
Chapter 8
Solution to Sea Cargo Mix (SCM) Problem
Using Cohort Intelligence Algorithm

Nomenclature

~T set of time periods 1; . . .; t; . . .; Tf g. Each period may represent one day, one
week or one month, etc.

~J Set of ports of destinations for cargoes 1; . . .; j; . . .; Jf g
~K Set of all cargoes 1; . . .; k; . . .;Kf g received in the planning horizon
gk The period that cargo k will be received at the port of origin
sk The shipment due date for cargo k. Each cargo has its due date requested by

shipper in its booking status
nk The port of destination for cargo k. Cargo k will be received in period gk and

will be shipped to its destination port nk on or before its due date sk
rkt Per volume profit of cargo k which will be shipped in period t. It can be

interpreted as the per volume net profit of cargo k, i.e., per volume revenue of
cargo k minus its per volume delivery cost and inventory cost

Et Total volume of available empty containers at the port of origin in period t
Vt;j Total available volume capacity of shipment to port j in period t
Wt;j Maximum allowable weight capacity of shipment to port j in period t
vk Volume of cargo k
wk Weight of cargo k
xkt Binary variable, i.e., xkt ¼ 1, if cargo k is ready for shipment in period

t; xkt ¼ 0, otherwise

The methodology of Cohort Intelligence (CI) [1–4] has been applied successfully
applied solving combinatorial problems such as Knapsack problem, Traveling
Salesman Problem and the new variant of the assignment problem (also referred to
as Cyclic Bottleneck Problem (CBAP)). This chapter discusses CI solution to the
Sea Cargo Mix (SCM) problem is originally proposed in [5]. The performance of
CI solving the SCM is compared with the Integer Programming (IP) Solution as
well as a multi-random-start local search (MRSLS) method. In addition the solution
is compared with the Heuristic algorithm for MDMKP (HAM) and the Modified
Heuristic algorithm for MDMKP (HAM) [5].
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8.1 Sea Cargo Mix Problem

As mentioned before, the Sea Cargo Mix (SCM) problem is originally proposed in
[5]. The decision problem consists of choosing a sea cargo shipping schedule of
accepted freight bookings over a multi-period planning horizon. The goal is to
maximize profit subject to constraints such as the limited available volume capacity,
weight capacity and the number of available containers at the port of origin. The
mathematical formulation of this problem, which can be viewed as a
multi-dimension multiple knapsack problem (MDMKP), is discussed below.

Maximize Z ¼
X

1� k�K

X
gk � t� sk

vkrktxkt

Subject to
ð8:1Þ

X
k2~Kt

vkxkt �Et; 8t 2 ~T ð8:2Þ

X
k2~Ktj

vkxkt �Vtj; 8t 2 ~T ; 8j 2 ~J ð8:3Þ

X
k2~Ktj

wkxkt �Wtj; 8t 2 ~T ; 8j 2 ~J ð8:4Þ

X
gk � t� sk

xkt � 1; 8k 2 ~K ð8:5Þ

xkt 2 0; 1f g; 8k 2 ~K; t gk;gk þ 1; . . .; skf g ð8:6Þ

where

~Kt ¼ k : k 2 ~K; gk � t� sk
� �

; 8t 2 ~T ;

~Ktj ¼ k : k 2 ~K; gk � t� sk; nk ¼ j
� �

; 8t 2 ~T; j 2 ~J

The objective function (8.1) maximizes the total profit generated by all freight
bookings accepted in the multi-period planning horizon T. Constraint (8.2) ensures
that the demand for empty containers at the port of origin is less than or equal to the
number of all available empty containers at the port of origin in each period.
Constraint (8.3) ensures that the total volume of cargoes which will be carried to
port j in period t is less than or equal to the total available volume capacity of
shipment to port j in period t. Constraint (8.4) indicates that the total weight of
cargoes which will be carried to port j in period t is less than or equal to the total
available weight capacity of shipment to port j in period t. Constraint (8.5)
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stipulates that each cargo may be carried in a certain period on or before its due date
or refused to be carried in the time horizon T. Constraint (8.6) states that each cargo
is either accepted in its entirety or turned down.

There are J destination ports and T periods in the problem, and each cargo is
either to be delivered within its due date or refused to be carried in the planning
horizon. Thus, the total number of knapsacks is T � J. Moreover, for each knap-
sack, there are three constraint sets, i.e., the set associated with the number of
available empty containers, amount of available volume capacity and amount of
available weight capacity.

8.2 Cohort Intelligence for Solving Sea Cargo Mix
(SCM) Problem

In the context of CI algorithm presented in Chap. 2, the elements of cargo

assignment set C ¼ knkt formed by assigning every cargo k; k 2 1; 2; . . .;Kf g to a
period t 2 1; 2; . . .; Tf g being shipped to its port of destination nk are considered as
characteristics/attributes/qualities of the cohort candidate. The port of destination nk
for every cargo k 2 1; 2; . . .;Kf g is selected based on the condition below.

nk ¼ j; if ½K=J� � ðj� 1Þ\k� ½K=J� � j; for j ¼ 1; 2; . . .; J � 1
nk ¼ J; if ½K=J� � ðj� 1Þ\k�K; otherwise

ð8:7Þ

The CI algorithm begins with the initialization of number of cohort candidates S,
number of variations Y the cargo assignment set Cs of every candidate s;
s ¼ 1; . . .; Sð Þ, the convergence parameter ε and maximum number of allowable
learning attempts Lmax.

In the cohort, every candidate s; s ¼ 1; . . .; Sð Þ randomly assigns every cargo
ck; k 2 1; 2; . . .;Kf g to a period t 2 1; 2; . . .; Tf g to be shipped to destination nk
and forms a cargo assignment set (behavior) Cs ¼ ks;nkt and associated per volume
profit are calculated as Rs ¼ PK

k¼1

P1
t¼1 r

s
k;t.

Step 1. (Constraint Handling) As a maximization problem, the probability
associated with per volume profit of cargo Rs is calculated as follows:

psR ¼ Rs

PS
s¼1 R

s
; s ¼ 1; . . .; Sð Þ ð8:8Þ

There are constraints involved such as:

1. demand of empty containers
P

k v
s
k;t at the port of origin should be less than or

equal to the number of all available empty containers Et at the port of origin in
each period t 2 1; 2; . . .; Tf g
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2. total volume of cargoes
P

k v
s
k;j which will be carried to port j 2 1; 2; . . .; Jf g in

period t 2 1; 2; . . .; Tf g is less than or equal to the total available volume
capacity Vt;j, and

3. total weight of cargoes
P

k v
s
k;j which will be carried to port j 2 1; 2; . . .; Jf g in

period t 2 1; 2; . . .; Tf g is less than or equal to the corresponding total available
weight capacity Wt;j.

Kulkarni and Shabir [3] propose a modified approach to the CI method for
solving knapsack problems. This approach makes use of probability distributions
for handling constraints. This approach is also adopted here. For every constraint
type as described in 1, 2 and 3 above a probability distribution is developed (refer to
Fig. 8.1) and the probability is calculated based on the following rules:

1. If 0� P
k v

s
k;t �Et; 8t, then based on the probability distribution presented in

Fig. 8.1a psEt
¼ slope1;Et �

P
k v

s
k;t � Et

� �
, else psEt

¼ slope1;Et � 0:001 %Etð Þ.
2. If 0� P

k v
s
k;j �Vt;j; 8t; 8j, then based on the probability distribution presented

in Fig. 8.1b psVt;j
¼ slope1;Vt;j �

P
k v

s
k;j � Vt;j

� �
, else psVt;j

¼ slope1;Vtj�
0:001 %Vt;j
� �

.
3. If 0� P

k w
s
k;j �Wt;j; 8t; 8j, then based on the probability distribution presented

in Fig. 8.1c psWt;j
¼ slope1;Wt;j �

P
k w

s
k;j �Wt;j

� �
, else psWtj

¼ slope1;Wtj�
0:001 %Wt;j
� �

.

As represented in Fig. 8.1, the slope1;Et, slope1;Vt;j and slope1;Wt;j represent the
slope of lines going through points 0; 1ð Þ; Et; 0ð Þð Þ, 0; 1ð Þ; Vtj; 0

� �� �
and

0; 1ð Þ; Wtj; 0
� �� �

, respectively. The overall (total) probability of selecting candi-
dates to follow candidate s; s ¼ 1; . . .; Sð Þ is calculated as follows:

ps ¼ psR þ
X

t
psEt

þ
X

t

X
j
psVt;j

þ
X

t

X
j
psWt;j

� �
ð8:9Þ

0 0 0

1 1 1

(a) (b) (c)

Fig. 8.1 Probability distributions for constraint handling
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It is clear from the above rules for probability calculation that the candidate’s
behavior/solution/cargo assignment with better objective and constraint values
closer to the boundaries will have higher probability of being followed.

Step 2. Every candidate generates Y new variations of the cargo assignment using
two steps, which we refer to as ‘learning from others’ and ‘introspection’,
as follows:

1. Learning from others: Every candidate s; s ¼ 1; . . .; Sð Þ using roulette wheel

approach [1–4] selects a candidate s
z}|{ 2 1; . . .; Sð Þ (not known in advance) in

the cohort to follow, i.e. it incorporates an element from within c s
z}|{

into its

existing cargo assignment cs. More specifically, a quality from within c s
z}|{

is
selected randomly. Then the selected element is identified in cs along with its
location. It then swaps its position with the element at the location in cs cor-

responding to its current location in c s
z}|{

. This way every candidate
s; s ¼ 1; . . .; Sð Þ generates Y=2 cargo assignments.

2. Introspection: In addition, every candidate s; s ¼ 1; . . .; Sð Þ randomly selects
an element from within its one of the periods t; t ¼ 1; . . .; Tð Þ and relocates it
to another period. This way every candidate s; s ¼ 1; . . .; Sð Þ generates further
Y=2 cargo assignments.

This way every candidate forms a total of Y new variations Cs;Y ¼
cs;1; . . .; cs;y; . . .; cs;Y

� �
and computes associated per volume profit and constraint

functions.

Step 3. As discussed in Step 1, every candidate s; s ¼ 1; . . .; Sð Þ calculates its
corresponding probability vector Ps;Y ¼ ps;1; . . .; ps;y; . . .; ps;Y

� �
.

Furthermore, based on the feasibility-based rules shown below, the
candidate accepts or rejects the solution associated with the maximum
total probability value, i.e. max ps;1; . . .; ps;y; . . .; ps;Y

� �

The feasibility-based rules are as follows:
Accept the current behavior/solution if

1. The cargo assignment in the previous learning attempt is feasible and current
behavior/cargo assignment is also feasible with improved per volume profit

2. The cargo assignment in the previous learning attempt is infeasible and the
current behavior/cargo assignment is feasible

3. The cargo assignment in the previous learning attempt is infeasible and the
current behavior/cargo assignment is also infeasible with the maximum total
probability value improved;
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Otherwise, reject the current behavior/solution and retain the previous one if

1. The cargo assignment in the previous learning attempt is feasible and current
cargo assignment is infeasible

2. The cargo assignment in the previous learning attempt is feasible and the current
cargo assignment is also feasible with worse per volume profit

3. The cargo assignment in the previous learning attempt as well as current
learning attempt are infeasible and the total probability value is lesser than the
previous learning attempt.

After the completion of step 3, a cohort with S updated cargo assignments
c1; . . .; cs; . . .; cS

� �
is now available.

Step 4. If either of the two criteria listed below is valid, accept the best possible
cargo assignment from within the available c1; . . .; cs; . . .; cS

� �
in the

cohort as the final solution c� and stop, else continue to Step 1

(a) If maximum number of learning attempts exceeded or
(b) The cohort is saturated, i.e. if cohort candidates saturate to the same cargo

assignment for any other number of successive learning attempts.

8.3 Numerical Experiments and Results

The following notation is used to describe the results of our numerical experiments:

Nv Number of decision variable in the problem

Nc Number of constraints in the problem

Nin Number of tested instances

U Upper bound

I Integer programming solution (branch-and-bound method)

L LP relaxation

H Heuristic algorithm for MDMKP (HAM) (refer to [5])

M Modified heuristic algorithm for MDMKP (MHA) (refer to [5])

CI Cohort intelligence (CI) method

MRSLS Multi-Random-Start Local Search

gXZ Average percentage gap between the best objective value of the solutions obtained
using methods X and Z

g�
XZ Average percentage gap between the average objective value of the solutions

obtained using methods X and Z

g^XZ Worst percentage gap between the worst objective value of the solutions obtained
using methods X and Z

(continued)
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(continued)

tX Average computational time (in seconds) of algorithm X

StCI Standard deviation of CPU time for CI method

SXZ Standard deviation of percentage gap between objective value of the solutions
obtained using methods X and Z

The CI approach for solving the SCM Problem discussed in Sect. 8.1 is coded in
MATLAB 7.7.0 (R2008B). The simulations are run on a Windows platform with an
Intel Core2 Quad CPU, 2.6 GHz processor speed and 4 GB memory capacity. For
this model, we solve 18 distinct cases. These cases, which are originally proposed
in [5], are presented in Tables 8.1, 8.2 and 8.3. For every case, 10 instances are
generated and every instance is solved 10 times using the CI method. The instances
are generated as suggested in [5]. The per volume profit rk;t for cargo
k; k ¼ 1; . . .;Kð Þ shipped in period t; t ¼ 1; . . .; Tð Þ are uniformly generated in the
interval 0:01; 1:01½ �. The volume vk and weight wk of every cargo
ck; k ¼ 1; . . .;Kð Þ are uniformly generated from the interval 100; 200½ �. The num-
ber of all available empty containers Et at the port of origin in each period t 2
1; 2; . . .; Tf g are uniformly generated from the interval 100� K=Tð Þ;½

200� K=Tð Þ�, and the total volume Vt;j and weight Wt;j of cargoes which are
carried to port j 2 1; 2; . . .; Jf g in period t 2 1; 2; . . .; Tf g are uniformly generated
from the interval 100� K=Tð Þ; 200� K=Tð Þ½ �.

The CI parameters such as number of candidates S and number of variations
Y are chosen to be 3 and 15, respectively. The CI saturation/convergence plot for
one problem instance given by ðT; J;KÞ ¼ ð4; 13; 5479Þ is presented in Fig. 8.2.
The plot exhibits the self-adaptive learning behavior of every candidate in the
cohort. Initially, the distinct behavior/solution of every individual candidate in the
cohort can be easily distinguished. The behavior/solution here refers to the total
profit generated by all freight bookings accepted in the multi-period planning
horizon T. As each candidate adopts the qualities of other candidates to improve its
own behavior/solution, the behavior of the entire cohort saturates/converges to an
improved solution.

The best and average CI solution for the objective function value for every case is
compared with the associated upper bound (UB) solution achieved by solving the LP
relaxation of the problem, and the integer programming (IP) solution. In addition, the
solution is compared to the solution of the LP relaxation, and the problem-specific
heuristic algorithm for MDMKP (HAM) and the modified heuristic algorithm for
MDMKP (MHA) developed in [5]. The numerical results are presented in
Tables 8.1, 8.2 and 8.3 along with the graphical illustration in Fig. 8.3. It is
important to mention here that IP is not able to solve large-scale SCM problems.
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It is evident from the results in Tables 8.1, 8.2, 8.3 and the plots given in
Fig. 8.3a, d that, for small scale SCM problems, the CI method produces a solution
that is fairly close to the IP and UB solution. The gap gradually increases as the
problem size grows; however, observe that the worst gap between the best CI
solution and corresponding IP gICIð Þ and UB solution gICIð Þ is within 1.0459 % of
the reported IP solution and 4.0405 % of the reported UB solution, respectively.
Similarly, the worst gap between the average CI solution and corresponding IP
g�
ICI

� �
and UB solution g�

ICI

� �
is within 2.2682 % of the reported IP solution and

5.5827 % of the reported UB solution, respectively. Also, the percent gap between
the worst CI solution and corresponding IP solution g^ICI

� �
is within 3.0198 % of

the reported IP solution. The corresponding UB solution g^ICI
� �

is within 7.1465 %
of the reported UB solution.

Furthermore, as shown in Tables 8.1, 8.2, 8.3 and Fig. 8.3i, j, even though the
standard deviation (SD) of the percent gap between the CI solution and the cor-
responding IP SICIð Þ and UB solution SICIð Þ increases with the problem size, the

Table 8.1 Results for small scale test problems

T ; J;K Nv Nc Nin IP LP Lð Þ HAM MHA

CPU
time
(s) tI

CPU
time
(s) tL

gIH gLH CPU
time
(s) tI

CPU
time
(s) tL

gIH gLH

3, 5, 41 123 74 10 0.106 0.028 1.59 2.88 0.001 1.55 2.71 0.015

3, 6, 47 141 86 10 0.274 0.047 1.26 2.67 0.002 1.03 2.42 0.023

4, 3, 64 256 92 10 0.480 0.183 0.87 2.32 0.011 0.67 1.53 0.056

2, 4,
132

264 150 10 0.148 0.391 0.68 2.03 0.016 0.51 1.18 0.093

3, 3, 91 273 112 10 0.257 0.289 0.93 1.98 0.008 0.78 1.79 0.046

2, 3,
143

286 157 10 0.096 0.485 0.46 1.03 0.014 0.28 0.68 0.078

CI Performance

Best sol
% gap

Avg sol
% gap

Worst
sol %
gap

Best sol
% gap

Avg sol
% gap

Worst
Sol %
gap

CPU
time
(s)

SD
(CPU
time)

SD SD

0.5375 1.3188 2.3818 0.0237 0.2452 1.8782 0.070 0.036 0.691 0.687

0.3902 1.0102 1.6991 0.0709 0.6931 1.3842 0.093 0.027 0.456 0.454

0.5466 0.9958 1.5231 0.0616 0.5131 1.0430 0.103 0.025 0.351 0.349

0.4813 1.0906 1.6339 0.3960 1.0059 1.5496 0.098 0.041 0.408 0.408

0.3758 0.9250 1.6017 0.1720 0.8474 1.4006 0.130 0.046 0.463 0.462

0.1827 0.8045 1.3027 0.1424 0.7644 1.2629 0.094 0.037 0.379 0.378
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worst SD is 0.917. Moreover, Table 8.1, 8.2, 8.3 and Fig. 8.3f also show that the
SD StCIð Þ of CPU time for solving small- and medium-scale problems is within
0.046 and 0.708, respectively. For large-scale problems it is within 4.940. This is
because the search space increases with an increase in problem size.

For every candidate the number of characteristics to be learnt in a learning
attempt from the candidate that is being followed does not change. This results into
different number of learning attempts to improve their individual behavior/solution
and to eventually reach the saturation/convergence state. However, it is important to
mention here that the overall SD obtained by solving the entire problem set is quite
reasonable which lends support to the robustness of the algorithm.

Also, the percent gap between the worst CI solution and corresponding IP
solution g^ICI

� �
is within 3.0198 % of the reported IP solution. The corresponding

UB solution g^UCI
� �

is within 7.1465 % of the reported UB solution. This

Table 8.2 Results for medium scale test problems

T ; J;K Nv Nc Nin IP LP Lð Þ HAM MHA

CPU
time
(s) tI

CPU
time
(s) tL

gIH gLH CPU
time
(s) tI

CPU
time
(s) tL

gIH gLH

3, 4,
900

2700 927 10 0.722 419.1 3.92 1.12 1.72 6.17 3, 4,
900

2700

4, 8,
965

3860 1033 10 1.833 1264.3 2.66 2.58 1.16 14.37 4, 8,
965

3860

4, 25,
1000

4000 1204 10 1.240 2012.5 2.05 8.12 0.86 49.66 4, 25,
1000

4000

2, 3,
2871

5742 2885 10 1.227 5872.2 1.35 5.11 0.75 28.29 2, 3,
2871

5742

2, 3,
3876

7752 3890 10 1.887 199966 0.56 5.97 0.32 55.41 2, 3,
3876

7752

5, 37,
1954

9770 2329 10 4.151 12306.1 1.83 57.67 1.26 321.02 5, 37,
1954

9770

CI Performance

Best sol
% gap

Avg sol
% gap

Worst sol
% gap

Best sol
% gap

Avg sol
% gap

Worst
Sol %
gap

CPU
time
(s)

SD
(CPU
time)

SD SD

1.0516 2.2738 3.0253 1.0459 2.2682 3.0198 0.734 0.271 0.650 0.650

0.9356 1.3321 1.8138 0.9284 1.3250 1.8067 1.382 0.609 0.299 0.299

0.0859 0.8452 1.6848 0.0794 0.8387 1.6785 0.185 0.225 0.611 0.611

1.0009 1.7398 2.2239 0.9968 1.7357 2.2199 2.931 0.798 0.380 0.380

0.5979 1.1463 1.5484 0.5944 1.1428 1.5449 2.488 0.586 0.303 0.303

0.4617 1.4282 2.5431 0.4576 1.4241 2.5390 1.305 0.425 0.917 0.917
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demonstrates that, even though the magnitude of SICI , SUCI and StCI increases with
increase in problem size, CI is able to produce solutions with reasonable accuracy
for every case of the problem. In addition, the CI method achieves the optimum
solution for medium- and large-scale problems in significantly less CPU time (refer
to Fig. 8.3h). This demonstrates the ability of CI in solving large problems effi-
ciently and highlights its competitiveness with the IP approach as well as the
heuristics HAM and MHA discussed in [5].

In addition to the above, CI’s performance is also compared to the performance
of a multi-random-start local search (MRSLS) that is used to solve the Sea Cargo
Mix problem. The proposed MRSLS follows a similar pairwise interchange
approach that we use for the CBAP discussed in Chap. 7. For each of the problem
instances suggested in [5], a solution is first constructed. Then a pairwise inter-
change approach is used in every successive learning attempt where two time
periods are selected randomly. Next a set of containers associated with each period
is randomly chosen and then the positions of these two sets are interchanged
(swapped). The MRSLS for every individual case of the SCM problem is run 50
times with different initializations. Also, for a meaningful comparison, every
MRSLS case is initialized to start in the neighborhood of the CI’s starting point and
is run for exactly the same time equal to the corresponding average CPU time the CI
method takes to solve that case. The acceptance of the resulting solution in every
learning attempt depends on following feasibility-based rules (see [6] for a detailed
discussion): (1) if the existing solution is infeasible and the resulting solution has
improved constraint violation, then the solution is accepted, (2) If the existing
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Fig. 8.2 Saturation/convergence of the cohort for instance of the SCM problem
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solution is infeasible and the resulting solution is feasible, then the solution is
accepted, (3) if the existing solution is feasible and the resulting solution is also
feasible yielding an improved objective function value Z, then the solution is
accepted. If any of these conditions are not satisfied then the existing solution is
retained and the resulting solution is discarded.

It is important to mention here that of the 50 MRSLS runs related to the SCM
problems under study, only a few of the solutions obtained are feasible. Most of
solutions are outside the feasible region. This is because for every MRSLS run a
starting solution is randomly chosen and this solution can be infeasible.
Furthermore, the MRSLS may not be able to discover a feasible solution during the
entire run. Therefore, only the best of the feasible solutions are considered for
meaningful comparison with the CI approach. From Tables 8.4, 8.5 and 8.6 as well
as Fig. 8.3a, k it is clear that the rate of increase of the percentage gap between the
solution obtained using MRSLS and that obtained using CPLEX is significantly
more when compared to the rate of percentage gap increase between CPLEX and
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Fig. 8.3 Illustration of CI, IP, MRSLS and UB solution comparison
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CI. In addition, the percentage gap between the solution obtained using MRSLS
and LP relaxation for each case is also considerably larger as compared to that of CI
versus LP relaxation. In short, for the Sea Cargo Mix problem, CI achieves better
performance against the MRSLS implemented for this model, especially when the
problem size is large.
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Fig. 8.3 (continued)
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8.4 Conclusions

The emerging optimization technique of cohort intelligence (CI) is successfully
applied to solve a complex combinatorial problem such as the sea cargo mix
problem. For the problem a specific CI algorithm is developed. The results indicate
that the accuracy of solutions to these problems obtained using CI is fairly robust
and the computational time is quite reasonable. The chapter also describes the
application of a MRSLS that can be used to solve several cases of the problem.

Table 8.4 MRSLS results
comparison for small scale
test problems

T ; J;K Best sol %
gap
gMRSLSLP

Best sol %
gap
gMRSLSLP

Best sol %
gap
gMRSLSLP

3, 5, 41 6.6548 6.1737 6.1516

3, 6, 47 8.8023 8.5057 8.4391

4, 3, 64 13.8332 13.4053 13.3487

2, 4, 132 13.7926 13.7174 13.3799

3, 3, 91 9.5009 9.3181 9.1595

2, 3, 143 4.8001 4.7614 4.6253

Table 8.5 MRSLS results
comparison results for
medium scale test problems

T ; J;K Best sol %
gap
gMRSLSLP

Best sol %
gap
gMRSLSIP

Best sol %
gap
gMRSLSIP

3, 4, 900 2.0691 2.0635 1.0303

4, 8, 965 3.9044 3.8974 3.0055

4, 25, 1000 0.7014 0.6951 0.6178

2, 3, 2871 20.0099 20.0065 19.2088

2, 3, 3876 25.0458 25.0432 24.5916

5, 37, 1954 10.7262 10.7223 10.3139

Table 8.6 MRSLS results
comparison results for large
scale test problems

T ; J;K Best sol %
gap
gMRSLSLP

Best sol %
gap
gMRSLSIP

Best sol %
gap
gMRSLSIP

9, 47, 1521 17.9624 – 15.1393

3, 4, 6576 38.3933 – 35.9608

4, 5, 5286 37.1910 – 34.7788

4, 13, 5479 36.7655 – 34.2314

5, 8, 4954 40.8499 – 44.6732

8, 26, 3249 7.5249 – 4.0031
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The MRSLS implemented here is based on the interchange argument, a valuable
technique often used in sequencing, whereby the elements of two adjacent solutions
are randomly interchanged in the process of searching for better solutions. Our
findings are that the performance of the CI is clearly superior to that of IP, HAM
and MHA as well as the MRSLS for most of the problem instances that have been
solved.

In agreement with the no-free-lunch theorem [7], any algorithm may not be
directly applicable to solve all the problem types unless it can be enhanced by
incorporating some useful techniques or heuristics. The CI method may also benefit
from certain performance-enhancing techniques when it is applied to different
classes of problems. A mechanism to solve multi-objective problems is currently
being developed, which can prove helpful in transforming the model’s constraints
into objectives/criteria (see [7] for new development in this area). This can help
reduce the dependency on the quality of the candidates’ initial guess.
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