
Chapter 4
Modified Cohort Intelligence for Solving
Machine Learning Problems

Clustering is an important and popular technique in data mining. It partitions a set
of objects in such a manner that objects in the same clusters are more similar to each
another than objects in the different cluster according to certain predefined criteria.
K-means is simple yet an efficient method used in data clustering. However,
K-means has a tendency to converge to local optima and depends on initial value of
cluster centers. In the past, many heuristic algorithms have been introduced to
overcome this local optima problem. Nevertheless, these algorithms too suffer
several short-comings. In this chapter, we present an efficient hybrid evolutionary
data clustering algorithm referred as to K-MCI, whereby, we combine K-means
with modified cohort intelligence. Our proposed algorithm is tested on several
standard data sets from UCI Machine Learning Repository and its performance is
compared with other well-known algorithms such as K-means, K-means++, cohort
intelligence (CI), modified cohort intelligence (MCI), genetic algorithm (GA),
simulated annealing (SA), tabu search (TS), ant colony optimization (ACO), honey
bee mating optimization (HBMO) and particle swarm optimization (PSO). The
simulation results are very promising in the terms of quality of solution and con-
vergence speed of algorithm.

4.1 Introduction

Clustering is an unsupervised classification technique which partitions a set of
objects in such a way that objects in the same clusters are more similar to one
another than the objects in different clusters according to certain predefined crite-
rion [1, 2]. The term unsupervised means that grouping is establish based on the
intrinsic structure of the data, without any need to supply the process with training
items.

Clustering has been applied across many applications, i.e., machine learning
[3, 4], image processing [5–8], data mining [9, 10], pattern recognition [11, 12],
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bioinformatics [13–15], construction management [16], marketing [17, 18],
document clustering [19], intrusion detection [19], healthcare [20, 21] and infor-
mation retrieval [22, 23].

Clustering algorithms can generally be divided into two categories; hierarchical
clustering and partitional clustering [24]. Hierarchical clustering groups objects into
tree-like structure using bottom-up or top-down approaches. Our research however
focuses on partition clustering, which decomposes the data set into a several disjoint
clusters that are optimal in terms of some predefined criteria.

There many algorithms have been proposed in literature to solve the clustering
problems. The K-means algorithm is the most popular and widely used algorithm in
partitional clustering. Although, K-means is very fast and simple algorithm, it
suffers two major drawbacks. Firstly, the performance of K-means algorithm is
highly dependent on the initial values of cluster centers. Secondly, the objective
function of the K-means is non-convex and it may contain many local minima.
Therefore, in the process of minimizing the objective function, the solution might
easily converge to a local minimum rather than a global minimum [25]. K-means++
algorithm was proposed by Arthur and Vassilvitskii [26], which introduces a cluster
centers initialization procedure to tackle the initial centers sensitivity problem of a
standard K-means. However, it too suffers from a premature convergence to a local
optimum.

In order to alleviate the local minima problem, many heuristic clustering
approaches have been proposed over the years. For instance, [27] proposed a
simulated annealing approach for solving clustering problems. A tabu search
method which combines new procedures called packing and releasing was
employed to avoid local optima in clustering problems [28]. Genetic algorithm
based clustering method was introduced by Maulik and Bandyopadhyay [29] to
improve the global searching capability. Fathian et al. [30] proposed a honey-bee
mating optimization approach for solving clustering problems. Shelokar et al. [31]
proposed an ant colony optimization (ACO) for clustering problems. A particle
swarm optimization based approach (PSO) for clustering was introduced by Chen
and Ye [32] and Cura [33]. A hybrid technique for clustering called KNM-PSO,
which combines the K-means, Nedler-Mead simplex and PSO was proposed by
Kao et al. [34]. Zhang et al. [35] proposed an artificial bee colony approach for
clustering. More recently, black hole (BH) optimization algorithm [36] was intro-
duced to solve clustering problems. Although these heuristic algorithms address the
flaws of K-means but they still suffer several drawbacks. For example, most of
these heuristic algorithms are typically very slow to find optimum solution.
Furthermore, these algorithms are computationally expensive for large problems.

Cohort intelligence (CI) is a novel optimization algorithm proposed recently by
Kulkarni et al. [37]. This algorithm was inspired from natural and society tendency
of cohort individuals/candidates of learning from one another. The learning refers to
a cohort candidate’s effort to self-supervise its behavior and further adapt to the
behavior of other candidate which it tends to follow. This makes every candidate to
improve/evolve its own and eventually the entire cohort behavior. CI was tested
with several standard problems and compared with other optimization algorithms
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such as sequential quadratic programming (SQP), chaos-PSO (CPSO), robust
hybrid PSO (RHPSO) and linearly decreasing weight PSO (LDWPSO). CI has been
proven to be computationally comparable and even better performed in terms of
quality of solution and computational efficiency when compared with these algo-
rithms. These comparisons can be found in the seminal paper on CI [37]. However,
for clustering problems, as the number of clusters and dimensionality of data
increase, CI might converge slowly and trapped in local optima. Recently, many
researchers have incorporated mutation operator into their algorithm to solve
combinatorial optimizing problems. Several new variants of ACO algorithms have
been proposed by introducing mutation to the traditional ACO algorithms and
achieve much better performance [38, 39]. Stacey et al. [40] and Zhao et al. [39]
also have integrated mutation into the standard PSO scheme, or modifications of it.
In order to mitigate the short-comings of CI, we present a modified cohort intel-
ligence (MCI) by incorporating mutation operator into CI to enlarge the searching
range and avoid early convergence. Finally, to utilize the benefits of both K-means
and MCI, we propose a new hybrid K-MCI algorithm for clustering. In this algo-
rithm, K-means is applied to improve the candidates’ behavior that generated by
MCI at each iteration before going through the mutation process of MCI. The new
proposed hybrid K-MCI is not only able to produce a better quality solutions but it
also converges more quickly than other heuristic algorithms including CI and MCI.
In summary, our contribution in this chapter is twofold:

1. Present a modified cohort intelligence (MCI).
2. Present a new hybrid K-MCI algorithm for data clustering.

4.2 The Clustering Problem and K-Means Algorithm

Let R ¼ ½Y1; Y2; . . .; YN �, where Yi 2 <D, be a set of N data objects to be clustered
and S ¼ ½X1;X2; . . .;XK � be a set of K clusters. In clustering, each data in set R will
be allocated in one of the K clusters in such a way that it will minimize the objective
function. The objective function, intra-cluster variance is defined as the sum of
squared Euclidean distance between each object Yi and the center of the cluster Xj

which it belongs. This objective function is given by:

FðX; YÞ ¼
XN
i¼1

Min Yi � Xj

�� ��2n o
; j ¼ 1; 2; . . .;K ð4:1Þ

Also,

• Xj ≠ Ø, 8j Є {1, 2, …, K}
• Xi \ Xj = Ø, 8i ≠ j and 8i, j Є {1, 2, …, K}
• [ K

j¼1Xj ¼ R
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In partitional clustering, the main goal of K-means algorithm is to determine
centers of K clusters. In this research, we assume that the number of clusters K is
known prior to solving the clustering problem. The following are the main steps of
K-means algorithm:

• Randomly choose K cluster centers of X1, X2, …, XK from data set R ¼
½Y1; Y2; . . .;YN � as the initial centers.

• Assign each object in set R to the closest centers.
• When all objects have been assigned, recalculate the positions of the K centers.
• Repeat Step 2 and 3 until a termination criterion is met (the maximum number

of iterations reached or the means are fixed).

Arthur and Vassilvitskii [26] introduced a specific way of choosing the initial
centers for the K-means algorithm. The procedure of the K-means++ algorithm is
outlined below:

• Choose one center X1, uniformly at random from R.
• For each data point Yi, compute D (Yi), the distance between Yi and the nearest

center that has already been chosen.

• Take new center Xj, choosing Y 2 R with probability DðYÞ2P
Y2R DðYÞ

2.

• Repeat Steps 2 and 3 until K centers have been chosen.
• Now that the initial centers have been chosen, proceed using standard K-means

clustering.

4.3 Modified Cohort Intelligence

In this chapter, we present a modified cohort intelligence (MCI) to improve the
accuracy and the convergence speed of CI. Premature convergence may arise when
the cohort converges to a local optimum or the searching process of algorithm is
very slow. Therefore, we introduced a mutation mechanism to CI in order to enlarge
the searching range, expand the diversity of solutions and avoid early convergence.

Assume for ith iteration, a candidate in a particular cohort is represented by a set of
K number of cluster centers, Sc ¼ ½Xc

1;X
c
2; . . .;X

c
j ; . . .;X

c
K �, where c = 1, 2,…, C and

Xc
j represents the cluster’s center. For an example, Fig. 4.1 depicts a candidate

solution of a problem with three clusters, K = 3 and all the data objects have four
dimensions, D = 4. Thus, the candidate solution illustrated in Fig. 4.1 can be repre-
sented by Sc ¼ ½xc1; xc2; . . .; xcb�1�b, where b = K × D. Then, each candidate Sc in that
cohort will undergo mutation process to generate mutant candidate Scmut as following:

Scmut ¼ Sm1 þ randð:Þ � ðSm2 � Sm3Þ ð4:2Þ
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Variables m1, m2 and m3 are three candidates which are selected randomly from
C candidates in such a way that m1 ≠ m2 ≠ m3 ≠ c.

Scmut ¼ xcmut;1; x
c
mut;2; . . .; x

c
mut;b

h i
1�b

ð4:3Þ

The selected candidate would be:

Sctrial ¼ xctrial;1; x
c
trial;2; . . .; x

c
trial;b

h i
1�b

ð4:4Þ

xctrial;z ¼
xcmut;z
xcz

�
if randð:Þ\c ð4:5Þ

where z = 1, 2, …, b, rand(.) is a random number between 0 and 1, γ is a random
number less than 1 and D is the dimensionality of data objects. Thus, the new
features for candidate c in the ith iteration are selected based on its objective
function:

Scnew ¼ Sc if f ðScÞ� f ðSctrialÞ
Sctrial otherwise

�
ð4:6Þ

This mutation process is performed to other remaining candidates in cohort.

4.4 Hybrid K-MCI and Its Application for Clustering

In this chapter, we propose a novel algorithm referred to as the hybrid K-means
modified cohort intelligence (K-MCI) for data clustering. In this algorithm,
K-means is utilized to improve the candidates’ behavior generated by MCI. After a
series run of K-means, then each candidate will go through the mutation process as
described in Sect. 4.3. The new proposed algorithm benefits from the advantages of
both K-means and MCI. This combination allows the proposed algorithm to con-
verge more quickly and achieve a more accurate solutions without getting trapped
to a local optimum. The application of the hybrid K-MCI on the data clustering is

Fig. 4.1 Example of a candidate solution
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presented in this section. In order to solve the clustering problem using the new
proposed algorithm, following steps should be applied and repeated:

Step 1. Generate the initial candidates. The initial C candidates are randomly
generated as described below:

Candidates ¼

S1

S2

..

.

Sc

..

.

SC

2
6666666666664

3
7777777777775

ð4:7Þ

Sc ¼ ½Xc
1;X

c
2; . . .;X

C
K � ð4:8Þ

Xc
j ¼ ½xc1; xc2; . . .; xcD� ð4:9Þ

where c = 1, 2, …, C, K is the number of clusters, j = 1, 2, …, K and D is
the dimensionality of cluster center Xc

j .
Thus,

Sc ¼ xc1; x
c
2; . . .; x

c
i ; . . .; x

c
b

� �
1�b; where b ¼ K � D ð4:10Þ

The sampling interval wi is given by xc;min
i � xi � xi � xc;max

i , where, xc;min
i

and xc;max
i (each feature of center) are minimum and maximum value of

each point belonging to the cluster Xc
j .

Step 2. Perform K-means algorithm for each candidate as described in Sect. 4.2.
Step 3. Perform mutation operation for each candidate as described in Sect. 4.3.
Step 4. The objective function f ðScÞ for each candidate is calculated.
Step 5. The probability of selecting the behavior f �ðScÞ of every candidate is

calculated.
Step 6. Every candidate generates a random number rand [0, 1] and by using the

roulette wheel approach decides to follow corresponding behavior f �ðSc½?�Þ
and its features Sc½?� ¼ ½xc½?�1 ; xc½?�2 ; . . .; xc½?�b �. For example, candidate c [1]
may decide to follow behavior of candidate f �ðSc½2�Þ and its features

Sc½2� ¼ ½xc½2�1 ; xc½2�2 ; . . .; xc½2�b �:
Step 7. Every candidate shrinks the sampling interval wc½?� for its every features

xc½?�i to its local neighborhood.
Step 8. Each candidate samples t qualities from within the updated sampling

interval of its selected features,xc½?�i . Then, each candidate computes the
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objective function for these t behaviors and selects the best behavior f �ðScÞ
from this set. For instance with t = 15, candidate c [1] decides to follow the

behavior of candidate f �ðSc½2�Þ and its features Sc½2� ¼ ½xc½2�1 ; xc½2�2 ; . . .; xc½2�b �.
Then, candidate c [1] will sample 15 qualities from its updated sampling

interval features of xc½2�i . Next, candidate c [1] will compute the objective
function of its behaviors according, i.e. Fc½1� ¼ ½f ðSc½1�Þ1; f ðSc½1�Þ2; . . .;
f ðSc½1�Þ15� and selects the best behavior f �ðSc½1�Þ from within this set.

Step 9. Accept any of the C behaviors from current set of behaviors in the cohort
as the final objective function value f∗(S) and its features Sc ¼
½xc1; xc2; . . .; xcb� and stop if either of the two criteria listed below is valid
or else continue to Step 2:

1. If maximum number of iterations exceeded.
2. If cohort saturates to the same behavior by satisfying the conditions

convergence condition.

The flow chart of the hybrid K-MCI is illustrated in Fig. 4.2.

4.5 Experiment Results

Six real data sets are used to validate our proposed algorithm. Each data set from
UCI Machine Learning Repository has a different number of clusters, data objects
and features as described below [41]:

Iris data set (N = 150, D = 4, K = 3): which consists of three different species
of Iris flowers: Iris setosa, Iris versicolour and Iris virginica. For each species, 50
samples with four features (sepal length, sepal width, petal length, and petal width)
were collected.

Wine data set (N = 178, D = 13, K = 3): This data set are the results of a
chemical analysis of wines grown in the same region in Italy but derived from three
different cultivators: class 1 (59 instances), class 2 (71 instances), and class 3 (48
instances). The analysis determined the quantities of 13 features found in each of
the three types of wines. These 13 features are alcohol, malic acid, ash, alkalinity of
ash, magnesium, total phenols, flavanoids, nonflavanoid phenols, proanthocyanins,
color intensity, hue, OD280/OD315 of diluted wines, and proline.

Glass data set (N = 214, D = 9, K = 6): which consists of six different types of
glass: building windows float processed (70 objects), building windows non-float
processed (76 objects), vehicle windows float processed (17 objects), containers (13
objects), tableware (9 objects), and headlamps (29 objects). Each type of glass has
nine features, which are refractive index, sodium, magnesium, aluminum, silicon,
potassium, calcium, barium, and iron.

Breast Cancer Wisconsin data set (N = 683, D = 9, K = 2): This data set con-
tains 683 objects. There are two categories: malignant (444 objects) and benign
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Stop and print result

Initialize number of candidates C in the cohort, quality variations t and 
set-up interval reduction factor r

Generate initial candidates 

Perform K-means algorithm for each candidate 

Perform mutation operation for each candidate 

Calculate objection function for every candidate 

Using roulette wheel approach, every candidate selects
behavior to follow from within the C available choices

Every candidate shrinks the sampling interval of every quality i 
based on whether condition of saturation is satisfied

Every candidate forms t behaviors by sampling the qualities from 
within the updated sampling intervals

Every candidate follows the best behavior from within its t behaviors

Cohort behavior 
saturated?

Converged?

Accept the current cohort behavior as final solution

Fig. 4.2 The flow chart of the hybrid K-MCI

46 4 Modified Cohort Intelligence for Solving Machine Learning Problems



(239 objects). Each type of class consists of nine features, which includes clump
thickness, cell size uniformity, cell shape uniformity, marginal adhesion, single
epithelial cell size, bare nuclei, bland chromatin, normal nucleoli and mitoses.

Vowel data set (N = 871, D = 3, K = 6): which consist of 871 Indian Telugu
vowels sounds. There are six-overlapping vowel classes: δ (72 instances), a (89
instances), I (172 instances), u (151 instances), e (207 instances) and o (180
instances). Each class has three input features corresponding to the first, second, and
third vowel frequencies.

Contraceptive Method Choice data set (N = 1473, D = 9, K = 3): This data set
is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey. The
samples are married women who either were not pregnant or did not know if they
were at the time of interview. The problem is to predict the choice of current
contraceptive method (no use has 629 objects, long-term methods have 334 objects,
and short-term methods have 510 objects) of a woman based on her demographic
and socioeconomic characteristics.

The performance of our proposed algorithm on these selected data set is com-
pared with several typical stochastic algorithms such as the CI, MCI, ACO [31, 34],
SA [27, 42], GA [29], TS [42], HBMO [43], K-means and K-means++. We have
utilized two criteria to evaluate the performance of these algorithms: (i) the
intra-cluster distances and (ii) the number of fitness function evaluation (NFE). For
the first criteria, numerically smaller the value of the intra-cluster distances indicates
higher the quality of the clustering is. As for the second criteria, the smaller NFE
value indicates the high convergence speed of the considered algorithm.

The required parameters for the implementation of hybrid K-MCI, MCI and CI
for clustering are shown in Table 4.1. The algorithms are implemented with Matlab
8.0 on a Windows platform using Intel Core i7-3770, 3.4 GHz and 8 GB RAM
computer. Table 4.2 shows the summary of the intra-cluster distances obtained by
the clustering algorithms on the selected data sets. The results are best, average,
worst and the standard deviation of solutions over 20 independent runs. The NFE
criteria in Table 4.2 indicates convergence speed of the respective algorithms. NFE
is the number of times that the clustering algorithm has calculated the objective
function to reach the optimal solution.

The simulations results given in Table 4.2, shows that our proposed method
performs much better than other methods for all test data sets. Our proposed method
is able to achieve the best optimal value with a smaller standard deviation compared

Table 4.1 Parameters of
hybrid K-MCI, MCI and CI
for data clustering

Data CI MCI K-MCI

t v r t v r t v r

Iris 5 15 0.95 5 15 0.95 5 15 0.92

Wine 5 15 0.95 5 15 0.95 5 15 0.7

Cancer 5 15 0.95 5 15 0.95 5 15 0.95

Vowel 5 15 0.99 5 15 0.99 5 15 0.98

CMC 5 15 0.99 5 15 0.99 5 15 0.99

Glass 5 15 0.99 5 15 0.99 5 15 0.98
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to other methods. In short, the results highlighted the precision and robustness of
the proposed K-MCI as compared to other algorithms including CI and MCI. For
Iris data set, K-MCI and MCI algorithm are able to converge to global optimum of
96.5554 for each run, while the best solutions for CI, K-Means, K-means++, GA,
SA, TS, ACO, HBMO and PSO are 96.6557, 97.3259, 97.3259, 113.9865,
97.4573, 97.3659, 97.1007, 96.752 and 96.8942. The standard deviation for K-MCI
is zero, which is much less than other methods. K-MCI is also able to achieve the
best global result and has a better average and worst result for the Wine data set
compared to other methods. As for CMC data set, K-MCI has the best solution of
5693.73, while the best solutions for CI, MCI, K-Means, K-means++, GA, SA, TS,
ACO, HBMO and PSO are 5695.33, 5694.28, 5703.20, 5703.20, 5705.63, 5849.03,
5885.06, 5701.92, 5699.26 and 5700.98. Furthermore, KMCI has a much smaller
standard deviation than the other methods for CMC data set. For vowel data set, our
proposed method also manages to achieve best, average, worst solution and stan-
dard deviation of 148,967.24, 148,987.55, 149,048.58 and 36.086. These obtained
values are much smaller than other methods.

We notice the effect of applying mutation operator to CI by comparing the
results between MCI and CI from Table 4.2. For instance, MCI has achieved a best,
average, worst solutions of 16,295.16, 16,296.51 and 16,297.98 with a standard
deviation of 0.907 for Wine data set while CI has obtained best, average, worst
solutions of 16,298.01, 16,300.98 and 16,305.60 with a standard deviation of 2.118.
Thus, by applying mutation operator, MCI is able to produce a better quality
solution compared to the original CI.

The simulation results from Table 4.2 for K-MCI, MCI and CI points out the
advantages of hybridizing K-means into MCI. The best global solution of K-MCI,
MCI and CI for the Wine data set are 16,292.44, 16,295.16 and 16,298.01. These
results prove that K-MCI will provide a higher clustering quality than the stan-
dalone MCI and CI. Besides improving the clustering quality, the combination of
K-means with MCI, will further enhance the convergence characteristics. CI and
MCI need 17,500 and 16,500 function evaluations respectively to obtain the best
solution for Wine data set. On the other hand, K-MCI only takes 6250 function
evaluations to achieve the best optimal solution for the same data set. Hence,
K-MCI converges to optimal solution very quickly. Although standalone K-means

Table 4.3 The achieved best
centers on Cancer data set

Dataset Center 1 Center 2

Cancer 7.11701 2.88942

6.64106 1.12774

6.62548 1.20072

5.61469 1.16404

5.24061 1.99334

8.10094 1.12116

6.07818 2.00537

6.02147 1.10133

2.32582 1.03162
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Table 4.4 Achieved best centers on the glass and vowel data set

Dataset Center 1 Center 2 Center 3 Center 4 Center 5 Center 6

Glass 1.52434 1.51956 1.51362 1.52132 1.51933 1.51567

12.03344 13.25068 13.15690 13.74692 13.08412 14.65825

0.01215 0.45229 0.65548 3.51952 3.52765 0.06326

1.12869 1.53305 3.13123 1.01524 1.36555 2.21016

71.98256 73.01401 70.50411 71.89517 72.85826 73.25324

0.19252 0.38472 5.33024 0.21094 0.57913 0.02744

14.34306 11.15803 6.73773 9.44764 8.36271 8.68548

0.23039 0.00433 0.67322 0.03588 0.00837 1.02698

0.15156 0.06599 0.01490 0.04680 0.06182 0.00382

Vowel 506.98650 623.71854 407.89515 439.24323 357.26154 375.45357

1839.66652 1309.59677 1018.05210 987.68488 2291.44000 2149.40364

2556.20000 2333.45721 2317.82688 2665.47618 2977.39697 2678.44208

Table 4.5 The archived best
centers on the Iris, Wine and
CMC data set

Dataset Center 1 Center 2 Center 3

Iris 5.01213 5.93432 6.73334

3.40309 2.79781 3.06785

1.47163 4.41787 5.63008

0.23540 1.41727 2.10679

Wine 13.81262 12.74160 12.50086

1.83004 2.51921 2.48843

2.42432 2.41113 2.43785

17.01717 19.57418 21.43603

105.41208 98.98807 92.55049

2.93966 1.97496 2.02977

3.21965 1.26308 1.54943

0.34183 0.37480 0.32085

1.87181 1.46902 1.38624

5.75329 5.73752 4.38814

1.05368 1.00197 0.94045

2.89757 2.38197 2.43190

1136.97230 687.01356 463.86513

CMC 43.64742 24.41296 33.50648

2.99091 3.03823 3.13272

3.44673 3.51059 3.55176

4.59136 1.79036 3.65914

0.80254 0.92502 0.79533

0.76971 0.78935 0.69725

1.82586 2.29463 2.10130

3.42522 2.97378 3.28562

0.10127 0.03692 0.06151

1.67635 2.00149 2.11479

4.5 Experiment Results 51



and K-means++ algorithms converge much faster than other algorithms including
K-MCI, they have a tendency to prematurely converge to a local optimum. For
instance, K-means++ algorithm only needs 261 function evaluations to obtain the
best solution for Wine data set but these solution results are suboptimal.

In summary, the simulation results from Table 4.2 validates that our proposed
method is able to attain a better global solution with a smaller standard deviation
and fewer numbers of function evaluations for clustering. Finally, we have included
Tables 4.3, 4.4 and 4.5 to illustrate the best centers found by K-MCI in the test data.

4.6 Conclusion

CI is a new emerging optimization method, which has a great potential to solve
many optimization problems including for data clustering. However, CI may
converge slowly and prematurely converge to local optima when the dimensionality
of data and number of cluster centers increase. With the purpose of assuaging these
drawbacks, we proposed modified CI (MCI) by implementing mutation operator
into CI. It outperforms CI in terms of both quality of solutions and the convergence
speed. Finally in this chapter, we proposed a novel hybrid K-MCI algorithm for
data clustering. This new algorithm tries to exploit the merits of the two algorithms
simultaneously, where the K-means is utilized to improve the candidates of MCI at
each iteration before these candidates are given back again to MCI for optimization.
This combination of K-means and MCI allows our proposed algorithm to con-
vergence more quickly and prevents it from falling to local optima. We tested our
proposed method using the standard data sets from UCI Machine Learning
Repository and compared our results with six state-of-art clustering methods. The
experimental results indicate that our proposed algorithm can produce a higher
quality clusters with a smaller standard deviation on the selected data set compare to
other clustering methods. Moreover, the convergence speed to global optima of the
proposed algorithm is better than other heuristic algorithms. In other words, our
proposed method can be considered as an efficient and reliable method to find the
optimal solution for clustering problems.

There are a number of future research directions can be considered to improve
and extend this research. The computational performance is governed by parame-
ters such as the sampling interval reduction factor r. Thus, a self-adaptive scheme
can be introduced to fine tune the sampling interval reduction. In this research, we
assumed the number of clusters are known a prior when solving the clustering
problems. Therefore, we can further modify our algorithm to perform automatic
clustering without any prior knowledge of number of clusters. We may combine
MCI with other heuristic algorithms to solve clustering problems, which can be
seen as another research direction. Finally, our proposed algorithm may be applied
to solve other practically important problems such as image segmentation [44],
traveling salesman problem [45], process planning and scheduling [46] and load
dispatch of power system [47].
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