
Chapter 5
Solution to 0–1 Knapsack Problem Using
Cohort Intelligence Algorithm

The previous chapters discussed the algorithm Cohort Intelligence (CI) and its
applicability solving several unconstrained and constrained problems. In addition
CI was also applied for solving several clustering problems. This validated the
learning and self supervising behavior of the cohort. This chapter further tests the
ability of CI by solving an NP-hard combinatorial problem such as Knapsack
Problem (KP). Several cases of the 0–1 KP are solved. The effect of various
parameters on the solution quality has been discussed. The advantages and limi-
tations of the CI methodology are also discussed.

5.1 Knapsack Problem Using CI Method

The Knapsack Problem (KP) can be divided into two categories, Single-constraint
KPs and Multiple-constraint KPs. The single-constraint KPs include the Subset-
sum, 0–1 Knapsack, Bounded Knapsack, change-making, and Multiple-choice
Knapsack. On the other hand, the multiple-constraint KPs include 0–1 Multiple
Knapsack, 0–1 Multidimensional Knapsack, generalized assignment, and Bin
Packing with a wide range of applications, such as cargo loading, cutting stock
problems, resource allocation in computer systems, and economics [1, 2]. The
special case of single constraints is generally known as the KP or the Uni-
dimensional KP [3]. Another variant of the KP referred to as Multichoice
Multidimensional KP (MMKP) is used to represent an optimally graceful Quality of
Service (QoS) degradation model where the QoS of a single session multimedia
service is gracefully degraded to conform to changes in resource availability [4].
Khan [5] used the MMKP to represent a utility model (UM) which is a mathe-
matical model for a multi-session adaptive multimedia system. The MMKP also
appears in the nursing personnel scheduling problem [6], which is defined as the
identification of a staffing pattern that specifies the number of nursing personnel of a
certain skill to be scheduled and satisfies the total nursing personnel capacity and
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other relevant constraints. Practical applications of 0–1 Knapsack include finding an
optimal investment plan [7], as well as theoretical applications such as a
sub-problem when solving generalized assignment problem, which is heavily used
when solving vehicle routing problems, efficient packing of cargo containers by
considering the weight and volume capacity utilization, etc. [8]. Apart from these
applications, KPs are being used for resource allocation problems dealing with the
World Wide Web [9]. In this chapter various cases of the 0–1 KP [10–12] were
solved using CI. In all the problems, the implemented CI methodology produced
robust results with reasonable computational cost.

The problem is described as follows [10–14]: given a set of N objects, each
object i, i ¼ 1; . . .;N is associated with an integer profit vi and an integer weight wi.
Fill the knapsack with a subset of the objects such that the total profit f ðvÞ is
maximized and the total weight f ðwÞ does not exceed a given capacity W. The
mathematical formulation is as follows:

Maximize f ðvÞ ¼
XN
i¼1

vixi

Subject to f ðwÞ�W

where

f ðwÞ ¼
XN
i¼1

wixi; xi 2 f0; 1g; 1� i�N ð5:1Þ

5.1.1 Illustration of CI Solving 0–1 KP

In the context of CI algorithm (discussed in Sect. 5.1), the objects i; i ¼ 1; . . .;N are
considered as characteristics/attributes/qualities which decide the overall profit f ðvÞ
and the associated overall weight f ðwÞ of the knapsack. The procedure begins with
the initialization of the number of cohort candidates C, and the number of variations
t. In the cohort of C candidates, initially every candidate cðc ¼ 1; . . .;CÞ randomly
selects few objects, and the associated profits FC ¼ f v1ð Þ; . . .; f vcð Þ; . . .; f vCð Þ� �
and weights FCW ¼ f w1ð Þ; . . .; f wcð Þ; . . .; f wCð Þ� �

are calculated. The further CI
algorithm steps are discussed below.

Step 1. The probability pcðc ¼ 1; . . .;CÞ of selecting a profit f vcð Þ;
ðc ¼ 1; . . .;CÞ, is calculated as pc ¼ pc1 þ pc2
where

pc1 ¼
f vcð ÞPC
c¼1 f vcð Þ ð5:2Þ
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and

pc2 ¼
f wcð Þ
W f wcð Þ�W

3� 2f wcð Þ
W f wcð Þ[W

(
ð5:3Þ

A probability distribution specially devised to bias the solution towards
feasibility is represented in Fig. 5.1. The Probability pc2 increases linearly
as the total weight of the knapsack increases, and reaches its peak value at
the maximum capacity W. Upon any further increase in weight the
probability rapidly decreases. Thus, the probability is highest around
maximum capacity and decreases on either side of it with decrease beyond
W with twice the slope.

Step 2. Based on roulette wheel selection approach every candidate cðc ¼
1; . . .;CÞ selects a candidate with associated profit f vc½?�

� �
and modifies its

own solution by incorporating some objects from that candidate. The
superscript ½?� indicates that the behavior is selected by candidate c and
not known in advance. The modification approach is inspired from the
feasibility-based rules discussed in [15–17]. The modifications are
categorized as follows:
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Fig. 5.1 Probability distribution for pc2
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1. If the solution of candidate c ðc ¼ 1; . . .;CÞ is feasible i.e. it satisfies
the weight constraint given by Eq. 5.1 then, it randomly chooses one of
the following modifications:

1:1. Adds a randomly chosen object from the candidate being fol-
lowed, such that the object has not been included in the present
candidate c and the weight constraint given by Eq. 5.1 is still
satisfied.

1:2. Replaces a randomly chosen object with another randomly chosen
one from the candidate being followed, such that Eq. 5.1 is
satisfied.

2. If the candidate c ðc ¼ 1; . . .;CÞ is infeasible then, it randomly chooses
one of the following modifications:

2:1. Removes a randomly chosen object from within its knapsack.
2:2. Replaces a randomly chosen object with another randomly cho-

sen one from the candidate c being followed, such that the total
weight f wcð Þ of the candidate c decreases.
Every candidate performs the above procedure t times. This
makes every candidate c available with associated profits

Fc;t ¼ f vcð Þ1; . . .; f vcð Þ j; . . .; f vcð Þt
n o

; ðc ¼ 1; . . .;CÞ. Furthermore,

every candidate selects the best profit f �ðvÞ among them. The best
variation is selected based on the following conditions:

2:2:1. If the variations are feasible then the variation with max-
imum profit is selected.

2:2:2. If the variations are infeasible then the variation with
minimum weight is selected.

2:2:3. If there are both infeasible and feasible variations then the
feasible variation with maximum profit is selected.

This makes the cohort available with C updated profits FC ¼ f � v1ð Þ; . . .;�
f � vcð Þ; . . .; f � vCð Þg.

This process continues until saturation (convergence) i.e., every candidate has
the same profit and it does not change for successive considerable number of
learning attempts.

The above discussed procedure of solving the KP using CI algorithm is illus-
trated here with number of objects N ¼ 4 and knapsack capacity W ¼ 8. The
weights wi; i ¼ 1; . . .;N and profits vi; i ¼ 1; . . .;N associated with every
object are illustrated in Fig. 5.2. Furthermore, the cohort is assumed to have three
candidates, i.e. C ¼ 3 and number of variations t ¼ 3.

Initially every candidate cðc ¼ 1; . . .;CÞ randomly selects few objects,
and the associated profits FC ¼ f v1ð Þ; . . .; f vcð Þ; . . .; f vCð Þ� �

and weights
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FC;W ¼ f w1ð Þ; . . .; f wcð Þ; . . .; f wCð Þ� �
are calculated. The further CI algorithm

steps are discussed below:

(1) The probability pc associated with each candidate cðc ¼ 1; . . .; 3Þ is calculated
using Eqs. 5.2 and 5.3. The calculated probability values are presented in
Fig. 5.3.

(2) Using roulette wheel selection approach, assume that candidate 1 decides to
follow candidate 3. As presented in Fig. 5.4, t ¼ 3 variations are formed along
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with the associated profits vector F1;3 ¼ f v1ð Þ1; f v1ð Þ2; f v1ð Þ3
n o

and the

selected variation with profit f � v1ð Þ. In this way, candidates 2 and 3 also
follow certain candidate and update themselves. It makes the cohort available
with 3 updated candidates with profits F3 ¼ f � v1ð Þ; f � v2ð Þ; f � v3ð Þ� �

. This

As 1c = is infeasible it can modify itself by either removing an object or replacing one.
The variations formed by it are:
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process continues until saturation (convergence), i.e. every candidate finds the
solution and does not change for successive considerable number of learning
attempts.

5.2 Results and Discussion

The CI algorithm discussed in Sect. 5.1 was coded in Matlab 7.11 (R2010b) and the
simulations were run on a Windows platform using an Intel Core i5 CPU, 2.27 GHz
processor speed and 3 GB memory capacity, and further validated using twenty
distinct test cases of the 0–1 Knapsack Problems. The standard test cases f1 � f10
[10–12] are presented in Table 5.1. The cases f11 � f20 were generated using a
random number generator. In these tests, knapsack capacity is calculated using the
formula [11, 12]: W ¼ 3

4

PN
i¼1 wi where wi is a random weight of item i and N is the

number of items. Different values of N were used, varying from 30 to 75. These test
cases are presented at the end of this chapter.

Recently, the instances f1 � f10 were solved using Harmony Search (HS) [10,
13], Improved Harmony Search (IHS) [10, 14], Novel Global Harmony Search
(NGHS) [10–12], Quantum Inspired Cuckoo Search Algorithm QICSA [12], and
Quantum Inspired Harmony Search Algorithm (QIHSA) [11]. The HS is based on
natural musical performance processes and has been applied to a variety of engi-
neering problems; however, it exhibits poor convergence rate [10]. IHS employs a
parameter updating method for generating new solution vectors that enhances
accuracy and convergence rate of HS algorithm. The convergence rate is further
improved in NGHS which is inspired from the swarm intelligence and employs a
dynamic updating strategy and probabilistic mutation approach; however, the
performance degenerates significantly when applied for solving constrained prob-
lems. All these algorithms lack a method to satisfy constraints and hence, can result
in an infeasible solution when solving constrained optimization problems. Zou et al.
[10] used a penalty function method along with NGHS in order to handle the weight
constraint in 0–1 KP. QICSA integrates the quantum computing principles such as
qubit representation, measure operation and quantum mutation, in the Cuckoo
Search algorithm. It is different from other evolutionary algorithms in that it offers a
large exploration of the search space through intensification and diversification
[12]. QIHSA combines the features of HS algorithm and quantum computing. The
probabilistic nature of the quantum measure offers a good diversity to the harmony
search algorithm, while the interference operation helps to intensify the search
around the best solutions [11]. While hybridization between quantum inspired
computing and nature inspired algorithms significantly improve the performance
over the original nature inspired algorithms, their performance depends largely on
the initial solutions, which are selected randomly. Also, when dealing with con-
strained optimization problems they require the use of a repair operator.
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The approach of CI handles constraints using a probability distribution pc2 (refer
to Fig. 5.1) which forces the candidates to follow the behaviour/solution with
constraints satisfied as well as closer to the ones with constraint values closer to the
boundary. Moreover, a well-established feasibility-based rule [15–17] was also
incorporated which assists candidates select the variations with better objective and

Table 5.2 Summary of solutions of KPs solved using CI

Problem Number
of objects,
Knapsack
capacity
ðN;WÞ

Solution f �ðvÞ; f �ðwÞð Þ Standard
deviation

Average
function
evaluations
(FE)

Average
time (s)

Parameters
ðC; tÞBest Mean Worst

f1 10, 269 295, 269 267.46,
262.722

260, 250 0.0 5410 0.4489 5, 10

f2 20, 878 1024, 871 1020.55,
852.84

1009, 827 0.0 5446 1.5909 5, 10

f3 4, 20 35, 18 34.55,
17.867

28, 16 0.0 5136 0.2687 5, 10

f4 4, 11 23, 11 22.06,
10.33

16, 6 0.64 5193 0.2492 5, 10

f5 15, 375 481.0694,
354.9608

449.986,
361.692

412.6988,
372.9118

10.68 5590 0.6609 5, 10

f6 10, 60 51, 56 50.733,
56.733

49, 54 0.66 5573 0.4465 5, 10

f7 7, 50 105, 50 86.6, 44.8 79, 42 2.99 5696 0.3749 5, 10

f8 23, 10,000 9759,
9760

9753.33,
9756.33

9710,
9711

11.5 6486 1.1959 5, 10

f9 5, 80 130, 60 124.6,
61.4

106, 74 2.89 5110 0.3048 5, 10

f10 20, 879 1025, 871 997.7,
558.3

892, 805 18.6 5426 1.535 5, 10

f11 30, 577 1437, 566 1418,
571.5

1398, 563 11.79 6817 3.4635 5, 10

f12 35, 655 1689, 650 1686.5,
650.833

1679, 654 3.8188 5375 5.2288 5, 10

f13 40, 819 1816, 817 1807.5,
817.66

1791, 819 9.604 7833 7.3429 5, 10

f14 45, 907 2020, 903 2017,
902.5

2007, 901 4.749 7433 8.1510 5, 10

f15 50, 882 2440, 873 2436.166,
870.33

2421, 865 6.841 7766 10.5690 5, 10

f16 55, 1050 2643,
1049

2605,
1047.8

2581,
1049

22.018 9720 14.3445 5, 10

f17 60, 1006 2917,
1002

2915,
1001.833

2905,
1001

4.472 9017 17.0894 5, 10

f18 65, 1319 2814,
1319

2773.66,
1316.33

2716,
1317

18.273 10,283 20.9486 5, 10

f19 70, 1426 3221,
1426

3216,
1423.166

3211,
1419

4.3589 10,333 26.4846 5, 10

f20 75, 1433 3614,
1432

3603.8,
1431.8

3591,
1429

8.035 12,720 34.0072 5, 10
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Table 5.3 Comparison of results obtained using CI with other established methods

Problem Number of objects ðNÞ Method Optimum solution
f �ðvÞ

f1 10 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

295
295
295
295
295
295

f2 20 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

1024
1024
1024
1024
1024
1024

f3 4 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

35
35
35
35
35
35

f4 4 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

23
23
23
23
23
23

f5 15 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

481.0694
481.0694
481.0694
481.0694
481.0694
481.0694

f6 10 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

50
50
52
52
52
51

f7 7 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

107
107
107
107
107
105

f8 23 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

9767
9767
9767
9767
9767
9759

(continued)
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constraint satisfaction (refer to Sect. 5.1). The summary of the CI results including
the best, mean and worst solutions with the associated average CPU time, average
number of function evaluations, standard deviation are listed in Table 5.2. In
addition, the CI parameters such as number of candidates C and number of vari-
ations t are also listed. As presented in Table 5.3, it can be seen that the solution
was comparable for all problems and in most of the cases the optimum solution was
obtained. In addition, according to Table 5.2, it is clear that the solution was
obtained in reasonable computational cost (time and FE). The results have also been
verified with Branch and Bound method, and according to Tables 5.3, 5.4 and
Fig. 5.5 it is clear that the performance of CI and Branch and Bound are quite
comparable. The CI saturation/convergence plot for one of the problems, f10ðN ¼
20Þ is presented in Fig. 5.6 which illustrates the self adaptive learning behavior of
every candidate in the cohort. Initially, the distinct behavior of every individual
candidate in the cohort can be easily distinguished. As every candidate adopts the
qualities of other candidates to improve its own solution, the cohort saturates to a
certain improved solution. It is noted that the standard deviation was quite narrow
with smaller sized problems; however, increased as the problem size increased. In
addition, computational cost, i.e. time and function evaluations also increased with
increase in the problem size. However, it was observed that in few runs of CI the
candidates converged at suboptimal solutions. Similar to the perturbation approach
implemented by Tavares et al. [17], in order to make the candidates jump out of
possible local minima, every candidate cðc ¼ 1; . . .;CÞ randomly selects a candi-
date to follow without considering its effect on the solution. This approach
instantaneously made the solution worse, however, it was found to be helpful to
pull the candidates’ solution out of local minima and reach an improved solution.
This approach was much simpler as opposed to the perturbation approach discussed
by Tavares et al. [17] where several parameters were required to be tuned based on
the preliminary trials.

Table 5.3 (continued)

Problem Number of objects ðNÞ Method Optimum solution
f �ðvÞ

f9 5 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

130
130
130
130
130
130

f10 20 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

1025
1025
1025
1025
1025
1025
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Table 5.4 Comparison of results obtained using CI with B&B

Problem Number of objects ðNÞ Optimum solution ðf �ðvÞÞ
CI
B&B

Time
(s)

f1 10 295
295

0.4489
0.12

f2 20 1024
1024

1.5909
0.04

f3 4 35
35

0.2687
0.03

f4 4 23
23

0.2492
0.03

f5 15 481.0694
481.0690

0.6609
0.18

f6 10 51
52

0.4465
0.14

f7 7 105
107

0.3749
0.04

f8 23 9759
9767

1.1959
0.18

f9 5 130
130

0.3048
0.03

f10 20 1025
1025

1.535
0.45

f11 30 1437
1437

3.4635
0.156001

f12 35 1689
1689

5.2288
0.0624004

f13 40 1816
1821

7.3429
0.0156001

f14 45 2020
2033

8.1510
0.0312002

f15 50 2440
2440

10.5690
0.0312002

f16 55 2643
2440

14.3445
0.0312002

f17 60 2917
2917

17.0894
0.0312002

f18 65 2814
2818

20.9486
0.0624004

f19 70 3221
3223

26.4846
0.0780005

f20 75 3614
3614

34.0072
0.0312002
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The effect of CI parameters viz. the number of candidates C and the number of
variations in behaviour t was analyzed using the final values of profit f ðvÞ�, the total
number of function evaluations and the computational time, for each problem. For
every pair of number of candidates C and the number of variations in behavior
t every KP test case was solved 20 times. For all the problems, the computational
cost, i.e. the number of function evaluations and computational time was observed
to be increasing with increasing number of candidates C, as well as number of
variations in behaviour t. This was because, with increase in the number of can-
didates C and variations t, the number of behavior choices i.e. number of function
evaluations also increased. The average values of profit f ðvÞ�, the total number of
function evaluations and the computational time for different values of number of
candidates C and variations t are shown for problem f1 in Figs. 5.7, 5.8 and 5.9,
respectively. Another important observation was that as the problem size i.e.
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N increased, the computational cost also increased (refer to Table 5.2). Therefore,
problems with larger number of objects took a longer time and more number of
function evaluations to converge. Furthermore, with fewer number of candidates C,
the solution, i.e. total profit f ðvÞ� was suboptimal. As the value of number of
candidates C was increased the solution quality improved up to a certain point after
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which there was no significant change (refer to Fig. 5.7). This was because for
small values of number of candidates C the behavior choices were few and as
number of candidates C increased the behavior choices increased and hence, the
chances of selecting a better solution increased. In most of the problems there
wasn’t any significant change in the solution beyond C ¼ 5. At the same time for
some problems such as f1 with small values of problem size N the optimum solution
was reached at C ¼ 3 and no significant change was observed in the solution upon
further increase in number of candidates C. Thus, the effect of number of candidates
C on the solution was dependent on the problem size N. In addition, it was observed
that even with large values of number of candidates C the solution was suboptimal
if the number of variations t was small. As the value of t increased, the solution
quality improved. For most of the problems no significant change was observed in
the solution beyond t ¼ 10. For some problems such as f1, with small values of
problem size N optimum solution was obtained at t ¼ 4 and no significant change
was seen in the solution upon further increasing the number of variations
t. Therefore, even in case of the number of variations t, its effect on the solution was
dependent on the problem size N. Accordingly, for all problems the number of
candidates C and number of variations t were chosen to be 5 and 10, respectively.

5.3 Conclusions and Future Directions

For the first time emerging CI algorithm has been applied for solving a combina-
torial NP-hard problem such as 0–1 KP, with number of objects varying from 4 to
75. In all the problems the implemented CI methodology produced satisfactory
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results with reasonable computational cost. Furthermore, according to the solution
comparison of CI with other contemporary methods it could be seen that the CI
solution is comparable and for some problems even better than the other methods.
The CI methodology was therefore validated and the self supervising nature of the
cohort candidates was successfully demonstrated along with their ability to learn
and improve qualities which further improved their individual behavior. In addition,
in order to avoid saturation of cohort at suboptimal solution and further make the
cohort saturate to the optimum solution, a generic approach such as accepting
random behavior was incorporated. The effect of the important parameters such as
number of candidates C and the associated variations t on the computational time,
function evaluations and the solution was analysed. This could be a useful reference
in dealing with future problems using CI.

It was observed that the computational time and function evaluations of the CI
algorithm increased considerably with the problem size, in the future a self-adaptive
scheme could be developed for these parameters such as number of candidates
C and number of variations t. This may make CI algorithm computationally more
efficient and improve the rate of convergence. In addition, authors also intend to
further modify the CI algorithm to solve complex NP-hard bilevel programming
problems from supply chain optimization domain [18]. Also, it is quite important to
tune up the learning rate of CI candidates so as to apply to dynamic control systems
[19]. The ability of CI in clustering [20–22] and classification domain in association
with the cross-border transportation system and goods consolidation is currently
underway.

5.4 Test Cases

f11. N = 30, W = 577

w ¼f46; 17; 35; 1; 26; 17; 17; 48; 38; 17; 32; 21; 29; 48; 31;
8; 42; 37; 6; 9; 15; 22; 27; 14; 42; 40; 14; 31; 6; 34g

v ¼f57; 64; 50; 6; 52; 6; 85; 60; 70; 65; 63; 96; 18; 48; 85;
50; 77; 18; 70; 92; 17; 43; 5; 23; 67; 88; 35; 3; 91; 48g

f12. N = 35, W = 655

w ¼f7; 4; 36; 47; 6; 33; 8; 35; 32; 3; 40; 50; 22; 18; 3; 12; 30; 31;
13; 33; 4; 48; 5; 17; 33; 26; 27; 19; 39; 15; 33; 47; 17; 41; 40g

v ¼f35; 67; 30; 69; 40; 40; 21; 73; 82; 93; 52; 20; 61; 20; 42; 86; 43;
93; 38; 70; 59; 11; 42; 93; 6; 39; 25; 23; 36; 93; 51; 81; 36; 46; 96g
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f13. N = 40, W = 819

w ¼f28; 23; 35; 38; 20; 29; 11; 48; 26; 14; 12; 48; 35; 36; 33; 39; 30; 26;
44; 20; 13; 15; 46; 36; 43; 19; 32; 2; 47; 24; 26; 39; 17; 32; 17; 16; 33; 22; 6; 12g

v ¼f13; 16; 42; 69; 66; 68; 1; 13; 77; 85; 75; 95; 92; 23; 51; 79; 53; 62; 56; 74;
7; 50; 23; 34; 56; 75; 42; 51; 13; 22; 30; 45; 25; 27; 90; 59; 94; 62; 26; 11g

f14. N = 45, W = 907

w ¼f18; 12; 38; 12; 23; 13; 18; 46; 1; 7; 20; 43; 11; 47; 49; 19; 50; 7; 39; 29; 32; 25; 12;
8; 32; 41; 34; 24; 48; 30; 12; 35; 17; 38; 50; 14; 47; 35; 5; 13; 47; 24; 45; 39; 1g

v ¼f98; 70; 66; 33; 2; 58; 4; 27; 20; 45; 77; 63; 32; 30; 8; 18; 73; 9; 92; 43; 8; 58; 84;
35; 78; 71; 60; 38; 40; 43; 43; 22; 50; 4; 57; 5; 88; 87; 34; 98; 96; 99; 16; 1; 25g

f15. N = 50, W = 882

w ¼f15; 40; 22; 28; 50; 35; 49; 5; 45; 3; 7; 32; 19; 16; 40; 16; 31; 24; 15; 42;
29; 4; 14; 9; 29; 11; 25; 37; 48; 39; 5; 47; 49; 31; 48; 17;

46; 1; 25; 8; 16; 9; 30; 33; 18; 3; 3; 3; 4; 1g
v ¼f78; 69; 87; 59; 63; 12; 22; 4; 45; 33; 29; 50; 19; 94; 95; 60; 1; 91; 69; 8;

100; ; 84; 100; 32; 81; 47; 59; 48; 56; 18; 59; 16; 45; 54; 4798; 75; 20;

4; 19; 58; 63; 37; 64; 90; 26; 29; 13; 53; 83g

f16. N = 55, W = 1050

w ¼f27; 15; 46; 5; 40; 9; 36; 12; 11; 11; 49; 20; 32; 3; 12; 44; 24; 1; 24; 42;
44; 16; 12; 42; 22; 26; 10; 8; 46; 50; 20; 42; 48; 45; 43; 35; 9; 12;

22; 2; 14; 50; 16; 29; 31; 46; 20; 35; 11; 4; 32; 35; 15; 29; 16g
v ¼f98; 74; 76; 4; 12; 27; 90; 98; 100; 35; 30; 19; 75; 72; 19; 44; 5; 66;

79; 87; 79; 44; 35; 6; 82; 11; 1; 28; 95; 68; 39; 86; 68; 61; 44; 97; 83; 2; 15;

49; 59; 30; 44; 40; 14; 96; 37; 84; 5; 43; 8; 32; 95; 86; 18g

f17. N = 60, W = 1006
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w ¼f7; 13; 47; 33; 38; 41; 3; 21; 37; 7; 32; 13; 42; 42; 23; 20; 49; 1; 20; 25; 31; 4; 8;
33; 11; 6; 3; 9; 26; 44; 39; 7; 4; 34; 25; 25; 16; 17; 46; 23; 38; 10; 5; 11;

28; 34; 47; 3; 9; 22; 17; 5; 41; 20; 33; 29; 1; 33; 16; 14g
v ¼f81; 37; 70; 64; 97; 21; 60; 9; 55; 85; 5; 33; 71; 87; 51; 100; 43; 27; 48; 17; 16;

27; 76; 61; 97; 78; 58; 46; 29; 76; 10; 11; 74; 36; 59; 30; 72; 37; 72; 100; 9; 47;

10; 73; 92; 9; 52; 56; 69; 30; 61; 20; 66; 70; 46; 16; 43; 60; 33; 84g

f18. N = 65, W = 1319

w ¼f47; 27; 24; 27; 17; 17; 50; 24; 38; 34; 40; 14; 15; 36; 10; 42; 9; 48; 37; 7; 43; 47; 29;
20; 23; 36; 14; 2; 48; 50; 39; 50; 25; 7; 24; 38; 34; 44; 38; 31; 14; 17; 42; 20;

5; 44; 22; 9; 1; 33; 19; 19; 23; 26; 16; 24; 1; 9; 16; 38; 30; 36; 41; 43; 6g
v ¼f47; 63; 81; 57; 3; 80; 28; 83; 69; 61; 39; 7; 100; 67; 23; 10; 25; 91; 22; 48; 91; 20;

45; 62; 60; 67; 27; 43; 80; 94; 47; 31; 44; 31; 28; 14; 17; 50; 9; 93; 15; 17; 72; 68; 36;

10; 1; 38; 79; 45; 10; 81; 66; 46; 54; 53; 63; 65; 20; 81; 20; 42; 24; 28; 1g

f19. N = 70, W = 1426

w ¼f4; 16; 16; 2; 9; 44; 33; 43; 14; 45; 11; 49; 21; 12; 41; 19; 26; 38; 42; 20;
5; 14; 40; 47; 29; 47; 30; 50; 39; 10; 26; 33; 44; 31; 50; 7; 15; 24; 7; 12;

10; 34; 17; 40; 28; 12; 35; 3; 29; 50; 19; 28; 47; 13; 42; 9; 44; 14; 43; 41;

10; 49; 13; 39; 41; 25; 46; 6; 7; 43g
v ¼f66; 76; 71; 61; 4; 20; 34; 65; 22; 8; 99; 21; 99; 62; 25; 52; 72; 26; 12; 55;

22; 32; 98; 31; 95; 42; 2; 32; 16; 100; 46; 55; 27; 89; 11; 8; 3; 43; 93; 53; 88;

36; 41; 60; 92; 14; 5; 41; 60; 92; 30; 55; 79; 33; 10; 45; 3; 68; 12; 20; 54; 63;

38; 61; 85; 71; 40; 58; 25; 73; 35g

f20. N = 75, W = 1433

w ¼f24; 45; 15; 40; 9; 37; 13; 5; 43; 35; 48; 50; 27; 46; 24; 45; 2; 7; 38; 20;
20; 31; 2; 20; 3; 35; 27; 4; 21; 22; 33; 11; 5; 24; 37; 31; 46; 13; 12; 12;

41; 36; 44; 36; 34; 22; 29; 50; 48; 17; 8; 21; 28; 2; 44; 45; 25; 11; 37; 35;

24; 9; 40; 45; 8; 47; 1; 22; 1; 12; 36; 35; 14; 17; 5g
v ¼f2; 73; 82; 12; 49; 35; 78; 29; 83; 18; 87; 93; 20; 6; 55; 1; 83; 91; 71; 25; 59;

94; 90; 61; 80; 84; 57; 1; 26; 44; 44; 88; 7; 34; 18; 25; 73; 29; 24; 14; 23; 82;

38; 67; 94; 43; 61; 97; 37; 67; 32; 89; 30; 30; 91; 50; 21; 3; 18; 31; 97; 79; 68;

85; 43; 71; 49; 83; 44; 86; 1; 100; 28; 4; 16g
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