Chapter 3
Cohort Intelligence for Constrained Test
Problems

Any optimization algorithm requires a technique/way to handle constraints. This is
important because most of the real world problems are inherently constrained prob-
lems. There are a several traditional methods available such as feasibility-based
methods, gradient projection method, reduced gradient method, Lagrange multiplier
method, aggregate constraint method, feasible direction based method, penalty based
method, etc. [1]. According to Vanderplaat [2], the penalty based methods can be
referred to as generalized constraint handling methods. They can be easily incorpo-
rated into most of the unconstrained optimization methods and can be used to handle
nonlinear constraints. Another approach is feasibility-based approach. Similar to the
penalty based methods, it is also simple to use as it assists the unconstrained opti-
mization methods to drive into feasible region and further reach in close neighborhood
of the optimum solution [3-5]. Similar to other nature-/bio-inspired techniques, the
performance of Cohort Intelligence (CI) methodology may degenerate when applied
for solving constrained problems. As an effort in the direction of developing and
further incorporating a generic constraint handling technique into the CI framework, a
penalty function approach is used. The performance of the constrained CI approach is
tested by successfully solving several well studied constrained test problems.

3.1 Constraint Handling Using Penalty Function
Approach

Consider a general constrained problem (in the minimization sense) as follows:

Minimize f(x)

Subject to g(x)jgo, j=12,...s 3.1
h(x)]: Oa .] = 1727 W ( ' )
Subject to W <x; <WIP, i=1,...,N
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In order to incorporate the constraints into the problem, a pseudo-objective
function is formed as follows:

S

B(X) = £(x)+ 9{; g )]+ > WXHZ} (3.2)

Subjectto W <x; <P i=1,...,N

w

where g;" (x) = max (0,g;(x)) and @ is the scalar penalty parameter which is fixed
in all the runs of the CI algorithm.

3.2 Numerical Experiments and Discussion

CI methodology was applied to a variety of well known constrained test problems
with penalty function approach [1-5] incorporated into it. The CI algorithm was
coded in MATLAB 7.14.0.739 (R2012a) on Windows platform using Intel Core 2
Duo, 1.67 GHz processor speed and 2 GB RAM. Every problem was solved 20
times with number of candidates C chosen as 5 and number of variations in the
behavior ¢ chosen for constrained test problem is listed in Table 3.9. These
parameters were derived empirically over numerous experiments.

It is evident from the results presented in Tables 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8
and 3.9, that the CI methodology is capable of efficiently handling a variety of equality
as well as inequality of constraints. For detailed properties of these problems the
reader is encouraged to refer to [4]. The results also demonstrated the competitiveness
with other contemporary methods. Furthermore, the standard deviation presented in
Table 3.9, it is evident that the approach was sufficiently robust with reasonable
computational cost, i.e. function evaluations and computational time. According to
Table 3.9, the solutions obtained using CI were quite close to the best reported
solution so far. As mentioned before, the parameters such as number of candidates C,
number of variations in the behavior ¢ and reduction factor » were chosen empirically

Table 3.1 Characteristic of

Problem |DV |Form of f(x) |(x%) |LI |[NE |NI |«
benchmark problems [4] G03 10 | Polynomial | 0002 |0 |1 |0 |1
G04 5 |Quadratic 52123 [0 |0 |6 |2
G5 4 | Cubic 0000 |2 (3 |0 |3
GO6 2| Cubic 0006 0 |0 |2 |2
GO7 10 | Quadratic 0000 |3 |0 |5 |6
GO08 2 Nonlinear 0.856 [0 |0 2 0
G09 7 |Polynomial | 0512 |0 |0 |4 |2
Gl1 2 | Quadratic 0000 0 |1 |0 |1
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Table 3.4 Statistical results of different methods solving spring design problem

Methods Best Mean Worst Std.

Arora (2004) [25] 0.0127303 N.A. N.A. N.A.

Coello (2000) [3] 0.0127048 0.0127690 0.012822 3.9390e—005
Coello et al. (2002) [16] 0.0126810 0.0127420 0.012973 5.9000e—005
Coello et al. (2004) [10] 0.0127210 0.0135681 0.015116 8.4152e—004
He et al. (2006) [26] 0.0126747 0.0127300 0.012924 5.1985e—004
He et al. (2007) [7] 0.0126652 0.0127072 0.0127191 1.5824e—005
Kulkarni et al. (2011) [1] 0.01350 0.02607 0.05270 N.A.

CI Algorithm 0.012679 0.012719 0.012884 0.000062

over numerous experiments. Since the chosen set of parameters produced sufficiently
robust results much effort was not spent in their fine-tuning. Hence, better perfor-
mance may be obtained through different choice of parameters.

The CI was incorporated with penalty function approach [1, 2] and tested by
solving several well studied constrained problems. The results were compared with
existing contemporary approaches. A few approaches focused on overcoming the
limitation of penalty approach. A self-adaptive penalty approach [3], a dynamic
penalty scheme [4], GA with binary representation assisted with traditional penalty
function method [5], etc. resulted in premature convergence with high sensitivity to
additional parameters. PSO uses penalty factors as searching variables but it is weak
in local searches. Also it is not efficient in maintaining balance between exploitation
and exploration due to lack of diversity. The approach of penalty parameter was
avoided by utilizing feasibility based rule in [5] solving constrained problems. It
failed to produce optimum solution in every run and also required an extra fitness
function. A variation of feasibility based rule [5] was proposed in [6] for solving
constrained non-linear functions. In both the approaches the population in hand is
the governing factor of the quality of solutions. The need for an extra fitness
function was avoided by HPSO [7] by introducing the feasibility based rule [5] into
PSO. The PSO [8] and the homomorphous mapping [9] required feasible solution
initially along with set dependent parameters. For some problems, it is quite hard to
generate feasible solutions initially and requires additional techniques. In cultural
algorithm [10] and cultural differential evolution (CDE) [11] it is seen that there is a
lack in diversity of the population. The gradient repair method [12] was implanted
into PSO [13] and the number of solution undergoing repair [14] are the key factors
of its performance. Taking directions from [15], GA was applied to find solution
vector (non-dominated) [16]. In addition, Genetics Adaptive Search (Gene AS)
[17], augment Lagrange multiplier method [18], geometric programming approach
[19], and a branch and bound technique [20] were also used for solving various
constrained benchmark problems addressed above which required additional gra-
dient method.
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Table 3.6 Statistical results of different methods solving welded beam design problem

Methods Best Mean Worst Std.
Coello (2000) [3] 1.748309 1.771973 1.785835 0.011220
Coello et al. (2002) [16] 1.728226 1.792654 1.993408 0.074713
Coello et al. (2004) [10] 1.724852 1.971809 3.179709 0.443131
He et al. (2006) [26] 1.728024 1.748831 1.782143 0.012926
He et al. (2007) [7] 1.724852 1.749040 1.814295 0.040049
Deb (2000) [5] 2.38145 2.38263 2.38355 N.A.
Siddall (1972) [27] 2.3815 N.A. N.A. N.A.
Ragsdell et al. (1976) [19] 2.3859 N.A. N.A. N.A.
CI algorithm 1.770436 1.779802 1.816707 0.013885

In this study, we apply the CI algorithm with penalty function approach to solve
the benchmark problems studied by Coello and Becerra [10]. This test problems
solved include two maximization problems (G03 and GOS8) and six minimization
problems (G04, GO5, GO7, GOS8, G0O9, G11). Since all constraints have explicit and
simple functional forms, the gradient of the constraints can be derived directly from
the constraint set. The characteristics of problems, including the number of decision
variables (DV), form of objective function, size of feasible region (x%), and the
number of linear inequality (LI), non-linear equality (NVE), non-linear inequality
(NI), and number of active constraints at the reported optimum (a), are summarized
in Table 3.1. The size of feasible region, empirically determined by simulation,
indicates the difficulty to randomly generate a feasible solution. These problems
have been grouped in different categories [4] (refer to Table 3.1) based on the
problem characteristics such as, nonlinear objective function (NLOF) [G03, G04,
GO05, G06, GO7, GOS8, GO9, G11], nonlinear equality constraints (NEC) (G03, GO5,
G11), moderated dimensionality (MD) (rn > 5) (G03, G07, G09), active constraints
(AC) (a>6) (GO7) and small feasible region (SFR) ((x%) = 0) (G03, G035, G11).

As presented in Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9, the overall
performance of CI with penalty function approach was quite comparable to other
existing algorithms. The solution of to GO3 problem was within 0.0583 % of the
reported optimum [8, 21]. Also, the computational cost, [time and Function
Evaluations (FEs)] was quite reasonable. The CI performance for solving the
problem G04 was within 0.0000326 % of the reported optimum [11, 12, 21-23]
with a reasonable computational cost. The CI solutions to problems G06, GO8 and
G09 were well within 0.0005242, 0.00000 and 0.01218 %, respectively of the
reported optimum [11, 24] with reasonable computational cost and standard devi-
ation. The CI algorithm could solve the problem GO5 within 1.0356 % of the
reported optimum [21] with standard deviation of 55.0329. Also, the average
computational time (30 s) was comparatively higher as compared to solving other
problems using CI. This underscored that CI needs to be further modified to make it
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Table 3.8 Statistical results of different methods for solving pressure vessel design problem

Methods Best Mean Worst Std.
Sandgren (1988) [20] 8129.8000 N.A. N.A. N.A.
Kannan et al. (1994) [18] 7198.0428 N.A. N.A. N.A.
Deb (1997) [17] 6410.3811 N.A. N.A. N.A.
Coello (2000) [3] 6288.7445 6293.8432 6308.1497 7.4133
Coello et al. (2002) [16] 6059.9463 6177.2533 6469.3220 130.9297
He et al. (2006) [26] 6061.0777 6147.1332 6363.8041 86.4545
He et al. (2007) [7] 6059.7143 6099.9323 6288.6770 86.2022
CI algorithm 6090.52639 6090.52689 6090.52849 0.00063

solve the problems with equality constraints. A mechanism similar to the window
approach proposed by Ray et al. [24] could be devised. It is also important to
mention that the value of reduction factor r varied from very narrow range of 0.98—
0.998. This is in contrary to the CI solutions solving unconstrained test problems
(refer to Chap. 2 for details). In addition, the solutions to problem GO7 and G11
were within 0.211 and 0.344 %, respectively of the reported optimum [11, 12] also
required higher computational cost.

Furthermore, the performance of CI was tested solving three well known
problems from the mechanical engineering design domain. The approach of CI
produced better results for solving the spring design problem within 0.11848 % of
the reported optimum [7]. The solution was quite robust with standard deviation
0.000062. In addition, CI solution solving the welded beam design problem and the
pressure vessel design problem yielded was within 2.6357 and 0.5049 %, respec-
tively of the reported optimum [10, 16]. Also, the standard deviations and com-
putational cost were quite reasonable.

3.3 Conclusions

The chapter has validated the constraint handling ability of the CI methodology by
solving a variety of well known test problems. This also justified the possible
application of CI for solving a variety of real world problems. In all the problem
solutions, the implemented CI methodology produced sufficiently robust results
with reasonable computational cost. It is important to mention here that similar to
the original CI approach discussed in Chap. 2, the sampling space was restored to
the original one when no significant improvement in the cohort behavior was
observed. This helped the solution jump out of possible local minima.

In addition to the advantages few limitations are also observed. The computa-
tional performance was essentially governed by the parameter such as sampling
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Table 3.9 CI solution details

Problem | Solutions Standard Avg.no.of | Avg. Closeness | Reduction
Best deviation | function comp. time | to the best | factor r
Mean evaluations | (seconds) reported
Worst solution

(%)

GO03 0.998892 0.000297 | 28,125 5.5 0.0583 0.98
0.999417
0.999762

G04 —30,665.531736 | 0.001740 |25,125 5.8 0.0000326 | 0.99
—30,665.529486
—30,665.526082

GO5 5143.533669 55.032911 | 42,375 30 1.035657 0.99
5196.042840
5273.835265

G06 —6961.812948 0.075814 | 27,335 4.5 0.0005242 | 0.98

—6961.777472
—6961.569046

GO7 24.310498 0.029861 | 348,750 42.5 0.211540 0.998
24.357417
24.403683

GO8 0.095825 0.000000 | 6000 1.59 0 0.98
0.095825
0.095825

G09 680.731701 0.177770 | 24,375 15.3 0.012184 0.99
680.921574
681.226784

Gl1 0.749904 0.004407 | 25,875 12.5 0.344 0.995
0.752580
0.760863

Spring 0.012679 0.000062 | 313,500 58 0.11848 0.99
design 0.012719
problem | 0.012884

Welded | 1.770436 0.013885 | 25,000 165 2.6359 0.983
beam 1.779802
design 1.816707
problem

Pressure | 6090.526390 0.000632 | 294,000 85 0.5049 0.9970
vessel 6090.526895
design 6090.528495
problem

interval reduction factor r, number of candidates C and number of variations z. In
the future, to make the approach more generalized and to improve the rate of
convergence, the quality of results, as well as reduce the computational cost, a self
adaptive scheme could be developed for these parameters. The authors also see
strong potential in the field of game development and mutual learning.
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