
Chapter 7
Solution to a New Variant
of the Assignment Problem Using Cohort
Intelligence Algorithm

Nomenclature

C An n by n row circular matrix. The ijth element of C is Ci;j, where
i; j ¼ 1; . . .; n

N The set of integers 1; 2; . . .; nf g
p A permutation of set N
Cp An n by n matrix obtained by shifting each element of row i of matrix C for

i ¼ 1; . . .; n by ðpðiÞ � 1Þ positions to the right in a circular manner. In other
words, The ikth element of Cp is given by Cp

i;k ¼ Ci;k�pðiÞþ 18 1� i� n;
1� k� n

Ik The sum of the kth column of matrix Cp

Z The maximum column sum of matrix Cp, Z ¼ maxnk¼1fIkg
xij A binary variable equal to 1 if pðiÞ ¼ j; and 0, otherwise

In this chapter, we present a variant of the classical assignment problem [1]. The
model has applications in healthcare systems and inventory management. The
problem stems from an application in healthcare management. Specifically, a sur-
gical scheduling in a hospital setting is a complex combinatorial problem. In
addition, similar problem arises in minimizing the space requirements in a retail
store. The problem formulation, applications and solution using Cohort Intelligence
methodology [2–4] is presented in sections below.

7.1 New Variant of the Assignment Problem

Suppose we seek to schedule n surgeons/doctors over a planning horizon of n days.
The recovery time for each operated patient in the recovery room varies according
to the type of surgery. When building cyclic surgery schedules, one important
objective is to minimize congestion in the recovery room. That is, we want to
minimize the maximum number of patients in the recovery unit in any given day of
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the planning horizon so that the costs associated with important resources such as
nurses, space, beds, and equipment are also minimized. Another application of this
problem arises in supply chain management. By considering cyclic scheduling for
suppliers, the maximum required storage space of a retail shop on any day over a
planning horizon of n days can be minimized by developing optimal delivery
schedules. The mathematical statement and formulation of the problem are dis-
cussed below in detail.

As in [5] a row vector is said to be circular if its first and last elements are
considered to be consecutive. A matrix is called row circular if its rows are circular.
Given an ðn� nÞ row circular matrix C ¼ Ci;j

� �
, the problem is to minimize

Z ¼ max
n

k¼1

Xn
i¼1

Ci;k�pðiÞþ 1

where p ¼ pð1Þ; pð2Þ; . . .; pðnÞð Þ is a permutation of the set N � f1; 2; . . .; ng.
Matrix C being row circular implies that Ci;j�n ¼ Ci;j8i; j. We call this problem a
Cyclic Bottleneck Assignment Problem (CBAP). Cyclic refers to the row circularity
of matrix C; bottleneck refers to the min max objective; and assignment refers to the
problem’s close affinity to the classical assignment problem that minimizesPn

i¼1 Ci;p ið Þ.
To give the problem a different description, for a given permutation p of the set

N, let’s define matrix Cp by moving each element of row i; i ¼ 1; . . .; n; of matrix
C by ðpðiÞ � 1Þ positions to the right in a circular manner. More precisely, let
Cp
i;k ¼ Ci;k�pðiÞþ 18 1� i� n; 1� k� n. Since p is a permutation, every row of

matrix C is rotated by a different number of columns to obtain the rotated matrix
Cp. Furthermore, let Ik denote the sum of the kth column of the rotated matrix Cp.
In other words, let Ik ¼

Pn
i¼1 C

p
i;k ¼

Pn
i¼1 Ci;k�pðiÞþ 1: With these new terms, the

objective in our problem can be stated as min maxnk¼1fIkg. That is, the problem is to
find a permutation that minimizes the maximum column sums of the rotated matrix.
Note that, with the above notation, the standard assignment problem is equivalent to
min minnk¼1

Pn
i¼1 C

p
i;k.

To formulate the integer linear programming model for this problem, we define
the following decision variables:

xi;j ¼ 1 if j ¼ pðiÞ
0 otherwise

�

The model is given by

Minimize Z

Subject to
ð7:1Þ
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Xn
i¼1

xi;j ¼ 1; 8 1� j� n ð7:2Þ

Xn
j¼1

xi;j ¼ 1; 8 1� i� n ð7:3Þ

Ik ¼
Xn
i¼1

Xn
j¼1

Ci;k�jþ 1xi;j ¼
Xn
i¼1

Xk
j¼1

Ci;k�jþ 1xi;j þ
Xn
i¼1

Xn
j¼1

Ci;k�jþ 1þ nxi;j;

8 1� k� n

ð7:4Þ

Z� Ik; 8 1� k� n ð7:5Þ

xi;j 2 f0; 1g; 8 1� i� n; 1� j� n ð7:6Þ

The objective function in Eq. 7.1 minimizes the maximum column sum of the
rotated matrix Cp. Constraint 7.2 ensures that for each j there exists an i such that
j ¼ pðiÞ. Constraint 7.3 ensures that for each i there exists a j such that j ¼ pðiÞ.
Constraints 7.4 computes the sum of the kth column of the rotated matrix Cp.
Constraint 7.5 sets the value of the objective function equal to the maximum
column sum of the rotated matrix Cp. The CBAP is an NP-hard problem. For the
proof of NP-hardness refer to the Appendix B provided in [1].

As an illustrative example, consider the following ð3� 3Þ row circular matrix:

C ¼
6 4 2
8 8 8
7 7 0

2
4

3
5

Applying the two permutations p1 ¼ ð1; 2; 3Þ and p2 ¼ ð1; 3; 2Þ of the set
f1; 2; 3g to matrix C yields the following rotated matrices:

Cð1;2;3Þ ¼
6 4 2
8 8 8
7 0 7

2
4

3
5; Cð1;3;2Þ ¼

6 4 2
8 8 8
0 7 7

2
4

3
5

Since the column sums corresponding to permutations p1 and p2 are 21, 12, 17
and 14, 19, 17, respectively, the optimal solution is given by permutation p2
yielding a minimum Z value of 19. Note that due to the row circularity, we need to
consider only 2 permutations in this example and ðn� 1Þ! permutations in general.
While the optimal solution in this example is given by p2, the optimal solution to
the standard assignment problem is given by p1 with a minimum objective value of
12. Before closing this section, we note that if the set of constraints given in (6.5) is
replaced by the single constraint Z� I1, then we get the classical assignment
problem. To see this, define
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x̂i;j ¼ xi;j if j ¼ 1
xi;2�jþ n if 2� j� n

�

Now the problem ð6:1-6:4Þ; Z � I1; ð6:6Þf g is equivalent to Min
Pn

i¼1

Pn
j¼1

Ci;jx̂i;j s.t.
Pn

i¼1 x̂i;j ¼ 1 8 j;
Pn

j¼1 x̂i;j ¼ 1 8 i; x̂i;j 2 f0; 1g; which is the assignment
problem.

7.2 Probable Applications

As mentioned earlier the model stated above has applications in healthcare
scheduling and supply chain management. Two specific applications of this model
are described below.

7.2.1 Application in Healthcare

The problem arises in surgical scheduling in a hospital setting. Surgeons operate on
patients in the surgery unit. After completion of the surgery, patients are sent to the
recovery unit. Assume that there are n types of surgeries that need to be performed
over a planning horizon of n time periods (e.g. days). The goal is to develop a cyclic
surgery schedule so as to minimize congestion in the recovery unit. Cyclic means
that the schedule is repeated every n days. Also assume that the surgery unit is open
every day; that exactly one type of surgery must occur in each time period; and that
patients do not stay more than n days in the recovery unit. (The last assumption does
not lose generality. If patients are allowed to stay more than n days in the recovery
unit, an equivalent problem can be formulated in which patients stay at most
n days.). For the case in which the identity permutation, pðiÞ ¼ i 8 i, is the current
schedule (or assignment, i.e. surgery type i is scheduled on day i), Ci;j represents the
number of patients that are operated on day i and are then sent to the recovery unit to
remain there until the end of day ðiþ j� 1Þ. In general for a permutation p of the set
N � 1; 2; . . .; nf g, the kth column sum, Ik , of the rotated matrix Cp represents the
number of patients remaining in the recovery unit at the end of day k. The maximum
column sum of the rotated matrix Cp represents the maximum number of patients in
the recovery unit over the planning horizon. It is desirable to keep the maximum
number of patients as low as possible in order to reduce the requirement of beds,
nurses and other variable costs. Then, it is reasonable to ask if there exists a different
permutation that can reduce the maximum number of patients. Suppose, for exam-
ple, for a given permutation p; we can find another permutation p0 such that p0ð1Þ ¼
pð2Þ; p0ð2Þ ¼ pð1Þ; and p0ðiÞ ¼ pðiÞ 8 3� i� n and the maximum column sum of
the rotated matrix Cp0 is less than that of Cp. Then, in this case, the hospital can
reduce the congestion in the recovery unit by creating a new schedule in which the
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positions of the surgeons that are scheduled on day 1 and day 2 are swapped and all
the other surgeons keep their existing positions in the schedule. Of course, we
assume that such a swap is always possible.

7.2.2 Application in Supply Chain Management

The problem arises in minimizing the space requirements in a retail store. Suppliers
deliver n different types of goods on n different days, i.e. exactly one type of
product is delivered per day. In this application, Ci;j represents the amount of space
required at the beginning of day ðiþ j� 1Þ for products delivered on day i. Again,
we assume that suppliers deliver according to a cyclic scheduling; that the planning
horizon is n days; that the retail store is open every day; and that no product stays in
the store for more than n days. The identity permutation represents the current
schedule, and Ik represents the space requirement at the beginning of
day K. Assuming that suppliers delivering on day i can be swapped with those that
make deliveries on day i0 for any 1� i� n; 1� i0 � n; i 6¼ i0, the importance of the
objective minmaxnk¼1

Pn
i¼1 C

p
i;k is to minimize the maximum space requirement.

7.3 Cohort Intelligence (CI) Algorithm for Solving
the CBAP

The CBAP presented in Sect. 7.1 is solved using the CI algorithm discussed in
Chap. 2. The adaption and implementation of CI methodology for this problem is
discussed below in detail.

In the context of the CI algorithm the elements of the rearrangement/permutation
vector p ¼ pð1Þ; . . .; pðiÞ; . . .; pðnÞð Þ are considered the characteristics/attributes/
qualities that candidates in the cohort select and are associated with. The procedure
begins with the initialization of number of cohort candidates S, number of variations
Y, the permutation ps of every candidate s; s ¼ 1; . . .; Sð Þ and the convergence
parameter e and maximum number of allowable learning attempts Lmax.

In the cohort of S candidates, every individual candidate s; ðs ¼ 1; . . .; SÞ
randomly generates a permutation ps ¼ pð1Þs; . . .; pðiÞs; . . .; pðnÞsð Þ. Every
candidate s forms matrix Cps by applying its permutation ps and rotating all the
corresponding n rows of matrix C accordingly. This way, S rotated matrices

Cp1 ; . . .;Cps ; . . .;CpS
� �

are formed. Next the associated vector of maximum

column sums is calculated as ZS ¼ Z Cp1
� �

; . . .; Z Cps
� �

; . . .; Z CpS
� �n o

where

Z Cps
� � ¼ maxnk¼1Ik and Ik ¼

Pn
i¼1 C

s
i;k�pðiÞs þ 1.
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Step 1. As a minimization problem, the probability Ps of selecting a column sum
Z Cps
� �

of every candidate is calculated as follows:

Ps ¼ 1=Z Cps
� �

PS
s¼1 1=Z Cpsð Þ ; ðs ¼ 1; . . .; SÞ ð7:7Þ

Step 2. Every candidate s; ðs ¼ 1; . . .; SÞ using a roulette wheel approach

selects a candidate s
z}|{ 2 ð1; . . .; SÞ in the cohort to follow, i.e. it

incorporates an element from within p s
z}|{

into its existing permutation
ps. Following a permutation means incorporating certain elements from

within p s
z}|{

into ps. More specifically, an element pðiÞ s
z}|{

from within

p s
z}|{

is selected randomly. Then the selected element pðiÞ s
z}|{

is
identified in ps along with its location. It then swaps its position with the

element at the location in p s
z}|{

corresponding to its current location in ps.
This way every candidate generates Y number of permutations represented
as Ps;Y ¼ ps;1; . . .; ps;y; . . .; ps;Y

� �
; s ¼ 1; . . .; S and further computes

the associated maximum column sums Z Cps
� �Y¼ Z Cps

� �1
; . . .;

n

Z Cps
� �y

; . . .; Z Cps
� �Yg; s ¼ 1; . . .; S. The minimum from within

Z Cps
� �Y

for every candidate s; s ¼ 1; . . .; Sð Þ is found along with the
associated permutation.

Step 3. If either of the two criteria listed below is valid, accept any of the matrices
from within the pool of current available rotated matrices
Cps ; s ¼ 1; . . .; Sð Þ as the saturated/converged matrix C� and associated
permutation p� as the final solution and stop, else continue to Step 1.

(a) If the maximum number of learning attempts is exceeded.
(b) The cohort reaches a saturation state. There is no significant improvement in

the elements of ZS and the difference between these elements is not very
significant if further learning attempts are considered. That is, the cohort
saturates to the same minimum column sum for any other number of suc-
cessive learning attempts.

7.3.1 A Sample Illustration of the CI Algorithm
for Solving the CBAP

The CI algorithm for solving CBAP is now illustrated for the example shown in
Fig. 7.1. In this example, the number of candidates is S ¼ 3; the number of
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variations is Y ¼ 2, and the number of learning attempts is L ¼ 1: The initial
C matrix is shown in Fig. 7.1.

1. The candidates randomly generate permutations represented as p1, p2, and p3 in

Fig. 7.1a. Then the corresponding rotated matrices Cp1 ;Cp2 ;Cp3
� �

and associ-

ated maximum column sums Z3 ¼ Z Cp1
� �

; Z Cp2
� �

; Z Cp3
� �n o

are obtained.

2. The probability Ps; s ¼ 1; 2; 3 is calculated using Eq. 7.7. The calculated
probability values are presented in Fig. 7.1a.

(a)

(b)

Fig. 7.1 Illustrative example of CI solving the CBAP for a learning attempt
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3. Using roulette wheel selection approach, assume that candidate 1 decides to
follow candidate 3 and then generates two variations of the permutations P1;2 ¼
p1;1;p1;2

� �
and associated maximum column sums Z Cp1;1

� �
and Z Cp1;2

� �
are

calculated.

4. Further Z Cp1
� �

¼ min Z Cp1;1
� �

; Z Cp1;2
� �� �

and associated permutation

p1 ¼ p1;1 are identified.
5. In this way, candidates 2 and 3 also follow certain candidate in the cohort and

find the Z Cp2
� �

and Z Cp3
� �

along with associated p2 and p3.

This process continues until convergence.

7.3.2 Numerical Experiments and Results

The CI algorithm discussed in Sect. 7.3 for solving the CBAP is coded in
MATLAB 7.7.0 (R2008B). The simulations are run on a Windows platform using
an Intel Core2 Quad CPU, 2.6 GHz processor speed and 4 GB memory capacity.
The CI parameters such as number of candidates S and number of variations T are
chosen to be 25 and 5, respectively. The problem size is determined by the order
n� n of matrix C. In total, seventeen distinct cases with increasing problem size
n = 5 to 13, 15, 20, 25, 30, 35, 40, 45, 50 are solved. For every case, 10 instances
are generated and every instance is solved 20 times using the CI method. The CI
saturation/convergence plot for problem instance n = 30 is presented in Fig. 7.2.
This plot exhibits the self-adaptive learning behavior of every candidate in the
cohort. Initially, the individual behavior/solution of every candidate in the cohort
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Fig. 7.2 Saturation/convergence of the cohort
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can be easily distinguished. The behavior/solution here refers to the maximum
column sum Z of the rotated matrix Cp. As every candidate adopts the qualities of
other candidates to improve its own solution, the entire cohort gradually reaches a
saturation stage and converges to an improved solution. It is important to mention
here that the saturation associated restart procedure implemented in the original CI
approach [2] which helped the candidates to explore further in the close neigh-
borhood of their recently adopted qualities is not required.

In Table 7.1 we report our computational results obtained by solving the IP
model given in Eqs. 7.1–7.6 for different values of the problem size n. For the
solution quality, Table 7.1 shows the percentage gap between the best objective
function values of solutions obtained using the LP relaxation of the model, CPLEX,
the CI and MRSLS procedures. The percentage gap value between solution results
of method X versus method Y is computed as ZY � ZXj j�100 %=ZX : These results
are also summarized graphically in Fig. 7.3. First, as can be seen from columns 2
and 3 of Table 7.1, the LP relaxation of the model yields a tight lower bound that
tends to improve as n is increased. This is a useful finding as it allows us to assess
the performance of the CI method for large problem sizes. Indeed, as is evident
from Fig. 7.3a, the times taken by CPLEX to solve the problem grow exponentially
large as n increases. Unfortunately, we are able to report the CPU times for CPLEX
only for n not exceeding 13. For n larger than 13, the times become prohibitively
lengthy. That being said, a close examination of Table 7.1 reveals that the per-
formance of CI method in solving CBAP is excellent both in terms of the per-
centage gap between the objective function values and the run times to solve the
problem. For example, for n = 13, CPLEX takes close to 1073 s to reach an
optimal solution whereas CI takes less than a second to produce a solution yielding
an objective-value gap relative to CPLEX of less than 0.3 %. Also, the overall CPU
time (refer to Fig. 7.3e) for CI is significantly less as compared to CPLEX.
Furthermore, for comparatively smaller size cases, the solution obtained using CI
method confirms with the CPLEX solution. An important observation from
Table 7.1 and Fig. 7.3c, d is that similar to the percentage difference between the
solution obtained using LP relaxation and CPLEX, the percentage difference
between solution obtained using CI procedure and LP relaxation reduces gradually
as the problem size increases. This demonstrates the noteworthy ability of CI in
solving larger size problems with reasonable accuracy and also underscores its
competitiveness with the CPLEX. Furthermore, the CI method could achieve the
optimum solution for every case of the problem in reasonable number of function
evaluations (FE). In addition, it is evident from Table 7.1 and Fig. 7.3f, g that the
average number of FE is found to be increasing linearly while the standard devi-
ation (SD) remains almost stable as the problem size increases. Since the search
space increases with an increase in problem size, the number of characteristics a
candidate learns from the other candidate being followed in a learning attempt do
not change. This results into an increase in the number of learning attempts in order
to improve their individual solution and eventually reach the saturation stage. Also,
the SD presented in Table 7.1 demonstrates that the CI approach produces suffi-
ciently robust solution for every case of the problem.
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Fig. 7.3 Illustration of the CI, CPLEX, MRSLS and LP solution comparison
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In addition, we compare the performance of the CImethod for solving the CBAP to
that of a local search technique that moves from one solution p1 to another neigh-
boring solution p2 according to some prescribed rule. The following
multi-random-start local search (MRSLS) is considered. In step 1, a starting solution
(or permutation of the set 1; 2; . . .; nf g) p1 ¼ i1; . . .; ik; i; j; . . .; inð Þ is randomly
generated and a value for ZðCp1Þ is obtained. In step 2, we use a pairwise interchange
approach to generate a neighboring solution p2 which is given by
p2 ¼ i1; . . .; ik; j; i; . . .; inð Þ; that is, the two elements iand j occupying adjacent
positions in the current solution are interchanged. We then calculate the corre-
sponding Z Cp2ð Þ value. In step 3, the incumbent best solution is updated to p2 if
Z Cp2ð Þ\Z Cp1ð Þ; otherwise p1 is kept as the best incumbent solution found so far (ties
may be broken arbitrarily). The process is continued by performing and evaluating
other pairwise interchange until a stopping criteria is met. Furthermore, for every
individual CBAP case considered, MRSLS is run 50 times with different initializa-
tion. Also, for a meaningful comparison, every MRSLS case is initialized to start in
the neighborhood of the CI’s starting point and is run for exactly the same time equal
to the corresponding average CPU time the CI method takes to solve that case.
The results are summarized in Table 7.1 and Fig. 7.3c, h. The results show that, while
the CI method inmost cases has a slight edge overMRSLS in terms of optimality gap,
the two methods perform quite well in finding good solutions to the CBAP.

7.4 Conclusions

The emerging optimization technique of cohort intelligence (CI) is successfully
applied to solve the new variant of the assignment problem, which has applications
in healthcare and supply chain management. The results indicate that the accuracy
of solutions to these problems obtained using CI is fairly robust and the compu-
tational time is quite reasonable. The chapter also describes the application of a
multi-random-start local search (MRSLS) that can be used to solve the problem
cases. The MRSLS implemented here is based on the interchange argument, a
valuable technique often used in sequencing, whereby the elements of two adjacent
solutions are randomly interchanged in the process of searching for better solutions.
Our findings are that the two methods perform equally well in solving the CBAP, in
part due the special structure of the problem.
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