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Preface

The 17th International Conference on Engineering Applications of Neural Networks
(EANN) was held at Robert Gordon University in Aberdeen, UK, during September,
2016. The supporters for the conference were the International Neural Network Society
(INNS), The Scottish Informatics and Computer Science Alliance (SICSA), Visit
Aberdeen, Visit Scotland, and Robert Gordon University in Aberdeen, UK. The 17th
EANN 2016 attracted delegates from 12 countries across the world: Czech Republic,
China, Chile, Colombia, Greece, Italy, Japan, Poland, Portugal, Russia, the UK, and
USA.

The volume includes 22 full papers, three short papers, and two tutorial papers. All
papers were subject to a rigorous peer-review process by at least two independent
academic referees. EANN 2016 accepted approximately 53 % of the submitted papers
as full papers. The authors of the best 10 papers were invited to submit extended
contributions for inclusion in a special issue of Neural Computing and Applications
(Springer). The papers demonstrate a variety of novel neural network and other
computational intelligence approaches applied to challenging real-world problems. The
papers cover topics such as: convolutional neural networks and deep learning appli-
cations, real-time systems, ensemble classification, chaotic neural networks, self-
organizing maps applications, intelligent cyber physical systems, text analysis, emotion
recognition, and optimization problems.

The following keynote speakers were invited and gave lectures on exciting neural
network application topics:

– Professor Nikola Kasabov, Director and Founder, Knowledge Engineering and
Discovery Research Institute (KEDRI), Chair of Knowledge Engineering, Auckland
University of Technology, New Zealand

– Professor Marley Vellasco, Head of the Electrical Engineering Department and the
Applied Computational Intelligence Laboratory (ICA) at PUC-Rio, Brazil

– Professor John MacIntyre, Dean of the Faculty of Appliced Sciences, Pro Vice
Chancellor Director of Research, Innovation and Employer Engagement, University
of Sunderland, UK

On behalf of the conference Organizing Committee we would like to thank all those
who contributed to the organization of this year’s program, and in particular the
Program Committee members.

September 2016 Chrisina Jayne
Lazaros Iliadis
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Deep Active Learning for Autonomous
Navigation

Ahmed Hussein(B), Mohamed Medhat Gaber, and Eyad Elyan

School of Computing, Robert Gordon University,
Garthdee Road, Aberdeen AB10 7QB, UK

a.s.h.a.hussein@rgu.ac.uk

Abstract. Imitation learning refers to an agent’s ability to mimic a
desired behavior by learning from observations. A major challenge fac-
ing learning from demonstrations is to represent the demonstrations in a
manner that is adequate for learning and efficient for real time decisions.
Creating feature representations is especially challenging when extracted
from high dimensional visual data. In this paper, we present a method
for imitation learning from raw visual data. The proposed method is
applied to a popular imitation learning domain that is relevant to a vari-
ety of real life applications; namely navigation. To create a training set,
a teacher uses an optimal policy to perform a navigation task, and the
actions taken are recorded along with visual footage from the first per-
son perspective. Features are automatically extracted and used to learn
a policy that mimics the teacher via a deep convolutional neural net-
work. A trained agent can then predict an action to perform based on
the scene it finds itself in. This method is generic, and the network is
trained without knowledge of the task, targets or environment in which it
is acting. Another common challenge in imitation learning is generalizing
a policy over unseen situation in training data. To address this challenge,
the learned policy is subsequently improved by employing active learn-
ing. While the agent is executing a task, it can query the teacher for
the correct action to take in situations where it has low confidence. The
active samples are added to the training set and used to update the ini-
tial policy. The proposed approach is demonstrated on 4 different tasks
in a 3D simulated environment. The experiments show that an agent can
effectively perform imitation learning from raw visual data for naviga-
tion tasks and that active learning can significantly improve the initial
policy using a small number of samples. The simulated testbed facilitates
reproduction of these results and comparison with other approaches.

1 Introduction

One of the important aspects of artificial intelligence is the ability of autonomous
agents to behave effectively and realistically in a given task. There is a rising
demand for applications in which agents can act and make decisions similar to
human behavior in order to achieve a goal. Imitation learning is a paradigm in
which an agent learns how to behave by observing demonstrations of correct
c© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-44188-7 1



4 A. Hussein et al.

behavior provided by a teacher. In contrast to explicit programming, learning
from demonstrations does not require knowledge of the task to be integrated in
the learning process. It favors a generic learning process where the task is learned
completely from observing the demonstrations. Thus, an intelligent agent can be
trained to perform a new task simply by providing examples. Since an agent is
able to learn complex tasks by mimicking a teacher’s behavior, imitation learning
is relevant to many robotic applications [2,4,6,11,13,24,29,36] and is considered
an integral part in the future of intelligent robots [31].

One of the biggest challenges in imitation learning is finding adequate repre-
sentations for the state of the agent in its environment. The agent should be able
to extract meaningful information from sensing of its surroundings, and utilize
this information to perform actions in real time. Deep learning methods have
recently been applied in a wide array of applications and are especially successful
in handling raw data. One of the most popular deep learning techniques is Con-
volutional Neural Networks (CNNs). CNNs are particularly popular in vision
applications due to their ability to extract features from high dimensional visual
data. The ability of deep networks to automatically discover patterns provides
a generic alternative to engineered features which have to be designed for each
specific task. For instance traditional planning approaches that use computer-
vision methods of object recognition and localization need to tailor the methods
for every individual target and task. CNNs achieve results competitive with the
state of the art in many image classification tasks [8,17] and have been recently
used to learn Atari 2600 games from raw visual input [20,21]. These and other
recent attempts have shown that deep learning can be successful in teaching an
agent to perform a task from visual data. However, most studies focus on 2D
environments with stationary views; which does not reflect real world applica-
tions. Moreover, direct imitation is performed without considering refining the
policy based on the agent’s performance. To the best of our knowledge, training
an agent from raw visual input using deep networks and active learning in a 3D
environment has not been done.

In this paper we present a novel method that utilizes deep learning and active
learning to train agents in a 3D setting. The method is demonstrated on sev-
eral navigation tasks in a 3D simulated environment. Navigation is one of the
most explored domains in imitation learning due to its relevance to many robotic
applications, such as flying [1,23,29] and ground vehicles [7,26,27,32]. Naviga-
tion is also an essential base task in high degree of freedom robots (e.g. humanoid
robots) [7,30]. We propose a generic method for learning navigation tasks from
demonstrations that does not require any prior knowledge of the task’s goals,
environment or possible actions. A training set is gathered by having a teacher
control the agent to successfully perform the task. The controlled agent’s view of
the 3D environment is captured along with the actions performed in each frame.
A deep convolution network is used to learn visual representation from the cap-
tured video footage and learn a policy to mimic the teacher’s behavior. We also
employ active learning to improve the agents policy by emphasizing situations in
which it is not confident. We show that active learning can significantly improve
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the policy with a limited number of queried instances. Once trained, the agent is
able to extract features from the scene and predict actions in real time. We con-
duct our experiments on benchmark testbed that makes it seamless to replicate
our results and compare with other approaches.

Benchmark environments are useful tools for evaluating intelligent agents.
A few benchmarks are available for 2D tasks such as [3,15,25] and are being
increasingly employed in the literature. 3D environments however have not been
as widely explored, although they provide a closer simulation to real robotic
applications. We use mash-simulator [19] as our testbed to facilitate the evalua-
tion and comparison of learning methods. It is also convenient for extending the
experiments to different navigation tasks within the same framework.

In the next section we review related work. Section 3 describes the proposed
methods. Section 4 details our experiments and results. Finally we present our
conclusions and discuss future steps in Sect. 5.

2 Related Work

2.1 Navigation

Navigation tasks have been of interest in AI in general and imitation learning
specifically from an early stage. Sammut et al. [29] provides an early exam-
ple of an aircraft learning autonomous flight from demonstrations provided via
remote control. Later research tackle more elaborate navigation problems includ-
ing obstacles and objects of interest. Chernova et al. [7] use Gaussian mixture
models to teach a robot to navigate through a maze. The robot is fitted with
an IR sensor to provide information about the proximity of obstacles. This data
coupled with input from a teacher controlling the robot is used to learn a policy.
The robot is then able to make a decision to execute one of 4 motion primi-
tives(unit actions) based on its sensory readings. In [10] the robot uses a laser
sensor to detect and recognize objects of interest. A policy is learned to predict
subgoals associated with the detected objects rather than directly predicting
the motion primitives. Such sensing methods provide an abstract view of the
environment, but can’t convey visual details that might be needed for intelligent
agents to mimic human behavior. [22] use neural networks to learn a policy for
driving a car in racing game using features extracted from the game engine (such
as position of the car relative to the track). Driving is a complex task compared
to other navigation problems due to the complexity of the possible actions. The
outputs of the neural network in [22] are high DOF low level actions. However,
the features extracted from the game engine to train the policy would be dif-
ficult to extract in the real world. Advances in computational resources have
prompted the use of visual data over simpler sensory data. Visual sensors pro-
vide detailed information about the agents surrounding and are suitable to use in
real world applications. In [28] a policy for a racing game is learned from visual
data. Demonstrations are provided by capturing the games video stream and the
controller input. The raw frames (downsampled) without extracting engineered
features are used as input to train a neural network.
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2.2 Deep Learning

Deep learning methods are highly effective in problems that don’t have estab-
lished sets of engineered features. CNNs have been used with great success to
extract features from images. In recent studies [20,21] CNNs are coupled with
reinforcement learning to learn several Atari games. A sequence of raw frames is
used as input to the network and trial and error is used to learn a policy. Trial
and error methods such as reinforcement learning have been extensively used
to learn policies for intelligent agents [16]. However, providing demonstrations
of correct behavior can greatly expedite the learning rate. Moreover, learning
through trial and error can lead the agent to learn a way of performing the
task that doesn’t seem natural or intuitive to a human observer. In [12] learn-
ing from demonstrations is applied on the same Atari benchmark. A supervised
network is used to train a policy using samples from a high performing but non
real time agent. This approach is reported to outperform agents that learn from
scratch through reinforcement learning. Other examples of using deep learning
to play games include learning the game of ‘GO’ using supervised convolution
networks [9] and a combination of supervised and reinforcement learning [33].
These examples all focus on learning 2D games that have a fixed view. However
in real applications, visual sensors would capture 3D scenes, and the sensors
would most likely be mounted on the agent which means it is unrealistic to have
a fixed view of the entire scene at all times.

In [18] a robot is trained to perform a number of object manipulation tasks.
First a trajectory is learned using reinforcement learning with the position of
the objects and targets known to the robot. These trajectories then serve as
demonstrations train a supervised convolutional neural network. In this case no
demonstrations are needed to be provided by a teacher. However, this approach
requires expert knowledge for the initial setup of the reinforcement learning
phase. Compared to related work that employs deep learning to teach an intel-
ligent agent, this is a realistic application implemented with a physical robot.
However, the features are extracted from a set scene with small variations. This
is different from applications where the agent moves and turns around, and with
that completely altering it’s view.

2.3 Active Learning

In many imitation learning applications direct imitation is not sufficient for
robust behavior. One of the common challenges facing direct imitation is that the
training set doesn’t fully represent the desire task. The collected demonstrations
only include optimal actions performed by the teacher. If the agent makes an
error it arrives at a state that was not represented in its learned policy [35].
It is therefore necessary in many cases to provide further training to an agent
based on its own performance of the task. One of the methods to enhance a
trained agent is active learning. Active learning relies on querying a teacher
for the correct decision in cases where the trained model performs poorly. The
teacher’s answers are used to improve the model in its weakest areas. In [7]
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active learning is used to teach a robot navigation tasks. The agent estimates a
confidence measure for its prediction and queries a teacher for the correct action
when the confidence is low. Erroneous behavior may also be identified by the
teacher. In [5] the robot is allowed to perform the task while a human teacher
physically adjusts its actions, which in turn provides corrected demonstrations.
Some imitation learning tasks involve actions that are performed continuously
over a period of time (i.e. an action is comprised of a series of motions performed
in sequence). In such cases a correction can be provided by the teacher at any
point in the action trajectory [14,28]. This way the agent is able to adapt to
errors in the trajectory.

3 Proposed Method

In this section we detail our proposed method for learning navigation tasks from
demonstrations. The source code for this work can be accessed at:
https://github.com/ahmedsalaheldin/ImitationMASH.git

3.1 Collecting Demonstrations

In imitation learning it is assumed that a human teacher is following an unknown
optimal policy. It is therefore possible to use an optimal policy if it exists to
collect demonstrations. To collect a training set we use a deterministic automated
teacher that has access to information hidden from a human or intelligent playing
agent such as position of targets and obstacles in a 3D space. Each training
instance consists of a raw 120 × 90 image of the rendered 3D scene and the
action performed by the teacher. We only use the current frame (not a sequence
of previous frames) in an instance because for the navigation tasks investigated
here adhere to the Markov property. That is, that current state is sufficient to
make a decision. And any previous actions and states need not be included in the
representation of the current state. In that case training an imitation learning
policy is reduced to a supervised image classification problem; where the current
view of the agent is the image and the action chosen by the teacher is the label.
Subsequently the trained agent will be able to predict a decision (as it would be
taken by the teacher) given its current view. More formally, the agent learns a
policy π from a set of demonstrations D = (xi, yi) such that u = π(x, α). Where
xi is a 120 × 90 image, y is the action performed by the teacher at frame i, u is
the action predicted by policy π for input x and α is the set of policy parameters
that are changed through learning.

3.2 Deep Learning

To learn the policy we employ a deep convolutional neural network. The proposed
network uses several convolution layers to automatically extract features from
the raw visual footage. Then a fully connected layer is used to map the learned
features to actions. Each convolution layer is followed by a pooling layer that

https://github.com/ahmedsalaheldin/ImitationMASH.git
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down-samples the output of the convolution layer. The convolution layers take
advantage of spacial connection between visual features to reduce connections
in the network. The pooling layers reduce the dimensionality to further alleviate
the computations needed. Our network follows the pattern in [21]. It consists of
3 convolution layers each followed by a pooling layer. The input to the first layer
is a frame of 120 × 90 pixels. We apply a luminance map to the colored images
to obtain one value for each pixel instead of 3 channels, resulting in a feature
vector of size 10,800. Figure 1 shows the architecture of the network. The filter
sizes for the three layers are 7×9, 5×5 and 4×5 respectively; and the number of
filters are 20, 50 and 70 respectively. The pooling layers all use maxpool of shape
(2,2). Following the last convolution layer is a fully connected hidden layer with
rectifier activation function and fully connected output layer with three output
nodes representing the 3 possible actions. Table 1 summarizes the architecture
of the network.

Fig. 1. Architecture of the neural network used to train the agent

Table 1. Neural network architecture

Layer Size of activation volume

Input 120 * 90

Conv1 7 * 9 * 20

Conv2 5 * 5 * 50

Conv3 4 * 5 * 70

FC 500

Output(FC) 3

3.3 Active Learning

Active learning is employed to improve the initial policy learned from demon-
strations. This is achieved by acquiring a new data set to train the agent that
emphasizes the weaknesses of the initial policy. The agent is allowed to perform
the task for a number of rounds. For each prediction the network’s confidence
is calculated, and if the confidence is low the optimal policy is queried for the
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correct action. The action provided by the teacher is performed by the agent
and is recorded along with the frame image. The confidence is measured as the
entropy of the output of the final layer in the network. The entropy H(X) is
calculated as:

H(X) = −
∑

i

P (xi) log2 P (xi) (1)

Where X is the prediction of the network, P (xi) is the probability distribution
produced by the network for action i.

The active samples are added to the training set and used to update the
initial policy. We find that updating a trained network using only the active
samples results in forgetting the initial policy in favor of an inadequate one
rather than complementing it. Therefore the training set is augmented with the
active samples collected from the playing agent. The augmented dataset is used
to update the network that was previously trained. We find that it is easier and
faster for the network to converge if it is pre-trained with the initial dataset
than training from scratch. Algorithm1 shows the steps followed to perform
active learning.

Low confidence predictions are mainly caused by situations that were not
covered by the training data. Therefore, for active learning to be effective, it
is important that it is performed in the simulation rather than on a collected
dataset. Because by performing its current policy in the simulation, the agent
arrives at unfamiliar situations where it is not confident in its behavior and thus
utilize active learning.

Algorithm 1. Active Learning Algorithm
1: Given: A policy π trained on a Data set D = (xi, yi)

Confidence threshold β
2: while Active Learning do
3: x = current frame
4: u = π(x, α)
5: H(X) = −∑

i

P (ui) log2 P (ui)

6: if H(X) < β then
7: y = Query(x)
8: perform action y
9: add (x, y) to D

10: else
11: perform max(u)
12: Update π using D

4 Experiments

We conduct our experiments in the framework of mash-simulator [19]. Mash-
simulator is a tool for benchmarking computer vision techniques for naviga-
tion tasks. The simulator includes a number of different tasks and environments.
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As well as optimal policies for a number of tasks. All the navigation is viewed
from the first person perspective. The player has 4 possible actions: ‘Go forward’,
‘Turn left’, ‘Turn right’ and ‘Go back’. Although there are 4 possible actions, the
action ‘Go back’ was never used in the demonstrations by the optimal policy.
Therefore the network is only presented with 3 classes in the training set and
thus has 3 output nodes.

4.1 Tasks

The experiments are conducted on the following 4 navigation tasks:

Reach the Flag. This task is set in a single rectangular room with a flag placed
randomly in the room. The goal is to reach the flag. The task fails if the flag is
not reached within a time limit.

Fig. 2. sample images from “Reach the flag”

Follow the Line. This task is set in a room with directed lines drawn on the
floor. The lines show the direction to follow in order to reach the flag. The target
is to follow the line to the flag, and the agent fails if it deviates from the line on
the floor.

Fig. 3. sample images from “Follow the line”

Reach the Correct Object. In this task two objects are placed on pedestals
in random positions in the room. The objective is to reach the pedestal with the
trophy on it. The task fails if a time limit is reached or if the player reaches the
wrong object. The wrong object has the same material of the trophy and can
take different shapes.
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Fig. 4. sample images from “Reach the correct object”

Eat All Disks. This task is set in a large room containing several black disks
on the floor. The target is to keep reaching the disks. A disk is ‘eaten’ once the
agent reaches it and dissapears. New disks appear when one is eaten. The goal
of this task is to eat as many disks as possible within a time limit.

Fig. 5. sample images from “Eat all disks”

Figures 2, 3, 4 and 5 show sample images of the 4 tasks in the 120 × 90 size
used in the experiments.

4.2 Setup

To evaluate the proposed methods, the performance of the agent is measured
over 1,000 rounds. A round starts when the task is initialized and ends when
the agent reaches the target or a time limit is reached. The number of frames
in a round might vary depending on how fast the agent can reach the target.
For all tasks, in each round the environment is randomized including room size
and shape, lighting and the location of the target and the agent. A time limit
is set for each round and the round fails if the limit is reached before the agent
reaches the target. The time limit is measured in frames to avoid any issues with
different frame rates. The time limit is set as the maximum time needed for the
optimal policy to finish the task; which is 500 frames for “Reach the flag” and
“Reach the correct object” and 5000 frames for “Follow the line”. In “Eat all
disks” the task is continuous, so a time limit was set to match the total number
of frames in the other tasks.

4.3 Implementation Details

Inter-process communication is used to communicate data across the different
components of the testbed. The agent acts as a client and communicates with
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the simulator via a TCP connection as follows: The agent requests a task from
the server, the server initiates a round and sends an image to the client. The
client sends an action to the server. The server calculates the simulations and
responds with a new image. Figure 6 shows a flowchart of the data collection
process.

The network used for prediction is also decoupled from the agent. The net-
work acts as a predicting server where an agent sends frames that it receives
from the simulator and in return receives a decision from the network. The
entire process of communication with both servers occurs in real time. This
implementation facilitates experimentation, as making changes to the network
doesn’t affect the client or the simulator server. Moreover, it is easier to extend
this system to physical robots. A predicting server can be located on the robot or
on another machine if the robot’s computational capabilities are not sufficient.
A predicting server can also serve multiple agents simultaneously. The agent
client is implemented in c++ to facilitate interfaceing with the mash-simulator.
The predicting server and the training process are implemented in python using
the Theano deep learning library [34]. Figure 7 shows a flowchart of the agent
performing a task.

Fig. 6. Dataset collection flowchart

Fig. 7. Imitation agent playing flowchart
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4.4 Results

In this section we present the results of the proposed method. The same network
and parameters are used to learn all tasks. For each task 20,000 images are used
for training. Testing is conducted by allowing an agent to attempt the tasks
in the mash-simulator and recording the number of successful attempts. An
agent’s performance for the first 3 tasks is evaluated as the percentage of times
it reaches the target in 1,000 rounds. For “Eat all disks”, the performance is
measured as the number of disks eaten in 1,000 rounds. We also report the
classification error on an unseen test set of 20,000 images collected from the
teacher’s demonstrations.

Table 2 shows the results for the first 3 tasks. The success measure is the
percentage of rounds (out of 1000) in which the agent reached the target. While
error is the classification error on the test set collected from the teacher’s demon-
strations. The agent performs well on “Reach the flag” and is significantly less
successful in the other two tasks. “Follow the line” is considerably less fault tol-
erant than “Reach the flag”. As a small error can result in the agent deviating
from the line and subsequently failing the round. Whereas in “Reach the flag” the
agent can continue to search for the target after a wrong prediction. In “Reach
the correct object” the agent is not able to effectively distinguish between the
two objects. This could be attributed to insufficient visual details in the training
set, as the teacher avoids the wrong object from a distance. Qualitative analysis
of “Reach the flag” shows that the agent aims towards corners as they resemble
the erect flag from a distance. Upon approaching the corner, as the details of the
image become clearer, the agent stops recognizing it as the target and continues
its search. While this did not pose a big problem in the agent’s ability to exe-
cute the task it is interesting to examine the ability of CNNs to distinguish small
details in such environments. It is also worth noting that the teacher’s policy for
“Reach correct object” does not avoid the wrong object if it is in the way of the
target and achieves 80.2 % success rate.

Table 2. Direct imitation results

Task Reach the flag Reach object Follow the line

success 96.20 % 53.10 % 40.70 %

error 2.48 % 4.06 % 0.86 %

Table 3 shows results for the 4th task “Eat all disks”. The table shows the
score of the agent compared to the score achieved using the optimal policy. The
agent is shown to achieve 97.9 % of the score performed by the optimal policy.

To improve the agent’s ability to adapt to wrong predictions and unseen sit-
uations, active learning is used to train the agent on “Follow the line”. In the
other tasks where the agent searches for the target, the optimal policy remem-
bers the location of the target even if it goes out of view due to agent error.
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Table 3. “Eat all disks” results

Task Agent Optimal policy

score 1051 1073

error 1.70 % -

Therefore active learning samples include information that is not represented
in the visual data available to the agent and thus degrade the performance.
This can be rectified by devising a teaching policy that does not use historical
information, or by incorporating past experience in the learned model.

Figure 8 shows the results of active learning on the “Follow the line” task.
Active learning is demonstrated to significantly improve the performance of the
agent using a relatively small number of samples. Comparing the classification
error with success rate emphasizes the point that the errors come from situations
that are not represented in the teacher’s demonstrations.

Fig. 8. Results for active learning on “follow the line” task

The task in which the time limit affected the performance was “Reach the
flag”. As the agent continues to follow its policy in search of the flag even after
performing wrong predictions. The effect of the time limit is evaluated in Fig. 9
which presents the success rate of “reach the flag” task with different time limits.
The horizontal axis represents the time limit as a percentage of the maximum
time needed by the teacher. The graph shows that the longer the agent is allowed
to look for the target the higher the success rate.

Overall the results show good performance on 3 out of the 4 tasks. They
demonstrate the effectiveness of active learning to significantly improve a weak
policy with a limited number of samples. Even without active learning the agent
can learn a robust policy for simple navigation tasks.
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Fig. 9. Results for “reach the flag” task with increasing time limits

5 Conclusion and Future Directions

In this paper, we propose a framework for learning autonomous policies for nav-
igation tasks from demonstrations. A generic learning process is employed to
learn from raw visual data without integrating any knowledge of the task. The
experiments are conducted on a testbed that facilitates reproduction, compari-
son and extension of this work. The results show that CNNs can learn meaningful
features from raw images of 3D environments and learn a policy from demon-
strations. They also show that active learning can significantly improve a learned
policy with a limited number of samples.

Our next step is to conduct an investigation of the proposed approach in more
visually cluttered environments to further evaluate the ability of convolution
networks to create adequate representations from (relatively) low resolution 3D
scenes. As well as extend active learning experiments to more tasks. We also
aim to integrate reinforcement learning with learning from demonstrations to
improve the learned policies through trial and error. This allows the agent to
generalize its policy to unseen situations and adapt to changes in the task without
requiring to query the teacher.

References

1. Abbeel, P., Coates, A., Quigley, M., Ng, A.Y.: An application of reinforcement
learning to aerobatic helicopter flight. Adv. Neural Inf. Process. Syst. 19, 1 (2007)

2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

3. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning
environment: an evaluation platform for general agents (2012). arXiv preprint
arXiv:1207.4708

4. Bemelmans, R., Gelderblom, G.J., Jonker, P., De Witte, L.: Socially assistive
robots in elderly care: a systematic review into effects and effectiveness. J. Am.
Med. Direct. Assoc. 13(2), 114–120 (2012)

http://arxiv.org/abs/1207.4708


16 A. Hussein et al.

5. Calinon, S., Billard, A.G.: What is the teachers role in robot programming by
demonstration? Toward benchmarks for improved learning. Interact. Stud. 8(3),
441–464 (2007)

6. Cardamone, L., Loiacono, D., Lanzi, P.L.: Learning drivers for torcs through imi-
tation using supervised methods. In: 2009 IEEE Symposium on Computational
Intelligence and Games, CIG 2009, pp. 148–155. IEEE (2009)

7. Chernova, S., Veloso, M.: Confidence-based policy learning from demonstration
using Gaussian mixture models. In: Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems, p. 233. ACM (2007)

8. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3642–3649. IEEE (2012)

9. Clark, C., Storkey, A.: Training deep convolutional neural networks to play go.
In: Proceedings of the 32nd International Conference on Machine Learning (ICML
2015), pp. 1766–1774 (2015)

10. Dixon, K.R., Khosla, P.K.: Learning by observation with mobile robots: a computa-
tional approach. In: Proceedings 2004 IEEE International Conference on Robotics
and Automation, ICRA 2004, vol. 1, pp. 102–107. IEEE (2004)

11. Gorman, B.: Imitation learning through games: theory, implementation and eval-
uation. Ph.D. thesis, Dublin City University (2009)

12. Guo, X., Singh, S., Lee, H., Lewis, R.L., Wang, X.: Deep learning for real-time
Atari game play using offline monte-carlo tree search planning. In: Proceedings of
Advances in Neural Information Processing Systems, pp. 3338–3346 (2014)

13. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning rhythmic movements by demon-
stration using nonlinear oscillators. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2002), pp. 958–963 (2002).
No. BIOROB-CONF-2002-003

14. Judah, K., Fern, A., Dietterich, T.G.: Active imitation learning via reduction to
IID active learning (2012). arXiv preprint arXiv:1210.4876

15. Karakovskiy, S., Togelius, J.: The mario AI benchmark and competitions. IEEE
Trans. Comput. Intell. AI Games 4(1), 55–67 (2012)

16. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey.
Int. J. Robot. Res. 32, 1238 (2013). 0278364913495721

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of Advances in Neural Information
Processing Systems, pp. 1097–1105 (2012)

18. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies (2015). arXiv preprint arXiv:1504.00702

19. Mash-simulator (2014). https://github.com/idiap/mash-simulator
20. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

Riedmiller, M.: Playing Atari with deep reinforcement learning (2013). arXiv
preprint arXiv:1312.5602

21. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

22. Munoz, J., Gutierrez, G., Sanchis, A.: Controller for torcs created by imitation. In:
2009 IEEE Symposium on Computational Intelligence and Games, CIG 2009, pp.
271–278. IEEE (2009)

http://arxiv.org/abs/1210.4876
http://arxiv.org/abs/1504.00702
https://github.com/idiap/mash-simulator
http://arxiv.org/abs/1312.5602


Deep Active Learning for Autonomous Navigation 17

23. Ng, A.Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E.,
Liang, E.: Autonomous inverted helicopter flight via reinforcement learning. In:
Ang Jr., M.H., Khatib, O. (eds.) Experimental Robotics IX. Springer Tracts in
Advanced Robotics, vol. 21, pp. 363–372. Springer, Heidelberg (2006)

24. Nicolescu, M.N., Mataric, M.J.: Natural methods for robot task learning: instruc-
tive demonstrations, generalization and practice. In: Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 241–248. ACM (2003)

25. Noda, I., Matsubara, H., Hiraki, K., Frank, I.: Soccer server: a tool for research on
multiagent systems. Appl. Artif. Intell. 12(2–3), 233–250 (1998)

26. Ollis, M., Huang, W.H., Happold, M.: A Bayesian approach to imitation learning
for robot navigation. In: 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2007, pp. 709–714. IEEE (2007)

27. Ratliff, N., Bradley, D., Bagnell, J.A., Chestnutt, J.: Boosting structured prediction
for imitation learning. In: Proceedings of Robotics Institute, p. 54 (2007)

28. Ross, S., Bagnell, D.: Efficient reductions for imitation learning. In: International
Conference on Artificial Intelligence and Statistics, pp. 661–668 (2010)

29. Sammut, C., Hurst, S., Kedzier, D., Michie, D., et al.: Learning to fly. In: Pro-
ceedings of the Ninth International Workshop on Machine Learning, pp. 385–393
(1992)

30. Saunders, J., Nehaniv, C.L., Dautenhahn, K.: Teaching robots by moulding
behavior and scaffolding the environment. In: Proceedings of the 1st ACM
SIGCHI/SIGART Conference on Human-robot Interaction, pp. 118–125. ACM
(2006)

31. Schaal, S.: Is imitation learning the route to humanoid robots? Trends Cogn. Sci.
3(6), 233–242 (1999)

32. Silver, D., Bagnell, J., Stentz, A.: High performance outdoor navigation from over-
head data using imitation learning. In: Proceedings of Robotics: Science and Sys-
tems IV, Zurich, Switzerland (2008)

33. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. Nature 529(7587),
484–489 (2016)

34. Theano Development Team: Theano: a Python framework for fast computation of
mathematical expressions. arXiv e-prints abs/1605.02688, May 2016. http://arxiv.
org/abs/1605.02688

35. Togelius, J., De Nardi, R., Lucas, S.M.: Towards automatic personalised content
creation for racing games. In: 2007 IEEE Symposium on Computational Intelli-
gence and Games, CIG 2007, pp. 252–259. IEEE (2007)

36. Vogt, D., Amor, H.B., Berger, E., Jung, B.: Learning two-person interaction models
for responsive synthetic humanoids. J. Virtual Real. Broadcast. 11(1) (2014)

http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688


2D Recurrent Neural Networks for Robust Visual
Tracking of Non-Rigid Bodies

G.L. Masala(✉), B. Golosio, M. Tistarelli, and E. Grosso

Department of Political Science, Communication,
Engineering and Information Technologies - Computer Vision Laboratory, University of Sassari,

Sassari, Italy
{gilmasala,golosio,tista,grosso}@uniss.it

Abstract. The efficient tracking of articulated bodies over time is an essential
element of pattern recognition and dynamic scenes analysis. This paper proposes
a novel method for robust visual tracking, based on the combination of image-
based prediction and weighted correlation. Starting from an initial guess, neural
computation is applied to predict the position of the target in each video frame.
Normalized cross-correlation is then applied to refine the predicted target posi‐
tion.

Image-based prediction relies on a novel architecture, derived from the
Elman’s Recurrent Neural Networks and adopting nearest neighborhood connec‐
tions between the input and context layers in order to store the temporal infor‐
mation content of the video. The proposed architecture, named 2D Recurrent
Neural Network, ensures both a limited complexity and a very fast learning stage.
At the same time, it guarantees fast execution times and excellent accuracy for
the considered tracking task. The effectiveness of the proposed approach is
demonstrated on a very challenging set of dynamic image sequences, extracted
from the final of triple jump at the London 2012 Summer Olympics. The system
shows remarkable performance in all considered cases, characterized by changing
background and a large variety of articulated motions.

Keywords: Recurrent neural network · Tracking · Video analysis

1 Introduction

Motion has been one of the main cues studied in Computer Vision and Pattern Recog‐
nition. As stated by David Marr [1]: “Motion pervades the visual world, a circumstance
that has not failed to influence substantially the process of evolution. The study of visual
motion is the study of how information about only the organization of movement in an
image can be used to make inferences about the structure and the movement of the
outside world”.

In many cases motion enables three-dimensional perception (consider for example
the counter-rotating cylinders effect described by Ullman [2]) and, in its simplest form,
explains the unrivaled ability of humans to perform scene segmentation and object
tracking [3].
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Object tracking can be defined as the estimation of the trajectory of an object in the
image plane as it moves around a scene. Errors in tracking are often due to abrupt changes
in object motion, changes in the objects appearance, non-rigidity of the object, occlu‐
sions and non-linear camera motion [4]. The robustness of the representation of target
appearance, against these and other unpredictable events, is crucial to successfully track
objects over time. Interestingly, assumptions are often made to constrain the tracking
problem within the context of a particular application.

Recent tracking algorithms are classified into two major categories, based on the
learning strategy adopted: generative and discriminative methods. Generative methods
describe the target appearance by a statistical model estimated from the previous frames.
To maintain the integrity of the target appearance model, various approaches have been
proposed, including sparse representation [5, 8, 9], on-line density estimation [10]. On
the other hand, discriminative methods [11, 13] directly implement classifiers to discrim‐
inate the target from the surrounding background. Several learning algorithms have been
adopted, including on-line boosting [13], multiple instance learning [11], structured
support vector machines [12] and random forests [14, 15]. These approaches are often
limited by the adoption of hand-crafted features for target representation, such as iconic
templates, Haar-like features, histograms and others, which may not generalize well to
handle the challenges arising in video sequences from everyday life scenes.

In this paper, an original method is proposed for robust visual tracking, based on a
combination of image prediction and weighted correlation matching techniques. Image
prediction is based on a novel recurrent neural network which can be easily generalized
to track any visual pattern in dynamic scenes. The proposed approach is derived from
both Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs).

A Recurrent Neural Network (RNN) is an artificial neural network with feedback
connections between nodes, with the capability to model dynamic systems [16]. Elman’s
neural network, also known as Simple Recurrent Network (SRN), is a partially recurrent
neural network first proposed by Elman [17]. Because of the context neurons and local
recurrent connections between the context layer and the hidden layer, the Elman’s neural
network has several dynamic advantages over a static neural network. Training and
convergence of SRNs usually take a long time, which makes them useless in time critical
applications [10] and/or when dealing with high resolution images. Therefore, to effi‐
ciently process high resolution images, a compromise between the representation power
and the dimension of the network must be sought.

A CNN is a feed-forward artificial neural network where individual neurons are
arranged to respond to overlapping regions in the visual field. A CNN consists of
multiple layers of small neuron collections taking as input small overlapping areas of
the image. The outputs of each layer are tiled and overlapping to better represent the
original image. This feature ensures a reasonable invariance to planar translation on the
image plane [18]. Due to their representation power, Convolutional Neural Networks
have recently attracted a considerable attention in the Computer Vision community [7],
particularly for image- and video-based recognition. However, only few attempts can
be found in the literature to employ CNNs for visual tracking. One reason is that off-
line classifiers require a model of the objects class. On the other hand, performing on-
line learning based on CNNs is not straightforward, due to the large network size and
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the lack of sufficiently large training sets. According to Hong et al. [7], the extraction
of features from the deep structure may not be appropriate for visual tracking because
top layers encode semantic information and may provide a relatively poor localization
accuracy.

In this paper a variation of Elman’s architecture, the Two-dimensional Recurrent
Neural Network (2D-RNN) is proposed. This neural architecture is derived from a CNN
where the input layer captures small areas of the input image. This mapping of the image
pixels allows to reduce both the training time and the network dimension, yet keeping
the temporal information embedded in the video and the image details unaltered.

The paper is organized as follows: in Sect. 2, the tracking problem is analytically
stated, the solution based on the novel 2D-RNN architecture is described and compared
with the Elman’s SRN. A case study for video tracking (triple-jumping runner and
related dataset) is first introduced in Sect. 3; then experimental steps and experimental
protocols are defined. Section 4 is devoted to the comparison and discussion of the
experimental results. Conclusions and future developments are finally discussed in
Sect. 5.

2 Object Tracking in Real-Time Video

In this paragraph we first define the tracking problem for scenes including non-rigid and
articulated bodies; thence the two types of neural networks used in the experimental
section, the original Elman RNN and the proposed 2D-RNN are detailed.

2.1 Tracking

In a tracking scenario, an object can be defined as “anything that is of interest for further
analysis” [6]. Objects can be represented by their varying shapes and appearances; the
position of a single object can be traced through a single point as the centroid or by a
set of points related to a small region in the image; for example primitive geometric
shapes (suitable for rigid object but also used for tracking of non rigid objects), object
silhouette and contour, articulated shape models or skeletal models. In the proposed
approach a primitive rectangular shape (bounding box or BB) is used. The BB has a
fixed dimension for all frames of the database. Note that for the purposes of this paper,
the initialization of the tracking process, for example by moving objects detection or
direct object recognition, it is not explicitly considered; as a consequence the object of
interest must be defined at the time step 0 by manually placing a starting BB in the first
frame.

Afterward, the tracking algorithm iteratively determines the object position. At each
time step t, it can be assumed that the object position has been detected in the previous
t − i time steps, through the centroid of the bounding box. The past i images inside the
BB are fed as input to a RNN, which produces as output the prediction of the image in
the bounding box for the current time step. An important outcome of such a prediction
is that the expected position of the bounding box for the current time step can be eval‐
uated and refined through the correlation between the predicted sub-image (RNN next
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frame prediction) and the current image. At the same time also the predicted content of
the BB can be evaluated (both the dynamic background and the object of interest) by
considering the residual error corresponding to the maximum of the correlation.

Figure 1 depicts in detail the tracking scheme based on the RNN next frame predic‐
tion. The correlation matrix is computed by convolution in the Fourier domain; the
position of the maximum of the correlation matrix corresponds to the best prediction of
the BB position for the current time step. Note that, in general, the correlation matrix
can have more than one local maximum, and it can happen that the target BB position
is close to a local maximum that is not the absolute maximum.

Fig. 1. The Recurrent Neural Network predicts the bounding box of the object at the next frame
starting from the bounding box at the previous frame. The location refinement is performed by
the correlation between the predicted bounding box and the entire image

This problem is particularly important when the moving object is subject to abrupt
deformations, partial occlusions, etc. In order to deal with this problem, in our approach
the correlation matrix is weighted with a Gaussian function centered on the extrapolated
position of the moving object, based on the two most recent observations, i.e. the posi‐
tions at time t − 1 and t − 2.

More precisely, the coordinates  and  of the extrapolated center position
are defined through:

(1)

(2)

Where

(3)

(4)

2D Recurrent Neural Networks for Robust Visual Tracking 21



2.2 The Elman Neural Network

The Elman’s Simple Recurrent Network (SRN) consists of an input layer, a hidden layer,
a context layer, and an output layer. The outputs of the context neurons and the external
input neurons are fed to the hidden neurons. Context neurons are known as memory
units as they store the previous output of hidden neurons. At the time step t, the context
layer nodes carry the output of hidden layer nodes of the time step t − 1 iteration and
supply that as input during processing of the time step t data. The SRN architecture is
presented in figure Fig. 2.

Fig. 2. Architecture of the SRN. The layers are fully connected with a feedback connection
between the hidden and the context layers. The context layer provides both actual and delayed
inputs to the hidden layer.

Considering I, S, C and O as input, hidden, context and output layer vectors, respec‐
tively, the vector components at the tth iteration can be written as [19]:

(5)

(6)

(7)

(8)

(9)

(10)

In the above equations, n, m and l represent the numbers of nodes of input, hidden,
and output layer, respectively, f(·) indicates the activation function of the qth hidden node
at the tth iteration, while  denotes the input of the qth context layer node at the tth iteration

and  is the linear output of the hidden node q at tth iteration.
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Let W1, W2 and W3 be the weight matrices between input and hidden layer, hidden
and context layer and hidden and output layer, respectively. The output of hidden layer
and output layer nodes at the tth iteration with these weight matrices can be represented
by the following equations:

(11)

(12)

where the , ,  are the elements of the weight matrices W1, W2, and W3,
respectively.

The training of the network can be accomplished by exploiting the error back prop‐
agation algorithm [20]. In this algorithm, the error is minimized to converge to the target
value by updating the link weights at each iteration using Eq. (13).

(13)

where α is the learning rate.
The error E expresses the difference between the set target at the output nodes and

the actual output obtained as expressed in Eq. (14):

(14)

where  and  represents the set target and the actual output from the network at the

tth iteration, respectively, and e is the number of epochs.

2.3 Two-Dimensional Recursive Neural Networks

In the proposed 2D-RNN, hidden, context and output layers are organized in two-
dimensional arrays all having the same dimensions as the input image. Unlike the
Elman’s network, the layers of the proposed network are not fully connected to each
other. In particular, denoting by (x,y) the index of row and column of the matrix of the
hidden layer, respectively, 2D-RNN uses for each element (x’,y’) of the input matrix
also its nearest elements in the connection with the correspondent element of the hidden
layer (x,y). Such type of association is replicated in the connection of the context layer
with the hidden layer and in the connection between the hidden layer and the output
layer, as shown in Fig. 3.
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Fig. 3. Architecture of the 2D-RNN. Mapping of the image pixels from the input and context
layers. Each node in the hidden layer receives input from both the actual and delayed image.
Spatial information is preserved through the layers

Note that neuron (x,y) of the hidden layer is connected to all neurons (x’,y’) of the
input layer and to all neurons (x’’,y’’) of the context layer with:

(15)

(16)

In other words, the neuron at position (x,y) of the hidden layer is connected to the
corresponding neuron of the input layer and to its nearest neighbors, and to the corre‐
sponding neuron of the context layer and to its nearest neighbors. Analogously, each
neuron of the output layer is connected to the corresponding neuron of the hidden layer
and to its nearest neighbors.

The training of the network can be accomplished again by the standard error back
propagation algorithm. Note that the k parameter (dimension of the neighborhood) is
also optimized and the Eqs. (11) and (12) are modified as follows:

(17)

(18)

3 Experimental Results

3.1 Basic Assumptions

The proposed tracking algorithm has been validated on a limited but challenging set of
sequences, extracted from the final of triple jump at the London 2012 Summer Olympics.
In this case study, the computation of the runner’s trajectory is subject to several critical
issues such as moving background, noise, articulated motion, scene illumination changes
and dynamic background, as illustrated in Fig. 4.
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Fig. 4. Frames extracted from the triple jump sequence. Several visual artifacts can be noticed,
such as moving background, change in the object (the runner) shape, changes in lighting and
occlusions.

Several object-tracking methods impose constraints on the motion and/or the object’s
appearance of objects. Most tracking algorithms assume that the object motion is smooth
and without abrupt changes. Some approaches constrain the object motion to be of
constant velocity or constant acceleration based on a priori information. As stated in the
previous section, prior knowledge about the number and the size of objects, or the object
appearance and shape, have also been used to simplify the problem. The proposed
method does not make assumptions. Furthermore, it does not use any pre-processing of
the image to remove external objects (i.e. TV-written), it does not apply any pre-
processing such as band-pass filtering or segmentation. The developed object tracker
shows a bounding box that contains the athlete in all different frames of a video, as in
Fig. 5. The gold standard for each frame is provided through manual labeling of the
region of interest and more specifically by defining the position of the pelvic bones of
the athlete.

Fig. 5. Actual frame, predicted next frame and the correlation diagram computed by the SRN on
the left and by the 2D-RNN on the right. The blue bounding box represents the computed gold
standard while the green box represents the position computed by the RNNs.
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The main processing steps for the experimental phase are the following: extraction
of the single JPG frames for each sequence of the MP4 video; resizing of all frames from
1280 × 720 pixels to 128 × 72 pixels; conversion of the frames to gray levels; RNNs
training and testing by applying a BB of 50 × 50 pixels to the resized images.

3.2 Dataset

The experimental dataset is composed of 10 sequences, downloaded from the YouTube
platform. Each sequence relates to a different athlete in the final of the triple jump at the
Olympics London 2012.

The sequences are characterized by a frame rate of 29 images/s; the dimension of
each original frame is 1280 × 720 pixels. Each sequence has a duration of about 45 s;
only one frame every ten is considered for further processing, therefore for each
sequence the number of frames processed varies between 97 and 127.

3.3 Configuration

A comparison between the original SRN with respect to the novel 2D-RNN is performed.
Input data are the same for both networks.

The SRN can identify the single-order dynamic system using fixed coefficients in
the context neurons, using weight = 1 in the delay connections with the context layer;
SRN best architecture needs 2500 input, 250 hidden, 250 context and 2500 output
neurons. Note that the input and output layers are related to the frame input matrix (the
50 × 50 pixels bounding box) while the number of neurons of the context and hidden
layers have been optimized trying several configurations.

2D-RNN is not fully connected as the SRN; it requires 2500 input, hidden, context
and output neurons (the numbers of neurons for all layers is fixed with respect to the
frame input matrix). Best results are obtained for a number of nearest neighbors k = 3,
using weight = 1 in the delay connections with the context layer. For both RNNs and
for all neurons a logistic standard transfer functions has been adopted.

4 Results and Discussion

4.1 Performances of RNNs

In order to check the independence from the sampling of the dataset, a k-folder cross
validation (5 × 2) has been used in the experiments. One round of cross-validation
involves partitioning a sample of data in two complementary subsets, performing the
analysis on one subset (train set of 5 videos), and validating the analysis on the other
subset (test set of 5 videos); after that the simulation is repeated exchanging train and
test sets. To reduce variability, 5 rounds of cross-validation are performed using random
different partitions, and the validation results are averaged over the 10 (5 × 2) rounds.
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In Table 1 the comparison of the best configuration for both RNNs on the same
random train test and blind test set is presented; learning times refer to a simple desktop
architecture based on a Intel CoreTM 2 DUO CPU E 8400 @3.00 GHz and 4 GB RAM.

Table 1. Performance comparison of the of SRN and the 2D-RNN for the same blind test set

Parameters SRN 2D-RNN
Input 2500 2500
Output 2500 2500
Hidden 250 2500
Context 250 2500
Learning rate 0.005 0.05
Epocs 280 130
Connections 1312500 367500
Learning time (s) 9230 1092
Best rmse 0.114 0.104

Table 1 clearly shows that the learning phase of 2D-RNN is faster than SRN, and
2D-RNN produces the best results. Obviously the best learning rate for both RNNs are
reported,in particular, the root-mean-square deviation (rmse) is repeatedly computed on
the test set after a random selection of the training set followed by the learning phase.
The results for the 2D-RNN, in 5 × 2 cross validation, is a mean rmse = 0.105 ± 0.003.
In summary, Table 1 shows that 2D-RNN, compared to SRN on the same dataset,
provides a better rmse; the results are stable for the 5x2 cross-validation and 2D-RNN
is faster than SRN in terms of learning time and epochs. The complexity of the 2D-RNN
is minor than SRN in terms of connections.

4.2 Results for Tracking

Visual tracking results can be described through the distances between the center of
manual annotation (the pelvic bones) of the athlete and the center of bounding box in
the 2D-RNN next frame prediction, illustrated in previous Fig. 5. Using only one frame
every ten and starting from the original frame rate information, the RNN previsions
correspond to one image every 0.344 s. In Fig. 5 corresponding samples for the SRN
(left) with actual frames and next frame prediction are shown, together with the corre‐
lation diagram. The same results are shown for the 2D-RNN in Fig. 5 (right). In the
surface plot, the peak of the cross-correlation matrix occurs where the sub images are
best correlated.

It should be noted that all the next frames prediction in all figures are blurred because
the RNN produces a distribution of positions related to the probability density. This
distribution reflects the variability of the images used to train the RNN. Naturally, the
athletes move their limbs during the run in different ways. The fact that the body image
is blurred is the consequence of the inability to produce an accurate prediction. On the
other hand, images with clear prediction of the part of the body with respect to blurred
images, would give rise to lower correlations on the average, and consequently more
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average errors due to the variability and not exact predictability of the next image. This
is a compromise tolerable because in the tracking problem it is only necessary to have
an accurate prediction of the center of the BB to follow the object of interest.

Furthermore Fig. 6 show a qualitative comparison between the real next frame and
calculated next frame prevision of the SRN and 2D-RNN.

Fig. 6. Actual frame (top), next frame and predicted next frame (bottom) from the SRN on the
left and 2D-RNN on the right.

In Fig. 7 the diagrams of the Euclidean distances between the gold standard and the
center of the RNNs prevision are shown, normalized with respect to the dimension of
the BB.

Fig. 7. Euclidean distances between the center of the computed bounding box and the gold
standard for each frame, normalized with respect to the side of bounding box. The large deviation
shown at about 85 frames is due to the runner landing on the sand.

The literature is divided in two types of measures for precision and recall: one is
based on the localization of objects as a whole such as the F-score or other index [36]
and one based on the position at pixel level. In the proposed approach object tracking
is performed at pixel level. There are no lost frames in the proposed approach, therefore
evaluation metrics based on accuracy is not used; however, with the aim to show the
performances on the correct location of the BB, a position based measure (PBM) can
be used. PBM is defined as [21]:
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(19)

Where

(20)

depends on the dimensions (width and height) of the bounding box.
In Eq. 19,  is the total number of frames considered whilst D(i) is the L1-norm

distance between the gold standard and the BB predicted by RNN. Using such index in
our dataset the resulting mean of BMP (proposed system, first 85 frames) is expressed
in the Table 2. In particular it is possible to note a better performance of the 2D-RNN
with respect to the SNR.

Table 2. Comparison of the two RNNs tracking system in terms of BPM

RNN BMP (first 85 frames)
SNR 0.95 ± 0.040
2D-RNN 0.97 ± 0.002

Considering the entire test set, the distribution of the BB position errors between the
predicted coordinates and the gold standard, in pixels, with respect to the original image,
is shown in Fig. 8.

Fig. 8. Scatter plots representing the distribution of the bounding box errors, between the
computed box coordinates and the gold standard for each sequential frame. The red dots represent
the target positions computed before the runner landing on the sand, while the blue dots represent
the target positions computed after the runner landing on the sand.

Note that the interesting part of the sequences is composed by the first 85 frames; in
fact, after frame 85 we typically register a degradation of the image due to the sand
effect after landing. In Fig. 9 a comparative scatter plot represents the distribution of the
BB position error on the original images, for both RNNs considering only the first 85
frames.
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Fig. 9. Scatter plot representing the distribution of the bounding box errors, between the
coordinates of the computed box and the gold standard for the first 85 frames. The colors represent
the method applied to compute the target position

In particular from Fig. 9 it turns out that the most part of errors for both RNNs are
within ± 30 pixels with respect to the original image of 1280X720 pixels, where the
dimension of the BB is 500 × 500 pixels; in Table 3 are represented the position errors
in pixels for both RNNs and the details of the coordinates of the position mean square
error (Position MSE).

Table 3. Comparison of the two RNNs position error in pixels for the first 85 frames.

RNN Position error
dX (pixels)

Position error
dY (pixels)

Position MSE
(pixels)

SNR 13 19 23
2D-RNN 11 14 19

An exhaustive comparison of the proposed approach with respect to other existing
datasets obtained with very different aim and techniques is not simple. In particular we
could not find any public database of sport scenes with measured gold standard coordi‐
nates. However, the results of Table 2 can be directly compared to the BMP results
reported in the paper [11] where the MILTrack algorithm, that uses a novel Online
Multiple Instance Learning algorithm, is presented. In their work the authors provide a
diagram with several algorithm tested on eight database for images 320 × 240 pixels.
Normalizing the results to the scale of the adopted BB, it is possible to conclude that
our algorithm, without lost frames, obtains similar performances of the best proposed
MILTrack algorithm.

An alternative measure quite convenient for comparison is deviation. Deviation
represents the capability of a tracker to determine the correct position of the target and
measures the accuracy of tracking [12]. In particular, by using Deviation as the error of
the center location expressed in pixels as a tracking accuracy measure:

(21)
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where  is the normalized distance between the centroids of bounding box (BB)
and the gold standard and Ms denotes the set of frames in a video where the tracked BB
matches with the gold standard BB.

In the proposed approach, again normalizing with respect to the side of the BB and
using the first 85 frames, for 10 sequences, a Deviation equal to about 0.98 for both
RNNs is obtained. Taking into account all frames of the 10 sequences in the dataset the
Deviation value slightly decreases to about 0.96 for both RNNs.

This result can be compared with the values reported in [21] and related to the articles
[11, 12], [22–37], where the target is considered tracked correctly each time the overlap
between the current forecast and the real position of the object area overlap for more
than 50 %. As shown in Table 4, the proposed approach achieves the same or even better
accuracy than the algorithms at the state of the art.

Table 4. Comparison of different approaches for target tracking applied to the jumping sequence.

RNN Deviation
Elman’s neural network (SRN) 0.96
2D Recurrent Neural Network (2D-RNN) 0.96
Normalized Cross-Correlation (NCC) [22] 0.95
Lucas-Kanade Tracker (KLT) [23] 0.95
Kalman Appearance Tracker (KAT) [24] 0.95
Fragments-based Robust Tracking (FRT) [25] 0.94
Mean Shift Tracking (MST) [26] 0.93
Locally Orderless Tracking (LOT) [27] 0.94
Incremental Visual Tracking (IVT) [28] 0.95
Tracking on the Affine Group (TAG) [29] 0.95
Tracking by Sampling Trackers (TST) [30] 0.94
Tracking by Monte Carlo sampling (TMC) [31] 0.96
Adaptive Coupled-layer Tracking (ACT) [32] 0.94
L1-minimization Tracker (L1T) [33] 0.95
L1 Tracker with Occlusion detection (L1O) [33] 0.95
Foreground-Background Tracker (FBT) [34] 0.95
Hough-Based Tracking (HBT) [35] 0.93
Super Pixel tracking (SPT) [36] 0.93
Multiple Instance learning Tracking (MIT) [11] 0.94
Tracking, Learning and Detection (TLD) [37] 0.93
STRuck: Structured output tracking with kernels (STR) [12] 0.94

5 Conclusion

A novel tracking algorithm has been presented, where two complementary RNN topol‐
ogies are used without any pre-processing of the images. The temporal memory of the
recursive neural networks is used to keep the correlation among processed pixels and to
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perform the next frame prediction at the temporal distances of ten frames, with respect
to the frame of interest.

The novel RNN algorithm proposed performs well for generic, iconic based, image
tracking. This is mainly due to the two dimensional approach where for each pixel of
the input image also the information of its k nearest pixels are considered. Such kind of
connection of the layers (input-hidden and hidden-output) is preferred with respect to
the full connection, with great advantages in terms of rmse, learning times and BMP of
the tracking.

A qualitative comparison with different approaches on different datasets is also
performed, obtaining good results on measures such as deviation, that reveals an excel‐
lent performance compared to the literature.

The extension of this approach will be applied in the future to large benchmark
datasets with different types of object of interest, and replacing the manual selection of
the BB in the first frame with an automatic procedure designed to recognize objects
belonging to predefined classes.

The results are originally measured on a triple jump dataset and could be very helpful
for analysis of athlete errors in the jump in computer aided coaching or for TV highlight.
However the novel method doesn’t require any information related to the object of
interest in the scene and it is therefore suitable for a large set of applications from sport
activities to video-surveillance.
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Abstract. Machine learning approaches often focus on optimizing the
algorithm rather than assuring that the source data is as rich as pos-
sible. However, when it is possible to enhance the input examples to
construct models, one should consider it thoroughly. In this work, we
propose a technique to define the best set of training examples using
dynamic ensembles in text classification scenarios. In dynamic environ-
ments, where new data is constantly appearing, old data is usually dis-
regarded, but sometimes some of those disregarded examples may carry
substantial information. We propose a method that determines the most
relevant examples by analysing their behaviour when defining separat-
ing planes or thresholds between classes. Those examples, deemed better
than others, are kept for a longer time-window than the rest. Results on
a Twitter scenario show that keeping those examples enhances the final
classification performance.

Keywords: Dynamic environments · Ensembles · Drift · Text
classification · Social networks

1 Introduction

Information spread in online scenarios has created a new information sharing par-
adigm. Nowadays, it is possible to create and disseminate information in numer-
ous formats by publishing it world-wide, making the Web responsible for a deluge
of data. Albeit we can undoubtedly benefit from all these data, one major draw-
back of such overflow is the inability to easily perceive important, significant and
accurate information. This challenge arises not only because the amount of data
is overwhelming to process, but also because time plays an important role by fast
out-dating information.
c© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 35–47, 2016.
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In dynamic environments drift occurs and deployed models performance is
reduced when changes occur between the distribution that generated the data
used to define the model and the current drifted scenario. To handle such chal-
lenges, some form of model ageing must be put in place.

In [1–3] the proposed approaches try to detect that a drift occurred and react
accordingly. This reaction is usually non-trivial, since the new samples can carry
more relevant and new information that should probably contribute more to the
final model [4]. In fact, in dynamic environments, such as in social networks we
will be using as case study, effective learning requires a learning algorithm with
the ability to detect context changes without being explicitly informed about
them, quickly recovering from the context change and adjusting its hypothesis
to the new context [1,5].

A lot of effort has been place in adapting to such news’ samples. However,
previous samples can also play an important role, and previously experienced sit-
uations should also be considered when old contexts and corresponding concepts
reappear [6]. In this work we propose a framework for choosing the best samples
for building classifiers in dynamic environments. Using a sliding time-window
approach, models are retrained with updated real-time samples. Furthermore,
we analyze previous samples’ behaviour, e.g. when defining separating planes,
to detect stronger examples and keep them in the pool. Hence, these chosen
samples are kept for a longer time-window than the rest. Tests carried out on
a Twitter stream case study support the hypothesis that keeping such chosen
examples enhances the final classification performance.

The rest of the paper is organized as follows. Section 2 introduces background
concepts and state of the art on dynamic environments and social networks.
Section 3 presents the proposed framework for choosing the best samples for
building classifiers in dynamic environments. In Sect. 4 the experimental setup
is set, including the case study dataset and the performance metrics, followed
by the experimental results and analysis in Sect. 5. Finally, Sect. 6 concludes the
paper with conclusions and future work.

2 Background

2.1 Social Networks

Social networks have settled definitely in the daily routine of Internet users.
They have also gained increasing importance and are being widely studied in
many fields of research over the last years, such as computer, social, political,
business and economical sciences.

There exists a wide set of distinct social networks for different purposes and
scope, being Twitter and Facebook two of the most popular ones. In a purely
research perspective, these social networks make accessible through their own
public API a deluge of relevant data related with users’ daily status, news and
events. Data is produced in a non-deterministic way, turning social networks in
a dynamic environment in which we may apply learning and detection strategies
and algorithms.
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The focus of our work is Twitter social media platform (www.twitter.com),
more precisely on applying learning and classification strategies to cope with
different types of variations of context (drift) through time [1,7].

2.2 Dynamic Environments

Social networks can be seen as a dynamic (also entitled as non-stationary) envi-
ronment, in which information is produced by users in a timely order. Time
plays a crucial role in Twitter information processing, as past events can give
important insights to understand how previously seen information is relevant to
improve learning and classification of future unseen and related events.

In that sense, learning strategies would be able to learn in dynamic environ-
ments and apply innovative strategies to dead with a “recent memory” of past
events, in order to better identify future and unseen ones.

There can be several approaches to tackle dynamic environments [4]: instance
selection, instance weighting and ensemble learning. A review of concept drift
applied to intrusion detection is presented in [8].

Learn++.NSE and Learn++.CDS [3,9] are algorithms to deal with drift,
namely with imbalanced datasets. An ensemble technique, DWM-WIN, was pro-
posed in [2], to overcome the known limits of dynamic weight majority [10],
namely not taking into consideration the timestamp of classifiers or the previous
performances.

In this section we presented some examples of the importance of tackling
drift in dynamic scenarios like social networks, and particularly in Twitter. Mul-
tiple applications like spam email filtering, intrusion detection, recommenda-
tion systems, event detection, or improve search capabilities are just pointed
examples [1].

3 Proposed Approach

This section describes the proposed approach to define the best set of training
examples using dynamic ensembles in text classification scenarios. We will firstly
present our Twitter classification problem and then proceed with formalizing the
proposed models.

3.1 Case Study: Twitter Stream

Twitter stream constitutes a paradigmatic example of a text-based scenario
where drift phenomena occur commonly. Twitter is a micro-blogging service
where users post text-based messages up to 140 characters, also known as tweets.
It is also considered one of the most relevant social networks, along with Face-
book, as millions of users are connected to each other by a following mechanism
that allows them to read each others posts.

Twitter is also responsible for the popularization of the ‘hashtag’ concept.
An hashtag is a single word started by the symbol “#” that is used to clas-
sify the message content and to improve search capabilities. Besides improving

http://www.twitter.com
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search capabilities, hashtags have been identified as having multiple and relevant
potentialities, like promoting the phenomenon described in [11] as micro-meme,
i.e. an idea, behavior, or style that spreads from person to person within a cul-
ture [12]. By tagging a message with a trending topic hashtag, a user expands
the audience of the message, compelling more users to express themselves about
the subject [13].

Considering the importance of the hashtag in Twitter, it is relevant to study
the possibility of evaluating message contents in order to predict its hashtag.
If we can classify a message based on a set of hashtags, we are able to suggest
an hashtag for a given tweet, bringing a wider audience into discussion [14],
spreading an idea [15], get affiliated with a community [16], or bringing together
other Internet resources [17].

This case study aims to classify Twitter messages. A Twitter classification
problem can be described as a multi-class problem that can be cast as a time
series of tweets. It consists of a continuous sequence of instances, in this case,
Twitter messages, represented as X = {x1, . . . , xt}, where x1 is the first occurring
instance and xt the latest. Each instance occurs at a time, not necessarily in
equally spaced time intervals, and is characterized by a set of features, usually
words, W = {w1,w2, . . . ,w|W|}. Consequently, instance xi is denoted as the
feature vector {wi1,wi2, . . . ,wi/W/}.

When xi is a labelled instance it is represented as the pair (xi, yi), being
yi ∈ Y = {y1, y2, . . . , y|Y|} the class label for instance xi.

We have used a classification strategy previously introduced in [7], where
the Twitter message hashtag is used to label the content of the message, which
means that yi represents the hashtag that labels the Twitter message xi.

Notwithstanding it is a multi-class problem in its essence, it can be decom-
posed in multiple binary tasks in a one-against-all binary classification strategy.
In this case, a classifier ht is composed by |Y | binary classifiers.

3.2 Learning Models

We are focusing on dynamic ensembles in text classification scenarios, where the
ensemble must adapt to deal with changes usually dependent on hidden contexts.
One of the major challenges is the amount of data, specially when dealing with
streams. It is sometimes unfeasable to store all the previously seen data, but it
may carry substantial information for future use.

In [18] we have studied the impact of longstanding examples in future classifi-
cation time-windows. The rationale of the presented idea was to store previously
seen examples for a period of time regardless the effect they might have as a solo
example. The most relevant action was to keep examples for a period of time
instead of discarding them for future use. We were also not dealing with ensem-
bles but single classifiers. Differently from that approach, we are now proposing
to choose examples based on the effect they might have individually.

Our baseline model, created for comparison purposes, proposes to store all
the information gathered by storing models and combining them as an ensemble.
For each collection of documents T , that contain both positive and negative
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examples and occur in a time-window t, a classifier Ct is trained and stored. When
a new collection of documents in the subsequent time-window occurs, all the
previously trained classifiers are loaded, and the system will classify the newly
seen examples. The prediction function of the ensemble, composed by the set
of classifiers already created, is a combined function of the outputs of all the
considered classifiers. A majority voting strategy where each model participates
equally is then put forward. The documents of the previously seen time-windows
are not stored in this approach even though the possible learning information is
stored along in the classifier trained immediately after it.

We then propose an ensemble learning model, namely reinforced model. The
main difference is that we define a collection of documents R that contain all the
classification errors that occur in the time-windows prior to t. The classification
errors are considered based on the ensemble classification and not in each model
classification output. For each time-window t, a classifier Ct is trained with the
collection of documents T plus the collection of documents R and stored. When
a new collection of documents in the subsequent time-window occur, all the
previously trained classifiers are loaded, and will classify the newly seen examples
participating equally to the final decision of the ensemble.

The collection of documents R might retain the misclassified examples indef-
initely or be pruned in a time-based approach. If pruned, the lifetime of an
example in R is dependent of a pre-defined time-window size g, which means
that, in time-window t, R contains the misclassified examples that occur in all
time-windows that satisfy the condition t-g > 0.

Figure 1 depicts the proposed models. It is important to understand that
we represented time in two different directions because we are working with a
time series and the last seen scenario is the input for the new one. The major

Fig. 1. Proposed models
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difference between both models is using the outcome of the classification as a
new incoming in the subsequent training phase.

4 Experimental Setup

In this section we will detail the dataset we propose to test and evaluate our
approach. We then characterize the methodology for document representation
and proceed dealing with the pre-processing methods. Finally, we conclude by
introducing the performance metrics used to evaluate the proposed approach.

4.1 Dataset

The dataset we have defined to evaluate and validate our strategy was carried
out by defining 10 different hashtags that would represent our drifts (see Fig. 2),
based on the assumption that they would denote mutually exclusive concepts,
like #realmadrid and #android. By trying to use mutually exclusive concepts
we intend to avoid misleading a classifier, as two different tweets could represent
the same concept, and that way introducing a new variable to our scenario that
could mislead the possible obtained results. In order to achieve a considerable
amount of tweets, and consequently diversity, we have chosen trending hashtags
like #syrisa and #airasia. Table 1 shows the chosen hashtags and the corre-
sponding drift they represent. This correspondence was done arbitrarily and do
not correspond to any possible occurrence in the real Twitter scenario, since as
stated above, no information is known about the occurrence of drifts in Twitter.

The Twitter API (https://dev.Twitter.com/) was then used to request pub-
lic tweets that contain the defined hashtags. The requests have been cared of
between 28 December 2014 and 21 January 2015 and tweets were only consid-
ered if the user language was defined as English. We have requested more than
75.000 tweets concerning the given hashtags, even though some of them were
discarded, like for instance those tweets containing no message content besides

Fig. 2. Different types of drift

https://dev.Twitter.com/
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Table 1. Mapping between type of drift and hashtag.

Drift Hashtag

Sudden #1 #syrisa

Sudden #2 #airasia

Gradual #1 #isis

Gradual #2 #bieber

Incremental #1 #android

Incremental #2 #ferrari

Reoccurring #realmadrid

Normal #1 #jobs

Normal #2 #sex

Normal #3 #nfl

the hashtag. The hashtag was then removed from the message content in order to
be exclusively used as the document label. The tweets matching this presump-
tions were considered labelled and suited for classification purposes, and were
used by their appearing order in the public feed.

We have simulated the different types of drift by artificially defining
timestamps to the previously gathered tweets. Drift Oriented Tool System
(DOTS) is a drift oriented framework we have presented in [5]. DOTS was devel-
oped to dynamically create datasets with drift and is available for free download
at http://dotspt.sourceforge.net/. DOTS is used to create the described dataset.
It receives the tweets requested by the Twitter API and reproduces the defined
artificial time-stamped time-windows. Time is represented as 100 continuous
time windows, in which the frequency of each hashtag is altered in order to rep-
resent the defined drifts. Each tweet is then timestamped so it can belong to one
of the time windows we have defined. For instance, Sudden #1 is represented
by the appearance of 500 tweets with the hashtag #syrisa in each time windows
from 25 to 32. It does not appear in any other time windows. Differently from
Sudden #1, Sudden #2 is represented with only 200 tweets with the hashtag
#airasia in each time windows from 14 to 31. We tried to simulate a more soft
occurring drift, but with a more long-standing appearance.

By making both concepts disappear, in time windows, 32 and 31, respectively,
we also intended to simulate the opposite way of the [19] proposed sudden drift.
Due to space constraints it is unbearable to present a table with the frequency of
each hashtag in each time window, but it is important to state that Incremental
#2 and Gradual #2 are represented by the same number of tweets in an equal
number of time windows, but in a descent way than represented in Incremen-
tal #1 and Gradual #1.Normal #1, Normal #2 and Normal #3 differ in the
number of tweets that appear in a constant way in all time windows. Our final
dataset contains 34.240 tweets.

http://dotspt.sourceforge.net/
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4.2 Representation and Pre-processing

A tweet is represented as one of the most commonly used document representa-
tion, which is the vector space model, also known as Bag of Words. The collection
of features is built as the dictionary of unique terms present in the documents
collections. Each tweet of the document collection is indexed with the bag of the
terms occurring in it, i.e., a vector with one element for each term occurring in
the whole collection. The weighting scheme used to represent each term is the
term frequency - inverse document frequency, also know as tf-idf.

High dimensional space can cause computational problems in text classifica-
tion problems where a vector with one element for each occurring term in the
whole connection is used to represent a document. Also, overfitting can easily
occur which can prevent the classifier to generalize and thus the prediction abil-
ity becomes poor. In order to reduce feature space pre-processing methods were
applied. These techniques aim at reducing the size of the document represen-
tation and prevent the mislead classification as some words, such as articles,
prepositions and conjunctions, called stopwords, are non-informative words, and
occur more frequently than informative ones. An english-based stopword dictio-
nary was used, but Twitter related words like “rt” or “http” were also consid-
ered as they can be seen as stopwords in the Twitter context. Stopword removal
was then applied, preventing those non informative words from misleading the
classification.

Stemming method was also applied. This method consists in removing case
and inflection information of each word, reducing it to the word stem. Stemming
does not alter significantly the information included, but it does avoid feature
expansion. Pre-processing methods were applied in DOTS.

4.3 Learning and Evaluation

The evaluation of our approach was done by the previously described dataset
and using the Support Vector Machine (SVM) as stated above. This machine
learning method was introduced by Vapnik [20], based on his Statistical Learning
Theory and Structural Risk Minimization Principle. The idea behind the use of
SVM for classification consists on finding the optimal separating hyperplane
between the positive and negative examples. Once this hyperplane is found, new
examples can be classified simply by determining which side of the hyperplane
they are on. SVM constitute currently the best of breed kernel-based technique,
exhibiting state-of-the-art performance in text classification problems [21–23].
SVM were used in our experiments to construct the proposed models. Based
on [18] a 4 time-window size training window will be used.

In order to evaluate a binary decision task we first define a contingency matrix
representing the possible outcomes of the classification, as shown in Table 2.

Several measures have been defined based on this contingency table, such
as, error rate ( b+c

a+b+c+d ), recall (R = a
a+c ), and precision (P = a

a+b ), as well as
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Table 2. Contingency table for binary classification.

Class Positive Class Negative

Assigned Positive a b

(True Positives) (False Positives)

Assigned Negative c d

(False Negatives) (True Negatives)

combined measures, such as, the van Rijsbergen Fβ measure [24], which combines
recall and precision in a single score:

Fβ =
(β2 + 1)P × R

β2P + R
. (1)

Fβ is one of the best suited measures for text classification used with β = 1,
i.e. F1, an harmonic average between precision and recall (2), since it evaluates
well unbalanced scenarios that usually occur in text classification settings and
particularly in text classification in the Twitter environment.

F1 =
2 × P × R

P + R
. (2)

Considering the proposed approach and the fact that we are working with a
time series and we use a one-against-all strategy, we will have a classifier for each
batch of the time series that is composed by |Y | binary classifiers, being |Y | the
collection of possible labels. To perceive the performance of the classification for
each drift pattern, we will consider all the binary classifiers that were created in
all the time series batches. To evaluate the performance obtained across time,
we will average the obtained results. Two conventional methods are widely used,
specially in multi-label scenarios, namely macro-averaging and micro-averaging.
Macro-averaged performance scores are obtained by computing the scores for
each learning model in each batch of the time series and then averaging these
scores to obtain the global means. Differently, micro-averaged performance scores
are computed by summing all the previously introduces contingency matrix val-
ues (a,b,c and d), and then use the sum of these values to compute a single
micro-averaged performance score that represents the global score.

5 Experimental Results

In this section we evaluate the performance obtained on the Twitter data
set using the two approaches described in Sect. 3, namely the baseline model
approach and the reinforced model approach. In the reinforced model app-
roach we obtained results by storing examples during 4 time-windows, rep-
resented as “Reinforced4”, and by storing examples ad eternum, named
“Reinforcedforever”. Table 3 summarises the performance results obtained by
classifying the dataset, considering the micro-averaged F1 measure.
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Table 3. Micro-averaged F1

Drift Baseline Reinforced4 Reinforcedforever

Sudden #1 74,80 % 75,45 % 72,37 %

Sudden #2 87,80 % 88,06 % 86,55 %

Gradual #1 52,55 % 54,82 % 89,03 %

Gradual #2 62,21 % 63,43 % 89,21 %

Incremental #1 88,58 % 88,99 % 94,86 %

Incremental #2 77,21 % 79,26 % 74,28 %

Reoccurring 35,33 % 36,63 % 72,42 %

Normal #1 70,89 % 71,86 % 91,89 %

Normal #2 90,49 % 91,01 % 94,69 %

Normal #3 81,52 % 83,74 % 73,60 %

Average of micro-averaged F1 78,27 % 79,33 % 83,75 %

Analysing the table we can observe that globally, and considering the aver-
age of the micro-averaged F1, the storage of the priorly misclassified examples
improves the overall classification. This is normal and expected as the learning
models are trained with more informative examples and this leads to a better
performance.

It is particularly important to note that model “Reinforced4”, which stores
relevant examples for 4 time-windows, presents an improvement in the classi-
fication performance of all classes, regardless the type of drift they represent.
This demonstrates the importance of the misclassified examples to improve the
classification performance of the subsequent time-windows.

Nevertheless, when considering storing those examples for longer periods,
specially ad eternum, one must notice that this improve is not straightforward.
Most classes benefit from storing examples, and we have a significant improve
in the average of the micro-averaged F1, that increases from 78,27 % to 83,27 %,
but some classes, namely Sudden#1, Sudden#2, Incremental#2 and Normal#3
have a worst classification performance. Firstly, both classes that represent a
sudden drift have a performance decrease, Sudden#1 from 74,80 % to 72,37 %
and Sudden#2 from 87,80 % to 86,55 %. We are confident that this decrease
might be explained by the nature of the drift pattern.

A sudden drift is characterized by an abrupt increase of the frequency of
a given class that occur during a period of time, followed by its disappear-
ance. Storing examples that were misclassified, specially the positive ones that
appeared firstly and remained misclassified until the classifier identified them as
positive, will delude future classifiers, when the drift pattern is no longer repre-
sented. Secondly, we have identified a performance decrease in the classification
of the class that represent Incremental#2 drift. Similarly to what is happening
with the sudden drift, the positive misclassified examples might be contributing
to this decline, as the frequency of examples of this class is vanishing in time.
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Finally, we have the Normal#3 drift. Differently from the mentioned above, the
frequency of this drift is not diminishing in the time serie. There is nothing in
the drift pattern that allows us to infer what is happening, as it is exclusive to
the Normal#3 drift, and does not appear in the Normal#1 or Normal#2, with
the same nature. Although this is a supposition, that must be validated in future
work, we do believe that it might be related to the class, that is the hashtag we
have chosen to represent it. One of the possible problems that might arise from
our approach is to store examples that are not representative of the class.

As we cannot guaranteed that a message is well-classified by its hashtag,
we might be propagating errors by storing examples that were misclassified,
but, differently from what we want, that is to store the most informative ones,
we might be propagating the ones that do not represent the class at all. This
is a problem that might arise in a dataset like ours, because it is impossible to
validate that the Twitter user that wrote the tweet, is using the hashtag correctly.

6 Conclusions

In this paper we propose a method to determine the most relevant examples, by
analysing their behaviour when defining separating planes or thresholds between
classes. Those examples, deemed better than others, are kept for a longer time-
window than the rest. The main idea is to boost the classification performance
of learning models by providing additional and significant information.

We have used a Twitter case study to show that keeping those examples
enhances the final classification performance. Since it is not known which types
of drift occur in the context of social networks, and particularly in Twitter, we
have also simulated different types of drift in an artificial dataset to evaluate
and validate our strategy.

The results revealed the usefulness of our strategy, as the results improved
by 5 % in comparing to the baseline approach, considering the average of the
micro-averaged F1.

It is also important to conclude that we have shown that retaining informa-
tive examples during the right amount of time can improve the learners’ ability to
identify a given class, independently from the drift pattern the class is represent-
ing. We do believe that it is problem dependent, even thought it is an important
insight in dynamic models, as they are particularly difficult learning scenarios.
A special attention must be given to classes that tend to disappear, as retaining
examples, in this particular case, for long periods can lead to misclassications.

Our future work will include not only a more profound study about the
longevity of those examples, i.e., for how long is it relevant to retain those
examples. By understanding the suitable longevity of those examples, we can
maximize the cost benefit relation between the storage computational complex-
ity and the classification performance increase. Another effort should be done
in minimizing the use of those examples. In our approach we retain the rele-
vant examples and present them to all models that compose the ensemble, but
in future work we want to understand if we could have a similar income if we
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retain examples in a model based strategy, instead of an ensemble based one.
The question that arises is that an example can be relevant to a model but irrel-
evant to another, and thus we can retain the example and provide it just to the
model that needs it, instead of all models that compose the ensemble.
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Abstract. Air pollution is directly linked with the development of technology
and science, the progress of which besides significant benefits to mankind it also
has adverse effects on the environment and hence on human health. The problem
has begun to take worrying proportions especially in large urban centers, where
60,000 deaths are reported each year in Europe’s towns and 3,000,000 world-
wide, due to long-term air pollution exposure (exposure of the European Agency
for the Environment http://www.eea.europa.eu/). In this paper we propose a
novel and flexible hybrid machine learning system that combines
Semi-Supervised Classification and Semi-Supervised Clustering, in order to
realize prediction of air pollutants outliers and to study the conditions that favor
their high concentration.

Keywords: Pollution of the atmosphere � Air quality � Semi-supervised
learning � Semi-supervised clustering � Semi-supervised classification � Air
pollution

1 Introduction

1.1 Contamination of the Atmosphere

Air pollution is the presence of air pollutants in quantity, concentration or duration,
which can cause deterioration of the structure, composition and characteristics of the
atmospheric air. The main sources of air pollution are associated with human activities
and they are mainly located in urban areas. They are associated with the production of
energy, transport, industry and the heating of buildings, engineering structures and
households. Air pollution can cause serious health, environmental, social and economic
problems. It is caused mainly from oxides, such as oxides of nitrogen, sulfur carbon
and soot (unburnt carbon in air mixture gases). Nitrogen oxides cause photochemical
smog, usually in cities or centers and the surrounding areas. Oxides of sulfur and
carbon react with water vapor cloud creating acid rain, which affects forests, while the
sulfuric acid (component of acid rain) attack the marble transforming them into plaster.
Carbon dioxide and other gases produced by incomplete combustion, such as unburned
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hydrocarbons, contribute to the greenhouse effect. There are many respiratory events
and lung cancer cases in cities that are close to power plants that burn fossil fuels such
as oil or lignite. The European Union has announced a strategy aimed at improving the
legislation on air quality, in establishing maximum risk limits for various pollutants.
The final target is the progressive drastic reduction of emissions, in order to achieve
lower morbidity and mortality as a result air pollution. There are primary pollutants
emitted directly into the air (e.g. CO, NO, NO2, SO2) and secondary formed by
chemical reactions between primary ones (e.g. O3). Although the atmosphere has
physicochemical mechanisms that can remove air pollutants, pollution incidents are
mainly due to “unfavorable” weather conditions that significantly limit this potential of
the atmosphere and they act in a catalytic manner.

Sunshine helps catalyze the transformation of primary pollutants in secondary,
speed and direction of the wind influence the dispersion and transport of the pollutants,
the stability of the atmosphere due to excitation of the pressure gradient and temper-
ature gradient of the atmosphere also affects the transport and dispersion of pollutants.
Moisture creates the effect of atmospheric water vapor. Moreover, the combination of
temperature and humidity (Discomfort Index) aggravates the consequences in people
with respiratory or heart problems. To make a quantitative assessment of the impact,
especially in densely populated urban areas, requires a detailed spatiotemporal analysis
of the conditions that favor high pollutant concentrations, focusing on flexible and
realistic modeling approaches. Passive monitoring is one of the traditional ways of
coping with this phenomenon, without serious substantial forecasting or early inter-
vention and prevention policies. Real-time monitoring and forecasting of pollutants’
concentrations, based on advanced machine learning approaches is one of the most
important issues of modern environmental science and research. This research proposes
an innovative and effective hybrid forecasting system that does not require high
computational power. It employs Semi Supervised Clustering and Classification in
order to determine the most extreme air pollutants’ values in urban areas.

1.2 Literature Review – Advantages of the Proposed System

In an earlier research of our team [1] we have made an effort to get a clear and
comprehensive view of air quality in the center of the city of Athens and also in the
wider Attica basin. This study was based on data that were selected from nine air
pollution measuring stations during the temporal periods (2000–2004, 2005–2008 and
2009–2012). This method was based on the development of 117 partial ANN whose
performance was averaged by using an ensemble learning approach. The system used
also fuzzy logic in order to forecast more efficiently the concentration of each feature.
The results showed that this approach outperforms the other five ensemble methods.
Also, in a previous research effort, Iliadis et al. [2] applied Self Organizing Maps
(SOM) in order to cluster air pollution concentrations in groups. The ultimate goal was
to find the most isolated cluster where all of the extreme values of pollutants were
gathered. This specific cluster would contain vital information about the hazardous
pollutants and would also specify the meteorological and temporal conditions under
which they occur. Moreover, they tried to evaluate the clustering outcome, using
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Pattern Recognition. The inputs were related to 5 temporal parameters, 7 meteoro-
logical and 5 pollutants. Bougoudis et al. [3] present the EHF forecasting system which
allows the prediction of extreme air pollutant values. EHF was introduced and tested
with a vast volume of actual data records. Its main advantage is that though it takes no
pollutants as inputs it manages to operate quite efficiently. Moreover, it used a small
number of inputs (7), which comprised of 4 temporal features, air temperature, a station
identification code (which was determined automatically by geolocation based ser-
vices) and a cluster identification code. Four unsupervised learning algorithms were
employed in EHF, namely: SOM, Neural Gas ANN, Fuzzy C-Means and a fully
unsupervised SOM algorithm. Every algorithm, aimed in detecting the most extreme
clusters, which contained the most hazardous pollutants’ values. Thereafter, they
gathered all the records from the extreme clusters, in order to create four datasets, one
for each algorithm. These four datasets were used as inputs to the EHF model, which
has given promising results in forecasting pollutants’ concentrations.

There are other similar studies in the literature that are trying to forecast the air
pollution values. However, they have certain limitations that do not guarantee their
generalization ability. More specifically they train ANN models with data related to a
narrow area (e.g. city center) and they consider this data sample as representative of a
wider area that covers locations varying from a topographic, micro climate or popu-
lation density point of view. However, such research efforts [4–7] are quite interesting
and they offer motivation to scientists from diverse fields to employ artificial intelli-
gence in air pollution modeling. Also there are important seasonal studies in the
literature [8–13] that do not offer more generalized annual models. Finally, a very
interesting approach with objective criteria has been proposed for the specific problem
in China [14]. Also Vong et al. [15] have built a forecasting system based on Support
vector machines (SVMs), Xiao et al. [16] proposes a novel hybrid model combining air
mass trajectory analysis and wavelet transformation to improve the artificial neural
network (ANN) forecast accuracy of daily average concentrations of PM2.5 and Zabkar
and Cemas [17] have applied methods of machine learning to the problem of ground
level ozone forecasting. This requires the use of actual raw data and data calculated by
the numerical weather prediction model or stations. On the other hand, Lopez-Rubio
et al. [18] introduced Bregman divergences in self-organizing models, which are based
on stochastic approximation principles, so that more general distortion measures can be
employed. A procedure is derived to compare the performance of networks using
different divergences. Moreover, a probabilistic interpretation of the model is provided,
which enables its use as a Bayesian classifier. Experimental results show the advan-
tages of these divergences with respect to the classical Euclidean distance. Also
Menéndez et al. [19] proposed a new algorithm, named genetic graph-based clustering
(GGC), which takes an evolutionary approach introducing a genetic algorithm (GA) to
cluster the similarity graph. The experimental validation shows that GGC increases
robustness of spectral clustering and has competitive performance in comparison with
classical clustering methods. Donos et al. [20] have presented a study to provide a
seizure detection algorithm that is relatively simple to implement on a microcontroller,
so it can be used for an implantable closed loop stimulation device. The classification
of the features is performed using a random forest classifier. Finally, Quirós et al. [21]
have extended the traditional definitions of k-anonymity, l-diversity and t-closeness of
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fuzzy sets as a way to improve the protection of privacy in microdata. The performance
of these new approaches is checked in terms of the risk index. The methodology
described herein is an extension of a previous research effort of our team [4]. More
specifically, [4] describes a system that performs fast and reliable air pollution mod-
eling in mobile devices with limited computational resources. The Semi-Supervised
system described in this paper, manages to perform effective air pollution modeling
(available to the public) with the minimum amount of data. Unlike paper [4] that uses
data input from all the measuring stations in Attica, the proposed system herein uses
only data from Athens city center “Athena station”. The resulting model has shown
high generalization ability for the whole city. Moreover, the system proposed in this
research uses fewer features than the initial one presented in [4]. The main advantage of
the approach discussed here is its portability. Due to its low requirements and to its
generalization potential it can be used in many other cities with the same problem.

The main drawback of the classic classification methods with full supervision
(Supervised approach) is that they require a vast number of labeled training examples
to construct a predictive model with satisfactory accuracy. The classification of the
training set is usually done manually by the instructor, which is a tedious and time
consuming process. Instead, the key characteristic of training with partial supervision
(Semi-Supervised method) is the production of the final model with the use of
pre-classified along with unsorted examples. The Semi-Supervised Clustering approach
operates on the condition that the input patterns with and without data tags, belong to
the same marginal distribution, or they follow a common cluster structure. Generally,
unclassified data provide useful information for the exploration of the overall dataset
data structure, while respectively the sorted data are offering in the learning process.
Overall, it should be stressed that the success of learning with partial supervision
(Semi-Supervised Learning) depends on some basic assumptions imposed by each

Fig. 1. Semi-supervised versus supervised learning
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model or algorithm. This fact makes each case depending on these assumptions which
are related to the logic of machine learning methods. Thus, even the most serious real
world problems can be modeled effectively, based on the essential peculiarities that
characterize them (Fig. 1).

This research effort proposes a Semi-Supervised Classification and
Semi-Supervised Clustering Hybrid Air Quality system (SSC2-HAQS). The system is
capable of modeling air pollution in urban centers, after considering the actual positive
or negative correlations between all of the involved features (meteorological or primary
and secondary chemicals).

2 Data

The data used come from the “Athena” station. The station is located in the heart of
Athens, so it provides a representative picture of the atmospheric pollution in modern
cities. There were hourly data values available for CO, NO, NO2, O3 and SO2, mea-
sured in μg/m3 for the period 2000–2013. The model was built with data for 13 years
(2000–2012) whereas the dataset of 2013 was used for testing the forecast framework
with first time seen cases and to determine its validity.

Apart from the five pollutants, each record also consists of five calendar items
namely: Year, Month, Day, D_ID (1 Monday, 2 for Tuesday and so on), Hour.
Moreover, there are seven meteorological factors namely: Air Temperature (Temp),
Relative Humidity (RH), Atmospheric Pressure (PR), Solar Radiation (except 2013)
(SR), Percentage of Sunshine (till 2010) (SUN), Wind Speed (WS) Wind Direction
(WD). The following tables present a typical statistical analysis of the whole available
data and for the 2012 dataset which was chosen to be the pilot one for the determination
of the classes (Tables 1 and 2).

3 Description of the SSC2-HAQS Algorithm

We considered three situations for each entry: Tag (1) for the cases with extreme
primary pollutants, (2) for records with extreme ozone values (secondary pollutant) and
(0) for normal pollutant values. This was assumption was done in order to classify our
data in three basic risk categories. Then from the set of available data for 2012, we have

Table 1. Statistical analysis for the period 2000–2013

2000–2013 (97201) CO NO NO2 O3 SO2

MAX 21.4 908 377 253 259
MIN 0.1 1 1 1 2
MODE 0.8 7 60 3 2
COUNT_MODE 5592 2651 1606 7137 10435
AVERAGE 1.79 57.88 61.86 33.16 9.40
STANDARD_DEV 1.45 88.29 26.98 28.47 9.06
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chosen a small sample of approximately 10 %, which had records that could be clearly
labeled as members of one of the three classes. This small sample was used as a pilot in
order to classify the rest of the data by employing the Naïve Bayesian algorithm
described below.

Algorithm 1. The semi supervised Naive Bayesian clustering

Inputs: Input data, clusters of the input data and testing data to which a label should 
be assigned

Step 1:
Identify the discrete number of clusters
For every cluster, create matrices with the mean and standard deviation of all 

their input data
Step 2:

For every cluster, recreate these matrices, based on the testing data 
Calculate a variable, based on the formula below:

x =(1./(2*pi*ns.^2)).*exp(-((test-nm).^2)./(2.*sn.^2))
where ns is the new standard deviation matrix, nm is the new mean matrix 

and test is the
testing data
Sum all these variables for each cluster

Step 3:
For every testing data, find the maximum value of the summary calculated 

before.

Once completing the clustering with the use of the Naive Bayesian algorithm, we
have managed to obtain a clear view for the risk level of each record. The corre-
sponding class was added as a new attribute to the final dataset. However, the values
assigned to the “0” label were of no interest because the main target was the deter-
mination of the extreme cases, regardless the normal ones. The addition of this feature
has ensured uniformity as to the classification of the cases and it has solved the
following problem:

The concentrations of O3 in many cases appear to be extremely high, whereas at the
same time the relative concentrations of CO and No appear to be extremely low and
vice versa. Thus, an overall risk index for both the primary and the secondary pollu-
tants is not possible. The final version of the dataset includes as independent variables

Table 2. Statistical analysis for the year 2012

2012 (8644) CO NO NO2 O3 SO2

MAX 9.3 600 142 186 47
MIN 0.2 1 5 1 2
MODE 0.7 8 53 2 4
COUNT_MODE 672 299 206 436 1372
AVERAGE 1.29 42.36 51.11 38.29 6.88
STANDARD_DEV 0.91 59.67 19.05 29.33 3.28

56 I. Bougoudis et al.



the time profile (Year, Month, Day, Day_Id, Hour), meteorological indications (Air-
Temp, RH, PR, SR, WS, WD) and the value of the cluster determination to which each
record belongs (Cluster). The five pollutants (CO, NO, NO2, O3, SO2) were used as
dependent variables.

Then, the Yatsi algorithm was used to classify the unlabeled data, using the clas-
sified 10 % as a pilot model. It should be mentioned that the Yatsi algorithm is
semi-supervised and it applies the Weighted Nearest Neighbor approach.

Collective classification [22] is a combinatorial optimization problem, in which we
are given a set of nodes, V ¼ V1; . . .;Vnf g and a neighborhood function N, where
Ni � V\{Vi}. Each node in V is a random variable that can take a value from an
appropriate domain. V is further divided into two sets of nodes: X, the nodes for which
we know the correct values (observed variables) and, Y, the nodes whose values need
to be determined. The actual task is to label the nodes Yi 2 Y with one of a small
number of labels, L ¼ L1; . . .;Lqf g; The lower case yi will be used to denote the label
of node Yi.

High level pseudo code for the two-stage Yatsi algorithm [23]

Input: a set of labeled data Dl and a set of unlabeled data Du, an of-the-shelf
classifier C and a nearest neighbor number K; let N = |Dl| and M = |Du|
Step 1:

Train the classifier C using Dl to produce the model Ml
Use the model Ml to “pre-label” all the examples from Du
Assign weights of 1.0 to every example in Dl
and of F × N/M to all the examples in Du
Merge the two sets Dl and Du into D

Step 2:
For every example that needs a prediction:
Find the K-nearest neighbors to the example from D to produce set NN
For each class:
Sum the weights of the examples from NN that belong to that class
Predict the class with the largest sum of weights.

Algorithm 2.

In this research effort, semi-supervised classification has been applied to isolate the
potential extreme records. The reasoning of the method is based on the concept that
performing classification for a robust subset of the available data (not less than 10 % of
the whole) can provide a prototype for the effective classification throughout the
dataset. The following specific steps were applied to achieve this task:

We have initially determined the actual three risk classes, working with the 2012
dataset (pilot data). This was chosen as the actual robust dataset, because it is an
extensive one (951 vectors) with the vast majority of the selected values being valid.
Also the range of the values for each involved feature was representative of the total
potential fluctuation for each pollutant.

Thus it was determined that all 2012 vectors that had CO concentration higher than
3.2 mg/m3 were labeled as class 1, whereas the ones that had Ο3 > 60 μg/m3 were
tagged as class 2. All of the rest of the cases were assigned class 0. The above boundary
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values were selected to represent the extreme cases, based on the results emerging from
a previous research effort of our team [3]. Also it is really important that in [2] we had
shown that a record can be an outlier, either according to the concentration of primary
pollutants (CO, NO, NO2, SO2) or based on the secondary O3 concentrations but not
for both types of features at the same time. The parameter CO was selected as repre-
sentative of the extreme pollutant group 1, because according to [2] it played the most
crucial role for its determination, with the extreme values of the rest of primary pol-
lutants to “follow”. So we adopted three risk classes for each record: The extreme one
for the primary pollutants (1), the extreme in relation to ozone (2) (secondary pollutant)
and the class of normal pollutants’ values (0). Running the semi-supervised algorithm,
we obtained a very effective classification for the whole available data records related
to all of the years under study (Table 3).

Correctly Classified Instances 935 (98.3176 %), Incorrectly Classified Instances 16
(1.6824 %), Root Mean Squared Error 0.1024. Figure 2 presents a graph of the pro-
posed method.

After the classification, a dataset with the extreme values of the pollutants was
developed. Also the class attribute was added, having the corresponding values 0, 1, 2.
This addition ensured uniformity as to the classification of the cases, which appear to
have inverse effects over periods of time due to their physico-chemical composition.
For example, in cases where there were O3 outliers, the values of the primary pollutants
CO and NO appeared to be extremely low and vice versa.

We have developed feed forward Artificial Neural Networks (ANN) in order to
forecast the extreme values of pollutants. Specifically, for each pollutant an ANN has
been developed. The input parameters are the following: YEAR, MONTH, DAY,
HOUR, AIR_TEMPERATURE and finally the attribute produced by the SSC2-HAQS,
CLUSTER_ID. The network had 10 neurons in the hidden layer, it employed the tansig
transfer function, the training function trainlm and the learngdm learning function. The
Root Mean Square Error metric (RMSE) was used to evaluate the performance.

4 Results and Comparative Analysis

4.1 Results

Thus, after running the SSC2-HAQS approach in order to obtain the extreme dataset
and after having generated a neural network for each pollutant, the testing process
considered the 2013 data vectors, originating from the “Athenas” station. The ANN
were not fed with the desired output pollutants’ values (targets). Using first time seen
inputs, the models predicted some values which were compared to the actual ones
(Table 4). The following Table 5 contains the ANN testing results.

4.2 Comparative Analysis

The application of the semi supervised algorithm gives reliable results, especially in the
classification process. More specifically, the SSC2-HAQS model outperforms the
approaches that have been proposed by our research team in the literature [3].
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The main advantage of our approach is that it runs only for one measuring station
aiming to offer an overall classification for the whole area under study, much faster and
in a simpler way. The same method can be applied for any other station. Also the
Semi-Supervised Learning employed runs effectively by using only three classes
whereas the fuzzy c-means required 5 classes and the SOM needed 9 classes in order to
determine effectively the extreme pollutants’ groups. The hypothesis that a pollution
record is either harmless or dangerous for the public health, being related to high
concentrations of primary or secondary pollutants is rather rational, flexible and

Table 3. Confusion matrix for the assignment of the classes

Confusion matrixs
951 instances (0 normal values) (1 extreme primary) (2 extreme O3)
Α (0) Β (1) C (2)

239 5 0
5 281 1
2 3 415

Fig. 2. Graph of the developed algorithm
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moreover effective. The following Tables 6 and 7 present a comparison between the
performance of the herein proposed method SSC2-HAQS and the SOM, GAS, FUZZY
and Unsupervised SOM that were applied in a previous research effort of our team [3].
The SSC2-HAQS has better performance (for 3 out of 5 features). Specifically, it is
more reliable for the NO2, O3 and SO2 whereas it is equally reliable (though a little
worse) for the CO and NO cases. However, it is a good compromise since it is much
faster it models the whole area with the use of a single measuring station and it requires
fewer classes in order to group the extreme values effectively.

The following table presents the number of data vectors assigned the extreme tag.
The four approaches of our previous research [3] have used data from four measuring
stations and thus they had one more feature (All Stations). The SSC2-HAQS incor-
porates more data vectors in the extreme cluster except for the UNSUPERSOM, which
has very bad performance according to the previous Tables 6, 7 and 8.

5 Discussion–Conclusions

This work presents an innovative and effective method of analyzing high concentra-
tions of air pollutants with a combined hybrid Semi-Supervised Learning system. The
proposed approach was tested successfully, in classifying and also in forecasting the
extreme primary and secondary pollutant values for the center of Athens. It uses a

Table 5. Testing results

Testing (2013) 5098
instances

R2 RMSE

CO 0.78 0.59
NO 0.82 37.34
NO2 0.53 12.88
O3 0.70 19.94
SO2 0.12 3.35

Table 6. Comparison of performance for the extreme datasets (Training)

Training comparison (2000–2012) CO NO NO2 O3 SO2

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

SOM 0.86 0.75 0.92 36 0.74 19.2 0.86 14 0.71 15.7

GAS 0.90 0.7 0.94 33 0.74 17.6 0.83 17.5 0.62 13.7

FUZZY 0.88 0.62 0.92 30.27 0.72 15.4 0.83 15.4 0.64 10.7

UNSUPER SOM 0.42 1.29 0.37 76.39 0.54 23.63 0.9 10.27 0.34 16.23

SEMI 0.82 0.81 0.78 55.5 0.84 12.1 0.91 10.07 0.75 5.38

Table 4. Training results

Training (2000–2012)
44601 instances

R2 RMSE

CO 0.82 0.81
NO 0.78 55.5
NO2 0.84 12.1
O3 0.91 10.07
SO2 0.75 5.38
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sophisticated technique of combined learning, which ensures fast, robust and effective
forecasting and classification performance. Moreover, it is a general model which does
not require specific characteristics of the area under study. All the above, add gener-
alization ability to the methodology which is easily adjustable and applicable to other
areas (cities) of research. The SSC2-HAQS employs a Semi-Supervised Learning
algorithm which is considered a realistic machine learning method that can model the
most serious problems of the real world, based on the essential peculiarities that might
characterize them. A main innovation introduced by the proposed scheme, concerns the
data classification in homogeneous classes (distinction between primary and secondary
pollutants). This process is done based on a sample of few pre-classified data vectors,
something that incorporates the hidden knowledge and the correlations between the
features. This hybrid system was tested effectively, with data that have specific par-
ticularities as they originate from a period of financial crisis for Greece, which has a
significant effect on air quality in major urban centers.

Future work could involve testing of the system data in other urban centers with
different climatic conditions and moreover it should consider climate change scenarios
in these regions. Additionally, it would be very important to apply a new weights
learning algorithm which will modify and adjust them based on specificity rates that are
deemed necessary for the local climate. Thus the system could be made more flexible in
achieving results in future evaluations and investigations of a region.

Table 7. Comparison of performance for the extreme datasets (Testing)

Testing comparison
(2013)

CO NO NO2 O3 SO2

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

SOM 0.77 0.53 0.83 40 0.48 17.9 0.71 33.3 0.13 6.88
GAS 0.76 0.62 0.9 30.1 0.49 16.2 0.4 36.9 0.14 6.69
FUZZY 0.76 0.57 0.85 40.6 0.53 14.5 0.69 19.5 0.1 6.51
UNSUPER SOM 0.19 0.98 0.38 58 0.25 25.1 0.27 35.4 0.03 7.13
SEMI 0.78 0.59 0.82 37.34 0.53 12.88 0.7 19.94 0.12 3.35

Table 8. Comparison of the extreme records’ number (number of records)

Number of extreme records Training (2000–
2012)

Testing (2013)

All stations Athinas All stations Athinas

SOM 30077 3383 14129 4378
GAS 53589 9354 13965 4343
FUZZY 91440 24834 14273 3987
UNSUPER SOM 213058 51304 19950 7757
SEMI - 44601 - 5098
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Abstract. This paper aims to extract both sentiment and bag-of-words infor-
mation from the annual reports of U.S. banks. The sentiment analysis is based
on two commonly used finance-specific dictionaries, while the bag-of-words are
selected according to their tf-idf. We combine these features with financial
indicators to predict abnormal bank stock returns using a neural network with
dropout regularization and rectified linear units. We show that this method
outperforms other machine learning algorithms (Naïve Bayes, Support Vector
Machine, C4.5 decision tree, and k-nearest neighbour classifier) in predicting
positive/negative abnormal stock returns. Thus, this neural network seems to be
well suited for text classification tasks working with sparse high-dimensional
data. We also show that the quality of the prediction significantly increased
when using the combination of financial indicators and bigrams and trigrams,
respectively.

Keywords: Stock return � Prediction � Text mining � Sentiment � Neural
network

1 Introduction

In recent years, the importance and volume of firm-related textual information have
steadily increased. Stakeholders make decisions based on a wide range of information,
much of it subjective. It is therefore becoming increasingly difficult to ignore the
contribution textual analysis may have in finance. The past decade has seen the rapid
development of textual analysis of many financial problems, such as the modelling of
abnormal stock returns [1–3], volatility modelling [4–6], fraud detection [6] and
financial-distress prediction [7–9].

In the literature, two general approaches have been used to analyse firm-related
text: (1) sentiment analysis and (2) machine learning. The former approach calculates
overall sentiment based on the frequency of words chosen by financial experts, thus
addressing the context-specific nature of financial vocabulary better than using general
dictionaries like Harvard IV-4. Machine-learning approaches, on the other hand,
automatically construct word lists and their weights based on a classification of texts.
This approach may provide more accurate predictions, but it is problem-specific and
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difficult to interpret. Both approaches have shown promising results in predicting the
reactions of financial markets.

For example, Li [10] demonstrated that changes in sentiment about risk (uncer-
tainty) in annual reports significantly affects future earnings and stock returns. Li [11]
found some evidence that managers may hide adverse information from investors by
using harder-to-read language in annual reports. Feldman et al. [12] also reported that
market reactions (two days after the U.S. Securities and Exchange Commission filing
date) are significantly associated with the tone (net positive) of the Management
Discussion and Analysis (MD&A) section of the annual report.

Machine-learning approaches to the textual classification of annual reports have
also been reported in the literature. For example, Balakrishnan and Srinivasan [13]
found that significantly positive, size-adjusted returns can be achieved by using the
predictions of a machine-learning model. More specifically, textual information was
reported to affect investors’ use of price momentum, which then became a key
determinant of these excess returns.

In this study, we use a hybrid textual analysis approach combining sentiment
analysis and machine learning. Here, the sentiment analysis is based on two commonly
used finance-specific dictionaries developed respectively by [1, 6]. The use of
finance-specific dictionaries in this approach has shown significantly higher prediction
accuracy compared to the use of general dictionaries [6, 14]. Moreover, Loughran and
McDonald [15] reported that general dictionaries were especially inappropriate for
sentiment analysis of financial disclosures, causing a high percentage of sentiment
misclassification. The dictionary by [6] has become particularly dominant in the lit-
erature for finance-related analysis. Loughran and McDonald [6] reported that event
period excess returns are positively affected by a frequent use of litigious terms (but
only in cases of proportional weights of terms), whereas other financial dictionaries
(negative, positive, uncertainty, weak and strong modal) have negative effects for both
proportional and tf-idf weights of terms. Negative, uncertainty, weak and strong modal
word lists displayed statistically significant effects for both weighting schemes.

The aim of this paper is to predict abnormal stock returns using the analysis of text
in the annual reports of U.S. banks. Most studies in the field tended to focus on either
sentiment or machine learning approach, paying little attention to their synergistic
effects. Here we use the combination of financial indicators, sentiment and
bag-of-words (BoW) to increase prediction accuracy. First, adopting the approach of
prior studies, we employ predefined dictionaries to show the effect of sentiment on
abnormal stock returns in the banking industry. We show that the chosen sentiment
categories displayed in the annual reports of banks negatively affects abnormal stock
returns, with the exception of sentiment tone. Second, we use a BoW representation to
detect the most relevant terms in the annual reports. To perform the prediction of
abnormal stock returns, we employ a Neural Network (NN) with dropout regularization
and rectified linear units [16] and compare it with four machine learning approaches
commonly used in text classification [17], namely Naïve Bayes, Support Vector
Machine (SVM), C4.5 decision tree, and k-nearest neighbour (k-NN) classifier. We
demonstrate that the NN performs best using the combination of financial indicators
and BoW approach.

68 P. Hájek and J. Boháčová



The remainder of this paper is organised in the following way. Section 2 outlines
finance-specific aspects of textual analysis. Section 3 presents the corpus of documents
and the results of its pre-processing. The prediction of abnormal stock returns is per-
formed in Sect. 4. In addition to textual information in annual reports, the financial
indicators of banks are used for analysis, in line with previous literature. Section 5
discusses the obtained results and concludes the paper.

2 Textual Analysis in Finance – Literature Review

Kearney and Liu [18] classified the sources of textual information in the financial
domain into three categories: corporation-expressed, media-expressed, and
Internet-expressed. Corporation-expressed information is usually extracted from annual
reports [6, 10] or from earnings press releases and conference calls [1]. MD&A sec-
tions of annual reports are widely considered to be the most important source of insider
information, because they provide management’s perspective on past performance,
current financial positions and future prospects [12]. These sections may therefore be
particularly important for the prediction of firm performance and stock prices.
Researchers have shown increasing interest in the analysis of firm-related narratives
partly due to the requirements of the U.S. Securities and Exchange Commission
(SEC) for electronic filings. 10-K filings (forms) provide both audited financial state-
ments and a comprehensive overview of the firm’s business and financial condition.
Therefore, they are the most widely used source of data. However, the information
provided by management may be rather subjective and not entirely true, making
analysis difficult.

Li [19] examined the MD&A sections of 10-K (and 10-Q) filings using a Naïve
Bayes method, demonstrating that a positive tone in the documents indicates positive
future earnings. General dictionaries, on the other hand, failed to predict future
financial performance. Demers and Vega [20] examined the impact on future earnings
of net optimism and uncertainty of managerial communications regarding a firm’s
quarterly earnings results, suggesting that net optimism is positively associated with
future earnings, whereas uncertainty indicates a decrease in future earnings. Davis et al.
[21] calculated net optimism in earnings press releases, finding that this measure (1) is
positively associated with future return on assets and (2) generates a significant market
response in a short window of time around the date of the earnings announcement.

In contrast to the abovementioned studies, which used a general dictionary,
Loughran and McDonald [6] developed a finance-specific dictionary to measure the
sentiment in company-related textual documents. They reported that general dic-
tionaries misclassified many negative words, such as “taxes” or “liabilities”, thus
adding noise to prediction models. Moreover, other industry-specific words (“oil”,
“cancer”) do not carry the generally negative connotation they do in general language.
In addition to negative words, Loughran and McDonald [6] considered other effects by
using five other word classifications (positive, uncertain, litigious, strong modal, and
weak modal). Taken together, higher sentiment (across all word categories) in annual
reports significantly and negatively affected future abnormal returns, whereas it sig-
nificantly and positively impacted both abnormal volume and return volatility.
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Meanwhile, media-expressed information is the information of outsiders contained
in news stories and analyst reports [5]. Tetlock et al. [2] studied the effect of news
stories on future earnings and stock returns, demonstrating that the fraction of negative
words in firm-related news stories predicts both low earnings and low stock returns.
Schumaker and Chen [22] examined a SVM approach for financial news articles
analysis using several textual representations: BoW, Noun Phrases, and Named Enti-
ties. The majority of the sources used are major news websites such as The Wall Street
Journal [4], Bloomberg [23] and Yahoo! Finance [24].

Internet-expressed sentiment is used to extract the information from small investors
[4]. For example, in their stock price prediction model, Li et al. [25] combined news
information with the information obtained from online financial discussion boards.
Similarly, Yu et al. [26] have investigated content from the social media, including
blogs, forums and Twitter. Their findings suggest that social media has a stronger
impact on firm stock performance than conventional media.

Finally, several researchers have investigated a variety of firm-related textual
documents. For example, Kothari et al. [27] examined corporate reports, analyst dis-
closures and briefings, and disclosures made in the general business press. Their results
showed that favourable disclosures have a significantly negative effect on firm’s per-
ceived risk (as proxied by the cost of capital, stock return volatility, and analyst forecast
dispersion).

3 Data and Research Methodology

Our study encompasses 180 U.S. banks listed on the New York Stock Exchange
(NYSE) or Nasdaq and with a reported stock price of at least 3 USD before the 10-K
filing date (usually within 90 days after the end of the firm’s fiscal year). This limit was
chosen to reduce the contribution of bid/ask bounce in reaction to 10-K filing [6]. We
also required market capitalisation of at least 100 million USD to reduce the effect of
risk factors for stocks [28]. We downloaded all 10-Ks for such banks from the EDGAR
system for the period 2013. To control for variables that have shown significant
impacts on abnormal stock returns in prior literature [1, 14], we collected corre-
sponding data from the Marketwatch database for the following variables: (1) log of the
market capitalisation (lnMC), (2) price-earnings ratio (P/E), (3) price to book value
(P/B), (4) return on equity (ROE), (5) total debt to total assets (TD/TA), and (6) a
dummy variable for NYSE versus Nasdaq listing. ε-SVR (Support Vector Regression)
was used for the imputation (with average RMSE = 4.65). All attributes except the
missing one were used to estimate the missing value. The completed data on financial
indicators were used afterwards to predict abnormal stock returns.

Following previous studies [1], abnormal returns were calculated as accumulated
returns in excess of the return on the CRSP (Center for Research in Security Prices)
equal-weighted market portfolio. Consistent with related studies, we also adopted a
three-day event window, from day t-1 to t + 1, where t represents the 10-K filing day.
The U.S. banks were categorized into two classes, with positive (139 banks) and
negative abnormal returns (41 banks), indicating an imbalanced dataset. Table 1 shows
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basic descriptive statistics of the sample. Nasdaq listings predominated in the data at
81.06 % of considered firms.

In accordance with prior studies [19], we extracted only the most important textual
section from the downloaded 10-Ks, namely Item 7: Management’s Discussion and
Analysis of Financial Condition and Results of Operations (MD&A). This section
provides managements’ perspective on their firms’ past, current and future financial
performance [18].

To obtain their tone, we compared the extracted documents with several
finance-specific word categorisations: those developed by [1, 6]. Henry [1] created two
word categories, one positive and one negative, both containing 85 words. However,
this approach has two limitations. First, the limited number of words contained in each
category has been reported as insufficient in the domain of business communication.
Second, other important word categories besides positive and negative are ignored,
such as uncertainty, modality, and so on. Loughran and McDonald [6] have addressed
these drawbacks, leading to extensive word lists of 354 positive and 2,329 negative
words. In addition, word categories for uncertainty (291 words), litigious (871 words),
modal strong (19 words) and modal weak (27 words) were created as part of their work.

The use of negative words seems unambiguous, whereas the use of positive words
in a negative statement has been one of the main challenges addressed in the literature
on sentiment analysis [15]. To handle the problem of negations, we followed the
approach proposed by [6], performing a collocation analysis with positive words to
detect one of six negation words (no, not, none, neither, never, nobody) occurring
within three words preceding a positive word. The frequency of net positive words was
then calculated as the positive term count minus the count for negation (positive terms
are easily qualified or compromised). Although this procedure should provide a more
accurate measurement of positive tone, previous studies have shown that positive word
lists can generally locate only a little incremental information [5, 6].

Another issue to be addressed is the choice of an appropriate term-weighting
scheme to evaluate how important a word is within a document in a corpus [29]. Using
raw term frequency, all terms are considered equally important. However, this scheme
assigns higher weights to terms that occur frequently in the text and it does not
consider, moreover, the length of the document. Therefore, we used the most common
term-weighting scheme, tf-idf (term frequency-inverse document frequency), in which
weights wij are defined as follows:

Table 1. Descriptive statistics on financial indicators

Class Positive Negative
Var. Mean Std. dev. Mean Std. dev.

lnMC 6.20 1.30 7.05 1.30
P/E 16.53 6.13 17.44 9.60
P/B 1.36 0.44 1.42 0.45
ROE [%] 7.89 4.16 9.61 8.51
TD/TA [%] 9.81 4.31 10.54 7.19
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wij ¼ ð1þ logðtfijÞÞ log N
dfi

if tfij � 1
0 otherwise

�
; ð1Þ

where N represents the total number of documents in the corpus, dfi denotes the number
of documents with at least one occurrence of the i-th term, and tfij is the frequency of
the i-th term in the j-th document.

The weight for each word category was then calculated as the average frequency of
the words in that category. In addition to the abovementioned word categories, we also
calculated the overall tone, defined as the count of positive words minus the count of
negative words, divided by the sum of both positive and negative word counts [1].
Table 2 shows that banks with a stronger sentiment orientation (in all word categories)
performed worse, this is that sentiment was not taken positively by investors. On the
other hand, the overall tones (Henry Tone and LM Tone) were higher for the banks
with positive abnormal return.

Legend: LM denotes word categories developed by Loughran and McDonald [6].
To match the data from the EDGAR system and Marketwatch database, we used

the ticker symbols of the banks (see Table 3 for a data sample).
To identify a set of useful N-grams, we first removed stop-words, performed

stemming using the Snowball stemmer, and converted all word tokens to lower case
letters. Finally, all unigrams, bigrams and trigrams were identified in the training data
and ranked according to their tf-idf. For our experiments, we used the top 200, 500 and
1000 N-grams in a bag-of-words fashion. Table 4 presents the N-grams with the
highest information gain, indicating overlaps and potential value provided by bigrams
and trigrams (e.g., flow, cash flow, future cash flow).

Table 2. Descriptive statistics on sentiment indicators

Class Positive Negative
Var. Mean Std. dev. Mean Std. dev.

Henry Pos. 0.27 0.15 0.32 0.17
Henry Neg. 0.26 0.14 0.34 0.19
Henry Tone 0.02 0.27 −0.03 0.24
LM Pos. 0.23 0.12 0.29 0.16
LM Neg. 0.19 0.09 0.27 0.18
LM Tone 0.09 0.21 0.04 0.20
LM Uncertainty 0.21 0.09 0.26 0.12
LM Modal Weak 0.23 0.19 0.31 0.22
LM Modal Strong 0.21 0.19 0.29 0.22
LM Litigious 0.16 0.10 0.31 0.24
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4 Experimental Results

The survey on text mining for stock market prediction [29] concludes that SVM and
Naïve Bayes are heavily favoured by researchers, whereas NNs are significantly
under-researched in the field of stock market predictive text-mining at this stage,
despite that NNs have shown promising potentials for textual classification and sen-
timent analysis. NNs equipped with advanced techniques such as rectified linear units,
AdaGrad and dropout regularization have been reported to be particularly effective
compared with state-of-the-art approaches to text classification [30].

In our experiments, we examined NN with dropout regularization and rectified linear
units [16]. Dropout regularization [5] was utilized because fully connected NNs are
prone to overfitting. This regularization randomly sets a given proportion of the acti-
vations to the fully connected layers to zero during training. Thus, hidden units that
activate the same output are decoupled. This largely improves generalization ability and
prevents overfitting. Rectified linear units have attracted increased attention because
traditional sigmoidal units suffer from the vanishing gradient problem, which may cause
slow optimization convergence to a poor local minimum [31]. The synergistic effects of
combining rectified linear units with dropout regularization have been demonstrated by
[32]. We trained this NN using gradient descent algorithm with the following param-
eters: input layer dropout rate = 0.2, hidden layer dropout rate = 0.5, number of units in
the hidden layer = {10, 20, 50, 100, 200}, learning rate = {0.05, 0.10}, and the number
of iterations = 1000. The structure and parameters of the NN learning were found using
grid search procedure. The large number of neurons in the hidden layer was examined
due to the high number of input features (more than 1000). However, adding too many
neurons was not necessary because it would lead to modelling the noise in the training
data, eventually causing poor generalization performance.

To demonstrate the effectiveness of this NN, we compared the results with four
methods commonly used in text classification tasks, namely Naïve Bayes, SVM, C4.5
decision tree, and k-NN classifier.

Table 3. Data sample of financial and sentiment indicators

Ticker lnMC P/E … Henry pos. Henry neg. Henry tone … LM litig. Class

ACNB 4.83 13.14 … 0.14 0.50 -0.57 … 0.26 neg
BBT 10.25 14.15 … 0.34 0.38 -0.05 … 0.26 pos
… … … … … … … … … …

ZION 8.63 16.33 … 0.74 0.89 -0.09 … 0.44 pos

Table 4. Terms with the highest information gain

Category Terms

Unigrams flow, approximately, lending, acquisition, yield
Bigrams cash flow, interest margin, fixed rate, credit losses, acquired loans
Trigrams net interest margin, positive and negative, provision for loan,

future cash flows, board of directors
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Naïve Bayes is the most commonly used generative classifier in text classification.
The posterior probabilities of classes are calculated based on the distribution of the
words in the document. The main assumption of Naïve Bayes is that the words in the
documents are conditionally independent given the class value.

Further, we used the SVMs trained by the sequential minimal optimization algo-
rithm. Since SVMs are robust to high dimensionality, they are well suited for text
classification because of the sparse high-dimensional nature of the text. The following
parameters of the SVMs were examined: kernel functions = polynomial, the level of
polynomial function = {1,2,3}, complexity parameter C = {20,21,22,…,28}.

Error based pruning algorithm was used to train the C4.5 decision tree. This
algorithm uses single-attribute splits at each node. The feature with the highest
information gain is used for the purpose of the split. For this algorithm, confidence
factor is used when pruning the tree. The following parameters of C4.5 were examined
to obtain the best classification performance: confidence factor = {0.1,0.25,0.4},
minimum number of instances per leaf = {1,2, …,5} and number folds = 3.

Linear nearest neighbour search algorithm with Euclidean distance function was
used for the k-NN classifier. The number of neighbours was set to 3. The main idea is
that documents belonging to the same class are likely to be close to one another based
on a similarity measure.

It was reported that the use of common classification performance criteria such as
accuracy may yield misleading conclusion in the case of class imbalance [33]. More
accurate measures such as ROC (receiver operating characteristic) curve have been
predominantly used for imbalanced datasets. Therefore, we measured the quality of
abnormal return prediction using the area under the ROC curve. To avoid overfitting,
all experiments were performed using 10-fold cross-validation.

In the first set of experiments, we used the financial, sentiment and BoW features
separately. Table 5 shows the classification performance on the abnormal bank stock
returns dataset. We report the Average ± Std.Dev. values of ROC from the 10-fold
cross-validation. The best performance of the algorithm is marked in bold.

Table 5. Comparison of ROC classification performance – single approaches

NB SVM C4.5 k-NN NN

Fin. 0.652 ± 0.201* 0.499 ± 0.005 0.496 ± 0.044 0.602 ± 0.162 0.670 ± 0.190*
Sent. 0.592 ± 0.172* 0.500 ± 0.000 0.567 – 0.135 0.525 ± 0.172 0.598 ± 0.195*
BoW_200uni 0.651 ± 0.150 0.600 ± 0.143 0.562 ± 0.156 0.636 – 0.167 0.692 ± 0.155*
BoW_200bi 0.667 ± 0.148 0.650 – 0.156 0.550 ± 0.190 0.547 ± 0.169 0.736 ± 0.160*
BoW_200tri 0.672 ± 0.180 0.625 ± 0.139 0.554 ± 0.172 0.571 ± 0.166 0.757 ± 0.144*
BoW_500uni 0.689 ± 0.164* 0.558 ± 0.128 0.535 ± 0.157 0.533 ± 0.153 0.710 ± 0.148*
BoW_500bi 0.725 ± 0.153* 0.596 ± 0.148 0.528 ± 0.146 0.496 ± 0.148 0.755 ± 0.125*
BoW_500tri 0.694 ± 0.200 0.608 ± 0.114 0.532 ± 0.141 0.596 ± 0.166 0.756 ± 0.131*
BoW_1000uni 0.661 ± 0.169 0.582 ± 0.121 0.555 ± 0.173 0.498 ± 0.159 0.706 ± 0.179*
BoW_1000bi 0.729 – 0.161 0.619 ± 0.144 0.547 ± 0.151 0.547 ± 0.166 0.762 ± 0.137*
BoW_1000tri 0.726 ± 0.159 0.585 ± 0.115 0.556 ± 0.171 0.557 ± 0.147 0.778 – 0.126*

* ROC significantly higher at p = 0.05.
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SVM, C4.5 and k-NN algorithms performed generally better on the lower dimen-
sional datasets, whereas NB and NN performed best for the BoW with 1000 features. In
case of the NB, this suggests a high variance in the data that this probability based term
weighting scheme better distinguishes documents in the minor category. Moreover, the
quality of the prediction significantly increased when using bigrams and trigrams,
respectively. We employed Student’s paired t-test at p = 0.05 to test the differences in
ROC. The results show that NN performed particularly well on the BoW datasets.

Table 6. Comparison of ROC (Accuracy) performance – combinations of approaches

NB SVM C4.5 k-NN NN

Fin. + Sent.

ROC 0.603 ± 0.172 0.499 ± 0.007 0.533 ± 0.139 0.628 ± 0.153 0.652 ± 0.191*

Accuracy 51.18 ± 12.72# 77.10 ± 1.31 73.91 – 7.12 74.46 – 8.77 77.25 ± 0.66

Fin. + BoW

ROC 0.729 ± 0.160 0.651 – 0.148 0.558 ± 0.168 0.661 – 0.157 0.786 – 0.121*

Accuracy 71.93 ± 11.88 76.99 ± 10.30 67.42 ± 11.98# 71.71 ± 10.60 77.57 – 8.45

Sent. + BoW

ROC 0.737 – 0.156 0.646 ± 0.156 0.581 – 0.159 0.628 ± 0.152 0.775 ± 0.125*

Accuracy 72.54 – 11.32 77.35 – 10.66 68.92 ± 11.12# 70.70 ± 10.51 77.26 ± 8.26

Fin. + Sent. + BoW

ROC 0.737 – 0.155 0.643 ± 0.149 0.574 ± 0.177 0.625 ± 0.147 0.776 ± 0.129*

Accuracy 72.46 ± 11.45 76.99 ± 10.54 69.02 ± 11.79# 68.52 ± 9.87# 77.49 ± 7.53

* significantly higher ROC at p = 0.05, # significantly lower accuracy at p = 0.05.

Fig. 1. Average area under the ROC curve for NN. We used the combinations of financial (Fin.),
sentiment (Sent.) and bag-of-words (BoW) for 200, 500 a 1000 unigrams, bigrams and trigrams.
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In the second set of experiments, we combined the categories of features to
demonstrate the synergistic effect of financial, sentiment and BoW information.
Specifically, we examined the following combinations: (1) financial and sentiment,
(2) financial and BoW, (3) sentiment and BoW, and (4) financial, sentiment and BoW
features. Table 6 shows that the classification performance of all algorithms increased
compared with single approaches presented in Table 5. To save space, we show only
the best results for the BoW combinations. In addition to ROC, we also show accuracy
of the classifiers. Regarding precision and recall, we obtained F-measure of
0.338 ± 0.272 for the best NN model (Fin. + Bow).

For all algorithms, the performance was best when the financial or sentiment
indicators were combined with the BoW approach. In terms of ROC, the NN method
significantly outperformed the remaining methods in all four sets of experiments.
Figure 1 shows the detailed results for the combination of the financial, sentiment and
BoW features used by the NN method. Obviously, the classification performance
increases with both the number and length of terms, providing the best performance for
1000 features and trigrams.

5 Conclusion

A strong relationship between textual information extracted from annual reports and
abnormal stock return has been reported in the literature. This study set out with the
aim of assessing the synergistic effects of sentiment analysis and machine learning
approach. The results of this study indicate that machine learning approaches using
BoW provide more accurate predictions than the aggregate indicators of sentiment
categories. On the other hand, the combination of sentiment analysis and machine
learning approach did not show any significant increase in accuracy compared with the
pure machine learning approach, suggesting that BoW sufficiently incorporate
sentiment-related terms. However, substantially more experiments should be conducted
to generalize our findings.

Another important finding was that NN with dropout regularization and rectified
linear units performed particularly well on this prediction task, suggesting that this
method may be well suited for text classification tasks working with sparse
high-dimensional data. Therefore, further research should be done to investigate the use
of this NN model in related text classification tasks. Future research should also
concentrate on feature selection procedures, especially for high-dimensional imbal-
anced data [34]. Finally, a future study investigating the syntactic structure and
semantic features of firm-related text documents would be interesting.

The experiments in this study were carried out in Statistica 12 and Weka 3.7.13
using the MS Windows 7 operation system.
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Abstract. Social robots are gradually becoming part of society. How-
ever, social robots lack the ability to adequately interact with users in a
natural manner and are in need of more human-like abilities. In this paper
we present experimental results on emotion recognition through the use
of facial expression images obtained from the KDEF database, a funda-
mental first step towards the development of an empathic social robot.
We compare the performance of Support Vector Machines (SVM) and a
Multilayer Perceptron Network (MLP) on facial expression classification.
We employ Gabor filters as an image pre-processing step before classi-
fication. Our SVM model achieves an accuracy rate of 97.08 %, whereas
our MLP achieves 93.5 %. These experiments serve as benchmark for our
current research project in the area of social robotics.

Keywords: Emotion recognition · Support Vector Machine · Gabor
filter · Image classification · Neural networks · Social robots

1 Introduction

Robotic machines are gradually becoming present in a diverse number of fields,
such as national and international security, transport, social media, industry,
education [1], and health care [2], amongst others. Social robots, in particular, are
progressively becoming more intelligent and capable of interacting with human
beings. Despite this perpetual development and albeit the unceasing advance-
ments in technology, social robots are still far from being able to effectively
interact in a human-like manner. As a result, robotic researchers are focusing
their research on developing robots that go beyond a simple mechanical machine;
great efforts are being made to create human-like social robots with the abil-
ity to interact in a manner that a human would [3]. The first step towards
achieving human-like interaction skills is for the robot to adequately recognise
the user’s emotional state and adjust its responses according to this state, thus
mimicking human empathic behaviours. Consequently, in this paper we discuss
c© Springer International Publishing Switzerland 2016
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experimental results on emotion recognition through the use of facial expression
images. These experiments serve as the base concept of our research project:
the development of an empathic robot, a robot with the ability to: (i) recog-
nise human emotions through facial expressions, (ii) illustrate emotional states
itself, and (iii) automatically and autonomously produce and associate responses
to specific emotional states. The following section discusses existing background
material on human emotions, social robots, and machine learning approaches for
emotion recognition and empathic robots. Section 3 explores the dataset we use
and our experiments. Section 4 presents results and discussion. The last section
focuses on future work followed by a list of references.

2 Background and Literature Review

Research has previously suggested that when interacting with non-human beings
our responses depend upon the number of human characteristics we attribute to
the object or animal we are interacting with. This process of attributing human
characteristics to objects is known as anthropomorphism [4]. Anthropomorphis-
ing can facilitate the process of empathising with robots, more precisely with
humanoid robots or robots that can show some sort of facial expressions: since
humanoid robots already possess human-like characteristics such as a mouth and
a pair of eyes, the need to recreate a human image from scratch is eliminated.
This highlights the importance and the key role of facial expressions in human-
robot interactions, hence our research focuses on the development of a social
robot that can accurately recognise these.

2.1 Social Robots

The benefits that social robots can offer to society are numerous. Social robots
can be used in nurseries and homes to act as companions for the elderly [5,6],
in hospitals to help with the recovery of patients with specific conditions such
as cancer, in clinics specialised on therapy for children with autism [8], amongst
others. A good example of the latest trends in social robotics is Paro, a ther-
apeutic seal robot developed by the National Institute of Advanced Industrial
Science and Technology in Japan. This robot is used all around the world for
therapeutic purposes. Aside from its abilities to act as a live animal by demon-
strating proactive, reactive, and physiological behaviour, Paro has the ability
to learn and adjust its behaviour based on these. Paro places positive values on
preferred stimulations and negative ones on undesired stimulations for long term
memory [5]. Another socially interactive robot is GeriJoy, a virtual care com-
panion developed by Massachusetts Institute of Technology researchers. This vir-
tual companion offers wellness coaching, therapeutic programs, reminders, safety
supervision, companionship and care for the elderly [6]. The KSERA project is
another example of existing research in the field of Sociorobotics. This project
aims to provide a social robot that can assist the elderly with their daily activ-
ities and care needs. Moreover, this project is specially designed to assist the
elderly with conditions such as Chronic Obstructive Pulmonary Disease [7].
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Another added benefit provided by social robots is their assistance in educa-
tional institutions to serve as tutors for children [1]. The success of social robots
in the education sector are also heavily dependable upon their ability to illus-
trate empathic states. Castellano et al. [1] have introduced EMOTE, a project
aimed to capture some of the empathic and human elements that characterise
a traditional teacher. The authors have identified a number of crucial points
for the success of empathic robotic tutors including the development of a set
of cues that should create social bonding despite the fact that not all features
will be anthropomorphic [1]. We speculate that if we can develop a robot capa-
ble of illustrating such behaviours, it will significantly facilitate the process of
anthropomorphising and thus, bring social robots a step closer to (i) be able to
illustrate signs of intelligence, (ii) create closer and more intimate relationships
with humans by empathising with them, and (iii) be fully accepted by society.

One of the remarking characteristics of social robots such as Paro [5] is their
ability to adjust their behaviour in order to suffice the user’s needs. However,
these machines lack a number of abilities due to the limitations imposed by
technology. Our aim is to provide robots with the ability to illustrate signs of
intelligence and be able to effectively interact with a user in order to provide users
with affordance and increase user satisfaction. We take a biologically inspired
approach in an attempt to diminish the gap between natural and artificial sys-
tems. Just like Castellano et al. [1], we use empathy as a base concept of our
research.

2.2 Biological Basis of Empathy

In order to establish meaningful relationships with humans, social robots must
interact with people in natural ways and employ social mechanisms such as empa-
thy in the same manner as humans do when interacting with other humans [9].
Empathy, at an abstract level, can be defined as our human ability to understand
and share the feelings of other beings [10]. Research has previously suggested that
there exist two separate systems for empathy: an emotional systems supporting
our ability to empathise emotionally and a cognitive system involving cognitive
understanding of the other’s perspective [11]. Studies have shown the activation
of a number of regions including: the inferior front gyrus, ifnerior parietal lobule,
anterior cingulated, anterior insula, ventromedial prefrontal cortex, dorsemdeial
preforontal cortes, temporoparietal junction, and medial temporal lobe, during
empathic states in human [11]. Some of these regios are activated when empathy
for pain is expressed and others during emotional contagion.

Many researchers in the field of social neuroscience have attributed the ability
to empathise emotionally to mirror neurons [12]. Mirror neurons are a class of
neuron that modulate their activity both when an individual executes a specific
motor act and when they observe the same or similar act performed by another
individual [13]. These neurons were first observed in the macaque monkeys by
Rizzolatti et al. in the 1990s. Rizzolatti et al. [14] observed the existence of
neurons, in the F5 area of the macaque premotor cortex, that discharge when the
macaque performs an action and when it observes a similar action being done by
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another monkey or experimenter. The contributions made by Rizzolatti et al. [14]
served as a base concept for a number of studies attempting to replicate the same
results in the human brain. However, most of the studies confirming the existing
of mirror neurons in the human brain have employed neuroimaging techniques
to monitor brain activity during the observation of and execution of specific task
such as seeing someone in pain and responding to it. Singer et al. [15] investigated
pain related empathy using functional magnetic resonance imaging techniques
(fMRI). The authors observed and assessed brain activity on females when pain
was induced to their partners right hand through an electrode attached to the
back of the hand. After being discovered, the existence of mirror neurons seemed
to suggest that their function is hardwired and thus that if these exist in the
human brain then we are predetermined to resonate with the emotions of others
because of our mirror neurons [16]. These controversial claims created a dispute
in the scientific community given that all the evidence confirming the existence
of mirror neurons in the human brain seem to be based on the assumptions that
they exist in the first place. Nonetheless, the empathic characteristics of mirror
neurons make them a viable path to create empathic behaviours in social robots.
A social robot with the ability to create such behaviours would not only be able
to create appropriate automatic responses but create closer and even intimate
relations with the user.

The empathy system involving cognitive understanding of the other’s per-
spective is directly linked to theory of mind (ToM) [17]. Theory of mind refers
to the ability to understand the intentions of others and covers two concepts:
(i) the knowledge that other animals have mental states such as beliefs, goals,
intentions or emotions, which may be the same or different to our own, and
(ii) the ability to infer what these states may be [17]. If humans can infer similar
states to social robots and if a social robot can adequately interpret the mean-
ing of human actions and behaviours, and produce autonomous and automatic
responses to these actions, the interaction process between humans and robots
would be facilitated. Moreover, the action of anthropomorphising for the human
would require less effort. One of the main challenges in the development of such
intelligent machines is the fact that the sources of inspiration come from what
exists around us [18]. Building machines that can be as intelligent and versatile
as humans and with the ability to socialise and interact as if they were humans
themselves, requires employing the human frame of reference to a certain extent
[18]. At present, existing state of the art machines and frameworks such as
Paro and EMOTE rely on machine learning algorithms to illustrate intelligent
behaviours.

2.3 Machine Learning Approaches for Emotional Face Recognition

Although existing social robots such as Paro are good examples of the current
technological advancements, these robotic machines still lack the ability of ade-
quately illustrating signs of intelligence in a natural way. Consequently, in this
paper we present experimental results on emotion recognition through the use
of facial expression images, a first step towards an emphatic robot. The most
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common approaches to emotion recognition from facial expression images make
use of machine learning algorithms such as artificial neural networks [19,20],
self-organised maps [21,22] or support vector machines [23,24] to classify facial
expression images as a specific emotion. In this work we employ and compare
the performance of Support Vector Machines (SVM), and Multilayer Perceptron
Neural Networks (MLP) to classify the following emotions: Happy, Sad, Angry,
Surprise, Fear, Disgust, and Neutral.

Sohail and Bhattacharya [24] make use of facial feature point localisation to
reconstruct a neutral face to use as reference. When combined with an MLP, the
authors obtain a recognition rate of 92 %. Hewahi and Baraka also use a similar
approach in which they utilise ethnic background information as an input to
the neural network [25]. Khashman also employs an MLP for classification and
Global Pattern Averaging as an image pre-processing step to achieve 87.78 %
accuracy [26]. Ouellet [27] uses Convolutional Neural Networks combined with
Support Vector Machine to obtain 94.4 % accuracy rate. Burkert et al. [28] also
use Convolutional Neural Networks and set a state of the art benchmark with
99.6 % accuracy. Levi and Hassner [29] have proposed an approach which uses
Local Binary Patter (LBP) features as input to Convolutional Neural Network
models. The LBP codes are produced by applying thresholds on pixel inten-
sity values in small neighbourhoods using the intensity of each neighbourhoods
central pixel as the threshold. The resulting pattern of 0s or 1s is used as the
representation [29]. Their pre-processing of images reduces variability due to illu-
mination changes. In addition to this, the authors use network ensembles trained
using different image representations as well as different network architectures
in order to boost recognition performance [29].

Given that the performance of classifier algorithms heavily relies on the qual-
ity of the feature vector representing the image, and thus the emotional state,
it is essential that the optimum image pre-processing method is applied to the
images used for training. Gabor filter is one of the most popular methods in image
processing due to its ability to detect edges. This process resembles the mech-
anism in the human visual system [30] and is characterised by multi-resolution
and multi-orientation properties. Essentially a Gabor filter is a Gaussian kernel
modulated by a sinusoidal plane [30]. The authors of [30] successfully applied
Local Transitional Pattern and Gabor filters to classify facial expression images
with Support Vector Machines, obtaining an accuracy rate of 95 %. A similar
approach was done by Chelali and Dejardi [31].

While the results obtained by researchers offer a good degree of accuracy,
there exist controversy with regards to which facial features play a bigger role
in the recognition of specific emotions. Beaudry et al. [32] conducted a study
aimed to provide a scientific answer to this paradox. Beaudry et al. [32] deducted
that the eyes and eyebrows play a bigger role for the recognition of sadness,
whereas the mouth is more influential to recognise happiness. In contrast, the
authors determined that a holistic processing could be called upon fear but
could not determine the best approach to recognise other emotions. Given that
the primary objective of our research is the development of an empathic robot
with the ability to (i) recognise human emotions through facial expressions and
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(ii) show emotions itself, we plan to exploit the findings by Beaudry et. al.
[32] by emphasising on the features that are relevant for identifying a specific
emotional state. Consequently, in this paper we employ Gabor filters as an image
pre-processing technique due to their ability to highlight these features. In the
next section we describe the dataset used in our experiments and the selection
of features.

3 Experimental Setup and Methodology

3.1 Emotional Facial Expression Corpus

In this paper we use the Karolinska directed Emotional faces database (KDEF)
[33]. It contains a set with 70 individuals: 35 males and 35 females, all between
20 and 30 years old, each displaying seven different emotional expressions in five
different angles. All images were taken under a controlled environment: subjects
wore uniform T-Shirt colours, faces were centred with a grid, and eyes and
mouths were positioned in fixed image coordinates [33]. In our experiments we
only use front angle images: a subset containing 140 front angle images per
emotion, thus a total of 980 images. The first step towards obtaining a feature
vector was to locate the face and crop out the irrelevant spatial features such
as background, hair, and ears. Face images where then converted to grayscale
in order to reduce their dimensionality. Given that the resulting face images
varied in size and they were resized to a standard 120 × 110 size to maintain the
aspect ration of the resulting face image. Figure 1 illustrates sample face images
obtained from the KDEF database.

Fig. 1. Sample extracted face images from the KDEF database [33]. Subject F06 dis-
playing seven emotions: angry, disgust, fear, happy, neutral, sad, surprise.

In order to avoid overfitting due to the reduced amount of front angle images
contained in the KDEF dataset, after applying the Gabor filter with five scales
and eight orientations over an image I, we split the resulting feature vector
into four smaller vectors and treat each one as an input sample. Applying this
method quadruples the number of sample inputs from 980 to 3920 input samples,
giving us more training data. Essentially, each individual input contains an image
convolved with 10 filters expanded over 2 dimensions and 8 orientations.

3.2 Gabor Filter

Taking into consideration that the aim of our research is to create a system
that bridges the gap between natural and artificial mechanisms, we employed
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Gabor filter as an image pre-processing technique due to it resemblance to the
perception in the human visual system [30]. Gabor filters have a unique ability to
highlight salient facial features such as the mouth, eyes, and eyebrows. Studies
have previously demonstrated that the mouth, eyes, and eyebrows play a key
role in the recognition of specific emotions [32]. After applying this filter to our
dataset we obtain image representations that highlight similar facial features as
illustrated in Fig. 2. The commonly used Gabor filters in face recognition are
defined as follows [34]:

Gμ,v(Z) =
||kμ,v||2

σ2
exp

(
−||kμ,v||2||Z||2

2σ2

)[
eikµ,vz − e−σ2/2

]
. (1)

Z(x, y) is the point of coordinates (x, y) in image space, μ and v define the
orientation and scale of the Gabor filters, kμ,v is the wave vector [34]. We exper-
imented with a Gabor filter with eight orientations and five frequencies. The
Gabor filter applied also down samples the original image producing a reduced
feature vector. Once the Gabor filters were applied the feature vector values were
normalised to obtain values in range zero to one. Moreover, as done by Chelali
and Djeradi [31] we only used the magnitude information given that it highlights
areas of interest such as the mouth and eyes, and discards the effect of noises.

Fig. 2. Magnitude response of Gabor filter with 8 orientations and 5 dimensions. Image
corresponding to subject F06 from KDEF database [33].

Our Gabor filter is essentially a sinusoidal modulated by a Gaussian ker-
nel function [31] in which orthogonal directions are represented by real and
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imaginary components. We tried using a combination of the two as a complex
component, however we obtained lower classification results as compared to when
using the real component only. Let λ represent the frequency of the sinusoidal,
θn represents the orientation, and σ represents the standard deviation of the
Gaussian over x and y dimensions of the sinusoidal plane, the real component
of the Gabor filter applied to an image with dimensions the x and y is defined
as follows:

Gλ,θ(x, y) = exp

[
− 1

2

{
x2

θn

σ2
x

+
y2

θn

σ2
y

}]
cos(2π ∗ θn ∗ λ). (2)

where
xθn = x(sin θn) + y(cos θn)
yθn = x(cos θn) + y(sin θn)

After trying a number of parameters we concluded that initialising the Gabor
filter with the following parameters results in the best magnitude response vector
for emotion classification: θ = 2pi/3, λ = 6, γ = 0.5, and σ = 4. Figure 1
illustrates the resulting magnitude response after convolving the Gabor filter
with these parameters over an image. This response vector is given by:

||Gλ,θ(x, y)|| =
√

�2{Gλ,θ(x, y)} + �2{Gλ,θ(x, y)}. (3)

Where �{Gλ,θ(x, y) represents the real part of the filter and �{Gλ,θ(x, y)} rep-
resents the imaginary part.

3.3 Facial Expression Classification

Support Vector Machines are non-probabilistic binary classifiers well known
for performing notably well in image classification problems. We follow similar
approaches to [30,31] to classify facial expression images into seven emotions:
angry, disgust, fear, happy, neutral, sad, and surprised. There exist two meth-
ods for multiclass classification problems: one-versus-all and one-versus-one. If
we have c unique classes in the training set, the one versus all approach builds
c binary classifiers in which the classifier with the highest output determines
the classification in a winner-takes-all approach. The one versus one approach
creates c ∗ (c1)/2 classifiers in which the selected class is the one which most
classifiers predict. We tested both approaches and concluded that the one ver-
sus one approach produces better results with our training set. Moreover, when
nonlinear kernels we obtained lower results.

Let b represent the bias, K be a linear kernel function, our facial expression
classification is determined by:

f(x) = sgn

(
l∑

i+l

yiαi|K(xi, x) + b

)
. (4)
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Table 1. Left: Gabor filter + SVM confusion matrix; Right: Gabor filter + MLP
confusion matrix. A: angry; D: disgust; F: fear; H: happy; N: neutral; Sa: sad; Su:
surprised. Displayed overall results are rounded.

A D F H N Sa Su

A 74 0 1 2 0 0 4 91.36
D 1 96 0 0 0 0 0 98.97
F 0 0 89 0 2 0 0 97.80
H 0 0 0 73 0 0 0 100
N 0 0 0 0 77 0 0 100
Sa 1 0 1 0 1 82 0 96.47
Su 4 0 0 0 0 0 80 95.24

A D F H N Sa Su

A 91 0 0 0 0 0 3 96.81
D 0 61 2 0 0 3 1 91.05
F 1 0 77 1 2 1 0 93.90
H 0 2 0 105 0 1 1 96.34
N 0 0 1 0 73 4 1 92.41
Sa 0 0 0 0 2 70 2 94.60
Su 1 2 1 2 4 0 73 88.00

where xi is the training vector, x is the testing vector with αi > 0, yi represents
Lagrange multipliers of dual optimization problem [35] and α and b are solutions
of a quadratic programing problem. We randomly selected 85 % of the input vec-
tor as our training and validation set and 15 % for testing. This model produced
an accuracy rate of 100 % on training and validation set and 97.08 % testing
set after training with a 10-fold-crossvalidation approach. Table 1 illustrates the
confusion matrix produced by this model.

Given the popularity of feed forward neural networks for classification prob-
lems we decided to compare the performance of Support Vector Machine against
that of a Multilayer Perceptron Network. We experimented with different net-
work topologies and obtained best results with the following Multilayer Percep-
tron Network configuration: one input layer with 8400 neurons taking 10 28× 30
filtered images as input, one hidden layer with 93 neurons, and one output layer

Fig. 3. Proposed fully connected Multilayer Perceptron Network taking Gabor filter
magnitude response as input. Only sample connections are illustrated. Face image
extracted from KDEF database [33].
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with 7 neurons. The target values contained a one in the place of the target class
and zero for the rest. See Fig. 3 for a visualisation. We use the sigmoid activation
function defined as:

S(t) =
1

1 + e−t
. (5)

Though, sigmoid activation functions often create an increased risk of falling into
a local minimum when used in conjunction with steepest decent to train MLPs;
since the gradient can have very small magnitude and cause small changes in the
weights and biases, the network may never reach global minimum if the weights
and bias are far from their optimal values. We employed Resilient Backprop-
agation (Rprop) as our learning algorithm to avoid such side effects. Resilient
backpropagation tackles these side effects by performing a direct adaptation of
the weight step based on local gradient information [36]. Let Δij represent the
individual update-value which determines the size of the weight-update, then
the evolution of the adaptive update-value during learning is based on the error
function E according to [36]:

Δ
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Δ
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where 0 < n− < 1 < n+

Then the weight-update is determined according to the following rule [36]:
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(t)
ij

In order to compare one-to-one against the performance achieved with the
SVM we randomly selected 70 % of the input vector as our training set, 15 %
for our validation set and 15 % for testing. The initial weights were randomly
initialised. This model achieved its best performance after training for 175 epochs
achieving 100 % percent accuracy on the training set, 93.5 % on the testing set
and 92.9 % on the validation set. Learning rate was set to 0.0001 and remained
constant during training.

4 Results and Discussion

In this paper we make progress towards developing an empathic robot. The
architectures proposed provide the robot with the ability to accurately recognise
emotions in people. Humans have this unique ability to autonomously recognise
emotional states in other people by simply observing their body language and
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facial expressions when expressing emotions. Robotic machines on the contrary,
have to be provided with a way to obtain this information. This can conve-
niently be achieved through the use of emotion facial expression images. The
robot then needs a way to analyse this data in a timely manner. Machine learn-
ing approaches have proved to be an efficient way to learn patterns and classify
facial expression images as particular emotion. In this work we have employed
a multiclass Support Vector Machine and a Multilayer Perceptron Network to
classify facial expression images, obtained from the KDEF database, as a par-
ticular emotion. We compare classifier performances in order to determine their
suitability to be used by a social robot to identify emotional states in humans.

Given that facial expression images contain a large amount of emotion-
irrelevant features, we utilise Gabor filters to highlight the emotion-determinant
features such as the mouth, eyes, and eyebrows. After applying Gabor filters to
our images and obtaining a reduced feature vector we feed this to a multiclass
Support Vector Machine and obtain a classification accuracy rate of 97.08 %.
Moreover, as it can be observed on Table 1, this classifier learns to classify dis-
gust, happy, and neutral emotions with an accuracy rate of 100 % and confuses
images label as angry the most, followed by surprised. Our second classifier,
Multilayer Perceptron Network, produces marginally lower results with an over-
all accuracy rate of 93.5 % on the testing set. This classifier confuses images
labelled as surprised the most, followed by images labelled as disgust. It’s best
classification performance is on images labelled as angry and happy.

Although both classifiers obtain high rates on happy expressions there exist
some discrepancy on angry emotions; SVM confuses angry faces the most
whereas MLP achieves its best performance on this emotion. Likewise, SVM
recognises 100 % of disgust faces whereas the MLP has its second worse per-
formance on this emotion. The correlation on happy facial expressions can be
explained by the clear difference on the shape of facial features of this emotion
as compared to the rest as observed in Table 1. We speculate that the incon-
sistency on angry and disgust faces is due to the number of angry and disgust
images present in each training set. Given that training and testing sets are
randomly selected the number of instances for each individual emotion varies.
A more accurate comparison would be best done by using the same number of
class instances for all emotions. In effect, this would also reduce the risk of over-
fitting for some emotions, which could have happened in the case of the SVM;
this classifier used a higher number of angry faces during training compared to
the MLP, possibly leading to overfitting problems.

The results we obtained with SVM outperform those achieved by the MLP
and RBF architectures proposed by Chelali and Djeradi [31]. The authors
test their architectures on the Computer Vision (CV) and the Olivetti-Oracle
Research (ORL) databases. The results achieved with our MLP also outperform
the results obtained by the authors with the ORL database and are slightly
outperformed by the results they obtain with the CV database. Nonetheless,
our models need to be tested with other databases to obtain a more accurate
comparison.
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Support Vector Machines seem to be the most popular approach for facial
expression classification due to their high performance rate. However, this often
depends on the image pre-processing techniques used to process the data before
using it for training and testing. Based on our experimental results we have con-
cluded that Gabor Filters are a powerful pre-processing method that increases
accuracy. However, in the future we plan to adopt deep learning techniques to
allow the robot system to extract the relevant features for emotion recognition
autonomously.

5 Future Work and Discussion

Despite the good results achieved in these experiments we have to take into
account the fact that the training and testing sets contain images of similar
quality. These images were taken under a controlled environment and this could
impact the results produced by the classifier models. Furthermore, given that
our main objective is to incorporate this model within a social robot and allow it
to interact with users in real time, it may not always be possible to obtain good
quality images. The distance from where a picture is taken will most likely vary,
producing very different quality images and potentially leading to overfitting
problems. Moreover, the ability of the robot to show and recognise emotions will
be constrained by its ability to demonstrate facial expressions and its ability to
obtain a good quality image with enough emotion-related information. Taking
into account that one of the main challenges in computer vision is the com-
putationally intensive tasks required to process images, we will need to explore
possible ways to further reduce the size of our input feature vector and thus speed
up the training process. We will explore the approach proposed by Altahhan [37];
obtain a random set of patches from input images to learn a set of feature maps
and utilise these as input for our learning architecture. These concepts will be
tested with our humanoid robot called NAO. Designed by Aldebaran, NAO is
58 cm in height and has a number of sensors and abilities such as moving, feeling,
seeing, speaking, hearing, and thinking [38]. See Fig. 4 for image of our robot.

Fig. 4. NAO, our humanoid robot.
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Our goal is to bring in some of the biological inspiration explored in Sect. 2.2
as the basis for an empathic robot. Even though mirror neurons have lost pop-
ularity, there is still further support for their role in empathy in primates and
humans [16], some of the existing theories related to them do provide an interest-
ing basis for neural architectures and learning approaches to aid the development
of human-robot interactions. We speculate that if we can develop an artificial
neural architecture with some of the same observed properties of mirror neurons,
we will be able to develop a robotic companion capable of recognising a persons
emotional state by simply observing the person’s behaviour. This will lead the
robot to produce responses itself and illustrate a state of empathy. However, we
will need to take into consideration the ability of our robot to display emotions;
due to the high costs and limitations of existing technology, NAO is constrained
by its ability to demonstrate facial expressions. Therefore, we need to take into
consideration the fact that we are far off from having a mechanical machine
that can accurately imitate human facial expressions. However, we hope that
appropriate behaviour can be a good start to begin introducing social robots to
society.

Another concern that we have is the fact that empathy is sensitive to
deeply rooted parochialism and ingroup bias [16]. This implies that people will
empathise better with people they feel a closer connection with, often being peo-
ple with the same background, ethnicity, beliefs, etc. This raises a new issue to
consider: how will different groups react to a social robot? As pointed by Hewahi
and Baraka [25], people from different ethnic groups do not only have different
appearance characteristics they also express emotional states in different ways.
Finally, given that our main objective is to incorporate this model with a social
robot and allow it to interact with users in real time in real environments such as
a user’s home, we need to take into consideration issues such as data protection,
security, safety, among others. We hope that our future architecture will com-
pensate for light and slight angle changes. Our ideal neural architecture would
aim to take inspiration from the processing of the human brain by activating a
specific region when an emotion is seen as opposed to the entire architecture. We
also plan to use reinforcement learning to allow the robot adjust its responses
when interacting with a user. Our plan is to continue looking at existing archi-
tectures such as SVM and benchmark against their performance. In addition, we
will analyse the use of other deep learning techniques to obtain feature vectors
without the need to apply filters manually.
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1 Introduction

A supervised learning method of artificial neural networks (ANN) — multilayer
perceptron (MLP) trained by genetic algorithm and initialized by simulated
annealing is used for a classification of EEG segments. Supervised methods
require etalons for learning. However, obtaining suitable etalons by an expert
(physician) is a time-consuming work. The novelty in this process is the prepara-
tion of etalons by the k-means clustering method [2] and subsequent verification
and editing by the expert. This approach helps to create larger groups of etalons
more effectively.

The whole process of EEG analysis (see scheme in Fig. 1) consists of a signal
preprocessing, a multichannel adaptive segmentation, a feature extraction from
segments, a semi-automatic process of etalons extraction by the k-means cluster
analysis leading to a color segment identification and continuing with a manual
choice of segments for etalons by the expert and a feature extraction of chosen
etalons. The subsequent classification by ANN leads to a unique color identifi-
cation of the segments in the default multichannel EEG record and additionally
in temporal profile and statistical summary sheets.

Fig. 1. Scheme of EEG process

The k-means algorithm is usually the main classification algorithm for EEG
records. It is an unsupervised classification method, therefore no etalons are
needed. However, we propose to use the k-means algorithm only for etalons
preparation because we noticed that the k-means algorithm gives many falsely
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classified segments in the classes (see previous papers, where we discuss using
the fuzzy k-means instead of the k-means [18] and the k-NN instead of the
k-means [17]).

In the literature, there are other research groups [14,16,19,20] classifying
EEG records by artificial neural networks — multilayer perceptron. However,
they classify only the sharp EEG transients and they omit the other EEG seg-
ments, so they use around 4 classes at maximum. In this paper, our goal is to be
as mimetic (meaning: close to what would the physician do) as possible, there-
fore we classify all of the EEG segments and not only the sharp transients. We
have 7 classes based on the experience of our experts.

Another difference of our paper compared to the papers mentioned above is
the adaptive segmentation method that we use for segmenting the whole EEG
record in each channel. For example, in [20] the authors use averaging of the
signal with subsequent threshold to find and segment sharp transients/EEG
graphoelements out of the background that is eliminated. We do not eliminate
the background activity, but we classify it as well.

The main highlight in our approach is the color identification of the EEG
segments in the default multi-channel EEG record which is intuitive and more
suitable for the physicians.

2 Materials

The multichannel EEG data used in this study were recorded in EEG ambulatory
laboratory in the Hospital Na Bulovce in standardized conditions. A group of
ten patients with the diagnosis of epilepsy was examined for a period of at least
20 min. The EEG data were recorded in 2009–2010 using a standard 10–20 sys-
tem EEG cap with ear electrodes linked as a reference derivation. The channels
FP1, FP2, F3, F4, F7, F8, T3, T5, T6, C3, C4, P3, P4, O1, O2 were recorded; the
averaged montage was used for visualization of the channels. The recording was
performed using the Brain-Quick (Micromed s.r.l.) digital system with sampling
frequency of 128 Hz. The filter was set on a bandpass (0.4 Hz and 70 Hz) and the
sensitivity was 100µV per 10 mm. Electrode impedances were not higher than
5 kΩ.

An example of examination is shown and described in this paper on one
patient at time 00:22:30 (see e.g. Fig. 2). There is an epileptic episode ending
in the middle of the frame changing into normal EEG and an eye opening arti-
fact in the first two channels can be observed as well as electrode artifact in
channel number 15 (F4-AVG). The goal is that the classification process should
distinguish between these artifacts and between these artifacts and the epileptic
activity and normal EEG activity.

3 Methods

The WaveFinder software (WF [11]) was used as an EEG browser and also
for signal preprocessing, adaptive/fixed segmentation, the k-means classification
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and colored visualization of results in default EEG signal. The main part of
the WaveFinder software was created by one of the author (V.K.) and new
separate module for classification by artificial neural networks was written in
C++ by the authors. This ANN module reads data from WF such as segment
boundaries, features of the segments, features of the chosen etalons and gives
classified segments for visualizations of classified clusters back into WF.

3.1 Preprocessing Methods

The preprocessing methods of EEG signal usually include filtering of the signal
and noise removal methods. In this paper, only the mean removal procedure was
used and no other additional filtering was performed on the data (additional —
meaning that the recording system Brain-Quick filters the signal during the
recording, see note about bandpass filter above in Sect. 2).

3.2 Multichannel Adaptive Segmentation

The EEG signal must be segmented for the classification process. There are two
approaches for EEG records: fixed segmentation and adaptive segmentation (see
the difference in Fig. 2).

In the fixed segmentation, a window of a fixed length is used for obtaining
boundaries of the segments. This approach is not suitable for the classification
due to the fact that it separates EEG complexes that should be morphologi-
cally together (e.g. spike-and-wave complex). Our goal is to provide a mimetic
algorithm to the physician. The fixed segmentation is not a mimetic approach
because it does not take into account the non-stationary behavior of the EEG
signal compared to the following method of adaptive segmentation that can pro-
vide piece-wise stationary segments.

We use the adaptive segmentation method based on A. Värri [21] due
to its simplicity and computational efficiency compared to the newest devel-
oped adaptive segmentation methods using fractal dimensions [3,7] or wavelet
transformation [6].

The Värri’s adaptive segmentation method is based on two joint windows
sliding along the signal and detecting local maxima in the total difference mea-
sure (see Fig. 3). The total difference measure is calculated from the amplitude
and the frequency difference (eqs. in [15,21]). Further information about the
principle of the adaptive segmentation can be also found in [4,5,10] and a sim-
ple scheme of the principle can be found in [15].

The Värri’s adaptive segmentation is processed for all the channels simultane-
ously as it is shown in the Fig. 2. Parameters used for achieving this segmentation
were chosen from the experience: the window length (WL) of 128 samples, the
window length for local maxima identification (GWL) of 15 samples, the mov-
ing step of the two connected windows of 1 sample, minimum segment length
of 70 samples. The threshold (THR) for elimination of fluctuations in the total
difference measure is 100.
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Fig. 2. Comparison of fixed and adaptive segmentation at time 00:22:30. Notice the
fact that adaptive segmentation is a mimetic method that imitates the work of the
physician.

Fig. 3. The principle of Värri’s adaptive segmentation shown on one channel of EEG
(upper signal) in µV with time on the horizontal axis. The corresponding total dif-
ference measure (bottom signal) is calculated from the amplitude difference and the
frequency difference (shown between the signal and the total difference measure) that
are calculated from the original EEG signal. The red dashed line in the bottom plot
is the threshold for elimination of fluctuation in the total difference measure. (Color
figure online)

3.3 Feature Extraction from the Segments

The next step of the classification process is the feature extraction from the
obtained segments. In this paper, we use 24 features (see Table 1) that evaluate
each EEG segment (graphoelement) by its amplitude level, frequency, shape,
variability of the signal and also spectral measures (further information about
features can be seen in [9,10]).

Extracted features must be normalized for the classification process, therefore
we use the min-max normalization, as we did in the previous paper [9].
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Table 1. Features and their description.

Feature Description

SIGM variability of signal

APOS maximal positive value in the signal segment

ANEG maximal negative value in the signal segment

DELT1 FFT value in delta frequency band (0.5 Hz–1.5 Hz)

DELT2 FFT value in delta frequency band (2.0 Hz–3.5 Hz)

THET1 FFT value in theta frequency band (4.0 Hz–5.5 Hz)

THET2 FFT value in theta frequency band (6.0 Hz–7.5 Hz)

ALPH1 FFT value in alfa frequency band (8.0 Hz–10.0 Hz)

ALPH2 FFT value in alfa frequency band (10.5 Hz–12.5 Hz)

SIGMA FFT value in frequency band (18.0 Hz–29.0 Hz)

BETA FFT value in frequency band (13.5 Hz–29.0 Hz)

MAX1D maximal value of the first derivation

MAX2D maximal value of the second derivation

mf the mean frequency

MD1 mean of the first derivation

MD2 mean of the second derivation

mob Hjorth parameter, mobility

comp Hjorth parameter, complexity

act Hjorth parameter, activity

LOfC length of the curve

NLinE nonlinear energy [1]

ZC zero crossing

Peaks frequency value of the peak in spectrum

Infle inflection point

3.4 Semi-automatic Process of Etalons Extraction

The semi-automatic extraction of the etalons (prototypes) consists of an auto-
matic phase of cluster analysis that prepares possible groups of the etalons and
subsequent manual phase where an expert revises the suggested groups and
removes/adds segments in the groups of the etalons.

The first step of the etalons extraction is the cluster analysis, namely the
k-means algorithm [2] coded according to the review of unsupervised clustering
in [8]. We use 7 classes for the k-means algorithm — based on the experience of
our experts.

After obtaining classes by the k-means algorithm, the EEG segments have
numbers of their class membership and they are colored in the default EEG
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Fig. 4. Color segment identification of the segments in default EEG record according
to the cluster analysis (k-means). This color identification helps the physician to snip
etalons from the EEG record. Note that the eye artifact in the first two channels
(FP1-AVG and FP2-AVG) are misclassified as smaller epileptic spikes. (Color figure
online)

signal according to the class membership (see Fig. 4). This phase is called color
identification based on the k-means classification of EEG segments.

Each class of segments that was created by the k-means algorithm will be
now a suggested group of etalons for further classification by the ANN. However,
these etalon groups made from clusters are not homogeneous (that is the reason
why the ANN are studied), therefore a help of an expert (physician) is needed.
The expert goes through the etalons in the groups and removes EEG segments
(graphoelements) that do not belong to the class (etalon group). The expert can
alternatively add segments snipped from the original EEG to the etalon groups.

The last part of this process is the feature extraction of those chosen etalons
that uses the same features as for the EEG segments (see Sect. 3.3 above).

A special snipping tool was developed in the WaveFinder for the experts,
in order to help the experts to add the chosen EEG segments from the EEG
record directly into appropriate etalon group (see Fig. 5). To make this process
easier, the EEG segments are identified by color based on the k-means algorithm
processed before. This helps the expert to make this process quicker, easier and
smoother.

Due to the combination of the k-means algorithm and the expert, who chooses
the segments visually and manually based on the previous the k-means cluster-
ing, this method is a semi-automatic process of the etalons extraction. The app-
roach of preparing the base group of the etalons by the k-means and verifying
them by the experts gives larger groups of etalons in shorter time. The k-means
clustering for choosing the etalons (training set) can be done on a shorter EEG
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Fig. 5. The snipping tool for choosing etalons by expert with statistics inside. After
the segment is chosen a new small window appears with list of classes, so the expert
can choose the appropriate class for examined segment.

Fig. 6. Examples of etalon groups for 7 classes. The first class (0) contains normal EEG
activity, the second class (1) contains higher EEG activity, the third class (2) contains
EMG artifacts and noise artifacts, the fourth class (3) contains slow artifacts from
eye movement etc., the fifth class (4) contains epileptic activity with higher amplitude
compared to the sixth class (5) that contains epileptic activity with lower amplitude and
the seventh class (6) contains the electrode artifacts that should never be misclassified
as epileptic activity.



102 H. Schaabova et al.

record (at least 20 min) and the subsequent classification with artificial neural
network can be done on the whole EEG record (e.g. 24 h).

The etalons for our example of the patient can be shown in Fig. 6. We have
7 classes of etalons (indexed from 0 to 6) and our expert manually revised the
classes created by the k-means algorithm and removed/added segments from
the EEG recording, so each group of etalons contains EEG segments different in
morphology as well as in spectral parameters.

3.5 Classification of EEG Segments by ANN

The multilayer artificial neural network (ANN) is used to finally classify the EEG
graphoelements/segments after learning on chosen etalons. Our neural network
is a multilayer perceptron initialized by a simulated annealing to elude local
minima and it is trained by a genetic algorithm that optimises the weight of
the multilayer neural network. This whole approach with the simulated anneal-
ing and the genetic optimisation algorithm is based on the book of T. Masters
(Chaps. 6–9 in [13]).

The multilayer forward network used in this paper for classification consists
of 24 input neurons (due to 24 features), 7 neurons in the hidden layer (experi-
mentally chosen) and 7 output neurons (due to desired 7 classes).

From each etalons group 25 etalons were used for the learning process, thus
the training set contains 175 etalons for all 7 classes. The whole patient record
contains a total number of 31,179 EEG segments. The etalons were excluded
from the total sum when testing the classification, so the training set is around
0,6 % of the whole set of segments.

The ANN module is capable of plotting feature space — 2 features at a time
as can be seen in Fig. 7.

3.6 Color Identification of Classified Segments and Temporal EEG
Profile

The results of ANN classification of segments from the multi-channel EEG record
are displayed in the default raw multi-channel EEG record, where the classes are
identified by colors of the EEG segments (see example of one channel in Fig. 8).
This color identification of segments helps the physician when examining the
EEG record.

The temporal profile is a method of visualization of classified EEG, it shows
class membership plotted with time on the horizontal axis (see the principle
in Fig. 8). The temporal profile can reveal hidden macrostructures in long time
frames.

4 Results

The result of the whole process of EEG record analysis described above is shown
in Fig. 9. The homogeneity of resulting classes is examined and it seems to
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Fig. 7. Example of classified feature space projection. It is a result of multilayer per-
ceptron classification with the simulated annealing as initialization method and the
genetic algorithm as weight optimization. All clusters/classes are projected from 24D
space in 2D. In this plot, there is an example of the projection of one of the first two
features into 2D space. Notice the blue cluster (number six) of the electrode impulse
artifacts and dark yellow cluster (number four) of EMG activity and noise artifacts.
The normal EEG activity in grey color (number zero) is in the left bottom part of the
plot in this projection example. (Color figure online)

Fig. 8. Temporal profile visualization principle [12,18]. There is an example of one
EEG channel with segment boundaries and numbers of class membership with time on
the horizontal axis in the upper part. There is a corresponding temporal profile in the
lower part — plot of class membership with time on the horizontal axis. (Color figure
online)
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Fig. 9. The result of ANN classification: The segments are colored in the default
recorded EEG signal according to their class membership. Each class has a differ-
ent color that distinguishes graphoelements in raw EEG. We can observe e.g. the class
of the impulse electrode artifacts in the channel F4-AVG that have a different color
than e.g. the epileptic spikes (appearing in most of the channels in the first half of
the window). Note that the eye artifact in the first two channels is classified in differ-
ent class than the small epileptic spikes in comparison with the k-means classification
in Fig. 4.

Fig. 10. The examples of two rows from the first four classes after ANN classification.
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Fig. 11. The examples of two rows from the remaining three classes after ANN
classification.

Fig. 12. The colored EEG signal (upper part) with the temporal profile of the whole
recording (lower part) after the ANN classification. Each class has a different color that
distinguishes the graphoelements in the raw EEG record (upper part) and all classes
are plotted with time on the horizontal axis in the temporal profile. The red cursor
in the temporal profile shows the position in the whole recording of the upper part of
EEG. (Color figure online)

improve in comparison with the k-means classification. The homogeneity of the
classes is examined visually (see Figs. 10 and 11).

The temporal profile of the whole EEG recording is shown in Fig. 12.

5 Conclusion

The multichannel ambulatory EEG record is analyzed by a process mimeting
the work of the physician. The whole process of the EEG analysis consists of
the signal preprocessing, the multichannel adaptive segmentation, the feature
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extraction from the segments, the semi-automatic process of the etalons extrac-
tion by the k-means cluster analysis leading to the color segment identification
and continuing with the manual choice of segments for the etalons by the expert
and the feature extraction of the chosen etalons. The subsequent classification by
the multilayer artificial neural network with the simulated annealing algorithm
for the initialization of the weights and the genetic algorithm for the weights
optimization leads to the color identification of segments in the EEG record and
additionally to the temporal profile with classes identified by color.

Note that all the EEG segments are classified and not only the sharp tran-
sients as in other research groups and the novel approach of the semi-automated
etalon extraction is used, where the etalons are suggested by the k-means algo-
rithm and further verified and edited by the expert.

The main goal is to help the physician with the tedious examination of the
long multi-channel EEG records by offering segments identified by color in the
default EEG record.

The future work will aim at studying parameters of the multilayer perceptron
network and statistical evaluation using more samples.
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Abstract. Clustering of countries and economies has been done for a
long time by expert comparing to ideal theoretical entities. More recently
a data driven approach has been taken, including, so called, black box
methods. In this paper a SOM-based dissimilarity measure is presented
and used for agglomerative hierarchical clustering of economies. It turns
out that the results differ significantly from those obtained via a more
traditional Euclidean distance based approach.

Keywords: Self-Organising Maps · Hierarchical clustering · Dissimilar-
ity · Political economy · Country clusters

1 Introduction

Policy makers compare countries and economies on the daily basis. It is neces-
sary for proper evaluation of decisions and future projects. The comparisons are
also made for assessment of past policies and theoretical models of social sci-
ence. Within this context emerges the need for creating supporting tools which
allow comparing countries between each other and clustering them. The natural
choice seems to take a data-driven approach, since characteristics of such entities
as countries are quantified nowadays on an unprecedent scale. It is important
that the tools should not be too resource demanding and could be applied in a
reasonable time.

There are three main ways of approaching this task, that is expert judge-
ment clustering, mixture model-based clustering and so-called “black box” data-
analytic approach. Expert judgement clustering has been performed by political
economists for a long time now (e.g. [4,6]). It is usually conducted by comparing
some quantitative and qualitative statistics of economies with an ideal model.
Mixture model-based clustering assumes that the observed data is generated by
a mixture of a finite family of probability distributions (e.g. [1]). In the “black
box” approach (see e.g. [11]), no distributional assumptions restrict the analysis
and the patterns in it are sought for with clustering algorithms such as hierar-
chical clustering.

Clustering algorithms are of many kinds, but many of them require some
notion of dissimilarity (or similarity) between clustered objects. As with the
choice of algorithm, the choice of the right or even good enough dissimilarity
c© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 111–122, 2016.
DOI: 10.1007/978-3-319-44188-7 8
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notion is debatable. Usually they are created by some type of distance arbitrarily
imposed on the feature space of the model. In this article we propose a measure
of dissimilarity which comes from application of the Self-Organising Map (SOM)
framework developed by Kohonen in [9]. The aim of this measure is to amplify the
relationship between closest neighbours, instead of the actual distance between
objects in the feature space. Using developed dissimilarity we perform a case
study of clustering of economies using fiscal, geographical and socioeconomic
data retrieved from the World Bank database.

The rest of the paper is organised as follows. In Sect. 2 we present a brief
review of relevant research in political economy and data science. The following
Sect. 3 contains a short characteristic of Self-Organising Maps and their proper-
ties. It also describes the data used for analysis. The similarity measure used is
presented in Sect. 4 and the results of the analysis are discussed in Sect. 5. The
conclusions can be found in the final Sect. 6 along with ideas for future research.

2 Related Work

Clustering of countries, economies and societies is of interest for many science
disciplines spanning from political economy and sociology to data science. Many
notable classifications were focused on classifying the desired group of countries
into a small number of meaningful clusters [4,6,15]. Clusters were supposed to
be meaningful in the sense that countries from the same group were to repre-
sent some ideal theoretic type of economy, such as e.g. Liberal Market Economy
(according to the typology of the “Varieties of Capitalism” project, [6]). The clas-
sification was often performed by expert judgement on multidimensional data.
This method raised questions about completeness of the typology or assigning
the hard-to-cluster countries to clear-cut categories. It turned out later, that not
all theoretical claims and classifications are supported by results of statistical
data analysis (see e.g. [1]).

The second way of obtaining clusters for economies is data centric and pro-
poses more general methods relying on data analysis. The data driven approach
comes in a number of varieties. Model based clustering, (e.g. [1,2,7]) assumes
that data is generated from an underlying distribution, which is a mixture of a
family of probability distributions. This allows to transform the problem into a
model selection task for which there is a well developed statistical theory. Then,
there are black box data analytic methods (e.g. [11,14]), which do not assume
an underlying statistical model, but have an exploratory rather then inferential
nature.

There is a number of reasons why economies clustering problems are studied.
Algorithmic tools can be used for development and testing of theoretical typolo-
gies. Social scientists often group objects and claim meaningfulness of such a
grouping and there is a need for mechanisms providing sanity checks for expert
clusterings. Another application possibility is explored i.a. in [14]. That is the
idea of building early warning systems using machine learning toolkit. The goal
here is to discover early patterns which may imply an unwanted event in the
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future, e.g. an economic crisis. Events from not so distant past, such as the 2008
crisis or 1997 South East Asia crisis exhibit the need for this type of systems.
Finally, it is also important to remember, that governments and other policy
makers may put ideas in context by comparing them with existing solutions.
But to do it properly they have to gain information about similarity between
economies or countries. Tools which allow it could be applied to enhance the
decision process in national and international governing bodies. This type of
research can be seen e.g. in [8,18].

3 Methodology and Data

In this paper we want to explore similarities between economies characterised by
multidimensional data. We take a hierarchical clustering approach, as it allows
for flexible granularity of clustering. This has an advantage of not limiting one-
self to a specified number of clusters at the beginning of analysis. Hierarchical
clustering requires some notion of dissimilarity and we will construct one using
SOM framework.

3.1 Self-Organising Maps

Self-Organising Maps developed by Kohonen in a seminal paper [9] have a num-
ber of properties which are useful for our analysis. SOMs are essentially an
unsupervised dimension reduction technique, which performs a non-linear pro-
jection of data on a one or two dimensional grid. A finite set of data points is
represented by a set of nodes (neurons) which are organised into a lattice. This
lattice has usually a rectangular or hexagonal topology. In the classic SOM the
number of nodes and topology are predefined. While there are extensions and
refinements to this technique, we use the classic, static version. In each node a
weight vector is stored. It can be perceived as a prototype observation in the
feature space. Weight vectors are the objects inputs are compared to.

During training of a SOM, data points are presented to the network one
after another in a random order. For each input, a winner-takes-all competition
between the nodes commences and is won by the node whose weight vector is the
most resemblant to the input vector. Resemblance can be measured in a variety
of ways. We will use a standard way, that is the Euclidean distance. After the
winning neuron is selected, the weights in the neighbourhood (on the lattice) of
the winning node are adjusted according to the formula

wi(t + 1) = wi(t) + hi∗,i(t) (x(t) − wi(t)) , (1)

where wi(t) is the weight vector in the node i after input t, i∗ is the number of
the winning node, x(t) is the t-th input and hj,k(t) is a neighbourhood function,
which encodes the strength of excitement of neuron k, when j is the winner.
The neighbourhood function is defined to be decaying with time to ensure con-
vergence. After the map is trained, the data points are once again fed into the
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map and the winner neurons are selected. This way we get a list of data points
associated with each node.

The common situation in real life applications is that the number of clusters
equals the number of neurons in a SOM and all data points assigned to a node
constitute a cluster. This approach, however, has its drawbacks, as one can
get different clusters in different reruns of the algorithm. This is caused by the
random order of inputting data into the algorithm. This can be solved by running
the algorithm a number of times and then selecting a clustering using some kind
of minimal intercluster variance criterion. We chose a different approach, which
is explained in Sect. 4.

Let us note that the Self-Organising Maps have a number of properties (see
[9,10]) which make them a good choice for representing high dimensional data.
Because during the training many neurons of the map are moved in every step, a
SOM is able to approximate the topology of the underlying dataset. The weight
vectors from the nodes can be perceived as a discrete approximation of the
data. Furthermore, the projections are non-linear and therefore may outperform
many other dimension reductions techniques such as PCA. Also, SOM gives
us an extra piece of structure — the rectangular or hexagonal lattice fitted to
the data. Despite the advantages there are also drawbacks. Using a static SOM
means that decision on the size and topology of the lattice has to be done before
analysis. Usually it is done by experiments using auxiliary measures or simply
expert judgement.

3.2 Used Data

The analysis uses data from the World Bank’s World Development Indicators
dataset (WDI). WDI contains more then 1300 time series for over 200 economies,
some tracing 50 years back. We conduct a snapshot analysis and we decided to
choose indicators from the year 2012, for their recency and relative completeness.
Note that some indicators take longer to be computed and published. Of all
indicators we chose 49 variables concerning 53 countries. The variables were
chosen to constitute a group of statistics indicative of the structure and condition
of economy. We chose a mixture of fiscal (e.g. tax revenue as a percentage of
GDP), geographical (e.g. agricultural land as a percentage of total land area)
and socioeconomic (e.g. employment to population ratio for people 15+ years
old) indices.

4 Dissimilarity Measure

The clustering method we employ consists of two main steps. In the first step
we use Self-Organising Maps to create a dissimilarity matrix. The matrix is then
used as an input for the second step, when the actual clustering takes place. In
this step we use agglomerative clustering.

There are a lot of ways one can measure how similar (dissimilar) two entities
are. Many types of distances can be computed and used, such as e.g. Euclidean
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or Manhattan distances. Many of them have been successfully used in research.
Taking a closer look at the Euclidean distance points to a realisation that it
relies heavily on the scale of the features. It is also “absolute” in a sense, that
it does not take into account relative position of points (objects) in the feature
space against each other.

For these reasons we decided to choose a different way of defining
(dis)similarity It is computed in a three step process.

1. First, we construct n Self-Organising Maps on the dataset. We call the number
n the averaging parameter.

2. Then, let σ(A,B) be the number of times that A and B were assigned to the
same node. Similarity between objects A and B is defined to be the ratio

simn(A,B) =
σ(A,B)

n
. (2)

3. Finally, we define dissimilarity of two objects A and B to be

dsimn(A,B) = 1 − simn(A,B). (3)

Idea for measures (2) and (3) is that a SOM is able of recreating the inherent,
high-dimensional topology of the data and hence, data points which are finally
assigned to a node bear some similarity. This type of definition emphasises rel-
ative closeness of objects. It is important to note again that a SOM which is
rerun on the same set of data with the same set of parameters can give dif-
ferent results. This depends on the order in which data points are fed into the
algorithm. Thus the weight vectors in the nodes of a SOM are placed slightly
differently in the feature space in different reruns of the algorithm. Hence the
sets of objects associated with a node can differ. The ratio (2) gives then a good
idea of a similarity of two objects represented by data points.

This of course leads to questions how the metric given by (2) is dependent
on parameter n and do the similarity matrices created in different runs of the
algorithm for a particular n differ. We address this questions experimentally.
Table 1 presents experimental values of the Cauchy criterion. That is, for every
element of an incrementing sequence n(i) a similarity matrix SMn(i) was com-
puted. Then, for each n(i) the value of

max
{|SMn(i) − SMn(j)| : i < j

}
(4)

was calculated. The simulation results are presented in Table 1. They suggest
that the values given by formula (4) indeed decay to 0 as n goes to infinity.

Secondly, we checked that for a particular n the similarity matrices created
in reruns of the algorithm do not differ too much. Table 2 presents the maxi-
mum distance (using Frobenius norm) between similarity matrices computed 40
times for each n. The results suggests that the variability of similarity matrices
decreases with growth of n.
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Table 1. Maximum distance between similarity matrix created using simn and simi-
larity matrix created using simm for m > n

n Distance

5 4.501

10 2.734

50 1.338

100 0.906

200 0.57

300 0.405

500 0.411

700 0.451

900 0.378

1100 0.296

1300 0.346

1500 0.276

1700 0.233

Table 2. Maximum distance between similarity matrices created using simn for 40
reruns for a particular n

n Maximum distance

5 6.946

10 5

50 2.965

100 1.714

200 1.277

300 0.916

500 0.765

5 Economy Clusters, Case Study

We used the algorithm described in Sect. 4 on a subset of the WDI. The dissim-
ilarity matrix was created using a rectangular, two-dimensional Self-Organising
Map of dimensions 5 × 4. The averaging parameter has been set to n = 500, as
a reasonable compromise between convergence and computation time.

The choice of SOM dimensions is dependent on the problem and there is no
perfect one-fits-all size. So is with the map topology. We wanted our SOM to be
big enough to allow better approximation of the shape of data. In the same time,
the map could not be too large. If it were, many nodes would have a unique
country assigned to them. This would be harmful for our similarity measure.
During preliminary experiments we decided on a 5 × 4 SOM with rectangular
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Table 3. Clusters obtained using dsim and hclust method “ward.D2” for a chosen
number of eight clusters

Cluster Countries

1 Armenia Guatemala India Morocco Moldova Mozambique Paraguay
El Salvador

2 Austria Belgium Germany Denmark Ireland Netherlands

3 Bosnia and Herzegovina Colombia Jordan Macedonia, FYR Peru Serbia
Tunisia Ukraine South Africa

4 Brazil Cyprus Spain Finland Iceland Luxembourg Norway Sweden
Thailand United States

5 Chile Croatia Hungary Latvia Poland

6 Czech Republic Estonia Greece Portugal Russian Federation
Slovak Republic Slovenia

7 France United Kingdom Italy Japan

8 Mauritius Romania Turkey Uruguay

topology. For training we used the Self-Organising Maps implementation for R
in the kohonen package [17]. The clustering was performed using built in hierar-
chical clustering function hclust in R using Ward criterion (method “Ward.D2”
in R, [13]). Agglomerative hierarchical clustering procedures build clusters in
a bottom-up fashion. Initially they create one cluster for each data point. In
each of the following steps, the algorithm merges two clusters according to a
predetermined linkage criterion with respect to selected dissimilarity measure.
As a result we get a sequence of linkages between clusters, which can be neatly
presented in a form of a dendrogram. Figure 1 presents a dendrogram for chosen
economies and dissimilarity measure dsim.

After the dendrogram is computed the observations are partitioned into clus-
ters. Table 3 presents the result of clustering economies into eight groups.

The results obtained are promising and some patterns can be observed. Clus-
ters are relatively homogeneous with respect to World Banks classification of
countries into income groups. Indeed, clusters 2, 4–7 consist predominantly of
high income countries, clusters 3 and 8 consist mainly of countries classified as
upper middle income and most countries assigned to cluster 1 are ranked by the
World Bank as lower middle income.

On the other hand, there is a tendency to group countries from the same
regions together — that is no surprise, as the economies in the same region are
often similar. For example, almost all economies from post-communist Central
and Eastern Europe can be found in clusters 3, 5 and 6. Also, well developed
Western European countries such as France or Italy are grouped together. It
is worth noting, that geographical criterion does not apply to Latin American
countries, which are scattered across five of eight clusters. This can suggest more
complex differences and divisions in the region going beyond the statism or free
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Fig. 1. Dendrogram for hierarchical clustering using Ward criterion and dsim dissimi-
larity measure

market dualism. Irregularities of such type can be among the biggest gains from
this kind of clustering analysis, as data does not conform to expectations and
point to potentially interesting or troubling issues for further investigation.

For comparison let us see the dendrogram and clustering prepared using
Euclidean distance as a dissimilarity measure and the same hierarchical cluster-
ing method (function hclust in R using Ward criterion “Ward.D2”, [13]). Figure 2
and Table 4 present the results. When using hierarchical clustering in social sci-
ences it is common to use this combination of methods, i.e. Euclidean distance
(or squared Euclidean distance) and Ward criterion (see e.g. [12,15]).

Note that the dendrogram shown in Fig. 1 differs significantly from the clus-
tering performed with Euclidean distance as a measure of dissimilarity (Fig. 2).
Change of structure of a dendrogram should result in non-identical clusterings
and indeed, clusters presented in Table 4 are noticeably different then the results
presented in Table 3.
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Table 4. Clusters using euclidean distance and hclust method “ward.D2” for a chosen
number of eight clusters

Cluster Countries

1 Armenia Bosnia and Herzegovina Colombia Guatemala India Jordan
Morocco Moldova Macedonia, FYR Mozambique Peru Paraguay
El Salvador Serbia Tunisia Ukraine South Africa

2 Austria Belgium Germany Denmark Finland Ireland Netherlands Sweden
United States

3 Brazil Chile Croatia Hungary Latvia Mauritius Poland Romania Thailand
Turkey Uruguay

4 Cyprus Spain France United Kingdom Italy Japan

5 Czech Republic Estonia Greece Portugal Russian Federation
Slovak Republic Slovenia

6 Iceland

7 Luxembourg

8 Norway

There is an extensive literature on various measures for comparing clusterings
(see [3,5,16]). Such a comparison is necessary to see whether the differences are
significant or not. Table 5 presents a non-exhaustive list of four popular indices
computed for clusterings in Tables 3 and 4. The Adjusted Rand Index has an
expected value for random clusterings equal to 0 and the maximal value 1 (when
two partitions agree perfectly). The Fowlkes-Mallows index admits value from
0 to 1, higher values imply greater similarity of clusterings. Baker’s Gamma
is measure of similarity of trees of hierarchical clustering. The values are in
range −1 to 1, the values close to zero imply no statistical similarities of the
trees. Variation of Information is a function that measures the distance between
partitions of a dataset. It has an upper bound dependent on the size of the
dataset and for our analysis it is approximately 4. The indices used suggest a
significant difference between clusterings, but on the other hand do show that
there are some similarities between them.

As hierarchical clustering is by its nature more of an exploratory technique
and it is easy to overinterpret the obtained partition we do not call one clustering
better than the other, as each can amplify different characteristics hidden in data.
Let us also note that we do not imply any kind of a mutual causal relationship
between the clustered countries. We argue that the economies grouped in the
same clusters share some common qualities and exploring these similarities may
be of use for policy makers or comparative policy analysis.

The idea behind using dsim as a dissimilarity measure was to amplify rel-
ative closeness between economies in favour of absolute distances in the fea-
ture space, so that a small number of significantly different observations do not
distort the results. This goal was achieved. Notice that when using Euclidean
distance three clusters, 6–8, consisted of only one country each (resp. Iceland,
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Fig. 2. Dendrogram for hierarchical clustering using Ward criterion and Euclidean
distance as dissimilarity measure

Luxembourg and Norway). Using dsim, the algorithm grouped those “outlying”
countries in one cluster and allowed a more even clustering. This is beneficial
when we want to avoid clusters of size one, e.g. when clustering is performed in
search for benchmarks for a particular economy.

Further research is necessary to discuss the mathematical properties of the
dsim dissimilarity measure, but from the observation of the dendrograms we
suppose that this measure supports grouping observations in small clusters early
in the clustering process and indeed helps to group points which are far from each
other but relatively similar. To illustrate this imagine a cloud of data in a two
dimensional space which consists of two clusters easily distinguishable by hand-
one dense (A) and the other one rather sparse (B). Using Euclidean distance as
a dissimilarity criterion can result in putting the points from the sparse group
(B) into many different clusters, as they are further away from each other, than
points from (A). On the other hand, dsim as a dissimilarity measure encourages
finding linkages between data points which are relatively close to each other.
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Table 5. Clustering differences

Method Value

Adjusted Rand Index 0.519

Fowlkes-Mallows Index 0.606

Baker’s Gamma correlation coefficient 0.234

Variation of Information 1.352

The reason for that is that every data point has to be assigned to a node in a
SOM and a vector of weights in a neuron can be the best match for data points
which are distant according to Euclidean distance.

Whether such a property is desirable is a problem-specific discussion, the
answer depending on the question posed by the researcher. It could be of use
in situations when one does not want a number of outliers to overshadow the
inherent data structure and does not want to get rid of them from the dataset.

6 Conclusions

We have presented a hierarchical clustering algorithm using a SOM-based dis-
similarity matrix. The dissimilarity measure dsim was derived from a simi-
larity measure sim, obtained by averaging neighbourhood relationship in the
Self-Organising Map. Results of experiments implying convergence of simn for
large averaging parameter n were presented. Using the dissimilarity matrix we
performed a hierarchical clustering on the World Development Indicators. The
analysis was performed on data for 53 countries and 49 variables in year 2012.
Inspection of obtained clustering showed some regularities such as clustering
countries from the same regions into same clusters. The clusters turned out also
to be quite homogeneous with respect to the World Bank income group rat-
ings. The results were confronted with hierarchical clustering using Euclidean
distance as a dissimilarity measure. The clusterings in the two cases turned out
to be significantly different, using dsim allowed to eliminate clusters consisting
of one observation.

The directions for future research are twofold. The properties of dissimilarity
measure dsim could be an object of further investigation, especially its ability
to group objects according to relative distance from others. On the other hand,
the we plan to explore in greater depth the economic applications of clustering
mechanisms and their relation to economic theory.

Acknowledgments. The author would like to thank Prof. Michal Ramsza for critical
reading of the manuscript.
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Av. Manuel Montt 56, Casilla 15-D, Temuco, Chile
aalbornoz2010@alu.uct.cl

Abstract. This study aims to apply the Durbin-Willshaw elastic net
using parallel algorithms in order to solve the Traveling Salesman Prob-
lem (TSP) through a Beowulf cluster architecture for High-Performance
Computing. The solutions for the TSP for the different number of cities
are achieved by the minimization of the internal energy and by the max-
imization of the entropy in the information system. In this way, approx-
imate solutions to the TSP can be determined. This work proposes a
framework to implement a parallel algorithm to the Beowulf cluster. In
order to find solutions for the TSP, we worked with 5000 cities with a
net of 12500 nodes up to 10000 cities with 25000 nodes.

Keywords: Elastic net · Parallel strategy · Internal energy · TSP ·
Algorithm

1 Introduction

The Traveling Salesman Problem (TSP) is a problem of combinatorial opti-
mization of the class NP-complete. The objective of the TSP is to solve a
Hamiltonian [1], that means that we need to find a route that contains all the
cities in a plane just once, in order to minimize the cost of the route of the
salesman. No algorithms are known to ensure a polynomial time execution, but
there are some heuristic methods like Genetic Algorithms, Simulated Annealing
and Tabu Search that, starting from viable solutions, can determine approxi-
mate solutions to real ones; they all try to give solutions to the TSP [2,3]. A
lot of methods have a high computational cost in time and memory; and they
lead to exponential efforts when the number of cities increases [4]. The artificial
neural networks also try to solve this problem. Some of the works that address
this issue are “An analogue approach to the TSP using an elastic net method”,
which was proposed in 1985 for the same set of problems and implements the
TSP in a uniprocessor, improving neural Hopfield and Tank network [5]; also
c© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 123–133, 2016.
DOI: 10.1007/978-3-319-44188-7 9
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there is the work “An analysis of the elastic net approach to the travelling sales-
man problem” in which the functioning of the elastic net for the solution of the
TSP is analyzed [7]. In 1998 a study in which the performance of the neural nets
Elastic Net y Guilty Net in the TSP with 10, 30, 65 and 101 cities was carried
out, concluding that the Elastic net is the most efficient one [5].

The class NP-complete includes a big amount of practical problems that can
be found in the business and industrial areas. To demonstrate that a problem is
NP-complete, also demonstrates that it is not in P class, thus, it does not have a
deterministic solution in a polynomial time [8]. Some of the applications of the
Durbin-Willshaw method are optimization problems, computer vision, pattern
recognition and clustering [9,10].

In the solution proposed on this paper, the sequential Durbin-Willshaw (RE-
DW) elastic net is analyzed and parallelized in a cluster Beowulf architecture,
in order to approach minimal internal energy and maximum entropy in function
of T (temperature) that informs the optimum convergence of the route of the
seller. The tests were made for 5000 to 10000 cities with different elastic nets in
the order n = 2.5 m (n = amount of nodes and m = amount of cities) with a rapid
convergence and efficiency of the parallelized method.

In Sect. 2 of the paper, method, Durbin-Willshaw elastic net is explained, in
Sect. 3 the methodology of the strategy of the parallel algorithm is described;
in Sect. 4 the cluster Beowulf architecture is explained; in Sect. 5 the results are
shown; in Sect. 6 discussion, results and conclusions are described, and finally
the references are presented.

2 Method

2.1 Durbin-Willshaw Elastic Net

The elastic net is based on the principles proposed by Durbin-Willshaw (1987).
The method tries to solve the TSP sequentially [7]. It consists on a unidimen-
sional net with p nodes displayed in a linear or closed structure (like a circle)
made of neurons or nodes. This structure is settled in a data system (cities)
and the nodes are subjected to two types of forces, Ej, j = 1..M , which is the
internal force that leads to a minimization of the size of the net; and then there
is Cij , i = 1..N ; j = 1..M , which is the external force that corresponds to the
attraction of the city i on the node j (See Fig. 1).

It is defined that the coordinates of city i are denoted by vector Si and the
nodes of the net are denoted by Rj . The force of attraction of the city on a
node j in the net is proportional to the distance between the city and the node,
having a lineal direction that goes through the city and the node, therefore:
Cij = Δij(Si − Rj), where Δij is a parameter of proportionality, Cij is the
attraction of the city i on the node j of the net.

The two elastic forces that act in a node j of the net are proportional to the
near nodes j − 1 and j + l, therefore, Ej = Ej+1 + Ej−1 = K(Rj+1 − Rj) +
K(Rj−1 − Rj) = K(Rj+1 − 2Rj + Rj−1), where K is a parameter of control of
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Fig. 1. Elastic net.

the algorithm. The summation of the types of forces leads to the resulting rate
acting on the node j.

The change of ΔRj of the node j in the elastic net is assumed to be propor-
tional to this result,

ΔRj = αc

∑

i

(Si − Rj) + αtK(Rj+1 − 2Rj + Rj−1) (1)

where αc and αt are control coefficients that allow the convergence of the method,
which is a key factor for the proper functioning of the net. The K parameter is a
changing factor that decreases after several iterations. When K decreases allows
the network to approach the cities because internal forces are small relative to
the external forces. wij is the attraction that the city Si exerts on Rj of the
elastic net, ant it is calculated trough the power function,

wij =
Φ(|Si − Rj |,K)

∑M
k=1 φ(|Si − Rk|,K)

(2)

where φ is the power of function given by Yuille, (1990) [11] where all cities and
nodes on the elastic net are described by a Boltzmann statistic distribution with
probability of independent connection for each one,

φ(|Si − Rj |,K) = e−(Si−Rj)
2/2K2

.

If K has a high value, the power function will have a high influence in all the
nodes of the net. If K decreases, the power function establishes a selective influ-
ence of a city on a near node in the net.

An energy functional E{R} (optimization equation) decreases the attraction
of the cities on the net nodes as the algorithm iterates:

E{Rj} =
αt

2

M∑

j=1

|Rj+1 − Rj |2 − αcK
N∑

i=1

ln

⎛

⎝
M∑

j=1

φ(d,K)

⎞

⎠ . (3)

The strategy of the elastic net is analogy to statistic mechanics [6,12,13]. In this
analogy, K parameter is identical to temperature T by means of the relation
T = K2 and the Boltzmann constant is 1 [11].
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The method allows the minimization of the internal energy and the maxi-
mization of the entropy,

∂E

∂Rl
= 0 −→ ΔRl = − ∂E

∂RlK
. (4)

Equation (4) allows the variation Rj reducing the value of the Eq. (3) and due
to E energy possess an inferior limit, a local minimum can be achieved when
K −→ 0 When there K has low values, the function of energy contains a lot of
local minima corresponding to possible routes around the cities, and the most
optimal minimum is the shortest route [6].

3 Framework for the Parallel Strategy of the Elastic
Network

3.1 Generation, Decomposition y Parallelization

In Fig. 2 the stages of the framework for the implementation of elastic net are
shown. In short, the framework consists of decomposing from an amount of cities
and a number of cities, so the energy is calculated at various slave computers.
The result of the total energy is made in the master computer, which controls
the other computers. Below, the phase of preparation of the cities and nodes and
the parallelization phase are explained.

Fig. 2. Framework for the parallel elastic net in the cluster architecture.

Phase 1. Preparation of the cities and nodes. For the parallel test, the
location of all the cities is randomly generated between −1 and 1, in the order
n = 5000; n = 6000; n = 7000; n = 8000; n = 9000 and n = 10000 cities in a
xy Cartesian plane. The m stops of the tour (nodes) start randomly in order of
m = 2.5n [9], depending the amount of cities n, where for 1000 cities 2500 stops
of the tour or nodes are generated, and so on with the rest of the cities.
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The values of the control parameter used in the parallelization of this test
where αt = 0.01 and αc = 0.5 [9], which gives comparable values of the two
energies that are shown in the relation of the Eq. 3.

Phase 2. Parallelization. Equation 1 is divided for the different slave
computers,

ΔRj = αc

N∑

i=1

φ(Si − Rj)(Si − Rj)∑M
k=1 φ(Si − Rj)

+ αtK(Rj+1 − 2Rj + Rj−1), (5)

For the parallel strategy we used for computers, N is the number of cities and
M ≈ 2.5N is the number of nodes.

Step 1. Calculation of the summation Xi =
∑M

k=1 φ(Si − Rk) that appers in
the denominator of the Eq. 5. The distribution of Xi on the processors in the
following way:

X l
i =

∑

kl

(Si − Rkl),

for l = 1, 2, 3, 4, ..., n − 1, where K1, K2, K3 and K4 consist of each group of
cities.

K1 = 1, ..., M
4 , K2 = M

4 +1, ..., M
2 , K3 = M

2 +1, ..., 3M
4 , K4 = 3M

4 +1, ...,M
This process is done for each city i = 1, ..., N . Therefore, it is required that each
processor store all the coordinates of the cities Si, i = 1, ..., N ; and the fourth
part of the coordinates of the tour RKl , l = 1, ..., 4.

Step 2. In the master computer Xi = X1
i + X2

i + X3
i + X4

i is calculated.

Step 3. The summation is distributed over the cities of the relation 5 (Eq. 5) in
the same manner as in step 1 with the four computers.

ΔRjl = αc

N∑

i=1

φ(Si − Rjl)(Si − Rjl)
Xi

+ αtK(Rjl+1 − 2Rjl + Rjl−1), (6)

with l = 1, 2, 3, 4. The storage is the same as in case Xi, that means that all the
cities have to be stored in all the computers and the corresponding fourth part
of the parameters Rjl.

Step 4. The summation ΔRj =
∑4

l=1 ΔRjl, is calculated in the master
computer.

Phase 3. Convergence. The convergence of the parallelized elastic net is made
by an annealing process in function of temperature T . The free energy functional
(Eq. 5) that depends of Rj allows the minimization of the internal energy and
the maximization of the entropy until the system is in equilibrium.
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4 Cluster Beowulf Architecture

Beowulf is a design of cluster built in architectures of low price personal com-
puters, and it is built to achieve parallel processing of high performance. The
operating system used is GNU/Linux, distribution Fedora Core 5 with the instal-
lation package OSCAR (Open Source Cluster Application Resources).

OSCAR is a set of tools that allows the easy installation of a Beowulf clus-
ter. It has everything necessary to manage a cluster HPC (High Performance
Computing). The structure of hardware in the cluster currently has one master
server node and 4 slave servers. The master node has 1 XEON processor of de
2 Ghz, 2 Gbytes of RAM and 800 Gbytes of Hard Disk in RAID 5. The 4 slave
nodes are the equal among them (IPN = information processing node), with 1
XEON processor of 2.0 Ghz, 1 Gbyte of RAM, and 80 Gbytes of hard disk each
one. Figure 3 shows the Cluster Beowulf architecture,

Fig. 3. Cluster Architecture.

In the next part, speedup and efficiency are defined: The gaining of
velocity or acceleration (speedup) in a system N of computers is defined as
S(N) = t(1)

t(N) , where t(1) is the time to run just one computer and t(N) is the time
used to execute it in the parallel system with N computers. In conditions t(N) =
1
N the gaining of velocity for the equation S(N)

t(N) will be: S(N)ideal = t(1)
t(N) =

1
(1/N) = N . One way to measure system performance, will be to compare the
gaining of velocity of the system with the gaining of velocity given by S(N)ideal,
to this measure is called efficiency and is given by E(N) = S(N)

S(N)ideal
= S(N)

N =
(t(1)/t(N))

N = t(1)
Nt(N) . Indicating the extent to which resources are used.

5 Results

The application of the method Durbin elastic net with the new parallel appli-
cation for the TSP provided some results, having into account the amount of
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Fig. 4. Performance for the different numbers of cities (5000 to 10000).

cities that the seller has to go, and the amount of nodes or stops of the tour that
the parallel elastic net needs. The results in Fig. 4 show the evaluation of the
performance for the different numeric calculations in function of the amount of
processors or information processing nodes (IPN), amount of cities and nodes.

The parallel elastic net with a net of 12500 nodes for 5000 cities with 4 IPN
resulted in a 0.9899 efficiency ε(p). Having 15000 nodes for 6000 cities with 4
IPN resulted in ε(p) 0.9897. 17500 nodes for 7000 cities with 4 IPN resulted
in 0.9946 ε(p). 20000 nodes for 8000 cities with 4 IPN resulted in 0.99195 ε(p).
22500 nodes for 9000 cities with 4 IPN resulted in 0.9966 ε(p); and finally, having
25000 nodes for 10000 cities resulted in 0.942275 ε(p). In Fig. 5, the effects of
Amdhal law are shown. Those curves allow evaluating the amount of data having
a certain amount of IPN. In Fig. 5 the Speedup is shown.

A S(p) whith an amount of 5000 cities for 4 IPN resulted in 3.9596, while
an S(p) with an amount of 5000 cities for a single IPN resulted 1.0, that mean
that the S(p) with 4 IPN was higher. We can also observe that a S(p) with
an amount of 6000 cities for 4 IPN resulted in 3.9588, while the S(p) with an
amount of 6000 cities for a single IPN was 1.0. It is known that known that
the S(p) for an amount of 7000 cities for 4 IPN resulted in 3.9784. S(p) for an
amount of 8000 cities for 4 IPN resulted in 3.9678. S(p) for an amount of 9000
cities for 4 IPN resulted in 3.9861. Finally, a S(p) for an amount of 10000 cities
for 4 IPN resulted in 3.7691. We can see that at higher amounts of cities, the
S(p) increases, which indicates a speed in the calculation the optimization of the
energy functional in Eq. 5, in the search for the seller optimal route, in a cluster
Beowulf environment.

In Fig. 6 the time that it takes each computer in the cluster Beowulf for 5000;
6000; 7000; 8000; 9000 and 10000 citiesis observed. We can clearly appreciate
that with 4 IPN the calculation in the convergence of the route of the seller is
highly different than with less computers or IPN.
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Fig. 5. Evaluation through Amdhal law for the different amounts of cities (5000 to
10000).

Fig. 6. Evaluation of the time of processing for 1, 2, 3, 4 IPN (5000 to 10000 cities).

In the following tables we can observe in detail the importance of parallelism
with different numbers of IPN. Table 1 shows the calculation with 4 IPN. τ(p)
indicates the calculation time with 4 IPN, but it does not show the amount of
nodes or stops of the tour. ε(p) indicates the efficiency of 4 IPN. S(p) indicates
the speedup with 4 IPN for different amount of cities. Finally αc indicates the
interaction among cities and nodes and αt indicates the interaction among the
nodes. In Tables 2, 3 and 4 we can observe the importance of a cluster Beowulf
in the calculation processing and the impact of the algorithm in the parallel
elastic net.
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Table 1. Detail of differences in calculations with 4 IPN.

Cities IPN τ(p)seg. nodes ε(p) S(p) αt αc

5000 4 570 12500 0.9899 3.9596 0.01 0.5

6000 4 850 15000 0.9897 3.9588 0.01 0.5

7000 4 1161 17500 0.9946 3.9784 0.01 0.5

8000 4 1526 20000 0.9919 3.9678 0.01 0.5

9000 4 1956 22500 0.9966 3.9861 0.01 0.5

10000 4 2543 25500 0.9422 3.7691 0.01 0.5

Table 2. Detail for the differences in calculations with 3 IPN.

Cities IPN τ(p)seg. nodes ε(p) S(p) αt αc

5000 3 725 12500 0.7782 3.113 0.01 0.5

6000 3 1132 15000 0.7431 2.972 0.01 0.5

7000 3 1566 17500 0.7373 2.949 0.01 0.5

8000 3 2110 20000 0.7174 2.869 0.01 0.5

9000 3 2613 22500 0.7470 2.983 0.01 0.5

10000 3 23258 25500 0.7354 2.941 0.01 0.5

Table 3. Detail for the differences in calculations with 2 IPN.

Cities IPN τ(p)seg. nodes ε(p) S(p) αt αc

5000 2 1138 12500 0.4958 1.983 0.01 0.5

6000 2 1693 15000 0.4968 1.987 0.01 0.5

7000 2 2322 17500 0.4973 1.989 0.01 0.5

8000 2 3029 20000 0.4997 1.999 0.01 0.5

9000 2 3903 22500 0.4994 1.997 0.01 0.5

10000 2 4855 25500 0.4948 1.974 0.01 0.5

Table 4. Detail for the differences in calculations with 1 IPN.

Cities IPN τ(p)seg. nodes ε(p) S(p) αt αc

5000 1 2257 12500 0.25 1.0 0.01 0.5

6000 1 3365 15000 0.25 1.0 0.01 0.5

7000 1 4619 17500 0.25 1.0 0.01 0.5

8000 1 6055 20000 0.25 1.0 0.01 0.5

9000 1 7797 22500 0.25 1.0 0.01 0.5

10000 1 9585 25500 0.25 1.0 0.01 0.5
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6 Discussion of Results and Conclusions

The free energy functional that describes the system of interaction among the
stops of the tour and the cities; and the interactions among the stops of the
tour (nodes) manages to indicate the minimization of the internal energy of the
system and the maximization of the entropy, in order to find the optimal route
for the seller. It should be noted that even when maintaining the convergence
of free energy to a minimum, it is not guaranteed that it is really the global
optimum. Even though, the efficiency is tremendously higher than with just one
IPN.

This work achieves a significant difference in working with computers in a
cluster Beowulf environment. Therefore, for 5,000 cities the seller can built a
route base on 12500 nodes (no), with an efficiency ε(p) of 0.9899 and a S(p) of
3.9596 with control parameters of αt = 0.01 y αc = 0.5.

Whereas 1 IPN for 5000 cities, the efficiency is ε(p) = 0.25, and S(p) = 1.0,
and the time it took was τ(p) = 2257 s

Moreover, for 10000 cities, the seller can build a route based on 25000 nodes
no, with an efficiency of ε(p) = 0.9422 and an S(p) = 3.7691 with a control
parameter of αt = 0.01 and αc = 0.5. While for a IPN for 10000 cities, ε(p) = 0.25
and S(p) = 1.0. in the same way we can corroborate significant gains in the
calculation of the TSP, as shown in Tables 1, 2, 3 and 4.

This work does not aim to make comparisons with other methods because it
only works with the elastic net parallelized. Besides, we made experiments with
more than 10000 cities for the TSP, because we pretend to demonstrate that the
method is effective in solving the TSP in a cluster Beowulf environment

It is possible to guarantee the convergence of the energy functional by looking
for equilibrium towards an optimization where we can diminish the internal
energy and maximize the entropy.

Although it is true that with the technological advances that exist nowaday,
like high performance computing, more numerical calculations can be made, so
better results for the TSP can be obtained, this paper only works with elastic net
used to find solutions for heuristic and combinatorial problems like in the cluster
system for computers, parallel computing, grid computing and cloud computing
[14–18].
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Abstract. The effective modelling of high-dimensional data with hundreds to
thousands of features remains a challenging task in the field of machine learning.
One of the key challenges is the implementation of effective methods for
selecting a set of relevant features, which are buried in high-dimensional data
along with irrelevant noisy features by choosing a subset of the complete set of
input features that predicts the output with higher accuracy comparable to the
performance of the complete input set. Kohonen’s Self Organising Neural
Network MAP has been utilized in various ways for this task. In this work, a
review of the appropriate application of multiple methods for this task is carried
out. The feature selection approach based on analysis of the Self Organising
network result after training is presented with comparison of performance of two
methods.

Keywords: Clustering � Self-organising neural network MAP � Feature
selection � Engineering optimisation

1 Introduction

Clustering is one of the most widely used data analysis methods for numerous practical
applications in emerging areas [1]. Clustering entails the process of organising objects
into natural groups by finding the class of objects such that the objects in a class are
similar to one another and dissimilar from the objects in another class. Data clustering
methods have been applied on numerous applications in engineering. In automotive
engineering for example, clustering has been used in various ways [2–6] for utilization
of product manufacturing processes to enhance development performance. Other
applications of clustering in engineering include engineering design, quality assurance,
process control and manufacturing system design [2, 4, 7–10]. A clustering algorithm
usually considers all input parameters in an attempt to learn as much as possible about
the given objects.

The Self-Organising Neural Network MAP (SOM) by Kohonen [11] has been
widely used as one of the most successful clustering methods with strong data
exploration and visualization capabilities [12]. The most extensive application of the
SOM in engineering is in the monitoring and identification of machine conditions and
complex processes [6, 10, 13]. The SOM’s mapping preserves a topological relation by
maintaining neighborhood relations such that patterns that are close in the input space
are mapped to neurons that are close in the output space, and vice-versa.
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One of the biggest drawbacks of the SOM algorithm is its in-ability to automati-
cally identify the features that are relevant for analysis and discard the irrelevant inputs
that negatively distort the analysis result [14]. This feature however would prove
extremely useful in many applications in Engineering and in other problem domains. In
an attempt to resolve this, researchers [15–17] have worked on the improvement of the
algorithm by a feature weighting method during training with the application of the
steepest descent optimization method for the identification of important inputs for
clustering. The core of the weighted method lies in attempting to describe the contri-
bution of each feature in the clustering algorithm in order to improve the clustering
result.

This paper investigates the application of the weighted method and also a standard
SOM approach in order to identify the key features in a number of artificially produced
datasets.

2 Neural Network Clustering Methods

2.1 Self-organising Neural Network MAP

The Self Organising Neural Network Map (SOM) is an unsupervised artificial neural
network learning method trained to produce a low-dimensional representation of a high
dimensional input samples [12].

A typical SOM consists of the computational (Map) layer and the input layers as
shown in Fig. 1 below;

The input layer comprises of the source nodes representing the sample’s
features/attributes. There are as many weights for each node as there are number of
features (dimensions) in the input layer, represented in the form of an input vector,

Computational Layer

Input Layer

Fig. 1. A 2-dimensional self organising map architecture
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i.e. x ¼ ½x1i ; x2i ; . . .; xdi � for an input sample where d denotes sample dimensions and i
the sample number and n denoting the total number of samples.

The computational layer (MAP) consists of neurons placed in nodes of a 2
dimensional grid (lattice), each neuron is identified by its index position, i.e. j, on the
map and associated with a weight vector, i.e.Wj ¼ fwji : j ¼ 1; . . .; n; i ¼ 1; . . .; dg; the
size of which is equal to the dimension of the input vector. The set of weights W
parameters are determined by iteratively minimizing the cost function below;

R C;Wð Þ ¼
XN
i¼1

XjW j

j¼1

jj;cðxiÞ jjxi � wjjj2 ð1Þ

At every nth training step, The Gaussian neighbourhood function was calculated for
the map; this is expressed as;

Kj;c ðxiÞ nð Þ ¼ a nð Þ � e ð� d2j;c ðxiÞ
2rðnÞ2Þ ð2Þ

Where

• Kj;cðxiÞðnÞ is the neighborhood function between each unit ðjÞ on the map and the
winning unit c ðxiÞ at the nth training step

• dj;cðxiÞ Is the distance (Euclidean) from the position of unit ðjÞ to the winning unit c
ðxiÞ on the map.

• rðnÞ is the effective width of the topological neighborhood at the nth training step,
this serves as the moderator of the learning step during training iterations. The size
of the effective width shrinks with time to facilitate the convergence of the map.

• aðnÞ is the learning rate that depends on the number of iterations ðnÞ, this is
initialised to a value of around 0.1 which decreases from amax to amin

It is possible to use the results of a trained SOM in order to estimate the relevance
of feature variables (weights). This is achieved by the use of the Quantization Error
method [18] which was used to analyse the final result of the Standard SOM for the
identification of the Input vectors that were relevant for the training.

2.2 SOM Weights Analysis with Quantization Error Method

On completion of SOM training which is achieved using the batch training method
[11], the node weights values are expected to be the representation of their matching
input samples, and also relatively close to the input samples mapped to their neigh-
boring nodes and relatively far from the input samples mapped to distant nodes.

Let Mj be set of the training samples xi mapped to node j, and the quantization error
for node j is calculated after SOM training as;
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Ej ¼
X

Mj
xi � wj

�� ��2 ð3Þ

The weight features with lowest quantization error are expected to be the features
whose corresponding input sample features are most relevant when comparing the
samples against their winning nodes. A further analysis was carried out on the quan-
tization error values for all the node weights in order to automatically separate the
group of the relevant inputs from the irrelevant inputs, a parametric statistical test with
median split was carried out on the quantization error values to differentiate the group
of high values (as irrelevant features) from the group of low values (as relevant fea-
tures). Since there is no reliance on a hard coded threshold value to determine irrelevant
and relevant features this means that this step could be used for any amount of data
features and results in a fully automated step for this aspect of the process.

2.3 Weighted Self Organising Neural Network MAP

The weighted SOM (WSOM) function proposed by [17] is another method designed to
compute the relevance of feature variables (weights) automatically during the training
process. This approach entails the use of additional random weights that are multiplied
against the input weights as a metric for measuring the relevance of the observations
during training, and since the comparison is done one sample at a time, the updating
method for the WSOM is incremental rather than batch as in the standard SOM.

Let <d be the Euclidean data space and E ¼ fxi; i ¼ 1; . . .;Ng a set of observa-
tions, where each observation xi ¼ ðx1i ; x2i ; . . .; xdi Þ is a vector in <d.

Each node j has prototype weights wj ¼ ðw1
i ;w

2
i ; . . .;w

d
i Þ, and a single random

weight is assigned to for each input attribute such that; pd ¼ ðp1; p2; . . .pdÞ.
This method attempts to find the relevance of all the weights of a single vector

which are applied against the whole set of input weights, but is not able to determine
the relevance of an individual weight of each node j in a trained SOM.

The set of Weights W and p parameters are determined by iteratively minimizing
the cost function below;

Rgvw C;W ; pð Þ ¼
XjEj
i¼1

XjW j

j¼1

jj;c ðxiÞ pd � xi � wj

�� ��2 ð4Þ

The cost function Rgvw W ; pð Þ as described in Eq. 4. The algorithm is optimised by

finding the
min
W ; p

Rgvw W ; pð Þ. The process begins by initially starting with some ran-

dom values for W ; p then these values are modified in order to reduce Rgvw W ; pð Þ, until
the minimum of the cost function is reached.

The method uses the Steepest Descent algorithm in order to optimise its cost
function;
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f
Rj :¼ Rj � a

@

@Rj
Rgvw W ; pð Þ ðFor j ¼ W and j ¼ pÞ

g

ð5Þ

The gradient descent minimization of the function can be implemented as;

wj nþ 1ð Þ :¼ wj nð Þ � ðnÞ � a nð Þjj;c xið ÞðnÞ jj;c ðxiÞ wj � pg � xi
� � ð6Þ

pg nþ 1ð Þ :¼ pg nð Þ � ðnÞ � a nð Þjj;c xið ÞðnÞ jj;c ðxiÞ xi pg � xi � wj
� � ð7Þ

The Steepest Descent algorithm which is utilised by the WSOM method searches for
the minimum of a function by computing the gradient of the function, starting at a
random point P0, and moving from Pi to Piþ 1 in the direction of the local downhill
gradient �rf ðPiÞ for each iteration of line minimization.

The Steepest descent method is guaranteed to find a solution for quadratic func-
tions, which are convex shaped functions with a single minimum that is equal to the
global minimum [19] (as illustrated in Fig. 2). For problems beyond quadratic func-
tions with multiple local minimums (such as Schwefel Function, Fig. 3), the gradient
descent finds the solution of a function based on the first identified local minimum and
therefore ignores other local minimums, and does not necessarily and cannot be
guaranteed to find the global minimum of the given function. It is therefore important
to confirm that the cost function for the WSOM method results in a single global
minimum that can be found by the steepest descent approach.

Fig. 2. Steepest decent method for a quadratic functions
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For a full description of the WSOM process, the reader is directed to [16, 17] In the
WSOM approach, the relevance of an input vector is indicated by the global weights
with irrelevant vectors having global weights close to 0 and relevant vectors having
global weights different from 0. The relevance of an input vector can be measured by
this method only if the given data sample is normalized to the same scale.

3 Experiment

3.1 Synthetic Datasets

In order to assess the efficacy of the WSOM method against a standard SOM imple-
mentation, a number of synthetic datasets were developed which had different features,
starting with a simple dataset with a small number of attributes, and moving to datasets
with a larger number of inputs and additional noise. All data sets had equal class
distribution (i.e. same number of samples for each class), and was normalised. These
datasets are discussed more fully in the tables below. The use of synthetic data rather
than real data sets of this type is very important as it allows a full assessment of how
well the techniques work and what type of problems they can solve, and where they
may encounter difficulties, if any (Table 1).

Fig. 3. Problems beyond quadratic functions: Schwefel function [20]
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3.2 Experiment Design

As both methods rely on a random process, the performance of the algorithms were
measured based on results of 10 runs for each of the methods on the Synthetic Datasets.

To check whether the weighted SOM cost function (Eq. 4) for Synthetic_Data01 is
a quadratic function, to be suitable for the steepest descent optimization approach, the
cost function was optimised with the simulated annealing algorithm on Syn-
thetic_Data01; a stochastic search method that aims to expose all possible minimums of
the function by random search in space, with initial temperature ðToÞ ¼ 10:0, cooling
rate ðaÞ ¼ 0:99 and maximum iteration ðMaxtimeÞ ¼ 1000.

If a cost function has a single global minimum, the best combination of weight
values for different runs of the algorithm will be expected to be within the same region,
and to have a positive linear correlation when compared against each other. Otherwise,
if the cost function has multiple local minimums then the best combination of weight
values would be in different regions for different runs of the algorithm and will not be
correlated.

Table 1. Synthetic datasets definition

Dataset name Samples Input features Classes

Synthetic_Data01 100 4 5
All classes defined by first 4 related features
This is a simple dataset with no irrelevant inputs
and outliers, created mainly for exploring the
cost functions of the two Self-organising
algorithms

Synthetic_Data02 1220 7 5
All classes defined by first 4 related features
Irrelevant features: 5,6,7

This dataset was created to evaluate the
self-organising system’s performance in
classifying concealed groups in a data, with the
ability of identifying relevant input features for
classifying the groups. Irrelevant inputs are
clearly separated from the relevant inputs for
easy identification by the algorithms

Synthetic_Data03 1220 10 5
Classes defined by features independently
Class1 = 1, 2, & 3, Class2 = 4, 5, & 6, Class3 = 2,
3, 4 & 5, Class4 = 6, 7, & 8, Class5 = 1, 4, & 8.
Noise features; Features 9 & 10

In addition to Synthetic_Data02, definition of
classes were distributed among variables, to
identify the self-organising method’s ability of
identifying the degree of relevance of the input
features for classification
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The normalised correlation matrix of the final weights from the simulated annealing
algorithm was computed to show the similarity of the weights produced from 6 runs of
the algorithm against each other, the same experiment was carried out on the standard
SOM cost function for comparison.

When undertaking the correlation analysis for the WSOM method, the raw SOM
weights cannot be used directly but must be divided by the corresponding global
weights p. This step is required since the global weights and WSOM node weights are
linked as described in the cost function, and it is possible due to the random nature of
the process that different values could be arrived at for these variables whilst still
mapping against similar input samples and the node weights could therefore be dif-
ferent from one run to the next.

In addition, the problem with direct comparison of weights at the same index for the
6 different simulated annealing runs is that nodes are not necessarily localized to a
specific index. In a single run, a node might appear in the first index, while in a separate
run, the same node might appear in a different index. As such, direct comparison of the
weights infers the comparison of random un-related nodes, which are most likely to be
not-correlated at all times.

To overcome this problem, the indexes of all the nodes weights was re-arranged to
correspond to the best matching positions for all the nodes from the 6 different sim-
ulated annealing runs before carrying out the correlation test on the weights.

Let E be set of weight values for a given SOM run (wi
n; n ¼ 1; . . .N), were N is the

total number of weights and W is set of weight values for other SOM runs to total
number of SOM runs R. The index position I of a node in a given SOM when
compared against the SOM with weight values E is computed as Eq. 8. For com-
pleteness, this was executed for all the SOM runs.

I ¼
XjEj
n¼1

XjW ...Rj

m¼1

min wi
n � wj

m

�� ��2 ð8Þ

A null hypothesis test Ho : q ¼ 0 was conducted with 0.5 significance level to
investigate the relationship between the final node weights (i.e. to see if they are
correlated or not). Nodes are correlated if their correlation coefficient is different from
zero, and therefore means there is linear relationship between the nodes. There is no
correlation for nodes with correlation coefficients close to zero.

4 Results

The analysis of the correlation results can be seen in Figs. 4 and 5 the bars in the plot
represent the correlation coefficients values q for a given run of the self-organising
process compared against another. The red line on the plots at 0.5 and −0.5 indicate the
respective boundaries for positive and negative correlations, with no correlation shown
at or around 0.

The bars above the red line indicate the pairs of node weights with correlations
significantly different from 0, which implies that there is a significant linear relationship
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between the weights of the final runs. (i.e. the SOM weights are broadly equivalent and
the values can be said to be the same). On the other hand, the bars below the line
indicate the pairs of node weights with a correlation coefficient that is not significantly
different from 0, which implies that there is no significant linear relationship between
the weights. (i.e. the SOM weights are not the same and contain different values).

The correlation matrix for the standard SOM (Fig. 4) weights shows that almost all
pairs of weights (4 out of 6) have correlations significantly different from zero which
proves positive correlation among weights. On the other hand, the correlation matrix
for the weighted SOM (Fig. 5) shows that only 2 out of the 6 weights are correlated,
which indicates that this method has resulted in different solutions being found.

In summary it can be concluded that the simulated annealing algorithm with the
standard SOM cost function finds similar solutions recurrently in all the different runs.
On the other hand, the algorithm with the weighted SOM cost function finds different
solutions for most of the runs, which is most likely to be as a result of multiple local
minimums in the cost function.

Further analysis was undertaken on the performance of the two methods by
investigating their performance on the three synthetic data sets, and in particular

Fig. 4. Correlation matrix for multiple runs of standard SOM

142 A.U. Ahmad and A. Starkey



whether they correctly identified the important attributes, and whether the classes were
also separated by the final SOM with all samples mapped to a single node, this is
required as the SOM training was initialized with number of nodes within the range of
the true number of classes. These results can be seen in Tables 2, 3 and 4.

5 Discussion and Recommendation

As seen in Table 2, the standard SOM was able to correctly identify all the classes in
most of the runs for simple data with no irrelevant inputs, and was also able to identify
all inputs as important due to low quantization error between weights to their mapped
input samples. Unlike the standard SOM, the weighted SOM failed to identify the
classes for the same simple data set with no irrelevant inputs. The weighted SOM
method also performed poorly by failing to correctly identify clusters and differentiate
the relevant input vectors from the irrelevant input vectors on the Synthetic_Data02.

Fig. 5. Correlation matrix for multiple runs of weighted SOM
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However, the Standard SOM with Quantization error method after training clearly
identified the relevant vectors for the training on this dataset. Both methods performed
poorly in correctly identifying the clusters in the data as the result of the influence of
the irrelevant inputs during the training.

Table 2. Performance of clustering methods on Synthetic_Data01

Clustering Synthetic_Data01

Training
parameters

Map dimension: 3 × 3 rectangular grid topology
Training Epochs: 1000
Learning Rate: 0.1

Runs Weighted SOM Standard SOM
Identified
important
attributes

Correctly
identified
classes

Identified
important
attributes

Correctly
identified
classes

Run 1 1/4 1/5 4/4 5/5
Run 2 1/4 1/5 4/4 5/5
Run 3 1/4 1/5 4/4 5/5
Run 4 1/4 2/5 4/4 5/5
Run 5 2/4 1/5 4/4 4/5
Run 6 1/4 0/5 4/4 5/5
Run 7 1/4 1/5 4/4 5/5
Run 8 1/4 0/5 4/4 5/5
Run 9 1/4 2/5 4/4 5/5
Run 10 1/4 0/5 4/4 4/5

Table 3. Performance of clustering methods on Synthetic_Data02

Clustering Synthetic_Data02

Training
parameters

Map dimension: 3 × 3 rectangular grid topology
Training Epochs: 1000
Learning Rate: 0.1

Runs Weighted SOM Standard SOM
Identified
important
attributes

Correctly
identified
classes

Identified
important
attributes

Correctly
identified
classes

Run 1 1/4 0/5 4/4 2/5
Run 2 0/4 0/5 4/4 1/5
Run 3 2/4 1/5 4/4 2/5
Run 4 1/4 0/5 3/4 1/5
Run 5 2/4 0/5 4/4 1/5
Run 6 3/4 1/5 4/4 2/5
Run 7 1/4 1/5 4/4 3/5
Run 8 2/4 0/5 4/4 2/5
Run 9 0/4 0/5 4/4 3/5
Run 10 1/4 0/5 4/4 2/5
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For the more complicated dataset with overlapping class definition (Syn-
thetic_Data03), the analysis of the Standard SOM’s training result with the Quantization
Error also failed to identify what was important for the training, as presented in Table 4.

As discussed in Sect. 2.3. The steepest descent algorithm is guaranteed to find the
local minimum for quadratic functions with a single global minimum, whereas for
functions with multiple local minimums, the gradient descent finds the solution of the
function based on the first identified local minimum ignoring other local minimums,
and therefore is not suitable for the proposed WSOM cost function as our results clearly
demonstrate that multiple minimums exist in the solution space defined by the WSOM
cost function.

The quantization error between the weights values and their matched classified
input samples shows more potential for identifying important features however these
results show that this approach will only work in certain types of data. It is interesting
to note that for the second synthetic dataset, that the quantization method correctly
identifies the important features despite not being able to correctly classify the
groupings in the data. This is clearly not desirable and further work is required to
develop methods that are better capable of identifying important features and to cor-
rectly undertake the classification of the groupings within the data when they are
hidden within noisy data.

Table 4. Performance of clustering methods on Synthetic_Data03

Clustering Synthetic_Data03

Training
parameters

Map dimension: 3 × 3 rectangular grid topology
Training Epochs: 1000
Learning Rate: 0.1

Runs Weighted SOM Standard SOM
Identified
important
attributes

Correctly
identified
classes

Identified
important
attributes

Correctly
identified
classes

Run 1 0/8 0/5 2/8 3/5
Run 2 0/8 0/5 4/8 1/5
Run 3 1/8 1/5 2/8 1/5
Run 4 0/8 0/5 3/8 0/5
Run 5 1/8 0/5 1/8 1/5
Run 6 2/8 0/5 1/8 0/5
Run 7 1/8 1/5 5/8 1/5
Run 8 1/8 0/5 1/8 2/5
Run 9 0/8 0/5 2/8 1/5
Run 10 1/8 0/5 2/8 1/5
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Abstract. Electroencephalography (EEG) has recently emerged as a useful
neurophysiological biomarker for characterizing different physiological and
pathological conditions of healthy and un-healthy brain activity measurements.
However, the complexity and high temporal resolution of the EEG signal data
has brought about the need for efficient and accurate automated methods for
distinguishing mental tasks activities and the recording conditions. Distin‐
guishing mental tasks with high accuracy is pertinent for early detection and
clinical diagnostic of several neurodegenerative diseases. Expert clinicians are
needed in order to distinguish between mental tasks and EEG recording condi‐
tions, which is a manual process that is prone to inefficiencies and errors especially
when the EEG data is miss-annotated at the recording stage. This paper proposes
the application of a Self-organizing neural network Map (SOM) with Learning
Vector Quantization (LVQ) for EEG Eyes Open (EO) and Eyes Closed (EC)
condition classification. This was achieved with classification accuracy of 88.5 %.
The proposed approach shows good performance and hence the method can be
readily applied to other classification/clustering problems on brain measurements
in the Brain Computer Interface (BCI) arena.

Keywords: SOM · LVQ · EEG · Classification · Dimensionality reduction

1 Introduction

Clinical diagnosis and investigations are increasingly dependent on the ability to record
and analyse physiological signals. Electroencephalography (EEG) is one of those key
signal recordings of patient’s brain activity that clinicians and medical professionals rely
on [1]. It has been suggested by several studies that EEG signals can be used to detect
the severity of several diseases such as CJD, Alzheimer’s, dementia, schizophrenia and
epilepsy. For example, several research efforts have focused on detecting epileptic
seizure and early signs of Alzheimer [2, 3]. EEG signals contain the complex brain
activity for various frequency bands and the signal representing the underlying mental
tasks the healthy control or subject (patient) is undertaking. EEG signals recorded from
different scalp locations, although, looking similar, but contain different information

© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 147–157, 2016.
DOI: 10.1007/978-3-319-44188-7_11



spanning different frequency bands. Expert clinicians, physicians and neuroscientists
rely on their years of experience to distinguish between various EEG mental conditions
e.g. muscle signal vs eye blinks, eyes open vs eyes closed, sleep, coma etc.

Typically an EEG recording lasts 30–45 min and includes annotations that describe
the start and end of the condition/mental task the subject is performing. The EEG tech‐
nician adds these annotations during the recording [4]. Once EEG is performed, there
is a need for a timely clinical diagnosis on the EEG by the expert clinician in order to
ensure swift medical attention and intervention to the subject. Lack or mislabeling of
EEG recording annotations of the subject mental tasks is highly problematic and will
impede the clinician ability to perform fast diagnosis. The speedy diagnostics is critical
in epilepsy and other neuro-degenerative diseases whereby the neurologist is interested
in certain recording length corresponding to a certain condition (e.g. Eyes Close (EC),
Eyes Open (EO), etc.). This process is usually carried-out manually and requires expert
clinical and neurophysiological knowledge and years of experience in analyzing such
high dimensional complex EEG data. This manual intensive method is not efficient and
hence the research community is still looking for an efficient automated method to detect
the differences between EEG mental tasks and conditions with high accuracy.

Several studies on EEG signals relies on the successful detection of the EO and EC
conditions e.g. frequency analysis- for which Hilbert-Haung Transform (HHT) [5]. The
HHT transform obtained accuracy of about 84 % in differentiation the transition between
EO and EC conditions. Other time domain approaches relies on detecting the amplitude
increase associated with eye lid movements during very small periods of the signal. [6]
provided 87 % accuracy based on the continuous amplitude increase in the signal artifacts.
Other power spectrum approaches are based on detecting the change in Alpha-wave power
during the EC condition [7]. While those techniques provide good accuracy, they become
computationally expense fo date with high dimensions. We use SOM, on the other hand,
because it has powerful visualization capabilities for high dimensional data.

This paper proposes the application of a Self-organizing neural network Map (SOM),
which is a powerful visualization tool for clustering high dimensional data, for EEG
Eyes Open (EO) and Eyes Closed (EC) condition classification. It is well known that
the alpha band power increases during the EC condition and hence in this paper we use
frequency domain power features to discriminate between the EEG recordings [7]. The
occipital areas of the skull get usually activated in Alpha and Beta bands. The Alpha-
band has significant more power in the frontal, parietal, and occipital areas of the skull
when eyes are closed. Hence in this paper we propose the join use of the discriminatory
power spectrum features of the EEG signal with the capability of the SOM when dealing
with high dimensional data. The implementation of the SOM is carried out in Matlab
on a 208 healthy subjects EEG datasets recorded using EO and EC condition for a 1 min
duration. The Learning Vector Quantization (LVQ) technique is combined with the
SOM to obtain enhanced performance. The EEG datasets were recorded and contributed
by Physionet using the BCI2000 instrumentation system described in [8]. This paper
focuses on EC and EO classification using the power and flexibility of the SOM method.
However, it is anticipated that there exist scenarios where there are discriminatory
features present in high dimensional brain measurement data, where our proposed
approach can be applied. In such scenarios, high accuracy rate classification of EEG
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conditions will transform the applications of EEG for medical diagnostic and can also
integrate with the growing Brain Computer Interface (BCI) e.g. controlling a wheelchair
and prosthesis [9].

This paper is organized as follows. Section 2 reviews EEG signal acquisition and
analysis. Section 3 presents the clustering technique based on SOM map and Learning
Vector Quantization (LVQ) technique. Section 4 describes the experiment design and
data collection. Section 5 describes the results and discussion. Conclusions are drawn
in Sect. 6.

2 EEG Signal Acquisition

EEG signals record the differences of the voltage from two locations on the scalp over
time. The EEG signals has an amplitude in the range of 1–100 μV with frequency in the
range of 0.5 to 10 Hz [10]. EEG can be recorded with different sampling rates (typical
range is between 200 Hz–2048 Hz) offering high temporal resolution of the brain
activity. Such high temporal resolution allows the decomposition of EEG signal into
different frequency waveforms that help describe different mental states. In order to
compare EEG signal results over time, a standardized locations on the scalp are used
e.g. 10–10 or 10–20 systems [11]. The nomenclature and locations of the electrodes for
the EEG datasets analysed in this paper is shown in Fig. 1.

2.1 EEG Signal Analysis and Mental States

EEG signal useful features need to be extracted to help in clinical diagnostic. An EEG
signal is preprocessed and presented in terms of its rhythmic activity [12]. The common
extracted rhythms are: (i) Alpha ( ) wave: appears in healthy adults while awake, relaxed
and their eyes closed. It occurs in the frequency range of 8–13 Hz with a voltage range

Fig. 1. Location and nomenclature of 64 electrodes as per the international 10–10 system
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of 20–200 μV. When opening the eye, alpha rhythm diminishes as attention and stimulus
desynchronize the frequency, referred to as Alpha blockage. Alpha wave is usually
observed in the posterior region of the head. (ii) Beta ( ) wave: with a frequency range
from 13–30 Hz, and lower amplitude than Alpha (ranging from 5–10 μV.  wave appears
with extra excitation and vigilance. Beta waves are observed in the parietal and frontal
region of the scalp. (iii) Theta ( : with frequency range from 4–7 Hz,  waveform is
prominent during sleep, arousal and idling. It is recorded across the temporal and parietal
region of the scalp with amplitude range of 5–10 μV. One type of  wave activity is
associated with decreased alertness, cognitive impairment and dementia.

(iv) Delta ( ) wave: this is the lowest frequency wave and is less than 3.5 Hz with
amplitude range from 20–200 μV.  wave occurs during deep sleep and with serious
organic brain diseases.  wave can be recorded in the frontal region of the scalp in adults
and in the posterior region in children. (v) Gamma ( ) wave: with frequency range from
30–100 Hz,  wave is recorded in the somatosensory cortex during short-term memory
to recognize objects, sounds and in pathological cases due to cognitive decline.

3 Self-Organizing Map

The Self-organizing neural network Map (SOM) is an unsupervised clustering method
that has been widely used as tool for visualization of high dimensional data to a lower
dimension, usually 2-dimensional space by producing a representation of the input
sample in a grid of nodes as introduced in 1982 by Teuvo Kohonen [13].

The SOM can be seen as a nonlinear mapping of a high dimensional input samples
manifolds to a lower dimensional array, similar to classical vector quantization. Having a set
of input samples  each element of the input dimension is asso‐
ciated with a weight vector for each node  on the map as .
This is illustrated in Fig. 2. A distance measure is used between  and  denoted 
to match a sample to a node index winner  from Eq. 1.

Fig. 2. A typical structure of self-organizing map
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(1)

The SOM has surpassed numerous clustering algorithms because of its powerful
lattice preserving properties, that arranges the nodes that are similar to one another
closely and dissimilar nodes far from one another on the grid using the neighborhood
function during the training and has been applied in various disciplines ranging from
engineering to health, social sciences and business [14–19]. A further description of the
SOM algorithm and training can be found in [13].

3.1 Learning Vector Quantization (LVQ)

As discussed in Sect. 3. The basic aim of the SOM is the representation of a high dimen‐
sional data into a lower dimensional grid, this is similar to the vector quantization theory,
the aim of which is dimensionality reduction. LVQ is a supervised self-organizing
process that uses class information for repositioning of the Voronoi vectors (node
weights) to improve the SOM’s classification. This is achieved using a two layered
training stages as shown in Fig. 3.

After EEG data collection, the raw EEG signals are transformed using feature
extraction. The transformed features are then calculated for the selected EEG electrodes
locations on the scalp. The set of those features then form the transformed input samples
for the SOM training. The SOM training aims to fit the input samples to weights and
produces a set of voronoi vectors as best matching units that determines the class
membership of the input samples. The voronoi vectors and the true class labels of the
training set are then used by the LVQ training algorithm to produce an adjusted class
labels resulting in higher classification accuracy. In the LVQ training, a number of
reference vectors  in the input space are assigned to each class represented by a given
node . Group of input samples  are decided to share the same class of the nearest
reference vector [20]. Let  represents a time domain during training; the reference
vectors are updated by Eq. 2 below;

(2)

(3)

Such that  determines the learning rate that decreases monot‐
onically with time. The reference vectors  and  are the best matching vectors (i.e.
nearest to ) with  belonging to the same class and  belonging to
different classes,  is required to fall in the mid-plane of  and  which are updated to
satisfy condition of Eq. 4;

(4)

EEG-Based Condition Clustering 151



such that  Eq. 3 aims to shift the decision boundaries towards
Bayes limits with repulsive forces from . Equation 4 ensures that the reference vectors
keeps on with the approximation of the class distribution.

4 Experiment Design

The EEG data is transformed by extracting Alpha band features for 15 electrodes out of
those shown in Fig. 1, for each of the 218 healthy subjects; resulting in data of 218 × 45
dimension. The selected electrodes are (Fp2, Fp1, F8, F7, F4, F3, C4, C3, P4, P3, O2,
O1, Fz, Cz, Pz). These electrodes has been selected because they cover the frontal
(Fp1,Fp2), occipital (O1,O2) and parietal regions (P3 and P4) which, as noted in
Sect. 1 above, have more increase in the Alpha-band power during the EC condition.
Our data comprises of both an EO and EC condition for all the 109 healthy subjects

Fig. 3. Learning vector quantization applied on the self-organizing map
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divided into two classes of 109 EO and 109 EC. Three Alpha band features are extracted
from the raw EEG data for each selected electrode by applying Fourier Transform [21];
converting from time domain to frequency domain characteristics. These features
include the absolute power, relative power and the peak frequency. Relative power is
the area under the curve of the power spectrum and hence directly reflects the presence
of alpha rhythm, absolute power reflects the peak power observed, whereas the peak
frequency reflects the variation of the Alpha band frequency for each condition. EEG
data is collected from physionet [22] for which 109 datasets have an EEG recordings of
1 min EO and 1 min EC duration.

The dataset is split into training and test sets of 110 and 108 subjects respectively
using the K-fold cross validation method with k equal to 2. The SOM is then applied on
the training dataset while the accuracy was computed using the test set. SOM imple‐
mentation is performed in Matlab and for the classification problem in hand, there are
only two classes. Hence a SOM map size of 2 neurons with hexagonal grid topology
and using a random weight/bias rule training method over 1000 epocs is used to separate
the EO and EC conditions. Following the flow in Fig. 3, LVQ is then applied on the
trained SOM in order to adjust the voronoi weights for higher accuracy. The confusion
matrix is then computed using the true EO and EC labels of EEG data. Mean Square
Error (MSE for classification performance during the training phase of the SOM.

5 Results

We obtained the confusion matrix for our EEG data classifier, an error matrix that is
used to describe the performance of binary classification problems for which the true
values are known. The columns of which represents the instances of the predicted (target)
EO or EC class and the rows represent the instances in the actual obtained class. The
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Fig. 4. Confusion matrix output of the EEG classification
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confusion matrix is important as several measures of classification accuracy can be
obtained from it. The EO/EC classification confusion matrix is shown in Fig. 4.
Table 1, shows the classification accuracy measures derived from the confusion matrix.
The classification accuracy from the confusion matrix is found to be 88.5 % which is
high accuracy that would help greatly in automating clinical diagnostic. The misclassi‐
fication rate (error rate) is 11.5 %. The True Positive rate (TPR)–out of the actual EO
class, how often does the classifier predict EO- is found to be 89.9 %, a good performance
for the intensive Alpha rhythm EO class. The False Positive Rate (FPR) – out the of the
actual EC class, how often the classifier does predicts EO- is found to be 10.1 %, a
reasonable value for the application needs. The specificity –out of the actual EC, how
often the classifier predicts it is EC- is found to be 87.2 %, again good performance for
the EC condition. Finally the precision of the EO condition is found to be 89.9 %.

Fig. 5. Mean square error training performance

The MSE is shown in Fig. 5, versus the training iteration count. As we can see a
minimum of 0.114 is achieved. The TPR v FPR for all threshold values is depicted in
Fig. 6. Our proposed method achieves high TPR and low FPR for both EO and EC
conditions making it a highly useful application for EEG clinical diagnostic.
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Fig. 6. Receiver operating conditions (roc) curve of classifier

6 Conclusion

This paper implemented a Self-organizing neural network Map (SOM) application for
the condition classification of EEG data. We collected data from the physionet reposi‐
tory, calculated Alpha waveform features and then classified according to the eyes open
and eyes closed conditions. The LVQ method was applied in conjunction with the SOM.
Results showed classification accuracy of 88.5 % for eyes open and eyes closed condi‐
tions for a group of 218 healthy subjects. The application of joint SOM and LVQ
demonstrated performance improvements and flexibility in the selection of the learning
parameters for the training.

Table 1. Classification accuracy measurements

Measure Definition Obtained
value (%)

Accuracy (TP + TN)/total
subjects

88.5

Misclassification rate
(error rate)

(FP + FN)/total
subjects

11.5

True Positive Rate
(Sensitivity or recall)

TP/actual EO 89.9

False positive rate FP/actual EC 10.1
Specificity TN/actual EC 87.2
Precision TP/predicted EC 89.9

EEG-Based Condition Clustering 155



References

1. Mbuya, S.: The role of neuro-electrophysiological diagnostic tests in clinical medicine. East
Afr. Med. J. 83, 52–60 (2006)

2. Al-Qazzaz, N.K., Ali, S.H., Ahmad, S.A., Chellappan, K., Islam, M.S., Escudero, J.: Role of
EEG as biomarker in the early detection and classification of dementia. Sci. World J. 2014,
1–16 (2014). Article ID 906038

3. Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based emotion recognition and its
applications. In: Gavrilova, M.L., Tan, C., Sourin, A., Sourina, O. (eds.) Transactions on
Computational Science XII. LNCS, vol. 6670, pp. 256–277. Springer, Heidelberg (2011)

4. Niedermeyer, E., da Silva, F.L.: Electroencephalography: Basic Principles, Clinical
Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2005)

5. Thuraisingham, R.A., Tran, Y., Craig, A., Nguyen, H.: Frequency analysis of eyes open and
eyes closed EEG signals using the Hilbert-Huang Transform, pp. 2865–2868 (2012)

6. AKBEN SB Online EEG eye state detection in time domain by using local amplitude increase
7. Sakaia, M., Weia, D., Kongb, W., Daib, G., Hub, H.: Detection of change in alpha wave

following eye closure based on KM2O-langevin equation. Int. J. Bioelectromag. 12, 89–93
(2010)

8. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a
general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51,
1034–1043 (2004)

9. Huang, D., Qian, K., Fei, D., Jia, W., Chen, X., Bai, O.: Electroencephalography (EEG)-based
brain–computer interface (BCI): a 2-D virtual wheelchair control based on event-related
desynchronization/synchronization and state control. IEEE Trans. Neural Syst. Rehabil. Eng.
20, 379–388 (2012)

10. Sörnmo, L., Laguna, P.: Bioelectrical Signal Processing in Cardiac and Neurological
Applications. Academic Press, London (2005)

11. Koessler, L., Maillard, L., Benhadid, A., Vignal, J.P., Felblinger, J., Vespignani, H., Braun,
M.: Automated cortical projection of EEG sensors: anatomical correlation via the
international 10–10 system. Neuroimage 46, 64–72 (2009)

12. Snyder, S.M., Hall, J.R., Cornwell, S.L., Falk, J.D.: Addition of EEG improves accuracy of
a logistic model that uses neuropsychological and cardiovascular factors to identify dementia
and MCI. Psychiatry Res. 186, 97–102 (2011)

13. Kohonen, T.: The self-organizing map. Proc. IEEE 78, 1464–1480 (1990)
14. Chakraborty, B., Menezes, A., Dandapath, S., Fernandes, W.A., Karisiddaiah, S., Haris, K.,

Gokul, G.: Application of hybrid techniques (self-organizing map and fuzzy algorithm) using
backscatter data for segmentation and fine-scale roughness characterization of seepage-
related seafloor along the western continental margin of India. IEEE J. Oceanic Eng. 40, 3–
14 (2015)

15. Yu, H., Khan, F., Garaniya, V.: Risk-based fault detection using self-organizing map. Reliab.
Eng. Syst. Saf. 139, 82–96 (2015)

16. Rigamonti, M., Baraldi, P., Zio, E., Alessi, A., Astigarraga, D., Galarza, A.: A self-organizing
map-based monitoring system for insulated gate bipolar transistors operating in fully electric
vehicle, vol. 6 (2015)

17. Merkevičius, E., Garšva, G., Simutis, R.: Forecasting of credit classes with the self-organizing
maps 33 (2015)

18. Merényi, E., Mendenhall, M.J., O’Driscoll, P.: Advances in Self-Organizing Maps and
Learning Vector Quantization. Advances in Intelligent Systems and Computing. Springer,
Switzerland (2016)

156 H. Hamdoun and A.A. Usman



19. Mans, R., Schonenberg, M., Song, M., van der Aalst, W., Bakker, P.: Process Mining in
Healthcare (2015)

20. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Netw.
15, 1059–1068 (2002)

21. Murugappan, M., Murugappan, S.: Human emotion recognition through short time
Electroencephalogram (EEG) signals using Fast Fourier Transform (FFT), pp. 289–294
(2013)

22. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus,
J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex physiologic signals. Circulation 101,
E215–E220 (2000)

EEG-Based Condition Clustering 157



Cyber-Physical Systems and Cloud
Applications



Intelligent Measurement in Unmanned Aerial Cyber
Physical Systems for Traffic Surveillance

Andrei Petrovski1(✉), Prapa Rattadilok1, and Sergey Petrovskii2

1 School of Computing Sciences and Digital Media, The Robert Gordon University,
Aberdeen, UK

{a.petrovski,p.rattadilok}@rgu.ac.uk
2 School of Electric Stations, Samara State Technical University, Samara, Russian Federation

petrovski@rambler.ru

Abstract. An adaptive framework for building intelligent measurement systems
has been proposed in the paper and tested on simulated traffic surveillance data.
The use of the framework enables making intelligent decisions related to the
presence of anomalies in the surveillance data with the help of statistical analysis,
computational intelligent and machine learning. Computational intelligence can
also be effectively utilised for identifying the main contributing features in
detecting anomalous data points within the surveillance data. The experimental
results have demonstrated that a reasonable performance is achieved in terms of
inferential accuracy and data processing speed.

Keywords: Intelligent measurement · Traffic surveillance · Data anomalies ·
Computational intelligence · Artificial neural networks · Cyber physical system

1 Introduction

One of the main purposes of intelligent measurement systems (IMS) is to model the
relationship between information that is required (‘primary characteristics’), and the
information which may be readily derived from (processed) sensor outputs such as target
tracks (‘secondary variable’). An IMS is capable of providing frequent ‘on-line’ esti‐
mates of primary characteristics on the basis of their correlation with the data, obtained
from available sensors, measured in real time. As such, an IMS can help to reduce the
need for measuring devices, improve system reliability, and develop tight control poli‐
cies.

There are several advantages of IMS in comparison with traditional instrumentation
[3]:

• Such measurement systems give more insight into the process under observation
through capturing the information hidden in data.

• They are an emergent technology that allows users to improve productivity, become
more energy and cost efficient.
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• They can be easily implemented on existing hardware; moreover, various model-
building algorithms can be used to adapt the IMS when an operating environment
changes.

• They involve little or no capital cost such as the cost of installation, management of
the required infrastructure, and commissioning.

The range of tasks fulfilled by IMS is quite broad – not only can IMS be used as a
substitute or complement to physical sensors, but they can also perform monitoring and
control of the process under observation, and can provide off-line operational assistance
(e.g. design, diagnosis, knowledge refinement) [2].

The key challenge in building an IMS is to find a suitable structure for the inference
model(s), using which a good estimator of the primary characteristics could be found.
A basic rule in estimation is not to estimate what is already known or can be inferred
from the data available. In other words, it is important to be able to utilise prior knowl‐
edge and physical insights about the process under observation/analysis when selecting
the model structure. It is customary to distinguish between three levels of prior knowl‐
edge [4]:

• White-box models: the structure and parameters of the model are known or can be
obtained from physical insights or basic principles;

• Grey-box models: some physical insights are available, but several model parameters
remain to be determined from observed data;

• Black-box models: no physical insight is available, but the chosen model structure
belongs to generic classes (e.g. artificial neural networks) that are known to have
good flexibility and have been successfully applied in various problem domains.

Most of the existing IMS utilise black-box models operate on sensor data and
produce estimates of essential (or primary) characteristics of the system under obser‐
vation – for example, an unmanned aerial system (UAS) as shown in Fig. 1. (N.B. The

Fig. 1. IMS framework for the unmanned aerial vehicle
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red arrow on the diagram representing ground truth information is desirable for more
effective leaning, but not mandatory for the operation of an IMS.)

Having determined the relationship between the primary characteristics and the
secondary variables, it becomes possible to obtain reasonable estimates of the former
much faster and at a lower cost.

Also, the ability to infer primary characteristics raises the level of “information
intelligence” coming from the UAS, enabling thereby to shift the workload of ground
operators from “target detection to target analysis” and to optimise the throughput of
data communication channels. Taking a road traffic example where it is desired to iden‐
tify dangerous drivers represented by the state vector , the ‘dangerous driver’ cate‐
gorisation would be the primary characteristic, while secondary variables could include
such quantities as driving speed or lane discipline.

A UAS in this context can be considered an autonomous cyber physical system that
is used to acquire large amount of data about complex and changing environments, to
perform interpretation and fusion of the data, and to present the information gathered or
inferred in a synthetic and compact form highlighting the features of interest in the
environment explored. The situation awareness of a UAS is determined by its operating
conditions, various inputs obtained from essential sensors, as well as control adjustments
received from a ground station. The situation awareness in terms of determining
abnormal traffic conditions is an example of a primary characteristic that is difficult to
measure directly. However, the large amount of data coming from on-board sensors or
received from a ground station can be referred to as secondary variables. Due to the
nature of UAS operation, the states of many secondary variables reflect the states of
primary characteristics. For instance, surveillance data obtained from various sensors
can indicate, and even identify, unusual or dangerous behaviour of drivers on the
road [6].

Heterogeneous data acquiring sensors on-board of an unmanned aerial vehicle,
which is part of the UAS, also add complexity in the form of analytical challenges,
especially when there exist time and cost differences in processing data from different
sources. Selecting suitable data acquisition sources, e.g. data that can be processed
approximately in order to obtain representative samples, can help in time critical situa‐
tions. Additional data acquisition sources that involve longer data processing but are
more accurate or detailed, can be applied later to provide adaptive measurement features.

With the vast amounts of data, traditional data acquisition and data processing
methods have become inefficient or sometimes inappropriate, especially in a real time
environment. Computational Intelligence (CI) techniques have been successfully
applied to problems in various application domains [1, 5]. These techniques however
require accurately labelled training data to provide reliable and accurate specification
of the context in which a UAS operates. For example, drivers may behave differently in
the different road conditions (e.g. icy, wet, and foggy). The term “driver(s)” used
throughout this paper refers to drivers of vehicles on the road (i.e. in the simulated model)
under the surveillance of a UAS. The context enables the system to highlight potential
anomalies in the data so that intelligent and autonomous control of the underlying
process can be carried out.
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Anomalies are defined as incidences or occurrences, under a given circumstances or
a set of assumptions, that are different from the expectance. By their nature, these inci‐
dences are rare and often not known in advance. This makes it difficult for the compu‐
tational intelligence techniques to form an appropriate training dataset. Moreover, UAVs
often operate in different or dynamic environments [11]. This can further aggravate the
lack of training data by the increased likelihood of intermittent anomalies. Computa‐
tional intelligence techniques that are used to tackle dynamic problems should therefore
be able to adapt to environmental/contextual changes [6].

The research work described in the presented paper is aimed at using machine
learning algorithms for addressing ‘Situational Assessment’. The immediate application
area is the development and evaluation of such algorithms for a UAS application
carrying out wide area surveillance of a tract of ground.

The detection of unusual profiles or anomalous behavioural characteristics from
sensor data is especially complicated in security applications where the threat indicators
may not be known in advance [8]. Data-driven modelling in such cases can yield insights
on usual and baseline profiles, which in turn can be used to isolate unusual profiles when
new data are observed in real time.

In general terms, therefore, the problem being tackled can be defined as finding the
most effective ways of using measured data obtained from multiple sensors on board an
aerial vehicle, in order to address the inherent difficulty in precisely defining and quan‐
tifying what constitutes anomalies. The presence of several sources of variability in
anomalous patterns (for example, traffic density, vehicle types, features of terrain, etc.)
and the limited availability, or even absence, of training datasets aggravate the difficulty
of the problem being addressed [10].

The desired outcome of the work would be to devise a solution framework for intel‐
ligent processing of data obtained from multiple UAS sensors. This framework,
described in Sect. 2 of the paper, is built with the premise that all the data sources
considered together are capable of capturing the important features that could lead to a
reliable anomaly detection, to efficient extraction and to intelligent interpretation of these
features, which could in turn significantly reduce the number of false alarms generated
as a result of the UAS operation.

To handle the challenges presented by the problem being addressed an incremental
approach was adopted as a three-stage development of intelligent measurement systems.
The first stage (anomaly detection) processes the available data by extracting the most
representative features (referred to as ‘secondary’ variables) that characterise potential
anomalies – this process is described in Sect. 3. For anomaly detection a mixture of
statistical analysis and computational intelligence (CI) techniques has been adopted. The
choice of detection techniques depends on the amount of historical data and the avail‐
ability of insights on ‘normal’ system profiles – at the start of the detection process
preferences are given to statistical techniques utilising probabilistic measure of data
anomalies. As more data is being obtained, anomalous patterns/profiles start appearing,
which can be detected more effectively with the help of CI techniques.

The features selected are then used to build inferential models, demonstrated in
Sect. 4, that are utilised in the second stage (anomaly modelling) to interpret the new
incoming data for real-time decision. In the second stage of building data-driven
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inference models two types of classifiers have been used – conventional classifiers
utilising clustering algorithms, which do not require training data sets, and computa‐
tional intelligence methods that carry out supervised learning of anomalous data patterns
(in particular, artificial neural network (ANN)).

Finally, when the operating conditions of the system/process under observation
change, both the secondary variables and the inference models are adapted in the third
stage (anomaly modification) to provide the means of adjusting the IMS within dynamic
operating environments. This final stage of adaptive measurement by the IMS is imple‐
mented using an automated machine learning algorithm, described in our previous work
[7], that continuously tunes the inference models built for processing measured data and
the representative features of data anomalies.

The proposed approach to intelligent measurement is evaluated on simulated and
benchmark datasets – the main conclusions and proposed areas of further research are
summarized in Sect. 5.

2 Inferential Measurement Systems

The impediments caused by unavailability or ineffectiveness of conventional measure‐
ments can negatively affect “situational assessment”, but the problem can be alleviated,
at least partially, by developing an intelligent measurement system (IMS) that performs
intelligent sensing through the use of “soft” sensor technology. Intelligent sensing is a
relatively new capability of measurement systems that supports such features as long
mission duration, reliability and availability, real-time operation in hazardous and
changing environments, as well as flexibility of use. These requirements lead to meas‐
urement systems with increasingly autonomous functionalities based on decentralised
and distributed system architecture, effectively utilising available instrumentation data.
Figure 2 illustrates a generic framework for building an IMS, proposed in [7].

Modelling using Computational Intelligence (CI) has become a versatile tool for
enhancing the capabilities and efficiency of inferential measurement systems [5]. This
type of modelling utilises the computational capabilities of modern computing devices
(smart sensors, DSP-based microcontroller, and microprocessors) to effectively process
the acquired input and infer the desired information. The AI-based techniques are appli‐
cable at various layers of IMS – from the data acquisition (sensor) layer, through to the
layer of instrument calibration and customisation, then to the layer of process modelling,
control and optimisation, and finally to the knowledge acquisition layer [6]. The wide
spectrum of possible applications is due to the capabilities of an IMS to gain insight into
the behaviour of complex dynamic systems by means of data-driven modelling, a
systematic approach to which is described in this section.

The underlying principle of “soft” sensing is in estimating unmeasured variables,
properties or parameters by using a model of a process under investigation, or of a part
thereof, that correlates the measurements of interest (primary characteristics in Fig. 1)
with more immediate (secondary) variables. As the name suggests, the model used by
“soft” sensors is usually implemented in software; the secondary variables for such
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sensors are the controlled inputs, disturbances, and other intermediate variables affecting
the process/application of interest [9].

In the course of the project the following tasks have been addressed:

• Data pre-processing: this step is performed only for building the inference models
based on supervised machine learning techniques. Essentially, the step involves
annotating the input data streams with the “ground truth” values needed for training
certain Computational Intelligence (CI) algorithms (discussed later in the paper).
Once the necessary training has been carried out, the data pre-processing activity
becomes unnecessary, but can still be used if the reduction of noise in the data streams
or filling in missing values are desired.

• Selection of secondary variables: it is important to choose the appropriate secondary
variables (also referred to as data filters) to be used in building the inference model(s)
– the number of these variables affects the time and complexity of inference, as well
as the size of the data set needed for model development. The main objective of this
step is to make use of the least number of secondary variables to develop a model of
sufficient accuracy.

Fig. 2. Generic framework for building Intelligent Measurement Systems (IMS)
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• Building inference models: Once a set of potential secondary variables is selected
and their values are determined (this might involve passing the original data streams
coming from sensors through several data filters), inferential models can be obtained
using various data-driven modelling paradigms. At this stage it is important to strike
the right balance between the accuracy and generalizability (i.e. minimising the effect
of overtraining), and simplicity of the inference models. This is often achieved by
varying the number of secondary variables (e.g. number of input nodes of ANNs)
used in building the models through running screening and regression experiments
(explained in more detail later in the paper).

• Evaluating and tuning the inference models: the inference models built have been
validated on previously unseen data using a cross-validation approach. After the
validation the inference model parameters (e.g. the window size of a data filter) can
be dynamically adjusted if the operating environment changes (e.g. significant
increase in traffic density) or the objectives of inferential modelling are modified (e.g.
switching from the identification to classification mode of operation). The process
of dynamic parameter adjustment is shown by the block at the bottom in Fig. 1, and
is performed by a meta-learning layer of the developed IMS using a genetic algorithm
(one of the Computational Intelligence techniques adopted within the proposed
framework) [7].

2.1 Context Acquisition Level

In the presented research work, it is assumed that raw input data are pre-processed by
having been already passed through the stages at the Data Acquisition level in Fig. 2
(e.g. data cleaning, fusing) and therefore this level is not considered. The only exception
is the data discretisation activity, which can also be attributed to context processing level.

2.2 Context Processing Level

The Context Processing level in Fig. 2 utilises statistical and mathematical techniques
of characterising raw input data. Depending on the complexity of the application domain,
statistical methods can be used with the raw input data in order to identify anomalies
within the input data stream; alternatively, statistical analysis may be used to prepare
the raw input data for processing by computational intelligence techniques in identifying
the pattern(s) of interest (or anomalies).

At this level, measurable variables are used to create secondary variables by applying
different data filters and window sizes. For example, a secondary variable of speed may
be defined as the change in distance travelled over a period of time, where change
represents a data filter, period of time represents a window size  applied
to the measurable variable distance. Secondary variables can also be obtained by nesting
data filters (with corresponding window sizes) one within another. For example, a
composite secondary variable, based on the one exemplified above, could be defined as
an average over the observed length of the road of the changes in travelled distance in
a specified period of time. The applications of data filters and window sizes onto meas‐
urable variables are carried out by the Context Processing (see Fig. 2). Context agnostic
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data filters can also be created that characterise interactions between objects within the
system under observation (e.g. relative distances or speeds) or the operating environment
(e.g. object density).

Context Processing might also involve data annotation, which provides ground truth
for the training of supervised learning techniques and for evaluating the accuracy of both
supervised and unsupervised learning. Ground truth labels can be obtained by using
some form of statistical thresholds (e.g. 3σ interval for normally distributed data), by
manual annotation, or by obtaining the labels directly from a simulation model.

2.3 Context Selection Level

Once the data anomalies have been identified, they are then passed onto the Context
Selection level. Classification of anomalies and the predictions of their effects are
achieved by applying machine learning in order to build inference models. Additional
raw or processed input data may be required at this level.

The Inference Model builder operates in the following way:

• The structure of the model specifies which learning technique  is going to be used

with the chosen secondary variables .
• The specified learning technique checks the need for data conditioning and training

datasets.
• The selected secondary variables determine the measurable variables  and

the data filters with corresponding window sizes .
• This process minimises the amount of data collected and processed while the infer‐

ence models (represented as tuples , where  is the vector of secondary vari‐
ables and  is a vector of parameters for the learning technique  (for example as an
error acceptance rate for ANN) being built and evaluated.

The number of selected secondary variables  directly influences the structure,
complexity and usability of the inference model, and thus needs to be optimized in
accordance with the size of data samples.

2.4 Context Application Level

The Context Application level supports autonomous operation of the IMS by reducing
the importance of human involvement in adjusting the model to changing operating
conditions. As was mentioned previously, this task is achieved with the help of genetic
algorithms, which autonomously select the optimal parameters on the inference through
the effective use of evolutionary processes adopted from nature.

Based on the way the intelligence is obtained, intelligent measurement systems can
be categorised either by the function they perform (calibration, error compensation,
data validation, anomaly detection, adaptation, decision making, etc.) or by the tech‐
nique(s) used (statistical, symbolic, ANN-based, fuzzy logic, and the like) [2]. Having
chosen the secondary measurands to be used, the processed data together with the
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inference models build are then passed on to an autonomously chosen supervised or
unsupervised learning algorithm. These learning algorithms are used to identify and
classify the patterns of interest in the analysed data streams, which reflect dynamic
operating environment.

3 Data Filtering for Intelligent Instrumentation

The analysis of surveillance information in general, especially related to situation
awareness, is a complex process that, given the amount and heterogeneous nature of
data, is prone to data overload. This results in an inability to support real-time processing
and analysis of surveillance data. This is especially true when using mobile platforms
where datalink and bandwidth issues are significant [12, 13].

3.1 Problem Specification

In order to design and build an intelligent measurement system a testing dataset derived
from a MATLAB vehicle simulation model (developed and evaluated by our industrial
collaborator) was used in this research. This model is capable of mimicking the behav‐
iour of various types of drivers; typical examples are the normal and “cowboy” drivers.
Normal drivers are those that observe road discipline, which regulates that no under‐
taking is acceptable, and that the vehicles shall move to the left lane whenever possible.
The “cowboy” drivers are those that might violate these constraints.

The simulation model provides ground truth ‘normal’ and ‘cowboy’ labels; the char‐
acteristics of particular drivers within a type are subject to distributions rather than being
entirely deterministic – frequencies and instances of exhibited behaviours are context
dependent (e.g. traffic density, behaviours of other close vehicles). Therefore, a
“cowboy” driver may or may not exhibit the salient features of his behaviour during the
observation period.

In total, five driver types are considered – three of these are additional ‘abnormal’
types (viz. slow, cautious and boy racer). The slow and cautious drivers are similar to
the normal driver in that they both follow the lane discipline. Cautious drivers, however,
tend to leave a larger gap in front of them, whereas the slow drivers move more slowly,
as well as react, brake and accelerate more gently. The “boy racers” are similar to the
“cowboy” drivers in that both types do not always follow the lane discipline; what
distinguishes them is that the “boy racers” drive faster, braking and accelerating harder,
than the “cowboy” drivers.

Such a vehicle simulation model creates a data source rich enough to be used for
making intelligent measurement of the driver type. In particular, the presence of several
types of anomalous drivers makes it sensible to conduct the inference process in a
number of phases: identification, classification and prediction. The identification phase
minimises the volume of data and the data processing cost by analysing only a small set
of measured data using anomaly identification techniques, such, for instance, as outlier
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detection. Identified potential anomalies are then passed onto the classification phase,
where they are separated out into different types.

As a means of understanding the potential of the IMS techniques developed in the
general context, the aims of such evaluation are to use the datasets generated by this
vehicle simulation model in order to:

1. Identify anomalous drivers (i.e. all driver types different from the “normal”) – the
identification phase of IMS operation.

2. Appropriately classify these anomalous drivers into the corresponding types.

3.2 Choosing Secondary Measurands

There are a number of simulation parameters that can be adjusted within the MATLAB
traffic simulation model. Some of the simulation parameters directly affect the behaviour
of simulated drivers (i.e. speed ranges, driver reaction time). The other parameters
determine the environment – in our case the characteristics of the road (i.e. lane width
and number of lanes), which indirectly influence how each driver behaves.

The task of choosing the right set of variable to measure (i.e. measurands), which
provide reliable inference capabilities, is not trivial. Therefore, selection of an appro‐
priate set of secondary (i.e. based on applying filtering to directly measurable data inputs)
measurands is a vital step in building an inference measurement system, affecting its
accuracy, complexity and generalizability of the inference operation(s).

A conventional methodology of choosing a set of input variables is based on
conducting a ‘screening’ experiment aimed at establishing the significance of each input
in terms of inference capabilities of an IMS. This experiment is done by setting the high
and low levels for six main variables within the vehicle simulation model: lane, average
speed, traffic rate, road length, road width and reaction time. The proportion of normal
vs. anomalous drivers was fixed as 80:20. There are sixteen trials in total, i.e. half-
factorial screening experiment has been carried out.

Given the difficulty of empirically selecting secondary measurands for building an
inference model(s), a more systematic approach has been proposed in the course of this
work that is capable of not only choosing the most appropriate input data streams and
associated data filters, but also of automatically determining the most effective learning
algorithms for adapting the IMS to operate in changing environments. The results of the
screening experiments are summarised in Table 1.

The results in Table 1 are obtained using four different statistical data filters (i.e.
AVERAGE, VARIANCE, MIN, MAX) on three measurable variables (distance trav‐
elled (along road), lateral movement or frequency of changing lanes, and total number
of vehicles). The results shown are obtained using balanced training datasets, which use
the equal number of training examples for each driver type (unbalanced training datasets
use unequal number of training examples).

The F-test and t-test have been applied to analyse the statistical significance of
different features, represented by low p-values (which represent the probability of
obtaining the observed differences in accuracy purely by inherent randomness of experi‐
ments). Low p-values  indicate that the differences in model performance are
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attributed to systematic factors (significant parameters are highlighted in yellow, low p-
values are shown in red):

• Lane is the only variable in this experiment that is shown to significantly affect the
accuracy measure of all learning techniques.

• Another variable that has a significant effect on the accuracy rate of supervised
learning techniques is the road width;

• The interactions between lane with road width and traffic rate significantly affect the
effectiveness of supervised learning – see the p-values highlighted in red in the table
below.

These significance values exhibit a degree of correlation with the design of the
vehicle simulation model, where lane discipline is a major characteristic that distin‐
guishes different types of drivers.

Table 1. Significance level of secondary measurands
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4 Building Inferential Capabilities Within IMS

The analysis of surveillance information in general, especially related to situation
awareness, is a complex process that, given the amount and heterogeneous nature of
data, is prone to data overload. This results in an inability to support real-time processing
and analysis of surveillance data. This is especially true when using mobile platforms
where datalink and bandwidth issues are significant [12, 13].

In this study, the data to be acquired and processed by an intelligent measurement
system comes from various sensors on-board a UAS, such as radar, electro-optical/infra-
red, GPS and Inertial Navigation Systems (INS). Apart from on-board input data
streams, additional contextual input data can also be taken into account. The choice of
which contextual input to apply can be automatically tailored using the computational
intelligence techniques.

Four learning techniques are currently available within the IMS and are used for
building the models – three of which are CI-based: artificial neural network (ANN),
support vector machine (SVM), Bayesian network (BN), and K-means classifier. These
techniques are implemented in JAVA and the Encog machine learning library [12]. Built
in statistical analyses include Difference, Average, Variance, Standard deviation,
Summation, Min and Max.

The simulated data set includes: X and Y locations of each vehicle on the road over
the surveillance distance of a 6 kilometre road with three lanes, as well as the ground
truth labels of driver types.

An inference model can be represented as a tuple , where  is the vector of
secondary measurands,  is a parameter vector of the learning technique , specifying
such values as, for example, an error acceptance rate for artificial neural networks. The
process of building an inference model is, in fact, an application of the learning technique

 with its set of parameters  to the vector of chosen secondary variables  that provides
both training and testing data inputs.

Having built the inference models corresponding to all the learning techniques used,
this case study explores the influence of salient features of the modelled system on the
performance of the IMS. As an example, one salient feature of the traffic simulation
model is the ratio of abnormal and normal drivers, which in our experiments varies from
5 % to 25 %. The dependence of inference accuracy on this ratio for each learning tech‐
nique implemented by the IMS are shown in Figs. 3 and 4.

Therefore, a multi-tiered IMS that uses computational intelligence techniques should
be able to enhance situation awareness of a UAV, especially in a real-time environment.
Once anomalies are identified from direct measurements, additional data from both
easily accessible and detail-rich data sets can be added to improve the system classifi‐
cation and prediction performance.

For balanced training (Fig. 3), the numbers of training samples representing normal
drivers is limited by the number of samples representing abnormal drivers of a particular
type, which are relatively small in the case-study.

For unbalanced training (Fig. 4), the size of the training dataset representing normal
drivers can exceed that of the abnormal ones. All other experimental parameters,
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including the size of testing datasets and the ratio of normal vs. abnormal drivers, are
the same.)

As can be observed from the two figures above, the performance of supervised
learning techniques is by and large similar, especially for smaller ratios of the numbers
of abnormal and normal drivers, denoted as .

SVM outperforms other supervised learning techniques when  is small (<10 %),
whereas for large values of  (>20 %), ANNs become the best choice of supervised
learning used for building inference models.

Unsupervised learning generally shows worse performance, but can also reach quite
high inference accuracy. Despite their inconsistency in inference accuracy, unsupervised
algorithms (unlike their supervised counterparts) do not require training. The ground
truth labels obtained from MATLAB simulation (i.e. driver types – “normal” and

Fig. 3. Multiple data sources fused by an IMS

Fig. 4. The effect of different surveillance distances on system accuracy
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“cowboy”) are used only for validating these algorithms. This implies that the unsuper‐
vised algorithms converge much quicker and can be useful in cases when no (or very
limited) training can be provided. It may also be possible to use an unsupervised algo‐
rithm as a precursory approach, while a training process of the supervised algorithms is
carried out.

5 Conclusions

On the basis of the research work conducted in the present study, which was aimed at
the development of IMSs for enhancing situation awareness of an UAS, the following
conclusions can be drawn:

First of all, it has been shown that the concept of an IMS is viable in the chosen
context – it has been demonstrated that the implementation of a framework for building
such measurement systems is a feasible task, even with limited amounts of data available
for making inferences.

Secondly, one of the main benefits of an intelligent measurement system, i.e. the
ability to discover relationships between the primary characteristics of the system being
monitored and the observed or measured data, has been demonstrated by inferring the
behavioral type of drivers.

Thirdly, an essential step in building a good inference model is the selection of the
most appropriate set of secondary measurands done semi-automatically by the proposed
IMS that is achieved by adaptive filtering of input data streams.

Finally, the inference models within an IMS can be efficiently built with the help of
machine learning techniques, which use both supervised and unsupervised approaches
to learning. The ANN-based model of the process under observation proved to be the
most adequate.

The experiments conducted on several simulated datasets and have demonstrated
that reasonable performance can be achieved in terms of accuracy of data processing
and its speed. For comprehensive evaluation of the developed IMS aimed at enhancing
situational awareness of a UAS, however, it would be desirable to deploy the system on
a mobile computing platform and to feed it with real-time sensor data, related to traffic
surveillance. Experimenting with such a setup will inevitably bring some programming
and engineering issues to the forefront, addressing which would reinforce system
usability.
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Abstract. This paper shows the design, implementation and analysis of a fuzzy
system for monitoring and alert generation for gas detection in enclosed spaces,
which can be very useful either at home or industrial environments. Furthermore,
this could be a useful application in the fields of Home Automation which may
be developed by integrating devices and technologies of The Internet of Things.
Such application consists of the provision of sensors, which constantly receive
signals on gases in the environment. Subsequently, the information is analyzed
by a fuzzy system that determines when to generate alert notifications, identifying
the times when levels are high, either by incendiary or high pollution situations.
The prototype consists of connecting an MQ-2 sensor with a Raspberry Pi, which
receives the information provided and analyses it by fuzzy logic, thus determining
in which cases it is necessary to alarm at sensitive events, generating alert emails
and historical data.

Keywords: Internet of Things (IOT) · Gas sensor · Fuzzy logic · MQ-2 ·
Raspberry Pi

1 Introduction

Through Internet of Things (IoT), multiple applications in intelligent environments can
be performed [7]. Disciplines and approaches can range from monitoring human health
by ultrasonic sensors and sphere [4] to wireless multi-sensor networks in order to provide
surveillance to a means [3]. Besides this, it is possible through radar sensors to either
determine the speed of a moving object [5] or establish resource management and
efficiency control of an engine [2].

By using various techniques such as fuzzy logic or neural networks, it is possible to
perform monitoring, controlling and understanding of system-based sensors for smart
environments and decision-making [6]. Thus, in diverse areas of action, the fuzzy logic
is a tool that provides the formulation of rules of inference to facilitate processes of
modelling and understanding of systems in which there is a high degree of uncertainty
and imprecision [10]. Based on control system principles, expert systems or logical
control, the fuzzy logic takes the subjectivity or language in terms of a mathematical
model [11] and identifies a number of aspects that facilitate the parameterization of
systems for their proper functioning. This can be achieved by defining membership
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functions to represent fuzzy sets containing elements found partially or to a limited
extent [12]. Accordingly, this is how the fuzzy logic becomes one of the tools that facil‐
itates the identification of control variables which may notoriously improve the model‐
ling of real-time applications.

Therefore, the purpose of this article is to perform a predictive model for gas detec‐
tion that allows to determine times of risk or danger by generating alerts. The motivation
for conducting this study is to exploit the advantages of fuzzy logic in order to identify
a model which may facilitate the recognition of such situations, by analyzing and
improving existing solutions that may cause failures and which are associated with
precision and reliability.

This study addresses a gas flow environment for which it seeks to implement a system
of gas detection sensors MQ-2 which, through fuzzy logic, is capable of sending early
warnings to nearby users. Based on a similar experience, necessary fundamentals and
knowledge are taken in pursuit of increasing the sensitivity of fire detection devices and
reducing false alarms [1].

The following article is organized as follows: Sect. 2 provides a contextualization
of related studies and background information. Section 3 presents the model proposed
or the methodology. Section 4 addresses the predictive model which has been designed
and proposed, whereas Sect. 5 offers the case study. Section 6 shows some preliminary
results as well as the conclusion, being future work and references analyzed in Sects. 7
and References respectively.

2 Background

Fire is the phenomenon that manifests itself through the combustion of light, flame and
heat. The proportion of each of these elements determines its nature [1]. This discovery
was a momentous occasion for humankind as it has been an indispensable resource for
the man in their many activities over the centuries. However, it is important to recognize
that it has not only been essential and valuable but also unstable and dangerous to that
which surrounds it according to the application environment.

Sowah worked on a case study in which some types of sensors for fire detection were
integrated [1]. Such group comprised a room temperature sensor, another one for density
of gases and a third one that measured the intensity of flames. The data captured was
then followed by an overall analysis through parameters that allowed observations of
the information from the sensors simultaneously. Subsequently, these parameters were
defined by fuzzy sets for each input in the system.

As for the intensity of flames, the established sets were as follows: close, not-so-far
and far. With regard to temperature, the following sets were distinguished: cold, normal
and hot. Concerning gas, the ones associated were: low, medium and high density.
Output regions were: fire, potential fire and non-existent fire. The total number of rules
provided for decision-making in the fuzzy system was 27.

The results found by Sowah state that it is not necessary for the three sensors to
display alarming measures of an incendiary situation due to the established rules [1].
This can be simply given by elevated levels in two of the three sensors, taking into
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account a margin of error for the temperature sensor of 5°C. For this study, a 90 % of
effectiveness in detecting fires was obtained. It is also essential to consider that gas
sensors pose problems with nonlinearity, since they are scarcely selective and sometimes
insensitive to determine and differentiate various types of gases in situations where there
are blends and combinations. However, according to Parthasarathy, their effectiveness
may increase if they are integrated and put to operate together, linking and analyzing
the information provided as a multisensor system [8].

Fuzzy logic, neural networks and genetic algorithms have shown great capacity and
versatility in solving problems of identification and control of large amounts of data in
complex and nonlinear systems [15]. Methods based on rules, which are very common
in human thinking, allow modelling of variables with approximations and imprecisions.
The information obtained is soon after analyzed and processed by fuzzy sets. On the
other hand, fuzzy logic allows subjective concepts to be modelled with values that are
expressions of colloquial language, which means that anyone can perceive and under‐
stand the information by means of using the classical set theory with the help of
membership functions as a part of the of fuzzy set theory. [9].

Zadeh argues that fuzzy logic is not fuzzy as such but accurate in its imprecision,
leading to approximate reasoning [10]. It is an instrument in which two human capacities
converge: on the one hand, making rational decisions in an environment of imprecision
and uncertainty, and on the other hand, performing physical and mental tasks without
any measurements or calculations. Fuzzy logic is a very useful tool to understand a world
that is real and largely diffused.

From this overview, the following section describes the approach used by the
working model, which expresses the methodology that was carried out for the design
and implementation of the predictive model for gases through the fuzzy logic.

3 Proposed Working Model

To develop the predictive model for gas, it was required to establish the process of
interaction between different elements and technologies that were able to define the
inputs and outputs in the system, classify them in a context and identify each of the
essential stages in the implementation. By examining the overall process, it was neces‐
sary to establish a methodology to conduct the case study -which is structured in two
stages- as shown in Fig. 1.

The first phase comprises the data extraction, which is executed by the reading of
values recorded by the sensor, received by the Raspberry Pi and entered in a txt file.
Phase two is based on the analysis of the information captured. Subsequently, a fuzzy
system is designed, the input and output sets are defined as well as the different rules
which will be applied. Besides this, it is important to establish what output parameters
may trigger events called alarms.
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3.1 Element Selection Criteria

In order to choose the gas sensors which are used, a search is conducted to evaluate
efficiency, precision and cost. Sinha examines the MQ series of sensors, which special‐
izes in gas detection and offers various alternatives, each one dedicated to one or more
gases under various conditions [14]. This information is presented in Table 1.

From this classification, and according to studies undertaken by Jiru who states that
MQ-2 sensors can be used for monitoring the presence of combustible and flammable
gases, it is therefore understood that this is due to the basic principle of their operation
[13]. The study involves the use of the adsorption property that tin has, which is a semi‐
conductor element that comprises the sensor and attracts oxygen anions when gases are
present in the air, thus varying its conductivity and resistance. Taking these character‐
istics into consideration, the sensor chosen for the case study is the MQ-2.

On the other hand, the advantages offered by the MQ-2 sensor lies in the recognition
of several gases that can be found in homes or industrial environments, being effective
in situations where leakage is present in such areas and in particular for the development
of applications including home automation topics. It is a highly sensitive gas detector,
which is able to sense gases such as: butane, propane, methane, among others. In addition
to this, it discovers and detects the presence of smoke and combustible gases in concen‐
trations of 300 to 10,000 ppm, which makes it an inexpensive sensor with a fast response
time. It should be worth mentioning as well that the MQ-2 includes in the output
analogue signals which are required to be transformed digital. This process can be
achieved through an ADC0832 converter that returns its equivalent numerical values.

The Raspberry Pi is an excellent alternative for connecting sensors if considering
the fact that it is a computer arranged on a single circuit. That said, it is the most
economical device among the various existing machines and allows setting and encoding
functionality through its input or output GPIO pins.

Fig. 1. Methodology.
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Table 1. MQ series of sensors.

Sensor name Gas detected Operating voltage
MQ-2 Methane, butane, smoke, LPG (liquefied petroleum gas) 5 V
MQ-3 Alcohol, ethanol, smoke 5 V
MQ-4 Methane, CNG (compressed natural gas) 5 V
MQ-5 Natural gas, LPG (liquefied petroleum gas) 5 V
MQ-6 Butane, LPG (liquefied petroleum gas) 5 V
MQ-7 Carbon monoxide 5 V y 1.4 V
MQ-8 Hydrogen 5 V
MQ-9 Carbon monoxide and flammable gases 5 V y 1.5 V
MQ-131 Ozone 6 V
MQ-135 Benzene, alcohol and smoke 5 V
MQ-136 Hydrogen sulphide gas 5 V
MQ-137 Ammonia 5 V
MQ-138 Benzene, toluene, alcohol, acetone, propane,

formaldehyde, hydrogen
5 V

MQ-214 Methane, natural gas 6 V
MQ-216 Natural gas, coal gas 6 V
MQ-303A Alcohol, ethanol, smoke 0.9 V
MQ-306A Butane, LPG (liquefied petroleum gas) 0.9 V
MQ-307A Carbon monoxide 0.2 V y 0.9 V
MQ-309A Carbon monoxide and flammable gases 0.2 V y 0.9 V

If the reasons for choosing the various physical devices are taken into consideration,
it is therefore necessary to continue with the approach of the predictive model designed
by fuzzy logic, which is described in the next section.

4 Proposed Predictive Model

Fuzzy logic uses the properties of fuzzy sets so as to establish the relationship of an
element using the membership functions that define it. This provides greater possibilities
than considering specific and limited values. Fuzzy logic allows intermediate values to
be defined in a range, thus generating other possible responses which are situated at the
extreme points. Given these advantages offered by the technique, it is considered appro‐
priate for modelling a gas system that receives and generates entries associated with
many values, so a fuzzy logic model could classify, define and group them into sets as
well as defining rules for their analysis and results.

The type of model chosen is the Mamdani, one of the best-known prototypes and
the first to be subjected to a test. Its main feature is the handling of fuzzy IF-THEN rules,
in which the input and output variables are related. As a result, this determines the
interaction of the entries in the established fuzzy sets and allows analyzing their inter‐
action and equivalence on an output set; finding output relations in the form of: If X1 is
C1 and C2 X2, then Y is C3; being X1, X2 system inputs and output Y1 and C1, C2,
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C3 fuzzy sets belonging to the model designed. The operations performed are the ones
associated with set theory, such as union, intersection, Cartesian product, etc.

For parameterization of input variables, two fuzzy sets corresponding to two gases
are designed. These define the two extremes of the interval, as shown in Fig. 2.

Fig. 2. Input fuzzy sets.

As it can be seen, membership functions are of type S and Z respectively. Each of
them represents a gas which is specified in the section of the case study. Figure 3 presents
fuzzy sets in which possible outputs of the modelling system are parameterized.

Fig. 3. Output fuzzy sets. (Color figure online)

Output sets are summarized in (blue), medium (orange) and high (purple) respec‐
tively, indicating the possibility of fire or the presence of noxious gas. The design of
rules is subjected to inlet gas in the case of application, so their combination and inter‐
action give rise to the possible outputs of the fuzzy system.

Once the designed model is known, the application of the case study takes place. In
this, the inputs and rules are specified, as well as the context in which the practice is
performed.
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5 Case Study

Three inputs were defined for the case study. They correspond to three connected MQ-2
sensors, which performed the parallel reading of surrounding gases dispersed in the
environment. A script in python was responsible for obtaining and processing the signals
given by each sensor and converted by the integrated circuit, compiling in a txt the list
of data obtained from the work accomplished. As previously presented, two fuzzy sets
were set for each input, associating them to hydrogen and butane respectively. The
graphical part of the experience with regard to the fuzzy logic was performed using the
Matlab software.

Figure 4 shows the graph corresponding to the fuzzy sets whose domain is between
0 and 254 (these being the possible values shown by the MQ2 sensor, given by the
analogue-to-digital converter). In addition to this, there are two-phase functions, each
representing the possible gas the sensor may capture: hydrogen or butane. If the sensor
produces an increase in the value, it is more likely for this gas captured from the air to
be butane and, at the same time, it is therefore less likely for it to be hydrogen.

Fig. 4. Fuzzy sets for input fuzzy system in Matlab.

Subsequently, outputs are established as mentioned previously, being of three
different sets: one type S, the second one being a Gaussian, and the last Z type, defining
three possibilities of gas presence: high, medium, and low. Figure 5 shows the sets
arranged in Matlab.

Fig. 5. Outputs fuzzy system.
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Figure 6 shows the rules formulated in the designed fuzzy system, in which the IF-
THEN relationships between the input and output sets can be seen. A total of eight rules
were generated, corresponding to the combination of three input variables, each with
two possible values.

Fig. 6. Fuzzy rule-based system.

Based on the case study and the various tests, the analysis of results takes place,
which will be explained in the next section.

6 Preliminary Results

The fuzzy logic system shows a stability-oriented result, being the output a combination
of the eight rules that had been previously established. Such rules are proportional to
the input values, which means that the higher the data recorded by the sensors, the more
likely the output is to trigger a potential fire and/or high level of gas alert. Figure 7 shows
the output given by the fuzzy controller in the case study, which can take values from
0 to 1, indicating lower or higher amount of gas in the environment.

Fig. 7. Preliminary results of application case study.

The figure above shows a signal that rapidly increases in magnitude, demonstrating
high levels of gas for a period of time that remains constant and gradually descend to
be close to zero. The output given by the controller shows that the fuzzy system performs
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a proper analysis; measurements made mostly expressed high concentrations of gas, so
the fuzzy system responded promptly to the high values entered.

7 Conclusion

As stated in the preliminary results, it may be a good idea to experience with two
membership functions in order to discriminate the inputs. However, this may be
improved through the definition of larger sets, as establishing new settings may lead to
performing a more specific and therefore accurate analysis. In addition to this, the
number of rules may increase and as a result, the fuzzy system could improve its analysis
as its knowledge base and fuzzy reasoning improve. As future work, it is necessary to
further testing of the reliability of the sensors to determine the effectiveness of gas
detection levels by comparing the actual and detected amounts.

Furthermore, it is essential to take into consideration that a determining factor for
these applications is the spatial arrangement of the sensors as they may represent incon‐
sistencies and erroneous analysis of the place. If sensors are placed too close, they may
take similar measures of a gas concentration which may not represent a risk as such.
Conversely, if they are widely separated, they could not take sufficient quantities. More‐
over, it is also possible to state that the effectiveness of these warning systems also
depends on their physical configuration, so that fidelity and efficiency of measures may
be improved by taking advantage of the features or benefits provided by the space. In
order to do this, different types of methods such as algorithms, ant colony, particle swarm
optimization, among others, can be used. They could help to analyze specific features
of the environment and identify each sensor as a node in an interconnected network, or
as a graph in its simplest essence.

Fuzzy logic systems are an excellent alternative for modelling applications in which
unique and exact values are not adequate to establish analysis in a large framework of
possibilities. That said, and being an expert system, it is therefore recommended to
examine this kind of information. The situation described is one of many examples in
which different technologies converge to provide a possible solution. The Internet of
Things offers tools for multiple needs in different environments, so it has become a
network in which various disciplines and sciences interact so that they can design, inte‐
grate and propose even better and more effective solutions every day.
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Abstract. Next-generation systems, such as the big data cloud, have to
cope with several challenges, e.g., move of excessive amount of data at a
dictated speed, and thus, require the investigation of concepts additional
to security in order to ensure their orderly function. Resilience is such
a concept, which when ensured by systems or networks they are able to
provide and maintain an acceptable level of service in the face of various
faults and challenges. In this paper, we investigate the multi-commodity
flows problem, as a task within our D2R2 + DR resilience strategy, and
in the context of big data cloud systems. Specifically, proximal gradi-
ent optimization is proposed for determining optimal computation flows
since such algorithms are highly attractive for solving big data prob-
lems. Many such problems can be formulated as the global consensus
optimization ones, and can be solved in a distributed manner by the
alternating direction method of multipliers (ADMM) algorithm. Numer-
ical evaluation of the proposed model is carried out in the context of
specific deployments of a situation-aware information infrastructure.

Keywords: Resilience · Big data cloud · Multi-commodity flow net-
works · Distributed algorithms · Consensus optimization · Alternating
direction method of multipliers (ADMM)

1 Introduction

Cloud computing delivers computing services from large, highly virtualized net-
work environments to many independent users, using shared applications and
pooled resources. One may distinguish amongst Software-as-a-Service (SaaS)
where software is offered on-demand through the internet by the provider and
it is parametrized remotely (e.g., on-line word processors, spreadsheets, Google
Docs and others); Platform-as-a-Service (PaaS) where customers are allowed
to create new applications that are remotely managed and parametrized, and
offer tools for development and computer interface restructuring (e.g., Force,
c© Springer International Publishing Switzerland 2016
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Google App Engine and Microsoft Azure), and Infrastructure-as-a-Service (IaaS)
where virtual machines, computers and operating systems may be controlled and
parametrized remotely (e.g., Amazon EC2 and S3, Terremark Enterprise Cloud,
Windows Live Skydrive, Rackspace Cloud, GoGrid, Joyent, AppNexus, etc.).
The aforementioned service models of the cloud can be offered in three differ-
ence deployment models, i.e., public, private and hybrid. In public cloud systems,
everyone may register and use the services. Private ones are accessible through a
private network. Lastly, hybrid clouds refer to a combination of the previous two
and usually used in the case where sensitive data is required to be kept in the
private network and non-core applications are deployed in the public. The key
functionality of the private deployment model is the ability to use and release
resources from public clouds as and when required. This is used to handle sudden
demand surges (‘flash crowds’) and is known as ‘cloud-bursting’.

Cloud computing is an on-demand service whose size depends upon users
needs and should feature scale flexibility. It is built upon such network ele-
ments as switches supporting novel communication protocols, specific servers
based on Virtual Machine (VM) technology and dynamic resource management
as well as Network-Attached-Storage (NAS). Specific software platforms may be
used for service orchestration in cloud environments (e.g., OpenStack). Several
next-generation implementations require widespread connectivity, security and a
successful combination with machine-to-machine M2M applications1 and cloud
computing. Integration platforms are important facilitating the convergence of
IoT2, cloud computing, analytic, and big data. They support links among cloud
applications and they tie together the distributed devices at one end of a net-
work pipe with enterprise applications and analytic at the other end. Integration
platforms shorten the development cycle for connecting devices to the cloud or
enterprise systems. Other applications of cloud computing may be seen in the
area of critical infrastructures. An example of that is the use of cloud computing
services to perform analysis of the data conveyed between the various compo-
nents of a Supervisory Control and Data Acquisition (SCADA) network [14].

Cloud systems and services can be applicable in a wide range of applications,
as described above. Therefore, this further motivates us towards the investiga-
tion of concepts additional to security in order to ensure their orderly function.
Resilience is such a concept that can ensure that a network or system can pro-
vide and maintain an acceptable level of service in the face of various faults and

1 A typical M2M architecture includes an application domain, a network domain, an
M2M device domain and one or more direct connections or gateways from the M2M
area network to the network domain. M2M device area networks can use a variety
of communication technologies (RFID, ZigBee, M-BUS, IEEE 802.15, 6LoWPAN),
thus a gateway layer becomes important. The solutions for communication between
the gateway and M2M applications include LTE, WiMAX, xDSL, and WLAN. In
the application domain, clients will often include dashboards for data virtualization,
status monitoring, reconfiguration and other functions.

2 Among the consortia working on standards for IoT are AllSeen Alliance, HyperCat
Consortium, and Industrial Internet Consortium. There are also initiatives such as
the Eclipse M2M Industry Working Group and ITU-T Focus Group M2M initiative.
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challenges to normal operations [20]. In order to accomplish the previous require-
ment we have proposed a resilience strategy entitled D2R2 + DR, i.e., Defend,
Detect, Remediate, Recover, and Diagnose and Refine [20]. The first four consist
processes of an internal loop process and the latter two of an off-line outer loop.
In more detail, it is: Defend against challenges and threats to normal operation;
Detect when an adverse event or condition has occurred; Remediate the effects
of the adverse event or condition; Recover to original and normal operations;
Diagnose the fault that was the root cause; and Refine behaviour for the future
based on past D2R2 + DR cycles. Based on our resiliency strategy, we further
developed an architectural framework for resilience, which is able to operate in
the context of cloud systems and used for diagnosing anomalies [18].

In this paper, we further investigate the multi-commodity network flow in
the context of our resilience strategy and towards ensuring network resilience
in cloud services. Multi-commodity network flow models provide the tools for
optimal network design and dimensioning in telecommunications given a list
of traffic nodes (sources or sinks) [17]. The basic mathematical models used
to formulate and solve optimal network design problems make use of graph-
theoretic and/or linear programming-based models (see e.g., [2,4,13]). The set
of all possible topologies for the network to be constructed will typically be
described by means of a given (undirected) graph G = [V ,E ] where:

– the node set V represents the various traffic sources/sinks to be intercon-
nected;

– the edge set E corresponds to the various pairs of nodes, which may be phys-
ically connected by installing transmission links.

A single-commodity flow between a source and a sink is a M vector, ϕ =
(ϕ1, ϕ2, . . . , ϕM ) such that |ϕu| represents the amount of transmission resource
used on edge e = (i, j). The aforementioned commodity model is adopted to
accommodate cloud computing and in-network processing [9,11]. A walk-based
as well as an edge based formulation is adopted. Applying such models in the
context of distributed and parallel computing in the cloud is challenging. The
sheer volume of data in next generation implementations requires advanced ana-
lytic capable of exploiting the big data and the computing power of the cloud.
Scaling up to 50 and 200-billion connected devices requires innovative security
solutions. Hybrid architectures focus on security at endpoints and when data is
in transit: device security, cloud security, and network security. Virtualization
must be done with resilient virtual machines (VM), resilient single-tenant and
multi-tenant servers, and resilient software defined networks (SDN).

The structure of the remainder of this paper is: Sect. 2 elaborate on dis-
tributed proximal algorithms and on ADMM in cloud networks. A commodity
network model for maximizing information processing in the cloud is presented
in Sect. 3. An evaluation of the model is provide via simulations in Sect. 4. Con-
clusions are presented in Sect. 5.
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2 Parallel Algorithms for Optimizing Big Data

2.1 Big Data Analytics and Distributed Proximal Algorithms

The information explosion propelled by the advent of online social media, Inter-
net and global-scale communications has rendered big data analytics as well as
data-driven statistical learning increasingly important [19]. Dealing with large-
scale data sets poses formidable challenges. The sheer volume and dimensional-
ity of data make it impossible to run analytics and traditional inference meth-
ods using standalone processors [3,16]. Decentralized learning with parallelized
multi cores is preferred [5,12], while the data themselves are stored in the cloud
or distributed file systems as in MapReduce/Hadoop [10]. Distributed signal
processing can be used within the context of sensor networks as well (see for
example [1]). Optimizing large scale data may be expressed as:

F ∗def

= min
x

{F (x) := f(x) + g(x) : x ∈ Rp} (1)

where f and g are convex functions. Efficient numerical methods to obtain x in
the context of large scale problems arising in big data applications are, namely,
first order methods, randomization as well as parallel and distributed comput-
ing [8].

– First-order methods: First-order methods obtain low- or medium-accuracy
numerical solutions by using only first-order oracle information from the objec-
tive, such as gradient estimates. They handle important non smooth variants
of Eq. 1 by making use of the proximal mapping principle. They feature nearly
dimension-independent convergence rates, they are theoretically robust to the
approximations of their oracles, and they typically rely on computational prim-
itives that are ideal for distributed and parallel computation.

– Randomization: Randomization approaches stand out among many other
approximation techniques since they enhance the scalability of first order
methods. We can control their expected behaviour. Key ideas include random
partial updates of optimization variables, replacing the deterministic gradient
as well as proximal calculations with cheap statistical estimators, and speeding
up basic linear algebra routines via randomization.

– Parallel and distributed computation: First-order methods naturally provide
a flexible framework to distributive optimization tasks and perform compu-
tations in parallel. Surprisingly, one can further augment these methods with
approximations to enormously scalable asynchronous algorithms with decen-
tralized communications.

The three aforementioned classes of algorithms complement each other and
offer surprising scalability benefits for big data optimization. For closed proper
convex functions, one may define the proximal operator of the scaled function
λf , where λ > 0, as:

proxλf (u)
def
= argmin

(
f(x) − 1

2λ
‖ x − u ‖22

)
(2)
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This is also called the proximal operator of f with respect to λ. The parameter λ
controls the extent to which the proximal operator maps towards the minimum
of f , with larger values of λ associated with mapped points near the minimum,
and smaller values giving smaller movement towards the minimum. A proximal
algorithm is an algorithm for solving a convex optimization problem that uses
proximal operators of the objective terms. Proximal algorithms have been used
for multi-commodity network flow optimization [15].

Fig. 1. Synchronous and asynchronous processing from master and workers for ADMM

2.2 Synchronous and Asynchronous Consensus ADMM in Cloud
Information Networks

Many machine learning problems can be formulated as the global consensus
optimization problem, which can then be solved in a distributed manner by
the alternating direction method of multipliers (ADMM) algorithm. The global
variance consensus optimization problem [5,6] in the context of minimization
f(x) reads:

min
x1,...,xN ,z

f(x) + g(z) =
N∑

i=1

fi(xi) : xi = z, i = 1, 2, . . . , N (3)
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where z is the so-called consensus variable, and xi is node i local copy of the
parameter to be learned. The aforementioned problem may be reformulated as
augmented Lagrangian optimization:

L({xi}, z) = g(z) +
N∑

i=1

fi(xi) + 〈λi, xi − z〉 +
β

2
‖ xi − z ‖2 (4)

where λi are the Lagrangian multipliers, β > 0 is the penalty parameter, and 〈, 〉
denotes the inner product. At the k-th iteration, the values of xi and z denoted
(xk

i and zk) are updated by minimizing L with respect to xi and z. Unlike the
methods of multipliers, these are minimized in an alternating manner, which
allows the problem to be more easily decomposed:

xk+1
i = argmin

x
fi(x) + 〈λk

i , x〉 +
β

2
‖ x − zk ‖2 = proxfi/β(zk

i − λk
i ) (5)

zk+1 = argmin
z

g(z)+
N∑

i=1

−〈λk
i , z〉+

β

2
‖ xk+1

i − zk ‖2 = proxg/β(xk+1+λk) (6)

λk+1
i = λk+1

i + β
(
xk+1

i − zk+1
)

(7)

The updates can be easily implemented in a distributed system with one master
and N workers [21]. Each worker i is responsible for updating (xi, λi) using
the above equations. The updated xk+1

i are then sent to the master, which
is responsible for updating the consensus variable z as well as distributing its
updated value back to the workers. Updating may be performed in a synchronous
or an asynchronous manner (see algorithms in Fig. 1).

3 A Commodity Network Model for Maximizing
Information Processing in Cloud Implementations

One may adopt the proximal-point method in order to optimize network flows
in a cloud environment in an iterative fashion:

xk+1 = argmin
X∈S

(
f(x) +

1
2λ

(x − xk)
T
(x − xk)

)
= proxλf (xk) (8)

where S is a convex set, f(x) is a convex function and 1/2λ is a constant.
One may assume N clusters featuring a distributed processing power given by
π = (π1, π2, . . . , πN )T . Vector x consists of network flows x = [xs1, xs2, xs3, . . .]
where subscript s runs over all network edges s ∈ {a, b, c . . .}. The constraint
optimization problem for one proximal-point iteration reads:

x= min
X∈S

([
c1
λ1

,
c2
λ2

, . . . ,
cn

λN

]
CFclustersx + β(x − z)T (x − z) + θs

T (CFsx − sin)

+ λe
T (x − BW) + λp

T (CFcx − P )

)

(9)
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Fig. 2. Block diagram of the dual gradient algorithm.

where z is the approximation at the previous iteration step and CFclusters is the
incidence matrix for cloud clusters such that CFclustersx, gives the incident flows
at all cloud processing nodes. Flow (CFclustersx)j is processed by processor πj

within time Tj ∼ (1/πj)(CFclustersx)j . Cluster processing utilization is analo-
gous to processing time. It is assumed that processing cost per site is proportional
to CP utilization, i.e. the term [c1/λ1, c2/λ2, . . . , cn/λN ]CFclustersx is equal to
the total processing cost to be minimized according to Eq. 9. Dual variable θs

accounts for flow incidence conditions at sensor nodes, i.e., CFsensorsx = sin

whereas dual variables λe and λp account for upper edge bandwidth limits
xedgel ≤ BWedgel, l = 1, . . . , L and cluster processing capabilities. According
to Slaters conditions (see for example [7]) strong duality holds for the opti-
mization problem (i.e. the optimal values of the dual and the primal problem
are equal. We carry out successive optimization over primal and dual and vari-
ables according to the block diagram in Fig. 2. Primal variables as well as dual
variables are estimated iteratively several times during the execution cycle of
an iteration step. Current estimation of xk is used as the proximal point z for
the next estimation xk+1 (see Eq. 8). As an alternative approach, one may use
distributed processing and synchronous ADMM and solve Eq. 9 using Eqs. 5, 6
and 7 according to algorithms (a) and (b) in Fig. 1. Dual variables are estimated
a number of times during each iteration step after the estimation of the primal
variables z and xi. Global parameter z is updated by the master so that flow
incidence conditions at sensor nodes are satisfied, CFsensorsz = sin and, finally,
zk =

∑N
i=1 xk

i .
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4 Numerical Simulations

Computing time Tj is assumed to be normalized to CP utilization at cluster node
j. Total computing cost is assumed to be analogous to total processing time, i.e.,
c1T1 + c2T2 + c3T3 + c4T4 ∝ total processing cost. Two distinct cases of assign-
ing processor costs are investigated. Case 1 assumes that c1 = c2 = c3 = c4 =
100 units whereas Case 2 assumes that c1 = 80 units, c2 = 60 units, c3 = 100 units
and c4 = 90 units. Convergence behaviour of the proposed proximal algorithm for
z equal to xk is depicted in Fig. 4. Figure 4a depicts total cost, Fig. 4b depicts
flow equilibrium conditions at sensor nodes during the execution of the algo-
rithm for Case 1 and Fig. 4c depicts processor utilization per cluster for Case 1.
Similar results are illustrated for Case 2 in Figs. 4d, e and f. Similar results of
solving Eq. 9 for Case 1 and Case 2 using distributed processing and synchro-
nized ADMM are depicted in Fig. 5. Figures 5d and h present the difference of
zk−

∑4
i=1 xk

i over 1,000 iterations. Both approaches give similar total cost values
for Case 1 and Case 2.

Table 1. Terminal devices nominal source flows (Mbps)

s1=1 s2=1 s3=2 s4=3 s5=0.5 s6=0.5 s7=4 s8=3

s9=2 s10=2 s11=2 s12=1 s13=1.5 s14=5 s15=2 s16=1

s17=2 s18=1 s19=1 s20=2 s21=4 s22=2.5 s23=3.5 s24=2

s25=2.5 s26=1 s27=1 s28=2 s29=3.5 s30=5 s31=1 s32=1

Fig. 3. Cloud interconnections

Numerical simulations are carried out for artificial data for four (4) processing
sites (clusters) and a total of thirty-two (32) terminal devices (sensors) connected
to cloud nodes. Each terminal device (sensor) is connected to a main processing
cluster and two backup processing clusters. Link capacities vary from 0.5 Mbps
to 5 Mbps. Each terminal device produces original source flows featuring values
ranging from 0.5 Mbps to 5 Mbps (see Table 1). It is assumed that each flow
may be diverted totally or partly from one processing site to the other. Each
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of the four (4) computing sites is capable of processing a total sum of flows,
i.e. π1 = 20 Mbps for CP1,π2 = 10 Mbps for CP2,π3 = 30 Mbps for CP3 and
π4 = 25 Mbps for CP4). Cloud interconnections are illustrated in Fig. 3.
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Fig. 4. Iterative solution of Eq. 9 in the proximity of the previous approximation,
i.e.,z = xk−1 (total processing cost for four processing clusters in (a) and (d), total
error at sensor nodes in (b) and (e) and CP utilization for each of the four processing
sites in (c) and (f))
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Fig. 5. Solution of Eq. 9 using distributed processing - sync ADMM (total processing
cost for four processing clusters in (a) and (e), total error at sensor nodes in (b) and (f))
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5 Conclusions

An iterative proximal-point method is presented for optimizing commodity flows
in the context of cloud computing. A novel approach that combines distributed
sync ADMM and minimization over primal and dual variables split into two
groups is proposed. Illustrative cases for four (4) processing sites and thirty-two
(32) terminal devices are presented. The methods may be scaled to thousands
of terminal devices and multiple cloud processing sites. Each terminal device
is connected to a subset of processing clusters and may split data flows from
one connected processor site to another according to available bandwidth. The
proposed algorithm is directly generalized to accommodate variable network con-
ditions as well. Optimization over processing and transmission costs is possible
within the context of the proposed approach. Convergence time depends upon
the updating method (synchronous or asynchronous ADMM).
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Abstract. An adaptive multi-tiered framework, which can be utilised
for designing a context-aware cyber physical system is proposed and
applied within the context of assuring offshore asset integrity. Adapt-
ability is achieved through the combined use of machine learning and
computational intelligence techniques. The proposed framework has the
generality to be applied across a wide range of problem domains requiring
processing, analysis and interpretation of data obtained from heteroge-
neous resources.

Keywords: Context awareness · Cyber physical system · Asset integrity

1 Introduction

There exists a growing demand for intelligent and autonomous control in engi-
neering applications. This is especially true when some constraints are present
that cannot be satisfied by human intervention with regard to decision making
speed in life threatening situations (e.g. automatic collision systems, exploring
hazardous environments, processing large volumes of data). Because machines
are capable of processing large amounts of heterogeneous data much faster and
are not subject to the same level of fatigue as humans, the use of computer-
assisted control in many practical situations is preferable. Cyber physical sys-
tems are the integration of information processing, computation, sensing and
networking that allows physical entities to operate various processes in dynamic
environments [5]. Many of these intelligent cyber physical systems involve human
intervention at some point, either during the development process by embedding
expert knowledge into the systems, or during operation by requiring humans to
monitor, evaluate, and confirm/reject the systems inferences. The latter type of
intervention is often associated with another salient feature of cyber physical
systems dealing with the big data phenomenon. Big data has become a com-
mon research focus in the last decade due to the increasing volume, velocity,
variety and veracity of data enabled by technological advancements and by a
reduction in data acquisition costs. The integration of multiple data sources into
c© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 198–210, 2016.
DOI: 10.1007/978-3-319-44188-7 15
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a unified system leads to data heterogeneity, often resulting into difficulty, or
even infeasibility, of human processing, especially in real-time environments. For
example, in real-time automated process control, information about a possible
failure is more useful before the failure takes place so that prevention and dam-
age control can be carried out in order to either completely avoid the failure, or
at least alleviate its consequences. Computational Intelligence (CI) techniques
have been successfully applied to problems involving big data in various appli-
cation domains [4]. These techniques however require training data to provide
reliable and reasonably accurate specification of the context in which a cyber
physical system operates. The context enables the system to highlight poten-
tial anomalies in the data so that intelligent and autonomous control of the
underlying process can be carried out. Anomalies are defined as incidences or
occurrences, under a given circumstances or a set of assumptions, that are dif-
ferent from the expectance (for instance when Generator rotor speed of the gas
turbine goes below 3000 rpm). By their nature, these incidences are rare and
often not known in advance. This makes it difficult for the Computational Intel-
ligence techniques to form an appropriate training dataset. Moreover, dynamic
problem environments can further aggravate the lack of training data by occur-
rence of intermittent anomalies. Computational Intelligence techniques that are
used to tackle dynamic problems should therefore be able to adapt to environ-
mental/contextual changes. A multi-tiered framework for cyber physical systems
with heterogeneous input sources is proposed in the paper that can deal with
unseen anomalies in a real-time dynamic problem environment. The goal is to
develop a framework that is as generic, adaptive and autonomous as possible. In
order to achieve this goal both machine learning and computational intelligence
techniques are applied within the framework, together with the online learning
capability that allows for adaptive problem solving.

2 Cyber Physical Systems (CPS)

Rapid advances in miniaturisation, speed, power and mobility have led to the
pervasive use of networking and information technologies across all economic sec-
tors. These technologies are increasingly combined with elements of the physical
worlds (e.g. machines, devices) to create smart or intelligent systems that offer
increased effectiveness, productivity, safety and speed [5]. Cyber physical sys-
tems (CPS) are a new type of system that integrates computation with physical
processes. They are similar to embedded systems but focus more on controlling
the physical entities rather than processes embedded computers monitor and
control, usually with feedback loops, where physical processes affect computa-
tions and vice versa. Components of cyber physical system (e.g., controllers,
sensors and actuators) transmit the information to cyber space through sens-
ing a real world environment; also they reflect policy of cyber space back to
the real world [7]. Rather than dealing with standalone devices, cyber physical
systems are designed as a network of interacting elements with physical inputs
and outputs, similar to the concepts found in robotics and sensor networks.
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The main challenge in developing a CPS is to create an interactive interface
between the physical and cyber worlds the role of this interface is to acquire the
context information from the physical world and to implement context-aware
computing in the cyber world [6]. Figure 1 illustrates a conceptual framework
for building context-aware cyber physical systems [9]. Each layer is dedicated
to a certain context processing task, ranging from low-level context acquisition
up to high level context application using either existing or acquired knowledge.
Cyber physical systems may consist of many interconnected parts that must
instantaneously exchange, parse and act upon heterogeneous data in a coordi-
nated way. This creates two major challenges when designing cyber physical
systems: the amount of data available from various data sources that should be
processed at any given time and the choice of process controls in response to the
information obtained. An optimal balance needs to be attained between data
availability and its quality in order to effectively control the underlying physical
processes. Figure 2 illustrates a systematic approach to handling the challenges
related to context processing, which has been successfully applied by the authors
to various real world applications [8,9]. As can be seen from Fig. 2, the suggested
approach segregates processing of the input stream into three distinct phases.
The Processing minimises the volume of data and the data processing cost by
analysing only inputs from easy to process data sources using context identifi-
cation techniques for finding anomalies in the acquired data. If any anomalies
are detected at this stage, Alert 1 gets activated. This phase of the process is
used to analyse real-time data and is a safe guard process on scenarios where
the frameworks prediction fail to predict occurrence of unexpected changes in
the environment. In the Prediction Phase, future values of each of the gas tur-
bine’s sensors get predicted, using a linear regression model. Moreover a new
column is added which gets populated with the “predicted status” value for
each data instance. In this phase if any of the future predicted value of the
sensors goes beyond the set threshold, Alert 2 gets activated. The final step of
the process Anomaly Detection, classifies the overall predicted future values to
identify anomalies being present in the underlying process on the operation of
the cyber physical system. If any anomalies are detected at this stage Alert 3 is
triggered. Such an approach allows for the acquisition of data and/or activation
of the necessary physical entities on an ad-hoc basis, depending on the outcome
at each phase. Moreover, the accuracy attained at the specified phases can be
enhanced by incorporating additional data sensors or additional environmental
factors. Computational intelligence techniques and expert systems have been
successfully applied to tackling many anomaly detection problems, where anom-
alies are known a priori. More interesting, however, is to detect previously unseen
anomalies. Statistical analysis and clustering are examples of techniques that are
commonly used when the characteristics of anomalies are unknown [1]. Figure 3
illustrates a more detailed process for the systematic approach where machine
learning and computational intelligence techniques are combined to tackle the
unknown anomalies and learn from the experience when similar anomalies occur
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Fig. 1. Framework for designing context-aware CPS

Fig. 2. Systematic approach to context processing

again. In Fig. 3, “b” represents a belief function of the output from both the
statistical analysis and computational intelligence nodes, such that

f(t) =
n∑

i=1

wiμi(X) +
m∑

j=1

wjηj(X) (1)

The weights (wi and wj) of this belief function are adaptively adjusted depend-
ing on how much knowledge related to the problem context has been obtained.
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Fig. 3. Context processing in a CPS

The contribution of the CI nodes increases with collection of more normal and
abnormal data points that can be used for training. This allows the system to
run autonomously if required, and any potential anomalies are flagged for closer
inspection at the second (i.e. classification) phase. With the use of parallelisa-
tion and/or distributed systems, multiple machine learning and CI techniques
and various belief functions can be evaluated simultaneously with their para-
meters being adaptively chosen. Anomaly identification using a combination of
such techniques, as described in Fig. 3, has been successfully applied to a traffic
surveillance application [9], a smart home environment and automotive process
control [8].

3 Experimental Results

3.1 Data Description

It is a common practice that most of the sensory data on a platform are stored in
a historian system such as the PI system. PI is a form of historian system which
act as a repository to store sensor information gathered from one or multiple
installation. For this study we used historical sensor data of a gas turbine from
an offshore installation in the North Sea. This data in real-time is transmitted
offshore via satellite Internet. In this experiment about three months worth of
data from a PI historian representing a total of 25 sensors from different parts
of a gas turbine was used (see Fig. 4). Within this period system experienced
8 failures which are highlighted in Fig. 5 which are indicated by blue arrows.
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Fig. 4. Gas turbine process design

The sample data for the three months period includes around 217000 instances.
Sensor used from the turbine are listed in Table 1. In addition to all the sensors
we also had a turbine status which has each of the instances of the dataset
labeled as either False, True or I/O timed out. False indicates the turbine failure
state, True indicates the engine is running and I/O Timed out indicates when
the engine is getting restarted or communication between the Pi historian and
offshore is temporarily lost. The importance of having the I/O Timeout state is
to prevent the system from sending an alarm when the system is actually in a
state of reboot but not a failure.

3.2 Processing

The processing Phase of the proposed context-aware CPS implements compu-
tational intelligence to classify the input stream. To implement this Phase the
Multilayer Perceptron is used, which is a feedforward Artificial Neural Network
(ANN). Funahashi [2], Hoenike and Stunchcombe [3] and Qiu et al. [11] have all
shown that only one hidden layer can effectively generate highly accurate results
by also improving the processing time. Therefore an ANN Multilayer Perceptron
with Backpropagation of error has been used to train the machine with 1, 2, 3
and 4 hidden layers 10 fold cross validation. The experiment had been contin-
ued up until 4 layer which eventually generated an excellent result. Table 2 lists
the result gathered from the experiments with 1 to 4 hidden layers. Although
by using only one hidden layer we have managed to classify 92.77 percent of
the instances correctly, however by increasing the layers to 4 we have managed
to classify 100 percent of the instances. Figure 6 illustrated the artificial neural
network design. The input layer corresponds to the 25 input sensors of the gas
turbine. The middle layers are used to form the relations between the neurons,
their number being determined at runtime. The output neurons are the three
classifications which indicates the status of the turbine.
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Table 1. Gas turbine sensors

Sensor description Unit Count

Power turbine rotor speed rpm 2

Gas generator rotor speed rpm 2

Power turbine exhaust temperature F 6

None drive end direction mm/SEC 1

Drive end vibration X direct um P-P 1

Turbine inlet pressure psia 1

Compressor inlet total pressure psia 1

Ambient temperature F 1

Axial compressor inlet temperature F 2

Mineral oil tank temperature F 1

Synthetic oil tank temperature F 1

OB bearing temperature C 1

IB bearing temperature C 1

IB thrust bearing temperature C 1

OB thrust bearing temperature C 1

Generator active power Mwatt 1

Grid voltage V 1

3.3 Prediction

The second phase of the proposed model is Prediction Phase, which is to predict
the future values for the next 24 h of all 25 sensors. Times series was used to lag
the data for 24 h followed with linear regression to predict the next 24. During
this phase by looking at the historical data we have already set threshold for each
of the sensors. Therefore if any of the predicted values for each of the sensors
falls below or beyond the allowed threshold then Alarm 2 gets activated. Figure 7
illustrates the predicted results for all the 25 sensors.

3.4 Anomaly Detection

Since combination of all the sensors together reflect the status of the turbine,
after predicting future value of all the sensors then all get merged into a single
test dataset. The Artificial Neural Network model which has been trained as
part of the Processing phase is used again, but this time to label the status of
the turbine for each of the instances. After predicting the status of the turbine
for all instances of the dataset, the developed framework iterate through all
labels and if any of the instances are labeled as failed Alarm 3 gets fired. System
then picks the time stamp of the predicted time and deduct it from the current
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Fig. 5. Turbine’s fail scenarios (Color figure online)

Table 2. ANN Multilayer Perceptron Optimisation

Layers count One Two Three Four

Correctly classified (%) 92.77 92.77 94.95 100

Incorrectly classified (%) 7.23 7.23 5.05 0

Kappa statistic 0.60 0.60 0.74 1

Mean absolute error 0.09 0.09 0.062 0

Root mean squared error 0.21 0.21 0.17 0

Relative absolute error (%) 57.32 57.79 39.10 0.34

Root relative squared error (%) 74.89 74.97 62.71 0.77

Coverage of cases (0.95 level) (%) 100 100 100 100

Mean rel. region size (0.95 level) 4.65 64.65 55.25 33.33

time to provide the estimated hours left until the system failure. In final step of
the Anomaly Detection phase the total remainder hours gets included into an
automatically generated email and sent out to the preset list of email addresses
as well as playing an audio alarm on the PC.
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Fig. 6. ANN multilayer perceptron proposed model

3.5 Overall Automated Process

Initially Weka was used to run each of the phases separately. However in the
final stage of the process we have actually formed the proposed framework using
Knime. Knime is an open source data analytics, reporting and integration plat-
form. Although there are other alternatives such as Weka’s KnowledgeFlow and
Microsoft Azure’s Machine Learning. Knime was chosen since it has the capabil-
ity of importing most of Weka’s features through the addition of a plugin. Also
being able to run java snippets and write the developed model into disk to free
up space on memory it is a preferred option in comparison to Azure’s Machine
Learning. The dataset was divided into two sets of training and test data as illus-
trated in Fig. 8. Two months of data was used for training which included 8 cases
of turbine failure with the remainder set aside for testing. The training dataset
has been used to form an Artificial Neural Network Multilayer Perceptron (MLP)
using Backpropagation of error. MLP is multilayer perceptron consists of mul-
tiple layers of artificial neurons which interact using weighted connections [10].
After training the model it was tested against the developed ANN MLP to clas-
sify the status of the engine. This implementation covered the Processing phase of
the proposed System. This was followed by introducing times series lag and linear
regression model to predict the next 24 h on the test dataset. By looking at the 8
failure situations thresholds were identified for each of the input sensors. There-
fore if during the prediction stage any of the sensor’s value go below or above the
set threshold the second Alarm goes off. However this alarm is an amber rated
alarm because that doesn’t mean necessarily the turbine will fail. With all 24 h of
predicted data for all the sensors gathered, in the final stage of the process all the
predicted data is put together as a test dataset and is tested against the model
developed in Processing Phase. If the status of the engine gets classified as False
then the third and last alarm gets fired.
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Fig. 7. Predicted Sensor values
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3.6 Evaluation

To test the accuracy and performance of the proposed model, 5 days worth of
data was removed from the dataset and the developed model used to predict
each of eliminated days hourly. To achieve this, performance of the turbine for
the next 1, 3, 6, 9, 12, 14, 16, 18 and 24 h for each days has been predicted. Then
the average performance for all these 5 days has been calculated. The average
performance shows up until 12 h system could predict the status of the turbine
with nearly 99 percent accuracy which is a reasonably high performance. Even
for the 16 h period, prediction was around 73 percent which is still considered
to be high performance. However after 18 h the prediction performance shows
sudden declines and when it gets to prediction of the next 24 h the result is really

Fig. 9. Hourly performance evaluation

Table 3. Comparison of real-time Status vs. Predicted Status

Hours Accuracy (%) Error (%)

100 0

3 100 0

6 100 0

9 100 0

12 98.716 1.284

14 84.287 15.713

16 73.539 26.461

18 65.221 34.779

24 58.545 41.455
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poor by being around 58 percent. Table 3 lists the average value of the result for
each prediction.

4 Conclusion

An implementation of a Context-Aware Cyber Physical System using Multilayer
Perceptron Artificial Neural Network, to predict the status of a gas turbine on an
offshore installation has been successfully developed. In this experiment a three
phased model has been proposed. In the processing phase, historical data of 25
sensors was collected from different areas of turbine to train an Artificial Neural
Network model as the basis of the prediction model. In the second phase future
value of each sensor has been predicted for a certain period of time using linear
regression. The final phase makes use of the model developed in phase one to
label the predicted data to detect anomalies prior to their occurrence. The model
developed proved to be capable of highly accurate predictions of gas turbine sta-
tus up to 16 h in advance with the accuracy of about 73 percent. Further research
will focus on extending the prediction time frame by assuring high accuracy in
anomaly identification through exploring various combinations of computational
intelligence techniques with conventional classification approaches.
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Abstract. We study the adaptation of convolutional neural networks
to the complex-valued temporal radio signal domain. We compare the
efficacy of radio modulation classification using naively learned features
against using expert feature based methods which are widely used today
and e show significant performance improvements. We show that blind
temporal learning on large and densely encoded time series using deep
convolutional neural networks is viable and a strong candidate approach
for this task especially at low signal to noise ratio.
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1 Introduction

Radio communications present a unique signal processing domain with a number
of interesting challenges and opportunities for the machine learning community.
In this field expert features and decision criterion have been extensively devel-
oped, and analyzed for optimality under specific criteria for many years. However
in the past few years the trend in machine learning applied to image processing
[11] and voice recognition [18] is overwhelmingly that of feature learning from
data rather than crafting of expert features, suggesting we should evaluate a
similar shift in this domain.

Concurrently wireless data demand is driving a need for improved radio effi-
ciency. High quality spectrum sensing and adaptation to improve spectral alloca-
tion and interference mitigation is an important route by which we may achieve
this. The FCC in the United States as well as counterparts in Europe are taking
seriously and pursuing spectrum policy which leverages some of this ideas from
Dynamic Spectrum Access (DSA) [4], making clear the need for improved spec-
trum sensing and signal identification algorithms allowing sensors and radios to
detect and identify spectrum users and interferers at the best possible range and
thus signal to noise ratio.
c© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 213–226, 2016.
DOI: 10.1007/978-3-319-44188-7 16



214 T.J. O’Shea et al.

Ideas such as DSA, opportunistic access and sharing of spectrum, and “Cog-
nitive Radio” (CR) [2], a more broad class of radio optimization through learn-
ing, have been widely discussed at the conceptual level. Efforts in these fields
however have been constrained to relatively specialized solutions which lack the
generality needed to deal with a complex and growing number emitter types,
interference types and propagation environments [6,7,9].

This is a significant challenge in the community as expert systems designed
to perform well on specialized tasks often lack flexibility and can be expensive
and tedious to develop analytically.

Building upon successful strategies from image and voice recognition domains
in machine learning, we demonstrate an approach in the radio using Convo-
lutional Neural Networks (CNNs) and Deep Neural Networks (DNNs) which
offers flexibility to learn features across a wide range of tasks and demonstrates
improved classification accuracy against current day approaches.

2 Modulation Recognition

In Dynamic Spectrum Access (DSA) one of the key sensing performed is that of
providing awareness of nearby emitters to avoid radio interference and optimize
spectrum allocation. This identifying and differentiating broadcast radio, local
and wide area data and voice radios, radar users, and other sources of poten-
tial radio interference in the vicinity which each have different behaviors and
requirements. Modulation Recognition then is the task of classifying the modu-
lation type of a received radio signal as a step towards understanding what type
of communications scheme and emitter is present.

This can be treated as an N-class decision problem where our input is a
complex base-band time series representation of the received signal. That is, we
sample in-phase and quadrature components of a radio signal at discrete time
steps through an analog to digital converted with a carrier frequency roughly
centered on the carrier of interest to obtain a 1×N complex valued vector.
Classically, this is written as in Eq. 1 where s(t) is a time series signal of either
a continuous signal or a series of discrete bits modulated onto a sinusoid with
either varying frequency, phase, amplitude, trajectory, or some permutation of
multiple thereof. c is some path loss or constant gain term on the signal, and
n(t) is an additive Gaussian white noise process reflecting thermal noise.

r(t) = s(t) ∗ c + n(t) (1)

Analytically, this simplified expression is used widely in the development of
expert features and decision statistics, but the real world relationship looks much
more like that given in Eq. 2 in many systems.

r(t) = ej∗nLo(t)

∫ τ0

τ=0

s(nClk(t − τ))h(τ) + nAdd(t) (2)

This considers a number of real world effects which are non-trivial to model:
modulation by a residual carrier random walk process, nLo(t), resampling by a
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residual clock oscillator random walk, nClk(t), convolution with a time varying
rotating non-constant amplitude channel impulse response h(t − τ), and the
addition of noise which may not be white, nAdd(t). Each presents an unknown
time varying source of error.

Modeling expert features and decision metrics optimality analytically under
each of these harsh realistic assumptions on propagation effects is non-trivial and
often forces simplifying assumptions. In this paper we focus on empirical mea-
surement of performance in harsh simulated propagation environments which
include all of the above mentioned effects, but do not attempt to analytically
trace their performance in closed form.

2.1 Expert Cyclic-Moment Features

Integrated cyclic-moment based features [1] are currently widely popular in per-
forming modulation recognition and for forming analytically derived decision
trees to sort modulations into different classes. In general, they take the form
given in Eq. 3.

snm = fm(xn(t)...xn(t + T )) (3)

By computing the m’th order statistic on the n’th power of the instantaneous
or time delayed received signal r(t), we may obtain a set of statistics which
uniquely separate it from other modulations given a decision process on the
features. For our expert feature set, we compute 32 features. These consist of
cyclic time lags of 0 and 8 samples. And the first 2 moments of the first 2 powers
of the complex received signal, the amplitude, the phase, and the absolute value
of phase for each of these lags.

We train several classifiers on these set of expert features as a benchmark
comparison. These leverage scikit-learn and consist of a Decision Tree, K=1-
Nearest Neighbor, Gaussian Naive Bayes, and an RBF-SVM. Additionally, we
train a 3-layer deep neural network consisting only of fully connected layers of
size 512, 256, and 11 neurons. Each of these is measured to provide a performance
baseline estimate for how a current day system operating on such a feature set
might perform. Best expert-feature performance is obtained from the SVM and
DNN based approaches.

2.2 Convolutional Feature Learning

We evaluate several feature learning methods, but our principal method is that
of a convolutional neural network (CNN) provided with a windowed input of
the raw radio time series r(t). We treat the complex valued input as an input
dimension of 2 real valued inputs and use r(t) as a set of 2 ×N vectors into a
narrow 2D Convolutional Network where the orthogonal synchronously sampled
In-Phase and Quadrature (I & Q) samples make up this 2-wide dimension.
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3 Evaluation Dataset

While simulation and the use of synthetic data sets for learning is sometimes
frowned upon in machine learning, radio communications presents a special case.
Training with real data is important and valuable - and will be addressed in
future work - but certain properties of the domain allow us to say our simulation
is quite meaningful.

Radio communications signals are in reality synthetically generated, and we
do so deterministically in a way identical to a real system, introducing modula-
tion, pulse shaping, carried data, and other well characterized transmit parame-
ters identical to a real world signal. We modulate real voice and text data sets
onto the signal. In the case of digital modulation we whiten the data using a
block randomizer to ensure bits are equiprobable.

Radio channel effects are relatively well characterized. We employ robust
models for time varying multi-path fading of the channel impulse response, ran-
dom walk drifting of carrier frequency oscillator and sample time clocks, and
additive Gaussian white noise. We pass our synthetic signal sets through harsh
channel models which introduce unknown scale, translation, dilation, and impul-
sive noise onto our signal.

We model the generation of this dataset in GNU Radio [3] using the GNU
Radio channel model [14] blocks and then slice each time series signal up into
a test and traning set using a 128 samples rectangular windowing process. The
total dataset is roughly 500 MBytes stored as a python pickle file with complex
32 bit floating point samples.

3.1 Dataset Availability

This data will hopefully be of great use to others in the field and may serve as
a benchmark for this domain. This dataset is available in pickled python format
at http://radioml.com, consisting of time-windowed examples and correspond-
ing modulation class and SNR labels. We hope to grow scope of modulations
addressed and the channel realism as interest in this area.

3.2 Dataset Parameters

We focus on a dataset consisting of 11 modulations: 8 digital and 3 analog
modulation, all are widely used in wireless communications systems all around
us. These consist of BPSK, QPSK, 8PSK, 16QAM, 64QAM, BFSK, CPFSK, and
PAM4 for digital modulations, and WB-FM, AM-SSB, and AM-DSB for analog
modulations. Data is modulated at a rate of roughly 8 samples per symbol with
a normalized average transmit power of 0 dB.

3.3 Dataset Visualization

Inspecting a single example from each class of modulation in the time (Fig. 1)
and frequency domain (Fig. 2), we see a number of similarities and differences

http://radioml.com
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Fig. 1. Time domain of high-SNR
example classes

Fig. 2. Power spectrum of high-SNR
example classes

between modulations visually, but due to pulse shaping, distortion and other
channel effects they are not all readily discernible by a human expert visually.

In the frequency domain, each of the signals follows a similar band-limited
power envelope by design whose shape provides some clues as to the modulation,
but against poses a difficult noisy task for a human expert to judge visually.

3.4 Modulated Information

In radio communications, signals are typically comprised of a number of modu-
lated data bits on well defined and understood basis functions into discrete modes
formed by these bases. Complex baseband representation of a signal decomposes
a radio voltage level time-series into its projections onto the sine and cosine func-
tions at a carrier frequency. By manipulating the frequency, amplitude, phase,
or sum thereof data bits are then modulated into this space through discrete and
separable modes for each distinct symbol period in time in the case of digital,
or continuous location in the case of analog modulation. For the case of QPSK
this phase-mapping is shown in 4.

s(ti) = ej2πfct+π
2ci+1

4 , ci ∈ 0, 1, 2, 3 (4)

Pulse shaping filters such as root-raised cosine are then typically applied
to band-limit the signal in frequency and remove sharp wide-band transients
between these distinct modes, resulting in mixing of adjacent symbols’ bases at
the transmitter in a deterministic and invertible. In our simulated data set we
use a root-raised cosine pulse shaping filter with an excess bandwidth of 0.35 for
each digital signal.

3.5 Effects on the Modulated Signal

Channel effects in contrast are not deterministic and not completely invertible
in a communications system. Real systems experience a number of effects on the
transmitted signal, which make recovery and representation thereof challenging.
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Thermal noise results in relatively flat white Gaussian noise at the receiver which
forms a noise floor or sensitivity level and signal to noise ratio. Oscillator drift due
to temperature and other semiconductor physics differing at the transmitter and
receiver result in symbol timing offset, sample rate offset, carrier frequency offset
and phase difference. These effects result in a temporal shifting, scaling, linear
mixing/rotating between channels, and spinning of the received signal based on
unknown time varying processes. Last, real channels undergo random filtering
based on the arriving modes of the transmitted signal at the receiver with varying
amplitude, phase, Doppler, and delay. This is a phenomenon commonly known as
multi-path fading or frequency selective fading, which occurs in any environment
where signals may reflect off buildings, vehicles, or any form of reflector in the
environment. This is typically removed at the receiver by the estimation of the
instantaneous value of the time varying channel response and deconvolution of
it from the received signal.

3.6 Generating a Dataset

To generate a well characterized dataset, we select a collection of modulations
which are used widely in practice and operate on both discrete binary alphabets
(digital modulations), and continuous alphabets (analog modulations). We mod-
ulate known data over each modem and expose them each to the channel effects
described above using GNU Radio. We segment the millions of samples into a
dataset consisting of numerous short-time windows in a fashion similar to how
a continuous acoustic voice signal is typically windowed for voice recognition
tasks. We extract steps of 128 samples with a shift of 64 samples to form our
extracted dataset.

After segmentation, examples are roughly 128 μ sec each assuming a sam-
ple rate of roughly 1 MSamp/sec. Each contains between 8 and 16 symbols
with random time offset, scaling, rotation, phase, channel response, and noise.
These examples represent information about the modulated data bits, informa-
tion about how they were modulated, information about the channel effects the
signal passed through during propagation, and information about the state of
the transmitted and receiver device states and contained random processes. We
focus specifically on recovering the information about how the signal was mod-
ulated and thus label the dataset according to a discrete set of 11 class labels
corresponding to the modulation scheme.

4 Technical Approach

In a radio communication system, one class of receiver which is commonly con-
sidered is a “matched-filter” receiver. That is on the receive side of a commu-
nications link, expert designed filters matched with each transmitted symbol
representation are convolved with the incoming time signal, and form peaks as
the correct symbol slides over the correct symbol time in the received signal. By
convolving, we average out the impulsive noise in the receiver in an attempt to
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optimize signal to noise. Typically, before this convolutional stage, symbol tim-
ing and carrier frequency is recovered using an expert envelope or moment based
estimators derived analytically for a specific modulation and channel model. The
intuition behind the use of a convolutional neural network in this application then
is that they will learn to form matched filters for numerous temporal features,
each of which will have some filter gain to operate at lower SNR, and which
when taken together can form a robust basis for classification.

4.1 Learning Invariance

Many of these recovery processes in radio communications systems can be
thought of in terms of invariance to linear mixing, rotation, time shifting, scal-
ing, and convolution through random filters (with well characterized probabilistic
envelopes and coherence times). These are analogous to similar learning invari-
ance which is heavily addressed in vision domain learning where matched filters
for specific items or features in the image may undergo scaling, shifting, rotation,
occlusion, lighting variation, and other forms of noise. We seek to leverage the
shift-invariant properties of the convolutional neural network to be able to learn
matched filters which may delineate symbol encoding features naively, without
expert understanding or estimation of the underlying waveform.

4.2 Evaluation Networks

We train against several candidate neural networks. A 4-layer network utilizing
two convolutional layers and two dense fully connected layers (CNN and CNN2).
Layers use rectified linear (ReLU) activation functions except for a Softmax
activation on the one-hot output layer. We use this network depth as it is roughly
equivalent to networks which work well on similar simple datasets in the vision
domain such as MNIST.

Regularization is used to prevent over-fitting. CNN uses Dropout, a ‖W‖2
norm penalty on the convolutional layer weights, encouraging minimum energy
bases, and a ‖h‖1 norm penalty on the first dense layer activation, to encourage

Fig. 3. CNN architecture Fig. 4. Loss plots CNN2 60 % dropout
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sparsity of solutions [5,10]. CNN2 uses only dropout, and DNN uses only dropout.
Training is conducted using a categorical cross entropy loss function and an Adam
[15] solver which seems to slightly outperform RMSProp [12] on our dataset. We
implement our network training and prediction in Keras [16] running on top of
TensorFlow [19] on an NVIDIA Cuda [8] enabled Titan X GPU in a DIGITS
Devbox.

An illustration of the CNN architecture is shown in Fig. 3. CNN2 is identical
but larger, containing 256 and 80 filters in layers 1 and 2, and 256 neurons in
layer 3. The DNN evaluated contains 4 dense layers of size 512, 256, 128, and
n-classes neurons.

4.3 Training Complexity

We train our highest complexity model for approximately 23 min with the Adam
solver over the ∼ 900, 000 sample training set in batch sizes of 1024. Epochs take
roughly 15 s and we do observe some over-fitting despite out regularization, but
validation loss does not significantly inflect and we keep the best validation loss
model for evaluation Fig. 4.

4.4 Learned Features

Plotting learned features can sometimes give us an intuition as to what the
network is learning about the underlying representation. In this case, we plot
convolutional layer 1 and convolutional layer 2 filter weights below. In Fig. 5, the
first layer, we have 64 filters of 1× 3. In this case we simply get a set of 1D edge
and gradient detectors which operate across each I and the Q channel.

In convolutional layer 2, weights shown in Fig. 6 we compose this first layer
feature map into 64*16× 2× 3 larger feature maps, which comprise what is
occurring on both I and Q channels simultaneously. These feature maps do not
look hugely different than those seen at the lower levels of an image conv-net
comprising of 2D learned edge detectors and Gabor-like filters.

Fig. 5. Conv1 layer weights (1× 3 fil-
ters)

Fig. 6. Conv2 layer weights (2× 3
filters)
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5 Results

To evaluate the performance of our classifier, we look at classification perfor-
mance on a test data set. We train on a corpus of approximately 12 million com-
plex samples divided across the 11 modulations. These are divided into training
examples of 128 samples in length. We use approximately 96,000 example for
training, and 64,000 examples for testing and validation. These samples are uni-
formly distributed in SNR from −20dB to +20dB and tagged so that we can
evaluate performance on specific subsets.

After training, we achieve a validation loss of 0.874 and a classification accu-
racy of 66.9 % across all signal to noise ratios on the test dataset, but to under-
stand the meaning of this we must inspect how this classification accuracy breaks
down across the SNR values of the different training examples, and how it com-
pares to the performance of existing expert feature based based classifiers.

Plot test set modulation classification accuracy as a function of example sig-
nal to noise ratio for each classifier in Fig. 7. Solid lines show classifiers trained
directly on the radio time series data performing deep feature learning, while dot-
ted lines indicate classifiers using only the expert features previously described
as input. This view is a critical way to inspect results as performance at low SNR
impacts range and coverage area over which we can effectively use the classifier.
We obtain significantly better low-SNR classification accuracy performance from

Fig. 7. Classifier Performance vs SNR
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Fig. 8. Conv net confusion matrix at +18dB SNR

large convolutional neural networks (CNN2) with significant amounts of dropout
regularization (0.6). At low-SNR the best CNN model is outperforming expert
feature based systems by 2.5–5dB of SNR, while after +5dB SNR performance
is similar. This is a significant performance improvement, and one that could
potentially at least double effective coverage area of a sensing system.

For our highest SNR case CNN2(0.6) classification we show a confusion
matrix in Fig. 8. At +18dB SNR, we have a clean diagonal in the confusion
matrix and can see our remaining discrepancies are that of 8PSK misclassified
as QPSK, and WBFM misclassified as AM-DSB. Both of these are explainable
in the underlying dataset. An 8PSK symbol containing the specific bits is indis-
cernible from QPSK since the QPSK constellation points are spanned by 8PSK
points. In the case of WBFM/AM-DSB the analog voice signal has periods of
silence where only a carrier tone is present making these examples indiscernible.
Therefore it is unlikely that and accuracy of 100 % can be obtained even at high
SNR on this data set and making the remaining confusion reasonably tolerated.

To get a better understanding of how performance varies with SNR, we
inspect confusion matrices for several classifiers at differing SNR levels.

At very low SNR (−6dB), in Figs. 9, 10, 11, and 12 we see an interesting case
where all are around 50 % accuracy within +−20 %. In this case the cleaner
diagonal on the CNN2 classifier is significantly more pronounced than the other
3 cases shown, in this region learned features have a significant performance
advantage.
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Fig. 9. −6dB performance of CNN2
on raw sample data

Fig. 10. −6dB performance of DNN
on expert features

Fig. 11. −6dB performance of SVM
on expert features

Fig. 12. −6dB performance of deci-
sion tree on expert features

At slightly higher, but still low SNR (0dB) performance for all 4 classifiers
now has a well defined diagonal, but we see less mis-classifications occurring
off-diagonal, especially in the 8PSK case.

6 Model Complexity

An important consideration in many radio system is the training and classifica-
tion run time due to computational complexity. One common critique of deep
learning is its need for large amounts of compute resources, however in this paper
our network is relatively compact and the dataset relatively small. We compare
the training and classification run times for each of the models below (Figs. 13,
14, 15 and 16).

In Fig. 17 we can see that our CNN model does take a significant amount of
time to train, but is lower than the time required for for the SVM training case.
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Fig. 13. 0dB performance of CNN2 on
raw sample data

Fig. 14. 0dB performance of DNN on
expert features

Fig. 15. 0dB performance of SVM on
expert features

Fig. 16. 0dB performance of decision
tree on expert features

Fig. 17. Model training runtime in
seconds

Fig. 18. Signal classification time in
seconds (per SNR-batch)
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In Fig. 18 it turns out that classification time with this model using Keras
compiled python is significantly faster than most of the other models including
nearest-neighbor and SVM models using scikit-learn. Only the Decision Tree and
GaussianNB models obtain faster classification run times.

In both cases, a ConvNet based classification model of this scale for such a
dataset presents an attractive choice for this task when classification performance
is considered.

7 Conclusions

While these results are not a comprehensive comparison of existing best case
expert feature based modulation classifiers, they do demonstrate that compared
to a relatively well expert regarded approach, blind Convolutional Networks
on time series radio signal data are viable and work quite well. In Fig. 7, we
compared accuracy to SNR for several classifier strategies and believe that for low
SNR and short-time examples (128 complex samples), this represents a powerful
and likely state of the art accuracy approach to modulation classification. This
approach holds the potential to easily scale to additional modulation classes and
should be considered as a strong candidate for DSA and CR systems which rely
on robust low SNR classification of radio emitters.

8 Future Work

Our results compare to a reasonable approximation of the current best expert
system approach, but because no robust competition data sets exist in the emerg-
ing field of machine learning in the radio domain, it is difficult to directly com-
pare performance to current state of the art approaches. We hope to further
evaluate this in later work, and improve both the feature learning and expert
approaches from their current level. Performance refinements are inevitable on
the CNN2 network architecture, we expended some effort optimizing it but did
not do so exhaustively. Larger filters, differing architecture, and pooling lay-
ers all may affect performance significantly, but were not fully investigated for
their suitability in this work. Numerous additional techniques could be applied
to the problem including the introduction of invariance to additional channel
induced effects such as dilation, I/Q imbalance, phase offset and others. Spa-
tial Transformer Networks [17] have demonstrated a powerful ability to learn
this type of invariance on image data and may serve as an interesting candidate
for enabling improved invariance learning to these effects. Sequence models and
recurrent layers [13] may be able to represent a signal sequence embedding and
will almost certainly prove valuable in longer time representation, but we have
yet to investigate this area fully. This application domain is ripe for a wide array
of further investigation and applications which will significantly impact the state
of the art in wireless signal processing and cognitive radio domains, shifting them
more towards machine learning and data driven approaches.
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Abstract. For modeling of multivariate time series, input variable selec-
tion is a key problem. Feature selection is to select a relevant subset to
reduce the dimensionality of the problem without significant loss of infor-
mation. This paper presents the estimation of mutual information and
its application in feature selection problem. Mutual information is one
of the most common strategies borrowed from information theory for
feature selection. However, the calculation of probability density func-
tion (PDF) according to the definition of mutual information is difficult,
especially for high dimensional variables. A k -nearest neighbor (k -NN)
method based estimator is widely used to estimate the mutual infor-
mation between two variables directly from the data set. Nevertheless,
this estimator depends on smoothing parameter. There is no theoreti-
cally method to choose the parameter. This paper purposes to solve two
problems: one is to employ resampling methods to help the mutual infor-
mation estimator to improve feature selection and the other is to apply
these methods to a wind power prediction problem.

Keywords: Mutual information · Feature selection · K -nearest
neighbor · Permutation test · Wind power prediction

1 Introduction

Multivariate time series are widely exist in the real world. Such as in economics
[1], meteorology [2] and many other fields. It has been proved that the forecasting
model with multivariate time series can achieve higher accuracy than those with
univariate time series [3]. Input data of the multivariate time series are originally
high-dimensional. However, many of the features are either irrelevant or redun-
dant to the real problem. In order to avoid the curse of dimensionality caused
by learning with large number of features and limited sample size, feature selec-
tion is necessary before any further learning steps. Selecting features is impor-
tant in practice, especially when distance-based methods like k -NN, radial basis
function networks (RBF) and support vector machines (SVM) are considered.
c© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 227–237, 2016.
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These methods are indeed quite sensitive to irrelevant inputs: their performances
tend to decrease when useless variables are added to the data [4].

To tackle the feature selection problem [5], two broad classes: filter and wrap-
per methods are concerned. The filter approach consists in a preprocessing of
the input data before the model is built. The wrapper approach attempts to
design the model at the same time that performs the feature selection. In this
paper, both of the two methods are involved.

For the input selection strategy, two different strategies are commonly used:
forward selection and backward elimination. The backward elimination proce-
dure starts to build a model from all the initial features. With high-dimensional
data, this procedure will be too time consuming. A forward selection procedure
starts from an empty set, then the selected feature input is added to the empty
set one by one. Mutual information (MI) is unique in its close ties to Shannon
entropy [6] and the theoretical advantages derived from this. It has been widely
used for feature selection tasks [7–13]. The combination of mutual information
and a forward procedure is considered to be an option of feature selection in this
paper.

According to the definitions of mutual information, two different methods can
be used to estimate MI values. One is to compute the PDFs of the input variables
and the other is to estimate the entropies instead. The widespread approaches
for estimating MI by computing PDFs are histogram methods, kernel-based
estimators. The k -NN approach which was popularized by Kraskov et al. [14]
has been widely used because of its ability to estimate the MI directly from the
data set. This avoids direct PDF estimation. Nevertheless, choosing an optimal
value of k in a practical application is always a problem, due to the fact that
only a finite amount of training data is available. This problem is well known as
the bias/variance dilemma in the statistical learning community [5]. The result
of the feature selection highly depends on the value of the parameter k. By
choosing proper values, the algorithm allows to minimize either the statistical
or the systematic errors.

This paper proposes to apply resampling methods to help the MI estima-
tors to choose k value. A synthetic data set is to demonstrate the effectivity
of the methods. After the k is determined, a proposed procedure is then used
to select features. Multilayer Perceptron (MLP) neural network is as the non-
linear model. The application of these methods is illustrated on a real-world
wind power prediction problem. The data collected have eighteen inputs and
one output. Relevant features are selected and the performance can be improved
obviously.

The structure of the rest is organized as follows. Section 2 presents the MI cri-
terion and shows how to extend the MI concept by using nearest neighbor when
the dimension of the original space is high. In Sect. 3, the number of neighbors
is determined and the selection procedure is given. The application of these
methods is outlined in Sect. 4. Finally, conclusions are given in Sect. 5.
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2 Feature Selection Based on Mutual Information

2.1 Mutual Information

A powerful formalization of the uncertainty of random variables is Shannon’s
entropy. Denote the marginal density functions and joint probability density
function of two random variables X and Y as μX(x), μY (y) and μXY (x, y). The
marginal densities of X and Y are μX(x) =

∫
μ(x, y)dy and μY (y) =

∫
μ(x, y)dx.

According to the formulation of Shannon [6], the uncertainty on X is given by
its entropy defined as

H(X) = −
∫

μX(x)logμX(x)dx (1)

H(Y ) = −
∫

μY (y)logμY (y)dy (2)

If Y depends on X, the uncertainty on Y is reduced when X is known. This is
formalized through the concept of conditional entropy:

H(Y |X) = −
∫

μX(x)
∫

μY (y|X = x)logμY (y|X = x)dydx (3)

The joint entropy is used to examine the amount of information among multiple
variables. The joint entropy of the two continuous random variables X and Y is
as follows:

H(X,Y ) = −
∫ ∫

μXY (x, y)logμXY (x, y)dxdy (4)

The MI is aimed to measure the loss of uncertainty on Y when X is know. Due
to the mutual information and entropy properties, the mutual information can
be defined as [3]:

I(X,Y ) = H(X) + H(Y ) − H(X,Y ) (5)

The MI between two random variables X and Y can also be computed as:

I(X,Y ) =
∫ ∫

μXY (x, y)log
μXY (x, y)

μX(x)μY (y)
dxdy (6)

It corresponds to the Kullback-Leibler distance between the joint probability
density of X and Y, and the product of their respective marginal distributions.
Only the estimate of the joint PDF between X and Y is needed to estimate the
MI between the two variables.

2.2 Mutual Information Estimation

The k -NN method has been widely used as estimator for the entropy and had
been extended to the MI by Alexander Kraskov etc. [14]. The MI means to answer
the question whether some knowledge on the value of X may help indentifying
what can be the possible values for Y. For a specific data set, if its neighbors
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in the X and Y spaces correspond to the same data, then knowing X helps in
knowing Y, which reflects a high MI.

Assume some metrics to be given on the spaces spanned by X, Y and Z =
(X,Y ). For each point zi = (xi, yi), its neighbors by distance di,j = ‖zi − zj‖.
x and y can be either a scalar or vector. The maximum norm for any pair of
points z and z’ is defined by:

∥∥∥z − z
′
∥∥∥ = max

{∥∥∥x − x
′
∥∥∥ ,

∥∥∥y − y
′
∥∥∥
}

(7)

while any norm can be used for
∥∥∥x − x

′
∥∥∥ and

∥∥∥y − y
′
∥∥∥. Denote by ε(i)/2 the

distance from zi to its k -th neighbors, and by εx(i)/2 and εy(i)/2 the distances
between the same points projected into the X and Y subspaces. Obviously,
ε(i) = max {εx(i), εy(i)}.

If nx(i) is the number of the points xj whose distance from xi is strictly less
than ε(i)/2, and similarly for y instead of x. The estimate of MI is then

I(X,Y ) = ψ(k) + ψ (N) − 1
N

N∑

i=1

[ψ(nx(i) + 1) + ψ(ny(i) + 1)] (8)

Here, ψ(x) is the digamma function,

ψ(x) = Γ (x)−1
dΓ (x) /dx (9)

with
Γ (t) =

∫ ∞

0

ut−1e−udu (10)

The digamma function satisfies the recursion ψ(x+1) = ψ(x)+1/x and ψ(1) =
−C where C = 0.5772156 · · · is the Euler-Mascheroni constant. The estimator
presented in Eq. (8) is one of the two proposed in Kraskov’s literature.

3 Proposed Method

3.1 The Number of Nearest Neighbors

In the estimation of MI, the number of neighbors k acts as a smoothing para-
meter. With a small value of k, the estimator has a large variance and a small
bias, whereas a large value of k leads to a small variance and a large bias. In a
word, while the k -NN may be helpful for measuring the MI between variables, it
still suffers from the limitations of choosing appropriate parameter k. The aim
of this subsection is to investigate this problem.

Since the effectiveness of Eq. (8) depends on careful choose of neighbors k,
resampling techniques based on [4,15] are used in this paper. A different eval-
uation criterion is applied. A cross-validation approach is used to evaluate the
variance of the estimator while a permutation method provide some baseline
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value of the mutual information that can reduce the influence of the bias. Con-
sider Xi is the input feature, a randomized Yi is denoted as Yi,π. Two resampling
distributions are built for both MI(Xi, Y ) and MI(Xi, Yπ). MI(Xi, Y ) is the
estimations of the mutual information between Xi and Y , while MI(Xi, Yπ) is
the mutual information between a randomized version of Yπ and Xi. The proce-
dure results in two samples of estimates of MI(Xi, Y ) and MI(Xi, Yπ), where
π denotes the permutation operation. This is done by performing several esti-
mations of (i) the mutual information between Xi and Y and (ii) the mutual
information between Yπ and Xi, using several non-overlapping subsets of the
original sample, in a cross-validation resampling scheme. To evaluate the differ-
ences between them, a z-test is used to determine the optimal value of k instead
of using t-test as [4,15] did. Because z-test is a commonly used average differ-
ence test method in large sample (i.e., sample size greater than 30). The optimal
value of k is the one that best separates those two distributions according to the
z-test :

zi,k =
μ − μπ√
σ2

N + σ2
π

N

(11)

where μ and μπ denote the empirical mean of MI(Xi, Y ) and MI(Xi, Yπ), σ
and σπ denote their empirical standard deviation respectively. The optimal k is
chosen as the value of k that corresponding to the largest value of zi,k.

3.2 The Procedure of Feature Selection

The primary aim of feature selection is to improve the quality of the prediction
though the choice of feature inputs. Both the filter and wrapper methods are
involved in this paper. The filter method is used at the first two steps and the
wrapper method is used at the last step. The procedure is shown as the following
steps.

Step 1: Form the initial input and output pairs in accordance with the orig-
inal dataset. The input-output pairs can be expressed as So = {(X,Y )}. Select
an optimal value of k according to the resampling methods mentioned in the
Sect. 3.1.

Step 2: Calculate the mutual information between the input and output vari-
ables MI(Xi, Y ) on the basis of Eq. (8), i is the number of the original input
series. Maintain the MI values in vector M .

Step 3: Set a threshold α and a span β on the mutual information according
to the computed MI values. If MIi < α, the feature is deleted from M . The rest
of the features are used as inputs to construct the MLP forecasting model. If
MIi > α + β, these features are used as model inputs. And by this analogy, if
MIi > α + nβ, (1 � n < i, n is determined according to the specific problem),
the selected features are applied to construct forecasting model. Compare the
performances of all the groups and select the best one as feature input set (This
step will be described in the real world application in detail).
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4 Experiments and Discussion

The mutual information, with a nearest neighbor-based estimator, and the for-
ward search combined together present a good compromise between computation
time and performances. Two experiments are examined to illustrate the para-
meter setting in the MI estimation, the effectiveness of feature selection and the
application of these methods.

4.1 A Simulation Study

A synthetic data is used in this section to illustrate the effect of the parameter.
This data is derived from the following functions. These functions refer to the
example in references [16,17]. Some modifications have been made to assess the
efficiency of the method in this paper. Five input variables Xi, 1 ≤ i ≤ 5 and
one output variable Y are given as follow:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X1 = t2 − t + et + ε1

X2 = sin(t) + ε2

X3 = t3 + t + ε3

X4 = t2 + 2 ∗ t + cos(t) + ε4

X5 = t ∗ sin(t) − t2 + ε5

(12)

Y = X12 + X1 ∗ X2 + 4 ∗ cos(X3) + 10 ∗ X4 + ε6 (13)

where t is uniformly distributed over [−1, 1], and εi, 1 ≤ i ≤ 6 are uniformly
distributed noise over [−0.1, 0.1]. X1,X2,X3,X4 are relevant input variables
while X5 are irrelevant variables and have no predictive power. The sample size

Fig. 1. Values of zk for MI(X4, Y ).(k = 6).
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is 2000. Apparently, the variable X4 is a relevant feature. When evaluating the
MI between Y and X4, a zk value is obtained for each value of k, as shown
in Fig. 1. The largest zk value is when k = 6 in the MI(X4, Y ). This value
corresponds to the parameter k that best separates the relevant variable and its
permutation variable. The other k values can be calculated in a similar manner.
The optimal k for all features is chosen as the one corresponding to the largest
value of zk over all values of k over all features. This way, features that are
useless do not participate in the choice of the optimal value. In this paper, k
is chosen as 8. The computed MIi = I(Xi, Y ) values are presented in Table 1,
from which it can be seen that the proposed method helps to select four relevant
variables and can successfully avoid the influence of irrelevant variable.

Table 1. Mutual information value of the 5 variables

MI MI1 MI2 MI3 MI4 MI5

Value 0.101 0.161 0.435 0.652 0.0001

4.2 Application in the Wind Power Prediction

To evaluate these methods, a wind data collected by the low-wind-speed wind
turbine FD-77 from a wind power plant of Jiangsu province in China is used
for this study. Wind power is undergoing the fastest rate of growth of any form
of electricity generation in the world. As wind power technology has become
mature, it can now be considered as a valuable supplement to conventional
energy sources. This data were recorded from June 1, 2012 to December 31,
2012 and sampled once every five minutes. It has eighteen inputs and one out-
put. The current moment inputs are used to predict the current moment output.
The variables of the dataset are shown in Table 1. The columns represent the
average speed, the average wind direction, the standard deviation, wind speed,
wind direction respectively. The lines represent the heights of the measuring
points. They are 10 m, 50 m, and 70 m. The last two lines are the environment
temperature, humidity and pressure. The output is the wind power which is rep-
resented as Y . To get a precise prediction, irrelevant inputs should be removed
from the feature inputs. Thus, feature selection is an important preprocessing
step. To construct experiments, 1000 samples are portioned into two parts: the
first 700 samplings for training and the rest 300 samplings for testing.

To evaluate the accuracy of the forecasting model, two different criterions
including the rootmean squared error (RMSE)and themeanabsolute error (MAE)
are used in the experiments. These performance indexes can be written as

RMSE =

√√√√ 1
N

N∑

i=1

[ŷi − yi]2 (14)

MAE =
1
N

N∑

i=1

|ŷi − yi| (15)
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Table 2. Variables of the wind data

avgsp(m/s) avgdir(◦) standard sp(m/s) dir

10 m x1 x2 x3 x4 x5

50 m x6 x7 x8 x9 x10

70 m x11 x12 x13 x14 x15

temp(◦C) hum pressure(0.1KPa) power(W)

x16 x17 x18 Y

where N is the number of observed values, ŷi is the predicted values and yi is
the actual values (Table 2).

Multilayer perceptron (MLP) neural networks are employed as the predic-
tion model. Data enter the MLP from the input layer and the final response
is presented from the output layer. The hidden layer usually plays a filtering
and synthesis role for the inputs. The optimal value (on the learning set) of
k, searched between 1 and 20, is found to be 15. Figure 2 displays the mutual
information between 18 variables and the power output. All relevant features
have higher mutual information then non-relevant ones only for well-chosen val-
ues. According to the step 3 in Sect. 3.2, the MI threshold α = 0.1, the span
β = 0.1 in this problem. If MIi < α, the features are deleted. Compute the
RMSE and MAE values to get the model performance. And by this analogy,
if MIi > α + β = 0.2, MIi > α + 2β = 0.3, etc., compute the RMSE and MAE
values respectively. Table 3 illustrates that the selection of feature inputs accord-
ing to the MI values. Table 4 shows the averaged RMSE and MAE of the 10
runs with MLP for wind power prediction. From Table 4 it can be seen that
all the selected feature inputs improve the forecasting performance. The mutual

Fig. 2. Mutual information between 18 variables and the wind power output
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Table 3. Select feature inputs according to the MI values

MI value Symbol Feature inputs

> 0.1 X1 X \ x3x8x13

> 0.2 X2 X \ x3x4x5x8x10x13

> 0.3 X3 x1x6x7x9x11x12x14x16x17x18

> 0.4 X4 x1x6x9x11x14x16x17

> 0.5 X5 x1x6x9x11

> 0.6 X6 x1x6x11

information of x3, x8, x13 are much smaller than other values as shown in Fig. 2.
These variables are removed from the input set. It means that the standard
deviations are irrelevant to the output. The X5(x1, x6, x9, x11) has the smallest
values of RMSE and MAE. This can be interpreted as the input set X5 can
represent the relevance between the inputs and the output. Another input set
X6 contains three variables, however, the RMSE and MAE are slightly larger
then that of X5. That is to say, the variable x9 has some positive effect on the
forecasting performance. Thus, the number of feature inputs is 4 in this exper-
iment. The feature inputs are the wind speed variables. The variable selection
criteria based on the MI estimator and the selection procedure work well for
relative feature selection and removing redundant variables. The variables they
select perform well for forecasting models.

Table 4. Select feature inputs according to the MI values

Original inputs X1 X2 X3 X4 X5 X6

RMSE(W) 3.94 3.19 3.27 3.79 2.01 1.89 1.90

MAE(W) 3.49 2.66 3.44 3.04 1.57 1.46 1.47

5 Conclusion

Feature selection problem encountered in multivariate time series forecasting is
investigated in this paper. It is a fundamental preprocessing step in supervised
regression problems. Combining the use of the MI and a forward procedure
is a good option for feature selection. The main disadvantage of this method
is that the estimation of the MI is often difficult in high-dimensional spaces.
Nearest neighbor-based MI estimator is one of the acceptable approaches for
such estimation. However, the number of neighbors should be determined before
estimating the MI values. The proposed procedure first helps to determine the
k value. In this paper, the optimal number of neighbors is chosen by using
the permutation resampling methods and the measuring standard is the z-test.
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Once the number of neighbors is fixed, the feature selection procedure is used to
select optimal inputs. The third step of the procedure is in a wrapper manner.
A threshold is set to give a criterion criteria of selection.

The methods applied to a wind power prediction indicated that, the k value
and the MI effect the feature selection and improve the forecasting performances.
The relevant inputs are selected from the original data set. The model uses
selected features achieved better accuracy than the model trained with the orig-
inal set. It has been shown that the quality of the inputs is more significant
than the size of the training set. The proposed method can be applied to other
multivariate time series forecasting problems.
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Abstract. The incremental learning is a method to compose an asso-
ciate memory using a chaotic neural network and provides larger capacity
than correlative learning in compensation for a large amount of compu-
tation. A chaotic neuron has spatio-temporal sum in it and the tem-
poral sum makes the learning stable to input noise. When there is no
noise in input, the neuron may not need temporal sum. In this paper,
to reduce the computations, a simplified network without temporal sum
is introduced and investigated through the computer simulations com-
paring with the network as in the past. Then, to shorten the learning
steps, the learning parameters are changed during the learning along 3
functions.

1 Introduction

The incremental learning proposed by the authors is highly superior to the auto-
correlative learning in the ability of pattern memorization [1,2].

The idea of the incremental learning is from the automatic learning [3]. In
the incremental learning, the network keeps receiving the external inputs. If the
network has already known an input pattern, it recalls the pattern. Otherwise,
each neuron in it learns the pattern gradually. Therefore, the weak point of the
learning is computational complexity. The network takes steps to learn input
patterns.

The neurons used in this learning are the chaotic neurons, and their network
is the chaotic neural network, which was developed by Aihara [4].

A chaotic neuron has spatio-temporal sum in it and the temporal sum makes
the learning possible with noisy inputs. But, when inputs don’t include any
noises, the neuron can be more simple without the temporal sum. This simpli-
fication reduces the computational complexity. In this paper, a network with
spatio-temporal sum is called a usual network and a network without the sum
is called a simplifed network.

In this paper, first, we explain the chaotic neural networks and the incremen-
tal learning, then simplify the network by eliminating the temporal sum from the
chaotic neurons and examine the simplified network comparing with the usual
network. Secondly, we investigate the learning, changing the learning parameter
along a linear, exponential, and sigmoid function, to shorten the learning steps.
c© Springer International Publishing Switzerland 2016
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2 Chaotic Neural Networks and Incremental Learning

The incremental learning was developed by using the chaotic neurons. The
chaotic neurons and the chaotic neural networks were proposed by Aihara [4].

We presented the incremental learning that provides an associative mem-
ory [1]. The network type is an interconnected network, in which each neuron
receives one external input, and is defined as follows [4]:

xi(t + 1) = f
(
ξi(t + 1) + ηi(t + 1) + ζi(t + 1)

)
, (1)

ξi(t + 1) = ksξi(t) + υAi(t), (2)

ηi(t + 1) = kmηi(t) +
n∑

j=1

wijxj(t), (3)

ζi(t + 1) = krζi(t) − αxi(t) − θi(1 − kr), (4)

where xi(t + 1) is the output of the i-th neuron at time t + 1, f is the output
sigmoid function described below in (5), ks, km, kr are the time decay constants,
Ai(t) is the input to the i-th neuron at time t, υ is the weight for external inputs,
n is the size—the number of the neurons in the network, wij is the connection
weight from the j-th neuron to the i-th neuron, and α is the parameter that
specifies the relation between the neuron output and the refractoriness.

f(x) =
2

1 + exp(−x
ε )

− 1. (5)

In the incremental learning, each pattern is inputted to the network for some
fixed steps before moving to the next. In this paper, this term is called “input
period”, and “one set” is defined as a period for which all the patterns are
inputted. The patterns are inputted repeatedly for some fixed sets.

During the learning, a neuron which satisfies the condition of (6) changes the
connection weights as in (7) [1].

ξi(t) × (ηi(t) + ζi(t)) < 0. (6)

wij =

{
wij + Δw, ξi(t) × xj(t) > 0
wij − Δw, ξi(t) × xj(t) ≤ 0

(i �= j), (7)

where Δw is the learning parameter.
If the network has learned a currently inputted pattern, the mutual interac-

tion ηi(t) and the external input ξi(t) are both positive or both negative at all
the neurons. This means that if the external input and the mutual interaction
have different signs at some neurons, a currently inputted pattern has not been
learned completely. Therefore, a neuron in this condition changes its connection
weights. To make the network memorize the patterns firmly, if the mutual inter-
action is less than the refractoriness ζi(t) in the absolute value, the neuron also
changes its connection weights.
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In this learning, the initial values of the connection weights can be 0, because
some of the neurons’ outputs are changed by their external inputs and this
makes the condition establish in some neurons. Therefore, all initial values of
the connection weights are set to be 0 in this paper. ξi(0), ηi(0), and ζi(0) are
also set to be 0.

To confirm that the network has learned a pattern after the learning, the
pattern is tested on the normal Hopfield’s type network which has the same con-
nection weights as the chaotic neural network. That the Hopfield’s type network
with the connection weights has the pattern in its memory has the same meaning
as that the chaotic neural network recalls the pattern quickly when the pattern
inputted. Therefore, it is the convenient way to use the Hopfield’s type network
to check the success of the learning.

3 Simulations with Simplified Network

3.1 Capacity

The simplified network is given by letting all the k-parameters be zero to elimi-
nate the temporal sum, namely, ks = km = kr = 0.

In this paper, a set of patterns are generated and used to be learned by the
networks. These patterns are random patterns generated with the method that
all elements in a pattern are set to be −1 at first, then the half of the elements
are chosen at random to turn to be 1.

For preliminary simulations, we checked how many patterns the networks
can learn.

From the result of the former work [5,6], the parameters are assigned in
Table 1 for the usual network. Both the input period and the number of sets are
set to be 100. These numbers are obtained experimentally.

Table 1. Parameters in incremental learning and chaotic neuron

Δw = 3× 10−6,

α = 6× 10−4,

ks = 0.95,

km = 0.1,

kr = 0.95,

υ = 2.0,

θi = 0,

ε = 0.015

The result of the simulation on the usual 100-neuron network is shown in
Fig. 1. From the result, until 162 patterns, all the inputted patterns are learned
completely. In this paper, this number is called the capacity.
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Fig. 1. Capacity of usual network

On the simplified network under the same condition, the network was not able
to learn the same number of patterns as the usual network. Through some trial,
it was found that setting Δw = 3× 10−7 makes the simplified network learn 162
patterns as in Fig. 2. Thus, the simplified network still learns the same number
of patterns without the temporal sums, although the capacity is 158 patterns
because when the number of inputs is 159, the network learns 158 patterns.
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Fig. 2. Capacity of simplified network

3.2 Neurons Which Learn

In the incremental learning, not all the neurons change their weights at the same
time but the neurons which learn in that step are decided by the learning condi-
tion. To investigate the differences between the simplified and the usual network,
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Fig. 3. Neurons which learn

when and which neuron learns are inspected. Figure 3 shows the results. All the
neurons are arranged vertically, and the horizontal axis shows the steps during
the 1st pattern inputted in 10th set. The mark + indicates that the neuron
learns at that step.

From Fig. 3(b), in the simplified network without the temporal sum, almost
all the neurons learn from step 1, while, from Fig. 3(a), in the usual network,
few neurons learn from step 1 and it was after step 14 that almost all the
neurons learn. This is because the temporal sum is keeping the previous pattern
information for some steps (for 13 steps in this case), and the new pattern
information gets overwhelming at step 14 in the usual network. Although it
would be unable for the simplified network to learn with noisy inputs without
temporal sum which smooths noisy inputs [7], the simplified network may learn
patterns faster.

3.3 Input Period

In the former simulations, the input period was kept to be 100 or 50. But,
the simplified network may learn patterns with shorter input period. In the
next simulations, to investigate the effect of the input period, the input period
is changed from 1 to 100 and the number of successfully learned patterns is
counted. The set of patterns is the same as in Sect. 3.1 and the number of input
patterns is fixed to 162. The simulation results are shown in Figs. 4 and 5.

Figure 4 shows the results on the usual network. The horizontal axis is the
input period and the vertical axis is the number of success. When the input
period is short, no pattern is stored in the network, because the temporal sum
is keeping the previous pattern information. With the input periods longer than
82 steps, the usual network was able to learn all the patterns.
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Fig. 4. Number of successfully learned patterns in usual network
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Fig. 5. Number of successfully learned patterns in simplified network

Figure 5 shows the results on the simplified network. The number of success
begins to rise from the input period of 5 steps, and reach 162 at the period of
52 which is 63 % of that in the usual network. From these results, the simplified
network can learn patterns faster than the usual network.

3.4 Noisy Inputs

The simplified network would lose the ability to learn in noisy inputs without the
temporal sums. To verify the handling of noisy inputs, the following simulations
investigate this ability.
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In these simulations, to add noises, a fixed number of elements in an input
pattern are chosen randomly every step and they reversed before they are inputted
to the network. This fixed number is the number of noises. The results are shown
in Fig. 6.

The horizontal axis is the number of noises and the vertical axis is the capac-
ity of the network, which is, in this paper, the maximum number of patterns
when all the input patterns are stored in the network. As predicted previously,
though the capacity of the usual network is above 100, that of the simplified
network became below 100 over 2 noises. Thus, the simplified network loses the
ability to learn with noisy inputs.

3.5 Adjusted Network

The difference between the usual network and the simplified network is
k-parameters (and Δw). In this section, the other parameters are introduced
to find the parameters with which the network can learn faster than the usual
network and have more ability of learning in noisy inputs than the simplified
network. Because the rage of the parameters are 4 dimensional including Δw,
the parameters are changed with linear relation as follows:

ks = 0.95r, (8)
km = 0.1r, (9)
kr = 0.95r, (10)

Δw = 2.7 × 10−6r + 3 × 10−7, (11)

where r is the control parameter.
The simulations from r = 0.1 to 0.9 are carried out to adjust the parameters.

From these simulations, a reasonable set of parameters is found at r = 0.8. In
this paper, the network with these parameters is called the adjusted network.
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Figure 7 shows the effect of the input period on the adjusted network.
Although the network could not learn all the 162 patterns, curiously, the input
period it needs is shorter than the simplified network. One of the available rea-
sons is the effect of Δw. When it becomes larger, the connection weights change
quickly, but are not set finely. Therefore, the learning is fast but not all the
patterns are stored.

Figure 8 shows the ability for noisy inputs. As same as in Fig. 6, the vertical
axis is the capacity of the network. This network shows medium ability between
the other 2 networks. As same as the number of success in Fig. 7, the capacity
is smaller than the other 2 networks.
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Fig. 7. Number of successfully learned patterns in adjusted network
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3.6 Varying the Learning Parameter

Described above, the adjusted network learns in shorter steps using Δw at r =
0.8. At the simplified network with the same Δw, there is a possibility that the
network also learns in short steps.
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Fig. 9. Number of successfully learned patterns with Δw = 2.46× 10−6

Figure 9 shows the result of the simulations in which Δw = 2.46 × 10−6.
This value makes the network learn more quickly but less patterns. The network
learned only 66 patterns out of 162. When Δw is large, the network learns more
quickly, and when Δw is small, the network learns more patterns.

Then, there arises the question that whether varying Δw from large value to
small value during the learning makes the network learn all the patterns quickly
at the simplified network and the usual network.

In our former work, Δw is varied linearly [8]. In this paper, Δw is varied
according to the 3 functions which are the linear function (Eq. (12)), the expo-
nential function (Eq. (13)), and the sigmoid function (Eq. (14)).

Δw = wH − (wH − wL)
s − 1
99

(12)

Δw = wH exp
(

log
(

wL

wH

)
· s − 1

99

)
(13)

Δw =
wH − wL

1 +
1

exp(k( s−1
99 − 0.5))

+ wL (14)

where wH is the large value, wL is the small value, s is the number of learning
set and k = −10.

For the usual network, we chose wH and wL as in Table 2, and the results are
summarized. M is the maximum number of learned patters and P is the input
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Table 2. Summary of learning varying Δw in usual network

(a) Linear function

\ wH 3× 10−5 5× 10−5

wL M P M P

1× 10−6 160 94 158 84

2× 10−6 160 72 160 72

3× 10−6 160 72 160 72

(b) Exponential function

\ wH 3× 10−5 5× 10−5

wL M P M P

1× 10−6 159 90 159 97

2× 10−6 162 72 162 72

3× 10−6 161 72 161 72

(c) Sigmoid function

\ wH 3× 10−5 5× 10−5

wL M P M P

1× 10−6 161 95 161 85

2× 10−6 161 72 160 73

3× 10−6 161 72 160 72

period needed for learning M patterns. From Table 2, the exponential function
with wL = 2 × 10−6 gives the best result—all 162 patterns are stored and the
input period is 72, that is 89 % of that of the constant Δw = 3 × 10−6.

For the simplified network, we chose wH and wL as in Table 3, and the results
are summarized. When wL is large, the input period to store maximum number
of patterns is small with all three functions.

Although the number of success did not reach 162 as seen in Table 3, the
sigmoid function with wH = 4 × 10−7 and wL = 2 × 10−6 gives the best result
between the simulations. In Fig. 5, the input period needs 52 to reach 162, and
46 to reach 160. Using this sigmoid function, the input period becomes 38 %.

Table 3. Summary of learning varying Δw in simplified network

(a) Linear function

\ wH 3× 10−5 5× 10−5

wL M P M P

2× 10−6 160 32 156 36

3× 10−6 159 23 154 23

4× 10−6 156 19 152 19

(b) Exponential function

\ wH 3× 10−5 5× 10−5

wL M P M P

2× 10−6 160 33 160 32

3× 10−6 160 23 160 22

4× 10−6 159 18 159 18

(c) Sigmoid function

\ wH 3× 10−5 5× 10−5

wL M P M P

2× 10−6 160 32 160 28

3× 10−6 160 23 160 21

4× 10−6 160 18 159 17
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Fig. 10. Number of successfully learned patterns in usual network varying Δw with
exponential function and in simplified network varying Δw with sigmoid function

To compare with Figs. 4 and 5, the learning of the usual network with the
exponential change of Δw and that of the simplified network with the sigmoid
are shown in Fig. 10. While the obvious difference was not seen except for the
input period at which the network learns all the patterns in the usual network,
varying Δw affects the number of success for the input period in the simplified
network.

4 Conclusion

To reduce the amount of computation in the incremental learning, the simpli-
fied network was introduced and the behaviour of this network was investigated
comparing with the usual network. The simplified network was able to learn pat-
terns in shorter steps than the usual network and had almost the same capacity
as the usual network, although the simplifed network loses its learning ability
when the input includes noise. Furthermore, varying the learning parameters
during the learning, the amount of steps for the learning can be reduced in the
simplified network.
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Abstract. Two-hidden-layer feedforward neural networks are investigated for
the existence of an optimal hidden node ratio. In the experiments, the heuristic
n1 ¼ intð0:5nh þ 1), where n1 is the number of nodes in the first hidden layer
and nh is the total number of hidden nodes, found networks with generalisation
errors, on average, just 0.023 %–0.056 % greater than those found by exhaus-
tive search. This reduced the complexity of an exhaustive search from quadratic,
to linear in nh, with very little penalty. Further reductions in search complexity
to logarithmic could be possible using existing methods developed by the
Authors.

Keywords: Two-hidden-layer feedforward � ANN � Exhaustive search �
Optimal topology � Optimal node ratio � Heurix � Universal function
approximation

1 Introduction

Function approximators are an important class of artificial neural networks. Since it
was shown that multilayer feedforward neural networks with as few as a single hidden
layer are universal function approximators [1], they have enjoyed an upsurge of
popularity in diverse domains. In the automotive arena, they are used increasingly to
predict engine emissions, and typically involve an exhaustive or ‘trial and error’ search
through one or two hidden layers to find the optimal topology - though the former is by
far the most common [2–5]. This could well be because of the prohibitive time required
to conduct an exhaustive quadratic search through two hidden layers. This paper
addresses the question: ‘Does there exist an optimal ratio of nodes between the first and
second hidden layers of a two-hidden-layer neural network (TLFN)?’ If so, this could
be combined with existing network topology optimisation techniques to reduce their
complexity. For example, the complexity of an exhaustive search for a TLFN would be
reduced from a quadratic search Oðn2Þ to a linear search OðnÞ, diagonally along the
optimal ratio line.
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In this paper, a heuristic relationship between the total number of hidden nodes, nh
and the number of nodes in the first hidden layer n1 is proposed. TLFNs created using
this heuristic are compared with the best of those found by searching all possible
combinations of nodes in the first and second hidden layers (n1 and n2 respectively)
such that nh ¼ n1 þ n2. Although this heuristic is not guaranteed to produce the best
node ratio, in our experiments the generalisation error is only 0.023 %–0.056 % greater
than the best of any other node combination.

2 Problem Description

When designing a feedforward neural network, the number of inputs and outputs are
easily selected as these are determined by the application. The number of hidden layers
required depends on the complexity of the function. For functions which are linearly
separable, no hidden layers are required at all. Given a sufficiently large number of
hidden units, a single layer will suffice [1], however two hidden layers can often
achieve better result than a single layer [6]. In the Authors’ own experience, node for
node, a TLFN will give a better generalisation capability than an single-hidden-layer
feedforward neural network (SLFN) in many cases.

The most challenging and time consuming aspect of the design is choosing the
optimal number of hidden nodes. It is assumed here that ‘optimal’ means ‘yielding the
best generalisation capability’. Too few hidden nodes, and the network simply will not
have the capacity to solve the problem. Conversely, too many, and the network will
memorise noise within the training data, leading to poor generalisation capability. Thus
the challenge is finding a network which achieves the best balance, ideally in a rea-
sonable time.

3 Related Work

Many optimisation techniques for feedforward neural networks have been proposed in
the literature. These can be broadly summarised as:

3.1 Rules of Thumb

These are generally associated with guessing the best number of hidden nodes for
single-hidden-layer feedforward networks (SLFNs). There do not appear to be any that
pertain to TLFNs.

3.2 Trial and Error

This is a very primitive approach likely to yield extremely sub-optimal results. How-
ever, this term is occasionally applied to an exhaustive search between certain bounds.
In [5], for example, the term is used to describe the search for a TLFN which varies the
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number of nodes in each hidden layer between 1 and 20, with a resulting search space
of 400 different topologies.

3.3 Exhaustive Search

This involves training networks with every possible combination of hidden nodes
between 1 and some upper bound, Nh, and choosing the network with the best gen-
eralisation performance. Huang and Babri rigorously proved that an SLFN with at most
Nh hidden neurons can learn Ns distinct samples with zero error [7]. Though this gives
us an upper bound on the number of hidden neurons, it also means that at this bound
the network will also overfit by exactly learning the noise within the training set. Thus
an exhaustive search for an SLFN should vary the number of hidden nodes from 1 up to
an absolute maximum of Nh ¼ Ns.

Huang later proved that the upper bound on the number of hidden nodes Nh for
TLFNs with sigmoid activation function is given by Nh ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn3 þ 2ÞNs

p
, where n3 is

the number of outputs. These can learn at least Ns distinct samples with any degree of
precision [8]. Interestingly, Huang also demonstrated that the storage capacity can be
increased by reducing the number of outputs, which is probably the best argument for
limiting the number of outputs for function approximation to a single output. With that
in mind, substituting n3 ¼ 1 we have Nh ¼

ffiffiffiffiffiffiffiffiffiffi
12Ns

p
. This is

ffiffiffiffiffiffiffiffiffiffiffiffi
Ns=12

p
times lower than

that of an SLFN. This means that an exhaustive search for a TLFN with for example
10,000 training samples, would have an upper bound which is 29 times lower than for
an SLFN.

With exhaustive searches, several networks of each topology need to be trained to
filter out networks where the initial random weight allocation might cause the training
to get trapped in local minima. Because of this effect, it is unlikely that the actual global
optimum will be found. Since this depends on all the weights being exactly correct, the
probability of finding the global optimum will increase with the number of weights.
The result is that the ‘optimal’ topology returned by an exhaustive search will be
different on successive searches. For SLFNs, the complexity of an exhaustive search is
linear OðnÞ, whereas for TLFNs, it is quadratic Oðn2Þ.

3.4 Growing Algorithms

At their simplest, these are similar to exhaustive searches. They generally start with a
single hidden node, and increase the number of hidden nodes one by one until the
improvement in generalisation error is negligible. Using this approach with TLFNs is
problematic because the sudden variation of node ratio on new rows will result in
spikes on the generalisation landscape resulting in premature termination. Other types
of growing algorithms combine simultaneous growing and training. These can be
classified as non-evolutionary [9], and evolutionary [10]. The latter are notoriously
time consuming.
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3.5 Pruning Algorithms

With this approach, an oversized network is trained and the relative importance of the
weights subsequently analysed. The least important weights are removed and the
network retrained. The problem with these is determining what constitutes an oversized
network in the first instance, and their time complexity. Brute force approaches which
set each weight in turn to zero and eliminates it if it has a negligible effect on the
generalisation error. These have a complexity of O Nsw3ð Þ, where Ns is the number of
samples in the training set, and w is the number of weights in the original oversized
network [11].

3.6 Heuristic Algorithms

These estimate the optimal number of hidden nodes by sampling a sub-set of topologies
and using curve fitting techniques to predict the optimum topology. A system previ-
ously developed by the Authors [12] can create SLFNs with a generalisation error of as
little as 0.4 % greater than those found by exhaustive search with a complexity of
Oðlog2 nð ÞÞ.

3.7 Proposed Method

This is not a separate method per se, but rather a heuristic to be used in conjunction
with another optimisation method. If there exists an ‘optimal’ node ratio for a TLFN,
then it effectively reduces its complexity to that of an SLFN.

4 Experiments

All experiments were carried out using the Matlab R2014b environment. The networks
were created using the Neural Network Toolbox ‘fitnet’ function to generate the SLFNs
and TLFNs where appropriate. Two separate datasets were used, with different num-
bers of inputs. These were trained the Levenberg-Marquardt training function, ‘trainlm’
which is commonly used for function approximation as it has often been found to yield
the best results [2–5]. For comparison, the second dataset was also trained with the
Scaled Conjugate Gradient training function ‘trainscg’.

4.1 Data Preparation

The datasets were chosen because of their availability in the public domain, allowing
the findings to be independently verified. In all cases, the data is split into three subsets:
Training (80 %), Validation (10 %) and Test (10 %). The Validation set is used to stop
the training process when the validation error starts to rise, and the Test set is used
exclusively as an estimate of the generalisation error.
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For any given dataset, exactly the same subsets were used for every single network
created in the experiment. By eliminating any bias in the error surface that may have
resulted from a different random split for each network, it was ensured that they were
all competing on the same playing field. The only random element at play was thus the
initial randomisation of the weights. This initial starting point determines which local
minimum in the error surface the training might get stuck in and thus has a direct
impact on the generalisation error. For complex error surfaces, it is extremely unlikely
that the global minimum will be found.

Dataset 1. The ‘engine_data’ (available in Matlab), consists of 1199 samples organ-
ised as two inputs (fuel and speed) and two targets (torque and NOx). These were
reorganised to use torque as a third input, with a single output, NOx. They were
subsequently split into Training, Validation and Test subsets (959, 120, and 120
samples, respectively).

Dataset 2. The NASA Airfoil Self-Noise dataset, available from the UCI Machine
Learning Repository [13]. This consists of 1503 samples with five inputs: Frequency
(Hz), Angle of attack (°), Chord length (m), Free-stream velocity (m/s), and Suction
side displacement thickness (m). It has a single output, scaled sound pressure level
(dB). These were split into Training, Validation and Test subsets (1201, 151 and 151
samples, respectively).

4.2 Training Algorithms

In all cases, data preprocessing was ‘mapminmax’ for both inputs and outputs, the
transfer function was ‘tansig’ and the error function for training was ‘mse’. However,
the generalisation error in the experiments was reported as the normalised root mean
squared error (NRMSE), which is given by:

NRMSEy ¼ 1
ŷmax � ŷmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðyi � ŷiÞ2

Ns

s
ð1Þ

where Ns represents the number of samples, ŷi is the target value, and yi is the actual
value.

Training Algorithm 1. Levenberg-Marquardt training algorithm ‘trainlm’ using
default training parameters: 1000 epochs, training goal of 0, minimum gradient of
10�7, 6 validation failures, l ¼ 0:001, ldec ¼ 0:1, linc ¼ 10 and lmax ¼ 10�10.

Training Algorithm 2. Scaled Conjugate Gradient training algorithm ‘trainscg’ using
default parameters: 1000 epochs, training goal of 0, minimum gradient of 10�6, 6
validation failures, r ¼ 5� 10�5, and k ¼ 5� 10�7.
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5 Experimental Method

Three separate domains were tested:

• Domain 1 - Dataset 1 using Training Algorithm 1, with the generalisation error
averaged over 100 rounds of Fig. 1.

• Domain 2 – Dataset 2 using Training Algorithm 1, with the generalisation error
averaged over 100 rounds of Fig. 1.

• Domain 3 – Dataset 2 using Training Algorithm 2, with the generalisation error
averaged over 300 rounds of Fig. 1. The number of rounds were increased here
because of the higher variance in generalisation error when using Algorithm 2.

Within these domains, a number of experiments were carried out each with a
constant total number of hidden nodes:

nh ¼ n1 þ n2 ð2Þ

where n1 and n2 are the number of nodes in hidden layers 1 and 2 respectively. The
values of nh chosen for these experiments were given by the set:

nh ¼ f34; 20; 16; 14; 13; 12; 11; 10; 9; 8; 7; 6; 5; 4; 3g: ð3Þ

For each value of nh, TLFNs were created using all possible combinations of n1 and
n2 satisfying (2). For example if nh ¼ 4, n1 ¼ f1; 2; 3g and n2 ¼ f3; 2; 1g. This yielded
3 possible networks with topologies n0 : 1 : 3 : n3; n0 : 2 : 2 : n3 and n0 : 3 : 1 : n3. To
reduce the effect that the random initial weights have on the generalisation error, 100
networks of each topology were created, and the NRMSE of each calculated from (1).
The generalisation errors of the best generalisers (those with the minimum NRMSE on

Fig. 1. Pseudo-code for a single round
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the test set) formed the results of a single round. This is shown in the pseudo-code in
Fig. 1, which from any given nh, returns an array, e, length nh � 1, indexed by the
number of nodes in the first hidden layer.

The array, e, was then averaged over 100, 100, and 300 of these rounds for domains
1, 2 and 3, respectively. This was repeated for every value of nh within the set defined
by (3).

6 Results and Discussion

6.1 Optimal Node Ratio Investigation

The results were not at all as expected. In the preliminary investigative experiments
with Domain 1, the median NRMSE was used instead of the minimum to determine the
winner, and 200 rounds were used. The contents of the arrays, e, were displayed along
the y-axis, and their indices (representing the values of n1) were displayed as an offset
from 0:5nh along the x-axis. In other words, the x-axis = n1 � 0:5nh as this was where
the optimum, if it existed, was expected to lie. However, there seemed a marked
symmetry in the region bounded by n1 ¼ 4 and n2 ¼ 2 (narrow dash) and centred on
0:5nh þ 1 (wide dash) as shown in Fig. 2. From left to centre, this shows a series of
contour lines of decreasing constant values of nh represented by the set in (3). The
‘sweet spot’ seemed to imply that the number of nodes in the first hidden layer should
be greater than 3 and those in the second layer should be greater than 1. Since the
dataset had 3 inputs and 1 output, it was suspected at this stage that the sweet spot
might be governed by the number of inputs and outputs.

Fig. 2. Initial Domain 1 experiments using average median NRMSE

Accelerated Optimal Topology Search for TLFNs 259



The main investigation tested whether n1 ¼ 0:5nh þ 1 could also be used to
describe the optimum for other datasets and training algorithms. Since nh can be either
even or odd, rounding down was used as a heuristic for the optimal value of n1, i.e.:

n1ðoptÞ ¼ int 0:5nh þ 1ð Þ ð4Þ

As a measure of the accuracy of this prediction, the root mean square difference
(rmsd) between the observed minimum generalisation errors, and those obtained using
node ratio (4) were calculated. In the preliminary case above, this is less than 0.011 %.

In the main body of experiments, each round searched for the networks with the
minimum NRMSE (as described in Fig. 1). In this respect, a single round was more
representative of an actual exhaustive search for the best generaliser, and multiple
rounds could be considered as multiple exhaustive searches. The results, which are
shown graphically in Figs. 3, 4 and 5, show the averages over multiple exhaustive
searches (100 for Domains 1–2, and 300 for Domain 3).

The sweet spot is still there in all three cases, although for Domain 1, it not as
clearly defined as in the initial experiments, and it seems to lean slightly to the right.
Since the number of inputs, the data, and the training algorithm have varied across the
three domains, it seems independent of all three within the scope of this investigation.

In Table 1, for each value of nh the average minimum generalisation errors are
listed as a percentage for each of the three domains. In this table eopt represents the
error at the optimum number of nodes calculated from (4), emin is the observed min-
imum generalisation error obtained. The error difference is also shown, where
de ¼ eopt � emin. The root mean square difference (rmsd) between these are shown in

Fig. 3. Domain 1 - engine data with Trainlm
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Table 2. Since there is an outlier in Domain 2 for nh ¼ 4, which is outside the sweet
spot, the rmsd solely within the sweet spot is also included.

These results show that although a linear search along (4) is not guaranteed to find
the best generalisers (but then neither is an exhaustive quadratic search), it will find
networks within 0.023 % – 0.056 % of these on average.

Fig. 4. Domain 2 - airfoil self-noise with Trainlm

Fig. 5. Domain 3 – airfoil self-noise with Trainscg
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6.2 Comparison with SLFNs

In this section, the performance of the TLFNs using the optimal node ratio described by
(4) were compared with SLFNs with the same number of hidden nodes for each of the
three Domains. The results are shown in Fig. 6.

In all three domains, there are advantages to using an optimal TLFN over an SLFN
with the same number of hidden nodes. However, for Domain 1, it appears that the
generalisation errors are about to converge for nh [ 34 nodes. In Domains 2 and 3,
there is no sign of any convergence within the scope of the experiments. The greatest
gain in generalisation error was for Domain 3, which uses the Scaled Conjugate
Gradient algorithm. This is a popular training algorithm for larger numbers of hidden
nodes as it is much faster than the Levenberg-Marquardt algorithm, since the latter‘s
training time scales exponentially with the number of hidden nodes. An interesting
feature is that for Domains 1 and 2, which both use the Levenberg-Marquardt algo-
rithm, the generalisation errors cross over at nh ¼ 5, above which TLFNs outperform
SLFNs. Coincidentally, nh ¼ 6 is the apex of the perceived sweet spot in these
experiments. It is unclear at this stage whether the two are related.

Table 1. Comparison of predicted and observed best generalisers.

nh Domain 1
NRMSE (%)

Domain 2 NRMSE
(%)

Domain 3 NRMSE
(%)

eopt emin de eopt emin de eopt emin de
3 7.12 7.12 0 10.48 10.48 0 10.98 10.98 0
4 5.33 5.33 0 8.77 8.19 0.584 10.59 10.59 0
5 3.80 3.80 0 6.38 6.38 0 10.11 10.11 0
6 3.21 3.21 0 5.49 5.49 0 9.55 9.55 0
7 2.76 2.61 0.155 5.11 5.06 0.049 9.12 9.12 0
8 2.36 2.34 0.022 4.74 4.74 0 8.63 8.63 0
9 2.18 2.10 0.070 4.53 4.52 0.008 8.35 8.35 0
10 1.95 1.95 0 4.33 4.33 0 8.16 8.13 0.0270
11 1.80 1.77 0.032 4.16 4.14 0.026 7.90 7.90 0.0074
12 1.68 1.64 0.042 4.00 4.00 0 7.81 7.81 0
13 1.55 1.53 0.027 3.87 3.87 0 7.65 7.63 0.0224
14 1.47 1.46 0.012 3.75 3.75 0 7.50 7.50 0
16 1.32 1.31 0.014 3.57 3.56 0.008 7.47 7.37 0.0993
20 1.13 1.13 0 3.33 3.29 0.035 7.17 7.16 0.0049
34 1.04 0.98 0.067 3.03 2.98 0.042 7.19 7.10 0.0894

Table 2. rmsd between predicted and observed best generalisers

Domain Domain 1 Domain 2 Domain 3

rmsd (all) 0.050 % 0.152 % 0.036 %
rmsd (sweet spot) 0.056 % 0.023 % 0.040 %
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Fig. 6. Node for node comparison of TLFNs and SLFNs.

Fig. 7. Domain 1 TLFN with −0.87 % offset
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7 Conclusions and Further Work

This paper set out to answer the question ‘Does there exist an optimal ratio of nodes
between the first and second hidden layers of a two-hidden-layer neural network
(TLFN)?’ Based on the domains tested in the investigation, for nh [ 5; this can be
described by the relationship n1 ¼ 0:5nh þ 1, or alternatively n1 ¼ n2 þ 2: However, a
broader investigation of this hypothesis with different domains is recommended as the
subject of future work. In the course of this investigation, a linear search through nh
using the heuristic: n1 ¼ int 0:5nh þ 1ð Þ; n2 ¼ nh � n1, found networks with a gener-
alisation error of, on average, as little as 0.023 % to 0.056 % greater than that of the
best generalisers. Although this heuristic did not guarantee that the absolute best
generaliser was found, neither would a quadratic search through two hidden layers. If
this is backed up by further investigation, the implication is that a quadratic search
Oðn2) through n1 and n2 can be reduced to a linear search OðnÞ through nh. This is a
very attractive proposition for several reasons:

1. First and foremost the search time would be dramatically reduced and would per-
haps encourage engineers to use TLFNs more often.

2. TLFNs can often outperform SLFNs, as was proved in [6], and demonstrated in
these experiments.

3. The upper bound on the number of hidden nodes for a TLFN can be much lower
than that for an SLFN, as proved in [8]. In fact, it is

ffiffiffiffiffiffiffiffiffiffiffiffi
Ns=12

p
times lower. This is

quite significant, especially for large Ns. For example, this represents a factor of 29
for Ns ¼ 10; 000, meaning 29 times fewer candidates need to be tested.

Given the existence of an optimal ratio, could the search complexity be reduced still
further? In a previous paper [12], the Authors have shown that for SLFNs, it is possible
to reduce a linear search OðnÞ to a logarithmic search Oðlog2ðnÞÞ: This is achieved by
sampling the generalisation error at node values nk ¼ 2k; 0� k�Ns, fitting an error
curve of the form eðnhÞ ¼ an�b

h þ c to these samples, and calculating the optimal

Table 3. Curve fitting variables for the three domains

Domain a b c R2 R

1 0.3808 −1.569 0.0087 0.9908 0.9954
2 0.3854 −1.424 0.0280 0.9936 0.9968
3 0.2407 −1.329 0.0690 0.9420 0.9706

Table 4. Summary of further experiments

Dataset name Available Inputs Outputs Samples Training rmsd%

chemical_dataset Matlab 8 1 498 trainlm 0.17
trainscg 0.06

delta.elevators Githuba 6 1 9,517 trainscg 0.09
ahttps://github.com/renatopp/arff-datasets/blob/master/regression/delta.
elevators.arff
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number of hidden nodes from its gradient. The choice of gradient determines whether
the network is optimised for speed, accuracy or both.

In order for this method to be suitable for TLFNs, their generalisation error must
also follow similar power law curves. The easiest way to check this is to subtract an
offset from the generalisation error and use the trend line feature of the spreadsheet to
fit a power law curve. The offset is adjusted to achieve the best value of R2. Figure 7
shows the end of this process for Domain 1. This shows that the generalisation error
can be described by eopt ¼ 0:3808n�1:569

h þ 0:0087, with a Pearson’s correlation
coefficient of R2 ¼ 0:9908 or R ¼ 0:9954. A similar process was carried out on
Domains 2 and 3. The results are summarised in Table 3.

The results are excellent for Domains 1 and 2, which use the Levenberg-Marquardt
training algorithm. This is good news, since this training algorithm yields the best
generalisation error. Based on the experiments carried out in this paper, the Authors are
quite confident that the Heurix system they previously developed [12] will also be
suitable for TLFNs. Subject to further work, this method could also be used to find
near-optimal TLFNs automatically, with a search complexity of as little as Oðlog2 nð ÞÞ.

8 Addendum

Since the initial submission of the paper for review, three further domains have been
tested using nh = {1 to14, 16, 20 and 34}, for 100 rounds each. The results are
summarised in Table 4.

These datasets are quite interesting. With the former, over the range tested, SLFNs
outperform TLFNs with respect to their genaralisation capability. In the case of the
latter, there is little or no advantage over a network with no hidden nodes at all. Whilst
the heuristic does still yield reasonable results, this does tend to suggest that cases like
these ought to be tested for in order to obtain efficient network response times from
stimulus to output. This will be the subject of further work.
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Abstract. Random Forest (RF) is an ensemble classification technique
that was developed by Breiman over a decade ago. Compared with other
ensemble techniques, it has proved its accuracy and superiority. Many
researchers, however, believe that there is still room for enhancing and
improving its performance in terms of predictive accuracy. This explains
why, over the past decade, there have been many extensions of RF where
each extension employed a variety of techniques and strategies to improve
certain aspect(s) of RF. Since it has been proven empirically that ensem-
bles tend to yield better results when there is a significant diversity
among the constituent models, the objective of this paper is twofold.
First, it investigates how an unsupervised learning technique, namely,
Local Outlier Factor (LOF) can be used to identify diverse trees in the
RF. Second, trees with the highest LOF scores are then used to create
a new RF termed LOFB-DRF that is much smaller in size than RF,
and yet performs at least as good as RF, but mostly exhibits higher per-
formance in terms of accuracy. The latter refers to a known technique
called ensemble pruning. Experimental results on 10 real datasets prove
the superiority of our proposed method over the traditional RF. Unprece-
dented pruning levels reaching as high as 99% have been achieved at the
time of boosting the predictive accuracy of the ensemble. The notably
extreme pruning level makes the technique a good candidate for real-time
applications.

1 Introduction

Ensemble classification is an application of ensemble learning to boost the accu-
racy of classification. Ensemble learning is a supervised machine learning par-
adigm where multiple models are used to solve the same problem [20,28,29].
Since single classifier systems have limited predictive performance [21,28,29,38],
ensemble classification was developed to yield better predictive performance
[21,28,29]. In such an ensemble, multiple classifiers are used. In its basic mech-
anism, majority voting is then used to determine the class label for unlabeled
instances where each classifier in the ensemble is asked to predict the class label
of the instance being considered. Once all the classifiers have been queried, the
class that receives the greatest number of votes is returned as the final decision
of the ensemble.
c© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 267–282, 2016.
DOI: 10.1007/978-3-319-44188-7 20
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Three widely used ensemble approaches could be identified, namely, boosting,
bagging, and stacking. Boosting is an incremental process of building a sequence
of classifiers, where each classifier works on the incorrectly classified instances
of the previous one in the sequence. AdaBoost [13] is the representative of this
class of techniques. However, AdaBoost is proned to overfitting. The other class
of ensemble approaches is the Bootstrap Aggregating (Bagging) [5]. Bagging
involves building each classifier in the ensemble using a randomly drawn sample
of the data with replacement, having each classifier give an equal vote when
labeling unlabeled instances. Bagging is known to be more robust than boosting
against model overfitting. Random Forest (RF) is the main representative of
bagging [7]. Stacking (sometimes called stacked generalization) extends the cross-
validation technique that partitions the data set into a held-in data set and a
held-out data set; training the models on the held-in data; and then choosing
whichever of those trained models performs best on the held-out data. Instead of
choosing among the models, stacking combines them, thereby typically getting
performance better than any single one of the trained models [37]. Stacking has
been successfully used in both supervised learning tasks (regression) [6], and
unsupervised learning (density estimation) [33].

The ensemble method that is relevant to our work in this paper is RF. RF
has been proved to be the state-of-the-art ensemble classification technique. In
a recent evaluation study made by [11] where 179 classifiers arising from 17 fam-
ilies were evaluated, RF has proven to be the best family of classifiers. Since
RF algorithms typically build between 100 and 500 trees [36], it would be useful
to reduce the number of trees participating in majority voting and yet achieve
better performance both in terms of accuracy and speed. In this paper, we pro-
pose an unsupervised learning approach to improve speed and accuracy of RF.
For speed, our approach avoids having all trees participate in majority voting
as only a small subset of the trees is selected. For accuracy, since it has been
proven empirically that ensembles tend to yield better results when there is a
significant diversity among the models [1,9,20,34], our approach ensures that
diverse trees in the ensemble are selected.

We will utilize the Local Outlier Factor (LOF) [8] for the first time ever to
extreme prune RF ensembles by assigning each tree an LOF value and then
selecting the top k (where k is a predefined integer) trees with the highest LOF
scores as shown in Fig. 1. In this figure, an 80 % pruning level has been achieved
since the top 4 trees were picked from a total of 20 trees in the initial ensemble
to form the pruned ensemble.

This paper is organized as follows. First we discuss related work in Sect. 2.
Section 3 covers preliminaries related to motivation and introduction to RF.
Section 4 describes the Local Outlier Factor that will be utilized in our proposed
extension of RF. Section 5 formalizes our proposed method and corresponding
algorithm. Experimental study demonstrating the superiority of the proposed
technique over the traditional RF is detailed in Sect. 6. The paper is then con-
cluded with a summary and pointers to future directions in Sect. 7.



Tree Selection Approach to Extreme Pruning of Random Forests 269

Fig. 1. Extreme pruning via local outlier factor

2 Related Work

Several attempts have been made in recent years in order to produce a subset
of an ensemble that performs as well as, or better than, the original ensemble.
The purpose of ensemble pruning is to search for such a good subset. This is
particularly useful for large ensembles that require extra memory usage, com-
putational costs, and occasional decreases in effectiveness. Grigorios et al. [35]
recently amalgamated a survey of ensemble pruning techniques where they clas-
sified such techniques into four categories: ranking based, clustering based, opti-
mization based, and others. Ranking based methods, that are relevant to us
in this paper, are conceptually the simplest. Since using the predictive perfor-
mance to rank models is too simplistic and does not yield satisfying results
[27,39], ranking based methods employ an evaluation measure to rank models.
Kappa statistic measure κ was used in [22] for pruning AdaBoost ensembles.
For bagging ensembles, however, kappa has proven to be non-competitive [25].
For bagging ensembles, [24] developed an efficient and effective pruning method
based on orientation ordering where the classifiers obtained from bagging are
reordered and a subset is selected for aggregation.

An interesting issue that remains after ranking the models is to determine the
models that will be chosen to form the pruned ensemble. For this, two approaches
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can be used. The first approach is to use a fixed user-specified amount or per-
centage of models. A second approach is to dynamically select the size based on
the evaluation measure or the predictive performance of ensembles of different
sizes. In this paper, the models will be ranked according to their Local Outlier
Factor (LOF) values and the models with the top k (where k is a multiple of
5 ranging from 5 to 40) values will be selected to form the pruned ensemble.
As outlined in the experimental section (Sect. 6), the size of the parent RF to
be created is 500 trees. Since, as stated above, k is multiple of 5 ranging from
5 to 40, this means that the pruning levels will be in the range 99 % to 92 %
respectively, which we consider a reasonable range for extreme pruning.

2.1 Diversity Creation Methods

Because of the vital role diversity plays on the performance of ensembles, it had
received a lot of attention from the research community. G. Brown et al. [9]
summarized the work done to date in this domain from two main perspectives.
The first is a review of the various attempts that were made to provide a for-
mal foundation of diversity. The second, which is more relevant to this paper,
is a survey of the various techniques to produce diverse ensembles. For the lat-
ter, two types of diversity methods were identified: implicit and explicit. While
implicit methods tend to use randomness to generate diverse trajectories in the
hypothesis space, explicit methods, on the other hand, choose different paths in
the space deterministically. In light of these definitions, bagging and boosting in
the previous section are classified as implicit and explicit respectively.

G. Brown et al. [9] also categorized ensemble diversity techniques into three
categories: starting point in hypothesis space, set of accessible hypotheses, and
manipulation of training data. Methods in the first category use different start-
ing points in the hypothesis space, therefore, influencing the convergence place
within the space. Because of their poor performance of achieving diversity, such
methods are used by many authors as a default benchmark for their own meth-
ods [21]. Methods in the second category vary the set of hypotheses that are
available and accessible by the ensemble. For different ensembles, these methods
vary either the training data used or the architecture employed. In the third cat-
egory, the methods alter the way space is traversed. Occupying any point in the
search space, gives a particular hypothesis. The type of the ensemble obtained
will be determined by how the space of the possible hypotheses is traversed.

In this paper, we propose a new diversity creation method based on unsuper-
vised learning. The method utilizes an existing unsupervised learning technique
that, to the best of our knowledge, has not been used before in the production
of pruned ensembles.

2.2 Diversity Measures

Regardless of the diversity creation technique used, diversity measures were
developed to measure the diversity of a certain technique or perhaps to com-
pare the diversity of two techniques. Tang et al. [34] presented a theoretical
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analysis on six existing diversity measures: disagreement measure [32], double
fault measure [14], KW variance [19], inter-rater agreement [12], generalized
diversity [26], and measure of difficulty [12]. The goal was not only to show the
underlying relationships between them, but also to relate them to the concept
of margin, which is one of the contributing factors to the success of ensemble
learning algorithms.

We suffice to describe the first two measures as the others are outside the
scope of this paper. The disagreement measure is used to measure the diversity
between two base classifiers hj and hk, and is calculated as follows:

disj,k =
N10 + N01

N11 + N10 + N01 + N00

where

– N10: means number of training instances that were correctly classified by hj ,
but are incorrectly classified by hk

– N01: means number of training instances that were incorrectly classified by
hj , but are correctly classified by hk

– N11: means number of training instances that were correctly classified by hj

and hk

– N00: means number of training instances that were incorrectly classified by
hj and hk

The higher the disagreement measure, the more diverse the classifiers are. The
double fault measure uses a slightly different approach where the diversity
between two classifiers is calculated as:

DFj,k =
N00

N11 + N10 + N01 + N00

The above two diversity measures work only for binary classification (AKA
binomial) where there are only two possible values (like Yes/No) for the class
label, hence, the objects are classified into exactly two groups. They do not work
for multiclass (AKA multinomial) classification where the objects are classified
into more than two groups.

3 Preliminaries

3.1 Motivation

As mentioned before, RF algorithms tend to build between 100 and 500 trees
[36]. Our research aims at producing child RFs that are significantly smaller in
size and yet, have accuracy performance that is at least as good as that of the
parent RF from which they were derived. The classification speed of each child
is guaranteed to be much faster than that of the parent RF because (1) it has
much fewer trees and (2) any tree used in the child is also in the parent (i.e., no
new trees were introduced in the child).
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3.2 Random Forest

RF is an ensemble learning method used for classification and regression. Devel-
oped by Breiman [7], the method combines Breiman’s bagging sampling app-
roach [5], and the random selection of features, introduced independently by Ho
[15,16] and Amit and Geman [2], in order to construct a collection of decision
trees with controlled variation. Using bagging, each decision tree in the ensemble
is constructed using a sample with replacement from the training data. Statisti-
cally, the sample is likely to have about 64 % of instances appearing at least once
in the sample. Instances in the sample are referred to as in-bag-instances, and the
remaining instances (about 36 %), are referred to as out-of-bag instances. Each
tree in the ensemble acts as a base classifier to determine the class label of an
unlabeled instance. This is done via majority voting where each classifier casts
one vote for its predicted class label, then the class label with the most votes
is used to classify the instance. Algorithm 1 below depicts the RF algorithm [7]
where N is the number of training samples and S is the number of features in
data set.

Algorithm 1. Random Forest Algorithm
{User Settings}
input N , S
{Process}
Create an empty vector

−→
RF

for i = 1 → N do
Create an empty tree Ti

repeat
Sample S out of all features F using Bootstrap sampling

Create a vector of the S features
−→
FS

Find Best Split Feature B(
−→
FS)

Create A New Node using B(
−→
FS) in Ti

until No More Instances To Split On

Add Ti to the
−→
RF

end for
{Output}
A vector of trees

−→
RF

4 Local Outlier Factor

The Local Outlier Factor (LOF) algorithm was developed by Breunig et al. [8]
to measure the outlierness of an object. The higher the LOF value assigned
to an object, the more isolated the object is with respect to its neighbors. It is
considered a very powerful anomaly detection technique in machine learning and
classification. Earlier work on outlier detection was investigated in [3,17,18,30],
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however, the work was limited by treating an outlier as a binary property to
classify an object as an outlier or not, without assigning it a value to measure
its outlierness as was done in [8].

The LOF can be used as a method to achieve diversity. It was one of 3 strate-
gies used to obtain diversity when constructing an ensemble for the KDDCup
1999 dataset [10]. Schubert et al. [31] proposed methods for measuring similarity
and diversity of methods for building advanced outlier detection ensembles using
LOF variants and other algorithms.

Formally, Breunig et al. [8] introduced the concept of reachability distance in
order to calculate the LOF. If the distance of object A to the k nearest neighbor
is denoted by k-distance(A), where the k nearest neighbors is denoted by Nk(A),
the following equation defines the reachability distance (rd):

rdk(A,B) = max{k−distance(B), d(A,B)} (1)

where d(A,B) is the distance between objects A and B. The local reachability
density of object A is then defined by

lrd(A) =

∑
B∈Nk(A) rdk(A,B)

|Nk(A)| (2)

Using the local reachability density of object A as defined in the previous equa-
tion, the LOF for object A is given by:

LOFk(A) =

∑
B∈Nk(A)

lrd(B)
lrd(A)

|Nk(A)| (3)

5 LOF-Based Diverse Random Forest (LOFB-DRF)

In this section, we propose an extension of RF called LOFB-DRF that spawns
a child RF that is (1) much smaller in size than the parent RF and (2) has an
accuracy that is at least as good as that of the parent RF. In this extension, we
use the LOF discussed in Sect. 4. As shown in Fig. 2, each tree predictions on the
training dataset (denoted by the vector C(ti, T )) is assigned an LOF value that
indicates the degree of its outlierness. The top k (k=5,10,...,40) trees correspond-
ing to these predictions with the highest weighted LOF values (to be discussed
next) are then selected to become members of the resulting LOFB-DRF. In the
remainder of this paper, we will refer to the parent/original traditional Ran-
dom Forest as RF, and refer to the resulting child RF based on our method as
LOFB-DRF.

Based on Fig. 2, we formalize the LOFB-DRF algorithm as shown in Algo-
rithm 2 where T is the training set, and N refers to the number of training
samples. The constant k refers to the number of trees that will have the highest
weighted LOF values as will be discussed later. As aforementioned, the domain
of this constant is multiple of 5 in the range 5 to 40. This way and as we shall
see in the experiments section, we can compare the performance RF with an
LOFB-DRF of different sizes.
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Fig. 2. LOFB-DRF approach

Algorithm 2. LOFB-DRF Algorithm
{User Settings}
input T , N , k
{Process}
Create an empty vector

−−−−−−−−−−−−→
treesPredictions

Create an empty vector
−−−−−−−−−→
LOFB − RF

Using N, call Random Forest Algorithm 1 above to create
−→
RF

for i = 1 → RF.size() do−−−−−−−−−−−−→
treesPredictions =

−−−−−−−−−−−−→
treesPredictions ∪ C(RF.tree(i), T)

end for
for i = 1 → −−−−−−−−−−−−→

treesPredictions.size() do

assignNormalizedLOF(
−−−−−−−−−−−−→
treesPredictions.element(i))

end for
for i = 1 → −−−−−−−−−−−−→

treesPredictions.size() do

assignWeight(
−−−−−−−−−−−−→
treesPredictions.element(i))

end for
Select the top k instances in

−−−−−−−−−−−−→
treesPredictions with highest weighted LOF values

Select the corresponding trees from RF and add them to
−−−−−−−−−−−→
LOFB − DRF

{Output}
A vector of trees

−−−−−−−−−−−→
LOFB − DRF
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5.1 Selection of Trees

With reference to Algorithm 2, the selection of trees in RF that will become
members of LOFB-DRF proceeds as follows. First, predictions of each tree
on the training dataset T is computed as a vector and added to the vector−−−−−−−−−−−−→
treesPredictions. At the conclusion of the first for loop,

−−−−−−−−−−−−→
treesPredictions

becomes a super vector containing vectors where each vector stores the pre-
dictions of each tree. By the second for loop, each instance in

−−−−−−−−−−−−→
treesPredictions

is then assigned a normalized LOF value between 0 and 1. This way, each nor-
malized value describes the probability of the instance being an outlier [10].
By the third for loop, each instance is assigned a weight that is the prod-
uct of the normalized LOF value and the accuracy rate of the corresponding
tree on the training data. Formally, let ci be an instance in the super vector−−−−−−−−−−−−→
treesPredictions, NormalizedLOF(ci) be the normalized LOF value assigned to
this instance, and AccuracyRate(Tree(ci),T) be the accuracy rate of Tree(ci)
on the training dataset T where Tree(ci) is the tree that corresponds to the
instance ci. The weight assigned to this instance is given by:

weight = NormalizedLOF (ci) × AccuracyRate(Tree(ci), T ) (4)

The instances are then sorted in descending order by this weight and the corre-
sponding top k trees are then selected.

6 Experiments

For our experiments, we have used 10 real datasets with varying characteristics
from the UCI repository [4]. To use the holdout testing method, each dataset was
divided into 2 sets: training and testing. Two thirds (66 %) were reserved for train-
ing and the rest (34 %) for testing. Each dataset consists of input variables (fea-
tures) and an output variable. The latter refers to the class label whose value will
be predicted in each experiment. In Fig. 2, the initial RF to produce LOFB-DRF
had a size of 500 trees, a typical upper limit setting for RF ensembles [36].

The LOFB-DRF algorithm described above was implemented using the Java
programming language utilizing the API of Waikato Environment for Knowledge
Analysis (WEKA) [23]. We ran this algorithm 10 times on each dataset where
a new RF was created in each run. We then calculated the average of the 10
runs for each resulting LOFB-DRF to produce the average for a variety of met-
rics including accuracy rate, minimum accuracy rate, maximum accuracy rate,
standard deviation, FMeasure, and AUC as shown in Table 3. For RF, we just
calculated the average accuracy rate, FMeasure, and AUC as shown in the last
3 columns of the table.

6.1 Results

Table 3 compares the performance of LOFB-DRF and RF on the 10 datasets
used in the experiment. To show the superiority of LOFB-DRF, we have high-
lighted in boldface the average accuracy rate of LOFB-DRF when it is greater
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than that of RF. With the exception of the audit and vote datasets (last 2
datasets), we find that LOFB-DRF performed at least as good as RF. Interest-
ingly enough, of the 10 datasets, LOFB-DRF, regardless of its size, completely
outperformed RF on 3 of the datasets, namely, squash-stored, eucalyptus, and
sonar.

6.2 Pruning Level

In ensemble pruning, a pruning level refers to the reduction ratio between the orig-
inal ensemble and the pruned one. For example, if the size of the original ensemble
is 500 trees and the pruned one is of size 50, then 100% − 50

500 × 100% = 90%
is the pruning level that was achieved in the pruned ensemble. This means that
the pruned ensemble is 90 % smaller than the original one. Table 1 shows the prun-
ing levels where the first column shows the maximum possible pruning level for an
LOFB-DRF that has outperformedRF, and the second column shows the pruning
level of the best performer LOFB-DRF. We can see that with extremely healthy
pruning levels ranging from 95 % to 99 %, our technique outperformed RF. This
makes LOFB-DRF a natural choice for real-time applications, where fast classifi-
cation is an important desideratum. In most cases, 100 times faster classification
can be achieved with a 99 % pruning level, as shown in the table. In the worst
case scenario, only 16.67 times faster classification with 95 % pruning level in the
squash-unstored dataset. Such estimates are based on the fact that the number
of trees traversed in the RF is the dominant factor in the classification response
time. This is especially true, given that RF trees are unpruned bushy trees.

Table 1. Maximum pruning level with best possible performance

Dataset Maximum
pruning level

Best performance
pruning level

breast-cancer 97 % 95%

squash-unstored 95 % 93%

squash-stored 99 % 98%

eucalyptus 99 % 99%

soybean 98 % 97%

diabetes 96 % 96%

car 99 % 99%

sonar 99 % 99%

6.3 Analysis

For each dataset, Fig. 3 shows the number of LOFB-DRF s outperforming RF.
As shown in the figure, with the exception of the audit and vote datasets, we
have at least one LOFB-DRF outperformer for each dataset.
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Fig. 3. Number of LOFB-DRFs outperforming RF

6.4 Outperformance Range

Tables 2 below depicts the outperformance range of LOFB-DRF over RF. A
negative number indicates that RF was superior to LOFB-DRF and the absolute
value of this number refers to the performance difference between RF and best
performer LOFB-DRF. Taking a closer look at this table, we can see that LOFB-
DRF outperformed RF on 8/10 datasets with a maximum outperformance range
of 12.11 %.

Table 2. Outperformance range of LOFB-DRF over RF

Dataset Range

breast-cancer 0.21 % - 0.73 %

squash-unstored 2.22 % - 6.11 %

squash-stored 0.55 % - 3.88 %

eucalyptus 1.08 % - 5.88 %

soybean 0.86 % - 1.98 %

diabetes 0.12 % - 0.16 %

car 0.09 % - 1.91 %

sonar 1.69 % - 12.11 %

audit -0.05 %

vote -0.27 %
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Table 3. Predictive accuracy metrics of LOFB-DRF & RF

LOFB-DRF AVG MIN MAX SD FMeasure AUC AVG FMeasure AUC

breast-cancer

5 67.01 61.86 74.23 3.16 0.65 0.57 71.13 0.65 0.58

10 67.22 64.95 69.07 1.71 0.66 0.58

15 71.34 67.01 76.29 3.12 0.65 0.58

20 69.48 67.01 73.20 2.62 0.66 0.58

25 71.86 69.07 74.23 1.46 0.65 0.58

30 70.41 68.04 72.16 1.53 0.65 0.58

35 70.62 65.98 73.20 1.91 0.65 0.58

40 69.18 64.95 72.16 2.14 0.65 0.58

squash-unstored

5 58.89 44.44 83.33 12.47 0.58 0.66 61.11 0.52 0.64

10 54.44 33.33 66.67 9.56 0.56 0.66

15 60.56 50.00 83.33 8.77 0.55 0.65

20 60.00 50.00 66.67 5.98 0.54 0.66

25 63.33 55.56 77.78 7.93 0.54 0.65

30 58.33 44.44 77.78 8.70 0.53 0.65

35 67.22 50.00 83.33 10.08 0.54 0.66

40 57.78 50.00 66.67 6.19 0.53 0.65

squash-stored

5 56.67 38.89 66.67 9.56 0.57 0.59 55.56 0.51 0.56

10 59.44 44.44 66.67 7.05 0.54 0.58

15 58.33 50.00 66.67 4.48 0.54 0.58

20 58.33 50.00 61.11 3.73 0.55 0.58

25 58.33 50.00 66.67 5.12 0.53 0.57

30 56.67 55.56 61.11 2.22 0.52 0.56

35 56.11 55.56 61.11 1.67 0.52 0.57

40 56.11 55.56 61.11 1.67 0.52 0.56

eucalyptus

5 25.80 11.20 40.40 8.73 0.26 0.60 19.92 0.21 0.57

10 21.00 12.40 28.40 4.70 0.24 0.59

15 24.32 14.80 32.00 5.01 0.24 0.58

20 24.48 15.60 29.60 4.55 0.23 0.58

25 24.68 21.20 29.60 2.35 0.23 0.58

30 24.80 14.80 33.60 5.13 0.23 0.58

35 23.96 20.00 34.40 4.20 0.23 0.58

40 21.16 15.20 28.00 3.69 0.22 0.57
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Table 3. (Continued)

LOFB-DRF AVG MIN MAX SD FMeasure AUC AVG FMeasure AUC

soybean

5 77.28 60.78 85.78 6.80 0.79 0.88 77.59 0.73 0.85

10 78.45 70.69 85.34 5.46 0.75 0.87

15 79.57 72.84 83.62 3.50 0.76 0.87

20 76.85 74.57 78.88 1.26 0.74 0.86

25 76.90 74.14 79.31 1.88 0.74 0.86

30 76.85 72.41 81.47 2.43 0.74 0.86

35 77.33 71.98 82.33 3.66 0.73 0.86

40 76.59 71.98 81.03 2.59 0.73 0.85

diabetes

5 80.80 74.71 84.29 3.53 0.72 0.68 81.26 0.71 0.67

10 81.15 74.71 84.29 3.56 0.71 0.68

15 79.85 77.39 83.14 1.96 0.71 0.67

20 81.42 79.31 83.14 1.24 0.71 0.67

25 80.96 78.93 82.76 1.31 0.71 0.67

30 80.88 78.54 82.76 1.14 0.71 0.67

35 79.81 77.39 81.99 1.40 0.71 0.67

40 81.38 80.08 83.14 0.94 0.71 0.67

car

5 64.17 62.41 67.52 1.33 0.56 0.78 62.26 0.56 0.78

10 63.01 61.56 64.29 0.75 0.56 0.78

15 62.36 60.71 64.29 1.12 0.56 0.78

20 62.35 61.22 63.78 0.82 0.56 0.78

25 62.69 60.88 63.95 0.85 0.56 0.78

30 62.18 61.05 63.10 0.82 0.56 0.78

35 61.96 60.88 63.61 0.72 0.56 0.78

40 61.99 61.05 62.59 0.54 0.55 0.78

sonar

5 12.25 7.04 18.31 3.34 0.26 0.00 0.14 0.29 0.00

10 9.15 0.00 16.90 5.20 0.28 0.00

15 6.34 0.00 14.08 4.47 0.29 0.00

20 3.38 0.00 8.45 2.76 0.29 0.00

25 3.10 0.00 7.04 2.42 0.28 0.00

30 1.83 0.00 4.23 1.27 0.28 0.00

35 3.38 0.00 4.23 1.29 0.28 0.00

40 3.38 0.00 9.86 2.69 0.28 0.00
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Table 3. (Continued)

LOFB-DRF AVG MIN MAX SD FMeasure AUC AVG FMeasure AUC

audit

5 95.63 94.26 96.47 0.72 0.91 0.89 96.31 0.90 0.88

10 95.74 95.00 96.18 0.35 0.90 0.88

15 95.99 95.29 96.47 0.35 0.90 0.88

20 96.06 95.29 96.76 0.39 0.90 0.88

25 96.22 95.88 96.47 0.25 0.91 0.89

30 96.03 95.59 96.47 0.25 0.90 0.88

35 96.26 95.88 96.47 0.18 0.90 0.88

40 96.00 95.59 96.47 0.27 0.90 0.87

vote

5 96.82 95.27 97.97 0.80 0.96 0.98 97.97 0.95 0.97

10 97.09 95.27 97.97 0.86 0.96 0.97

15 97.57 96.62 97.97 0.45 0.95 0.97

20 97.43 96.62 97.97 0.51 0.95 0.97

25 97.57 96.62 97.97 0.45 0.95 0.97

30 97.70 97.30 97.97 0.33 0.95 0.97

35 97.64 96.62 97.97 0.45 0.95 0.97

40 97.64 96.62 97.97 0.45 0.95 0.97

7 Conclusion and Future Directions

Research conducted in this paper was based on how diversity in ensembles tends
to yield better results [1,9,20,34]. We have adopted the Local Outlier Factor
method to select diverse trees in an RF and then used these trees to form a
pruned ensemble of the original one. The selection was based on both the LOF
value and the predictive accuracy of each tree. Experimental results have shown
the potential of this method, with extreme pruning levels of Random Forests
that can outperform the original population of trees, reaching as high as 99 %.
This makes the pruned ensemble a suitable candidate for real-time applications.

We have selected trees that correspond to the instances with the top k
weighted LOF values. Another interesting variation would be to use a hybrid
approach that combines LOF with clustering to boost diversity up. Using this
approach, we first create clusters of trees then from each cluster, we select a
representative that corresponds to the instance with the highest weighted LOF
value. The current implementation also gives equal importance to the peculiarity
of the tree as measured by the LOF score and the predictive accuracy, repre-
sented by the percentage of correctly classified instances for the tree. However,
tuning this significance can play an important role in enhancing the classifier.
At one hand, choosing trees with higher predictive accuracy can lead to model



Tree Selection Approach to Extreme Pruning of Random Forests 281

overfitting, and on the other hand, using LOF only can lead to leaving out trees
that are most representative of the dataset. Balancing between the two can result
in an ensemble that is diverse enough to boost the accuracy.
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Abstract. Model complexity of shallow (one-hidden-layer) perceptron
networks computing multivariable functions on finite domains is inves-
tigated. Lower bounds are derived on growth of the number of network
units or sizes of output weights in terms of variations of functions to be
computed. A concrete construction of a class of functions which cannot
be computed by percetron networks with considerably smaller numbers
of units and output weights than the sizes of the function’s domains is
presented. In particular, functions on Boolean d-dimensional cubes are
constructed which cannot be computed by shallow perceptron networks
with numbers of hidden units and sizes of output weights depending on d
polynomially. A subclass of these functions is described whose elements
can be computed by two-hidden-layer networks with the number of units
depending on d linearly.
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1 Introduction

Originally, biologically inspired neural networks were introduced as multilayer
computational models, but later one-hidden-layer architectures became domi-
nant in applications (see, e.g., [1,2] and the references therein). Networks com-
posed from several layers of convolutional units were tested already in 1990s [3],
but their training has been inefficient till the advent of fast graphic processing
units. Recently, network architectures with several hidden layers became called
deep [4,5] to distinguish them from networks with merely one hidden layer called
shallow. Deep networks with several convolutional and pooling layers achieved
excellent performance on computer vision and speech recognition tasks (see the
survey article [6] and the references therein). However recently, some reserva-
tions about overall superiority of deep networks over shallow ones appeared. An
empirical study demonstrated that shallow networks can learn some functions
previously learned by deep ones using the same numbers of parameters as the
original deep networks [7].

Thus it is desirable to develop a theoretical analysis comparing model com-
plexities of shallow and deep networks. Characterization of tasks, which can be
c© Springer International Publishing Switzerland 2016
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computed by deep networks of smaller model complexities than shallow ones can
be derived by comparing lower bounds on numbers of units in shallow networks
with upper bounds on numbers of units in deep ones. Generally, derivation of
lower bounds is much more difficult than derivation of upper ones. For shal-
low networks, a variety of upper bounds on numbers of units in dependence
on types of units, input dimensions, and types of functions to be computed is
known (see, e.g., [8] and the references therein), but only few lower bounds is
available. Some lower bounds hold merely for types of computational units that
are not commonly used such as perceptrons with specially designed activation
functions [9]. Bianchini and Scarselli [10] initiated a theoretical research com-
paring numbers of units in shallow and deep networks in terms of topological
properties of input-output functions.

Bengio et al. [11] suggested that a cause of large model complexities of shallow
networks might be in the “amount of variations” of functions to be computed. As
an example of a highly varying function they presented the parity function on the
Boolean cube. They proved that classification of points from the d-dimensional
Boolean cube by Gaussian SVM requires at least 2d−1 support vectors.

In [12] we showed that the effect of “high variations” of a function depends
on a type of computational units. We proposed to use a concept of variational
norm tailored to a type of computational units as a measure of variations of a
function influencing model complexity of networks with units of the given type.
Using a probabilistic argument, we proved that almost any uniformly randomly
chosen function on a sufficiently large domain is highly varying with respect to
Heaviside or signum perceptrons and thus it cannot be represented by perceptron
networks with a reasonably small number of units and sizes of output weights.

However, our argument proving existence of large sets of functions whose
implementations by shallow perceptron networks require large numbers of units
or large sizes of output weights is non constructive [12]. It is based on probabilis-
tic Chernoff bound related to the law of large numbers. In this paper, we present
a concrete construction of classes of such functions. We construct classes of mul-
tivariable functions on finite domains in R

d in the form of n × n rectangles. We
show that these functions cannot be computed by shallow Heaviside or signum
perceptron networks having both number of units and sizes of output weights
larger than

√
n

�log2 n� . In particular, for domains of sizes 2k × 2k, such functions
cannot be computed by shallow perceptron networks with numbers or units or
sizes of output weights depending on k polynomially. Our construction is based
on properties of square matrices inducing functions which are not correlated to
any function computable by a signum perceptron. We describe a subclass of these
functions which can be computed by two-hidden-layer perceptron networks with
the numbers of units depending on k linearly.

The paper is organized as follows. Section 2 contains basic concepts on shallow
networks and dictionaries of computational units. Section 3 reviews variational
norms as tools for investigation of network complexity. Section 4 presents exis-
tential probabilistic results on functions which cannot be computed by shallow
signum perceptron networks with “small” numbers of units and sizes of output
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weights. In Sect. 5, construction of concrete classes of such functions is presented.
In Sect. 6 model complexities of one and two-hidden-layer networks computing a
subclass of functions used in our construction are compared. Section 7 is a brief
discussion.

2 Preliminaries

The most widespread type of a feedforward neural network architecture is a
one-hidden-layer network with a single linear output. For a given type of compu-
tational units from a set of functions called dictionary these networks compute
input-output functions belonging to sets of the form

spann G :=

{
n∑

i=1

wigi |wi ∈ R, gi ∈ G

}
,

where the coefficients wi are called output weights and n denotes the number of
network units. Recently, one-hidden-layer networks became called shallow net-
works to distinguish them from deep networks with several hidden layers of
computational units.

A common type of a computational unit is perceptron, which computes func-
tions of the form σ(v · .+ b) : X → R, where σ : R → R is an activation function.
It is called sigmoid when it is monotonic increasing and limt→−∞ σ(t) = 0 and
limt→∞ σ(t) = 1. Important types of activation functions are the Heaviside func-
tion defined as

ϑ(t) := 0 for t < 0 and ϑ(t) := 1 for t ≥ 0

and the signum function sgn : R → {−1, 1}, defined as

sgn(t) := −1 for t < 0 and sgn(t) := 1 for t ≥ 0.

We denote by Hd(X) the dictionary of functions on X ⊂ R
d computable by

Heaviside perceptrons, i.e.,

Hd(X) := {ϑ(v · . + b) : X → {0, 1} | v ∈ R
d, b ∈ R} , (1)

end by Pd(X) the dictionary of functions on X computable by signum per-
ceptrons, i.e.,

Pd(X) := {sgn(v · . + b) : X → {−1, 1} | v ∈ R
d, b ∈ R} . (2)

Note that from the point of view of number of network units, there is only a
minor difference between networks with signum and Heaviside perceptrons as

sgn(t) = 2ϑ(t) − 1 and ϑ(t) =
sgn(t) + 1

2
. (3)
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For a domain X ⊂ R
d we denote by

F(X) := {f | f : X → R}

the set of all real-valued functions on X and by

B(X) := {f | f : X → {−1, 1}}

the set of all functions on X with values in {−1, 1}.
In practical applications, domains X ⊂ R

d are finite, but their sizes cardX
and/or input dimensions d can be quite large. It is easy to see that when cardX =
m and X = {x1, . . . , xm} is a linear ordering of X, then the mapping ι : F(X) →
R

m defined as ι(f) := (f(x1), . . . , f(xm)) is an isomorphism. So, on F(X) we
have the Euclidean inner product defined as

〈f, g〉 :=
∑

u∈X

f(u)g(u)

and the Euclidean norm ‖f‖ :=
√

〈f, f〉. In contrast to the inner product 〈., .〉
on F(X), we denote by · the inner product on X ⊂ R

d, i.e., for u, v ∈ X,

u · v :=
d∑

i=1

uivi.

3 Variational Norms as Measures of Sparsity

It is desirable that dictionaries of computational units are chosen in such a way
that input-output functions representing optimal solutions (or reasonably subop-
timal ones) of given tasks can be computed by sufficiently sparse networks. The
basic measure of sparsity of a shallow network is the number of computational
units in the hidden layer.

Shallow networks with many types of computational units (including per-
ceptrons and positive definite kernel units) can exactly compute any function
on any finite domain [13]. However, arguments proving universal representation
capabilities of shallow networks provide representations of functions on finite
domains by networks with numbers of hidden units equal to sizes of domains of
the functions to be computed. For large domains, this number can be too large
for efficient implementations.

As minimization of the number of non-zero output weights in a shallow net-
work with units from a dictionary G computing function f is a difficult non
convex task, minimization of l1 and l2-norms of output weights have been used
in weight-decay regularization techniques (see, e.g., [1, p. 220]). A small l1-norm
of output weights implies that a function has both small number of units and
small absolute values of output weights. Thus an alternative concept of sparsity
in terms of l1-norm of output weight vector can be considered. When a dictionary
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is linearly independent, its value is unique for a given function. For other dic-
tionaries, minimum over all representations of a given function as input-output
functions has to be considered.

The concept of l1-sparsity is related to the concept of variation of a function
with respect to a dictionary of computational units from nonlinear approximation
theory. Variation with respect to Heaviside perceptrons (called variation with
respect to half-spaces) was introduced by Barron [14] and extended to general
dictionaries by Kůrková [15]. Here we use this concept for dictionaries on finite
domains. Such dictionaries are subsets of finite dimensional Hilbert spaces F(X).
For a bounded subset G of F(X), G-variation (variation with respect to the
dictionary G), denoted by ‖.‖G, is defined as

‖f‖G := inf
{

c ∈ R+

∣∣∣
f

c
∈ clX conv (G ∪ −G)

}
, (4)

where −G := {− g | g ∈ G}, clX denotes the closure with respect to the topology
induced by the norm ‖ · ‖F , and conv is the convex hull. For properties of
variational norm and its role in estimates of rates of approximation, see [8,16–20].

The next proposition, which follows easily from the definition, shows the role
of G-variation in estimates of complexity and sparsity of networks representing
a function f .

Proposition 1. Let G be a finite subset of a normed linear space (X , ‖.‖) with
cardG = k. Then, for every f ∈ X

‖f‖G = min

{
k∑

i=1

|wi|
∣∣∣ f =

k∑

i=1

wi gi , wi ∈ R, gi ∈ G

}
.

Thus any representation of a function with “large” G-variation by a shallow
network with units from a dictionary G must have “large” number of units
and/or absolute values of some output weights must be “large”. On the other
hand, functions with “small” G-variations can be represented by networks with
“small” numbers of units from the dictionary G and “small” output weights.
Classes of d-variable functions with G-variations growing with d polynomially
are of particular interest as they can be represented by shallow networks with
numbers of units from the dictionary G and sizes of output weights growing with
d polynomially and thus avoid the “curse of dimensionality”.

The following theorem from [21] (see also [19]) shows that lower bounds on
G-variation of a function f can be obtained by estimating correlations of f with
functions from the dictionary G. By G⊥ is denoted the orthogonal complement
of G in the Hilbert space F(X) which is isomorphic to the finite dimensional
Euclidean space R

cardX .

Theorem 1. Let X be a finite subset of R
d and G be a bounded subset of F(X).

Then, for every f ∈ F(X) \ G⊥ one has

‖f‖G ≥ ‖f‖2
supg∈G |〈g, f〉| .
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Theorem 1 shows that functions which are almost orthogonal to all elements of
a dictionary G have large variations with respect to G.

4 Shallow Networks with Signum Perceptrons

The dictionary of signum perceptrons

Pd(X) := {sgn(v · . + b) : X → {−1, 1} | v ∈ R
d, b ∈ R}

occupies a relatively small subset of the set B(X) of all functions on X with
values in {−1, 1}. The size of Pd(X) grows with increasing size m of the domain
X only polynomially (the degree of the polynomial is the dimension d of the space
R

d where X is embedded), while the size 2m of the set B(X) of all functions
from X to {−1, 1} grows exponentially. The following upper bound is a direct
consequence of an upper bound on the number of linearly separable dichotomies
of m points in R

d from [22] combined with an upper bound on partial sum of
binomials (see [12]).

Theorem 2. For every d and every X ⊂ R
d such that cardX = m,

card Pd(X) ≤ 2
md

d!
.

In [12] we showed that for large domains X, almost any uniformly randomly
chosen function from X to {−1, 1} has large variation with respect to signum
perceptrons. We proved the following theorem combining a probabilistic Chernoff
bound, the geometric lower bound on variational norm from Theorem 1, and the
relatively small size of the dictionary Pd(X).

Theorem 3. Let d be a positive integer, X ⊂ R
d with cardX = m, f uniformly

randomly chosen in B(X), and b > 0. Then

Pr
(
‖f‖Pd(X) ≥ b

)
≥ 1 − 4

md

d!
e− m

2b2 .

Thus for large X, almost any uniformly randomly chosen function cannot
be l1-sparsely represented by a shallow network with signum perceptrons. In
particular for cardX = 2d and b = 2

d
4 , Theorem 3 implies a lower bound

1 − 4
2d

2

d!
e−(2

d
2 −1) (5)

on probability that a uniformly randomly chosen function from B({0, 1}d) has
variation with respect to signum perceptrons greater or equal to 2

d
4 . So almost

any uniformly randomly chosen function on the d-dimensional Boolean cube
{0, 1}d cannot be computed by a shallow network with the number of signum
perceptrons and absolute values of output weights depending on d polynomially.

Theorem 3 is existential. It proves that there exists a lot of functions which
cannot be l1-sparsely represented by shallow signum perceptron networks, but
it does not suggest how to construct such functions.
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5 Construction of Functions with Large Variations
with Respect to Signum Perceptrons

In this section, we present a concrete construction of a class of functions on
square domains with “large” variations with respect to signum perceptrons. Such
functions are concrete examples of functions whose existence is guaranteed by
Theorem 3. They cannot be computed by one-hidden-layer networks with
“small” numbers of signum perceptrons and “small” sizes of output weights.

We provide a method of construction of such functions on domains in the form
of squares X = {x1, . . . , xn} × {y1, . . . , yn} ⊂ R

d. Functions on such domains
can be represented by square matrices. A function f on X can be described by
a matrix M(f) defined as M(f)i,j = f(xi, yj). An n × n matrix M induces a
function fM on X such that fM (xi, yj) = Mi,j . In particular, functions with
values in {−1, 1} induce matrices with entries equal to −1 or +1.

The next theorem gives a lower bound on variation with respect to signum
perceptrons of functions on square domains induced by Hadamard matrices.
Recall that a Hadamard matrix of order n is an n × n square matrix M with
entries in {−1, 1} such that any two distinct rows (or equivalently columns) of
M are orthogonal. In the proof of our theorem we show that functions induced
by these matrices have “small” inner products with all elements of the dictionary
of signum perceptrons and thus by Theorem 1, they have large variations with
respect to signum perceptrons.

Theorem 4. Let d = d1 + d2, {xi | i = 1, . . . , n} ⊂ R
d1 , {yj | j = 1, . . . , n} ⊂

R
d2 , X = {xi | i = 1, . . . , m} × {yj | j = 1, . . . ,m} ⊂ R

d, and fM : X → {−1, 1}
be defined as fM (xi, yj) = Mi,j, where M is an n × n Hadamard matrix. Then
‖fM‖Pd(X) ≥

√
n

�log2 n� .

Proof. By Theorem 1,

‖fM‖Pd(X) ≥ ‖fM‖2
supg∈Pd(X) |〈fM , g〉| =

n2

supg∈Pd(X) |〈fM , g〉| . (6)

The inner product of fM with g is equal to the sum of entries of the matrices
M and M(g), i.e., 〈fM , g〉 =

∑n
i,j Mi,jM(g)i,j and thus it is invariant under

permutations of rows and columns performed jointly on both matrices M and
M(g).

Without loss of generality, we can assume that each row and each column
of M(g) starts with a (possibly empty) initial segment of −1’s followed by a
(possibly empty) segment of +1’s. Otherwise, we reorder rows and columns in
both matrices M(g) and M .

To estimate 〈fM , g〉 =
∑n

i,j=1 Mi,jM(g)i,j we define a partition of the matri-
ces M and M(g) into families of submatrices such that each submatrix from the
partition of M(g) has all entries either equal to −1 or equal to +1. We define
the partition of M(g) recursively as a sequence of families of matrices (possibly
some of them empty) P(g, k) = {P (g, k, 1), . . . , P (g, k, 2k)}, k = 1, . . . , �log2 n�.
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Let P(k) = {P (k, 1), . . . , P (k, 2k)} be a family of submatrices of M formed
by the entries from the same rows and columns as corresponding submatrices of
M(g) from the family P(g, k) = {P (g, k, 1), . . . , P (g, k, 2k)}. Then

∣∣〈fM , g〉
∣∣ =

∣∣∣∣∣∣

n∑

i,j

Mi,jM(g)i,j

∣∣∣∣∣∣
=

∣∣∣∣∣∣

�log2 n�∑

k=1

2k∑

t=1

P (k, t)i,j P (g, k, t)i,j

∣∣∣∣∣∣
. (7)

As the matrices P (k, t) are submatrices of the Hadamard matrix M , by
the Lindsay lemma [23, p. 88], we have

∣∣〈fM , g〉
∣∣ ≤ n

√
n�log2 n�. Thus

‖fM‖Pd(X) ≥
√
n

�log2 n� . �

By Proposition 1, functions with large variations with respect to signum
perceptrons cannot be l1-sparsely represented by shallow sigmoidal perceptron
networks. Combining this proposition with Theorem 4 we obtain the next corol-
lary.

Corollary 1. Let d = d1 + d2, {xi | i = 1, . . . , n} ⊂ R
d1 , {yj | j = 1, . . . , n} ⊂

R
d2 , X = {xi | i = 1, . . . , n} × {yj | j = 1, . . . , n} ⊂ R

d, and fM : X → {−1, 1}
be defined as fM (xi, yj) = Mi,j, where M is an n × n Hadamard matrix. Then
fM cannot be computed by a shallow signum perceptron network having both the
number of units and absolute values of all output weights smaller than

√
n

�log2 n� .

Theorem 4 provides a method of construction of functions with large varia-
tions with respect to signum perceptrons. It can be applied to domains contain-
ing sufficiently large squares, for example two-dimensional squares with 2k × 2k

pixels or 2k-dimensional Boolean cubes {0, 1}2k.

Corollary 2. Let k be a positive integer and fM : {0, 1}k × {0, 1}k → {−1, 1}
be defined as fM (xi, yj) = Mi,j, where M is a 2k × 2k Hadamard matrix. Then
‖fM‖Pd({0,1}2k) ≥ 2k/2

k .

The Corollary 2 shows that functions defined in terms of Hadamard matrices
on 2k-dimensional Boolean cubes has variations with respect to signum per-
ceptrons bounded from below by 2k/2

k . Such functions cannot be computed by
shallow signum perceptron networks with numbers of units and absolute values
of output weights bounded by any polynomial of k. So they cannot be sparsely
represented by shallow perceptron networks with considerably smaller numbers
of units and sizes of output weights than the sizes 2k × 2k of their domains.

6 Comparison of Representations by One
and Two-Hidden-Layer Networks

Examples of functions for which lower bounds in the previous section were
derived can be obtained from a variety of types of Hadamard matrices. Their
listings can be found at the Neil Sloane Library of Hadamard matrices [24].
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Various constructions of Hadamard matrices are known, e.g., Sylvester’s
recursive construction of 2k × 2k matrices, Paley’s construction based on
quadratic residues, constructions based on Latin squares, and on Steiner’s triples.

Our results can be illustrated by an example of Sylvester-Hadamard matrices.
A 2k × 2k matrix is called Sylvester-Hadamard if it is constructed recursively
starting from the matrix

S(2) =
∣∣∣∣
1 1
1 −1

∣∣∣∣

and iterating the Kronecker product

S(l + 1) = S(2)
⊗

S(l) =
∣∣∣∣
S(l) S(l)
S(l) −S(l)

∣∣∣∣ .

Sylvester-Hadamard matrices are of orders 2k and so they induce functions on
Boolean 2k-dimensional cubes. The following theorem together with Corollary 2
provides a comparison of model complexities of one and two-hidden-layer net-
works representing functions induced by Sylvester-Hadamard matrices. It shows
that such functions can be represented by two-hidden-layer Heaviside perceptron
networks with k units in each of hidden layers.

Theorem 5. Let S(k) be a 2k × 2k Sylvester-Hadamard matrix, hk : {0, 1}k ×
{0, 1}k → {−1, 1} be defined as hk(u, v) = S(k)u,v. Then hk can be represented
by a network with one linear output and two hidden layers with k Heaviside
perceptrons in each one.

Proof. It is well-known that any 2k × 2k Sylvester-Hadamard matrix is equiv-
alent to the matrix with rows formed by generalized parities pu(v) : {0, 1}k →
{−1, 1} defined as pu(v) = −1u·v (see, e.g., [25]). Thus we can assume that
S(k)u,v = −1u·v (otherwise we permute rows and columns). For any b ∈ (1, 2),
define k perceptrons with 2k inputs in the first hidden layer as ϑ(ci ·x−b), where
we let cii = 1, cik+i = 1, and all other weights are equal to 0.

Let w = (w1, . . . , wk) be such that wj = 1 for all j = 1, . . . , k. In the second
hidden layer, define k perceptrons by zj(y) := ϑ(w · y − j + 1/2). Finally, for all
j = 1, . . . , k let the j-th unit from the second hidden layer be connected with
one linear output unit with the weight (−1)j .

The two-hidden-layer network obtained in this way computes the function∑k
j=1(−1)jϑ(

∑d/2
i=1 ϑ(ci · x − b) − j + 1/2) = hk(x) = hk(u, v) = −1u·v. �

Combining Theorems 5 and 4 and the Eq. (3) we obtain the next corollary.

Corollary 3. Let S(k) be a 2k × 2k Sylvester-Hadamard matrix, hk : {0, 1}k ×
{0, 1}k → {−1, 1} be defined as hk(u, v) = S(k)u,v. Then hk can be represented
by a two-hidden-layer network with k Heaviside perceptrons in each hidden layer,
but every representation of hk by one-hidden-layer Heaviside perceptron network
has at least 2k

k units or some of absolute values of output weights are greater or
equal to 2k

k .
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Corollary 3 gives an example of a class of functions on {0, 1}2k which can be
“l0”-sparsely represented by two-hidden-layer perceptron networks but cannot
be l1-sparsely represented by perceptron networks with merely one hidden layer.

7 Discussion

As estimation of minimal numbers of network units needed for a representation
of a given function is a difficult non convex problem, we focused on investiga-
tion of sparsity of shallow neural networks in terms of l1-norms of their output
weights. These norms has been used in weight-decay regularization techniques
and are related to the concept of a variational norm tailored to a type of com-
putational units which plays an important role in estimates of upper bounds on
rates of approximation by shallow networks with various types of computational
units [8,19]. Thus variational norms provide a framework for derivation of both
upper and lower bounds of model complexities of shallow networks.

For signum perceptrons we derived a lower bound on variational norms of
functions defined on rectangular domains in terms of Hadamard matrices. In par-
ticular, we proved that such functions on d-dimensional Boolean cubes {0, 1}d,
with d even, cannot be computed by shallow perceptron networks with numbers
of units and output weights depending on d polynomially. Our results comple-
ment an existential probabilistic argument from [12] which shows that almost
any uniformly randomly chosen function on a large domain cannot be computed
by a sparse shallow perceptron network.

We also showed that functions from a subclass of the class of functions which
we used in our construction can be computed by two-hidden-layer perceptron
networks of much smaller model complexities than by shallow ones.

Although for large domains, almost any uniformly randomly chosen function
has a large variation with respect to perceptrons, it is not easy to find exam-
ples of such functions. We constructed a class of such functions generated by
matrices with rather extreme properties. However, it is quite likely that many
practical tasks can be represented by functions which can be computed by rea-
sonably small shallow networks. Deep networks seem to be more efficient than
shallow ones in tasks which can be naturally described in terms of compositional
functions. Such functions can be suitable for description of visual recognition
tasks.

Our lower bounds on model complexity were derived merely for perceptron
networks. Investigation of lower bounds for other types of computational units
is subject of our future work.
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12. Kůrková, V., Sanguineti, M.: Model complexities of shallow networks representing
highly varying functions. Neurocomputing 171, 598–604 (2016)

13. Ito, Y.: Finite mapping by neural networks and truth functions. Math. Sci. 17,
69–77 (1992)

14. Barron, A.R.: Neural net approximation. In: Narendra, K. (ed.) Proceedings of the
7th Yale Workshop on Adaptive and Learning Systems, pp. 69–72. Yale University
Press (1992)
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Abstract. Capabilities of radial convolution kernel networks to approx-
imate multivariate functions are investigated. A necessary condition for
universal approximation property of convolution kernel networks is given.
Kernels that satisfy the condition in arbitrary dimension are investigated
in terms of their Hankel and Fourier transforms. A computational exam-
ple is presented to assess approximation capabilities of different convo-
lution kernel networks.

Keywords: Kernel networks · Convolution · Universal approximation

1 Introduction

It is the classical result that RBF neural networks possess the universal approxi-
mation property [5,9]. Roughly speaking, it means that any reasonable function
can be arbitrarily well approximated by a feed-forward three-layered RBF neural
network, provided that computational units satisfy certain mild conditions.

Mathematically, the result draws on the fact that convolving a function with
the translated Dirac function yields pointwise the original function. Computa-
tional units forming the RBF network are then selected to approximate the
translated Dirac functions by locating their centers at the points of translation
(they usually correspond to training data) and setting their widths near to zero.
In RBF networks, the possibility of varying the widths of computational units
is crucial for obtaining the approximation result.

It was recently proved that the universal approximation property in L2(Rd)
space holds under certain conditions also for kernel networks [6]. Radial con-
volution kernel networks form a subset of RBF networks obtained by fixing
widths of computational units. Clearly, different proof techniques had to be used
in [6] than approximating the Dirac delta function. Namely, the proof draws on
techniques from functional and Fourier analysis. The result has been already
known for Gaussians [8], but Kůrková has shown that it holds for all kernels
in L1(Rd) ∩ L2(Rd) such that zeros of their Fourier transforms form a set of
Lebesgue measure zero [6]. These kernels are then suitable for use in practical
applications.

In this paper, we show that the above condition is not only sufficient, but
also necessary for the universal approximation property. This conveniently com-
plements the original result in [6].
c© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 295–306, 2016.
DOI: 10.1007/978-3-319-44188-7 22
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Further, we focus on concrete examples of kernels that satisfy the universal
approximation condition. Special interest is put on kernels for which the con-
dition holds in an arbitrary dimension and so they are suitable for processing
high-dimensional data. We investigate their Fourier transforms in terms of their
Hankel transforms [2].

The paper is organized as follows. The next section briefly reviews the rel-
evant mathematical background together with the statement of the sufficiency
result. In the third section, we prove the necessity of the condition for the uni-
versal approximation property. The fourth section discusses radial convolution
kernels that satisfy the condition in any dimension. Several examples of kernels
are presented. The fifth section contains a computational example and the sixth
one concludes the paper.

2 Convolution Kernel Networks

A feedforward three-layered neural network with one hidden layer computes
functions from the set

span G =

{
n∑

i=1

wjgj |wi ∈ R, gj ∈ G,n ∈ N+

}
,

where the set of functions G is called a dictionary.
Dictionaries in kernel networks correspond to parametrized families of func-

tions specified by kernel K,

GK = {K( · , y) : R
d → R, y ∈ R

d}.

The kernel networks are based on computational units that have fixed width.
It means that no varying scaling parameter is allowed here in contrast to more
flexible RBF networks. The only varying parameter in a kernel computational
unit is the parameter of location y ∈ R

d, d ∈ N+.
A class of the convolution kernel networks1 These are the kernel networks

based on kernels of the form K(x, y) = k(x − y), where k is a suitable function
from R

d → R. These kernels are called the convolution kernels [6]. The dictionary
for the convolution kernel network has the form

GK = {k( · − y) :Rd → R, y ∈ R
d}.

In spite of the fact that the convolution kernel networks are less flexible than
more general RBF networks, they still exhibit the universal approximation prop-
erty. The following theorem proved in [6] specifies this fact formally. The theorem
draws on properties of the Fourier transform of the convolution kernel. Recall
that the Fourier transform f̂ is specified for functions f in L1(Rd) space with
standard extension to L2(Rd) space [10].
1 Note that the convolution kernel networks represent a different concept from the

nowadays very popular concept of the convolutional neural networks [7]. The first
has a shallow architecture in contrast to the deep one of the latter case.
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Definition 1. Let function f :Rd → R be in L1(Rd). Its multivariate Fourier
transform is specified as

f̂(s) =
1

(2π)d/2

∫

Rd

e i〈x,s〉f(s) dx.

Theorem 1 (Kůrková [6]). Let d be a positive integer, λd the Lebesgue measure
on R

d, k ∈ L1(Rd) ∩ L2(Rd) be such that the set λd({s ∈ R
d | k̂(s) = 0}) = 0,

and K :Rd × R
d → R be defined as K(x, y) = k(x − y). Then span GK is dense

in (L2(Rd), || · ||L2(Rd)).

The theorem provides guidance for selecting kernels to design the convolution
kernel networks suitable for approximation. We should use kernels that have
fully supported Fourier transforms except sets of Lebesgue measure zero. In that
case, we are theoretically assured that we may achieve an arbitrary accuracy of
approximation in L2 sense.

In what follows we are going to deal with two issues. First, we show that
the condition on zeros of the Fourier transform is also necessary. Hence, the
condition is the best possible because it is the least restrictive. Secondly, we
discuss examples of suitable kernels, especially in terms of radial functions that
are suitable for approximation in arbitrary dimension d ∈ N+.

3 Necessity

Lemma 1. Let d be a positive integer, k ∈ L1(Rd) ∩ L2(Rd), K :Rd × R
d → R

be defined as K(x, y) = k(x − y) and span GK be dense in (L2(Rd), || · ||L2(Rd)).
Then λd({s ∈ R

d|k̂(s) = 0}) = 0.

Proof. We prove the reverse implication, i.e., if for the kernel k is λd({s ∈
R

d | k̂(s) = 0}) > 0, then GK cannot be dense in (L2(Rd), || · ||L2(Rd)).

Let λd({s ∈ R
d | k̂(s) = 0}) > 0. Standard Euclidean space R

d is σ-compact
so there exists a hypercube Hn∗ = [−n∗, n∗]d ⊆ R

d, n∗ ∈ N+ such that λd({s ∈
R

d | k̂(s) = 0} ∩ Hn∗) > 0. For such the hypercube Hn∗ we denote H0
n∗ = {s ∈

R
d | k̂(s) = 0} ∩ Hn∗ ; and therefore λd(H0

n∗) > 0.
Now, let us consider the function fn∗(x) =

∏d
i=1 n∗√2/π sinc(n∗xi), where

sinc(z) = sin(z)/z for z �= 0, z ∈ R, sinc(0) = 1 and x = (x1, . . . , xd). This
function is in L2(Rd) because ||

∏d
i=1 n∗√2/π sinc(n∗xi)||2L2(Rd) = (2n∗)d. The

Fourier transform of fn∗ writes f̂n∗(s) =
∏d

i=1 rect[−n∗,n∗](xi), where rect[−n∗,n∗]

is the unit pulse on interval [−n∗, n∗]. Hence f̂n∗(s) corresponds to the charac-
teristic function of the hypercube Hn∗ and ||f̂n∗ ||2L2(Rd) = (2n∗)d.

Suppose that there exists an approximant F =
∑N

j=1 wjk(x−yj) of fn∗ such
that ||fn∗ − F ||2L2(Rd) < λd(H0

n∗). The Fourier transform of F writes F̂ (s) =
∑N

j=1 wje
i〈yj ,s〉k̂(s). Using Parseval’s theorem gives
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||fn∗ − F ||2L2(Rd) = ||f̂n∗ − F̂ ||2L2(Rd)

=
∫

Rd

|f̂n∗(s) −
N∑

j=1

wje
i〈yj ,s〉k̂(s)|2 ds

≥
∫

H0
n∗

|f̂n∗(s) −
N∑

j=1

wje
i〈yj ,s〉k̂(s)|2 ds.

But for x ∈ H0
n∗ , one has

∑N
j=1 wje

i〈yj ,s〉k̂(s) = 0 and also f̂n∗(s) = 1. Thus,
||fn∗ − F ||2L2(Rd) ≥ λd(H0

n∗) > 0 and F cannot be the approximant of fn∗ . �
The lemma establishes necessity of condition λd({s ∈ R

d|k̂(s) = 0}) = 0
for dense approximation in L2(Rd) space. Considering the concrete example of
L1(Rd) ∩ L2(Rd) kernel with the compactly supported Fourier transform, the
sinc2 function is a good example in one dimension. For the d-dimensional space
we can consider product

∏d
i=1 sinc2(xi). It is well know that this multidimen-

sional kernel has the Fourier transform
∏d

i=1 tri(xi), where tri(xi) is the properly
scaled triangular pulse on unit interval [−1, 1]. Simply put, we may conclude that
a linear combination of translated sinc2 kernels cannot approximate the rectan-
gular pulse to arbitrary precision in || · ||L2(Rd) norm.

4 Radial Convolution Kernels

Radial functions are functions that are invariant with respect to rotation. The
formal definition reads as follows:

Definition 2. A function Φ :Rd → R is called radial if there exists a function
ϕ :R → R such that Φ(x) = ϕ(||x||2), where || · ||2 is the Euclidean norm on R

d.

The Fourier transform of a radial function is also a radial function. It can be
expressed in terms of the Hankel transform [2,12].

Definition 3. The Hankel transform of order ν of a function ϕ : [0,∞) → R is
defined as

Hν{ϕ(r)}(s) =
∫ ∞

0

ϕ(r)Jν(sr)r dr.

where Jν is the Bessel function of the first kind of order ν > − 1
2 ;

The proof of the following theorem can be found in [11] (Theorem 3.3).

Theorem 2. Let Φ ∈ L1(Rd) be continuous and radial, i.e., Φ(x) = ϕ(||x||2).
Then its Fourier transform Φ̂(s) is also radial Φ̂(s) = ϕH (||s||2) where

ϕH (s) =
1√
sd−2

∫ ∞

0

ϕ(r)r
d
2 J(d−2)/2(sr) dr = s−νHν{ϕ(r) · rν}(s)

for ν = (d − 2)/2, i.e., ν = − 1
2 , 0, 1

2 , 1, . . . for d = 1, 2, 3, 4 . . . .
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Table 1. The Hankel transforms of univariate functions ϕ(r) rν .

Function name Univariate function ϕ(r) Hankel transform Hν{ϕ(r) rν}
Gaussian ϕ(r) = exp(−a2r2) Hν(s) = sν

(2a2)ν+1 exp(− s2

4a2 )

Inv. multiquadric ϕ(r) = (a2 + r2)−(μ+1) Hν(s) = aν−μsμ

2μΓ(μ+1)
Kν−μ(as)

Cut power ϕ(r) = (a2 − r2)μ
+ Hν(s) = 2μΓ(μ+1)aν+μ+1

sμ+1 Jν+μ+1(as)

Rect. pulse 1[0,1] ϕ(r) =

{
1 0 ≤ r ≤ 1

0 otherwise
Hν(s) = s−1Jν+1(s)

Theorem 2 gives us a convenient tool for investigating the Fourier transforms
of multidimensional radial functions by employing the Hankel transforms of suit-
able univariate functions multiplied by the term rν .

In Table 1, there are presented several univariate functions with their
Hankel transforms. They contain special functions, namely, Bessel functions of
the first kind Jα and modified Bessel functions of the second kind Kα. The
Hankel transforms were obtained from various sources, mainly from [2,12]. The
comprehensive source is [1]. Note that in [1], the Hankel transform is defined
as hν{f(x)}(y) =

∫ ∞
0

f(x)Jν(xy)(xy)1/2 dx. The relation between this and our
version writes Hν{f(x)}(s) = s−1/2hν{xν+1/2f(x)}(s).

For the purpose of investigating the Fourier transforms of radial convolution
kernels, see Definition 4 below, we scale the univariate functions in Table 1 by the
parameter b > 0. To do this, note that Hν{f(r/b)rν}(s) = bν+2Hν{f(r)rν}(bs)
which can be directly derived from the definition formula of the Hankel trans-
form.

Table 2. The Hankel transforms of scaled univariate functions ϕb(r) rν .

Function name Scaled function ϕb(r) = ϕ(r/b) Hankel transform Hν{ϕb(r) rν}
Gaussian ϕb(r) = exp(−(r/b)2) Hν(s) = b2(ν+1)sν

2ν+1 exp(− 1
4
(bs)2)

Inv. multiquadric ϕb(r) = (a2 + (r/b)2)−(μ+1) Hν(s) =
aν−μbν+μ+2sμ

2μΓ(μ+1)
·

Kν−μ(abs)

Cut power ϕb(r) = (a2 − (r/b)2)μ
+ Hν(s) =

2μΓ(μ+1)aν+μ+1bν−μ+1

sμ+1 ·
Jν+μ+1(abs)

Rect. pulse 1[0,1] ϕb(r) =

{
1 0 ≤ r/b ≤ 1

0 otherwise
Hν(s) = bν+1s−1Jν+1(bs)

In the Hankel transform, the source function ϕ is regarded as a function
from [0,∞) to R. An image under the Hankel transform is again a function from
[0,∞) to R ∪ ∞ (the image might be unbounded at 0); and its Hankel transform
is the original function. That is, the Hankel transform is self-inverse [2,12] and
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therefore images under the Hankel transform can be taken as other candidates
to define the radial convolution kernels.

Definition 4. A kernel Kb :Rd → R
d is called the radial convolution kernel

if there exists a univariate function ϕ such that Kb(x, y) = ϕb(||x − y||2) =
ϕ(||(x − y)/b||2) for b > 0.

Clearly, the radial convolution kernels are induced by translations of the scaled
radial functions, i.e., Kb(x, y) = Φ((x − y)/b).

In Table 3, we have computed the Fourier transforms of the scaled multivari-
ate radial functions Φ(x) = ϕ(||x||2/b) for the univariate functions ϕb in Table 2.
The Fourier transforms were computed according to Theorem 2 with the order
of the Hankel transform set to ν = (d − 2)/2 = d/2 − 1, where d ∈ N+ is the
dimension.

Table 3. Scaled multivariate radial functions and their Fourier transforms.

Function
name

Multivariate expression Fourier transform

Gaussian ϕb(||x||2) = exp(−||x||22/b2) F (s) = (b2/2)d/2 exp(− b2

4
||s||22)

Inverse multi-
quadric

ϕb(||x||2) = (a2 + ||x||22/b2)−(μ+1) F(s) =

ad/2−(μ+1) bd/2+(μ+1)

2μΓ(μ+1) ||s||d/2−(μ+1)
2

·
Kd/2−(μ+1)(ab||s||2)

Cut power ϕb(||x||2) = (a2 − ||x||22/b2)μ+ F(s) =

2μΓ(μ+1) ad/2+μ bd/2−μ

||s||d/2+μ
2

·
Jd/2+μ(ab||s||2)

Circ function ϕb(||x||2) =
{

1 0 ≤ ||x||2/b ≤ 1

0 otherwise
F(s) = (b/||s||2)d/2Jd/2(b||s||2)

The purpose of this computation is to investigate behavior of the Fourier
transforms to check if the condition of Theorem 1 is satisfied or not for the cor-
responding radial convolution kernels. In Fig. 1, there are presented graphically
the computed Fourier transforms for a = 0, b = 1 and d = 2. For the inverse
multiquadric we set μ = 0 and for the cut power μ = 1.

Gaussian. This central function of real and complex analysis cannot be omit-
ted in our list of radial kernels. The Gaussian is an eigenvalue of the Fourier
transform, which is confirmed by its computation using the Hankel transform.
Since the Gaussian is a positive function and the Fourier transform of itself we
have the condition of Theorem1 satisfied in any dimension. Formally, one has
{k̂(s) = 0} = ∅ in any dimension and therefore λd({k̂(s) = 0}) = 0 for any
d ∈ N+.

The Fourier transform of a d-variate Gaussian can be computed by employing
the characteristic function of the d-variate normal distribution Nd(0, Σ). The
density of Nd(0, Σ) writes f(x) = ((2π)d|Σ|)−1/2 exp(− 1

2x′Σ−1x) for a positive
definite symmetric matrix Σ. The equality exp(− 1

2x′Σ−1x) = exp(−||x||22/b2)
is reached for Σ−1 = diagd(2/b2, . . . , 2/b2), where diagd(·) codes a diagonal
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Fig. 1. Examples of radial kernels and their Fourier transforms for d = 2.

matrix of order d; and therefore Σ = diagd(b2/2, . . . , b2/2). Further, the following
relation holds between the characteristic function χf of density f and Fourier
transform (1) of exp(−||x||22/b2): χf (s) = |Σ|−1/2F{f}. It is well known that
χf (s) = exp(− 1

2s′Σs) and the determinant of diagonal matrix Σ reads as |Σ| =
(b2/2)d. Putting all these facts together one gets that F{exp(−||x||22/b2)} =
|Σ|1/2 · exp(− 1

2s′Σs) which in turn gives the formula in Table 2.

Inverse Multiquadric. The Hankel transform of an inverse multiquadric
involves modified Bessel function of the second kind Kα :R → R, α ∈ R. This
function is positive (and unbounded at the origin) hence the set of zeros of the
related Fourier transform is again empty and the inverse multiquadrics are suit-
able for constructing the convolution kernel networks that possess the L2(Rd)
universal approximation property in sense of Theorem1.

Cut Power. In contrast to the above two cases, the cut power has compact sup-
port. That implies that the Fourier transform cannot have a compact support,
neither. This is confirmed by the Hankel transform in Table 1. The Hankel trans-
form involves Bessel function of the first kind Jα :R → R, α ∈ R. This function
is no more positive, but set of its zeros is countable. Hence the cut powers are
also suitable for approximation in L2 sense.

Circ Function. The circ function is, in fact, the indicator function of the unit
ball in the corresponding d-dimensional space. That is, in the univariate case
it corresponds to the rectangular pulse 1[−1,1], in two dimensional case to what
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is canonically called the circ function and generalization to higher dimensions
applies. The Hankel transform is rather simply as it corresponds to Bessel func-
tion of the first kind. Therefore the related Fourier transform has zeros, but they
form a set of Lebesgue measure zero.

Remark. The Fourier transform of the univariate circ function has the form
F(|s|) = |s|−1/2J1/2(|s|) =

√
2/π · j0(|s|), where j0 is the spherical Bessel

function of order zero [13]. The j0 function corresponds to the sinc function, i.e.,
j0(|s|) = sin(s)/s. This is in accordance with the well-known result from signal
processing that the Fourier image of the rectangular pulse is sinc function.

5 Computational Example

In this section, we present results from a toy experiment when real data were
approximated by convolution kernel networks with different types of radial con-
volution kernels. As data, we used the Wisconsin Breast Cancer dataset from
UCI Machine Learning Repository [14].

The WBC dataset consists of 699 records of 9 numeric attributes of cells
nuclei from breast mass samples. The attributes correspond to different features
computed from a digitized image of the analyzed sample. Each record is classified
as benign or malignant. 16 records contain missing information. We had excluded
them from the dataset and worked only with the remaining 683 ones.

We applied the following further steps to preprocess the dataset. We split 683
records into two halves. The first consisted of the records located at odd rows,
i.e., having odd row numbers 1, 3, . . . , 681, 683. The second half consisted of the
records with even row numbers 2, 4, . . . , 680, 682. Thus the first group, which we
used as the training data, contained 342 records, and the second one 341 records.
We used this split to retain its reproducibility. The split has 65 % proportion of
the benign class in both groups, which corresponds to the proportion of the
bening class in the entire dataset (444/683). Further, the data in both groups
were normalized by subtracting means and dividing by the standard deviations
of the data in the first group (separately for each column). Finally, the benign
cases were recoded as 1 and malignant as −1.

The normalized training data were used to learn kernel convolution networks
in the MATLAB computational environment. An individual network was char-
acterized by (1) the type of the kernel used - we used the kernels presented
in Table 3; (2) the number of computational units - Nc ∈ N+; (3) centers of
computational units - aj ∈ R

9, j = 1, . . . , Nc; (4) specification of the width
parameter b ∈ R and (5) by the vector of weights wb ∈ R

Nc . The j-th com-
putational unit of the network computes the function kj :R9 → R of the form
kj(x) = ϕb(||x − aj ||2). Computation of the network then corresponds to the
formula NNϕ,b(x) =

∑Nc

j=1 wb
jkj(x) =

∑Nc

j=1 wb
jϕb(||x − aj ||2).

Using the training data, we specified the parameters as follows: (2 & 3)
the number of computational units was set to Nc = 3 and the centers were
identified by the fuzzy c-means clustering algorithm [4]. (4 & 5) For b fixed
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and the selected kernel, following the theory presented in Sect. 5.7 of [3] on
generalized radial basis neural networks, we formed 342 × 9 Green’s matrix G
of entries Gij = kj(xi) = ϕb(||xi − aj ||2) for i = 1, . . . , 342 and j = 1, . . . , 9.
The column vector of weights was then given as wb = G+y, where G+ is the
pseudo-inverse of G and y is the column vector of 1 and −1 containing the
classification of records in the training data. In [3], there is shown that this
learning of weights is optimal in terms of minimization the error of a regularized
network. The structure of the network is presented in Fig. 2.

To make the above procedure clearer let us work with a concrete piece
of data. The data entry on the first row in WBC dataset reads as (x1, y1)
with x1 = (5, 1, 1, 1, 2, 1, 3, 1, 1) for attributes and y1 = 1 marking the
first entry classified as a bening case. After normalization, we get xn

1 =
(0.18,−0.72,−0.75,−0.64,−0.55,−0.70,−0.22,−0.62,−0.36). The centers aj

identified by FCM clustering algorithm applied on the normalized data have
(after rounding) the coordinates a1 = (−0.52,−0.63,−0.63,−0.54,−0.53,−0.61,
−0.58,−0.56,−0.33), a2 = (0.91, 1.14, 1.15, 0.99, 0.94, 1.10, 1.05, 1.00, 0.53) and
a3 = (0.92, 1.19, 1.19, 1.04, 1.01, 1.09, 1.10, 1.07, 0.59). Hence the vector of the
Euclidean distances of xn

1 from centers aj , j = 1, . . . , 3 reads as (0.82, 4.56, 4.68).
Selecting, for example, the inverse multiquadric with the parameters μ = 0, a = 1
and the width b = 1, i.e., ϕb=1(||x||2) = 1/(1 + (||x||22), one gets the first row of
the Green’s matrix as G1j = [0.60, 0.05, 0.04]. The other rows were obtained by
the same computations. The vector of weights was then obtained using the stan-
dard MATLAB command for computing the pseudo-inverse as w=pinv(G)*y.
The values of weights then reads as w1 = 1.78, w2 = 9.42 and w3 = −15.43.

Fig. 2. The convolution kernel network for WBC dataset.

We learned the network weights w for different values of the width para-
meter b. Namely, we varied b from b = 0.05 to b = 10 with the step
Δb = 0.05. For each setting of b we computed the error of approximation as
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errϕ(b) = 1/N ·
∑N

i=1(NNϕ,b(xi)) − yi)2. The error was computed for both
learning and testing phases with N = 342 and N = 341, respectively. In the
testing phase for each b, the network developed on the training data (N = 341)
was applied to the testing data (N = 342). The development of both errors is
presented in Fig. 3 for different types of the radial convolution kernels.

Inspecting the graphs, we see that development of approximation errors
is similar in both phases. The error is higher in the testing phase which is
expectable. The errors differ when it comes to different kernels. We see that
the best performing is the inverse multiquadric, however, performance of the
Gaussian and cut power kernels are comparable.

Fig. 3. Approximation errors for varying width b and different kernels.

Behavior of the circ kernel is explained as follows. The first constant part
corresponds to the situation when the width of computational units is so wide
that every record is covered by every unit. In contrast, the second part is oppo-
site, i.e., the width is so narrow that no record is covered by no unit. Clearly,
the optimal width is located in between both extrema. We see that for all ker-
nels, the optimal width from the learning phase more or less corresponds to the
minimum of errors in the testing phase.

In the triplet consisting of the Gaussian, inverse multiquadric and cut power
the last is performing the worst, however, because the cut powers have compact
support for each b > 0 they are connected with less computational effort, which
might be an advantage in certain situations.
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6 Conclusions

In the paper, we have discussed the sufficient and necessary condition for the
convolution kernel network to possess the universal approximation property in
L2(Rd) space. The condition is stated in terms of the Fourier transform of
employed kernel. The condition says that the null set of the Fourier trans-
form must be of Lebesgue measure zero. We investigated the condition from
the practical point of view. Namely, we were interested in what kernels satisfy
this condition in an arbitrary dimension. In order to be able to compute the
respective Fourier transforms we investigated the radial convolution kernels. For
these kernels, the Fourier transform can be computed via the Hankel transform.

Following this fact, we computed explicitly the Fourier transforms for four
types of the radial convolution kernels - the Gaussian, the inverse multiquadric,
the cut power and the circ kernel. We found that the first two types have their
Fourier transforms strictly positive in any dimension. The Fourier transforms of
other two types might be negative, however, in both cases the sets of zeros are
countable and therefore of Lebesgue measure zero. These findings show that all
four types can be used for building reasonable convolution kernel networks.

The paper includes an experimental part where we checked the theoretical
results in the toy experiment. We found that the best performing kernel was
the inverse multiquadric followed by the Gaussian, the cut power and the circ
kernel with the worst performance. However, more extensive experiments should
be performed to assess if this ordering also holds in a more general context.
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Abstract. The present paper aims to interpret final representations
obtained by neural networks by maximizing the mutual information
between neurons and data sets. Because complex procedures are needed
to maximize information, the computational procedures are simplified
as much as possible using the present method. The simplification lies
in realizing mutual information maximization indirectly by focusing on
the potentiality of neurons. The method was applied to restaurant data
for which the ordinary regression analysis could not show good perfor-
mance. For this problem, we tried to interpret final representations and
obtain improved generalization performance. The results revealed a sim-
ple configuration where just a single important feature was extracted to
explicitly explain the motivation to visit the restaurant.

1 Introduction

Information-theoretic methods have been developed to control the amount of
information contained in neural networks since Linsker [1–4] stated the maxi-
mum information preservation principle for perceptual systems. Though many
attempts [5,6] have been made to apply them to neural networks, they have not
necessarily been employed to their fullest extent.

In addition, there have been few attempts to interpret final representations in
neural networks due to three main reasons, namely, complex procedures, exces-
sive information and stability. First, information-theoretic methods require com-
plex procedures for computing entropy or information functions. Though many
methods have been developed for simplifying these procedures [3–8], they have
not necessarily been simplified enough to be applied to practical problems. Sec-
ond, there is the problem of excessive information acquisition that comes with
information maximization [9]. Information maximization can be used to com-
press information content into a small number of neurons; even unnecessary
information can be compressed, which can decrease generalization performance.
Thus, these information-theoretic methods have tried to decrease information
content for the sake of improving generalization [9]. For interpreting neural net-
works, it is necessary to increase the amount of information and in particular to
condense it into a smaller number of neurons [10] without acquiring unnecessary
information. Third, there is a problem with stability of the results. Even if we
c© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 309–316, 2016.
DOI: 10.1007/978-3-319-44188-7 23
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Fig. 1. Mutual information maximization for hidden neurons.

succeed in simplifying internal representations for interpretation, they are of no
use if completely different internal representations are produced, depending on
data sets and initial conditions.

The present method tries to solve these problems in the following ways. First,
it aims to realize mutual information not directly, but indirectly. More exactly,
we do not try to directly achieve maximum mutual information states. To realize
this, we have proposed potential learning [11–15]. The potentiality of neurons
represents their ability to deal with as many different situations as possible. The
potentiality is approximated by the variance of neurons. By using this potential-
ity, mutual information is easily increased by increasing the parameter to produce
a smaller number of neurons with higher potentiality. Second, better generaliza-
tion can be expected by the present method. Since the method tries to increase
mutual information as much as possible, connection weights will be forced to be
smaller. Thus, maximum information states are realized over sparse connection
weights and neurons, which can improve generalization performance. Finally,
stability can be improved as well. In the process of information maximization,
neural networks are forced to use fewer connection weights and neurons, which
severely limits the production of different internal representations, leading to
stability.

2 Theory and Computational Methods

We here explain how to formulate potential mutual information only for hidden
neurons; mutual information for input neurons can be computed in the same
way. Figure 1 shows the process of information maximization for a given data
set. In the maximum information state, only one neuron fires, while all the others
cease to do so. Potentiality has been used to determine which neurons should
be fired, and represents the relative importance of neurons [11–15]. For the first
approximation, the potentiality of neurons is defined by using their variance.
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Let us concretely define the hidden neurons’ potentiality. As shown in Fig. 1,
wt

jk denotes connection weights from the kth input neuron to the jth hidden
neuron for the tth data set. Then, the potentiality is defined by using the variance

vt
j =

1
L − 1

L∑

k=1

(wt
jk − wt

j)
2, (1)

where L is the number of input neurons and the average weight is computed by

wt
j =

1
L

L∑

k=1

wt
jk. (2)

Then, the potentiality is normalized as

p(j|t) =
vt
j∑M

m=1 vt
m

, (3)

where M is the number of hidden neurons. Finally, we have potential mutual
information for hidden neurons

PIhid = −
M∑

j=1

p(j) log p(j) +
T∑

t=1

p(t)
M∑

j=1

p(j|t) log p(j|t). (4)

When this potential mutual information increases, hidden neurons fire uniformly
on average, while each hidden neuron tries to specialize on the specific sets of
input patterns.

In addition, the potentiality in terms of variance is further simplified to
facilitate the computation, namely, pseudo-potentiality. The hidden pseudo-
potentiality is defined by

φt,r
j =

(
vt
j

vt
max

)r

, (5)

where vmax is the maximum potentiality and r is the potentiality parameter
and r ≥ 0. By normalizing this pseudo-potentiality, we have the pseudo-firing
probability

p(j|t; r) =
φt,r
j∑M

m=1 φt,r
m

(6)

Then, we have pseudo-potential information

PPIrhid = log M +
1
T

T∑

t=1

M∑

j=1

p(j|t; r) log p(j|t; r), (7)

where for simplicity, the average firing probability p(j) is supposed to be uni-
formly distributed. As expected, the pseudo-information can be increased just
by increasing the parameter r. This is because when the parameter r increases,
the number of strongly fired neurons decreases, corresponding to an increase in
mutual information.
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Fig. 2. Input and hidden information and generalization errors with 10 hidden neurons
for the restaurant data set.

3 Results and Discussion

3.1 Experimental Outline

The restaurant data was extracted from the customer data of a restaurant [16],
where there were 1,000 customers with 12 variables [16]. The problem with this
dataset was to determine what makes people come to the restaurant, namely,
what are the critical factors which attract people and make them visit. The
conventional regression analysis had difficulty in dealing with this problem [16],
even for training data. We computed two types of generalization errors, namely,
S-average error and E-average error. The S-average is simply the average of
generalization errors over ten different sets of input patterns. On the other hand,
E-average is the average obtained by computing the differences between the
targets and the average outputs over ten different data sets.

3.2 Mutual Information and Generalization

The results showed that generalization performance was in direct proportion to
increases in mutual information. Figure 2(a) shows input and hidden information
as a function of the number of steps. When the number of steps increased, the
potentiality parameter r increased from 0.1 to 1. As can be seen in the figure,
input and hidden mutual information increased gradually, and hidden informa-
tion reached its maximum value of approximately 1, but the input information
was slightly below the hidden information in the end. This is because input neu-
rons are much more related to input patterns than hidden neurons. However,
because we could not detect much difference between them, we could predict
that the number of strongly activated hidden and input neurons became smaller
along with the number of strong connection weights.
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Fig. 3. Connection weights from input to hidden neurons with 10 hidden neurons for
the restaurant data set. Green and red weights represent positive and negative ones.
(Color figure online)

Figure 2(b) shows generalization errors as a function of the number of steps.
The errors decreased gradually when the number of steps increased. It could be
seen that the E-average was better than S-average over all steps. The results
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Fig. 4. Connection weights from input to hidden neurons for the restaurant data set
for ten different sets of input patterns. Green and red weights denote positive and
negative ones, respectively. (Color figure online)

show that when mutual information increased, the corresponding generalization
errors decreased.

3.3 Simple and Stable Connection Weights

Obtained connection weights were simple and stable enough for explicit interpre-
tation. Figure 3(1) shows connection weights from the input and hidden neurons.
In the first step in Fig. 3(a1), almost random weights were produced. Then, the
number of strong connection weights became gradually smaller when the number
of steps increased from one (a1) to ten (d1). Finally, only one connection weight
remained to be strong, representing “commercial image”. Figure 3(2) shows the
hidden-output connection weights. The number of strong connection weights
became smaller when the number of steps increased. Finally, connection weights
from the fourth hidden neuron became the strongest. This means that as the
connection weights from the hidden neuron become more negative, shown in
red, people are likely to visit the restaurant more frequently, because the corre-
sponding strongest input-hidden weight to the fourth hidden neuron is strongly
negative. Because the connection weight from the fifth input neuron represents
the commercial images of the restaurant, this can be considered as one of the
main features attracting customers. Finally, we checked the stability of final rep-
resentations. Figure 4 shows the input-hidden connection weights obtained with
ten different data sets. Eight out of the ten different representations showed
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Table 1. Summary of experimental results in terms of generalization performance for
the restaurant data set. The bold face numbers show the best values.

Method Step S-average E-average Std dev Min Max Input inf Output inf

MI 10 0.2530 0.2400 0.0264 0.2167 0.3000 0.7322 0.8176

BP(ES) 0.2770 0.2600 0.0284 0.2333 0.3233 0.0344 0.0107

SVM 0.3340 0.0366 0.2733 0.3867

that connection weights from the fifth input neuron, the commercial image, were
strongest.

3.4 Generalization Performance Comparison

The present method produced the best generalization performance compared
to other conventional methods. Table 1 shows the generalization comparison
between four methods. The best generalization errors in terms of S- (0.2530)
and E-average (0.2400), standard deviation (0.0264), minimum (0.2167) and
maximum value (0.3) were obtained by the present method with ten steps. The
second best of 0.26 in terms of E-average was obtained by the BP with the early
stopping. Though an extensive parameter search was conducted to obtain the
best possible results, the worst case of 0.3340 was obtained by the support vec-
tor machine. When the best error was obtained by the present method, hidden
mutual information was 0.8176, and input mutual information was 0.7322. This
means that higher mutual information equates with lower generalization errors.

4 Conclusion

The present paper proposed a new type of information-theoretic method for
interpretation which works by maximizing mutual information for hidden and
input neurons. Though information-theoretic methods have been applied to
many problems of neural networks, the complexity of the methods has pre-
vented them from being applied practically. The present method used a simplified
mutual information method with potentiality. When the potentiality parame-
ter increased, mutual information increased correspondingly, and the number of
strongly fired neurons decreased to produce simplified internal representations.
The method was applied to find the main reason why visitors chose a certain
restaurant. The results showed that mutual information could be increased, and
improved generalization could be obtained by the present method. In addition,
the commercial image of the restaurant was identified as playing the most impor-
tant role in attracting visitors. The present paper shows the possibility of simpli-
fying information-theoretic methods and using them to improve generalization
as well as interpretation for large scale data sets.
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Abstract. Language resources for Urdu language are not well devel-
oped. In this work, we summarize our work on the development of Urdu
speech corpus for isolated words. The Corpus comprises of 250 isolated
words of Urdu recorded by ten individuals. The speakers include both
native and non-native, male and female individuals. The corpus can be
used for both speech and speaker recognition tasks. We also report our
results on automatic speech recognition task for the said corpus. The
framework extracts Mel Frequency Cepstral Coefficients along with the
velocity and acceleration coefficients, which are then fed to different clas-
sifiers to perform recognition task. The classifiers used are Support Vec-
tor Machines, Random Forest and Linear Discriminant Analysis. Exper-
imental results show that the best results are provided by the Support
Vector Machines with a test set accuracy of 73 %. The results reported in
this work may provide a useful baseline for future research on automatic
speech recognition of Urdu.

1 Introduction

Urdu is the national language of Pakistan understood by approximately 75 %
population of the country. Globally, Urdu speakers accumulate to around 70 mil-
lion speakers [1]. Urdu language shares its vocabulary with many other Asian lan-
guages including Arabic, Farsi, and Turkish. A framework for automatic speech
recognition of Urdu can be helpful to contribute towards speech recognition of
other similar languages. Unfortunately, for Urdu, lack of standard corpora and
baseline approaches have been the bottleneck to make advancements on speech
recognition research of Urdu.

Recently, there has been some work reported on the automatic speech recog-
nition of Urdu. While these works have their own significance, either the corpus
used in the work has not been specified or it is too limited to be generalized for
diverse set of speakers. For example, Sarfraz et al. [2] has presented an Urdu
corpus covering speakers only from a single city. Similarly, another speech cor-
pus for Urdu has been presented in [3] however, it is not clear if the corpus is
c© Springer International Publishing Switzerland 2016
C. Jayne and L. Iliadis (Eds.): EANN 2016, CCIS 629, pp. 317–325, 2016.
DOI: 10.1007/978-3-319-44188-7 24
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available for public use. Akram et al. [4] have presented a continuous speech
recognition system for Urdu however, the corpus used in the work is not iden-
tified. Information on training and test sets size is also missing. Besides, the
accuracy reported by [4] does not exceed 54 %. For Urdu digits recognition, a
multilayer perceptron has been used by Ahad et al. [5], presenting a framework
for speech recognition of digits from 0 to 9. However, the work in [5] is based on
speech data from a single speaker and thus, cannot be generalized for a diverse
set of speakers. Another work reported for Urdu digits recognition is by Hasnain
et al. [6] with higher accuracy performance. It is not clear if the accuracy mea-
sures in [6] are reported for training set only or for unknown test set. The use
of hidden markov models for Urdu speech recognition has been reported in [7].
The model used in [7] treats every single word as a single phoneme. This may
work for words of shorter duration but may undergo degradation if the words
have longer duration.

For the Urdu dataset presented in this work, previous work has used features
from discrete wavelet transform with linear discriminant analysis (LDA) [8],
MFCC features with LDA [9,10]. In this work, we describe the Urdu corpus for
the general understanding of the reader, and make it freely available for academic
research use. Further, we report results on speech recognition task for this corpus
with three different classifiers namely; Support Vector Machine (SVM), Linear
Discriminant Analysis (LDA) and Random Forests (RF). The rest of the paper
is organized as follows: In Sect. 2, we describe the development of the corpus
and the way the audio files are organized. In Sect. 3, we discuss the extraction of
MFCC features as well as the three classifiers used on the features. The results
obtained are provided in Sect. 4. Finally, the paper is concluded in Sect. 5.

2 The Corpus

2.1 Corpus Development

The words recorded for this corpus are selected from the most frequently used
words in Urdu literature, as summarized by the center of language engineering
(CLE) [11]. These words include those which are used in everyday life, and digits
from 0 to 9. Wherever possible, an attempt has been made to include antonyms or
synonyms of various words. These words were then recorded by ten speakers with
Sony Linear PCM Recorder. Any mistake in recording process was compensated
by re-recording. The recording was accomplished in multiple sessions. Speakers
coming for recording vary in age, origin and first language, ensuring that a
diversity is achieved in the corpus. The recorded files are stored with sampling
rate of 16000 Hz in .wav format. Average duration for each recording is half a
second.

2.2 Corpus Organization

The master directory in this corpus contains ten sub-directories and each sub-
directory corresponds to the individual speaker. Each sub-directory contains
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250 audio files in .wav format. The information about each individual speaker
is available in the sub-directory name. For example, the sub-directory named
AKMNG2 corresponds to speaker AK (speakers are represented by combination
of two letters, thus ranging from AA to AK and can be extended as well). The
speaker gender information is contained in the third letter M (M corresponds to
male and F corresponds to female). The fourth letter N in the sub-directory name
denotes that the speaker is a non-native speaker (N represents that the speaker
is non-native while Y represents that the speaker is a native speaker). The last
two letters comprising of a character and a number correspond to the age of the
speaker. Age ranges are from G1 (20–25 years) through G2 (26–30 years). Each
file name provides information on speaker as well as the word number. The words
are numbered from 001 to 250, appended to the sub-directory name to form the
file name. An overview of the corpus organization is shown in Fig. 1. Access to
the corpus can be requested by writing email to the first author.

Fig. 1. Speakers are named from AA to AK. Speaker gender is defined by M for male
and F for female. In the native field, N represents that speaker is non-native speaker
and Y represents that speaker is native. Speakers belong to age group G1 or G2.

3 Experimental Setup

3.1 Features Extraction

For the dataset, we randomly divide the audio files into training and test sets
with a ratio of 7:3. We then calculate the mel frequency cepstral coefficients
(MFCC) for each audio file. The mel frequency cepstral coefficients have been
in wide use by the speech processing community both for speech and speaker
recognition applications [10,12–14]. The MFCCs are based on mel-scale, a non-
linear scale with logarithmic behavior [12]. Frequency mapping on a mel scale is
given by equation:

fmel = 2595 × log (1 +
f

700Hz
) (1)

where, fmel is the mel-scale frequency and f is the linear frequency in Hz. Dif-
ferent methods for calculation of the MFCCs can be seen in [12–14]. For MFCC
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calculation in this work, the Malcom’s implementation has been used, as also
used in [10,21]. The steps involved in MFCC features extraction are demon-
strated through algorithm shown in Fig. 2. For each audio file, 12 coefficients are
computed followed by concatenation of delta and delta-delta coefficients. Thus,
each file is represented by 36 features set.

Fig. 2. MFCC Calculation (as in [10,21])

3.2 Support Vector Machines

Support Vector Machine (SVM) is a kernel based algorithm. SVMs are popularly
used for discriminative classification. SVMs can be traced back to the work Boser
et al. [15]. They were used for automatic recognition of handwritten characters
[16] and thus, became popular. In SVMs, the data of different classes is separated
by hyper planes such that the distance for data of each class is maximized (for
binary classification, the distance of samples of both the classes from the hyper
plane will be maximized). Thus, SVMs are classifiers with large-margin bound-
ary. For SVMs, the important feature is the kernel function used. The kernel
function might be linear, polynomial or Gaussian. The strength of SVMs lie in
the fact that they do not suffer the problem of local optima. However, attention
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is required to select the suitable kernel function. For SVMs, the function is given
by sums of the kernel function K(xm, xn):

f(x) =
N∑

m=1

αmtmK(xm, xn) + d (2)

where tm denotes the ideal outputs,
N∑

m=1
αtm = 0 and αm is greater than zero.

Ideally, the outputs are +1 or −1 representing the corresponding class to which
the data sample belongs. The output class for any data sample is decided by
comparison of value of f(x) with a threshold value. Generally, the one-vs-all
approach is used if we have more than two classes of data (i.e., a multi-class
problem). In our work on the use of SVM, we utilize the libSVM library [17].
We use the Gaussian RBF kernel, which for two data points, can be defined as
below:

K(xm, xn) = exp(γ(‖xm − xn‖)2) (3)

We run a grid search and choose the γ and regularization constant C (hyper-
parameters) after running the experiment over multiple iterations.

4 Random Forest

In computer vision, decision trees have been remarkable and successful for clas-
sification as well as regression tasks. Decision trees have previously been used as
stand-alone approach. When an ensemble of multiple decision trees is used for
decision making, they form a random forest classifier (or random decision forest
classifier). RF has been successfuly used on hand-written digits recognition task
as reported in [18], Other work on the use of RF classification is reported in [19].
For classification through RF classifier, the process involves training of the trees
with features selected randomly. In order to make a final prediction, average is
then calculated for the posteriors of each class output. To perform speech recog-
nition using a RF classifier, we feed the MFCCs to train the classifier comprising
of 300 trees.

4.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [20] is popular for dimensionality reduction
as well as for classification tasks. When LDA is applied to a data, it transforms
the data into a matrix Θ. “LDA tends to maximize the ratio between the inter-
class variance and intra-class variance” [10]. Classification is achieved such that
for each test example, calculation of Euclidean distance is performed. So, for
a particular problem, if we have n distinct classes, there will be n number of
Euclidean distances to be calculated over each test example. The class is pre-
dicted for the prediction for which the corresponding distance is the smallest.
LDA transformation can be represented by S(Θ);

S(Θ) =

∣∣ΘTΨΘ
∣∣

|ΘTWΘ| (4)
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where, the within-class variance is given by W and variance matrix is given by
Ψ , |.| is the value of the determinant. For the speech recognition task, we use
LDA with the MFCC features and compare the results with those obtained for
RF and SVM classifiers.

5 Experimental Results

Once the recognition is performed, the prediction results are put into a confusion
matrix for the test data. For N number of words, the size of the confusion matrix
is N × N matrix. ConfM provides a general representation of the confusion
matrix.

ConfM =

c11 c12 c13... c1N
c21 c22 c23... c2N
c31 c32 c33... c3N
. . .... .
. . .... .

cN1 cN2 cN3... cNN

(5)

Table 1. Recognition accuracy in percentage

S. No Word number Recognition rate
(SVM classifier)

Recognition
rate for RF

Recognition
rate for LDA

1 001 100 % 66.67 % 100 %

2 002 66.67 % 33.33 % 33.33 %

3 003 66.67 % 100% 100 %

4 004 100 % 66.67 % 66.67 %

5 005 66.67 % 66.67 % 66.67 %

6 006 33.33 % 100% 66.67 %

7 007 66.67 % 66.67 % 66.67 %

8 008 100 % 66.67 % 0 %

9 009 66.67 % 33.33 % 33.33 %

10 010 66.67 % 33.33 % 100 %

In the above confusion matrix, ConfM , correct word recognition is shown by the
values in the diagonal entries i.e., cij for i = j. Conversely, the number of false
predictions for a test word is provided by the enteries in the non-diagonal posi-
tion of the matrix, i.e., cij for i �= j. The SVM classifier has resulted in an overall
test accuracy of 73 %. Compared to this, the overall accuracy obtained by the
random forest classifier as well as the LDA classifier is 63 %. Figures 3, 4 and 5
show the confusion matrix plots for the three classification methods namely,
SVM classification, Random Forest classification and LDA classification respec-
tively. For each digit, the corresponding recognition rates for SVM classifier,
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Fig. 3. Confusion matrix plot (For SVM classifier)

Fig. 4. Confusion matrix plot (for Random Forest classifier)

Fig. 5. Confusion matrix plot (for LDA classification)
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LDA classifier and Random Forest classifier are shown in Table 1. It is obvious
from the results that accuracy achieved by LDA classifier is same as the accuracy
for RF classifier, i.e., an overall accuracy of 63 %. From the confusion matrix, it
can be noted that for the word number 7, the LDA classifier has resulted in 0 %
accuracy (as the empty 7th column can be seen in Fig. 5).

6 Conclusion

In this paper, we have reported our work on the development of Urdu corpus
comprising of 250 words spoken by ten speakers. We further reported our results
for a speech recognition task with MFCC features extracted from the audio data.
For classification purpose, we have used three classifiers namely; SVM, RF and
LDA and reported percentage accuracy for each classifier. Experimental results
have shown that SVM has performed well on this particular dataset with a 73 %
recognition accuracy compared with the 63 % accuracy for RF and LDA. These
results can serve as a reference baseline for further advancement on the Urdu
dataset. The dataset is available for academic/research use and thus, a direct
comparison of results is conceivable. For future work, firstly, the corpus can
be extended by including more recordings and extending the list of words thus,
covering a more diverse range of dialects, speakers age and vocabulary. Secondly,
more robust speech recognition models can be used on the Urdu data set, such
as Hidden Markov Model and deep learning approaches as these can arguably be
more robust providing much higher accuracy. Thirdly, an ensemble model which
combines classification scores from different classifiers can also be explored for
this data, for example, a late fusion approach as used in [22].
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Abstract. The traditional approach to automatic speech recognition continues
to push the limits of its implementation. The multimodal approach to
audio-visual speech recognition and its neuromorphic computational modeling
is a novel data driven paradigm that will lead towards zero instruction set
computing and will enable proactive capabilities in audio-visual recognition
systems. An engineering-oriented deployment of the audio-visual processing
framework is discussed in this paper, proposing a bimodal speech recognition
framework to process speech utterances and lip reading data, applying soft
computing paradigms according to a bio-inspired and the holistic modeling of
speech.

Keywords: Audio-visual information processing � Automatic speech
recognition � Bio-inspired computing � Convolutional neural networks �
Evolving fuzzy neural networks

1 Premises

Automatic speech recognition (ASR) will be a key technology for the next generation
on information systems, when human-to-machine interaction will be similar to the
human-to-human interaction. Experiments to understand speech perception began last
century. In 1921, Fletcher and Stainberg had found a functional relations between
nonsense’s phone sequences (e.g. consonant-vowel-consonant) error-recognition rate
and words’ recognition rate. This relation demonstrated that the context influences the
intelligibility. Allen in his work “How do humans process and recognize speech?” [1]
discusses extensively the role of the context in human speech recognition (HSR), citing
the famous example of the two questions “How do human recognize speech?” and
“How do humans wreck a nice beach?” that can be uttered so that only with appropriate
context they can be distinguished. Entropy is higher for simple sounds (phones) and
lower for complex words, so two important strategies are in HSR.

2 Introduction

Audio-visual information processing (AVIP) is an interdisciplinary research field that
joins computer science and signal processing. It concerns the processing of information
that is embedded in physical signals generated by the human beings and by the
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surrounding environment. Most of the research efforts have been targeted audio and
visual as individual fields, considering these fields as independent at each other. An
emblematic example of this is the ASR problem approached mostly as an audio pro-
cessing special purpose task. Several investigations [2–9] demonstrated that speech
understanding in human beings is a multimodal process where the audio and the visual
information concur to successfully complete the correct recognition of communication
sounds such as phonemes, phones and words.

The AVIP activity in human beings is not perfect but efficient. This is because it is a
biological-based processing model, with evolving inference paradigms performing in
adaptive and context aware way. The multimodal nature of both audio production and
perception and the relationship between audio and visual information has been
investigated and experimental results demonstrates that the bio-inspired approach to the
issue of AVIP could be the right way to develop robust and effective AVIP-based
applications [10, 11].

There are also several bio-inspired processing processes that are under considered
in the development of the ASRs, such as localized time-frequency events, temporal and
spatial information (binaural), pitch (for source localization and separation). These
processes needs to be considered in order to match the right paradigm to be applied for
the ASR development.

Two main bio-inspired soft computing paradigms nicely match audio and visual
perception in human beings, the convolutional neural network (CNN) and the evolving
connectionst systems (ECOS).

The CNN, a bio inspired variant of the multilayer perceptron (MLP), has been
successfully applied to face recognition [12]. CNN embeds the convolution paradigm
useful to model spatial and temporal correlations. This apply to speech signal to
compensate the translational variance and to capture translational invariance with a
reduced set of parameters [13].

CNNs exibit invariance to shifts of speech features along the frequency, dealing
with speaker and environment variations. The CNN special network structure (alter-
nation of convolutional and pooling layers) is the main advantage over standard neural
network as it demonstrates to be compatible and efficient respect to the way the data
can be arranged to be processed efficiently. Considering the voice spectrogram as a 2-D
image of features distributed along the frequency and time axes, the same approach of
the use of CNN for the image recognition can be extended to speech recognition.

ECOS [14], mainly the evolving fuzzy neural networks (EFuNN), is a bio inspired
inference paradigm that meets the capability of the HSR to adapt to noise and the signal
filtering by evolving. In a multimodal context such as the audio-visual integration at the
higher layers of the HSR hearing model, EFuNN is able to fuse the decision from audio
and visual stages [15].
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3 Bio Inspired Framework for Audio-Visual Speech
Recognition

The bio inspired framework (Fig. 1) for audio-visual speech recognition (AVSR) is a
three stage system that apply three bio inspired inferencing (soft computing) paradigms,
the convolutional, the evolving and the rule-based. The full framework is completed by
two mixed-signal processing (hard computing) frontend and backend stages, to interface
the framework by sensing and by actuating towards the physical world.

3.1 Front End Stage

The front end is a mixed-signal processing (MSP) stage that implements the signal
conditioning (linearization, amplification, equalization and filtering) and the extraction
of the low level features (time and frequency measurements). It is based on analog and
digital signal processing (mixed-signal) models that puts the crisp signal information in
a measurement domain suitable to the lower information processing stages. Two dis-
tinct MSP front end are available, one for the audio signal, captured by a microphone,
and one for the visual signal, captured by a camera.

3.2 Convolutional Stage

The convolutionalstage implements the high-level feature mapping (phoneme and
viseme) task by exploiting the temporal and spatial local correlation of the audio and
the visual information. Audio and visual low level features from front end stage are
inputted to the convolutional layer. This stage consists of two information path, one for
audio information and one for visual information. The purpose is to feature the audio
and visual information according to the semantic that will be applied at higher stages

Fig. 1. Framework for the bio-inspired audio-visual speech recognition
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(e.g. phonemes and visemes featuring in AVSR systems). Each node of the input layer
is connected to the inner layer nodes in a spatially contiguous receptive schema (e.g.
each node at layer n is connected to only 3 adjacent n-1 layer nodes) (Fig. 2).

3.3 Evolving Stage

The evolving stage implements decision fusion on the audio and visual high-level
feature scores by applying the evolving paradigm to enable the adaptation of the AVSR
system to the environment variability (e.g. noise) and to the information mismatch (e.g.
mismatch of /m/ and /n/ phonemes due to high degree of similarity of time and
frequency features).

The evolving stage is implemented by the EFuNN paradigm (Fig. 3).

3.4 Linguistic Stage

The linguistic stage implements by rules the process of sound to symbols conversion
(e.g. phoneme to grapheme) and of the text disambiguation.

Fig. 2. Feature mapping at convolution stage

Fig. 3. EFuNN evolving architecture is applied to fuse phoneme-viseme classification and to
predict phoneme occurrence
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3.5 Back End Stage

The back end is a mixed-signal processing (MSP) stage that implements the signal
conditioning (linearization, amplification, equalization and filtering) and physical fea-
ture generation to be applied to the physical world (e.g. audio-visual speech synthesis).
It is based on digital and analog signal processing (mixed-signal) models that produce
the crisp signal information in a measurement domain suitable to be applied to other
systems (control, communication, decision, etc.). Two distinct MSP back end are
available, one for the audio signal, played by a loudspeaker, one for the visual signal,
visualized by a display.

4 Experimental Tests

Some experiments have been executed to test the bio inspired AVSR’s ability to adapt
to physical context changes (e.g. noise). The test concerned the recovering of the right
grapheme from the utterance of a words with two acoustically similar phonemes, /m/
and /n/, and their corresponding visemes.

4.1 Front-End

Two front-end has been programmed to extract the physical features of the captured
signal by an audio sensor (microphone) sampled at 16 kHz and 16 bit encoded, and by
a visual sensor (camera) 24 fps. A set of digital signal processing (DSP) algorithms has
been applied for feature extraction purpose from the audio signal:

• Five frequency bands (tonotopically) ordered onto space (cochlea-like) the feature
extracted from the visual signal are:

• Lips eight (LE)
• Lips width (LW)

4.2 Convolution Stage

At the convolution stage, the audio the features from the front-end are inputted to the
ANNs separately-trained to classify the phonemes. The ANNs scores the phonemes on
a frame-by-frame time base, synchronously to the visual framing (2 audio frames
(21 ms) for each visual frame (42 ms)). The score is the input for the middle stage
(evolving stage). The visual features (visemes) are encoded by LE and LW measure-
ments and passed directly to the middle stage as knowledge related to the current
viseme (Fig. 4).
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4.3 Evolving Stage

At the second stage an evolving fuzzy neural network (EFuNN) has been trainedted to
execute the decision fusion of the scoring of the audio and of the visual features. The
EFuNN has been trained to predict the phoneme sequence frame-by-frame, streaming
the phonetic transcription of the spoken word at output.

The NeuCom [16] environment was used to model and simulate the EFuNN by
applying the following setup:

• Sensitivity threshold: 0.95
• Error threshold: 0.05
• Number of membership functions: 5
• Learning rate for W1: 0.1
• Learning rate for W2: 0.1
• Node age: 60

4.4 Linguistic Stage

At the third stage the fuzzy logic engine disambiguates the phonetic transcription
executing the phoneme-to-grapheme transcription.

4.5 Test Setup

The test has been executed on 100 utterances of phonemes /m/ and /n/under four
acoustic changing conditions (increasing additive white noise):

1. 0 dB
2. +6 dB
3. +12 dB
4. +18 dB

The EFuNN was first trained with 80 % of the utterances at 0 dB noisy condition
and tested with the remaining 20 %. Then at next test time, the EFuNN evolved using
80 % previous test utterances and fuses decisions using the new noisy classification
from audio and visual featured utterances.

Fig. 4. Phoneme featuring at convolution stage.
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4.6 Test Results

Test at 0 dB (Fig. 5) demonstrates good performance in discriminating two similar
phonemes /m/ and /n/, not when the audio scoring fails at audio convolution layer (/m/ /
n/ mismatch). After evolving, the test (Fig. 6) demonstrates its ability to recover the /m/
/n/ mismatch. The performance fall down when +18 dB additive noise masks the
noise-free utterance. After evolving, the test (Fig. 7) demonstrates better performance
with noisy utterances.

Fig. 5. Decision fusion at evolving stage for /m/ /n/ sequence for correct recognition (left) and
for wrong recognition (right).

Fig. 6. Decision fusion at evolving stage for /m/ /n/ sequence for correct recognition (left) and
for wrong recognition (right) after training on wrong recognition.
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5 Conclusion and Future Works

The experiment demonstrated that the bio-inspired AVIP framework is effective in
harsh conditions keeping low the system complexity. This performance is related the
special purpose nature of the subsystems and of their capability to adapt to context
changes by data-driven paradigms and intrinsic evolving capabilities.

The purpose of this research is to find which bio-inspired processing and infer-
encing paradigms could be optimal for the complete computational path from sensing
to actuation in audio-visual applications. Bio-inspired signal processing is the next step
to extend the paradigm to the front end and the back end of the AVIP framework.
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Abstract. Classification of unbalanced datasets is a critical task that is
getting interest due to its relevance in many contexts and especially in
the industrial one where machine faults, quality deviations belong to the
class of rare events whose identification is fundamental. This work intro-
duces and outlines the main themes related to this problem including
an analysis of the factors that make the detection of unfrequent events
complicated, a list of the metrics used for classifiers assessment and a
review of most popular and emerging approaches used for facing class
unbalance with a special focus on the detection of rare events.

1 Introduction

In many practical fields classifiers have to cope with unbalanced datasets (also
known as uneven datasets) within a wide and varied set of contexts and problems.
These datasets are characterized by a significant unbalance in the class distribu-
tion among the training instances. Normally this kind of datasets are categorized
into two groups according to the severity of the class unbalance: normally unbal-
anced datasets are characterized by a lower level of disparity with a the rate of
rare samples above 10 % whilst in highly unbalanced datasets this rate is (often
far) below 10 %. In this latter case the difficulty of the learning process expo-
nentially increases. Within the unbalanced dataset classification nomenclature
the majority class is usually also called negative and the minority class positive.
This second class of instances is, in many frameworks, the one whose detection
is fundamental since it represents situations whose identification, according to
the problem context, is particularly important. There are many and frequent
examples in real world applications of this kind of problems in different fields. In
the industrial context machine malfunctions detection [24] and product quality
assessment [2] are characterized by the rarity of the events (i.e. malfunctions
and defects, which are far less frequent than normal situations) that, if correct
and systematic, would allow – among the others – money saving and higher
quality products delivered to customers (which avoid complaints) respectively.
In medicine, rare diseases identification belongs to this category as well as the
identification of fraudulent credit card transactions in finance, several speech
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recognition tasks [19] and several bioinformatics related problems [9]. Unfor-
tunately, despite its relevance, the problem of the detection of these patterns
is extremely hard due to a multitude of interacting factors that prevent stan-
dard classifier to succeed. Nevertheless the strategic importance of this problem
pushed researchers to develop smarter approaches of different nature to overcome
the criticalities related to class unbalance. In this paper the main issues related
to the classification of unbalanced datasets are presented together with a review
of most used and state–of–art methods developed for solving this problem.

The paper is organised as follows: firstly the main factors that make this
problem so complex are analysed in Sect. 2 and the most common performance
measures adopted when facing unbalanced datasets are presented in Sect. 3, sub-
sequently a comprehensive review of methods for unbalanced dataset classifica-
tion is provided in Sect. 4, finally Sect. 5 is devoted to discussion, conclusions
and future perspectives of the described approaches.

2 Difficulties in Unbalanced Data Classification

The detection of unfrequent patterns by means of standard classifiers is a com-
plicate task due to several interacting reasons that limit the efficiency of these
methods in such context. The main reason for standard classifiers such as Artifi-
cial Neural Networks (ANN), Decision Trees (DT) and Support Vector Machines
(SVM) are not successful in the classification of unbalanced datasets is strictly
related to the assumption they make on the even distribution of the training
samples among classes. The goal of most machine learning algorithms is the
achievement of an optimal overall performance, that is successful when classes
are balanced while, in the case of unbalanced datasets, the decision boundaries
defined by the classifiers tend to be biased toward the majority class and, as
a consequence, the minority class is misclassified [10]. The unbalance degree
directly affects the performance, in facts, as shown in [7], the higher the unbal-
ance ratio the lower the recognition rate of minority class. Although the unbal-
ance ratio and the basic assumption of even distribution of standard classifier is
the main critical point, other factors negatively influence classifiers performance.

Lack of data compromises the capabilities of the learners of characteriz-
ing minority samples and to find effective boundaries to distinguish them from
majority samples [29]. The main effect of lack of minority samples is the reduc-
tion of the region of the domain that the classifiers associate to them, in favour
of the frequent samples. This condition is quite frequent in real world prob-
lems. In [14] it was empirically demonstrated that, even maintaining constant
the unbalance rate, as the number of training examples increases the perfor-
mance of the classifiers enhances due to the informative content brought in by
the new samples. This latter result suggests that with a sufficiently large amount
of data the detrimental effect of class unbalance could be arbitrarily reduced.
Lack of data is a frequent problem in the industrial environment where it is not
always possible to pursue durable measuring campaigns within particular plants
due, for instance, to harsh conditions. For this reason the few data available for
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statistical analysis and classifier training contain a minimum amount of rare pat-
terns usable for the class characterization. The complexity of the classification
task – which corresponds to the complexity of the boundaries among classes to
be calculated by learners – is another key point that affects the classifiers per-
formance. Complexity is associated to the level of separability of the classes. For
simple datasets where classes are not overlapping the effect of class unbalance
is null, even in presence of strong unbalance rates [14]. On the contrary, in the
case of complex problems characterized by highly overlapping classes and com-
plex boundaries, the mission of the learner becomes complicate and standard
classifier tend to solve generated conflicts in favour of majority class in order to
maximize the overall performance.

Finally, noise in training data, in combination with the other mentioned fac-
tors, decreases the ability of classifiers to correctly characterize minority samples.
In [29] it was shown that the effect of noise is highly detrimental for rare samples
as noise can erroneously lead into modification of the class attribute within the
training dataset: this change on one hand has low impact on the majority class
but on the other hand is highly detrimental for the minority samples due to a
small number of available samples for the extrapolation of class characteristics.

3 Performance Measures

When dealing with the classification of unbalanced datasets the use of classical
evaluation metrics such as the overall accuracy for the assessment of classifiers
performance is not suitable as it would not reflect the actual level of appreci-
ation of the classifier. In many industrial problems, for instance, the main aim
of the classification systems is not the achievement of an optimal overall perfor-
mance but the recognition of particular rare situations such as machine faults
or defective products. In an unbalanced domain there is the need of rewarding
the correct detection of minority samples. The role of the performance measure
is fundamental when exploited within the learning of the classifier as it is able
to drive the training to achieve the desired results, thus many metrics have been
developed with the specific aim of evaluating the performance of classifiers on
unbalanced domains. Many of these metrics are based on the confusion matrix
that reports the classification of samples with respect to their actual belonging
classes and which is depicted in Table 1 for a two–classes problem with values
for positive (minority) and negative (majority) classes.

From this matrix the following metrics can be derived:

– Accuracy: TP+TN
TP+FN+FP+TN overall accuracy

– False negative rate (FNR): FN
TP+FN rate of rare samples misclassified

– False positive rate (FPR): FP
FP+TN rate of frequent samples misclassified

(false alarms)
– True negative rate (TNR, Specificity): TN

FP+TN rate of rare samples correctly
classified

– True positive rate (TPR, Recall, Sensitivity): TP
TP+FN rate of rate samples

correctly classified
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Table 1. Confusion matrix for a two–classes problem and positive/negative values.

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)

Negative class False positive (TP) True negative (TN)

– Precision: TP
TP+FP is the rate of correct positive predictions

– F-measure: 2·TPR·Precision
TPR+Precision that is defined as the harmonic mean of recall

and precision and whose high values represent a good performance in terms
of both of them

These measures are all in the range [0;1] and have the advantage of being
independent of the classes prior probabilities.

More advanced measures based on the ones above have been proposed in lit-
erature. Among them it’s worth mentioning the Geometric–Mean G − Mean =√

Sensityvity · Specificity that jointly takes into account the classification per-
formance on minority and majority samples.

Another very popular method for assessing the performance of a classifier
when coping with unbalance is based on the so–called Receiver Operating Char-
acteristics (ROC) curve [29]. The ROC curve is a set of couples of true and false
positive rates (TPRt,FPRt) collected for a variation of a classifier parameter t
that can be either a threshold that influences the classification (i.e. threshold
classifiers) or, as it will be discussed later, a resampling rate or, in the case of
DT the criterion for leaves labelling. The ROC curve, depicted in Fig. 1, puts
into evidence the benefits in terms of TPR and the costs in terms of FPR that
can be achieved by modifying t. One of the main characteristics of the ROC
curve is that it can be used to find the optimal value of the t parameters and to
compare different classifiers over a range of parameters value (t).

The Area Under the Curve (AUC) is a measure derived from the ROC and
that is often used to summarize it. AUC measures the actual area under the
ROC curve: the larger the area the higher the classifier performance.

4 Approaches for the Classification of Unbalanced
Datasets

Given the strategic importance of the problem in most industrial and real world
frameworks, many methods have been developed for the classification of unbal-
anced dataset, focusing on the detection of the interesting and rare patterns.
These methods are traditionally grouped into two main families with respect to
the way they operate to counterbalance the effects of class unbalance within the
training dataset in order to favour the correct detection of rare patterns. The
internal methods consist on techniques expressly designed for facing this specific
problem whilst the external ones operate at data level by modifying the train-
ing dataset and reducing the unbalance ratio. The main ideas and techniques
belonging to both these groups are depicted in the following sections.
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Fig. 1. Example of ROC curve

4.1 Internal Methods

Internal methods include not only the algorithms expressly developed for unbal-
anced data classification but also standard algorithms that are modified for this
purpose.

Algorithms in this group are often designed for facing a specific problem
and/or data distribution and - due to their specificity - the results they achieve
are in most cases extremely satisfactory. Nevertheless this characteristic is also
the cause of the main drawback of this class of approaches that lies in their scarce
suitability to be successfully applied to other problems than that for which they
are originally developed. Most known techniques in this group challenged the
problem of portability and led to almost general purpose algorithms that require
a minimal tuning from the user in order to achieve successful performance.

Cost–Sensitive Learning. The Cost Sensitive Learning (CSL) methods are
based on the idea of directly tackling the tendency of standard methods of being
biased toward frequent patterns that is due to the fact that the misclassification
of a rare pattern is as penalized (i.e. has the same cost) as the misclassifiaction of
a frequent one. CSL techniques operate by giving a different weight to these two
types of errors by emphasizing the missed detection of rare patterns during the
training of the classifier. This operation promotes their detection and is suitable
for those problems where both class distribution and misclassification costs are
unbalanced. One of the main advantages of these techniques is the possibility of
combining it with standard techniques. An altered cost matrix or function can
be used for instance within the ANN training algorithm or, as in [18], within
DT for guiding the choice of the best attribute to be associate at tree nodes.

The main problem related to CSL is the determination of a suitable cost–
matrix. In some early approaches costs are set inversely proportional with respect
to class rates within the training dataset, theoretically re–balancing the effect of
class unbalance during classifier tuning. In [29] it was shown that this approach
leads to severe over–fitting problems. In some cases the cost–matrix is arbitrarily
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set by the users that directly put into practice the peculiar requirements of
handled problems but it limits the method portability.

Cost–sensitive meta–learning is a sub–category of CSL and works at a higher
level with respect to the learning process by altering the output of the trained
classifier on the basis of sampling, weighting and thresholding operations aiming
at decreasing the misclassification of rare patterns.

The Thresholded Artificial Neural Network (TANN) [25] combines a standard
two–layers Feed–Forward ANN (FFNN) to a threshold operator. The FFNN
output layer activation function is a logarithmic sigmoid and is connected to
a threshold operator that associates the 1 value corresponding to positive/rare
sample to the FFNN outputs higher than the threshold t and 0 otherwise. The
threshold t determines the sensitivity of the TANN to rate patterns: the lower
t the more TANN is encouraged to classify an arbitrary pattern as belonging to
the minority class. The tuning of t implements the asymmetric cost of misclas-
sification and simultaneously takes into account the overall classifier accuracy
(ACC ), the rate of minority class samples detected (TPR) as well as the rate
of false positives (i.e. false alarms) (FPR). Once the FFNN within the TANN
architecture is trained the optimal t value is selected among a set of candidate
thresholds spanning in [0;1] according to the following merit function that for-
malizes the requirements of unbalanced datasets classification (the higher the
better):

E(t) =
γTPR(t) − FAR(t)
ACC(t) + μFAR(t)

(1)

and where γ and μ are two empirical parameters set by users according to the
specific task targets.

One Class Learning. One class learning approaches (OCL) (also known as
recognition based) include a set of methods for the training of some types of
standard classifiers by exploiting only the samples belonging to the minority
class. This idea aims at facing the issues encountered by discriminative learn-
ers (ANN, SVM, Fuzzy Systems) that base their training on the exploitation
of multiple classes and discriminate among them: in the case of unbalanced
datasets these classifiers tend to recognize with satisfactory precision majority
classes as they are designed to achieve an optimal global performance to which
minority samples marginally contribute. OCL can be used for the training of
different types of classifiers, although it cannot be employed for some others
such as DT and Naive Bayes. In [13] for instance this approach is used for the
ANN– autoencoder training. The autoencoder reconstructs minority samples in
the output layer and is subsequently used to recognize novel instances. Classi-
fication is possible, after training, since minority instances are expected to be
reconstructed accurately while negative instances are not. Further, in [21] a OCL
version of SVMs, the v-SVM, has been developed in a similar way for unbalanced
classification. The v-SVM is trained by processing only minority samples. In this
case the v-parameter, which acts as a similarity threshold, is suitably tuned in
order to favour the detection of rare patterns. In [12] it was empirically put into
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evidence that for some problems, especially those characterized by extremely
unbalanced ratios and where the generation of a higher rate of FP is acceptable,
OCL outperforms discriminative methods.

The LASCUS Method. This method [23] merges different techniques and
concepts related to statistical learning for unbalanced dataset classification. LAS-
CUS (LAbelled Clusters for Unbalanced Sets) is designed to be general purpose
and is particularly suitable for those problems where the identification of minor-
ity patterns is fundamental, accepting the risk of the generation of an acceptable
amount of false positives. In many industrial applications such as, for instance,
machinery faults prediction the generation of some false alarms is not a problem
while the missed detection of a fault can be harmful and costly. The basic idea
of LASCUS is to partition efficiently the input space and to suitably label the
formed clusters in order to promote the minority patterns output. Clusters to
which a relatively high ratio of rare patterns is associated are assigned through
labelling to the minority class in order to favour its classification. The key issues
of LASCUS concern the data partition and the determination of the rare patters
concentration that determines the assignment of a cluster to the classes. The
LASCUS training process can be subdivided into two main phases as depicted
in Fig. 2.

The first step employs a Self Organizing Maps (SOM) for the creation of the
clusters to which the rare and frequent patterns are assigned according to the
euclidean distance metric: each sample is associated to the nearest cluster. Sub-
sequently the relative density of minority patterns is calculated for each cluster.
The determination of a critical minority samples density defines the criterion
for which clusters are associated to the minority class: clusters characterized
by a minority samples density higher than the critical one are associated to
rare patterns, otherwise they are associated to majority class. For this purpose
the rates ACC(d), TPR(d) and FPR(d) are calculated for varying values of

Fig. 2. The two steps of the LASCUS training procedure.
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candidate densities d: these features are then fed to a fuzzy inference system
which implements a human driven criterion for the LASCUS performance evalu-
ation. The best rated density is then selected and all the clusters assignments are
calculated by consequence. LASCUS has been successfully used within several
industrial applications.

Ensemble Based Approaches. Ensemble methods combine the output of
multiple learners to determine the overall output. Single learners are normally
simple and their individual performance is globally only moderate so that they
are named weak. Nevertheless the combination of the weak learners outputs can
get the ensemble to extremely good performance. The most known ensemble par-
adigms are boosting and bagging. The first one builds progressively the ensemble,
adding at each step a new weak learner that is trained by using only a subset
of the training data. This subset is formed so as to favour the samples on which
the ensemble performs worst in order to improve the system accuracy on these
instances. Due to this characteristics boosting has been used with unbalanced
datasets. AdaCost [8] for instance selects the samples to be included in the weak
learners training datasets according to performance and user–defined misclassi-
fication costs. Rare–Boost [15] in an analogous way assigns a different cost that
is calculated according to each cell of the confusion matrix. Bagging ensembles
train simultaneously different weak classifiers that exploiting different training
dataset that slightly overlap. In the case of unbalanced data this method creates
a set of re–balanced datasets for the weak learners training so as to create a set
of classifiers with limited performance but not biased toward majority class [19].
Ensemble methods have been often used in synergy with resampling techniques
in the so–called hybrid approaches some of which are analysed in Sect. 4.3.

Multi–objective Optimization. Multi–Objective Optimization techniques
(MOO) are suitable for coping with unbalances datasets classifications. Since
in this context it is generally not possible to achieve a solution that is optimal
with respect to multiple criteria among those introduced in Sect. 3 (for instance,
TPR and FAR that are conflicting), MOO approaches are able to provide a set
of non–dominated solutions that simultaneously optimize the problem accord-
ing to different point of views that correspond to different optimal conditions
in terms of the selected objectives. At the end of this process the set of solu-
tions is analysed by decision makers that, on the basis of subjective preference,
select one or the other solution. Examples of the use of MOO techniques in the
field of unbalanced classification can be found in [22] and in [20] where genetic
algorithms are used to find the set of optimal solutions.

4.2 External Methods

External methods counter act the training dataset unbalance by re–sampling it
and creating a more balanced version of the training dataset that is then fed to a
standard classifier for learning. In most cases datasets are not totally rebalanced
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but rather the relative frequency of the minority class is increased up to a pre–
determined ratio. Unfortunately, since neither a fix unbalance ratio that suits
for any classifier and problems nor a rationale for its determination exist, such
ratio is often established experimentally. One of the main advantages of external
approaches with respect to internal ones is their portability, in facts they can be
used for training any type of classifier without requiring any modification of the
standard algorithms or data structures. Datasets can be re–balanced either by
removing majority class samples or by improving the number of samples belong-
ing to the minority class until the desired unbalance ratio is reached. These two
approaches that operate in opposite direction are called under–sampling and
over–sampling respectively. Various studies investigated on the impact of these
opposite approaches on classifiers performance without reaching clear and stable
conclusions that can be addressed in order to outline an optimal re–sampling
strategy [1,6]. The simplest approach to re–sampling consists in the random
selection of the instances to be removed or replicated in the cases of under–
sampling and over–sampling respectively. This trivial approach, yet fruitful in
some cases, present some drawbacks. Random under–sampling can potentially
remove instances with high informative content and being detrimental for the
overall performance of the classifier. Random over–sampling can lead to over-
fitting by creating compact clusters of positive samples that reduce instead of
expanding the area of the input space associated to minority class.

Advanced Re–sampling Techniques. The limitations and risks connected to
random re–sampling pushed the scientific community to develop more and more
sophisticated techniques for the selection of the instances subjected to removal or
replication. The idea behind these methods is to globally select a set of instances
whose removal or replication (or their combination) is most beneficial for the
classifier performance. For this reason such methods aim at conditioning the
decision boundaries determined by classifiers.

In [16] focused under–sampling is achieved by selecting noisy and border–
line samples in order to reduces the dimension of domain areas associated to
frequent patterns, creating a more specific concept of the corresponding class.
In [17] data are under–sampled by removing majority samples from compact
homogeneous clusters of negative samples in order to reduce redundancy. In [11]
focused under–sampling replicates the positive samples that lie on the boundary
regions between minority and majority classes in order to spread the regions that
the classifier associates to the positive samples and to limit eventual classification
conflicts that standard classifiers would solve in favour of majority class.

SMOTE. SMOTE (Synthetic Minority Oversampling TEchnique) is an innova-
tive oversampling approach originally presented in [4]. SMOTE aims at avoid-
ing the overfitting problems that may arise when over–sampling is achieved by
replicating existing minority class samples that do not actually add informative
content to the training dataset but just rebalance it.

The main element of novelty of SMOTE is the synthetic creation of new
positive samples that are not yet present in the training dataset. The synthetic
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samples are placed where they probably could be (and maybe are not in the
dataset due to lack of data), for instance along the lines connecting existing
minority samples. Depending on the number of synthetic samples required to
rebalance the dataset, different numbers of couples of minority samples are
selected for the generation of the new ones. Synthetic creation, contrary to repli-
cation, broadens the regions of the domain that are associated with minority
class. Unfortunately the risk SMOTE assumes is the generation of misleading
information since there is no control on the positioning of synthetic positive
samples with respect to existing negative ones.

SUNDO. SUNDO is an advanced re–sampling method that synergistically com-
bines oversampling and under–sampling for a re–balance of the training dataset
[3]. The resampling procedure is based on several strategies devoted to the selec-
tion of most informative patterns to be maintained in the training dataset and
the synthetic creation of minority samples non–conflicting and redundant with
respect to the others. The method requires the specification of the target unbal-
ance ratio so as to determine the number of synthetic samples to be created
through oversampling (nover) and to be eliminated through under–sampling
(nunder).

The first step consists on the generation of a number k · nover(k > 1) of
synthetic minority samples higher than the number of positive instances actually
required for the achievement of the set unbalance ratio. Synthetic instances are
generated by using the original spatial distribution of the minority samples in
the training dataset in order to locate them where they actually may be. Among
these samples, nover are selected on the basis of their distance from frequent
observations: the closest to frequent observations are eliminated in order to limit
inter-class interferences during the training. The under–sampling step is devoted
to the removal of redundant positive samples in order to rebalance the dataset
without loosing informative content. The nunder minority samples to be removed
are selected on the basis of the relative distances among couples of frequent
observations: once these distances are calculated, the nunder closest couples are
selected and one out of the two samples is randomly selected and eliminated from
each of these couples. This procedure reduces the redundancy among frequent
samples.

Smart Undersampling. The focused under–sampling together with the auto-
matic determination of the optimal unbalance ratio is proposed in [27]. The
basic idea of Smart–Undersampling is to remove from the training dataset the
optimal ratio of majority samples whose inclusion in the dataset is most detri-
mental according to a set of criteria that are calculated for each single negative
sample. Utilized indicators take into consideration the relative distances among
positive and negative instances and redundancy among majority samples and,
once calculated, are used to create distinct rankings of the negative samples.
At the top of these rankings the samples whose removal is most beneficial are
located. A Genetic Algorithms (GAs) based optimization procedure is utilized
for determining the optimal removal percentages associated to the each ranking.
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These percentages are used to select the frequent patterns to be pruned from the
training dataset. More in detail, each one represents the rate of samples, picked
from the associated ranking, to be removed from the dataset according to their
rating (i.e. starting from the top of the ranking) and managing eventual inter-
sections. The fitness function employed by the GAs engine, given an arbitrary
candidate solution expressed in terms of removal percentages according to each
ranking, creates the corresponding reduced training dataset, trains an arbitrary
classifier and evaluates its performance in terms of Eq. 1 in order to find the
optimal removal rates according to an unbalanced classification framework. The
main advantage of this approach is that it grants the elimination of majority
samples whose removal is not detrimental for the classifier performance and, as
a side effect, the automatic determination of the unbalance ratio that directly
derives from the optimal removal rates provided by GAs optimization.

4.3 Hybrid Methods

Among all internal and external approaches there is no one that overcomes the
others in any application but the choice is rather dependent on the handled prob-
lems, data distributions and evaluation criteria. As mentioned in the previous
sections, internal and external methods have both advantages and weak points
that led the scientific community to search for a fusion of these two families into
hybrid approaches that maintain the pros and discard the cons of both of them.
Some of the most representative examples of hybrid approaches are introduced
in this section.

Combination of SMOTE and Ensemble Approaches. The SMOTE over–
sampling method has been widely used in literature in combination with internal
approaches due to its innovative characteristics. In particular SMOTE has been
successfully utilized together with ensemble techniques.

SMOTE-Bagging [28] employs SMOTE for the over sampling of the training
datasets utilized by the weak learners included within a bagging–type ensemble.
More in details, for each base learner a part of negative samples is included in the
training dataset so as to include, throughout all the weak learners, each negative
instance at least once. Further original positive instance are included together
with an additional quantity of minority samples (according to a pre–defined
unbalance ratio) that are constituted in (small) part by originally replicated
minority samples and SMOTE generated samples. The main advantage of this
approach is that all the weak learners are trained by using a well balanced
training dataset and that diversity among weak–learners - which is fundamental
for ensemble performance - is granted by the different ratios of samples that are
either replicated or synthetically created for each learner.

Smote-Boost [5] employs SMOTE within a boosting ensemble with the aim of
improving the ensemble classification accuracy as far as the minority class con-
cerns while the boosting ensemble architecture aims at keeping the overall classi-
fier performance satisfactory. Smote-Boost provides at each step of the ensemble
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construction not only those minority samples (and eventual majority samples)
that are not correctly classified by the ensemble, but also the new synthetic sam-
ples created by SMOTE in order to broaden at each step the representation of
rare instances. Smote-Boost has been proven to outperform standard boosting
techniques in terms of performance on unbalanced classification tasks.

Dynamic Resampling. The Dynamic Resampling is a hybrid approach that
combines a FFNN based classifier characterized by a modified training procedure
and a re–sampling operation that takes place dynamically during the training of
the network itself [26]. The FFNN used as a classifier is a single–output network
whose structure can be arbitrarily determined. The output neuron is activated
by a logistic function that fires in the range [0;1]. For the classification purpose
a threshold set to 0.5 is used to assign the FFNN output to positive or negative
classes.

The basic idea of this approach is to mitigate the effect of class unbalance
by using a different resampled versions of the training dataset through dis-
tinct phases of the network training process. The training dataset is resampled
throughout the learning process so as that in each phase all minority samples
are exploited but only part of the majority ones according to a resampling rate
to be defined by the user. The training process is divided into blocks of epochs
[B1, B2, .., BN ] and for each of them a different training dataset is set up. At
each block of epochs the required amount of majority samples is probabilistically
selected according to two criteria: probability is higher for those instances that
have been less frequently employed in previous blocks; probability of selecting a
sample s is proportional to the classification performance achieved by the classi-
fier during the training within the blocks of epochs that actually involved s. This
approach presents two main interesting characteristics: on one hand it allows a
balanced training of the FFNN that exploits, at each epoch of the training, a
smaller but balanced (as defined by the user) dataset, on the other hand this
training procedure is informative content loss–less since the samples selection

Fig. 3. Flow chart depicting the Dynamic Resampling training procedure. The number
of epochs within each training block Bi exploits a different re–balanced training set Tri.
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algorithm avoids it and moreover tends to privilege the samples whose use is
mostly advantageous (Fig. 3).

5 Discussion

In this paper the main aspects related to the classification of unbalanced datasets
and the associated problem of detection of rare patterns have been dealt, focusing
on an analysis of the multiple and interacting factors that prevent standard
classifiers to perform satisfactorily on these tasks that play a fundamental role in
many practical and industrial environments. The issues on unbalanced datasets
classification are associated both to the intrinsic training dataset characteristics
(unbalance ratio, lack of data, instances distribution) and to the inclination of
standard classifier to better recognize majority instances due to the search of
the optimal overall performance. The analysis of techniques and ideas behind
main methods developed for this task put into evidence that all approaches try
to counterbalance in different ways the detrimental effect of class unbalance that
biases the classifiers toward the majority class by assigning only limited regions
of the domain to the minority class. Actually no method or family of approaches
is able to achieve universally satisfactory results on any problem since solutions
are deeply related to the peculiarities and requirements of single problems: it
rather seems that it is up to the users to select and eventually combine the
methods that best suited to the peculiar exigences.

The research activities in this field reached a satisfactory maturity level and
led to the development of algorithms able to achieve good performance and
an appreciable flexibility. Both the internal and external approaches put into
evidence positive characteristics that complement each other. The future lines
of the research in this framework could address the integration - already started -
of these two families of methods.
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ance methods for translation initiation site recognition. In: Garćıa-Pedrajas, N.,
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Abstract. In many real word applications of neural networks and other
machine learning approaches, large experimental datasets are available,
containing a huge number of variables, whose effect on the considered
system or phenomenon is not completely known or not deeply under-
stood. Variable selection procedures identify a small subset from original
feature space in order to point out the input variables, which mainly
affect the considered target. The identification of such variables leads to
very important advantages, such as lower complexity of the model and
of the learning algorithm, savings of computational time and improved
performance. Moreover, variable selection procedures can help to acquire
a deeper knowledge of the considered problem, system or phenomenon
by identifying the factors which mostly affect it. This concept is strictly
linked to the crucial aspect of the stability of the variable selection,
defined as the sensitivity of a machine learning model with respect to
variations in the dataset that is exploited in its training phase. In the
present review, different categories of variable section procedures are pre-
sented and discussed, in order to highlight strengths and weaknesses of
each method in relation to the different tasks and to the variables of the
considered dataset.

1 Introduction

In machine learning and statistics, Variable Selection (VS) (or feature selection),
is the process of selecting a subset of significant input variables considering the
words variable or feature as synonymous. Actually variable is the term to address
the “raw” input variable, while feature is a variable which can result from a pre-
processing of the input variables. Concerning VS the two terms are usually used
without distinction, as there is no impact on the selection algorithms [32]. VS
is particularly important when dealing industrial datasets, especially when the
amount of possible input variables is significant with respect to the number of
available instances. In effect, in the industrial field, usually a large number of
variables related to a single process is collected through several sensors distrib-
uted along the whole production chain [16,20,21]. The issue of VS has been
deeply analysed in literature for purposes such as prediction [10,44,56], classi-
fication [11–13] or clustering [60]. VS also improves phenomena interpretation,
c© Springer International Publishing Switzerland 2016
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as it allows to ignore not significant effects as well as irrelevant, noisy or unre-
liable variables, by thus reducing noise, enhancing the machine learning system
performance and speeding up the design time. Moreover, VS can be an interest-
ing tool to reduce the risk of over-fitting of machine learning models or to lower
their computational burden [7].

In literature three main approaches to VS can be found: filters, which are
independent on the learning machine performed; wrappers, that consider the
learning algorithm as a black box; embedded approaches, which execute VS as
component of the learning phase. The most trivial variables selection approach
consists in the analysis of all combinations of variables, also called exhaustive
search or brute force approach but its computational time complexity is expo-
nential, thus it is not viable when the number of input variables is high.

A further issue to be carefully considered when dealing with VS procedures is
the so-called stability: a VS algorithm is said to be stable when the exploitation of
different training data sets related to the same phenomenon leads to the selection
of the same variable subsets. This concept is crucial in real applications where
VS is designed to interpret the behaviour of the considered process.

The proposed tutorial provides a survey of recent and relevant literature
results in the field of VS, especially related to industrial applications. The paper
is organised as follows: a survey of the basic concepts inherent the VS task is
proposed in Sect. 2, while the importance of VS for the design of Neural Networks
(NNs) is highlighted in Sect. 3. In Sect. 4 the classification task for VS is treated,
while Sect. 5 introduces the problem of the stability. Finally, Sect. 6 provides
some concluding remarks.

2 Variable Selection

The complexity of selecting the most relevant input variables of a machine learn-
ing system can be mainly due to the large size of the initial inputs set, the cor-
relations among variables which lead to redundancy and, finally, the presence
of variables which do not affect the considered phenomenon or process [43]. In
order to choose the optimal subset of input variables the following considerations
should be taken into account:

– Relevance. The selected variables must convey all or most of the significant
information inherent to the considered phenomenon.

– Computational efficiency. The number of selected input variables should
be not too high in order to limit the computational burden. This fact is par-
ticularly relevant in the filed of NNs: the inclusion of redundant and irrelevant
input variables adds noise and slows down the training of the network.

– Knowledge improvement. The optimal selection of input variables allows
a deeper understanding of the behaviour of the considered/modelled process.

To sum up, the optimal set of input variables should include only the variables
needed to explain the behaviour of the considered process or phenomenon with
no or minimum redundancy, in order to build an accurate, efficient, inexpensive
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and more easy interpretable model. In literature VS techniques are categorized
into three main classes: filter, wrapper and embedded methods.

2.1 Filter Methods

Filter approaches can be considered as a pre-processing phase; they exploit sta-
tistical tests to carry out the selection by computing a pertinence score for each
variable: the variables which have a high pertinence score are finally selected. Fil-
ter are independent on the learning algorithm adopted in the developed machine
learning system and their computational burden is reasonable, but they are sub-
jected to over-fitting. Filter variables ranking is mostly suitable when the knowl-
edge about the discriminative value of individual variables is searched. Filter
variables ranking evaluates performance of each variable individually, being an
univariate method. When interaction between variables is of interest, univariate
methods are unsuccessful.

A popular example of filters is the correlation-based approach which com-
putes the correlation coefficient between each variable and the considered target
[62,63]; inputs are then ranked and a subset is selected including the variables
with the highest correlation coefficient. This approach is fast and the removal
of variables with a low correlation coefficient decreases the redundancy of the
initial variable set. However the linear correlation approach is not very adequate
when dealing with real-world datasets, where the variables are usually not lin-
early correlated with the target. Other widely applied filter approaches are the
Fisher criterion [31] and the T-test [47], which are used to evaluate the impor-
tance of each variable in the case of binary classification, taking into account
the mean value and the standard deviation of the samples belonging to the two
classes. Single Variable Classifier (SVC) is an alternative feature ranking app-
roach where variables are ranked according to their individual predictive power,
i.e. variables are ranked considering the performance of a classifier designed with
a single variable [32].

A common filter approach is the one based on the concept of Mutual Infor-
mation (MI). MI evaluates the amount of information included in a variable or
a group of variables, in order to forecast the dependent one. The main advan-
tage of MI is that it is model-independent and nonlinear at the same time. It
is model-independent, as no assumption is made on the adopted model; it is
also nonlinear as it evaluates the nonlinear relationships between variable and
target. Also MI is a non-linear measure of dependency between variables and
it is a general correlation measure that, contrarily to the correlation coefficient,
can be generalized to all probability distributions [53]. MI can be computed by
exploiting entropy measurements [23] as follows:

MI(x, y) = H(y) + H(x1) + H(x2) + ... + H(xn) − H(y, x1, x2, ..., xn) (1)

where x is the input vector and y is the output of the considered system. The
MI of y and x represents the amount of information that x contains related to
y and H is the Shannon Entropy,Cover91. The Shannon entropy of one generic
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variable z is defined as:

H(z) = −
∫

z

f(z) log [f(z)]dz (2)

The Shannon entropy in the case of n generic variables z is defined as:

H(z) = −
∫

z1

...

∫

zn

f(z1, ..., zn) log [f(z1, ..., zn)]dz1...dzn (3)

where f(z) is the probability density function of z and f(z) is the joint Probability
Density Function (PDF) of z. The main complexity of this approach lies in
the fact that the densities are all unknown and should be estimated from the
data. To this aim, distribution fitting techniques can be applied both belonging
to traditional statistics [6,26,48] and exploiting NNs [22,46] or evolutionary
computation [18,19]. The entropy concept has been generalised in [42], where
MI is also applied.

Finally, another filter feature selection method is the one based on the com-
putation of the relative entropy, also known as Kullback-Leibler divergence [40].
This index was originally used to measure of how different two probability dis-
tributions are and has been used to rank the input variables maximizing the
Kullback-Leibler distance between the target classes in the binary classification
task [17]. The Kullback-Leibler divergence between two probability distribution
p and q can be defined for distributions of a discrete variable as follows:

KL(p, q) =
∑

i

pi log
pi
qi

(4)

where p represents the probability distribution of the samples belonging to the
unitary class while q is the probability distribution of the samples belonging
to the null class. For distributions of continuous variables the summation is
substituted by the integral. Once the KL-distance is calculated, the variables
are ranked according to the KL-distance and the ones associated to the highest
KL-distance values are selected.

2.2 Wrappers

The wrapper approach that was introduced in 1997 by Kohavi and John [39]
exploits the performance of the learning machine in order to select a subset
of variables evaluating their predictive power. Wrappers consider the learning
algorithm as a black box capable of learning from examples and making pre-
dictions once trained. This fact makes wrappers remarkably universal, as they
can be applied using different kind of learning algorithms. An obvious wrapper
method is the exhaustive search also called brute force method which analyses
all combinations of available variables. When the number of input variables are
considerable the exhaustive approach becomes impractical. In fact, if there are n
potential input variables, there are 2n possible subsets to test and, consequently
2n training procedures to perform.
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A common wrapper strategy is the so called Greedy Search strategy which
progressively creates the variables subset by adding or removing single variables
from an initial set. Greedy search in fact can work into two directions: Sequential
Forward Selection (SFS) and Sequential Backward Selection (SBS). SFS starts
with an empty set of variables and the other variables are iteratively included
until a fixed stopping criterion is reached. Usually the adopted performance index
is the accuracy of the learning machine performed. SBS acts in the opposite sense:
the procedure begins including all features and progressively removes the least
relevant ones. A variable is considered relevant and is kept, if the accuracy of the
learning machine tends to decreases when it is removed. Greedy search strategies
need at maximum n(n+1)/2 training procedures and, as SFS starts with a small
variables set, it is less expensive than SBS, if it stops early. In comparison, in
filters there is no search and only n training procedures are necessary.

Wrappers are thus heavier from the computational point of view than filters,
as the induction algorithm is trained for each tested subset, but it is more efficient
in terms of accuracy.

2.3 Embedded Methods

Embedded methods execute the VS as part of the learning stage and are usu-
ally specific of a particular learning machine. Common examples of embedded
approaches include classification trees, random forests [3] and methods based on
regularization techniques, which make this combination very efficient in terms of
both computational cost and suitable selection of variables [4]. The main advan-
tage of embedded methods lies in their connection to the learning algorithm.
Embedded approaches also utilize all the variables to create a model and then
analyses it to deduce the importance of the variables. A simple example is repre-
sented by a decision tree which gives an embedded score of variable importance
that can be achieved by the number and the quality of splits that are generated
from a predictor variable.

In conclusion, filter methods are appropriate to deal with very high-
dimensional datasets because they are computationally simple and fast and inde-
pendent on the algorithm used. Wrapper methods utilize the learning algorithm
as a black box evaluating its performance for the selection of variables. On the
other hand wrappers have a high risk of over-fitting and they are very weighty
from a computational point of view, in particular if the datasets are huge or
if the constructed classifier has a high computational cost. Finally, embedded
methods have a lower computational cost than the wrappers but they are too
definite for a given classifier.

In the last years several hybrid VS methods have been proposed in order
to jointly exploit their advantages by overcoming their drawbacks. An example
of hybrid VS approach is proposed in [13] where the set of available variables
is firstly reduced through a combination of filter selection methods and then
exhaustive search (belonging to the wrappers category) is performed in order
to obtain a sub-optimal set of variables in a reasonable time. A similar hybrid
algorithm for VS is described in [9], where a combination of four filter methods



Variable Selection for Efficient Design of Machine Learning-Based Models 357

with a popular sequential selection method is applied in order to obtain a more
informative subset in a reasonable time. This approach can be applied to several
kind of datasets without any a priori hypothesis on the data and also it is suitable
to large or imbalanced datasets, commonly present in industrial context.

3 Variable Selection in NNs Applications

NNs are widely used in industrial application when highly complex and non-
linear phenomena are considered. The set of input variables must contain only
the most relevant variables with a low degree of correlation. Previous background
on the considered application can provide some information for VS, but such
information can be insufficient and, in some cases, even misleading. On the other
hand, a good selection is recommended, as every unnecessary input lower the
system robustness, adds noise and increases the computational effort.

While for standard parametric mathematical models the complexity of the
VS task can be mitigated by the a priori hypothesis of the functional form of the
model based on several physical interpretation of the system to be processed,
for NNs or other similar statistical modelling approaches, the very generic and
highly non linear structure of the model if makes the application of standard
VS methods quite difficult. This complexity becomes greater when the variables
selection are performed in the learning phase. The idea that an NN is effectively
able of detecting redundant and noise variables during training, and that the
trained network will adopt only the relevant variables can be utopic, especially
is some restrictions are present on the time required for the learning. Moreover,
especially naive NN users tend to design the network using all available input
variables believing that their redundancy will lead to a more robust model.
Consequently, NN models are still too often developed without considering the
effect that the choice of input variables has on model complexity, efficiency of
the learning procedure and performance of the trained NN.

Expert NN modellers recognise the importance of input VS techniques in the
network design as a preliminary phase. Thus the choice of the VS method rep-
resents an important step: techniques that are appropriate for linear regression
are not suitable for the highly non-linear neural model. Wrappers and embedded
approaches are commonly applied when the number of training instances is quite
small and the number of input variables is large. The search strategy is a com-
promise between the number of considered unique solutions and the sustainable
computational burden. The SBS approach trains NN models of limited dimen-
sions and can be highly efficient. On the other hand, SFS performs an efficient
search provided that appropriate redundancy checking is included into the sta-
tistical analysis of variables. This guarantees that the approach selects the most
informative input subset with the lowest number of variables. Brute force search
is impracticable in most real cases, while evolutionary search approaches can
provide an appropriate compromise that allows to cover a large combinations of
input variables [10]. Other approaches allow to perform simultaneous weights,
parameters and features optimization in an NN, such as proposed, for instance,
in [28] and [49].
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Filter algorithms represent a fast, model-free approach to VS and are princi-
pally appropriate to applications where independence from a specific NN archi-
tecture is mandatory or where computational efficiency is required. The capabil-
ity to detect an optimal subset of input variables before training an NN avoids
the computational burden related to the training and model selection, which can
effectively reduce the overall effort of NN development. Moreover, simple ranking
procedures select more input variables than needed, without taking into account
the redundancy of variables, and also are not appropriate to multivariate NN
regression. MI provides a generic measure of the relevance of a candidate input
variable and is highly appropriate for NN modelling because it measures both
linear and non-linear interactions. MI is also less sensitive to data transforma-
tions than correlation, which makes it more suitable, even for linear data analysis
applications. However, evaluation of MI is more computationally intensive than
estimation of correlation, due to the need to estimate density functions of the
data [43].

An exemplar industrial application concerning the classification of particular
surface defects of flat steel products, called inclusions, on the basis of para-
meters related to the steel chemistry and to the processes proceeding the cold
rolling stage was proposed in [7]. VS was performed to discover the most relevant
input variables among the 18 available ones, by applying a combined approach
[13]. Five popular binary classifiers were tested and their accuracy on the real
dataset has been calculated. The main objective of this work was to evaluate the
importance of the preliminary VS step by exploiting the validation dataset to
compute the performance of the classifiers. Finally a 10-cross validation approach
was adopted to evaluate the performance of the classifiers in term of Balanced
Classification Rate (BCR) [51]. The variables selection approach selects 4 vari-
ables (Blowed Oxygen, the Nitrogen content in the liquid steel, the first speed
of the casting and the ladle temperature) which actually represent the parame-
ters which mostly affect the defects classification as inclusion. Table 1 depicts
the classification results which were obtained by considering all the available
variables and only the subset selected through the VS procedure: noticeably the
accuracy of all five classifiers is significantly improved after the application of
the VS procedure.

Such results highlight the advantages which can be achieved coupling a VS
procedure and AI-based methods, NNs included.

Table 1. Results of defects classification for flat steel products

Classifier BCR 18 vars. BCR 4 vars

Bayesian 0.59 0.78

Decision tree 0.57 0.72

Support vector machine 0.58 0.78

Multi layer perceptron 0.53 0.77

Self organizing maps 0.57 0.76
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4 Variable Selection for Classification Task

Several works had been proposed in order to demonstrate the effectiveness of the
VS task in classification problems, which are very relevant for real-world appli-
cations. In particular, binary classification has a relevant importance from the
practical point of view in many real world applications; for instance, anomalies
detection and forecasting are addressed as binary classification problems. More-
over intrusion detection, which occupies an important function in the protection
of communication networks, is often approached as a binary classification prob-
lem faced by pattern recognition systems, whose accuracy is highly dependent
on the variables which are fed in inputs. Binary classifiers are commonly applied
in the medical field to detect some diseases diagnosys problems [29,30,37] as well
as in industrial contexts for faults and anomalies diagnosis or forecasting and
defective products detection in quality monitoring in the industrial applications
are often approached through binary classifiers.

In the industrial field, the developments of the sensing technologies allow to
disseminate industrial plants with a high number of sensors collecting and storing
a huge quantity of information that can be exploited to detect or even forecast
anomalies and faults. However, mainly for large and very complex processes, for
instance where a series of chemical, physical and thermo-mechanical reactions
simultaneously happen, such as in process industry, it is not easy to discover
the reasons which affect faults and quality problems. In all these applications
irrelevant and redundant variables tend to reduce classification performance and
this explains the large quantity of VS approaches developed for that task.

Eid et al. [25] propose an approach for the selection of optimal variable subset
based on the analysis of the Pearson correlation coefficients, which improves the
performance of classifiers applied to decide if a considered system activity is
intrusive or legitimate. Recent works based on the application of VS for intrusion
detection performing binary classifiers can be found in [38,50].

A recent filter VS method which exploit the binary classification is proposed
in [14], where a combination of four popular filters using a fuzzy logic based
approach is proposed. The main element of originality of this method lies in
the joint exploitation of four indexes deriving from popular VS procedures to
be calculated on the variables to select in order to study their relevance with
respect to the classification task. The fuzzy inference system is used to combine
the evaluation provided by the four scores in a natural way in order to detect a
subset of variables which is smaller or at least equal to the one selected by each
single method without decreasing the classification performance. The method
is applied to the design of binary classifiers and the effectiveness of the app-
roach has been confirmed by the development of several classic binary classifiers
by exploiting different datasets coming from both public repositories and real
industrial applications. This method is a filter method and it could be applied
with large datasets, as it is very fast and suitable for all binary classifiers. For
each input variable 4 indexes derived from 4 common filter VS techniques are
evaluated. These indexes are computed considering the distribution of the two
classes; thus the method is suitable for binary classification.
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Other literature methods are suitable also for multi-class classification and
are applied to industrial datasets. For instance, in [11] VS is realized by means
of the use of GAs during the selection process based on the assessment of the
performance of the possible variable subsets adopted to train a decision-tree
classifier. Furthermore the method is able to optimize some parameters of the
employed classifier. The proposed approaches, which are characterized by dif-
ferent initialization and fitness functions of the GAs has been tested on a real
industrial problem obtaining very satisfactory results.

In [12,15] the task of the variables selection to be fed in input to a labelled
Self Organizing Map (SOM) has been faced using GAs. The GA-based opti-
mization procedure is used to identify not only the subset of input variables
which maximizes the performance of the classifier but also to determine the
optimal parameters set of the SOM. These approaches are not appropriate for
large dataset, as their computational burden is quite high; they belong to the
wrapper approaches and their efficiency is related to their capability to optimize
the adopted classifier.

Even though a lot of VS methods have been proposed, an optimal method,
i.e. an approach which is suitable on all VS problems, has not been identified.
Some experiments [33,64] demonstrated that there are considerable differences of
performance, in terms of classification accuracy, among different VS approaches
over a specific data set. This consideration leads to a very important question:
which VS methods should be chosen for a specified dataset? The most obvious
answer is to perform all candidate VS methods to the dataset and to prefer one
with the best performance using, for example, the cross-validation approach.
Nevertheless, this solution could be very expensive in terms of time, especially
for high-dimensional data [5]. In order to address this problem in a more effi-
cient way, automated VS methods (e.g. based on application of computational
intelligence and meta-learning) are recommended [1,2,34,52,59]. In [59] efficient
meta learning based VS algorithms are proposed. Their approach is based on the
assumption that the performance of an algorithm on a given dataset depends
on the characteristics of the dataset itself. The meta-features, which are com-
monly adopted in meta-learning [58] are introduced to differentiate the datasets.
Moreover, a multi-criteria metric, which considers not only the performance of
a classifier obtained by applying a VS method but also the time complexity
and the length of the selected is introduced. The k-Nearest Neighbour based
method is used to select appropriate VS algorithm for a unseen dataset. The
main objective of the proposed meta-learning algorithm lies in the automatic
selection of appropriate VS methods; the effectiveness of the approach is con-
firmed on the results obtained on 115 real world datasets, performing 22 different
VS approaches and 5 representative classification algorithms.

5 The Stability Problem

The stability notion was introduced in 1995 by Turney [57]. Stability is defined
as the sensitivity of a VS procedure with respect to variations in the training
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dataset. Several works demonstrate that the exploitation of different training
sets can lead to select different variable subsets also performing the same VS
algorithm. The stability measures are defined on the basis on the typology of
target to be considered and can be classified as follows:

– a weighting-scoring w = (w1, w2, ..., wn), w ∈ W ⊆ Rn;
– a ranking vector: r = (r1, r2, ..., rn), 1≤ rk ≤ n, where rk is the rank of

variable k;
– an n-dimensional binary vector where each component is associated to a vari-

able and its null or unitary value represents, respectively, absence or presence
of a variable in the selected subset: b = (b1, b2, ..., bn), bk ∈ [0, 1]

In the first definition, in order to compute the similarity between two weight-
ing vectors w1 = (w1

1, w
1
2, ..., w

1
n) and w2 = (w2

1, w
2
2, ..., w

2
n) the Pearson’s corre-

lation coefficient [55] can be computed as:

Sw(w1,w2) =
∑n

k=1 (w1
k − µ1) · (w2

k − µ2)√∑n
k=1 (w1

k − µ1)2 ·
∑

k(w
2
k − µ2)2

(5)

where µ1 = 1/n
∑n

k=1 w
1
k and µ2 = 1/n

∑n
k=1 w

2
k. Sw belongs to the range

[−1, 1]: the null value is related to the absence of correlation while unitary values
indicate that w1 and w2 are perfectly (positively or negatively) correlated.

Similarly, in order to quantify the similarity between two rankings r1 =
(r11, r

1
2, ..., r

1
n) and r2 = (r21, r

2
2, ..., r

2
n), the Spearman’s rank correlation coeffi-

cient [54] which is also also known as “the Pearson correlation coefficient between
the ranked variables”, is calculated as in 6:

SR(r1, r2) = 1 − 6 ·
∑n

k=1(r
1
k − r2

k)
m(m2 − 1)

(6)

SR lies in the range [−1, 1]: the unitary value indicates that the two rankings are
identical, the null value means absence of correlation and the value −1 means
that the two rankings have inverse orders.

Finally the similarity between two binary vectors b1 and b2 is evaluated
through the Tanimoto distance [24], which is defined as in (7):

SB(b1, b2) =
|b1 · b2|

|b1| + |b2| − |b1 · b2|
(7)

where | · | indicates the norm of the binary vector and b1 ·b2 represents the scalar
product of b1 and b2. SB lies in the range [0, 1] where the null value indicates
that there is no overlap between the two sets while an unitary value means that
the two sets are identical [35].

The motivation for studying the stability of VS methods lies in the need to
offer to the experts in the considered application field a quantified evidence that
the selected variables are rather robust with respect to variations in the training
data. This request is mainly crucial in real applications where the knowledge of
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the phenomenon under consideration is an important outcome of the VS and a
stable identification of the variables that mostly affect the target is essential.

The stability of a VS method is commonly defined as the robustness of the
variables selected relative to the differences in the training sets created from
the same generating distribution [36]. In [45] a new stability index based on
the Shannon entropy to assess the overall occurrence of individual variables in
selected subsets of possibly varying cardinality has been proposed. In [35] dif-
ferent similarity measures to compute the stability of variable preferences via
executing several tests with several VS algorithms has been studied. Moreover,
in [41,61] stable VS approaches that cluster variables and select representatives
of each cluster for the final subset has been dealt. In [8] a novel method that
improves the stability of the wrapper VS algorithms while preserving and possi-
bly improving the classification performance has been proposed. The main idea
of the approach lies in the consideration of the mutual interaction between cou-
ples of variables which is commonly ignored by traditional VS algorithms. An
important advantage of this approach is that it is generic and can be performed
on any kind of binary classifier, on any kind of wrapper strategy and finally on
any kind of real dataset. Authors show the method effectiveness and universal-
ity by applying it to three different binary classifiers, with datasets coming from
real word applications and by comparing its performance with different wrapper
procedures. The obtained results show that the proposed approach is effective
independently on the type of VS method, on the type of classifier and on the
database. The stability is also measured using the Tanimoto distance, which is
more appropriate for binary classification.

In [27], instead of varying the sample population, authors change the classifier
used in the SVCs feature ranking and study the consequence of this alteration
on the stability of the final selected variables. The paper analyses how unstable
the SVCs feature ranking results could be using different classifiers and several
datasets is shown, as well as the bias of classifiers in SVCs ranking . Moreover
the similarity and correlation of the results obtained using different classifiers is
calculated using the Spearman’s rank correlation coefficient.

6 Conclusions

The paper present recent and relevant approaches to VS, a task which is par-
ticularly important in many industrial applications where often the considered
process is unknown or difficult to model and the dimensionality of data collected
by sensors can be very high. A survey of the main VS approaches is presented in
order to underline advantages and disadvantages of different type of approaches,
especially for applications of neural networks. The application of VS in the field of
classification, which is very relevant from the industrial point of view, is anaylsed
in detail. Moreover the notion of stability is provided to introduce the problem
that the variation of different training data sets can provide to the selection of
different variable subsets. Such concept is essential in real applications where VS
is applied to study the behaviour of the considered process.
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