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Abstract. The efficient tracking of articulated bodies over time is an essential
element of pattern recognition and dynamic scenes analysis. This paper proposes
a novel method for robust visual tracking, based on the combination of image-
based prediction and weighted correlation. Starting from an initial guess, neural
computation is applied to predict the position of the target in each video frame.
Normalized cross-correlation is then applied to refine the predicted target posi‐
tion.

Image-based prediction relies on a novel architecture, derived from the
Elman’s Recurrent Neural Networks and adopting nearest neighborhood connec‐
tions between the input and context layers in order to store the temporal infor‐
mation content of the video. The proposed architecture, named 2D Recurrent
Neural Network, ensures both a limited complexity and a very fast learning stage.
At the same time, it guarantees fast execution times and excellent accuracy for
the considered tracking task. The effectiveness of the proposed approach is
demonstrated on a very challenging set of dynamic image sequences, extracted
from the final of triple jump at the London 2012 Summer Olympics. The system
shows remarkable performance in all considered cases, characterized by changing
background and a large variety of articulated motions.
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1 Introduction

Motion has been one of the main cues studied in Computer Vision and Pattern Recog‐
nition. As stated by David Marr [1]: “Motion pervades the visual world, a circumstance
that has not failed to influence substantially the process of evolution. The study of visual
motion is the study of how information about only the organization of movement in an
image can be used to make inferences about the structure and the movement of the
outside world”.

In many cases motion enables three-dimensional perception (consider for example
the counter-rotating cylinders effect described by Ullman [2]) and, in its simplest form,
explains the unrivaled ability of humans to perform scene segmentation and object
tracking [3].
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Object tracking can be defined as the estimation of the trajectory of an object in the
image plane as it moves around a scene. Errors in tracking are often due to abrupt changes
in object motion, changes in the objects appearance, non-rigidity of the object, occlu‐
sions and non-linear camera motion [4]. The robustness of the representation of target
appearance, against these and other unpredictable events, is crucial to successfully track
objects over time. Interestingly, assumptions are often made to constrain the tracking
problem within the context of a particular application.

Recent tracking algorithms are classified into two major categories, based on the
learning strategy adopted: generative and discriminative methods. Generative methods
describe the target appearance by a statistical model estimated from the previous frames.
To maintain the integrity of the target appearance model, various approaches have been
proposed, including sparse representation [5, 8, 9], on-line density estimation [10]. On
the other hand, discriminative methods [11, 13] directly implement classifiers to discrim‐
inate the target from the surrounding background. Several learning algorithms have been
adopted, including on-line boosting [13], multiple instance learning [11], structured
support vector machines [12] and random forests [14, 15]. These approaches are often
limited by the adoption of hand-crafted features for target representation, such as iconic
templates, Haar-like features, histograms and others, which may not generalize well to
handle the challenges arising in video sequences from everyday life scenes.

In this paper, an original method is proposed for robust visual tracking, based on a
combination of image prediction and weighted correlation matching techniques. Image
prediction is based on a novel recurrent neural network which can be easily generalized
to track any visual pattern in dynamic scenes. The proposed approach is derived from
both Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs).

A Recurrent Neural Network (RNN) is an artificial neural network with feedback
connections between nodes, with the capability to model dynamic systems [16]. Elman’s
neural network, also known as Simple Recurrent Network (SRN), is a partially recurrent
neural network first proposed by Elman [17]. Because of the context neurons and local
recurrent connections between the context layer and the hidden layer, the Elman’s neural
network has several dynamic advantages over a static neural network. Training and
convergence of SRNs usually take a long time, which makes them useless in time critical
applications [10] and/or when dealing with high resolution images. Therefore, to effi‐
ciently process high resolution images, a compromise between the representation power
and the dimension of the network must be sought.

A CNN is a feed-forward artificial neural network where individual neurons are
arranged to respond to overlapping regions in the visual field. A CNN consists of
multiple layers of small neuron collections taking as input small overlapping areas of
the image. The outputs of each layer are tiled and overlapping to better represent the
original image. This feature ensures a reasonable invariance to planar translation on the
image plane [18]. Due to their representation power, Convolutional Neural Networks
have recently attracted a considerable attention in the Computer Vision community [7],
particularly for image- and video-based recognition. However, only few attempts can
be found in the literature to employ CNNs for visual tracking. One reason is that off-
line classifiers require a model of the objects class. On the other hand, performing on-
line learning based on CNNs is not straightforward, due to the large network size and
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the lack of sufficiently large training sets. According to Hong et al. [7], the extraction
of features from the deep structure may not be appropriate for visual tracking because
top layers encode semantic information and may provide a relatively poor localization
accuracy.

In this paper a variation of Elman’s architecture, the Two-dimensional Recurrent
Neural Network (2D-RNN) is proposed. This neural architecture is derived from a CNN
where the input layer captures small areas of the input image. This mapping of the image
pixels allows to reduce both the training time and the network dimension, yet keeping
the temporal information embedded in the video and the image details unaltered.

The paper is organized as follows: in Sect. 2, the tracking problem is analytically
stated, the solution based on the novel 2D-RNN architecture is described and compared
with the Elman’s SRN. A case study for video tracking (triple-jumping runner and
related dataset) is first introduced in Sect. 3; then experimental steps and experimental
protocols are defined. Section 4 is devoted to the comparison and discussion of the
experimental results. Conclusions and future developments are finally discussed in
Sect. 5.

2 Object Tracking in Real-Time Video

In this paragraph we first define the tracking problem for scenes including non-rigid and
articulated bodies; thence the two types of neural networks used in the experimental
section, the original Elman RNN and the proposed 2D-RNN are detailed.

2.1 Tracking

In a tracking scenario, an object can be defined as “anything that is of interest for further
analysis” [6]. Objects can be represented by their varying shapes and appearances; the
position of a single object can be traced through a single point as the centroid or by a
set of points related to a small region in the image; for example primitive geometric
shapes (suitable for rigid object but also used for tracking of non rigid objects), object
silhouette and contour, articulated shape models or skeletal models. In the proposed
approach a primitive rectangular shape (bounding box or BB) is used. The BB has a
fixed dimension for all frames of the database. Note that for the purposes of this paper,
the initialization of the tracking process, for example by moving objects detection or
direct object recognition, it is not explicitly considered; as a consequence the object of
interest must be defined at the time step 0 by manually placing a starting BB in the first
frame.

Afterward, the tracking algorithm iteratively determines the object position. At each
time step t, it can be assumed that the object position has been detected in the previous
t − i time steps, through the centroid of the bounding box. The past i images inside the
BB are fed as input to a RNN, which produces as output the prediction of the image in
the bounding box for the current time step. An important outcome of such a prediction
is that the expected position of the bounding box for the current time step can be eval‐
uated and refined through the correlation between the predicted sub-image (RNN next
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frame prediction) and the current image. At the same time also the predicted content of
the BB can be evaluated (both the dynamic background and the object of interest) by
considering the residual error corresponding to the maximum of the correlation.

Figure 1 depicts in detail the tracking scheme based on the RNN next frame predic‐
tion. The correlation matrix is computed by convolution in the Fourier domain; the
position of the maximum of the correlation matrix corresponds to the best prediction of
the BB position for the current time step. Note that, in general, the correlation matrix
can have more than one local maximum, and it can happen that the target BB position
is close to a local maximum that is not the absolute maximum.

Fig. 1. The Recurrent Neural Network predicts the bounding box of the object at the next frame
starting from the bounding box at the previous frame. The location refinement is performed by
the correlation between the predicted bounding box and the entire image

This problem is particularly important when the moving object is subject to abrupt
deformations, partial occlusions, etc. In order to deal with this problem, in our approach
the correlation matrix is weighted with a Gaussian function centered on the extrapolated
position of the moving object, based on the two most recent observations, i.e. the posi‐
tions at time t − 1 and t − 2.

More precisely, the coordinates  and  of the extrapolated center position
are defined through:

(1)

(2)

Where

(3)

(4)
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2.2 The Elman Neural Network

The Elman’s Simple Recurrent Network (SRN) consists of an input layer, a hidden layer,
a context layer, and an output layer. The outputs of the context neurons and the external
input neurons are fed to the hidden neurons. Context neurons are known as memory
units as they store the previous output of hidden neurons. At the time step t, the context
layer nodes carry the output of hidden layer nodes of the time step t − 1 iteration and
supply that as input during processing of the time step t data. The SRN architecture is
presented in figure Fig. 2.

Fig. 2. Architecture of the SRN. The layers are fully connected with a feedback connection
between the hidden and the context layers. The context layer provides both actual and delayed
inputs to the hidden layer.

Considering I, S, C and O as input, hidden, context and output layer vectors, respec‐
tively, the vector components at the tth iteration can be written as [19]:

(5)

(6)

(7)

(8)

(9)

(10)

In the above equations, n, m and l represent the numbers of nodes of input, hidden,
and output layer, respectively, f(·) indicates the activation function of the qth hidden node
at the tth iteration, while  denotes the input of the qth context layer node at the tth iteration

and  is the linear output of the hidden node q at tth iteration.
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Let W1, W2 and W3 be the weight matrices between input and hidden layer, hidden
and context layer and hidden and output layer, respectively. The output of hidden layer
and output layer nodes at the tth iteration with these weight matrices can be represented
by the following equations:

(11)

(12)

where the , ,  are the elements of the weight matrices W1, W2, and W3,
respectively.

The training of the network can be accomplished by exploiting the error back prop‐
agation algorithm [20]. In this algorithm, the error is minimized to converge to the target
value by updating the link weights at each iteration using Eq. (13).

(13)

where α is the learning rate.
The error E expresses the difference between the set target at the output nodes and

the actual output obtained as expressed in Eq. (14):

(14)

where  and  represents the set target and the actual output from the network at the

tth iteration, respectively, and e is the number of epochs.

2.3 Two-Dimensional Recursive Neural Networks

In the proposed 2D-RNN, hidden, context and output layers are organized in two-
dimensional arrays all having the same dimensions as the input image. Unlike the
Elman’s network, the layers of the proposed network are not fully connected to each
other. In particular, denoting by (x,y) the index of row and column of the matrix of the
hidden layer, respectively, 2D-RNN uses for each element (x’,y’) of the input matrix
also its nearest elements in the connection with the correspondent element of the hidden
layer (x,y). Such type of association is replicated in the connection of the context layer
with the hidden layer and in the connection between the hidden layer and the output
layer, as shown in Fig. 3.
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Fig. 3. Architecture of the 2D-RNN. Mapping of the image pixels from the input and context
layers. Each node in the hidden layer receives input from both the actual and delayed image.
Spatial information is preserved through the layers

Note that neuron (x,y) of the hidden layer is connected to all neurons (x’,y’) of the
input layer and to all neurons (x’’,y’’) of the context layer with:

(15)

(16)

In other words, the neuron at position (x,y) of the hidden layer is connected to the
corresponding neuron of the input layer and to its nearest neighbors, and to the corre‐
sponding neuron of the context layer and to its nearest neighbors. Analogously, each
neuron of the output layer is connected to the corresponding neuron of the hidden layer
and to its nearest neighbors.

The training of the network can be accomplished again by the standard error back
propagation algorithm. Note that the k parameter (dimension of the neighborhood) is
also optimized and the Eqs. (11) and (12) are modified as follows:

(17)

(18)

3 Experimental Results

3.1 Basic Assumptions

The proposed tracking algorithm has been validated on a limited but challenging set of
sequences, extracted from the final of triple jump at the London 2012 Summer Olympics.
In this case study, the computation of the runner’s trajectory is subject to several critical
issues such as moving background, noise, articulated motion, scene illumination changes
and dynamic background, as illustrated in Fig. 4.
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Fig. 4. Frames extracted from the triple jump sequence. Several visual artifacts can be noticed,
such as moving background, change in the object (the runner) shape, changes in lighting and
occlusions.

Several object-tracking methods impose constraints on the motion and/or the object’s
appearance of objects. Most tracking algorithms assume that the object motion is smooth
and without abrupt changes. Some approaches constrain the object motion to be of
constant velocity or constant acceleration based on a priori information. As stated in the
previous section, prior knowledge about the number and the size of objects, or the object
appearance and shape, have also been used to simplify the problem. The proposed
method does not make assumptions. Furthermore, it does not use any pre-processing of
the image to remove external objects (i.e. TV-written), it does not apply any pre-
processing such as band-pass filtering or segmentation. The developed object tracker
shows a bounding box that contains the athlete in all different frames of a video, as in
Fig. 5. The gold standard for each frame is provided through manual labeling of the
region of interest and more specifically by defining the position of the pelvic bones of
the athlete.

Fig. 5. Actual frame, predicted next frame and the correlation diagram computed by the SRN on
the left and by the 2D-RNN on the right. The blue bounding box represents the computed gold
standard while the green box represents the position computed by the RNNs.
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The main processing steps for the experimental phase are the following: extraction
of the single JPG frames for each sequence of the MP4 video; resizing of all frames from
1280 × 720 pixels to 128 × 72 pixels; conversion of the frames to gray levels; RNNs
training and testing by applying a BB of 50 × 50 pixels to the resized images.

3.2 Dataset

The experimental dataset is composed of 10 sequences, downloaded from the YouTube
platform. Each sequence relates to a different athlete in the final of the triple jump at the
Olympics London 2012.

The sequences are characterized by a frame rate of 29 images/s; the dimension of
each original frame is 1280 × 720 pixels. Each sequence has a duration of about 45 s;
only one frame every ten is considered for further processing, therefore for each
sequence the number of frames processed varies between 97 and 127.

3.3 Configuration

A comparison between the original SRN with respect to the novel 2D-RNN is performed.
Input data are the same for both networks.

The SRN can identify the single-order dynamic system using fixed coefficients in
the context neurons, using weight = 1 in the delay connections with the context layer;
SRN best architecture needs 2500 input, 250 hidden, 250 context and 2500 output
neurons. Note that the input and output layers are related to the frame input matrix (the
50 × 50 pixels bounding box) while the number of neurons of the context and hidden
layers have been optimized trying several configurations.

2D-RNN is not fully connected as the SRN; it requires 2500 input, hidden, context
and output neurons (the numbers of neurons for all layers is fixed with respect to the
frame input matrix). Best results are obtained for a number of nearest neighbors k = 3,
using weight = 1 in the delay connections with the context layer. For both RNNs and
for all neurons a logistic standard transfer functions has been adopted.

4 Results and Discussion

4.1 Performances of RNNs

In order to check the independence from the sampling of the dataset, a k-folder cross
validation (5 × 2) has been used in the experiments. One round of cross-validation
involves partitioning a sample of data in two complementary subsets, performing the
analysis on one subset (train set of 5 videos), and validating the analysis on the other
subset (test set of 5 videos); after that the simulation is repeated exchanging train and
test sets. To reduce variability, 5 rounds of cross-validation are performed using random
different partitions, and the validation results are averaged over the 10 (5 × 2) rounds.
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In Table 1 the comparison of the best configuration for both RNNs on the same
random train test and blind test set is presented; learning times refer to a simple desktop
architecture based on a Intel CoreTM 2 DUO CPU E 8400 @3.00 GHz and 4 GB RAM.

Table 1. Performance comparison of the of SRN and the 2D-RNN for the same blind test set

Parameters SRN 2D-RNN
Input 2500 2500
Output 2500 2500
Hidden 250 2500
Context 250 2500
Learning rate 0.005 0.05
Epocs 280 130
Connections 1312500 367500
Learning time (s) 9230 1092
Best rmse 0.114 0.104

Table 1 clearly shows that the learning phase of 2D-RNN is faster than SRN, and
2D-RNN produces the best results. Obviously the best learning rate for both RNNs are
reported,in particular, the root-mean-square deviation (rmse) is repeatedly computed on
the test set after a random selection of the training set followed by the learning phase.
The results for the 2D-RNN, in 5 × 2 cross validation, is a mean rmse = 0.105 ± 0.003.
In summary, Table 1 shows that 2D-RNN, compared to SRN on the same dataset,
provides a better rmse; the results are stable for the 5x2 cross-validation and 2D-RNN
is faster than SRN in terms of learning time and epochs. The complexity of the 2D-RNN
is minor than SRN in terms of connections.

4.2 Results for Tracking

Visual tracking results can be described through the distances between the center of
manual annotation (the pelvic bones) of the athlete and the center of bounding box in
the 2D-RNN next frame prediction, illustrated in previous Fig. 5. Using only one frame
every ten and starting from the original frame rate information, the RNN previsions
correspond to one image every 0.344 s. In Fig. 5 corresponding samples for the SRN
(left) with actual frames and next frame prediction are shown, together with the corre‐
lation diagram. The same results are shown for the 2D-RNN in Fig. 5 (right). In the
surface plot, the peak of the cross-correlation matrix occurs where the sub images are
best correlated.

It should be noted that all the next frames prediction in all figures are blurred because
the RNN produces a distribution of positions related to the probability density. This
distribution reflects the variability of the images used to train the RNN. Naturally, the
athletes move their limbs during the run in different ways. The fact that the body image
is blurred is the consequence of the inability to produce an accurate prediction. On the
other hand, images with clear prediction of the part of the body with respect to blurred
images, would give rise to lower correlations on the average, and consequently more
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average errors due to the variability and not exact predictability of the next image. This
is a compromise tolerable because in the tracking problem it is only necessary to have
an accurate prediction of the center of the BB to follow the object of interest.

Furthermore Fig. 6 show a qualitative comparison between the real next frame and
calculated next frame prevision of the SRN and 2D-RNN.

Fig. 6. Actual frame (top), next frame and predicted next frame (bottom) from the SRN on the
left and 2D-RNN on the right.

In Fig. 7 the diagrams of the Euclidean distances between the gold standard and the
center of the RNNs prevision are shown, normalized with respect to the dimension of
the BB.

Fig. 7. Euclidean distances between the center of the computed bounding box and the gold
standard for each frame, normalized with respect to the side of bounding box. The large deviation
shown at about 85 frames is due to the runner landing on the sand.

The literature is divided in two types of measures for precision and recall: one is
based on the localization of objects as a whole such as the F-score or other index [36]
and one based on the position at pixel level. In the proposed approach object tracking
is performed at pixel level. There are no lost frames in the proposed approach, therefore
evaluation metrics based on accuracy is not used; however, with the aim to show the
performances on the correct location of the BB, a position based measure (PBM) can
be used. PBM is defined as [21]:
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(19)

Where

(20)

depends on the dimensions (width and height) of the bounding box.
In Eq. 19,  is the total number of frames considered whilst D(i) is the L1-norm

distance between the gold standard and the BB predicted by RNN. Using such index in
our dataset the resulting mean of BMP (proposed system, first 85 frames) is expressed
in the Table 2. In particular it is possible to note a better performance of the 2D-RNN
with respect to the SNR.

Table 2. Comparison of the two RNNs tracking system in terms of BPM

RNN BMP (first 85 frames)
SNR 0.95 ± 0.040
2D-RNN 0.97 ± 0.002

Considering the entire test set, the distribution of the BB position errors between the
predicted coordinates and the gold standard, in pixels, with respect to the original image,
is shown in Fig. 8.

Fig. 8. Scatter plots representing the distribution of the bounding box errors, between the
computed box coordinates and the gold standard for each sequential frame. The red dots represent
the target positions computed before the runner landing on the sand, while the blue dots represent
the target positions computed after the runner landing on the sand.

Note that the interesting part of the sequences is composed by the first 85 frames; in
fact, after frame 85 we typically register a degradation of the image due to the sand
effect after landing. In Fig. 9 a comparative scatter plot represents the distribution of the
BB position error on the original images, for both RNNs considering only the first 85
frames.
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Fig. 9. Scatter plot representing the distribution of the bounding box errors, between the
coordinates of the computed box and the gold standard for the first 85 frames. The colors represent
the method applied to compute the target position

In particular from Fig. 9 it turns out that the most part of errors for both RNNs are
within ± 30 pixels with respect to the original image of 1280X720 pixels, where the
dimension of the BB is 500 × 500 pixels; in Table 3 are represented the position errors
in pixels for both RNNs and the details of the coordinates of the position mean square
error (Position MSE).

Table 3. Comparison of the two RNNs position error in pixels for the first 85 frames.

RNN Position error
dX (pixels)

Position error
dY (pixels)

Position MSE
(pixels)

SNR 13 19 23
2D-RNN 11 14 19

An exhaustive comparison of the proposed approach with respect to other existing
datasets obtained with very different aim and techniques is not simple. In particular we
could not find any public database of sport scenes with measured gold standard coordi‐
nates. However, the results of Table 2 can be directly compared to the BMP results
reported in the paper [11] where the MILTrack algorithm, that uses a novel Online
Multiple Instance Learning algorithm, is presented. In their work the authors provide a
diagram with several algorithm tested on eight database for images 320 × 240 pixels.
Normalizing the results to the scale of the adopted BB, it is possible to conclude that
our algorithm, without lost frames, obtains similar performances of the best proposed
MILTrack algorithm.

An alternative measure quite convenient for comparison is deviation. Deviation
represents the capability of a tracker to determine the correct position of the target and
measures the accuracy of tracking [12]. In particular, by using Deviation as the error of
the center location expressed in pixels as a tracking accuracy measure:

(21)
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where  is the normalized distance between the centroids of bounding box (BB)
and the gold standard and Ms denotes the set of frames in a video where the tracked BB
matches with the gold standard BB.

In the proposed approach, again normalizing with respect to the side of the BB and
using the first 85 frames, for 10 sequences, a Deviation equal to about 0.98 for both
RNNs is obtained. Taking into account all frames of the 10 sequences in the dataset the
Deviation value slightly decreases to about 0.96 for both RNNs.

This result can be compared with the values reported in [21] and related to the articles
[11, 12], [22–37], where the target is considered tracked correctly each time the overlap
between the current forecast and the real position of the object area overlap for more
than 50 %. As shown in Table 4, the proposed approach achieves the same or even better
accuracy than the algorithms at the state of the art.

Table 4. Comparison of different approaches for target tracking applied to the jumping sequence.

RNN Deviation
Elman’s neural network (SRN) 0.96
2D Recurrent Neural Network (2D-RNN) 0.96
Normalized Cross-Correlation (NCC) [22] 0.95
Lucas-Kanade Tracker (KLT) [23] 0.95
Kalman Appearance Tracker (KAT) [24] 0.95
Fragments-based Robust Tracking (FRT) [25] 0.94
Mean Shift Tracking (MST) [26] 0.93
Locally Orderless Tracking (LOT) [27] 0.94
Incremental Visual Tracking (IVT) [28] 0.95
Tracking on the Affine Group (TAG) [29] 0.95
Tracking by Sampling Trackers (TST) [30] 0.94
Tracking by Monte Carlo sampling (TMC) [31] 0.96
Adaptive Coupled-layer Tracking (ACT) [32] 0.94
L1-minimization Tracker (L1T) [33] 0.95
L1 Tracker with Occlusion detection (L1O) [33] 0.95
Foreground-Background Tracker (FBT) [34] 0.95
Hough-Based Tracking (HBT) [35] 0.93
Super Pixel tracking (SPT) [36] 0.93
Multiple Instance learning Tracking (MIT) [11] 0.94
Tracking, Learning and Detection (TLD) [37] 0.93
STRuck: Structured output tracking with kernels (STR) [12] 0.94

5 Conclusion

A novel tracking algorithm has been presented, where two complementary RNN topol‐
ogies are used without any pre-processing of the images. The temporal memory of the
recursive neural networks is used to keep the correlation among processed pixels and to
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perform the next frame prediction at the temporal distances of ten frames, with respect
to the frame of interest.

The novel RNN algorithm proposed performs well for generic, iconic based, image
tracking. This is mainly due to the two dimensional approach where for each pixel of
the input image also the information of its k nearest pixels are considered. Such kind of
connection of the layers (input-hidden and hidden-output) is preferred with respect to
the full connection, with great advantages in terms of rmse, learning times and BMP of
the tracking.

A qualitative comparison with different approaches on different datasets is also
performed, obtaining good results on measures such as deviation, that reveals an excel‐
lent performance compared to the literature.

The extension of this approach will be applied in the future to large benchmark
datasets with different types of object of interest, and replacing the manual selection of
the BB in the first frame with an automatic procedure designed to recognize objects
belonging to predefined classes.

The results are originally measured on a triple jump dataset and could be very helpful
for analysis of athlete errors in the jump in computer aided coaching or for TV highlight.
However the novel method doesn’t require any information related to the object of
interest in the scene and it is therefore suitable for a large set of applications from sport
activities to video-surveillance.
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