection which focuses on detecting changes in either node-

level behavior or network-level behavior, respectively, and (2) multilevel change

detection which combines aspects of the network by observing both node-level and

network-level behavior. A detailed description on each approach follows.

5.4.1 Uni-Level Change Detection

Uni-level change detection refers to the detection of change in a single network

dimension where a single dimension is considered to be network level or node level,

Fig. 5.7 (a) Example of an

out-degree distribution in a

directed network. (b)
Example of an out-degree

exponent over time in a

directed network

5 Characterization of Evolving Networks for Cybersecurity 121



respectively. The analysis of macroscopic behavior in network structures has been

widely applied in detecting changes at the network level based on structural

differences in network-level properties such as density, diameter, average degree,

as well as other node centrality measures by translating them into network-level

metrics [3, 11–13, 22, 28–30] study techniques to detect a change or disorder in the

state of a time process, usually from normal to abnormal [24] propose GraphScope,

an approach to discover communities of graphs and identify any changes in the

community structure over time. Their approach identifies new graph segments

which mark an abrupt change in the community structure and are thus considered

to be discontinuities in time.

The concept of change detection has been explored in network analysis in

relation to the application of Statistical Process Control (SPC) using techniques

such as sequential probability ratio test (SPRT), the cumulative sum (CUSUM)

chart, the exponentially weighted moving average (EWMA), and the Shiryaev–

Roberts (SR) procedure [11, 29, 30]. However, SPC operates on the assumption that

the data is sequential or time sequenced [31]. Additionally, such techniques may not

be suitable to identify changes in non-sequential data such as variations between

graph elements such as nodes within the same time period. Furthermore, there are

differences between change-point analysis and control charting where the latter is

generally better at detecting isolated abnormal points and at detecting a major

change quickly, while change-point analysis can detect subtle changes frequently

missed by control charts. Interestingly, the two methods can be used in a comple-

mentary fashion [32] given that changes usually cause shifts, minor or major, that

can be viewed as abnormal. On the other hand, pattern recognition techniques,

spectral theory, and mean/median of graphs have been discussed in graph change

detection for macroscopic analysis [3]. Also, distance measures such as Hamming

distance and Euclidean distance have been applied in change detection, although

they do not provide the statistical distribution of the data and are suitable for static

networks [11, 12].

5.4.2 Multilevel Change Detection

Multilevel change detection identifies multiple dimensions of change defined as

micro- and macro-level changes in evolving networks. Here micro-level changes

refer to changes with respect to structural characteristics in the behavior of nodes

[20, 21] such as the centrality of nodes in the network, and macro-level changes

refer to changes with respect to structural characteristics in the behavior of network-

level properties such as density, average degree, and diameter [22]. Detection of

multidimensional changes presents unique benefits to challenges associated to big

data and dynamism of large complex network structures. As such, it can be used to

detect phenomena that may not be evident from a single perspective, such as only

micro level or macro level, respectively. More so, multilevel change detection can

be used to identify correlated network behavior that may prove useful in detecting
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cyber threats [22]. For example, changes at the macro level such as the diameter of

the network may be associated to micro-level shifts in the behavior of key compo-

nents within the network such as changes in the centrality level of nodes. Alterna-

tively, changes in the centrality level of nodes such as a decrease in degree

centrality indicates decrease in network connectivity which may thus lead to an

increase in network diameter. In both micro- and macro-level changes, identifying

time when such changes occurred indicates time points of change especially if they

exist in a novel pattern [20–22].

Therefore, the studies described in [20–22] present a novel approach to charac-

terizing large evolving networks and detecting changes in such evolving networks,

which includes the following steps:

(a) Selection of central nodes and subgraphs: This utilizes a hybrid methodol-

ogy that combines sampling, clustering, and stratified binning to select central

nodes and key subgraphs associated to the central nodes from a network over

time. This provides a selective analysis of large networks to reduce on the size

and dimensionality. Most importantly, graph properties of selected subgraphs

should emulate the established graph properties in the full graph. These

properties as outlined by [15] specify that the networks are becoming denser

over time and the average degree is increasing; hence densification follows a

power-law distribution, and the diameter decreases as the network decreases in

many cases.

(b) Micro-level change detection: For micro-level shifts in the network, the

presence and centrality levels of the central nodes is observed to identify

Consistent and Inconsistent (CoIn) central nodes where inconsistency marks

changes in the presence and centrality of central nodes, respectively. Addi-

tionally, times associated to the changes in behavior of these central nodes are

detected which are also referred to as CoIn Time Periods of Change (CoIn-

TPC). A node-level analysis drills down into the network and provides

specifics on network activity that may be invisible on a larger scale.

(c) Macro-level change detection: Given that micro-level characteristics of the

network do not relay information about the bigger picture in the overall

network, the key subgraphs associated with the central nodes are used to

identify times when the fundamental structural or network-level properties,

particularly when significant changes in density, diameter, and average degree

occur as a result of changes in the behavior of central nodes. These macro-

level changes are referred to as Network Level CoIn (NL-CoIn) Change

Points. Additionally, a correlation between CoIn central nodes and NL-CoIn

is used to determine the impact of node-level changes on the network level as

well as similarities between change points in CoIn-TPC and NL-CoIn. Here a

network-level analysis describes a generic picture of underlying events in the

network.

(d) Validation based on real-world cyber events: In order to ascertain that the

changes identified are associated to real-world cyber events, CoIn-TPC and

NL-CoIn are evaluated using ground truth in order to determine if the changes
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are associated to existing cyber attacks [22]. The ground truth evaluation is

based on real-world events from Internet-security reports by Akamai Tech-

nologies [35, 36]. Specifically, findings in [22] show high accuracy, precision,

and recall levels in both node- and network-level changes associated to big

cyber attacks such as the Conficker worm particularly during December 2008,

January 2009, and February 2009.

5.5 Key Applications

The process of change detection to characterize network behavior can be potentially

useful in the cybersecurity domain as discussed in the following sections.

5.5.1 Network-Intrusion Detection

Network-based intrusion detection attempts to identify unauthorized, illicit, and

anomalous behavior based solely on network traffic. A network intrusion detection

system (NIDS) is used to monitor traffic on a network looking for suspicious

activity, which could be an attack or unauthorized activity. Change detection can

be used to maintain a map of network activity by identifying and creating critical

points on the network. For example, a large NIDS server can be set up on a

backbone network, to monitor and audit all traffic; or smaller systems can be set

up to monitor traffic and define a threshold on the behavior of central network

elements, which can be a particular server, switch, gateway, or router. Specifically,

a NIDS server can also detect changes in the connectivity levels of such central

nodes on a network based on the number of connections at a particular time by

looking for suspicious traffic or usage patterns that match a typical network

compromise or threat. Such a server can also play a proactive role to identify

potential exploits or for scanning live traffic to see what is actually going on within

the network. The process of change detection can be used to develop a comprehen-

sive list of network activity and structural organization in order to establish normal

versus abnormal network activities.

5.5.2 Threat Mitigation

Security and technology teams must be ready for cyber attacks against critical

infrastructure. With destructive cyber attacks on the rise, there is a need to practice

troubleshooting processes for critical system restorations before outages occur

[34]. Hence, it is important to know a system so well in order to quickly determine
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what process caused the outage by identifying what went wrong and why. The

motivation behind computer crime can be anything: financial gain, curiosity,

revenge, boredom, “street cred,” delusions of grandeur, and more. But what if it

is a cyber attack? Change detection can be used to reduce on the complexity

surrounding network analysis by identifying vulnerable points on the network.

Here, an attack profile can be developed to control and minimize the impact of an

attack on the network. For example, taking down a highly connected node such as a

server could put network communications on a halt. This essentially affects the

connectivity on the network which is determined by density on the network, as well

as the distance from one network point to another which is determined by the

diameter. Hence, change detection can be used to identify the potential source of the

problem and use it to trace any changes in network behavior.

5.5.3 Network Design

Computer attacks have been graphically modeled since the late 1980s by the US

DoD [33]. With the support of advanced tools, network risks can be modeled based

on an attack graph where each node in the graph represents an attack state and the

edges represented a transition or a change of state caused by an action of the

attacker. Such models can be used for network security evaluation. Preventing

cyber attacks poses several challenges considering the complexities surrounding

large evolving network structures. In order to alleviate such challenges, a wide

range of strategies may require testing to identify network vulnerabilities and

determine resource allocation on the network. Particularly, change detection can

be used to ensure risk management on the network during network design. Similar

to threat detection, it can be utilized in identifying vulnerable points such as central

nodes that can be targeted to cripple the network. Based on this, network redun-

dancy can be created where such central nodes are duplicated to maintain consistent

network activity by redirecting communications in case of an attack.

5.6 Future Directions

This chapter has reviewed state-of-the-art techniques in change detection and

network characterization utilizing essential graph-based knowledge. The future

directions for this work include addressing challenges associated with sampling

big data contained in large graphs by predicting the samples from a given range data

in large evolving graphs while at the same time preserving the fundamental network

properties. On the other hand, the process of change detection can be extended into

predictive network modeling where change points detected as well as non-change

points can be used as feature vectors for prediction of network behavior in order to

determine if a persistent pattern exists in the micro- and macro-level changes.
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Furthermore, given that change detection has been mainly explored in the context

of time, it creates an interesting opportunity to adapt such techniques into the

spatio-temporal paradigm particularly by identifying spatial regions associated

with network changes as well as potential cyber threats.
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