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Preface

This book is written for engineers, scientists, and students studying/working in the
optimization, artificial intelligence (AI), or computational intelligence arena. The
book discusses the core and underlying principles and analysis of the different
concepts associated with an emerging socio-inspired AI optimization tool referred
to as cohort intelligence (CI).

The book in detail discusses the CI methodology as well as several modifications
for solving a variety of problems. The validation of the methodology is also pro-
vided by solving several unconstrained test problems. In order to make CI solve
real-world problems which are inherently constrained, CI method with a penalty
function approach is tested on several constrained test problems and comparison
of the performance is also discussed. The book also demonstrates the ability of
CI methodology for solving several cases of the combinatorial problems such as
traveling salesman problem (TSP) and knapsack problem (KP). In addition,
real-world applications of the CI methodology by solving complex and large-sized
combinatorial problems from the healthcare, inventory, supply chain optimization,
and cross-border transportation domain is also discussed. The inherent ability of
handling constraints based on the probability distribution is also revealed and
proved using these problems. A detailed mathematical formulation, solutions, and
comparisons are provided in every chapter. Moreover, the detailed discussion on
the CI methodology modifications for solving several problems from the machine
learning domain is also provided.

The mathematical level in all the chapters is well within the grasp of the sci-
entists as well as the undergraduate and graduate students from the engineering and
computer science streams. The reader is encouraged to have basic knowledge of
probability and mathematical analysis. In presenting the CI and associated modi-
fications and contributions, the emphasis is placed on the development of the
fundamental results from basic concepts. Numerous examples/problems are worked
out in the text to illustrate the discussion. These illustrative examples may allow the
reader to gain further insight into the associated concepts. The various algorithms
for solving have been coded in MATLAB software. All the executable codes are
available online at www.sites.google.com/site/oatresearch/cohort-intelligence.

vii

http://www.sites.google.com/site/oatresearch/cohort-intelligence


The book is an outgrowth of the three-year work by the authors. In addition,
Fazle Baki and Ben Chaouch from University of Windsor, ON, Canada, helped
with the complex combinatorial problem formulations. Over the period of 3 years,
the algorithms have been tested extensively for solving various real-world problems
as well as published in various prestigious journals and conferences. The sugges-
tions and criticism of various reviewers and colleagues had a significant influence
on the way the work has been presented in this book. We are much grateful to our
colleagues for reviewing the different parts of the manuscript and for providing
us valuable feedback. The authors would like to thank Dr. Thomas Ditzinger,
Springer Engineering In-house Editor, Studies in Computational Intelligence Series;
Prof. Janusz Kacprzyk, Editor-in-Chief, Springer Intelligence Systems Reference
Library Series; and Mr. Holger Schäpe, Editorial Assistant, Springer Verlag,
Heidelberg, for the editorial assistance and excellent cooperative collaboration to
produce this important scientific work. We hope that the reader will share our
excitement to present this volume on cohort intelligence and will find it useful.

Windsor, ON, Canada Anand Jayant Kulkarni
Kuala Lumpur, Malaysia Ganesh Krishnasamy
Auburn, WA, USA Ajith Abraham
May 2016
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Chapter 1
Introduction to Optimization

1.1 What Is Optimization?

For almost all the human activities there is a desire to deliver the most with the
least. For example in the business point of view maximum profit is desired from
least investment; maximum number of crop yield is desired with minimum
investment on fertilizers; maximizing the strength, longevity, efficiency, utilization
with minimum initial investment and operational cost of various household as well
as industrial equipments and machineries. To set a record in a race, for example, the
aim is to do the fastest (shortest time).

The concept of optimization has great significance in both human affairs and the
laws of nature which is the inherent characteristic to achieve the best or most
favorable (minimum or maximum) from a given situation [1]. In addition, as the
element of design is present in all fields of human activity, all aspects of opti-
mization can be viewed and studied as design optimization without any loss of
generality. This makes it clear that the study of design optimization can help not
only in the human activity of creating optimum design of products, processes and
systems, but also in the understanding and analysis of mathematical/physical
phenomenon and in the solution of mathematical problems. The constraints are
inherent part if the real world problems and they have to be satisfied to ensure the
acceptability of the solution. There are always numerous requirements and con-
straints imposed on the designs of components, products, processes or systems in
real-life engineering practice, just as in all other fields of design activity. Therefore,
creating a feasible design under all these diverse requirements/constraints is already
a difficult task, and to ensure that the feasible design created is also ‘the best’ is
even more difficult.
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1.1.1 General Problem Statement

All the optimal design problems can be expressed in a standard general form stated
as follows:

Minimize objective function f Xð Þ
Subject to

ð1:1Þ

s number of inequality constraints gj Xð Þ� 0; j ¼ 1; 2; . . .; s ð1:2Þ

w number of equality constraints hj Xð Þ ¼ 0 ; j ¼ 1; 2; . . .;w ð1:3Þ

where the number of
design variables is given by xi; i ¼ 1; 2; . . .; n

or by design variable vector X ¼
x1
x2
..
.

xn

8
>><

>>:

9
>>=

>>;

• A problem where the objective function is to be maximized (instead of mini-
mized) can also be handled with this standard problem statement since maxi-
mization of a function f Xð Þ is the same as minimizing the negative of f Xð Þ.

• Similarly, the ‘≥’ type of inequality constraints can be treated by reversing the
sign of the constraint function to form the ‘≤’ type of inequality.

• Sometimes there may be simple limits on the allowable range of value a design
variable can take, and these are known as side constraints:

xli � xi � xui

• where xli and xui are the lower and upper limits of xi, respectively. However,
these side constraints can be easily converted into the normal inequality con-
straints (by splitting them into 2 inequality constraints).

• Although all optimal design problems can be expressed in the above standard
form, some categories of problems may be expressed in alternative specialized
forms for greater convenience and efficiency.
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1.1.2 Active/Inactive/Violated Constraints

The constraints in an optimal design problem restrict the entire design space into
smaller subset known as the feasible region, i.e. not every point in the design space
is feasible. See Fig. 1.1.

• An inequality constraint gj Xð Þ is said to be violated at the point x if it is not
satisfied there gj Xð Þ� 0

� �
.

• If gj Xð Þ is strictly satisfied gj Xð Þ\0
� �

then it is said to be inactive at x.
• If gj Xð Þ is satisfied at equality gj Xð Þ ¼ 0

� �
then it is said to be active at x.

• The set of points at which an inequality constraint is active forms a constraint
boundary which separates the feasibility region of points from the infeasible
region.

• Based on the above definitions, equality constraints can only be either violated
hj Xð Þ 6¼ 0
� �

or active hj Xð Þ ¼ 0
� �

at any point x.
• The set of points where an equality constraint is active forms a sort of boundary

both sides of which are infeasible.

1.1.3 Global and Local Minimum Points

Let the set of design variables that give rise to a minimum of the objective function
f Xð Þ be denoted by X� (the asterisk � is used to indicate quantities and terms
referring to an optimum point). An objective G Xð Þ is at its global (or absolute)
minimum at the point X� if:

f X�ð Þ � f Xð Þ for all X in the feasible region

x1

g 3(
x)

=
0

g 1(x
) = 0

g
2 (x) =

0

x2

xa
xc

xb

x1
h1(x) = 0

x2
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xb

Fig. 1.1 Active/Inactive/Violated constraints
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The objective has a local (or relative) minimum at the point X� if:

f X�ð Þ� f Xð Þ for all feasible X
within a small neighborhood of X�

A graphical representation of these concepts is shown in Fig. 1.2 for the case of
a single variable x over a closed feasible region a� x� b.

1.2 Contemporary Optimization Approaches

There are several mathematical optimization techniques being practiced so far, for
example gradient methods, Integer Programming, Branch and Bound, Simplex
algorithm, dynamic programming, etc. These techniques can efficiently solve the
problems with limited size. Also, they could be more applicable to solve linear
problems. In addition, as the number of variables and constraints increase, the
computational time to solve the problem, may increase exponentially. This may
limit their applicability. Furthermore, as the complexity of the problem domain is
increasing solving such complex problems using the mathematical optimization
techniques is becoming more and more cumbersome. In addition, certain heuristics
have been developed to solve specific problem with certain size. Such heuristics
have very limited flexibility to solve different class of problems.

In past few years a number of nature-/bio-inspired optimization techniques (also
referred to as metaheuristics) such as Evolutionary Algorithms (EAs), Swarm
Intelligence (SI), etc. have been developed. The EA such as Genetic Algorithm
(GA) works on the principle of Darwinian theory of survival of the fittest individual
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in the population. The population is evolved using the operators such as selection,
crossover, mutation, etc. According to Deb [2] and Ray et al. [3], GA can often
reach very close to the global optimal solution and necessitates local improvement
techniques to incorporate into it. Similar to GA, mutation driven approach of
Differential Evolution (DE) was proposed by Storn and Price [4] which helps
explore and further locally exploit the solution space to reach the global optimum.
Although, easy to implement, there are several problem dependent parameters
required to be tuned and may also require several associated trials to be performed.

Inspired from social behavior of living organisms such as insects, fishes, etc.
which can communicate with one another either directly or indirectly the paradigm
of SI is a decentralized self organizing optimization approach. These algorithms
work on the cooperating behavior of the organisms rather than competition amongst
them. In SI, every individual evolves itself by sharing the information from others
in the society. The techniques such as Particle Swarm Optimization (PSO) is
inspired from the social behavior of bird flocking and school of fish searching for
food [4]. The fishes or birds are considered as particles in the solution space
searching for the local as well as global optimum points. The directions of
movements of these particles are decided by the best particle in the neighborhood
and the best particle in entire swarm. The Ant Colony Optimization (ACO) works
on the ants’ social behavior of foraging food following a shortest path [5]. The ant is
considered as an agent of the colony. It searches for the better solution in its close
neighborhood and iteratively updates its solution. The ants also updates their
pheromone trails at the end of every iteration. This helps every ant decide their
directions which may further self organize them to reach to the global optimum.
Similar to ACO, the Bee Algorithm (BA) also works on the social behavior of
honey bees finding the food; however, the bee colony tends to optimize the use of
number of members involved in particular pre-decided tasks [6]. The Bees
Algorithm is a population-based search algorithm proposed by Pham et al. [7] in a
technical report presented at the Cardiff University, UK. It basically mimics the
food foraging behavior of honey bees. According to Pham and Castellani [8] and
Pham et al. [7], Bees Algorithm mimics the foraging strategy of honey bees which
look for the best solution. Each candidate solution is thought of as a flower or a
food source, and a population or colony of n bees is used to search the problem
solution space. Each time an artificial bee visits a solution, it evaluates its objective
solution. Even though it has been proven to be effective solving continuous as well
as combinatorial problems Pham and Castellani [8, 9], some measure of the
topological distance between the solutions is required. The Firefly Algorithm
(FA) is an emerging metaheuristic swarm optimization technique based on the
natural behavior of fireflies. The natural behavior of fireflies is based on biolumi-
nescence phenomenon [10, 11]. They produce short and rhythmic flashes to
communicate with other fireflies and attract potential prey. The light
intensity/brightness I of the flash at a distance r obeys inverse square law, i.e.
I / 1

�
r2 in addition to the light absorption by surrounding air. This makes most of
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the fireflies visible only till a limited distance, usually several hundred meters at
night, which is enough to communicate. The flashing light of fireflies can be for-
mulated in such a way that it is associated with the objective function to be opti-
mized, which makes it possible to formulate optimization algorithms [10, 11].
Similar to the other metaheuristic algorithms constraint handling is one of crucial
issues being addressed by researchers [12].

1.3 Socio-Inspired Optimization Domain

Every society is a collection of self interested individuals. Every individual has a
desire to improve itself. The improvement is possible through learning from one
another. Furthermore, the learning is achieved through interaction as well as
competition with the individuals. It is important to mention here that this learning
may lead to quick improvement in the individual’s behavior; however, it is also
possible that for certain individuals the learning and further improvement is slower.
This is because the learning and associated improvement depend upon the quality
of the individual being followed. In the context of optimization (minimization and
maximization) if the individual solution being followed is better, the chances of
improving the follower individual solution increases. Due to uncertainty, this is also
possible that the individual solution being followed may be of inferior quality as
compared to the follower candidate. This may make the follower individual solution
to reach a local optimum; however, due to inherent ability of societal individuals to
keep improving itself other individuals are also selected for learning. This may
make the individuals further jump out of the possible local optimum and reach the
global optimum solution. This common goal of improvement in the
behavior/solution reveals the self organizing behavior of the entire society. This is
an effective self organizing system which may help in solving a variety of complex
optimization problems.

The following chapters discuss an emerging Artificial Intelligence
(AI) optimization technique referred to as Cohort Intelligence (CI). The framework
of CI along with its validation by solving several unconstrained test problems is
discussed in detail. In addition, numerous applications of CI methodology and its
modified versions in the domain of machine learning are provided. Moreover, the
CI application for solving several test cases of the combinatorial problems such as
Traveling Salesman Problem (TSP) and 0–1 Knapsack Problem are discussed.
Importantly, CI methodology solving real world combinatorial problems from the
healthcare and inventory problem domain, as well as complex and large sized
Cross-Border transportation problems is also discussed. These applications under-
score the importance of the Socio-inspired optimization method such as CI.
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Chapter 2
Socio-Inspired Optimization Using Cohort
Intelligence

The nature-/bio-inspired optimization techniques such as genetic algorithm (GA),
particle swarm optimization (PSO), ant colony optimization (ACO), simulated
annealing (SA), Tabu search, etc., have become popular due to their simplicity to
implement and working based on rules. The GA is population based which is
evolved using the operators such as selection, crossover, mutation, etc. According
to Deb [1] and Ray et al. [2] the performance of GA is governed by the quality of
the population being evaluated and may often reach very close to the global optimal
solution and necessitates local improvement techniques to incorporate into it. The
paradigm of Swarm Intelligence (SI) is a decentralized self organizing optimization
approach inspired from social behavior of living organisms such as insects, fishes,
etc. which can communicate with one another either directly or indirectly. The
techniques such as Particle Swarm Optimization (PSO) is inspired from the social
behavior of bird flocking and school of fish searching for food [3]. The Ant Colony
Optimization (ACO) works on the ants’ social behavior of foraging food following
a shortest path [4]. Similar to ACO, the Bee Algorithm (BA) also works on the
social behavior of honey bees finding the food; however, the bee colony tends to
optimize the use of number of members involved in particular pre-decided tasks [5].
Generally, the swarm techniques are computationally intensive.

Kulkarni et al. [6] proposed an emerging Artificial Intelligence (AI) technique
referred to as Cohort Intelligence (CI). It is inspired from the self-supervised
learning behavior of the candidates in a cohort. The cohort here refers to a group of
candidates interacting and competing with one another to achieve some individual
goal which is inherently common to all the candidates. When working in a cohort,
every candidate tries to improve its own behavior by observing the behavior of
every other candidate in that cohort. Every candidate may follow a certain behavior
in the cohort which according to itself may result into improvement in its own
behavior. As certain qualities make a particular behavior which, when a candidate
follows, it actually tries to adapt to the associated qualities. This makes every
candidate learn from one another and helps the overall cohort behavior to evolve.
The cohort behavior could be considered saturated, if for considerable number of
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learning attempts the individual behavior of all the candidates does not improve
considerably and candidates’ behaviors become hard to distinguish. The cohort
could be assumed to become successful when for a considerable number of times
the cohort behavior saturates to the same behavior.

This chapter discusses the CI methodology framework in detail and further
validates its ability by solving a variety of unconstrained test problems. This
demonstrates its strong potential of being applicable for solving unimodal as well as
multimodal problems.

2.1 Framework of Cohort Intelligence

Consider a general unconstrained problem (in the minimization sense) as follows:

Minimize f ðxÞ ¼ f x1; . . .xi; . . .; xnð Þ
Subject to Wlower

i � xi �Wupper
i ; i ¼ 1; . . .;N

ð2:1Þ

As a general case, assume the objective function f xð Þ as the behavior of an
individual candidate in the cohort which it naturally tries to enrich by modifying the
associated set of characteristics/attributes/qualities x ¼ x1; . . .xi; . . .; xNð Þ.

Having considered a cohort with number of candidates C, every individual
candidate c c ¼ 1; . . .;Cð Þ belongs a set of characteristics/attributes/qualities xc ¼
xc1; . . .x

c
i ; . . .; x

c
N

� �
which makes the overall quality of its behavior f xcð Þ. The

individual behavior of each candidate c is generally being observed by itself and
every other candidate cð Þ in the cohort. This naturally urges every candidate c to
follow the behavior better than its current behavior. More specifically, candidate
c may follow f � x cð Þ� �

if it is better than f � xcð Þ, i.e. f � xðcÞ
� �

\f � xcð Þ. Importantly,
following a behavior f xð Þ refers to following associated qualities x ¼
x1; . . .xi; . . .; xNð Þ with certain variations t associated with them. However, fol-
lowing better behavior and associated qualities is highly uncertain. This is because;
there is certain probability involved by which it selects certain behavior to follow.
In addition, a stage may come where the cohort behavior could become saturated. In
other words, at a certain stage, there could be no improvement in the behavior of an
individual candidate for a considerable number of learning attempts. Such situation
is referred to as saturation stage. This makes every candidate to expand its search
around the qualities associated with the current behavior being followed. The
mathematical formulation of the CI methodology is explained below in detail with
the algorithm flowchart in Fig. 2.1 [6, 7].

The procedure begins with the initialization of number of candidates C, sam-
pling interval Wi for each quality xi; i ¼ 1; . . .;N, learning attempt counter n ¼ 1,
and the setup of sampling interval reduction factor r 2 0; 1½ �, convergence param-
eter e ¼ 0:0001, number of variations t. The values of C; t and m are chosen based
on preliminary trials of the algorithm.
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Every candidate follows the best behavior from within 
its t behaviors 

Convergence ?

Y

Fig. 2.1 Cohort intelligence (CI) flowchart
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Step 1. The probability of selecting the behavior f � xcð Þ of every associated
candidate c c ¼ 1; . . .;Cð Þ is calculated as follows:

pc ¼ 1=f � xcð Þ
PC

c¼1 1=f
� xcð Þ ; c ¼ 1; . . .;Cð Þ ð2:2Þ

Step 2. Every candidate c c ¼ 1; . . .;Cð Þ generates a random number r 2 0; 1½ �
and using a roulette wheel approach decides to follow corresponding

behavior f � xc½?�
� �

and associated qualities xc ?½ � ¼ xc ?½ �1 ; . . .xc ?½ �i ; . . .; xc ?½ �N

� �
.

The superscript ?½ � indicates that the behavior is selected by candidate
c and not known in advance. The roulette wheel approach could be most
appropriate as it provides chance to every behavior in the cohort to get
selected purely based on its quality. In addition, it also may increase the
chances of any candidate to select the better behavior as the associated
probability stake pc c ¼ 1; . . .;Cð Þ presented in Eq. (2.2) in the interval
0; 1½ � is directly proportional to the quality of the behavior f � xcð Þ. In other
words, better the solution, higher is the probability of being followed by
the candidates in the cohort.

Step 3. Every candidate c c ¼ 1; . . .;Cð Þ shrinks the sampling intervalWc ?½ �
i ; i ¼

1; . . .;N associated with every variable xc ?½ �i ; i ¼ 1; . . .;N to its local
neighborhood. This is done as follows:

Wc ?½ �
i 2 xc ?½ �i � Wik k=2ð Þ; xc ?½ �i þ Wik k=2ð Þ

h i
ð2:3Þ

where Wi ¼ Wik kð Þ � r.
Step 4. Each candidate c c ¼ 1; . . .;Cð Þ samples t qualities from within the

updated sampling interval Wc ?½ �
i ; i ¼ 1; . . .;N associated with every

variable xc ?½ �i ; i ¼ 1; . . .;N and computes a set of associated t behaviors,

i.e. Fc;t ¼ f xcð Þ1; . . .; f xcð Þ j; . . .; f xcð Þt
n o

, and selects the best function

f � xcð Þ from within. This makes the cohort is available with C updated
behaviors represented as FC ¼ f � x1ð Þ; . . .; f � xcð Þ; . . .; f � xCð Þ� �

.
Step 5. The cohort behavior could be considered saturated, if there is no

significant improvement in the behavior f � xcð Þ of every candidate
c c ¼ 1; . . .;Cð Þ in the cohort, and the difference between the individual
behaviors is not very significant for successive considerable number of
learning attempts, i.e. if

1. max FC
� �n�max FC

� �n�1
���

���� e, and

2. min FC
� �n�min FC

� �n�1
���

���� e, and
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3. max FC
� �n�min FC

� �n�� ��� e, every candidate c c ¼ 1; . . .;Cð Þ
expands the sampling interval Wc ?½ �

i ; i ¼ 1; . . .;N associated with

every quality xc ?½ �i ; i ¼ 1; . . .;N to its original one
Wlower

i � xi �Wupper
i ; i ¼ 1; . . .;N.

Step 6. If either of the two criteria listed below is valid, accept any of the C
behaviors from current set of behaviors in the cohort as the final objective
function value f � xð Þ as the final solution and stop, else continue to Step 1.

(a) If maximum number of attempts exceeded.
(b) If cohort saturates to the same behavior (satisfying the conditions in

Step 5) for smax times.

2.2 Theoretical Comparison with Contemporary
Techniques

Particle swarm optimization PSO is a population-based stochastic search algorithm
developed by Kennedy and Eberhart [3]. Due to its simple concept, it has been
applied to many optimization problems. The PSO itself did not work well in solving
constrained problems [8]. To overcome this shortcoming, many modified PSO
techniques such as Quantum-behaved PSO [9], Improved Vector PSO (IVPSO)
[10] and other techniques which controlled the velocity of the swarm were used. All
these techniques depend upon the control parameters in the velocity updating
model, which are the inertia weight and acceleration coefficients. Another technique
referred to as the Barebones PSO (BPSO) [11] used Gaussian normal distribution to
update the values of the particles in the solution. This removed the necessity of
inertia weight and acceleration coefficients. In the PSO variations the entire swarm
has a collective intelligence. While the individual particle keeps track of its own
best solution, every particle in the swarm is also aware of the best solution found by
the entire swarm [3]. The movement of each particle is some function of this
individual best and the group’s best values. The Fully Informed PSO (FIPSO) is
one technique that does not merely depend on the best solution offered globally.
This technique samples the solutions offered by its entire neighborhood and follows
a point in space that is calculated using this complete information [12].

Another technique popular today is the Genetic Algorithm (GA). This technique
follows the principle of survival of the fittest. The best solutions in a particular
generation are taken forward to the next one, and new solutions are generated by
using crossover as well as applying mutations on it. Ant Colony optimization
(ACO) [4, 13] follows autocatalytic behavior which is characterized by a positive
feedback, where the probability with which an agent chooses a path increases with

2.1 Framework of Cohort Intelligence 13



the number of agents that previously chose the same path [14]. However it is
difficult to solve continuous optimization problem using ACO directly, as there are
limitations in number of choices for ants at each stage. Some recent research has
extended classical ACO to solve continuous optimization problem.

In CI, however, the collective effort of the swarm is replaced by the competitive
nature of a cohort. Every candidate tries to follow the behavior of a candidate that
has shown better results in that particular iteration. In following this behavior, it
tries to incorporate some of the qualities that made that behavior successful. This
competitive behavior motivates each candidate to perform better, and leads to an
eventual improvement in the behaviors of all the candidates. This technique differs
from PSO and barebones PSO in that it does not check merely the best solution, but
is fully informed of the activities of its fellow candidates and follows a candidate
selected using the roulette wheel approach. However, it is also different from the
FIPSO which keeps track of the entire swarm in that it follows the behavior of only
one candidate, not a resultant of the results presented by the entire swarm. CI also
differs from GA, as there is no direct exchange of certain properties or even
mutation. Rather, candidates decide to follow a fellow candidate, and try to imbibe
the qualities that led that candidate to reach its solution. The values of these
qualities are not replicated exactly. They are instead taken from a close neighbor-
hood of the values of the qualities of the candidate being followed. This gives a
variation in the solutions obtained and this is how the cohort can avoid getting
trapped in local minima. CI differs from ACO as the autocatalytic nature of the ants
is replaced by competitive nature of the cohorts. Instead of having tendency to
follow most followed behavior, candidates in CI try to incorporate the best behavior
in every iteration. This prevents the algorithm from getting caught into local
minima by not relying on the behavior that is locally optimal. The CI algorithm has
shown itself to be comparable to the best results obtained from the various tech-
niques. The sharing of the best solution among candidates in CI gives a direction for
all the candidates to move towards, but the independent search of each candidate
ensures that the candidates come out of local minima to get the best solutions.

2.3 Validation of Cohort Intelligence

The performance of the proposed CI algorithm was tested by solving unconstrained
well known test problems such as Ackley, Dixon and Price, Griewank, Hartmann,
Levy, Michalewicz, Perm, Powell, Powersum, Rastrigin, Schwefel, Sphere,
Sum Square, Trid, Zakhrov, etc. with different problem sizes. The algorithm was
coded in MATLAB 7.8.0 (R2009A) on Windows platform using Intel Core 2 Duo
T6570, 2.10 GHz processor speed and 2 GB RAM. Every test problem was solved
20 times with number of candidates C, number of variations in the behavior
t chosen as 5 and 7, respectively. The values of the reduction factor r chosen for
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every unconstrained test problem are listed in Table 2.6. These parameters were
derived empirically over numerous experiments.

The CI performance solving a variety of unconstrained test problems is pre-
sented in Tables 2.1, 2.2, 2.3, 2.4 and 2.5 with increase in the number of variables

Table 2.1 Summary of unconstrained test problem solutions with 5 variables

Problem True
optimum

CI
algorithm
Best
Mean
Worst

Function
evaluations

Standard
deviation

Time
(s)

Ackley 0.0000 2.04E−10
5.58E−09
2.70E−08

43,493 1.06E−08 1.42

Dixon and
Price

0.0000 9.86E−32
1.43E−09
4.28E−09

82,770 4.28E−09 1.83

Griewank 0.0000 0.00E+00
1.80E−02
3.70E−02

163,485 9.73E−03 5.15

Levy 0.0000 1.28E−21
6.22E−20
2.18E−19

38,993 7.70E−20 1.43

Michalewicz −4.687658 −3.96E+00
−3.40E+00
−2.80E+00

188,700 3.61E−01 5.61

Perm 0.0000 4.20E−01
2.82E+00
9.83E+00

225,960 2.79E+00 8.07

Powell 0.0000 8.73E−09
2.31E−06
1.88E−05

162,510 5.54E−06 5.65

Rastrigin 0.0000 9.95E−01
1.50E+00
2.00E+00

277,440 4.91E−01 5.99

Schwefel 0.0000 2.83E−06
6.03E−06
8.86E−06

1,570,718 1.70E−06 38.73

Sphere 0.0000 2.69E−29
1.58E−28
2.55E−28

12,345 5.84E−29 0.35

Sum Square 0.0000 1.56E−18
2.96E−18
6.70E−18

7470 1.37E−18 0.22

Zakhrov 0.0000 8.38E−19
1.95E−18
3.20E−18

7470 6.62E−19 0.23
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associated with the individual problem. It is observed that with increase in number
of variables, the computational cost, i.e. function evaluations and computational
time was increased. However, the small standard deviation values for all the

Table 2.2 Summary of unconstrained test problem solutions with 10 variables

Problem True
optimum

CI
algorithm
Best
Mean
Worst

Function
evaluations

Standard
deviation

Time
(s)

Ackley 0.0000 8.97E−08
4.58E−07
9.30E−07

30,765 3.60E−07 1.39

Dixon and
Price

0.0000 6.67E−01
6.67E−01
6.67E−01

359,640 1.48E−14 12.11

Griewank 0.0000 7.48E−03
2.50E−02
4.68E−02

432,368 1.18E−02 17.49

Levy 0.0000 2.02E−06
7.34E−06
1.12E−05

44,798 2.78E−06 2.29

Powell 0.0000 7.73E−06
6.28E−05
2.13E−04

186,570 7.29E−05 9.46

Rastrigin 0.0000 6.96E+00
1.06E+01
1.49E+01

261,998 2.31E+00 10.04

Rosenbrock 0.0000 0.0000E
+00
0.0000E
+00
0.0000E
+00

13,605 0.0000E+00 0.49

Schwefel 0.0000 1.20E−06
1.52E−06
1.74E−06

2,023,103 1.66E−07 84.55

Sphere 0.0000 7.17E−22
9.47E−22
1.62E−21

18,668 2.73E−22 0.76

Sum Square 0.0000 1.32E−16
2.37E−15
2.21E−14

14,948 6.58E−15 0.61

Zakhrov 0.0000 3.22E−12
5.15E−12
6.68E−12

22,365 1.24E−12 0.90
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functions independent of the number of variables highlighted its robustness. The
effect of CI parameters such as number of candidates C, reduction rate r and number
of variations in behavior t was also analyzed on unimodal as well as multimodal

Table 2.3 Summary of unconstrained test problem solutions with 20 variables

Problem True
optimum

CI
algorithm
Best
Mean
Worst

Function
evaluations

Standard
deviation

Time
(s)

Ackley 0.0000 2.97E−11
6.04E−11
2.96E−10

329,745 7.88E−11 21.87

Dixon and
Price

0.0000 7.47E−01
7.77E−01
8.22E−01

358,800 2.31E−02 20.65

Griewank 0.0000 0.00E+00
7.40E−04
7.40E−03

187,763 2.22E−03 14.00

Levy 0.0000 7.31E−15
1.73E−13
8.79E−13

329,768 3.28E−13 27.01

Powell 0.0000 8.46E−05
2.18E−04
3.60E−04

539,640 8.02E−05 44.86

Rastrigin 0.0000 2.19E+01
3.88E+01
5.57E+01

408,758 7.87E+00 24.60

Rosenbrock 0.0000 0.00E+00
3.96E−30
1.98E−29

17,288 7.92E−30 1.01

Schwefel 0.0000 4.38E−06
5.56E−06
6.12E−06

2,023,950 5.03E−07 134.37

Sphere 0.0000 6.22E−14
7.60E−14
9.40E−14

26,183 1.11E−14 1.78

Sum Square 0.0000 8.88E−11
3.78E−10
1.88E−09

37,335 5.17E−10 2.50

Zakhrov 0.0000 1.00E−06
2.19E−06
4.97E−06

37,290 1.08E−06 2.53
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functions. The effect is visible in Fig. 2.3 where effect of these parameters on
Sphere function and Ackley Function is presented as a representative to unimodal
and multimodal function, respectively. The visualization for the convergence of the

Table 2.4 Summary of unconstrained test problem solutions with 30 variables

Problem True
optimum

CI
algorithm
Best
Mean
Worst

Function
evaluations

Standard
deviation

Time
(s)

Ackley 0.0000 1.59E−07
5.91E−07
1.79E−06

299,835 6.41E−07 28.91

Dixon and
Price

0.0000 9.89E−01
1.10E+00
1.23E+00

357,413 7.25E−02 29.07

Griewank 0.0000 2.90E−06
1.82E−03
7.57E−03

398,918 2.86E−03 39.91

Levy 0.0000 4.89E−07
4.62E−05
2.47E−04

674,363 9.15E−05 80.24

Powell 0.0000 7.23E−02
1.84E−01
4.23E−01

743,595 1.23E−01 89.86

Rastrigin 0.0000 5.57E+01
8.77E+01
1.00E+02

296,745 1.41E+01 26.40

Rosenbrock 0.0000 0.00E+00
7.22E−30
3.61E−29

19,470 1.44E−29 1.58

Schwefel 0.0000 1.06E−05
1.20E−05
1.37E−05

2,023,290 8.74E−07 180.62

Sphere 0.0000 1.91E−13
2.66E−13
4.51E−13

26,235 7.38E−14 2.51

Sum Square 0.0000 1.28E−10
2.52E−04
9.75E−04

55,433 3.79E−04 5.23

Zakhrov 0.0000 1.63E−04
6.93E−04
1.15E−03

221,798 3.03E−04 20.98
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representative Ackley function is presented in Fig. 2.2 for learning attempts 1, 10,
15 and 30. For both types of functions, the computational cost, i.e. function eval-
uations and computational time was observed to be increasing linearly with
increasing number of candidates C (refer to Fig. 2.3a, b) as well as number of
variations in behavior t (refer to Fig. 2.3e, f, k and l). This was because, with
increase in number of candidates, number of behavior choices i.e. function evalu-
ations also increased. Moreover, with fewer number of candidates C, the quality of
the solution at the end of first learning attempt referred to as initial solution as well
as the converged solution were quite close to each other and importantly, the
converged solutions and the converged solution was suboptimal. The quality of
both the solutions improved with increase in number of candidates C. This was
because fewer number of behavior choices were available with fewer number of
candidates, whereas with increase in number of candidates the total choice of
behavior also increased as a result initial solution worsened whereas converged
solution improved as sufficient time was provided for saturation. Due to this a
widening gap between initial solution and converged solution was observed in the

Table 2.5 Summary of solution to Powersum, Hartmann and Trid function

Problem No of
variables

True
optimum

CI
algorithm
Best
Mean
Worst

Function
evaluations

Standard
deviation

Time
(s)

Powersum 4 0.0000 1.38E
−06
6.74E
−05
1.34E
−04

619,125 4.44E-05 17.48

Hartmann 6 −3.86278 −3.32E
+00
−3.32E
+00
−3.32E
+00

710,483 1.67E-03 31.53

Trid 6 −50.0000 −4.87E
+01
−4.87E
+01
−4.87E
+01

177,090 4.92E-03 4.27
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trend of initial solution and final solution. It is evident in Fig. 2.3g, h. In addition, it
is important observation from Table 2.6 that larger values of the reduction rate
r were required as the problem size increased. This could be because as the number
of variables increase size of the problem search space also increased and larger
values of the reduction rate r were required. However, it is evident from Fig. 2.3c,
d, i, j that for the same size of unimodal as well as multimodal problems with the
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Fig. 2.2 Visualization of convergence of solutions at various learning attempts for Ackley
function
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increase in the value of reduction rate r larger solution space was available for
exploration which when searched resulted into increased converged solution quality
as well as associated computational cost. In addition, similar to the increase in
number of candidates C, it was observed that with the increase in number of
variations in behavior t the computational cost increased along with the

(a) Variation in Function Evaluations and Time with 
respect to Number of Candidates (C)

(b) Variation in Function Evaluations and Time with 
respect to Number of Candidates (C)

(c) Variation in Function Evaluations and Time with 
respect to Reduction Factor (r)

(d) Variation in Function Evaluations and Time with 
respect to Reduction Factor (r)

(e) Variation in Function Evaluations and Time with 
respect to Variation in Behavior (t)

(f) Variation in Function Evaluations and Time with 
respect to Variation in Behavior (t)
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Fig. 2.3 Influence of number of candidates (C), reduction factor (r) and variation in behavior
(t) on CI algorithm performance
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improvement in converged solution quality. Furthermore, the converged solution
quality did not improve significantly after a certain number of variations in behavior
t. Moreover, with the increase in variations in behavior t, the difference between the
initial solution and the converged solution gradually decreased.

(g) Variation in Initial and Final Solution with respect 
to Number of Candidates (C)

(h) Variation in Initial and Final Solution with 
respect to Number of Candidates (C)

(i) Variation in Initial and Final Solution with respect 
to Reduction Factor (r)

(j) Variation in Initial and final Solution with 
respect to Reduction Factor (r)

(k) Variation in Initial and Final Solution with respect 
to Variation in Behavior (t)

(l) Variation in Initial and Final Solution with 
respect to Variation in Behavior (t)
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Chapter 3
Cohort Intelligence for Constrained Test
Problems

Any optimization algorithm requires a technique/way to handle constraints. This is
important because most of the real world problems are inherently constrained prob-
lems. There are a several traditional methods available such as feasibility-based
methods, gradient projection method, reduced gradient method, Lagrange multiplier
method, aggregate constraint method, feasible direction based method, penalty based
method, etc. [1]. According to Vanderplaat [2], the penalty based methods can be
referred to as generalized constraint handling methods. They can be easily incorpo-
rated into most of the unconstrained optimization methods and can be used to handle
nonlinear constraints. Another approach is feasibility-based approach. Similar to the
penalty based methods, it is also simple to use as it assists the unconstrained opti-
mizationmethods to drive into feasible region and further reach in close neighborhood
of the optimum solution [3–5]. Similar to other nature-/bio-inspired techniques, the
performance of Cohort Intelligence (CI) methodology may degenerate when applied
for solving constrained problems. As an effort in the direction of developing and
further incorporating a generic constraint handling technique into the CI framework, a
penalty function approach is used. The performance of the constrained CI approach is
tested by successfully solving several well studied constrained test problems.

3.1 Constraint Handling Using Penalty Function
Approach

Consider a general constrained problem (in the minimization sense) as follows:

Minimize f ðxÞ
Subject to gðxÞj � 0; j ¼ 1; 2; . . .; s

h xð Þj¼ 0; j ¼ 1; 2; . . .;w
Subject to Wlower

i � xi �Wupper
i ; i ¼ 1; . . .;N

ð3:1Þ

© Springer International Publishing Switzerland 2017
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In order to incorporate the constraints into the problem, a pseudo-objective
function is formed as follows:

/ðxÞ ¼ f ðxÞþ h
Ps

j¼1
gþ
j ðxÞ

h i2
þ Pw

j¼1
hjðxÞ
� �2

( )

Subject to Wlower
i � xi �Wupper

i ; i ¼ 1; . . .;N

ð3:2Þ

where gþ
j ðxÞ ¼ max 0; gjðxÞ

� �
and θ is the scalar penalty parameter which is fixed

in all the runs of the CI algorithm.

3.2 Numerical Experiments and Discussion

CI methodology was applied to a variety of well known constrained test problems
with penalty function approach [1–5] incorporated into it. The CI algorithm was
coded in MATLAB 7.14.0.739 (R2012a) on Windows platform using Intel Core 2
Duo, 1.67 GHz processor speed and 2 GB RAM. Every problem was solved 20
times with number of candidates C chosen as 5 and number of variations in the
behavior t chosen for constrained test problem is listed in Table 3.9. These
parameters were derived empirically over numerous experiments.

It is evident from the results presented in Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8
and 3.9, that the CImethodology is capable of efficiently handling a variety of equality
as well as inequality of constraints. For detailed properties of these problems the
reader is encouraged to refer to [4]. The results also demonstrated the competitiveness
with other contemporary methods. Furthermore, the standard deviation presented in
Table 3.9, it is evident that the approach was sufficiently robust with reasonable
computational cost, i.e. function evaluations and computational time. According to
Table 3.9, the solutions obtained using CI were quite close to the best reported
solution so far. As mentioned before, the parameters such as number of candidates C,
number of variations in the behavior t and reduction factor rwere chosen empirically

Table 3.1 Characteristic of
benchmark problems [4]

Problem DV Form of f ðxÞ x%ð Þ LI NE NI α

G03 10 Polynomial 0.002 0 1 0 1

G04 5 Quadratic 52.123 0 0 6 2

G05 4 Cubic 0.000 2 3 0 3

G06 2 Cubic 0.006 0 0 2 2

G07 10 Quadratic 0.000 3 0 5 6

G08 2 Nonlinear 0.856 0 0 2 0

G09 7 Polynomial 0.512 0 0 4 2

G11 2 Quadratic 0.000 0 1 0 1
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over numerous experiments. Since the chosen set of parameters produced sufficiently
robust results much effort was not spent in their fine-tuning. Hence, better perfor-
mance may be obtained through different choice of parameters.

The CI was incorporated with penalty function approach [1, 2] and tested by
solving several well studied constrained problems. The results were compared with
existing contemporary approaches. A few approaches focused on overcoming the
limitation of penalty approach. A self-adaptive penalty approach [3], a dynamic
penalty scheme [4], GA with binary representation assisted with traditional penalty
function method [5], etc. resulted in premature convergence with high sensitivity to
additional parameters. PSO uses penalty factors as searching variables but it is weak
in local searches. Also it is not efficient in maintaining balance between exploitation
and exploration due to lack of diversity. The approach of penalty parameter was
avoided by utilizing feasibility based rule in [5] solving constrained problems. It
failed to produce optimum solution in every run and also required an extra fitness
function. A variation of feasibility based rule [5] was proposed in [6] for solving
constrained non-linear functions. In both the approaches the population in hand is
the governing factor of the quality of solutions. The need for an extra fitness
function was avoided by HPSO [7] by introducing the feasibility based rule [5] into
PSO. The PSO [8] and the homomorphous mapping [9] required feasible solution
initially along with set dependent parameters. For some problems, it is quite hard to
generate feasible solutions initially and requires additional techniques. In cultural
algorithm [10] and cultural differential evolution (CDE) [11] it is seen that there is a
lack in diversity of the population. The gradient repair method [12] was implanted
into PSO [13] and the number of solution undergoing repair [14] are the key factors
of its performance. Taking directions from [15], GA was applied to find solution
vector (non-dominated) [16]. In addition, Genetics Adaptive Search (Gene AS)
[17], augment Lagrange multiplier method [18], geometric programming approach
[19], and a branch and bound technique [20] were also used for solving various
constrained benchmark problems addressed above which required additional gra-
dient method.

Table 3.4 Statistical results of different methods solving spring design problem

Methods Best Mean Worst Std.

Arora (2004) [25] 0.0127303 N.A. N.A. N.A.

Coello (2000) [3] 0.0127048 0.0127690 0.012822 3.9390e−005

Coello et al. (2002) [16] 0.0126810 0.0127420 0.012973 5.9000e−005

Coello et al. (2004) [10] 0.0127210 0.0135681 0.015116 8.4152e−004

He et al. (2006) [26] 0.0126747 0.0127300 0.012924 5.1985e−004

He et al. (2007) [7] 0.0126652 0.0127072 0.0127191 1.5824e−005

Kulkarni et al. (2011) [1] 0.01350 0.02607 0.05270 N.A.

CI Algorithm 0.012679 0.012719 0.012884 0.000062
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In this study, we apply the CI algorithm with penalty function approach to solve
the benchmark problems studied by Coello and Becerra [10]. This test problems
solved include two maximization problems (G03 and G08) and six minimization
problems (G04, G05, G07, G08, G09, G11). Since all constraints have explicit and
simple functional forms, the gradient of the constraints can be derived directly from
the constraint set. The characteristics of problems, including the number of decision
variables (DV), form of objective function, size of feasible region x%ð Þ, and the
number of linear inequality (LI), non-linear equality (NE), non-linear inequality
(NI), and number of active constraints at the reported optimum (a), are summarized
in Table 3.1. The size of feasible region, empirically determined by simulation,
indicates the difficulty to randomly generate a feasible solution. These problems
have been grouped in different categories [4] (refer to Table 3.1) based on the
problem characteristics such as, nonlinear objective function (NLOF) [G03, G04,
G05, G06, G07, G08, G09, G11], nonlinear equality constraints (NEC) (G03, G05,
G11), moderated dimensionality (MD) ðn� 5Þ (G03, G07, G09), active constraints
(AC) ða� 6Þ (G07) and small feasible region (SFR) ðx%Þ � 0ð Þ (G03, G05, G11).

As presented in Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9, the overall
performance of CI with penalty function approach was quite comparable to other
existing algorithms. The solution of to G03 problem was within 0.0583 % of the
reported optimum [8, 21]. Also, the computational cost, [time and Function
Evaluations (FEs)] was quite reasonable. The CI performance for solving the
problem G04 was within 0.0000326 % of the reported optimum [11, 12, 21–23]
with a reasonable computational cost. The CI solutions to problems G06, G08 and
G09 were well within 0.0005242, 0.00000 and 0.01218 %, respectively of the
reported optimum [11, 24] with reasonable computational cost and standard devi-
ation. The CI algorithm could solve the problem G05 within 1.0356 % of the
reported optimum [21] with standard deviation of 55.0329. Also, the average
computational time (30 s) was comparatively higher as compared to solving other
problems using CI. This underscored that CI needs to be further modified to make it

Table 3.6 Statistical results of different methods solving welded beam design problem

Methods Best Mean Worst Std.

Coello (2000) [3] 1.748309 1.771973 1.785835 0.011220

Coello et al. (2002) [16] 1.728226 1.792654 1.993408 0.074713

Coello et al. (2004) [10] 1.724852 1.971809 3.179709 0.443131

He et al. (2006) [26] 1.728024 1.748831 1.782143 0.012926

He et al. (2007) [7] 1.724852 1.749040 1.814295 0.040049

Deb (2000) [5] 2.38145 2.38263 2.38355 N.A.

Siddall (1972) [27] 2.3815 N.A. N.A. N.A.

Ragsdell et al. (1976) [19] 2.3859 N.A. N.A. N.A.

CI algorithm 1.770436 1.779802 1.816707 0.013885
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solve the problems with equality constraints. A mechanism similar to the window
approach proposed by Ray et al. [24] could be devised. It is also important to
mention that the value of reduction factor r varied from very narrow range of 0.98–
0.998. This is in contrary to the CI solutions solving unconstrained test problems
(refer to Chap. 2 for details). In addition, the solutions to problem G07 and G11
were within 0.211 and 0.344 %, respectively of the reported optimum [11, 12] also
required higher computational cost.

Furthermore, the performance of CI was tested solving three well known
problems from the mechanical engineering design domain. The approach of CI
produced better results for solving the spring design problem within 0.11848 % of
the reported optimum [7]. The solution was quite robust with standard deviation
0.000062. In addition, CI solution solving the welded beam design problem and the
pressure vessel design problem yielded was within 2.6357 and 0.5049 %, respec-
tively of the reported optimum [10, 16]. Also, the standard deviations and com-
putational cost were quite reasonable.

3.3 Conclusions

The chapter has validated the constraint handling ability of the CI methodology by
solving a variety of well known test problems. This also justified the possible
application of CI for solving a variety of real world problems. In all the problem
solutions, the implemented CI methodology produced sufficiently robust results
with reasonable computational cost. It is important to mention here that similar to
the original CI approach discussed in Chap. 2, the sampling space was restored to
the original one when no significant improvement in the cohort behavior was
observed. This helped the solution jump out of possible local minima.

In addition to the advantages few limitations are also observed. The computa-
tional performance was essentially governed by the parameter such as sampling

Table 3.8 Statistical results of different methods for solving pressure vessel design problem

Methods Best Mean Worst Std.

Sandgren (1988) [20] 8129.8000 N.A. N.A. N.A.

Kannan et al. (1994) [18] 7198.0428 N.A. N.A. N.A.

Deb (1997) [17] 6410.3811 N.A. N.A. N.A.

Coello (2000) [3] 6288.7445 6293.8432 6308.1497 7.4133

Coello et al. (2002) [16] 6059.9463 6177.2533 6469.3220 130.9297

He et al. (2006) [26] 6061.0777 6147.1332 6363.8041 86.4545

He et al. (2007) [7] 6059.7143 6099.9323 6288.6770 86.2022

CI algorithm 6090.52639 6090.52689 6090.52849 0.00063
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interval reduction factor r, number of candidates C and number of variations t. In
the future, to make the approach more generalized and to improve the rate of
convergence, the quality of results, as well as reduce the computational cost, a self
adaptive scheme could be developed for these parameters. The authors also see
strong potential in the field of game development and mutual learning.

Table 3.9 CI solution details

Problem Solutions Standard
deviation

Avg. no. of
function
evaluations

Avg.
comp. time
(seconds)

Closeness
to the best
reported
solution
(%)

Reduction
factor rBest

Mean
Worst

G03 0.998892
0.999417
0.999762

0.000297 28,125 5.5 0.0583 0.98

G04 −30,665.531736
−30,665.529486
−30,665.526082

0.001740 25,125 5.8 0.0000326 0.99

G05 5143.533669
5196.042840
5273.835265

55.032911 42,375 30 1.035657 0.99

G06 −6961.812948
−6961.777472
−6961.569046

0.075814 27,335 4.5 0.0005242 0.98

G07 24.310498
24.357417
24.403683

0.029861 348,750 42.5 0.211540 0.998

G08 0.095825
0.095825
0.095825

0.000000 6000 1.59 0 0.98

G09 680.731701
680.921574
681.226784

0.177770 24,375 15.3 0.012184 0.99

G11 0.749904
0.752580
0.760863

0.004407 25,875 12.5 0.344 0.995

Spring
design
problem

0.012679
0.012719
0.012884

0.000062 313,500 58 0.11848 0.99

Welded
beam
design
problem

1.770436
1.779802
1.816707

0.013885 25,000 165 2.6359 0.983

Pressure
vessel
design
problem

6090.526390
6090.526895
6090.528495

0.000632 294,000 85 0.5049 0.9970
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Chapter 4
Modified Cohort Intelligence for Solving
Machine Learning Problems

Clustering is an important and popular technique in data mining. It partitions a set
of objects in such a manner that objects in the same clusters are more similar to each
another than objects in the different cluster according to certain predefined criteria.
K-means is simple yet an efficient method used in data clustering. However,
K-means has a tendency to converge to local optima and depends on initial value of
cluster centers. In the past, many heuristic algorithms have been introduced to
overcome this local optima problem. Nevertheless, these algorithms too suffer
several short-comings. In this chapter, we present an efficient hybrid evolutionary
data clustering algorithm referred as to K-MCI, whereby, we combine K-means
with modified cohort intelligence. Our proposed algorithm is tested on several
standard data sets from UCI Machine Learning Repository and its performance is
compared with other well-known algorithms such as K-means, K-means++, cohort
intelligence (CI), modified cohort intelligence (MCI), genetic algorithm (GA),
simulated annealing (SA), tabu search (TS), ant colony optimization (ACO), honey
bee mating optimization (HBMO) and particle swarm optimization (PSO). The
simulation results are very promising in the terms of quality of solution and con-
vergence speed of algorithm.

4.1 Introduction

Clustering is an unsupervised classification technique which partitions a set of
objects in such a way that objects in the same clusters are more similar to one
another than the objects in different clusters according to certain predefined crite-
rion [1, 2]. The term unsupervised means that grouping is establish based on the
intrinsic structure of the data, without any need to supply the process with training
items.

Clustering has been applied across many applications, i.e., machine learning
[3, 4], image processing [5–8], data mining [9, 10], pattern recognition [11, 12],

© Springer International Publishing Switzerland 2017
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bioinformatics [13–15], construction management [16], marketing [17, 18],
document clustering [19], intrusion detection [19], healthcare [20, 21] and infor-
mation retrieval [22, 23].

Clustering algorithms can generally be divided into two categories; hierarchical
clustering and partitional clustering [24]. Hierarchical clustering groups objects into
tree-like structure using bottom-up or top-down approaches. Our research however
focuses on partition clustering, which decomposes the data set into a several disjoint
clusters that are optimal in terms of some predefined criteria.

There many algorithms have been proposed in literature to solve the clustering
problems. The K-means algorithm is the most popular and widely used algorithm in
partitional clustering. Although, K-means is very fast and simple algorithm, it
suffers two major drawbacks. Firstly, the performance of K-means algorithm is
highly dependent on the initial values of cluster centers. Secondly, the objective
function of the K-means is non-convex and it may contain many local minima.
Therefore, in the process of minimizing the objective function, the solution might
easily converge to a local minimum rather than a global minimum [25]. K-means++
algorithm was proposed by Arthur and Vassilvitskii [26], which introduces a cluster
centers initialization procedure to tackle the initial centers sensitivity problem of a
standard K-means. However, it too suffers from a premature convergence to a local
optimum.

In order to alleviate the local minima problem, many heuristic clustering
approaches have been proposed over the years. For instance, [27] proposed a
simulated annealing approach for solving clustering problems. A tabu search
method which combines new procedures called packing and releasing was
employed to avoid local optima in clustering problems [28]. Genetic algorithm
based clustering method was introduced by Maulik and Bandyopadhyay [29] to
improve the global searching capability. Fathian et al. [30] proposed a honey-bee
mating optimization approach for solving clustering problems. Shelokar et al. [31]
proposed an ant colony optimization (ACO) for clustering problems. A particle
swarm optimization based approach (PSO) for clustering was introduced by Chen
and Ye [32] and Cura [33]. A hybrid technique for clustering called KNM-PSO,
which combines the K-means, Nedler-Mead simplex and PSO was proposed by
Kao et al. [34]. Zhang et al. [35] proposed an artificial bee colony approach for
clustering. More recently, black hole (BH) optimization algorithm [36] was intro-
duced to solve clustering problems. Although these heuristic algorithms address the
flaws of K-means but they still suffer several drawbacks. For example, most of
these heuristic algorithms are typically very slow to find optimum solution.
Furthermore, these algorithms are computationally expensive for large problems.

Cohort intelligence (CI) is a novel optimization algorithm proposed recently by
Kulkarni et al. [37]. This algorithm was inspired from natural and society tendency
of cohort individuals/candidates of learning from one another. The learning refers to
a cohort candidate’s effort to self-supervise its behavior and further adapt to the
behavior of other candidate which it tends to follow. This makes every candidate to
improve/evolve its own and eventually the entire cohort behavior. CI was tested
with several standard problems and compared with other optimization algorithms

40 4 Modified Cohort Intelligence for Solving Machine Learning Problems



such as sequential quadratic programming (SQP), chaos-PSO (CPSO), robust
hybrid PSO (RHPSO) and linearly decreasing weight PSO (LDWPSO). CI has been
proven to be computationally comparable and even better performed in terms of
quality of solution and computational efficiency when compared with these algo-
rithms. These comparisons can be found in the seminal paper on CI [37]. However,
for clustering problems, as the number of clusters and dimensionality of data
increase, CI might converge slowly and trapped in local optima. Recently, many
researchers have incorporated mutation operator into their algorithm to solve
combinatorial optimizing problems. Several new variants of ACO algorithms have
been proposed by introducing mutation to the traditional ACO algorithms and
achieve much better performance [38, 39]. Stacey et al. [40] and Zhao et al. [39]
also have integrated mutation into the standard PSO scheme, or modifications of it.
In order to mitigate the short-comings of CI, we present a modified cohort intel-
ligence (MCI) by incorporating mutation operator into CI to enlarge the searching
range and avoid early convergence. Finally, to utilize the benefits of both K-means
and MCI, we propose a new hybrid K-MCI algorithm for clustering. In this algo-
rithm, K-means is applied to improve the candidates’ behavior that generated by
MCI at each iteration before going through the mutation process of MCI. The new
proposed hybrid K-MCI is not only able to produce a better quality solutions but it
also converges more quickly than other heuristic algorithms including CI and MCI.
In summary, our contribution in this chapter is twofold:

1. Present a modified cohort intelligence (MCI).
2. Present a new hybrid K-MCI algorithm for data clustering.

4.2 The Clustering Problem and K-Means Algorithm

Let R ¼ ½Y1; Y2; . . .; YN �, where Yi 2 <D, be a set of N data objects to be clustered
and S ¼ ½X1;X2; . . .;XK � be a set of K clusters. In clustering, each data in set R will
be allocated in one of the K clusters in such a way that it will minimize the objective
function. The objective function, intra-cluster variance is defined as the sum of
squared Euclidean distance between each object Yi and the center of the cluster Xj

which it belongs. This objective function is given by:

FðX; YÞ ¼
XN

i¼1

Min Yi � Xj

�� ��2
n o

; j ¼ 1; 2; . . .;K ð4:1Þ

Also,

• Xj ≠ Ø, 8j Є {1, 2, …, K}
• Xi \ Xj = Ø, 8i ≠ j and 8i, j Є {1, 2, …, K}
• [ K

j¼1Xj ¼ R
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In partitional clustering, the main goal of K-means algorithm is to determine
centers of K clusters. In this research, we assume that the number of clusters K is
known prior to solving the clustering problem. The following are the main steps of
K-means algorithm:

• Randomly choose K cluster centers of X1, X2, …, XK from data set R ¼
½Y1; Y2; . . .;YN � as the initial centers.

• Assign each object in set R to the closest centers.
• When all objects have been assigned, recalculate the positions of the K centers.
• Repeat Step 2 and 3 until a termination criterion is met (the maximum number

of iterations reached or the means are fixed).

Arthur and Vassilvitskii [26] introduced a specific way of choosing the initial
centers for the K-means algorithm. The procedure of the K-means++ algorithm is
outlined below:

• Choose one center X1, uniformly at random from R.
• For each data point Yi, compute D (Yi), the distance between Yi and the nearest

center that has already been chosen.

• Take new center Xj, choosing Y 2 R with probability DðYÞ2P
Y2R DðYÞ

2.

• Repeat Steps 2 and 3 until K centers have been chosen.
• Now that the initial centers have been chosen, proceed using standard K-means

clustering.

4.3 Modified Cohort Intelligence

In this chapter, we present a modified cohort intelligence (MCI) to improve the
accuracy and the convergence speed of CI. Premature convergence may arise when
the cohort converges to a local optimum or the searching process of algorithm is
very slow. Therefore, we introduced a mutation mechanism to CI in order to enlarge
the searching range, expand the diversity of solutions and avoid early convergence.

Assume for ith iteration, a candidate in a particular cohort is represented by a set of
K number of cluster centers, Sc ¼ ½Xc

1;X
c
2; . . .;X

c
j ; . . .;X

c
K �, where c = 1, 2,…, C and

Xc
j represents the cluster’s center. For an example, Fig. 4.1 depicts a candidate

solution of a problem with three clusters, K = 3 and all the data objects have four
dimensions, D = 4. Thus, the candidate solution illustrated in Fig. 4.1 can be repre-
sented by Sc ¼ ½xc1; xc2; . . .; xcb�1�b, where b = K × D. Then, each candidate Sc in that
cohort will undergo mutation process to generate mutant candidate Scmut as following:

Scmut ¼ Sm1 þ randð:Þ � ðSm2 � Sm3Þ ð4:2Þ
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Variables m1, m2 and m3 are three candidates which are selected randomly from
C candidates in such a way that m1 ≠ m2 ≠ m3 ≠ c.

Scmut ¼ xcmut;1; x
c
mut;2; . . .; x

c
mut;b

h i

1�b
ð4:3Þ

The selected candidate would be:

Sctrial ¼ xctrial;1; x
c
trial;2; . . .; x

c
trial;b

h i

1�b
ð4:4Þ

xctrial;z ¼
xcmut;z
xcz

�
if randð:Þ\c ð4:5Þ

where z = 1, 2, …, b, rand(.) is a random number between 0 and 1, γ is a random
number less than 1 and D is the dimensionality of data objects. Thus, the new
features for candidate c in the ith iteration are selected based on its objective
function:

Scnew ¼ Sc if f ðScÞ� f ðSctrialÞ
Sctrial otherwise

�
ð4:6Þ

This mutation process is performed to other remaining candidates in cohort.

4.4 Hybrid K-MCI and Its Application for Clustering

In this chapter, we propose a novel algorithm referred to as the hybrid K-means
modified cohort intelligence (K-MCI) for data clustering. In this algorithm,
K-means is utilized to improve the candidates’ behavior generated by MCI. After a
series run of K-means, then each candidate will go through the mutation process as
described in Sect. 4.3. The new proposed algorithm benefits from the advantages of
both K-means and MCI. This combination allows the proposed algorithm to con-
verge more quickly and achieve a more accurate solutions without getting trapped
to a local optimum. The application of the hybrid K-MCI on the data clustering is

Fig. 4.1 Example of a candidate solution

4.3 Modified Cohort Intelligence 43



presented in this section. In order to solve the clustering problem using the new
proposed algorithm, following steps should be applied and repeated:

Step 1. Generate the initial candidates. The initial C candidates are randomly
generated as described below:

Candidates ¼

S1

S2

..

.

Sc

..

.

SC

2

6666666666664

3

7777777777775

ð4:7Þ

Sc ¼ ½Xc
1;X

c
2; . . .;X

C
K � ð4:8Þ

Xc
j ¼ ½xc1; xc2; . . .; xcD� ð4:9Þ

where c = 1, 2, …, C, K is the number of clusters, j = 1, 2, …, K and D is
the dimensionality of cluster center Xc

j .
Thus,

Sc ¼ xc1; x
c
2; . . .; x

c
i ; . . .; x

c
b

� �
1�b; where b ¼ K � D ð4:10Þ

The sampling interval wi is given by xc;min
i � xi � xi � xc;max

i , where, xc;min
i

and xc;max
i (each feature of center) are minimum and maximum value of

each point belonging to the cluster Xc
j .

Step 2. Perform K-means algorithm for each candidate as described in Sect. 4.2.
Step 3. Perform mutation operation for each candidate as described in Sect. 4.3.
Step 4. The objective function f ðScÞ for each candidate is calculated.
Step 5. The probability of selecting the behavior f �ðScÞ of every candidate is

calculated.
Step 6. Every candidate generates a random number rand [0, 1] and by using the

roulette wheel approach decides to follow corresponding behavior f �ðSc½?�Þ
and its features Sc½?� ¼ ½xc½?�1 ; xc½?�2 ; . . .; xc½?�b �. For example, candidate c [1]
may decide to follow behavior of candidate f �ðSc½2�Þ and its features

Sc½2� ¼ ½xc½2�1 ; xc½2�2 ; . . .; xc½2�b �:
Step 7. Every candidate shrinks the sampling interval wc½?� for its every features

xc½?�i to its local neighborhood.
Step 8. Each candidate samples t qualities from within the updated sampling

interval of its selected features,xc½?�i . Then, each candidate computes the
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objective function for these t behaviors and selects the best behavior f �ðScÞ
from this set. For instance with t = 15, candidate c [1] decides to follow the

behavior of candidate f �ðSc½2�Þ and its features Sc½2� ¼ ½xc½2�1 ; xc½2�2 ; . . .; xc½2�b �.
Then, candidate c [1] will sample 15 qualities from its updated sampling

interval features of xc½2�i . Next, candidate c [1] will compute the objective
function of its behaviors according, i.e. Fc½1� ¼ ½f ðSc½1�Þ1; f ðSc½1�Þ2; . . .;
f ðSc½1�Þ15� and selects the best behavior f �ðSc½1�Þ from within this set.

Step 9. Accept any of the C behaviors from current set of behaviors in the cohort
as the final objective function value f∗(S) and its features Sc ¼
½xc1; xc2; . . .; xcb� and stop if either of the two criteria listed below is valid
or else continue to Step 2:

1. If maximum number of iterations exceeded.
2. If cohort saturates to the same behavior by satisfying the conditions

convergence condition.

The flow chart of the hybrid K-MCI is illustrated in Fig. 4.2.

4.5 Experiment Results

Six real data sets are used to validate our proposed algorithm. Each data set from
UCI Machine Learning Repository has a different number of clusters, data objects
and features as described below [41]:

Iris data set (N = 150, D = 4, K = 3): which consists of three different species
of Iris flowers: Iris setosa, Iris versicolour and Iris virginica. For each species, 50
samples with four features (sepal length, sepal width, petal length, and petal width)
were collected.

Wine data set (N = 178, D = 13, K = 3): This data set are the results of a
chemical analysis of wines grown in the same region in Italy but derived from three
different cultivators: class 1 (59 instances), class 2 (71 instances), and class 3 (48
instances). The analysis determined the quantities of 13 features found in each of
the three types of wines. These 13 features are alcohol, malic acid, ash, alkalinity of
ash, magnesium, total phenols, flavanoids, nonflavanoid phenols, proanthocyanins,
color intensity, hue, OD280/OD315 of diluted wines, and proline.

Glass data set (N = 214, D = 9, K = 6): which consists of six different types of
glass: building windows float processed (70 objects), building windows non-float
processed (76 objects), vehicle windows float processed (17 objects), containers (13
objects), tableware (9 objects), and headlamps (29 objects). Each type of glass has
nine features, which are refractive index, sodium, magnesium, aluminum, silicon,
potassium, calcium, barium, and iron.

Breast Cancer Wisconsin data set (N = 683, D = 9, K = 2): This data set con-
tains 683 objects. There are two categories: malignant (444 objects) and benign
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Stop and print result

Initialize number of candidates C in the cohort, quality variations t and 
set-up interval reduction factor r

Generate initial candidates 

Perform K-means algorithm for each candidate 

Perform mutation operation for each candidate 

Calculate objection function for every candidate 

Using roulette wheel approach, every candidate selects
behavior to follow from within the C available choices

Every candidate shrinks the sampling interval of every quality i 
based on whether condition of saturation is satisfied

Every candidate forms t behaviors by sampling the qualities from 
within the updated sampling intervals

Every candidate follows the best behavior from within its t behaviors

Cohort behavior 
saturated?

Converged?

Accept the current cohort behavior as final solution

Fig. 4.2 The flow chart of the hybrid K-MCI
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(239 objects). Each type of class consists of nine features, which includes clump
thickness, cell size uniformity, cell shape uniformity, marginal adhesion, single
epithelial cell size, bare nuclei, bland chromatin, normal nucleoli and mitoses.

Vowel data set (N = 871, D = 3, K = 6): which consist of 871 Indian Telugu
vowels sounds. There are six-overlapping vowel classes: δ (72 instances), a (89
instances), I (172 instances), u (151 instances), e (207 instances) and o (180
instances). Each class has three input features corresponding to the first, second, and
third vowel frequencies.

Contraceptive Method Choice data set (N = 1473, D = 9, K = 3): This data set
is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey. The
samples are married women who either were not pregnant or did not know if they
were at the time of interview. The problem is to predict the choice of current
contraceptive method (no use has 629 objects, long-term methods have 334 objects,
and short-term methods have 510 objects) of a woman based on her demographic
and socioeconomic characteristics.

The performance of our proposed algorithm on these selected data set is com-
pared with several typical stochastic algorithms such as the CI, MCI, ACO [31, 34],
SA [27, 42], GA [29], TS [42], HBMO [43], K-means and K-means++. We have
utilized two criteria to evaluate the performance of these algorithms: (i) the
intra-cluster distances and (ii) the number of fitness function evaluation (NFE). For
the first criteria, numerically smaller the value of the intra-cluster distances indicates
higher the quality of the clustering is. As for the second criteria, the smaller NFE
value indicates the high convergence speed of the considered algorithm.

The required parameters for the implementation of hybrid K-MCI, MCI and CI
for clustering are shown in Table 4.1. The algorithms are implemented with Matlab
8.0 on a Windows platform using Intel Core i7-3770, 3.4 GHz and 8 GB RAM
computer. Table 4.2 shows the summary of the intra-cluster distances obtained by
the clustering algorithms on the selected data sets. The results are best, average,
worst and the standard deviation of solutions over 20 independent runs. The NFE
criteria in Table 4.2 indicates convergence speed of the respective algorithms. NFE
is the number of times that the clustering algorithm has calculated the objective
function to reach the optimal solution.

The simulations results given in Table 4.2, shows that our proposed method
performs much better than other methods for all test data sets. Our proposed method
is able to achieve the best optimal value with a smaller standard deviation compared

Table 4.1 Parameters of
hybrid K-MCI, MCI and CI
for data clustering

Data CI MCI K-MCI

t v r t v r t v r

Iris 5 15 0.95 5 15 0.95 5 15 0.92

Wine 5 15 0.95 5 15 0.95 5 15 0.7

Cancer 5 15 0.95 5 15 0.95 5 15 0.95

Vowel 5 15 0.99 5 15 0.99 5 15 0.98

CMC 5 15 0.99 5 15 0.99 5 15 0.99

Glass 5 15 0.99 5 15 0.99 5 15 0.98
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to other methods. In short, the results highlighted the precision and robustness of
the proposed K-MCI as compared to other algorithms including CI and MCI. For
Iris data set, K-MCI and MCI algorithm are able to converge to global optimum of
96.5554 for each run, while the best solutions for CI, K-Means, K-means++, GA,
SA, TS, ACO, HBMO and PSO are 96.6557, 97.3259, 97.3259, 113.9865,
97.4573, 97.3659, 97.1007, 96.752 and 96.8942. The standard deviation for K-MCI
is zero, which is much less than other methods. K-MCI is also able to achieve the
best global result and has a better average and worst result for the Wine data set
compared to other methods. As for CMC data set, K-MCI has the best solution of
5693.73, while the best solutions for CI, MCI, K-Means, K-means++, GA, SA, TS,
ACO, HBMO and PSO are 5695.33, 5694.28, 5703.20, 5703.20, 5705.63, 5849.03,
5885.06, 5701.92, 5699.26 and 5700.98. Furthermore, KMCI has a much smaller
standard deviation than the other methods for CMC data set. For vowel data set, our
proposed method also manages to achieve best, average, worst solution and stan-
dard deviation of 148,967.24, 148,987.55, 149,048.58 and 36.086. These obtained
values are much smaller than other methods.

We notice the effect of applying mutation operator to CI by comparing the
results between MCI and CI from Table 4.2. For instance, MCI has achieved a best,
average, worst solutions of 16,295.16, 16,296.51 and 16,297.98 with a standard
deviation of 0.907 for Wine data set while CI has obtained best, average, worst
solutions of 16,298.01, 16,300.98 and 16,305.60 with a standard deviation of 2.118.
Thus, by applying mutation operator, MCI is able to produce a better quality
solution compared to the original CI.

The simulation results from Table 4.2 for K-MCI, MCI and CI points out the
advantages of hybridizing K-means into MCI. The best global solution of K-MCI,
MCI and CI for the Wine data set are 16,292.44, 16,295.16 and 16,298.01. These
results prove that K-MCI will provide a higher clustering quality than the stan-
dalone MCI and CI. Besides improving the clustering quality, the combination of
K-means with MCI, will further enhance the convergence characteristics. CI and
MCI need 17,500 and 16,500 function evaluations respectively to obtain the best
solution for Wine data set. On the other hand, K-MCI only takes 6250 function
evaluations to achieve the best optimal solution for the same data set. Hence,
K-MCI converges to optimal solution very quickly. Although standalone K-means

Table 4.3 The achieved best
centers on Cancer data set

Dataset Center 1 Center 2

Cancer 7.11701 2.88942

6.64106 1.12774

6.62548 1.20072

5.61469 1.16404

5.24061 1.99334

8.10094 1.12116

6.07818 2.00537

6.02147 1.10133

2.32582 1.03162
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Table 4.4 Achieved best centers on the glass and vowel data set

Dataset Center 1 Center 2 Center 3 Center 4 Center 5 Center 6

Glass 1.52434 1.51956 1.51362 1.52132 1.51933 1.51567

12.03344 13.25068 13.15690 13.74692 13.08412 14.65825

0.01215 0.45229 0.65548 3.51952 3.52765 0.06326

1.12869 1.53305 3.13123 1.01524 1.36555 2.21016

71.98256 73.01401 70.50411 71.89517 72.85826 73.25324

0.19252 0.38472 5.33024 0.21094 0.57913 0.02744

14.34306 11.15803 6.73773 9.44764 8.36271 8.68548

0.23039 0.00433 0.67322 0.03588 0.00837 1.02698

0.15156 0.06599 0.01490 0.04680 0.06182 0.00382

Vowel 506.98650 623.71854 407.89515 439.24323 357.26154 375.45357

1839.66652 1309.59677 1018.05210 987.68488 2291.44000 2149.40364

2556.20000 2333.45721 2317.82688 2665.47618 2977.39697 2678.44208

Table 4.5 The archived best
centers on the Iris, Wine and
CMC data set

Dataset Center 1 Center 2 Center 3

Iris 5.01213 5.93432 6.73334

3.40309 2.79781 3.06785

1.47163 4.41787 5.63008

0.23540 1.41727 2.10679

Wine 13.81262 12.74160 12.50086

1.83004 2.51921 2.48843

2.42432 2.41113 2.43785

17.01717 19.57418 21.43603

105.41208 98.98807 92.55049

2.93966 1.97496 2.02977

3.21965 1.26308 1.54943

0.34183 0.37480 0.32085

1.87181 1.46902 1.38624

5.75329 5.73752 4.38814

1.05368 1.00197 0.94045

2.89757 2.38197 2.43190

1136.97230 687.01356 463.86513

CMC 43.64742 24.41296 33.50648

2.99091 3.03823 3.13272

3.44673 3.51059 3.55176

4.59136 1.79036 3.65914

0.80254 0.92502 0.79533

0.76971 0.78935 0.69725

1.82586 2.29463 2.10130

3.42522 2.97378 3.28562

0.10127 0.03692 0.06151

1.67635 2.00149 2.11479
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and K-means++ algorithms converge much faster than other algorithms including
K-MCI, they have a tendency to prematurely converge to a local optimum. For
instance, K-means++ algorithm only needs 261 function evaluations to obtain the
best solution for Wine data set but these solution results are suboptimal.

In summary, the simulation results from Table 4.2 validates that our proposed
method is able to attain a better global solution with a smaller standard deviation
and fewer numbers of function evaluations for clustering. Finally, we have included
Tables 4.3, 4.4 and 4.5 to illustrate the best centers found by K-MCI in the test data.

4.6 Conclusion

CI is a new emerging optimization method, which has a great potential to solve
many optimization problems including for data clustering. However, CI may
converge slowly and prematurely converge to local optima when the dimensionality
of data and number of cluster centers increase. With the purpose of assuaging these
drawbacks, we proposed modified CI (MCI) by implementing mutation operator
into CI. It outperforms CI in terms of both quality of solutions and the convergence
speed. Finally in this chapter, we proposed a novel hybrid K-MCI algorithm for
data clustering. This new algorithm tries to exploit the merits of the two algorithms
simultaneously, where the K-means is utilized to improve the candidates of MCI at
each iteration before these candidates are given back again to MCI for optimization.
This combination of K-means and MCI allows our proposed algorithm to con-
vergence more quickly and prevents it from falling to local optima. We tested our
proposed method using the standard data sets from UCI Machine Learning
Repository and compared our results with six state-of-art clustering methods. The
experimental results indicate that our proposed algorithm can produce a higher
quality clusters with a smaller standard deviation on the selected data set compare to
other clustering methods. Moreover, the convergence speed to global optima of the
proposed algorithm is better than other heuristic algorithms. In other words, our
proposed method can be considered as an efficient and reliable method to find the
optimal solution for clustering problems.

There are a number of future research directions can be considered to improve
and extend this research. The computational performance is governed by parame-
ters such as the sampling interval reduction factor r. Thus, a self-adaptive scheme
can be introduced to fine tune the sampling interval reduction. In this research, we
assumed the number of clusters are known a prior when solving the clustering
problems. Therefore, we can further modify our algorithm to perform automatic
clustering without any prior knowledge of number of clusters. We may combine
MCI with other heuristic algorithms to solve clustering problems, which can be
seen as another research direction. Finally, our proposed algorithm may be applied
to solve other practically important problems such as image segmentation [44],
traveling salesman problem [45], process planning and scheduling [46] and load
dispatch of power system [47].
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Chapter 5
Solution to 0–1 Knapsack Problem Using
Cohort Intelligence Algorithm

The previous chapters discussed the algorithm Cohort Intelligence (CI) and its
applicability solving several unconstrained and constrained problems. In addition
CI was also applied for solving several clustering problems. This validated the
learning and self supervising behavior of the cohort. This chapter further tests the
ability of CI by solving an NP-hard combinatorial problem such as Knapsack
Problem (KP). Several cases of the 0–1 KP are solved. The effect of various
parameters on the solution quality has been discussed. The advantages and limi-
tations of the CI methodology are also discussed.

5.1 Knapsack Problem Using CI Method

The Knapsack Problem (KP) can be divided into two categories, Single-constraint
KPs and Multiple-constraint KPs. The single-constraint KPs include the Subset-
sum, 0–1 Knapsack, Bounded Knapsack, change-making, and Multiple-choice
Knapsack. On the other hand, the multiple-constraint KPs include 0–1 Multiple
Knapsack, 0–1 Multidimensional Knapsack, generalized assignment, and Bin
Packing with a wide range of applications, such as cargo loading, cutting stock
problems, resource allocation in computer systems, and economics [1, 2]. The
special case of single constraints is generally known as the KP or the Uni-
dimensional KP [3]. Another variant of the KP referred to as Multichoice
Multidimensional KP (MMKP) is used to represent an optimally graceful Quality of
Service (QoS) degradation model where the QoS of a single session multimedia
service is gracefully degraded to conform to changes in resource availability [4].
Khan [5] used the MMKP to represent a utility model (UM) which is a mathe-
matical model for a multi-session adaptive multimedia system. The MMKP also
appears in the nursing personnel scheduling problem [6], which is defined as the
identification of a staffing pattern that specifies the number of nursing personnel of a
certain skill to be scheduled and satisfies the total nursing personnel capacity and
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other relevant constraints. Practical applications of 0–1 Knapsack include finding an
optimal investment plan [7], as well as theoretical applications such as a
sub-problem when solving generalized assignment problem, which is heavily used
when solving vehicle routing problems, efficient packing of cargo containers by
considering the weight and volume capacity utilization, etc. [8]. Apart from these
applications, KPs are being used for resource allocation problems dealing with the
World Wide Web [9]. In this chapter various cases of the 0–1 KP [10–12] were
solved using CI. In all the problems, the implemented CI methodology produced
robust results with reasonable computational cost.

The problem is described as follows [10–14]: given a set of N objects, each
object i, i ¼ 1; . . .;N is associated with an integer profit vi and an integer weight wi.
Fill the knapsack with a subset of the objects such that the total profit f ðvÞ is
maximized and the total weight f ðwÞ does not exceed a given capacity W. The
mathematical formulation is as follows:

Maximize f ðvÞ ¼
XN

i¼1

vixi

Subject to f ðwÞ�W

where

f ðwÞ ¼
XN

i¼1

wixi; xi 2 f0; 1g; 1� i�N ð5:1Þ

5.1.1 Illustration of CI Solving 0–1 KP

In the context of CI algorithm (discussed in Sect. 5.1), the objects i; i ¼ 1; . . .;N are
considered as characteristics/attributes/qualities which decide the overall profit f ðvÞ
and the associated overall weight f ðwÞ of the knapsack. The procedure begins with
the initialization of the number of cohort candidates C, and the number of variations
t. In the cohort of C candidates, initially every candidate cðc ¼ 1; . . .;CÞ randomly
selects few objects, and the associated profits FC ¼ f v1ð Þ; . . .; f vcð Þ; . . .; f vCð Þ� �

and weights FCW ¼ f w1ð Þ; . . .; f wcð Þ; . . .; f wCð Þ� �
are calculated. The further CI

algorithm steps are discussed below.

Step 1. The probability pcðc ¼ 1; . . .;CÞ of selecting a profit f vcð Þ;
ðc ¼ 1; . . .;CÞ, is calculated as pc ¼ pc1 þ pc2
where

pc1 ¼
f vcð Þ

PC
c¼1 f vcð Þ ð5:2Þ
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and

pc2 ¼
f wcð Þ
W f wcð Þ�W

3� 2f wcð Þ
W f wcð Þ[W

(

ð5:3Þ

A probability distribution specially devised to bias the solution towards
feasibility is represented in Fig. 5.1. The Probability pc2 increases linearly
as the total weight of the knapsack increases, and reaches its peak value at
the maximum capacity W. Upon any further increase in weight the
probability rapidly decreases. Thus, the probability is highest around
maximum capacity and decreases on either side of it with decrease beyond
W with twice the slope.

Step 2. Based on roulette wheel selection approach every candidate cðc ¼
1; . . .;CÞ selects a candidate with associated profit f vc½?�

� �
and modifies its

own solution by incorporating some objects from that candidate. The
superscript ½?� indicates that the behavior is selected by candidate c and
not known in advance. The modification approach is inspired from the
feasibility-based rules discussed in [15–17]. The modifications are
categorized as follows:

0.5 W 1.5 WW 2 W

0

0.5

1

Knapsack Capacity (W)

Pr
ob

ab
ili

ty
 (

p 2c
)

Fig. 5.1 Probability distribution for pc2
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1. If the solution of candidate c ðc ¼ 1; . . .;CÞ is feasible i.e. it satisfies
the weight constraint given by Eq. 5.1 then, it randomly chooses one of
the following modifications:

1:1. Adds a randomly chosen object from the candidate being fol-
lowed, such that the object has not been included in the present
candidate c and the weight constraint given by Eq. 5.1 is still
satisfied.

1:2. Replaces a randomly chosen object with another randomly chosen
one from the candidate being followed, such that Eq. 5.1 is
satisfied.

2. If the candidate c ðc ¼ 1; . . .;CÞ is infeasible then, it randomly chooses
one of the following modifications:

2:1. Removes a randomly chosen object from within its knapsack.
2:2. Replaces a randomly chosen object with another randomly cho-

sen one from the candidate c being followed, such that the total
weight f wcð Þ of the candidate c decreases.
Every candidate performs the above procedure t times. This
makes every candidate c available with associated profits

Fc;t ¼ f vcð Þ1; . . .; f vcð Þ j; . . .; f vcð Þt
n o

; ðc ¼ 1; . . .;CÞ. Furthermore,

every candidate selects the best profit f �ðvÞ among them. The best
variation is selected based on the following conditions:

2:2:1. If the variations are feasible then the variation with max-
imum profit is selected.

2:2:2. If the variations are infeasible then the variation with
minimum weight is selected.

2:2:3. If there are both infeasible and feasible variations then the
feasible variation with maximum profit is selected.

This makes the cohort available with C updated profits FC ¼ f � v1ð Þ; . . .;�

f � vcð Þ; . . .; f � vCð Þg.
This process continues until saturation (convergence) i.e., every candidate has

the same profit and it does not change for successive considerable number of
learning attempts.

The above discussed procedure of solving the KP using CI algorithm is illus-
trated here with number of objects N ¼ 4 and knapsack capacity W ¼ 8. The
weights wi; i ¼ 1; . . .;N and profits vi; i ¼ 1; . . .;N associated with every
object are illustrated in Fig. 5.2. Furthermore, the cohort is assumed to have three
candidates, i.e. C ¼ 3 and number of variations t ¼ 3.

Initially every candidate cðc ¼ 1; . . .;CÞ randomly selects few objects,
and the associated profits FC ¼ f v1ð Þ; . . .; f vcð Þ; . . .; f vCð Þ� �

and weights
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FC;W ¼ f w1ð Þ; . . .; f wcð Þ; . . .; f wCð Þ� �
are calculated. The further CI algorithm

steps are discussed below:

(1) The probability pc associated with each candidate cðc ¼ 1; . . .; 3Þ is calculated
using Eqs. 5.2 and 5.3. The calculated probability values are presented in
Fig. 5.3.

(2) Using roulette wheel selection approach, assume that candidate 1 decides to
follow candidate 3. As presented in Fig. 5.4, t ¼ 3 variations are formed along
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Fig. 5.2 Illustrative 0–1 KP example with N ¼ 4;W ¼ 8
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with the associated profits vector F1;3 ¼ f v1ð Þ1; f v1ð Þ2; f v1ð Þ3
n o

and the

selected variation with profit f � v1ð Þ. In this way, candidates 2 and 3 also
follow certain candidate and update themselves. It makes the cohort available
with 3 updated candidates with profits F3 ¼ f � v1ð Þ; f � v2ð Þ; f � v3ð Þ� �

. This

As 1c = is infeasible it can modify itself by either removing an object or replacing one.
The variations formed by it are:

1t = : Remove an object from c=1

Profit of candidate ( )11f v : 25

2t = : Replace an object in c=1 with an object from c=3

Profit of candidate: 1 2( )f v : 29

3t = : Remove an object from c=1.

Profit of candidate: 1 3( )f v : 24
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Fig. 5.4 Illustrative 0–1 KP example with t ¼ 3 (variations obtained)
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process continues until saturation (convergence), i.e. every candidate finds the
solution and does not change for successive considerable number of learning
attempts.

5.2 Results and Discussion

The CI algorithm discussed in Sect. 5.1 was coded in Matlab 7.11 (R2010b) and the
simulations were run on a Windows platform using an Intel Core i5 CPU, 2.27 GHz
processor speed and 3 GB memory capacity, and further validated using twenty
distinct test cases of the 0–1 Knapsack Problems. The standard test cases f1 � f10
[10–12] are presented in Table 5.1. The cases f11 � f20 were generated using a
random number generator. In these tests, knapsack capacity is calculated using the
formula [11, 12]: W ¼ 3

4

PN
i¼1 wi where wi is a random weight of item i and N is the

number of items. Different values of N were used, varying from 30 to 75. These test
cases are presented at the end of this chapter.

Recently, the instances f1 � f10 were solved using Harmony Search (HS) [10,
13], Improved Harmony Search (IHS) [10, 14], Novel Global Harmony Search
(NGHS) [10–12], Quantum Inspired Cuckoo Search Algorithm QICSA [12], and
Quantum Inspired Harmony Search Algorithm (QIHSA) [11]. The HS is based on
natural musical performance processes and has been applied to a variety of engi-
neering problems; however, it exhibits poor convergence rate [10]. IHS employs a
parameter updating method for generating new solution vectors that enhances
accuracy and convergence rate of HS algorithm. The convergence rate is further
improved in NGHS which is inspired from the swarm intelligence and employs a
dynamic updating strategy and probabilistic mutation approach; however, the
performance degenerates significantly when applied for solving constrained prob-
lems. All these algorithms lack a method to satisfy constraints and hence, can result
in an infeasible solution when solving constrained optimization problems. Zou et al.
[10] used a penalty function method along with NGHS in order to handle the weight
constraint in 0–1 KP. QICSA integrates the quantum computing principles such as
qubit representation, measure operation and quantum mutation, in the Cuckoo
Search algorithm. It is different from other evolutionary algorithms in that it offers a
large exploration of the search space through intensification and diversification
[12]. QIHSA combines the features of HS algorithm and quantum computing. The
probabilistic nature of the quantum measure offers a good diversity to the harmony
search algorithm, while the interference operation helps to intensify the search
around the best solutions [11]. While hybridization between quantum inspired
computing and nature inspired algorithms significantly improve the performance
over the original nature inspired algorithms, their performance depends largely on
the initial solutions, which are selected randomly. Also, when dealing with con-
strained optimization problems they require the use of a repair operator.
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The approach of CI handles constraints using a probability distribution pc2 (refer
to Fig. 5.1) which forces the candidates to follow the behaviour/solution with
constraints satisfied as well as closer to the ones with constraint values closer to the
boundary. Moreover, a well-established feasibility-based rule [15–17] was also
incorporated which assists candidates select the variations with better objective and

Table 5.2 Summary of solutions of KPs solved using CI

Problem Number
of objects,
Knapsack
capacity
ðN;WÞ

Solution f �ðvÞ; f �ðwÞð Þ Standard
deviation

Average
function
evaluations
(FE)

Average
time (s)

Parameters
ðC; tÞBest Mean Worst

f1 10, 269 295, 269 267.46,
262.722

260, 250 0.0 5410 0.4489 5, 10

f2 20, 878 1024, 871 1020.55,
852.84

1009, 827 0.0 5446 1.5909 5, 10

f3 4, 20 35, 18 34.55,
17.867

28, 16 0.0 5136 0.2687 5, 10

f4 4, 11 23, 11 22.06,
10.33

16, 6 0.64 5193 0.2492 5, 10

f5 15, 375 481.0694,
354.9608

449.986,
361.692

412.6988,
372.9118

10.68 5590 0.6609 5, 10

f6 10, 60 51, 56 50.733,
56.733

49, 54 0.66 5573 0.4465 5, 10

f7 7, 50 105, 50 86.6, 44.8 79, 42 2.99 5696 0.3749 5, 10

f8 23, 10,000 9759,
9760

9753.33,
9756.33

9710,
9711

11.5 6486 1.1959 5, 10

f9 5, 80 130, 60 124.6,
61.4

106, 74 2.89 5110 0.3048 5, 10

f10 20, 879 1025, 871 997.7,
558.3

892, 805 18.6 5426 1.535 5, 10

f11 30, 577 1437, 566 1418,
571.5

1398, 563 11.79 6817 3.4635 5, 10

f12 35, 655 1689, 650 1686.5,
650.833

1679, 654 3.8188 5375 5.2288 5, 10

f13 40, 819 1816, 817 1807.5,
817.66

1791, 819 9.604 7833 7.3429 5, 10

f14 45, 907 2020, 903 2017,
902.5

2007, 901 4.749 7433 8.1510 5, 10

f15 50, 882 2440, 873 2436.166,
870.33

2421, 865 6.841 7766 10.5690 5, 10

f16 55, 1050 2643,
1049

2605,
1047.8

2581,
1049

22.018 9720 14.3445 5, 10

f17 60, 1006 2917,
1002

2915,
1001.833

2905,
1001

4.472 9017 17.0894 5, 10

f18 65, 1319 2814,
1319

2773.66,
1316.33

2716,
1317

18.273 10,283 20.9486 5, 10

f19 70, 1426 3221,
1426

3216,
1423.166

3211,
1419

4.3589 10,333 26.4846 5, 10

f20 75, 1433 3614,
1432

3603.8,
1431.8

3591,
1429

8.035 12,720 34.0072 5, 10
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Table 5.3 Comparison of results obtained using CI with other established methods

Problem Number of objects ðNÞ Method Optimum solution
f �ðvÞ

f1 10 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

295
295
295
295
295
295

f2 20 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

1024
1024
1024
1024
1024
1024

f3 4 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

35
35
35
35
35
35

f4 4 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

23
23
23
23
23
23

f5 15 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

481.0694
481.0694
481.0694
481.0694
481.0694
481.0694

f6 10 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

50
50
52
52
52
51

f7 7 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

107
107
107
107
107
105

f8 23 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

9767
9767
9767
9767
9767
9759

(continued)
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constraint satisfaction (refer to Sect. 5.1). The summary of the CI results including
the best, mean and worst solutions with the associated average CPU time, average
number of function evaluations, standard deviation are listed in Table 5.2. In
addition, the CI parameters such as number of candidates C and number of vari-
ations t are also listed. As presented in Table 5.3, it can be seen that the solution
was comparable for all problems and in most of the cases the optimum solution was
obtained. In addition, according to Table 5.2, it is clear that the solution was
obtained in reasonable computational cost (time and FE). The results have also been
verified with Branch and Bound method, and according to Tables 5.3, 5.4 and
Fig. 5.5 it is clear that the performance of CI and Branch and Bound are quite
comparable. The CI saturation/convergence plot for one of the problems, f10ðN ¼
20Þ is presented in Fig. 5.6 which illustrates the self adaptive learning behavior of
every candidate in the cohort. Initially, the distinct behavior of every individual
candidate in the cohort can be easily distinguished. As every candidate adopts the
qualities of other candidates to improve its own solution, the cohort saturates to a
certain improved solution. It is noted that the standard deviation was quite narrow
with smaller sized problems; however, increased as the problem size increased. In
addition, computational cost, i.e. time and function evaluations also increased with
increase in the problem size. However, it was observed that in few runs of CI the
candidates converged at suboptimal solutions. Similar to the perturbation approach
implemented by Tavares et al. [17], in order to make the candidates jump out of
possible local minima, every candidate cðc ¼ 1; . . .;CÞ randomly selects a candi-
date to follow without considering its effect on the solution. This approach
instantaneously made the solution worse, however, it was found to be helpful to
pull the candidates’ solution out of local minima and reach an improved solution.
This approach was much simpler as opposed to the perturbation approach discussed
by Tavares et al. [17] where several parameters were required to be tuned based on
the preliminary trials.

Table 5.3 (continued)

Problem Number of objects ðNÞ Method Optimum solution
f �ðvÞ

f9 5 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

130
130
130
130
130
130

f10 20 HS [10]
IHS [10]
NGHS [10, 11]
QICSA [11]
QIHSA [12]
CI

1025
1025
1025
1025
1025
1025
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Table 5.4 Comparison of results obtained using CI with B&B

Problem Number of objects ðNÞ Optimum solution ðf �ðvÞÞ
CI
B&B

Time
(s)

f1 10 295
295

0.4489
0.12

f2 20 1024
1024

1.5909
0.04

f3 4 35
35

0.2687
0.03

f4 4 23
23

0.2492
0.03

f5 15 481.0694
481.0690

0.6609
0.18

f6 10 51
52

0.4465
0.14

f7 7 105
107

0.3749
0.04

f8 23 9759
9767

1.1959
0.18

f9 5 130
130

0.3048
0.03

f10 20 1025
1025

1.535
0.45

f11 30 1437
1437

3.4635
0.156001

f12 35 1689
1689

5.2288
0.0624004

f13 40 1816
1821

7.3429
0.0156001

f14 45 2020
2033

8.1510
0.0312002

f15 50 2440
2440

10.5690
0.0312002

f16 55 2643
2440

14.3445
0.0312002

f17 60 2917
2917

17.0894
0.0312002

f18 65 2814
2818

20.9486
0.0624004

f19 70 3221
3223

26.4846
0.0780005

f20 75 3614
3614

34.0072
0.0312002
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The effect of CI parameters viz. the number of candidates C and the number of
variations in behaviour t was analyzed using the final values of profit f ðvÞ�, the total
number of function evaluations and the computational time, for each problem. For
every pair of number of candidates C and the number of variations in behavior
t every KP test case was solved 20 times. For all the problems, the computational
cost, i.e. the number of function evaluations and computational time was observed
to be increasing with increasing number of candidates C, as well as number of
variations in behaviour t. This was because, with increase in the number of can-
didates C and variations t, the number of behavior choices i.e. number of function
evaluations also increased. The average values of profit f ðvÞ�, the total number of
function evaluations and the computational time for different values of number of
candidates C and variations t are shown for problem f1 in Figs. 5.7, 5.8 and 5.9,
respectively. Another important observation was that as the problem size i.e.

(a) CI (b) B&B
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N increased, the computational cost also increased (refer to Table 5.2). Therefore,
problems with larger number of objects took a longer time and more number of
function evaluations to converge. Furthermore, with fewer number of candidates C,
the solution, i.e. total profit f ðvÞ� was suboptimal. As the value of number of
candidates C was increased the solution quality improved up to a certain point after
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which there was no significant change (refer to Fig. 5.7). This was because for
small values of number of candidates C the behavior choices were few and as
number of candidates C increased the behavior choices increased and hence, the
chances of selecting a better solution increased. In most of the problems there
wasn’t any significant change in the solution beyond C ¼ 5. At the same time for
some problems such as f1 with small values of problem size N the optimum solution
was reached at C ¼ 3 and no significant change was observed in the solution upon
further increase in number of candidates C. Thus, the effect of number of candidates
C on the solution was dependent on the problem size N. In addition, it was observed
that even with large values of number of candidates C the solution was suboptimal
if the number of variations t was small. As the value of t increased, the solution
quality improved. For most of the problems no significant change was observed in
the solution beyond t ¼ 10. For some problems such as f1, with small values of
problem size N optimum solution was obtained at t ¼ 4 and no significant change
was seen in the solution upon further increasing the number of variations
t. Therefore, even in case of the number of variations t, its effect on the solution was
dependent on the problem size N. Accordingly, for all problems the number of
candidates C and number of variations t were chosen to be 5 and 10, respectively.

5.3 Conclusions and Future Directions

For the first time emerging CI algorithm has been applied for solving a combina-
torial NP-hard problem such as 0–1 KP, with number of objects varying from 4 to
75. In all the problems the implemented CI methodology produced satisfactory
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results with reasonable computational cost. Furthermore, according to the solution
comparison of CI with other contemporary methods it could be seen that the CI
solution is comparable and for some problems even better than the other methods.
The CI methodology was therefore validated and the self supervising nature of the
cohort candidates was successfully demonstrated along with their ability to learn
and improve qualities which further improved their individual behavior. In addition,
in order to avoid saturation of cohort at suboptimal solution and further make the
cohort saturate to the optimum solution, a generic approach such as accepting
random behavior was incorporated. The effect of the important parameters such as
number of candidates C and the associated variations t on the computational time,
function evaluations and the solution was analysed. This could be a useful reference
in dealing with future problems using CI.

It was observed that the computational time and function evaluations of the CI
algorithm increased considerably with the problem size, in the future a self-adaptive
scheme could be developed for these parameters such as number of candidates
C and number of variations t. This may make CI algorithm computationally more
efficient and improve the rate of convergence. In addition, authors also intend to
further modify the CI algorithm to solve complex NP-hard bilevel programming
problems from supply chain optimization domain [18]. Also, it is quite important to
tune up the learning rate of CI candidates so as to apply to dynamic control systems
[19]. The ability of CI in clustering [20–22] and classification domain in association
with the cross-border transportation system and goods consolidation is currently
underway.

5.4 Test Cases

f11. N = 30, W = 577

w ¼f46; 17; 35; 1; 26; 17; 17; 48; 38; 17; 32; 21; 29; 48; 31;
8; 42; 37; 6; 9; 15; 22; 27; 14; 42; 40; 14; 31; 6; 34g

v ¼f57; 64; 50; 6; 52; 6; 85; 60; 70; 65; 63; 96; 18; 48; 85;
50; 77; 18; 70; 92; 17; 43; 5; 23; 67; 88; 35; 3; 91; 48g

f12. N = 35, W = 655

w ¼f7; 4; 36; 47; 6; 33; 8; 35; 32; 3; 40; 50; 22; 18; 3; 12; 30; 31;
13; 33; 4; 48; 5; 17; 33; 26; 27; 19; 39; 15; 33; 47; 17; 41; 40g

v ¼f35; 67; 30; 69; 40; 40; 21; 73; 82; 93; 52; 20; 61; 20; 42; 86; 43;
93; 38; 70; 59; 11; 42; 93; 6; 39; 25; 23; 36; 93; 51; 81; 36; 46; 96g
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f13. N = 40, W = 819

w ¼f28; 23; 35; 38; 20; 29; 11; 48; 26; 14; 12; 48; 35; 36; 33; 39; 30; 26;
44; 20; 13; 15; 46; 36; 43; 19; 32; 2; 47; 24; 26; 39; 17; 32; 17; 16; 33; 22; 6; 12g

v ¼f13; 16; 42; 69; 66; 68; 1; 13; 77; 85; 75; 95; 92; 23; 51; 79; 53; 62; 56; 74;
7; 50; 23; 34; 56; 75; 42; 51; 13; 22; 30; 45; 25; 27; 90; 59; 94; 62; 26; 11g

f14. N = 45, W = 907

w ¼f18; 12; 38; 12; 23; 13; 18; 46; 1; 7; 20; 43; 11; 47; 49; 19; 50; 7; 39; 29; 32; 25; 12;
8; 32; 41; 34; 24; 48; 30; 12; 35; 17; 38; 50; 14; 47; 35; 5; 13; 47; 24; 45; 39; 1g

v ¼f98; 70; 66; 33; 2; 58; 4; 27; 20; 45; 77; 63; 32; 30; 8; 18; 73; 9; 92; 43; 8; 58; 84;
35; 78; 71; 60; 38; 40; 43; 43; 22; 50; 4; 57; 5; 88; 87; 34; 98; 96; 99; 16; 1; 25g

f15. N = 50, W = 882

w ¼f15; 40; 22; 28; 50; 35; 49; 5; 45; 3; 7; 32; 19; 16; 40; 16; 31; 24; 15; 42;
29; 4; 14; 9; 29; 11; 25; 37; 48; 39; 5; 47; 49; 31; 48; 17;

46; 1; 25; 8; 16; 9; 30; 33; 18; 3; 3; 3; 4; 1g
v ¼f78; 69; 87; 59; 63; 12; 22; 4; 45; 33; 29; 50; 19; 94; 95; 60; 1; 91; 69; 8;

100; ; 84; 100; 32; 81; 47; 59; 48; 56; 18; 59; 16; 45; 54; 4798; 75; 20;

4; 19; 58; 63; 37; 64; 90; 26; 29; 13; 53; 83g

f16. N = 55, W = 1050

w ¼f27; 15; 46; 5; 40; 9; 36; 12; 11; 11; 49; 20; 32; 3; 12; 44; 24; 1; 24; 42;
44; 16; 12; 42; 22; 26; 10; 8; 46; 50; 20; 42; 48; 45; 43; 35; 9; 12;

22; 2; 14; 50; 16; 29; 31; 46; 20; 35; 11; 4; 32; 35; 15; 29; 16g
v ¼f98; 74; 76; 4; 12; 27; 90; 98; 100; 35; 30; 19; 75; 72; 19; 44; 5; 66;

79; 87; 79; 44; 35; 6; 82; 11; 1; 28; 95; 68; 39; 86; 68; 61; 44; 97; 83; 2; 15;

49; 59; 30; 44; 40; 14; 96; 37; 84; 5; 43; 8; 32; 95; 86; 18g

f17. N = 60, W = 1006
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w ¼f7; 13; 47; 33; 38; 41; 3; 21; 37; 7; 32; 13; 42; 42; 23; 20; 49; 1; 20; 25; 31; 4; 8;
33; 11; 6; 3; 9; 26; 44; 39; 7; 4; 34; 25; 25; 16; 17; 46; 23; 38; 10; 5; 11;

28; 34; 47; 3; 9; 22; 17; 5; 41; 20; 33; 29; 1; 33; 16; 14g
v ¼f81; 37; 70; 64; 97; 21; 60; 9; 55; 85; 5; 33; 71; 87; 51; 100; 43; 27; 48; 17; 16;

27; 76; 61; 97; 78; 58; 46; 29; 76; 10; 11; 74; 36; 59; 30; 72; 37; 72; 100; 9; 47;

10; 73; 92; 9; 52; 56; 69; 30; 61; 20; 66; 70; 46; 16; 43; 60; 33; 84g

f18. N = 65, W = 1319

w ¼f47; 27; 24; 27; 17; 17; 50; 24; 38; 34; 40; 14; 15; 36; 10; 42; 9; 48; 37; 7; 43; 47; 29;
20; 23; 36; 14; 2; 48; 50; 39; 50; 25; 7; 24; 38; 34; 44; 38; 31; 14; 17; 42; 20;

5; 44; 22; 9; 1; 33; 19; 19; 23; 26; 16; 24; 1; 9; 16; 38; 30; 36; 41; 43; 6g
v ¼f47; 63; 81; 57; 3; 80; 28; 83; 69; 61; 39; 7; 100; 67; 23; 10; 25; 91; 22; 48; 91; 20;

45; 62; 60; 67; 27; 43; 80; 94; 47; 31; 44; 31; 28; 14; 17; 50; 9; 93; 15; 17; 72; 68; 36;

10; 1; 38; 79; 45; 10; 81; 66; 46; 54; 53; 63; 65; 20; 81; 20; 42; 24; 28; 1g

f19. N = 70, W = 1426

w ¼f4; 16; 16; 2; 9; 44; 33; 43; 14; 45; 11; 49; 21; 12; 41; 19; 26; 38; 42; 20;
5; 14; 40; 47; 29; 47; 30; 50; 39; 10; 26; 33; 44; 31; 50; 7; 15; 24; 7; 12;

10; 34; 17; 40; 28; 12; 35; 3; 29; 50; 19; 28; 47; 13; 42; 9; 44; 14; 43; 41;

10; 49; 13; 39; 41; 25; 46; 6; 7; 43g
v ¼f66; 76; 71; 61; 4; 20; 34; 65; 22; 8; 99; 21; 99; 62; 25; 52; 72; 26; 12; 55;

22; 32; 98; 31; 95; 42; 2; 32; 16; 100; 46; 55; 27; 89; 11; 8; 3; 43; 93; 53; 88;

36; 41; 60; 92; 14; 5; 41; 60; 92; 30; 55; 79; 33; 10; 45; 3; 68; 12; 20; 54; 63;

38; 61; 85; 71; 40; 58; 25; 73; 35g

f20. N = 75, W = 1433

w ¼f24; 45; 15; 40; 9; 37; 13; 5; 43; 35; 48; 50; 27; 46; 24; 45; 2; 7; 38; 20;
20; 31; 2; 20; 3; 35; 27; 4; 21; 22; 33; 11; 5; 24; 37; 31; 46; 13; 12; 12;

41; 36; 44; 36; 34; 22; 29; 50; 48; 17; 8; 21; 28; 2; 44; 45; 25; 11; 37; 35;

24; 9; 40; 45; 8; 47; 1; 22; 1; 12; 36; 35; 14; 17; 5g
v ¼f2; 73; 82; 12; 49; 35; 78; 29; 83; 18; 87; 93; 20; 6; 55; 1; 83; 91; 71; 25; 59;

94; 90; 61; 80; 84; 57; 1; 26; 44; 44; 88; 7; 34; 18; 25; 73; 29; 24; 14; 23; 82;

38; 67; 94; 43; 61; 97; 37; 67; 32; 89; 30; 30; 91; 50; 21; 3; 18; 31; 97; 79; 68;

85; 43; 71; 49; 83; 44; 86; 1; 100; 28; 4; 16g

5.4 Test Cases 73
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Chapter 6
Cohort Intelligence for Solving Travelling
Salesman Problems

As demonstrated previously, the performance of the Cohort Intelligence Algorithm
(CI) algorithm was quite satisfactory for solving combinatorial problem such as
Knapsack Problem (KP) [1]. The purpose of this chapter is to further demonstrate:

1. The ability of the CI methodology solving classic NP-hard combinatorial
problem such as the Traveling Salesman Problem (TSP). In all 9 small sized test
cases (14 to 29 cities) of the TSP from the TSPLIB [2] were solved.

2. In addition to the original CI approach incorporated with a roulette wheel
selection approach [3], two different approaches such as a best behavior
selection approach and a random behavior selection approach have been
incorporated. In the best behavior selection approach every candidate follows
the best behavior in the cohort. In the latter approach candidates randomly select
any behavior in the cohort.

3. In order to jump out of possible local minima and further make the cohort
saturate to global minimum, a generic approach of perturbation and further
accepting worst behaviors was successfully incorporated.

The results highlighted the simplicity of the CI algorithm as well as robustness
of the solution with the three approaches. It also underscored that the CI incor-
porated with the roulette wheel selection approach more realistically resembles the
competitive and interactive learning behavior of the cohort candidates, which
eventually makes the cohort successful. In addition, it also demonstrated that
always following the best behavior/solution may make the cohort to saturate faster;
however may make the cohort stuck into local minima. The encouraging results
may help solve the real world problems with increasing complexity as the TSP can
be further generalized to a wide variety of routing and scheduling problems [4].

© Springer International Publishing Switzerland 2017
A.J. Kulkarni et al., Cohort Intelligence: A Socio-inspired Optimization Method,
Intelligent Systems Reference Library 114, DOI 10.1007/978-3-319-44254-9_6

75



6.1 Traveling Salesman Problem (TSP)

The Travelling Salesman Problem (TSP) is a classic combinatorial NP Hard
problem [5–8]. It includes N cities and one salesman. One of the N cities is con-
sidered as origin city. The salesman must start from origin city, visit all the
remaining cities exactly once and must return to the origin city. The goal is to find
the minimum cost (distance, time, etc.) of route/path that the salesman should
follow. It is represented as f ðvÞ ¼ f ðvO; . . .vi; . . .vN ; vOÞ where, vO is the origin city
and vi represents any intermediate city and v ¼ ðvO; . . .vi; . . .vN ; vOÞ is the route the
salesman follows or the order in which the salesman visits the N cities.

6.1.1 Solution to TSP Using CI

In the context of CI algorithm presented in Chap. 2 the edges in the route v ¼
ðvO; . . .vi; . . .vN ; vOÞ are considered as the characteristics/qualities which decide the
overall cost of the route. The procedure begins with the initialization of number of
cohort candidates C, number of variations t and the route vc of every candidate
c; ðc ¼ 1; . . .;CÞ.

In the cohort of C candidates, every individual candidate c; ðc ¼ 1; . . .;CÞ has a
route vc ¼ ðvcO; . . .vci ; . . .vcN ; vcOÞ which is the order in which the candidate visits
the N cities. The origin city vcO of the route of every candidate c; ðc ¼ 1; . . .;CÞ
was fixed. The remaining cities were arranged randomly in the route. This way
C routes ðv1; . . .; vc; . . .; vCÞ are formed. And associated costs are calculated
FC ¼ f v1ð Þ; . . .; f vcð Þ; . . .; f vCð Þ� �

. The following procedure is explained in the
context of the roulette wheel selection approach.

(a) In the context of roulette wheel approach, the probability pc of selecting the
route vc of every associated candidate c; ðc ¼ 1; . . .;CÞ is calculated.

(b) Every candidate c; ðc ¼ 1; . . .;CÞ using roulette wheel approach selects
to follow a certain route v cð Þ of some other candidate (c), i.e. it incorporates

an edge from within vðcÞ ¼ vðcÞO ; . . .vðcÞi ; . . .vðcÞN ; vðcÞO

� �
and incorporates into

its existing route vc ¼ vcO; . . .v
c
i ; . . .v

c
N ; v

c
O

� �
. Following a route vðcÞ ¼

vðcÞO ; . . .vðcÞi ; . . .vðcÞN ; vðcÞO

� �
means incorporating an edge from it into its existing

route vc ¼ vcO; . . .v
c
i ; . . .v

c
N ; v

c
O

� �
. More specifically, an edge ðvðcÞi ; vðcÞiþ 1Þ from

within vðcÞ ¼ vO; . . .v
ðcÞ
i ; . . .vðcÞN ; vO

� �
is selected. The positions of the cities of

this edge in the route vc ¼ vO; . . .vci ; . . .v
c
N ; vO

� �
of candidate c are identified.

Then the position of the city which is farther from the city of origin vcO in the
route is swapped with the position of the city immediately after the city which
is closer to origin vcO. In other words, the positions of the cities of this edge
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i.e. vðcÞi ; vðcÞiþ 1

� �� �
in the route vc ¼ ðvO; . . .vci ; . . .vcN ; vOÞ of candidate c are

identified (say a and b). Then cities at positions a + 1 and b are swapped,

which makes the edge vðcÞi ; vðcÞiþ 1

� �
a part of the route vc.

(c) In this way, every candidate c; ðc ¼ 1; . . .;CÞ forms t new independent routes

with associated costs Fc;t ¼ f vcð Þ1; . . .; f vcð Þ j; . . .; f vcð Þt
n o

; ðc ¼ 1; . . .;CÞ
and further selects the best cost route amongst them. This makes the cohort
available with C updated routes with their costs represented as
FC ¼ f � v1ð Þ; . . .; f � vcð Þ; . . .; f � vCð Þ� �

.

This process continues until saturation, i.e. every candidate finds the same route
and does not change for successive considerable number of learning attempts. The
above discussed procedure of solving TSP using CI algorithm is illustrated in
Figs. 6.1, 6.2 and 6.3 with a 5 city TSP, C ¼ 3, origin city vO as 1, the corre-
sponding route vc.
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3:1(a) The probability pc of each candidate c; ðc ¼ 1; . . .; 3Þ is calculated. The
calculated probability values are presented in Fig. 6.2.

3:1(b) Using roulette wheel selection approach, assume that candidate 1 decides to
follow candidate 2. An edge is selected randomly from within the route v2

and incorporated it into v1 forming a new route.
3:1(c) In such manner t ¼ 3 new routes are formed. It is represented in Fig. 6.3

along with the associated route cost vector F1;3 ¼ f v1ð Þ1; f v1ð Þ2; f v1ð Þ3
n o

Fig. 6.3 Illustrative example with 5 cities (variations obtained)
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and the selected best route with cost f �ðv1Þ. It is presented in Fig. 6.3 In this
way, candidates 2 and 3 also follow certain candidate’s route and update
their own routes. It makes the cohort available with 3 updated routes with
costs F3 ¼ f � v1ð Þ; f � v2ð Þ; f � v3ð Þ� �

.

This process continues until saturation (convergence) i.e. every candidate finds
the same route and does not change for successive considerable number of learning
attempts.

In the context of the illustration provided in Figs. 6.1 and 6.2, in case of the best
behavior selection approach every candidate in the cohort will follow candidate 2 as
it has the minimum cost the current learning attempt. And the in case of the random
behavior selection approach, every candidate selects a candidate randomly and
follows its behavior. The results of the CI approach solving the TSP are discussed
in the next section.

6.2 Results and Discussion

The CI algorithm discussed in Chap. 2 applied for solving the TSP was coded in
MATLAB 7.7.0 (R2008b) and simulations were run on a Windows platform using
i3-M380, 2.53 GHz processor speed with 3 GB RAM. The number of candidates
C and variations t were chosen to be 5 and 5, respectively. In all, nine cases of the
TSP [2] with number of cities varying from 14 to 29 were solved. Every case was
solved 20 times. In the earlier version of CI [3], the CI candidates used roulette
wheel approach for the selection of the behaviour in the cohort to follow. In
addition to it, the CI algorithm here was successfully implemented with the best
behavior selection and random behavior selection approach. The results are sum-
marized in Table 6.1 with representative saturation history plots of the cohort with
5 candidates are presented in Fig. 6.4a–c.

It could be understood that, the cohort with roulette wheel selection approach
saturated/converged in every run solving every case of the TSP to a marginally
better solution than the best behaviour and random behaviour selection approach. In
addition, even though the computational cost (time and function evaluations) of the
CI with roulette wheel approach was more than CI with the best behaviour approach
incorporated, the standard deviation (SD) exhibited comparatively more robustness
(refer to Fig. 6.5b). The inherent probabilistic nature of the roulette wheel selection
approach helped the algorithm explore a better solution from within the cohort.
Also in some of the runs, similar to the feasibility-based rule developed in [9, 10],
this approach necessarily helped the CI candidates jump out of local minima by
following worse behaviour. It is important to mention here that the overall tendency
to improve by competition and interaction ensured the saturation to an optimal
solution. Furthermore, as presented in Table 6.1 and Fig. 6.5a, c the best behavior
selection approach was found to be computationally (time and function evaluations)
cheaper; however, the cohort stuck into local minima and did not yield a better
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(a) CI Saturation (Best Behavior Selection)

(b) CI Saturation (Random Behavior Selection)

(c) CI Saturation (Roulette  Behavior Selection)
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Fig. 6.4 CI saturation history solving the TSP (P01, 5 candidates)
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(a) CI CPU Time Performance 

(b) CI Standard Deviation

(c) CI Average Function Evaluations
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solution. This happened because all the candidates in the cohort followed the best
behaviour in every learning attempt, and the variation necessary for exploration and
avoidance of the local minima was restricted. In the CI with random selection
approach, following any candidate randomly forced the candidates explore the
larger search space; however resulted into extremely slow saturation of the cohort
behavior. Moreover as exhibited in Table 6.1, the saturation was not achieved in
every run of the algorithm. The SD presented in Table 6.1 and Fig. 6.5a–c indi-
cated that for solving all the cases the CI with roulette wheel selection approach was
comparatively more robust. However, as the problem size increased, robustness of
all the approaches was reduced. It was also observed that the computational cost of
all the approaches increased with the increase in problem size.

Once the cohort behavior was saturated every candidate perturbed its individual
solution. More specifically, the routes of all the candidates were randomly altered
by changing the order of a certain number of cities in the vector vc ¼
vcO; . . .v

c
i ; . . .v

c
n; v

c
O

� �
for every candidate c; ðc ¼ 1; . . .;NÞ. It is important to

mention here that the perturbation approach in [9, 10] required several parameters
to be tuned which was completely avoided here. As evident in Fig. 6.4a–c, this
approach was found to be helping the individual candidate’s solution jump out of
local minima and further saturates the cohort behavior to a significantly improved
solution.

6.3 Concluding Remarks and Future Directions

For the first time emerging CI algorithm has been applied for solving combinatorial
NP-hard problem such as the TSP with number of cities varying from 14 to 29. The
rational and self supervising learning nature of the cohort candidates was suc-
cessfully formulated and demonstrated along with the learning and improving
qualities which further improved their individual behavior. The application of the
CI methodology for solving combinatorial NP-hard problem such as the TSP is
successfully demonstrated. The CI incorporated with the roulette wheel approach,
best behavior selection as well as random behavior selection approaches was
successfully presented. The results highlighted the overall simplicity of the algo-
rithm as well as robustness of the solution with the roulette wheel approach. It also
underscored that the CI incorporated with the roulette wheel selection approach
more realistically resembles the competitive and interactive learning behavior of the
cohort candidates, which eventually drove the cohort to marginally improved
solution. Moreover, it is also demonstrated that always following the best
behavior/solution may make the cohort to saturate faster; however may make the
cohort stuck into local minima. In addition, in order to jump out of possible local
minima and further make the cohort saturate to global minimum, a generic approach
such as accepting worst behaviors was incorporated. The encouraging results may
help solve the real world problems with increasing complexity as the TSP can be
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further generalized to a wide variety of routing and scheduling problems [4]. In
addition, CI approach could be modified to make it solve Multiple TSP (MTSP) and
Vehicle Routing Problem (VRP).

In addition to the advantages few limitations are also observed. A generic fine
parameter tuning approach needs to be developed for selection of the parameters
such as number of candidates C and number of variations t. In this chapter we have
solved problems of sizes up to 29 cities. As the problem size was increased, the
solutions obtained were less robust and the global minimum was found only
intermittently. A possible solution to this problem is to develop a distributed CI
approach wherein larger sized problems could be decomposed into smaller size
problems and solve them independently. In this context, author see potential real
world applications related to the distributed communication system such as, path
planning of Unmanned Aerial vehicles (UAV) and addressing the ever growing
traffic control problem using Vehicular ad hoc network (VANET).
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Chapter 7
Solution to a New Variant
of the Assignment Problem Using Cohort
Intelligence Algorithm

Nomenclature

C An n by n row circular matrix. The ijth element of C is Ci;j, where
i; j ¼ 1; . . .; n

N The set of integers 1; 2; . . .; nf g
p A permutation of set N
Cp An n by n matrix obtained by shifting each element of row i of matrix C for

i ¼ 1; . . .; n by ðpðiÞ � 1Þ positions to the right in a circular manner. In other
words, The ikth element of Cp is given by Cp

i;k ¼ Ci;k�pðiÞþ 18 1� i� n;
1� k� n

Ik The sum of the kth column of matrix Cp

Z The maximum column sum of matrix Cp, Z ¼ maxnk¼1fIkg
xij A binary variable equal to 1 if pðiÞ ¼ j; and 0, otherwise

In this chapter, we present a variant of the classical assignment problem [1]. The
model has applications in healthcare systems and inventory management. The
problem stems from an application in healthcare management. Specifically, a sur-
gical scheduling in a hospital setting is a complex combinatorial problem. In
addition, similar problem arises in minimizing the space requirements in a retail
store. The problem formulation, applications and solution using Cohort Intelligence
methodology [2–4] is presented in sections below.

7.1 New Variant of the Assignment Problem

Suppose we seek to schedule n surgeons/doctors over a planning horizon of n days.
The recovery time for each operated patient in the recovery room varies according
to the type of surgery. When building cyclic surgery schedules, one important
objective is to minimize congestion in the recovery room. That is, we want to
minimize the maximum number of patients in the recovery unit in any given day of
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the planning horizon so that the costs associated with important resources such as
nurses, space, beds, and equipment are also minimized. Another application of this
problem arises in supply chain management. By considering cyclic scheduling for
suppliers, the maximum required storage space of a retail shop on any day over a
planning horizon of n days can be minimized by developing optimal delivery
schedules. The mathematical statement and formulation of the problem are dis-
cussed below in detail.

As in [5] a row vector is said to be circular if its first and last elements are
considered to be consecutive. A matrix is called row circular if its rows are circular.
Given an ðn� nÞ row circular matrix C ¼ Ci;j

� �
, the problem is to minimize

Z ¼ max
n

k¼1

Xn

i¼1

Ci;k�pðiÞþ 1

where p ¼ pð1Þ; pð2Þ; . . .; pðnÞð Þ is a permutation of the set N � f1; 2; . . .; ng.
Matrix C being row circular implies that Ci;j�n ¼ Ci;j8i; j. We call this problem a
Cyclic Bottleneck Assignment Problem (CBAP). Cyclic refers to the row circularity
of matrix C; bottleneck refers to the min max objective; and assignment refers to the
problem’s close affinity to the classical assignment problem that minimizesPn

i¼1 Ci;p ið Þ.
To give the problem a different description, for a given permutation p of the set

N, let’s define matrix Cp by moving each element of row i; i ¼ 1; . . .; n; of matrix
C by ðpðiÞ � 1Þ positions to the right in a circular manner. More precisely, let
Cp
i;k ¼ Ci;k�pðiÞþ 18 1� i� n; 1� k� n. Since p is a permutation, every row of

matrix C is rotated by a different number of columns to obtain the rotated matrix
Cp. Furthermore, let Ik denote the sum of the kth column of the rotated matrix Cp.
In other words, let Ik ¼

Pn
i¼1 C

p
i;k ¼

Pn
i¼1 Ci;k�pðiÞþ 1: With these new terms, the

objective in our problem can be stated as min maxnk¼1fIkg. That is, the problem is to
find a permutation that minimizes the maximum column sums of the rotated matrix.
Note that, with the above notation, the standard assignment problem is equivalent to
min minnk¼1

Pn
i¼1 C

p
i;k.

To formulate the integer linear programming model for this problem, we define
the following decision variables:

xi;j ¼ 1 if j ¼ pðiÞ
0 otherwise

�

The model is given by

Minimize Z

Subject to
ð7:1Þ
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Xn

i¼1

xi;j ¼ 1; 8 1� j� n ð7:2Þ

Xn

j¼1

xi;j ¼ 1; 8 1� i� n ð7:3Þ

Ik ¼
Xn

i¼1

Xn

j¼1

Ci;k�jþ 1xi;j ¼
Xn

i¼1

Xk

j¼1

Ci;k�jþ 1xi;j þ
Xn

i¼1

Xn

j¼1

Ci;k�jþ 1þ nxi;j;

8 1� k� n

ð7:4Þ

Z� Ik; 8 1� k� n ð7:5Þ

xi;j 2 f0; 1g; 8 1� i� n; 1� j� n ð7:6Þ

The objective function in Eq. 7.1 minimizes the maximum column sum of the
rotated matrix Cp. Constraint 7.2 ensures that for each j there exists an i such that
j ¼ pðiÞ. Constraint 7.3 ensures that for each i there exists a j such that j ¼ pðiÞ.
Constraints 7.4 computes the sum of the kth column of the rotated matrix Cp.
Constraint 7.5 sets the value of the objective function equal to the maximum
column sum of the rotated matrix Cp. The CBAP is an NP-hard problem. For the
proof of NP-hardness refer to the Appendix B provided in [1].

As an illustrative example, consider the following ð3� 3Þ row circular matrix:

C ¼
6 4 2
8 8 8
7 7 0

2

4

3

5

Applying the two permutations p1 ¼ ð1; 2; 3Þ and p2 ¼ ð1; 3; 2Þ of the set
f1; 2; 3g to matrix C yields the following rotated matrices:

Cð1;2;3Þ ¼
6 4 2
8 8 8
7 0 7

2

4

3

5; Cð1;3;2Þ ¼
6 4 2
8 8 8
0 7 7

2

4

3

5

Since the column sums corresponding to permutations p1 and p2 are 21, 12, 17
and 14, 19, 17, respectively, the optimal solution is given by permutation p2
yielding a minimum Z value of 19. Note that due to the row circularity, we need to
consider only 2 permutations in this example and ðn� 1Þ! permutations in general.
While the optimal solution in this example is given by p2, the optimal solution to
the standard assignment problem is given by p1 with a minimum objective value of
12. Before closing this section, we note that if the set of constraints given in (6.5) is
replaced by the single constraint Z� I1, then we get the classical assignment
problem. To see this, define
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x̂i;j ¼ xi;j if j ¼ 1
xi;2�jþ n if 2� j� n

�

Now the problem ð6:1-6:4Þ; Z � I1; ð6:6Þf g is equivalent to Min
Pn

i¼1

Pn
j¼1

Ci;jx̂i;j s.t.
Pn

i¼1 x̂i;j ¼ 1 8 j;
Pn

j¼1 x̂i;j ¼ 1 8 i; x̂i;j 2 f0; 1g; which is the assignment
problem.

7.2 Probable Applications

As mentioned earlier the model stated above has applications in healthcare
scheduling and supply chain management. Two specific applications of this model
are described below.

7.2.1 Application in Healthcare

The problem arises in surgical scheduling in a hospital setting. Surgeons operate on
patients in the surgery unit. After completion of the surgery, patients are sent to the
recovery unit. Assume that there are n types of surgeries that need to be performed
over a planning horizon of n time periods (e.g. days). The goal is to develop a cyclic
surgery schedule so as to minimize congestion in the recovery unit. Cyclic means
that the schedule is repeated every n days. Also assume that the surgery unit is open
every day; that exactly one type of surgery must occur in each time period; and that
patients do not stay more than n days in the recovery unit. (The last assumption does
not lose generality. If patients are allowed to stay more than n days in the recovery
unit, an equivalent problem can be formulated in which patients stay at most
n days.). For the case in which the identity permutation, pðiÞ ¼ i 8 i, is the current
schedule (or assignment, i.e. surgery type i is scheduled on day i), Ci;j represents the
number of patients that are operated on day i and are then sent to the recovery unit to
remain there until the end of day ðiþ j� 1Þ. In general for a permutation p of the set
N � 1; 2; . . .; nf g, the kth column sum, Ik , of the rotated matrix Cp represents the
number of patients remaining in the recovery unit at the end of day k. The maximum
column sum of the rotated matrix Cp represents the maximum number of patients in
the recovery unit over the planning horizon. It is desirable to keep the maximum
number of patients as low as possible in order to reduce the requirement of beds,
nurses and other variable costs. Then, it is reasonable to ask if there exists a different
permutation that can reduce the maximum number of patients. Suppose, for exam-
ple, for a given permutation p; we can find another permutation p0 such that p0ð1Þ ¼
pð2Þ; p0ð2Þ ¼ pð1Þ; and p0ðiÞ ¼ pðiÞ 8 3� i� n and the maximum column sum of
the rotated matrix Cp0 is less than that of Cp. Then, in this case, the hospital can
reduce the congestion in the recovery unit by creating a new schedule in which the
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positions of the surgeons that are scheduled on day 1 and day 2 are swapped and all
the other surgeons keep their existing positions in the schedule. Of course, we
assume that such a swap is always possible.

7.2.2 Application in Supply Chain Management

The problem arises in minimizing the space requirements in a retail store. Suppliers
deliver n different types of goods on n different days, i.e. exactly one type of
product is delivered per day. In this application, Ci;j represents the amount of space
required at the beginning of day ðiþ j� 1Þ for products delivered on day i. Again,
we assume that suppliers deliver according to a cyclic scheduling; that the planning
horizon is n days; that the retail store is open every day; and that no product stays in
the store for more than n days. The identity permutation represents the current
schedule, and Ik represents the space requirement at the beginning of
day K. Assuming that suppliers delivering on day i can be swapped with those that
make deliveries on day i0 for any 1� i� n; 1� i0 � n; i 6¼ i0, the importance of the
objective minmaxnk¼1

Pn
i¼1 C

p
i;k is to minimize the maximum space requirement.

7.3 Cohort Intelligence (CI) Algorithm for Solving
the CBAP

The CBAP presented in Sect. 7.1 is solved using the CI algorithm discussed in
Chap. 2. The adaption and implementation of CI methodology for this problem is
discussed below in detail.

In the context of the CI algorithm the elements of the rearrangement/permutation
vector p ¼ pð1Þ; . . .; pðiÞ; . . .; pðnÞð Þ are considered the characteristics/attributes/
qualities that candidates in the cohort select and are associated with. The procedure
begins with the initialization of number of cohort candidates S, number of variations
Y, the permutation ps of every candidate s; s ¼ 1; . . .; Sð Þ and the convergence
parameter e and maximum number of allowable learning attempts Lmax.

In the cohort of S candidates, every individual candidate s; ðs ¼ 1; . . .; SÞ
randomly generates a permutation ps ¼ pð1Þs; . . .; pðiÞs; . . .; pðnÞsð Þ. Every
candidate s forms matrix Cps by applying its permutation ps and rotating all the
corresponding n rows of matrix C accordingly. This way, S rotated matrices

Cp1 ; . . .;Cps ; . . .;CpS
� �

are formed. Next the associated vector of maximum

column sums is calculated as ZS ¼ Z Cp1
� �

; . . .; Z Cps
� �

; . . .; Z CpS
� �n o

where

Z Cps
� � ¼ maxnk¼1Ik and Ik ¼

Pn
i¼1 C

s
i;k�pðiÞs þ 1.
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Step 1. As a minimization problem, the probability Ps of selecting a column sum
Z Cps
� �

of every candidate is calculated as follows:

Ps ¼ 1=Z Cps
� �

PS
s¼1 1=Z Cpsð Þ ; ðs ¼ 1; . . .; SÞ ð7:7Þ

Step 2. Every candidate s; ðs ¼ 1; . . .; SÞ using a roulette wheel approach

selects a candidate s
z}|{ 2 ð1; . . .; SÞ in the cohort to follow, i.e. it

incorporates an element from within p s
z}|{

into its existing permutation
ps. Following a permutation means incorporating certain elements from

within p s
z}|{

into ps. More specifically, an element pðiÞ s
z}|{

from within

p s
z}|{

is selected randomly. Then the selected element pðiÞ s
z}|{

is
identified in ps along with its location. It then swaps its position with the

element at the location in p s
z}|{

corresponding to its current location in ps.
This way every candidate generates Y number of permutations represented
as Ps;Y ¼ ps;1; . . .; ps;y; . . .; ps;Y

� �
; s ¼ 1; . . .; S and further computes

the associated maximum column sums Z Cps
� �Y¼ Z Cps

� �1
; . . .;

n

Z Cps
� �y

; . . .; Z Cps
� �Yg; s ¼ 1; . . .; S. The minimum from within

Z Cps
� �Y

for every candidate s; s ¼ 1; . . .; Sð Þ is found along with the
associated permutation.

Step 3. If either of the two criteria listed below is valid, accept any of the matrices
from within the pool of current available rotated matrices
Cps ; s ¼ 1; . . .; Sð Þ as the saturated/converged matrix C� and associated
permutation p� as the final solution and stop, else continue to Step 1.

(a) If the maximum number of learning attempts is exceeded.
(b) The cohort reaches a saturation state. There is no significant improvement in

the elements of ZS and the difference between these elements is not very
significant if further learning attempts are considered. That is, the cohort
saturates to the same minimum column sum for any other number of suc-
cessive learning attempts.

7.3.1 A Sample Illustration of the CI Algorithm
for Solving the CBAP

The CI algorithm for solving CBAP is now illustrated for the example shown in
Fig. 7.1. In this example, the number of candidates is S ¼ 3; the number of
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variations is Y ¼ 2, and the number of learning attempts is L ¼ 1: The initial
C matrix is shown in Fig. 7.1.

1. The candidates randomly generate permutations represented as p1, p2, and p3 in

Fig. 7.1a. Then the corresponding rotated matrices Cp1 ;Cp2 ;Cp3
� �

and associ-

ated maximum column sums Z3 ¼ Z Cp1
� �

; Z Cp2
� �

; Z Cp3
� �n o

are obtained.

2. The probability Ps; s ¼ 1; 2; 3 is calculated using Eq. 7.7. The calculated
probability values are presented in Fig. 7.1a.

(a)

(b)

Fig. 7.1 Illustrative example of CI solving the CBAP for a learning attempt
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3. Using roulette wheel selection approach, assume that candidate 1 decides to
follow candidate 3 and then generates two variations of the permutations P1;2 ¼
p1;1;p1;2

� �
and associated maximum column sums Z Cp1;1

� �
and Z Cp1;2

� �
are

calculated.

4. Further Z Cp1
� �

¼ min Z Cp1;1
� �

; Z Cp1;2
� �� �

and associated permutation

p1 ¼ p1;1 are identified.
5. In this way, candidates 2 and 3 also follow certain candidate in the cohort and

find the Z Cp2
� �

and Z Cp3
� �

along with associated p2 and p3.

This process continues until convergence.

7.3.2 Numerical Experiments and Results

The CI algorithm discussed in Sect. 7.3 for solving the CBAP is coded in
MATLAB 7.7.0 (R2008B). The simulations are run on a Windows platform using
an Intel Core2 Quad CPU, 2.6 GHz processor speed and 4 GB memory capacity.
The CI parameters such as number of candidates S and number of variations T are
chosen to be 25 and 5, respectively. The problem size is determined by the order
n� n of matrix C. In total, seventeen distinct cases with increasing problem size
n = 5 to 13, 15, 20, 25, 30, 35, 40, 45, 50 are solved. For every case, 10 instances
are generated and every instance is solved 20 times using the CI method. The CI
saturation/convergence plot for problem instance n = 30 is presented in Fig. 7.2.
This plot exhibits the self-adaptive learning behavior of every candidate in the
cohort. Initially, the individual behavior/solution of every candidate in the cohort
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Fig. 7.2 Saturation/convergence of the cohort
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can be easily distinguished. The behavior/solution here refers to the maximum
column sum Z of the rotated matrix Cp. As every candidate adopts the qualities of
other candidates to improve its own solution, the entire cohort gradually reaches a
saturation stage and converges to an improved solution. It is important to mention
here that the saturation associated restart procedure implemented in the original CI
approach [2] which helped the candidates to explore further in the close neigh-
borhood of their recently adopted qualities is not required.

In Table 7.1 we report our computational results obtained by solving the IP
model given in Eqs. 7.1–7.6 for different values of the problem size n. For the
solution quality, Table 7.1 shows the percentage gap between the best objective
function values of solutions obtained using the LP relaxation of the model, CPLEX,
the CI and MRSLS procedures. The percentage gap value between solution results
of method X versus method Y is computed as ZY � ZXj j�100 %=ZX : These results
are also summarized graphically in Fig. 7.3. First, as can be seen from columns 2
and 3 of Table 7.1, the LP relaxation of the model yields a tight lower bound that
tends to improve as n is increased. This is a useful finding as it allows us to assess
the performance of the CI method for large problem sizes. Indeed, as is evident
from Fig. 7.3a, the times taken by CPLEX to solve the problem grow exponentially
large as n increases. Unfortunately, we are able to report the CPU times for CPLEX
only for n not exceeding 13. For n larger than 13, the times become prohibitively
lengthy. That being said, a close examination of Table 7.1 reveals that the per-
formance of CI method in solving CBAP is excellent both in terms of the per-
centage gap between the objective function values and the run times to solve the
problem. For example, for n = 13, CPLEX takes close to 1073 s to reach an
optimal solution whereas CI takes less than a second to produce a solution yielding
an objective-value gap relative to CPLEX of less than 0.3 %. Also, the overall CPU
time (refer to Fig. 7.3e) for CI is significantly less as compared to CPLEX.
Furthermore, for comparatively smaller size cases, the solution obtained using CI
method confirms with the CPLEX solution. An important observation from
Table 7.1 and Fig. 7.3c, d is that similar to the percentage difference between the
solution obtained using LP relaxation and CPLEX, the percentage difference
between solution obtained using CI procedure and LP relaxation reduces gradually
as the problem size increases. This demonstrates the noteworthy ability of CI in
solving larger size problems with reasonable accuracy and also underscores its
competitiveness with the CPLEX. Furthermore, the CI method could achieve the
optimum solution for every case of the problem in reasonable number of function
evaluations (FE). In addition, it is evident from Table 7.1 and Fig. 7.3f, g that the
average number of FE is found to be increasing linearly while the standard devi-
ation (SD) remains almost stable as the problem size increases. Since the search
space increases with an increase in problem size, the number of characteristics a
candidate learns from the other candidate being followed in a learning attempt do
not change. This results into an increase in the number of learning attempts in order
to improve their individual solution and eventually reach the saturation stage. Also,
the SD presented in Table 7.1 demonstrates that the CI approach produces suffi-
ciently robust solution for every case of the problem.
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In addition, we compare the performance of the CImethod for solving the CBAP to
that of a local search technique that moves from one solution p1 to another neigh-
boring solution p2 according to some prescribed rule. The following
multi-random-start local search (MRSLS) is considered. In step 1, a starting solution
(or permutation of the set 1; 2; . . .; nf g) p1 ¼ i1; . . .; ik; i; j; . . .; inð Þ is randomly
generated and a value for ZðCp1Þ is obtained. In step 2, we use a pairwise interchange
approach to generate a neighboring solution p2 which is given by
p2 ¼ i1; . . .; ik; j; i; . . .; inð Þ; that is, the two elements iand j occupying adjacent
positions in the current solution are interchanged. We then calculate the corre-
sponding Z Cp2ð Þ value. In step 3, the incumbent best solution is updated to p2 if
Z Cp2ð Þ\Z Cp1ð Þ; otherwise p1 is kept as the best incumbent solution found so far (ties
may be broken arbitrarily). The process is continued by performing and evaluating
other pairwise interchange until a stopping criteria is met. Furthermore, for every
individual CBAP case considered, MRSLS is run 50 times with different initializa-
tion. Also, for a meaningful comparison, every MRSLS case is initialized to start in
the neighborhood of the CI’s starting point and is run for exactly the same time equal
to the corresponding average CPU time the CI method takes to solve that case.
The results are summarized in Table 7.1 and Fig. 7.3c, h. The results show that, while
the CI method inmost cases has a slight edge overMRSLS in terms of optimality gap,
the two methods perform quite well in finding good solutions to the CBAP.

7.4 Conclusions

The emerging optimization technique of cohort intelligence (CI) is successfully
applied to solve the new variant of the assignment problem, which has applications
in healthcare and supply chain management. The results indicate that the accuracy
of solutions to these problems obtained using CI is fairly robust and the compu-
tational time is quite reasonable. The chapter also describes the application of a
multi-random-start local search (MRSLS) that can be used to solve the problem
cases. The MRSLS implemented here is based on the interchange argument, a
valuable technique often used in sequencing, whereby the elements of two adjacent
solutions are randomly interchanged in the process of searching for better solutions.
Our findings are that the two methods perform equally well in solving the CBAP, in
part due the special structure of the problem.
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Chapter 8
Solution to Sea Cargo Mix (SCM) Problem
Using Cohort Intelligence Algorithm

Nomenclature

~T set of time periods 1; . . .; t; . . .; Tf g. Each period may represent one day, one
week or one month, etc.

~J Set of ports of destinations for cargoes 1; . . .; j; . . .; Jf g
~K Set of all cargoes 1; . . .; k; . . .;Kf g received in the planning horizon
gk The period that cargo k will be received at the port of origin
sk The shipment due date for cargo k. Each cargo has its due date requested by

shipper in its booking status
nk The port of destination for cargo k. Cargo k will be received in period gk and

will be shipped to its destination port nk on or before its due date sk
rkt Per volume profit of cargo k which will be shipped in period t. It can be

interpreted as the per volume net profit of cargo k, i.e., per volume revenue of
cargo k minus its per volume delivery cost and inventory cost

Et Total volume of available empty containers at the port of origin in period t
Vt;j Total available volume capacity of shipment to port j in period t
Wt;j Maximum allowable weight capacity of shipment to port j in period t
vk Volume of cargo k
wk Weight of cargo k
xkt Binary variable, i.e., xkt ¼ 1, if cargo k is ready for shipment in period

t; xkt ¼ 0, otherwise

The methodology of Cohort Intelligence (CI) [1–4] has been applied successfully
applied solving combinatorial problems such as Knapsack problem, Traveling
Salesman Problem and the new variant of the assignment problem (also referred to
as Cyclic Bottleneck Problem (CBAP)). This chapter discusses CI solution to the
Sea Cargo Mix (SCM) problem is originally proposed in [5]. The performance of
CI solving the SCM is compared with the Integer Programming (IP) Solution as
well as a multi-random-start local search (MRSLS) method. In addition the solution
is compared with the Heuristic algorithm for MDMKP (HAM) and the Modified
Heuristic algorithm for MDMKP (HAM) [5].

© Springer International Publishing Switzerland 2017
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8.1 Sea Cargo Mix Problem

As mentioned before, the Sea Cargo Mix (SCM) problem is originally proposed in
[5]. The decision problem consists of choosing a sea cargo shipping schedule of
accepted freight bookings over a multi-period planning horizon. The goal is to
maximize profit subject to constraints such as the limited available volume capacity,
weight capacity and the number of available containers at the port of origin. The
mathematical formulation of this problem, which can be viewed as a
multi-dimension multiple knapsack problem (MDMKP), is discussed below.

Maximize Z ¼
X

1� k�K

X

gk � t� sk

vkrktxkt

Subject to
ð8:1Þ

X

k2~Kt

vkxkt �Et; 8t 2 ~T ð8:2Þ

X

k2~Ktj

vkxkt �Vtj; 8t 2 ~T ; 8j 2 ~J ð8:3Þ

X

k2~Ktj

wkxkt �Wtj; 8t 2 ~T ; 8j 2 ~J ð8:4Þ

X

gk � t� sk

xkt � 1; 8k 2 ~K ð8:5Þ

xkt 2 0; 1f g; 8k 2 ~K; t gk;gk þ 1; . . .; skf g ð8:6Þ

where

~Kt ¼ k : k 2 ~K; gk � t� sk
� �

; 8t 2 ~T ;

~Ktj ¼ k : k 2 ~K; gk � t� sk; nk ¼ j
� �

; 8t 2 ~T; j 2 ~J

The objective function (8.1) maximizes the total profit generated by all freight
bookings accepted in the multi-period planning horizon T. Constraint (8.2) ensures
that the demand for empty containers at the port of origin is less than or equal to the
number of all available empty containers at the port of origin in each period.
Constraint (8.3) ensures that the total volume of cargoes which will be carried to
port j in period t is less than or equal to the total available volume capacity of
shipment to port j in period t. Constraint (8.4) indicates that the total weight of
cargoes which will be carried to port j in period t is less than or equal to the total
available weight capacity of shipment to port j in period t. Constraint (8.5)
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stipulates that each cargo may be carried in a certain period on or before its due date
or refused to be carried in the time horizon T. Constraint (8.6) states that each cargo
is either accepted in its entirety or turned down.

There are J destination ports and T periods in the problem, and each cargo is
either to be delivered within its due date or refused to be carried in the planning
horizon. Thus, the total number of knapsacks is T � J. Moreover, for each knap-
sack, there are three constraint sets, i.e., the set associated with the number of
available empty containers, amount of available volume capacity and amount of
available weight capacity.

8.2 Cohort Intelligence for Solving Sea Cargo Mix
(SCM) Problem

In the context of CI algorithm presented in Chap. 2, the elements of cargo

assignment set C ¼ knkt formed by assigning every cargo k; k 2 1; 2; . . .;Kf g to a
period t 2 1; 2; . . .; Tf g being shipped to its port of destination nk are considered as
characteristics/attributes/qualities of the cohort candidate. The port of destination nk
for every cargo k 2 1; 2; . . .;Kf g is selected based on the condition below.

nk ¼ j; if ½K=J� � ðj� 1Þ\k� ½K=J� � j; for j ¼ 1; 2; . . .; J � 1
nk ¼ J; if ½K=J� � ðj� 1Þ\k�K; otherwise

ð8:7Þ

The CI algorithm begins with the initialization of number of cohort candidates S,
number of variations Y the cargo assignment set Cs of every candidate s;
s ¼ 1; . . .; Sð Þ, the convergence parameter ε and maximum number of allowable
learning attempts Lmax.

In the cohort, every candidate s; s ¼ 1; . . .; Sð Þ randomly assigns every cargo
ck; k 2 1; 2; . . .;Kf g to a period t 2 1; 2; . . .; Tf g to be shipped to destination nk
and forms a cargo assignment set (behavior) Cs ¼ ks;nkt and associated per volume
profit are calculated as Rs ¼ PK

k¼1

P1
t¼1 r

s
k;t.

Step 1. (Constraint Handling) As a maximization problem, the probability
associated with per volume profit of cargo Rs is calculated as follows:

psR ¼ Rs

PS
s¼1 R

s
; s ¼ 1; . . .; Sð Þ ð8:8Þ

There are constraints involved such as:

1. demand of empty containers
P

k v
s
k;t at the port of origin should be less than or

equal to the number of all available empty containers Et at the port of origin in
each period t 2 1; 2; . . .; Tf g
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2. total volume of cargoes
P

k v
s
k;j which will be carried to port j 2 1; 2; . . .; Jf g in

period t 2 1; 2; . . .; Tf g is less than or equal to the total available volume
capacity Vt;j, and

3. total weight of cargoes
P

k v
s
k;j which will be carried to port j 2 1; 2; . . .; Jf g in

period t 2 1; 2; . . .; Tf g is less than or equal to the corresponding total available
weight capacity Wt;j.

Kulkarni and Shabir [3] propose a modified approach to the CI method for
solving knapsack problems. This approach makes use of probability distributions
for handling constraints. This approach is also adopted here. For every constraint
type as described in 1, 2 and 3 above a probability distribution is developed (refer to
Fig. 8.1) and the probability is calculated based on the following rules:

1. If 0� P
k v

s
k;t �Et; 8t, then based on the probability distribution presented in

Fig. 8.1a psEt
¼ slope1;Et �

P
k v

s
k;t � Et

� �
, else psEt

¼ slope1;Et � 0:001 %Etð Þ.
2. If 0� P

k v
s
k;j �Vt;j; 8t; 8j, then based on the probability distribution presented

in Fig. 8.1b psVt;j
¼ slope1;Vt;j �

P
k v

s
k;j � Vt;j

� �
, else psVt;j

¼ slope1;Vtj�
0:001 %Vt;j
� �

.
3. If 0� P

k w
s
k;j �Wt;j; 8t; 8j, then based on the probability distribution presented

in Fig. 8.1c psWt;j
¼ slope1;Wt;j �

P
k w

s
k;j �Wt;j

� �
, else psWtj

¼ slope1;Wtj�
0:001 %Wt;j
� �

.

As represented in Fig. 8.1, the slope1;Et, slope1;Vt;j and slope1;Wt;j represent the
slope of lines going through points 0; 1ð Þ; Et; 0ð Þð Þ, 0; 1ð Þ; Vtj; 0

� �� �
and

0; 1ð Þ; Wtj; 0
� �� �

, respectively. The overall (total) probability of selecting candi-
dates to follow candidate s; s ¼ 1; . . .; Sð Þ is calculated as follows:

ps ¼ psR þ
X

t
psEt

þ
X

t

X
j
psVt;j

þ
X

t

X
j
psWt;j

� �
ð8:9Þ

0 0 0

1 1 1

(a) (b) (c)

Fig. 8.1 Probability distributions for constraint handling
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It is clear from the above rules for probability calculation that the candidate’s
behavior/solution/cargo assignment with better objective and constraint values
closer to the boundaries will have higher probability of being followed.

Step 2. Every candidate generates Y new variations of the cargo assignment using
two steps, which we refer to as ‘learning from others’ and ‘introspection’,
as follows:

1. Learning from others: Every candidate s; s ¼ 1; . . .; Sð Þ using roulette wheel

approach [1–4] selects a candidate s
z}|{ 2 1; . . .; Sð Þ (not known in advance) in

the cohort to follow, i.e. it incorporates an element from within c s
z}|{

into its

existing cargo assignment cs. More specifically, a quality from within c s
z}|{

is
selected randomly. Then the selected element is identified in cs along with its
location. It then swaps its position with the element at the location in cs cor-

responding to its current location in c s
z}|{

. This way every candidate
s; s ¼ 1; . . .; Sð Þ generates Y=2 cargo assignments.

2. Introspection: In addition, every candidate s; s ¼ 1; . . .; Sð Þ randomly selects
an element from within its one of the periods t; t ¼ 1; . . .; Tð Þ and relocates it
to another period. This way every candidate s; s ¼ 1; . . .; Sð Þ generates further
Y=2 cargo assignments.

This way every candidate forms a total of Y new variations Cs;Y ¼
cs;1; . . .; cs;y; . . .; cs;Y

� �
and computes associated per volume profit and constraint

functions.

Step 3. As discussed in Step 1, every candidate s; s ¼ 1; . . .; Sð Þ calculates its
corresponding probability vector Ps;Y ¼ ps;1; . . .; ps;y; . . .; ps;Y

� �
.

Furthermore, based on the feasibility-based rules shown below, the
candidate accepts or rejects the solution associated with the maximum
total probability value, i.e. max ps;1; . . .; ps;y; . . .; ps;Y

� �

The feasibility-based rules are as follows:
Accept the current behavior/solution if

1. The cargo assignment in the previous learning attempt is feasible and current
behavior/cargo assignment is also feasible with improved per volume profit

2. The cargo assignment in the previous learning attempt is infeasible and the
current behavior/cargo assignment is feasible

3. The cargo assignment in the previous learning attempt is infeasible and the
current behavior/cargo assignment is also infeasible with the maximum total
probability value improved;
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Otherwise, reject the current behavior/solution and retain the previous one if

1. The cargo assignment in the previous learning attempt is feasible and current
cargo assignment is infeasible

2. The cargo assignment in the previous learning attempt is feasible and the current
cargo assignment is also feasible with worse per volume profit

3. The cargo assignment in the previous learning attempt as well as current
learning attempt are infeasible and the total probability value is lesser than the
previous learning attempt.

After the completion of step 3, a cohort with S updated cargo assignments
c1; . . .; cs; . . .; cS

� �
is now available.

Step 4. If either of the two criteria listed below is valid, accept the best possible
cargo assignment from within the available c1; . . .; cs; . . .; cS

� �
in the

cohort as the final solution c� and stop, else continue to Step 1

(a) If maximum number of learning attempts exceeded or
(b) The cohort is saturated, i.e. if cohort candidates saturate to the same cargo

assignment for any other number of successive learning attempts.

8.3 Numerical Experiments and Results

The following notation is used to describe the results of our numerical experiments:

Nv Number of decision variable in the problem

Nc Number of constraints in the problem

Nin Number of tested instances

U Upper bound

I Integer programming solution (branch-and-bound method)

L LP relaxation

H Heuristic algorithm for MDMKP (HAM) (refer to [5])

M Modified heuristic algorithm for MDMKP (MHA) (refer to [5])

CI Cohort intelligence (CI) method

MRSLS Multi-Random-Start Local Search

gXZ Average percentage gap between the best objective value of the solutions obtained
using methods X and Z

g�
XZ Average percentage gap between the average objective value of the solutions

obtained using methods X and Z

g^XZ Worst percentage gap between the worst objective value of the solutions obtained
using methods X and Z

(continued)
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(continued)

tX Average computational time (in seconds) of algorithm X

StCI Standard deviation of CPU time for CI method

SXZ Standard deviation of percentage gap between objective value of the solutions
obtained using methods X and Z

The CI approach for solving the SCM Problem discussed in Sect. 8.1 is coded in
MATLAB 7.7.0 (R2008B). The simulations are run on a Windows platform with an
Intel Core2 Quad CPU, 2.6 GHz processor speed and 4 GB memory capacity. For
this model, we solve 18 distinct cases. These cases, which are originally proposed
in [5], are presented in Tables 8.1, 8.2 and 8.3. For every case, 10 instances are
generated and every instance is solved 10 times using the CI method. The instances
are generated as suggested in [5]. The per volume profit rk;t for cargo
k; k ¼ 1; . . .;Kð Þ shipped in period t; t ¼ 1; . . .; Tð Þ are uniformly generated in the
interval 0:01; 1:01½ �. The volume vk and weight wk of every cargo
ck; k ¼ 1; . . .;Kð Þ are uniformly generated from the interval 100; 200½ �. The num-
ber of all available empty containers Et at the port of origin in each period t 2
1; 2; . . .; Tf g are uniformly generated from the interval 100� K=Tð Þ;½

200� K=Tð Þ�, and the total volume Vt;j and weight Wt;j of cargoes which are
carried to port j 2 1; 2; . . .; Jf g in period t 2 1; 2; . . .; Tf g are uniformly generated
from the interval 100� K=Tð Þ; 200� K=Tð Þ½ �.

The CI parameters such as number of candidates S and number of variations
Y are chosen to be 3 and 15, respectively. The CI saturation/convergence plot for
one problem instance given by ðT; J;KÞ ¼ ð4; 13; 5479Þ is presented in Fig. 8.2.
The plot exhibits the self-adaptive learning behavior of every candidate in the
cohort. Initially, the distinct behavior/solution of every individual candidate in the
cohort can be easily distinguished. The behavior/solution here refers to the total
profit generated by all freight bookings accepted in the multi-period planning
horizon T. As each candidate adopts the qualities of other candidates to improve its
own behavior/solution, the behavior of the entire cohort saturates/converges to an
improved solution.

The best and average CI solution for the objective function value for every case is
compared with the associated upper bound (UB) solution achieved by solving the LP
relaxation of the problem, and the integer programming (IP) solution. In addition, the
solution is compared to the solution of the LP relaxation, and the problem-specific
heuristic algorithm for MDMKP (HAM) and the modified heuristic algorithm for
MDMKP (MHA) developed in [5]. The numerical results are presented in
Tables 8.1, 8.2 and 8.3 along with the graphical illustration in Fig. 8.3. It is
important to mention here that IP is not able to solve large-scale SCM problems.
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It is evident from the results in Tables 8.1, 8.2, 8.3 and the plots given in
Fig. 8.3a, d that, for small scale SCM problems, the CI method produces a solution
that is fairly close to the IP and UB solution. The gap gradually increases as the
problem size grows; however, observe that the worst gap between the best CI
solution and corresponding IP gICIð Þ and UB solution gICIð Þ is within 1.0459 % of
the reported IP solution and 4.0405 % of the reported UB solution, respectively.
Similarly, the worst gap between the average CI solution and corresponding IP
g�
ICI

� �
and UB solution g�

ICI

� �
is within 2.2682 % of the reported IP solution and

5.5827 % of the reported UB solution, respectively. Also, the percent gap between
the worst CI solution and corresponding IP solution g^ICI

� �
is within 3.0198 % of

the reported IP solution. The corresponding UB solution g^ICI
� �

is within 7.1465 %
of the reported UB solution.

Furthermore, as shown in Tables 8.1, 8.2, 8.3 and Fig. 8.3i, j, even though the
standard deviation (SD) of the percent gap between the CI solution and the cor-
responding IP SICIð Þ and UB solution SICIð Þ increases with the problem size, the

Table 8.1 Results for small scale test problems

T ; J;K Nv Nc Nin IP LP Lð Þ HAM MHA

CPU
time
(s) tI

CPU
time
(s) tL

gIH gLH CPU
time
(s) tI

CPU
time
(s) tL

gIH gLH

3, 5, 41 123 74 10 0.106 0.028 1.59 2.88 0.001 1.55 2.71 0.015

3, 6, 47 141 86 10 0.274 0.047 1.26 2.67 0.002 1.03 2.42 0.023

4, 3, 64 256 92 10 0.480 0.183 0.87 2.32 0.011 0.67 1.53 0.056

2, 4,
132

264 150 10 0.148 0.391 0.68 2.03 0.016 0.51 1.18 0.093

3, 3, 91 273 112 10 0.257 0.289 0.93 1.98 0.008 0.78 1.79 0.046

2, 3,
143

286 157 10 0.096 0.485 0.46 1.03 0.014 0.28 0.68 0.078

CI Performance

Best sol
% gap

Avg sol
% gap

Worst
sol %
gap

Best sol
% gap

Avg sol
% gap

Worst
Sol %
gap

CPU
time
(s)

SD
(CPU
time)

SD SD

0.5375 1.3188 2.3818 0.0237 0.2452 1.8782 0.070 0.036 0.691 0.687

0.3902 1.0102 1.6991 0.0709 0.6931 1.3842 0.093 0.027 0.456 0.454

0.5466 0.9958 1.5231 0.0616 0.5131 1.0430 0.103 0.025 0.351 0.349

0.4813 1.0906 1.6339 0.3960 1.0059 1.5496 0.098 0.041 0.408 0.408

0.3758 0.9250 1.6017 0.1720 0.8474 1.4006 0.130 0.046 0.463 0.462

0.1827 0.8045 1.3027 0.1424 0.7644 1.2629 0.094 0.037 0.379 0.378
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worst SD is 0.917. Moreover, Table 8.1, 8.2, 8.3 and Fig. 8.3f also show that the
SD StCIð Þ of CPU time for solving small- and medium-scale problems is within
0.046 and 0.708, respectively. For large-scale problems it is within 4.940. This is
because the search space increases with an increase in problem size.

For every candidate the number of characteristics to be learnt in a learning
attempt from the candidate that is being followed does not change. This results into
different number of learning attempts to improve their individual behavior/solution
and to eventually reach the saturation/convergence state. However, it is important to
mention here that the overall SD obtained by solving the entire problem set is quite
reasonable which lends support to the robustness of the algorithm.

Also, the percent gap between the worst CI solution and corresponding IP
solution g^ICI

� �
is within 3.0198 % of the reported IP solution. The corresponding

UB solution g^UCI
� �

is within 7.1465 % of the reported UB solution. This

Table 8.2 Results for medium scale test problems

T ; J;K Nv Nc Nin IP LP Lð Þ HAM MHA

CPU
time
(s) tI

CPU
time
(s) tL

gIH gLH CPU
time
(s) tI

CPU
time
(s) tL

gIH gLH

3, 4,
900

2700 927 10 0.722 419.1 3.92 1.12 1.72 6.17 3, 4,
900

2700

4, 8,
965

3860 1033 10 1.833 1264.3 2.66 2.58 1.16 14.37 4, 8,
965

3860

4, 25,
1000

4000 1204 10 1.240 2012.5 2.05 8.12 0.86 49.66 4, 25,
1000

4000

2, 3,
2871

5742 2885 10 1.227 5872.2 1.35 5.11 0.75 28.29 2, 3,
2871

5742

2, 3,
3876

7752 3890 10 1.887 199966 0.56 5.97 0.32 55.41 2, 3,
3876

7752

5, 37,
1954

9770 2329 10 4.151 12306.1 1.83 57.67 1.26 321.02 5, 37,
1954

9770

CI Performance

Best sol
% gap

Avg sol
% gap

Worst sol
% gap

Best sol
% gap

Avg sol
% gap

Worst
Sol %
gap

CPU
time
(s)

SD
(CPU
time)

SD SD

1.0516 2.2738 3.0253 1.0459 2.2682 3.0198 0.734 0.271 0.650 0.650

0.9356 1.3321 1.8138 0.9284 1.3250 1.8067 1.382 0.609 0.299 0.299

0.0859 0.8452 1.6848 0.0794 0.8387 1.6785 0.185 0.225 0.611 0.611

1.0009 1.7398 2.2239 0.9968 1.7357 2.2199 2.931 0.798 0.380 0.380

0.5979 1.1463 1.5484 0.5944 1.1428 1.5449 2.488 0.586 0.303 0.303

0.4617 1.4282 2.5431 0.4576 1.4241 2.5390 1.305 0.425 0.917 0.917
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demonstrates that, even though the magnitude of SICI , SUCI and StCI increases with
increase in problem size, CI is able to produce solutions with reasonable accuracy
for every case of the problem. In addition, the CI method achieves the optimum
solution for medium- and large-scale problems in significantly less CPU time (refer
to Fig. 8.3h). This demonstrates the ability of CI in solving large problems effi-
ciently and highlights its competitiveness with the IP approach as well as the
heuristics HAM and MHA discussed in [5].

In addition to the above, CI’s performance is also compared to the performance
of a multi-random-start local search (MRSLS) that is used to solve the Sea Cargo
Mix problem. The proposed MRSLS follows a similar pairwise interchange
approach that we use for the CBAP discussed in Chap. 7. For each of the problem
instances suggested in [5], a solution is first constructed. Then a pairwise inter-
change approach is used in every successive learning attempt where two time
periods are selected randomly. Next a set of containers associated with each period
is randomly chosen and then the positions of these two sets are interchanged
(swapped). The MRSLS for every individual case of the SCM problem is run 50
times with different initializations. Also, for a meaningful comparison, every
MRSLS case is initialized to start in the neighborhood of the CI’s starting point and
is run for exactly the same time equal to the corresponding average CPU time the CI
method takes to solve that case. The acceptance of the resulting solution in every
learning attempt depends on following feasibility-based rules (see [6] for a detailed
discussion): (1) if the existing solution is infeasible and the resulting solution has
improved constraint violation, then the solution is accepted, (2) If the existing
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Fig. 8.2 Saturation/convergence of the cohort for instance of the SCM problem
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solution is infeasible and the resulting solution is feasible, then the solution is
accepted, (3) if the existing solution is feasible and the resulting solution is also
feasible yielding an improved objective function value Z, then the solution is
accepted. If any of these conditions are not satisfied then the existing solution is
retained and the resulting solution is discarded.

It is important to mention here that of the 50 MRSLS runs related to the SCM
problems under study, only a few of the solutions obtained are feasible. Most of
solutions are outside the feasible region. This is because for every MRSLS run a
starting solution is randomly chosen and this solution can be infeasible.
Furthermore, the MRSLS may not be able to discover a feasible solution during the
entire run. Therefore, only the best of the feasible solutions are considered for
meaningful comparison with the CI approach. From Tables 8.4, 8.5 and 8.6 as well
as Fig. 8.3a, k it is clear that the rate of increase of the percentage gap between the
solution obtained using MRSLS and that obtained using CPLEX is significantly
more when compared to the rate of percentage gap increase between CPLEX and
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Fig. 8.3 Illustration of CI, IP, MRSLS and UB solution comparison
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CI. In addition, the percentage gap between the solution obtained using MRSLS
and LP relaxation for each case is also considerably larger as compared to that of CI
versus LP relaxation. In short, for the Sea Cargo Mix problem, CI achieves better
performance against the MRSLS implemented for this model, especially when the
problem size is large.
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Fig. 8.3 (continued)
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8.4 Conclusions

The emerging optimization technique of cohort intelligence (CI) is successfully
applied to solve a complex combinatorial problem such as the sea cargo mix
problem. For the problem a specific CI algorithm is developed. The results indicate
that the accuracy of solutions to these problems obtained using CI is fairly robust
and the computational time is quite reasonable. The chapter also describes the
application of a MRSLS that can be used to solve several cases of the problem.

Table 8.4 MRSLS results
comparison for small scale
test problems

T ; J;K Best sol %
gap
gMRSLSLP

Best sol %
gap
gMRSLSLP

Best sol %
gap
gMRSLSLP

3, 5, 41 6.6548 6.1737 6.1516

3, 6, 47 8.8023 8.5057 8.4391

4, 3, 64 13.8332 13.4053 13.3487

2, 4, 132 13.7926 13.7174 13.3799

3, 3, 91 9.5009 9.3181 9.1595

2, 3, 143 4.8001 4.7614 4.6253

Table 8.5 MRSLS results
comparison results for
medium scale test problems

T ; J;K Best sol %
gap
gMRSLSLP

Best sol %
gap
gMRSLSIP

Best sol %
gap
gMRSLSIP

3, 4, 900 2.0691 2.0635 1.0303

4, 8, 965 3.9044 3.8974 3.0055

4, 25, 1000 0.7014 0.6951 0.6178

2, 3, 2871 20.0099 20.0065 19.2088

2, 3, 3876 25.0458 25.0432 24.5916

5, 37, 1954 10.7262 10.7223 10.3139

Table 8.6 MRSLS results
comparison results for large
scale test problems

T ; J;K Best sol %
gap
gMRSLSLP

Best sol %
gap
gMRSLSIP

Best sol %
gap
gMRSLSIP

9, 47, 1521 17.9624 – 15.1393

3, 4, 6576 38.3933 – 35.9608

4, 5, 5286 37.1910 – 34.7788

4, 13, 5479 36.7655 – 34.2314

5, 8, 4954 40.8499 – 44.6732

8, 26, 3249 7.5249 – 4.0031
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The MRSLS implemented here is based on the interchange argument, a valuable
technique often used in sequencing, whereby the elements of two adjacent solutions
are randomly interchanged in the process of searching for better solutions. Our
findings are that the performance of the CI is clearly superior to that of IP, HAM
and MHA as well as the MRSLS for most of the problem instances that have been
solved.

In agreement with the no-free-lunch theorem [7], any algorithm may not be
directly applicable to solve all the problem types unless it can be enhanced by
incorporating some useful techniques or heuristics. The CI method may also benefit
from certain performance-enhancing techniques when it is applied to different
classes of problems. A mechanism to solve multi-objective problems is currently
being developed, which can prove helpful in transforming the model’s constraints
into objectives/criteria (see [7] for new development in this area). This can help
reduce the dependency on the quality of the candidates’ initial guess.
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Chapter 9
Solution to the Selection of Cross-Border
Shippers (SCBS) Problem

Nomenclature

T Number of periods in the planning horizon
I Number of containers
J Number of shippers
K Number of different types of goods
i Containers, i ¼ 1; 2; . . .; I
j Shippers, j ¼ 1; 2; . . .; J
k Type of goods, k ¼ 1; 2; . . .;K
Dk Set of containers of type k
ajk A binary parameter = 1, if shipper j can handle the containers of type

k = 0, otherwise
aj Fixed cost of choosing shipper j
bij Variable cost of shipping container i through shipper j. If a shipper

cannot handle the kind of goods in a container, then the variable cost
is set to a high value

cj Maximum capacity of shipper j
ei Volume of container i
pij Expected time of processing container i through shipper j
Di Due date of container i
F Fund available
w1 Weight assigned to the goal of fund constraint
w2i Weight assigned to the goal of due date for container i
w31 Penalty for exceeding the limit of non-compliant shippers
w32 Reward for using fewer than allowable number of non-compliant

shippers
hj A binary parameter = 1, if shipper j complies with cross-border

regulations = 0, otherwise
h0 Maximum allowable number of non-compliant shippers
ĉjt Maximum capacity of shipper j in period t
F̂t Fund available in period t
t Index for periods, t ¼ 1; 2; . . .; T
Nv Number of decision variables in the problem
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Nc Number of constraints in the problem
Nin Number of tested instances
d�1 and dþ

1 Deviational variables associated with the fund constraint in the
one-period setting

d�1t and dþ
1t Deviational variables associated with the fund constraint in period t

d�2i and dþ
2i Deviational variables associated with every container i; i ¼ 1; 2; . . .; I

d�3 and dþ
3 Deviational variables associatedwith the selection of the non-compliant

shippers h0

In this chapter, we demonstrate the ability of Cohort Intelligence (CI) methodology
to solve problem of optimal selection of cross-border shippers and cargo assign-
ments [1]. The problem includes various constraints related to due dates, processing
times, fund availability, and shippers’ compliance. We formulate and solve the
multi-period instance of this problem as well. The performance of the CI method is
compared to that of Integer Programming (IP) solution obtained using CPLEX and
to specifically developed multi-random-start local search (MRSLS) method.

9.1 Selection of Cross-Border Shippers (SCBS) Problem

Cross-border shippers are major players in international trade and transportation
[1, 2]. With the ever-changing standards of international compliance, international
shippers of imported and exported goods must comply with an increasing number of
regulatory constraints. The selection of shippers with cross-border compliance/
non-compliance emerged as an important problem after the North American Free
Trade Agreement (NAFTA) [3] became functional in 1994 which considerably
increased cargo traffic between Canada, the United States and Mexico. Selecting
compliant cross-border shippers helps avoid frustrating shipment delays at border
check points and also results in transportation cost savings. In this section, we
examine the problem of a company that must meet a number of goals by selecting
shippers for the purpose of transporting containerized cargo across borders. The
company must rely on shippers that can be either compliant or non-compliant. On
the one hand, a compliant shipper is more costly to use; however, it allows shorter
delivery times as it can facilitate the smooth transit of cargo through the border. On
the other hand, a non-compliant shipper, while cheaper to use, may take longer
delivery times of the cargo to the customer’s destination as it may experience
inspection slowdowns at the border. The elements involved in selection of a
cross-border shipper problem include the total cargo volume to be transported to
customers, the total funds available over the planning period, the ability of shippers
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to handle special types of goods, anticipated delivery due dates, processing times for
the particular good through the shipper, the type of shipper to use, etc. The math-
ematical formulations of the single- and multi-period problems are discussed below.

9.1.1 Single Period Model

Defining the decision variables as

xij ¼
1 if container i is shipped through shipper j

0 otherwise

�

yj ¼
1 if shipper j is chosen

0 otherwise

�

leads to the following formulation:

Minw1dþ
1 þ

X
i
w2idþ

2i þw31dþ
3 � w32d�3 ð9:1Þ

X
i
eixij � cj 8 j ð9:2Þ

xij � yj 8 i; j ð9:3Þ
X

j
ajyj þ

X
i

X
j
bijxij þ d�1 � dþ

1 ¼ F ð9:4Þ
X

j
pijxij þ d�2i � dþ

2i ¼ Di 8 i ð9:5Þ
X

j
1� hj
� �

yj þ d�3 � dþ
3 ¼ h0 ð9:6Þ

xij ¼ 0 8i 2 Dk and ajk ¼ 0 ð9:7Þ
X

j
xij ¼ 1 8 i ð9:8Þ

xij 2 0; 1f g; yj 2 0; 1f g 8 i; j; t ð9:9Þ

d�1 ; d
þ
1 � 0; d�2i ; d

þ
2i 2 0; 1f g; d�3 ; d

þ
3 � 0 ð9:10Þ

The objective function in Eq. 9.1 represents the deviational variables to be
optimized associated with the goal constraints given in Eqs. 9.4–9.6. Constraints in
Eq. 9.2 represent the ‘volume capacity’ constraints which ensure that the total
volume of containers assigned to the particular shipper does not exceed its maxi-
mum capacity. Constraints in Eq. 9.3 forces yj ¼ 1 when a shipper is selected.
Constraint in Eq. 9.4 represents the ‘fund availability’ goal constraint which
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ensures that the total expenditure should not exceed the available fund. The first
term in Eq. 9.4 represents the fixed costs associated with the selected shippers and
the second term represents the variable costs for shipping the containers through a
particular shipper. The ‘due date delivery’ goal constraints in Eq. 9.5 ensure that
every container should be delivered to the customer on or before the stipulated
delivery date. Constraint in Eq. 9.6 ensures that number of shippers selected should
not exceed the maximum allowable non-compliant shippers. Constraints in Eq. 9.7
ensure that a container is not shipped through a shipper that cannot handle the type
of goods in the container. Constraints in Eq. 9.8 ensure that each container is
shipped through exactly one shipper.

9.1.2 Multi Period Model

We define the following (binary) decision variables:

x̂ijt ¼
1 if container i is shipped through shipper j in period t

0 otherwise

�

yj ¼
1 if shipper j is chosen

0 otherwise

�

ŷjt ¼
1 if shipper j is chosen in period t

0 otherwise

�

The integer linear programming is

Min
X

t

w1d̂
þ
1t þ

X

i

w2id
þ
2i þw31d

þ
3 � w32d

�
3 ð9:11Þ

X

i

eix̂ijt � ĉjt 8 j; t ð9:12Þ

x̂ijt � ŷjt 8 i; j; t ð9:13Þ

ŷjt � yj 8 j; t ð9:14Þ
X

j

ajŷjt þ
X

i

X

j

bijx̂ijt þ d̂�1t � d̂þ
1t ¼ F̂t 8 t ð9:15Þ

X

t

X

j

pij þ t
� �

x̂ijt þ d�2i � dþ
2i ¼ Di 8 i ð9:16Þ

X

j

1� hj
� �

yj þ d�3 � dþ
3 ¼ h0 ð9:17Þ
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x̂ijt ¼ 0 8 t; i 2 Dk and ajk ¼ 0 ð9:18Þ
X

j

X

t

x̂ijt ¼ 1 8 i ð9:19Þ

x̂ijt 2 0; 1f g; yj 2 0; 1f g; ŷjt 2 0; 1f g 8 i; j; t ð9:20Þ

d�1t ; d
þ
1t � 0; d�2i ; d

þ
2i 2 0; 1f g; d�3 ; d

þ
3 � 0 ð9:21Þ

Equation 9.11 represents the deviational variables to be optimized. Constraint in
Eq. 9.12 represents the volume capacity constraints. Constraint in Eq. 9.14 forces
yj ¼ 1 whenever shipper j is selected. Constraint in Eq. 9.13 forces ŷjt ¼ 1 when
shipper j is selected in period t. Constraint in Eq. 9.15 represents the ‘fund avail-
ability’ goal constraint. The ‘due date delivery’ goal constraints in Eq. 9.12 ensure
that every container should be delivered to the customer on or before the stipulated
delivery date. Constraint in Eq. 9.17 ensures that number of shippers selected does
not exceed the maximum allowable non-compliant shippers. Constraint in Eq. 9.14
ensures that a container is not shipped through a shipper that cannot handle the type
of goods in the container. Constraint in Eq. 9.19 ensures that every container is
shipped through exactly one shipper on a particular period.

9.2 Numerical Experiments and Results

The CI procedure is now applied to solve the Selection of Cross-border Shippers
(SCBS) problem discussed in Sect. 9.1. The procedure is coded in MATLAB 7.7.0
(R2008B). In addition, the simulations are run on a Windows platform using an
Intel Core2 Quad CPU, 2.6 GHz processor speed and 4 GB memory capacity. In
total, 8 distinct cases presented in Table 9.1 are solved for the single-period version
and 18 cases presented in Table 9.2 are solved for the multi-period version of the
problem. For every case, 10 instances are generated and every instance is solved 10
times using the CI method. The associated CI parameters such as the number of
candidates S and the number of variations Y are chosen to be 3 and 10, respectively.

For all the considered problem cases, the number of different types of goods is
set equal to K ¼ 5. The size of the set of containers Dk for every type of good
k ¼ 1; 2; . . .;K chosen for every problem is listed in Tables 9.1 and 9.2 The value
of ajk randomly chosen to be either 0 or 1 such that each good kk ¼ 1; 2; . . .;K is
handled by at least one shipper j ¼ 1; 2; . . .; J. Each shipper j; j ¼ 1; 2; . . .; J, is
randomly chosen to be either compliant ðhj ¼ 1Þ or noncompliant ðhj ¼ 0Þ. The
maximum allowable number of non-compliant shippers h0 are considered to be
equal to the number of non-compliant shippers.

Furthermore, the fixed costs aj for compliant and non-compliant shippers are
uniformly generated from within the intervals 100; 150½ � and 150; 250½ �,
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respectively. The variable costs bij of shipping container i through shipper j for
compliant and non-compliant shippers are uniformly generated from within the
interval 20; 50½ � and 50; 80½ �, respectively. Similarly, The funds available F and F̂t

are uniformly generated from within the interval max bij
� �þ I

4 ; max bij
� �þ I

2

� �
; i ¼

1; 2; . . .; I and j ¼ 1; 2; . . .; J. The maximum capacities cj and ĉjt and the volumes
ei, i ¼ 1; 2; . . .; I; are uniformly generated from within the interval 200; 900½ � and
10; 25½ �, respectively. In addition, the expected processing times pij of container
i through shipper j for both compliant and non-compliant shippers are uniformly
selected from within the interval T=2; T½ � and 1; T½ �, respectively. Finally, the due
dates Di; i ¼ 1; 2; . . .; I, are randomly generated from within
min pij

� �
; max pij

� �þ 1
� �� �

; i ¼ 1; 2; . . .; I and j ¼ 1; 2; . . .; J. Note that all the goals
are considered equally important and are assigned weights equal to 1.

The average CI solution for every case is compared with the associated Integer
Programming (IP) solution obtained by using CPLEX. The IP could solve the single
period problem up to number of shippers j ¼ 8 and number of containers I ¼ 965,
i.e. with 9662 variables and 8695 constraints. The performance comparison of the
IP and CI solution is presented in Tables 9.1 and 9.2 along with the graphical
illustration in Figs. 9.1 and 9.2.
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Fig. 9.1 Illustration of the CI, IP and MRSLS solution comparison (single period)
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It is evident from the results in Tables 9.1 and 9.2 and plot presented in
Figs. 9.1a and 9.2a that for the smaller sized problems, the CI method could pro-
duce the solution comparatively closer, i.e. within 6 % of the reported IP solution.
The difference gradually increased as the problem size grew; however, the maxi-
mum gap between the average CI solution and corresponding IP is noted to be
within 12 % of the reported IP solution. Also, it is clear from Tables 9.1 and 9.2
and Figs. 9.1b, c and 9.2b, c that the CPU time for CI solving the problem with the
smaller cases is more than the IP; however, the rate of increase is significantly lesser
than that of IP. The increase in the time for CI is because the search space increased
with problem size; however for every candidate the number of characteristics to be
learnt in a learning attempt from the other candidate being followed did not change,
which resulted in increased number of learning attempts and time to improve their
individual behavior/solution and further reach the saturation/convergence. This is
evident in Figs. 9.1d and 9.2d that the standard deviation (SD) of the CPU time for
solving the problem increased with the increase in problem size.

In addition to the above, the performance of the CI method is also compared to a
multi-random-start local search (MRSLS), which is carried out to find good solu-
tions to both the single- and multi-period SCBS problem. The MRSLS imple-
mented for this problem is similar in nature to the one used for finding solutions to
the Sea Cargo Mix problem (see Chap. 8). Our MRSLS is again based on a
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Fig. 9.2 Illustration of the CI and IP and MRSLS solution comparison (multi period)
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pair-wise interchange argument to generate a neighboring solution from the one
currently being assessed. More specifically, an initial solution is first constructed.
This solution specifies an assignment of containers to shippers. To construct an
alternative solution from the existing one, two shippers are randomly selected.
Then, for each shipper, a subset of cargoes that are currently assigned to this shipper
are randomly chosen. In the new solution, the selected cargoes are interchanged (or
swapped) among the two designated shippers. This process is continued in every
successive learning attempt until a stopping criteria is met.

For each of the case problems considered (Tables 9.1 and 9.2), the MRSLS for
the single- and multi-period SCBS problems is run 50 times with different initial-
izations. Also, for a meaningful comparison, every MRSLS case is initialized to
start in the neighborhood of the CI’s starting point and is run for exactly the same
time equal to the corresponding average CPU time the CI method takes to solve that
case. Similar to the (SCM) problem, the acceptance of the resulting solution in
every learning attempt depends on the following feasibility-based rules [4]: (1) if
the existing solution is infeasible and the resulting solution has improved constraint
violation, then the solution is accepted, (2) If the existing solution is infeasible and
the resulting solution is feasible, then the solution is accepted, (3) if the existing
solution is feasible and the resulting solution is also feasible and the objective
function has improved objective, then the solution is accepted. If any of these
conditions are not satisfied then the existing solution is retained and the resulting
solution is discarded.

It is important to mention here again that for many of the MRSLS runs carried
out to completion for the single- and multi-period case problems, only few solutions
are feasible and most of them do not satisfy the feasibility conditions. This is
because for every MRSLS run a solution is randomly initialized which could be
infeasible and MRSLS further might not have been able to discover a feasible
solution. Therefore, only the best of the feasible solutions obtained using MRSLS
are considered for comparison with the CI. From Tables 9.1 and 9.2 as well as from
Figs. 9.1a, e, f and 9.2a, e, f it can be seen that the rate of increase of the percentage
gap between the solution obtained using MRSLS and that obtained using CPLEX is
significantly more when compared to the rate of percentage gap increase between
CPLEX and CI. In addition, the percentage gap between the solution obtained using
MRSLS and CPLEX per case is also considerably larger than the one achieved for
CPLEX versus CI. In other words, CI has performed significantly better than
MRSLS in finding good solutions to the SCBS problem.

9.3 Conclusions

The emerging optimization technique of cohort intelligence (CI) is successfully
applied to solve a cross-border shippers’ problem. The results indicate that the
accuracy of solutions to these problems obtained using CI is fairly robust and the
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computational time is quite reasonable. Furthermore, the usefulness of CI in sat-
isfactorily solving goal programming problems is also demonstrated.

The guiding principles of CI as an optimization procedure are grounded in
artificial intelligence (AI) concepts. CI models the self-supervising behavior of a
group of people seeking approximately the same goal. The self-supervising nature
and rational behavior of the candidates among the cohort is illustrated along with
the learning process that takes place among the candidates in order to further
improve their individual characteristics/qualities. Furthermore, the inherent ability
of the CI algorithm in handling complicated constraints lends to its applicability in
solving real world complex problems. In addition, it is evident from the results that
the variability as measured by standard deviation (SD) in the quality of solutions
obtained using CI is commendable and remains almost stable as the problem size
increases. This is because, even though the search space increases as the problem
size increases, the number of characteristics in a learning attempt that need to be
learnt by a candidate who is following the behavior of another candidate do not
change. This results in an increase in the number of learning attempts in order to
improve candidates’ individual solutions and to finally reach the cohort’s global
solution.

Some limitations of the CI method should also be identified. The rate of con-
vergence and the quality of the solution is dependent on the parameters such as the
number of candidates and the number of variations. These parameters are derived
empirically over numerous experiments and their calibration require some pre-
liminary trials. It should also be observed that the number of characteristics
attempted to adopt/learn is an important parameter when dealing with combinatorial
optimization problems. As fewer characteristics are considered during the learning
stage, this may delay the method’s convergence rate significantly. The procedure
may get stuck in the neighborhood of a local minimum, which may result into
premature convergence. How to fine-tune the CI parameters and what to decide on
the number of characteristics that needs to be learned by a candidate in every
learning attempt can be done in an evolutionary and adaptive way as discussed in
[5]. This may also help in increasing the accuracy of the solution as well as
reducing the SD and overall performance of the algorithm. In addition, it should
also be observed that the initial guess of the candidate solutions can affect the
computational time of the algorithm. More specifically, if the initial candidate
solutions are closer to the feasible region the chances of achieving
saturation/convergence and reaching the optimal solution faster are high.

The paper also describes the application of a multi-random-start local search
(MRSLS) that can be used to solve these three problems. The MRSLS implemented
here is based on the interchange argument, a valuable technique often used in
sequencing, whereby the elements of two adjacent solutions are randomly inter-
changed in the process of searching for better solutions. Our findings are that the
performance of the CI is clearly superior to that of the MRSLS for many of the
problem instances that have been solved.

As mentioned before, in agreement with the no-free-lunch theorem [6], any
algorithm may not be directly applicable to solve all the problem types unless it can
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be enhanced by incorporating some useful techniques or heuristics. The CI method
may also benefit from certain performance-enhancing techniques when it is applied
to different classes of problems. A mechanism to solve multi-objective problems is
currently being developed, which can prove helpful in transforming the model’s
constraints into objectives/criteria (see [4, 6] for new development in this area).
This can help reduce the dependency on the quality of the candidates’ initial guess.
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Chapter 10
Conclusions and Future Directions

This book provided detailed state-of-the-art developments on the emerging
socio-inspired metaheuristic technique of Cohort Intelligence (CI). The motivation
of the methodology is also discussed in detail. The methodology was successfully
tested and validated by solving several unconstrained problems with different
modalities and dimensions. The solution quality was quite promising and encour-
aging in terms of objective function, robustness, avoidance of local minima,
computational time and function evaluations. The effect of each individual
parameter such as sampling interval reduction factor, number of candidates and
number of variations on the computational performance was also tested.

The book also validated the constraint handling ability of the CI methodology by
solving a variety of well known test problems including three mechanical engi-
neering design problems. The objective functions were of type polynomial, quad-
ratic, cubic and nonlinear. A penalty function approach was incorporated for
handling the constraints. In all the problem solutions, the implemented CI
methodology produced sufficiently robust results with reasonable computational
cost. This also justified the possible application of CI for solving a variety of real
world problems.

The CI algorithm has been applied for solving several cases of five combinatorial
NP-hard problems. The 0–1 Knapsack Problem (KP), with number of objects
varying from 4 to 75 was the first one. In all the associated cases, the implemented
CI methodology produced satisfactory results with reasonable computational cost.
Furthermore, according to the solution comparison of CI with other contemporary
methods it could be seen that the CI solution is comparable and for some problems
even better than the other methods. In addition, in order to avoid saturation of
cohort at suboptimal solution and further make the cohort saturate to the optimum
solution, a generic approach such as accepting random behavior was incorporated.

Furthermore, the CI algorithm has been applied for solving combinatorial
NP-hard Traveling Salesman Problem (TSP) with number of cities varying from 14
to 29. The application of the CI methodology for solving combinatorial NP-hard
problem such as the TSP is successfully demonstrated. The CI incorporated with
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the roulette wheel approach, best behavior selection as well as random behavior
selection approaches was successfully proposed. It is demonstrated that always
following the best behavior/solution may make the cohort to saturate faster; how-
ever may make the cohort stuck into local minima. In addition, in order to jump out
of possible local minima and further make the cohort saturate to global minimum, a
generic approach such as accepting worst behaviors was incorporated. The
encouraging results may help solve the real world problems with increasing com-
plexity as the TSP can be further generalized to a wide variety of routing and
scheduling problems [1]. In addition, CI approach could be modified to make it
solve Multiple TSP (MTSP) and Vehicle Routing Problem (VRP). In this context,
author see potential real world applications related to the distributed communication
system such as, path planning of Unmanned Aerial vehicles (UAV) and addressing
the ever growing traffic control problem using Vehicular ad hoc network (VANET).

In addition to above NP-hard problems, the CI was successfully applied to solve
the new variant of the assignment problem, which has applications in healthcare
and supply chain management. The results indicate that the accuracy of solutions to
these problems obtained using CI is fairly robust and the computational time is
quite reasonable. The results were compared with the multi-random-start local
search (MRSLS) method. Moreover, several cases of the complex combinatorial
problem such as the sea cargo mix problem were also successfully solved. The
results were also compared with the MRSLS implemented. The findings are that the
performance of the CI is clearly superior to that of Integer Programming (IP),
specially developed heuristics referred to as HAM and MHA as well as the MRSLS
for most of the problem instances that have been solved. Furthermore, CI was
successfully applied to solve a large sized cross-border shippers’ problem. The
results indicate that the accuracy of solutions to these problems obtained using CI is
fairly robust and the computational time is quite reasonable. Furthermore, the
usefulness of CI in satisfactorily solving goal programming problems is also
demonstrated. It is important to mention here that while solving the combinatorial
problems an inbuilt probability based constraint handling approach was revealed
and deployed to drive the solution towards the feasible region and further improve.

The book also in detail described the application of a MRSLS that can be used to
solve the above three problems. The MRSLS implemented here is based on the
interchange argument, a valuable technique often used in sequencing, whereby the
elements of two adjacent solutions are randomly interchanged in the process of
searching for better solutions. Our findings are that the performance of the CI is
clearly superior to that of the MRSLS for many of the problem instances that have
been solved.

As CI exhibited great potential to solve a variety of optimization problems
including for data clustering. However, in the preliminary experiments solving
unconstrained test problems, it was observed that as the problem size increased, CI
may converge slowly and prematurely to local optima. With the purpose of
assuaging these drawbacks modified CI (MCI) was proposed. It outperformed CI in
terms of both quality of solutions and the convergence speed. In addition, a novel
hybrid K-MCI algorithm for data clustering was also proposed. This new algorithm
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exploited the merits of the two algorithms simultaneously. This combination of
K-means and MCI allowed our proposed algorithm to convergence more quickly
and prevented it from falling to local optima. The proposed method can be con-
sidered as an efficient and reliable method to find the optimal solution for clustering
problems. In this research, the number of clusters was assumed to be known a priori
when solving the clustering problems. Therefore, we can further modify our
algorithm to perform automatic clustering without any prior knowledge of number
of clusters. We may combine MCI with other heuristic algorithms to solve clus-
tering problems, which can be seen as another research direction. Finally, our
proposed algorithm may be applied to solve other practically important problems
such as image segmentation [2], dispatch of power system [3].

It is important to mention that the guiding principles of CI as an optimization
procedure are grounded in Artificial Intelligence (AI) concepts. CI models the
self-supervising behavior of a group of people seeking approximately the same
goal. The self-supervising nature and rational behavior of the candidates among the
cohort is illustrated along with the learning process that takes place among the
candidates in order to further improve their individual characteristics/qualities.
Furthermore, the inherent ability of the CI algorithm in handling complicated
constraints lends to its applicability in solving real world complex problems. In
addition, it is evident from the results that the variability as measured by standard
deviation (SD) in the quality of solutions obtained using CI is commendable and
remains almost stable as the problem size increases. This is because, even though
the search space increases as the problem size increases, the number of charac-
teristics in a learning attempt that need to be learnt by a candidate who is following
the behavior of another candidate do not change. This results in an increase in the
number of learning attempts in order to improve candidates’ individual solutions
and to finally reach the cohort’s global solution.

Some limitations of the CI method should also be identified. The rate of con-
vergence and the quality of the solution is dependent on the parameters such as the
number of candidates and the number of variations and reduction factor. These
parameters are derived empirically over numerous experiments and their calibration
requires some preliminary trials. It should also be observed that the number of
characteristics attempted to adopt/learn is an important parameter when dealing
with combinatorial optimization problems. As fewer characteristics are considered
during the learning stage, this may delay the method’s convergence rate signifi-
cantly. The procedure may get stuck in the neighborhood of a local minimum,
which may result into premature convergence. How to fine-tune the CI parameters
and what to decide on the number of characteristics that needs to be learned by a
candidate in every learning attempt can be done in an evolutionary and adaptive
way as discussed in [4]. This may also help in increasing the accuracy of the
solution as well as reducing the SD and overall performance of the algorithm. In
addition, it should also be observed that the initial guess of the candidate solutions
can affect the computational time of the algorithm. More specifically, if the initial
candidate solutions are closer to the feasible region the chances of achieving
saturation/convergence and reaching the optimal solution faster are high.
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