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The neuroradiological interpretation of magnetic 
resonance (MR) images relies on a complex 
semeiotics that is based on the morphological 
and signal characteristics of normal and patho-
logical brain tissue and on the detailed knowl-
edge of the ultrastructural and functional 
organization of the central nervous system 
(CNS). In the brain, the study of cortical organi-
zation is facilitated by the presence on its surface 
of fissures, which divide it into lobes, and sulci, 
which circumscribe in each lobe a number of 
convolutions or gyri. Identification of subcorti-
cal nuclei, grey matter formations lying deep in 
the hemispheres, is also facilitated by their  

characteristic morphology, their symmetric posi-
tion with respect to the midline and the presence 
of  well- defined white matter structures such as 
the internal, external and extreme capsule that 
mark their borders.

Detailed evaluation of white matter structure 
is more challenging than the study of cortical 
organization, because it does not exhibit anatom-
ical landmarks except the contiguous cortical 
gyri, the ventricular systems and the base nuclei; 
however, white matter contains fibres with dis-
tinct anatomical courses and functional signifi-
cance that include projection, association and 
commissural systems. Identification of nerve 
fibre bundles is essential in neurophysiology and 
in studying CNS diseases. Furthermore, knowl-
edge of the spatial relationship between fibres 
and lesions requiring surgical treatment is crucial 
in order to preserve white matter functional path-
ways and the activities they promote.

Conventional and morphometric MR tech-
niques provide an accurate representation of the 
brain’s macroscopic anatomy, but they do not 
carry detailed information on white matter struc-
ture. By contrast, the study of the anisotropic 
diffusion of water molecules (diffusion tensor 
imaging; DTI) [1] and tractography (fibre track-
ing) provide data on white matter microscopic 
organization and allow the reconstruction of axo-
nal tracts using diffusion-weighted MR images 
[2–6]. Since tractography is currently the sole 
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method affording non-invasive study of the 3D 
architecture of axons in vivo, it has potential 
applications to several fields of neurology and 
neurophysiology to visualize and quantify physi-
ological mechanisms and pathological processes.

Herein we illustrate the main methods for 
modelling diffusion-weighted MR images and 
for performing tractography and discuss their 
enormous potential and current limitations.

8.1  Basic Principles

A brief overview of the structural characteristics 
of nerve tissue is helpful for understanding the 
rationale behind diffusion studies. While grey 
matter is made up of cells, principally neuronal 
soma, white matter is mainly composed of 
myelinated axons with a specific orientation. 
Axons have a mean diameter of ~20 μm and may 
form parallel bundles of varying thickness.

The rationale behind DTI and tractography is 
that the random movement of water molecules in 
tissues (diffusion) is restricted by the presence of 
cell structures (Fig. 8.1). As a consequence, dif-
fusion perpendicular to axon bundles is hindered 
by axonal cell membranes and myelin sheaths [7, 
8] whereas it is unrestricted along them. Within 

axons water is surrounded by cell membranes 
and myelin sheaths; again, its diffusion will be 
greater parallel to the fibres. Longitudinally ori-
ented axoplasmic neurofilaments do not seem to 
restrict diffusion [9]. Tissues like cerebral white 
matter, which possess a microscopic architecture 
characterized by a specific spatial orientation, 
will thus exhibit different diffusion values in the 
different spatial directions. When diffusion 
exhibits a preferential direction, it is termed 
anisotropic.

The diffusion of water molecules in biological 
tissues can be measured using MR gradients and 
diffusion-weighted sequences. The acquisition 
technique consists of “tagging” the water mole-
cules with a very short gradient. Tagged mole-
cules acquire a magnetization and a phase that 
depend on their spatial position. The natural phe-
nomenon of diffusion causes the displacement of 
these molecules to areas containing molecules 
with different magnetization and phase. The 
presence in a region of signals with different 
magnetization and phase results in an overall 
lower signal intensity, as the signal of the diffus-
ing molecules reduces the one of local molecules. 
Therefore, increasing diffusion of the water mol-
ecules induces a reduction in tissue signal. The 
study of diffusion anisotropy uses the same image 
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Fig. 8.1 Representation of 
the physical bases of the 
reconstruction of the 
diffusion tensor. In 
homogeneous tissues, the 
three eigenvalues have 
similar values, and the 
tensor is spherical. In 
tissues where barriers 
restrict water diffusion in a 
particular direction, the 
tensor is an ellipsoid, and 
the direction corresponding 
to the principal eigenvalue 
represents the direction of 
the fibres
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acquisition strategies as clinical diffusion studies. 
Indeed, water molecule diffusion data are actu-
ally generated as anisotropic data, because all 
acquisitions read diffusion along a given spatial 
direction, coinciding with the direction of the 
magnetic field gradient used. In clinical diffusion 
studies, the direction information is lost through 
the averaging of diffusion values along the three 
spatial axes; this simplifies the detection of path-
ological changes in the diffusion coefficient, 
which are independent of fibre direction.

In DTI studies, this information is retained, 
and the prevalence of diffusion along a direction, 
e.g. along a fibre bundle, can be expressed in 
terms of anisotropy. The degree of anisotropy 
can be quantified using the diffusion tensor [9–
11]. A tensor is a complex mathematical entity 
[12]; when measured with MR, it may be repre-
sented in matrix form using data from diffusion- 
weighted images to obtain parameters like 
fractional anisotropy (FA) and the apparent dif-
fusion coefficient (ADC), better known nowa-
days as mean diffusivity (MD) [13]. The diffusion 
tensor also contains much additional informa-
tion. In particular, an algebraic procedure called 
diagonalization makes it possible to obtain for 
each image voxel three eigenvalues (λ1, λ2, λ3) 
representing the values of diffusion along three 
spatial directions (eigenvectors). If in a given 
voxel the three values are similar (λ1~λ2~λ3), as 
in all grey matter, the water diffuses in a similar 
manner in all directions and its diffusion in the 
voxel is called isotropic. If, by contrast, one of 
the three eigenvalues is much greater than the 
other two, as in white matter, water diffuses more 
easily along the direction corresponding to that 
eigenvalue, and its diffusion in the voxel is 
anisotropic.

It is worth noting that, unlike MR parameters 
such as relaxation times, those obtained from the 
diffusion tensor do not depend directly on the 
magnetic field and can thus be measured and 
directly compared between high- and low-field 
acquisitions. In practice, whereas T1 and T2, and 
thus the relevant images, change as a function of 
the magnetic field, water diffusion in a given 
space is the same at 1.5, 3.0 and even 
7.0 T. Diffusion studies thus fully benefit from 

the greater signal/noise ratio (SNR) of high-field 
magnets.

8.2  Image Acquisition

Calculation of the diffusion tensor requires acqui-
sition of a set of MR images using suitable 
diffusion- weighted sequences. Echo-planar 
sequences with different gradient directions and 
intensities are the more appropriate for these 
applications and are those most commonly used 
[1, 14, 15].

Diffusion weighting involves a general reduc-
tion in signal intensity, which increases the 
greater the diffusion of water. This magnifies the 
SNR problems shared by all MR acquisitions and 
makes it difficult to obtain images with very high 
spatial resolution. Currently, the best spatial reso-
lution that can be achieved is rarely less than 
1 mm, particularly along the slice-encoding 
direction, but the use of high magnetic fields 
(3.0 T or greater) and parallel imaging can further 
enhance resolution [16]. Diffusion weighting 
depends on gradient intensity, which is usually 
denominated b factor and is measured in s/mm2. 
In theory, increasing b values should be used to 
calculate MD; in practice, limitations in the gra-
dients used in clinical practice, specific absorp-
tion rate and times of acquisition have led to the 
prevalent use of only two b values, one virtually 
null (no diffusion weighting) and the second high 
(1000 s/mm2 or greater). A b value slightly 
greater than 0 (~20) is used to remove the effects 
of large vessels. The minimum set of images to 
be acquired for a DTI study includes six different 
diffusion-weighted directions (with b = 1000 or 
greater) and a non-diffusion-weighted scan (b = 
0). The minimum set may be acquired several 
times to improve the SNR, whereas acquisitions 
with different b values for each direction are 
unnecessary as well as inefficient in terms of 
SNR [11]. More accurate evaluation of the diffu-
sion coefficient D from two acquisitions has been 
demonstrated using two values of b differing by 
~1/D, which in the brain entails that b2–b1 < 
1000–1500 s/mm2 [11, 17]. If more than two 
acquisitions are performed to optimize the SNR, 
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the theory of error propagation states that it is 
more convenient to obtain multiple acquisitions 
at the two b values selected than to use a broader 
range of b values [11].

Acquisitions of b values in a range, rather than 
a pair (b = 0 and b = 1000), can however provide 
interesting information [18, 19]. Although a sin-
gle MD value is usually assigned at each tissue 
voxel, most tissues are indeed made up of sepa-
rate compartments, each bearing its distinct value 
of MD. Brain tissue comprises at least two com-
partments, a fast-diffusion intracellular compart-
ment and a slower-diffusion extracellular 
compartment. The MD depends on the range of b 
values used, because low values (1000) are more 
sensitive to fast-diffusion components and thus to 
the structural features of the interstitium, than to 
those of axon fibres. Ideally, the different tissue 
compartments should be studied separately using 
several different b values and then fitted with a 
multi-exponential function. However, since slow- 
diffusion compartments can be studied only with 
high b values and favourable SNRs, this is diffi-
cult to achieve.

Simulation studies [20] confirmed the notion 
that higher b values allow the attainment of 
shaper angular diffusion profiles, which are more 
sensitive to the orientation of fibres. In particular, 
by increasing the b value from 1000 to 3000  
s/mm2, the minimal resolvable angle between 
fibre bundles was reduced from about 45 to 30°, 
independently from the number of diffusion- 
encoding gradient orientations. Instead, increas-
ing the b value to 5000 s/mm2 did not improve the 
diffusion model further.

The number of directions offering the best 
compromise between a reliably reconstructed 
tensor (multiple directions) and long acquisition 
times is still debated. In a given voxel, if the 
fibres are all oriented along the same axis, sam-
pling of the angular diffusion space along a lim-
ited set of directions (at least six) is not a problem. 
However, large portions of white matter are char-
acterized by complex fibre configurations [21], 
and for this reason the diffusion-weighted signal 
needs to be acquired along a larger number of 
unique orientations in order to obtain an accurate 
reconstruction of fibre orientation distribution 

functions. Even in the case of a single direction 
of the fibres within a voxel, a high number of 
sampling directions would be needed, since the 
orientation of this direction might change from 
voxel to voxel.

Besides increasing the precision (reproduc-
ibility) in reconstructing fibre orientation distri-
bution functions, a higher number of unique 
sampling orientations will also reduce the extent 
to which the variance in an estimate of a given 
parameter depends on the orientation of the struc-
ture. For example, while from a mathematical 
standpoint at least six different directions plus a 
low b value acquisition are required in order to fit 
the diffusion tensor model, it has been shown that 
for a statistically rotationally invariant recon-
struction (such that the variance in tensor-derived 
parameters is independent of the orientation of 
the tensor) at least 30 directions uniformly dis-
tributed over the sphere are needed [22]. 
Currently, most researchers use 6 to 90 different 
directions, with considerable differences in 
acquisition times and uncertain benefit. A 
sequence with 68 directions, b = 100 and 1000  s/
mm2, and a cubic voxel of 2.3 mm lasts about 
13 min, but actually takes much longer because 
image averaging to obtain an acceptable SNR 
requires multiple acquisitions. Here, a large role 
is played by acquisition conditions, particularly 
magnetic field intensity and the availability of 
parallel imaging to improve the SNR.

High-angular resolution techniques (HARDI; 
[23]), which require a much greater number of 
directions (even 252 or more), benefit from 
favourable conditions of field intensity and high 
coil sensitivity. A drawback of HARDI tech-
niques is their requirement for a greater num-
ber of diffusion-encoded acquisitions compared 
to DTI, leading to an increase in acquisition 
time. In addition, these techniques often use a 
substantial amount of the acquisition sequence 
duration for the diffusion-encoding gradients, 
resulting in long repetition and scan times. For 
example, a typical 60-direction, 60-slice whole-
brain Q-ball acquisition can take up to 10 min to 
complete the diffusion and slice encoding, while 
a 257- direction whole-brain diffusion spectrum 
imaging scan lasts as long as 45 min. The length 
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of these acquisitions limits their utility in clini-
cal and research studies. In order to overcome 
this limitation, several approaches have been 
developed, such as conventional accelerated 2D 
parallel imaging approaches and simultaneous 
multi-slice approaches for single-shot echo-pla-
nar imaging. With 2D parallel imaging [24], the 
number of phase-encoding steps can be decreased 
by a factor up to 4, thus significantly reducing 
image distortion and blurring. Despite allowing 
for an improved image quality, this reduction in 
echo train length does not translate to a signifi-
cant reduction in acquisition time because of the 
large fixed diffusion-encoding time blocks [25]. 
On the other hand, multi-slice approaches can 
reduce scan time by a factor equal to the number 
of excited slices, which are diffusion-encoded 
with the same diffusion gradients, and readout 
simultaneously. Methods developed accord-
ing to this approach include wideband imaging 
[26, 27], simultaneous image refocusing (SIR) 
[28, 29] and parallel image reconstruction-based 
multi- slice imaging [30–34]. Unfortunately, 
these techniques suffer from significant artefact 
and/or SNR loss: the wideband approach suf-
fers from a large voxel tilting artefact, while the 
SIR technique necessarily lengthens the readout 
period of the echo-planar imaging, thus increas-
ing echo time and susceptibility-induced image 
distortions. On the other hand, multi-slice imag-
ing techniques based on parallel image recon-
struction can lead to a large SNR penalty related 
to the g-factor, since the aliased slices are gener-
ally close to each other due to a comparatively 
small field of view (FOV) in the slice direction. 
Several attempts have been developed to solve 
these issues, such as the controlled aliasing in 
parallel imaging results in higher acceleration 
(CAIPIRINHA) technique [30] and the blipped- 
CAIPI method [34].

As mentioned above, the diffusion tensor basi-
cally provides two types of information: a quanti-
tative estimate of diffusion anisotropy and the 
spatial orientation of fibres (Fig. 8.2). These data 
are interesting but “local”, i.e. they regard a sin-
gle voxel. Tractography uses these microscopic 
data to obtain “global” information and recon-
struct macroscopic fibre tracts.

8.3  Fibre-Tracking Techniques

8.3.1  Line Propagation Algorithm: 
Deterministic Tractography

The voxel grid of an MR image may be compared 
to a chessboard: selecting a number of adjacent 
voxels that form a trajectory is like drawing a line 
on the chessboard (Fig. 8.3). The algorithm used 
to draw this trajectory in most fibre-tracking 
techniques involves selecting an initial point 
(seed point) that is highlighted on the image and 
then moving to the next nearest voxel, which in 
turn is highlighted, along the prevalent anisotro-
pic direction, until a condition that halts this pro-
cess arises (stopping criterion). The differences 
among these, line propagation, algorithms lie in 
the way in which the information contained in the 
voxels nearest to the one being examined with the 
algorithm (nearest neighbours approach) is used 
by the algorithm itself to draw the likeliest trajec-
tories and minimize noise.

Since digital images are represented on dis-
crete fields, the vector will often point to an area 
straddling at least two adjacent voxels, requiring 
a choice from one or more possible trajectories. 
In such cases, the selected tract will be a mere 

Fig. 8.2 Diffusion tensor. Projection in the image plane 
of the principal eigenvector. Vectors are represented by 
double-headed arrows because diffusion data provide the 
direction, not the orientation of diffusion
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approximation of the information contained in 
the diffusion data, irrespective of the trajectory 
that has been selected.

The first researchers to reconstruct a white 
matter fibre tract successfully [35, 36] solved this 
problem using propagation in a continuous 
numerical field – where the coordinates can be 
expressed as decimal values – each time approxi-
mating the coordinates of the line to those of the 
nearest voxel. This simple but fairly rough method 
can be improved by applying a tract curvature 
threshold. Assuming that the course of a fibre tract 
exhibits only reasonably soft curves, whenever 
two possible trajectories present, the less curved 
one is selected, while sharp curves (e.g. >60°) are 
excluded. Line propagation algorithms may 
require vector interpolation (direction and eigen-
value) at the point of arrival of the previous step, 
which usually straddles two or more voxels and 
therefore does not directly correspond to a mea-
sured value. Interpolation is a mathematical oper-
ation that makes it possible to obtain the value of 
a point from those of surrounding points. In the 
simpler algorithms, the vectors corresponding to 
the neighbouring voxels are interpolated, while 
the more sophisticated ones directly interpolate 
the diffusion tensor and calculate a new vector 
[6]. Interpolation enables more uniform paths to 
be obtained with respect to the algorithms that do 
not employ them and is less sensitive to noise, 
although the additional calculations considerably 
increase computation time.

8.3.2  Global Algorithms

The algorithms of this class use a radically differ-
ent approach. In fact, whereas the line propaga-
tion algorithms use only local information (i.e. 
the data contained in a voxel and in those nearest 
to it), these techniques employ the information in 
a global way by applying a mathematical func-
tion that reproduces the structural characteristics 
of the fibre tracts. For instance, the physical anal-
ogy used for the fast marching technique [37–39] 
is that of an ink drop falling on adsorbent tissue. 
The stain extends faster along the direction of the 
tissue fibres than perpendicular to them. 
Assuming a vector field indicating the directions 
in which the ink spreads, a speed function for 
front propagation can be defined on the basis of 
the fibres’ anisotropy value. This function reflects 
the fact that propagation is fastest along fibres 
and slowest perpendicular to them and makes it 
possible to calculate the “shape” of the stain from 
any point at any given time. Its contours may be 
compared to the isobars of meteorological charts 
and, in the case of a vector field of DTI data, they 
represent a sort of map of the likelihood of con-
nection starting from a given point. Using this 
technique, the course of the fibres coincides with 
the faster route, hence its name.

Another physical analogy, well known in the 
field of numerical simulations as the “travelling 
salesman problem”, can help explain another 
class of methods. A travelling salesman needs to 
find the optimum route passing through all the 
towns where he will be calling. One solution is to 
define a function, e.g. petrol consumption or 
time, and find the route that minimizes it. Using 
DTI data, the function ensuring global energy 
minimization is related to paths along the direc-
tion of the field vectors, while those associated 
with greater energy expenditure are perpendicu-
lar to them [40]. Calculation of the value of the 
function for all possible trajectories makes it pos-
sible to identify the course that minimizes the 
energy function. However, methods like simu-
lated annealing allow the solution to be found 
rapidly without calculating the energy for all the 
possible courses while minimizing the effect of 
noise.

Fig. 8.3 Propagation of a fibre in a vector field. The yel-
low pixels represent the course of the reconstructed fibre
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Global methods have two main advantages. 
First, they can provide a semi-quantitative 
 estimate of the level of connectivity between 
two points or regions. In fact, fibres like those 
shown in Fig. 8.4 provide a visual representa-
tion of the bundles, but not a “value” of the 
 connection [41], for instance, between two acti-
vation areas shown on functional MR. Secondly, 
they are less affected by the typical limitations 
of line propagation algorithms (addressed 
below). However, the level of calculation 
required to implement them is often close to the 
computational capacity of current processors, 
and they are still in an early phase of develop-
ment compared with the more common line 
propagation algorithms (Fig. 8.5).

Halfway between deterministic (line propa-
gation) and global algorithms are the Monte 
Carlo probabilistic methods [42–44]. With these 

techniques, thus named for their similarity to 
gambling, each time the tract is propagated from 
one voxel to the next, the various directions are 
given a probability value depending on the diffu-
sion values measured. It is assumed that by 
repeating the line propagation a large number of 
times, the course that has been selected most 
often will correspond to the actual trajectory of 
the fibre.

To date, several deterministic (line propaga-
tion) and probabilistic tractography algorithms 
have been developed, some of which can be 
applied not only to DTI data but also on orienta-
tion distribution functions reconstructed on 
HARDI data. The most commonly used deter-
ministic algorithm is the “fibre assignment by 
continuous tracking” (FACT; [36]), which is 
computationally leaner and requires minutes to 
perform whole-brain tractography for a single 

Fig. 8.4 Fibre reconstruction with a line propagation algorithm (left pyramidal tract in red), superimposed on axial 
T2-weighted images. Lower right corner: 3D reconstruction of the same tract overlaid on a coronal image
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subject. For what concerns probabilistic tractog-
raphy, the most commonly used approach relies 
on the combination of two steps [44, 45]: first, a 
Bayesian method for assessing the most appro-
priate number of fibre orientations at each voxel 
is performed; subsequently, probabilistic tractog-
raphy through the complex orientation fields is 
carried out. The main advantage of this approach 
is that the Bayesian step allows the modelling of 
crossing fibres, which makes this approach more 
sensitive to secondary or subordinate pathways. 
Each voxel is modelled as an isotropic compart-
ment (ball: “round” tensor with all eigenvalues 
equal) and one or several anisotropic compart-
ments (sticks: “thin” tensors with only one non- 
zero eigenvalue).

However, the obtainable accuracy in identify-
ing complex fibre configurations based on DTI 
data is limited [21], and HARDI approaches 
might be more suitable to this scope, even if their 
application in clinical routine is heavily limited 
by the long acquisition times.

8.3.3  Seed Point

A factor requiring careful consideration is the 
initial point of tract propagation, as this choice 
influences the relative effect of noise on the 
 propagation itself. In the earliest approaches, a 
frequently adopted solution was to use a number 

of equidistant seed points arranged on a grid 
space. This reduced the variance connected with 
the arbitrary choice of the seed point. An accep-
tance criterion was applied to avoid selecting 
voxels not containing fibres. To date, the most 
frequently used condition is a minimum FA 
value ensuring the presence of a distinct fibre at 
the seed point. It is worth stressing that, since 
the directions identified in each voxel by the dif-
fusion tensor do not have an orientation (see 
Fig. 8.2), a forward and a backward pathway, 
lying on the same straight line but running in 
opposite directions, are consistently generated 
at seed points.

More recently, because of the development 
of reliable brain atlases of cortical, subcortical 
and white matter structures, the definition of 
seed points has changed. In fact, by using these 
templates, cortical and subcortical region of 
interest can be automatically identified on the 
individual MR scan and used as seeds for tract 
reconstruction.

8.3.4  Stopping Criteria

All fibre-tracking algorithms that use a seed 
point require a stopping criterion to terminate the 
propagation process. The most intuitive criterion 
is the FA value itself; in grey matter FA is low 
(0.1–0.2 on a 0–1 scale), so the orientation of the 

Fig. 8.5 Connectivity map generated using a Monte Carlo 
algorithm. Overlay on a fractional anisotropy map. 
Fractional anisotropy is derived from the diffusion tensor 

and represents white matter distribution. Colours represent 
the likelihood of connection with the seed point in the left 
lateral geniculate nucleus, according to an intensity scale
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principal eigenvector of the diffusion tensor is 
random and unrelated to that of the fibre tract. A 
useful stopping criterion may thus be an FA 
threshold (usually 0.2) below which the propaga-
tion is halted, preventing reconstruction of fibres 
that are not organized into bundles, like grey 
matter fibres. However, this criterion may also 
halt the elongation of a line in those white matter 
voxels, which, albeit containing fibre tracts, have 
a low FA because of the lack of a main direction 
(see below).

Another possible stopping criterion is the cur-
vature of the reconstructed fibre tract. The method 
used to calculate the diffusion tensor assumes the 
absence in the voxels of sharp curves, in line with 
the fundamental hypothesis of the Gaussian 
nature of the diffusion process in all directions. A 
criterion halting tract propagation in the presence 
of sharp angles is thus useful, but is difficult to 
apply to the shorter and more tortuous tracts, 
where the low spatial resolution of the image 
does not enable reconstruction of the real course 
of the fibres.

8.3.5  Waypoints and Termination 
Points

When one is interested in using tractography to 
reconstruct a specific white matter tract, the defi-
nition of the seed region alone might not be suf-
ficient. In fact, no tractography algorithm, to 
date, directly incorporates knowledge on the 
actual bundles known to connect different regions 
of the brain, and for this reason erroneous con-
nections might be identified. To account for this 
limitation, there are two main approaches, both 
relying on the use of atlases. A frequently used 
procedure is that of defining not only the starting 
point (seed), but also a termination region, where 
the tract of interest is known to have one of its 
ends, and, eventually, one or more regions where 
the tract is known to pass (waypoints). These 
regions may be easily identified on existing MRI 
atlases (see Fig. 8.6, second row). If a determin-
istic or probabilistic streamline crosses the way-
points (eventually in a fixed order), it will be 

retained for the final reconstruction of the tract, 
otherwise it will be excluded. Of course, also one 
or more avoidance masks can be defined, imply-
ing that if a streamline reaches any of their vox-
els, it is rejected. Waypoints, avoidance and 
termination regions have been successfully used 
in order to create an atlas of the principal fibre 
bundles of the human brain [47].

The second approach is mainly used in whole- 
brain tractography (see Fig. 8.6, third row), either 
deterministic or probabilistic, and consists in 
automatically assigning each tractography 
streamline to a specific white matter bundle. This 
labelling process relies on the correspondence of 
the anatomical position of the streamline with 
that of the white matter tracts in an atlas (which 
in turn could have been constructed using way-
points and termination masks).

8.3.6  Tractography-Based Metrics

The ultimate aim of tractography is, of course, to 
extract quantitative information regarding the 
brain’s structural connections. To this end, there 
are several metrics that can be extracted from 
tractography data.

If deterministic tractography is performed, the 
exact number of streamlines that connect two 
regions can be calculated and, for example, com-
pared across groups. On the other hand, if proba-
bilistic tractography is used, an analogue measure 
is calculated, at each voxel, as the fraction of 
retained streamlines passing through the voxels 
over all the streamlines generated from the seed 
region.

Any tractographic reconstruction, appropri-
ately thresholded in order to exclude outliers and 
normalized by the total number of streamlines, 
can also be binarized and overlaid on other MRI 
sequences or maps in order to extract an average 
value of volume (e.g. from 3D T1-weighted 
scans) or diffusion metrics (e.g. FA and MD). 
However, after the development of white matter 
atlases, similar results can be achieved without 
performing tractography on the single subjects, 
but rather extracting the probabilistic map for the 
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Fig. 8.6 Typical processing workflow for the reconstruc-
tion of whole-brain connectivity and network analysis 
(Adapted from Filippi et al. [46]). Diffusion-weighted 
data is used to perform tractography (first row). Atlas- 
based identification of cortical and subcortical brain 
regions on the individual brain (parcellation, second row) 
can be used to define seeds, targets, waypoints and exclu-
sion masks for fibre tracking (third row). By using all the 

regions defined in the atlas to generate pairwise compari-
sons, a connectivity matrix is obtained in which the con-
nection strength between all pairs of nodes is contained 
(fourth row). To obtain comparability across different sub-
jects, a normalization step is required (bottom row): the 
matrix can be thresholded, to exclude weak connections, 
and or binarized, to exclude connection weights from the 
analysis
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region of interest from the atlas itself and regis-
tering it on the subject’s image.

The most recently introduced method for 
exploiting tractography data is represented by 
the application of graph theory to reconstructed 
fibre bundles, which is known as structural con-
nectomics [48, 49]: this theory considers pair-
wise brain connections (reconstructed using any 
fibre- tracking method) with the scope of model-
ling the brain as a complex network consisting 
of nodes (i.e. regions of the cortex and subcorti-
cal nuclei) connected by edges (i.e. the white 
matter bundles). There is a large number of the-
oretical metrics that can be extracted from 
graphs in order to quantify network organiza-
tional properties both at the global and the local. 
Here we briefly describe the metrics most fre-
quently used in neuroimaging studies that 
exploit brain graph analysis [50]. The node 
degree is the number of edges connected to a 
given node. For each node, the clustering coef-
ficient is defined as the ratio of the number of 
actual connections among the first- degree neigh-
bours to the number of all possible connections. 
The clustering coefficient indicates the extent to 
which neighbouring nodes are interconnected to 
one another, thus reflecting the local efficiency 
of information transfer of a network. In order to 
assess the graph distance between nodes, the 
shortest path length is computed by counting 
the minimum number of edges needed to link 
any node pair. To measure the centrality of a 
node (i.e. its importance with respect to the 
entire network), node betweenness centrality is 
computed as the fraction of all shortest paths 
that contain the specific node. Similarly, edge 
betweenness centrality measures how influential 
any given edge is with respect to the entire net-
work and is defined as the fraction of all shortest 
paths in the network that contain the considered 
edge. At the graph global level, instead, the 
characteristic path length is calculated as the 
average of all the shortest path lengths (i.e. 
across all node pairs), while the global effi-
ciency, another frequently used graph metric, is 
the average of all the inverse shortest path 
lengths. Both characteristic path length and 
global efficiency quantify the global integration 

of the network, with the latter preferred if mea-
suring topological distances in relatively dis-
connected graphs. Finally, any complex network 
in graph theory can be decomposed into mod-
ules. Each module is composed by a set of nodes 
whose connections with each other are much 
stronger than their connections to nodes in dif-
ferent modules. To quantify the community 
structure, the modularity metric can be used to 
assess how strongly nodes in a community inter-
connect compared to a random graph with the 
same number of nodes and edges (i.e. a graph 
where the edges occur at random). Thus, modu-
larity is a statistical quantity related to the extent 
to which a network is decomposable into such 
clearly delineated modules.

Whenever applying graph analysis to tractog-
raphy data, an important aspect to consider is that 
intrinsic network organizations are better 
assessed at a specific connection density, as this 
way it is less influenced by intersubject variabil-
ity in the total number of reconstructed stream-
lines. If the appropriate density were not used, 
each subject’s raw connectivity matrix (contain-
ing, for each subject, the number of connections 
between any node pair, see Fig. 8.6, bottom rows) 
would show substantial differences in connec-
tions between regions of interest, based on slight 
variations in individual anatomy. To normalize 
the network density, connectivity matrices must 
be thresholded. The threshold is chosen so that a 
specified percentage of edges is preserved in the 
network. Furthermore, by imposing another 
threshold on edge weights (e.g. fibre density), 
only the strongest edges are preserved, reducing 
the likelihood of including spurious connections 
not supported by evidence [51]. Normalized net-
works allow for topological properties such as 
path length and clustering to be quantitatively 
compared across subjects. Binarization of edges 
aids this process by ensuring that in addition to 
the number of edges being identical across sub-
jects, the sum of edge weights is also identical. In 
recent years, several studies used graph theory to 
explore the organization of brain circuits in 
healthy controls and different populations of 
patients with neurological and psychiatric disor-
ders [46, 52–55].
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8.4  Limitations of Tractography 
Techniques and Their 
Solutions

Also due to their recent introduction, tractogra-
phy techniques suffer from a number of 
drawbacks.

8.4.1  Noise

Owing to the frequent need for compromising 
between acquisition time and image quality, the 
three-dimensional vector field that is obtained 
using DTI data may contain a high level of noise. 
Several researchers have tried to quantify the 
effects of noise on tensor and tract reconstruction 
[56–61]. Unlike what takes place in standard 
MR, the noise present in the reconstructed tensor 
is not directly perceived on images like those of 
Figs. 8.2 and 8.4, because it affects only the 
direction of the tracts. Consequently, though 
exhibiting a consistent distribution of directions, 
the vectors may indicate slightly different trajec-
tories with respect to the actual anatomy. This 
type of noise considerably affects fibre tracking, 
and one of the main problems of line propagation 
algorithms is that such errors accumulate with 
increasing distance from the seed point [44]. 
Therefore, the greater this distance, the higher 
the risk of deviation of the reconstructed fibre 
towards an adjacent, unconnected fibre tract. This 
possibility should always be taken into account 
when analysing DTI reconstructions, especially 
of long fibre tracts. SNR optimization is essential 
to obviate this and other, conceptually related 
problems. Here, too, the intensity of the magnetic 
field used and the availability of parallel imaging 
play a large role.

8.4.2  Partial Volume

Different types of tissue may be found in a single 
voxel (partial volume effects), resulting in a 
reduction in the value of anisotropy [62]. Partial 
volume effects constitute a problem for fibre- 
tracking techniques. The problem may be accen-

tuated in short fibre tracts and in those close to 
grey matter, where white matter tends to thin out 
and anisotropy to diminish. Addressing partial 
volume effects requires spatial resolution to be 
increased, thus reducing the SNR. As in the pre-
vious case, the solution lies in defining the noise 
level tolerated by the algorithm used and in 
adjusting the resolution and acquisition time of 
the MR image.

8.4.3  Ultrastructure and Complex 
Fibre Configurations

DTI provides information on fibre bundles, not 
on individual axon branches. In addition, the dif-
fusion tensor is unable to model adequately vox-
els containing more than two axon populations 
with different directions [63]. For instance, if the 
relationship among the three eigenvalues of the 
diffusion tensor is of the type λ1 = λ2 > λ3, the FA 
may still be sufficiently high as to fail to halt a 
line propagation algorithm, even in the absence 
of a major direction with an eigenvalue greater 
than the other two. In this case, the plane defined 
by the two major eigenvectors contains several 
more or less equivalent directions, leading to 
error. This problem stems from the nature of the 
diffusion tensor itself, which being a mere 
second- order approximation of the diffusion pro-
cess, cannot adequately represent complex situa-
tions like the one described. The tensor line 
technique partially obviates this problem by 
selecting, among the directions of the plane 
defined by the two main eigenvectors, the one 
minimizing the curvature of the trajectory accord-
ing to the original direction [59].

These methods do not address the possibility 
that a dominant direction is not identified in a 
voxel due to crossing bundles giving rise to dif-
ferent directions. The inability to resolve a single 
direction within each voxel is a significant gen-
eral limitation of DTI. In fact, in the millimetre 
scale of the MR voxel, voxels typically exhibit a 
number of fibre orientations. Common situations 
of intra-voxel heterogeneity of orientations may 
be due to the intersection of different white mat-
ter bundles or to the complex architecture of sub-
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cortical or junctional fibres. In the presence of 
fascicles with multiple directions within the same 
voxel, for example, due to crossing or divergence, 
DTI will estimate the prevalent direction, which 
does not necessarily correspond to any actual 
direction. For instance, if in a voxel a vertical 
bundle branches off a horizontal bundle, DTI will 

show the presence of a single direction corre-
sponding to their diagonal, thus failing to repre-
sent either.

The standard diffusion tensor reconstruction 
technique using DTI data cannot resolve this 
problem. Indeed, even using several different 
diffusion-weighting directions to reconstruct the 
tensor, its mathematical nature prevents it from 
identifying the different directions when, for 
instance, two or three different bundles cross. 
The inability of the DTI technique to resolve 
fibres with multiple directions derives from the 
assumption of the Gaussian nature of the tensor 
model, because a Gaussian function has a single 
directional peak, preventing the recognition of 
multidirectional diffusion by the tensor model.

Methods capable of using all the diffusion 
information are HARDI techniques [23], which 
measure diffusion in several directions with an 
equal distribution in the three-dimensional space 
but do not calculate the diffusion tensor. These 
approaches to the resolution of multiple fibre 
directions in voxels are based on much more 
complex models of diffusion in nerve tissue (see 
Figs. 8.7 and 8.8).

HARDI methods can be categorized on the 
basis of the approach used to mathematically 
model the orientation dependence of the 

A B

Fig. 8.7 The crossing of two fibre bundles may result in 
a spherical diffusion tensor, erroneously indicating an 
absence of fibres

fODFdODFDiffusion tensor

Complex fibre configuration

Region with isotropic diffusion

Increasing complexity of fibre orientation

Single fibre orientation

Fig. 8.8 Possible 
scenarios of fibre 
configurations in a voxel. 
As fibre number per voxel 
and orientation complexity 
increase, the diffusion 
tensor becomes less 
appropriate for 
characterizing tissue 
microstructure, while 
diffusion or fibre 
orientation distribution 
functions (dODF and 
fODF) provide better 
performances
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diffusion- weighted MR signal. Estimates of 
fibre orientation are obtained either through the 
diffusion orientation density function (dODF) or 
the fibre orientation density function (fODF). 
The diffusion ODF is a spherical function that, 
for any point on the sphere, represents the rela-
tive number of particles that have diffused along 
the axis joining that point to the origin. In the 
case of co-axial fibres, the dODF can be used to 
infer the orientation of the fibres. However, the 
dODF will be non-zero in all other directions, 
since water can also diffuse perpendicular to the 
fibre direction (albeit hardly). In general, dODF 
approaches require reconstruction of the diffu-
sion propagator, i.e. the density of the probabil-
ity that a particle has moved a certain distance 
within the diffusion time. In principle, and tak-
ing into account the limits of acquisition time, 
these models do not require uncertain model 
assumptions to be made, which instead needed 
in fODF methods. However, an implicit model-
ling does exist in order to make any inferences, 
and it regards the relationship between the diffu-
sion propagator and the microstructural proper-
ties of the tissue of interest (e.g. fibre bundle 
directions or partial volume). Despite dODF 
advantages, the exact reconstruction of the entire 
diffusion propagator is not achievable in prac-
tice, due to the limits of most acquisition 
schemes, which foresee a single b value. In such 
cases, substantial modelling simplifications 
must be invoked, the most common of which is 
DTI itself. Reconstructing the diffusion ODF is 
the aim of approaches such as diffusion spec-
trum imaging [64] and Q-ball imaging [65]. The 
original version of the latter had some issues 
related to spherical coordinates, which have 
been taken into account in subsequent develop-
ments of the method [66, 67], referred to as con-
stant solid angle Q-ball imaging. Other models 
that employ dODF are multi- compartment mod-
els, which extend the single DTI model by sum-
ming up the contributions of multiple tensors 
[68]. Multi-compartment models are currently 
used in probabilistic tractography on DTI data 
[44, 45].

The composite hindered and restricted 
model of diffusion (CHARMED) method [69] 

combines elements of DTI and Q-ball imaging, 
thus simultaneously accounting for hindered 
diffusion in the extracellular space and within 
cell bodies and for restricted diffusion in the 
intra-axonal space, respectively. Hindered dif-
fusion is modelled by a diffusion tensor, while 
restricted diffusion requires special solutions 
for a cylindrical restricted diffusion space. The 
parameters of the model need to be estimated 
from measurements at both low and high b 
values.

In contrast to diffusion propagator and 
dODF approaches, which essentially describe 
the diffusion within a voxel, fibre ODF tech-
niques aim at estimating relative fibre density 
over orientation space. In the case of all fibres 
being parallel to the x-axis, for example, the 
true fODF will be a delta function pointing 
along the x-axis and zero in all other orienta-
tions. In this case, only the angular distribution 
of fibre orientations is inferred from the angular 
structure of either the signal [70] or of the 
dODF [20] by spherical deconvolution with a 
kernel. This kernel is essentially the  simplest 
model of the diffusion properties of a single 
fibre that the data support (e.g. white matter 
with the highest anisotropy must contain a sin-
gle-fibre orientation).

Despite many aspects of the white matter (e.g. 
axon diameter and packing density) may vary 
across brain regions, the single-fibre response 
will only be an approximation that is generalized 
across the brain. However, fODFs are superior to 
dODFs with respect to angular resolution and 
precision.

Reconstructing the fODF is the aim of appro-
aches such as spherical deconvolution [70–74].

Many tract-reconstruction algorithms exploit 
peaks in the dODF or fODF to propagate white 
matter trajectories.

It should be emphasized that, even using 
HARDI techniques, none of these methods is 
capable of reconstructing nerve fibres or even 
fibre bundles. As what happens in the case of DTI 
data, tractography only computes trajectories or 
pathways through the data, to which a large por-
tion of the nerve fibres should reasonably run in 
parallel.
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The degree of anisotropy can also be estimated 
directly using HARDI methods without calculat-
ing the tensor. In this case, an anisotropy index, the 
spherical diffusion variance, is used instead of 
conventional FA. Given that, unlike the tensor, this 
method is not based on an a priori physical model 
of diffusion, it has the advantage of not losing any 
information contained in the data. HARDI and its 
future developments appear to be very promising, 
and the evolution of tractography is likely to be 
based on it even though it requires specialized 
acquisition sequences, generally longer acquisi-
tion times than tensor methods, more complex 
processing algorithms and, save for q-ball imag-
ing, very powerful gradients [40].

8.4.4  Error Correction Methods

Tractography may yield anatomical reconstruc-
tion errors with any technique. These errors can 
be minimized using one of two methods of result 
analysis, one based on functional brain anatomy 
and one, a probabilistic method, using a standard 
space of brain coordinates. The first consists of 
using the anatomical data a priori by requiring a 
fibre tract to pass through at least two manually 
selected regions of interest (ROIs) [60, 75]. 
Using a single ROI, the reconstructed tract is 
more likely to contain different fibres, some rep-
resenting trajectories belonging to the tract being 
studied and others generated by partial volume 
effects or noise. The latter can be eliminated by 
selecting multiple ROIs along the fibre tract 
being reconstructed so as to avoid an erroneous 
deviation of the reconstruction algorithm from 

the actual trajectory (Fig. 8.9). This method 
makes it possible to track simply and non-inva-
sively the position of several tracts with a high 
level of confidence [60, 75]. Its main drawback 
is that it cannot reconstruct bundles that are not 
well documented anatomically [75] and may 
also exhibit limitations in the presence of fibre 
deviations induced by brain disease.

The second probabilistic method is based on 
the assumption that errors induced by partial 
volume effects or low SNR have a random dis-
tribution and are not reproduced consistently if 
multiple studies of the same object are per-
formed, and their results are superimposed. The 
same principle underpins a method that uses 
data from a large sample of subjects in a stan-
dard space of brain coordinates (e.g. the 
Talairach atlas). The first studies applying this 
method of normalization have yielded a high 
level of reproducibility for the large fibre bun-
dles, but greater intersubject variability for the 
smaller bundles [39, 76–78].

8.4.5  The Problem of Validation

One of the critical problems in the development 
of fibre-tracking techniques is that there are no 
other available methods to assess the course of 
nerve fibres in vivo or reference standards to 
which data can be compared. Indeed, knowledge 
of white matter fibre anatomy derives from post- 
mortem studies, where even in the best condi-
tions only the main fibre bundles can be followed 
and the resolution is insufficient to constitute a 
reference for validation [75].

a b

Fig. 8.9 (a, b) The use of 
the multi-ROI approach 
improves tractographic 
reconstruction of white 
matter tracts. Above, the 
addition of a second ROI 
(b) specifically selects the 
fibre tract of interest
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Ablation studies of animal models make it 
possible to document the course of axons using 
specific tracers. Though representing the refer-
ence standard for connectivity studies, these data 
cannot, however, be extended to humans because 
tracer methods follow single axons at the cell 
level, and axons may cross different fibre bundles 
along their course. Owing to the practical impos-
sibility of obtaining adequate statistics for 1011 
neurons, these methods cannot be used to vali-
date effectively data obtained using tractographic 
techniques.

Despite the limitations outlined above, a good 
agreement between fibre tracking and anatomy 
has, however, been demonstrated [39, 76].

Another limitation for DTI-derived results 
validation is related not only to inter-scanner dif-
ferences, but also to intra-scanner variability, 
meaning that diffusion tensor estimation, and 
subsequent fibre tracking, might be heavily 
influenced by slight differences even for the 
same subject undergoing the same MRI protocol 
at two different times [79]. Estimation of vari-
ability sources is currently being addressed also 
thanks to large, publicly available databases, 
such as the Alzheimer’s Disease Neuroimaging 
Initiative [80] and the Parkinson’s Progression 
Markers Initiative [81], which provide high-
quality MRI data acquired on different scanners, 
from both patients and healthy subjects and at 
multiple timepoints. These databases represent a 
precious resource in order to identify and address 
those variability sources that largely influence 
tractography results.

8.5  Clinical Applications

The potential clinical applications of tracto-
graphic techniques are numerous [82, 83], first 
and foremost in physiological studies of human 
CNS, where they enable in vivo identification 
of the topographic distribution of circuits 
shown by anatomical primate research and sur-
mised in man.

In neurophysiology, tractography has fostered 
the development of a new strategy to study brain 

activity patterns: anatomical connectivity. This 
technique is based on the possibility of visualiz-
ing directly the connections among the brain areas 
activated during a given task and conceptually 
complements two other strategies that explore 
connectivity, i.e. functional connectivity (the 
study of how two cerebral areas tend to work in a 
correlated manner) and effective connectivity (the 
study of the information flow within an active pat-
tern by identifying its direction and orientation). 
Anatomical connectivity is essential, because it 
provides evidence for the existence of anatomical 
connections, which are indispensable elements to 
confirm and validate the results of functional and 
effective connectivity studies. An example is the 
study of the connectivity of the dopaminergic sys-
tem, which originates in substantia nigra neurons 
in the pars compacta of the mesencephalon. 
Tractography has recently made it possible to 
identify the course of human dopaminergic fibres 
as far as the corpus striatum (nigrostriatal circuit) 
and their subsequent cortical distribution (cortico-
striatal circuit) [84] (Fig. 8.10).

The use of this method in neurological inves-
tigations is obvious, especially in degenerative 
CNS disease. In Parkinson’s disease, MR has 
a limited role except in the differential diagno-
sis from other diseases, since its diagnosis is 
essentially clinical but can only be confirmed 
by post- mortem histopathological examination. 
By identifying the dopaminergic fibres at their 
origin, tractography can quantify the axonal 
depletion and thus provide an index of disease 
severity. Another common degenerative disease, 
Alzheimer’s, is characterized already in its early 
phase by a depletion of temporo-mesial neurons, 
which can be identified with tractography [85–
93]. In Huntington’s disease, a neurodegenerative 
autosomal dominate disorder, MR tractography 
has shown white matter abnormalities prior to the 
disease onset [94–96].

In neurophysiology, electrophysiological 
data – indirect indicators of fibre integrity – could 
be better interpreted using tractography, which is 
capable of displaying fibre tracts directly. For 
instance, corticospinal fibres can be identified 
and reconstructed with tractography from their 
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origin through the centrum semiovale, corona 
radiata, internal capsule and cerebral peduncle. 
Identification of this bundle is important in neu-
rological diseases like multiple sclerosis, where 
demyelination and the consequent axon damage 
even at a distance from the lesion site can be doc-
umented and quantified using these techniques 
[97–112].

In neurosurgery, knowledge of the course of 
nerve fibre bundles (Fig. 8.11) and their relation-
ships to the expanding lesion can preserve them 
from resection [113–123].

Another application of tractography in this 
field is represented by connectivity-based clas-
sification of a seed region. As the name sug-
gests, this method classifies each voxel of the 
starting region for tractography on the basis of 
the region of the brain to which it connects with 

the highest probability. For example, it has 
been applied to identify areas of the basal gan-
glia connected to different cortical regions, 
both in healthy subjects and Parkinson’s  disease 
patients [124, 125]. Connectivity-based classi-
fication could also be used before and after sur-
gery, in order to assess changes in the 
connectivity of the region near the surgical 
breach towards the rest of the brain.

Finally, tractography should be applied to 
identify and describe the brain plasticity phe-
nomena secondary to CNS lesions. Identification 
of the axonal loss and consequent impairment of 
further adjacent or distant circuits, normally not 
involved in a given function, can offer insights 
into the complex phenomena underpinning clin-
ical recovery and enable better targeted pharma-
cological and rehabilitation therapy [126–138].

Fig. 8.10 T1-weighted 
axial images at the level of 
the mesencephalon (upper 
left), subthalamic area 
(upper right) and thalamus 
(lower left and right). Blue 
points represent the fibre 
tract reconstructed from the 
putamen through globus 
pallidus, subthalamic area 
and medial substantia 
nigra. GP globus pallidus, 
Pu putamen, SN substantia 
nigra, Th thalamus, V3 
third ventricle (Image from 
Lehéricy et al. [84])
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 Conclusion

We have described the main MR tractographic 
techniques, which enable in vivo and non- 
invasive reconstruction of the anatomy of 
axon fibres, documenting the connections 

among grey matter areas. Tractography is the 
natural complement of functional MR, which 
can depict the activation of these areas. 
Combined use of these techniques is expected 
to be performed with increasing frequency in 

Fig. 8.11 Axial FLAIR 
image (upper left) 
compared with 
fractional anisotropy 
maps. DTI-based colour 
orientation map: red = x 
direction; green = y 
direction; blue = z 
direction. A tumour 
shown in the FLAIR 
image alters the course 
of surrounding fibres in 
several slices, as shown 
by the DTI data
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the future [118, 121, 139, 140], and to yield 
useful results in the study of physiological and 
pathological CNS mechanisms, enabling bet-
ter planning and quantification of therapeutic 
interventions.
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