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Abstract In this paper the dynamic equivalence of planar mechanisms is investi-

gated by decomposition of inertia into point masses. For a planar rigid body, two

point masses can fully describe its dynamic behavior. The location of one these

points can be chosen freely, fixing the second point. By locating one of the two

point masses of a link on a revolute joint, this link can be fully described by the

one remaining point mass. By applying this approach throughout the mechanism’s

chain, a reduced parameterization of the dynamics is found. The inverse process—

inertia recomposition—gives a range of dynamic equivalent mechanisms. This paper

gives the bounds for the selection of such equivalent mechanisms. Simulations of two

dynamically equivalent 4-bar mechanisms, derived using this method, show equal

base reaction forces and moments, confirming the dynamic equivalence.

Keywords Equimomental systems ⋅ Dynamic equivalence ⋅ Dynamic balance ⋅
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1 Introduction

Mechanical systems are said to be dynamically equivalent or equimomental [1] if for

all motions the same linear and angular momentum is generated. This means that its

time derivative—the external forces and moments—are equal for equal motion, even

though the internal forces, such as joint forces, generally are different. Equimomental

bodies are usually defined by replacing an inertia—spatial or planar—by a set of

point masses. For spatial inertias at least four point masses are required [5]. For

planar bodies two points are sufficient [6].

The concept of equimomental bodies is used to model dynamics [5], optimize

mass distribution [6], and design mechanisms with reduced shaking forces and

moments [2]. This method has also been used for dynamic balance, which is the
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full elimination of base shaking forces and moments [1, 10]. Wu and Gosselin [9]

used a point mass representation to describe a set of spatial platforms which is bal-

anced by chains consisting of dynamic balanced four-bar mechanisms. Van der Wijk

used mass equivalent dyads [7] and triads [8] considering linear momentum equality

for the synthesis of force balanced mechanisms.

In dynamic balance, a set of dynamic variables are sought for which the momen-

tum equations are equal to zero for all motion. These momentum equations usually

employ a full set of dynamic variables [4], without eliminating for equimomental

mechanisms. Therefore, if the variables that do not affect the momentum can be

found and excluded beforehand, the dynamics equations simplify, speeding up the

process of dynamic balancing.

The contribution of this paper is twofold. Firstly, the point mass representation of

bodies is extended to planar mechanisms giving a reduced set of parameters to fully

describe its momentum. Secondly, this point mass representation can be used to find

a range of equimomental mechanisms, paving the way for better understanding and

synthesis of dynamically balanced mechanisms. In this paper we confine ourself to

the redistribution of the mass and inertia and do not undertake the adaption of the

kinematics. Currently only serial and single loop mechanism with revolute joints are

considered. The method is exemplified on a 4-bar mechanism.

2 Method

The presented method to find dynamic equivalence consist of two phases. In the first

phase, the inertia and mass of the bodies in a mechanism are described in terms of

point masses. In the second phase, a set of inertias is recomposed from these point

masses such that a range of dynamic equivalent mechanisms for a given geometry

is found. However, not all resulting mechanisms are feasible as some of the masses

and inertias can become negative. Therefore, the bounds on inertia recomposition are

investigated with a graphical an algebraic method for serial and single loop mecha-

nisms. The phases of this approach are shown in Fig. 1a, b.

A planar body is usually described with four parameters: a mass (mt), an x and

y location of the center of mass (COM, c) and an inertia around this COM (g). The

inertia of a rigid body can be understood as a collection of points fixed at a distance

with each other. For set of point masses mi located at ri, the total mass, COM, and

inertia of a body is:

mt =
n∑

i=1
mi c =

n∑

i=1

mi

mt
ri g =

n∑

i=1
mi‖ri‖

2 − mt‖c‖2 (1)
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Fig. 1 The inertia decomposition and recomposition of simple pendulum. a shows the initial

COM (c), mass (mt), and inertia (g) of the body. b This can be decomposed into two points (r1, r2)

with a certain mass distribution (m1, m2). c As r2 is at the base joint, it does not contribute to the

inertia and can be disregarded, leaving us with a 1-point representation. d Inertia recomposition

gives us a set of dynamic equivalent mechanisms by adding an arbitrary amount of mass at the base

joint (indicated with a
′
)

2.1 Inertia Decomposition of a Body

Rearrangement of Eq. 1 shows that any planar inertia can be represented by at least

two point masses. The location of one of these point masses (r2) can be selected

freely, fixing the mass distribution (m1, m2) and the location of the other point (r1).

m1 =
m2

t ‖c − r2‖
2

mt‖c − r2‖2 + g
m2 =

mtg
mt‖c − r2‖2 + g

r1 = c +
g
(
c − r2

)

mt‖c − r2‖2
(2)

Similarly, any inertia can be decomposed into more than two point masses. It

should be noted that in those cases, some of the point masses can obtain a negative

value.

m1 = −
‖∑n

i=3 mi(r2 − ri) − mt(r2 − c)‖2
∑n

i=3 mi‖r2 − ri‖2 − mt‖r2 − c‖2 − g
(3)

m2 = mt − m1 −
n∑

i=3
mi (4)

r1 =
mt

m1
c −

n∑

i=3

mi

m1
ri (5)

The decomposition into three points (see Fig. 2-left) has special geometric prop-

erties which shall be used later on. When the location of two points r2 and r3 are

chosen (e.g. on the body’s joints), the r1 is fixed to a circumscribed circle of the tri-

angle r2, r3 and the 2-point solution for r1. This follows from the fact that the radius

of the circumscribed circle is invariant to the choice of m3. When the point mass

locations are expressed with respect to the origin of the circle d (rdi = ri − d) it can

be seen that m3 vanishes in the inertia constraint (Eq. 1c). This is done by applying
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Fig. 2 The left figure shows the 3-point decomposition of inertia at c. This allows point mass (r1)

to be placed on a circle by choosing the m3. Right shows the constraint propagation of a dynamic

equivalent mechanism

‖rd1‖
2 = ‖rd2‖

2 = ‖rd3‖
2

and Eq. 1.

g = m1‖rd1‖
2 + m2‖rd2‖

2 + m3‖rd3‖
2 − mt‖cd‖2 (6)

g = (m1 + m2 + m3)‖rd1‖
2 − mt‖cd‖2 (7)

g = mt(‖rd1‖
2 − ‖cd‖2) (8)

2.2 Inertia Decomposition of a Mechanism

We have seen that two or more point masses sufficiently describe the inertia of a

planar body. The location of all but one point masses can be selected freely. For a

mechanism with revolute joints, these free point masses can be placed on the joints.

These revolute joints (ui,j) are the only points for which the linear velocities are

equal for both the original (i) and connecting body (j). Therefore the mechanism’s

momentum does not change when this point mass is considered as attached to the

connecting body (j), leaving the original body (i) with one point mass (mi, ri). Apply-

ing this strategy throughout the mechanism, we can reduce the number of dynamic

parameters from 4 to 3 per body.

For serial mechanisms this approach is straightforward. Starting from the most

distal link, the point mass distribution can be calculated with the free point placed

at the joint. Sequentially, this point mass is added to inertia of second link and the

process is repeated down the chain. To this end, the equation for the three point mass

inertia decomposition, Eq. 3 till 5 is used. This recursive nature gives a unique point

mass representation per set of dynamic equivalent serial mechanisms.

A parallel mechanism can be seen as multiple serial chains connected together.

Therefore, the process described for serial mechanism can also be applied to a par-

allel mechanism by cutting the loop at an arbitrary body. The loop closure at coupler
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link allows an extra freedom to select how the mass is distributed over the connect-

ing bodies. Therefore, the point mass decomposition gains a freedom with each loop

closure.

2.3 Inertia Recomposition of a Mechanism

Based on a given set of point masses we can calculate the possible dynamic equiv-

alent COMs, masses, and inertias. To convert this point mass representation into

feasible inertias we recognize that we can exchange a point mass (ai,j) in revolute

joint (ui,j), between body i and j. For mass continuity there must hold:

ai,j = −aj,i (9)

Applying this mass transportations to the mechanism we use Eq. 1 to calculate the

mass, COM and inertia of each body.

2.3.1 Constraints

By selection of the joint masses (ai,j) the dynamic equivalent properties of the links

are fixed. However, not all of these parameters are feasible. We must guarantee that

the resulting inertias and masses in the system are positive. This precludes the a range

of joint masses, and therefore COM locations of the mechanism. For bodies with

maximally two revolute joints these constraints on COM location can be interpreted

geometrically:

1. mt > 0. Positive mass occurs if the COM is placed on one side of the line trough

u1 and u2. By increasing the masses at the joints simultaneous, the COM moves

towards the u1u2-line. When the COM approaches this line, the total mass goes

to infinity. Passing over this line the total mass switches sign. Therefore if mi is

positive, mt is positive when the COM is placed on the same half-side. If mi is

negative, COM has to be on the opposite half-side.

2. g > 0. The limit where COM can be placed to ensure positive inertia is given by

the circle of 3-point decomposition solution. If the COM is placed on this circle

the corresponding inertia is zero. Outside this circle the mass becomes negative,

as can be seen in Eq. 8.

The previous two constraints limit the COMs of each body to a circle segment.

Since the mass continuity relationship (Eq. 9), also constraints on a body are inher-

ited over to the adjacent bodies. In Fig. 2-right an example is shown how these con-

straints are propagated through a single chain mechanism.

1. Starting at body 1, connected to the base, the point mass a1,2—placed at the sec-

ond joint (u1,2)—has a minimal value for which the mass at joint 1 (u1,0) can com-

pensate to pull the COM (c1) inside this circle. If this value becomes too negative
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no point mass at u1,0 results in a positive inertia (g1). This minimal value (a1,2,min)

is given by the line which is tangential to the circle at joint 1.

2. This limit on the point mass a1,2 also acts on the second body as a1,2,min =
−a2,1,max. Therefore, the second COM (c2) can only be placed on a smaller circle

segment, defined by the a2,1,max line.

3. Similarly, the point mass constraint on joint 3 (a2,3,max)—inherited from the rest

of the linkage—takes a slice from the pie, limiting the second COM (c2) to a

intersection of two circle segments.

4. Now we can see that also a2,1 has a lower limit on the intersection of a3,2,max—line

with the circle. Again this a2,1,min value gives a constraint on COM of body 1.

Using this approach, the constraints can be propagated in the two directions for a

single loop mechanism.

To find the values for these limits, we consider a generic link i with a free point

mass at ri and revolute joints at u1 and u2 with associated masses mi, a1 and a2.
The limit values for a1 and a2 are given when ci intersect with the zero-inertia circle

which has its origin in d.

‖cdi ‖
2 = ‖rdi ‖

2 = ‖ud1‖
2 = ‖ud2‖

2
(10)

Expansion of ‖cdi ‖2 with Eq. 1b gives us the following limit condition:

(mi(a1 + a2) + a1a2)‖rdi ‖
2 = rdi ⋅ (a1u

d
1 + a2ud1) + a1a2ud2 ⋅ u

d
2 (11)

The the following lower bound on a1, can be obtained as functions of the other two

parameters a2, and mi.

a1,min = −
a2mi(ud2 ⋅ r

d
i − ‖rdi ‖2)

(mirdi + a2ud2) ⋅ u
d
1 − (mi + a2)‖rdi ‖2

(12)

When selecting the maximal value for a2, the corresponding global minimal values

for a1 are found. Similarly, by swapping the indexes on a and on u, the lower bound

on a2 is given.

When there is no maximal value for a2, (e.g. when the joint is connecting to the

base) the minimal value for a1,min can be calculated from the limit case of Eq. 12.

a1,min = −mi
ud2 ⋅ r

d
i − ‖rdi ‖2

ud2 ⋅ u
d
1 − ‖rdi ‖2

(13)

When the limits on all the a’s are determined, the dynamic parameters can be

chosen to our liking to give a range of dynamically equivalent mechanisms.
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3 Results

To show the effectiveness of the proposed procedure, a four bar mechanism (#1)

is decomposed into point mass representation. From this point mass representation

a second dynamic equivalent mechanism (#2) is recomposed. The geometry of the

4-bar mechanism of Fig. 3 is given in Table 1. In Table 2 the mass, COM, and inertia

of both mechanisms are given side by side for comparison.

The inertia decomposition of mechanism #1 is done by recursive application of

Eq. 3 till 5. Starting at the coupler (link 3) the mass is distributed over joint u3,1
and u3,2. The point mass a3,1 is chosen to be 0.15 kg. This fixes r3 = [0.0, 1.3]T ,

m3 = 0.25 kg, and a3,2 = −0.03 kg. Another choice of a3,1 would give another mass

distribution and location of the points r. Now we can now calculate the point mass

representation of body 1. For mass continuity there must hold that a3,1 = −a1,3. We

can again use Eq. 3 till 5 to calculate point mass representation of body 1. Similar

approach is applied to body 2. This gives us the reduced set of point mass parameters

of Table 2. We reduced the number of variables regarding dynamics from 12 to 9.

From this point mass representation a range of dynamically equivalent mecha-

nisms can be recomposed. The feasible locations of the COMs are determined using

the procedure as described in Sect. 2.3.1, giving the shaded area of Fig. 3. The inertia

properties of equivalent mechanism #2 are calculated by addition of the joint masses

(ai,j) to the point mass representation using Eq. 1. The resulting COM, mass and

inertia are shown in Fig. 3-right and Table 2.
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Fig. 3 Two equimomental mechanism #1 (left) and #2 (right). The shaded area represent feasible

locations for the COMs

Table 1 Geometrical parameters, and reduced point mass parameters

Joint position [m] Point mass [m] Mass [kg]

u1,0 [−1.0, 0.1] r1 [−0.2, 0.6] m1 0.25

u2,0 [1.0, −0.1] r2 [1.1, 0.4] m2 0.25

u3,2 [0.5, 0.8] r3 [0.0, 1.3] m3 0.25

u3,1 [−0.5, 1.0]
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Table 2 Dynamic parameters of mechanisms #1 and #2

Joint mass [kg] COM [m] Mass [kg] Inertia [kg m
2
]

#1 #2 #1 #2 #1 #2 #1 #2

a1,0 0.27 0.04 c1 [−0.66,

0.07]

[−0.33,

0.58]

mt,1 0.37 0.32 g1 0.021 0.038

a2,0 −0.03 0.28 c2 [1.04,

0.50]

[1.08,

0.01]

mt,2 0.25 0.5 g2 0.004 0.011

a3,2 −0.03 0.03 c3 [−0.24,

−1.22]

[0.12,

1.27]

mt,3 0.37 0.25 g3 0.012 0.001

a3,1 0.15 0.03

The two equimomental four-bar mechanisms are evaluated in dynamic simulation

software SPACAR [3]. An arbitrary motion with a maximal velocity and accelera-

tion of joint 1 of respectively 10 rad/s and 20 rad/s
2

is applied to both mechanisms.

The base reaction forces and moments are reported to be maximally 126.4 N and

45.0 Nm. The difference between the base reaction forces and moments of mecha-

nism #1 and #2 is maximally 6.0 × 10−9 N and 5.1 × 10−9 Nm. These differences can

be explained by computational round-off errors, confirming dynamic equivalence of

the two mechanism.

4 Conclusion

In this paper a methodology to find dynamic equivalent mechanisms has been pre-

sented. Mechanisms for which this method does not directly apply—containing pris-

matic joints, or with multiple closed loop—fall outside the scope of this paper. The

method relies on the decomposition of a given inertia into a point mass represen-

tation, resulting in a reduced set of dynamic parameters. For a planar mechanism

with only revolute joints, the dynamics can be described by three parameters (ri and

mi) per body i. Based on this point mass representation a range of dynamic equiva-

lent mechanisms can be found. The bounds on the COMs are given both graphically

and algebraically. The method is confirmed by applying it to find two dynamically

equivalent 4-bar mechanisms, showing equal ground reaction forces and moments.
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